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Preface

This book evolved from lectures, courses and workshops on missing data and
small-area estimation that I presented during my tenure as the first Cam-
pion Fellow (2000–2002). For the Fellowship I proposed these two topics as
areas in which the academic statistics could contribute to the development of
government statistics, in exchange for access to the operational details and
background that would inform the direction and sharpen the focus of aca-
demic research. After a few years of involvement, I have come to realise that
the separation of ‘academic’ and ‘industrial’ statistics is not well suited to
either party, and their integration is the key to progress in both branches.

Most of the work on this monograph was done while I was a visiting lec-
turer at Massey University, Palmerston North, New Zealand. The hospitality
and stimulating academic environment of their Institute of Information Sci-
ence and Technology is gratefully acknowledged. I could not name all those
who commented on my lecture notes and on the presentations themselves;
apart from them, I want to thank the organisers and silent attendees of all
the events, and, with a modicum of reluctance, the ‘grey figures’ who kept
inquiring whether I was any nearer the completion of whatever stage I had
been foolish enough to attach a date.

The first part of the book deals with analysis of incomplete data. The
subject is a must for every survey analyst because large scale surveys with-
out any missing data exist only in textbooks and superficial plans. Although
[146] and [233] have exposed the deficiencies of trivial methods for handling
incomplete data, they have influenced the practice in official statistics and
epidemiology outside U.S.A. only at the margins. I have aimed the presenta-
tion at practicing and future survey analysts, setting aside much of the theory,
and focussing on the general principles of letting all the substantial sources
of uncertainty permeate through the entire estimation process, exploiting all
the relevant information about the missing data and challenging the adopted
untestable assumptions by sensitivity analysis that plays, within reason, the
role of the devil’s advocate. The solution, the method of multiple imputation,
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is respectful of the analyst’s work and is built around the methods, tools and
software that are well suited, and may have been prepared at some cost, for
the ideal complete-data setting.

The subject of the second part is small-area estimation. Although not a
concern in every survey, it is becoming a prominent problem in government
statistics as clients of established national surveys demand more and more
detail about geographical and other divisions of the country, while the sur-
vey management is reluctant to conduct more extensive surveys because of
escalating costs and increasing rates of nonresponse. Empirical Bayes models
are the principal methodological tool at present. I review these methods and
develop an approach that relies on a ‘good’ model much less than model-
based methods do, pursuing the creed of making the best of the available
information, irrespective of its format or source.

The third part, a single chapter, is a diversion from the focus on survey
analysis. It addresses the problem of model uncertainty by drawing on the
solution from small-area estimation. In brief, selection (of models, estima-
tors, and the like) is replaced by synthesis, linearly combining estimators or
predictors based on alternative models. In the process, I question some of
the established wisdoms, such as the finite-sample efficiency of the maximum
likelihood estimator and the imperative of basing all inferences on a model
judged to be valid by error-prone criteria.

Chapters 5, 10 and 11 directly, and the other chapters indirectly, draw
on several publications, some of them written with coauthors. The numerous
anonymous referees and journal editors not only helped us to improve the
manuscripts but also pointed to aspects and areas in which more rigour and
further research was (and in some cases still is) required. I have been tested
hardest of all by reactions to the material in Chapter 11. The encouraging
comments prevailed, although I may have been a bit too harsh on some of the
existing conventions. I want to thank the Editors of the Journal of the Royal
Statistical Society, Journal of Official Statistics and Statistics in Transition
for their permissions to use material from my publications in their journals.

All the computing described in this book was carried out in Splus and R.
The data analysed in Sections 5 and 10 can be obtained from their original
sources; I am not allowed to distribute them, but the code for their anal-
ysis as well as for the various illustrations is available from me on request
(NTL@sntl.co.uk). I hope that the reader will realise early on that a compu-
tational and graphical environment in which all the statistical computations
can be done and high-quality illustrations drawn as a matter of routine is
an essential part of an effective statistician’s toolkit. I want to convey my
apologies to Grazia Pittau for treating her like a guinea pig in this regard.

Research, on small-area estimation in particular, involved some travel over-
seas, to NSD, Bergen, Norway; ZA, Cologne, Germany; ZUMA, Mannheim,
Germany; and CEPS/INSTEAD, Differdange, Luxembourg. I want to ac-
knowledge the support of the Travel and Mobility of Researchers, a EURO-
STAT programme that funded some of this travel and the assistance of the
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hosts with my research and general well-being. My former employer, De Mont-
fort University, was generous in releasing me, up to a point, on these and other
occasions.

I have greatly benefited from consulting engagements with Communities
Scotland (formerly Scottish Homes), Edinburgh, and a three-year secondment
at the Office for National Statistics, London. Ludi Simpson, by introducing
me to a particular problem, and the U.S. National Center for Educational
Statistics, by generous research grants, provided impetus that turned my at-
tention to small-area estimation about a decade ago. Don Rubin has been an
inexhaustible source of experience and wise advice on anything to do with
missing data, and I have caught his incurable virus of multiple imputation.

Jim Ramsay gave me invaluable advice on manuscript preparation; I will
not elaborate on the details of which elements I adhered to and which I have
failed. Interactions with Albert Satorra have stimulated my interest in some
‘missionary’ aspects of the statistics profession, which probably come through
in the text. Rolling the time back by a decade or two, Murray Aitkin helped
to shape my ideas of how and why I want to work as a research statistician,
and how this can be enjoyed, by myself and others.

I owe Nathan Jeffery for his competent IT support, on occasions beyond
the call of duty. The best testament to the Springer-Verlag team is that this
is not my first project with them ([152]).

Leicester, England Nick Longford
February 2005
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Part I

Missing data



1

Prologue

I hope it’s not gone missing completely.

This chapter introduces the basic terminology related to survey sampling and
estimation. It is used in all three parts of the book, but it is not the universally
adopted terminology in the statistical literature.

1.1 Terminology. Some basics

The purpose of a survey is to enable making inferences about a domain or
population. A population is a well-defined collection of units; any entity can
be classified without ambiguity as to whether it belongs to (is a member of) a
specified population or not. A variable, defined for a population, is specified by
its value for each member of the population. A standard task is to estimate
the mean of a variable in a population. This population quantity could be
established with precision if the exact value of the variable were elicited from
each member of the population. A more practical alternative, requiring much
more modest resources (time, manpower, funds, good will of the respondents,
and the like), is to estimate this value. The population quantity is estimated
from a sample of subjects drawn from the population. The sample is drawn
by a sampling design, denoted by π. It is a probabilistic prescription for how
to obtain a sample. Formally, the sampling design is defined as a function that
assigns to each subset of the population the probability that it would form
the sample. For a large population, comprising millions of subjects, listing
each subset and the corresponding probability is not feasible. Although most
subsets have zero probability of forming a sample, the number of possible
samples is usually still very large. In most settings, it is practical to describe
the sampling design by a mechanism for drawing the sample; listing each
possible sample and the associated probability is not a practical proposition.

For example, the simple random sampling design without replacement is
aptly described by its name or by the following mechanism: draw a member
of the population, and then keep drawing one member at a time from the
pool of members who have not been drawn before. The draws are mutually
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independent and in each draw every candidate member of the population has
the same probability of being included. Let N be the population size (the
number of members of the population). In draw k, the probability of drawing
a member of the population who has not yet been included in the sample is
1/(N − k +1). The number of subjects in the sample is called the sample size
and is denoted by n. The sample size may be fixed — all the subsets that
have positive probabilities have the same size n. Otherwise the sample size is
said to be random and is described by the distribution of sample size.

The members of a population are usually related and the relationships
define a structure. For instance, the members may be organised in clusters,
and the clusters may be further clustered, so that there are clusters at several
levels. A familiar example of such a structure are (human) subjects within
households, households within postcodes (such as LE2 5YL in the UK), post-
codes within postal sectors (LE2), and so on. It is meaningful to define the
population size for each level of clustering, denoted by N (1) = N for the mem-
bers (units at the elementary level, or elements), N (2) for clusters at level 2,
. . . , N (L) for clusters at level L. Sample sizes at the various levels of clustering
are defined similarly; a cluster is counted if it is represented in the sample by
at least one member.

The sample is a set of subjects. The order in which the subjects are drawn
is unimportant. A subject may be included in the sample several times. The
number of inclusions (multiplicity) distinguishes samples. Thus, for distinct
elements a1 , a2 and a3 , (a1 , a2 , a3) and (a1 , a3 , a2) are identical samples,
whereas (a1 , a2 , a2) and (a1 , a1 , a2) are not. A sampling mechanism that
describes the formation of a sample by including one element at a time is said
to be without replacement if no member can be included in the sample more
than once; the multiplicity of each member is either zero or one. Otherwise
the mechanism is called with replacement. For example, in simple random
sampling without replacement there are CN

n = N !
(N−n)!n! possible samples,

each with the same probability 1/CN
n , whereas in simple random sampling

without replacement there are (N +n)!/n! distinct possible samples, but their
probabilities are not equal.

We distinguish population quantities — values that could be established if
the entire population were enumerated (if the requisite values were available
for each member of the population), and sample quantities — values that
depend only on the units included in the sample. Sample quantities are also
referred to as statistics. A population quantity µ is estimated by a sample
quantity µ̂. A good choice of µ̂ is such that | µ̂ − µ | is small, in the sense to
be defined. The quantity µ is referred to as the target , and µ̂ as estimate or
estimator; we draw a distinction between the latter two terms below.

We assume that the studied population is frozen, undergoing no changes
while being studied. Therefore, the target µ is fixed. In contrast, the value of
µ̂ depends on the sample drawn (the realised sample). Therefore, we cannot
measure the proximity of µ̂ to µ simply by the difference µ̂ − µ, its absolute
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value, ratio, or the like. In most settings, µ is not known; otherwise there is
no rationale for conducting a survey to estimate it.

A sample quantity has two forms. Prior to drawing a sample, it is a random
variable, as its value depends on the vagaries of the sampling process. Once
a sample is drawn, it is a constant. We draw a similar distinction between
estimators and estimates. An estimator is a random variable, usually given as
a formula, a computational procedure, or a software programme that assigns
a value for every conceivable sample. An estimate is the value of the estimator
applied to the realised sample. Prior to drawing a sample, we consider esti-
mators — we plan and implement procedures for processing the data to be
collected. When the sample is available we submit the collected data to these
procedures (estimators) and obtain their values, estimates.

Being objects of different types, estimators and estimates have very differ-
ent attributes. The attributes of an estimate are, for example, its sign, being a
rational number and whether it exceeds a particular constant. The attributes
(properties) of an estimator require much more careful definitions.

The principal conceptual device for assessing the properties of an estima-
tor is replication, defined as the act of repeating a process independently from
its previous applications. The results of replications are called replicates. A
replication of the sampling design yields, in general, a different sample, be-
cause the outcome of drawing a sample is subject to chance. In most contexts,
replication is a theoretical concept, because there is no intention to conduct it
in practice, even when it is physically possible. Usually, resources, or other cir-
cumstances, do not allow any replication, and the sampling design is applied
only once, to obtain the realised sample.

Suppose a large number H of replications is conducted for a particular
sampling (data-generating) process followed by evaluation of an estimator µ̂,
that is, by applying an estimation process. The result of this exercise is a set
of H estimates µ̂h , h = 1, . . . , H, values of the estimator µ̂. Loosely speaking,
an estimator of a given target µ is regarded as good if the values µ̂h are tightly
clustered around the target. As a standard, the mean squared error (MSE) is
used for assessing the quality of µ̂ as an estimator of µ; it is defined as

1
H

H∑
h=1

(µ̂h − µ)2

or, more precisely, as the limit of this expression when H grows over all
bounds, that is, as H → ∞. This limit is denoted by MSE(µ̂; µ). The second
argument of MSE, the target µ, is usually dropped, but this is appropriate
only when the target is obvious from the context. An estimator may be quite
good for one target and poor for another. A more rigorous notation for MSE
includes the sampling design as another argument, that is, MSE(θ̂; θ, π).

The bias of an estimator, denoted by B(µ̂; µ), is defined as the limit of
the difference
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1
H

H∑
h=1

µ̂h − µ .

It is a measure of the tendency to exceed or fall short of the target. Just like
MSE, the bias also depends on the sampling design. The expectation of an
estimator is defined as the average of its values in an (infinite) sequence of
replications,

1
H

H∑
h=1

µ̂h ;

note its relation to the bias. The expectation of µ̂ is denoted by E(µ̂), so
B(µ̂; µ) = E(µ̂) − µ and

MSE(µ̂; µ) = E
{

(µ̂ − µ)2
}

.

The variance of an estimator or, more generally, of a statistic µ̂ is defined as

var(µ̂) = E
[
{µ̂ − E(µ̂)}2

]
.

It is a measure of the dispersion of µ̂, without a reference to a target. It is
easy to derive the identity

MSE(µ̂; µ) = var(µ̂) + {B(µ̂; µ)}2
, (1.1)

for example, by using the finite-replication expressions for the variance and
bias. The two components of MSE in (1.1), the dispersion and bias (squared),
represent the respective haphazard (non-systematic) and systematic compo-
nents of the estimation error µ̂ − µ. We should strive to reduce both of them,
but reducing one at the expense of the other is not always useful. For illustra-
tion, suppose the target, unknown to the analyst, is µ = 7. One estimator is
unbiased, taking on values around 0 and 14, with equal probabilities (frequen-
cies), whereas the other estimator yields values between 6.25 and 6.75, and so
is biased. In this case, the biased estimator is far superior, because any of its
realisations is much closer to the target than any realisation of the unbiased
but large-variance estimator. Figure 1.1 illustrates the two estimators by their
histograms. The estimators are represented by 2000 values each. The widths
of the bars in the histograms are 0.25.

The standard error is defined as the square root of the MSE. (It is also
called the root-mean squared error, or rMSE.) Its value is easier to interpret
because it is on the same scale and is expressed in the same units as the
estimate and the target.

A more detailed description of an estimator is by its distribution. The
distribution characterises the frequency of the possible values in replications.
The distribution function of an estimator is defined as the probability that
the estimator’s value is not greater than a given threshold:
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Figure 1.1. A large-variance unbiased and a small-variance biased estimator of the
same target T, marked by vertical dashes.
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Fµ̂(x) = P(µ̂ ≤ x) ,

for −∞ < x < +∞. The probability is interpreted as the frequency of the
event that µ̂ ≤ x in a large number of replications. When this function is
differentiable (absolutely continuous), its derivative, fµ̂(x) = ∂Fµ̂(x)/∂x, is
called the density. The histograms in Figure 1.1, after a suitable rescaling,
approximate the densities of the corresponding distributions.

MSE and standard error are examples of sampling-process quantities. They
refer to the sample as a random object (prior to its realisation) and can be
established by replications of the sampling process. The distribution of any
estimator or its summary are sampling-process quantities. Such a summary
usually has to be estimated from a single sample.

Many commonly encountered estimators are unbiased and have (approxi-
mately) normal distributions; in notation,

µ̂ ∼ N (µ, σ2
µ̂) . (1.2)

A normal distribution is given by its mean µ and variance σ2. Subscripts of
µ and σ2 may indicate the relevant statistic, although µµ̂ may appear too
pedantic. The density of the normal distribution is

φµ̂(x) =
1

σµ̂

√
2π

exp

{
− (x − µ)2

2σ2
µ̂

}
,

and its distribution function is given by the integral
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Φµ̂(x) =
∫ x

−∞
φµ̂(x)dx .

The normal distribution with zero mean and unit variance, N (0, 1), is called
the standard normal, and its distribution function and density are denoted
by Φ and φ, respectively. If µ̂ ∼ N (µ, σ2), then (µ̂ − µ)/σ ∼ N (0, 1). Their
distribution functions and densities are related by the respective identities

Φµ̂(x) = Φ

(
µ̂ − µ

σ

)
φµ̂(x) =

1
σ

φ

(
µ̂ − µ

σ

)
.

A confidence interval for a population quantity µ is defined as an interval
delimited by sample quantities, µ̂L and µ̂U , such that it contains the target
µ with a probability equal to or exceeding a prescribed value:

P(µ̂L < µ < µ̂U) ≥ 1 − α , (1.3)

where α is a small number. A conventional choice for α is 0.05. The (sample)
quantities µ̂L and µ̂U are called the lower and upper confidence limits, respec-
tively. Narrower confidence intervals are in general preferred, so long as the
coverage rate, the probability in (1.3), is at least 1 − α. The probability may
exceed 1−α. In that case, we could have claimed that the confidence interval
(µ̂L ; µ̂U) has a greater coverage, but by failing to do so we merely under-rate
the quality of our ‘product’. Over-rating it, when the claimed coverage rate
is not achieved, is not regarded as a good practice and could be viewed as a
form of statistical ‘dishonesty’.

A confidence interval for µ in (1.3) is obtained by inverting (1.2), that is,
by solving it for µ. The solution is not unique, but the solution

µ̂L = µ̂ + σ̂µ̂Φ−1(α/2) µ̂U = µ̂ + σ̂µ̂Φ−1(1 − α/2)

is often preferred because it is symmetric around the estimator µ̂. Another
solution is

µ̂L = −∞ µ̂U = µ̂ + σ̂µ̂Φ−1(1 − α) .

These confidence intervals involve approximations because an estimator σ̂µ̂

is used instead of the underlying standard deviation σµ̂ . The approximation
is usually close whenever µ̂ is based on many observations. Otherwise the
t-distribution is applicable.

1.1.1 Efficiency

The principal difficulty faced by an analyst is not the implementation (evalu-
ation) of estimators, but their choice — identifying the estimator best suited
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for a given target. The circumstances that make this choice difficult are that
the properties of the estimators are not known (recall that we cannot afford
any replications that would establish them), or are known only partially, sub-
ject to assumptions, some of which cannot be verified or about which we are
not certain whether they apply. In practice, the properties themselves are
estimated, so they may not be established with perfect precision. Then the
choice of the estimator is also subject to uncertainty. Most properties of a
typical estimator also depend on the sampling design.

In a typical report of an analysis, the estimate (the value of the estimator
selected for an a priori specified target) is usually accompanied by its estimated
standard error. The qualifier ‘estimated’ is usually omitted; this is not a good
practice if the reported quantity is thereafter treated as a known sampling-
process quantity.

An estimator µ̂1 is said to be more efficient than estimator µ̂2 for esti-
mating a target µ if

MSE(µ̂1 ; µ) < MSE(µ̂2 ; µ) .

The MSE may depend on some unknown (population) quantities, so one es-
timator may be more efficient than another for certain values of these quan-
tities. One estimator is said to be uniformly more efficient than another if
it is more efficient for any set of these quantities. We prefer more efficient
estimators because, on average, they are closer to the target than less efficient
estimators. Two estimators based on a single sample are difficult to compare
when their MSEs can only be estimated. An estimator that is more efficient
than any other estimator for the same target is said to be efficient for that
target (without any qualification). Such efficiency may be qualified as appli-
cable within a class of estimators or for a specific single or a class of sampling
designs.

An estimator may be efficient for one target and less efficient for another.
For example, the sample mean of a variable recorded by a survey may be
an efficient estimator of the national mean of that variable, but may be less
efficient for estimating the mean of the variable for a given region, or for the
mean of a related variable that has not been recorded by the survey.

It is meaningful to compare the MSEs of two estimators only when they
refer to the same target. Properties of estimators depend on the sampling
design. For a given sampling design, we may wish to identify the efficient
estimator of a particular target. At the planning stage, we may be looking for
a sampling design that enables the most efficient estimation of a target. For
each candidate design we may identify the efficient estimator. In this setting,
it is meaningful to compare estimators under different designs, but they have
to be aiming at the same target.

Suppose estimator µ̂ is efficient for µ. Then a linear transformation of µ,
namely a + bµ, is efficiently estimated by the same linear transformation of
µ̂, a + bµ̂, and MSE(a + bµ̂; a + bµ) = b2MSE(µ̂; µ). However, a non-linear
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transformation of an efficient estimator is usually not an efficient estimator of
the same transformation of the target. A linear transformation of an unbiased
estimator, say a + bµ̂, is unbiased for the same transformation of the target,
a + bµ; E(a + bµ̂) = a + bµ if E(µ̂) = µ. But a non-linear transformation, say
g(µ̂), may be biased for the same transformation of the target, g(µ). A simple
example can be constructed using the inequality

E(µ̂2) > {E(µ̂)}2 .

In fact, µ2 is estimated without bias by µ̂2 − σ̂2
µ̂ , where µ̂ and σ̂2

µ̂ are unbiased
estimators of µ and σ2

µ̂ , respectively. Suppose that the population mean µ is

close to zero. Then µ̂2 is less efficient for µ2 than µ̂2 − σ̂2
µ̂ or

(
µ̂2 − σ̂2

µ̂

)
+

, its

value truncated to be non-negative.

1.1.2 Classes and types of estimators

Suppose the surveyed country comprises a number of regions denoted by k =
1, . . . , K, and the mean of a variable X is to be estimated for each region. An
estimator, such as the sample mean, is applied to every region. The properties
of the estimator, denoted by µ̂k , usually differ from region to region. In this
context, we refer to the pair (µ̂k , k) for a given region k as an estimator, and
to the collection of these region-specific estimators as an estimator type. More
generally, when considering the analysis of a collection of datasets using the
same method or approach, each dataset is associated with an estimator (its
distribution, and the like) and the term estimator type refers to what these
estimators have in common; for instance, that they are derived by ordinary
regression with a given set of covariates.

Since an estimator type involves several estimators, comparing estimator
types is not straightforward. Two estimator types are said to be compatible
if they have the same sets of targets. One estimator type is uniformly more
efficient than another if the two types are compatible and the estimator of the
former type is more efficient than the corresponding estimator of the latter
type for each target.

Uniform efficiency of an estimator type is a rather rare property. Usually an
estimator type is more efficient for some and less efficient for other targets than
a compatible estimator type. In such a setting, we have to define a criterion
for regarding an estimator type as superior (more efficient on average). An
obvious proposal is to compare the totals of the MSEs, and give preference
to the type with the lower total. More appropriate criteria take into account
our (our clients’) preferences. For example, if a certain precision is imperative
for estimating each target, then the estimator type with the higher number of
sufficiently precise estimators is preferred. Satisfying the precision threshold
may be more important for some targets than for others; then each target can
be associated with a weight. The total of the MSEs may also involve these
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weights. Further flexibility is afforded by considering (weighted) totals of a
monotone transformation of the MSEs.

An estimator type may be related to several variables by a model. The
details of the specification of this model define different estimators. The col-
lection of such estimators is called an estimator class. For example, without
specifying the covariates and other details, estimators based on a linear re-
gression model that use the regression parameter estimates in a particular
way form a class of estimators. Maximum likelihood estimators are another
general class of estimators.

1.2 Populations and variables

Statistics as a scientific discipline and a profession encompasses a wide range
of activities that defy a simple delineating description or definition. In any
case, there is no consensus on what constitutes a statistical activity. For the
setting of this monograph, we propose the following characterisation. Statistics
is the scientific discipline concerned with making statements about popula-
tions based on their incomplete observations. The term population stands for
a collection of units (subjects) that are of interest. A variable is a function,
an assignment of a value to each member of the population. The population
of interest is characterised by one or several summaries of the values of a
variable in a population. Examples of such (univariate) summaries are the
mean, median, mode (the most frequently occuring value), a percentile and
the variance. If the value of the variable were recorded for every subject in
the population, evaluation of any summary would be straightforward. Statisti-
cal methods address the problem of making inferences about such summaries
when the variable in the population is observed incompletely. Complete (and
perfect) observation of the entire population is referred to as enumeration.
Examples of incompleteness are observations on only some members of the
population and observations that are affected by imperfections in the process
of recording (measuring, eliciting, or transcribing) the values of the variable.
This makes sampling on the one hand, and measurement error and misclassi-
fication on the other, key themes in statistics.

As an alternative, a population can be defined by a rule that arbitrates
about any conceivable entity whether it is a member of the population or
not. We emphasize that two populations are regarded as distinct even when
they have a substantial overlap. The rules specifying their membership differ.
Similarly, two variables coincide only if they are defined for the same popula-
tion and their respective values coincide for each member of the population.
In particular, a variable may have several versions, such as an ideal (latent)
version, defined conceptually, and a recorded (manifest) version obtained by
the application of a specific instrument. For example, the ability of students in
a particular population and a particular subject area is a latent variable and
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the results of a test or examination are its manifest version. A latent variable
may have numerous manifest versions.

Making inferences means making guesses about the unknown value of the
summary, based on the available values (data) and the processes applied in
their collection. The guesses may be in the form of a value (estimate), a
range of plausible values (confidence regions) or any other interpretable for-
mat. Such statements are, however, only intermediate to making decisions
that would have been relatively easy to make had the population been enu-
merated. Inferences can be regarded as attempts at undoing the inadequacies
of the observations: not collecting the information from every member of the
population and, when collecting it, not doing so accurately.

The principal reasons for these inadequacies are limited resources and un-
availability of the members of the population or their unwillingness to coop-
erate with the data collection effort. Given its inevitability, the statistician’s
task is to limit its impact. The main principle in this is to exercise control,
or at least have an understanding of the processes involved: sampling and im-
perfect measurement. For sampling, a sampling design is specified, and so the
process, if perfectly implemented, is known and under our control. The imper-
fection of the measurement can be studied outside the confines of collecting
the survey data, although it is essential to set the measurement or observa-
tion in the same context, and apply it in the same population. If the ‘ideal’
value of a variable on a subject can be established, then the measurement by
the adopted method can be compared with it in a straightforward manner to
assess the extent of the deviation. When the ‘ideal’ value cannot be estab-
lished, replications of the measurement on subjects inform us about the level
of (within-subject) variation. This is one component of the imperfection in
measurement; the other, systematic deviations (biases), cannot be estimated
without collecting some additional information, perhaps using more sensitive
(and expensive) instruments or procedures.

The measurement process is described by the conditional distribution of
the observed value X given the ideal value X∗. Of interest is the conditional
distribution with the roles of the two variables interchanged: X∗ given X. The
two probabilities are related by the Bayes theorem

P(X∗ = k |X = h) =
P(X = h |X∗ = k)P(X∗ = k)

P(X = h)
, (1.4)

for discrete variables, and a similar expression, with probability P replaced
by density f , for absolutely continuous variables. Note that the marginal
probabilities for X and X∗ are factors in (1.4), so care has to be exercised in
extrapolating inferences about the distribution (X∗ |X) from one population
to another.
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1.3 Missing data

In plain language, missing data refers to the difference between the data we
planned to collect and what we have managed to collect. The plan may be a
genuine or a fictional one. An example of a genuine plan is the intention of
a typical survey to collect the precise values of a list of variables from each
subject in a sample drawn from a specified population by a specified sampling
design, such as simple random sampling. Some subjects in the sample refuse
any cooperation outright; they are total non-respondents. Others may fail to
respond to some of the questions, for a variety of reasons and motives. The
subjects may find the experience of responding burdensome, may be unwilling
or unable to recover the requested information from their records (or recall
or reconstruct it from memory), may not know the answer, may find the
question embarrassing, or may be unwilling to carry on with the interview
any longer for a multitude of reasons — obvious, inexplicable, disclosed to
the interviewer, or neither. Further losses of data may occur in its transfer
and transcription to the electronic medium, and in its further processing.

An example of a fictional plan is to collect information about subjects’
long-term diet. The unattainable ideal is to record with precision the quanti-
ties of all components of food (nutrients, such as protein, cholesterol, carbo-
hydrates, starch, and vitamins) for a random sample of subjects over a period
of several years. These quantities are required for studying how the incidence
of certain medical conditions is related to the long-term diet. The best that
can be expected of the selected subjects is that they keep diaries of all the
food and drink they consume over a week, with some indication of quantity of
each item. For a diligently completed diary, the missing data in this context
would be the diary for all the other weeks of the subject’s (adult) life. So,
most of the data is missing. However, the diary for a week informs us quite
well about certain targets, because subjects do not alter their diets radically
from one week to the next in any systematic way, perhaps with the exception
of major holidays. In a completed diary for one of the 2600 weeks of a 50-
year-old subject, we have collected much more than one 2600th part of the
desired information. Information cannot be ‘weighed’ by the number of digits,
kilobytes of data or quantity of ink used. A more subtle scale, tailored to our
needs, is defined by the quality of the resulting inferences, assuming that we
do our best with the data in our possession.

Resources (funding, available staff, time in which the survey has to be
completed), are usually insufficient to locate and interview every member of
the surveyed population. We may regard as missing data all the information
that would have been collected if the survey interview had been conducted
with every member of the population and if all of them had disclosed every de-
tail relevant to the studied subject matter, and if all the collected details were
recorded in the database used in the subsequent analyses. This indicates that
we have a considerable freedom in what we declare as missing data. We should
handle this self-granted responsibility with care. Less missing data is better
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than more, but pretending that we have none, ignoring the imperfections in
the data collection and processing, is not appropriate either.

Possession of expertise and ability to deal with missing data is by no means
a licence to neglect efforts aimed at reducing the extent of missing data. The
best methods, even with the anticipation of new developments in statistical
analysis, will never make up for the losses due to nonresponse and reasons for
failure to collect all the planned data. All such methods should be regarded
as a form of statistical damage control, or as statistical ‘fire-fighting’ equip-
ment. Apart from attending to all emergencies, promptly and well equipped,
a responsible fire-fighter studies and implements preventive measures. In that
respect, less work at the frontline is better business. Other professions adhere
to a similar creed. Avoiding emergency surgery by encouraging safer every-
day conduct and healthier lifestyle is an integral part of a good health care
system. The quality of legal advice is measured not by the number or rate
of legal suits and trials won, but by the quantity and extent of adversarial
confrontation that is avoided.

In summary, we should not look for missing data where there is none, but
have our equipment for dealing with it in good working order when its use
can reasonably be expected to be constructive, and appreciate, encourage and
contribute to the effort of reducing the extent of missing data and its impact on
the quality of the inferences made. Similar standards are difficult to formulate
for statistics in general. Much of the output of academic statisticians focusses
on illustrating novel methods, new uses of established methods, and deriving
optimal solutions. Often the questions are grafted onto the solution, to appeal
to artificial scenarios. In this monograph, we attempt to distance ourselves
from this mode of operation by considering examples with inflexibly stated
questions, by clients who have firmly set agendas. These are the principal
motives for conducting the surveys analysed in the examples in Chapters 5
and 10.

Other things being equal, simpler solutions are preferred because they are
easier to understand, adapt to changed circumstances, and are often laden
with fewer caveats. Complexity is unavoidable when simple solutions are far
from optimal. We should have a comprehensive tool kit, with all the tricks
and intricate equipment, but pick the simplest tools that do the job.

Most analytical tools, for estimation and other forms of statistical infer-
ence, assume that the data are in a prescribed format and have no imperfec-
tions. Some forms of missing data are a kind of imperfection that either disable
the routine application of a method, or bring the assumptions underlying the
implemented method into question. The responses to and resolutions of such
problems can range from a quick fix that disregards its consequences to a
complete turnabout in the goals of the analysis — from the substance (the
original purpose of the survey) to the study of a nuisance (missing values, an
undesirable phenomenon) that has a parasitic existence in all large-scale data
collection exercises. And, insufficient quality of the data may be regarded as
a respectable excuse for abandoning the analysis altogether.
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The attitude promoted in this monograph is that missing data or, more
generally, messy data, is a respectable subject in statistics, and essential in a
wide range of contexts. The respect is derived from its potential to contribute
to the general goals of statistics — promoting scientific endeavour in all fields
where incomplete data (information) is encountered. The subject is essential
because it addresses a ubiquitous feature of large-scale survey databases and
other data collections and contributes to the quality and credibility of the
inferences. Statistical research and practice provide numerous theoretical and
empirical examples of inferences that are misleading and deceptive because of
a superficial treatment of missing data.

The main themes in studying messy data are: understanding the processes
that generate the ‘mess’ (nonresponse, measurement error, misclassification,
rounding, and the like) and collecting information about them, making pro-
visions to do the best that can be done with the data at hand, without
compromising the general goals of efficient inference and unbiased (honest)
assessment of its quality, and contributing to the design of studies in which
mess can be expected. With messy data, the confidence should be reduced as
compared to the hypothetical data that would have contained no mess. Such
a reduction in the assessed confidence should be indicated in the conclusions
of the analysis. Otherwise, the analyst achieves a temporary kudos because
greater confidence is always desired. However, if the confidence is not justi-
fied the kudos may soon be deflated and the purpose of the whole analytical
enterprise compromised because a different decision might have been made if
the confidence were assessed with greater ‘honesty’.

In this respect, the subject of missing data is not for the researcher who
has to deal with a single problem in which missing data has occurred or some
other form of data-mess has been identified. Our target is the professional who
anticipates being involved in handling incomplete data, as a survey designer,
data manager, statistical analyst, or a user of the analyst’s output (a client),
for many years to come, so that the investment in acquiring expertise would
have rewards beyond the intellectual.

1.4 Suggested reading

This chapter is intended merely as a ‘refresher’ on the basics of survey sam-
pling and as a reference for the terms used in the rest of the monograph. The
foundations of survey sampling are essential for the following chapters. There
are a number of very good texts on survey sampling; [124] and [30] are undis-
puted classics that have withstood the test of time. [242] is a popular text
with a more modern approach. Reference [274] may have a greater appeal for
the reader with a stronger mathematical background.

A comprehensive computing and graphical environment is essential for
both practicing and theoretical academic statisticians. My strong preference
is for Splus, [14] and [279], or its freely available version R, [114], [41] and
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[215]. Gauss and matlab are suitable alternatives. If you are about to make a
commitment, ask your colleagues what environments they work in and why.
There is some advantage in conforming to the majority, but not if their prac-
tice is restricted by the capacity and range of the software. In particular, the
analyst’s control over every detail of the analysis, the graphical or tabular
presentation of its results and no limits to how the data can be manipulated
is essential.

Linear models and the linear algebra that supports their analysis are an
indispensible part of the statistician’s analytical equipment; [253], [177], [51],
[250] and [251] (any one of them) provide ample background. Although the
monograph adheres to the frequentist paradigm, most of the presented mate-
rial can be easily reformulated for the Bayesian. [77] gives a lucid and engag-
ing introduction to and is an effective advertisement for Bayesian analysis.
Although the Bayesian paradigm has taken firm hold in computational statis-
tics in the recent years, much of the survey sampling practice is affected by it
only on its periphery.

Matrices appear in statistics in two key roles. They represent datasets
(as subjects by variables) and variance, covariance and correlation matrices
describe the associations among variables. Many statistical concepts are neatly
presented by matrix algebra. Without matrices, our equations would be full of
summations and indices; by using matrices, they are much more compact and
easier to comprehend and manipulate. Although matrices are introduced and
their properties discussed in most texts on linear regression, [96] goes beyond
the minimum required without losing the focus on applications in statistics.
Modern statistics requires not only computers but also expertise in computing
and numerical methods. References [270] and [128] are excellent resources for
them.

Statistical operations, including estimation, are easier to conduct with
continuous (normally distributed) data and random variables. In contrast, lay
people, such as survey subjects, are often more comfortable with categories,
and many variables collected by surveys are discrete. Reference [1] provides a
well-rounded background to analysis of discrete data.

1.5 Exercises

1. In a textbook example, but preferably with a survey that you are familiar
with, consider how additional resources could be wisely spent: to reduce
the sampling error by increasing the sample size, improve the measure-
ment process, reduce the nonresponse, construct a better sampling frame
(to combat non-sampling errors), collect more information by a more ex-
tensive questionnaire, use more advanced data management, or use differ-
ent methods of analysis.
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2. Review common sampling designs and estimation of population means,
proportions and totals in a standard textbook on survey sampling (e.g.,
[242]).

3. Review the advantages and drawbacks of the common sampling designs. In
particular, why is simple random sampling not applied universally? What
is the purpose of stratification, clustering and using unequal probabilities
of selection?

4. Prove the identity in (1.1). Construct other measures of dispersion and
bias and combine them into alternative measures of the quality of an
estimator. Describe the difficulties in defining these and other measures of
the quality. Consider, for example, the mean absolute deviation E(| µ̂−µ |),
E
{
(µ̂/µ − 1)2

}
or P(| µ̂ − µ | > ∆) for a given positive constant ∆.

5. Implement a simple sampling design in your preferred computing environ-
ment. Either use a population (that is, a sampling frame) from another
source, or define the values of a single variable for a large number of
units (tens of thousands at least). Use a random sample from the uniform
distribution for drawing the sample. (For example, a 1% simple random
sample is drawn by including all members whose value of the draw from
the uniform distribution on (0, 1) falls below 0.01.)

6. Apply an estimator of the population mean to the sample obtained in the
previous example and estimate the sampling variance of the estimator.
Replicate the process a large number of times (at least 100 times), and
compare the distribution of the estimates with the population quantity
and the (theoretical) sampling variance.

7. On a smaller example, simulate a misclassification process. Simulate the
values of X∗ from a discrete distribution on small integers (say, from 1
to 6), and apply misclassification by increasing or reducing each value
with a small probability p. If the result is a value outside the range (1–6),
truncate it. Compare the estimates of the population mean for the original
and ‘misclassified’ variable.

8. Collect a few examples of (definitions of) a latent variable and several
of its manifest versions, and discuss how the difference between latent
and each manifest variable, and among the manifest variables, could be
described. In particular, consider so-called parallel manifest variables that
have the same association with the latent variable. Define meaningful ways
of (partial) ordering of the manifest variables, e.g., by their proximity to
the latent variable and by the effort (cost) required to obtain their values.

9. Draw a random sample from N (0, 1) and use it to estimate the mean
µ = 0. Apply quadratic and exponential transformations to the data and
show that µ2 and exp(µ) are estimated very poorly by µ̂2 and exp(µ̂),
respectively. Propose more efficient estimators. Construct the symmetric
(two-sided) confidence interval for µ with coverage probability 0.95, and
use it to construct confidence intervals for µ2 and exp(µ).



2

Describing incompleteness

This chapter is concerned with describing the extent and patterns of miss-
ing values in a dataset. The nonresponse process is introduced as a nuisance
accompaniment of the sampling process and the ground is prepared for a dis-
cussion of the several common schemes for addressing data incompleteness in
Chapter 3.

2.1 The problem of incompleteness

Most surveys rely on subjects’ cooperation. We should therefore consider their
perspective. As survey designers, interviewers or analysts, we may also be sur-
vey subjects. We can easily point to settings or circumstances in which we
might respond negatively to an invitation to complete a questionnaire by
an unsolicited phone call, or to a request for a face-to-face interview. There
are dozens of activities more inspiring, entertaining, stimulating and reward-
ing than responding to a survey. So, the spectrum of our responses ranges
from pretending total incomprehension, through polite or rude refusal, with
or without a credible excuse, to reluctant cooperation that may be terminated
as soon as we experience some further inconvenience, discomfort or some other
perceived unpleasantry. We bear any intrusion with reluctance and jealously
protect our privacy.

As a commodity, information is expensive but perishable — what is valu-
able today is discarded tomorrow or, at best, next week. Although the extent
of missing data may be reduced by repeated calls and other time-consuming
measures, a survey and its analysts and clients cannot always afford to wait
until these measures have run their course.

However carefully a survey may be designed, the best plan is merely an
ideal because complete cooperation of all the subjects, an assumption implied
by the plan, is but an unattainable ideal. A simplified stereotype of a plan may
be to collect the values of K variables from a random sample of n subjects
drawn from a specified population. We may fail to identify the population
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precisely because of migration, changes of status, errors in the sampling frame,
and the like. Further, we may fail to contact some of the selected subjects or
fail to enlist their cooperation. The cooperation may be interrupted during
the interview or completion of the questionnaire, some questionnaire items
may remain not responded because of oversight, deliberate omission, inability
to respond, nonexistence of an appropriate response, and the like. Further
losses can occur in the process of transcribing the collected responses to the
computer (due to illegible hand-writing and clerical errors).

Such missing data is visible, easy to detect by inspecting the constructed
database, if it is constructed appropriately. The data field reserved for a par-
ticular value (of a variable for a subject) is either empty or contains a symbol
that indicates that the value has not been recorded. There may be several such
symbols, one for each kind of missing value: for ‘do not know’, ‘not willing to
tell’, for an apparently inadvertent omission, and the like.

What about subjects from whom we elicited no information? Why should
the database be burdened by their records, full of missing values? The implied
viewpoint tends to prevail at present. We will argue against it, and against the
practice it encourages, on the grounds illustrated by the following comparison.
Suppose two surveys, A and B, are conducted in the same population using the
same sampling design, instruments and methods of data collection. Survey A
has sample size 7650 and complete information is elicited from each selected
subject, so that no data is missing. Survey B has sample size 10 000, but
only 76.5% of the selected subjects cooperate with the survey completely, and
no information is elicited from the remainder. In survey A, the planned and
realised designs coincide, whereas in survey B they differ. If the analysis does
not reflect the difference between the two surveys, or between the planned
and realised sampling designs, we should seek fault with the method applied,
not our intuition.

The sampling design is important because the claimed properties of the
estimators used are contingent on the sampling design, assuming that it is im-
plemented perfectly. One element of such perfection is that there is no missing
data. The purpose of the sampling design is to extract the maximum informa-
tion with the resources available for the survey. In practice, this is interpreted
as ensuring good representation of the population — that the sample is a
faithful image, in the miniature, of the population or, more formally, that the
sample (empirical) distribution function of the values of any variable is an
unbiased estimator of its population counterpart.

The sampling design might ensure this, but not if it is infiltrated with
nonresponse. If the sample drawn is representative, and is then reduced by
nonresponse, the remainder of the original sample (the respondents) may no
longer be representative. For example, if non-responding subjects tend to be
wealthier than the respondents, our conclusion about the wealth of the pop-
ulation is distorted. If we regard the complete respondents as the (original)
sample, we have no means of detecting such a distortion. Non-respondents are
the subjects who tell us nothing, so we have no means of knowing that their
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absence from the database spoils the good representation that was arranged
by the sampling design. We should strive to overcome this problem, even if
in some circumstances it may appear prudent to defuse it by focussing on the
population of respondents. Although with apparently greater competence, we
would then solve a less relevant problem, because the original inferential task
relates to the complete population, not to any of its opportunistically defined
subpopulations.

The lack of any evidence that nonresponse causes a problem does not
justify ignoring it, because the appropriate interpretation of no evidence is ‘do
not know’. For instance, no evidence may arise as a result of no inquiry. To
justify ignoring nonresponse, evidence is required that it causes no problem.

The first step in dealing with nonresponse, or controlling its impact, is a
survey of the damage. For missing data, this amounts to describing the extent
of missing values, classified according to a suitable nomenclature. Although
the party in charge of data collection has incentives to present the problem
with as little fanfare as possible, there are ample long-term rewards for honesty
and integrity. Suppose a survey has 20% of total nonresponse (non-contacts
and outright refusals), and it is much lower than in surveys of similar popula-
tions and with similar content and protocol. The relatively high response rate
does not justify ignoring the problem of nonresponse altogether. We should,
at least informally, play the devil’s advocate and contemplate what impact
the 20% of the subjects might have had on the planned or intended inferences,
had they all responded. It is easy to construct scenarios in which as little as
5% nonresponse results in a substantial distortion of the inferences. For in-
stance, if in a country with low unemployment rate most of the unemployed
do not respond to a survey that inquires about their employment status, and
most employed and other subjects do, the estimate of the unemployment rate
is bound to be problematic. The percentages (rates) of nonresponse (for each
variable recorded in the survey), although easy to establish, are but one as-
pect of the problem. The impact on the planned inferences is what matters
because the survey and its analysis have been undertaken specifically for the
purpose of drawing the inferences.

The choice of the method for dealing with missing data is informed not
only by the extent but also by the pattern of the missing data — whether
subjects tend to omit responses to isolated questions or to whole sections (con-
tiguous blocks) of questions, whether some questions are (almost) always or
never responded when some other questions are responded or not, or whether
nonresponse is associated with the values of one or a set of variables.

We conclude this section on a note of pedantry. Although the literature
commonly refers to ‘nonresponse’, a more precise term for missing values is ‘no
record’. That is, a subject might have responded to a particular questionnaire
item, but the processes that followed led to a missing code (blank) being
entered, appropriately or not, in the corresponding location in the database.
Although we prefer the phrase ‘value not recorded’, it is impossible to avoid
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the term nonresponse, as there is no alternative single word for the failure to
record a value.

2.2 The extent of missing data and the response pattern

In this section, we define a terminology for missing data. We deal only with
its visible features that can be summarised in one word as frequency of var-
ious combinations of missing and recorded values in the records. Section 2.3
discusses invisible features of missing data; they are properties of the process
of nonresponse (missingness). We introduce first the general setting, some
notation and related conventions.

We consider a fixed (frozen) population, so that there is no ambiguity
about any entity whether it is a member of the population or not. The size of
the population (number of its elements) is denoted by N . In general, we use
capitals for population quantities and (the corresponding) lowercases for sam-
ple quantitites, although this notation is difficult to adhere to consistently. For
example, boldface capitals are also used for matrices and boldface lowercases
for their rows.

A population quantity can be derived with precision only if the relevant
data items are available for the entire population or its a priori defined sub-
set. Sampling has no impact on a population quantity. A sample quantity
depends on the sample — it is a random variable prior to sampling, and a
constant thereafter. Its value can be established when the sampling process
is executed perfectly. A sampling-process quantity depends on the sampling
process. That is, its value could be established with a specified precision if the
sampling design were executed sufficiently many times. Most sample quanti-
ties are estimators; most sampling-process quantities describe estimators. For
example, the population mean is a population quantity, it is estimated by the
sample mean, a sample quantity, and the bias and sampling variance of the
sample mean are sampling-process quantities. The sampling variance may be
estimated; the estimator is a sample quantity.

Let n∗ be the planned sample size of a survey; it may be a random variable.
Suppose the survey collects the values of K variables. The complete data is the
hypothetical dataset that was planned to be collected by the survey. Antici-
pating nonresponse, the planners may have resigned themselves to obtaining
this dataset with some of its values missing, but they issued instructions and
implemented measures aiming to collect every item of the complete dataset.
In most instances, it is a n∗ × K rectangular array. The collected data is re-
ferred to as the observed data, and it may be characterised as incomplete; the
missing data is, in this context, defined as the difference between the complete
and incomplete datasets.

We can define the terms ‘complete’, ‘incomplete’ and ‘missing’ for subsets
of data. These subsets can be formed by keeping only some of the variables,
only some of the subjects (reducing our attention to a subpopulation), and
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by the combination of these two ways of reducing the data. A variable is said
to be recorded completely if its value is recorded for every subject; that is, if
the dataset reduced to the single column is complete. Similarly, the record of
a subject is complete if the value of each variable for the subject is recorded.
Otherwise, the record is called incomplete. A record is called empty if all
its values are missing. A record that is neither empty nor complete is called
partial . We could use the term ‘empty’ also for a variable that has not been
recorded for any subject.

The extent of missing data can be summarised by the numbers or percent-
ages of empty and incomplete records. More detailed summary is provided
by these numbers or percentages for various important subsets of variables,
such as blocks of questionnaire items. Further, the number or percentage of
missing values can be given for each variable.

A rather coarse classification of the nonresponse is to unit and item nonre-
sponse. Unit nonresponse refers to an empty record, when the unit (subject)
has provided no data. Item nonresponse refers to a missing item — the subject
concerned cooperated with the survey, but only partially. More detail can be
introduced by distinguishing parts, or sections, of the survey. Not cooperat-
ing with a section can be called section nonresponse. For example, the section
may be the questionnaire administered at a given time point in a longitudinal
study.

Example 1

In a survey with a planned sample size of 2000 (human) subjects, 174 were
outright refusals and further 229 sampled subjects were not contacted (either
not located or not found at home). Further, among the 2000−229−174 = 1597
responding subjects, complete records on the twelve variables on which we
focus are available for only 1088 subjects.

The summaries defined for this dataset are: the rate of total nonresponse,
(1−1597/2000)×100 .= 20%, and the rate of partial (incomplete) cooperation,
(1−1088/2000)×100 .= 46%. The complements of these rates, 80% and 54%,
are the respective rates of at-least-partial and perfect cooperation. Table 2.1
gives the nonresponse rates for each of the twelve variables. Figure 2.1 presents
these rates graphically.

These summaries indicate that variables A–F are responded by most of
the 1597 cooperating subjects. For example, the response to A is not recorded
for only 407 − 403 = 4 of them. The nonresponse rates are much higher
for variables G–L. The total number of missing values is 407 + 415 + · · · +
761 = 7225, out of 12 × 2000 = 24 000, but 12 × 403 = 4836 of them are for
unit nonresponse (total non-respondents). The remainder, 2389 values, are
distributed among the 509 subjects who have partial records. These subjects
have only 89 missing values on the variables A–F. On the other six variables,
G–L, they have 2300 missing values, about four-and-a-half per subject. This
implies that many of these subjects have five or all six values missing.
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Table 2.1. The nonresponse rates for the twelve variables, A–L, in a dataset. A
fictitious example.

Variable A B C D E F

Number of missing values 407 415 413 431 422 419

Nonresponse rate (%) 20.3 20.7 20.6 21.5 21.1 20.9

Variable G H I J K L

Number of missing values 912 844 717 728 756 761

Nonresponse rate (%) 45.6 42.2 35.8 36.4 37.8 38.0

Figure 2.1. A graphical display of the nonresponse rates for variables A–L, given
in Table 2.1.
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Although offering important insight, Table 2.1 does not contain all the
information that might be useful to have. For example, we cannot establish
how many subjects have empty records on the sets (segments) of variables
A–F and G–L. For A–F, it may be only the 403 total non-respondents, and
at most four others, whereas for G–L it could be as many as 314 in addition
to the total non-respondents.

For a more detailed description of the nonresponse (or response), we define
the response pattern. The indicator of response is an object of the same shape
and size as the complete dataset, in our case a n∗ × K matrix, in which
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Table 2.2. Response patterns in an incomplete dataset. A fictitious example.

Pattern

000000 100000 101000 111000 111001 1110111 111111

Subjects 407 6 2 4 3 9 1569

Pattern

000000 001000 001100 001110 001111 011111 111111

Subjects 717 11 28 5 83 68 1088

one symbol is used to indicate that the corresponding value in the dataset
is missing, and another that it is recorded. As a convention, 0 is used for
a missing and 1 for an available (recorded) item. The indicator of response
is denoted by R. (We can refer to R also as the indicator of nonresponse.)
An obvious generalisation is to use different symbols for each kind of missing
value. For example, −1 may be reserved for ‘no contact’, −2 for ‘refusal’, ‘−3’
for ‘do not know’, and similar. For simplicity, we assume that such detail is
not given and R comprises zeros and unities.

The response pattern for a subject (record) is defined as the corresponding
row of R. It is a (binary) vector and, by ‘gluing’ its elements together, it can
be represented as a sequence of zeros and ones. Thus, 1 = 11 . . . 1 represents
a complete record, 0 = 00 . . . 0 an empty record, and so on. For a small
number of variables, the patterns can be summarised by their tabulation. For
K variables, there may be up to 2K distinct patterns. It is useful to find out
whether only a limited set of patterns occur in the data, or whether the vast
majority of records have one or a small number of patterns. Table 2.2 gives an
example, summarising the patterns of the same dataset as in Table 2.1. The
patterns are summarised separately for the sets of variables A–F and G–L,
both to conserve space and to get a better insight.

First we note that the number of distinct patterns, seven for both A–F
and G–L, is much smaller than what we may have feared — 26 = 64 for
either set of variables. For variables A–F, there are, in addition to the 403
total non-respondents, four subjects with empty records. For variables G–L,
there are 717 − 403 = 314 such subjects; 195 subjects have one of the five
partial response patterns. The most frequent partial patterns are 001111 and
011111. Subjects with this pattern appear to have started their cooperation
on the block G–L with delay. (We explore their response pattern on the block
A–F below.) A notable feature of the patterns for variables G–L is that the
responses are concentrated in contiguous sets of variables, such as I–K for
pattern 001110.

Table 2.2 still fails to inform about the pattern for the entire set of vari-
ables, A–L. Since the number of patterns does not exceed 49, we could list
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Table 2.3. The cross-tabulation of the response patterns for the sets of variables
A–F and G–L.

Pattern
for A–F Pattern for G–L

000000 001000 001100 001110 001111 011111 111111

000000 407 0 0 0 0 0 0
100000 6 0 0 0 0 0 0
101000 2 0 0 0 0 0 0
111000 4 0 0 0 0 0 0
111001 3 0 0 0 0 0 0
111011 9 0 0 0 0 0 0
111111 286 11 28 5 83 68 1088

them, although the two-way table of patterns for the variables A–F and G–L,
displayed in Table 2.3, may be easier to digest. All the counts in this table are
concentrated in the first column and last row. This indicates that no subjects
have partial records on both segments A–F and G–L. The records are either
empty (407 records), complete (1088 records), complete for A–F but empty
for G–L (286 records), partial for A–F and complete for G–L (24 records), or
complete for A–F and partial for G–L (195 records).

We can define a partial ordering according to the pattern of nonresponse.
One variable is said to be recorded more than another if the only response
patterns occuring for the two variables are 00, 11, 10; that is, when the first
variable is not recorded, neither is the second. Records, or their patterns, can
be compared similarly. For example, 111011 represents more response than
111000, although 110011 does not represent more response than 001000.

The patterns can be displayed graphically, by a n∗ × K array of cells
(symbols or squares) with different symbols, colours, shading, or the like,
indicating whether the item has been recorded or not. A clearer impression of
the distribution of the patterns is created if the subjects are permuted so that
records with the same pattern form a contiguous segment. When the sample
size n∗ is large, it is practical not to draw the cells but represent a given
number of records (rows) by a unit height in the rectangle representing the
data. The variables can also be permuted to make the presentation clearer.
An example is given in Figure 2.2.

2.2.1 Monotone response patterns

The variables in a dataset have a partial ordering according to the extent
of their missing values. The response patterns of a dataset are said to be
monotone if the variables can be permuted so that any variable is recorded
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Figure 2.2. A graphical summary of the patterns of nonresponse.
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more than the following variable; nonresponse to a variable by a subject is
followed by the subject’s nonresponse to all the subsequent variables.

For vectors X1 and X2 of the same length, we introduce the notation

X1 � X2

if X1 exceeds or is equal to the value of X2 for every subject. The symbols �,
≺ and 
 are defined similarly. For instance, X1 � X2 if X1 exceeds X2 for
every subject. Variable X1 is recorded more than X2 if for the corresponding
vectors of response indicators we have R1 � R2 .

For a dataset X with columns X1 , . . . ,XK , and response indicator R with
columns R1 , . . . ,RK , monotone response patterns are defined by the string
of ordering R1 � · · · � RK . We can distinguish between ‘recorded more than’
and ‘recorded at least as much as’, but this will not be essential at any point.

In Section 2.3, we consider methods for completing the recorded (incom-
plete) data by substituting a value for each missing item. We assume that the
value is well defined, even though it was not recorded. Since we do not know
the value, we search for information on which to base our guess. For a subject,
the available part of the record is an obvious candidate for this purpose. The
more was recorded from the subject, the better our prospects of a good guess.
Obviously, fewer missing items have to be filled in for (imputed) when more
items are recorded. But we also possess more information on which to base
the imputation. If we want to use all the information available about a subject
we have to devise a different way for each pattern. So, the distribution of the
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patterns helps us draft a strategy for this task. In Chapter 4, and Section 4.2
in particular, we find that efficient methods for imputation are much easier
to implement when the data has monotone response patterns.

2.3 Sampling and nonresponse processes

Why did we fail to collect a particular item of information? At first sight,
this question is solely about nonresponse. On reflection, there are two classes
of answers: because we did not intend to (as when the subject is not in the
sample), and because we failed to elicit a response that, in principle, could
have been recorded.

By a (random or stochastic) process we refer to one or a collection of ran-
dom variables that describe a studied phenomenon or some of its ingredients.
In a typical survey, we may consider a data-generating process describing how
the members of the population acquire their values of a random variable or
vector, the sampling process, describing how some members of the popula-
tion end up being the subjects in the sample, and the nonresponse process,
describing how we fail (or succeed) to elicit and record the elements of the
planned (complete) dataset. In this chapter, we are not concerned with the
data-generating process (for instance, how certain members of the labour force
end up being unemployed, at a certain time point), although the purpose of
the survey may be to learn about this process. The nonresponse process is
formally defined as the conditional distribution of the response indicator R
given the complete data X∗,

(R | X∗) .

In formulas, we refer to distributions of random variables or vectors by paren-
theses ( ), to conditioning by the vertical bar | , and to equality in distribution
by the symbol ∼ . For example,

(R | X∗) ∼ (R)

denotes that the conditional distribution of the response indicator R given the
complete data coincides with the (unconditional) distribution of R. That is,
R and X∗ are independent. This distributional identity is not true in general.
The missing data is denoted by Xmis .

A typical survey involves several other processes, such as questionnaire
development (piloting) and interviewing. Although the interviewer is meant
to be an inert instrument in eliciting responses, different interviewers might
have elicited differing responses from the same subject, had such a replica-
tion been realised (a repeated interview, separated by a period in which the
subject has forgotten the experience of having been interviewed for the first
time, and would not recall the responses he or she gave earlier). For instance,
the interviewer in a survey has to make an assessment of the need for re-
pairs of the inspected dwelling; different interviewers (surveyors) may come
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to different conclusions when inspecting the same dwelling. The underlying
assessment process has an impact on the quality of the collected data, and
consequently on the quality of the inferences. We could consider an ideal as-
sessment for each subject, and the assessment by the surveyor or interviewer
as its manifest (error-prone) version. The ideal assessment is a completely
missing variable, but the realised assessment contains a lot of information
about it, especially when the assessors make ‘mistakes’ only rarely, and most
of them are only minor. This is an example of planned ‘nonresponse’ and it
indicates that methods for dealing with missing data may be applicable in
some less conventional settings. They are explored in greater detail in Section
4.6.

The nonresponse process describes the momentary influences on the sub-
ject’s response. If the subject were asked the same questions about a stable
attribute, such as consumption of a food item, he or she may respond dif-
ferently, depending on the momentary disposition, vagaries of the recall and
formulation of the response. In this case, the ideal response is missing for ev-
ery subject and the recorded response is its manifest version; it informs about
the ideal value imperfectly.

The sampling process reduces the information from the population to the
(complete) sample. The role of the sampling design is to minimise the loss of
information given the resources available for the conduct of the survey. Given
adequate resources and perfect implementation, the design ensures that we
can make (sample-based) inferences about the population. An imperfect re-
sponse process reduces the complete sample further, to the incomplete sample
(information). The main qualitative difference between the sampling and non-
response processes is that the former is under our control, by means of the
sampling design prescribing the probabilities that a subset of the population
forms the sample. The sampling process has a formal description as a function
π on exp(P), the set of all subsets of the studied population P; for s ∈ P,
π(s) is the probability that s forms the sample.

In contrast, the nonresponse process is usually oblivious to the sampling
design — the subject’s reasons for not responding are unrelated to the sam-
pling plan. Because it is outside our control, we should be concerned that
the nonresponse process may spoil the representativeness of the sample. We
can easily construct scenarios in which the representativeness is severely un-
dermined. As an example, suppose in a survey aimed to estimate the unem-
ployment rate, the unemployed tend to be much more difficult to contact or
they are more reluctant to respond to the relevant questionnaire items. More
subtle processes may be at play, such as when non-studying young men in
urban areas have a lower response rate, or when the response rates among
quite finely divided subpopulations do not differ a great deal, but in certain
groups unemployed and in others employed subjects are less likely to respond.

This suggests two approaches. To ignore the issue, since the ‘correct’ an-
swer is beyond the realm of possibilities, or to give up on the original goal of
estimating the specified population quantities altogether because of a gross
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failure in the data collection process. Neither approach is very constructive.
Instead, we will speculate about the possible nonresponse processes, draw in-
ferences assuming these processes, and then explore how the inferences change
as the assumed process is altered. In this way, we take a risk, but assess, in-
formally, its magnitude. We will also look for means of reducing the risk by
searching for insights about the nonresponse process. First we define a typol-
ogy for the nonresponse processes, starting with the setting of a survey in
which a single variable is recorded.

2.3.1 The nature of the nonresponse process

Since nonresponse is a process akin to sampling, we could describe it using
the terminology from sampling theory. As nonresponse could in principle be
described and motivated as a result of certain decisions or actions, it is also
called the nonresponse mechanism. The ideal, usually not attainable, is to
find a complete description of this mechanism, so that, for instance, we could
simulate it on a computer.

In the simplest conceivable nonresponse mechanism, subjects who fail to
respond are as if selected by simple random sampling (SRS) from all the
subjects selected by the sampling process. The nonresponse mechanism is
independent of the complete data:

(R | X∗) ∼ (R) . (2.1)

With such a mechanism, the data are said to be missing completely at ran-
dom (MCAR). As SRS is a very special sampling process, we cannot expect,
without exercising any control over it, that the nonresponse would be MCAR.
Usually we have no means of establishing that a nonresponse mechanism is
MCAR. A more plausible assumption is that the mechanism belongs to a
more general class.

A class of sampling designs more general than SRS is stratified simple
random sampling (sSRS). In sSRS, the population is classified into strata
(subpopulations), and simple random sampling (with stratum-specific proba-
bilities of inclusion) is applied in each stratum. The stratification is given by a
categorical variable defined in the surveyed population. Stratification based on
a (categorical) variable A is said to be more detailed than stratification based
on B, if B can be formed by aggregating (collapsing) some of the categories
of A.

In a more general sampling design, the probability of inclusion is a function
of one or several variables, and the inclusions are mutually independent. Such
a design can be motivated by defining a sequence of designs with more and
more detailed stratification. In the corresponding nonresponse mechanisms,
data is said to be missing at random (MAR). A key characterisation of MAR
is that the response indicator depends on the complete data only through its
recorded part:
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(R |X∗) ∼ (R |X) . (2.2)

That is, the missing data Xmis contains no information about R. Note that
missing data contains information about most population quantities. Al-
though much more general than MCAR, it is easy to construct mechanisms
that are not MAR. In all such mechanisms, data is said to be not missing at
random (NMAR). In NMAR, the response indicator depends on the missing
data. NMAR contains all manner of ‘strange’ mechanisms, as illustrated in
Figure 2.3. In each panel, the histogram of the complete data is composed of
the missing values, represented by the shaded bars, and the recorded values
by the plain bars above them. In panel MCAR, the probability of missing,
equal to 0.25, is the same within every interval (bar). Panel NMAR 1 depicts
a mechanism with higher response rates for the smallest and largest values of
X, NMAR 2 a mechanism with lower response rates for the extreme values,
and NMAR 3 a mechanism with response rates decreasing with the value of
X. These examples are in no way exhaustive. Any idiosyncratic mechanism
is an example of NMAR. MAR mechanisms that are not MCAR are more
difficult to represent graphically because they involve at least two variables.

On the one hand, we should be aware of NMAR mechanisms and contem-
plate how they might affect our inferences. On the other hand, we should be
realistic and, while not subscribing to the assumption of a limited class of non-
response mechanisms, such as MCAR, restrict our attention to the range of
NMAR mechanisms that are plausible. Intelligence about the studied setting
that reduces this range is particularly valuable.

Example 2

Suppose a survey collects the values of a single categorical variable X from a
sample s, with a sampling design defined by π. If the nonresponse mechanism
is MCAR the probability of response is the same for each value of X. If
the nonresponse mechanism is MAR the probability of response does not
depend on the subject’s value of X, but may depend on the (known) inclusion
probability πi . An example of NMAR arises when the probabilities of response
depend on X. For example, the subjects with a particular value of X are
much more reluctant to respond, and those with other values of X are more
forthcoming.

Several variables in X∗

Although the definitions of MCAR, MAR and NMAR are easier to interpret
for single variables, their definitions in terms of (R |X∗) apply to sets of
variables in X∗. Simply, the joint distribution of the n × K elements of R is
independent of the complete data X∗ (MCAR), or depends on it only through
the incomplete data X (MAR).
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Figure 2.3. Examples of MCAR and NMAR mechanisms. Missing values are rep-
resented by the shaded sections of the bars.
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It is useful to separate the survey variables X into those that may be
recorded incompletely, Y, and those that never contain any missing values,
Z;

X ∼ (Y Z) .

For example, the values of some of the variables in Z may be available prior
to interviewing and those in Y are established by the interview. Variables
that describe the circumstances of the interview (whether completed or not,
whether conducted at the first appointment, and the like), usually belong to Z.
We can draw a distinction between completeness of a variable in the process of
data collection and in the realised dataset. The former refers to hypothetical
replications of the survey. When the sample size is large the distinction is
unimportant.
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2.3.2 The importance of MAR

The importance of MAR stems from a characterisation alternative to (2.2):
when MAR applies the joint distribution of X for subjects with incomplete
records is the same as for subjects with complete records:

(x | r = 1) = (x | r = r∗) , (2.3)

where r∗ is any response pattern for x (a row of X). The characterisation
in (2.3) provides an important recipe for dealing with nonresponse. We es-
tablish, or estimate, the associations among the variables in X for subjects
with complete records (pattern 1), and then assume that it applies also for
the incomplete records. Before doing this, we have to be satisfied that the
nonresponse mechanism is MAR. This we can rarely accomplish analytically,
but that should not stop us from proceeding by assuming MAR. The best
we can do is to reduce as much as possible the error incurred in the infer-
ences that can be attributed to the assumption. Drawing inferences from X
is much easier under MAR because NMAR includes a range of mechanisms
in which some combinations of values of X that are infrequent among the
complete records are quite frequent among the incomplete records. Whether
MAR applies, as well as the departure from it, depends on the variables X. If
a nonresponse mechanism is MAR it will remain so when variables are added
to X. However, a NMAR mechanism need not become MAR when variables
are added to X. The variables considered, X, are an important qualification
of MAR and NMAR.

This suggests that when planning a survey we should think not only about
recording the outcome variables directly connected with the desired inferences,
but also variables that promote MAR. Although such auxiliary variables may
also be recorded incompletely, they may be helpful nevertheless.

Example 3

One-week diaries of alcohol consumption in a survey of middle-aged people in
the UK are analysed by [166]. Diaries are regarded as the most reliable way of
collecting information about the consumption of food and drink, even though
incomplete and empty (no-response) diaries are quite frequent. Keeping a
diary for a whole week requires a lot of commitment from the subjects. In
the survey, almost all subjects completed the diary for the first two days,
but many dropped out thereafter. The subjects were also asked to recall how
much alcohol they consumed during the previous week and were given a set of
four brief questions about problems related to their past alcohol consumption
(CAGE, [61]).

The response rate to the four recall questions (about drinking beer, wine,
sherry and spirits) was much higher because the questions can be responded
within a short time, after a cursory recall. The higher response rate comes at
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the price of lower reliability. The CAGE questions (response options Yes/No)
also had very little nonresponse. Numerous other variables were collected,
such as smoking habit, gender, body mass and height.

An obvious concern with diary data is that subjects may drop out from
keeping it because of embarrassment over excessive consumption. Thus, the
incomplete diaries would deceive the analyst by stopping at a day preceding
excessive consumption. Such deception is an example of NMAR. From the
recorded data we cannot infer whether it is present, and to what extent.
However, the other variables related to alcohol consumption may provide some
insights. Concerns about NMAR would be well supported if there were many
subjects who declared substantial consumption in the recall and much lower
consumption in their incomplete diaries, even after pro-rating for the number
of completed diary days.

The recall variables play the role of auxiliary information that makes MAR
more plausible. As an outcome they are not suitable, but as informants about
the missing values that would have been derived from the diaries they are
ideal. Details of the analysis are discussed in Section 5.2.

2.4 Exercises

1. Find or construct examples of nonresponse mechanisms that are MCAR,
MAR and NMAR, and examples that are NMAR, without conditioning
on a particular variable, but are MAR otherwise.

2. For a given incomplete dataset of at least 1000 subjects and several vari-
ables, write a programme (Splus function) to summarise the response
patterns by a table and graphically. Look for ways of excluding as few
subjects as possible to make the patterns monotone.

3. Unit nonresponse is encountered in a survey of a particular human pop-
ulation. The distribution of age within the sexes is known from a census
or register. To assess whether the nonresponse presents a problem for the
planned (complete-data) analyses, tests are carried out of the hypothe-
ses that the proportions of the sexes and the sample distributions of age
within the sexes are compatible with the population distribution. Provide
a critique of this approach.

4. Simulate the values of a log-normally distributed variable in a population
of at least 20 000 subjects. Regard the variable as the annual income. De-
fine a small number of cut-points for ‘income brackets’ and devise methods
for estimating the population mean income from the tabulation accord-
ing to these income brackets. Draw a large number of samples from the
population (according to the same sampling design, say, SRS without re-
placement with sample size 500), and compare the distributions of the
sample means for the income and the income bracket.

5. Formulate the problem of estimating the population mean income from
the income bracket data as a case of missing information.
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6. In a national crime survey, interviews are conducted with a sample drawn
from the country’s population of households. An adult member of the
household is asked to recall all instances of crime committed against any
member of the household. Why does the survey not collect any infor-
mation about the crimes committed by the interviewees and members
of their households? What is the likely difference between the records of
victimisation from the interviewees and records from the Police?

7. Data about total alcohol consumption in a year in the UK could be ob-
tained from the records of payments of excise duty on alcohol. What
information about alcohol consumption may be obtained by surveys of
the (adult) population that could not be extracted from the excise duty
enumeration?

8. Suppose a survey with sample size 8000 collects information about 30 vari-
ables, but item nonresponse occurs by MCAR with the same probability,
0.01, for every item and the event of nonresponse is independent across
items. Calculate the expectation and variance of the number of incomplete
records. Simulate this setting on a computer and verify the calculation.
Alter the nonresponse process so that the events of nonresponse are de-
pendent within subjects.

9. Describe the response patterns obtained in the previous example, by tables
and graphs, and relate the within-subject dependence of response to the
distribution of the patterns.
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Single imputation and related methods

This chapter describes some commonly applied methods for incomplete data
and points out their deficiencies. For the assessment of these methods, we
adopt the standards of efficiency and not overstating the precision (honesty).

By efficiency we mean estimation with as small mean squared error
(MSE) as possible, given the known or assumed details of the sampling pro-
cess and associated information. Estimator θ̂1 is said to be more efficient
than estimator θ̂2 if its MSE in estimating the same target θ is smaller;
MSE(θ̂1 ; θ) < MSE(θ̂2 ; θ). Estimator θ̂ of a population quantity θ is said
to be efficient (without any qualification) if MSE(θ̂; θ) is smaller than the
MSE of any other estimator of the same quantity θ. Properties of estimators
depend on the (realised) sampling design, and so the design is an implied
argument of MSE. Sampling designs can also be compared for efficiency. A
sampling design π1 is said to be more efficient for a given population quantity
θ than another design π2 if an efficient estimator of θ under π1 has smaller
MSE than an efficient estimator of θ under π2 . In most settings, MSE depends
on unkown quantities (parameters), and so can only be estimated.

By honesty we mean estimation of MSE with non-negative bias. Of course,
estimation of MSE without bias is preferred, but this is not always possible.
Overestimation of MSE(θ̂; θ) can be regarded as ‘under-selling’ the estimator
θ̂. In contrast, underestimation of MSE amounts to dishonesty — the preci-
sion implied by the estimator M̂SE(θ̂; θ), regarded as the underlying quantity
MSE(θ̂; θ), is not justified. In this perspective, overestimation is less serious
an error than underestimation by biases of the same order of magnitude.

We assume that an agenda for the analysis of the data collected by a survey
has been set, by one or several parties (analysts), and they could cope with
the analysis if the data were complete. The first step is therefore to alter the
dataset so that it could be submitted to the planned (complete-data) analysis.
The methods for accomplishing this can be classified as data reduction and
data imputation (completion), according to the course of action taken with
the incomplete records — discarding them or completing them. An obvious
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virtue of imputation is the aim, however unrealistic, to recover the complete
dataset.

A typical imputation method draws on the recorded data, assuming that
the patterns of values or associations observed among the complete records
tend to occur also among the records that were not observed completely. In
contrast, data reduction is straightforward, requiring no intelligence about
the dataset or the nonresponse process. A feature common to these methods
is that they refer to a complete-data analysis. Methods that do not involve
a complete-data analysis tend to be complex because they have to combine
descriptions of the processes that yield the complete data (sampling or data
generation) and that introduce incompleteness or, more generally, imperfec-
tion (departure from the plan).

Insisting on complete-data methods is practical because these methods
may have been implemented in preparation for the analysis, and the survey
may have been designed so that a specific method would be suitable. The
user’s familiarity with the method is another factor. Most analysis tools are
suitable only for complete data and the expertise in its analysis is available
much more widely and with greater competence than for dealing with in-
complete data. Modelling the nonresponse process entails added complexity,
and is generally regarded as an undesirable distraction from the main goal of
drawing inferences about the studied population. Although not impossible, it
is much more difficult to plan an analysis with (unplanned) missing values
than for a complete dataset.

We assume therefore that the available tools for analysis are limited to
handling datasets that are complete, that were or could have been obtained if
no deviation from the plan had taken place. A good plan calls for collecting a
dataset that could be analysed, efficiently, by the available tools. A key feature
of a dataset that enables its easy handling and analysis is rectangularity. A
dataset is said to be rectangular if it comprises complete records, each with
the values of the same set of variables. Such a dataset is usually represented as
a matrix, with n∗ subjects (units) as its rows and K variables as its columns.
Rectangularity is spoilt when some of the Kn∗ values are missing, in such a
pattern that there are some partial records and partially recorded variables.

After discussing several approaches (classes of methods), we conclude that
generating a completed dataset that is, item by item as close as possible to
the complete dataset is not the appropriate goal. The purpose of the survey
analysis is inference, in the form of a multitude of estimates or other state-
ments about the studied population, and so the dataset should be edited with
the purpose of enabling such inferences according to the commonly adopted
or implied standards of efficiency and honesty.
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3.1 Data reduction

In data reduction, we discard all the incomplete records and analyse the re-
mainder. The reduced dataset has the (rectangular) structure amenable to
the planned analysis, although the sample size has been reduced.

Data reduction has two drawbacks. An incomplete record is discarded
even when only one of its less important items is missing, or when a good
guess of the missing value(s) could be made. Thus, we may discard valuable
information. This is an acute problem especially when there are a variety of
response patterns. Further, the analysis of the reduced dataset relies on the
assumption that the subjects with complete records (respondents) are just
as a good a representation of the sampled population as the original sample
(all the selected subjects). That is, data incompleteness (at least one item
missing) is a process akin to MCAR.

Example 4

The UK Women’s Cohort Study (WCS) is a survey of over 35 000 middle-aged
women recruited from the UK participants of a larger survey conducted by the
World Cancer Fund. The objective of WCS is to study the association of can-
cer (its occurence and death as its attributed cause) with diet. The subjects,
contacted by mail in 1996, were requested to complete, without any super-
vision, a lengthy questionnaire about their diet, socio-economic background,
anatomical measurements, medical and child-bearing history, and the like. The
first section of the questionnaire comprises about 200 questions presented in
the format

How often have you eaten these foods in the last 12 months?

with ten response options ranging from Never to Six times a day, coded as 0
and 9, respectively. The rates of nonresponse for these food-frequency ques-
tionnaire (FFQ) items are between 1% and 5%. The reported frequencies are
converted to quantities of nutrients (protein, starch, carbohydrates, vitamins,
and the like) to obtain a subject’s dietary profile. The profile can be evalu-
ated only when the responses are available for every item. Without a special
provision, a single missing item can disrupt the calculation of the profile.
Data reduction, applied to all the FFQ items, would reduce the sample size
to around 10 000 (less than 30%), an unacceptable sacrifice to computational
convenience.

The operationally implemented solution imputes 0 (Never) for each miss-
ing FFQ response. For most questions, this is the obvious category to impute
because it is the most frequent response. Also, we may conjecture that many
omissions are a result of the confusion between Never and no response. The
instructions clearly state that one of the options should be selected for every
question, but subjects may be distracted or lose concentration while respond-
ing to a long sequence of mundane questions. �
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Data reduction is effective with a limited set of response patterns, when
most of the values in the partial records are missing. But in most large-scale
surveys, data reduction is poorly suited because the loss of information relative
to the recorded dataset is unacceptable.

As an aside, data reduction is very ineffective when the complete-data
analysis relies on some form of balance or orthogonality. An example of balance
arises when equal numbers of subjects are planned to be in each cluster. In this
case, either the number of subjects in each cluster has to be reduced, to restore
the balance, or some incomplete clusters have to be discarded altogether.
Many subjects with complete records may have to be discarded for the sake
of an inflexible complete-data analysis.

3.2 Data completion

In the following sections, we discuss several common imputation schemes that
generate a dataset that could be submitted to a complete-data analysis. The
schemes can be classified as deterministic and stochastic. The completion
by a deterministic scheme depends only on the recorded (incomplete) data.
The replication of such a scheme on the same incomplete dataset yields the
same completion. Stochastic schemes involve chance, typically in the form of
random draws. A replication of such a scheme yields a different completion
even with the same incomplete dataset — the imputed values are random,
even after conditioning on the recorded data.

3.2.1 Mean imputation

In this scheme, the mean of the observed values of an incompletely recorded
variable y is imputed for each missing value of y. This is very easy to imple-
ment for ordinal variables. The imputed values are as ‘normal’ as can be, given
that a single value has to be chosen. The unattractive feature of the scheme
is that the completed dataset has several values of y equal to the mean, even
when all the observed values are unique or occur with small frequencies. The
values of many ordinal variables are rounded; for them, the imputed values
stand out like a sore thumb, unless they are also rounded. But such rounding
introduces a consistent ‘bias’ for each completion. By no stretch of imagina-
tion can we claim to have recovered the complete dataset, even though we
have restored its rectangularity and made it amenable to the complete-data
analysis.

By imputing the mean (without rounding), we fix the values of the vari-
able on average; the sample mean has not been altered by the imputations.
In contrast, the sample dispersion of y is reduced, because ‘model’ values are
imputed, not departing from the sample mean. It might be more appropri-
ate to impute the population mean, but it is not known. By imputing the
sample mean, we are committing a systematic error. However, imputing the
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population mean would not resolve the problem of reduced variation, and the
constant imputed value is an obvious glitch in the completed dataset.

Imputing the mean is a univariate scheme, not informed by the values of
the other variables. The scheme fails to maintain the associations among the
variables. For example, imputing the average body mass of adult men (say,
70 kg) is appropriate for men of average height (say, 175 cm), but is not a
plausible value for a man of height well above average, say, 200 cm. We could
respond to known height by imputing a ‘typical’ body mass for that height.
The values of other variables may similarly inform the choice of the imputed
value. Methods for this are discussed in Section 3.2.6.

3.2.2 Imputation from another variable

Suppose some of the recorded variables are closely related, so that their values
for a subject tend to be similar. If one value is missing, the value of another
variable may be used instead. For each variable k, we may define a substitute
variable h that would provide the replacement value. This arrangement may
be reciprocal; variable k would provide a replacement value for variable h.
Such a scheme does not impute for every missing value because the values
of both variables k and h may be missing. This eventuality can be taken
care of by defining ‘second’ substitutes; such a variable h2 would provide the
value for variable k when both variables k and h are missing. Further (third,
fourth, and so on) substitutes can be defined, leading to a complex scheme
that defines a replacement for every missing value, unless the record, or its
relevant part, is empty. A transformed variable, or a variable constructed from
several variables, may be used instead of an originally recorded variable.

A familiar example of this scheme is ‘last observation carried forward’
(LOCF) in longitudinal surveys.

Example 5

The UK Labour Force Survey (LFS) employs a rotating panel design in which
each sampled residential address is planned to be contacted first when selected
into the sample, and then 3, 6, 9 and 12 months later. The key outcome
variable is the employment status of each adult resident at the address —
whether the subject is employed, unemployed or economically inactive (not
in the labour force) at the time of the scheduled interview. Within any three
months, few subjects change their status, so imputing the status recorded
three months ago (when available) for the current status is a fairly safe bet. It
is difficult to devise an imputation scheme that would yield the correct status
more frequently. However, as a consequence of this scheme, the transitions
among the employment states are under-represented. This distortion is neg-
ligible for the middle-aged in certain socio-economic groups, who tend to be
in secure employment, but far from trivial for the young who are developing
their careers and exploring career options — some switch in quick succession
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between being students (economically inactive), working in short-term jobs,
and having spells of unemployment and economic inactivity (e.g., caring for
their small children). �


In the multivariate version of the LOCF scheme, a whole vector is brought
forward, for example, for employment status, income, the strategy adopted
in job search and perception of employment opportunities. A dilemma arises
when the values of these variables are missing in various patterns. Should a
partial record be overwritten by the values from the previous occasions, or
should the imputations be restricted to the missing values? By overwriting,
we discard some recorded values (the ‘truth’); otherwise we may come across
contradictions or implausible combinations of values, such as unemployment
combined with high income.

When a trend is present, such as decreasing unemployment, there are more
transitions from unemployment to employment than converse. This may be
obvious from the recorded data, but it cannot be reflected in the imputations.
Should the imputed status for all non-respondents who were unemployed three
months ago be ‘employed’? This is inappropriate if only 10% of those who
responded on both occasions and who were unemployed on the previous oc-
casion are now employed. As spells of unemployment tend to get shorter,
bringing forward unemployment status from the previous wave becomes less
appropriate.

Vertical and horizontal imputation

Mean imputation and imputation of an another variable are examples of verti-
cal and horizontal imputation, respectively. In the former, imputation is based
on the information in the same column as the missing item, and in the lat-
ter, information is used only from the same record (row). Vertical imputation
can be based on a summary other than the mean. Median and mode are the
obvious alternatives for deterministic imputations. For instance, the mode is
imputed in Example 4 for most FFQ questions. In horizontal imputation, any
rule for combining the recorded values of the other variables for the subject
can be used.

Features of vertical and horizontal schemes can be combined, drawing on
the advantages of both. For example, separate horizontal schemes may be
defined for each category of a discrete variable or the details of a vertical
scheme may depend on the (recorded) values of the other variables.

3.2.3 Nearest-neighbour imputation

In nearest-neighbour imputation, the incomplete record of a subject (called
recipient) is completed by the values of the same variables of another subject
(donor) whose record is complete. Let the variables with missing values for a
particular recipient be k = (k1 , . . . , km). For the recorded variables k(c), the
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complement of k, a rule is defined that identifies a subject with a complete
record on k that is closer to the recipient than any other. This is the nearest
neighbour. When there are several equally well qualified nearest neighbours
the donor is selected at random from among them and its values of the vari-
ables k are imputed for the corresponding values of the recipient. A simple
rule for identifying a donor is by agreement (match) of the values of the vari-
ables in k(c). The variables may be listed in the order of importance, so that
a match of the values of the first variable is more important than a match of
the values of the second variable, and so on. Matching of values as a criterion
can be relaxed so that it suffices if the values do not differ by more than a set
threshold. This is a practical arrangement especially for continuous variables.
More generally, a distance can be defined between any two subjects with the
requisite response patterns, and the donor is selected as the subject with the
shortest distance from the recipient. Care has to be exercised in the definition
of the distance, so that the relative importance of the contributing variables
is appropriately reflected.

The donor need not have a complete record. Some variables may be ignored
in matching or calculating the distance, or their contributions may be so small
that the identified donor would be the nearest neighbour of the recipient for
any completion of its record. Also, distances can formally be defined even
for missing values. For example, the distance between score 4 and a missing
value for the same variable, defined on the scale 0–10, can be defined as 6,
the largest possible distance. In such a scheme, the distance for two missing
values should be defined as 10 (as between 0 and 10), although there may be
some rationale for a shorter distance, especially when the scores of 0 and 10
are very rare.

A drawback of this scheme is that the quality of the imputation is uneven.
Some recipients have many close ‘neighbours’, while others are in relative
isolation. Conversely, some donors may be very popular — their values are
used for many recipients, whereas other subjects, even some with complete
records, would not be donors for any recipients.

3.2.4 Hot deck

Hot-deck imputation is closely related to nearest-neighbour schemes. In hot
deck, a pool of donors is defined for each recipient, and a donor is drawn from
the pool at random. The pool is defined so that it contains the subjects who
are similar to the recipient and have recorded values for the variables k(c).
The imputation can be organised so that the recipients are also grouped, into
sets that share the same pool of donors.

The definition of hot deck can be generalised by assigning weights to each
member of the pool and making the probabilities of their selection unequal.
The weights can be based on a distance measure, as its decreasing function.
With weights, each pool may comprise the whole sample, and each ineligible
donor assigned zero weight.
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Hot deck should be applied to all the missing values of a record simultane-
ously, so that the association of the imputed values is similar to the association
of the recorded values. By way of an example, consider hot-deck imputation
for the employment status in LFS for recipients with missing values at time
points 4 and 5 (Example 5). If a recipient’s status is imputed separately for
the two time points, the imputed values will differ more frequently than might
be expected. This would be the case even if the same pool of donors (subjects)
were used on the two occasions. In contrast, if the status at both time points
is imputed from the same (randomly selected) donor the imputed values will
be identical about as frequently as among the potential donors — subjects
similar to the recipient. In brief, plausibility of each imputed value is not
sufficient for the plausibility of the set of imputed values of the record.

How large should a pool of donors be? Small pools offer too little variety
of imputed values, whereas large pools may contain many potential donors
that are very distant from the recipient. If estimation of the recipients’ values
is the goal, then small pools, defined by appropriate criteria, are better. Small
pools may under-represent the variation of the values, and large pools may
over-represent it. Setting aside ties, the nearest-neighbour method can be
characterised as hot deck with pools comprising one subject each.

3.2.5 Weight adjustment

Records in a survey dataset are usually associated with sampling weights. The
sampling weight for a member of the population is defined as the reciprocal
of the probability that the member would have been included in the survey,
as per plan, that is, in the complete dataset. The weights for the subjects
(selected members) are factors in many common estimators of population
quantities.

Weight adjustment is a device for reflecting the survey nonresponse in such
estimators. It is motivated by the desire to maintain the good properties of
the complete-data estimators without having to alter them substantially. The
only change that takes place is in the sampling weights. The changes made
can be related to estimation of the probabilities of selection in the realised
design. For example, if a greater fraction of men than women fail to respond
the weights associated with men are increased so that the fewer men in the
subsample of respondents would represent well the men that were intended
to be in the sample.

A common implementation of weight adjustment is based on a classifi-
cation of the subjects into groups. The weights are then adjusted by multi-
plicative factors, specific to each group, so that the totals of the weights in
the groups are proportional to the subpopulation sizes of the groups. When
the groups are strata, or interpreted as such, weight adjustment is referred to
as poststratification, since it amounts to an adjustment of the stratification
(made after the data collection).
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The weight-adjustment groups can be defined by cross-classifying several
categorical variables, although the population size of each group (a combina-
tion of the values of the variables) has to be known. If there were no non-
response, the total of the sampling weights for a group would differ from
the population size by a random quantity. Forcing the match of the totals of
the weights with the population therefore makes the data conform with the
population more closely than it would in a complete dataset.

The subpopulation sizes are often available for the categories of several
variables, but not for their combinations. It may be desirable to adjust the
weights so that all sub-totals of the weights for the univariate margins agree
with the corresponding subpopulation totals. This can be arranged by iterat-
ing the weight adjustments for one classification at a time, until the changes
by an adjustment are small enough. This method is called raking [47].

A drawback of weight adjustment is that it is, effectively, a data reduc-
tion method, although the non-responding subjects are represented through
the adjusted weights. The method relies on large subsample sizes within the
groups, otherwise various anomalies may be encountered, such as very large
weights. The subjects with such weights have an unduly large influence in
most common estimators. Such estimators, although approximately unbiased,
have inflated sampling variances. The problem can be resolved by trimming
the weights, not allowing them to exceed a certain threshold. Although intro-
ducing some bias, the sampling variances of the estimators are usually reduced
by trimming [172].

Weight adjustment is associated with a single (outcome) variable. For an-
other variable, with nonresponse by different subjects, a different adjustment
is appropriate. A compromise of the different adjustments is necessary in any
multivariate analysis. This is difficult to arrange and, in the process, the ra-
tionale for the adjustment is difficult to sustain.

The original weights, set by design, are population quantities. After the
adjustment, the weights are sample quantities because their calculation is
based on the realised sample. In an estimator, such weights are random vari-
ables, and ignoring their sampling variation results in some distortion. The
only protection at our disposal is to ensure that this variation is minute; in
large-scale data, this can be achieved by defining adjustment categories with
large subsample sizes. In other words, too detailed a poststratification may
be counterproductive.

3.2.6 Regression imputation

Suppose variable Y is recorded with some values missing and variable Z is
recorded completely. If Y and Z are associated, we may exploit their similarity
by estimating (predicting) the missing values of Y . Suppose Y and Z are
related by the model

Y = f(Z) + ε ,
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Figure 3.1. Example of imputation using simple regression. Missing values of the
outcome Y are marked by the symbol ◦, and the values imputed for them by ×.
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where f is a function, such as f(z) = β0 + β1z, and ε a random variable with
zero mean and a distribution known, except for some or all of its parameters,
such as the centred normal, N (0, σ2). If the function f were known

ŷj = f(zj)

would be the obvious value to impute for the missing value yj . By imputing
ŷj , we reinforce the association of Y and Z because the pairs (ŷj , zj) satisfy
the model more closely than (yj , zj) do. Also, the variation of y around z is
distorted because the imputed deviation (residual) ε̂ is equal to zero.

When f is not known, it (or its parameters) have to be estimated, and a
further systematic ‘error’ is incurred as the estimated parameters (β̂0 , β̂1 and
σ̂2 for the simple regression) differ from their targets. The function f may
involve several variables, it need not be linear, and the residual term need not
be additive.

Regression imputation is illustrated in Figure 3.1. All the imputed values
(marked by crosses ×) are on the regression line, here assumed to be known,
whereas both the recorded values (dots ·) and missing values (circles ◦) are
dispersed around the regression line. The sample residual variance is 0.0497,
based on 1000 observations; its incomplete-data version, based on 950 obser-
vations is 0.0494, and its completed-data version is 0.470. The impact of the
50 (5%) imputed values with zero residuals is noticeable.

We could sacrifice the goal of fixing up the dataset by imputing ỹ =
β0+β1z+ε instead of the prediction ŷ = β0+β1z. In this stochastic imputation
we would need to know, in addition to β0 and β1 , also the residual variance
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σ2, or use its estimate σ̂2. The values of y would not be ‘estimated’ optimally,
but the dataset completed by ỹ would look more like what we might expect,
as the values ỹ would be spread around the regression line as much as the
recorded values y.

The model for y may involve several variables. If some of the regression
variables themselves have missing values, the model may be fitted to the sub-
sample of complete records. A compromise has to be sought between including
more variables in the model, but basing the model fit on fewer observations,
and including fewer variables but using more observations. With more vari-
ables, we improve our chances of an adequate model, but the model fit is
associated with large sampling variation. With a less than adequate model,
the model fit is associated with smaller sampling variation, but the model
parameters are estimated with bias. Mean imputation can be regarded as a
trivial case of regression imputation, with no regressors z.

For non-normally distributed variables y, we can formulate generalised
linear models (GLM) [180]. Such models may yield predictions that are not
admissible. For example, for binary data the prediction is converted to an
estimated probability, p̂(z). In the spirit of estimating the outcome, we should
round p̂(z), to zero or unity. By the stochastic version of this rule, a value is
drawn from the fitted binary distribution B{p̂(z), 1}.

The problems with deterministic imputation schemes can be attributed to
our failure to identify a model with negligible residual variation. The residual
variation may be reduced by defining a model with many covariates. With the
reduced estimated residual variance, the estimated sampling variance of the
prediction ŷ for an incomplete record would also be reduced. In most settings,
this is not a realistic goal to aim for. The variation of the outcomes is inherent,
and no attempt at its modelling is likely to account for its substantial part.
When we do succeed, we should be wary of the increased sampling variation
of σ̂2, especially when the number of degrees of freedom involved is greatly
reduced.

3.2.7 Using experts’ judgements

In surveys that collect a lot of information, in a variety of formats, formal rules
for imputation are difficult to set. However, an expert knowledgeable about
the population and the subject matter of the survey could propose a set of
realistic values for the missing items after carefully studying the available
part of the subject’s record. Experts’ guesses may be much more credible for
imputation than using a simple or model-based imputation scheme. On the
other hand, using experts is much more costly and time consuming, especially
when only a few suitably trained and instructed experts are available.

Experts will impute typical values for the missing items, informed by the
observed part of the record. Therefore, none of the imputed values will be
unusual, even if idiosyncratic values can occasionally be found among the
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complete records. In brief, experts will make the database look more ‘normal’
than it should be. This deficiency is shared with regression imputation.

3.2.8 Data editing

The recorded data often contains obvious errors and conflicting values, such as
employment status incompatible with age, unrealistic physical measurements,
or a conflict of food consumed with declared dietary habit, such as being a
vegetarian. In some cases, the data contains values, or sets of values, that are
possible, but very unusual, so that it is reasonable to query them. The process
of dealing with these certain or possible errors is referred to as data editing. It
does not fall into the domain of missing data directly, but we can interpret a
record with a likely error or a conflict as containing incomplete information.
The value entered does not correspond to the information that we planned to
collect. This idea is developed further in Section 4.6.

When there is an obvious way of correcting a value, the correction should
be applied. A common example is the confusion of units, when sales, wages,
or liabilities are given in units of currency (£) instead of multiples (£1000),
as requested in the instructions. In some instances, incorrectness is identified
straightaway, but the correct value is not. This should be regarded as a prob-
lem of imputation (with a positive probability of imputing the value entered
originally. When numerous values of a variable are identified as incorrect (say,
they are out of the realistic range of values), it is appropriate to regard as
suspect even the values that do not appear erroneous. In the process of data
recording, errors are committed that alter some of the appropriate values
without making them unrealistic. For example, we may conclude that about
5% of the values of a variable are incorrect, but cannot identify any of them
with certainty. No editing procedure can deal with this problem.

Editing shares with imputation the problem that the action taken may
not restore the value or the record in the complete dataset. An item to be
edited may be identified incorrectly and items that should be edited may not
be flagged. And the change made (the edition) may be incorrect.

3.2.9 Single imputation. Summary

Completing the dataset is appealing to both the data constructor and the
analyst because the result is an object in the same format as planned. If we
do not distinguish between recorded and imputed data items the completed
dataset pretends to contain more information than was collected by the survey.
If we recovered all the missing values accurately the completed dataset would
merely be a version of the observed data more convenient for the analysis.

With an inaccurate completion, we introduce errors in the data. Without
distinguishing genuine and imputed values in the analysis, we end up under-
estimating the sampling variation in our inferences. By how much? It depends
on how much error has been introduced by the imputation, but also on the
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nature of the analysis. We show below that the extent of missing values is not
always a good indicator of the extent of this underestimation, interpreted as
an unjustified claim of precision. The inferences drawn may also be biased,
especially when the imputation introduces a pattern in the survey data that
is much stronger than among the recorded (genuine) observations.

If we draw a distinction between the recorded and imputed values we give
up the original goal of relying on the complete-data tools and using them on a
completed dataset as if it were the planned (complete) dataset. This suggests
that the two goals — completing the dataset with efficiently estimated values
of the missing items and promoting efficient analysis by complete-data tools
— are in conflict. We cannot satisfy them simultaneously. What should be
the data constructor’s priority?

We regard as the principal purpose of the survey learning about the pop-
ulation (planned to have been) targeted by the survey. Therefore the data
constructor’s remit should be subordinated to the analysts’ goals, and the
former should aim to construct a database with which population inferences
are relatively easy to make and are efficient and do not overestimate their
precision (are ‘honest’). A high-quality database, with imputation efficient
for each value, is an intermediate product in the sequence connecting survey
design and its analysis, and ‘high-quality’ should be interpreted as promot-
ing efficient and ‘honest’ analysis, with the existing or reasonably expected
resources and expertise. This confirms that the goals underlying single impu-
tation, although well intended, aim to do the wrong thing.

3.3 Models for imputation

In the discussion of the single-imputation schemes, we have implied or stated
directly that each of them is based on a model. In this section, we discuss
such models in greater detail. By formulating the model explicitly, the case
for more complex models and for reflecting the model’s random variation
becomes self-evident.

For LOCF with a categorical outcome variable, the model is

P
(
X(k+1) = X(k) |X(k) = x

)
= p , (3.1)

where X denotes the outcome variable, the superscript k the time point, and
the probability p is close to unity. In LOCF, we ignore the fact that p < 1
and act as if X(k+1) = X(k) with certainty.

For a continuous variable, the model implied by LOCF is

X(k+1) = X(k) + ε(k) , (3.2)

with small residual variance σ2
k = var(ε(k)) for each k. In LOCF, we act as if

σ2
k ≡ 0. The choices p = 1 and σ2

k ≡ 0 are convenient because they yield an



50 3 Single imputation and related methods

obvious imputation. However, the observed data usually provide ample evi-
dence that these extreme parameter values are inappropriate. Each imputed
value is derived by a formula that is not satisfied by all the complete records.

This applies not only to (3.1) and (3.2), but to their various generalisations
involving regression models. Regression imputation is appropriate only when
the prediction is perfect and σ2 = 0. When σ2 = 0 and the regression func-
tion f contains a small number of parameters, f can be established without
estimation error from a small number of complete records. When σ2 > 0, not
only f and σ2 are estimated with sampling variation, but the deviation ε is
not known either. Imputation would preserve some features of the incomplete
dataset if f and σ2 were known. By estimating them we do not preserve these
features, merely attempt to do so.

3.3.1 Operating with uncertainty

Imputation schemes that aim to recover the value of a missing item by estimat-
ing it efficiently are suitable for recovering the values of any linear functions of
the complete data. Let f(x) = b1x1 + · · · + bnxn = b�x be a linear complete-
data statistic with known coefficients b = (b1 , . . . , bn)�. We can decompose
it to its contributions from the recorded and missing values:

f(x) =
∑

i;Ri=1

bixi +
∑

i;Ri=0

bixi .

As a complete-data statistic, f(x) is associated with sampling variation —
variation over the replications of the sampling design. With incomplete data,
f(x) is not a statistic because it involves values that are not available, namely,
xi for i such that Ri = 0. The value of f(x) is estimated, even after the
incomplete data is realised, by

f̂(x) =
∑

i;Ri=1

bixi +
∑

i;Ri=0

bix̂i ,

where x̂i is the value imputed for xi . Efficient estimation of each missing value
xi implies efficient estimation of f(x). In particular, if each x̂i is unbiased,
then so is f(x̂). (For simplicity, we define x̂i = xi when x is recorded.) Here,
efficient estimation of each missing value is in accord with efficient estimation
of the statistic f(x). This accord breaks down with any non-linear statistic.

Example 6

As a simple but instructive example, consider estimation of the quantity x2

for a missing value x. Suppose the distribution of x̂ is concentrated on −1, 0
and 1, with respective probabilities 0.1, 0.8 and 0.1, according to a suitable
model, such as one implied by a hot-deck scheme. At first, it may be hard to
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find an argument against imputing zero; it is both the expected and modal
value of the estimator x̂. Zero is appropriate for imputing for x in any statistic
that is linear in x, but imputing its square, also equal to zero, for x2 does not
seem to be rational. A small positive value is clearly better suited than zero,
and imputing E(x̂2) = 0.2 would eliminate the bias altogether. Similarly, for
counting the number of positive values of x, 0.1 is the appropriate imputed
value. �


This example shows that the substitution-estimator f(x̂) may not be suit-
able when f is not a linear function of x. (Note that it is suitable for f(x) = x3

in this example.) Estimating x2 (with uncertainty) by (x̂)2, or, more generally,
f(x) by f(x̂) for any non-linear function f , may be inefficient, even when x̂ is
efficient for x. Without uncertainty, we can transpose the operations of sub-
stitution (for x) and evaluation (of a non-linear function). With uncertainty,
we cannot transpose these operations. For an analyst not aware of this, or
not aware of the uncertainty associated with the (imputed) values, this may
appear as a contradiction: it is appropriate to use the value x = 0, but it is
not appropriate to use x2 = 0; x2 = 0.2 is more appropriate, reflecting the
uncertainty entailed.

This has several profound consequences. First, a dataset completed by
(unbiased) efficient estimates of each missing value is a good basis for evalu-
ating linear statistics but is not for non-linear statistics. For example, most
estimators of sampling variances are quadratic functions of data. These re-
quire adjustments — an inflation to account for the uncertainty about the
imputed values. Second, these adjustments depend on the actual uncertainty,
which is not conveyed by the completed dataset. Third, each class of non-
linear statistics requires a different adjustment. For example, E{exp(x̂)} =
(e−1 +e+8)/10 = 1.109 is greater than exp {E(x̂)} by 0.109, whereas E{(x̂)2}
exceeds {E(x̂)} by 0.2.

In summary, we should estimate transformed quantities directly, and avoid
transforming estimated quantities. It is impossible to adhere to this dictum
all the time, but, whenever possible, we should. Estimating several population
quantities and their sampling variances based on a single completed dataset is
an example of ignoring this advice. Each non-linear transformation requires a
different completion; if a single completed dataset is available each non-linear
transformation requires a different adjustment to represent the uncertainty
about the imputed values. The imputed values have to be flagged, and the
information about the uncertainty implied by the imputation provided.

Multiple imputation, introduced in Chapter 4, addresses this problem by
generating several completions, none of them aiming to recover the complete
dataset, but representing the uncertainty about the missing values by the
differences among the completions. By collating the results of the complete-
data analyses, an estimator is defined that ‘inherits’ the good properties of
the complete-data estimator and reflects the information lost due to missing
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values. To distinguish this approach, we refer to the methods discussed in this
chapter as single imputation.

3.3.2 Models for the nonresponse process

The analyst’s understanding of the studied processes in the population is but
one contributor to the formulation of the models. The nonresponse process
is another — it can inform the imputation process and the model it is based
on. But it is difficult to learn about it from the observed data because, by
definition, we fail to observe it. We may find out about it from sources external
to the collected data; by contacting the respondents outside the remit of the
survey, when this is possible, consulting the interviewers, from the survey
and its predecessors, or from similar and related surveys. The best course of
action is to organise the survey and set its details so that nonresponse would
be reduced to minimum. The next best thing is to know about the reasons
and motives for nonresponse, and how they are related to the data, missing
or recorded, that we intended to collect. And further, what other information
we could collect that would promote our understanding of the nonresponse
process, and help us reduce its impact on the planned analyses.

The processes of sampling and nonresponse reduce the complete informa-
tion about the population first to the complete (sample) dataset, and then
to the incomplete (recorded) dataset. We assume that the two processes are
independent (unconnected), as the subjects are either not informed about
the sampling design or such information does not influence their willingness
to cooperate. As nonresponse is a nuisance process, making inferences would
become much simpler if we were able to deal with it separately from the sam-
pling process. The key to such a separation is the assumption of MAR. MAR,
or MCAR, is central to all common single-imputation schemes, although that
is rarely stated explicitly. Without MAR, no claims can be made about good
properties of the imputed values. The mechanism of MAR is qualified by the
variables involved in conditioning. Inclusion of further variables in condition-
ing improves the chances that MAR is achieved, or reduces its deviation from
MAR so much that the assumption of MAR is acceptable. NMAR contains
all manner of idiosyncratic processes that are an obvious threat to inferences
based on all data-reduction and completion schemes.

The models we have considered so far assume that certain features of the
population appear also in the sample — an assumption supported by appro-
priate sampling design — and that they appear also among the incomplete
records. The latter is not always a reasonable assumption. For example, sub-
jects with a changed employment status in LFS, or those who have made a
particular transition, such as from inactivity to employment, are more likely to
be non-respondents. The observed data may not provide any clues about this,
but that does not absolve us from disregarding such a possibility, especially
if its consequence is a distortion of our inferences.
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In practice, we have at most a limited insight into the nonresponse pro-
cesses, and no simple model is likely to be adequate for their description. With
a complex model, involving as many variables as is manageable, we improve
our chances of including the appropriate model, or a model very close to it.
(An appropriate model means that with it MAR applies; such a model need
not be unique.)

We have highlighted the unsatisfactory nature of the model-based (single)
imputation. The criticism is intended at single deterministic imputation, not
at the use of the models. The use of the models is deficient because we pre-
tend certainty where it is absent — for imputations we use the fitted values,
even though they are less than perfect replacements. First, the collected data
(observations) do not obey model formulas; second, the model parameters are
not recovered from the available data accurately; and third, observations are
oblivious to models, especially those constructed with convenience in mind,
and to the conventions involved in the recorded versions of the variables that
are aimed at simplifying the data-collection (interviewing or questionnaire
completion) process and reducing the burden on the respondent.

3.4 EM algorithm

Many complete-data analyses use the individual data items only through a few
data summaries. For example, the ordinary regression (y = zβ + ε) requires
only the totals of cross-products of all the variables involved, that is, y, z and
the vector 1 (intercept). Let X∗ = (1, Z, y) and θ = (β̂

�
, σ̂2), the vector of

all model parameters, and denote by θ̂ its least squares estimator. Then

θ̂(X∗) = θ̂ {t(X∗)} ,

where t is the function that evaluates X∗�X∗; the elements of t(X∗) are
called the sufficient statistics for θ = (β�, σ2). They are all the sample quan-
tities needed to evaluate θ̂. The function t can be replaced by alternatives;
t remains sufficient when we supplement it by some other statistics or when
we apply a strictly monotone transformation to some of its components. By
definition, even X∗ is a sufficient statistic for θ. A set of sufficient statistics
is called minimal if it can be recovered by transformations from any other
set of sufficient statistics. For example, X∗ is not minimal for ordinary least
squares because it cannot be recovered from the matrix of totals of squares
and cross-products t(X∗). A set of (minimal) sufficient statistics is qualified
by the estimators we wish to evaluate. A set of statistics may be sufficient for
one set of estimators but not for another.

Why should we estimate each missing value when, for estimating a param-
eter vector θ, it suffices to estimate a set of minimal sufficient statistics for
θ̂? With complete data, t(X∗) would be known; when it contains only a few
items its estimation based on the incomplete dataset is a much simpler task
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than data completion. We have drawn a similar conclusion, motivated by the
pursuit of efficiency, in Section 3.3.1.

The method of estimating the sufficient statistics is motivated by the EM
(expectation–maximisation) algorithm. The EM algorithm is formulated for
fitting models by maximum likelihood (ML). Likelihood is defined as the
joint density of the observations, with the roles of the observed values X and
(unknown) values of the model parameters θ interchanged. Although many
complete-data estimators for sample surveys are not ML, the principle of the
EM algorithm carries over to our context.

Suppose the complete-data analysis maximises the log-likelihood function
l(θ; X∗) = log{L(θ; X∗)}. With incomplete data, ML amounts to maximising
the log-likelihood function l(θ; X) = log{L(θ; X)}. This is related to the
complete-data likelihood by the identity

L(θ; X) =
∫

L(θ; X∗) dXmis , (3.3)

where Xmis is the set of missing values of X∗. The integral is with respect to
the distribution of Xmis , that is, over the joint distribution of the missing data.
Maximising (3.3) directly is often an intractable task, unless the integral can
be expressed in a closed form. The second-order partial differentials of l(θ; X),
required for the Newton-Raphson and Fisher scoring algorithms, are difficult
to evaluate or even approximate, especially when missing values appear in a
variety of patterns. The complete-data log-likelihood l(θ; X∗) depends on the
data only through a set of minimal sufficient statistics. It would be advanta-
geous to relate the task of maximising l(θ;X) to maximising l(θ;X∗), because
the latter is the analysis planned at the outset.

The EM algorithm is an iterative procedure that combines the complete-
data analysis with estimation of the sufficient statistics. Each iteration com-
prises two steps, E and M. In the E-step the sufficient statistics are estimated
by their conditional expectations given the data and the current estimates of
the parameters. A version of sufficient statistics is selected for which l(θ; X∗)
is their linear function. That is, the E-step estimates the complete-data log-
likelihood. The sufficient statistics have to be estimated whenever they depend
on missing values.

In the M-step, the complete-data analysis is applied, with the sufficient
statistics replaced by their provisional estimates (conditional expectations)
obtained in the preceding E-step. Iterations are necessary when the E-step
depends on the parameter estimates because they have been updated in the
preceding M-step.

An important practical advantage of the EM algorithm is that it makes use
of the complete-data method, although the program implementing it has to be
adapted. This requires some expertise in the complete-data method and pro-
gramming skills to alter its implementation; the complete-data method cannot
be applied as a black-box. Further, evaluation of the conditional expectations
may be both tedious and difficult to program when many sufficient statistics
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have to be estimated and contributions evaluated from incomplete records
with numerous response patterns. The EM algorithm requires iterations, and
therefore much more computing time than the complete-data method. This
is not a serious concern nowadays, even when the convergence is very slow.

In some situations, however, the changes by an iteration of the EM algo-
rithm are very small, but getting smaller from one iteration to the next only
fractionally. Then it may be difficult to judge when to stop the iterations,
because substantial changes might accrue after a large number of subsequent
iterations. The speed of convergence is related to the fraction of the missing
information. .. Information about a quantity is defined as the reciprocal of the
MSE of its efficient estimator. Of course, the dataset is an important factor in
this definition. The missing information about a parameter is defined as the
difference of the information contained in the complete and incomplete data
sets, and the fraction of missing information is the ratio of this difference and
the complete-data information.

Let I(θ) = 1/var(θ̂; X) and I∗(θ) = 1/var(θ̂∗; X∗) be the reciprocal
MSE’s (precisions) of efficient estimators θ̂ and θ̂∗ of θ based on the respective
incomplete and complete data. Then the fraction of missing information is

I∗(θ) − I(θ)
I∗(θ)

.

Lower fraction of missing information is associated with faster convergence.
The extent of missing data (the number of missing items) is not a reliable
indicator of the fraction of missing information and the fraction is not the
same for all the quantities estimated with the same dataset.

The EM algorithm can be applied without a reference to any likelihood.
It suffices to define the sufficient statistics required for a particular complete-
data estimator, and estimate these statistics, or the contributions to them
made by the missing values. Without the reference to a likelihood, there is
some ambiguity as to which version of a sufficient statistic should be esti-
mated. Estimating t(x) yields a result different from estimating g−1{t†(x)},
where t†(x) = g{t(x)} and g is a non-linear strictly monotone function.

The term ‘EM’ was coined by [44] and they presented the algorithm as a
general approach to dealing with missing values. The generality is further en-
hanced by defining certain problems in terms of incomplete (observed) data.
These include measurement error and misclassification, rounding and censor-
ing, using methods for balanced data when the observed data are not bal-
anced, random-effect models and, more generally, complex models that would
be much easier to handle if some of its terms were known. Although effective in
many settings, the EM algorithm is a not well suited for a wide range of analy-
ses because some of them require considerable development and programming
effort in addition to implementing the complete-data analysis.

The methodological importance of the EM algorithm is that it exposes the
weakness of the naive approach to data completion — single imputation breaks
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down when the imputed data are subjected to a non-linear transformation.
The underlying problem is that the operations of a non-linear transformation
and conditional expectation do not commute. (Estimation can be regarded
as taking conditional expectation, as in the E-step.) In naive approaches,
the estimates are transformed; in the EM algorithm, the transformations are
estimated. In brief, it is preferable to estimate g(θ) by ĝ(θ) than by g(θ̂), even
when θ̂ is efficient for θ.

3.5 Suggested reading

The first part of [146] gives more background to incomplete data, with ex-
amples of small datasets from experiments and a more extensive discussion
of single-imputation methods. Estimators derived by raking are studied by
[21] and [18]. A generalisation of raking is developed by [46] and [47]. Ref-
erence [106] is a suitable entry point into literature on poststratification. An
application of raking to dealing with nonresponse in a survey is presented in
[17].

Variance estimators for statistics based on data completed by single im-
putation are developed in [221]. A similar goal is pursued by [142].

The subject of incomplete data was revolutionised by [44], who introduced
the term ’EM algorithm’. Their general formulation draws on the solutions of
specific problems in [97], [91], [92], [201] and [11]. Throughout the 1980’s and
1990’s, the EM algorithm has been developed in a multitude of directions,
culminating in [188]. Two principal drawbacks of the EM algorithm are slow
convergence and unavailability of an estimator of the sampling variance. The
former is addressed, among others, by [186], [116], [127], [117] and [72]. So-
lutions to the latter include [169], [190] and [199]. A Bayesian version of the
EM algorithm, known as data augmentation, is described in [269] and [284].
Reference [234] contains a summary of the developments and outlines several
avenues for further research, some of them addressed by [188] and [117]. Ref-
erence [183] is a monograph on the EM algorithm and [184] deals with finite
mixture models, a particular application of the EM algorithm. The setting of
[147], with data comprising categorical and continuous (normally distributed)
variables, covers a wide range of problems for which the implementation of
the EM algorithm is feasible.

Probably the most prominent and high-profile problem in government
statistics in the U.S.A. and the UK is the issue of the census undercount
(referred to as underenumeration in the UK). This is a challenging missing-
data problem, notwithstanding the small rate of nonresponse compared to
most national surveys. See [15], [272] and [224].
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3.6 Exercises

1. Generate a longitudinal dataset with at least 10 000 subjects, in which
each subject starts, at time point 0, with the same value of the key vari-
able, but at the next time point 1 the value increases by one with proba-
bility 0.1, decreases by one with probability 0.05 and remains unchanged
with probability 0.85. At the following time points, the value increases by
one with probability 0.25 and decreases by one with probability 0.30 if an
increase or decrease, respectively, was registered also at the previous time
point. Otherwise the probability of increase and decrease is 0.1 and 0.05,
respectively. Suppose nonresponse occurs only at time points 4–7, with
monotone patterns (by dropping out).
Devise various nonresponse mechanisms that are MCAR, MAR or NMAR,
at least one of each, and implement them. Aim to have at least 20% of
the records incomplete. Apply LOCF to the incomplete data and compare
the complete-data and completed-data distributions of the values at the
time points 4–7 separately (by four univariate comparisons) and jointly
(by a single multivariate comparison). For the multivariate comparison
define suitable summaries of the quartets of values, so that the problem
is manageable.

2. Repeat Exercise 1, using data reduction and a limited version of LOCF
in which a value can be brought forward only one step (that is, only if it
was recorded in the previous/donor time point).

3. Summarise the advantages of the hot deck as they relate to the setting of
Exercise 1, and devise and implement a scheme to complete the data.
Hints: Apply separate schemes for each response pattern (dropping out
at points 4, . . . , 7). Match on the entire available history for earlier drop
outs, and on a latter part of it for later drop outs. Discuss the merits of
imputing for the entire missing sub-vector (say, for time points 5–7) using
a single donor, or using different donors for each time point.

4. Suppose the percentages of a population in sex-by-age groups are given
by Table 3.1 for a country of 2.2 million inhabitants. Generate a small
number of samples of size 2000 from this population (by SRS) and adjust
the weights (originally constant) by raking. Compare the sets of weights
across the samples. Assess the randomness associated with the adjusted
weights.

5. Simulate a dataset by simple regression, y = x + ε, with the usual as-
sumptions of normality and homoscedasticity, and the values of x drawn
from a uniform distribution on (0, 10). Use var(ε) = 1.0. Delete about
25% of the outcomes y by MCAR and apply the regression imputation for
them. Compare the model fit to the complete data, the completed data
and the reduced data. Devise a sequence of NMAR mechanisms, by giving
greater preference to deletion of outcomes y that exceed the predictor x,
and compare the merits of the analyses based on the three datasets.
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Table 3.1. Sex-by-age distribution of a population for Example 4.

Age group (years)

0–15 16–24 25–39 40–64 65– All

Men 10.4 5.2 10.8 18.2 4.5 49.1

Women 10.5 5.4 11.2 18.8 5.0 50.9

6. Apply a stochastic imputation scheme to the data generated in the previ-
ous example. Compare the analyses based on the complete and completed
datasets and contrast them with the differences between the values of y
that were deleted and the values imputed for them. Assess what is more
important: to come close to the complete dataset or for the estimates to
come close to the results of the complete-data analysis.

7. With a complete dataset generated in the previous exercise, add a ‘mea-
surement error’ to each value of x, that is, generate x† = x + δ, where
δ is drawn at random from a centred distribution. Use δ ∼ N (0, 0.5) or
δ uniformly distributed on (−1.2, 1.2). Fit the simple regression model
y = a + bx + ε using the values of y and x†, and compare the results
with the generating model (a = 0, b = 1, var(ε) = 1) and the fit to the
complete data. To compare the corresponding distributions, apply the
data-generating and estimation processes in several replications.
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Multiple imputation

The ideal solution of the problem of analysing incomplete data X would be
its completion, to a dataset X+ , for which the estimator θ̂ of the target
θ is efficient and the estimator ŝ2 of its sampling variance (approximately)
unbiased, for a wide range of pairs of estimators (θ̂, ŝ2). As these estimators
are considered for different datasets, it is essential to introduce a notation
that indicates the dataset used. Thus, θ̂(X∗) and ŝ2(X∗) are (complete-data)
estimators of θ and s2 = var{θ̂(X∗)}, respectively. We assume that θ̂(X∗) is
efficient for θ and ŝ2(X∗) (approximately) unbiased for s2 = var{θ̂(X∗)}. In
the ideal solution to the problem of data incompleteness, θ̂(X+) would be
efficient for θ and ŝ2(X+) (approximately) unbiased for var{θ̂(X+)}. With
the complete data X∗, sampling (or data generation) is the only source of
variation, whereas with the incomplete data both sampling and nonresponse
contribute to the variation of any estimator. Therefore we are unlikely to find
an estimator ŝ2 that is unbiased both with X∗ and with X+ .

The standard error of an estimator or, more generally, any property of
an estimator, depends on the replication scheme that would establish it. In
particular, the distribution of an estimator with respect to the sampling pro-
cess differs from the distribution with respect to the convolution of sampling
and (nontrivial) nonresponse processes. A notation more complete than θ̂(X)
would include a reference to the replication scheme. We do not introduce
such a notation, mainly for typographical reasons. The type of replication
will either be obvious from the context or will be explicitly stated.

The EM algorithm and the arguments presented in Section 3.3.1 imply that
the ideal of a single completion on which to base a multitude of inferences is
unattainable. We can complete the dataset X so that θ̂(X+) is efficient, but
with the same completion X+ , ŝ2(X+) is biased. Moreover, for an efficient
estimator θ̂′ of a different quantity θ′, θ̂′(X+) may also be inefficient. If the
completion X+ is such that a complete-data statistic t(X∗) is estimated by
t(X+) without bias, then a different complete-data statistic, t′(X∗), may be
estimated by t′(X+) with bias.
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This chapter describes the method of multiple imputation as a resolution
of the conflict between the desire for a single completion of the dataset and
the use of complete-data estimators. Several completions are generated, but
the complete-data estimators are applied without any alteration.

4.1 The consequences of imperfect imputation

Example 6 in Section 3.3.1 confirms the conclusion drawn from the EM algo-
rithm. If we estimate each missing data item without bias and efficiently, we
estimate a linear complete-data statistic t(X∗) without bias and efficiently,
but not a quadratic (or some other non-linear) statistic t′(X∗). This has im-
portant repercussions on how a database constructor ‘cleans’ a survey dataset.
The well-established practice is to complete the database as well as possible
(imputation) and remove any unrealistic values or resolve any conflicts of the
values (editing). The practice is appropriate so long as the uncertainty about
each missing item is negligible. Otherwise, the cleaned-up data appears to
contain more information than was collected. Analysts not acquainted with
all the details of imputation and editing will analyse the dataset as if it were
the observed data, not aware of the data clean-up or of its impact on the
inferences. They are likely to draw inferences with greater estimated precision
than is justified. But Example 6 implies that bias and loss of efficiency of the
estimators used can also occur.

One solution to this problem is to inform the analysts about the impor-
tance of incompleteness (its impact on the inferences), and supply all the
details relevant to it: how the missing data might be imputed; what is known
or can reasonably be conjectured about the nonresponse process; and what
other data sources might be useful in devising good imputation methods. In
brief, to transfer all the know-how and information relevant to the analysis
of incomplete data. The analysts would then deal with the incompleteness on
their own. Providing information additional to the incomplete or completed
dataset may involve references to other data sources. Logistic difficulties may
arise when arranging access to them, or the access may be barred because of
confidentiality concerns. As a result, the pursuit of good statistical practice
is discouraged.

The problem is complex, its solutions are imperfect and highly contin-
gent on available information and understanding of the underlying processes.
A more effective way of dealing with the problem would be to stick to the
current mode of operation and rely on the data constructors to address all
problems that can be attributed to incompleteness. After all, they, or their or-
ganisations, conducted the survey and planned to collect a complete dataset.
They have failed, not by their own fault, but a denial of the failure and of its
consequences only compounds the problem. The constructors should not only
complete the dataset, so that it would be amenable to any complete-data anal-
ysis, but enable their clients, (secondary) analysts, to draw inferences that are
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efficient, estimate the MSE of the estimators without bias, and yet require no
specialised software or expertise beyond that for implementing the intended
complete-data methods.

4.2 The method

The method of multiple imputation (MI) is motivated by the standard formu-
lated in the previous section. It assumes that the database is to be analysed
by several secondary analysts, with a wide range of inferential goals (popula-
tion quantities as targets) and using a variety of statistical software tools and
methods well suited only for complete data. In MI, a small number of alterna-
tive completions are generated, based on a model for nonresponse. The analyst
applies the complete-data method to each completed dataset. The results are
then averaged, with an appropriate inflation for the sampling variance that
reflects the uncertainty about the missing values.

In the next four sections, we discuss each step in turn, starting with spec-
ifying and fitting models for missing values.

4.2.1 Fitting a model for missing values

This step entails specifying the joint distribution of the response indicator
and the complete data, that is, (R, X∗). Suppose X∗ comprises a completely
recorded vector Z and an incompletely recorded vector Y; X∗ = (Y∗, Z) and
X = (Y, Z). The variables in Y and Z need not be the outcome variables and
covariates, respectively, in any analysis. We can partition the joint distribution
of the complete data (R,Y∗,Z) as

(R,Y∗,Z) ∼ (R,Y∗ |Z) (Z) ,

and then as either

(R,Y∗ |Z) ∼ (R |Y∗,Z) (Y∗ |Z) (4.1)

or
(R,Y∗ |Z) ∼ (Y∗ |R,Z) (R |Z) . (4.2)

In (4.1), a complete-data model, (Y∗ |Z), is specified together with a model
for the response patterns, (R |Y∗,Z). Models specified in this way are called
selection models, because the conditional distribution of R given X∗ describes
a process that selects the items to be recorded (or missing). In (4.2), a different
conditional distribution (Y∗ |Z) is specified for each pattern R; these models
are called pattern-mixture models; they describe the joint distribution of the
complete data as a mixture of distributions, one for each response pattern.

Each distribution in (4.1) and (4.2) is associated with a set of parameters.
For instance, a more complete formulation of (4.1) is
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(R,Y∗ |Z; ζ, ψ) ∼ (R |Y∗,Z; ζ) (Y∗ |Z; ψ) .

The parameter vectors ζ and ψ are said to be separated when they are distinct
and no constraints are imposed that involve some elements of both vectors.
The nonresponse mechanism is called ignorable when it is MAR and ζ and ψ
are separated. The importance of ignorability is that the joint distributions
in (4.1) and (4.2) do not depend on the missing values, Ymis , and the log-
likelihood has two unrelated summands, one depending on ζ only and the
other on ψ only. Then these parameter vectors can be estimated separately. In
a selection model, ζ can be estimated solely from (Y |Z; ζ), e.g., by maximum
likelihood; it involves neither R nor ψ.

When MAR applies, Y∗ can be replaced by Y in both equations (4.1)
and (4.2). For ignorable mechanisms, (4.1) and (4.2) coincide, but for non-
ignorable models they differ substantially. The recorded data rarely provide
any clues about the relative merits of the approaches based on selection and
pattern-mixture models for NMAR mechanisms, and so an important crite-
rion is how convenient it is to work with these models. That depends on the
circumstances related to the data, but also on the analyst’s preferences.

An advantage of the selection models is the connection to the complete
data. Under MAR, the conditional distribution (Y |Z) does not depend on the
pattern R. So, the model fitted to the complete records applies also to each
pattern R. Without constraints on the parameters in (Y |R,Z) and (R |Z),
pattern-mixture models are not identified because, for incomplete patterns R,
they involve parameters that relate to values missing in Y.

In practice, MAR is assumed and the parameters ζ and ψ are separated.
The model for nonresponse can then be fitted to the complete records; the
same model applies to the records that are incomplete. The information about
the nonresponse mechanism can be used more effectively by fitting the model
using the EM algorithm. This is useful especially when there are many incom-
plete records, most of them with only one or a few items missing.

4.2.2 Generating plausible values

The fitted model can be regarded as an instrument for generating replacements
for the missing values. As an example, suppose univariate Y and Z are related
by simple regression,

Y = β0 + β1Z + ε , (4.3)

with the usual assumptions of normality, independence and homoscedastic-
ity. The regression parameters β = (β0 , β1)� are estimated by least squares
applied to the complete records (Y, Z). The estimator β̂ = (β̂0 , β̂1)� has sam-
pling variance σ2

(
Z�Z

)−1, where σ2 = var(ε) and Z = (1, z) is formed by
attaching the intercept column of ones to the vector of the values of Z.

In MI, the replacements for the missing values are generated not from the
fitted model, but from a plausible model. A plausible model is based on a
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plausible set of parameters σ̃2 and β̃ drawn from the (approximate and/or
estimated) sampling distribution of the parameter estimates. Thus, for the
simple regression example in (4.3), we draw first σ̃2 by the following scheme:

1. draw u from χ2
n−2 ;

2. set σ̃2 = (n − 2)σ̂2/u.

(n is the sample size.) This is derived by inverting the distributional identity

(n − 2)
σ̂2

σ2 ∼ χ2
n−2 .

As an alternative, σ̃2 can be generated as the (n − 2)/σ̂2-multiple of u.
With a generated value of σ̃2, a plausible vector of regression parameters

β̃ is obtained by a draw from

N
{

β̂, σ̃2 (Z�Z
)−1
}

.

The key feature of the plausible parameters is that they reflect the uncertainty
involved in their estimation. The plausible values, used for imputation of the
missing values, are generated from the plausible model. For (4.3) with β̃ and
σ̃2, a set of plausible values for Ymis is generated as

Ymis ∼ β̃0 + β̃1Z(Y;mis) + ε ,

where Z(Y;mis) is the vector of values of Z associated with the observations
that have missing values of Y and ε is a random sample from N (0, σ̃2), with
an element for each missing value of Y .

The plausible values are generated with randomness that reflects the un-
certainty about the missing values, given a plausible model. In most settings,
this involves drawing a set of plausible parameters in the model for nonre-
sponse. They are drawn from the estimated distribution of the corresponding
estimators. Plausible values are then drawn from the plausible model, given
by the plausible parameters. By conditioning on a plausible model, we would
pretend that we know the model parameters. Without such conditioning, the
variation of the plausible values reflects the uncertainty about the missing
values, given the (general) model in (4.3).

MI requires several sets of plausible values. To obtain another set, the
processes of generating a plausible model and plausible values based on it
are replicated. Setting the number of sets of plausible values, denoted by
M , is discussed later; five sets are sufficient in most settings. The sets of
plausible values entail two sources of variation: within a set, the consequence
of uncertainty resulting from the stochastic nature of the plausible model, and
among sets, the consequence of uncertainty about the model parameters.
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4.2.3 Analysis of each completed dataset

In the next step, the complete-data analysis is applied to each dataset con-
structed by completing the observed dataset X with a set of plausible values.
The resulting datasets are called completed . The completion is illustrated in
Figure 4.1. There are three missing items in the example, all for variable
D, and the M = 5 sets of plausible values are given in the columns M1,
. . . , M5. The completed datasets are denoted by X1 ,X2 , . . . ,XM . Suppose
θ̂∗ = θ̂(X∗) is an efficient complete-data estimator of θ and ŝ2(X∗) an unbi-
ased estimator of var(θ̂∗). The mth completion of X yields the completed-data
estimate θ̂m = θ̂(Xm) and the estimate of the associated sampling variance
ŝ2

m = ŝ2(Xm). Each estimator θ̂m is unbiased for θ, and each ŝ2
m is unbiased

for the complete-data estimator of the sampling variance s2{θ̂(X∗)}. However,
ŝ2

m underestimates the sampling variance of θ̂m when the variance is evaluated
over both sampling and imputation (completion).

4.2.4 The MI estimator

The MI estimator of θ is defined as the average of the completed-data esti-
mators,

θ̂MI =
1
M

M∑
m=1

θ̂m ;

it is unbiased for θ. Its sampling variance is estimated, with small or no bias,
by

ŝ2
MI = ŝ2 +

M + 1
M

B̂ ,

where

ŝ2 =
1
M

M∑
m=1

ŝ2
m

B̂ =
1

M − 1

M∑
m=1

(
θ̂m − θ̂MI

)2
.

The MI estimator of the sampling variance, ŝ2
MI , is aimed at the variance of

θ̂MI in replications of the sampling and nonresponse mechanisms.

4.2.5 The lost information

The average completed-data sampling variance estimator ŝ2 is an unbiased
estimator of the complete-data sampling variance s2(X∗). The between-
imputation sample variance B̂ is an unbiased estimator of the between-
imputation variance B, the variance attributable to the missing data. If an
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Figure 4.1. Multiple imputation. An illustration.

Observed data

Id. A B C D

1 � � � ?

2 � � � �

3 � � � �

4 � � � ?

5 � � � �

6 � � � �

7 � � � ?

Plausible values

Id. Var. M1 M2 M3 M4 M5

1 D i11 i12 i13 i14 i15
4 D i21 i22 i23 i24 i25
7 D i31 i32 i33 i34 i35

����������

�

����������

Datasets completed by imputations

Completed
dataset 1

Id. A B C D

1 � � � i11

2 � � � �

3 � � � �

4 � � � i21

5 � � � �

6 � � � �

7 � � � i31

Completed
dataset 2

A B C D

� � � i12

� � � �

� � � �

� � � i22

� � � �

� � � �

� � � i32

Completed
dataset 3

A B C D

� � � i13

� � � �

� � � �

� � � i23

� � � �

� � � �

� � � i33

Completed
dataset 4

A B C D

� � � i14

� � � �

� � � �

� � � i24

� � � �

� � � �

� � � i34

Completed
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� � � i15

� � � �

� � � �

� � � i25

� � � �

� � � �

� � � i35

infinite number of imputations were applied (that is, as M → ∞), the MI
estimator θ̂MI would have the sampling variance s2 + B. So, B/M represents
the loss of efficiency brought on by using only M imputations.

As 1/M converges to zero rather slowly, the first few imputations reduce
the sampling variance of θ̂MI substantially and later imputations make only
small contributions to the precision of θ̂MI . The difference of the sampling
variances of θ̂MI based on M and M + 1 imputations is B/{M(M + 1)}, a
decreasing function of M . Suppose B = s2/5; then M = 2, . . . , 5 are associated
with respective sampling-and-nonresponse variances 1.3s2, 1.27s2, 1.25s2 and
1.24s2, and with M = ∞, the variance would be 1.2s2. So, the inflation of
the sampling variance caused by using only M = 5 imputations, as compared
to infinitely many, is about 3.3%. This would be halved if we used M = 10
imputations.
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The missing data brings about the inflation of the sampling variance of
θ̂MI over θ̂ from s2 to at least s2 +B. It is natural to define B/(s2 +B) as the
fraction of the information lost (due to missing data). Note that, for a fixed
dataset, this fraction depends on the target.

4.2.6 Assumptions and properties

The key assumptions of MI are that the complete-data estimator θ̂ is unbiased
and efficient, its sampling variance is estimated by ŝ2 without bias, the com-
plete dataset is large, and the model for missing data is correct. All but the
last assumption are natural, and usually raise no difficulties. The large sample
size is a technical assumption; the proofs require that the sampling variance
of ŝ2 be of lower order of magnitude than s4. Further, the modelling and sim-
ulation steps have to be proper. The qualifier ‘proper’ (proper imputation)
means that the within- and between-imputation variances of the completed
datasets accurately reflect the uncertainty about the missing values ([233],
Section 4.2).

With these assumptions, the MI estimator θ̂MI is unbiased and its variance,
with respect to sampling and nonresponse, is estimated by ŝ2

MI with at most
a small bias.

4.3 Conditional distributions

Regression models are the obvious candidates for the first step of MI, espe-
cially for (incompletely) recorded continuous variables. When several variables
are recorded incompletely, multivariate models have to be applied. Linear re-
gression models for normally distributed data are related to models that de-
scribe the joint distribution of all the variables involved. In such a setting,
plausible values are generated from a plausible conditional distribution of the
missing sub-record given the observed part of the record. In this section, we
give formulae for the conditional distribution for normally distributed and
categorical variables. The applicability of the models for normally distributed
data is widened by transformations and extensions to generalised linear mod-
els.

4.3.1 Normally distributed data

For normally distributed variables x =
(
x�

1 ,x�
2
)�, partitioned to their

recorded a missing sub-vectors, let µ =
(
µ�

1 , µ�
2
)� be the conforming parti-

tioning of the vector of expectations, and

Σ =

(
Σ1 Σ12

Σ21 Σ2

)
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the variance matrix, also partitioned conformably. The conditional distribu-
tion of x2 given x1 is normal,

(x2 |x1) ∼ N (µ2 + Σ21Σ−1
1 (x1 − µ1), Σ2 − Σ21Σ−1

1 Σ12
)

. (4.4)

The least squares estimator can be derived from these equations by replac-
ing each (co-)variance with its sample estimator, and each expectation with
the corresponding sample mean. An outstanding property of the conditional
distribution in (4.4) is its constant variance; the variance reduction, by the
non-negative definite matrix Σ21Σ−1

1 Σ12 , can be attributed to the informa-
tion about x2 contained in x1 . The connection of (4.4) with linear regression
suggests that the assumption of normality can be relaxed to (component-wise)
variance homogeneity.

Having estimated µ and Σ, a plausible value of x2 is generated by the fol-
lowing steps. First, a plausible variance matrix Σ̃ is drawn, by the multivariate
version of the procedure described in Section 4.2.2. That is, Σ̃ is drawn from
the Wishart (matrix-χ2) distribution and scaled appropriately. The plausible
parameter vector µ̃ is then drawn from the estimated multivariate normal
distribution of µ̂, with Σ̃ substituted for Σ. And finally, a plausible value of
x2 is drawn from (4.4) assuming that x ∼ N (µ̃, Σ̃). A set of plausible values
is based on the same plausible distribution N (µ̃, Σ̃), and different sets on
independent plausible distributions, with independently drawn replicates of
µ̃ and Σ̃.

4.3.2 Categorical variables

The joint distribution of two categorical variables, A and B, with hA and hB
categories, respectively, is given by an hA ×hB matrix P of probabilities, with
non-negative entries such that 1�P1 = 1. The marginal distributions of A
and B are given by the respective vectors P1 (column) and 1�P (row). The
conditional distribution of B given A = a is obtained by standardising the
row pa· corresponding to A = a:

(B |A = a) ∼ 1
pa·1

pa· , (4.5)

assuming that the marginal probability pa·1 is positive.
When A is recorded and B is missing a plausible category of B is drawn

from the plausible conditional distribution of B given A. This plausible dis-
tribution is derived by the following steps. Suppose the joint distribution of
P is estimated, by P̂, from a random sample of subjects with complete data
on A and B. Then P̂ is unbiased for P and its sampling variance matrix is
proportional to diag(p) − pp�, where p is the vector of the elements of P.
When each combination of the categories of A and B occurs several times (say,
more than ten times), the normal approximation to the multinomial sampling
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distribution is adequate and a plausible distribution P̃ can be drawn from the
naive approximation to this distribution;

P̃ ∼ N
[
p̂,

1
n†
{

diag(p̂) − p̂p̂�
}]

, (4.6)

where n† is the sample size, appropriately adjusted. The plausible conditional
distribution (B |A = a) is defined by substituting P̃ in (4.5) and a plausible
category of B is drawn from this multinomial distribution.

Plausible values may be required for A, B or both categorical variables.
In the procedure for generating a plausible category of A, with the category
of B known, the roles of A and B are interchanged. When neither A nor B
are recorded, plausible categories of A and B are drawn from the plausible
distribution P̃ directly. A set of plausible values has to be based on the same
plausible distribution P̃ and different sets of plausible values on mutually
independent draws of P̃.

Of course, missing values may occur for several categorical variables. Any
set of p categorical variables, with h1 , h2 , . . . , hp categories each, can be
represented as a single categorical variable with h1 × h2 × · · · × hp categories.
Therefore, the categorical variables with recorded values can be identified
with A and the complement with B, and the problem of imputation for B
treated as if there were two categorical variables. This approach is suitable
only when the cross-tabulation of the categorical variables comprises a small or
moderate number of categories. Otherwise many cells in the cross-tabulation
contain very few (or no) subjects. Then not only the normal approximation
in (4.6) is inadequate, but the draws of many plausible values are made from
very dispersed and poorly estimated distributions.

4.3.3 Categorical and continuous variables

The joint distribution of a vector of continuous variables X and a categori-
cal variable A is defined by the set of conditional distributions (X |A = a),
one for each category a, and the (marginal) distribution of A, given by the
probabilities of each category. Denote the densities of these category-specific
distributions by fa(x) and the marginal probabilities by pa .

When each component of X is recorded, but the category of A is not, a
plausible category is drawn from the plausible conditional distribution of A.
The distribution is given by the probabilities

P(A = a |X = x) =
pafa(x)∑
a′ pa′fa′(x)

, (4.7)

where the summation in the denominator is over all the categories of A. Each
plausible distribution f̃a′ is drawn from the distribution obtained by substi-
tuting plausible values of the parameters in fa′ . When these parameters are
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separated (do not involve any constraints that span the category-specific dis-
tributions fa), the estimators are mutually independent across the categories
of A, so plausible parameter values can be drawn separately for each a.

When the entire vector X is missing and A is recorded, A = a, x is drawn
from the distribution with a plausible density f̃a . When neither X nor A is
recorded, a category of A is drawn first from a plausible marginal distribution
of A, followed by a draw from the conditional distribution given by density
f̃a .

When only some of the continuous variables are recorded plausible values
for the missing items are generated from the plausible conditional distribu-
tion given the recorded continuous values, and the category of A if it is also
recorded. If the continuous variables are normally distributed, (4.4) is applica-
ble, conditionally on A; if A is not recorded its application has to be combined
with (4.7). In brief, a draw from a conditional distribution can be made in
stages, according to the distributional identity

g(X1 |X2 = x2) ∼
∑

a

g (X1 |X2 = x2, A = a) g (X2 |A = a) ,

where g stands for a (generic) density implied by its arguments.

4.3.4 Multivariate and multi-stage imputation

A comprehensive model formulation for nonresponse posits a particular joint
distribution for a record x. A deterministic imputation scheme would use
the conditional expectation (median or mode) of the missing sub-record xmis
of this distribution given the observed sub-record xrec . A stochastic scheme
uses a random draw from this distribution and MI draws at random from a
plausible distribution.

Two profound difficulties are encountered in any direct implementation
of MI. First, the joint distribution has to be estimated. The second, model
specification, is much more complex in practice because, with few exceptions,
multivariate distributions with a wide range of dependence structures are dif-
ficult to specify. The multivariate normal and categorical distributions are
notable exceptions. Their conditional distributions remain within the class of
distributions (normal and categorical, respectively), and the classes contain
distributions with very general dependence structures. The advantages of the
normal distribution extend to distributions that are component-wise trans-
formations of the normal, such as the multivariate log-normal distribution.
They can be defined conveniently by the underlying normal distribution and
the transformations applied.

Other multivariate distributions are much more difficult to handle. A
general strategy is to specify the joint distribution in terms of some lower-
dimensional (conditional) distributions. In this way, an unmanageable task
is replaced by a number of tasks that are manageable. This may come at
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the cost of reduced flexibility and realism, as the range of the feasible depen-
dence structures is reduced. In MI, this strategy is implemented by generating
plausible values for missing items within sub-records. Having generated a com-
pletion for one sub-vector, we proceed to complete the next, and so on. This
way of generating plausible values (specifying models, imputing, and the like)
is called multi-stage. In general, multi-stage imputation is not proper because
some auxiliary information is ignored in the process of generating plausible
values, and the uncertainty in one stage is not reflected fully (or at all) in the
subsequent stages.

4.3.5 Imputation with monotone response patterns

Proper multi-stage imputation procedures can be devised when the response
patterns are monotone. Suppose X0, X1, . . . , XK are the variables in the
non-increasing order of response. The joint distribution of a complete-data
record, expressed as

(X0) (X1 |X0) (X2 |X1 , X0) . . . (XK |XK−1, . . . , X0) , (4.8)

suggests a procedure starting with a completion of X0 , followed by gener-
ating plausible values of X1 when it is missing, using recorded or imputed
values of X0 , then plausible values of X2 , using recorded or imputed val-
ues of X0 and X1 , and so on, concluding with generating plausible values of
XK by conditioning on the (recorded or imputed) values of all the variables
X0 , X1 , . . . , XK−1 . If the plausible values are properly generated at each
stage, then the set of all plausible values is also properly generated. Without
monotone response patterns, and the appropriate order of the variables, such
a procedure would not be proper because, for instance, imputation for Xk

would fail to draw on information in Xh for some k < h. With monotone
patterns, there is no such information.

The advantage of imputation for data with monotone response patterns is
that plausible values are generated by univariate models. When these patterns
are monotone for most of the subjects, and would become monotone if a few
additional items were deleted, the sequence of univariate imputations can
be applied after such deletions, and the temporarily deleted values either
restored or combined with their plausible counterparts. With the restoration,
the correlation structure of the variables is affected, and in some extreme
cases, combinations of values may occur that are not feasible.

When the number of variables is very large it may be advantageous to
reduce the number of stages, or to organise the imputations in stages at two
or more levels. Thus, each stage at one level may itself comprise a multi-stage
procedure. For example, at stage 1, plausible values are generated for a vector
of variables X0 , using only information contained in these variables; at stage
2, they are generated for X1 , using information from X0 and X1 , and so on,
in analogy with the imputation implied by (4.8). The sets of variables X0 ,
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X1 , . . . , XK are said to have group-monotone response patterns if any set of
variables X0 , X1 , . . . , XK from them (Xk from Xk , k = 1, . . . , K) has mono-
tone patterns with the same ordering of the variables, from most-observed X0
to least-observed XK . The variables in either set Xk need not have mono-
tone patterns themselves. With the vector version of the partitioning in (4.8),
each stage involves a multivariate imputation problem, but its dimensionality
is much lower than for the entire list of variables. If the imputation at each
stage is proper, then so is the multi-stage imputation procedure. At each stage
k, the procedure may itself be multi-stage.

4.3.6 The method of chained equations

The Gibbs sampler ([75] and [76]) is a general method for drawing sam-
ples from a multivariate distribution when draws cannot be generated from
the distribution directly. For a K-variate distribution, the method uses the
K conditional univariate distributions (Xk |X−k), where X−k denotes the
vector X with its kth component removed. From an initial solution x(0),
its first component is updated by a draw from the conditional distribution(
X1 |X−1 = x(0)

−1

)
. In the kth updating step, kth component of x is updated

by drawing from the distribution
(
Xk |X−k = x(k−1)

−k

)
. The draws from the

conditional distributions are mutually independent. The set of K updating
steps is repeated. The main theoretical result about this procedure is that
as the number of repeats (iterations) of the sets of K updatings increases,
the distribution of x approaches the joint distribution of X, irrespective of
the initial vector x(0), so long as x(0) is in the interior of the support of the
distribution of X. Also, x(0) has to be connected to the support, that is, any
possible realisation of X has to be accessible by the updating steps.

The Gibbs sampler motivates the following method of generating plausi-
ble values, due to [23]. First, a ‘default’ completion X(0) is defined for X.
Then the missing values of the first variable in X(0) are replaced by random
draws from a plausible conditional distribution of the first variable given the
remaining variables. The conditioning is on the recorded or imputed values of
the variables 2, . . . , K, so that it is a univariate imputation task. Next, the
missing values of the second variable are imputed by random draws from a
plausible conditional distribution of the second variable given the remaining
variables 1, 3, 4, . . .K, followed by the similarly defined imputation steps for
the third and consecutive variables. The set of K imputation steps is repli-
cated several times, and the concluding completion X+ is adopted as a single
draw from the conditional distribution of X∗ given X.

The method can be applied to incomplete data with any response pat-
tern, so long as sufficiently many replications are used for generating every
set of plausible values. For data with monotone response patterns, one repli-
cation is sufficient, and therefore the convergence in distribution is likely to be
fast when the patterns are monotone but for a few exceptions. The method



72 4 Multiple imputation

is particularly appealing when there is a natural default value for the ini-
tial imputation, such as zero, or there is another obvious deterministic single
imputation.

4.3.7 From MAR to NMAR models

NMAR comprises a much greater variety of response mechanisms, and so
both their specification and identification are much more complex. A NMAR
mechanism can be specified by the departures of the pattern-specific distribu-
tions (X |R = r) of the records from the distribution of completely observed
records (X |R = 1). The variety of possible combinations of departures is ex-
tremely wide, and identifying any particular combination, or narrowing down
their range is usually not possible.

This may appear to be a strong argument against applying MI; however,
the threat of NMAR is present in simple single-imputation schemes, although
there it is compounded with the patently improper nature of the imputation,
and by the simplicity of the underlying models. With more extensive condi-
tioning, we improve the chances that MAR is applicable, or that the departure
from it is insubstantial.

4.4 From theory to practice

This section addresses some issues that commonly arise in the application of
MI and when deciding whether to apply MI or a single-imputation approach.

4.4.1 Organising MI

The first step of MI, specifying and fitting a model for missing values, is by
far the most difficult. Although it can be carried out at a range of levels of
complexity, from a straightforward adaptation of a common single-imputation
procedure to employing multivariate or generalised linear models with many
covariates, complexity is in general rewarded by greater protection from the
excesses of NMAR. Of course, complexity brings about increased uncertainty
about the model parameters, and that imposes a limit on our ability to combat
NMAR. The second step, generating plausible values, is much simpler, but is
best executed in connection with the first step. The third and fourth steps,
completed-data analysis and averaging, rely on complete-data tools, and their
execution requires only minimal computational expertise (dealing with the
plausible values) and simple instructions, in addition to what is required for
the complete-data analysis.

It is therefore natural to assign the tasks to the parties that are appropri-
ately equipped for them. The data constructor, such as a national statistical
agency, where computational expertise and software are available, is better
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suited for the complex tasks. The quality of the modelling can be greatly en-
hanced by the information about the nonresponse processes, both from the
analysed survey and from other surveys of similar populations, using similar
instruments and similar methods of data collection. Here, complexity may be
rewarded by more appropriate imputations.

The modelling and simulation steps have to be conducted only once; the
sets of plausible values carry all the information about the nonresponse pro-
cess, in the sense that any MI-version of an efficient complete-data estimator
used by a secondary analyst will be efficient, so long as the plausible values
have been generated properly. Thus, the analyst can focus on the research
problem at hand, without any distraction caused by the imperfect conduct of
the survey. The cost incurred is, in effect, M -fold increase in computing, but
the programming effort additional to the complete-data analysis is minimal.
The underlying rationale is that computer equipment and computer time are
much less costly than personnel with the relevant analytical and programming
skills.

With appropriate flagging, missing values can be indicated in the database
supplied to the secondary analysts, so they can apply other methods for deal-
ing with missing values or, indeed, apply their own MI procedures, or other
methods for dealing with incompleteness.

In a typical database, the incomplete data form a rectangular array (ma-
trix), with appropriate codes for the missing values. The sets of plausible val-
ues can be formatted as another rectangular array, with M + 1 columns; the
first column locates the missing value and the following M columns contain
the corresponding plausible values. If an ordering of the locations is defined
without any ambiguity, the first column can be dispensed with. In this set-
ting, the database comprises two arrays, the incomplete data and the plausible
values, one set in each column.

In many databases, most of the variables are recorded completely and
imputations are required only for a few variables. Then each completion can
be represented as another variable in the database. This arrangement is not
very economic for storage because the recorded values are repeated M+1 times
(once in the original version of the variable). However, the cost of storage and
the added complexity in handling a bigger database may be offset by the
convenience of the completed-data analysis.

In some environments, it may be more practical to supply the computer
program for generating sets of plausible values, or even the program that
combines the modelling and simulation steps of MI. Of course, the details of
the model to be fitted in the first step could be fixed and hard-coded, avoiding
a duplication of the analytical effort.

4.4.2 Validity of the assumptions

The theoretical properties of MI are contingent on correctly specifying the
model for missing data. In most settings, the options are restricted to a class
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of MAR mechanisms, even though their validity cannot be tested formally.
The problematic nature of the assumption of MAR is often quoted as the
reason for not applying MI. Here we argue that this is an unintended conse-
quence of the clear statement of the assumptions associated with MI and the
properties of the MI estimator. In contrast, single-imputation methods appeal
for validity either to the optimal way of reconstructing the complete dataset
(not a relevant goal), or to enabling the use of complete-data methods with
approximate validity of the inferential statements. The approximation breaks
down under NMAR and estimators that are distinctly non-linear functions of
the data. Single-imputation methods are simpler to apply, but that is hardly
a point of any substance, given that, for a secondary analyst, MI requires in
essence the same software equipment. The cost and effort of generating sets of
plausible values is substantial, but it should be pro-rated over the numerous
analyses to which the database is subjected.

A model for nonresponse is easily identified with most single-imputation
methods, and upon a critical evaluation each would be found wanting. That
has been the substance of our assessment of the schemes discussed in Chapter
3. It is essential to judge the alternative approaches by the same yardstick.
MAR is equally essential for both single- and multiple-imputation procedures.
MAR-based procedures can be adjusted for known or estimated departures
from MAR by adaptations that are identical for both types of imputation
procedures. We argue below for MI indirectly, by pointing out how com-
monly applied single-imputation schemes can be improved, by making the
(implied) model for missing values more realistic, by incorporating the uncer-
tainty about the missing values (at least approximately), and by an integrated
way of exploring the impact of certain departures from the assumed model
for the missing values.

4.4.3 MI adaptation of LOCF

LOCF implements the imputation of missing values for X2 based on the
(recorded) values of X1 according to the usually inappropriate model which
states that X2 = X1 when X2 is not recorded. A more realistic model is that
the two variables coincide with a large probability. For variables X1 and X2
with support on consecutive integers, such as 1, 2, . . . , H, this can be formu-
lated as

P(X2 = X1 |X1 = x) = p

P(X2 = X1 + 1 |X1 = x) = P(X2 = X1 − 1 |X1 = x) =
1 − p

2
,

with suitable provisions for x = 1 and x = H. More complex models allow
for differences X2 −X1 by two or more points (with decreasing probabilities),
and for probabilities that depend on x.

When the values of X1 and X2 are categories without any ordering the
probabilities may depend on the values of X1 and X2 , although some con-
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straints on these probabilities can be imposed. For example, the probabilities
may be symmetric:

P(X2 = x1 |X1 = x2) = P(X2 = x2 |X1 = x1)

for any pair of values x1 and x2 . Further, the probabilities may depend on
the distance defined as a positive function of x1 and x2 . The distance can
be defined for each point x as its neighbourhood with layers. The kth layer
contains points x′ that are in distance k from x.

For continuous variables X1 and X2 , a model more realistic than X1 = X2
that underlies LOCF is that (X1 − X2 |X2), or the difference after a suitable
transformation, has a distribution centred around zero. The distribution may
be symmetric, (X1−X2 |X1 = x1) ∼ (X2−X1 |X1 = x1), and may depend on
the value of x1 . The probability that LOCF is appropriate may be positive;
this can be represented as (X1−X2 |X1 = x1) being a mixture of a continuous
distribution and the degenerate distribution with all its mass at zero.

Except for anomalous settings, LOCF is not valid because the variation
from one time point to the next (or, more generally, the variation of X2 −X1)
is ignored, and because it is assumed that there is no trend; E(X2 − X1) = 0.
Both problems can be resolved for specific complete-data estimators by defin-
ing more general models for the missing values (such as regression) and by
estimating the contributions to the sufficient statistics. This can be accom-
plished by various adjustments, such as estimating x2

2 by x̂2
2 + σ̂2, where x̂2

is the (efficiently) imputed value for x2 and σ̂2 the estimate of the resid-
ual variance σ2 = var{X2 − E(X2 |X1)}2. However, each class of non-linear
transformations requires a different adjustment.

4.4.4 MI-proper hot deck

Hot deck is a general imputation method in which missing sub-records are
completed by sub-records of (more) completely recorded subjects. We de-
scribe hot deck first for the setting with one incompletely and one completely
recorded variable. Let these variables be X1 and X2 . A special case of hot
deck is the nearest-neighbour imputation. For an incomplete record (?, x2),
a complete record (x′

1 , x′
2) is found, such that the distance |x2 − x′

2 | is as
small as possible. The distance need not be based on the absolute value. The
value x′

1 of the selected record is substituted for the missing value in (?, x2).
The record (?, x2) is called the recipient and (x′

1 , x′
2) the donor . In case of

a tie, either a random draw is made from the candidate donors or further
criteria are introduced, such as small distance on other (completely recorded)
variables. Ties are likely to occur for categorical variables in particular.

In hot deck, a pool of donors is identified for each recipient, and the missing
sub-record for the recipient is completed by the corresponding sub-vector of a
randomly selected donor. For example, the pool of donors for an incomplete
record (?, x2) may be defined by a match on x2 ; that is, the pool comprises all
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the complete records that share the value of x2 with (?, x2). For a continuous
variable X2 , the pool may be defined by an interval (x2,L , x2,U) that contains
x2 . The interval may be defined for each x2 separately, or the range of values
of x2 may be partitioned by points x

(1)
2 < . . . < x

(H−1)
2 to intervals that define

H pools of donors. The apparent disadvantage of such a set of donor pools is
that a recipient (?, x2) with x2 in the left-hand neighbourhood of x

(h)
2 will be

donated a value x′
1 that is very likely paired with x′

2 < x2 .
For a categorical variable X1 , the imputed value x′

1 is a random draw from
the multinomial distribution defined by the values of X1 in the donor pool.
A replication of the sampling and nonresponse mechanisms would yield a dif-
ferent donor pool, both comprising different subjects and leading to different
multinomial probabilities. The replicate donor pools have a common under-
lying multinomial distribution, the conditional distribution of X1 given X2 .
This distribution can be estimated from a single realisation. When the sam-
pling design is simple random the multinomial probabilities p are estimated
by the sample probabilities p̂, with the sampling variance matrix

var(p̂) =
1
n

{
diag(p) − pp�} , (4.9)

where n is the size of the pool. For large pools of donors, the sampling dis-
tribution of p̂ is approximately normal with the variance matrix given by
(4.9).

For datasets with several categorical variables and many response pat-
terns, it is practical to define donor pools separately for each combination
of response pattern and pattern of scores on the observed sub-records. Vari-
ables that are not involved in the definition of the donor pool need not be
recorded completely for the donor pool. A missing value on a variable not in
this subset may be part of the criterion for inclusion in the donor pool. Thus,
some incompletely observed records may also appear in the donor pool. Also,
imputations may be necessary only for a subset of the incompletely recorded
variables.

Hot deck is not a proper imputation method because it pretends that
the probability of a particular completion of a recipient’s record is fixed in
replications. This deficiency can be resolved by drawing the distinct values of
x′

1 not by the estimated probabilities p̂ but by their plausible counterparts,
drawn from the estimated distribution of p̂. In most settings, the normal
approximation is applicable, so the plausible probabilities are drawn from
N
[
p̂, n−1{diag(p̂) − p̂p̂�}

]
, obtained by naive estimation of the distribution

in (4.9).

Multivariate hot deck

In hot deck, recipients are usually matched with donors according to the
values of several variables. This cannot be regarded as a genuinely multivariate
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feature because in most applications a single variable can be constructed from
the original variables, and the matching would yield the same result.

Donors may provide values of several variables. It is essential that a single
(randomly drawn) donor provides values for all the variables that are miss-
ing in the recipient’s record. If a different donor is used for each variable,
or for sub-vectors of the missing part of the record, the donated values are
independent and the correlation structure of the variables is not maintained.

Pools of donors may be defined based on the response patterns (in addition
to other criteria). If the pools are disjoint (have no overlap), some efficiency
is lost because some records suitable for several pools can be included in only
one of them. On the other hand, the multinomial distributions associated with
overlapping pools are not independent, and so the uncertainty about them is
more difficult to reflect accurately. While this problem does not have a practi-
cal solution, assuming independence is far superior to ignoring the uncertainty
altogether. Of course, when the pools are large, even the uncertainty about the
multinomial probabilities can be ignored. However, the hot deck should still
be applied M times, to reflect the uncertainty associated with the underlying
(fixed) multinomial distribution.

4.4.5 Propensity scoring

Propensity score methods can be motivated as hot deck with donor pools
defined by a regression model. Suppose dataset (Z, X) has only two response
patterns; Z is observed completely and X is recorded completely for a subset
of the sample and not recorded at all for the complement. Let R be the
binary variable that indicates whether X is recorded. A model is formulated
for R in terms of Z and the plausible values of the probability that R = 1
are classified into a number of categories. Within each category, hot deck is
applied to impute for missing values of X. Propensity scoring is particularly
attractive when, possibly with a few exceptions, only two response patterns
occur. In some applications, long sub-records are imputed, such as responses
to whole pages or sections of a questionnaire.

A practical choice for the model for (R |Z) is logistic regression, although
alternative link functions can also be applied. The model fit is described by
the vector of estimates β̂ of the regression coefficients in

P(R = 1 | z) = logit−1(zβ) ,

where logit(p) = log(p) − log(1 − p) is the logit function; its inverse is
logit−1(u) = 1/{1 + exp(−u)}. The sampling variance matrix of β̂ is esti-
mated by the matrix of the weighted totals and cross-products of the variables
in Z, with weights p̂(1 − p̂), where p̂ = P̂(R = 1 | z) is the fitted probability
of response. A plausible vector β̃ is drawn from the estimated (asymptotic)
distribution of β̂, that is, N

{
β̂, v̂ar(β̂)

}
, and it defines the plausible probabil-

ities logit−1(zβ̃). These probabilities are grouped into (propensity) intervals
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0, p(1)

)
,
[
p(1), p(2)

)
, . . . ,

(
p(H), 1

]
, and they define the groups of recipients

and pools of donors. Donors are similar to a recipient if their values of p̃ fall
into the same propensity interval, and the recipient is donated a completion
from a randomly selected similar donor. Note that a replication yields a differ-
ent plausible vector β̃, and so the composition of the propensity intervals dif-
fers across the replications. This is an important source of between-replication
variance that reflects the uncertainty about the model for R.

Propensity scoring cannot deal with a wide variety of response patterns,
but is well suited for settings in which entire blocks of variables have missing
values. When such a pattern is spoilt by relatively few subjects, the values of
some of the variables may be overwritten, kept unchanged, or a random deci-
sion may be made. In general, overwriting introduces inefficiency by discard-
ing recorded values, but the replacement by a proper imputation introduces
no bias. In contrast, keeping the values unchanged introduces bias without
inflating the sampling variance. Overwriting will help to maintain the associ-
ations among the variables, whereas by retaining a recorded value we maintain
data item correctness but fail to maintain the associations. A mix of the two
strategies may be a good compromise, although in some settings overwriting
has to be restricted, so that some incompatibilities in the completed data are
avoided.

4.5 NMAR and sensitivity analysis

So far, we have considered only models for ignorable nonresponse, that
is, MAR with its model parameters separated from the parameters in the
complete-data model. Specification of an appropriate NMAR model is much
more difficult. MAR is characterised by identical associations in the complete
and incomplete records. Any way of departing from this identity corresponds
to a NMAR mechanism. The wide range of such departures illustrates the
wealth of NMAR mechanisms. It is instructive to think of the departures as
classified by their direction and extent, so that they are partially ordered
by the extent within a direction. A practical method of generating plausible
values according to a NMAR mechanism is by adjusting the sets of MAR-
generated plausible values for the departure from MAR. For example, each
plausible value of a variable may be increased (additively or multiplicatively)
by a constant. This constant (and the way it is applied), together with the
(original) MAR mechanism, describes the NMAR mechanism.

In most settings, there is no one or a narrow range of NMAR mechanisms
that are applicable. A more practical proposition is to find out how far could
the nonresponse mechanism depart from MAR, in one or a few directions,
without altering the conclusions substantially. Sensitivity analysis is a general
term for exploring the impact of an assumption, input, or setting, on the
outcome of the analysis. The desirable outcome of a sensitivity analysis is
that the result of the analysis is changed appreciably only when the input is
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altered from the original setting to an extent generally regarded as not feasible.
In such a case, we would declare that the estimator (analysis) is not sensitive
to (the details of the setting of) the input. Sensitivity analysis is qualified
by the assumption that is being subjected to scrutiny. As the assumption of
MAR cannot be tested, it is a prime candidate for sensitivity analysis.

The variety of ways (directions) in which a mechanism can depart from
MAR is usually so vast that sensitivity with respect to each of these ways can-
not be established. A practical implementation of sensitivity analysis specifies
one or a few directions that are explored. For each direction, sets of plausible
values are generated for models that assume a specific extent of the deviation
from MAR.

For illustration, suppose the model for missing values of a variable y is
based on ordinary regression, y = β0 + β1x + ε, and a set of plausible values
ỹmis has been generated. A simple NMAR mechanism can be introduced by
assuming that, for each missing value, y = β0 +∆+β1x+ε, where ∆ �= 0. For
a given ∆, the corresponding plausible values ỹ′

mis can be generated by the
same adjustment ỹmis +∆ of the MAR-based plausible values. The complete-
data analysis is then applied to the datasets completed by the sets of plausible
values with this adjustment, and the association of ∆ with the MI estimate
θ̂MI explored. Instead of an additive deviation, the plausible slope β̃1 can be
adjusted, or the plausible value of the residual variance var(ε) increased, or
these alterations combined.

Sensitivity is likely to depend on the target θ. In general, it is difficult to
gain an understanding for which estimators, and which targets, are resistant
(insensitive) to deviations from MAR, and in which directions.

An effective way of conducting sensitivity analysis is to define the deviation
from NMAR with the intention to undermine the conclusion of a specific
analysis. Suppose the target is the difference of the means for two groups, A
and B, and the estimate is positive. This result is undermined most effectively
by reducing the plausible values for A and increasing them for B. The simplest
way of implementing this is to change each plausible value by ±∆, with the
sign dependent on the group. Other schemes are not much more complex (e.g.,
multiplicative adjustment), and may be more natural in the specific context.

Sensitivity analysis is not specific to dealing with incompleteness, to MI
or to the concern about NMAR. For the latter, it can, in principle, be applied
with single-imputation schemes, using the same adjustments of the MAR-
based imputed values as in MI. A common application of sensitivity analysis
is in model-based estimation, when the impact of some elements of the model
specification has to be explored.

4.6 Other applications of MI

Although MI was originally designed to deal with missing values, it is appli-
cable to all problems that can be formulated as incomplete-data analysis. It is
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up to the analyst’s ingenuity to relate a particular complex estimation task to
an artificial complete-data problem that is relatively easy to solve by an avail-
able method. For example, the complete-data method may be non-iterative,
whereas the direct implementation of the incomplete-data method would be
either iterative or would require an extensive analytical or programming effort.
For the data that represent the missing information, the difference between
the complete and incomplete data, sets of plausible values are generated in
such a way that the uncertainty about the missing values is appropriately re-
flected. After generating sets of plausible values, no programming effort other
than to implement the complete-data method is required.

In this section, we discuss three generic applications, connected with mea-
surement error, misclassification and coarse data, and outline some others,
involving random-effect models, changed classification and observational stud-
ies.

4.6.1 Measurement error

Measurement, assessment and other kinds of error are common in data collec-
tion processes. An ideal version X∗ of a variable is defined, but it is recorded,
as X, subject to error. The measurement-error (ME) process is defined as a
class of conditional distributions (X |X∗). Usually the class is defined by one
or a few parameters and their ranges. A common example of a ME process is

X = X∗ + ε , (4.10)

where ε is distributed according to N (0, σ2
e), with unknown variance σ2

e , and
is independent of X∗. The realisations of ε are usually mutually independent,
although they may be correlated, for instance, when measurements take place
within sets or clusters of units, or the order in time induces some dependence.
Normality of the deviations X − X∗, although analytically convenient, need
not be an appropriate assumption. Its scope is extended somewhat by trans-
formations; that is, the normal measurement-error model may be appropriate
for f(X) and f(X∗).

The variance of ε may be a function of some variables. In the simplest
version of such a model, ε has variance σ2

e,k , depending on the value k of
a categorical variable Z. Care should be exercised in specifying parametric
forms for var(ε); in particular the variance should be positive for all feasible
values of the parameters. In the multivariate version of the model in (4.10),
the components of the error ε = X − X∗ may be correlated, although in
many settings they are independent. The variances in Σ = var(ε) need not
be constant. When the components of ε are independent and have unrelated
variances, separate univariate models can be specified for each component.

As with a nonresponse mechanism, we can define the complete data and
their complete-data analysis, the analysis that would have been applied had
there been no measurement error. The applications of MI to nonresponse
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and measurement error share the difficulty that the nuisance process involved
(nonresponse or measurement) cannot be stripped away, so that the sampling
would be left as the sole source of the inferential problem.

Unlike the nonresponse mechanism, the measurement error is usually
‘planned’ — it is anticipated, as a result of the human or technological imper-
fections of the measurement and other instruments used to obtain the values
of X. The measurement process can be studied in advance, by applying the
instruments (repeatedly) in a setting as close to the survey as possible. The
obvious difficulty is that the subject of the measurement may be conditioned
by the process, and so the second and subsequent applications cannot be re-
garded as replicates. If this problem does not arise, or is overcome, inferences
about the measurement process can be made, with accuracy limited only by
the available resources.

Suppose Z comprises the variables that involve no measurement error and,
for simplicity, suppose they are recorded completely. Formally, we may regard
(Z,X∗,X) as the complete data and (Z,X) as the incomplete data. The fact
that X is not used in any complete-data analyses is incidental. A model for
the ‘missing’ data X∗ is a class of conditional distributions (X∗ |X). These
are obtained from (X |X∗) by the Bayes theorem:

g(x∗ |x, z) =
g(x |x∗, z) g(x∗ | z)

g(x | z)
, (4.11)

where g denotes a generic density function. This provides a prescription for
generating plausible values of X∗, as draws from g(x∗ |x, z). Uncertainty
about this density is addressed by using a plausible density g̃. To obtain
it, a parametric form of g is posited, its parameters estimated and a vector of
parameters is drawn from their estimated sampling distribution.

The identity in (4.11) requires the marginal distributions of X and X∗

conditional on the covariates Z and the conditional distribution of X given
X∗. The latter distribution can be estimated directly in an experiment in
which the value of X∗ is under our control. When such control cannot be
exercised, information about the measurement process can be collected by
observing a non-informatively selected sub-sample of subjects twice or several
times, with independent realisations of the measurement error.

For example, with the model in (4.10), the difference of a pair of replicate
measurements of X∗, X1 − X2 , has centred normal distribution with vari-
ance 2σ2

e . The measurement-error variance can therefore be estimated from a
sample of such differences for J subjects,

σ̂2
e =

1
2J

J∑
j=1

(xj,1 − xj,2)2 ,

and Jσ̂2
e/σ2

e has χ2 distribution with J degrees of freedom. The distribution
of X can be estimated from the sample. The values of X∗ are not observed,
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so their distribution has to be estimated indirectly. Suppose X is distributed
according to N (µ, σ2

x). Then X∗ is distributed according to N (µ, σ2
x − σ2

e),
derived by assuming that X∗ and ε in (4.10) are independent.

Any population considered is finite, so the values of any variable in it
could not have any continuous distribution, such as the normal. Although
the assumption of normality is not valid, it is constructive when it provides a
good approximation. Without normality, the mean and variance of X∗ remain
µ and σ2

x − σ2
e , respectively, but there is no simple way of drawing samples

from its distribution, or distributions derived from it. A particular advantage
of the normal distribution is that it is closed with respect to ‘reversing’ the
conditioning by (4.11).

(X∗ |X) ∼ N
(

µ
σ2

e

σ2
e + σ2

x

+ X
σ2

x

σ2
e + σ2

x

,
σ2

e σ2
x

σ2
e + σ2

x

)
. (4.12)

The conditional expectation, or its naive estimator, can be interpreted as
a shrinkage estimator of the realisation of X∗; the observation X is pulled
toward the mean µ, with the extent of shrinkage dependent on the relative
sizes of the variances σ2

e and σ2
x .

The distribution in (4.12) applies when X∗ is observed by X only once.
When H (replicate) observations, X(1), . . . , X(H), are made, (4.12) applies
with X replaced by the sample mean X = (X(1) + · · · + X(H))/H, and the
variance σ2

e by σ2
e/H, that is, as if the mean X was the sole observation made,

but with greater precision.
Single imputation schemes may estimate X∗ by the corresponding ob-

servation X. The analyses based on this imputation scheme are deficient
because var(X) > var(X∗). For example, the simple regression of an out-
come Y , applied to X as a covariate, is biased for (Y |X∗). Using the con-
ditional expectation E(X∗ |X) introduces a different bias, as its variance,
var {E(X∗ |X)} = σ4

x/(σ2
x + σ2

e), is smaller than σ2
x . The shrinkage in (4.12)

could be reduced so that the sample variance of the estimates matches σ2
x ,

but then other summaries would be estimated with bias.
MI generates replicates of the sets of estimated conditional distributions

of (X∗ |X) for each observation X and draws the plausible values at random
from each distribution. Estimation of the measurement-error distribution(s)
is possible only when replicate measurements are made. An important design
issue is how many replicate measurements to make. More replicates lead to
a more precise estimation of the measurement-error distribution but, with
limited resources, fewer observations of (X,Z) are then made. The analytical
solution of this optimisation problem depends on the variances σ2

x and σ2
e .

When these are not known the problem is best resolved by considering a
range of plausible scenarios.

For some simple analyses, the EM algorithm can be applied. For example,
the ordinary regression fit

β̂ = {v̂ar(X∗)}−1 ĉov(Y,X∗)
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can be evaluated by estimating the complete-data (co-)variance matrices
v̂ar(X∗) and ĉov(Y,X∗). With the standard normality assumptions, the E-
step estimates ĉov(Y,X∗) by ĉov(Y,X) and v̂ar(X∗) by v̂ar(X)− v̂ar(X−X∗).
In this case, the EM algorithm requires only one iteration.

In principle, any distributions can be specified for (X |X∗) and X (or
X∗), although distinct computational advantage is attained with normal dis-
tributions for both. Specification by mixtures of normal distributions may be
necessary when the exact value of X∗ is recovered with positive probability.
Mixtures of two normal distributions are useful when substantial errors occur
with a small probability or when the error distribution is asymmetric.

4.6.2 Misclassification

Misclassification can be motivated as the discrete version of the measure-
ment error. Instead of a categorical variable X∗, its error-prone version X is
recorded. Usually X∗ and X have the same range of values. The misclassifica-
tion process is described by the square matrix T of probabilities of ‘transition’
from X∗ (rows) to X (columns). The rows of this matrix comprise the con-
ditional distributions of X given values of X∗. The Bayes theorem (4.11) is
applicable, with discrete density functions g (that is, vectors of probabilities
that add up to unity).

There are advantages to characterising misclassification processes with
parsimony, by fewer model parameters. This can be achieved by imposing a
structure on the matrix T. For example, the probability of correct classifica-
tion, P(X = X∗ |X∗ = x) may be constant and the probabilities of transitions
between categories symmetric: P(X = x |X∗ = x∗) = P(X = x∗ |X∗ = x).
Further, a structure can be imposed on the categories. For ordered categories,
the natural structure is defined by the distance (absolute difference) and a
model for T in which the transition probabilities are a function of the dis-
tance. More generally, layers of neighbourhoods can be defined around each
category, and the transition probabilities set constant in each layer. The tran-
sition to the same state is associated with the highest probability, followed by
the top layer (close neighbourhood), and the bottom layer (the most distant
categories) is associated with the lowest probability of transition. Separate
matrices T may be defined for strata of subjects, or the transition probabili-
ties may be functions of one or several (continuous) variables. Of course, the
dependence on these variables Z has to be such that the transition probabili-
ties are positive for any combination of Z.

As in Section 4.6.1, repeated classifications are essential for estimating
T, although the ideal way of collecting information about T is by classifying
subjects with known values of X∗. The marginal distribution of X is estimated
from the observations directly, and the distribution of X∗ is estimated using
an estimate of T.

Measurement error and misclassification are two examples in which ele-
mentwise estimation of the ‘missing’ items X∗ would lead to inefficient esti-
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mators of most targets. In most settings, the singly recorded value X is the
obvious estimator of X∗. Therefore, any analysis with this single imputation
would disregard the difference between X∗ and X. Linear regression on X
would not correct for attenuation, and estimators in other complex models
would also be biased. The sampling variation would be underestimated be-
cause a replacement of X∗ by X is bound to result in a loss of information
that is not acknowledged by the single-imputation approach.

4.6.3 Coarse data and rounding

Exact values of the variables are desirable in any analysis, but attempts to
obtain them may be counterproductive. Subjects may refuse to respond be-
cause the recovery of the value may require recall of many mundane details,
consultation of personal records, calculations, or an effort of some other kind
that they may deem as not worth the cause. Also, the definition of the (ideal)
variable may be ambiguous or difficult to convey, and so its value could not
be elicited easily in an interview, especially when subjects are not highly mo-
tivated to respond and better cooperation can be promoted by keeping the
interview short and uncomplicated. In brief, an effort to obtain the precise
values of variables may result in collecting less information overall.

Coarsening is a term used for any known transformation of a variable,
c(X∗) = X, that is not one-to-one. The function c may be subject-specific,
but is known for every subject. Common examples of coarsening are rounding
or, more generally, classifying the values of X∗ to intervals delimited by points
u1 < u2 < . . . < uH . The location and number of these cut-points, and
intervals, may differ from subject to subject, may be infinite, but their values
are known.

Common examples of coarsening are sets of income-bands presented as
response options, such as less than £5000, £5000–10 000, £10 000–20 000, and
so on. The cut-points may provide an important cue for the respondent who
may readily identify the relevant category. Average time spent watching televi-
sion, commuting to work, and on other everyday activities are conventionally
recorded in hours or its fractions (quarters), and the number of miles travelled
by a car in a year in thousands of miles or kilometres. Rounding to a uniform
precision need not be the most convenient way of coarsening. For example,
age of children may be rounded to years if they are over three years of age or
so, but for younger children the respondent (mother or carer) may give the
age in fractions of a year (halves or quarters), and for children younger than
one year, the number of months or even weeks might be given.

The obvious single imputation scheme estimates each value of X∗ by the
centre of the interval in which X is found. The centre may be calculated after
some transformation. When X∗ has a continuous distribution the coarsened
values X do not reproduce it well, and it is easy to find non-linear summaries
of them that differ substantially from the corresponding summaries of X∗.



4.6 Other applications of MI 85

In MI, sets of plausible values of X∗ are generated as random draws from
the plausible conditional distributions of X∗ given X. The main difficulty
is in defining a suitable (marginal) distribution of X∗. In some cases, uni-
form distribution is appropriate, but often no reasonable hypothesis can be
formulated, other than, perhaps, unimodality. Sensitivity analysis provides a
solution in principle, by exploring a range of candidate distributions of X∗.
The selected distribution of X∗ has to be compatible with the distribution
of X, that is, its coarsened version should have probabilities similar to the
empirical distribution of X.

The conditional distribution (X∗ |X) is derived by normalising the restric-
tion of the density to the appropriate X-interval. Plausible values are drawn
from a plausible version of this distribution.

Example 7

We generated a random sample of size 800 from the bivariate normal distribu-

tion with mean (0, 0)� and variance matrix
(

2 4
4 10

)
. The first component

is coarsened using the cut-points −2,−1, 0.5,−0.25, 0, 0.25, 0.5, 1, 2. The val-
ues smaller than −2 are coded as −2.5, those greater than 2 as 2.5, and the
remaining values are assigned the centre of the interval into which they fall.
As an alternative, a less detailed coarsening is considered, based on the cut-
points −1,−0.5, 0, 0.5, 1, with ±1.75 used for the original values outside the
range (−1, 1), and the centers of the intervals otherwise.

The sample variance matrix of the original values is
(

2.05 4.05
4.05 9.94

)
, so

that the sample correlation of the two variables is 0.897. The variances of the
less and more coarsened variables are 1.86 and 1.58, respectively, and their
correlations with the second original variable are 0.873 and 0.834, smaller than
the correlation of the original variables (4/

√
20 = 0.894). Thus, any estimator

for which the variances or covariances (sums of squares or cross-products)
involving the coarsened variable are sufficient statistics is likely to be biased.

Censoring is an example of coarsening relevant to survival analysis in par-
ticular. Uncensored observations are recorded exactly, and for censored ob-
servations only an interval, such as (t, +∞), is recorded. Direct maximum
likelihood methods are available only for a restricted range of models such as
the Cox proportional hazards regression, [36] and [38].

Checklists

A checklist is a long sequence of questions with the same lead-in passage
(preamble) and the same list of response options. A common example of a
checklist is a frequency questionnaire, in which the subject is asked to re-
spond to each item by a frequency selected from the options, such as ‘Never’,
‘Once a year’, . . . , ‘Every day’. A likely problem is that the negative response
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option (‘Never’) is sometimes overlooked and no response is given. This may
be caused by a momentary lapse or a misunderstanding of the instructions.
Often a typical subject responds positively to only a few items. Imputing the
negative option for each nonresponse is an attractive proposition in such a
case, supported by the conjecture that many instances of nonresponse were
meant for a negative answer.

With MI, a posited MAR mechanism assumes that there is no excess of
negative responses among the missing items. This can be adjusted by over-
writing the MAR-generated values by zeros with a certain probability, or a
probability drawn from a distribution that reflects our hypothesis about it,
akin to a Bayes prior.

It can reasonably be assumed that subjects misjudge the frequency. For
example, a non-trivial proportion of the positive responses may be borderline
cases, some of which are bound to be misclassified, if the ‘ideal’ frequency were
well defined. Such misjudgement can be represented by a misclassification
process. This process can accommodate bias in the judgement due to social
(un-)desirability.

The frequencies are not well suited for many analyses. Their lower-
dimensional summaries would be much more convenient. To obtain such sum-
maries, each frequency for an item is associated with a value (score or quan-
tity), and these values are added up. For example, in food frequency ques-
tionnaires, each frequency is ‘converted’ to quantities of nutrients, such as
protein, carbohydrates, and the like. Such a deterministic conversion does not
allow for any variation in the consumption among the subjects who declared
a particular category. Its application fails the criteria of efficiency and unbi-
ased assessment of the precision, even when the analysis planned for the exact
quantities of nutrients satisfies them.

If the complete-data analysis involves the quantities underlying the fre-
quencies declared by the subjects, plausible quantities have to be generated
for each questionnaire item. This is a complex task that involves the interme-
diate step of generating plausible (ideal) frequencies. The declared frequencies
can be regarded as the ideal frequencies affected by misclassification. In the
absence of any replication, no inference can be drawn about the misclassifica-
tion process. Replication may be useful, although its timing has to be chosen
carefully. If the time between the two administrations of the questionnaire
is too short some subjects may lose motivation and others may remember
some of their responses from the earlier administration. If the time elapsed
is too long, the inconsistency of subjects’ judgements (misclassification) is
compounded with the non-trivial changes in the frequencies (diet).

Thus, we may have to resort to an educated guess about the misclassifica-
tion process. By ignoring the issue of subjects’ inconsistency we assume that
their responses are consistent (equal to the ideal frequencies), so a guess may
still be preferable because consistency represents the extreme choice. Each
questionnaire item is associated with an unknown distribution of the under-
lying quantities. The uncertainty about this distribution can, in principle, be
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represented by plausible distributions. For a given plausible frequency, the
plausible quantity is drawn from the conditional distribution given that the
quantity is in the interval that delineates the declared frequency. Thus, the
sets of plausible values differ in the plausible frequencies, in the conditional
distributions given a frequency, and in the draws from this distribution. An
analyst may be concerned that too much variation is introduced in this way,
for instance, because it is not introduced in similar analyses. However, with-
out an appropriate representation of the imperfections in the data, we are
deceiving ourselves by gross inferential dishonesty, and the key estimators are
biased and do not refer to suitable (ideal) variables.

An advantage of MI is that the two (or several) sources of incompleteness
can be dealt with one at a time. A weakness of the approach is that each
questionnaire item is dealt with separately (independently). However, defining
a multivariate distribution for the quantities underlying all the items, or for
suitably defined blocks, is too complex a task.

Altered classification

Definitions of categorical variables such as administrative regions, occupa-
tional codes and income bands, are frequently altered. After the change they
may be more appropriate, but a link with the old classification is difficult to
maintain — comparisons over a time span that includes the change is possi-
ble only for the categories that have not been altered. Suppose an outcome
variable Y is recorded, on independent samples, at time points t1 and t2 . A
classification X∗ is recorded at time t1 and an altered classification X at time
point t2 . The target of inference is the difference of the population means of
Y , or of another pair of summaries, for each category x∗ between t2 and t1 .
This problem would be easy to solve if the classification X∗ were available
for the sample at time t2 . Establishing it for every subject in the sample at
t2 may be too great a burden on the survey operation. Instead, it is estab-
lished only for a random (or non-informative) sub-sample. The design of such
a sub-survey may be stratified, omitting categories that have not been altered
and sub-sampling more densely in categories that have been defined by more
substantial or intricate changes. An example of such a change is when a ‘new’
category is composed of subsets of several ‘old’ categories.

We consider (Y, X, X∗) as the complete information, and completely
recorded (Y, X) together with partially recorded X∗ as the incomplete in-
formation. Information about the values of X∗, when missing, is available
from the cross-tabulation of X and X∗ on the sub-sample of subjects at t2 .
Alternatively, such a cross-tabulation can be obtained from a separate sur-
vey, on subjects selected independently of those at time points t1 and t2 . The
cross-tabulation estimates the joint distribution of (X∗, X). Single imputation
might choose the value of X∗ with the highest (estimated) probability, but
then rare combinations of X and X∗ would be under-represented. In MI, a
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plausible category of X∗ is drawn from a plausible conditional distribution of
X∗ given X.

How many subjects should be classified by both X and X∗? There is no
single solution to this design problem. When the categories are completely
redefined, so that many categories of X involve several categories of X∗ each,
information is required about each cell in the cross-tabulation of X∗ and X.
When the sub-survey can be focussed on a relatively few cells in the table
X × X∗ that are sparse but not empty, the sub-survey is more effective.

Budget surveys and imputation by experts

A budget survey inquires about the subject’s distribution of a particular re-
source, such as income or time. Income is declared by the subject, so it may
be subject to an error, but everybody has available 24 hours a day. Diet di-
aries can be regarded similarly, as the energy intake should roughly match the
energy expenditure, and that can be estimated from the information about
the subject’s lifestyle and basic physiological measurements. Any resource can
be regarded as the basis, 100%, and responses then may be given in percent-
ages. This is not a practical format for subjects not comfortable with the
calculations involved.

Budget surveys usually have extensive questionnaires, similar to checklists,
that inquire about a wide range of activities or items. For any one subject,
many of the questions are not relevant, and the appropriate answer to them
is ‘Never’ or ‘None’. Such a response is easily confused with nonresponse
(choosing no option), especially in self-administered questionnaires. If many
such questions are presented in a sequence, one for which a positive answer
should be given is easily missed. Also, subjects’ perceptions of social desir-
ability and other momentary impressions, not necessarily generated by the
questionnaire, may influence the responses.

When processing records from such surveys electronically it is easy to iden-
tify records in which the responses to the options do not add up to the de-
clared, estimated or universal total (income, nutritional requirement or time,
respectively). The discrepancies arise because of subject’s misjudgement or
selective recall, some activities or items not listed among the options (and
not recalled by the subject), or because of rounding or incorrect (declared or
estimated) total. Survey organisations use experts or computer software to
edit the records that contain discrepancies and to impute for missing values.
The experts’ remit is to fix up the records as best as they can, given their
judgement, possibly informed by the records that are complete and consistent.

The quality of the expert’s work can be judged by asking them to edit
records that were deliberately altered by a third party, without leaving any
trace, or in which some items were deleted. Closer match of the experts’
guesses to the original records would be judged as higher quality. Such an
assessment is concerned with recovery of the complete (consistent) dataset,
and is not in concert with the standard of efficient inferences and unbiased
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assessment of their precision. The experts probably fix up the database better
than anybody else could, given the information at their disposal. However,
they are unlikely to ‘venture’ and impute some unusual quantities even though
such quantities (or their combinations) do occur among the consistent records.
As a consequence, the database is made more homogeneous by editing, and
has fewer idiosyncratic combinations of values than would be appropriate.

The expert judgements could be made more useful if the uncertainty about
them were incorporated in the database and in the subsequent analyses. With-
out recognising the imperfection of their judgements, we pretend to have more
information than was collected, and the complete-data analyses are not hon-
est. If the imputations are without bias (that is, are correct on average),
estimators that are non-linear statistics are biased.

The quality-control process of the experts’ judgements provides an oppor-
tunity to learn about the quality and consistency of the expert judgements.
This can be represented by the distribution of the differences between the
judgement and the underlying value. These have to be considered jointly for
all the items, because their entries and judgements about them are correlated.

The MI solution considers the conditional distribution of the vector of
queried values (that are subject to an expert’s review) given the values re-
garded as correct and the expert’s judgement, and it draws (plausible) values
from a plausible version of this distribution. The contribution of the experts
can be assessed by discarding their judgements in this conditioning. If the
judgements contribute little to the precision of the MI estimators, the experts
can be replaced by an MI scheme, although they still have to be retained for
quality control.

Observational studies

In many settings, it is not feasible to implement a probability sampling design
because no sampling frame is available, the members of the population have,
and exercise, the right to decline any cooperation, and identifying and recruit-
ing subjects relies on agents who do not necessarily get in touch with a good
representation of the studied population. Sampling is particularly difficult
from populations of sufferers from medical conditions, those with particular
consumer habits, experiences, or preferences. Similar difficulties are encoun-
tered when studying populations of events, such as electronic or business
transactions.

Any sample S obtained without a sampling design (that is, with an un-
known sampling design) can be conceived as a simple random sample S∗

affected by (informative) unit nonresponse. Sample S∗ can be regarded as
the complete information and S as incomplete. In this formulation, plausible
records (subjects) have to be generated for the complement of S in S∗. With-
out any information about the nature of informativeness of S, this cannot be
accomplished. However, regarding the sample obtained as simple random, or
applying estimators and quoting their (estimated) properties that are based
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on simple random sampling, is not appropriate either. Bias may be a substan-
tial component of uncertainty and, unlike sampling variance, it is not reduced
with increasing sample size, unless the sample is a large fraction of the pop-
ulation. The deviation of the sample from good representation is referred to
as selection bias.

MI offers a solution in principle, but this can be implemented effectively
only with a suitable method for generating plausible records. In most settings,
there is no cast-iron background information that would enable this, although
experts may have some realistic conjectures about the selection bias in S. Sen-
sitivity analysis can be applied to explore the range of feasible selection biases.
A selection bias can be represented using a stratification of S. Each stratum
Q is supplemented, from S⋂Q to S∗⋂Q, by drawing a random sample from
S⋂Q, with replacement. The stratification and the within-stratum probabil-
ities (or, more generally, sampling designs) are the factors that specify such a
sample-completion design. The outcome of a sensitivity analysis is not a state-
ment in the conventional format of an estimate and the associated estimated
standard error, but a collection of such statements, one for each completion
design, of which the extreme ones should be highlighted to indicate the un-
certainty due to convenience (unknown) sampling design.

Data editing

Data editing refers to procedures for reconciling implausible values and con-
flicting combinations of values. Most univariate procedures check that the
values of each variable are in a specified range, and multivariate procedures
deal with records that have inconsistencies involving several variables, such
as unemployed and age below 16 years or vegetarian diet and consumption
of meat. Typical procedures overwrite the values of one or several variables,
so that they no longer involve any conflicts, while making as few and as
small changes as possible. The rules applied may be informed by the process
that might have caused the conflict, such as misprints, misplacing decimal
points, using units different from the instruction, entering responses in wrong
columns, and the like.

Such procedures pursue the standard of efficient estimation of each data
item. Even when this goal is accomplished for the flagged items, the standard
is not adhered to with any rigour because some errors in the data may not
result in detectable conflicts. If a variable is involved in many conflicts and its
values are correctly identified as having to be altered by editing (the new value
need not be correct in all cases), some other values of the variable are bound
to be incorrect without causing any conflicts. Inferences with data subjected
to editing lack honesty if they are regarded as the complete dataset. Editing
does not always recover the correct values and it does not identify all the
incorrect values.

MI addresses this problem by assuming that a (small) proportion of the
‘consistent’ (non-conflict) records are incorrect, and specifying a process that
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generates the errors in them. This may combine elements of measurement
error and misclassification, with processes that capture the conjectured ways
of how the errors arise. Univariate and multivariate outliers can be treated
similarly. MI allows us to incorporate the uncertainty about the outlier status
of an item or a record; it is overwritten with a certain (estimated) probability
by a plausible value, and left intact otherwise.

Random-effect models

Missing information can take on the form of model parameters or other model-
related quantities. Models that are easy to fit may be found wanting because
they do not accommodate a particular feature of the data or of the modelled
processes. The extended model, possibly more appropriate, may be difficult
to fit, requiring some analytical development and complex programming.

With the EM algorithm and MI, we can take advantage of the methods
(estimators) for the simpler model by adopting them for the complete-data
analysis. The E-step in the EM algorithm is concerned with estimating the
complete-data sufficient statistics, or the contributions made to them by the
missing quantities. The data constructor’s tasks in MI are to generate sets of
plausible values of these quantities, or of the parameters that constitute the
missing data, drawn from their estimated distributions.

We illustrate the general idea on a class of simple random-effect models.
They are defined as

yij = xijβ + δj + εij (4.13)

for elements (individuals or subjects) i in groups (clusters) j; j = 1, . . . , n(2)

and i = 1, . . . , nj . The elementary-level sample size is n = n1+· · ·+nn(2) . The
respective elementary- and group-level deviations, εij and δj , are mutually
independent and normally distributed with variances σ2

1 and σ2
2 .

If the deviations δj were known the model in (4.13) could be fitted by
ordinary least squares applied to the model

y′
ij = xijβ + εij , (4.14)

where y′
ij = yij − δj . Given the data Uj = (y′

j , Xj) for group j and the
parameters (β, σ2

1 , σ2
2), δj has the conditional distribution

δj ∼ N
(

ω

1 + njω
1�

nj
ej ,

σ2
2

1 + njω

)
, (4.15)

where ω = σ2
2/σ2

1 is the variance ratio and ej = yj − Xjβ is the vector of
model deviations for group j, comprising elements eij = yij − xijβ, so that
ej = n−1

j 1�
nj

ej is the average of the deviations eij .
The sufficient statistics for the complete-data analysis, fitting (4.14), are

the totals of cross-products U�U, where U = (y′, X) is formed by vertical
stacking of Uj , j = 1, . . . , n(2). The E-step of the EM algorithm estimates
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the contributions to these cross-products made by the deviations δj . They are
linear and quadratic functions of δj , and their estimates can be derived from
the conditional mean and variance of δj given by (4.15).

Single imputation would rely on the estimate of the conditional mean in
(4.15), êjnjω̂/(1 + njω̂), with an estimate substituted for ω and the average
within-group residual êj = n−1

j (yj − Xjβ̂)�1nj based on an estimate of β.
MI is based on the plausible values of δj , drawn from their plausible condi-

tional distributions. A difficulty in implementing MI is that the distributions
of β̂ and ω̂ depend on ω, which is often not estimated with high precision.
If var(ω̂) is estimated naively, the error in estimating ω is committed again
when estimating var(ω̂).

In fact, the model in (4.13) and some of its generalisations can be fitted di-
rectly by maximum likelihood; see Section 7.2 and 7.3. But EM algorithm and
MI can be applied to models that are extensions of these. They may contain
non-linearities, several random effects, or random effects with distributions
different from normal.

For example, the algorithm for direct maximisation of the likelihood for
the model with crossed random effects,

yijk = xijhβ + δih + γjh + εijh ,

with mutually independent random samples δih , γjh and εijh , presents con-
siderable difficulties when numerous groups i overlap with several groups j.
Further, some of the variables in x may be recorded subject to a measurement
error.

4.6.4 Summary

MI, and the missing-information principle underlying it, is a general approach
to dealing with nuisance features of the data. Missing values are but one ex-
ample of such nuisance; measurement error and other forms of contamination,
erosion of detail (by coarsening or rounding) are others that are frequently en-
countered in practice. The impact of ignoring them can be established by simu-
lations, but simple theoretical arguments may be just as convincing: methods,
models and analyses intended for the ideal data are bound to be optimistic
(dishonest) because they do not recognise that the data submitted to the
analysis is of lower quality than assumed.

Taken literally, this proposal may lead us down the path of unending
simulations, taking care of each source of imperfection in the data, and each
analytical difficulty in model fitting. A sound and constructive approach iden-
tifies and attends only to the principal sources of the contamination of the
data, so that the analytical operation is of manageable complexity and the
biases incurred are only slight.



4.8 Exercises 93

4.7 Suggested reading

The theoretical background to MI is laid out in [233]. It is formulated from
a Bayesian perspective, but it readily translates to the frequentist paradigm,
as the quality of the estimators is assessed by a reference to replications. A
wealth of practical experience with modelling and computing is conveyed in
[243]. Alternatives to MI that do not compromise on the quality of the esti-
mators, but are less universal than MI, are discussed in [146]. These include
direct maximisation of the likelihood and EM algorithm. Models for nonre-
sponse and their impact on the incomplete-data analysis are studied in [143],
[144], [145] and [148]. A slightly different terminology for incomplete data and
nonresponse mechanisms is used by [48]. Reference [171] is an extensive collec-
tion of contributions on all aspects of incomplete data in large-scale surveys.

The rationale for MI and its advantages are presented in [237]. References
[66] and [221] discuss methods for variance estimation based on single imputa-
tion. The properties of MI when its assumptions are not satisfied are explored
by [187]. References [135], [136] and [191] present algorithms for combining
the completed-data test statistics, or nominal p values, for significance testing.
Reference [99] presents an application of MI based on the hot deck.

An application of MI to coarse data is presented in [100]. Altered classifi-
cations are handled by MI in [247] and [29]. Several applications of MI in U.S.
health-care surveys are discussed in [238] and [8]. Propensity score methods
are discussed in [240] and a case study is described in [39]. MI is applied to
incomplete data in opinion polling and election data in [239] and [78]. Refer-
ence [28] describes a numerical study of the data augmentation method for
complex random-effect models, in which a set of random effects is regarded as
missing information. Two important monographs on models for data subject
to measurement error are [73] and [25]; see also [32]. They make no mention
of MI.

Methods for direct maximum likelihood estimation with incomplete binary
data are developed by [70] and [71]; [111] and [112] extend these models to
nonignorable mechanisms; see also [193]. Censored data are handled by MI
in [202], [108] and [64]. Sensitivity analysis is applied by [34] to explore the
departures from good representation in observational studies.

4.8 Exercises

1. Prove the identity in (4.4).
Hint: Use the identities for the inverse and determinant of a partitioned
matrix:

det
(

Σ1 Σ12
Σ21 Σ2

)
= det(Σ1) det(G)
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Σ1 Σ12
Σ21 Σ2

)−1

=

(
Σ−1

1 + Σ−1
1 Σ12G−1Σ21Σ−1

1 −Σ−1
1 Σ12G−1

−G−1Σ21Σ−1
1 G−1

)
,

where G = Σ2 − Σ21Σ−1
1 Σ12 , assuming that G is non-singular.

2. Describe the MI versions of the imputation schemes used in Examples in
Chapter 3. Implement the MI versions for some of the examples by adapt-
ing the code for the single imputation. Compare the additional amount of
work (programming) needed to do this.

3. Alter the MI algorithms constructed in the previous example by omitting
the step that generates plausible values of the parameters of the model
for nonresponse. What impact does this change have on the results?

4. Repeat the application of the nonresponse mechanism in one of these
examples, but make it NMAR by deliberately altering the probabilities
of deletion according to the value in the complete dataset. Compare the
performances of the single- and multiple-imputation schemes. Conduct a
sensitivity analysis specific to the complete-data analysis. In doing this,
make sure that the alterations made at the data deletion stage and in the
sensitivity analysis do not cancel out.

5. Suppose (household) ownership y of a computer is related to the annual
household income x (in thousands of UK£), in a given year and a specified
population, by the logistic regression

logit{P(y = 1)} = logit(−5.0 + 0.25x) .

Suppose the log-incomes have the normal distribution with mean 2.98 and
standard deviation 0.15. Generate a dataset (income x and ownership
y) with sample size of at least 10 000 according to this model. Classify
the income into suitably selected bands so that each of them contains
5–15% of the sample, and choose a ‘representative’ income x† for each
band. Apply the logistic regression with the representative incomes, and
compare the results with the regression on the exact incomes. Try to alter
the representative incomes so that the results would agree more closely.

6. For the dataset generated in the previous example, apply MI to the repre-
sentative incomes first assuming the distribution N (2.98, 0.15), and then
trying to guess it by trial and error or by estimating it. Apply the MI
logistic-regression estimator. How much information is lost by coarsening
the income?

7. Inspect a survey questionnaire (e.g., obtained from an organisation that
conducts population surveys), and discuss:
a) what provisions are made in the questionnaire to reduce nonresponse;
b) which variables are collected principally as auxiliary variables;
c) what (additional) provisions you would introduce to address nonre-

sponse either directly (to reduce it) or indirectly (to make imputation
more efficient).
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8. Write a computer code, in the environment of your choice, for the sec-
ondary analyst’s tasks in MI (imputation and averaging). Do it for various
arrangements of the plausible values: as columns in the original dataset,
as a separate dataset, or as a programme that generates them.
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Case studies

This chapter describes four case studies in which MI is applied. The first three
address the issue of missing data in large-scale national population surveys
and the fourth uses MI to deal with inconsistency in the data comprising
assessments by expert surveyors.

5.1 The UK Labour Force Survey

The UK Labour Force Survey (LFS) is an important source of information
about the labour market in the UK. The key targets in the analysis of LFS
data are the rates of unemployment in the whole country and its regions,
cross-classified by gender and age groups. The sampling frame used is the
Small-User Postal Address File compiled by the UK Post Office. It contains
all the addresses in the UK where mail is delivered. Businesses and insti-
tutions, identified as addresses that receive on average more than 25 items
of mail per day, are excluded from the list. The list is supplemented by the
accommodation provided by the National Health Service. A different sam-
pling design and interview arrangements apply in the north of Scotland; the
population of this area is less than 0.1% of the population of the UK.

LFS is conducted continually, although the data collected in a quarter (a
period of 13 weeks) is regarded as survey on its own. The survey has a rotating
panel design. An address included in the sample at a particular time point,
say, in spring (March–May) 2002, is kept in the sample for one year, till spring
2003, so that its adult occupants are (planned to be) subjected to the initial
interview in spring 2002, and then to shorter interviews three, six, nine and
twelve months later. The first interview is conducted face-to-face; the other
four interviews are conducted by phone whenever possible. The five occasions
are referred to as waves I–V; the addresses (or their occupants) selected at
a time point are referred to as a cohort identified by the date (e.g., spring
2002). The addresses (or subjects) contacted in a given survey are called the
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survey subjects (e.g., in spring 2003). The sample size at any time point is
about 140 000, comprising about 20% of subjects from each wave I–V.

A two-stage clustered sampling design for the first inclusions (wave I) is
used. In the first stage, a random sample of postal sectors (typically a street)
is selected, and in the second a systematic sample (with a random start) of
addresses within each selected postal sector is contacted. For all purposes, the
systematic sample is regarded as being simple random. At a contacted address,
an interview is planned with every adult occupant, although responses by
proxy, of one adult for another, are permitted. Adults respond on behalf of
the children (aged 15 or younger) in the same household. Note that some
addresses comprise several households.

Intended interviews may not take place for a variety of reasons. First, a
representative of the household may respond by an active refusal to the first
contact by a letter informing about the intention to interview the occupants
of the household. Such a household is not contacted any more. One or sev-
eral occupants at an address may refuse to cooperate with the survey, in a
particular wave or in all consecutive waves, in variance with the remaining
occupants. Further, the interviewer may fail to contact an address. At that
time, it may not be known whether anybody resides at the address. Contact
may be made, but one, several or all residents may refuse to respond to some
or to all the questions. One or several subjects may be absent, with no-one
willing to act as a proxy respondent for them. Each interview has to take place
in a relatively narrow time interval. One week is designated for each address
and the next week is kept in reserve.

A residential address may be unoccupied at the time of the planned inter-
view, its occupants may move out and others move in. Also, the household(s)
at the address may be altered by one member moving in or one moving out.
Conceivably, several such moves may take place, although that is less likely.
An address may change its residential status and some dwellings are demol-
ished and others are newly built. Care has to be taken in distinguishing be-
tween nonresponse and change in the population, due to migration, births and
deaths, formation of new households and alteration and dissolution of existing
ones.

The public release database distributed to the clients comprises files that
contain the records of subjects in one survey (e.g., in spring 2003). One com-
pletely recorded variable identifies the wave for the subject (wave I for a
subject at an address included for the first time and wave V for a subject at
an address that was included a year ago).

We discuss details of the database for spring 2001, but the features ex-
plored are likely to be present in each survey. The database for spring 2001
contains values of about 700 variables for 138 796 subjects. These subjects are
residents at the addresses on the panel at the time with whom an interview
was conducted, either directly or through a proxy. The database comprises
29 845 subjects in wave I in spring 2001, 28 568 subjects in wave II, 27 319
subjects in wave III, 26 695 subjects in wave IV and 26 369 subjects in wave
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V. These numbers decrease not as a consequence of the planned sampling
design (the numbers of addresses added in each survey were approximately
constant), but because of attrition. Addresses in the sample that wish no
longer to participate, or end up not participating in the survey for some other
reason, are omitted from the database. We refer to this type of (unit) non-
response as absence from the database. Some subjects in the sample have
incomplete records. Their presence at the address has been established, but
the values of some of the variables, and the employment status in particular,
have not been. We refer to this type of (item) nonresponse as incompleteness
(of the record).

Absence from the database can be explored by extracting the datasets
for a given cohort. We discuss the cohort of spring 2000; its subjects are in
wave I in the database for spring 2000, in wave II in the database for summer
2000, and so on, in wave V in spring 2001. These five datasets contain 35 656
unique subjects, but only 21 341 (60%) of them are present in every wave. The
remaining 40% can hardly be accounted for by migration, births and deaths.
Failure to contact the address and unavailability are likely to be the causes in
a majority of the cases.

For each subject in the cohort, we define the pattern of presence by a
quintet of digits 0/1, indicating the absence or presence in the corresponding
database. Thus, pattern 01100 stands for presence in waves II and III and
absence in waves I, IV and V. The complete pattern 11111 does not indicate
perfect cooperation with the survey because it does not exclude incomplete-
ness of the record. Conversely, an incomplete pattern, such as 00111, does not
indicate imperfect cooperation because the subject may have moved to the
address between waves II and III.

There are 25 − 1 = 31 possible patterns of presence. (The pattern 00000
is not possible.) They can be classified as perfect (11111), drop-out (10000,
11000, 11100, 11110), drop-in (00001, 00011, 00111, 01111), almost per-
fect (10111, 11011, 11101), imperfect drop-out (01000, 01100, 10100, 10110,
11010), imperfect drop-in (00010, 00101, 00110, 01011, 01101), and other (e.g.,
00100). The drop-out and drop-in patterns are by far the most frequent, ac-
counting for 834–3709 subjects each and 12 768 subjects in total (89% of those
with incomplete patterns of presence). Drop-outs account for 7927 and drop-
ins for 4841 subjects. The next most frequent patterns are 01000, occuring for
372 subjects, and 00100, for 210 subjects. For sixteen patterns, the number
of subjects is smaller than 100 each (191 subjects in total). Nonresponse is
bound to be the reason for most of the absence in the records with these
patterns.

We discuss imputation for employment status of the subjects present in
the database and imputation of records for absent subjects separately, and
focus on the former. The latter requires a much greater analytical and in-
formation gathering effort. The definition of the employment status by the
International Labour Organisation (the ILO status) is used in the survey. A
person is unemployed if he or she is without employment (on the day of the
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Figure 5.1. Percentages of records with missing and imputed values, as functions
of age; waves of the cohort spring 2000.
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interview), and is both available for and actively seeks work. A person who
is not employed and does not seek work is said to be economically inactive.
The classification is applied only to adults (aged 16 or over).

For subjects present in a database, ILO status is missing when the subject,
known to reside at the address, was not available for the interview or failed
to answer the relevant question and no other occupant was willing to act as a
proxy and disclose the status of the subject. In the operation, a limited form
of LOCF is applied. For the missing ILO status in a wave II–V, the status
of the same subject from the previous wave is imputed, unless the subject is
absent from the wave, that status is also missing or has itself been imputed.
For example, in wave V of the spring 2000 cohort, ILO status was imputed
for 1418 subjects (5.4% of the sample), and was left missing for 562 subjects.

The frequency of missing values is strongly associated with age. Figure 5.1
shows that missing data occur and imputations are used most frequently for
subjects in their twenties, and least frequently for the elderly. The percentages
are plotted for four-year age groups (0–3, . . . , 76–79), separately for each wave.
The left-hand panel summarises the imputed values and the right-hand panel
the values that are left missing (all missing values in wave I and missing
values in cases when the value was not recorded in the previous wave either).
Smoothing is applied in both graphs. The curves in the right-hand panel start
with the age-group 16–19; the ILO status for children is always imputed when
their age (date of birth) is known.

On the one hand, the imputations, when applied, inject unjustified opti-
mism because they are not correct with certainty, yet are meant to be used
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Figure 5.2. The distribution of subjects’ ages in waves I and V in LFS in spring
2001.
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as if they were. On the other hand, the imputations do not deal with a large
fraction of the missing values. Admittedly, there is more uncertainty about
these values because we have less recent, or no, information (history of ILO
status in particular) about the subjects concerned.

Young adults have disproportionately many incomplete records. They are
also frequent absentees. The database for spring 2001 contains fewer subjects
in the age group 20–29 than the population at large. This is shown in the
histograms for waves I and V in Figure 5.2. The age group 20–29 has a much
smaller realised sample size than its neighbours. This age group contains a
greater proportion of unsettled members of the labour force than any other.
Many young adults explore the available career options by changing jobs, hav-
ing spells of unemployment and economic inactivity, for instance, as students.
On the one hand, LOCF is used for them much more than for any other age
group; on the other hand, it is least appropriate for them because they tend
to change their ILO status more often than others.

5.1.1 From LOCF to hot deck

In LFS, LOCF aims to recover the complete dataset, although completeness is
interpreted in a limited way: ignoring the absentees and imputing only when
the perceived level of uncertainty about the missing value is low. We seek
improvements on LOCF in three directions: imputing for all missing values
of ILO status of subjects present in the database, applying more realistic
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models and representing the uncertainty about the imputed values, without
introducing any complex schemes that may be optimal in some circumstances,
but are associated with some assumptions that are difficult to verify.

Greater realism

The employment status of a typical subject does change on occasions, and so a
more appropriate complete-data model is that transitions from each status to
the other states take place with small probabilities. These probabilities vary
with age, marital status and other socio-demographic variables, but depend
also on the employment history, as captured by the recorded employment
status in the previous waves.

Representing the uncertainty

As the transition probabilities differ from zero and unity, their uncertainty
would be described by a multinomial distribution, if the distribution were
known. Not knowing this distribution is another component of the uncer-
tainty. By applying a more detailed conditioning, the former component is
reduced but the latter is inflated because some multinomial probabilities are
then estimated from small subsamples. Therefore, too zealous a pursuit of the
‘correct’ model is not necessarily rewarded by better imputation. If model se-
lection is applied a useful reality check is to apply it also in other surveys and
their waves, to realise that the model selection itself is subject to uncertainty
and each dataset yields a different selected model. Continuity suggests that
similar (or identical) models should apply to each of these datasets, especially
when they are separated by not more than a year or two.

Operational robustness

Smaller but certain improvement should be given preference to the poten-
tial for optimality because, after implementing the imputation process oper-
ationally, the expertise may not be readily available to deal with minor prob-
lems that would hold up the delivery of the survey products to the clients.
Also, the general ideas of MI may be easier to understand with a simpler
model. When the staff who construct the database and the sets of plausible
values are comfortable with the implemented model they will recognise the
potential of more complex models and will weigh it against the difficulties that
may arise. Jumping from the trivial to the possibly optimal is neither good
science nor good practice of statistics, because the implementation is bound
to be treated like a black-box and the theoretical advantages of MI will not
be fully exploited.
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Hot deck

Hot deck is a flexible method of imputation for one or a set of variables.
Its simplest version defines a single pool of donors, the subjects with com-
plete sub-records on the incompletely recorded variables. When several pools
of donors are defined, each recipient is associated with a pool, for instance,
by the values of one or several matching variables. The hot-deck adaptation
of LOCF for LFS defines donor pools using the employment status in the
previous wave as the sole matching variable. For example, the donor pool
for a recipient whose previous employment status is ‘employed’ (EM) com-
prises all the subjects whose previous employment status is also EM, and
their current status is recorded. LOCF corresponds to the trivial donor pool
in which the current status of every subject is EM. Hot deck is more realis-
tic and flexible because the imputed status for the recipient is drawn from a
multinomial distribution given by the probabilities of transition from EM to
the other two states, UN (unemployed) and IA (economically inactive). Let

these probabilities be p̂(EM) =
(
p̂
(EM)
EM , p̂

(EM)
UN , p̂

(EM)
IA

)�
. They are estimates

of the population probabilities of the same transitions. The superscript of p̂
indicates the value of the matching variable, the status three months ago. Hot
deck is a stochastic imputation scheme; if replicated with the same donor pool
the donated value (as well as the donor) for the recipient may be different.
Further, in a replication of the survey and hot-deck imputation, a different
donor pool is formed and the probabilities p̂(EM) are different.

Thus, hot deck represents the uncertainty due to the probabilities p̂(EM),
but fails to represent the uncertainty about the underlying p(EM). This rep-
resentation is necessary to make the imputation method proper. A remedy
for this is quite straightforward. We draw a random sample from the fitted
distribution of p̂(EM). Unless the pool is very small, the normal approximation

p̃(EM) ∼ N
[
p̂(EM),

1
n(EM) − 1

{
diag(p̂) − p̂p̂�

}]
is adequate. (n(EM) is the size of the pool.) Thus, a plausible value for the
recipient is generated in two steps. A plausible multinomial distribution p̃(EM)

is drawn first, followed by a draw from this distribution. Several recipients
may share the same donor pool. A set of plausible values for these recipients
is drawn from the same plausible distribution p̃(EM), and different sets of
plausible values are based on replicate draws of p̃(EM).

Many donor pools

LFS has a large sample size, so a more detailed matching is warranted in
hot deck. Earlier discussion in this section suggests that matching on age
groups may be useful, as may be on the employment status from waves earlier
than quarter a year ago, when available. For example, subjects who have not
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changed their employment status over several waves are perhaps less likely to
have changed their status between the previous and the current wave. Each
donor pool is associated with an (estimated) trinomial distribution. For a set
of plausible values for the entire dataset, the probabilities in these trinomial
distributions are meant to be drawn from their joint distributions. The draws
can be made separately for each distribution when the pools of donors do
not overlap. Having disjoint pools of donors conveys therefore a considerable
advantage. In samples drawn by a complex design, including clustering, there
is some (weak) dependence among the subjects, and therefore some weak
dependence among non-overlapping pools of donors. In practice, this can be
ignored, and the pools regarded as independent.

The details of a hot-deck scheme for LFS are given in [164]. It comprises
separate schemes for each wave and pattern of presence in the database. A
hierarchy of the matching variables is defined, and matching criteria specified
according to the wave and pattern of presence. In the hierarchy, the previous
employment status is at the top, followed by the earlier states, age groups, sex
and marital status. Variables for matching are selected with a view to have
donor pools that are not too small, preferring variables from the top of the
hierarchy. Instead of matching on the status at each previous wave, subjects
are classified according to the number of changes in status (most of them have
none), although the immediately previous status is matched throughout.

For subjects in wave V, there are many patterns of presence, and so less
detailed conditioning is applied. Subjects in wave I have no recorded em-
ployment history, so the imputations for them can be based on very detailed
matching of subjects’ attributes (all the matching variables, with several age
groups). No claims can be made that a particular scheme is optimal. Some
cosmetic improvement can be achieved by defining the matching that yields
donor pools with sizes almost exactly as desired. Other variables, such as in-
come, education and housing and household circumstances may be included
in the scheme.

However, the complexity is not warranted if it delays the replacement of
LOCF because of various technical difficulties, uncertainties about defining
the donor pools, and a need for occasional improvisation. For example, LOCF
was applied for a few subjects in the hot-deck scheme because no suitable
donors were found for them. Although statistical theory is preoccupied with
optimality, the best (solution) may in practice be a potent enemy of good.
Poor statistical practice may linger on because none of the several obvious
ways of improving it can be identified as superior.

5.1.2 Results and discussion

This section discusses the results of applying the MI scheme and compares
the LOCF, hot-deck and MI estimates.

Five sets of plausible values were generated for LFS in spring 2001. The
uncertainty about missing values can be summarised by the proportions of
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subjects who have quintets of plausible values that are not constant. Ex-
treme uncertainty is indicated by the proportion of quintets that contain all
three employment codes. Since the plausible values are generated by a ran-
dom mechanism, it is not meaningful to interpret them for any particular
subject, or a small group of subjects, as an indicator of any feature associated
with them. However, the exploration need not be confined to the entire set
of incomplete records. In particular, it is instructive to explore the plausible
values for young people and subjects for whom LOCF was applied or not.
In a particular realisation for the 5537 incomplete records, 4236 (76.5%) of
quintets have the same code, 1098 involve two codes and 203 involve all three
codes. A disproportionate contribution to the non-constant quintets is from
the 1165 young adults (16–24 years of age). Only 638 (55%) have constant
quintets, 418 quintets involve two different codes, and 109 involve all three
codes. For the 2780 subjects with ILO status not imputed by LOCF, only
828 (30%) have constant quintets. Among the 892 young adults in this group,
the uncertainty is much greater; only 14% of them have constant quintets of
plausible values.

The impact of MI

From a purely empirical perspective, if MI estimates differ little from the
corresponding LOCF-based estimates, MI is redundant. On the other hand,
having implemented MI, we need not sit on the edge every time a secondary
analyst evaluates another estimator using the dataset completed by LOCF,
hoping that it is not deficient and its precision not overstated.

The estimates of the respective rates of UN and IA in spring 2001 are
3.62% and 21.30% based on LOCF and 3.62% and 21.47% based on MI. The
estimated standard errors are also very similar: 0.066% (LOCF) and 0.067%
(MI) for UN and 0.146% for IA with both methods. Based on this comparison,
the effort to implement MI is difficult to justify. The argument that LOCF
underestimates the standard error and MI estimates its standard error without
bias is moot.

Our motivation of MI suggests that a stronger case for it may be presented
by comparing the estimators of the UN and IA rates for young adults. Table
5.1 lists the estimates and estimated standard errors for them, classified by
age and sex. To conserve space, results are given only for even years of age.
Three estimators are compared: LOCF, a single application of the hot deck
and MI based on the same hot-deck procedure. The estimates for the hot
deck vary more than what is indicated by their standard errors, because a
replication of the hot deck would yield a different completed dataset; this
source of variation is ignored. In contrast, the MI estimator is ‘honest’; it
includes the between-imputation variance, both in terms of different imputed
values and different multinomial probabilities. The latter source is negligible,
though. The largest differences between LOCF and MI estimates are for UN
rates of the 16-year-olds and IA rates of the 24-year-olds. Of course, doubts
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Table 5.1. Estimates of the sex-by-age rates of unemployment and economic inac-
tivity in the LFS in spring 2001.

LOCF Hot deck MI

Age Estimate Stand.
error Estimate Stand.

error Estimate Stand.
error

% Missing
information

Unemployment – Men

16 7.55 0.89 7.33 0.88 7.57 0.99 17.9
18 9.90 1.08 10.21 1.05 9.99 1.09 6.0
20 8.92 1.06 9.36 1.02 9.11 1.18 21.3
22 7.95 1.04 7.85 0.99 7.95 1.21 27.8
24 6.16 0.96 7.05 0.94 6.56 1.01 11.7

Unemployment – Women

16 6.83 0.86 6.92 0.85 6.94 0.94 13.5
18 6.37 0.91 6.41 0.88 6.25 0.95 11.2
20 6.30 0.89 6.11 0.85 6.11 0.87 5.1
22 3.86 0.72 3.99 0.69 3.89 0.72 5.5
24 5.41 0.88 5.73 0.85 5.47 0.87 3.1

Economic inactivity – Men

16 59.12 1.65 59.43 1.62 59.87 1.69 6.7
18 27.08 1.60 26.57 1.56 27.16 1.63 7.2
20 27.16 1.65 27.04 1.58 27.30 1.67 8.5
22 22.83 1.61 22.62 1.54 23.08 1.61 6.8
24 10.90 1.24 11.51 1.25 12.43 1.39 15.4

Economic inactivity – Women

16 56.83 1.69 57.60 1.66 57.41 1.85 15.9
18 31.72 1.73 31.64 1.70 31.88 1.78 6.9
20 34.32 1.74 34.66 1.68 34.76 1.82 12.5
22 32.88 1.74 34.15 1.70 34.02 1.75 4.6
24 23.91 1.65 26.12 1.63 25.64 1.68 5.0

about the quality of the model implied by the hot deck may be appropriate,
but these are substantially magnified when the model implied by LOCF is
held up to a similar examination.

How many imputations?

The right-hand column of Table 5.1 gives the estimated percentage of missing
information defined as B̂/

(
ŝ
2

+ B̂
)
; see Section 4.2.5. It is highest for the

UN rate of 22-year-old men, nearly 30%. The information lost because we use
only M = 5 imputations is approximately 6% and it would be reduced to
about 5% by another set of plausible values. When 10% of the information
is missing, only 2% is lost with M = 5 imputations. Thus, little additional
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precision would be achieved by using more than five imputations, and the
choice of their number is not crucial.

High percentage of missing information is not associated with large differ-
ences between LOCF and MI. Simply, the contribution from the incomplete
records does not alter the estimate. Conversely, small proportion of missing
values does not preclude a large difference. A case in point are the estimates
of the rates of economic inactivity for the 24-year-old women. Discussion of
the results has to be qualified by the uncertainty due to estimation of the
standard errors. For example, the hot-deck estimated standard error for 24-
year-old women exceeds its LOCF counterpart, by 0.01%. However, the hot
deck is based on more observations, so its standard error is smaller. The
seeming contradiction arises because the estimates of the two standard er-
rors, functions of p(1 − p), are based on different (their own) estimates of the
probability p.

Concerns about NMAR

On the one hand, more extensive conditioning improves the chances that
MAR applies; on the other, the extent of conditioning is limited by insisting
on sufficiently large pools of donors. Inasmuch as hot-deck imputation is a
generalisation of LOCF, the concern about NMAR is much more acute with
LOCF. Scenarios can be devised in which LOCF is poorly suited. For exam-
ple, more of the non-responders may be unemployed than would be expected
according to MAR. More detailed conditioning is likely to reduce its impact
although it does not necessarily account for it completely.

The quality of the hot-deck scheme can be assessed informally by exploring
the distributions of employment status within the pools. Variation in these
distributions is a sign of having selected suitable matching variables. For ex-
ample, using age groups is supported by observing that there are many tran-
sitions among the young, that most elderly women are economically inactive,
and that the middle-aged tend to change their status much less frequently
than others. Transitions between states are more frequent among the single,
and, for the young, among men. A better choice of the matching variables,
their categorisation, hierarchy, and other details may improve the scheme, but
most of the gains are realised by using the obvious matching variables.

Inconsistencies in the estimates

For a frozen population, a population quantity is absolute and incorruptible.
Although not known, it could be established, in principle, if sufficient resources
were available. On the other hand, the efficiency of an estimator is relative. To
maintain our professional edifice, we have strong incentives to claim that our
estimators cannot be improved. An appropriate way of qualifying this is by a
reference to the sources that were available to us at the time of the analysis.
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Identifying suitable data sources and collecting intelligence and informa-
tion is unambiguously assigned as the analyst’s responsibility. Three months
later, after the next wave, we have a new data source, and possibly better un-
derstanding of the processes associated with the housing and labour markets,
interviewing processes, and the like. For example, an address not contacted in
wave I has now been contacted, and it has been established that the household
has not been altered in the last three months. A quick check may establish
that ‘incorrect’ information was imputed, say, in four of the five sets of plau-
sible values of the ILO status. (For example, in one imputation, the address
is not occupied.) What to do now? Should we prefer the consistency and in-
sist that the report from three months ago is ‘correct’? Or humbly admit the
need for an ‘adjustment’ (the official’s euphemism for an error). Neither is an
appropriate reaction. With more information we are ‘wiser’ and no humility
is needed to justify the adjustment. The commitment to exploit all the avail-
able information should take precedence over cosmetic considerations and the
appearance of the estimates as if they were population quantities.

For comparison across time, such an adjustment is useful, but generating
plausible values for several past surveys is too great a burden on the database
constructor, so some compromise has to be found. But consistency in the sense
described is neither a scientifically well-founded goal, nor a sign of quality of
the database.

5.1.3 Imputation for absentees

The survey intended to collect the relevant information from all subjects re-
siding at the selected addresses. Addresses at which no contact was made are
not represented in the database because at the time of the database construc-
tion it is not known whether the address is occupied or not and, if known
to be occupied, whether its composition has remained unchanged, was al-
tered by a member leaving or joining (or by several such changes) in the last
three months, or is occupied by a different household. For multi-household
addresses, the range of possibilities is even wider.

A comprehensive application of MI would deal also with the absence from
the database. This task is much more complex than imputation for missing
ILO status of subjects in the database. It is best organised in stages. First the
address status (occupied or empty) is imputed. Next, for occupied addresses,
their occupants are imputed. In wave I, there is little information to go on,
other than characteristics of the area or neighbourhood. In waves II–V, a
list of occupants in the previous wave may be available. In waves III–V, we
have some information about the extent of changes in the composition of the
household(s) at the address. And finally, we impute an employment status for
each occupant.

Each stage requires a model, and the first step in constructing it is to
identify the relevant characteristics that inform about the values of the missing
items. We consider first addresses that have not been contacted before. The
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interviewers are not meant to gather any intelligence about an address, other
than, perhaps, whether the address is residential. A sign that the property is
for sale or to be let may suggest that the address is not occupied. Observing
that the mail and other items delivered to the address have not been collected,
inquiries with the neighbours, and the like, are regarded as invasion of privacy
and the recording and use of such information is not appropriate. However,
publicly available information about the area or the neighbourhood, about the
housing market in particular, may be very useful. Where a lot of properties
are for sale or for rent and many residents are highly mobile (single young
professionals in particular), it is more likely that a non-contact is due to a
move. Larger single-household properties tend to change occupants much less
frequently than smaller properties. There is probably more migration in the
cities than in rural areas. The time of the year may also be a factor. For
addresses that are occupied, the number and composition of their occupants
may be inferred from the information about the neighbourhood.

For imputing the values of the variables for a set of plausible occupants,
multivariate hot deck is well suited, using a donor from the same neighbour-
hood or from a neighbourhood of the same type. For addresses that have been
contacted in the past, it is very likely that no change among the occupants has
occured. The probabilities of the changes of various types, and of a wholesale
move, are small, possibly varying with the household size and composition.
This suggests an extensive programme of information gathering about all the
neighbourhoods in the country. Conducting it thoroughly is not a realistic
goal, neither logistically not economically. A more constructive strategy is to
pick-and-choose sources that are available, easy to use, and have a potential
to inform about the occupancy of the addresses.

Identifying the relevant sources of such information, extracting the relevant
data, and formulating models for each stage is a non-trivial task. The pursuit
of a comprehensive model should be discouraged because it is an open-ended
and never-ending task. Consistency, in the form of using the same model over
a long period of time, is not an indication of good choice, because changes
are warranted as sources become (more) accessible and our expertise in them
is enhanced. Appreciation of the imperfection and the temporary nature of
such models goes hand-in-hand with the understanding of the substantial
uncertainty about the predicted values.

In generating one set of plausible values, a given address may be marked as
(plausibly) unoccupied, in which case, it is not represented in the database. In
another set, it may be marked as occupied; then the next stage generates its
plausible composition (ages, incomes, and the like). As a consequence, the sets
of plausible values have unequal dimensions, as do the completed datasets.

In LFS, about 30% of the selected addresses are not contacted. Imputation
for them is a substantial task rewarded by greater integrity of the database
— reflection of the uncertainty about the missing values for individual items,
whole records and sets of records that correspond to households. With such
a large-scale imputation, the threats of NMAR have to treated more seri-
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ously, and so sensitivity analysis has an important role. Complex multi-stage
imputation implies a wide variety of departures from MAR that should be
explored. In practice, their exploration has to be rationed by the available
resources and focussed on the most relevant concerns. Of course, such con-
cerns may develop and drift over time. As sensitivity analysis is specific to
the complete-data analysis, it has to be carried out by the secondary analysts,
although the data constructor can apply it to a strategically selected set of
analyses. The importance of sensitivity analysis should be disseminated to the
secondary analysts. However, it should not be presented to them as a burden
specific to MI; it is equally applicable to single-imputation schemes for which
NMAR schemes can also be defined and implemented.

5.2 The National Survey of Health and Development

The Medical Research Council National Survey of Health and Development
(NSHD) commenced in 1946 and includes subjects born in the week of March
3rd–9th, 1946. All single legitimate births to wives of non-manual or agri-
cultural workers and a 25% simple random sample of the single legitimate
births to wives of manual workers were included in the study. The subjects
were followed up regularly through their childhood, adolescence, and in less
frequent intervals in their adulthood. Information was collected about their
physical and cognitive development, health, education, professional careers,
and the like.

The original sample comprised 5362 subjects, but by the 19th follow-up in
1989, it has been reduced to 3262 (61%). The causes of the losses were refusals
(12%), emigration from Great Britain (11.5%), loss of contact (9%), and death
(7%). The analyses are commonly reduced to the cooperating subjects (3262
in 1989), or even further by discarding incomplete records. A cooperating
subject may refuse to respond to some isolated questions, blocks of questions,
or terminate the interview prematurely. Following the interview, the subjects
may be left to complete and return a questionnaire — there is scope for further
incompleteness.

We assume that the original sample was a good representation of the pop-
ulation of interest. Over time, this population may have shifted slightly. For
instance, the population is reduced by death and emigration but, depend-
ing on its definition, it may be boosted by immigration. Thus, only losses of
the sample by failure to trace affect representation. Deaths do not, and emi-
grants from Great Britain become members of the population of interest only
when they return. Of course, there may be deaths among those with whom
no contact is maintained.

The dominant response pattern is that of dropping out at a follow-up,
although there are subjects who skipped one or several follow-ups. Within a
follow-up, drop-out from the interview is also possible, as well as isolated miss-
ing items or their contiguous segments. Further, dropping out occurs within a
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block of questions, when the subject is no longer willing to answer any ques-
tions on the theme of a particular block, but would be happy to respond to
questions in the next block.

Imputation in this setting is not a realistic proposition for all the waves
of the survey. Given this state of affairs, it is important to appreciate that
all analyses share a source of uncertainty, both in terms of bias and variation
in excess of what is estimated, due to the loss of representativeness. Further
losses are incurred if we reduce an analysis to the complete records. In this
section, we discuss a MI scheme for a self-completion questionnaire in 19th
follow-up conducted in 1989 when the subjects were 43 years old.

The subjects were requested to record in a diary all the food and drinks
they consumed during a designated week. The week started the day before the
interview and each contacted subject was requested to recall all the food and
drinks they consumed on that day and on the day of the interview, including
their quantities or volumes. In this way, each subject would have no problem
following the instructions during the remaining five days. The interviewer
took a copy of the diary for the first two days for the record and left a self-
addressed envelope for the subject to mail the completed diary at the end of
the week. Completing a diary for a week (or five days) requires a substantial
commitment on the part of the subject. To some extent, this is strengthened
by maintaining a contact between the Survey management and the subjects
over many years. Nevertheless, only 2002 subjects (61%) returned completed
diaries for all seven days. Most of the remaining subjects (970, that is, 30%)
completed only the two days with the visiting interviewer. No diary records
were obtained from 97 subjects; in most of these cases, the interview was
terminated before reaching the point when the diary would be introduced. In
total, of the 3262 × 7 = 22 834 diary-days only 18 290 were recorded.

The percentage of missing diary days, about 20%, is not a good reflection
of the information lost. We can illustrate this on two extreme examples. If
each subject completed only 80% of the diary, little information would be
lost because most middle-aged people have a set diet with relatively little
variation, much of it due to a different pattern of activities on weekdays
and weekends. Thus, imputation for the day or two, when the diary was not
completed, would entail relatively little uncertainty. In contrast, if 20% of the
subjects contributed with no diary data, and 80% with complete diary records,
imputation would entail much more uncertainty because of the substantial
variation in the diet among the subjects. Our setting is halfway between these
two examples. Most incomplete diaries have records for two days. Assuming
a MAR mechanism, we can learn from the ‘diligent’ subjects how consistent
each subject’s diet is. Little information would be lost if each subject had a
regular daily diet.

Interruptions of keeping the diary influenced by the diet itself are an ex-
ample of NMAR. Consumption of alcohol is a case in point. For instance,
excessive consumption may bring about incapacity, illness, distraction from
the everyday routine, and the like, and with it a failure to complete the diary.
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Completing the diaries by imputation for the subjects who failed to follow
the instructions is essential because the recorded items and their quantities are
converted to nutrients and other components of food. Zero quantity, even for
a day, is not a realistic value, and data reduction methods lead to a substan-
tial loss of information. We discuss imputation for the quantities of alcohol
consumed by the subjects in the survey. This is of interest for epidemiology
— alcohol is a cause and a contributor, confirmed or suspected, to several dis-
eases, and for family studies and related areas — alcohol is frequently quoted
as a cause of marital problems, social dysfunction, domestic violence, low pro-
ductivity and poor management of personal and family’s financial affairs. For
statistical methodology, the example is instructive because it exploits infor-
mation in related variables.

5.2.1 Eliciting information about alcohol consumption

Diary is regarded as the gold standard for collecting information about the
consumption of food and drink. If diligently completed, the diary is reckoned
to be much more precise than any form of recall. However, of interest is
consumption not in a particular week or a similar period of time, but over
several years or even decades, for example, when studying the association of
diet and diseases, such as cancer and heart disease. Only diaries completed
on several occasions can inform about this, because a consistency of dietary
habits over a long period of time cannot be assumed. We analyse the diary
records only from one follow-up, so we cannot address this problem.

The subjects were also requested to recall their consumption of alcohol in
the immediately preceding week. This was done by a set of three questions
with a common lead-in passage

‘In the last seven days, how many of the following drinks have you
had? (Do not count non-alcoholic drinks.)’

relating to three types of alcoholic beverages:

A. Spirits or liqueurs (e.g., whisky, gin, brandy, vodka) — measures;
B. Wine, sherry, martini or port — glasses;
C. Beer, lager, cider or stout — half pints.

For brevity, we refer to these categories as spirits, wine and beer. Further,
subjects were asked the following four questions, called CAGE, following [61]:

C. Have you ever felt you ought to cut down on your drinking? (Do
not include dieting.)
A. Have people ever annoyed you by criticising your drinking?
G. Have you ever felt bad or guilty about your drinking?
E. Have you ever had a drink first thing in the morning to steady your
nerves or to get rid of a hangover (eye opener)?
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These questions refer to any time in the past. Any positive response was
followed up by the question whether it happened last year. A measure of
spirits, a glass of wine and half a pint of beer contain approximately 7900 mg
of net alcohol each. In the diaries, details of the beverage consumed are often
given, and the conversion to the quantity of alcohol consumed is more precise.

The diary and recall have complementing strengths as questionnaire in-
struments. The diary is more detailed but is bound to contain more missing
values because the recall questions can be responded in a matter of a minute
or two, after a brief reflection. But some subjects may not recall each instance
of alcohol consumption, and their totals are then understated. This is easy
to confirm with the NSHD data. Only 1532 subjects have complete records
for both diary and recall; 877 of them (57%) declared greater consumption
in the diaries than in the response to the recall questions. Of course, some
differences are expected because the diary and recall refer to different weeks,
although approximately the same number of them should be positive and
negative. Only eight subjects declared consumption greater by at least 150 g
(about 91

2 pints of beer or equivalent) by recall than in the diary. In contrast,
93 subjects declared consumption greater by at least 150 g in the diary than
by recall.

The recall questions contain many missing values, many more than might
be expected for a relatively simple task. Only 2456 subjects (75%) have com-
plete records, but only 87 subjects (3%) have empty records on all three
questions. The 806 subjects with incomplete records share 1436 missing val-
ues. A plausible explanation for this pattern is that zeros and leaving a blank
response have been confused when completing the questionnaire. On the one
hand, combinations of zeros and blanks are very rare; there are only 14 such
cases among the 719 partial records. On the other hand, zeros are quite fre-
quent responses. There are 4407 zeros and 3943 positive values among the
3 × 3262 = 9786 items. In summary, missing values in the recall questions are
mainly due to imperfect conduct of the interview, whereas in the diaries they
are due to subjects’ imperfect cooperation.

The responses to the CAGE questionnaire are conventionally dichotomised.
No or a single positive response are classified as ‘no problem’ and two or more
positive responses as ‘a problem’. There are missing responses even to CAGE
questions; here we regard them as negative responses, although one could ex-
plore the sensitivity of this assumption. Only 265 subjects (8%) have scores
2–4.

We address incompleteness of the diaries by using the recall data as condi-
tioning variables that both promote MAR and yield better prediction. As the
recall is not recorded completely, we have to impute for its missing values. For
this purpose, we formulate a model that draws on some of the obvious corre-
lates of alcohol consumption: sex, smoking habit (a dichotomous variable), the
logarithm of body mass, and recent history of problems with alcohol (CAGE).
Even the body mass is missing for some subjects, so it is multiply imputed
using a linear regression of the logarithm of height.
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We organise the imputations in stages, starting with the body mass, fol-
lowed by the recall and the diary data. The model for body mass and height
assumes that they have a joint log-normal distribution. The distribution is
fitted by the EM algorithm, in which the nonresponse mechanism is assumed
to be MAR. The two variables are highly correlated, so it is essential to model
them jointly.

The values of the recall variables and daily diary quantities have distribu-
tions that can be described as mixtures of zeros and log-normal distributions.
That is, the positive values of each variable have a log-normal distribution.
Imputations for each of these variables comprise two steps; imputing the sign
(zero or positive) and imputing the quantity when the sign is positive.

The model for the sign of the recall conditions on the CAGE score, sex
and smoking habit. Whenever missing, smoking habit is imputed singly as
‘non-smoker’. The impact of this departure from MI is diluted in the stages of
imputation that follow. The model, a two-way table with the (eight) combi-
nations of signs for the three recall questions and the combinations of all the
values of the conditioning variables, is fitted by the EM algorithm described
in Section 3.4. The outcome of the analysis is a two-way table of (fitted)
probabilities and an estimate of their sampling variance matrix. From this, a
plausible set of probabilities is drawn, followed by draws from the appropriate
plausible marginal probabilities.

The sets of imputations of the signs are not constant for all subjects. This
complicates the imputations for the quantities because the response pattern
has to be combined with the pattern of the signs, the latter changing from
one imputation to the next. To avoid this problem, we define the hypothetical
quantity; it is equal to the complete-data quantity when positive (irrespective
of whether is it recorded or not) and otherwise to a positive value that will turn
out to be irrelevant. Positive quantities are imputed first for all values that are
either missing or equal to zero. Then each of them is overwritten with zero if
the corresponding imputed or realised sign is zero. In this way, we operate with
trivariate outcomes throughout, the assumption of multivariate log-normality
for them is appropriate, and a trivariate regression model can be specified
for the ‘missing’ values. In this setting, ‘missing’ combines nonresponse and
no consumption. The regression model conditions on sex, smoking habit and
log-body mass. Plausible values of the hypothetical quantities are drawn from
the estimated sampling distribution of the matrix of regression coefficients
and the 3 × 3 residual variance matrix. The high correlations in this matrix
(0.65–0.85) support the rationale for the joint modelling of the three recall
variables.

The imputation of signs for the daily diary quantities proceeds in the time
order, starting with the signs for the first diary day of the 97 subjects with
empty diaries, followed by the signs for the second day for these and additional
14 subjects who completed the diary for the first day only, and so on. A few
diary days of data are discarded, so that the response patterns are monotone,
and the procedure is proper if the posited model is appropriate.
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For the first day, the model for missing signs conditions on sex, smoking
habit, CAGE score, sign of the recall total and the day of the week (weekday,
Monday–Thursday, or weekend, Friday–Sunday). To avoid any iterative pro-
cedures, the conditioning is on the entire cross-classification of these variables.
This is equivalent to including all the interactions in the model. (More par-
simonious models can be fitted with logistic regression.) In a few instances,
categories that are similar have to be aggregated to avoid cells containing very
few subjects. For the second day, the model conditions on the same variables
as for the first day, but the sign of the first day is added to them. For the
third and subsequent days, it is not practical to condition on all the previous
days, so only the two immediately preceding days are included in the model.

A seven-variate model is defined for the hypothetical daily diary quanti-
ties. The dimensionality of the problem is reduced by totting up the quantities
consumed over the four types of beverages. (Unlike by recall, the quantities of
beer and cider are derived from the diaries separately.) The regression model
conditions on sex, smoking habit, CAGE score, the day of the week (seven
categories) and the log-body mass. In the EM algorithm used for fitting this
model, both zero and missing quantities are regarded as ‘missing’ information.
The algorithm starts by fitting the model for the 194 subjects who declared
positive quantities on every one of the seven days. The conditional distri-
butions of the missing sections of the records are evaluated and the M-step
executes the complete-data analysis with the sufficient statistics replaced by
their conditional expectations. Fast convergence, after 25 iterations, indicates
that the amount of information missing due to nonresponse and zero quanti-
ties is not overwhelming.

The described procedure is rather complex, although each of its elements
is easy to program, involving standard statistical algorithms, implemented as
complete-data methods in an EM algorithm. Some short-cuts are unavoidable
in this procedure. For example, the sampling variation of each EM estima-
tor is difficult to derive, so a compromise between the complete-data and the
reduced-data sampling variance matrices is used. The outcome of the proce-
dure is a set of plausible values for the amount of (net) alcohol consumed on
each diary day.

5.2.2 Excessive alcohol consumption

Consumption of alcohol in small or moderate quantities is assumed to have
no long-term effects on the health or mental capacity. In contrast, excessive
consumption is generally regarded as harmful and undesirable. Standard ap-
proaches to assessing alcohol consumption are based on estimating the popu-
lation mean consumption, from which the extent of excessive consumption is
inferred indirectly. This is problematic because the inference is predicated on
a fixed distribution of the quantities consumed in moderation, including the
proportion of abstaining members of the population.
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We prefer to estimate the proportion of excessive consumers directly, by
specifying a threshold for excessive consumption and estimating the propor-
tion of the population who exceed it. It is impossible to define a universally
acceptable threshold quantity, so we estimate the proportions for a range of
realistic values of the threshold. Variations on this theme include defining
thresholds that depend on the body mass and estimating the proportions
as functions of the body mass. In these cases, the complete-data analysis is
elementary, so conducting it several times creates no difficulties. Although
plausible values are generated for many items, the amount of missing infor-
mation in these analyses is quite modest. To see this, consider an incomplete
record that indicates excessive consumption on the first two days and has
missing values for the next five days. If the consumption over the first two
days exceeds the threshold, then so does the consumption over the week. If
the recorded consumption is close to the threshold, then the consumption
over the whole week is very likely to exceed it, especially when the recorded
part is from weekdays. However, two recorded days of no consumption provide
only weak evidence of moderate (or no) consumption over the whole week. All
discussion of examples below refers to M = 7 sets of plausible values.

For example, subject 1 completed the diary only for the first two days,
declaring no consumption on day 1 and consumption of 107 g on day 2. The
septet of imputed totals ranges from 156 g (little consumption on the five
days with missing diary data) to 475 g, with substantial consumption on most
of the five days. Subject 3 also completed the diary only for the first two
days, declaring no consumption on either day. With one exception, 139 g, the
plausible totals of net alcohol consumed during the week are very small; two
plausible values are equal to zero, and the remaining four values are between
3 g (less than quarter a pint of beer) and 29 g (about two pints). The plausible
values indicate that this subject very likely drinks in moderation, or not at
all, but a higher consumption is not ruled out altogether. Subject 7 declared
identical amounts of alcohol consumed on the first two days, 55.1 g, and failed
to continue the diary for the next five days. The lowest of the seven plausible
values for the total consumed is 235 g, indicating that the subject consumed
a lot of alcohol also on the diary days 3–7. The highest of the plausible totals
is 576 g, an excessive amount by any standards.

In the analysis, reported in greater detail in [166], seven sets of plausible
values were generated. This turned out to be somewhat of an overkill because
the fraction of the missing information is much smaller than the fraction
of the missing items. It is a consequence of a lot of regular (habitual) alco-
hol consumption and extensive modelling of missing data, exploiting the high
correlation of the daily quantities consumed. However, the amount of com-
puting additional to the setting of M = 5 plausible values is insubstantial and
requires no intervention by the analyst.

The estimate of the population percentage of those who consumed more
than 400 g of alcohol in the reference week is 4.22%, with estimated standard
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error 0.37%. The contributions to the estimated sampling variance are ŝ
2

=
0.124 and B̂ + B̂/M = 0.014; see Section 4.2.5. The estimated fraction of the
missing information in this analysis is 10.1% and only about 1.5% is a result
of using only finite number (M = 7) of sets of plausible values.

The uncertainty about the missing values can be exposed by the counts
of subjects with excessive (plausible) consumption in each completed-data
analysis. Among the complete records there are 82 positive and 1920 nega-
tive cases. Among the 1260 incomplete records, all seven plausible values are
smaller than 400 g for 1099 subjects and greater than 400 g for 16 subjects.
Further eight subjects have consumption in excess of 400 g in six of the seven
sets of plausible values, six subjects in five sets each, seven is four sets, 17 in
three sets, 24 in two sets and 73 in one set each, so that 233 subjects are in
the pool of plausibly excessive consumers. Yet, in the seven completed-data
analyses, the numbers of excessive consumers are in the range 132–144. No
single-imputation method could represent this uncertainty.

The estimated threshold-specific proportions of excessive consumers are
summarised by Figure 5.3, together with the estimated proportions for men
and women. The thick lines of the three types indicated in the legend are
for the estimates and the thin lines for the upper and lower 95% symmet-
ric confidence intervals. The diagram confirms that excessive consumption is
much more common among men than among women, not a surprising finding,
although it conveys much more detail about the extent of excessive consump-
tion.

In research on abuse of alcohol, it is recognised that men tend to consume
more alcohol, and so, as a rule of thumb, a threshold lower by 25% is defined
for women than for men, such as 300 g for women and 400 g for men. This rule
makes little difference to the disparity in the rates of excessive consumption
among men and women.

5.2.3 Sensitivity analysis

The models for missing values contain many opportunistic features — they
are not based on any theory, merely attempt to make use of the available in-
formation, in a form that is amenable to analysis. At the same time, intuition
suggests that some of the model assumptions, especially in the earlier stages
of imputation, are less important. A comprehensive review of these assump-
tions is beyond what any analyst can be reasonably expected to accomplish.
However, an indication of their importance can be gauged by altering one
of them, replacing it with an assumption that is clearly more restrictive or
less realistic. If this leads to no appreciable differences in the results of the
conducted analyses, we can ‘down-grade’ the caveat associated with the non-
response model. (Recall that in a single imputation, the caveat refers to the
imputed values themselves.)

One assumption that can rightly be questioned is that the recall values
are missing at random. A credible alternative is that most of the missing
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Figure 5.3. The estimates of the percentages of excessive consumers of alcohol for
thresholds in the range 250–500 g per week.
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quantities are equal to zero, reflecting subjects’ expectations that the absence
of a response would be interpreted as no consumption. The sensitivity of the
results with respect to this assumption is assessed by defining alternative
plausible values for missing recall. Simply, each missing value for recall is
replaced by zero, and the imputations for daily diary consumption are based
on the same model as in the last stage of the original imputation procedure.

This change has only a slight impact on the results. The estimated per-
centages of the excessive consumers are altered by 0.10% for the threshold of
300 g (from 7.61% to 7.71%) and by 0.01% each for 400 g and 500 g. The esti-
mated standard errors are also altered only slightly, e.g., from 0.32 to 0.30 for
the threshold of 500 g. The problem with such an assessment is that the mul-
titude of analyses planned, intended or improvised, can at best be represented
only by a selection.

A sensitivity analysis can be targeted for a specific estimator, such as
the difference in the percentage of excessive consumers between men and
women. For such an analysis, the plausible values generated with the MAR
assumption are reduced for men and increased for women. Additive change
is not realistic because zero quantities would never be imputed for women
and a substantial change represents different quantities for an abstainer and
an excessive consumer. Multiplicative change is not suitable either because
it does not alter zero plausible values. A realistic scheme combines either
additive or multiplicative change, or both, with overwriting by zero.
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5.3 The International Social Survey Programme

The International Social Survey Programme (ISSP) began in 1985, and in 1999
it had more than thirty member countries in which social science surveys with
similar designs, protocols and questionnaire instruments were conducted. This
section describes an implementation of MI for the surveys conducted in 1995 in
23 countries. The national surveys used similar sampling designs, adapted for
the circumstances of each country, and questionnaire instruments, translated
from the English original, that are as similar as possible, given the linguistic
and cultural differences among the participating countries.

The ISSP database for the 1995 surveys comprises a total of 28 456 subjects
from 23 countries. The countries’ sample sizes, in the range 612–2089, are not
related in any obvious way to their populations. Eighteen of the participating
countries are from Europe, nine of them former communist-block countries or
their parts. Four other countries are economically advanced (U.S.A., Canada,
Japan and New Zealand), and the remaining country is the Philippines. Sepa-
rate surveys were conducted in the former West Germany and German Demo-
cratic Republic, even though they were united several years earlier. To simplify
the discourse, we refer to them as different countries. We treat Great Britain
and Northern Ireland similarly because they are separate members of ISSP.
Apart from Northern Ireland, Australia and Israel were two other members
of ISSP in 1995 that did not conduct the 1995 survey.

The database contains 214 variables, but some of them, such as religion
and political affiliation, have categories specific to each country. Further, some
variables apply only to specific countries and some questionnaire items were
not administered in all the countries. For languages spoken by the subject,
there are several variables (first, second, . . . language), but a monolingual
subject has an entry only for the first variable; no response and ‘not applicable’
are confounded for the other variables. The variables can be classified as
administrative, background and substantive. The latter are responses to the
questions about the main theme of the survey, national identity. These 55
questions are organised in eight blocks.

We give details of MI for the block of six questions about subjects’ at-
titudes to immigration. The response rate varies a great deal from country
to country. Table 5.2 gives the relevant details for the block of questions
about immigration. We use two summaries, the number of records that are
incomplete (8132 out of n = 28 456, that is, 28.6%), and the number of items
missing (16 211 out of 6n, that is, 9.5%). We classify the countries as histor-
ically immigration and emigration countries. The industrialised countries of
northwestern Europe (including Austria), U.S.A., Canada and New Zealand
belong to the former (type I in Table 5.2) and east European countries and
Philippines belong to the latter (type E). East Germany, Italy, Ireland, Japan
and Spain are classified as neither emigration nor immigration (type O), and
are omitted from the comparisons discussed below.
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Table 5.2. Countries involved in ISSP 1995, their sample sizes and the extent of
missing data.

Country Type
Sample

size
Incomplete

records %
Missing
items %

Bulgaria E 1105 579 52.4 1798 27.1
Czech Republic E 1111 298 26.8 477 7.2
Hungary E 1000 183 18.3 313 5.2
Latvia E 1044 430 40.2 968 15.5
Philippines E 1200 114 9.5 208 2.9
Poland E 1598 822 51.4 1689 17.6
Russia E 1585 852 53.8 2166 22.8
Slovakia E 1388 454 32.7 845 10.1
Slovenia E 1036 342 33.0 612 9.8

Austria I 1007 233 23.1 379 6.3
Canada I 1543 321 20.8 471 5.1
Great Britain I 1058 210 19.8 398 6.3
the Netherlands I 2089 412 19.7 758 6.0
New Zealand I 1043 171 16.4 323 5.2
Norway I 1527 400 26.2 710 7.7
Sweden I 1296 352 27.2 590 7.6
U. S. A. I 1367 382 27.9 784 9.6
West Germany I 1282 374 29.2 721 9.4

East Germany O 612 187 30.6 329 9.0
Ireland O 994 142 14.3 194 3.3
Italy O 1094 151 13.8 189 2.9
Japan O 1406 427 34.0 750 10.0
Spain O 1221 296 24.2 539 7.4

Total 28 456 8132 28.6 16 211 9.5

Notes: The country types are: E — historically emigration countries (Eastern Europe
and Philippines), I — historically immigration countries (Western Europe, North
America and New Zealand), and O — other countries.

The fraction of missing items is much smaller than the fraction of incom-
plete records, suggesting that many subjects skipped single questions. But
this pattern varies from country to country. For example, Poland and Bul-
garia have similarly high percentages of incomplete records but very different
percentages of missing items. At the other extreme, Italy and Philippines
have nearly identical (low) percentages of missing items, but very different
percentages of incomplete records.

An obvious motive for not responding is the ethical and political sensitiv-
ity of the questions. It might be expected that subjects not wishing to respond
to a particular question would refuse to respond to all similar questions (in
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the same block) or would abandon responding altogether. The corresponding
response patterns are far from dominant, so this simple mechanism, associ-
ated with NMAR, is not prevalent. These and other plausible reactions to the
questions are likely to differ from country to country; this suggests that impu-
tations should be conducted separately for each country. This is advantageous
also for practical implementation, as fewer records have to be handled at a
time.

5.3.1 Imputation for ‘national identity’ items

Although theoretically preferable, simultaneous (proper) imputation for all
the variables is not feasible. All the variables are categorical, some with many
categories, and so it is not possible to define a joint distribution for them. In-
stead, we organise the imputations in stages, starting with socio-demographic
background variables that tend to have few missing values, proceeding to
income, trade-union and political-party affiliations, and concluding with the
blocks of questions about national identity, for which conditioning on back-
ground is natural. To avoid near repetition, we discuss details only for West
Germany and focus on one block of substantive questions.

At the first stage, plausible values are generated for sex, marital status
(married, widowed, divorced, separated or never married) and ‘cohabitation
with a steady partner’ (yes, no or not applicable). In the sample for West
Germany, 49 subjects (3.8% out of 1282) have incomplete records on these
three variables; eight records are empty, 29 have only marital status missing
(pattern 101, or x?x), and the other twelve records belong to four of the
five remaining patterns. Note that being married implies the response ‘not
applicable’ to the question about cohabitation, so only 18 distinct response
patterns are possible. As there are so few incomplete records, it suffices to fit
a model to the complete records and, assuming MAR, use it for generating
plausible values for the missing items.

At the second stage, plausible values are generated for education, an or-
dinal categorical variable with seven values, from ‘none or still in education’
to ‘completed university education’. Only seven values are missing. The con-
ditioning is on sex and marital status, and the latter variable is collapsed to
two categories, whether married or not. There are so few missing values that
generating plausible values by any naively justified process would seem to
make little difference. Completion is highly desirable because data reduction
in complex analyses with many variables would lead to smaller sample sizes,
and there is no obvious value to be imputed for most missing items.

At the next stage, plausible values are generated for the variables inquir-
ing about employment circumstances: employment status (12 missing values),
employed in the private or public sector (38), whether self-employed (38) and
whether having any supervisory role in employment (16). The conditioning is
on sex, marital status (dichotomy) and education (dichotomy, whether pos-
sessing any tertiary education).
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Table 5.3. Blocks of items on the subject of national identity in the 1995 ISSP and
information on the response patterns for West Germany.

Block of items
Number
of items

Complete
records (%)

Missing
values (%)

1. How close do you feel . . . 5 586 (45.7) 1096 (17.1)
2. Move to improve conditions . . . 5 1045 (81.5) 696 (10.9)
3. Important to be . . . 7 1126 (87.8) 365 ( 4.1)
4. Nation – Country – Citizenship 6 945 (73.7) 607 ( 7.9)
5. Proud of . . . 11 769 (60.0) 1521 (10.8)
6. Traditions vs. foreign countries 9 770 (60.1) 1030 ( 8.9)
7. Immigrants should (be) . . . 6 908 (70.8) 721 ( 9.4)
8. Ethnicity & citizenship 3∗ 956 (74.6) 373 ( 9.7)

All items 52 186 (14.5) 6409 ( 9.6)

Note: ∗ Block 8 comprises six questions, but only three were administered in West
Germany.

The following stages generate plausible values for earnings (six ordered
categories, 133 missing values), family income (seven ordered categories, 114
missing values), social class (seven categories, 24 missing values), trade union
and party affiliation (39 and 62 missing values, respectively), religion and
attendance of services and household size. None of the models is strongly
predictive, so much of the variation in the plausible values is random, reflecting
our failure to recover the missing values. With any single imputation, we would
have to commit ourselves to one of the values for each missing item. If a single
imputation were successful in recovering some of the missing values the model
used or the underlying scheme could be adapted for MI by incorporating the
(small) uncertainty about the missing values when generating sets of plausible
values.

Information about missing items for the eight blocks of substantive ques-
tions is summarised in Table 5.3 for West Germany. In total, 618 values are
missing for the background variables. Although it may be attractive to store
the plausible values generated for them in a single file of 618 rows and M + 2
columns (a column each to identify the subject and the variable, followed by
M columns of plausible values), the national-identity items have many more
missing values, and so the file of plausible values is no longer compact. The
most convenient solution for a user is to have the M completed datasets. This
is made more practical by defining plausible values only for the total scores
for each block of items. The scale has to be reversed for some questions, to
make the total score meaningful. These aggregate scores are sufficient for most
secondary analyses. An exception is presented in Section 5.3.2.
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By imputing for the total scores, the imputation task is greatly simplified.
The completed datasets are much smaller, as the national-identity items are
reduced to 8M columns of plausible totals. In an alternative arrangement,
the plausible values for the missing background items are stored in one file
and the plausible totals for the blocks of substantive items in another. As
there are so many incomplete records for the blocks, the savings by storing
the plausible totals for them are not substantial, and probably not worth the
added complexity in the instructions for completing the dataset.

In the database, two codes for missing values are used: ‘cannot choose’
and similar (code 8) and ‘refused to respond’ (code 9). For simplicity, we do
not distinguish between the two codes and consider a single model for missing
values. A more principled approach, but also more complex, would distinguish
between the two codes and define separate models for them.

The first block comprises five questions with a common lead-in passage

How close do you feel to your . . . ?

neighbourhood (question 1), town or city, county, country and the continent
(question 5). Each item is scored on the Likert scale (very close — 1, close
— 2, neutral — 3, distant — 4 and very distant — 5). Only 586 subjects
(46%) responded to all five items. One item is missing for 509 records (40%),
with none of the five response patterns prevailing among them; this suggests
that momentary distraction is a more likely cause of nonresponse than any
reaction to the substance of the questions.

The second block of questions has a similar format, with the lead-in pas-
sage

If you could improve your living and working conditions, would you
be willing to move to another . . . ?

(neighbourhood, city or town, county, country, or continent). The block has
1045 (81.5%) complete records for West Germany, and the most common
incomplete-response patterns are 00000 and 10000 with 59 and 37 records,
respectively. Both the extent and the relative frequencies of the response pat-
terns differ substantially from the first block. It is difficult to point to any
specific cause of this, other than the location of the blocks.

The model for the missing block-level total scores assumes MAR and con-
ditions on a selected set of background variables (sex, marital status and
education, the latter two variables recoded to dichotomies) and the available
scores for the questions of the block. The plausible values are generated sepa-
rately for each response pattern, and the patterns are ordered partially from
the almost complete pattern (only one item missing) to the empty pattern
(all items missing).

For records with a single item missing, the total of the recorded scores is
matched with the corresponding total for the complete records. The plausible
total score is drawn from the total scores of the matched complete records,
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with an adjustment for the uncertainty about the distribution of the complete-
data total scores.

For the records with two or more missing values, their totals on the avail-
able responses are matched with the corresponding totals of the records that
have less nonresponse. For these ‘donor’ records, the complete-data total score
is either defined (uniquely) or plausible values have been generated earlier. In
the latter case, the ith set of plausible totals for the donor records is generated
from the matching records. In the last step, plausible values for empty records
are based on all the non-empty records, using their completely recorded or
imputed total scores.

In a few instances, no donor could be found for a total score within the
combination of the conditioning background variables. In such a case, the
pool is expanded to include the neighbouring categories (with total score
greater or smaller by one). This procedure for generating plausible values is
not proper because the pools of donors overlap, and so the distributions from
which plausible totals are drawn are not independent. We believe that the
improperness involved is preferable to a single imputation procedure, as the
procedure is relatively simple and requires only a modest programming effort.
In any case, expanded pools of donors are required for very few recipients.

5.3.2 Attitudes to immigration

In this section, we describe an analysis of the block of questions about atti-
tudes to immigration in ISSP 1995. We compare the historically emigration
and immigration countries on the responses to the individual questionnaire
items, and conduct a sensitivity analysis to assess how the conclusions of the
analysis are altered with the departure of the assumed nonresponse mecha-
nism from MAR.

We are concerned with six questionnaire items formulated as statements
that directly relate to immigration issues:

1. Immigrants increase crime rates.
2. Immigrants are generally good for [your country ]’s economy.
3. Immigrants take jobs away from people who were born in [your country ].
4. Immigration makes [your country ] more open to new ideas and cultures.
5. Number of immigrants to [your country ] should . . .
6. Refugees who have suffered political repression in their country should be

allowed to stay in [your country ].

The statements have the five response options of the Likert scale given in
Table 5.4. The scoring scale for statements 1 and 3 is reversed, so that low
scores indicate negative and high scores positive attitude to immigrants for
each statement.

The response patterns are summarised in Table 5.5. More than half of the
incomplete records have only one item missing. More detail is obtained by
tabulating the 26 = 64 response patterns. Every one of them is represented in
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Table 5.4. The response options for the statements about attitudes to immigration.

Score Statements 1–4 and 6 Statement 5

1 Disagree strongly Be reduced a lot
2 Disagree Be reduced a little
3 Neither agree nor disagree Remain the same as it is
4 Agree Be increased a little
5 Agree strongly Be increased a lot

Table 5.5. Tabulation of the numbers of missing items.

Number of items missing

0 1 2 3 4 5 6

Number of
subjects 20 324 4446 1732 739 433 340 442

Percent 71.4 15.6 6.1 2.6 1.5 1.2 1.6

Table 5.6. Subjects with one nonresponse and subjects with one response.

Number of subjects for statement No.

1 2 3 4 5 6

Sole nonresponse 335 600 247 781 1655 828

Sole response 148 52 11 55 8 66

the data, although the counts of subjects for quite a few of them are in single
digits. In 4446 cases, only one statement is without response. Many more of
these nonresponses are for the last three statements. Similarly, among the
340 cases with only one response, disproportionately many occur for the first
statement. The counts are given in Table 5.6. They suggest that nonresponse
may be informative.

As the statements are closely related, the recorded parts of the responses
are good informants of the missing responses. When several responses are
available the number of score patterns is very large, and so it is not practical to
condition on the recorded scores. We collapse some of the response categories
to avoid handling small within-cell counts. The imputations are carried out
by hot deck, separately for each country, starting with records that have one
missing item each, then dealing with records with two missing items, and so
on, and concluding with imputations for empty records.
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One item missing

Imputations are carried out separately for each response pattern (statement
for which no response is recorded). The available quintets of scores have
55 = 3125 possible patterns, so many of them are not represented among the
complete records. The available scores are recoded to dichotomous variables
that indicate whether the scores exceed the middle category 3. In this way,
the number of response patterns is reduced to 25 = 32. The categories defined
by these patterns can be collapsed further by aggregating the smallest cells
with their neighbours. The aggregation is carried out until each cell contains
at least 50 records. Plausible values are drawn from the plausible multinomial
distribution with values 1, . . . , 5, implied by the aggregated score patterns
among the complete records.

Two items missing

The response patterns for the four matching statements are collapsed to 24 =
16 patterns, and aggregated further to have at least 100 records in each cell.
The matching set of two statements has 25 distinct patterns. The plausible
values are drawn from a plausible multinomial distribution with 25 categories.

Three items missing

The response patterns are collapsed by considering three categories, (1,2),
(3,4) and 5, and are further collapsed until each cell has at least 120 records.
The matching set is collapsed similarly to 33 = 27 cells. A plausible cell for a
missing triplet of items is drawn first, and the responses are then generated
by drawing at random from the two alternative categories.

Four items missing

The 25 categories of the response patterns are left intact, and the matching
responses are collapsed to 24 = 16 categories.

Five or six items missing

When only one item is recorded the response patterns are left intact, and a
draw is made from the pool of records with the same response on the available
item. For empty records, the complete and completed records are used as a
single pool of donors.

The imputations are ‘recycled’; in imputations for records with k items
missing, the matches are made on the records completed by imputations car-
ried out earlier (for records with 1, . . . , k − 1 items missing). In replicate
imputations, different pools of donors are used, contributing to the between-
imputation variance.

The method of chained equations is a viable alternative to this approach.
The neutral category 3 is the obvious default value for the initial imputation.
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5.3.3 Sensitivity analysis

As the assumption of MAR is problematic, we explore departures from it and
search for the ‘critical’ departure which no longer supports the original con-
clusion based on MAR. The NMAR models considered correspond to altering
the plausible values generated under MAR in the following way. For a given
probability p, an independent draw ∆ is made from the binomial distribu-
tion B(p, 4) for each missing item. Suppose the estimated mean scores under
MAR are higher for the emigration countries. The plausible values generated
under MAR are reduced by ∆ for each missing item in an emigration country
and increased by ∆ for each missing item in an immigration country. If the
resulting value falls outside the range 1–5, it is truncated. MAR corresponds
to p = 0 and the extreme NMAR to p = 1 when each missing item in an
emigration country is replaced by 1 and each missing item in an immigration
country by 5.

The analysis intended for the complete data is summarised in Figure 5.4.
Each country is represented by a set of segments connecting the estimated
deviations of the national mean scores from the overall means for the six
statements. The mean scores are replaced by their deviations from the overall
mean vector estimated for the following datasets or assumptions:

A. Complete records (3.383, 3.202, 3.085, 2.748, 3.833, 2.693)
B. All available data (3.389, 3.203, 3.089, 2.722, 3.860, 2.660)
C. MI, assuming MAR (3.390, 3.202, 3.092, 2.754, 3.816, 2.677)
D. Extreme NMAR (3.342, 3.157, 3.054, 2.672, 3.680, 2.636)

The segments for the emigration countries are plotted on the left- and for the
immigration countries on the right-hand side of each panel. The panels A–D
present the results for the analysis based on complete records, all available
data (listwise deletion), with MI based on MAR, and for the extreme NMAR
with 1 imputed for all missing items in the emigration countries and 5 for all
missing items in the immigration countries. The panels A–C lead to the same
conclusion, that emigration countries tend to have higher mean scores, but
the conclusion from panel D is very different. The standard error of a typical
estimator used in the diagram is about 0.03, so the differences observed are
largely genuine, if the treatment of missing values is appropriate. Panel D cor-
responds to the adjustment of the plausible values by ±B(p = 1, n = 4). As it
is an extreme NMAR mechanism it can be ruled out as implausible. However,
it would be difficult to come to a consensus about the largest plausible value
of p.

Although the mean is a natural way of summarising the distribution of the
responses for each statement, it is not the only choice. Alternatives attractive
for some purposes focus on the balance between agreement and disagreement
with the statement. The odds of agreement vs. disagreement is one such sum-
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Figure 5.4. The estimated deviations of the within-country mean scores for the
questionnaire items related to immigration.
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mary. It is defined as the ratio of the probabilities of agreement (response
categories 4 and 5) and disagreement (categories 1 and 2). With this sum-
mary, no distinction is made between scores 4 and 5 on the one hand, and 1
and 2 on the other. A related summary is based on the odds of the extreme
response categories 1 and 5. This corresponds to regarding the responses 2–4
as neutral and drawing no distinction among them.

An element of arbitrariness is involved in the choice of the summary, so
establishing that its details do not have a strong impact on the inferences
drawn is essential. Figure 5.5 presents the comparisons of the estimated odds
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Figure 5.5. The estimated deviations of the within-country odds of the extreme
responses to the six questionnaire items related to immigration.
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of the extreme categories for the emigration and immigration countries, using
the same layout as in Figure 5.4. The vertical axis in each panel is on the log-
scale, so that the observed vertical distances can be interpreted as differences
in log-odds.

As in Figure 5.4, the extreme NMAR mechanism leads to a conclusion
that contradicts the conclusion based on the MAR mechanism, and so it is
essential to consider intermediate NMAR mechanisms. Ideally, the most ex-
treme NMAR mechanism that is still plausible, say, defined by a (binomial)
probability p∗, would be identified. If the conclusions based on the proba-
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bilities 0 < p < p∗ do not differ appreciably, we can dismiss any concerns
about NMAR; otherwise the assumed mechanism is an essential caveat of our
analysis.

Note that unlike for deviations from the mean score in Figure 5.4, the
complete-records and MI estimates of odds differ substantially for a few emi-
gration countries for responses to statements 5 and 6. In these countries (Czech
Republic, Slovenia and Latvia in particular), category 1 is very rare, so the
plotted points are associated with large sampling variation in each analysis.
However, the overall comparison of the two groups of countries is unaffected.

Instead of seeking a consensus about the probability p∗, we present the
results for the entire range of values of p in Figure 5.6. For p < 0.2, the
conclusions are not changed substantially; the odds in the emigration countries
tend to be higher than in the immigration countries. For 0.2 < p < 0.6,
the odds are similar, and for p > 0.6, the immigration countries appear to
have greater odds. Thus, the conclusions of the analysis are vulnerable to the
assumption of MAR, and this should be addressed by qualitative assessment
of the range of feasible departures from MAR, so that at least some of the
extreme scenarios in Figure 5.6 could be ruled out.

In this example, the uncertainty due to sampling, reflected by the complete-
data standard errors is but a small component of the overall uncertainty about
some population quantities. Nonresponse poses a much greater threat to our
confidence about the conclusions of the analysis. The database contains little
information about the nature of the response mechanism, and so clues have to
be sought elsewhere to narrow down the range of NMAR mechanisms that are
feasible. This includes identifying variables that are suitable for conditioning.
By including them in the model for nonresponse, the range of feasible depar-
tures from MAR would be reduced. But, in general, NMAR cannot be ruled
out.

5.4 The Scottish House Condition Survey

The Scottish House Condition Survey (SHCS) is a survey of the residential
housing stock in Scotland. It was conducted in 1991, 1996 and 2002. In this
section, we describe a MI-based method that addresses the inconsistency of the
surveyors engaged to assess the sampled dwellings in the 1996 survey. Surveyor
inconsistency is defined as a disagreement of two surveyors’ assessments of the
same dwelling. It is related to misclassification, although the direct (ideal)
assessment cannot be established, as it is not defined unambiguously.

The survey employs a stratified clustered sampling design based on the
sampling frame obtained from the list of all residential addresses to which
the Post Office delivers mail. The sample size in 1996 was around 16 000, and
around 20 000 in 2002. The data collected from a sampled address comprises
a ‘social’ and a ‘physical’ part. The social part inquires about the household
composition, income of its adult members, intentions (e.g., to move in the
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Figure 5.6. The estimated odds of the within-country extreme responses to the
questionnaire items related to immigration under a range of NMAR assumptions.
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near future), and the like. In the physical part, the assigned surveyor assesses
a large number of elements, such as dwelling type (seven categories), the extent
of repairs required for an amenity (four percentage bands and a category for
‘amenity missing’), and presence of central heating (none, partial, or full);
most of the recorded variables are categorical; they are nominal, ordinal or
have a partial ordering with one or a few categories outside the hierarchy (for
example, ‘not applicable’). Many elements are scored by the surveyors on the
integer scale from 0 to 10 according to the level of disrepair. Zero stands for no
repair required, and category k is interpreted that the element requires repairs



132 5 Case studies

which would cost about 10k % of the replacement (full) price of the element.
These assessments are combined into monetary values expressing the total cost
of bringing the dwelling up to an established standard (visible repair costs,
VRC) and maintaining that standard for the next ten years (comprehensive
repair costs, CRC). These costs are calculated using extensive tables of typical
costs that take into account the (area-dependent) cost of labour, economies
of scale (applicable when a lot of repairs are required), existing maintenance
contracts (e.g., for local-authority owned dwellings), and other factors.

As a form of quality control, a subsample of 545 surveyed dwellings was as-
sessed second time. This ‘sub-survey’ intended to over-sample dwellings likely
to be in poor condition — dwellings erected before 1945 and local-authority
owned dwellings in particular. For each of these dwellings, two distinct survey-
ors were engaged. The pairs were not informed about one-another’s identity,
so that the assessments would be independent.

Despite careful selection of the surveyors, detailed instructions given to
them, and training provided when applicable, the paired surveyors’ assess-
ments of a dwelling are not identical. Although differences in the assessments
are quite rare for most of the assessed elements (the vast majority of assess-
ments are zeros, indicating that no repair of the inspected element is required),
the impact of the surveyor inconsistency on the overall assessment (VRC and
CRC), aggregated over the many elements, is not trivial. By way of an illustra-
tion, suppose the survey comprises 20 elements and each element is assessed
appropriately in 98% of the surveyed dwellings. Then, assuming that inappro-
priate assessments arise at random, the chance of a dwelling being assessed
appropriately on all its elements is 0.9820 = 0.67; one-third of the assessed
dwellings will have at least one element assessed inappropriately. In the cal-
culation of CRC, one ‘error’ may be (approximately) offset by another made
on the same dwelling, while for another dwelling the errors are compounded.
Surveyor inconsistency refers to the fact that another surveyor might have
assessed an element of a dwelling differently.

As an example, Table 5.7 gives a cross-tabulation of the assessments of
the element ‘dwelling type’. The element has seven categories. Among them,
we can recognise pairs of types that could easily be confused, such as semi-
detached and terraced. We refer to such categories as neighbours. For ordinal
categorical variables, the neighbours of a category are defined in the obvious
way; the extreme categories (say, 0 and 10) have only one neighbour each (1
and 9, respectively), and the other categories have two neighbours each (for
example, 3 and 5 are the neighbours of category 4).

From the collected data we cannot establish which assessments are appro-
priate and which are not. For the dwellings assessed twice, the assessment is
very likely to be correct when the two surveyors agree, because the probability
of both of them being incorrect, and making the same misjudgement, is very
small. However, only about 3% of the dwellings were assessed twice.

The population quantities of interest are the means (and totals) and the
distributions of VRC and CRC for the whole country, its regions and for
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Table 5.7. Cross-tabulation of the element ‘dwelling type’ for the dwellings assessed
twice in SHCS 1996.

Category DT SM TR TN 4B FL TW

DT Detached house 81 2 0 0 0 1 0
SM Semi-detached house 2 88 8 0 0 0 0
TR Terraced house 0 3 139 0 0 0 0
TN Tenement 0 0 0 130 1 1 1
4B Four in a block 0 0 0 4 60 6 0
FL Flat converted bldg 0 0 0 1 1 8 0
TW Tower/slab 0 0 0 2 0 0 6

various categories of dwellings (defined by ownership — owner-occupier, pri-
vately rented, local-authority owned; by dwelling type; and by age of property
— built prior to 1919, in 1919–44, 1945–64 and after 1964). We are therefore
concerned about the impact of surveyor inconsistency on the inferences about
these population quantities.

We assume that each element of a dwelling has an ideal assessment (score),
and regard any deviation from this (unknown) score as a misjudgement. The
impact of surveyor inconsistency is governed by two factors: the distribution
(frequency and extent) of misjudgements and the replacement cost of the
elements. Some elements may be more difficult to judge, and so misjudgements
of their assessments are more frequent, but the elements involve very disparate
costs. For example, repairing some structural defects costs tens of thousands
of pounds, whereas replacing the entrance door costs only hundreds of pounds.
More expensive elements tend to be assessed with less inconsistency, although
this association is far from perfect.

5.4.1 Missing information

We regard surveyor inconsistency as a source of data incompleteness. The
data would be complete if the ideal (appropriate) score were available for
every element. With MI, we generate sets of plausible scores and conduct
the complete-data analysis for each set separately. The differences among
these (completed-data) results represent the inflation of the sampling vari-
ance due to surveyor inconsistency. When the data are analysed as if they
were complete (regarding the surveyors as consistent) the sampling variance
is underestimated.

The first step of MI specifies a model for incompleteness. In our setting,
the inconsistency is observed on a subsample of dwellings that were surveyed
twice. For these dwellings, most of the assessments are in agreement and the
majority of the remaining assessments differ by one point of the scale. This
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motivates the model in which two kinds of deviations from the ideal assessment
take place:

• discrepancy — an assessment to a neighbour of the ideal score;
• gross error — a score assigned at random (without any regard for the state

of the element).

The probabilities of these two kinds of deviations are denoted by pd and
pg , respectively. A more complete notation includes the element as another
subscript. Throughout, we assume that the probabilities are so small that the
majority of assessments coincide with the ideal. In particular, pg � pd � 1/K,
where K is the number of categories.

Suppose the ideal score for an element with an ordinal categorical as-
sessment is 3. The probability that the recorded (realised) assessment is 2 is
pd + pg − pdpg ; this is approximately pd + pg , as both pd and pg are small.
The probability that the recorded assessment is 4 is the same, but the prob-
ability of any other assessment is pg because it can arise only as a result of a
gross error. More generally, suppose category k has Lk neighbours. Then the
probability of assessing a dwelling by the ideal category k is

P(X = X∗ | X∗ = k) = 1 − Lkpd − (K − 1)pg + (K − 1)Lkpdpg . (5.1)

(An element may be assigned to the neighbour of the ideal category also as
a result of a gross error.) The product term (K − 1)Lkpdpg can be ignored
because pd and pg are small.

More complex models can be defined by having different probabilities for
each direction of misclassification (assigning higher or lower score), and by
defining layers of neighbourhoods. For example, category 1 may be regarded
as a ‘distant’ neighbour of category 3, with probability of misclassification pd2

smaller than for the ‘next-door’ neighbour 2. As the number of categories is
at most 11 (for integers 0–10), and the majority of assessments are zero, such
complexity is not warranted.

We assume that misclassifications are independent across the dwellings
and across elements within a dwelling. Dependence may arise among the as-
sessments made by a surveyor whose misclassifications tend to be systematic.
This is highly unlikely; most misclassifications can be ascribed to inexplicable
deviations in the surveyor’s judgements, many of them in borderline cases.

We generate plausible ideal scores by the following process. First, the prob-
abilities pd and pg are estimated, separately for each element. The assumption
of independent misclassifications for the elements is essential for this, so as to
make the problem essentially univariate. The probabilities pd and pg define
the process of misclassification. If the probabilities were known plausible ideal
scores would be generated from the conditional distribution P(X∗ | X) where,
as in the standard notation, X∗ denotes the (complete-data) ideal score and
X the recorded score. This conditional distribution is derived by the Bayes
theorem from P(X | X∗),
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P(X∗ = k | X = h) =
P(X = h | X∗ = k)P(X∗ = k)∑
k′ P(X = h | X∗ = k′)P(X∗ = k′)

, (5.2)

where each conditional probability is given by (5.1), with pd and pg estimated.

5.4.2 Estimating the misclassification probabilities

The first step of MI, model fitting, involves estimating the probabilities pd

and pg . Assume first that each pair of categories are neighbours and that all
misjudgements are discrepancies. This is equivalent to the assumption that
there are no discrepancies (or no neighbours) and every misjudgement is a
gross error. Then the probability of a disagreement between two surveyors of
a dwelling is

d = 2(K − 1)pg{1 − (K − 1)pg} + (K − 1)(K − 2)p2
g

= 2(K − 1)pg − K(K − 1)p2
g . (5.3)

This is obtained by considering the two ways how a misjudgement can arise:
either one surveyor makes the ideal assessment and the other one does not,
or they make different non-ideal assessments. The probability d is estimated
by the proportion of the twice-surveyed dwellings that involve disagreements.
For example, for ‘dwelling type’, d̂ = 33/545 = 0.0606, obtained by adding
up the off-diagonal entries in Table 5.7. From d̂ we estimate pg by moment
matching, solving the quadratic equation

2(K − 1)p̂g − K(K − 1)p̂2
g = d̂ .

The solution is

p̂g =
K − 1 −

√
(K − 1)2 − d̂K(K − 1)

K(K − 1)

=
1
K

− 1
K

√
1 − d̂

K

K − 1
; (5.4)

the other solution is discarded as it exceeds 1
K . The sampling variance of p̂g

is approximated by the delta method (Taylor expansion). Denote first c =√
1 − dK/(K − 1); equation (5.4) implies that c = 1 − Kpg . We have

p̂g
.=

1 − c

K
+

d̂ − d

2c(K − 1)

= pg +
d̂ − d

2c(K − 1)
,

so the sampling variance is estimated by
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v̂ar(p̂g) =
d̂(1 − d̂)

4n2(K − 1)2(1 − Kp̂g)2
, (5.5)

where n2 = 545 is the number of twice-surveyed dwellings. The quality of the
approximations related to p̂g and v̂ar(p̂g) can be assessed straightforwardly by
simulations that mimic the assumed process of misclassification. For a given
set of n2 ideal scores and probability pg , n2 pairs of assessments are generated,
the proportion d̂ evaluated and, based on it, the estimate p̂g . This process
is replicated 10 000 times, with the same set of ideal values, resulting in a
good approximation to the distribution of p̂g . This empirical variance is then
compared with the analytical approximation in (5.5). A typical deviation for
a range of examples tested was much smaller than 1%.

Next, suppose there are no gross errors. For a dwelling with ideal score k,
the probability of a discrepancy is

dk = 2Lkpd(1 − Lkpd) + Lk(Lk − 1)p2
d

= Lkpd(2 − Lkpd − pd) ,

obtained similarly to (5.3). Let wk be the probability of ideal score k among
the twice-surveyed dwellings, and set M1 =

∑
k Lkwk and M2 =

∑
k L2

kwk .
The probability of a discrepancy is

d =
K∑

k=1

Lk(2 − Lkpd − pd)pdwk

= 2M1pd − (M1 + M2)p2
d .

Hence the moment-matching estimator of pd is the solution of the quadratic
equation

(M1 + M2)p2
d − 2M1pd + d̂ = 0 ,

which is

p̂d =
M1 −

√
M2

1 − d̂(M1 + M2)

M1 + M2
. (5.6)

The Taylor expansion for p̂d around d̂ = d yields the approximation

p̂d
.= pd +

d̂ − d

2{M1 − (M1 + M2)pd} ,

which implies that

var(p̂d)
.=

var(d̂)
4{M1 − (M1 + M2)pd}2 .

When both discrepancies and gross errors are possible we estimate the proba-
bilities pd and pg as follows. First we consider the cells of the cross-tabulation
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of the pairs of assessments for the non-neighbouring categories. Disregarding
the small probability of different discrepancies committed by both surveyors
in a pair, a dwelling can fall into such a cell only by a gross error in at least
one of the assessments. We estimate the probability of gross error as in (5.6).
The remaining off-diagonal cells contain the dwellings that were assessed with
either a discrepancy or a gross error (or both), so we can estimate the total
p+ = pd − pg or, more precisely, p+ = pd + pg − pdpg , by (5.6) applied to the
cells that correspond to pairs of neighbouring categories. From the estimators
of p+ and pg , p̂d is obtained as their difference. Independence of p̂d and p̂g

implies that var(p̂d)
.= var(p̂+) − var(p̂g). The approximation arises because

the product p̂dp̂g is ignored.

5.4.3 Generating plausible scores

Plausible scores for each element are drawn from their plausible distribution
given by the probabilities in (5.2) evaluated for plausible values of pd and pg ,
drawn from their estimated joint sampling distribution. The denominator in
(5.2) is more practically evaluated as the unconditional probability P(X = k).
The estimators p̂d and p̂g are correlated, but p̂g and p̂+ are not. It is therefore
more practical to draw first plausible probabilities p̃g and p̃+ , and then set
p̃d = p̃+ − p̃g . One set of plausible scores for an element is generated with
a fixed pair (p̃d , p̃g). The sets of plausible scores are based on independent
draws of (p̃d , p̃g) from their estimated joint sampling distribution.

The sampling distributions for distinct elements are assumed to be mutu-
ally independent. This assumption is violated, for instance, when discrepancies
or gross errors committed on one element are compensated on another ele-
ment of the same dwelling. A realistic scenario arises when the surveyors may
ascribe a particular sub-standard feature of a dwelling to different elements.
Identifying such connections is very difficult, and implementing them in an
MI procedure would be too complex, especially as such connections may span
several elements and the associations among them are uneven. By assuming
independence, we are likely to err on the side of greater variation in gener-
ating plausible values, so that our assessment of inconsistency is pessimistic,
but honesty of our inferences is maintained.

Each surveyor’s assessments may depart from the ideal scores in a system-
atic way. For instance, some surveyors may tend to err on the side of greater
disrepair in general, or specifically for some types of elements, may prefer as-
sessing higher scores for some elements at the expense of others, or may have
different tendencies for the various types of dwellings. Such deviations are dif-
ficult to evaluate because each surveyor assesses a relatively small number of
dwellings. Also, the assignment of surveyors to dwellings cannot be completely
randomised, so that the level of scores awarded is partially confounded with
the underlying level of disrepair. The method of generating plausible scores
ignores these issues.
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A precursor to most analyses is the calculation of the sets of plausible
values of CRC and VRC. With the sets of plausible costs, each planned
(complete-data) analysis is applied to every set of plausible scores and the
results are averaged for each target, with an inflation for the sampling vari-
ance by the between-imputation term (1 + 1/M)B̂. This term informs about
the (undesirable) impact of surveyor inconsistency on the precision of the
estimator.

A more detailed exploration of this impact aims to identify individual
elements that make large contributions to it. To isolate the impact of the in-
consistency for a single element, we compare the MI estimates of the sampling
variances for a selected set of analyses under two conditions. Under condition
A, plausible scores are used for each element and under condition B, the
recorded scores are used for the selected element and the plausible scores for
the other elements. In other words, in condition B we pretend that the se-
lected element is assessed consistently. The (appropriate) sampling variance
under condition A is greater than under B. The difference is a measure of the
information lost because of inconsistent assessment of the selected element.

Carrying out such comparisons systematically is not practical; elements
that either have a high probability of discrepancies and gross errors or are
associated with high disrepair costs should be the first candidates for such an
exploration. The exploration can be applied to a group of elements, by pre-
tending in condition B that each element of the group is assessed consistently,
but then the impact is not evaluated for either of the elements in the group.
The purpose of such an evaluation may be to find areas in the training and
instruction of the surveyors that have to be reviewed or emphasised.

For a routine analysis, M = 5 sets of plausible scores are sufficient, but
for studying the impact of surveyor inconsistency on the precision, a larger M
is necessary because the between-imputation variance B has to be estimated
with greater precision.

5.5 Suggested reading. Software

The sections of this chapter are adapted from [164] (Section 5.1), [166] (Sec-
tion 5.2), [159] (Section 5.3) and an unpublished report (Section 5.4), where
further details can be found. Splus, [279] and R, [215], were used for all the
computing. Although it requires more programming than software packages
with modules designed for specific tasks, an advantage of this approach is the
customisation for the specific problem and the integration of the functions
for multiple imputation with the other data processing, statistical computing
and graphical displays.

Software written by other parties can save a lot of programming effort and
the analyst may benefit from the software author’s expertise and experience
that may be enhanced by feedback from other users. A suite of Splus functions
based on [243] is available from the author’s website at www.stat.psu.edu.
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The functions cater for multiple imputation in multivariate normally dis-
tributed data (NORM), in multivariate categorical data (CAT), in data that
contain both continuous (normally distributed) and categorical data (MIX)
and in normally distributed panel and clustered data (PAN). The performance
of these routines is improved by programming the computationally most de-
manding elements in Fortran.

SolasTM (www.statsol.ie/solas) is a software package dedicated to
multiple imputation. It implements MI based on linear regression and propen-
sity scoring, as well as several single-imputation methods such as LOCF and
hot deck. It has a limited capacity for complete-data analyses, but the most
commonly used methods are implemented as options. A script language en-
ables programming and reliable replication of procedures as well as develop-
ment of complex procedures.

IVEware (www.isr.unich.edu/src/smp/ive) comprises a collection of
SAS macros for single and multiple imputation described in [218]. In the
imputation, carried out for a variable at a time, various constraints can be
implemented to conform with the a priori specified associations among the
variables. The software has a limited selection of complete-data analyses, but
they take account of the sampling design (sampling weights, clustering and
stratification).

The software MICE (web.inter.nl.net/users/S.van.Buuren/mi) imple-
ments the method of chained equations. It caters for a wide range of models
for nonresponse and complete-data methods. It is written in Splus/R, and
allows users to supply their own programs (functions) for the steps of MI.

These software packages implement Bayesian methods, but this feature
is not ‘visible’ to the analyst and has no impact on how they are used in
complete-data analyses. The original development of MI, described in [233],
is also formulated in a Bayesian framework. Thus, the model for nonresponse
is specified with prior distributions for the unknown parameters and the plau-
sible values are drawn from the (estimated) joint posterior distribution of the
missing values given the observed data, including auxiliary information, and
the posited models for nonresponse.

SPSS and SAS have procedures for some of the tasks in MI, for instance, for
repeated imputation and averaging of the completed-data results. See [109]
for a comprehensive review.

Reference [77] is a comprehensive text on modern Bayesian analysis. Draw-
ing samples from conditional distribution by efficient routine is an important
prerequisite for Bayesian computing. BUGS (www.mrc-bsu.can.ac.uk/bugs
and [84]) is a popular software for Bayesian computing. Its core is an effi-
cient implementation of the Markov chain Monte Carlo (MCMC) method. It
is accompanied by modules for specific applications and for the convergence
diagnostics in MCMC.
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Small-area estimation
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Introduction

Small is beautiful. Like my country.

Small-area statistics encompasses a wide variety of methods for making in-
ferences about geographical and other sub-domains of the survey domain. An
often quoted example is the estimation of the means of a variable in each
district of a country. The sampling design of a typical national survey aims to
ensure that inferences can be made with sufficient precision for the domain,
and possibly for a few large sub-domains, such as the country’s regions. Pre-
scribing the sample sizes for each of several hundred small areas (districts) is
rarely feasible. In an ideal arrangement, the subsample size within each dis-
trict would be adequate for making the desired inferences with a prescribed
precision. Such inferences would be based solely on the observed values of
the variable in question (the target variable) in the district. In many settings,
this would require an overall (national) sample size well beyond what can be
afforded. This part of the book deals with methods for small-area estimation,
which address this problem by drawing on information from outside the dis-
trict, from the values of other variables in the district, and from outside the
survey.

The key idea developed can be described as exploiting similarity. In its
simplest form, with the task of estimating the district-level population mean
of a variable recorded in the survey, we exploit the fact that the district-level
means are similar. If the means were identical an efficient estimator of the
national population mean would also be efficient for every district, because
the two targets coincide. When the areas differ insubstantially, the national
mean may still be competitive as an estimator for the district; it may be
preferable to incur the bias arising from the difference between the district
and the nation as a whole. When the national sample size is much greater
than the subsample size for the area the bias may be richly compensated by
a radical reduction of the sampling variance.

The first step in this approach is to establish how similar the districts are,
or whether they are similar enough. This task is not straightforward when
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most districts are only sparsely represented in the survey. The sample means
of the districts vary because so do the underlying quantities, the district-level
subpopulation means, and because of the vagaries of the sampling process.
The sample means would vary even if the subpopulation means were identical.
We will summarise the district-level differences by the variance of the district-
level subpopulation means, and estimate this summary as the variation of the
district-level sample means that is in excess of the sampling variation. Varia-
tion is the opposite of similarity. Small variation (of districts) corresponds to
great similarity.

Having estimated the level of similarity of the districts, we might decide
whether to estimate the district-level subpopulation mean by the national or
the district-level sample mean. This would not yield very good results. Given a
certain level of similarity, the national mean may be quite efficient for a district
with a small subsample size, but far less efficient than the sample mean for a
district with a substantial subsample size. Thus, an obvious improvement is to
use the national mean for the ‘small’ districts and the district-level subsample
mean for the ‘large’ districts, with a suitable classification of the districts to
small and large ones.

The next refinement abandons the inflexible dichotomy of district-level
versus national sample mean. Instead of choosing one of them, the two means
are combined (linearly) so as to estimate the district-level population mean
as efficiently as possible. It is essential to allow the combination to be specific
to each district. For a district that is not represented in the survey, we have
no choice but to rely solely on the national mean. In contrast, for a district
that is represented in the survey by a large sample size, it may be hard to
improve on the district-level subsample mean; the national mean is (almost)
redundant for estimation of the district’s subpopulation mean.

This theme is developed further to take advantage of the similarity of
variables (their area-level means), subpopulations, surveys and other data
sources (registers and censuses in particular), and small changes from one
time point (year) to another. We aim to satisfy the standard formulated in
Part I — making the best use of the information in our possession, irrespective
of its source or format.

The general method is related to a more traditional model-based approach
in which we specify an hierarchical model that enables borrowing strength
across the districts. This concept is related to exploiting similarity. The mod-
elling approach is quite powerful, but its weakness is that the results it yields
are contingent on the validity of the model. So, the methods offer more caveats
than confidence when the model applied is found wanting in one aspect or an-
other. And, even if no deficiency of the model is identified, the concern about
the appropriateness of the model is not allayed because our model criticism
may have been not thorough enough. We cannot afford to return to the sub-
jects of the survey and ask them for more information if the model based on
the data they have provided is inadequate. It is also desirable to bypass other
model assumptions, such as normality. Failure to identify a suitable distribu-
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tion for the data is not a good reason for not estimating the specified targets,
or for estimating them without any input from the auxiliary information that
has been found less than ideal.

Most large-scale (national) surveys are very expensive enterprises, requir-
ing an extensive infrastructure involving business considerations (income from
clients and secure long-term funding), public relations, questionnaire design,
sampling design, information about the surveyed population, training and
instruction of interviewers, coding and data management, and the like. Con-
ducting a single survey is not as profitable, both from the economic and infor-
mation points of view, because much of the infrastructure would be assembled
for a single use; it could not be reused for a different survey without a sub-
stantial adaptation. Subcontractors who contribute to the infrastructure are
keener to participate, and do so on more favourable terms, if their services
are likely to be required regularly. Furthermore, the analysis of a survey in
its isolation is often of limited value because the scales used, methods applied
and conventions adopted may be unfamiliar to the clients and other survey
users. The results from the analyses become more meaningful and easier to
interpret when compared with the results from the same survey conducted
in the recent past or from a similar survey conducted in a different popula-
tion (country). Being a substantial enterprise, the survey entails a process of
learning and continual improvement and gradual accumulation of experience.
Next time, some of the operational glitches would be ironed out and diffi-
culties resolved much more effectively. Higher quality is thus achieved, not
necessarily with a greater effort or expenditure. In fact, some surveys have
trials — small-scale rehearsals that aim to identify difficulties in the operation
and deficiencies in the planning. Inferences may also be more efficient, even
without any change in the sampling design and sample size, if the information
collected in the past surveys can be effectively exploited for inferences about
the current population.

In brief, it takes a few repeats before a survey approaches its full potential
in terms of the quality of its operation, familiarity of all the parties with its
procedures, analyses, conventions, reporting formats and scales used. As the
clientele, and the public at large, get acquainted with the contribution of the
survey to the overall information about the specific aspects of the society,
economy, public services, environment, and the like, and find them relevant,
asking for more detail is a natural reaction.

For example, the unemployment rate has been a familiar headline figure
in the U.S. and European national media for several decades. Both laymen
and experts have a relatively good understanding of the figures and how they
reflect the state of the country’s economy. There is a general agreement that
unemployment in the UK in 2003, when there were fewer than one million
unemployed (counted according to a specific definition), was a problem on a
scale very different from the early 1980’s when there were around three million
unemployed, in a labour force of about 26.5 million, slightly smaller than in
2003 (around 28.5 million). The unemployment rate, around 3.25% in 2003, is
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probably a more familiar figure (compared with over 10% in the early 1980’s).
Comparisons with the UK’s leading trading partners and competitors (U.S.A.,
Japan, Germany and France), both in the rates and in the changes of the rates
over time, add further meaning and importance to the figures. They do so
today because of a decades-long record of collecting related statistics, extensive
research establishing their validity, and a high level of standardisation of the
processes that yield the end-product — the estimate of the unemployment
rate.

The national unemployment rate, or a similar economic indicator, is a
rather simplified summary for the country. It hides the unequal unemploy-
ment rates in the regions and districts. The steady reduction in the rate of
unemployment over several years may suggest that the rate, or its change,
have been uniform across the country; the areas with the highest unemploy-
ment rate have remained as such, despite a reduction in the levels. But this
need not be the case; the impact of the underlying processes may be uneven
in the country’s districts. In the today’s environment, with insatiable appetite
for information, it is a natural progression to ask for more detail:

What are the rates of unemployment in the country’s districts?

Similar processes may be at play with other key social and economic indi-
cators. As more and more surveys acquire a history of regular conduct, the
procedures they employ are standardised and the dissemination of their prod-
ucts in both professional and lay communities becomes more effective, their
profiles become more prominent, their data is more widely distributed and
analysed, and the demand for more detailed analyses strengthens.

The analyses of the ‘geographical’ detail are referred to as small-area esti-
mation. In this part, we develop methods for small-area estimation, formulate
general principles underlying them, and then discuss applications of these
principles outside the confines of the geographical detail; first in survey anal-
ysis, and then in Part III in statistical modelling in general.

6.1 Preliminaries

Suppose the domain of a survey, such as a country, comprises districts (small
areas) d = 1, . . . , D. The districts cover the whole country, but they do not
overlap. The collection of these districts forms a partition of the country. It
is also referred to as a division of the country. We say that one division, into
districts, is finer than another, into regions, if each district is subsumed in a
region and at least one region contains several districts. The converse of finer
is coarser ; in the quoted example, the division into regions is coarser than the
division into districts.

The survey collects the values of a variable y on a sample of subjects drawn
according to a specified sampling design that may have been informed by the
division. For instance, the strata may be collections of (contiguous) districts,
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or the clusters may coincide with the districts. In other settings, the small
areas may not be known to the survey designers, or the various parties may
wish to estimate summaries for different partitions of the country.

The sampling design, together with the anticipated level of response, usu-
ally ensures that the key inferences for the country and its few large sub-
domains, such as regions, are sufficiently precise. We assume that similar
arrangements for all the districts are not feasible; the districts differ in their
population sizes, and some districts may even end up not being represented
in the survey at all. (Each one of them might be represented in a replication
of the survey.)

The vector of values of the variable of interest in the studied population
is denoted by Y. Let the survey data on this variable be y, and let θ̂ = θ̂(y)
be an estimator of the parameter of interest θ. In most practical settings, θ
is the population total or mean of the variable, or the proportion of subjects
with a specific set of values of the variable. The estimator θ̂ depends, apart
from y, also on the sampling design π. For district d, we define θd as the
same summary as θ, but applied to the district; θd = θ(Yd), where Yd is the
sub-vector of Y for the population in district d. The obvious way to derive an
estimator of θd is to apply θ̂ on the variable that coincides with y in district d
but vanishes outside d. This estimator is θ̂d = θ̂(Idy), where Id is the indicator
of the district d: Id(j) = 1 if subject j belongs to the district, and Id(j) = 0
otherwise. Note that an adjustment for sample size has to be made when θ is
a mean.

We assume that θ̂ is an unbiased estimator of θ for any population vector
Y, but do not assume that it has any specific form or that the values of Y
satisfy some condition that would not be satisfied by its sub-vector Yd for
district d. Then θ̂d is unbiased for θd for any district d. We refer to θ̂d as
a direct estimator derived from θ̂. When based, in effect, on a small sample
of size nd , the absence of bias is of little value. The large sampling variance
var(θ̂d) diminishes the usefulness of θ̂d . The ‘national’ estimator θ̂, or its
suitable adjustment for the population size, has a much smaller variance, but
is biased for θd . No adjustment is necessary if θ is a mean or a proportion,
and the adjustment for a total is by a reference to the mean.

If we knew that the country’s districts are homogeneous (have identical
values of θd or of its adjustment), θ̂ would have no competitor for estimating
θd because it would be unbiased and have a small variance. If the districts are
extremely heterogeneous (have vastly different values of θd), θ̂ conveys little
information about θd because the differences θd − θ are widely dispersed. If
we estimated θd by θ̂ we would risk a large bias. For some districts we may be
lucky, when | θd − θ | is small, for others θ̂ would be very inefficient, burdened
by the squared bias (θd − θ)2.

In this discussion, the dispersion of the district-level quantities θd plays a
central role. Since in many other contexts we measure dispersion by variance,
we denote by σ2

B the finite-sample variance of the (unknown) district-level
quantities θd :
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σ2
B =

1
N2

D∑
d=1

(θd − θ)2 . (6.1)

Throughout, we will use the notation E, var and cov for expectation, vari-
ance and covariance, respectively, with reference to hypothetical replications
of the sampling process. It will be useful to consider the same moments also
for averaging over the districts. To avoid any confusion, we use the subscript
D with E, var and cov to indicate the reference to the districts. Thus, (6.1)
can be written compactly as

σ2
B = varD(θD) . (6.2)

The symbol D in the argument of θ indicates that the variance is applied to the
districts’ values of θ. Note that there is a slight inconsistency between (6.1) and
(6.2). The sum of squares in the variance should be centred around ED(θD),
the mean of the district-level values of θd . This in general does not coincide
with the national value θ. When θ = θ(Y) is a linear function of Y and the
districts have identical population sizes, θ and ED(θD) coincide. But it is easy
to construct realistic examples in which θ and ED(θD) differ substantially. For
illustration, suppose θ is a population mean and the values of θd are greater
in a few districts that have subpopulation sizes much greater than the rest of
the districts. Then θ > ED(θD) because more populous districts contribute to
θ by more values than less populous districts, whereas in ED(θD) each district
is equally important, irrespective of its population size.

We will use the definition in (6.2) throughout. The ‘variance’ σ2
B in (6.1)

is at least as large as its counterpart in (6.2). In several applications, we
will estimate σ2

B and will prefer positive bias because the consequences of
underestimating σ2

B will be more serious. One device for doing so will be
estimating (6.1) without bias and using the estimate as a substitute for (6.2).

The mean squared error (MSE) of an estimator θ̂ aimed at the target θ is
defined as

MSE(θ̂; θ) = E
{

(θ̂ − θ)2
}

.

The argument θ in MSE is essential because θ̂ can be also used for estimating
θd ; clearly, MSE(θ̂; θ) �= MSE(θ̂; θd), unless θd = θ. The bias of an estimator
θ̂ of θ is denoted by B(θ̂; θ). Just like for MSE, the argument θ is essential;
we will omit it only when its identity is obvious from the context. We have

MSE(θ̂; θ) = var(θ̂) + {B(θ̂; θ)}2 . (6.3)

This implies that σ2
B in (6.1) exceeds its counterpart in (6.2) by the squared

difference {θ − ED(θD)}2.
We regard MSE as the measure of efficiency. That is, we prefer estimators

with smaller MSE. However, MSE is usually not known and has to be esti-
mated; its value may depend on one or several parameters, sometimes even
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on the target itself. An estimator may be efficient for some values of the pa-
rameters but not for others. All this makes the search for the most efficient
estimator challenging.

6.2 Choosing the estimator

So far, we have identified two candidates for estimating the summary θd for
district d: the direct estimator θ̂d and the national estimator θ̂. Let their
sampling variances be vd = var(θ̂d) and v = var(θ̂). We assume that vd � v;
otherwise the direct estimator would be adequate, given a sampling design
suitable for estimating θ. The (sampling) covariance of θ̂ and θ̂d is denoted by
cd ; usually cd > 0, as the subsample of subjects from district d contributes to
both θ̂d and θ̂.

In this section, we discuss ways of selecting between the two estimators.
The two methods described, although adhering to established approaches of
model-based estimation, are poorly suited for small-area estimation, but it is
important to discuss why that is so. For simplicity, we set aside the context of
survey sampling, and consider the special case when θ is a population mean,
so that our problem closely resembles the analysis of variance (ANOVA), with
the D districts as the groups.

6.2.1 Uniform choice

If σ2
B is very small we should estimate each θd by θ̂. If σ2

B is very large θ̂d

is preferred. What to do in intermediate situations when σ2
B is neither very

small nor very large? The standard textbook treatment proposes to form
the ANOVA table, and test the hypothesis that the groups are homogeneous
(θ1 = . . . = θD), that is, σ2

B = 0, and then act upon the conclusion of the test.
If the null-hypothesis is rejected we use the direct estimator θ̂d for each dis-

trict d. Otherwise we use the national estimator θ̂ for each district. Although
this is a deeply ingrained practice in statistics, there is little good to say about
it. First, θ̂ may be more efficient for θd even when σ2

B > 0. Next, when the
null-hypothesis is not rejected we have no evidence that σ2

B = 0, so we should
not act as if the null-hypothesis held true. Further, if the null-hypothesis is
rejected we reach an impasse for districts that are not represented in the
sample. But the direct estimators θ̂d for sparsely represented districts (small
nd) are also worthless. On the other hand, when the null-hypothesis is not
rejected, the national estimator is imposed even on some districts with large
subsample sizes, for which the direct estimator would have been adequate.

And finally, the decision made by hypothesis testing is not correct with
certainty. This is an inherent limitation of the hypothesis testing as a method.
Alternative methods for choosing between the two models may be superior
(e.g., the Akaike information criterion, AIC), but they do not resolve the
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strategic mistake made — committing ourselves to the ‘winner’, θ̂d or θ̂, for
every one of the D districts. The model selection is not sensitive to the sub-
sequent use of the decision based on it.

With an inappropriate choice of θ̂ we risk bias and with an inappropriate
choice of θ̂d we fail to take advantage of useful information from outside the
district. We should weigh the potential gains and losses in achieving our ob-
jective of efficient estimation for every district; the hypothesis test, or more
generally, model selection, is oblivious to this objective. This theme is devel-
oped fully in Chapter 11. For the time being, and with a specific reference to
small-area estimation, we conclude that the solution by choosing an estimator
(direct or national) is far from optimal.

6.2.2 Tailored choice

The alternative estimators have MSEs var(θ̂d) = vd and MSE(θ̂; θd) = v +
(θd −θ)2. With simple random sampling within the district, vd is a decreasing
function of the sample size nd ; vd = σ2

W/nd , where σ2
W is the within-district

variance. When vd is very large (because nd is very small), the advantage of
the variance reduction, from vd to v, may outweigh the bias θd − θ. When the
variance reduction vd −v is more modest, incurring the bias may not be worth
it. In other words, for districts with large enough nd the direct estimator is
sufficient, whereas for districts with small nd we should resort to the national
estimator. To implement this, we select a threshold sample size n∗ , use θ̂ for
each district that has sample size nd ≤ n∗ , and use θ̂d otherwise.

Ideally, θ̂ should be chosen when MSE(θ̂; θd) < var(θ̂d), that is, when

v + (θd − θ)2 < vd .

We do not know the bias θd − θ and, for most districts, we are unable to
estimate it with any precision. We sacrifice a bit of the ideal of minimum-
MSE estimation by replacing the squared bias (θd − θ)2 with its district-level
expectation σ2

B . Thus, we choose θ̂ when vd > v + σ2
B , and θ̂d otherwise. The

threshold sample size is then

n∗ =
σ2

W

v + σ2
B

.

Note that the variances σ2
W , σ2

B and v have to be estimated. However, they
are quantities related to the survey domain, and so are estimated with much
greater precision than any district-specific quantities, such as the squared bias
(θd−θ)2. On the one hand, it is not practical to assume that each district has a
distinct value of σ2

W ; on the other hand, the assumption of a common value of
σ2

W may not be realistic. A suitable compromise may be the assumption that
σ2

W is constant within each of a small number of regions or groups of districts
defined by their attributes (such as urbanity, population size or presence of a
particular feature).
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The MSE of θ̂ involves the squared deviation (θd − θ)2, which is also the
squared bias B2(θ̂; θd); the sampling variance v is usually of smaller order
of magnitude. When nd > 0, the bias Bd = B(θ̂; θd) = θ − θd is estimated
(without bias) by B̂d = θ̂ − θ̂d . However, B̂2

d is biased for B2
d . In fact,

E(B̂2
d) = B2

d + v + vd − 2cd ,

so the bias sought is B(B̂2
d ; B2

d) = v + vd − 2cd . When vd � v, this is ap-
proximately vd . The unbiased estimator B̂2

d − v̂ − v̂d +2ĉd (or B̂2
d − v̂d , which

is approximately unbiased) attains negative values with positive probability.
If its values are truncated at zero, the unbiasedness is surrendered. However,
unbiased estimators of v, σ2

B and σ2
W would not result in an unbiased (or

efficient) estimator of the threshold n∗ .
Estimation of σ2

B is dealt with in Section 6.4, after we further enhance its
role as a key quantity in small-area estimation.

6.3 Composition

In the previous section, we considered two estimators, θ̂d and θ̂. The tailored
choice, although somewhat more complex than the uniform choice, appears
to be superior. For districts with sample sizes near the threshold n∗ , we have
a strange anomaly. If one or a few observations were removed or added to the
subsample for such a district, the estimate might be changed radically because
the many observations from outside the district would be either discarded or
involved in estimating θd .

We resolve this anomaly by considering the linear combinations

θ̂C
d = (1 − b)θ̂d + bθ̂ , (6.4)

in which we would choose, in ideal circumstances, the coefficient b so as to
minimise MSE(θ̂C

d ; θd). This could be accomplished if we knew v, vd and
cd . We find the optimal coefficient b, as a function of these (co-)variances,
and then make provisions for the practical setting in which only y and the
district identification of the observations are available. Estimators constructed
as linear (or, more precisely, convex) combinations of other estimators, as in
(6.4), are called composite estimators.

We allow the coefficient b to be specific to the district. After all, the min-
imum MSE is bound to depend on vd and cd , which differ from district to
district. To indicate that θ̂C

d depends on b, we write θ̂C
d (b). Later we will con-

sider estimators of the optimal value of b, and so the argument of θ̂C
d will be

a random variable.
The MSE of θ̂C

d (b) is

MSE
{

θ̂C
d (b); θd

}
= (1 − b)2vd + 2b(1 − b)cd + b2(v + B2

d)
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= vd − 2b(vd − cd) + b2(vd + v − 2cd + B2
d)

= R0,d − 2bR1,d + b2R2,d . (6.5)

This is a quadratic function with a positive quadratic coefficient, R2,d =
vd + v − 2cd + B2

d = E{(θ̂d − θ̂)2}, and so it has a unique minimum. The
minimum is attained at

b∗
d =

R1,d

R2,d
=

vd − cd

vd + v − 2cd + B2
d

, (6.6)

and the minimum attained is

MSE
{

θ̂C
d (b∗

d)
}

= R0,d − R2
1,d

R2,d
= vd − (vd − cd)2

vd + v − 2cd + B2
d (6.7)

= v + B2
d − (v + B2

d − cd)2

vd + v − 2cd + B2
d

.

Two (artificial) examples of the MSE given by (6.5) are drawn in Figure
6.1. In the left-hand panel, MSE attains the minimum of 0.12 at b∗ = 0.35
and in the right-hand panel, the minimum of 0.20 is attained at b∗ = 0.75.
In the left-hand panel, the direct estimator is more efficient than the national
estimator; MSE(θ̂d) = 0.24 and MSE(θ̂) = 0.54. In the right-hand panel, the
direct estimator is less efficient; MSE(θ̂d) = 0.76 and MSE(θ̂) = 0.26. In both
cases, either estimator θ̂d and θ̂ can be improved by moving b, however slightly,
from its extreme value, (0 for θ̂d and 1 for θ̂) toward 1

2 . This corresponds to
combining θ̂d with θ̂ with a small weight assigned to θ̂ or θ̂d .

Since vd > v, necessarily vd > cd , and so b∗
d > 0. The variance v and

covariance cd are usually much smaller than vd . Then

b∗
d

.=
vd

vd + B2
d

.

Thus b∗
d < 1, unless the squared bias, B2

d , is negligible. Note that Bd = 0 when
θd = θ; estimating θd by θ̂C

d (1) = θ̂ is then a sound proposition. For b = 1, we
discard θ̂d completely. However, the data from district d still contributes to θ̂,
although it is not any more important than the data from any other district.
This contradicts any reasonable intuition when nd > 0. When the district is
not represented in the sample, b = 1 is a reasonable choice. This avoids the
involvement of θ̂d which is not defined, or could formally be defined as having
infinite variance.

If b = 0, we would rely on data from district d entirely; θ̂C
d (0) = θ̂d . The

composite estimator θ̂C
d can be interpreted as a shrinkage estimator , as it

moves all the direct estimators θ̂d toward the national estimator θ̂:

θ̂C
d (b∗

d) = θ̂ + (1 − b∗
d)(θ̂d − θ̂) .
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Figure 6.1. Examples of MSE(θ̂C
d ; θd) as a function of b.
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The shrinkage, controlled by the (shrinkage) coefficient b∗
d , is stronger for

districts with greater vd (typically, the districts with smaller subsample sizes
nd), which need more ‘assistance’ with estimation of their θd . The gain in
precision (the reduction of MSE) of the composite estimator over the direct
estimator is also an increasing function of vd , if the covariance cd can be
ignored. This is the case not only for the differences vd − MSE(θ̂C

d ; θd); see
(6.7), but also for the ratios vd/MSE(θ̂C

d ; θd). By construction, θ̂C
d (b∗

d) would
be more efficient than both θ̂d and θ̂ because these estimators are specific
(extreme) choices in (6.4). This is also illustrated in Figure 6.1. By restricting
our choice to θ̂d and θ̂, we set our eyes merely on matching the more efficient
of them.

A formidable obstacle to realising the full potential of the composite es-
timator θ̂C

d is that the quantities required for evaluating b∗
d are not known.

The squared bias B2
d is particularly problematic because it involves our tar-

get θd . We resolve this problem by replacing B2
d with its expectation over the

districts, σ2
B = ED(B2

D). Introducing σ2
B does not solve all the problems; σ2

B
also has to be estimated. However, it is estimated with much greater precision
because it is a domain-related quantity — the entire sample y will contribute
to its estimation. Estimation of σ2

B is dealt with in Section 6.4.
By replacing B2

d with σ2
B , that is, by replacing b∗

d in (6.6) with

bd =
vd − cd

vd + v − 2cd + σ2
B

, (6.8)

we have reduced the standard to which we aspire. The minimum MSE given
in (6.7) is not attained with θ̂C

d (bd), even in the unrealistic setting when σ2
B

is known.
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The coefficient bd minimises the expected MSE (eMSE) of θ̂C
d ; eMSE is

defined as the district-level expectation of the MSE:

eMSE(θ̂C
d ; θd) = ED

{
MSE(θ̂C

d ; θd)
}

.

The minimum eMSE is

eMSE
{

θ̂C
d (bd); θd

}
= vd − (vd − cd)2

vd + v − 2cd + σ2
B

; (6.9)

it is a decreasing function of σ2
B . Thus, on average, similarity is conducive

to improvement in the precision of the composite estimator over the direct
estimator. Note that in the district-level expectation we regard vd and cd as
fixed, and average only over θd . This is closely related to assuming that the
subsample sizes nd are fixed. In practice, they rarely are, but many other
methods in survey analysis also condition on the sample size.

The expression var(µ̂d − µ̂) = vd + v − 2cd in the formulae for b∗
d and

bd may at first sight be avoided by considering combinations of µ̂d and the
estimator of the population mean for the country with district d removed. The
attraction of this is that these two estimators are in most sampling designs
independent. When independent, they can be combined more easily, as the
coefficients in their composition are proportional to their precisions.

We show that this approach also yields the composite estimator θ̂C
d . Sup-

pose µ̂ is a combination of µ̂d ,

µ̂ =
1

u+

D∑
d′=1

ud′ µ̂d′ ,

for some positive weights ud′ with total u+ = u1 + · · · + uD , and define

µ̂−d =
1

u+ − ud

∑
d′ �=d

ud′ µ̂d′ .

We can express the composition of µ̂d and µ̂ as

(1 − bd)µ̂d + bdµ̂ =
{

1 − bd

(
1 − ud

u+

)}
µ̂d + bd µ̂−d

(
1 − ud

u+

)
, (6.10)

so that it corresponds to composition of µ̂d and µ̂−d with shrinkage coefficient
bd(1 − ud/u+).

The bias of µ̂−d in estimating µd is

B(µ̂−d ; µd) =
u+

u+ − ud
(µ − µd)

and its sampling variance is
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var(µ̂−d) =
u2

+v − u2
dvd

(u+ − ud)2
.

Hence, after taking the district-level expectation of B2(µ̂−d ; µd), the optimal
combination of µ̂d and µ̂−d has the coefficient

vd(u+ − ud)2

u2
+(σ2

B + v) + vd{(u+ − ud)2 − u2
d)}

,

which coincides with the coefficient in (6.10). Thus, nothing is gained, either
in terms of simplicity or improved estimation, by combining µ̂d with µ̂−d

instead of combining µ̂d with µ̂. Using µ̂−d is perhaps less natural as it is not
an estimator that could itself be used for any purpose. As an aside, µ̂−d is
encountered in jackknife estimation [285].

Example 1

We illustrate the differences between MSE and eMSE on an artificial example
of a country with 40 districts. The national mean of the target variable is 10.0,
the district-level variance is σ2

B = 1 and the within-district variance is σ2
W = 7.

In practice, these three quantities would not be known. The first two columns
of Table 6.1 give the sample sizes and population means of the districts. The
next two columns give the shrinkage coefficients — minimising the MSE and
eMSE, respectively, followed by the corresponding values of MSE or eMSE.
The right-most column gives the MSEs based on the composition (shrinkage)
that minimises eMSE.

Recall that minimising MSE is our ‘real’ aim and minimising eMSE is a
‘similar’ aim that is easier to achieve because the coefficient bd does not involve
the district-level mean µd . The shrinkage coefficients that minimise MSE and
eMSE differ substantially for many districts. The extreme is district 16, for
which b∗

16 = 0.94 and b16 = 0.32. The former suggests that we can rely on the
national mean µ̂, whereas the latter makes us put much more faith in µ̂16 . The
cause of this discrepancy is that µ16 is very close to the national mean µ = 10.
Effectively, µ̂ is unbiased for µ16 , and has a much smaller sampling variance
than µ̂16 . If estimation of µ16 were not informed that µ16 is so close to µ, we
would trust µ̂16 more, responding to the concern about the possible bias of
µ̂. MSE{µ̂C

16(b
∗
16) ; µ16} is extremely small, exceeding var(µ̂) only slightly. In

contrast, var(µ̂16) is 7/14 = 0.50. The minimum eMSE for district 16 is 0.34,
an overstatement of the MSE when b16 (which minimises eMSE) is used.

The results for MSE and eMSE nearly coincide for district 17. The reason
for the close agreement is that the district mean, 11.01, happens to be close
to µ + σB ; it is in the same distance from the national mean as is, in effect,
assumed by eMSE.

The differences between b∗
d and bd are greatest for districts with µd close

to µ. The differences between MSE and eMSE tend to be greater for districts
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Table 6.1. Small-area estimation for a country with 40 districts. An artificial ex-
ample.

District
No.

Sample
size Mean

b∗
d

(MSE)
bd

(eMSE)
MSE

(with b∗
d)

eMSE
(with bd)

MSE
(with bd)

1 23 9.45 0.48 0.22 0.17 0.24 0.21
2 10 11.75 0.18 0.40 0.57 0.42 0.76
3 8 11.06 0.43 0.46 0.50 0.48 0.50
4 6 11.27 0.42 0.53 0.69 0.55 0.73
5 8 9.67 0.88 0.46 0.12 0.48 0.29
6 19 10.52 0.56 0.26 0.17 0.28 0.23
7 14 9.28 0.48 0.32 0.27 0.34 0.29
8 6 9.37 0.74 0.53 0.31 0.55 0.38
9 5 10.69 0.74 0.58 0.38 0.60 0.42

10 16 11.79 0.12 0.29 0.39 0.31 0.51
11 11 8.42 0.20 0.38 0.51 0.40 0.62
12 11 10.52 0.69 0.38 0.21 0.40 0.29
13 5 9.39 0.78 0.58 0.32 0.60 0.39
14 20 12.71 0.04 0.25 0.34 0.27 0.66
15 6 9.36 0.73 0.53 0.32 0.55 0.39
16 14 10.15 0.94 0.32 0.04 0.34 0.24
17 10 11.01 0.40 0.40 0.43 0.42 0.43
18 21 11.60 0.11 0.24 0.30 0.26 0.35
19 9 9.63 0.84 0.43 0.14 0.45 0.29
20 11 8.14 0.15 0.38 0.54 0.40 0.76
21 5 9.51 0.84 0.58 0.23 0.60 0.35
22 21 10.22 0.85 0.24 0.06 0.26 0.20
23 7 9.97 0.99 0.49 0.03 0.51 0.27
24 12 11.39 0.23 0.36 0.45 0.38 0.50
25 16 9.73 0.83 0.29 0.09 0.31 0.23
26 6 10.45 0.84 0.53 0.20 0.55 0.33
27 5 10.69 0.74 0.58 0.37 0.60 0.42
28 24 12.76 0.04 0.22 0.28 0.23 0.54
29 9 10.26 0.91 0.43 0.09 0.45 0.28
30 16 10.71 0.45 0.29 0.25 0.31 0.27
31 12 11.31 0.25 0.36 0.44 0.38 0.47
32 11 11.34 0.26 0.38 0.48 0.40 0.51
33 10 8.04 0.15 0.40 0.60 0.42 0.89
34 20 12.58 0.05 0.25 0.33 0.27 0.62
35 11 10.24 0.90 0.38 0.07 0.40 0.26
36 8 9.80 0.95 0.46 0.06 0.48 0.28
37 24 10.84 0.26 0.22 0.21 0.23 0.22
38 8 9.82 0.95 0.46 0.06 0.48 0.27
39 8 9.72 0.91 0.46 0.09 0.48 0.28
40 7 8.39 0.28 0.49 0.73 0.51 0.90
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Figure 6.2. MSEs and eMSEs of the composite estimators of the mean for a set of
40 districts. Computer generated example. The optimum shrinkage for each district
is indicated by a black disk, for MSE (panel A) and eMSE (panel B).
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with smaller sample sizes nd . For districts with greater nd , the within-district
information prevails, when minimising both MSE and eMSE, although the
impact of the squared bias (µd − µ)2 does not disappear altogether.

Figure 6.2 contains the plots of the MSEs and eMSEs, as functions of the
shrinkage coefficient b, for the D = 40 district-level compositions. The optimal
shrinkage is marked by a black disk for every district. A pattern is difficult to
discern among the MSE curves or values of b∗

d in the left-hand panel because
the values are affected by both sample size nd and the squared bias (µd −µ)2.
In contrast, the eMSEs are aligned in an orderly fashion and the optimal
shrinkage coefficients bd decrease with the sample size nd (increase with vd).
Although the minimum MSE is attained for high values of the shrinkage co-
efficient for several districts, the risk of high MSE is much smaller when less
shrinkage takes place.

6.3.1 Combining the district-level means

As an alternative to combining the direct and national estimators, the direct
estimators for all the districts may be combined. The quantity θd for district
d is estimated using the direct estimator θ̂d and its counterparts θ̂d′ for the
other districts by
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θ̂C
d = bdθ̂d +

∑
d′ �=d

bd′ θ̂d′ ,

where b1 + · · · + bD = 1. For brevity, we denote b = (b1, . . . , bD)�.
The notation bd is not complete because the subscript of b should indicate

not only the ‘contributing’ district d′ but also the target district d; bd′,d .
A district contributes to the estimation of different districts with different
weights; in general, bd′,d1 �= bd′,d2 and bd′,d �= bd,d′ . We omit the second
index throughout, as the target district will always be d. Assuming that the
sampling is independent across the districts, MSE of θ̂C

d is

MSE
{

θ̂C
d (b); θd

}
= b2

dvd +
∑
d′ �=d

b2
d′
{
vd′ + (θd′ − θd)2

}
. (6.11)

Since the squared differences (θd′ −θd)2 are estimated with poor precision, we
replace them by their common expectation σ2

B , yielding

eMSE
{

θ̂C
d (b); θd

}
=

D∑
d′=1

b2
d′vd′ + σ2

B

∑
d′ �=d

b2
d′ .

As a function of the coefficients b, subject to the constraint b�1 = 1,
eMSE{θ̂C

d (b); θd} is minimised by finding the roots of its first-order partial
differentials with respect to bd′ . (1 stands for the vector of ones of length
implied by the context, or indicated by its subscript.) For d′ �= d, we have

1
2

∂eMSE
∂bd′

= −bdvd + bd′(vd′ + σ2
B) . (6.12)

Here we have set bd = 1 −∑d′ �=d bd′ , to avoid the constraint b�1 = 1. The
constraint could also be dealt with by the method of Lagrange multipliers.
The partial differentials of eMSE vanish when

1 − bd

bd
= vd

∑
d′ �=d

1
vd′ + σ2

B
.

Hence, the optimal coefficients are b∗
d = 1/U+ and, for d′ �= d,

b∗
d′ =

1
U+

vd

vd′ + σ2
B

, (6.13)

where
U+ =

1
b∗
d

= 1 + vd

∑
d′ �=d

1
vd′ + σ2

B
.

The eMSE attained with the coefficients b∗
d′ is

eMSE
{

θ̂C
d (b∗); θd

}
=

vd

U+
,
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so that U+ is the quotient of improvement in precision over the direct estima-
tor θ̂d . It is a decreasing function of σ2

B .
This approach appears at first to be unattractive because many coefficients

have to be evaluated. However, the greater flexibility in combining the direct
estimators θ̂d leads to an estimator with smaller eMSE than the composite
estimator θ̂C

d . That is the case when σ2
B is known. A drawback encountered

later is that, unlike θ̂C
d given by (6.4), this estimator does not have useful

generalisations. But its properties have not yet been explored thoroughly even
in some simple settings.

6.3.2 Suboptimal composition

We refer to θ̂C
d (b∗

d) and θ̂C
d (bd) that minimise the MSE or eMSE, respectively,

as ideal composite estimators. We have to resign ourselves to using ‘incorrect’
(in practice, estimated) values of b∗

d . We explore therefore the consequences of
using a coefficient b† different from b∗

d , and discuss estimation of the quantities
involved in b∗

d .
If we substitute a coefficient b† instead of b∗

d in θ̂C
d , we obtain an estimator

less efficient than θ̂C
d (b∗

d). Perhaps θ̂C
d (b†) would still be satisfactory if it was

more efficient than both original estimators θ̂d and θ̂. We compare θ̂C
d (b†) with

them. The MSE of θ̂C
d (b†) is

MSE
{

θ̂C
d (b†); θd

}
= R0,d − 2b†R1,d + b2

†R2,d

= R0,d − b†(2b∗
d − b†)R2,d ; (6.14)

R0,d , R1,d and R2,d are defined in (6.5). Therefore, θ̂C
d (b†) is more efficient

than θ̂d when b†(2b∗
d − b†) is positive, that is, when b† < 2b∗

d . As b† < 1, this
condition is relevant only when b∗

d < 1
2 . The MSE in (6.14) is smaller than

v + B2
d = R0 − 2R1 + R2 when

2(1 − b†)R1 − (1 − b2
†)R2 > 0 ,

that is, when b† > 2b∗
d − 1. This inequality is relevant only when b∗

d > 1
2 . In

summary, θ̂C
d (b†) is more efficient than both θ̂d and θ̂ when

2b∗
d − 1 < b† < 2b∗

d .

The width of this interval, in which b† has to lie, is 1.0. This might seem to
allow us a considerable margin of error in guessing or estimating b∗

d ; however,
only part of the interval (2b∗

d −1, 2b∗
d) is contained in (0, 1), and it is a narrow

interval when b∗
d is close to zero or unity.

Figure 6.3 illustrates that there is nothing unexpected about this outcome.
As a quadratic function of b, MSE is symmetric around its minimum b∗, its
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Figure 6.3. Examples of MSE(θ̂C
d ; θd) as a function of b.
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value is smaller than MSE{θ̂C
d (0)} in the range (0, 2b∗) (relevant in the left-

hand panel), and smaller than MSE{θ̂C
d (1)} in the range (2b∗ − 1, 1) (relevant

in the right-hand panel).
In conclusion, the advantage of θ̂C

d over θ̂d and θ̂ is most vulnerable when
the optimal shrinkage is either almost total (b∗

d = 1) or none (b∗
d = 0). These

cases correspond respectively to very small and very large sample sizes nd ,
but also to very small and very large district-level variances σ2

B .

6.4 Estimating the district-level variance

In the previous section, we derived small-area estimators with minimum
eMSE. The minimum eMSE could be attained only if we knew the district-
level variance σ2

B . As second best, we use an estimate of σ2
B in its place. In

this section, we derive simple estimators of σ2
B , assess the losses in precision

due to not knowing σ2
B and explore how the impact of the uncertainty about

σ2
B can be reduced.

An estimator of σ2
B is based on moment matching. We form a weighted sum

of squares of the direct estimators, S, evaluate its expectation, and estimate
σ2

B by equating S to it. We deviate from the usual moment matching by
averaging not only over the replications, as is the standard, but also over
the districts. The method can be interpreted as separating the two sources of
variation: due to estimation and because of the between-district differences.

Let

S =
D∑

d=1

wd(θ̂d − θ̂)2 ,
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for a set of weights (positive numbers) wd . The expectation of S is

E(S) =
D∑

d=1

wd

{
vd + v − 2cd + (θd − θ)2

}
,

and taking expectation over the districts amounts to replacing the squared
district-level deviations (θd − θ)2 with their district-level expectation σ2

B :

ED {E(S)} =
D∑

d=1

wd(vd − 2cd) + w+(σ2
B + v) ,

where w+ = w1 + · · · + wD . Hence the moment-matching estimator

σ̂2
B =

1
w+

{
S −

D∑
d=1

wd(vd − 2cd)

}
− v . (6.15)

Usually vd is much greater than v and cd and little efficiency is lost by assum-
ing that v and cd vanish. Then

σ̂2
B =

1
w+

(
S −

D∑
d=1

wdvd

)
.

This indicates that σ2
B is estimated from S by adjusting for the sampling

variation of the direct estimators θ̂d .
A practical choice for the weights are the subsample sizes nd . They yield

the estimator

σ̂2
B =

1
n

(
S −

D∑
d=1

ndvd

)
, (6.16)

which simplifies further when vd are inversely proportional to nd , as when
vd = σ2

W/nd . The added advantage of the weights wd = nd in this case is that
the sampling variances vd do not have to be estimated, since ndvd = σ2

W .

6.4.1 The sampling variance of θ̂d

Composite estimators θ̂C
d require the sampling variances vd of the direct es-

timators θ̂d . As there are many districts, we should be concerned that the
errors in estimating the numerous vd may inflate the eMSE, by contributing
to both bias and sampling variance of σ̂2

B , and with it to a loss of precision
in estimating θd by θ̂C

d = θ̂C
d (b̂d), using an estimator b̂d of either b∗

d or bd .
The estimators σ̂2

B in (6.15) and (6.16) are linear functions of the vd , so
we have to focus only on the sampling variation of the v̂d . Districts with
larger sample sizes tend to have smaller sampling variances of θ̂d but their
variances vd contribute to σ̂2

B with greater weight, nd/n in (6.16). So, the
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poorly estimated variances vd are ‘sheltered’ under small coefficients in (6.16).
In fact, we can define the weights wd in such a way as to reduce the impact
of uncertainty about vd . Assigning larger weights for districts with larger
subsample sizes is an obvious prescription, although there is still a myriad of
choices for how fast the weight wd should increase with the subsample size nd .
Also, we should pay attention to the representation of the districts in (6.16).

There may be consistent differences in the sampling variances, due to dif-
ferential within-district variation. For example, the larger districts may be
more variable (have greater within-district variances σ2

W). If we assume a
common within-district variance σ2

W but pool the within-district estimated
variances, the sampling variances vd may be underestimated for the large and
overestimated for the small districts. With sample-size dependent weights as-
signed to the districts’ values of vd (or v̂d), σ2

B is estimated with bias. Assigning
equal weights wd is not a good solution for this problem because then the total
(w1v̂1 + · · · + wDv̂D)/w+ is too variable.

Nevertheless, it is necessary to pool the within-district variance estimates
when the variances are estimated with low precision in most districts. How-
ever, the variance could be pooled over suitable subsets of the districts, defined
either by an attribute, such as urbanity (urban districts tend to be more pop-
ulous and more heterogeneous), or by classifying the districts according to
their population into a few categories.

The covariances cd

For estimators θ̂d and θ̂ that are linear in y, the covariances cd are estimated
straightforwardly, especially when θ̂ is a linear combination of the θ̂d . When
θ̂ = (u1θ̂1 + · · · + uD θ̂D)/u+ and the direct estimators θ̂d are mutually inde-
pendent,

cd = cov(θ̂d , θ̂) =
ud

u+
vd < vd .

Thus, the covariance cd is a substantial fraction of vd for no more than a few
districts d that have large weights ud . Such districts would also have large
sample sizes, and so vd would be small, as would be cd . Composition for such
districts is not particularly effective, but the direct estimator is quite efficient.

District-level means and simple random sampling

By way of an example, consider a survey with a simple random sampling de-
sign from an effectively infinite population. Suppose the district-level means
θd of a continuous variable y are of interest and the districts have a com-
mon within-district variance σ2

W . The direct and national estimators are the
sample means over the district-subsample and the sample, respectively. Their
respective sampling variances are vd = σ2

W/nd and v = σ2
W/n, and the co-

variance of the two estimators is cd = σ2
W/n. Hence, vd + v − 2cd = vd − cd =

σ2
W(1/nd − 1/n). The within-district variance σ2

W is estimated as
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σ̂2
W =

1
n − D

D∑
d=1

nd∑
j=1

(yjd − θ̂d)2

(assuming that each district is represented in the sample). The district-level
variance estimate, based on S with wd = nd , is

σ̂2
B =

1
n

{
S − σ̂2

W

D∑
d=1

nd

(
1
nd

− 2
n

)}
− σ̂2

W

n

=
S − (D − 1)σ̂2

W

n
.

The covariances cd contribute to this expression by −2/n in the first line. If
they are ignored, D − 1 in the second line is replaced by D. This change is
inconsequential when there are many districts D.

Denote the variance ratio ω = σ2
B/σ2

W , and its (naive) estimator by ω̂.
The shrinkage coefficient bd that minimises eMSE(θ̂C

d ) is estimated by

b̂d =
gj

gj + ω̂
,

where gj = 1/nd − 1/n; see (6.8). Ignoring the uncertainty about σ2
W and ω,

the eMSE of θ̂C
d (b̂d) is estimated by

̂eMSE
{

θ̂C
d (b̂d)

}
= σ̂2

W

(
1
nd

− gj

1 + ω̂/gj

)
.

This estimator is downward biased because the uncertanty about ω is bound
to inflate the sampling variance of θ̂C

d . The uncertainty about σ2
W is minor in

comparison.
If we consider the mean of the district-level means θ∗ = ED(θD) instead

of the national mean θ, θ̂ is replaced by

θ̂∗ =
1
D

D∑
d=1

θ̂d .

If each district is represented in the sample,

(v∗ = ) var(θ̂∗) =
1

D2

D∑
d=1

vd .

As soon as one district is not represented in the sample, v∗ = +∞. This is a
serious weakness of θ̂∗.
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Binary data

For binary data yjd (say positive, coded as 1, and negative as 0), there is only
one meaningful parameter to estimate, the proportion (rate or percentage) of
positive outcomes. Another peculiarity of binary data is that the sampling
variance of the estimated rate θ̂d is related to the rate itself. With simple
random sampling with replacement within districts,

var(θ̂d) =
1
nd

θd(1 − θd) ,

so that we can regard θd(1 − θd) as the within-district variance, akin to σ2
W .

The association of the proportion (mean) with the sampling variance has
several implications. First, the error committed in estimating θd is duplicated
when estimating vd = var(θ̂d) naively by θ̂d(1−θ̂d)/nd . Since vd is a non-linear
function of θd , its naive estimator is biased even when θ̂d is not biased for θd . It
may be preferable to estimate each vd by using θ̂ instead of θ̂d . By θ̂(1−θ̂)/nd ,
vd may be estimated with much smaller sampling variance, especially when
θd is close to zero or unity. And we reach full circle if we consider composition
— combining θ̂d(1 − θ̂d)/nd and θ̂(1 − θ̂)/nd according to their (estimated)
precisions in estimating vd . The barrier to effective solution by this route is
that, as before, we require the value of the district-level variance σ2

B (or its
estimate).

However, for proportions distant from zero and unity, the sampling vari-
ance is a flat function of θd , so a substantial error in estimating θd converts
to a minute error in estimating vd . In contrast, for proportions close to zero
or unity, the sampling variance is well approximated by a linear function of
θd ; θd at zero and 1 − θd at unity. In these cases, the problem is more acute.

A practical proposition is to evaluate θ̂C
d with naively estimated vd , but

then to re-estimate vd based on the composite estimator θ̂C
d and repeat the

composite estimation. This is a compromise between using the naive estima-
tors of vd and the ‘stable’ estimators based on the national estimator θ̂.

Similar comments apply to estimation with variables that can be regarded
as outcomes from other single-parameter families of distributions. A notable
example is the Poisson distribution for counts, for which the mean and vari-
ance coincide. We caution that count data may have distributions very dif-
ferent from the Poisson. The association of the mean and variance is relied
on heavily, so the consequences of a departure from it should be carefully
weighed.

6.4.2 The impact of uncertainty about σ2
B

The orthodox reaction to not knowing σ2
B is to estimate it efficiently — as

precisely as possible, and substitute the estimate for the parameter in bd .
However natural this approach may appear, it fails to take into account how
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the estimate σ̂2
B is used. For instance, the consequences of the estimate being

greater than the target, σ̂2
B = σ2

B + ∆, may be much less serious than the
converse, σ̂2

B = σ2
B − ∆, for any positive ∆. The eMSEs with the ‘incorrectly’

substituted values of σ2
B ±∆ instead of σ2

B , that is, with bd = R1,d/(R2,d ±∆)
in (6.5), are

r± = R0 − R2
1(R2 ± 2∆)
(R2 ± ∆)2

;

(we drop the district-index d). The difference of the two eMSEs is

r− − r+ =
4∆3R2

1

(R2 + ∆)2(R2 − ∆)2
> 0 .

Thus, it is preferable to err on the side of greater σ2
B , irrespective of the values

of v, vd and cd , which are involved in R0 , R1 and R2 .
Figure 6.4 illustrates this on an example. The curve drawn in solid in panel

A is the eMSE as a function of the coefficient b for a district; it is based on
the setting vd = 1, v = cd = 0.1 and σ2

B = 0.25, so that the minimum of
eMSE is attained at b∗ = 0.78, and the value attained is 0.296. The dashed
lines are the eMSE’s evaluated for σ2

B set (incorrectly) to 0.4 and 0.1, erring
by 0.15 in both cases. With these two values of σ2

B , the shrinkage coefficients
b+ = 0.69 and b− = 0.90 are obtained. Based on the respective values of σ2

B ,
we obtain the eMSEs of 0.377 and 0.190. The eMSEs based on the correct value
of σ2

B = 0.25, but ‘incorrect’ shrinkage coefficients b+ and b− are 0.305 and
0.312, respectively. Thus, with smaller σ2

B we obtain a poorer estimator, but
the solution will indicate to the contrary (eMSE = 0.190). By overestimating
σ2

B , the eMSE will be overestimated, so the precision of θ̂C
d is assessed with

honesty.
Panel B illustrates what happens when the error is multiplicative. The

same values of vd , cd , v and σ2
B are used, but the errors committed with

regard to σ2
B are multiplicative; the shrinkage coefficient b+ is based on the

1.5-multiple and b− on two-thirds of σ2
B . Now, underestimation of σ2

B is prefer-
able (eMSE of 0.300 against 0.302). Note that the differences in eMSE are
quite small with what might be regarded as substantial errors, in both the
additive and the multiplicative case. The errors in assessing the precision of
the estimators are much greater, though.

A similar conclusion is drawn if we give priority to improving on the direct
estimator θ̂d . MSE{θ̂C

d (b); θd} is a quadratic function of b, with local maxima
at b = 0 and b = 1, so sufficiently small values of b will yield an improve-
ment over the direct estimator θ̂d ; improvement is achieved when b < 2b∗

d .
As b∗

d is a decreasing function of σ2
B , smaller b corresponds to greater value

of σ̂2
B . Therefore, by erring on the side of greater σ2

B , we keep unchanged or
increase the number of districts for which θ̂C

d (b†
d) with b†

d based on σ̂2
B is more

efficient than θ̂d . In other words, composite estimation of θd is conservative if
we overestimate σ2

B . The moment-matching estimator in (6.15) suggests that
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Figure 6.4. The consequences of an error in the guess or estimate of σ2
B . Additive

and multiplicative errors.
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overestimation of σ2
B is achieved by underestimating the sampling variances

vd . Conservatism should, however, be applied in moderation — if the shrink-
age coefficients bd are set very small, we improve the estimation for almost
every district, but the improvement is minute for every one of them.

We can interpret the switch from minimising MSE to minimising eMSE
as ‘estimation’ of the squared bias Bd = (µd − µ)2 by the district-level vari-
ance σ2

B , or its estimator. We could explore whether this estimation can be
improved. An interesting approach is to reuse the idea of composition by
combining (µ̂d − µ̂)2 and σ̂2

B , aiming to estimate (µd − µ)2 efficiently. When
there are many districts D this will have the effect of assigning to (µ̂d − µ̂)2

weight increasing with nd , from zero when nd = 0 to full weight when nd is a
substantial fraction of n. This shrinkage is somewhat more complex to work
out because both (µ̂d − µ̂)2 and σ̂2

B are biased for (µd − µ)2 and their MSEs
depend on the quantities that we aim to estimate.

Exceptional districts

The location and other characteristics of the districts may be an important
factor in the district-level variation. For example, a few districts may be known
to be exceptional; without them the districts are much more homogeneous.
Or the country’s regions may differ a great deal, but the districts within
the regions are much more homogeneous. In these settings, it is preferable
to consider each region, or the country without the exceptional districts, as
a separate domain. Smaller district-level variance is preferable, see (6.9), as
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greater gains in precision are then realised. However, with a smaller dataset,
the district-level variance is estimated with less precision, although, for a
fixed sample size, a smaller variance is estimated with greater precision than
a greater variance.

6.5 Spatial similarity

In the previous section, we recognised two sources of variation: sampling varia-
tion, described by the sampling variances vd = var(θ̂d) (and the independence
of the estimators θ̂d), and district-level variation, which we assume to be such
that varD(θd − θd′ | θd) = σ2

B , a constant. Note that without conditioning on
θ̂d , varD(θd − θd′) = 2σ2

B .
Assumptions about both sources of variation may have to be loosened. For

example, the sampling in distinct small areas may be dependent. An extreme
case of dependence is that only one of a pair of districts is sampled. This may
occur when districts, or units containing districts, are sampled systematically.
But even in stratified clustered sampling, when a small set number of clusters
is sampled without replacement from a stratum, the inclusion of one cluster is
negatively associated with the inclusion of another cluster. Such associations
can be incorporated in the evaluation of MSE in (6.11) by including the bd1bd2-
multiples of the sampling covariances for all pairs of districts d1 and d2 .

District d′ for which the sampling is dependent on the sampling for dis-
trict d is called a sampling neighbour of district d. Most of the 1

2D(D − 1)
covariances that would appear in (6.11) vanish, and in the partial differentials
in (6.12), only the sampling neighbours of district d appear. In practice, it
is difficult to sort out the ‘neighbourhoods’, especially when the number of
districts is large, and the associations involved are not very strong; so, they
are ignored altogether.

Another intuitively appealing model for the district-level variation is that
neighbouring districts (that is, districts that have a common border) are
more similar than districts further apart. Suppose d1 and d2 are neighbour-
ing districts. If being neighbours implies more similarity than for the districts
country-wide, then

varD(θD | θd ; neighbour) = σ2
Bρ

for some ρ < 1. The variation of the means of the neighbours of a district is
smaller than the variation among the districts in general. A typical district
has only a few neighbours, so it is practical to consider ρ as a ‘national’
quantity, defined by pooling over the neighbourhoods of all the districts. Such
neighbour-similarity can be represented by the ratio of the conditional and
unconditional district-level variances:

ρ =
varD(θD | θd ; neighbour)

σ2
B

. (6.17)
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We relate ρ to the (constant) correlation of the pairs of neighbouring districts.
Suppose the values of θd for any two neighbouring districts d1 and d2 are
related by the model

θd2 = �θd1 + εd1,d2 , (6.18)

where εd1,d2 are mutually independent and independent of all θd . The defini-
tion of σ2

B implies that var(εd) = (1 − �2)σ2
B , and so varD(θD | neighbour) =

var(εd1,d2) = (1 − �2)σ2
B . Thus, ρ in (6.17) can be equated with 1 − �2. Sup-

pose next that district d3 is a neighbour of district d2 , but is not a neighbour
of d1 . Then

θd3 = �2θd1 + �εd2,d3 + εd1,d2 ,

and so varD(θD | neighbour’s neighbour) = (1 − �4)σ2
B .

We can define the distance ∆d1,d2 between districts d1 and d2 as the small-
est number of borders that have to be crossed on the way from one district
to the other. For this definition, we have to assume that each district is con-
tiguous; that it does not have separated parts (enclaves). Thus, each district
is in zero distance from itself, in unit distance from its neighbours, and so on.

For settings with � �= 0, we can talk about spatial similarity, and the
squared correlation �2 can be regarded as its measure. It is obvious that
efficient estimation of θd should draw on the information in its neighbours
more than on the information in more distant districts. As in Section 6.3.1,
we consider linear combinations of the direct estimators

θ̂C
d (b) =

D∑
d′=1

bd′ θ̂d′ ,

evaluate their eMSEs, and choose the vector of coefficients b that yields the
minimum eMSE{θ̂C

d (b)}. The solution b∗ depends on d.
To evaluate eMSE{θ̂C

d (b)}, we have to express varD(θD | neighbour) in
terms of � and σ2

B . For the model considered in (6.18), these conditional vari-
ances depend on the pairwise distances ∆d1,d2 ; varD(θD | θd) = (1 − �2∆D,d).
Since it is discrete, we may classify the districts by the distance, and write

θ̂C
d (b) = bdθ̂d +

∆max∑
∆=1

∑
{d′;∆(d′,d)=∆}

b′
dθ̂d′ ,

and for the eMSE,

eMSE{θ̂C
d (b)} = b2

dvd +
∆max∑
∆=1

∑
{d′; ∆(d′,d)=∆}

bd′2
{
vd′ + σ2

B(1 − �2∆)
}

.

Minimising this expression as a function of b = (b1, . . . , bD)�, subject to the
constraint that b�1 = 1, yields

bd′

bd
=

vd

vd′ + σ2
B

(
1 − �2∆d′,d

)
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and

b∗
d =

1
vd U+

b∗
d′ =

1
U+

1
vd′ + σ2

B(1 − �2∆d′,d)
, (6.19)

where U+ =
∑D

d′=1{vd′ +σ2
B

(
1 − �2∆d′,d

)}. Note that the equation for b∗
d does

not have to be quoted separately, as ∆d,d = 0.
For � = 0, (6.19) reverts to (6.13). For � �= 0, the coefficient bd′ is boosted

for districts neighbouring on district d; the denominator vd′ + σ2
B(1 − �2∆) is

smaller for ∆ = 1 than for greater distances.
Flexibility is further enhanced by defining the variances varD(θD | θd) as

functions of the distance ∆D,d , without a reference to a model. The distance
can be defined in a different way, not necessarily as an integer (a discrete vari-
able). The definition of the distance can be bypassed altogether, by specifying
the conditional variances varD(θD | θd) directly, as a D × D symmetric array
with zero diagonal.

Does the distance matter?

This is a question about the nature of similarity. Whereas some phenomena
are transported contiguously, from one district to its neighbours, many others
do not respect any administrative or even national boundaries, or rather re-
spect some other boundaries for which we have a limited understanding and
they defy any concise description. Thus, an epidemic may spread from one
city or airport to another, affecting the small towns and rural districts with
delay and much less profoundly, or from one farm, to another in a consider-
able distance mediated more strongly by business associations than physical
proximity. Physical proximity is distorted by the communication infrastruc-
ture. For example, in passenger rail transport, express railway stations are
connected by fast and frequent services, whereas travelling between the local
stations on the same line is much slower and less convenient. Airlines connect
major cities, with relatively little regard for distance because accessing air-
ports and dealing with the security and other formalities at the airport takes
up a substantial part of the overall travel time. Information spread electroni-
cally has even less respect for distance or administrative boundaries.

6.6 Suggested reading

A number of approaches to small-area estimation are reviewed by [213] and
[214]. Shrinkage estimators for a collection of means (e.g., for small areas) were
proposed by [273] and were put on a theoretical basis by [55], [56] and [57].
They draw on the celebrated finding of [264] and [115] that, when estimating
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more than four means, each of them can be estimated more efficiently than
by the corresponding sample means. These ideas are applied by [67] to a U.S.
Federal Program for distributing funds to localities in the U.S.A., based on
their (estimated) mean income. References [88] and [60] are their important
precursors.

Reference [52] describes a study that evaluates the performance of sev-
eral small-area estimators intended for the Canadian Labour Force Survey.
A similar goal is pursued by [62], in the context of the Italian Labour Force
Survey.

The populations of administrative units are in many countries determined
by adjusting the census figures by extrapolation to the current date. The im-
perfect coverage of the U.S. Decennial Census (Census undercount) has gener-
ated a great deal of controversy spanning constitutional, legal and statistical
issues. These include adjustment of the population (and subpopulation) fig-
ures for small areas, such as U.S. counties. References [248] and [286] propose
solutions of this problem. See [257] for a UK perspective on a related problem.

6.7 Exercises

1. Suppose an island country comprises of only two regions called Inland
and Coastal. The population of the Coastal region is ten times greater.
A survey with a stratified sampling design is conducted in which the
values of a continuous target variable are recorded for a simple random
sample of 10n subjects from the Coastal and for an independent simple
random sample of n subjects from the Inland region. Discuss the merits
of estimating the population mean of this variable for the Inland region
by a, the sample mean for the Inland region; b, the sample mean for
the Coastal region; c, the national sample mean; d, the combination of
the two subsample means with weights 10/11 (for Inland) and 1/11 (for
Coastal). (For simplicity, assume that the two within-region variances are
identical.) e, the national mean, if the test of the hypothesis that the two
regions have identical means is not rejected, and by the sample mean for
the Inland region otherwise.

2. Find in the literature, or on the Internet, the unemployment rates, median
house prices, or some other socio-economic summaries in your country and
region for a sequence of recent years (quarters, months, or the like), and
compare the trends of the two sequences. Search for the details of the
sources of this information (surveys or registers) and, if applicable, for
the estimators applied.

3. Apply the uniform and tailored choice methods to the data in Example 1
and Table 6.1.
Hint: Use the parameter values given in the introduction to the example.

4. Simulate a set of direct and composite estimators for a country with 200
districts. Generate first their population means and sample sizes, from



6.7 Exercises 171

suitable distributions (e.g., gamma and Poisson, respectively). Either as-
sume that each district has the same variance, or generate the within-
district variances by drawing them from a distribution, or setting them
to one of a small number of positive values. Draw a sample mean for
each district (assume normality, independence of the within-district sub-
samples and simple random sampling design in each district). Compare
the direct and composite estimates by counting the number of districts
for which either estimate is closer to the target (the district’s population
mean). Repeat the steps of drawing a sample mean for each district and
applying the direct and composite estimates. For one generated dataset,
compare the results using the district-nation covariances cd estimated or
set to zero. Repeat the simulation exercise and compare the ideal com-
position (based on known variance of the district-level means) with the
composition based on the estimated between-district variance. Estimate
(from simulations) the distribution of the estimator σ̂2

B . Match the dis-
tribution with a χ2 distribution. Why has the matched distribution fewer
degrees of freedom than the number of districts D?

5. On a simulated or real example, study the difference between composite
estimators θ̂C

d based on the naive estimator of bd in (6.8) and its approx-
imation with cd and v set to zero. Draw suitable graphs to show that the
approximation is problematic only for the areas with the largest represen-
tation in the sample.

6. With a dataset used in the previous example, apply for each district the
composite estimators θ̂C

d (b̂d), θ̂C
d (0.9b̂d) and θ̂C

d (0.8b̂d). Compare the three
sets of estimates with their targets. Define and evaluate summaries of the
deviations θ̂C

d − θd that reflect the estimation errors of an estimator type.
Hint: Consider

∑
d(θ̂

C
d − θd)2.

7. Show that the ratios vd/MSE(θ̂C
d ; θd) and vd/eMSE(θ̂C

d ; θd) are decreasing
functions of vd . (Ignore the value of cd or assume that cd = v.) Plot these
ratios as functions of vd for a setting of your choice, without ignoring cd .

8. Consider the problem of estimating district-level means of income (of
members of the labour force, or of households) or unemployment rate.
How would you define suitable distances between pairs of districts (in
your country)? For your (or a selected) district, tabulate the totals of
the subsample sizes of the areas for each distance. Assuming that only a
handful of the districts are your neighbours and most of the districts are
distant, assess the difference between composition that takes distance into
account and one that ignores it.
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Models for small areas

Models are an important conduit to understanding phenomena that we study.
A good model captures the principal features of the complex phenomenon and
ignores the secondary features. The behaviour of the model, deduced theoreti-
cally or observed in simulations, is then assumed to be similar to the behaviour
of the studied phenomenon. In the context of population surveys, the interest
is in the values of variables on the members of a population. Inferences are
desired about (population) summaries of these variables; measures of asso-
ciation, such as a correlation or a regression coefficient can be regarded as
model-related multivariate summaries, involving several variables. The mod-
els we consider describe the phenomena in terms of systematic (consistent)
and random (inexplicable) features.

The systematic features are present in every replication of the study,
whereas the random features are not predictable (replicable). In a model build-
ing exercise, we consider the most important features of the studied popula-
tion, the variables of interest, and of the process of data collection (sampling
and, if applicable, nonresponse and measurement), and match them as closely
as we can to a class of models. For small-area estimation, the key feature is
the presence of the districts, and the understanding (prior information) that
they have similar but not identical means or other subpopulation summaries.

7.1 Analysis of variance

Models for small areas (districts) have to capture two sources of variation:
within districts and among them. The obvious starting point for estimating
the district-level means µd is the model

yjd = µd + εjd , (7.1)

acknowledging that the districts have different means µd and that the values
of y for the units within each district vary around this mean. The nature of the
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variation can be specified by the distributions of the within-district deviations
εjd and the district-level means µd . For the within-district deviations, we
may specify a distribution common to all the districts, different distributions
for each district (district-specific distributions) or common distributions for
subsets of districts. A common distribution is the simplest choice, but it may
not be appropriate. District-specific distributions allow much more flexibility,
but may be impractical when many districts are sparsely represented in the
sample.

Commonly, a class of distributions, such as normal, is assumed for the de-
viations εjd . The purpose of such an assumption is to justify the application of
estimation procedures that are efficient when the assumption is appropriate.
Expediency is an important factor in this — assumptions that lead to simple
estimation procedures are greatly preferred. That is why the normal distribu-
tion is the first candidate, and is used unless there is strong evidence against
it. A secondary factor is that models with normality assumptions are much
better understood; the well established link to linear algebra is particularly
valuable.

Without any assumption about the district-level means µd , (7.1) is a model
for the one-way analysis of variance (ANOVA). With its standard treatment,
it yields the direct estimator µ̂d or the national estimator µ̂ for each district d,
depending on whether we conclude that the district-level means are identical
or not. We have discredited this approach in Section 6.2. The development of
composition in Section 6.3 suggests that we should reexamine the standard
application of ANOVA even in settings other than small areas. This we do in
Section 11.4.

In Section 6.3, we identified the district-level variance σ2
B as the key quan-

tity for finding a composite estimator that is superior to both the direct
and national estimators. The obvious way of introducing this variance in the
ANOVA model is by assuming a distribution for the district-level means. Ex-
pediency suggests that it should be normal, N (µ, σ2

B), unless there is a com-
pelling reason for another choice. Note that this is a district-level distribution;
σ2

B = varD(µD).
The ANOVA model with an assumption about the distribution of the

means µd is called random-effect ANOVA (rANOVA). We can express (7.1)
equivalently as

yjd = µ + δd + εjd , (7.2)

and declare that δd is a random sample from N (0, σ2
B). Since both δd and εjd

are random variables, we can regard them on equal footing as subject- and
district-level deviations, so that µ and the variances σ2

B and σ2
W define the

model completely. Summarising the D district-level means µd by their mean
µ and variance σ2

B is very useful — instead of D ‘degrees of freedom’ we use
only two parameters. However, this does not absolve us from estimating each
district-level mean µd . Even if the three ‘global’ parameters, µ, σ2

B and σ2
W ,



7.1 Analysis of variance 175

are known, we still cannot separate δd from the εjd , j = 1, . . . , nj , so as to
estimate µd = µ + δd .

In rANOVA, µd is a random variable, so we estimate its realisation by
its conditional expectation. If both δd and εjd are normally distributed (and
mutually independent), the conditional distribution of δd given the data y
and the global parameters is

(δd |y; µ, σ2
W , σ2

B) ∼ N
{

(µ̂d − µ)
ndω

1 + ndω
,

σ2
B

1 + ndω

}
, (7.3)

where ω = σ2
B/σ2

W is the variance ratio. Hence the estimator

µ̃d = µ̂ + (µ̂d − µ̂)
ndω̂

1 + ndω̂
(7.4)

= µ̂d
ndω

1 + ndω
+ µ̂

1
1 + ndω

.

This coincides with the estimator θ̂C
d derived in Section 6.3, if we ignore the

covariance cd and variance v in (6.8), and set vd = σ2
W/nd . In (7.3), we ignore

the uncertainty about µ, whereas in (6.8) we do not. However, in neither case
have we taken into account that the variance ratio ω is estimated.

The composite estimator seems to be preferable. We have made fewer
assumptions in deriving it, yet we obtain, at least for small districts (when
cd

.= 0), the same estimator as when normality is assumed. The assumption
of normality seems to be redundant. Conceivably, we might obtain estima-
tors more efficient than µ̃d in (7.4) when another distributional assumption is
adopted. But if the assumption is not appropriate we may be back to square
one or even worse. Besides, the composite estimator θ̂C

d is more versatile be-
cause it can be applied to quantities other than means (or proportions), and
the sampling design can be incorporated in the direct and national estimators
with no additional difficulties brought on by small-area estimation. Incorpo-
rating sampling weights in models such as ANOVA and rANOVA is straight-
forward (all the statistics used are replaced by their weighted versions), but
not all the results extend to the models with weights.

The difference between ANOVA and rANOVA deserves a close examina-
tion. As we replicate the survey in the ANOVA setting, the same district-level
means µd are realised (if the district is represented in the sample). In con-
trast, the replication implied by rANOVA would draw µd for each district d at
random; any given district would have a different mean in every replication.
In this aspect, the assumption of random δd is not correct; in the intended
replications, each µd should be held constant. But with the corresponding
model, (fixed-effect) ANOVA, we get no further than the direct estimator.
This paradox is explained in Chapter 11 where we show that the established
ANOVA (maximum likelihood) estimator is inefficient. The assumption of
randomness of the district-level deviations is merely a device that enables a
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more natural application of a general principle that should be employed, or
at least considered, universally.

We outline this principle in brief, in the context of one-way ANOVA. The
obvious estimator of the district-level mean is µ̂d = (y1d + · · ·+yndd)/nd . It is
unbiased and its sampling variance is σ2

W/nd . If the district-level means were
identical, µ1 = . . . = µD , the overall sample mean µ̂ = (n1µ̂1 + · · ·+nDµ̂D)/n
would be much more efficient for every district: E(µ̂) = µ ≡ µd , and var(µ̂) =
σ2

W/n is much smaller than var(µ̂d). Since the gain in efficiency, from σ2
W/nd

to σ2
W/n would be quite dramatic for most districts (those with nd � n), we

can afford to incur some bias in estimating µd by µ̂, even when the districts
do not have identical means. Finally, instead of arbitrating between µ̂d and
µ̂ as estimators of µd , we should search for their convex combination that
minimises the MSE. The composite estimator aims to do just that, although
we developed it in Section 6.3 without a reference to any models.

7.2 Auxiliary information

The precision of a direct estimator of a district-level quantity θd is limited
by the sample size nd and the district-level variance σ2

B = varD(θD). Neither
the sample size nor σ2

B can be altered; nd because it has been realised and σ2
B

because it is a characteristic of the population (a population quantity). Al-
though the districts differ, often substantially, some of their variation may be
accounted for by an association with one or several variables, either observed
in the same survey or with its values available from other sources.

For example, the mean income may be higher on average in urban than
rural districts. This information could be exploited by analysing rural and
urban districts separately. We then estimate θd more efficiently if the district-
level variance is smaller for both urban and rural districts than it is for the
whole country. On the one hand, the estimate of the district-level variance is
based on less data for both urban and rural districts, so it may be less pre-
cise. On the other hand, smaller variances tend to be estimated with higher
precision (holding the sample size fixed), so the district-level variance is es-
timated not necessarily with less precision for a subpopulation than for the
entire population.

Income is associated with educational level and age. It is plausible that
such an association is present even at the district level — the districts have
different mean incomes, but the within-district associations of income with
educational level and age are much more similar. If by an adjustment for
educational level and age the district-level mean incomes did become more
similar, we could gain efficiency by estimating first the adjusted mean income
for the district, and then correcting it for the deviations of the educational
and age profiles from the national average.

An appropriate model for such an approach has to combine regression
and ANOVA. This leads to models for analysis of covariance (ANCOVA) and
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their versions with random effects (rANCOVA). The latter class is generally
referred to as two-level (a special case of multilevel) or random coefficient
models. For a single covariate x recorded for every subject in the sample, we
consider the rANCOVA model

yjd = β0 + β1xjd + δd + εjd , (7.5)

with mutually independent random terms δd and εjd , with zero means and re-
spective variances σ2

B and σ2
W . Commonly, normality of these random terms is

assumed. This, together with linearity, E(y) = β0+β1x, and homoscedasticity,
var(y | δd) = σ2

W = const, make the model in (7.5) rather restrictive. Either
of these three conditions can be promoted by a transformation of x (and y),
although promoting one condition may be at the expense of the other two.

The model in (7.5) implies a simple regression, y = β0 + β1x + ε, in an
average (typical) district in which δd = 0. Within the districts, y is related
to x, with parallel regressions; the within-district regressions share the same
slope β1 , but differ in their intercepts β0 + δd . This model is also referred to
as random-intercept model. If the model is too restrictive, the regressions can
be ‘let loose’ by introducing district-specific deviations of the slope on x:

yjd = β0 + β1xjd + δ0,d + δ1,dxjd + εjd , (7.6)

where (δ0,d , δ1,d)� have a bivariate normal distribution with mean (0, 0)�

and variance matrix Σ. The districts have regressions

E(yjd | δ0,d , δ1,d) = β0 + δ0,d + (β1 + δ1,d)xjd ,

each with residual variance σ2
W . It is too restrictive to assume that the covari-

ance in Σ vanishes. In fact, the covariance (or the correlation) in Σ indicates
the pattern of variation of the regressions and it controls the value x∗ at which
the regressions attain their minimum variance. Let Σh = varD(δh,D), h = 0, 1,
and Σ01 = covD(δ0,D , δ1,D) be the elements of Σ. Then the variance of the
within-district regressions at a point x is(

1
x

)�
Σ
(

1
x

)
= Σ0 + 2Σ01x + Σ1x

2 .

The minimum of this variance, Σ0 − Σ2
01/Σ1 , is attained for x∗ = −Σ01/Σ1 .

Thus, when Σ is singular all the regressions cross at the point (x∗, β0 +β1x
∗),

unless Σ1 = 0, in which case the regressions are parallel and var(y) = σ2
W+Σ0

is constant. Identical regressions correspond to Σ = 0.
Figure 7.1 gives examples of sets of varying regressions. In each panel, the

intercepts and slopes have unit variances, and their correlation is given in the
subtitle. In panel A, the intercepts and slopes are uncorrelated; there x∗ = 0.
In panel F, the intercepts and slopes are strongly negatively correlated; their
lines cross in a narrow band around x = 1. When the intercepts and slopes
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Figure 7.1. Sets of random regressions. Computer generated examples.
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are strongly positively correlated, the regression lines intersect near a negative
value of x, as in panel E.

If we move the origin of x, by a transformation x† = x − c, the pattern of
the lines is not altered, but the ‘window’ is moved, from (0, 2) in the panels in
Figure 7.1 to (c, 2+ c). The covariance Σ01 and the variance of the intercepts,
Σ0 , are also changed. The variance matrix for the model with x† is

Σ† =
(

1 c
0 1

)
Σ
(

1 c
0 1

)�
.

Therefore, if we could conceivably use x† instead of x as a covariate, we cannot
assume that the covariance Σ01 vanishes or attains any specific value.

7.2.1 Several covariates

With several covariates, we specify the general two-level regression model as

yd = Xdβ + Xdδd + εd , (7.7)
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where εd ∼ N (0nd
, σ2

WInd
) and δd ∼ N (0p , Σ), independently. (0 is the

vector of zeros of length indicated by its subscript and I is used similarly for
the identity matrix.) The model parameters are β (a p×1 vector), the residual
variance σ2

W , and the (p × p) district-level variance matrix Σ. This variance
matrix has 1

2p(p + 1) unique parameters and they characterise the pattern of
the within-district regressions E(yd | δd) = Xd(β + δd):

varD {E(yd | δD ; Xd)} = XdΣX�
d .

The model in (7.7) can be paired up with the ANCOVA model which differs
from it only by the assumptions about δd . In ANCOVA, the δd are (fixed)
parameters and the differences among the slopes in (7.7) are represented by the
slope-by-district interactions. When there are many districts (groups) d the
district-level variation is described by the 1

2p(p+1) (co-)variance parameters in
rANCOVA more parsimoniously than by the D(p− 1) interaction parameters
in the ANCOVA model.

Just as in ANCOVA we prefer models with fewer sets of interactions, in
(7.7) we can also restrict the pattern of district-level variation. This is done
by assuming that certain variances in Σ vanish. With each variance that is
set to zero, all the covariances in the same row and column of Σ are also
constrained to zero. If all the regression slopes are constrained in this way,
only the intercepts vary,

yd = Xdβ + δ0,d + εd ; (7.8)

now the regression lines are parallel and Σ contains only one parameter, the
intercept variance.

As an alternative to the notation in (7.7) with the constraints on Σ, we
can write

yd = Xdβ + Zdγd + εd , (7.9)

where Zd is formed by the columns of Xd for which the within-district re-
gressions vary (the corresponding variances in Σ are positive). The number
of variables in each Zd is denoted by r. The variables in Z are said to be as-
sociated with variation. For example, in (7.8), only the intercept is associated
with variation; Z = 1 and r = 1. The p variables in X are said to form the
regression part and those in Z (associated with district-level variation) the
district-level variation part of the model. The regression and variation parts
are also referred to as the respective fixed and random parts of the model.

The analogy between ANCOVA and two-level models suggests a general
strategy for selecting variables into the variation part. The regression part
can be equated to the main effects and the variation part to the interactions
in ANCOVA. First, the variation part should not contain any variables not
included in the regression part — interactions in ANCOVA are not meaningful
without the associated main effects. Second, we should be more selective about
including variables in the variation than in the regression part — the model



180 7 Models for small areas

should have fewer sets of interactions than it has main effects. And finally,
it is more appropriate to include a variable in the variation part when it is
important in the regression part — it is more meaningful to consider inter-
actions for variables that have substantial main effects. Variables that have
values constant within each district, or are defined for districts, should not
be included in the variation part because the within-district slopes on these
variables are not identified. Variables that vary much less within districts than
among districts should not be included in the variation part either, because
their within-district slopes are poorly identified.

These rules imitate the conventions universally adopted in ANCOVA. In
rANCOVA, they may be broken; such models may be meaningful, but the
interpretation in terms of varying regressions is no longer applicable. For ex-
ample, a district-level variable z may be included in the variation part, but its
role is solely to model variance heterogeneity, the dependence of the variance
var(y) on z.

Subject- and district-level models

The two-level model has an alternative formulation in terms of a subject- and a
district-level model. Let X =

(
X(1), X(2)

)
be the partitioning of the covariates

(columns of X) to variables defined for subjects and districts, respectively. The
variation part is selected from the variables in X(1).

We can formulate separate regression models for subjects and districts:

yd = X(1)
d β

(1)
d + εd

(7.10)
β

(1)
d = β(2)x(2)

d

�
+ γd ,

where β(2) is a matrix of parameters and x(2)
d a row of X(2)

d . (The rows of
X(2)

d are identical for the subjects in district d.) The equation for β
(1)
d is a

(multivariate) model for the (within-district) regression coefficients. Note that
with the variables in X(2) their interactions with X(1) are also included in the
model:

yd = X(1)
d β(2)x(2)

d

�
+ X(1)

d γd + εd ;

compare with (7.9). Unless several parameters in β(2) are constrained to zero,
the interactions are absent only when the model for β

(1)
d is univariate, that is,

when X(1)
d = 1 and a district-level model is specified only for the intercept.

The model formulation by (7.10) suggests that the effective sample size
for certain parameters is n (σ2

W and the components of β
(1)
d that are constant

across the districts), while for others (the parameters in β(2) and Σ) it is only
D. District-level variables X(2) can reduce only the district-level variation.
Some subject-level variables vary not only within but also across districts; so,
even if defined for subjects, they may contribute to reducing the district-level
variation.
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The district-level model in (7.10) may contain variables that are aggre-
gates, such as the district-level means of some subject-level variables. The
means, or other summaries, should be for the population, not the sample.
The sample means are correlated with the subject-level variables, and their
use raises some issues related to measurement errors in covariates.

7.2.2 Two-level models and small-area estimation

The variables in X, used in the regression for the target variable y, are called
auxiliary. Their purpose, and the purpose of the models in which they are
involved, is to contribute to small-area estimation, that is, to enable estima-
tion of district-level population quantities with greater efficiency than if their
values were not available. Having defined a rich class of models by (7.7) or
(7.9), we have to choose a suitable model on which to base our inferences — to
estimate the district-level means. Although in Chapter 11 we question the ap-
propriateness of this general approach, we adhere here to this long-honoured
convention.

We may start with a general model and search for terms in its regres-
sion and variation parts that are redundant — the quality of the model fit is
reduced insubstantially by excluding them from the model. This may be ac-
complished in several steps, excluding variables one-by-one and reviewing the
model fit at every step. Since the iterative procedures for fitting these models
are more complex for more extensive variation parts, it is practical to start
with a relatively simple model and look for variables that improve the model
fit when included (first) in the regression and (then) in the variation part of
the model. As an alternative, we may start with an extensive regression part
and a trivial variation part (parallel district-level regressions), and proceed by
reducing the regression and expanding the variation part, without breaking
the ANCOVA-motivated convention that the variation part is subsumed in
the regression part. (No interactions should be retained without both of their
main effects.) For the selected model, the mean for a small area is estimated
by the multivariate version of (7.3):

ŷd = xdβ̂ + zdγ̂d ,

where xd and zd are the within-district sample means of the covariates x and
z, β̂ is the estimate of β obtained by fitting the model in (7.9) and

γ̂d = E(γd |y) = Ω̂
(
Ir + Z�

d ZdΩ̂
)−1

Z�
d (yd − Xdβ̂) ;

Ω̂ is the estimate of the scaled variance matrix σ−2
W Γ and Γ = var(γd). Details

of the estimation procedure are given in the next section.
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7.3 Computational procedures

Maximum likelihood (ML) is the traditional workhorse for models for which
there are no intuitively derived estimation procedures. Many estimators de-
rived by other methods are either ML or closely related to ML. In brief, ML
has little competition in the field of efficient estimation. Its application is
supported by powerful results about asymptotic efficiency — good properties
for large samples, although what constitutes a large enough sample is often
difficult to establish. Apart from the large enough sample size, another impor-
tant caveat is that the properties of ML estimators refer to ‘when the model
applies’. In practice, we make an effort to identify an appropriate model, a
parsimonious model that is not contradicted by the data, and then proceed
regarding it as the model. Chapter 11 discusses this and related issues in
greater depth.

The likelihood is defined as the joint density of the observations, regarded
as a function of the parameters:

L(θ;y,X) = f(y; θ,X) .

That is, the roles of the data (argument of the density function f) and param-
eters (argument of the likelihood L) are interchanged. ML is defined as the
global maximum of L, that is, as the vector of parameters for which the joint
density would be the highest. Throughout, we work with the log-likelihood,
l = log(L), because its maximisation is easier.

For the model in (7.9), with the usual assumptions of normality and inde-
pendence of the random terms γ and ε, the log-likelihood is

l = −1
2

{
n log(2π) +

D∑
d=1

log(detVd) +
D∑

d=1

e�
d V−1

d ed

}
, (7.11)

where Vd = var(yd) is the variance matrix of the observations in district
d and ed = yd − Xdβ is the vector of residuals for observations in district
d. The summations in (7.11) can be dispensed with by defining X as the
matrix constructed by vertically stacking Xd , d = 1, . . . , D, conforming with
y = (y�

1 , . . . ,y�
D)�, defining e = y − Xβ and denoting V = var(y). V is the

block-diagonal matrix composed of blocks Vd . Then

l = −1
2
{
n log(2π) + log(detV) + e�V−1e

}
.

Also, X�V−1X =
∑

d X�
d V−1

d Xd , and similarly for any other quadratic form
in V−1. The model in (7.9) implies that

Vd = σ2
WInd

+ ZdΣZ�
d .

A one-to-one reparametrisation of (σ2
W , Σ) does not alter the model fit (the

ML solution). It is advantageous to work with the scaled (relative) variance
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matrix Ω = σ−2
W Σ and with the matrices Wd = σ−2

W Vd = Ind
+ ZdΩZ�

d and
W = σ−2

W V which, with Ω, do not involve σ2
W . The log-likelihood (7.11) can

be expressed as

l = −1
2

{
n log(2πσ2

W) + log(detW) +
1

σ2
W

e�W−1e
}

. (7.12)

Its maximum is found as the root of the vector of the first-order partial dif-
ferentials of l. For β, we have

∂l

∂β
=

1
σ2

W
X�W−1e ,

and its root is the weighted least squares (WLS) estimator

β̂ =
(
X�Ŵ

−1
X
)−1

X�Ŵ
−1

y . (7.13)

Note that (7.13) depends on the estimate of Ω, involved in Ŵ. The partial
differential of l with respect to σ2

W is

∂l

∂σ2
W

= −1
2

(
n

σ2
W

− 1
σ4

W
e�W−1e

)
;

hence
σ̂2

W =
1
n
ê�Ŵ

−1
ê . (7.14)

This simple expression is obtained owing to the Ω-parametrisation.
For evaluating a quadratic form u�

1 W−1u2 for an arbitrary pair of vectors
u1 and u2 of length n each, neither W nor its inverse W−1 have to be formed.
Their blocks Wd and W−1

d do not have to be formed either, as we show in
Section 7.3.2.

Finally, for ω, an element of Ω, we have

∂l

∂ω
= −1

2

D∑
d=1

tr
(
W−1

d Zd
∂Ω
∂ω

Z�
d

)

+
1

2σ2
W

D∑
d=1

e�
d W−1

d Zd
∂Ω
∂ω

Z�
d W−1

d ed . (7.15)

The partial differential ∂Ω/∂ω is a matrix of the same dimensions as Ω. If ω
is a variance ∂Ω/∂ω is a matrix containing zeros in every element except for
the location of ω, where there is a unity. If ω is a covariance ∂Ω/∂ω contains
zeros everywhere except for unities at the two locations to which ω refers. In
principle, any parametrisation for Ω can be used; some options are discussed
in Section 7.3.2. All the terms in (7.15) can be evaluated from Z�

d W−1
d Zd and

e�
d W−1

d Zd , d = 1, . . . , D, as the totals of products of their elements.
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The root of (7.15) cannot be found analytically. The Newton-Raphson
algorithm is a general method for locating the extremes of analytical functions.
It proceeds by iterations of the formula

θ̂new = θ̂old + H−1(θ̂old) s(θ̂old) , (7.16)

where s(θ) is the vector of first-order partial differentials of l and −H(θ) the
matrix of its second-order partial differentials with respect to θ. The vector
s is called the score vector and −H the Hessian matrix. A more rigorous
notation is Hθ(θ̂), indicating that the partial differentials are with respect to
θ and are evaluated at θ = θ̂. When no ambiguity arises or the arguments
are immaterial, one or both arguments are dropped.

The second-order partial differential with respect to any two parameters
in Ω is

∂2l

∂ω1 ∂ω2
=

1
2

D∑
d=1

tr
(
Z�

d W−1
d Zd

∂Ω
∂ω1

Z�
d W−1

d Zd
∂Ω
∂ω2

)

− 1
σ2

W

D∑
d=1

e�
d W−1

d Zd
∂Ω
∂ω1

Z�
d W−1

d Zd
∂Ω
∂ω2

Z�
d W−1

d ed

− 1
2

D∑
d=1

tr
(
Z�

d W−1
d Zd

∂2Ω
∂ω1 ∂ω2

)

+
1

2σ2
W

D∑
d=1

e�
d W−1

d Zd
∂2Ω

∂ω1 ∂ω2
Z�

d W−1
d ed . (7.17)

This is a formidable expression, although it simplifies somewhat when Ω is a
linear function of both ω1 and ω2 (for example, when ω1 and ω2 are variances
or covariances in Ω); then the last two terms, involving ∂2Ω/(∂ω1 ∂ω2), van-
ish. But the entire expression is composed of cross-products of the elements
of Z�

d W−1
d Zd and Z�

d W−1
d ed , so its evaluation is not any more complex than

for the other expressions required for maximising l.
The negative of the Hessian,

Hθ = − ∂2l

∂θ ∂θ� ,

where θ is a vector of all the parameters involved in l, is also called the observed
information matrix . As H is defined for a parameter vector, it is altered by
reparametrisation. H is defined for the entire vector of parameters in the
two-level model, comprising β, σ2

W and ω, the vector of all the independent
elements of Ω. The off-diagonal elements of H that involve σ2

W and an element
of ω or β are of no importance, although they do not vanish.

The expectation of H is called the expected information matrix and is
denoted by I; I = E(H). The theoretical importance of I is that, under
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certain regularity conditions, its inverse is the asymptotic sampling variance
matrix of the ML estimator;

avar(θ̂) = {I(θ)}−1
.

In practice, the qualifier ‘asymptotic’ (a in avar) is ignored. In large-scale
surveys, this is appropriate for some parameters. Another important quali-
fication is that I depends on unknown parameters, sometimes even on the
target of estimation. So, we can at best estimate I, by Î. Having done so,
caution is called for in estimating I−1 by Î−1

. Conventionally, the square
roots of the diagonal entries of Î−1

are quoted as the standard errors. We
should bear in mind that they are estimated and they are problematic be-
cause of the string of non-linear operations (including matrix inversion) and
naive estimation involved in their evaluation. The problems are most acute
when the matrix Î is ill-conditioned.

Further imprecision in working with Î may occur when we invert its sub-
matrix corresponding to the parameters of interest, instead of the whole ma-
trix. With two-level models, this is not a problem for the separate sets of
parameters β (regression), σ2

W (within-district variation) and ω (district-level
variation), because I is block-diagonal, with its blocks corresponding to these
sets of parameters. For example,

−E
(

∂2l

∂β ∂ω

)
= X� ∂W−1

∂ω
E(e) = 0 .

Furthermore, if the uncertainty about Ω is ignored, var(β̂) = I−1
β without a

reference to asymptotics. This is derived from (7.13) directly:

var
{(

X�W−1X
)−1

X�W−1y
}

= σ2
W
(
X�W−1X

)−1
X�W−1X

(
X�W−1X

)−1

= σ2
W
(
X�W−1X

)−1
,

assuming that Ω and σ2
W are known. Therefore, the quoted standard errors

for β̂, derived from
Îβ = σ̂−2

W X�Ŵ
−1

X ,

are not tainted by any asymptotic dependence of β̂ and Ω̂. The residual
variance σ2

W is usually estimated with high precision, and so the elements of
I that involve σ2

W are of no concern.
The reference to asymptotics is contentious for the parameters in Ω be-

cause their sample size is more appropriately characterised by the number of
districts, and even that may be an overstatement. To see this, suppose that
the variance σ2

W and the deviations γd , d = 1, . . . , D, are known. Then the
scaled variance matrix Ω is estimated by scaling the sample variance matrix
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of γd , centred around 0, so it is distributed according to the scaled multivari-
ate χ2 (Wishart) distribution with D degrees of freedom. When the γd are
not known each element of Ω is bound to be estimated with less precision or,
after matching to a χ2 distribution, with fewer degrees of freedom than D.

The importance of Î for computations is that it is a more stable ap-
proximation to or estimator of H. For maximising the log-likelihood, it is
advantageous to replace Ĥ by Î; this induces some stability in the iterations,
but also in many settings (including ours), the expression for I is simpler and
easier to evaluate than for H. The Newton-Raphson with this adaptation is
called the Fisher scoring algorithm.

As Hβ = −σ−2
W X�W−1X does not depend on y, Iβ = Hβ . For a pair

of parameters involved in Ω, the expectation of (7.17) reduces to

−E
(

∂2l

∂ω1 ∂ω2

)
=

1
2

D∑
d=1

tr
(
Z�

d W−1
d Zd

∂Ω
∂ω1

Z�
d W−1

d Zd
∂Ω
∂ω2

)
. (7.18)

7.3.1 Restricted maximum likelihood

An apparent deficiency of ML is that its estimators of the variances are biased.
For example, the denominator in (7.14) is n, whereas intuition and an analogy
with ordinary least squares (OLS) suggest that it should be n − p. In fact,
the ML estimator of the residual variance in the ordinary regression model
also has the denominator n, whereas the denominator n − p would yield an
unbiased estimator of σ2. The p degrees of freedom are lost because the p
regression parameters in β are not known; ML procedures are oblivious to
this fact. If β were known σ̂2

W in (7.14) would be unbiased.
A conceptual remedy for this deficiency of ML is to maximise the likeli-

hood of the so-called ‘error’ contrasts of the outcomes ([204] and [94]). These
contrasts y∗ are a linear transformation of the outcomes y that is orthogonal
and complementary to the regression design space spanned by X. The trans-
formation is not unique, but yields the same likelihood function, apart from
a constant factor that is irrelevant for likelihood maximisation. A practical
choice for the transformation is the projection y∗ =

{
I − X

(
X�X

)−1
X�
}

y,
and the resulting log-likelihood is

lR = l +
1
2

log
{
det
(
X�V−1X

)}
. (7.19)

This (log-)likelihood is called restricted, as opposed to the full (log-)likelihood
in (7.11). The qualifiers ‘full’ and ‘restricted’, or ML and REML, are also used
for the estimators obtained by maximising the respective likelihoods. They are
not meant to indicate any superiority of l over lR .

Since lR is an adjustment of the original (‘full’) likelihood, it can be max-
imised by suitably adapting the Newton-Raphson or Fisher scoring algorithm
for maximising l. First, since the adjustment log

{
det
(
X�V−1X

)}
in (7.19)



7.3 Computational procedures 187

does not involve β, the WLS estimator in (7.13) is unchanged, except for a
change in Ŵ stemming from an altered estimator of Ω. Next, as

det
(
X�V−1X

)
=
(
σ2

W
)p

det
(
X�W−1X

)
and W = σ−2

W V depends only on Ω,

∂lR
∂σ2

W
=

∂l

∂σ2
W

+
p

2σ2
W

.

Hence the REML estimator is σ̂2
W = ê�Ŵ

−1
ê/(n − p); the denominator is

adjusted for the regression degrees of freedom.
The adjustment for estimating Ω is somewhat more difficult to derive, but

is still straightforward to implement. The first-order partial differential with
respect to an element of Ω is

∂lR
∂ω

=
∂l

∂ω
− 1

2σ2
W

tr

{(
X�W−1X

)−1
D∑

d=1

(
X�

d W−1
d Zd

∂Ω
∂ω

Z�
d W−1

d Xd

)}
.

(7.20)
To evaluate this expression we need, apart from ∂l/∂ω, the quadratic forms
X�

d W−1
d Zd ; their total is X�W−1Z.

The second-order partial differentials are rather formidable expressions
in the general case, and are usually not evaluated. Details are given in the
Appendix. Maximisation of lR can proceed with E{−∂2l/(∂ω1 ∂ω2)} instead
of its counterpart with lR , ignoring the adjustment given by (7.33).

Data for small-area estimation usually contain several (tens of) thousands
of records, so the REML adjustment for σ2

W is unimportant. The adjustment
for Ω is a different matter altogether, because the effective sample size for it
is at most D. In fact, it would be D if each district were represented by so
many subjects that each deviation γd would be (almost) known. In practice,
the effective sample size (number of degrees of freedom) is much smaller. So, a
small adjustment can make a lot of difference. The loss of p degrees of freedom
for σ2

W is unimportant, but a similar loss for ΣB or Ω (from D to D − p) has
a much greater impact. The response should not be an attempt to recover
the loss (that is futile), but to understand the optimistic nature of the verdict
proferred by the results of a ‘full’ ML analysis.

REML is concerned with reducing bias. This does not necessarily pro-
mote efficiency. Both bias and efficiency are fragile properties — they are lost
by non-linear transformations. To illustrate this, suppose the variance of a
normally distributed variable is estimated from a random sample y1 , . . . , yn

without bias by σ̂2 =
∑

i(yi − y)2/(n − 1), where y is the sample mean of the
yi . The (n−1)/σ2-multiple of σ̂2 has χ2

n−1 distribution; var(σ̂2) = 2σ4/(n−1).
However,

MSE
(

n − 1
n + 1

σ̂2
)

=
2σ4

n + 1
.
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Therefore, the denominator n + 1 yields a more efficient estimator of σ2.
Further, 1/σ̂2 is biased. It becomes unbiased if the denominator is set to
n − 3. But neither of these estimators is efficient; the optimal denominator is
(n − 1)2/(n − 3) + 2(n − 3)/(n − 5). The proof is left for an exercise.

7.3.2 Implementing ML and REML

When some of the sample sizes nd are substantial, the computation of the
various quadratic forms u�

1 W−1u2 is greatly speeded up by exploiting the
specific form of Wd , Wd = Ind

+ ZdΩZ�
d . It is easy to show that

W−1
d = Ind

− ZdΩG−1
d Z�

d
(7.21)

det (Wd) = (σ2
W)nd det (Gd) ,

where Gd = Ir +Z�
d ZdΩ are r× r matrices. With these expressions, we avoid

the inversion and evaluation of the determinants of any sizeable matrices,
irrespective of the sample sizes nd . For example,

X�W−1X = X�X −
D∑

d=1

X�
d Zd ΩG−1

d Z�
d Xd .

Further,

ê�W−1ê = y�W−1y − 2y�W−1Xβ̂ + β̂
�
X�W−1Xβ̂ ,

so we do not have to evaluate the vector of residuals ê. Of course, when
nd ≤ r it is more practical to form the matrix Wd and invert it directly. The
quadratic forms in (7.15), (7.17) and (7.20) involve Z. These expressions can
be reduced by using the identity

Z�
d W−1

d u = Z�
d u − Z�

d Zd ΩG−1
d Z�

d u

= G−1
d Z�

d u (7.22)

for any vector u of length nd .
In summary, the Fisher scoring algorithm requires the following statistics

(data summaries):

• the sample matrix of cross-products (X, y)�(X, y) ;
• the within-cluster matrices of cross-products (Xd , yd)�Zd .

After calculating these before the first iteration, the Fisher scoring iterations
involve no operations with subject-level data. An efficient organisation of the
calculations is summarised by the following scheme:

1. Data input.
2. Calculate (X, y)�(X, y) and (Xd , yd)�Zd , d = 1, . . . , D.
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3. Fit OLS and define the initial solution. See Section 7.3.3.
4. Apply iterations until convergence. Each iteration comprises the following

steps:
a) Calculate G−1

d and ΩG−1
d .

b) Calculate G−1
d Z�

d (Xd , yd).
c) Calculate

(X, y)�W−1(X, y) = (X, y)�(X, y)

−
D∑

d=1

(Xd , yd)�Zd ΩG−1
d Z�

d (Xd , yd) .

d) Update β̂ and σ̂2
W . Evaluate the (restricted) log-likelihood.

e) Calculate the various cross-products (Zd , êd)�W−1
d Zd required for

updating Ω̂.
f) Update Ω̂. Check positive definiteness of Ω̂ and convergence.

5. Collect the results in a suitable object or array. Add displays related to
model diagnostics and to the specific purpose of the analysis (such as
small-area estimation).

7.3.3 Computational issues

This section discusses issues common to all iterative model fitting algorithms.
They apply equally to ML and REML estimation.

Initial solution

All iterative algorithms require an initial solution, to be used in the first
iteration. For the regression parameters, the OLS fit is an obvious choice,
although the fit to the model with the same regression part but a different
variation part (Z) can also be used, when available from a previous model fit
to the same dataset. The residual variance from the OLS fit usually exceeds
the estimate σ̂2

W fitted to the two-level model, especially when the between-
cluster variation is substantial. So, a substantial fraction of the OLS estimate
of the residual variance can be used as the initial estimate of σ2

W . In random-
intercept models (when Z = 1), the complementary fraction is a suitable
initial solution for ω. For example, the OLS estimate σ̂2 can be split so that
0.9σ̂2 and 0.1 are the respective initial estimates of σ2

W and ω.
When the variation part contains one or several variables, so that a matrix

Ω is estimated, the starting solution can be set to a diagonal matrix Ω̂. For
any reasonable model, the slopes can be expected not to vary wildly, so the
ordinary regression slope can be used as a guide. Suppose the estimate of the
slope on a variable involved in Ω is substantial, say, equal to β̂ > 0. Then by
setting the variance to β̂2/4 we are guessing that the slope is negative in only
a small fraction of the clusters. In general, it is better to start with inflated
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variances in Ω̂, although the speed of convergence should not depend strongly
on the initial solution. If it does, it is a sign of instability in the solution, which
can best be resolved by simplifying the model, especially its variation part Z.

Alternatively, the variances in Ω̂ can be set by simple moment matching
applied to the cross-products ê�

d Zd , or the variances can be set as guesses
based on the OLS fit, assuming that the standard deviation of the slopes is
of the same order of magnitude as the slope itself. This approach is not sub-
stantially superior; its main advantage is that Ω̂ is initially set automatically,
without the analyst’s improvisation.

Convergence criteria

The iterations can be stopped when the log-likelihood or the estimates are
changed by successive iterations only slightly, or when the score vector is
close to 0. And these three criteria can be combined, for example, by insisting
that either the maximum or the total of the norms of the updating corrections
and of the score vector, and the absolute difference of the log-likelihoods in
consecutive iterations is smaller than a prescribed value, such as 10−5. An
adjustment can be made for the number of parameters; the norm can be
scaled to avoid handicapping problems with many parameters.

The convergence properties of the Fisher scoring algorithm are quite robust
with respect to the starting solution, especially for models with few variables
in the variation part. Usually one or two iterations make up for a poorly set
initial solution.

Non-negative definiteness of Ω̂

The Fisher scoring and Newton-Raphson algorithms do not intrinsically pro-
duce estimates of Ω̂ (or Σ̂) that are non-negative definite. Special arrange-
ments have to be made to force this. It does not suffice to force the variances
to be non-negative and the correlations in Ω̂ to be within the range [−1, 1] at
every iteration. A simple counterexample is provided by the matrix⎛⎝ 1.0 0.7 −0.8

0.7 1.0 0.3
−0.8 0.3 1.0

⎞⎠ .

Even though each off-diagonal element in it is within the range (−1, 1), it is
not a variance (or correlation) matrix because its eigenvalues are 1.9, 1.3 and
−0.2.

The log-likelihood l in (7.12) is well defined as an analytical function be-
yond the space of non-negative definite matrices Ω; it suffices that all the
matrices Gd = I + Z�

d ZdΩ are positive definite. Thus, we could search for a
solution in this extended parameter space, and upon convergence project the
solution back to the original parameter space. This can be done by replacing all
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the negative eigenvalues λk in the eigenvalue decomposition Ω̂ =
∑

k λkξkξ�
k

with zeros. Although sufficient for most practical purposes, the resulting so-
lution is neither ML nor REML.

A solution that works in most cases halves the updating vector ∆ = Ĥ−1
ŝ

whenever the new solution is not positive definite. The halving may have to
be repeated several times and in several iterations. Since the initial solution is
positive definite, halving, repeated sufficiently many times, leads to a positive
definite matrix Ω̂. At the same time, the solution can get arbitrarily close to
a singular matrix. A problem with this approach is that if an intermediate
solution happens to end up very close to a non-negative definite matrix (close
to the boundary of the parameter space, the solution will not move from there,
even if, conceivably, it might have got to a better fit through the outside of
the parameter space proper.

Variances can be forced to be non-negative by estimating their square roots
— the standard deviations. This is not a comprehensive solution because it
does not ‘restrain’ the covariances. Moreover, if an intermediate estimate of a
standard deviation is zero, it will not be altered by updating. To show this,
suppose σ is the standard deviation, H the row of the observed information
matrix corresponding to σ2 and s = ∂l/∂σ2. By switching from σ2 to σ, s is
replaced by 2σs and H by 2σH, except for −H, the (σ2, σ2) diagonal element
of −H, which is changed to −2σH − 2s. Thus, for σ = 0, H is block-diagonal
with a block corresponding to σ and the first-order partial differential (the
score) with respect to σ is zero. Therefore σ̂ = 0 is not changed by updating.
This is a problem because an intermediate estimate of a variance may vanish
merely because its initial estimate has been set too small.

A comprehensive solution estimates a decomposition of Ω, such as the
Cholesky decomposition Ω = L�L for an upper-diagonal matrix L. All the
partial differentials are adjusted according to the chain rule for differentiation:

∂Ω
∂ω

=
(

∂L
∂ω

)�
L + L� ∂L

∂ω
.

Singularity of the Hessian −H may be reached at an iteration. The consequent
indeterminacy of L̂ can be resolved only by deleting one of its rows. For a r×r
matrix Ω, deletion of the bottom row of L̂ is equivalent to constraining the
(r, r) element of L to zero. If singularity occurs again, the next deletion, of
row r−1, corresponds to two additional constraints on the elements of L, and
so on. The result of k deletions is an estimated matrix Ω̂ of rank r − k. The
rank of Ω̂ should not be confused with the rank of Ω.

Slow convergence

More complex models, and models with more complex variation part Z in
particular, tend to require more iterations. Slow convergence is a sure sign
that there are too many parameters in the model. It is useful to monitor the
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convergence and identify the parameters that hold up the convergence. Other
irregularities can be detected by monitoring the value of the log-likelihood. In
normal circumstances, the log-likelihood increases at every iteration, except
the first one, and the increments steadily decrease, at an approximately geo-
metric rate. A reversal at the first iteration should be of no concern; simply,
the initial solution is poorer than the OLS fit which corresponds to Ω̂ = 0.
(At an iteration, the value is calculated for the previous, not the current solu-
tion). In fact, when the converging solution Ω̂ vanishes the iterations merely
recover the original OLS fit.

Ill-conditioning of the regression design matrix X causes slow convergence,
and ill-conditioning of the variation design Z does so even more severely.
Constraining some of the parameters in Ω usually speeds up the convergence.
However, no covariance should be constrained unless both related variances
are also constrained. (Usually all three parameters would in such a case be
constrained to zero.) The reason for this is that a linear transformation of a
variable associated with variation alters the covariances and correlations in
Ω.

7.4 Model selection issues

‘Which model?’ is the ubiquitous question in any approach that calls for a
simple yet adequate description of the studied dataset. The implicit footnote
of the approach is that ‘if we knew which the correct model was, all our in-
ferences would be efficient’. Unable to identify this model, we usually proceed
by searching for the model that has some attributes of the correct one, or we
expect that the correct model would have them. At the same time, we trim
the model to have as few features as possible, to achieve parsimony, because
any unimportant or redundant feature in the model erodes the efficiency of
the estimates of the model parameters.

Parsimony is pursued by excluding any model parameters that do not
contribute to high likelihood. That is, when they are excluded, the value of
the likelihood at its maximum is reduced only slightly. The origins of this
approach are in hypothesis testing using the likelihood ratio test statistic. We
describe the likelihood ratio test first for a general setting, and then discuss
its application to two-level models. Suppose model A involves the parameter
vector θ and let θ̂ be its ML estimator. With greater rigour, we should refer to
A as a class of models, and to θ as a set of parameter vectors, or the parameter
space. As an alternative to A, we consider a smaller class of models B that
has fewer features than class A; B is defined by restricting a sub-vector of
θ to a specific value; no generality is lost by assuming that this vector is 0.
Thus, θ can be partitioned as (θB , θ0) and B is defined as (θB , θ0 = 0), and
so fully described by θB . Linear constraints on θ, such as c�θ = const, are
accommodated by a suitable (linear) reparametrisation of θ.
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Testing the (null-)hypothesis that θ0 = 0 entails the following exercise. We
start by presuming that θ0 = 0 and, based on the data (X, y), seek evidence
that contradicts this assumption. For this purpose, a statistic T is found, with
a (precisely or approximately) known distribution under the assumption that
θ0 = 0. If the realisation of this statistic, the value of T for the dataset at
hand, is in the tail of this distribution, we regard it as evidence against the
null-hypothesis. Thus, the possible values of the test statistic T are split into
values that do not contradict (fail to reject) the hypothesis and values that
correspond to evidence against B (against θ0 = 0) or contradict model B.
The values of T that constitute evidence against B form the critical region.
Usually, the critical region is an interval (t0, +∞). Then t0 is called the critical
value.

The likelihood ratio test statistic for the null-hypothesis θ0 = 0 against
the alternative θ0 �= 0 is defined as 2(l(A) − l(B)), where l(A) and l(B) are the
values of the log-likelihood for the respective models (classes) A and B at their
respective maxima θ̂A and (θ̂B , 0). Under certain regularity conditions [37],
the asymptotic distribution of this statistic under the null-hypothesis is χ2

with the degrees of freedom given by the length (number of components) of θ0 .
The most important of the regularity conditions is that class B is inside class
A, that is, every model in B has a neighbourhood that is subsumed in A. (The
neighbourhood may be subsumed also in B, as B ⊂ A.) The neighbourhood
of a model is defined by the Euclidean metric for the parameter vectors. The
regularity condition is problematic for testing the hypothesis that a variance
in Σ (or Ω) vanishes, because a variance matrix with a zero variance is on
the boundary of the parameter space defined by class A.

The likelihood ratio test is carried out as follows. First, the classes A and
B are defined. For example, class B is defined by deleting a variable from
the regression part. The likelihood ratio has the asymptotic null-distribution
χ2

1 . We conclude that we have evidence against B, that is, we cannot reduce
A, if the value of the likelihood ratio statistic exceeds a high percentile of
the χ2

1 distribution. Conventionally, the 95th percentile is chosen; for χ2
1 it

is equal to 3.84. Thus, our conclusion is not necessarily correct, because T
may exceed the critical value 3.84 even when the underlying model lies in B.
Admittedly the probability of this event, conditional on being in class B, is
small, approximately 0.05, specified a priori.

When T < 3.84, we have no evidence against class B. The logically correct
interpretation of such a result is that ‘we do not know’ whether θ0 = 0. Yet,
the conclusion drawn in practice is that θ0 = 0, and we proceed by regarding
the reduction to class B as appropriate (or the expansion to class A as not
warranted). Apart from the logical inconsistency, we may have committed
an ‘error’ because the distributions of T under the various models outside
B have positive probabilities of values in the range (0, 3.84). In a different
viewpoint, we are bound to have committed an error because θ0 = 0 is but
one of innumerably many values of θ0 , so it is not rational to bet on any
one of them, unless there is some specific prior information that supports the
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value as exceptional. Usually there is no such information. In the following
discussion, we ignore all these inadequacies of model selection, and assume
that an appropriate model has been identified.

Standard errors

A typical summary of a model fit comprises estimates β̂, Ω̂ and σ̂2
W , and

estimates of the associated standard errors. For β̂, they can be interpreted in
the same way as their counterparts in ordinary regression. The standard errors
are the square roots of the diagonal of var(β̂), and are estimated naively.

With two-level models, the standard errors involve Ω:

var(β̂) = σ2
W
(
X�W−1X

)−1
,

so v̂ar(β̂) = σ̂2
W

(
X�Ŵ

−1
X
)−1

. An estimation error of Ω̂ leaves its imprint

as an estimation error of var(β̂). Dependence of the standard errors on model
parameters is a much more acute problem for the elements of Ω̂. Unlike for
β̂, the standard errors for the parameters involved in Ω can be established
only asymptotically, by inverting the expected information matrix given by
(7.18), with the REML adjustment, if appropriate. Thus, for small samples,
the standard errors (as functions of model parameters) can be established
only approximately. In practice, we estimate this approximation, so estimation
and approximation errors are compounded. Furthermore, the standard errors
depend on Ω — the error in estimating Ω is committed again when estimating
the standard errors. Insights are difficult to gain when Z contains several
variables. For parallel regressions, when Z = 1,

avar(ω̂) = 2

{
D∑

d=1

(
nd

1 + ndω

)2
}−1

.

This is an increasing function of ω = σ2
B/σ2

W , so if ω̂ > ω, then the estimate
of avar(ω̂) also exceeds its target. This greatly diminishes the value of the
estimated standard error of ω̂. The estimates of the parameters in Ω are cor-
related and the parameters are constrained by the condition of non-negative
definiteness. That is another reason why the standard errors for the elements
of Ω are not very useful.

A computationally more involved method is based on the profile likelihood.
Briefly, a range of feasible values of the parameter is established as the values
for which the the log-likelihood is not much smaller than its maximum. This
range contains ML estimator of the parameter, but need not comprise an
interval or be symmetric around it. An example is presented in Figure 7.2.
ML is attained for θ̂ = 2.0, with l(θ̂) = −8.12. The confidence interval for θ is
defined as the values of θ for which l(θ̂) > l(θ̂) − 1.92, that is, (1.265, 2.905).
The value of 1.92 was selected as the one-half of the 95th percentile of the χ2

1
distribution. This choice is in accord with the likelihood ratio test.
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Figure 7.2. Example of using the profile likelihood. ML estimate, equal to 2.00,
and the limits of the confidence interval, 1.265 and 2.905, are marked by vertical
dots.
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7.4.1 Residuals and model diagnostics

The purpose of diagnostic procedures is to confirm the appropriateness of the
fitted model. This is done indirectly, by seeking a contradiction with the model
assumptions. In such a search, the model residuals play an important role. The
residuals are best motivated as replacements for the random terms γd and εjd

in (7.9). A class of diagnostic procedures checks whether the residuals have
properties we expect the random terms to have.

In ordinary regression, residuals are defined as the differences between the
outcomes y and their fit ŷ = xβ̂, e = y − ŷ. In two-level models, we have to
separate the two random terms, γ and ε, so that separate procedures could
be applied to each set of residuals. The residuals are defined as the estimated
conditional expectations of the corresponding random terms, given the data
and parameter values. These expectations are estimated naively, by replacing
the parameters with their ML or REML estimates.

The conditional expectation of γd in (7.9) is derived from the joint distri-
bution of yd and γd . This distribution is(

yd

γd

)
∼ N

{(
Xdβ
0

)
,

(
Vd ZdΣ

ΣZ�
d Σ

)}
.

The conditional distribution of γd given yd is also normal,

(γd |yd) ∼ N (ΣZ�
d V−1

d ed , Σ − ΣZ�
d V−1

d ZdΣ
)

(ed = yd − Xdβ), which reduces to
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(γd |yd) ∼ N (ΩG−1
d Z�

d ed , ΣG−1
d

)
, (7.23)

using the identity in (7.22).
The conditional distribution of εd is derived similarly, from the joint dis-

tribution (
yd

εd

)
∼ N

{(
Xdβ
0

)
,

(
Vd σ2

WI
σ2

WI σ2
WI

)}
.

Using (7.21), we obtain

(εd |yd) ∼ N
{
W−1

d ed ,
1

σ2
W

(
I − W−1

d

)
= ZdΩG−1

d Z�
d

}
. (7.24)

The district- and subject-level residuals are

γ̂d = Ω̂Ĝ
−1
d Z�

d êd
(7.25)

ε̂d = Ŵ
−1
d êd ,

where êd = yd − Xdβ̂. The residuals satisfy the identity Zdγ̂d + ε̂d = êd , as
do their targets γd and εd (Zdγd + εd = ed).

Diagnostics can be based on the procedures for ordinary regression. Either
we regard γ̂d as if they were γd , or adjust them for their (estimated) variances
Σ̂Ĝ

−1
d . Adjustment seems to be preferable, although it may be poorly esti-

mated because it involves Ω̂ and its non-linear transformations. The residuals
are biased estimators of their targets; however, this bias cannot be removed
without incurring substantial variance inflation. Similar problems are encoun-
tered with ε̂d . The normality of the random terms is checked by the normal
plots of the residuals. Any patterns in the plots of residuals against the co-
variates indicate inadequacies in the regression part of the model.

The residuals are affected by shrinkage and are associated with unequal
variances. Thus, for a parallel regression model, | γ̂d | is unlikely to be large
when nd is small. Each γd is estimated optimally, but a non-linear function of
them is not. Looking at patterns among the values of γ̂d can be interpreted
as forming non-linear summaries F(γ̂D) and regarding them as efficient esti-
mators of the same summaries of the γd , that is, F(γD). In general, patterns
observed among γ̂d may reflect the method of their estimation and need not
be related to the patterns among the underlying quantities.

Simulation-based diagnostics

Judging from the plots of residuals whether a particular pattern warrants a
review of the model is bound to be subjective and the conclusion based on
the plot not necessarily well justified. After all, patterns can occur by chance,
even when the appropriate model is fitted to the data simulated from the
assumed model.
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This motivates a more profound way of model checking. We define a fea-
ture; this can be a plot, a table, or one or several statistics, and evaluate (or
construct) the feature for the realised dataset. Then we simulate 19 datasets
with the same regression and variation designs, X and Z, and model param-
eters equal to their estimates based on the realised dataset. For the realised
and each simulated dataset, we evaluate the feature. We shuffle the 20 fea-
tures (one realised and 19 simulated), so that the realised feature is placed at
a random location. If the realised feature stands out among them (for exam-
ple, it is identified by several colleagues making independent judgements), we
have evidence against the model — when the model is satisfied (as with the
simulated data), such a feature is unlikely. For greater certainty, this exercise
can be conducted with 49+1 or 99+1 datasets, although handling a lot of
realisations of the feature may be cumbersome.

This approach is computationally rather demanding, but requires little
programming additional to the method for the realised dataset. The judge-
ment based on the features is easier to make than with the various plots of the
residuals. On the one hand, the choice of the feature is crucial to the success of
the method. On the other hand, the analyst has the freedom to choose one or
a few features that best reflect the a priori concerns about the adequacy of the
model. A set of features can be combined into a multi-feature, for instance, by
setting the elementary features (say, a graph and a table) side-by-side. The
advantage of a multi-feature over separate treatments of each feature is that
only one assessment has to be made as to whether there is an exceptional real-
isation among the M +1 presented versions. The approach is universal; a new
class of models requires for diagnostics neither any theoretical development
nor intricate programming, merely computing power to repeatedly generate
data according to the fitted model and evaluate the (multi-)feature.

7.5 District-level models

Fitting a random coefficient model with modern computing equipment is no
longer a demanding task for the equipment or a proficient analyst. Never-
theless, reducing the data to district-level summaries, and then analysing
them, remains an attractive proposition. The rationale for this is not only
the greatly reduced size of the data to be analysed, but also that the analysis
may be more pertinent to small-area estimation — to learn about districts, we
should analyse the districts. Certainly, by aggregating (averaging) the data
to district level, some information is discarded. With subject-level data, the
within-district variation could be studied, but after aggregating the data it is
no longer possible or has to rely on some untestable assumptions.

For the model with parallel within-district regressions, averaging yields

yd = xdβ + γd + εd , (7.26)
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where the bar indicates averaging within the district. This model should be
adequate, if its originating subject-level model is, because our target is xdβ +
γd or Xdβ + γd . We have to distinguish between the sample mean xd and
the population mean Xd . Using the former is particularly problematic when
it is based on a small sample. The district-level means yd , d = 1, . . . , D, are
independent but, unlike in ordinary regression, their variances are unequal.
They depend on the sample size;

var(γd + εd) = σ2
B +

σ2
W

nd
.

The model in (7.26) is fitted by the Fisher scoring algorithm. The aggregation
simplifies the algorithm substantially.

The log-likelihood for the model in (7.26) is

l = −1
2
{
log(2πD) + log(detV) + e�V−1e

}
, (7.27)

where V is the variance matrix of y = (y1, . . . , yD). It is diagonal,

V = σ2
BI + n−1σ2

W ,

where n = diag(n1 , . . . , nD) is the diagonal matrix of the district-level sample
sizes. The vector of residuals is e = y − Xβ, where X is the D × p regression
design matrix for (7.26), comprised of the district-level mean vectors xd .

Since (7.27) has the same form as (7.12), the ML estimator of β is

β̂ =
(
X

�
V̂

−1
X
)−1

X
�
V̂

−1
y . (7.28)

As in Section 7.3, we introduce the variance ratio ω = σ2
B/σ2

W and the scaled
variance matrix W = σ−2

W V, so that W = I + ωn−1. With this parametrisa-
tion, the ML estimator of σ2

W is

σ̂2
W =

1
D

ê�Ŵ
−1

ê . (7.29)

The Fisher scoring algorithm for ω requires the following expressions:

∂l

∂ω
= −1

2

(
D∑

d=1

nd

1 + ωnd
− 1

σ2
W

e�W−1n−1W−1e

)

= − 1
2

{
D∑

d=1

nd

1 + ωnd
− 1

σ2
W

D∑
d=1

e2
d nd

(1 + ωnd)2

}

−E
(

∂l2

∂ω2

)
=

1
2

{
D∑

d=1

n2
d

(1 + ωnd)2

}
. (7.30)
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The REML estimators are obtained by adjusting the log-likelihood. The ad-
justment is

lR = l +
1
2

log
{

det
(
X

�
V−1X

)}
,

as in Section 7.3, yielding the appropriate denominator for σ̂2
W :

σ̂2
W =

1
D − p

ê�Ŵ
−1

ê .

For a given p, the change from D to D −p for the district-level model is much
more radical than from n to n − p for the subject-level model. Therefore, the
adjustment of the elements of the expected information matrix that involve ω
is also more important. These are given in the Appendix. The two variances,
σ2

W and σ2
B , are confounded when the sample sizes nd are identical. In gen-

eral, it is much more difficult to recognise in a dataset a pattern of variation
than an association by regression (correlation). Therefore, the variation in the
sample sizes nd has to be substantial, otherwise the two variances are nearly
confounded. This problem can be explored more formally by inspecting the
expected information matrix for σ2 and ω. We have

I(σ2
W , ω) =

1
2

⎛⎜⎝ D
σ4

W

1
σ2

W
U (1)

1
σ2

W
U (1) U (2)

⎞⎟⎠ ,

where U (h) = (1 + ωn1)−h + · · · + (1 + ωnD)−h, h = 1, 2. This is a singular
matrix when 1+ωnd are constant; that is, not only when nd are constant, but
also when ω = 0. The matrix I(σ2

W , ω) is a scalar multiple of the matrix of
cross-products for the regression with a single covariate equal to σ2

W/(1+ωnd).
The difficulties with simultaneous estimation of the two variances can be

resolved by estimating σ2
W from the subject-level data. For example, σ2

W could
be estimated before the within-district averaging from the separate within-
district regressions, and the estimates pooled across the districts. For each
district, the same set of regression variables have to be used. For districts
with nd ≤ p, σ2

W cannot be estimated; such districts do not contribute to the
pooled estimator of σ2

W .
The residuals are evaluated as the estimated conditional expectations of

γd and εd :

γ̂d =
ndω̂

1 + ndω̂
(yd − xdβ̂)

(7.31)
ε̂d =

1
1 + ndω̂

(yd − xdβ̂) ;

the two residuals add up to yd − xdβ̂.
The model in (7.26) is fitted by an iterative algorithm constructed from

(7.28)–(7.30). Most comments for fitting two-level models made in Section 7.4
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carry over to this model. In particular, it may be advantageous to estimate√
ω instead of ω.

More complex patterns of variation are catered for by models

yd = xdβ + zdγd + εd ,

with suitably selected variables for z. They may be selected from among
x. The aggregate outcomes yd are independent, with variances var(yd) =
σ2

W

(
1 + zdΩz�

d

)
, where Ω is the scaled variance matrix of the vector of

district-level deviations. Thus, var(yd) is a quadratic function of z. Such mod-
els are identifiable, but the information about Ω is very sparse even in sizeable
data.

Model choice

In two-level models, the regression part may contain variables defined for
subjects or districts. The obvious choices for the district-level variables are
the within-district means of subject-level variables, although other variables,
defined for districts directly (such as urbanity and other attributes of the
districts) may also be included. For variables that are means (aggregates),
their population versions would appear to be more appropriate. The value of
a covariate should depend on the population of the district, not its sample.
As we aggregate from (7.9), with Z = 1, to (7.26), subject-level variables are
‘converted’ to sample means, whereas the values of a district-level variable
are merely copied. This creates a dilemma — whether to include in (7.26) the
population mean of a variable (when available) or the sample mean. We should
not include both because they are similar, and would cause ill-conditioning
in the regression. Both the subject-level and the population-mean versions
can be included in the two-level model where, owing to the much greater
sample size, there is more scope for detailed modelling using highly correlated
variables. However, including many district-level variables is not appropriate;
there are only D degrees of freedom for the districts.

7.6 Generalised linear models

Although the assumption of normality is key to appropriateness of many sta-
tistical methods, outcome variables that are distributed (approximately) nor-
mally are rare in sample surveys. Both respondents and interviewers are more
comfortable with limited sets of response options and with various classifi-
cations, such as employment status, type of employment or housing tenure,
and income brackets, even if, occasionally, ‘None of the above’ is the appro-
priate response. With such data, the ordinary regression and other models for
normally distributed outcomes have a very limited scope.

Generalised linear models (GLM) are an extension of the ordinary regres-
sion that caters for distributions other than normal, and for scales on which



7.6 Generalised linear models 201

linearity is appropriate. Dichotomous variables are an example of distinctly
non-normally distributed data. A linear model is not well suited for such a
variable, because no linear function can represent a good fit to outcomes that
comprise zeros and ones. With GLM, a model is specified for the expectation
underlying the outcomes, E(y). For dichotomous data, E(y) are probabilities
of positive outcomes; they are in the range [0, 1]. A linear model may fit much
better to a transformation of the probabilities to (−∞,+∞). There are several
such (monotone and smooth) transformations, including the logit,

logit(p) = log
(

p

1 − p

)
.

An example of GLM for dichotomous data y is

logit{E(y)} = xβ .

A more general specification of a GLM is

f{E(yj)} = xjβ

for a set of conditionally independent outcomes yj , j = 1, . . . n, with specified
conditional distributions of yj given xjβ. These distributions usually belong
to the same class, such as binary with the full range of probabilities (0, 1). For
example, the ordinary regression corresponds to the identity function f and
normal conditional distribution of yj with means xjβ and common (unknown)
variance σ2.

Many theoretical results related to GLM are derived for the exponential
family of distributions. The discrete or continuous densities of the distribu-
tions in this family have the form

f(yj , θj , φ) = exp
{

yjθj − b(θj)
φ

+ c(yj ; φ)
}

,

where b and c are some real twice-differentiable functions and φ is a param-
eter; b has positive second-order differentials. The mean and variance of an
observation are E(yj) = b′(θj) and var(yj) = φb′′(θj), respectively. The ex-
pectation b′ is related to the linear predictor xjβ through a strictly monotone
link function η:

b′(θj) = η−1(xjβ) .

Many common distributions belong to the exponential family; they include the
normal, binomial, Poisson, and gamma distributions. GLM can be specified by
the distribution of the outcomes, the variables in the linear predictor (X) and
the link function. Sometimes it is difficult to identify a suitable distribution,
but the key feature of the data that we wish to model is the dependence of
the variance on the mean:

V {b′(θ)} = φb′′(θ) .



202 7 Models for small areas

This variance function V , together with the link function η and the regression
design X, is sufficient to specify a GLM, and they are often a more convenient
way of defining a model.

Commonly used combinations of distribution and link function are bino-
mial and logit, Poisson and log and, of course, normal and identity. In a logit
model, the outcomes have binomial distributions with denominators mj and
their conditional distributions are given by

P(yj = k | pj) =
(

mj

k

)
pk

j (1 − pj)mj−k .

They belong to the exponential family, with b(θj) = log(pj)− log(1−pj). Here
we set log(pj)− log(1−pj) = xjβ, so b coincides with the linear predictor and
∂θj/∂ηj = const. This is an example of a canonical link. In general, a linear
transformation of the link function is compensated by the linear predictor,
and so linearly related link functions are for all purposes equivalent.

GLM is fitted by the Fisher scoring algorithm, which is conveniently de-
scribed in terms of iteratively reweighted least squares. Assuming that φ is
known, the relevant identities are

l = C +
1
φ

n∑
j=1

{yjθj − b(θj)}

(s = )
∂l

∂β
=

1
φ

n∑
j=1

{yj − b′(θj)} ∂θj

∂ηj
xj

(H = ) − ∂2l

∂β ∂β� =
1
φ

n∑
j=1

b′′(θj)
(

∂θj

∂ηj

)2

xjx�
j

− 1
φ

n∑
j=1

{yj − b′(θj)} ∂2θj

∂η2
j

xjx�
j , (7.32)

where ηj = xjβ and C is a constant that plays no role in maximising l.
As E(yj) = b′(θj), the expectation of the second term in H vanishes. The
expected information I is given by the first term in H. In the Fisher scoring
algorithm, the information matrix is formed as the weighted total of squares
and cross-products of the covariates, with the weights related to the variances
b′′(θj)/φ. The score function can also be interpreted as the weighted totals
of cross-products of the residuals ej = yj − E(yj) and xi , after a suitable
re-scaling of ei .

7.6.1 Two-level GLMs

GLMs can be extended to two levels in direct analogy with the extension
for models with the normality assumptions. We assume that the conditional
expectations E(yd | γd) are related to linear predictors as
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E(yjd | γd) = η−1 (xjdβ + zjdγd) .

Marginally, γd are a random sample from the normal distribution with mean
0 and variance matrix Σ. The ‘normal’ two-level model in (7.9) is a special
case of this formulation, with identity link function η.

The likelihood for a two-level GLM involves integrals,

l =
D∏

d=1

∫
. . .

∫
f (yd ; Xdβ + Zdγd) Φ(γd;Σ) dγd ,

where f is the conditional joint density function for the observations of a
district, given γd , and Φ(γ,Σ) is the density of the r-variate normal distri-
bution with mean 0 and variance matrix Σ. Evaluation of multiple integrals,
D per iteration, is a formidable task even today, although a lot of headway
has been made in the recent years, owing to a combination of raw computing
power, suitable software and efficient algorithms. Numerical quadrature and
its adaptations can comfortably tackle the problem in at most two dimensions
(r ≤ 2). Improvements on numerical quadrature with fixed sets of evaluation
points incorporate information about the integrand.

Methods that are computationally much less demanding maximise an ap-
proximation to the likelihood. They are satisfactory only in some simple set-
tings, and are particularly vulnerable when the district-level variation is sub-
stantial.

Appendix. The REML adjustment of the Hessian

This appendix gives an expression for the second-order partial differential of
the REML adjustment of the log-likelihood lR for two-level and district-level
models.

From (7.20) in Section 7.3.1 we have

∂l∆
∂ω

= − 1
2σ2

W
tr

{(
X�W−1X

)−1
D∑

d=1

X�
d W−1

d Zd
∂Ω
∂ω

Z�
d W−1

d Xd

}
,

where l∆ = ∂l/∂ω − ∂lR/∂ω is the adjustment to the log-likelihood. Denote

U =
D∑

d=1

Z�
d W−1

d Xd

(
X�W−1X

)−1
X�

d W−1
d Zd ,

so that σ2
W∂l∆/∂ω = − 1

2 tr (U ∂Ω/∂ω). Then

∂l2∆
∂ω1∂ω2

= − 1
2σ2

W
tr
(
U

∂Ω
∂ω1

U
∂Ω
∂ω2

)

+
1

σ2
W

U
∂Ω
∂ω1

D∑
d=1

Z�
d W−1

d Xd X�
d W−1

d Zd Z�
d W−1

d Zd
∂Ω
∂ω2

.

(7.33)
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District-level models

The adjustment of the log-likelihood for the model in (7.26) has the first-order
partial differentials with respect to σ2

W and ω

∂l∆
∂σ2

W
=

p

2σ2
W

∂l∆
∂ω

= −1
2
tr
{(

X
�
W−1X

)−1
X

�
(WnW)−1 X

}

= − 1
2
tr

{(
X

�
W−1X

)−1 D∑
d=1

nd

(1 + ndω)2
xdx�

d

}
. (7.34)

The adjustments to the information matrix are their negative differentials:

− ∂2l∆
∂(σ2

W)2
=

p

2σ4
W

−∂2l∆
∂ω2 = −1

2
tr

⎡⎣{(X�
W−1X

)−1 D∑
d=1

nd

(1 + ndω)2
xdx�

d

}2

+
(
X

�
W−1X

)−1 D∑
d=1

n2
d

(1 + ndω)3
xdx�

d

]
, (7.35)

and

X
�
W−1X =

D∑
d=1

nd

1 + ndω
xdx�

d .

7.7 Suggested reading

Development of methods for random-effect models was strongly simulated by
research in animal breeding and genetics; see [102] and references therein.
Until the emergence of abundant computing power, efficient organisation of
the calculations in a model fitting procedure was an important concern; [93],
[101] and [119] respond to this challenge. Bias of the maximum likelihood
estimators of the variances in random coefficient models has been regarded
as a deficiency from the early days; a comprehensive solution of this problem
is presented by [204]; see also [94] and [95]. The influential paper on the EM
algorithm, [44], suggested fitting random coefficient models by regarding the
random terms as the missing data. See [45], [231] and [278] for applications
of this approach. The ‘contest’ of the computational algorithms for random
coefficient models (multilevel analysis) appears to have been won by Fisher
scoring, [138] and [149], although iterative generalised least squares and its
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various generalisations, [85], are used by many through its implementation in
the software MLwin. For a comprehensive Bayesian treatment of the subject,
see [24]. A suite of Splus functions for analysis of multilevel data is described
and illustrated on numerous examples in [209].

Reference [67] is generally recognised as a landmark contribution to small-
area estimation, combining theoretical insights with a purposeful motivation.
Reference [10] deals with a small-area problem that has since been the sub-
ject of several reanalyses and illustrations. Improved approximations to the
(expected) MSEs of model-based small-area estimators are developed in [125].
Reference [210] is a collection of contributions, most of them on model-based
methods, to small-area estimation by the ‘who-is-who’ in the subject in the
1980’s. Applications of methods based on Bayesian models to U.S. Govern-
ment related programmes are presented by [174] and [175]. Concerned with
estimation of prevalence (percentages), they engage generalised linear models
with random coefficients; see [271] for a closely related application and [82]
for a more general treatment of the problem.

Reference [83] presents an authoritative review of methods for small-area
estimation. It is updated by [222], although the rate of development since then
has accelerated to a great extent. Reference [223] is a comprehensive treatment
of the problem from a committed model-based perspective. Reference [259]
reviews the current activities in small-area estimation at Statistics Canada and
connects estimation with survey design issues. The Bayesian and frequentist
paradigms are contrasted by [5] and [258].

7.8 Exercises

1. Describe the essential differences between (paired) ANOVA and rANOVA
models with the same number of groups and the same within-group sample
sizes. Simulate datasets for the two models. Assess the efficiency of the
rANOVA estimator for group 1, µ̂C

1 , in the paired ANOVA model, and
the ANOVA estimator µ̂1 in the paired rANOVA model.

2. Implement the Fisher scoring algorithm for the random-intercept model.
3. Summarise the advantages and drawbacks of the various arrangements for

ensuring that intermediate- and final-iteration estimates of the between-
district variance matrix in a two-level model are non-negative definite.

4. Prove the identities in (7.21), first for scalar ω (1 × 1 matrix Ω).
5. Prove in detail the various matrix versions of rules for differentiation of

matrices used in Section 7.3.3, for instance, that

∂W−1

∂ω
= −W−1 ∂W

∂ω
W−1 .

6. Prove that the elementary- and district-level residuals, given by (7.25),
add up to the model-fit deviation êjd .
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7. Derive the score and Hessian for the two-level model with the original
parametrisation (β, σ2

W , Σ), and compare the Fisher scoring algorithm
based on it with its alternative based on the relative (scaled) variance
matrix Ω = σ−2

W Σ. Make the same comparison for REML and for district-
level models.

8. Simulate a dataset for small-area estimation. Suppose a country comprises
D = 400 districts. Generate the district-level probabilities pd of the pos-
itive outcome of a binary target variable from a beta distribution. Draw
the district-level subsample sizes from a gamma distribution. (Round the
values to integers.) Generate the dichotomous values of the target variable.

9. Estimate the between-district variance from the simulated data. Com-
pare it with the variance of the probabilities pd , d = 1, . . . , D, and with
the variance of the beta distribution used for generating pd . Repeat the
exercise a few times.
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Using auxiliary information

By auxiliary information we mean any information that is not directly related
to the target of estimation. The directly related information (direct informa-
tion) for estimating a population summary of a variable in a district is the set
of values of that variable on the subsample of subjects from the district. When
estimating the mean µd of a variable Y in a population of district d, any data
pertaining to subjects from outside district d, from a different population in
the district, or for a different variable, constitutes auxiliary information. The
values of such an auxiliary variable may be either from the same or a different
population and either from the district or from outside the district. The auxil-
iary data may be in the form of (individual) subjects’ records, their (national
or district-level) sample summaries, or summaries that relate to other popu-
lations (or other surveys of the same population). Arguably, such information
is ‘second-rate’; a (sub-)sample of the values of Y from the target population,
using a well designed survey, is the gold standard. Often, direct information is
not available in sufficient quantity, and auxiliary information is, at a fraction
of the cost of the direct information. Sometimes no special effort is required
— the auxiliary data for one quantity is the direct information for another. A
case in point is estimation of the population mean of several, or all, districts
— the data from outside the target district is the auxiliary information.

In this chapter, we develop methods that exploit auxiliary information.
‘Exploitation’ should be understood as follows: with (more) auxiliary infor-
mation we estimate the quantity of interest with greater or equal precision
(smaller or equal MSE) than without it. Satisfying this standard will turn
out to be difficult; we cannot achieve it because the auxiliary information
may contain elements that are not useful, and we cannot recognise them with
certainty. Nevertheless, we will identify situations in which auxiliary infor-
mation contributes substantially to improved estimation. The contention will
move from identifying suitable auxiliary information to how best to exploit
it and how to protect our inferences from a breakdown due to inappropriate
assumptions or excessive uncertainty about them.
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We can draw a parallel with (ordinary) regression models, where we seek
to exploit the ‘explanatory’ power of covariates. We prefer more explanatory
variables, but each of them should contribute to the explanation of the varia-
tion in the outcomes. So, we apply a rule for selecting variables, and conclude
with a sanitised list of covariates. Whichever way we do it, we have to rely on
decisions (whether to include or exclude a variable) that are not correct with
certainty. Although such uncertainty is usually ignored, it never should be.
Such neglect may cause our inferences to be of poor quality, despite strong
false indications to the contrary. Nevertheless, we start by ignoring this source
of uncertainty, so as to avoid circular arguments. The problem we pose is still
relevant: suppose we have identified an appropriate model for the data (the
target variable) and the setting (districts within a country). How should we
estimate the district-level means of the target variable?

8.1 From models to small-area estimates

In model-based estimation, we act upon the assumption that the appropri-
ate model has been identified and the estimators derived have the claimed
properties. Otherwise, we would be stuck, not knowing the properties of a
model fit when the model is not appropriate. And, what is the point of us-
ing a model that is not appropriate? Actually, the argument is not quite so
one-sided, because the selected model may be inappropriate, despite our best
efforts, however competently applied. A defensive strategy would assume that
the selected model is not too bad.

First we address the following task. A model has been fitted, yielding
estimates of all the model parameters and some assessment of their precisions,
such as the estimated standard errors. How should small-area estimates be
derived from the fit, assuming that the model is appropriate? To focus the
discussion, we assume that a two-level model, as in (7.9), has been fitted.

8.1.1 Synthetic estimation

In synthetic estimation we put all our faith in the model we have adopted for
the population:

Yid = x�
idβ + z�

idγd + εid , (8.1)

so that by averaging we obtain

µd = µ
(x)
d

�
β + µ

(z)
d

�
γd + εd .

We ignore the average of the subject-level deviations, εd , assuming either
that the population is large enough (effectively, infinite), or that it can be
estimated no better than by zero. This is equivalent to drawing no distinction
between the population of the district and the superpopulation implied by
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the model in (8.1). Next, suppose the selected model reduces the district-level
variation to a level so low that we can ignore it. Or, less profoundly justified,
we ignore γd because its expectation vanishes; ED(γD) = 0. With these steps,

we have replaced µd with µ
(x)
d

�
β as our target of estimation. The vector of

means µ
(x)
d may be estimated elementwise directly, although whenever the

population mean for a component is available it is preferred to its direct
estimator. If some of the components can be estimated from other surveys,
we should choose the more efficient estimator, although the estimators based
on the different sources (surveys) could also be combined.

The estimator
µ̂d = µ̂

(x)
d

�
β̂ , (8.2)

with the various alternatives for µ̂
(x)
d , is called synthetic. There are alternatives

for β̂ also. For example, it could be based on ordinary regression. Our further
development does not depend on the origins of µ̂

(x)
d and β̂. We merely assume

that they are (approximately) unbiased, and denote by Σx and Σβ their
respective sampling variance matrices.

The first row and column of Σx comprises zeros because the corresponding
variable, the intercept, entails no variation. The rows and columns that cor-
respond to the other variables for which the (district-level) population means
µ

(x)
d are known also vanish. Variables that are constant within districts also

belong to this category, although their values in districts not represented in
the survey may have to be established separately from the survey.

When Σx = 0, that is, when µ̂
(x)
d = µ

(x)
d ,

var
(

µ̂
(x)
d

�
β̂

)
= µ

(x)
d

�
Σβµ

(x)
d ,

and so, assuming that Z is a subset of X,

MSE
(

µ̂
(x)
d

�
β̂ |µ(x)

d

)
= µ

(x)
d

�
Σβµ

(x)
d + µ

(z)
d

�
γdγ

�
d µ

(z)
d .

The eMSE is equal to the same expression, with γdγ
�
d replaced by its district-

level expectation ΣB .
When µ

(x)
d , or some of its components, are not known the MSE and eMSE

are bound to be greater; less information should yield less precision. For sim-
plicity, we assume that µ̂

(x)
d and β̂ are not correlated. This is not correct when

µ̂
(x)
d and β̂ are based on overlapping sets of subjects (the district subsample

and the survey sample), but the overlap is small for all but one or two of the
most populous districts. If cov

(
µ̂

(x)
d , β̂

)
= 0,

var
(

µ̂
(x)
d

�
β̂

)
= tr (ΣxΣβ) + β�Σx β + µ

(x)
d

�
Σβ µ

(x)
d ; (8.3)
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the first two terms can be interpreted as the ‘penalty’ for not knowing µ
(x)
d .

This variance inflation presents a dilemma. Should we include a covariate x
in the model because it is a good predictor, without considering its impact

on var
(

µ̂
(x)
d

�
β̂

)
? In an orthodox two-step approach, we would establish a

suitable model first, and then base the estimation on the fit of this model,
disregarding any information about Σx . Note that we do not know Σβ in
advance either, so we are at the mercy of some quantities (variance matrices)
we did not expect to be of much importance.

In summary, a good model (that is, a model that fits the data well) does not
solve all the problems. Some worse fitting models may be more useful. More-
over, some models may be better suited for inferences about some districts
and other models about other districts. These negative comments about mod-
elling may encourage the reader to apply patently inadequate models, such as
the ordinary regression, assuming Z = 0 in (8.1). The approach we advocate
weighs carefully what the alternative models have to offer.

Another plausible failure of the synthetic estimator is depicted in Figure
8.1. The estimator of µd is based on a regression with a single variable and
parallel regressions (Z = 1). The symbols A and B mark the sampled subjects
from two districts; one with predominantly positive and one with negative
deviation γd , so that the synthetic estimator has a substantial bias for both
districts. Little comfort that the biases average out; relying on ED(γD) = 0 is
not appropriate.

The variation of the means µd around the regression x�β is a component

of eMSE
(

µ̂
(x)
d

�
β̂ |µd

)
:

eMSE
(

µ̂
(x)
d

�
β̂ |µd

)
= µ

(z)
d

�
ΣBµ

(z)
d + var

(
µ̂

(x)
d

�
β̂

)
,

and the variance is given by (8.3).

Apportionment method

The apportionment method is a special case of synthetic estimation, in which
the auxiliary information comprises the values of a single categorical variable
on the sample. This variable may be defined for the districts (each district
belonging to a category), it may be almost so (many districts belong to one
category but some straddle across the categories’ boundaries), or not at all.
Geographical classifications, such as to regions, are examples of the former
two cases, and a classification of the subjects (such as according to age or
family composition) an example of the latter.

In the apportionment method, the national mean (or another population
summary) is first estimated for each category, and the estimate for a district
is derived by combining these estimates according to the composition of the
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Figure 8.1. An illustration of a weakness of the synthetic estimator. The symbols
A and B represent the samples from two districts. The solid line is the fit to the
sample and the dashed line the fit to the population.
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district. Suppose the categories have national means θk , k = 1, . . . , K, and
they are estimated by θ̂k . The mean for a district that belongs entirely to
category k is estimated by θ̂k . The mean for district d that overlaps with the
categories k = 1, . . . , K with respective fractions pdk is estimated by

µ̂d =
K∑

k=1

pdkθ̂k = p�
d θ̂ ,

where pd = (pd1 , . . . , pdK)� are the population proportions Ndk/Nd of the
representation of category k in district d, and θ̂ = (θ̂1 , . . . , θ̂K)�. The vector
pd is also called the composition of district d. In µ̂d , each category’s estimate is
given weight according to the (population) size of its overlap with the district.
The proportions pdk may not be available, and have to be estimated. This is
particularly problematic when the category-by-district subsamples are small
and no external information about the counts Ndk or the composition pd is
available.

The apportionment method is effective when the subpopulations within
the categories are relatively homogeneous, when the within-category variances
are small. Apart from knowing the composition pd , or estimating it with
high precision, another important contributor to the success of the method is
that the subpopulations of the district-by-category intersections have similar
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means within each category. That is, θ̂k is a good estimator of µdk , the mean
for the intersection of district d and category k. This condition is not directly
promoted by the choice of the classification. After all, the categories may
be quite heterogeneous, and yet their within-district means quite similar. A
related condition, that the within-district subpopulations have similar distri-
butions within each category, can be interpreted as non-informative allocation
of subjects to districts. To motivate this, suppose the assignment or attribu-
tion of the category precedes the allocation, and the district of (present or
future) residence itself exerts no influence on the assignment. Such a process,
in which subjects from each category are assigned to the districts at random
(although with varying subsample sizes), with no regard for their values of
the outcome variable, might be a realistic model for how subjects have ended
up in the various districts and how they have acquired their particular values.
However, nobody and no identifiable force could have exercised any control
over such an allocation. The apportionment method is particularly vulnerable
in this regard.

A careful reader will notice that the arguments against the apportionment
method run parallel with those against synthetic estimation. In summary, the
synthetic estimator entails two sources or error: the replacement of µd by

µ
(x)
d

�
β as the target, and estimation of µ

(x)
d

�
β. And, as with all model-based

methods, model selection is another source.

8.2 Composite estimation

Synthetic estimators use a formula derived for the whole country and apply
it to each district. This may be very effective for the districts with poor rep-
resentation in the survey because their direct information is of next to no
use. However, for districts with substantial representation, for which the di-
rect estimator is competitive, the synthetic estimator accords no preference
to the data from the district. This iniquity can be resolved by using the di-
rect estimator for the districts with the largest subsample sizes. To do this
we would designate a threshold sample size n∗; for the districts with nd > n∗

the direct estimator would be used, and for the other districts the synthetic
estimator. The discontinuity (switching from one estimator to the other) is
discomforting. For some districts, the method applied accords no special sta-
tus to the outcomes from the district concerned; for others, data from outside
the district are ignored altogether. The role of the outcomes from the dis-
trict concerned can be enhanced by combining the direct estimator with the
synthetic one. This can be arranged, with the coefficients satisfying a well
specified criterion. The composite estimator derived in Chapter 6 can be re-
garded as a special case of this, with the synthetic estimator based on the
trivial model y = µ + ε. With it, the auxiliary information comprises the
values of the target variable from outside the district. Here we will draw on
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more extensive auxiliary information, exploiting the association of the target
variable with the covariates.

Suppose an appropriate two-level model has been identified and fitted
and, having been based on a large sample, its parameters are estimated with
precision so high that we need to make no distinction between estimators
and underlying parameters. For further simplicity, suppose the district-level
population means of the covariates, µ

(x)
d , are known. The synthetic estimator

µ̂
(x)
d

�
β̂ of µd has bias Bd = −µ

(z)
d

�
γd , so its eMSE is

ED

(
µ

(z)
d

�
γDγ�

D µ
(z)
d

)
= µ

(z)
d

�
ΣBµ

(z)
d . (8.4)

We can estimate Bd without bias by the average residual ed = yd − xdβ; it
is unbiased and its variance is σ2

W/nd . As in Chapter 6, we do not choose

between the two candidates, µ̂
(x)
d

�
β̂ and yd , but combine them, aiming to

estimate µd with minimum MSE or eMSE. The two estimators are uncorre-
lated, one with small variance but expected squared bias B2

d and the other
with no bias but variance σ2

W/nd . The coefficients of their combination that
has minimum MSE are proportional to their respective precisions:

(1 − b∗
d)yd + b∗

dµ
(x)
d

�
β = µ

(x)
d

�
β + (1 − b∗

d)
(

yd − µ
(x)
d

�
β

)
, (8.5)

where

b∗
d =

σ2
W/nd

σ2
W/nd +

(
γ�

d µ
(z)
d

)2 .

The dependence of b∗
d on γd is avoided by minimising eMSE, with the coeffi-

cient

bd =
σ2

W/nd

σ2
W/nd + µ

(z)
d

�
ΣBµ

(z)
d

=
1

1 + ndµ
(z)
d

�
Ωµ

(z)
d

,

where Ω = σ−2
W ΣB is the scaled variance matrix, the multivariate version of

the variance ratio ω.
An alternative estimator is derived from the conditional expectation of

γd ; see (7.23). We estimate µd by

µ
(x)
d

�
β + µ

(z)
d

�
Ω
(
I + Z�

d ZdΩ
)−1

Z�
d ed . (8.6)

This estimator differs substantially from (8.5); for example, it cannot be ex-
pressed as a function of µ

(z)
d . The difference is due to the perspectives adopted

in deriving the two estimators. For Z = 1, the estimators (8.5) and (8.6) are

B2
d

σ2
W/nd + B2

d

yd +
σ2

W/nd

σ2
W/nd + B2

d

µ
(x)
d

�
β

ndω

1 + ndω
yd + µ

(x)
d

�
β − ndω

1 + ndω
xd

�β ,
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respectively. They differ because the former minimises MSE and the latter
eMSE (B2

d vs. σ2
Wω), and because the latter involves the sample mean xd

instead of the population mean µd .
In (8.5), we acknowledge that district d has a population with a mean µ

(z)
d

different from its sample version zd , whereas in (8.6) µ
(z)
d does not appear at

all, because the underlying model assumes that the values of all the covariates
are fixed. The estimator in (8.6) has optimal properties with respect to repli-
cations in which Zd is fixed and γd′ for d′ �= d are random. The replications
relevant to the small-area setting have Zd random (it is outside the designer’s
control) and γd′ are fixed — they do not differ from one replication to the
next. In (8.6), the synthetic and direct estimators are combined more flexibly
than in (8.5); on the other hand, the reliance on zd is disconcerting especially
when the within-district sample size nd is small or the within-district variance
of zd is large. However, the properties of both estimators are contingent on
appropriateness of the selected model. Such concerns about model choice and
diagnostics are an unwelcome part of the ‘modelling’ bargain.

An undoubted advantage of composite estimation is that the ‘individuality’
γd of each district is represented. This is done by regarding γd as random. It
is by no means a step toward a valid (or correct) model! The boundaries of the
districts have been drawn up administratively, possibly with some historical
precedents, so the districts may evolve their individuality over time. However,
the district-level deviations γd are by no means random; if a replication of the
survey were conducted the values of γd would not change for any district d.
Also, other divisions of the country may have their individualities, some may
be stronger than for the districts. But the complication of the model implied
by this argument is not constructive and is hardly warranted.

8.2.1 Shrinkage and borrowing strength

For parallel regressions (Z = 1), the district-level deviation is estimated by

γ̂d = bd

(
yd − x�

d β̂
)

,

where
bd =

ndω̂

1 + ndω̂
.

Naively, we would estimate γ̂d as the average residual êd = yd − x�
d β̂. Taking

the conditional expectation leads to a shrinkage toward zero, the (uncondi-
tional) expectation of γd . The raw-average residual êd is pulled toward zero,
and the extent of shrinkage depends on the sample size nd and the estimated
district-level variance. This is easy to motivate when ω̂ = ω = 0. In this case,
the same regression applies to each district, and so êd differs from zero solely
because of the within-district variation and finite sample size nd . When ω̂ is
very large and nd not very small, little shrinkage takes place. For interme-
diate values of ω̂ and nd , the extent of shrinkage is a compromise that can
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be described as a composition of the unbiased estimator êd and zero. The
small-area estimator of µd based on γ̂d is

µ̃d = x�
d β̂ + (1 − bd)êd

= (1 − bd)yd + bdx�
d β̂ . (8.7)

This is a composite estimator, combining the direct estimator yd and the
synthetic estimator x�β̂. We can regard the national mean, considered in
Section 6.3, as the synthetic estimator based on the regression model with
no covariates. The shrinkage of êd toward zero converts in (8.7) to shrinkage
toward the ‘average’ regression x�β̂. This can be motivated as hedging bets
against any idiosyncracies of district d by drawing on the information in the
rest of the data, or borrowing strength from the other districts.

The conditional variance of γ̂d is

var(γ̂d |y; X) =
σ2

Wω

1 + ndω
.

This variance is based on averaging over the districts, and so it is comparable
to eMSE in Chapter 6.

In summary, µ̃d in (8.7) is a generalisation of the composite estimator
derived in Section 6.3. The original composite estimator makes no use of aux-
iliary information contained in the other variables, but is applicable for any
population quantity, so long as it can be estimated directly. Its straightforward
application is associated with two important caveats: that the district-level
variance is estimated, and that eMSE is minimised (subject to approximation)
instead of MSE. On the other hand, the optimal properties of the shrinkage es-
timator in (8.7) rely on appropriateness of the model (including the normality
of y), are based on estimates β̂ and ω̂, and their precision is also evaluated by
the estimated eMSE. The regression model has a great potential to contribute
to efficient estimation of µd by reducing ω, but the method is applicable only
to population means and their transformations (including the population to-
tal, if the district-level population sizes are known). For a good set of auxiliary
variables, ω is greatly reduced. Section 8.3 describes a method in which the
strengths of the two approaches are combined — auxiliary information is ex-
ploited, but without having to rely on a model with the straitjacket of linearity
and normality. Of course, these conditions can be replaced by others, as in
GLM and non-linear models, but the model specification remains a difficult
problem and an inconvenient caveat. The problem is further compounded by
the choice of the variation part of the model, although it is often sufficient to
set Z = 1.

8.3 Multivariate composition

We concluded in the discussion of (8.7) that estimation of the district-level
mean µd can be improved by combining the sample mean yd with the synthetic
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estimator. The synthetic estimator is a linear combination of xd , and so the
estimator µ̃d is a linear combination of (yd , xd). Do we need the model and the
baggage of the associated assumptions? Why not tackle the problem head-on
and estimate µd by

µ̂C
d = (1 − b�

d 1)yd + b�
d xd (8.8)

for a suitably selected vector bd ? This formulation has several advantages:
first, having the same form as in (8.7), µ̂C

d in (8.8) is more general because
the coefficients bd are not imposed by a possibly inappropriate model. The
assumptions of normality and linearity are dispensed with. Further, we have
the option to replace any component of xd with a different estimator of its
subpopulation version (based on an external source), or even with the subpop-
ulation quantity itself. In the two-level model, we could not use any variable
without its values for each sampled subject. Related to this is the flexibility in
incorporating the sampling design. In two-level models, this entails some dif-
ficulties; in the newly formulated task, this amounts to replacing xd with the
direct estimator of the corresponding population mean. And finally, we can
dispense with the (iterative) computational routines for model fitting that, in
the end, yield estimators of µd by an indirect route.

We restate the problem in a slightly more general form, mainly to introduce
a simpler notation, but also to indicate the versatility of the approach. Suppose
µ̂d is an unbiased estimator of the district-level mean µd and µ̂ is an unbiased
estimator of the national mean µ. To estimate a linear combination µd =
u�µd , with a known vector u, we consider the estimators of the form

µ̂C
d = (u − bd)�µ̂d + b�

d µ̂ . (8.9)

This is the multivariate analogue of the estimator in (6.4), even though the
target µd is a scalar. For example, estimating the first component of µd cor-
responds to setting u = (1, 0, . . . , 0)�. As in Section 6.3, we first find the
minimum MSE estimator µ̂C

d , and then address the problem of estimating the
optimal vector of coefficients b∗

d , as it depends on unknown parameters. Since
we consider several versions of µ̂C

d , defined by the vector of coefficients bd , we
write µ̂C

d (bd) to emphasize the dependence on bd . In most cases, bd depends
on some parameters that have to be estimated, and so we will also work with
µ̂C

d (b̂d), using an estimator in place of bd .
The notation we use parallels its univariate version introduced in Chapter

6: Vd is the sampling variance matrix of µ̂d and V the sampling variance
matrix of µ̂; Cd = cov(µ̂, µ̂d) and ∆d = µ − µd . The MSE of µ̂C

d in (8.9) is

MSE
{
µ̂C

d (bd)
}

= (u − bd)�Vd(u − bd) + b�
d Vbd + 2b�

d Cd(u − bd)

+b�
d ∆�

d ∆dbd

= u�Vdu − 2b�
d (Vd − Cd)u

+b�
d

(
Vd + V − Cd − C�

d + ∆�
d ∆d

)
bd

= u�R0u − 2b�
d R1u + b�

d R2bd , (8.10)
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with the implicitly defined matrices R0 , R1 and R2 that are the obvious
multivariate analogues of R0 , R1 and R2 introduced in Section 6.3; see (6.5).
The MSE in (8.10) is minimised for

b∗
d = R−1

2 R1u

=
(
Vd + V − Cd − C�

d + ∆d∆�
d

)−1
(Vd − Cd)u ;

the inverse is well defined because R2 = E
{
(µ̂d − µ̂)(µ̂d − µ̂)�} is positive

definite. The minimum attained is

R0 − R�
1 R−1

2 R1

= u�Vdu − u�(Vd − C�
d )
(
Vd + V − Cd − C�

d + ∆d∆�
d

)−1 (Vd − Cd)u .

If b∗
d were available, u�µd would be estimated by

µ̂C
d = u� (I − R�

1 R−1
2

)
µ̂d + u�R�

1 R−1
2 µ̂ .

As this holds for an arbitrary vector u, we can omit it and state that the
vector µd is estimated efficiently by

µ̂C
d = (I − B∗

d)
�µ̂d + B∗

d
�µ̂ , (8.11)

where B∗
d =

(
Vd + V − Cd − C�

d + ∆d∆�
d

)−1 (Vd −Cd). The estimator µ̂C
d

is called multivariate composite; it is a generalisation of the univariate com-
posite estimator introduced in Section 6.3. We refer to B∗

d as the shrinkage
matrix.

Practical implementation of (8.11) is hindered by our inability to estimate
∆d with any appreciable precision for most districts. We can adopt the solu-
tion proposed in Section 6.3 — to replace the squared bias ∆d∆�

d with its
district-level expectation ΣB . As a consequence, we switch the assessment of
efficiency from MSE to eMSE, as we have done in the univariate setting.

8.3.1 How to choose x?

Although multivariate composition involves no models, the variables in x that
constitute the auxiliary information still have to be selected. More variables
should yield a more efficient estimator. This is the case with the ideal compos-
ite estimator (8.11) because the MSE attains a lower minimum when optimised
over a wider range of convex combinations.

In practice, the (co-)variance matrices Vd , V and Cd , as well as the vector
of biases ∆d or the district-level variance matrix ΣB , have to be estimated.
Many variables in X, especially when some of them are highly correlated,
introduce an instability in B̂

∗
d and, as a result, a paradox — more auxiliary

information leads to less efficiency. However, for a single auxiliary variable, the
intuition is confirmed. A variable that has a higher district-level correlation
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with y, smaller sampling variance and smaller district-level variation leads to
greater efficiency. To show this, suppose u = (1, 0) and let

Vd =

(
V

(1)
d V

(12)
d

V
(21)
d V

(2)
d

)
,

and similarly for ΣB , V and Cd . (Note that Cd is not symmetric.) We explore
how eMSE

{
µ̂C

d (bd)
}

depends on V
(2)
d , V (2) and Σ

(2)
B , the variances associated

with the auxiliary variable. Suppose µ̂ =
∑

d qdµ̂d and the two components
of µ are estimated from the same survey. Then Cd = qdVd , and R1 =
(1 − qd)Vd and R2 = (1 − 2qd)Vd +V +ΣB . The reduction of the eMSE by
the bivariate shrinkage is by

(1 − qd)2(0 1)Vd {Vd(1 − 2qd) + V + ΣB}−1 Vd(0 1)� ,

that is, the (1 − qd)2-multiple of the (2,2) element of the matrix

Vd {Vd(1 − 2qd) + V + ΣB}−1 Vd .

This is
(1 − qd)2V

(1)
d

2

F
(1)
d − Σ

(12)
B

2
/F

(2)
d

,

where F
(h)
d , h = 1, 2, is the diagonal element of the ‘denominator’ matrix

Vd +V−Cd −C�
d +ΣB . This expression enables a simple discussion of when

an auxiliary variable is useful in bivariate composite estimation. First, large
district-level covariance Σ

(12)
B (its sign is immaterial) is preferred. Second,

small F
(2)
d is preferred; that is, small sampling variance V

(2)
d and small district-

level variance Σ
(2)
B . The variance V (2) and covariance C

(12)
d are of much smaller

magnitude than V
(2)
d , so their values have only a minor impact.

Next, suppose the auxiliary information originates from a different survey,
so that the direct estimators of the two components of µd are independent.
The same algebra applies as above, except that Vd , Cd and V are diago-
nal. Now µ̂ =

∑
d Qdµ̂d and Cd = QdVd , where Qd are diagonal matrices

containing the sampling fractions in the two surveys.
Estimating the sampling (co-)variance matrices Vd , V and Cd is a task

from standard sampling theory, and so we do not address it here. However,
we explore the impact of uncertainty about them on small-area estimation.
The only other quantity required in composite estimation is the district-level
variance matrix ΣB .

Estimators of µd based on two-level models with random slopes involve
within-district totals of cross-products, Z�

d Xd , see (7.25). The estimator in
(8.9) maintains its generality over model-based estimators if the correspond-
ing within-district mean cross-products are included in the vector µd . Note
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that the constituent variables, Z and X, are also represented in the auxil-
iary information, so µ̂d may contain several highly correlated estimators. It
is easier to see in composite estimation that this is not conducive to efficient
estimation. In the model-based approach, the problem appears not to arise
because µ̂C

d is based on an expression derived by assuming known district-level
variance matrix ΣB , and model choice and assessment are made by exploring
the overall fit.

In model-based approach, we have to be careful about explanatory vari-
ables that are recorded (observed) subject to error. In multivariate composi-
tion these auxiliary variables can be used as any other, so long as the mea-
surement error is duly reflected in Vd,, Cd and V, or their estimators. This
is a much simpler problem than the correction for attenuation in regression.

8.3.2 Estimating ΣB

The auxiliary variables in X are not necessarily normally distributed, neither
within nor across districts. It is therefore advantageous to avoid any methods
that rely on normality. The district-level variance matrix can be estimated by
moment matching, without any distributional assumptions. We describe the
estimation of a variance and a covariance in ΣB .

For a variable X, we define the weighted sum of squares

SB =
D∑

d=1

wd(θ̂d − θ̂)2 ,

evaluate its expectation as a function of the district-level variance σ2
B =

varD(µD) and the sampling (co-)variances cd , vd and v, and then solve
the equation that matches the statistic SB to its expectation. The weights
w1 , . . . , wD can be any positive constants; their choice is discussed below. By
w+ we denote their total; w+ = w1 + · · · + wD .

We have

E(SB) =
D∑

d=1

wd

{
vd + v − 2cd + (θd − θ)2

}
,

and

ED {E(SB)} = w+σ2
B +

D∑
d=1

wd(vd + v − 2cd) .

Hence the estimator

σ̂2
B =

1
w+

{
SB −

D∑
d=1

wd(vd − 2cd)

}
− v . (8.12)

An obvious choice for the weights wd are the sample sizes nd , so that more
precise contributions to SB are assigned greater weights. This choice is not
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without problems. When some variables are associated (correlated) with the
sample size, some bias is incurred. When no such associations are present, the
choice is appropriate. When all the estimators θ̂d are normally distributed SB
has the χ2 distribution with D − 1 degrees of freedom.

To estimate a covariance, we form the weighted sum of cross-products

S′
B =

D∑
d=1

wd(θ̂d − θ̂)(θ̂′
d − θ̂′) ,

for a suitable set of weights wd . Its expectation over sampling and across the
districts is

ED {E(S′
B)} = w+Σ12 +

D∑
d=1

wd(Vd,12 + V12 − 2Cd,12) ,

where the subscript 12 indicates the covariance in the matrix Vd , V or Cd .
The relative precisions of θ̂d and θ̂′

d vary across the districts when θ̂d and θ̂′
d

are based on different sources of data, but may differ even when based on the
same survey. Then there is no obvious choice of the weights wd .

The moment-matching formula requires not only the sampling variances
of the direct estimators, but their entire variance matrix for every district d.
In some circumstances, the covariances vanish; in other cases, they are related
to the sampling variances. Some examples are discussed in the next section.

8.4 Applications

In multivariate composite estimation, we can mix auxiliary information from
several sources of different types: other surveys, censuses or administrative
information (population registers). This section discusses a few generic exam-
ples.

8.4.1 Related variables in a survey

The analysed survey usually contains the target variable, the variable for
which inferences (estimates of its district-level means) are desired. Often other,
closely related, variables are also recorded. This may be because they are the
target variables for other analyses, are used for constructing such variables,
are used for data editing (by identifying inadmissible combinations of values),
or the like.

It is a time-honoured tradition to plan the analysis of a variable X by using
only the values of that variable. However, drawing inferences about a district
by using only the data from the district may be similarly ‘natural’, yet we
have dismissed this approach in Section 8.2 as inefficient. The involvement of
variables other than the target can be motivated by (linear) regression and the
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associated synthetic estimators. Without a reference to a model, consider the
following setting. Variables X and Z are highly correlated, but the district-
level variance of Z, σ2

B,Z is smaller than its counterpart for X, σ2
B . Thus,

we could estimate the district-level means of Z and derive estimates of the
means for X by adjusting for the national (overall) differences between X and
Z. This scheme leads to a biased estimator, but the bias may be preferred
if the sampling variance is substantially reduced. The univariate shrinkage
estimator, which would be applied if Z were ignored, is also biased.

Variable Z, together with others, can be used as auxiliary information in
multivariate shrinkage. Instead of a single one, several auxiliary variables may
be considered. Let X = (X, Z, . . .)� be the random vector of the variables
considered, with the target variable as its first component. In multivariate
shrinkage, estimation of the district-level means corresponds to setting the
vector of coefficients in (8.9) to u = (1, 0, . . . , 0)�. The optimal shrinkage
is given by the vector bd equal to the first column of R−1

2,dR1,d . When the
variables in X are highly correlated, the correlations in Vd , Vd − Cd and V
are also high, and so are the correlations in the district-level variance matrix
ΣB . Then all the elements 2, 3, . . . of bd = R−1

2,dR1,d vanish only in some
esoteric situations. As the optimal shrinkage vector bd is not a multiple of
(1, 0, . . .)�, the auxiliary information contributes to efficiency in estimating
the district-level mean of X.

More precisely, it has the potential to contribute, because some losses are
incurred as the matrices Vd , V, Cd and ΣB have to be estimated. That sug-
gests that we should be sparing in the formation of the vector X, considering
only variables that are highly correlated with X. When there are several such
variables it is not useful to include in X variables that are highly correlated
with one another. At an extreme, instability in the calculation of b̂d can be
expected when two variables that are almost copies of one another are in-
cluded in X. So, whereas it is advantageous to have a near-singular matrix
ΣB , it is not as useful to have an almost singular matrix (ΣB)−1,−1 , that is,
the matrix ΣB with its first row and column removed.

Note that the target and auxiliary variables need not in fact be highly
correlated. It suffices that their district-level means are highly correlated.
Of course, high within-district correlation is usually accompanied by high
district-level correlation, but only the latter is required.

8.4.2 Estimation for several subpopulations

Inferences are often sought not only for the entire districts, but also for their
subpopulations, such as all men and all women, certain age groups (possibly
defined for men and women separately), ethnic groups, heads of households,
children, and for various attributes that are defined in the entire country.

If men and women have the same district-level means, the inferences for
either sex could be based on the analysis of all the data, with no regard for
sex. As the sample sizes in such analyses are nearly doubled compared to the
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analysis of the sex-specific subsets, the gains would be obvious. In practice,
there are some differences between men and women, but when they are small,
we should prefer the bias brought on by lumping men and women together to
the variance inflation due to (approximately) halving the sample size.

In other contexts, the differences between men and women may be non-
trivial. If the district-level means for men and women are highly correlated,
the data for men can serve as auxiliary information for women, and vice versa.
A simple way of realising some of the gains is by adjusting the results of the
analysis that ignores sex for the average differences between men and women.
Multivariate shrinkage exploits the similarity of the district-level means for
men and women more completely, as the combination of the estimated district-
level means for men and women is set more flexibly. Let µ̂d be the vector of
direct estimators of the district-level means for men and women, Vd their
sampling variance matrix, and µ̂ and V their ‘national’ counterparts. The
district-level variance matrix ΣB has high correlations, for example, when the
district-level means between men and women differ little from a constant, or
their subpopulation means are almost perfectly linearly related. In (8.9), the
vector u is set to (1, 0) and (0, 1) for estimating the mean for either sex, and
to (1, −1) for estimating their difference in district d.

Districts represented by many men in the sample tend to be represented
also by many women. So, where there is a lot of direct information (many men
for estimating the mean for men), there is also a lot of auxiliary information.
This is an unsatisfactory feature of the application: we have little auxiliary
information where we need it most, and a lot where we need it least.

As a contrasting example, suppose the targets of estimation are the
district-level means for an (ethnic) minority group that constitutes a small
fraction of the nation’s population. If the data for the minority were analysed
in isolation the sample sizes would be very small. They would fail to exploit
the similarity of the minority with the majority. In effect, we might estimate
the quantities of interest for the minority more efficiently by an appropriate
adjustment of the corresponding estimates for the majority. The substantial
increase in the effective sample size may well be worth the bias that is incurred
in the process.

Men and women and minority and majority are two examples of par-
titioning the target population into a set of (mutually exclusive and non-
overlapping) subpopulations. The means, proportions, or other district-level
summaries for such subpopulations can be estimated simultaneously by mul-
tivariate shrinkage. The estimates for each district are given by the shrinkage
matrix Bd given by (8.11). The covariances in V and Vd are difficult to esti-
mate with designs that involve sizeable dependence of inclusion of subjects in
the sample. Such designs are employed very rarely and, in practice, the cor-
relations can be assumed to vanish. Then the covariance in ΣB is estimated
without bias by the sample covariance of the district-level sample means. The
cross-products for the covariances can be added up with sampling weights
when appropriate.
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8.4.3 Estimating compositions

In this section, another meaning of the term ‘composition’ is considered, un-
related to the term used in small-area estimation.

A categorical variable (a classification) defines a partition of the population
into subpopulations of subjects that have the same value of the variable.
Men and women are such subpopulations, as are various classifications into
industrial sectors, levels of educational attainment, states of health, ownership
of certain goods, age groups, and the like. The obvious quantities of interest
for such classifications are the within-district proportions (percentages) of
subjects who belong to each class. Such vectors of proportions, denoted by
pd , are called (district-level) compositions. Their outstanding property is that
each of them adds up to unity (100%); p�

d 1 = 1.
The national composition p is estimated by its sample version, denoted by

p̂. With simple random sampling, the sample composition has a multinomial
distribution. Its components are negatively correlated,

var(p̂ |p) =
1
n

{
diag(p) − pp�} .

The correlation is a consequence of the negative association of the categories;
if a randomly drawn subject belongs to one category, then he or she does
not belong to any other. The district-level direct estimator p̂d is defined by
restricting p̂ to district d. The negative covariances in Vd have to be reflected
in the estimation of the district-level variance matrix ΣB . This matrix is
singular, as the components of pd are linearly dependent, since p�

d 1 = 1.
The district-level (population) percentages of the categories may be posi-

tively correlated (where one category is in excess of the national percentage,
so is the other one) or negatively (one category complements the other in the
district). Multivariate shrinkage estimation of the district-level composition
exploits such associations among the categories. The associations are captured
by ΣB or its estimate. Estimation is improved most for the sparsely repre-
sented categories, as it exploits the association of the district-level percentages
and draws on relatively abundant information from the other categories. In
contrast, little gains beyond univariate shrinkage are realised for the populous
categories in the district, because the other categories provide little auxiliary
information. Multivariate shrinkage may obviate complex sampling designs
that aim to over-represent certain subpopulations in the sample. More even
representation of the subpopulations is not detrimental when the composi-
tion is estimated by multivariate shrinkage, but some efficiency may be lost
in other inferences that are not directly related to the subpopulations, or are
related to other subpopulations. However, more even representation is useful
also for estimating ΣB .
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8.4.4 Survey and register

By the strict standards of statistical theory, surveys deliver an imperfect prod-
uct — estimates based on a sample drawn approximately according to the
planned design using an imperfect sampling frame. The information collected
is temporal, losing its value over time. This puts a premium on the speedy
conduct of all the operations, putting pressure on the process of eliciting in-
formation from the sampled subjects.

An alternative, taken up with varying levels of enthusiasm in the devel-
oped countries, are population registers. The expenditure for setting them up
is much higher than for a typical survey, but analysis of their data can be
conducted for the fraction of the cost of a survey, especially when the register
is stored electronically, in a format accessible to the analyst.

Surveys require expensive concentrated efforts of data collection, with only
fractional savings when the survey is repeated (e.g., annually). A register
requires even greater initial expenditure, takes a few years until the procedures
for recording the relevant data (events) are ironed out, various difficulties
resolved, and incentives or other control mechanisms put in place, so that
(almost) all the intended information is entered in the register, and done so
in a timely fashion. When this period is over, the register can be regarded as
a continual census, a data source much richer than a sample survey.

Registers have the potential to make censuses redundant. The problems
with national censuses, which are special cases of sampling with inclusion
probabilities equal to 1.0, are well documented. However, by its nature, data
format and the information collected, a register is rather inflexible and cannot
be altered at a relatively short notice to satisfy newly identified needs. A
regularly conducted survey is much more flexible in this regard.

Comparing the costs of a survey and a register is meaningful only over a
very long term and by taking into account all their uses. A survey is usually
conducted for the specific purpose of making inferences about a population.
In contrast, a register may be compiled and maintained for an administra-
tive purpose that fully justifies the expense involved. Thus, the access to the
register data may involve only administrative or commercial costs. The exis-
tence and quality of this resource is not necessarily related to its usefulness
for population inferences.

Consider a setting in which a variable is recorded in a sample survey and
a similar variable is recorded in a register. For example, an interview can
establish the subject’s employment status with sufficient detail, but at a con-
siderable cost, and do so only for a sample of subjects. A national or regional
register may hold information about each member of the labour force, using a
classification based on a different definition. For example, the administrative
purpose of the register is for payment of unemployment and other benefits and
pensions. There is a strong incentive for the subjects to provide the relevant
information, and for the authorities to verify it promptly.
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How should we draw inferences about the unemployment rates in the dis-
tricts? With the survey, we record the variable as defined, subject to correct
responses from each subject in the sample. In contrast, the register contains
closely related information, leading to biased estimation even by direct meth-
ods, but the status is available for (almost) the entire population, even if with
some delay, possibly adding slightly more to the bias. A solution that chooses
between the two sources is not as effective as combining the estimators based
on them.

Bivariate shrinkage does not require subject-level data from the regis-
ter, so the register may not need to be accessed directly if the district-level
population means and percentages are publicly available. No data protection
(confidentiality) issues arise in such an application, unless some districts are
so small that their summaries inform about each subject in the district. The
quantities derived from the register are associated with no variation, although
administrative errors, delays in reporting and imperfect coverage can be rep-
resented by a token sampling variance, such as (0.1%)2 for the percentage of
an event that is neither very rare nor very frequent. The survey and register
are independent, so estimation of the quantities Vd , V and Cd , required for
multivariate shrinkage, does not present any difficulties specific to the na-
ture of the register. The benefits of the register as auxiliary information are
obvious when the survey and register-based variables have highly correlated
district-level means. Estimation would then rely almost solely on the register,
except for an adjustment by the difference between the survey-related and
register-based proportions. If this difference is estimated with high precision
(using a survey with large sample size), and the difference varies little across
the districts, the estimates for each district are very precise, even for districts
not represented in the sample.

The survey- and register-based estimators can be combined for estimating
any population target, including national population quantities. To illustrate
this, suppose the target is the national mean (or rate/percentage) µ of a
variable recorded in the register, and the same variable is recorded by a sample
survey. The register yields the mean µ† ; suppose it has been established (with
a high degree of confidence) that the bias of the register-based estimator,
|µ†−µ |, does not exceed ∆†. The survey yields the estimator µ̂ with sampling
variance var(µ̂). The two estimators, µ† and µ̂, should not be regarded as
alternatives, because µ can be estimated more efficiently by their composition

µ̂C = (1 − b)µ̂ + bµ† .

The ‘shrinkage’ coefficient b is chosen so that µ̂C is most efficient in the least
favourable feasible setting, when |µ†−µ | = ∆† . The resulting estimator turns
out to have the minimax property.

When µ† differs from µ by ±∆† the composite estimator µ̂C has MSE

MSE{µ̂C(b); µ} = (1 − b)2v + b2∆2
† ,

where v = var(µ̂), so its minimum is attained for
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b∗ =
v

v + ∆2
†

and the resulting MSE is

MSE{µ̂C(b∗); µ |∆†} =
v∆2

†
v + ∆2

†
.

When the shrinkage coefficient b∗ is applied, even though |µ† − µ | < ∆† ,
µ̂C(b∗) is no longer the optimal composition of µ̂ and µ† . The MSE of µ̂C(b∗)
is

MSE{µ̂C(b∗); µ |} =
var(µ̂)

{var(µ̂) + ∆2
†}2

{
∆4

† + (µ† − µ)2var(µ̂)
}

.

This is an increasing symmetric quadratic function of the absolute bias |µ†−µ |
and, for µ − ∆† ≤ µ† ≤ µ + ∆† , it attains its maximum at µ† = µ ± ∆† .
Therefore, µ̂C is uniformly more efficient than µ̂. With µ† it does not compare
quite so favourably; after all, when ∆† = 0 it is hard to outperform µ† — its
MSE vanishes. However, MSE(µ† ; µ) increases more steeply than MSE(µ̂C).
So, µ̂C outperforms µ† exactly when it is most valuable, when the (absolute)
bias of µ† is the largest possible. The price paid for this is that when µ† is
not biased we lose some efficiency. Such a trade-off guarantees that the MSE
is not large, as opposed to retaining a chance that the MSE might be small,
but not being able rule out large MSE.

Figure 8.2 gives an illustration with v = var(µ̂) = 6 and ∆† = 2. The
MSEs of the estimators µ̂, µ† and µ̂C(b∗) are drawn in the diagram by thick
solid lines in the range of biases 0 ≤ |µ† − µ | ≤ ∆† and extended by thin
dashes to ∆ = 2.5. The composite estimator µ̂C (marked in the graph by
symbol ‘C’) is uniformly more efficient than the direct estimator µ̂ (‘S’), and
is more efficient than the register-based estimator µ† (‘R’) when the bias is
close to 2.0. It remains more efficient than both µ† and µ̂ well beyond the
largest feasible bias of 2.0. The MSEs of µ† and µ̂C cross at the bias of

√
1.5.

Now suppose ∆† = 1.0 is justified. The MSE of the corresponding compos-
ite estimator is drawn in Figure 8.2 by dots and dashes and marked by symbol
C′. For biases not exceeding 1.0 (in absolute value), this estimator is uniformly
more efficient than its counterpart derived by assuming that ∆† = 2.0. How-
ever, the composite estimator with ∆† = 1.0 is less forgiving. It is more
efficient than its counterpart for ∆† = 2.0 only for bias |µ† − µ | < 1.495.
Thus, ‘tighter’ information about the bias is rewarded by greater efficiency.
But it does not pay to gamble by stating a value of ∆† that is not justified,
because less efficiency is gained over the single-source estimators.

8.4.5 Historical data as auxiliary information

Many large-scale surveys are conducted regularly (annually), and they docu-
ment the modest changes in various national, regional and district-level quan-
tities of interest over the years. After constructing the year’s survey database,
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Figure 8.2. The composite estimator µ̂C, combining the estimators based on a
survey and an imperfect register. The symbols C, R, and S mark the MSEs of the
composite and register- and survey-based estimators, respectively. v = 6 and ∆† = 2.
The line drawn by dots and dashes and marked as C′ represents the composite
estimator based on ∆† = 1.
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it is analysed on its own, with no input from the surveys in the past years. If
the survey were not conducted in a year, the last year’s estimates would be
regarded as reasonable for the current year.

Analysing such a (current) survey in isolation represents a waste of re-
sources, comparable to discarding the knowledge and experience accrued over
the years. We can exploit the stability of the quantities of interest over the
years by using the past years’ values of the target variable as auxiliary in-
formation. Let µd,t be the population mean of the target variable in district
d and year t = 0,−1, . . . ,−T , where the current year is t = 0, the pre-
vious year t = −1, and so on, till t = −T , T years ago. Denote by µ̂d,t

the direct estimator of µd,t . When a different sample is drawn each year,
µ̂d = (µ̂d,0 , µ̂d,−1 , . . . , µ̂d,−T ) has independent components, as does the na-
tional estimator µ̂. Therefore Vd , Cd and V are diagonal and the covariance
of the district-level sample means (direct estimators) across the years is solely
due to the covariance of the district-level population means.

Similarity of the district-level means usually decays with time, so using
more recent surveys as auxiliary information is more important. Data from
the previous year is likely to make a lot of difference, nearly doubling the
effective sample size (reducing the standard errors of the direct estimators
nearly

√
2-fold). Data from two years ago will contribute less. At some point,
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the gains become very small, or even inflate the MSE of the multivariate
shrinkage estimators as the inverse R̂2,d becomes unstable for some districts.

In surveys with rotating panel design, a subject (or household) drawn into
the sample remains in it for the next K years (or, more generally, waves). Such
a design is very useful for longitudinal comparisons, obviating the need for
subjects to recall events in the distant past. It is rather misleading to refer to
the data collection at a particular time point as one survey, because the sample
at the next time point is very similar; only about 1

K th part of the sample from
the previous time point has been replaced. Nevertheless, the direct estimator
of a district-level quantity at the current time point can be improved, by
using the data from the previous waves as auxiliary information. The data
on the same subjects, about 100(1 − t/K)% from t waves ago, makes little
contribution, so the data from more recent past may provide less information
than from earlier surveys.

8.4.6 Summary. Using all the relevant information

The applications outlined in the previous sections can be combined. For exam-
ple, the current rates of unemployment in the various subpopulations can be
estimated using a composition of the direct estimators from earlier years, or
from a (decennial) census or a register, exploiting the temporal similarity and
the similarity of the district-level rates of unemployment across the age-by-
sex groups. In ideal circumstances, combining estimators from several sources,
from several variables recorded in the same survey, or in related surveys, en-
ables us to take advantage of all the information relevant for a particular
target. In practice, it does not pay to use all the information because the first
source (on its own) is very useful, the next one less so, and at some point
the logistical difficulties make further gains more and more difficult to realise.
Also, composition fails to exploit every last bit of information, and so using
many auxiliary variables may be counterproductive.

Multivariate composition can be motivated by the dilemma of having sev-
eral sources of information for estimating the same target. We dismiss the
old-fashioned solution of selecting the best-suited source, the ‘best’ variable,
the most efficient of the candidate estimators, and look for ways of exploiting
each source, variable or estimator, by combining them. The format in which
such information is presented has no impact on our capacity to use it. The
data may be available as values for subjects, subjects in a different survey,
direct estimates or district-level population quantities.

For the composition, we require the precisions of the direct estimators
from each source. If uncertain, we should underestimate the precisions (over-
estimate their MSEs), so that we avoid assigning too important a role to the
corresponding source. If we underrate the importance of a source we fail to
exploit it fully, but do not render the resulting estimator invalid.
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8.5 Planning and design for small-area estimation

Designing a survey for estimating one or a small number of quantities is a well
appreciated problem, addressed comprehensively by the survey sampling the-
ory. Nowadays, some of the theory is redundant because the population and
the survey sampling mechanism can be simulated on the computer and the
properties of the estimators considered evaluated empirically. In any case, the
theoretically formulated problem is a gross simplification of what the survey
is intended for. Inferences are usually sought by several parties (secondary
analysts) about different aspects of the studied population. Of course, one
cannot please everybody, and some trade-off has to be made between the con-
flicting demands. Analytical solutions for this more complex setting are hard
to construct, partly because the relative priorities of the various inferential
goals are difficult to formulate or classify. Nevertheless, the solutions for some
simple problems provide insights into how to deal with realistic problems that
are more complex.

Small-area estimation is an example of estimating many population quan-
tities, in which the goals of estimation for each district are in an apparent con-
flict. Given limited resources, operationalised by a fixed sample size, greater
subsample size in one district is bound to come at the expense of a smaller
subsample size in another district. Thus, the task at hand is to strike an in-
telligent compromise and make the best use of the resources for the planned
inferences.

Let s2
d , d = 1, . . . , D, be the MSEs of small-area estimators of population

quantities θd . They depend on the sampling design which, for simplicity, we
represent by the within-district subsample sizes n = (n1, . . . , nD). The prob-
lem of setting the sampling design for a fixed overall sample size n = n�1 can
be formulated as finding the minimum of a summary

D∑
d=1

f
{
s2

d(n; d)
}

, (8.13)

subject to the constraint n�1 = n. We write s2
d = s2

d(n) because s2
d depends

on n; on nd obviously, but also on the other nd′ because districts d′ �= d may
provide auxiliary information about district d. The function f may contain
some other arguments as well, such as the district’s population size Nd . By
adding attributes of the district as further arguments, f may reflect the rela-
tive priorities with regard to the inferences about the districts. However, the
key choice to be made is what values we attach to high and low precisions.
For example, if a given precision is required for every district, precision higher
than required is not any more valuable, and not reaching it would render the
estimator useless. In this highly discrete setting, f(s2

d) is a step function, equal
to zero up to a certain precision, and to unity otherwise. The value of f can be
interpreted as a penalty for insufficient precision. The optimal design for such
a function f assigns the minimum sufficient sample size to as many districts as
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resources allow, and represents no other districts in the survey. This is highly
unsatisfactory not only for estimating other population quantities, but even
for some small-area estimators. For example, synthetic and composite estima-
tors are based on a model fitted for the whole country, and that requires a
good representation of the country in the survey sample. An important factor
ignored in this is that the sampling variance (as a function of the design) is
not known. Usually it depends on one or several parameters that have to be
estimated.

If estimation for each district has the same priority, allocating the same
sample size to each district appears to be reasonable and well motivated. When
the districts have very different population sizes, such a design may undermine
the estimation of the national mean. (This can be addressed by using the
sampling weights, but not having to resort to it is preferred.) A compromise
solution is to under-represent the dispersion of the population sizes in the
sample — to oversample the less populous districts and undersample the more
populous ones. This can be implemented by splitting the overall sample size
(or the available resources) to a component devoted to efficient estimation
of the national quantity and another to efficient estimation of the small-area
quantities. The relative priority of the two goals has to be reflected in how
the overall sample size or the resources available are split.

A flexible class of functions f for (8.13) is given by

f(sd) = Nq
ds2

d ,

where q is a non-negative constant, referred to as the priority exponent. For
q = 0, the population size Nd is not involved in f , and so it has no influence
on the priority. For high powers q, the precision for the more populous dis-
tricts becomes relatively more important. This counters the emphasis on the
precision for the least populous districts.

We illustrate first how direct estimation in a simple stratified sampling
design is optimised, and then proceed to more complex settings. Suppose
only stratified sampling designs, with strata coinciding with the districts, and
simple random sampling within each district, are considered as candidates
for a survey. Then s2

d = σ2
d/nd , where σ2

d is the within-district variance (a
population quantity). We seek the minimum of the objective function

D∑
d=1

Nq
d

σ2
d

nd
,

subject to the constraint n1 + . . . + nD = n. This problem is solved by the
method of Lagrange multipliers, or by substituting n1 = n − n2 − . . . − nD .
Either way we obtain the conditions

Nq
d

n2
d

σ2
d =

Nq
1

n2
1

σ2
1 ,
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d = 2, 3, . . . , D, which have the unique solution

nd =
n N

q/2
d σd∑D

d′=1 N
q/2
d′ σd′

.

When no information about the relative sizes of the within-district variances
σ2

d is available assuming that they are all equal is the obvious default. Then,
for q = 2, nd is proportional to Nd ; nd = cNd . For q > 2, the more populous
districts are assigned greater sample sizes, proportional to N

q/2
d . This does not

lead to a reasonable allocation for any purpose, so it is meaningful to consider
only q ≤ 2. Similarly, q < 0 is not meaningful, as the optimal subsample sizes
would be negatively correlated with the district-level population sizes.

8.5.1 Optimal design for the composite estimator

The calculations for the composite estimator are somewhat more complex,
and so we assume that the within-district variances are constant; σ2

d ≡ σ2
W .

The variance ratio σ2
B/σ2

W is denoted by ω. The optimality criterion for the
univariate shrinkage estimator minimises the expression

D∑
d=1

Nq
d

σ2
B

1 + ndω
,

in which, for simplicity, we ignore the correlation of the national and direct
estimator. This leads to the identity

N
q/2
d

1 + ndω
= const , (8.14)

which has the explicit solution

n∗
d =

(D + nω)Nq/2
d

ωU
− 1

ω
. (8.15)

where U =
∑D

d′=1 N
q/2
d′ . In addition to rounding, an adjustment is needed

when the solution contains one or several negative values of n∗
d .

For ω = 0, the expression in (8.15) is not defined. In this case, however,
the national estimator θ̂ is used for each district, and so we should focus on
optimising the sampling design for θ̂ only.

An alternative approach to optimisation is based on the Newton method.
An initial solution is defined by setting n1 , which determines the other sub-
sample sizes by (8.14). If the resulting total n1 + · · · + nD exceeds n, n1 is
reduced; otherwise it is increased. The optimum is then located by linear inter-
or extrapolation, as appropriate. This usually takes only a handful of itera-
tions, even with a very poor starting solution. As the district-level subsample
sizes have to be integers, the exact total sample size n is usually not reached.
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Yet another approach explores elementary changes in the sampling de-
sign. Suppose a sampling design has been agreed on, but there is some leeway
to adjust it so that it would be better suited for small-area estimation. An
elementary change is a re-allocation of a unit sample size from one district
to another. Small-area estimation prefers more even district-level subsample
sizes, so a desirable re-allocation is from a district with a large (the maxi-
mum) subsample size to a district with a small (the minimum) subsample
size. Analytically, or by simulations, we can establish the overall gains in pre-
cision of the small-area estimators and the losses for other estimators. We
continue with elementary changes until the improvements diminish or the
losses in precision of the other estimators begin to prevail. With the univari-
ate shrinkage estimator, the most favourable elementary changes re-assign a
unit from a district with the largest subsample size, dmax , to a district with
the smallest subsample size, dmin . The changes in the eMSEs are, approxi-
mately, from c/(1+ndmaxω) to c/{1+(ndmax −1)ω)} and from c/(1+ndminω)
to c/{1+(ndmin +1)ω)}, for districts dmax and dmin with the respective sample
sizes ndmax and ndmin . Increasing the subsample size by one brings about a
reduction of eMSE by approximately

g(nd) =
ω

(1 + ndω){1 + (nd + 1)ω} .

This is a decreasing function of nd . The consequences of a unit reduction are
derived similarly; the eMSE is increased by approximately g(nd − 1). Hence,
the increase in eMSE for district dmax is smaller than the reduction for district
dmin . Comparison of the multiplicative changes leads to a similar conclusion.

In summary, efficient design for small-area estimation prefers more gener-
ous allocation to less populous districts. However, the need for such evenness
(preference for equalising the district-level subsample sizes) is less acute with
composite than with direct estimation, because the shrinkage estimators com-
pensate for small subsample size by drawing on auxiliary information.

Disparity of the subsample sizes

An important feature of the sampling designs optimal for small-area estima-
tion is that less populous districts are sampled with higher sampling propor-
tions. We refer to this feature as disparity of the subsample sizes. Figure 8.3
displays the optimal sample sizes for an artificial setting of a country with
population of 32.15 million in its 100 districts. The curves in the left-hand
panel connect the optimal sample sizes for the direct estimator for a range of
priority exponents q. The population sizes are marked on the horizontal bar at
the bottom of the graph. About half the districts have population sizes in the
range 125–200 thousand and only 20 districts have population sizes in excess
of half a million. The right-hand panel contains the curves for the composite
estimator, assuming that ω = 0.05. The allocation proportional to population
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Figure 8.3. The optimal subsample sizes for the direct and composite estimators
θ̂C

d for a range of priority exponents q in a country with 100 districts. The dashes in
the right-hand panel indicate the allocation proportional to population size.
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The panels show that for exponents 0 < q < 1.75 the sampling design
optimal for composite estimation allocates subsample sizes with less disparity
(closer to the proportional allocation) than the sampling design for direct es-
timation. For the largest values of q, the more populous districts are allocated
even greater sample sizes than by the design with subsample sizes propor-
tional to population sizes. This is a consequence of the ‘handicapping’ of the
districts with above average sample sizes in composite estimation. These dis-
tricts have relatively less auxiliary information, and the improvement in their
estimation (composite vs. direct) is, on average, smaller than for the districts
with below-average sample sizes.

For greater ω there is less similarity, and so the optimal design approaches
its counterpart for the direct estimation. At the other extreme, as ω ap-
proaches zero, the allocation favours more and more the most populous dis-
tricts because the least populous districts draw greater benefits from the sim-
ilarity. However, substantial changes in the allocation make little difference in
efficiency, until the sample-size allocation becomes irrelevant for ω = 0.

These comments have to be qualified by the assumption that the national
mean θ is estimated with high precision. However, as the sample allocation
departs from proportionality, some efficiency in estimating θ is lost. This has
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an impact on small-area estimation that is not taken into account, even though
estimation of θ may be another goal of the survey.

As the subsample-size calculations are made with some simplifying as-
sumptions that include the value of ω, the use of eMSE instead of MSE,
reference to the ideal composite estimation, and a priority exponent q that is
bound to be set subjectively, it is essential to explore the dependence of the
sampling design on these factors. In principle, this is straightforward; little or
no additional programming is required, although the processing of extensive
output by the (human) analyst may be difficult.

Estimation of the national quantity θ can be formally incorporated in the
problem of optimising the sampling design. Its estimator θ̂ has to be associated
with a priority G. Then the objective function to be optimised is

D∑
d=1

f
{
s2

d(n; d)
}

+ Gvar(θ̂ |n) . (8.16)

For most settings f , sd and θ̂, the solution cannot be expressed in a closed
form, but the optimum can be located by simple iterative algorithms, such as
the Newton method.

8.5.2 Variable subsample sizes and several divisions

So far, we have assumed that the district-level sample sizes are fixed and un-
der the designer’s control. They are random, for example, in clustered designs
in which clusters either coincide with districts or contain them. In such de-
signs, chance controls whether a district is represented in the sample at all.
Of course, the probability of a less populous district not being represented
is greater. Thus, clustering is poorly suited for small-area estimation; under-
representation of ‘small’ districts is more costly than under-representation or
‘large’ (populous) districts. Clustering should therefore be replaced by strati-
fication, to the extent that this is feasible. When strata coincide with districts
the district-level subsample sizes are easier to control, and designs can be se-
lected in which the strata have either fixed subsample sizes, or the subsample
sizes have small variances across replications. Ideally, each district should be
represented in the sample.

Sometimes the division of the domain into districts is not known, or cannot
be fully considered when setting the sampling design. This may be the case
when analysing historical data or when the domain has several divisions. A
play-safe strategy pursues even representation of any district in the sample.
That is, the distribution of the sample size nd (over hypothetical replications)
would be tightly concentrated around an ideal subsample size that reflects
the population size of the district. Such a design is not particularly economic,
involving a high average cost per subject because of the absence of tight
clustering of the observations.
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A further step toward realism in setting the sampling design is to express
the overall cost of the survey in terms of the subsample sizes, and optimise the
design with a fixed cost. Different allocations may result in different overall
sample sizes. For example, priority for small-area estimation may call for many
districts with small sample sizes, but the unit costs of collecting data from
only a few subjects in a district may be higher than collecting data from
many subjects. Thus, the pressures on resources suggest that sampling in
some districts be abandoned and other districts be sampled more densely, in
variance with the simplified objectives of small-area estimation that represent
the resources by a fixed sample size.

Analytical approaches are limited, but their imperfect solutions are very
useful for communication with the client who has difficulty in conveying all the
nuances of the survey management and cost control. The analyst should find
the appropriate level of complexity for the optimisation problem, so that in-
corporating the remaining factors subjectively would not erode the analytical
contribution.

8.6 Suggested reading

Reference [65] discusses an application in which small-area estimation of the
median for one subpopulation (four-member families) is assisted by informa-
tion about other subpopulations (families of different sizes). A reanalysis is
presented by [81].

The MSEs of the small-area estimators depend on some parameters. They
depend on the targets as well, but that problem is sidestepped by referring to
eMSEs. The eMSEs are usually estimated by conditioning on the estimated
values of the parameters. This is appropriate only when there are many well
represented small areas. Estimators of eMSEs that take into account the un-
certainty about the estimated parameters are developed in [212]. A problem
endemic in estimating variances is that the MSEs of the estimators depend
on the target itself. The consequences of this are elaborated by [158].

Generalised linear models (GLM) with random coefficients, also known as
generalised mixed linear models (GMLM), have a long history of attempts
at fitting them by maximum likelihood with the computing resources avail-
able at the time. References [197] and [22] derive approximations to the log-
likelihood that are easy to maximise. The partial derivatives required by the
Newton-Raphson algorithm are approximated by [151]. The methods for ap-
proximation are critically reviewed by [227]; see [86] for an indirect response
and [134] for an example with a cautionary tale. Most of these references focus
on binary outcomes, but many of the conclusions carry over to other GMLM.

Reference [131] develops an alternative for the likelihood, called the h-
likelihood, in which taking margins over the random coefficients does not
involve any integration, and so model fitting with it is much easier. A gener-
alisation is described in [132].
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An application of the composite estimator described in Section 8.4.4 to
clinical trials is presented in [162]. A similar theme, combining an unbiased
and a biased estimator, is the subject of [89].

Diagnostics for for random coefficient models have to deal with the ran-
dom terms (or residuals) at each level. Reference [129] addresses this issue by
developing tests for normality of the deviations and [130] describes approaches
for identifying outliers in multilevel data. With abundant computing power,
the simulation approach proposed by [232] has a better control over the rate
of false positive findings. See also [77], Chapter 6, and [161] for an application
to random-effect models.

An approach to optimising the sampling design by splitting the overall
sample size to two parts and optimising the allocation of each with respect to
a different inferential goal is described by [52].

8.7 Exercises

1. Prove that the statistic SB is distributed according to χ2
D−1 when the

direct estimators θ̂d are unbiased, mutually independent and normally
distributed, with sampling variances σ2

W/nd , and wd = nd .
2. Show that small-area estimation using random coefficient models with

random slopes, (8.1) with non-trivial zi , is closely related to compos-
ite estimation with auxiliary variables that are products (interactions) of
variables in x and z.

3. Derive the univariate composite estimator for a dichotomous target vari-
able, assuming simple random sampling within districts and a known
district-level variance σ2

B .
4. Draw a random sample of size 100 from a distribution of your choice and

regard it for the population means of the districts of a country. Draw
another random sample (not necessarily independent from the first) from
a distribution with positive values and, after rounding, regard it as the
subsample sizes within the districts. For a given value of the common
within-district variance σ2

W , generate direct estimators of the district-
level means. Apply the univariate composite estimator for each district,
and count the number of ‘winners’ — districts in which the composite
estimate is closer to the target than the direct estimate. Apply the com-
posite estimator with a reduced coefficient, such as 0.9b̂d , and compare
its number of ‘winners’ with the original composite estimator based on
b̂d . Repeat the exercise several times to estimate the distribution of the
number of ‘winners’ for the two settings as well as for their difference.
Apply a criterion for the quality of the estimators that takes into account
the size of the estimation error.

5. Apply the sample size optimisation for the direct estimator with a given
priority exponent q and a range of priorities G for the national estimator
using the objective function in (8.16) for the fictitious country in the
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previous exercise. Draw suitable graphs to show that higher priority G
results in more precise estimation of the national mean.

6. Draw graphs of optimal sample allocations for the composite estimator
with a range of variance ratios ω. Suppose your client prefers each sub-
sample size to be a multiple of 20, the workload of an interviewer. Being
short of a multiple of 20 is not as problematic as being slightly in excess.
Consider ways of incorporating such a preference formally and informally
in the setting the sampling design. With your choice, assess how much
efficiency is lost because of this preference.

7. Devise a method for optimising the sampling design for univariate com-
posite estimation with a given priority exponent q and a priority G for
the national mean estimator. For a particular setting (country and its
districts, real or simulated) establish the range of values of G which yield
solutions that are for all practical purposes (e.g., after rounding) indis-
tinguishable from the sampling designs that are optimal for the extreme
priorities: the national estimator only (G = +∞) and the district-level
estimators only (G = 0).

8. Show that the multivariate composite estimator reduces to the vector of
univariate estimators when each of the variance matrices Vd , V and ΣB
is diagonal. Describe a setting in which this would happen.

9. Find a source of some socio-economic indicators for the districts or re-
gions of your country for a few consecutive years and study the differences
among the regions across the years. Compare them with the sizes of the
standard errors (margins of error), if available. Assess how effective the in-
formation from the preceding years would be for improving the estimation
for the most recent year.
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Using small-area estimators

Small-area estimators are essentially small-sample, the opposite of asymptotic.
Their MSEs are usually non-trivial, and the uncertainty involved demands a
careful treatment in how the estimates are used.

In an asymptotic setting, transformation and efficient estimation are com-
mutative; that is, if θ̂ is efficient for θ, then so is f(θ̂) for f(θ) for any (con-
tinuous or differentiable) function f . Under some mild regularity conditions,
maximum likelihood (ML) estimators are asymptotically efficient. In prac-
tice, the qualifier ‘asymptotic’ is dropped and forgotten. This is how ML
has become the generally accepted standard for efficient estimation. We of-
ten claim that some of the asymptotic properties of ML apply universally, in
particular unbiasedness and the commutative property of transformation and
estimation. Estimators based on small or moderate sample sizes, including
small-area estimators, do not have this property.

This chapter reinforces this negative conclusion on examples from small-
area estimation and derives an estimator of the ranks of districts. As an aside
to small-area estimation, a section discusses small-sample estimation of col-
lections of variances and precisions, highlighting the non-asymptotic nature
of the estimators. Insisting on no bias would result in unacceptable losses of
efficiency, reducing our choices to direct estimators.

9.1 Non-linear transformations of the estimates

The analyst’s goal is efficient estimation of a population quantity. With its
evaluation, the analyst’s work would appear to be concluded. A typical client,
confident in the analyst’s product, will treat the estimate as if it were the
population quantity, being unaware of the pitfall outlined in the introduction
— that an efficient estimator remains efficient only while it is subjected to
linear transformations.

The multivariate version of this statement is particularly relevant to small-
area estimates. Comparing two districts, by the difference µ̂d − µ̂d′ is appro-



240 9 Using small-area estimators

priate. If µ̂d and µ̂d′ are efficient for their respective targets µd and µd′ , then
the difference µ̂d − µ̂d′ is efficient for µd − µd′ . Similarly, the comparison of a
district with the national mean is appropriate, because the target is a linear
function of the estimator of µd . Examples of inappropriate use of the esti-
mates are identifying the area with the smallest (or, generally, an extreme)
mean, assessing the variation by the sample variance of the estimates µ̂d , and
ranking of the district-level means. More generally, any outstanding feature
of the estimates µ̂d need not indicate the same or even a similar outstanding
feature of the underlying quantities µd because the observation of such a fea-
ture can usually be expressed as a non-linear (and often not even continuous)
function of µ̂D .

The district-level variance of the direct estimates, varD(µ̂D), exceeds the
variance of the district-level population means, σ2

B = varD(µD), by a random
variable with a distribution related to the sampling variances of the estimators
µ̂d . In fact, the variance σ2

B is estimated in composite estimation; see Section
6.4. The district-level distribution of µD should not be confused with the
distribution of µ̂C

D . Related to this is a weakness of all maps of estimates,
in which the colour or shading of each district’s area is a function of the
district’s estimate. For the direct estimator, the map will have more sudden
switches of colour or shading from one district to its neighbour, while with a
shrinkage estimator more smoothness can be expected. Shrinking less, so that
the district-level estimates would have the right amount of variation (equal
to σ̂2

B), is not a good solution either.
A practical solution is offerred, indirectly, in Part I. If the targets µd were

known the task at hand, whatever its details (e.g., drawing a map, counting
the number of districts that have means above a certain value, and the like),
would be relatively simple. Consider µd as the missing information, either in
an EM or a multiple-imputation setting. In the EM algorithm, we estimate
the expectation of the summary used in the M-step, and the M-step is triv-
ial — quoting the summary from the E-step. When the summary is difficult
to estimate in the E-step, or difficult to formulate algebraically (e.g., an in-
spection of the map, with a vaguely formulated inferential agenda), multiple
imputation may be easier to implement. It entails drawing a plausible vector
µ̃ of district-level population quantities from their joint distribution. A small
number of replications of the plausible vector are drawn and the map, or the
summary of interest, is constructed for each vector. The results will differ,
reflecting the uncertainty about the estimates used. Averaging the vectors of
plausible values, to construct a single map or feature, is not appropriate.

An unpleasant complication is that the estimators µ̂C
d are correlated,

through the national mean estimator µ̂ and the estimated district-level vari-
ance σ̂2

B , or their multivariate counterparts. A short-cut ignores the corre-
lations among the estimators. This may lead to a gross error when a lot of
shrinkage takes place for many districts, even though the sampling variance of
the estimators would be reflected. This may be resolved by drawing plausible
values of the parameters used in composite estimation, resulting in plausible
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shrinkage coefficients (or matrices) and evaluating ‘plausible’ estimates based
on them.

9.1.1 How important is bias?

Unbiasedness is generally regarded as a valuable property of an estimator. So
far, we have seen that insisting on it in small-area estimation would not be very
constructive. Nevertheless, we should explore how important it is to estimate
without bias some of the parameters contributing to small-area statistics. To
simplify the discourse, we assume that the outcomes are normally distributed.

Suppose a variance σ2 is estimated with q degrees of freedom, that is,

q
σ̂2

σ2 ∼ χ2
q .

(χ2
q is the χ2 distribution with q degrees of freedom.) Although σ̂2 is unbiased,

its non-linear transformation is not. We sometimes work with variance ratios,
estimated by the ratios of two independent variance estimators. If σ̂2 is in the
denominator, it might be preferable to substitute an unbiased estimator of
1/σ2 instead of the reciprocal of σ̂2. We have

E
(

σ2

σ̂2

)
=

q

q − 2
,

so long as q > 2. This suggests an obvious correction for bias,

σ̃2 =
q

q − 2
σ̂2 .

The bias correction is unimportant when we have hundreds of degrees of
freedom. At the other extreme, σ̃2 is not defined for q = 2. The bias is as
detrimental to estimation as variance inflation, caused by large var(σ̂−2);

var
(

σ2

σ̂2

)
=

2q2

(q − 2)2(q − 4)
,

so that var(σ2/σ̃2) = 2/(q − 4). This implies that dividing by an estimator σ̂2

that is based on fewer than five degrees of freedom is extremely unwise if small
MSE of the ratio is the ultimate goal. Dividing by ∆+ σ̂2 for a suitably chosen
∆ reduces the variance of the ratio, without introducing a substantial bias.
In conclusion, unbiasedness is fragile; it is lost by non-linear transformations.
Its pursuit may detract from the aim of efficient estimation.

9.2 Ranking and ordering

It is in our nature to order a set of related quantities and establish the identity
(label) of the largest and smallest values, or to sort them in the ascending or
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descending order. When each quantity is estimated the order of the quanti-
ties differs from the order of the estimated quantities. This section discusses
estimation of the ranks of district-level population means and similar quanti-
ties. Its starting point are the estimators based on the rank of the direct and
shrinkage estimators, and the solution developed, although motivated by the
idea of shrinkage, dismisses both proposals.

The rank of a quantity θd among θ1, . . . , θD is defined as the number of
the quantities that do not exceed θd :

R(θd ; θD) =
D∑

d=1

I(θd ≥ θd′) . (9.1)

(I is the identity function, equal to unity if the logical statement in its ar-
gument is correct, and to zero otherwise.) The definition assumes that there
are no ties (θd �= θd′ whenever d �= d′); otherwise some arrangement has to be
made, such as defining I(θd ≥ θd′) = 1

2 when θd = θd′ and d �= d′. But we set
I(θd ≥ θd) = 1, irrespective of the arrangement that is made.

Naive estimation of ranks entails ranking the estimates:

R̂(θd ; θD) =
D∑

d=1

I(θ̂d ≥ θ̂d′)

R̂C(θd ; θD) =
D∑

d=1

I(θ̂C
d ≥ θ̂C

d′) .

Their trivial advantage is that the set of estimated ranks is a permutation
of the integers 1, 2, . . . , D — they look like genuine ranks. In general, the
two sets of estimators do not agree, and they tend to differ more when the
extent (and direction) of shrinkage for θ̂C

d vary a great deal across the districts.
The sampling distribution of these estimators for a fixed district d is difficult
to derive or approximate analytically, especially for R̂C(θd ; θD), because the
contributing events (θ̂C

d ≥ θ̂′) are dependent even after conditioning on θ̂C
d .

An alternative to these methods is based on estimating each elementary
contribution I(θd ≥ θd′). This can be formulated as an application of the EM
algorithm in which θ̂d or θ̂C

d form the incomplete information and θd are the
missing data. Thus, the rank of θd is estimated as

R̃C(θd ; θD) =
D∑

d′=1

P
{

θd ≥ θd′ | θ̂C
D
}

(9.2)

or as

R̃(θd ; θD) =
D∑

d′=1

P
{

θd ≥ θd′ | θ̂D
}

,
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where the probabilities are conditional not only on the sets of estimates, but
also on the joint distribution of the D estimators. The probabilities are eval-
uated at the estimates (setting θd = θ̂d or θd = θ̂C

d ) and normality of the
estimators is assumed. For R̃C, the conditional expectation of the difference
θd − θd′ is estimated naively, by the difference θ̂d − θ̂d′ . For R̃, the estimators
θ̂d are independent (for most sampling designs), so var(θ̂d−θ̂d′) = vd+vd′ . For
R̃C, we require the conditional distribution of the difference ∆dd′ = θd − θd′ .
The difference is estimated by

∆̂dd′ = (bd − bd′)�p̂ + (w − bd)�p̂d − (w − bd′)�p̂d′ .

Assuming normality of all the estimators involved, the conditional distribution
of ∆̂dd′ is normal, with expectation

(bd − bd′)�p + (w − bd)�pd − (w − bd′)�pd′

and variance

(bd − bd′)�V(bd − bd′) + {w − bd + 2qd(bd − bd′)}�Vd(w − bd)

+ {w − bd′ − 2qd′(bd − bd′)}�Vd′(w − bd′) .

The conditional probability P
{

θd ≥ θd′ | θ̂C
D
}

is estimated from the approxi-
mation

∆̂dd′ ∼̂ N
{

∆̂dd′ , v̂ar
(
∆̂dd′ | p̂C

D
)}

.

The sampling variance of the estimator of a rank is

var
(
R̃C

d

)
=
∑
d′

var
{

I(θd ≥ θd′) | θ̂C
D
}

+
∑
d′ �=d

∑
d′′ �=d & d′′ �=d′

cov{I(θd ≥ θd′), I(θd ≥ θd′′) | θ̂C
D} .

As each of the (D − 1)(D − 2)/2 distinct covariances has to be evaluated,
this is a formidable expression. Each variance is equal to pdd′(1−pdd′), where
pdd′ = P(θd ≥ θd′), and each covariance to pd,d′d′′ − pdd′pdd′′ , where

pd,d′d′′ = P(θd > θd′ and θd > θd′′) .

In practice, the sampling variances do not have to be evaluated. A good overall
impression of the uncertainty about the ranks can be gained by inspecting
their spread. To motivate this, consider scenarios that result in a district
being assigned an extreme rank, 1 or D. The estimated rank for district d is
equal to 1.0 only when P(∆̂dd′ < 0) = 0 for all d �= d′, that is, when we are
certain that θd < θd′ for every district d′. When the uncertainty about the
signs of ∆dd′ (fixed d, and d′ �= d) is considerable many of the probabilities
pdd′ are distant from both zero and unity, and the estimated rank is therefore
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distant from both 1 and D. In fact, when there is little or no information about
θd , each probability pdd′ is close to or equal to 0.5, so the estimated rank for
district d is close to (D +1)/2, the median of the ranks. This estimate should
not be interpreted as ‘district d is (near the) average’. Such a statement would
be well qualified only if the MSE of the estimator were small or many of the
contributing comparisons (θd ≥ θd′) had high or low conditional probabilities.
As θ̂C

d (or θ̂d) contributes with its uncertainty to the ranks of all the other
districts, their estimated ranks have many elementary contributions in (9.2)
that are distant from both zero and unity. For a district with a relatively
small θ̂C

d , say, with R̂C
d = 5 among D = 500 districts, the probabilities pdd′

exceed 0.5 for the four districts with smaller values of θ̂C
d′ , and are smaller

than 0.5 for the remaining 495 districts. The former four probabilities add up
to less than 4.0, and the latter 495 to much less than 495.0, especially if many
probabilities pdd′ for such districts are much greater than zero, and some are
even close to 0.5. Thus, the estimated ranks R̃C

d tend to be greater than R̂C
d

when R̂C
d is small and smaller than R̂C

d when R̂C
d is large. In other words, the

ranks are shrunk toward the median (D + 1)/2. In general, probabilities pdd′

less concentrated around zero and unity result in greater shrinkage. The level
of concentration can be measured by the sample variance of the estimated
ranks, compared to the variance of the set of integers 1, 2, . . . , D, equal to
(D2 − 1)/12.

9.2.1 Inference about selected districts

A particular set of estimates θ̂C
d is rarely the end-product of an analysis.

The estimates, together with their estimated MSE’s, are inspected for any
unusual features, in search of contradictions that would point to an error in
the calculations, but principally for substantive inferences, such as to identify
unusual districts.

Suppose district d is identified as having an exceptionally large estimate.
This is a signal for many a researcher to formulate hypotheses about this
district, regarding it as an opportunity for ‘noteworthy’ findings and claims.
Care has to be exercised because the sampling distribution of any estimator
associated with a claim depends on the process that led to the formulation of
the hypothesis and to the decision to evaluate the estimator. The properties
of estimators, such as their sampling distribution, are contingent on their
unconditional evaluation. Thus, a hypothesis formulated about district d∗,
as a result of inspecting the estimates θ̂C

d , d = 1, . . . , D, should be treated
differently from an a priori formulated plan to test the ‘same’ hypothesis
about district d∗. Without this plan, the hypothesis is not about district d∗,
but about a district identified by a particular process of data inspection. In
other words, d∗ is a (discrete) random variable that should not be confused
with its realisation, because the analysis of a replication of the survey may
identify a different, or indeed no, district as exceptional.
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As an example, suppose the smallest value θ̂C
d , attained for d = d∗, is much

smaller than the next smallest estimate. A test of the hypothesis comparing
the mean for district d∗ with its national counterpart θ is not appropriate if
we base it on the unconditional distribution of θ̂C

d . We say that district d∗ has
been personalised by confusing it with the district with the smallest value θd .
It is more appropriate to compare the distributions of the minimum of the D
estimators θ̂C

d with the national mean, but this comparison is still not valid,
because it is conditional on having found the minimum of the estimates θ̂C

d

as exceptional. Would it be exceptional in a hypothetical replication? If not,
would we still wish to compare it with the national mean?

If we have a long list of configurations of the estimates that we would
regard as exceptional if they occurred, the estimates may conform to a few
of these configurations. In such a case, a configuration has been personalised.
The minimum value of θ̂C

d being much smaller than the next smallest value is
an example of personalising a configuration. We would have made a different
comparison (tested a different hypothesis) had the maximum value of θ̂d stood
out, the estimates were in a narrow range, or the values of θ̂d for most districts
in a region were close to the maximum.

Although it is usually informal, a typical process of inspection can be
described by features considered and thresholds that classify them as note-
worthy. A feature is defined as any function of the estimates (not estimators!).
On the one hand, thoroughness of the inspection, considering many features,
ensures that we identify more features that are remarkable, and increases the
likelihood that we find a feature that would have been observed also among
the targets θD . On the other hand, with thoroughness we raise the likelihood
of flagging features that are not present among the population quantities θd .
One way of reducing the likelihood of this is by raising the threshold for what
we regard as ‘remarkable’ among the estimates. Even though many inferences
based on ad hoc exploration of the estimates θ̂C

D are (meant to be) regarded as
informal, they have a strong element of betting on results of past races about
the outcome of which we have some (not necessarily complete) information.
We should match, and preferably exceed, the probabilistic and logical rigour
of the betting industry.

The analysis may suggest that the list of targets (inferences) compiled a
priori is incomplete. Should targets identified after data inspection and anal-
ysis be treated as if they were specified a priori? They should if the omission
can be regarded as a genuine error, but not otherwise. A target may be spec-
ified after the analysis; in general, the distribution of its estimator has to be
adjusted for the process of inspection. However, when the decision to specify
a target is not influenced by the values of the estimates, the process of in-
spection has no impact on the distribution of the estimator. Such a process
is called non-informative. Non-informativeness of a process cannot be estab-
lished empirically. It is left to the transparency and integrity of the analysts
and clients to confirm it when appropriate. Being clear about the purpose of
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the analysis and the perspective adopted at the outset, and the background
information available at that point, helps to document that the improvisation
with the inferential agenda is non-informative.

9.3 Estimating many variances and precisions

Subpopulation means and proportions are the most common targets for a
collection of districts or other aggregate units, but occasionally other quanti-
ties are estimated, such as variances and their reciprocals (precisions). This
section describes shrinkage estimation of a collection of variances, exploiting
their similarity.

Suppose districts d = 1, . . . , D are associated with respective variances σ2
d .

Two approaches to their estimation may be contemplated: direct estimation,
by the sample variance of the nd observations in district d, and by the sample
variance pooled across the districts. The direct estimator, the sample vari-
ance σ̂2

d , is unbiased but has a large sampling variance. When the values of
the target variable are normally distributed and the within-district sampling
design is simple random, σ̂2

d has a scaled χ2 distribution with nd − 1 degrees
of freedom:

(nd − 1)
σ̂2

d

σ2
d

∼ χ2
nd−1 ;

E(σ̂2
d) = σ2

d and var(σ̂2
d) = 2σ2

d/(nd − 1).
When the district-level variances coincide, σ2

d ≡ σ2, each variance σ2
d is

estimated with much greater precision by pooling the sample variances across
the districts,

σ̂2 =
1

n − D′
∑

d′; n′
d
>0

(n′
d − 1)σ̂2

d′ ,

where the summation is over the districts represented in the sample and D′ is
the number of such districts. The pooled estimator σ̂2, associated with n−D′

degrees of freedom, has sampling variance 2σ4/(n − D′). When the variances
σ2

d vary, σ̂2 estimates each of them with bias, but this drawback may still be
outweighed by the substantially reduced sampling variance.

We estimate each variance σ2
d by the composition

σ̃2
d = (1 − bd)σ̂2

d + bdσ̂
2 , (9.3)

in which the coefficient bd is to be set for each district d. For notational
simplicity, we assume that each district is represented in the sample by at
least two subjects, so that the direct estimator σ̂2

d has a finite variance. We
denote by σ2 the (pooled) variance that is estimated by σ̂2 without bias:

σ2 =
1

n − D

D∑
d=1

(nd − 1)σ2
d .
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The MSE of σ̃2
d is

MSE(σ̃2
d ; σ2

d) =
2(1 − bd)2σ4

d

nd − 1
+

2b2
dσ

4

n − D
+ 4bd(1 − bd)

σ4
d

n − D
+ b2

d(σ
2
d − σ2)2

= σ4(R2,db
2
d − 2R1,dbd + R0,d) , (9.4)

where

R2,d = 2r2
d

(
1

nd − 1
− 2

n − D

)
+

2
n − D

+ (rd − 1)2

R1,d = 2r2
d

(
1

nd − 1
− 1

n − D

)
(9.5)

R0,d =
2r2

d

nd − 1

and rd = σ2
d/σ2 is the ratio of the within-district and pooled variances. In what

follows, no generality is lost by assuming that σ2 = 1, so that rd coincides
with σ2

d . We also assume that nd − 1 < (n − D)/2 for every district. This
condition can be violated by at most two districts in very esoteric settings in
which the subsample size of a district is close to one-half of the overall sample
size. For such a district, composition would not be useful in any case because
its variance would be estimated directly by σ̂2

d with precision rivalling the
precision of the pooled variance estimator σ̂2.

As MSE(σ̃2
d ; σ2

d) is a quadratic function with a negative linear coefficient
−2R1,d , we can always improve on the direct estimator σ̂2

d by choosing a small
enough coefficient bd > 0. The optimal coefficient bd is equal to R1,d/R2,d ,
and the corresponding minimum MSE is R0,d − R2

1,d/R2,d . The coefficient bd

is always positive, and exceeds 1.0 only when 1 < rd < 1 + 4/(n − D − 2).
This is a narrow interval when n � D.

The composite estimator σ̃2
d can be interpreted as a shrinkage estimator;

it is constructed by pulling the direct estimator toward the pooled estimator.
Apart from the sample size, the extent of shrinkage depends on the target
variance σ2

d itself; the gains in precision of the ideal estimator σ̃2
d(b∗

d) cannot
be fully realised because the optimal coefficient b∗

d has to be estimated. This
we do in Section 9.3.1. First we explore the properties of the ideal shrinkage
estimator σ̃2

d .
The optimal shrinkage coefficient is b∗

d = 1
2 when R2,d = 2R1,d . In this

case, σ̂2
d and σ̂2 are equally efficient for σ2

d and any shrinkage coefficient bd ∈
(0, 1) yields an improvement over both σ̂2

d and σ̂2. This occurs when(
1 − 2

nd − 1

)
r2
d − 2rd + 1 +

2
n − D

= 0.

The solutions of this quadratic equation are
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r∗
d =

1 ±√2/(nd − 1) − 2/(n − D) + 4/{(n − D)(nd − 1)}
1 − 2/(nd − 1)

. (9.6)

When the number of degrees of freedom n − D is large the solution is ade-
quately approximated by

r∗
d

.=
1

1 ±√2/(nd − 1)
,

not depending on n or D. The approximation is very close even when n−D =
100 and nd < 20.

When some prior information is available about the variances σ2
d they may

be estimated by the following strategy. If we believe that σ2
d is close to σ2 we

use the pooled estimator σ̂2; otherwise we use σ̂2
d . The critical ratios r∗

d give
us the bounds; within them, σ̂2 should be selected and outside them σ̂2

d . This
approach has a lot in common with the tailored choice in Section 6.2.2, and
that includes all its drawbacks.

In a typical setting, with many districts D and the subsample from each of
them forming a small fraction of the entire sample, 1/(n − D) can be ignored
in (9.5). Then R2,d

.= R0,d + (rd − 1)2 and R1,d = R0,d
.= 2r2

d/(nd − 1). This
approximation is very good even for nd = 10 and n − D = 100. The overall
degrees of freedom, n−D, have only a slight influence on MSE(σ̃2

d ; σ2
d) or b∗

d .
These and related properties are illustrated in Figure 9.1, where the shrinkage
coefficient (panels A and B) and the minimum MSE (panels C and D) are
plotted as functions of the ratio rd for several sample sizes nd . The solid lines
represent n−D = 100 and the adjacent dashed lines n−D = +∞; the sample
sizes nd = 4, 6, 8 and 10 are indicated at the margins of the panels. Instead
of the minimum MSE, which is strongly related to r2

d , the minimum relative
MSE, MSE/r2

d , is plotted. Panels A and C are on the linear scale of rd and
panels B and D on the log scale.

When rd = 1, σ̃2
d almost coincides with the pooled estimator σ̂2, and so its

sampling variance is very small. Greater subsample size nd is associated with
less shrinkage and smaller MSE, but the differences are small for rd close to
unity. With the relative MSE metric, shrinkage is more useful for very high
than for very low rd .

9.3.1 Estimated or guessed variance ratio

In practice, the ratio rd is estimated or a guess of its value is made, so that
the composite estimator r̂C

d could be evaluated. The MSE of the estimator r̂C
d

based on such a value ud is denoted by mse(ud ; rd). We use lowercase ‘mse’
to distinguish it from the MSE in (9.4) and elsewhere, which is a function of
the estimator. We have

mse(ud ; rd) = R2,d

U2
1,d

U2
2,d

− 2R1,d
U1,d

U2,d
+ R0,d ,
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Figure 9.1. The ideal shrinkage coefficient b∗
d and the minimum relative MSE for a

range of variance ratios rd and numbers of observations nd = 4, 6, 8 and 10 (indicated
at the margins of the panels), with n−D = 100 (solid lines) and n−D = +∞ degrees
of freedom (dashes).
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where Uh,d are defined as Rh,d , h = 0, 1, 2, with ud substituted for rd . When
n − D is large, the function mse is well approximated by

mse(ud ; rd)
.= R0,d

{
U0,d

U0,d + (ud − 1)2
− 1
}2

+
U2

0,d(rd − 1)2

{U0,d + (ud − 1)2}2

=
R∗

d + U∗
d

2

(1 + U∗
d )2

(rd − 1)2 , (9.7)

where R∗
d = R0,d/(rd − 1)2 and U∗

d = U0,d/(ud − 1)2.
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To assess the impact of the error in the setting of ud as an initial estimator
of rd , we explore the behaviour of mse(ud ; rd) as a function of ud . We are
interested in circumstances when a large distance |ud−rd | is associated with a
small loss of efficiency mse(ud ; rd)−mse(rd ; rd) or mse(ud ; rd)/mse(rd ; rd).
When no prior information about either value of rd is available it may be
practical to choose the same value of ud for each district d, or a value that
depends only on nd .

The extremes of mse(ud ; rd) can occur only where its derivative vanishes
or where it is not defined. It is easier to differentiate log(mse);

∂ log(mse)
∂ud

=
2(U∗

d − R∗
d)(

R∗
d + U∗

d
2) (1 + U∗

d )
∂U∗

d

∂ud

and
∂U∗

d

∂ud
=

−4ud

(nd − 1)(ud − 1)3
.

Hence, the candidate points are the solutions of R∗
d = U∗

d (where ∂mse/∂ud =
0), ud = 0 (where ∂U∗

d /∂ud = 0) and ud = 1 (where U∗
d has a singularity).

The equation R∗
d = U∗

d has solutions at ud = rd and ud = rd/(2rd − 1). As
our search is restricted to positive values of ud , the latter solution is relevant
only when rd > 1

2 . At ud = 0, mse has a local maximum. It corresponds to
using no shrinkage.

The behaviour of mse(ud ; rd), summarised in Table 9.1, is derived by
elementary analysis. The function is decreasing at ud = 0 for all values of rd ,
so very small values of ud should never be selected, because larger values of
ud yield greater gains. As ud → +∞,

mse(ud ; rd) → 2r2
d

nd + 1
− 4(2rd − 1)

(nd + 1)2
,

so mse is smaller than R0,r = 2r2
d/(nd − 1) whenever rd > 1

2 . Therefore,
shrinkage with a large enough assumed ratio ud is superior to the direct esti-
mator r̂d , unless the true ratio rd is very small. But shrinkage with a smaller
ud is superior for a wider range of ratios rd because mse is increasing for large
values of ud .

For large values of rd , nd and ud , mse is smaller than (rd − 1)2 =
mse(1; rd), the squared bias of r = 1 as an estimator of rd . For example,
for rd = 1.5, nd has to be at least 16, but for rd = 2, nd > 5 suffices, and
for rd = 2.72, mse is smaller than (rd − 1)2 for any sample size nd . In these
settings, we estimate rd with greater precision than the pooled estimator by
using large ud .

Example

The MSEs of σ̃2
d for a set of 20 variances, based on sample sizes nd ranging

from five to ten (average 7.6), are plotted as functions of the assumed ratio ud
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Table 9.1. The behaviour of the function mse(ud ; rd), with fixed rd , for large
overall sample size n.

Condition
(rd) mse(rd ; ud)

Interval
(ud)

Values
From To

rd < 1
2 decreasing 0 < ud < rd R0,d

R0,d

1+R∗
d

increasing rd < ud < 1 R0,d

1+R∗
d

(rd − 1)2

decreasing 1 < ud < +∞ (rd − 1)2 2r2
d

nd+1 − 4(rd−1)
(nd+1)2

1
2 < rd < 1 decreasing 0 < ud < rd R0,d

R0,d

1+R∗
d

increasing rd < ud < 1 R0,d

1+R∗
d

(rd − 1)2

decreasing 1 < ud < rd
2rd−1 (rd − 1)2 H(rd)

increasing rd
2rd−1 < ud < +∞ H(rd) 2r2

d
nd+1 − 4(rd−1)

(nd+1)2

rd > 1 decreasing 0 < ud < rd
2rd−1 R0,d H(rd)

increasing rd
2rd−1 < ud < 1 H(rd) (rd − 1)2

decreasing 1 < ud < rd (rd − 1)2 R0,d

1+R∗
d

increasing rd < ud < +∞ R0,d

1+R∗
d

2r2
d

nd+1 − 4(rd−1)
(nd+1)2

Note: H(rd) = 2r2
d

(nd−1)(3rd−1)4+2(rd−1)2r2
d

{(nd−1)(3rd−1)2+2r2
d

}2 .

in Figure 9.2. The two panels illustrate the same setting, generated artificially,
but in panel A the overall sample size n = 152 and in panel B n = 1020 is
assumed. The variance ratios rd are indicated in the plots by diamonds at
the height y = 0.0. The greatest differences between the panels arise in the
neighbourhood of rd = 1 and ud = 1, where full shrinkage, b∗

d = 1, is optimal.
But even these differences are minute.

The two panels show that for unknown rd we run much smaller risk by
choosing some value ud > 1 than choosing ud < 1. The MSEs have a local
minimum to the left of r = 1.0, but the dip is in a rather narrow range and we
could not locate it based on r̂d that involves only a handful (4–9) of degrees
of freedom. Therefore, to estimate rd efficiently when we have no information
about it other than r̂d and σ̂2, we should choose a large ud . Otherwise we run
the risk of inefficient estimation for many districts.

When rd = 1 we cannot improve on the pooled variance estimator σ̂2

for σ2
d . Although by choosing ud > 1 we do not rule out a large MSE, a

reasonable conservative strategy sets ud to an a priori upper bound on the
variance ratios rd . Then we incur losses in estimating the small variances σ2

d ,
those for which rd < 1, but gain precision in estimating the large variances. Of
course, this ‘socialist’ policy of reducing the inequalities in the precisions of
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Figure 9.2. MSEs of the variance estimators, as functions of the assumed variance
ratio. No external information (left-hand panel) and v estimated with n−D = 1000
degrees of freedom (right-hand panel). The variance ratios are marked by diamonds
�. The thick curve is the average MSE over the 20 estimators σ̃2

d . Simulated data.
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the estimators should be moderated by the sample sizes nd . Direct estimation
of each σ2

d corresponds to ud ≡ 0. This estimator is clearly not competitive
for most variances, although not for all of them.

9.3.2 Estimating precisions

The shrinkage estimator developed in Section 9.3.1 is applicable when the
(within-group) sample sizes are small. We therefore cannot presume that effi-
cient estimation of a variance, say of σ2

d by σ̃2
d , implies that 1/σ̃2

d is an efficient
estimator of the precision 1/σ2

d . Shrinkage estimation of precisions can be de-
rived by the same steps as in Section 9.3.1, although the relevant moments
are different and yield a different way of combining the direct and pooled
estimators.

Let Q be a random variable distributed according to χ2
p , with p > 4. Then

1/Q has expectation 1/(p − 2) and variance 2/{(p − 2)2(p − 4)}. Therefore,
the precision 1/σ2

d is estimated without bias by

�̂d =
nd − 1

(nd − 3)σ̂2
d

,

with variance
var(�̂d) =

2
(nd − 5)σ4

d

.

Similarly, the pooled precision is estimated without bias by
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�̂ =
n − D

(n − D − 2)σ̂2 ,

with variance var(�̂) = 2σ−4/(n−D−4). Since the estimated precision has an
infinite variance for nd ≤ 5, we should estimate the precision for the groups
with five or fewer units always by the pooled precision �̂. The covariance of the
direct and pooled estimators of the precision cannot be derived analytically,
so we resort to an approximation by the Taylor expansion. We have

cov(�̂d , �̂) .=
nd − 3
nd − 1

n − D − 2
n − D

2
σ4

dσ4 cov(σ̂2
d ; σ̂2)

=
(nd − 3)(n − D − 2)
(nd − 1)(n − D)2

4
σ4 .

In analogy with the pooled variance σ2, we define the variance σ2
◦ by pooling

the precisions σ−2
d :

1
σ2◦

=
1

n − 3D

D∑
d=1

nd − 3
σ2

d

.

The shrinkage estimator

�̂C
d = (1 − bd)�̂d + bd�̂

has the approximate MSE

MSE(�̂C
d ) .= σ4

◦�2(R◦
2,db

2
d − 2R◦

1,dbd + R◦
0,d) ,

with

R◦
2,d =

2
nd − 5

1
r2
d

+
2

n − D − 4
− 4(nd − 4)(n − D − 2)

(nd − 1)(n − D)2
+
(

1
rd

− 1
)2

R◦
1,d =

2
nd − 5

1
r2
d

− 2
(nd − 3)(n − D − 2)
(nd − 1)(n − D)2

R◦
0,d =

2
nd − 5

1
r2
d

.

We refer to 1/rd as the relative precision. The minimum MSE is attained for
b◦
d = R◦

1,d/R◦
2,d . Note that b◦

d differs from b∗
d , especially when nd is small.

This illustrates that the optimal shrinkage coefficient depends not only on the
sample sizes and variance ratios, but also on the target of estimation.

As in Section 9.3.1, we consider an estimated or guessed relative precision
1/ud and assess its sensitivity vis-à-vis 1/rd . Since the derivations are very
similar, we summarise them briefly. Assuming large D, the mse using an
‘incorrect’ relative precision 1/ud is

mse(u−1
d ; r−1

d ) .=
R◦

d + U∗
d

2

(1 + U◦
d )2

(r−1
d − 1)2 ,
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where R◦
d = 2R2

d/(Rd − 1)2/(nd − 5) and U◦
d = u−2

d /(u−1
d − 1)2/(nd − 5). This

expression differs from mse(ud ; rd) in (9.7) only by the additional four degrees
of freedom subtracted from the sample sizes nd in R◦

d and U◦
d . Therefore, a

guess of the upper bound of the relative precisions 1/rd is a conservative choice
for 1/ud . This corresponds to the lower bound on the variance ratios rd . Thus,
a substantially different choice of shrinkage is made for the precisions than
for the variance ratios, unless the variances are distributed symmetrically
on the log scale. The loss of the four degrees of freedom also introduces a
further substantial difference in shrinkage, especially for groups that have
small subsample sizes. In this sense, estimation of precisions requires more
data than estimation of variances.

9.4 Suggested reading

League tables of administrative units and institutions (schools, hospitals, eco-
nomic performances of countries or regions, and the like) are often treated by
the straightforward comparison of summaries for the units concerned. Meth-
ods that adjust for differences in the context, such as the background of the
school’s students, are illustrated by [87]. Some of the intuition required for
their application to be appropriate is replaced by formal criteria in [43]. Ref-
erence [126] is the original source of the method described in Section 9.2.
The problematic nature of using small-area estimates is highlighted by [256].
They propose estimators that are specific for each of the three purposes they
consider.

Related to ranking is the problem of identifying units with outstandingly
good or poor performance; [260] presents a case study concerned with con-
firming the unsatisfactory performance of a surgical unit. Reference [31] is a
suitable entry point to the literature on extremes. The context of extremes
in small-area estimation corresponds to ‘observations’ (estimates) that are
subject to estimation error.

The most natural graphical presentation of small-area estimates might be
by maps in which the (estimated) values are represented by shades or colours.
Reference [79] argues cogently that (replicate) maps composed of estimates
are systematically different from the map that would have been composed of
the target values.

9.5 Exercises

1. Suppose a variance σ2 is estimated by σ̂2 and qσ̂2/σ2 is distributed ac-
cording to χ2

q . Find the scalar multiple of σ̂2 that estimates σ2 with the
smallest MSE. Describe the solution as a shrinkage estimator.

2. Solve the analogous problem for estimating the precision 1/σ2.
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3. Explore by simulations the bias of 1/(1 + nω̂) in estimating 1/(1 + nω)
when 50ω̂/ω ∼ χ2

50 . Compare the biases and MSEs of 1/(1 + cnω̂) for a
range of values of c around 1.0.

4. On a simulated example of small areas in the Exercises of Chapter 8, com-
pare the ranks of the population means with their direct and composite
estimates. Define a distance between two sets of ranks (for instance, by
their mean squared difference), and establish by simulations which set of
ranks (derived from the direct or composite estimates) is closer to the
ranks of the population means. If your definition of the distance can be
applied to any set of D numbers, apply it to the estimated ranks R̃C.

5. Alter the simulated population mean for a district so that it would become
an outlier. Estimate by simulations how frequently would the district be
regarded as an outlier based on its estimate. How frequently is another
district ‘detected’ as an outlier? How does the detection rate depend on
the sample size?

6. Discuss how composite estimation of the sampling variances could be used
(to estimate vd) in composite estimation of population-means of small
areas. Explain why efficient estimation of vd may not lead to efficient
estimation of the ideal shrinkage coefficient bd .

7. Verify all the identities in Section 9.3.2. Describe the difficulties that would
be encountered when estimating the function (a1 +σ2)/(a2 +σ2) for some
constants a1 and a2 > 0.
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Case studies

This chapter describes four applications of small-area estimation. The sections
are self-contained and can be read in any order, although Section 10.1 is much
more extensive than the other three.

10.1 The UK Labour Force Survey

The rate of unemployment is a key indicator of the state of the labour force and
the economy in general in every industrialised country. High unemployment is
a sign, or a correlate, of crisis, indicating that a lot of the nation’s capacity to
generate wealth is unused, as was the case during the Great Depression in the
United States. More recently, in the 1970’s and 80’s, the unemployment rate
was anxiously watched by politicians, labour unions, employers and the public
at large, interpreting any change as an improvement or worsening of their
country’s economic climate. Having established itself as a well understood
and easy to interpret figure, professionals and laymen alike are comfortable
making comparisons of their country’s unemployment rate over time, or with
countries of similar level of economic development.

The unemployment rate is far from constant in the regions of most coun-
tries, despite extensive migration of labour, transfer of employment opportu-
nities across the regions, and intervention of governments. Some migration is
initiated by new employment and retirement, although commuting to work
across regional or even national boundaries is quite common, especially in the
continental countries of the European Union. In the UK, the South-East and
Home Counties have been regions of low unemployment and North-East and
West Midlands regions of high unemployment, since the onset of the decline
of the traditional manufacturing industries at least. A natural step from the
interest in the rates of unemployment in the regions is to study the labour
force with even greater geographical detail, such as in the jurisdictions of local
authorities (districts) that provide services relevant to the unemployed.
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There are two principal sources of information about unemployment in
the UK. The Claimant Count (CC) is an administrative register of all the
members of the labour force who are claiming unemployment benefit. The
registers are maintained by local authorities, and the relevant figures are pub-
lished regularly. They comprise the percentage of the members of the labour
force who reside in each district and receive unemployment benefit. The per-
centages are also given separately for men and women. They are available
from www.statistics.gov.uk/neighbourhood/Downloads.

The UK Labour Force Survey (LFS), conducted by the Office for National
Statistics (ONS), is a quarterly sample survey of residential addresses in the
UK. One of the variables recorded by LFS is the employment status, as defined
by the International Labour Organisation (ILO). According to this definition,
an individual is classified as unemployed if he or she has no employment, is
willing to work and has taken active steps to find employment. An individual
is economically inactive if he or she is not employed and does not seek em-
ployment. For example, most full-time students, housewives and the retired
are economically inactive, as are the jobless who have given up search for em-
ployment. Children (up to the age of 16) are classified in a separate category.
Although many working-age adults (men aged 16–64 and women 16–59 in the
UK) who are classified as unemployed according to the ILO definition are also
included in CC, the definitions are not identical.

LFS has a rotating panel design. An address included in the survey is
kept in the sample for the next four quarters. The sample is ‘refreshed’ every
quarter by newly selected addresses to replace the ‘retiring’ addresses that
were included in the survey for the first time a year ago. For example, an
address included for the first time in spring (March–May) 2002 is retained in
the sample till spring 2003. We say that such an address, typically a household,
and its occupants are in wave I in spring 2002, in wave II in the next round
of the survey (three months later, in summer 2002), and so on, till retirement
from the survey panel after wave V in spring 2003. The rotation is conducted
in such a way that the districts are well represented in any round of the survey.

Just like any other large-scale survey that relies on the cooperation
of its subjects, LFS does not collect the complete data as planned by
the sampling design and interview protocol. Nonresponse in LFS was dis-
cussed in Section 5.1. The number of subjects in the survey database is
around 140 000, from about 60 000 addresses. About 80 000 of the subjects
are of working age. The LFS database can be obtained from ONS; see
www.statistics.gov.uk/labour market/lfs for details.

The estimate of the national rate of unemployment based on the LFS is
one of the key products of the survey analysis. Being based on a large sample,
it is estimated with high precision. If simple random sample were employed
with sample size 80 000, the rate of 4% would be estimated with standard error√

0.04 × 0.96/8 = 0.07%. The standard error of the comparison of the rates in
two consecutive quarters is much smaller than 0.07

√
2 = 0.10% because the

two estimated rates are highly correlated, owing to the substantial overlap
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(about 80%) of the subjects in the two rounds. In fact, if the rates in the two
quarters are identical, the standard error of the difference of its estimators
is about 0.03%. In publications, including the media, the estimated rate of
unemployment is quoted in percentages, rounded to one decimal place. Thus,
an estimated difference of 0.1% in the published figures indicates that its
population counterpart is highly unlikely to be negative.

Although the sample size of LFS is sufficient for estimating the national
rate of unemployment, as well as the rates in the 17 regions of the UK, it is
not sufficient for direct estimation of the rates in all but a few of the country’s
434 districts. The average population of a district is about 140 000 and the
average subsample size of working-age adults in such a district is about 200.
The standard error of the direct estimator of the unemployment rate for such
a sample, given that the (population-level) rate is 4%, is 1.4%. As the rate
of 1% is exceptionally low and 7% exceptionally high, such precision is of
next to no value because the estimates for many districts could not reliably
distinguish between very low and very high rates of unemployment.

The districts’ populations are in a wide range. Several cities and metropoli-
tan areas form districts with populations exceeding half a million, and
Orkneys, Shetlands, and some other outlying rural districts, as well as the
City of London, have populations of less than 30 000 each. In London, each
of the 32 boroughs forms a district. The sampling design, using the post-
code sectors as primary sampling units, does not sample rural districts with
probabilities substantially different from urban or metropolitan areas.

In the analysis, we ignore the sampling design (assume that it is simple
random), and report the results for spring 2001, with item nonresponse dealt
with by multiple imputation (see Section 5.1). LFS is conducted throughout
the UK and the definitions of districts in LFS and CC coincide, except for
Northern Ireland, which is represented as a single district in CC but as 26
districts in LFS. For consistency with analyses that use CC as auxiliary infor-
mation, all the results discussed refer to the UK excluding Northern Ireland.

The estimated national rate of unemployment in spring 2001 was 3.59%,
with estimated standard error 0.08%. The estimated district-level variance of
the unemployment rates is 1.64, so that the district-level standard deviation
of the rates is about 1.3%. The district-level rates are not symmetric around
the national rate because there are relatively few districts with high rates and
more (less populous) suburban and rural districts with low rates.

The standard error of the direct estimator of the unemployment rate for
a district with sample size 200 is 0.7%, given that the population rate is 1%,
and 1.7%, given that it is 7%. Such a precision is not satisfactory for any
purpose other than the crudest assessment of unemployment. The precision
of the direct estimator is comparable to the national estimator used for esti-
mating the rate for the district (standard error 1.3%). In univariate shrinkage
these two estimators are combined, resulting in an improvement over both
estimators. The main difficulty in applying univariate shrinkage is that the
sampling variance of the direct estimator p̂d depends on the (unknown) target
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pd . As the rates are small, the variance is approximately proportional to the
rate: vd = var(p̂d)

.= pd/nd . Estimating this variance naively by v̂d = p̂d/nd is
not satisfactory because the estimation error in p̂d is committed again in v̂d .
One solution is to estimate vd by p̂(1 − p̂)/nd , using the estimated national
rate p̂. In another, vd is estimated naively, after truncating the sample rate
at 2% (or a similar threshold). Thus, v̂d = p̂′

d(1 − p̂′
d)/nd , where p̂′

d = p̂d if
p̂d > 0.02 and p̂′

d = 0.02 otherwise. Another option is to apply the univariate
shrinkage with one of these proposals, and then estimate vd by p̂C

d (1− p̂C
d )/nd

using the ‘provisional’ shrinkage estimator p̂C
d .

It is difficult to identify the estimator of vd that leads to optimal estimation
of pd . It is not necessarily the most efficient estimator and, in any case, there
is no uniformly most efficient estimator of vd . The various ways of fine-tuning
the shrinkage improve the estimation of vd (and pd) for some districts at the
expense of others. Therefore, we should state first our priorities for distribut-
ing the precision among the districts. For example, if preference is given to
districts with high unemployment, v̂d should be based on their (anticipated)
rates, say, p† = 6%, unless there is strong evidence that the rate is different.
This suggests applying shrinkage even in estimating vd . Such a scheme would
combine the estimates based on p̂d or p̂C

d and on p†. These options are as
yet very poorly explored, partly because the preferences for ‘allocating’ the
precision to the districts are difficult to formulate.

However, the direct estimator is a weak competitor with either of the
schemes, unless the rate pd is very small. This can be illustrated by a sensitiv-
ity analysis. Consider a district represented in the sample by 50 working-age
adults, none of whom is unemployed. The sample rate of unemployment is
0%, and naive estimation of vd would lead to v̂d = 0, because the error in
estimating pd leads to the implausible conclusion that the estimator has no
sampling variation.

The probability of no unemployed encountered in a simple random sample
of size n = 50, P (

∑
i Xid = 0 |nd = 50; pd) = (1 − pd)nd , is a decreasing

function of pd . It reaches 0.01 for pd = 8.8%. We explore the MSE of the
univariate shrinkage estimator with vd based on a range of values of pd . In the
calculations, we ignore v and cd as they are much smaller than the estimated
district-level variance σ̂2

B = 1.64(%)2.
Figure 10.1 summarises the dependence of MSE on the rate pd by the plots

of the root-MSEs for the shrinkage (solid) and direct estimators (dashes). The
shrinkage applied in each panel is based on the probability p† given in the
subtitle (1%, 4%, 7% and 10%) and indicated by vertical dots. In all four
panels, the direct estimator is more efficient than the shrinkage estimator
when pd is small. For p† = 1%, the difference between MSE(p̂d) and MSE(p̂C

d )
varies least dramatically with pd , but the gains for the majority of districts
which have pd in the vicinity of the national rate p̂ = 3.6% are smaller than
in the other panels. For higher rates of p† we ‘bank’ more on the gains around
pd = p̂ and ‘gamble’ more at the extremes where the direct estimator is
more efficient. To put this in an appropriate perspective, recall that the vast
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Figure 10.1. Shrinkage estimation with vd = var(p̂d) based on guessed values of
pd , indicated by vertical dots. In each panel, the MSE of the shrinkage estimator is
drawn by solid line and the MSEs of the direct estimator by dashes.

0 2 4 6 8 10

0
1

2
3

4
5

Based on p_d=1%
District−level rate (%)

R
oo

t M
S

E
 (

%
)

0 2 4 6 8 10
0

1
2

3
4

5

Based on p_d=4%
District−level rate (%)

R
oo

t M
S

E
 (

%
)

0 2 4 6 8 10

0
1

2
3

4
5

Based on p_d=7%
District−level rate (%)

R
oo

t M
S

E
 (

%
)

0 2 4 6 8 10

0
1

2
3

4
5

Based on p_d=10%
District−level rate (%)

R
oo

t M
S

E
 (

%
)

majority of the districts have rates in the range 3.6% ± 2 × 1.3%. We need
not be unduly concerned about the inefficiency of the shrinkage estimator for
pd < 1% and pd > 7.5%. The loss of efficiency when pd is small is less serious
than when pd is large because, given nd , MSE(p̂d ; pd) increases with pd .

Basing vd on p† = 4%, near the national rate, would be adequate. Some
efficiency is gained when p† is adjusted by the direct estimator p̂d , especially
when nd is large. If p̂d = 0%, the choice of p† = 7% would be poorly justified;
we may be inclined to choose p† < p̂, recognising that the district’s rate is
likely to be lower than the national rate. The confidence in this depends on
the sample size nd .
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10.1.1 Multivariate shrinkage

Two auxiliary variables yield gains in efficiency (on average) over univariate
shrinkage: the rates of economic inactivity and the CC rates. The employed,
economically inactive and unemployed are three categories of the ILO employ-
ment status, so the discussion about estimating compositions in Section 8.4.3
is applicable in this context. The rates of economic inactivity are of interest
also in their own right. The district-level rates of unemployment and eco-
nomic inactivity should be estimated simultaneously because they are highly
positively correlated. However, the direct estimators of the two rates have
identical sample sizes, so the gains in efficiency by simultaneous estimation
are distributed with iniquity; districts with greater sample sizes have more
auxiliary information than districts with smaller sample sizes.

In contrast, the CC rates are without any sampling variation, other than
due to administrative errors and rounding. They are prima facie good auxiliary
information for the unemployment rates, but may be useful also for estimating
the rates of economic inactivity. The estimates of the national rates for the
three variables (unemployment, economic inactivity and claiming unemploy-
ment benefit) are, in percentages, p̂ = (3.59, 21.22, 3.42)�, with respective
standard errors (0.10, 0.34, 0.00)�. For trivariate shrinkage, we require the
sampling variance matrix of the national rates. Its estimate, obtained by mo-
ment matching, is

V̂ =
1

1004

⎛⎝ 103 195 0
195 1174 0

0 0 0

⎞⎠ .

The scalar multiple of 100−4 is chosen so that the matrix entries are in hun-
dredths of percentages squared. The national rate of CC is regarded as es-
tablished with precision, but we associate the district-level CC rates with a
‘token’ standard error of 0.10%, to represent the rounding and administra-
tive errors and related ambiguities. The correlation between the estimates of
the unemployment and economic inactivity rates is adjusted for the negative
correlation in sampling.

The district-level variance matrix is estimated by moment matching as

Σ̂B =
1

1002

⎛⎝ 1.64 5.74 2.19
5.74 26.90 7.01
2.19 7.01 3.76

⎞⎠ .

As anticipated, the correlation of the two unemployment rates is high, equal
to 2.19/

√
1.64 × 3.76 = 0.88. The other two correlations in Σ̂B are also high;

0.86 and 0.70 for the economic inactivity rates with ILO unemployment and
CC rates, respectively. Although the district-level rates of economic inactivity
are widely spread, their sampling variances depend on the underlying rates
much less because the rates are distant from 0% and 100%.
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Instead of listing all the estimates, we illustrate trivariate shrinkage estima-
tion on a few selected districts. District 20UH (Teesdale, county Durham) has
subsample size 36, one of the smallest. The direct estimates of the unemploy-
ment, economic inactivity and CC rates are p̂20UH = (0.0%, 19.4%, 3.0%)�.
These estimates are associated with the respective standard errors
(2.2%, 6.7%, 0.10%)�. The shrinkage matrix (see Section 8.3) is

B̂20UH =

⎛⎝ 0.93 −0.03 −0.49
−0.29 0.76 −1.25

0.00 0.00 0.00

⎞⎠ ,

yielding the estimates (3.09%, 19.23%, 3.0%)�, with estimated standard er-
rors (0.56%, 3.20%, 0.10%)�. The matrix B̂20UH indicates that the rate of
unemployment is estimated by the combination

(0.07, −0.03, −0.49)p̂20UH + (0.93, −0.03, −0.49)p̂ ,

where p̂ is the estimate of the vector of national rates. So, in estimating the
unemployment rate for district 20UH, the local and national rates of economic
inactivity are almost ignored (coefficients −0.03 for both), as is the direct
estimate of the district’s unemployment rate (coefficient 0.07). The estimate
is, approximately, equal to the national unemployment rate adjusted by one-
half of the national and local CC rates.

For estimating the economic inactivity rate for district 20UH, the unem-
ployment rates are much more important. The multivariate shrinkage estimate
is

(−0.29, 0.24, −1.25)p̂20UH + (−0.29, 0.76, −1.25)p̂ .

In contrast to the unemployment rate, the district’s direct estimator is far
from ignored (coefficient 0.24). This can be interpreted as follows. The CC
rates are better auxiliary information for the unemployment rates, so the di-
rect estimator is almost redundant. For economic inactivity rate, the CC rates
are less useful, so the highly unreliable (large-variance) direct estimator is rel-
atively more useful. The fact that the coefficient associated with the CC rates
is negative and so large is not remarkable. The CC rates are in a relatively
narrow range compared to the economic inactivity rates, so their impact is
weaker than the size of the coefficient might suggest. It may seem paradoxical
that the CC rate has a greater coefficient for estimating economic inactivity
than for unemployment rate (−1.25 vs. −0.49). This is a consequence of the
wide range of the rates of economic inactivity and relative paucity of infor-
mation about it from the other districts’ rates.

And finally, shrinkage leaves the CC rates unchanged. That is a conse-
quence of their high precision.

Next we explore estimation for district 40UE, Taunton Deane in Somerset.
It is a medium-size district, with subsample size 150. The direct estimates
of its unemployment and economic inactivity rates are (2.67%, 15.07%)�,
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with estimated standard errors (1.41%, 2.93%)�, and their trivariate shrink-
age counterparts, using the CC rate for the district equal to 1.7%, are
(2.40%, 16.28%)� with estimated standard errors (0.48%, 2.24%)�. The es-
timated gains by shrinkage are much more modest than for district 20UH,
especially for the rate of economic inactivity. There is more ‘direct’ infor-
mation, so the auxiliary information is relatively weaker, and is made less
prominent by the shrinkage. The shrinkage matrix is

B̂40UE =

⎛⎝ 0.88 −0.07 −0.38
−0.37 0.40 −0.53

0.00 0.00 0.00

⎞⎠ .

Compared to B̂20UH , the role of the CC rates is reduced, especially for es-
timating the rate of economic inactivity. The direct estimates are assigned
greater weight by shrinkage for both unemployment and economic inactivity
rates (0.12 and 0.60, respectively). While the unemployment rate remains an
important auxiliary variable for the rate of economic inactivity, economic in-
activity is not a useful auxiliary variable for the unemployment rate. In fact,
the weight assigned to the unemployment rate for estimating the economic in-
activity is greater (in absolute value) for district 40UE than for 20UH (−0.37
vs. −0.29). This is a consequence of the greater subsample size of district
40UE.

As the last example, we consider district 00CN, Birmingham, which has
the largest subsample size, 1151. The direct estimates of its rates of un-
employment and economic inactivity are (5.54%, 29.34%)�, with estimated
standard errors (0.67%, 1.35%)�. Their trivariate shrinkage counterparts are
(5.49%, 29.34%)�, with estimated standard errors (0.37%, 1.20%)�. The CC
rate for the district is 5.9%. The shrinkage matrix is

B̂00CN =

⎛⎝ 0.69 −0.08 −0.25
−0.51 0.16 −0.01

0.01 0.00 0.01

⎞⎠ .

The role of the CC rate in estimating the unemployment rate is reduced
further, and is almost eliminated for the rate of economic inactivity. The
similarity of the district-level rates is not exploited reciprocally. Although the
rate of unemployment contributes to estimating the rate of economic inactivity
(weight −0.51), the rate of economic inactivity is all but ignored in estimating
the unemployment rate (weight −0.08).

The extent of shrinkage applied for the districts is plotted against the sam-
ple size in Figure 10.2. In the left-hand panels, the shrinkage coefficients for
estimating the district-level unemployment rates, and in the right-hand panels
the corresponding coefficients for estimating the rates of economic inactivity
are plotted against the sample size. The points for the three districts discussed
earlier are marked by the symbol ×. The horizontal axes are on the log scale
because the points are then more evenly spread. To improve the resolution,
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Figure 10.2. The extent of shrinkage and the district’s subsample size. The left-
hand panels plot the extent of shrinkage of the three district-level rates in estimating
the rate of unemployment (UN), and the right-hand panels their counterparts for
estimating the rates of economic inactivity (IA). The signs are changed as indicated
by the labels of the vertical axes. The points for the three districts discussed in the
text are marked by the symbol ×.
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district 00AA (City of London, subsample size 4) is excluded from the plots.
The signs of the coefficients are changed, as indicated by the axis labels, so
that the ranges of the vertical axes of panels A–D are (0, 1).

The graphs highlight the strong association of shrinkage with the subsam-
ple size, except for the shrinkage of UN rates in estimating the IA rates. The
‘self’-shrinkage (of UN to estimate UN rates and of IA to estimate IA rates)
is stronger for the UN rates than for the IA rates, a consequence of the vastly
greater district-level variance of the IA rates. Panels B and C document that
UN rates are much more useful for estimating the IA rates than vice versa.
Panels E and F show that the CC rates make a substantial contribution to
estimating the IA rates for districts with small subsample sizes, but are much
less useful for the districts with the largest subsample sizes. In contrast, the
contribution made by the CC rates to estimating the UN rates is much smaller
for the least populous districts but decreases only slightly with the district’s
subsample size.

The variation of the shrinkage coefficients within a given sample size is
due to the differences in the (estimated) district-level rates used in calculating
the shrinkage matrices B̂d . Part of this variation is due to the differences in
the population rates and part due to sampling variation. The latter is an
undesirable component. Its impact can be assessed by a sensitivity analysis
described by the following example.

District 22UJ, Harlow in Essex, has subsample size 97. We selected it de-
liberately, from the 24 districts with subsample sizes 96–104, as the district
with the shrinkage coefficient for the UN rate in estimating the IA rate, −0.18,
that is the smallest in absolute value for all the 24 districts. An unusual fea-
ture of the data for this district is the high sample UN rate (7.42%, with
estimated standard error 2.36%), and low sample IA rate (13.40%, with es-
timated standard error 3.48%). Trivariate shrinkage estimation brings these
rates much closer to the national trend, by reducing the estimated UN rate to
2.89% (standard error 0.52%) and increasing the estimated IA rate to 17.05%
(standard error 2.51%). Shrinkage appears to be very useful for UN rate in
particular, reducing its estimated standard error about 4.5 times. However,
the radical change in the estimate, more than 2.5 times, may be disconcert-
ing, especially to an analyst who appreciates the qualifier ‘estimated’ (used
with shrinkage, standard error, and the like), or somebody skeptical about
the method who is not willing to explore its details.

A pessimist would assess the error committed by estimating the shrinkage
coefficients by using the coefficients for a district with a similar sample size,
selecting such a district so as to obtain estimates that differ from those quoted
above as much as possible. We carry out this exercise more comprehensively,
by calculating the estimates based on the shrinkage coefficients for all the
districts with sample sizes in the range 96–104. These values, referred to as the
plausible estimates, of the UN rate for district 22UJ are in the range 2.95%–
3.38%. Thus, there is no dispute about the direction of shrinkage — radical
reduction from the direct estimate, but the shrinkage used for the estimate
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p̂C
22UJ is the strongest. The explanation for this is in the rather extreme values

of the direct estimates p̂22UJ — the second highest for unemployment and the
third lowest for economic inactivity among the 24 districts — unusual, given
the high district-level correlation of the two rates.

The plausible estimates of the IA rate for district 22UJ are in the range
17.49%–19.35%. This time, the shrinkage used for p̂C

22UJ is the most conserva-
tive, because with the shrinkage based on the other districts we assume that
the direct estimator is less precise. In conclusion, the sensitivity analysis shows
that shrinkage is robust with respect to estimation of the sampling variance
matrix V̂d . If we assumed that the range of the plausible estimates is an indi-
cation of the sampling variance that is not accounted for, it would contribute
to MSE by only about 0.015(%)2 for the UN rate, and 0.31(%)2 to the IA
rate. Even with such an inflation, based on a rather pessimistic scenario, the
shrinkage estimators remain much more efficient than their constituent direct
estimators. However, the bias of p̂C

22UJ is more difficult to assess. The bias is
substantial if district 22UJ is essentially different from the rest of the country.
On the one hand, this is a weakness of the method; on the other, no more than
a few districts may be exceptional, so the (multivariate) shrinkage is efficient
for most districts. Without shrinkage, we would leave the information in the
other districts of the country untapped.

Sensitivity of the estimates of the standard error could be explored simi-
larly. However, the estimated standard error, being based on ̂eMSE, is biased,
so such an exercise is not as useful. The standard errors can be assessed more
comprehensively by bootstrap. One implementation of the bootstrap repli-
cates the sampling and estimation processes a large number of times, gener-
ating bootstrap replicate datasets with the same (national) sample size as in
the original survey, and assesses the variation of the estimates across the repli-
cates. For any given district, the replicates may have different district-level
subsample sizes. As the assessment of the sampling variation conditions on
the district-level subsample sizes, we have to restrict the sampling in the boot-
strap to fixed district-level sample sizes. Carrying out the repeated sampling
on the data from 80 000 subjects is perhaps an analytical overkill.

A simpler implementation of the bootstrap draws random samples only
from the districts, and assumes the district-level subsamples to be fixed. Con-
sequently, the sampling variation associated with V̂d is ignored, and we assess
only the component of sampling variation due to estimating the district-level
variance matrix ΣB . However, the impact of the uncertainty about Vd was
assessed earlier by a sensitivity analysis. The bootstrap indicates that the
district-level variance matrix ΣB is estimated with very small sampling vari-
ation, adding to the standard error for a typical district 0.02 and 0.10 for the
respective UN and IA rates.



268 10 Case studies

10.1.2 Distribution of district-level rates

A simple way of estimating the distribution of a set of quantities, such as
the district-level rates of unemployment, is by a histogram of the values, if
they were available. Smoothing, for instance, by kernel density estimation,
may improve the presentation and, with an appropriate level of smoothing,
provides a better estimate of the density in a superpopulation represented by
the D districts.

The quantities pD , that is, pd , d = 1, . . . , D, whose distribution we want
to estimate, are not observed. Estimating the distribution of pD naively from
p̂D is not efficient because the target distribution is a non-linear function of
pD . The values of the functions that contribute to the target as additive terms
should be estimated; see Section 9.1. As we are interested in numerous features
of the distribution, such as symmetry, modes, tails, and various quantiles,
these functions are difficult to specify.

The direct estimates are more dispersed than the targets, so the histogram
of p̂D offers a distorted view of the histogram of pD . The shrinkage estimates
p̂C

D , even though (largely) more efficient, are not appropriate either; their
histogram offers a view of pD that is distorted in a different way — p̂C

D are
dispersed less than pD . The distortion with both sets of estimates can be at-
tributed to the sampling variation of the direct estimators and the auxiliary
information. We could reduce the shrinkage for the district-level estimates so
that the district-level variance of the resulting estimates would match the es-
timated district-level variance σ̂2

B . In univariate shrinkage, and assuming that
v = cd = 0, this amounts to using the shrinkage coefficient bd = 1/

√
1 + ndω.

We describe a more principled approach, similar to estimating the ranks of
the districts in Section 9.2. For any value x, we wish to establish the proportion
of the districts d for which pd < x. This proportion,

F (x) =
1
D

D∑
d=1

I(pd < x) ,

is the empirical distribution function. The empirical density is defined as
{F (x + ∆) − F (x)}/∆ or, more precisely, as

f(x) =
F (x + 1

2∆) − F (x − 1
2∆)

∆
,

where ∆ is a suitable small number, set so that f(x) is an efficient estimator
of the underlying density. (If ∆ is too small, f(x) oscillates between zero and
large positive values.) Each elementary contribution to F (x), I(pd < x), is
estimated by its probability based on the estimated distribution of p̂C

d , in
analogy with the the elementary contributions to the ranks in (9.1) and (9.2):

I(pd < x | p̂d , p̂, . . .) ∼̂ N
{

p̂C
d , ̂eMSE

(
p̂C

d

)}
,
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Figure 10.3. Estimates of the district-level distribution function (panel A) and den-
sity (panel B) of the district-level rates of unemployment. The direct and shrinkage
estimates of the density, calculated with ∆ = 0.2, are smoothed.
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approximately. This identity can be motivated by the EM algorithm in which
the district-level population rates are the complete information, and their
estimation constitutes the E-step. To evaluate the sampling variance of F (x),
the covariances of the shrinkage estimators p̂C

d have to be taken into account.
The evaluation is not necessary, as a good impression of the sampling variation
of F̂ is gained by comparing it with its trivial counterparts based on the direct
and shrinkage estimates. As an alternative, the direct estimators can be used
to estimate F (x). The sampling variation is easier to evaluate, but it is much
greater, as the contributing estimators p̂d are much less efficient than the
shrinkage estimators p̂C

d .
The three estimates of the distribution function are plotted in Figure 10.3,

together with the estimated densities derived from them. The estimator mo-
tivated by the EM algorithm (solid line) looks like a compromise of the two
naive estimators, based on the direct estimates (D, dots) and shrinkage esti-
mates (S, dashes). The fact that the EM estimate is a smooth distribution
function and the naive estimates are not is not important in the context.

The differences among the estimates are illustrated more clearly on the
estimated densities in panel B. The naive estimate based on the shrinkage
estimators p̂C

D is associated with much smaller district-level variance than the
EM estimate, which in turn is associated with much smaller variance than the
naive estimate based on the direct estimators p̂D . The naive direct estimate
suggests that a handful of districts have no unemployed at all, not a realistic
proposition, and that some districts have unemployment in excess of 8%. The
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naive shrinkage estimate claims that no district has unemployment rate lower
than 1.5% and that only one district has unemployment rate greater than
7%. The inefficiency of the naive estimators is best highlighted by simulating,
or at least considering, how they would change if the overall sample size
were increased or reduced. With a reduction, the direct estimates would be
more dispersed and the shrinkage estimates less dispersed. In contrast, the
EM estimator suffers only from the consequences of poorer estimation of the
district-level variance matrix, which has an impact on the extent of shrinkage.
The naively estimated densities in Figure 10.3, already smoothed to remove
their excessive oscillation, could be smoothed even further.

The variances of the estimated densities are 3.74 for the naive shrinkage,
1.41 for naive direct, and 2.01 for the EM estimate. Neither of them agrees
with the estimated district-level variance σ̂2

B , equal to 1.64. The EM method
is more efficient than the two naive alternatives for pointwise estimation,
but that does not imply efficiency in estimating the shape, smoothness or
any other feature that is a non-linear function of values of the density. Most
likely, the EM estimator yields a density that is too smooth, and the naive
methods densities that are not smooth enough. We should define a particular
feature, such as skewness, and estimate it efficiently from the direct estimates.
The EM algorithm and, for more complex targets, multiple imputation, are
appropriate methods for this. But no single estimated distribution function or
density could serve as an estimate for a multitude of features of the underlying
distribution.

In principle, the density function can be estimated by the methods of func-
tional data analysis [220]. The target density is represented by its coefficients
(coordinates) qh in an infinite basis of functions gh , h = 1, . . ., and the density
f(pD) = q1g1 + q2g2 + · · · is estimated by the finite (truncated) expansion
f̂(pD) = q̂1g1 + · · · + q̂HgH , for a suitable integer H.

Small-area estimates are often represented by maps; the areas are shaded
according to the value of the (shrinkage) estimate. The caveats attached to
such maps are that they are based on estimates, with estimated precisions.
This information is far from complete because it does not convey the cor-
relations of the district-level estimators, and a typical user of such a map
could not take the information about this correlation structure of the district-
level estimators into account. The map displays artefacts associated with the
method of estimation. Optimal estimation for each district does not imply any
good properties of the collection of the estimates, even if the properties are
inferred only informally, as observations (impressions) of the ‘estimated’ map.
A universal solution is provided by simulation, closely related to multiple im-
putation. To motivate it, we pose the following missing-data problem. The
complete-data analysis comprises drawing a map based on the district-level
population means. Denote this task by F(pD), indicating the argument pd ,
d = 1, . . . , D. Given suitable software, this is a relatively simple task. The in-
complete data is the set of estimates p̂C

d for districts d = 1, . . . , D. Executing
F(p̂C

D) is a poor replacement for F(pD) because F can be interpreted as a
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non-linear operation. Instead, we execute F(p†
D), where p†

d are plausible val-
ues of pd , d = 1, . . . , D. The plausible values are drawn at random from the
estimated joint distribution of p̂C

D . This is done by drawing a set of plausible
values of the direct estimators p̂d , estimating the district-level variance ma-
trix ΣB and evaluating the shrinkage estimators based on it. Drawing from the
distributions of p̂C

d directly is not appropriate because we fail to represent the
correlation of the shrinkage estimators across the districts. Strictly speaking,
all vectors and matrices required for evaluating p̂C

d should be drawn from their
respective distributions, but this complication is probably not warranted.

Several sets of plausible values are simulated independently, by replicating
this process, and a map is drawn for each set. These plausible maps represent
scenarios well supported by the data, and they require no caveats related to
estimation of the district-level rates. It is essential to produce several maps, to
represent the uncertainty about any feature of interest. We can be confident
that a feature is present in the ‘population’ version of the map, F(pD), if it
is present in (almost) all the plausible maps F(p†

D).
As a summary, the direct and shrinkage estimates of the district-level

rates are plotted in Figure 10.4. To illustrate how the extent of shrinkage
depends on the sample size, districts with the smallest and largest subsample
sizes are marked in the plots by the respective symbols ◦ (nd < 70) and ×
(nd > 400). The left-hand panels plot each pair of directly estimated rates
and the right-hand panels their shrinkage counterparts. Unemployment and
economic inactivity rates are shrunk quite radically (compare panels A and
B), and the unemployment rates are aligned according to the CC rates (panels
C and D) much more closely than the economic inactivity rates are (panels E
and F). As discussed earlier, the estimators represented in these graphs have
good properties for the rates of individual districts, and should on no account
be used directly for any inferences about the bivariate distributions of the
district-level population rates.

10.1.3 Estimation for age-by-sex subpopulations

Unemployment and economic inactivity are distributed very unevenly between
men and women, and among the ages. Young men and women (aged 16–24)
have high rates of both unemployment and economic inactivity because many
of them are enrolled in education, and disproportionately many of those who
are not are unemployed. The rates of economic inactivity tend to be higher
among women, and the rates of unemployment higher among men in the
same age category. The rates of economic inactivity drop from over 30% for
16-year-old men to around 5% for 30-year olds, then increase very slightly
until the age of 50 when they rise steeply as a result of early retirements. The
trend for women is similar, but the rates are much higher in the age range of
25–50 years. The age-specific national rates of unemployment and economic
inactivity of working-age men and women in spring 2001 are drawn in Figure
10.5. The curves are smoothed to reduce the impact of the sampling variation.
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Figure 10.4. The direct and shrinkage estimates of the district-level unemployment
(UN) and economic inactivity (IA) rates. The symbols ◦ and × are used for about
5% of the districts with the smallest and largest sample sizes, respectively.
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Figure 10.5. Estimates of the age-specific national rates of unemployment (UN)
and economic inactivity (IA) for men and women, Spring 2001.
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Local authorities require the rates of unemployment and economic inac-
tivity for the youngest and oldest members of the labour force, because their
employment status is associated with demand for certain services: training and
support for job-seeking for the young, and the change in lifestyle and health-
care needs for the retired. The sample sizes for the district-by-age groups are
for most districts so small that direct estimation or estimation by univariate
shrinkage (using only the subsample of subjects in the age group from all dis-
tricts) is unsatisfactory. If the trends described by Figure 10.5 applied in all
districts, estimation for any particular age group would be improved dramat-
ically by exploiting such similarity. Even if the trends are not reproduced in
every district, the rates for one age group are bound to be similar to the rates
for the ‘neighbouring’ groups. This provides a strong rationale for applying
multivariate shrinkage.

In principle, we can choose any age groups for the role of auxiliary infor-
mation. More detail, with narrower age ranges, might provide more auxiliary
information; however, as the district-level subsample sizes for these groups are
small, the difficulties with estimating the sampling variances Vd become more
and more acute and prevent us from effective exploitation of the similarity
of the rates across the age groups. The district-level CC rates are available
for men and women only, and for no age groups. Nevertheless, they provide
powerful auxiliary information if the rates within an age group are highly
correlated with the district-level rates (for the same sex).

A pragmatic choice, avoiding handling large variance matrices, is to con-
sider as auxiliary information only the unemployment and economic inactivity
rates for the complement of the target age group within the sex, together with
the CC rates for the same sex, leading to five-variate shrinkage estimation.
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Including the CC rate for the other sex is not useful because the two sets of
rates are very highly correlated; in effect, we would duplicate the auxiliary
information provided by one of them.

For young men (aged 16–24), the estimated district-level correlation matrix
is

1
100

⎛⎜⎜⎜⎜⎝
100 95 83 63 90
95 100 66 11 88
83 66 100 55 73
63 11 55 100 37
90 88 73 37 100

⎞⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎣

UN − o
UN − y
IA − o
IA − y
CC − m

⎤⎥⎥⎥⎥⎦
(the variables are indicated in the right-hand side by their obvious acronyms;
‘y’ stands for young and ‘o’ for other). The estimated district-level variances
are

UN-o UN-y IA-o IA-y CC-m
1.23 11.20 28.95 69.33 8.18

(in percentages squared). The correlation matrix indicates that the UN rate
for the complement (group UN-o) is good auxiliary information for the UN
rate of the young men (correlation 0.95), but the IA rate for the complement
is much poorer for the IA rate of young men (correlation 0.55). Ironically, the
UN rate for the complement provides better auxiliary information — it has
higher correlation with IA-y rate and its sampling variance is lower because,
for a given sample size, the binomial variance decreases as the rate departs
from 50%. The CC rate for men is also much better suited for estimating the
UN rate of young men than for their district-level IA rates.

The direct information about the district-level UN and IA rates of young
men is very sparse; the subsample size exceeds 100 only for two districts,
and young men are represented in the subsamples for most districts by only
a handful of subjects, or by none at all. Thus, we rely on the district-level
variance matrix very heavily, and concern about the model implied by the
shrinkage is well founded. However, the alternative, the direct estimator, is
not practical. We can protect our inferences from over-reliance on the implied
model by reducing the shrinkage. This can be done in two ways that com-
plement one another. By reducing the covariances (e.g., by a multiplicative
factor), we reduce the reliance on the similarity across the variables. By in-
flating the variances, we reduce the shrinkage across the districts, as if the
districts were more heterogeneous. This should be done in moderation, as at
the extreme, when ΣB is set to a diagonal matrix with large variances, little
shrinkage takes place, making poor use of the similarity across both districts
and variables.

10.1.4 Pooling information across time

LFS takes place every quarter, but the division into quarters is mainly for ad-
ministrative and data-management purposes; approximately the same number
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of interviews are scheduled for every week, and a geographical balance of the
interviewers’ workloads is maintained throughout. Many analysts of the LFS
data appreciate that the subsample sizes for direct estimation are insufficient,
and respond to it by averaging over time. Thus, the unemployment figures for
the UK as a whole are published every month, estimated directly from the
data collected in the previous month (about a third of a survey). Rates for
small subpopulations are estimated quarterly or annually, pooling the data
over the relevant period. This kind of pooling can be interpreted as shrinkage,
giving equal weight to each element of the auxiliary information. The formu-
lation of (multivariate) shrinkage is much more general and flexible, allowing
the analyst to reflect the relevance of the information to the target quantity.

We consider multivariate shrinkage estimation of the current district-level
rates of unemployment and economic inactivity, using the (direct) estimators
of these rates in the previous quarters. Surveys t = 1, 2, 3, 4 quarters previously
share approximately 100(5 − t)% of the subjects with the current survey (t =
0), so they are far from independent. We can avoid having to account for this
sample dependence by taking only subjects in waves V in each of the previous
quarters. Thus, the auxiliary information is not as extensive as might have
appeared; the sample sizes associated with the auxiliary variables are only
about one-fifth of the sample size of the direct estimator. However, as district-
level rates are unlikely to have changed dramatically in any of the districts,
and any changes have a substantial ‘national’ component (namely, the overall
reduction of the unemployment rates in 2001–2004), it is worthwhile to include
information from several quarters or even years. The task of operating with
large variance matrices, one matrix inversion per district, is nowadays not
regarded as excessive. It can nevertheless be avoided, without substantial loss
of efficiency. Simply, we declare as auxiliary variable the direct estimates of the
annual average district-level rates of unemployment and economic inactivity.
This reduces the dimensionality of the problem four-fold. The average annual
rates are estimated as the sample rates for subjects who were in wave V
in any quarter of the year. Data would be used only for subjects from the
quarter when they were in wave V. The loss of information is brought on by
treating the whole year uniformly, not giving greater weight to the information
from later in the year, closer to the target time point. But with the lower-
dimensional shrinkage estimation, sensitivity analysis is easier to carry out
and insights into how shrinkage operates are gained much more readily.

Auxiliary information need not come from the past. Estimation of the his-
torical rates of unemployment and economic inactivity can be improved by
using ‘future’ rates as auxiliary information. For example, estimates of the
district-level unemployment rates a year ago can be updated by the informa-
tion in the LFS surveys conducted since. Symmetry suggests that data from
a year later are as useful as data from a year earlier.

Of course, the changes by updating are an inconvenience in an administra-
tive setting in which estimates are treated as if they were population quanti-
ties, and consistency of appearance is rated higher than efficiency. Arguably,
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updating (or back-dating) may hamper the credibility of the estimates. This
is a difficult problem in the interaction between the analyst and the client,
because an improvement in estimation (reduction of eMSE) may be counter-
productive. It is difficult to convey that estimates are subject to chance, and
they depend on the information available. The more information we have, the
smaller the impact of the chance. In this perspective, consistency (using the
same estimate throughout) is in conflict with efficiency. Selective use of the
update, using it only when the estimate has changed in a desirable direction,
or its estimated MSE is reduced substantially, also amounts to bad practice
because the estimator used is a mixture of the original and updated estimator.
The properties of such a mixture are not estimated well by the properties of
the selected estimator.

10.2 Samples of Anonymised Records

The Samples of Anonymised Records (SAR) are a database created by simple
random sampling of the records in the UK Census. The Sample for individuals
from the 1991 Census contains records of 2% of the UK residents at the time
of the Census, around 1.16 million records. (A similar database is generated
from the 2001 Census.) The database contains only a limited set of variables,
so that no individuals could be identified by the pattern of their values. The
sole geographical information in the database is the identifier of the resident’s
local area. The local areas are either local authority districts or unions of
contiguous districts, amalgamated so that the population of each area exceeds
120 000. For example, the London boroughs are local areas, except for the
City of London, which forms a local area together with the adjacent City of
Westminster. There are 278 local areas.

This section describes estimation of the economic activity rates among
young people and minorities in the local areas. (The census-based rates among
all working-age adults are available from administrative sources, but they are
not used here as auxiliary information.) A resident is economically active if he
or she is either employed, or not employed but actively seeking employment.
Full-time students, housewives and the retired are examples of persons not
economically active.

The subsample size for the least populous local area is about 120 000/50
= 2400, so the standard error of its estimated rate of economic activity, given
that the rate is 60%, is 100

√
0.60 × 0.40/2400 = 1.0%. This might be adequate

for some purposes, but improvement on it is highly desirable.
Univariate shrinkage is not very useful because the standard deviation of

the area-level rates, estimated by moment matching as σ̂B = 4.5%, is much
greater than 1%. The sampling variance of the direct estimator is preferred
to the bias of the national estimator of the rate. For estimating the area-
level rates for subpopulations, multivariate shrinkage is much more effective,
especially if suitable auxiliary information is selected. We focus first on the
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economic activity rates for white men aged 16–19 years. These rates tend to be
lower than for middle-aged men because many 16–19 year-olds are in full-time
education. The SAR database contains records of 26 963 young white men.
The numbers of subjects in the least populous areas are 30 or slightly more,
whereas a few cities that form a single area each have sample sizes greater
than 200. Birmingham, with population in excess of 1 million, has the largest
subsample size, 359. The direct estimators of the area-level rates of economic
activity are in the range 35%–80%. Of course, much of this variation is due to
sampling. In fact, the area-level variance of the direct estimates is varD(p̂D) =
53.7(%)2, whereas the estimate of the area-level variance of the underlying
(subpopulation) rates is only σ̂2

B = 21.6(%)2. The estimated standard errors,
calculated from the estimated eMSE, are reduced by univariate shrinkage
between 1.13 and 2.15 times; the estimated gains decrease with sample size,
although the estimated rate itself also exerts some influence.

It is reasonable to expect that the rates of economic activity of young men
are very similar to those for women of the same age. This provides a rationale
for applying bivariate shrinkage, with the young women’s rates used as auxil-
iary information. Young men’s rates can be used reciprocally to improve the
estimation for young women. Indeed, the estimated area-level variance matrix
for young men and women,

Σ̂B =
(

21.6 21.0
21.0 24.6

)
,

has a very high correlation, equal to 0.91. Although this seems very promis-
ing for bivariate shrinkage, the results are rather disappointing. The gains
over univariate shrinkage are modest even for the areas with the smallest
subsample sizes. For example, the subsamples for the London Borough of
Hackney comprise 39 men and 57 women. The direct estimates of their eco-
nomic activity rates are (59.0%, 42.1%)�, with estimated standard errors
(7.9%, 6.5%)�. The univariate shrinkage estimates are (62.1%, 51.1%)�, with
estimated standard errors (4.0%, 4.0%)�, and bivariate shrinkage estimates
are (58.8%, 51.1%)�, with estimated standard errors (3.5%, 3.7%)�.

The gains in precision are greater for men, and their estimated standard
error for bivariate shrinkage is smaller than for women, even though their sub-
sample size is smaller. This is due to the smaller area-level variance for men
and due to drawing on more auxiliary information (from women) in bivariate
shrinkage. The gains in precision of bivariate over univariate shrinkage are
rather disappointing because the subsample sizes for young men and women
are very similar. Thus, where the direct or univariate shrinkage estimator is
less precise, it is usually aided in bivariate shrinkage by less auxiliary infor-
mation.

As in Section 10.1.3, using the rates of economic activity of the comple-
ment of the sample (men aged 25 and over) as auxiliary information is much
more effective because these rates are based on much greater subsample sizes.
To avoid near duplication of this argument, details are omitted. Instead, we
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illustrate multivariate shrinkage estimation of the area-level rates of economic
activity of ethnic minorities (as a single group). The auxiliary information is
the corresponding rate for white residents. In the UK, the minorities are very
unevenly distributed across local areas. London and some large metropolitan
areas in England have high concentrations of minorities, in contrast to most
of the other local areas. However, not all the local areas that are part of a
metropolitan area have large populations.

Figure 10.6 summarises the sample sizes for all adult subjects in SAR and
all adults from ethnic minorities. Each point in panel A represents an area, and
the axes correspond to the numbers of all adults and adults from minorities.
Since the sample sizes are substantial, exceeding 2000 for most areas, each
subsample size is close to 2% of the population size of the area. The thin solid
line is drawn at the national percentage of minorities, 4.5%. The subsample
sizes of the minorities are very small for many areas, especially for areas with
smaller populations, and so the graph is cluttered immediately to the right of
the point (2000, 0). The points are spread much more evenly when presented
on the log scale in panel B. In the plot, a token 0.1 is added to the numbers
of minorities, to avoid the expression log(0). The diagram indicates that the
proportions of minorities are smaller than the national proportion in much
more than half the areas. The outlying point in the upper right-hand corner
of both panels corresponds to Birmingham. Next in the descending order of
sample size are the cities of Leeds, Sheffield and Glasgow; their percentages
of minorities are similar to or lower than the national percentage. Several
London boroughs and local areas in the Manchester Metropolitan Area have
higher percentages of minorities but, as a result of the administrative division,
their populations are not exceptionally large.

The direct estimates of the national rates of economic activity of minority
men and women are 75.5% (estimated standard error 0.65%) and 52.2% (es-
timated standard error 1.15%), respectively. Although small subsample size
causes difficulties with estimating the sampling variance of the direct estima-
tor of the rate for many local areas, the problem is less acute than in Section
10.1.1, because the estimated rates are distant from zero or 100%. For such
rates pd , the dependence of var(p̂d) on pd is much weaker.

Using the economic activity rates of minority men and women as the
auxiliary information for one another is not effective because areas tend to
have similar numbers of minority men and women. So, even if the rates for
minority men and women were similar, shrinkage estimation would not be
effective. In any case, the rates are not very similar. The estimated area-level
variance matrix for minority men and women is

Σ̂B =
(

19.7 25.1
25.1 72.0

)
; (10.1)

the estimated correlation of the two sets of rates is 0.67. A likely explanation
for the high variance for women is that the ethnic groups maintain very differ-
ent attitudes to women’s employment, and these attitudes, and the particular
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Figure 10.6. The sample sizes of all adults and all adults from minorities in the
local areas; SAR 1991. The solid line represents the national proportion.
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minority groups, are unevenly distributed within the minorities in the local
areas. Arguably, classifying all minorities as a single group is not appropriate
for administrative matters related to the labour force, but a finer classification
brings about numerous other problems.

Using the rates for white men as auxiliary information is much more effec-
tive not only because of their greater subsample sizes but also because their
area-level rates are much less dispersed than for minority women and they
are more strongly correlated with the rates for minority men. The estimated
area-level variance matrix for minority and white men is

Σ̂B =
(

19.7 15.2
15.2 14.5

)
;

the estimated correlation of the two sets of rates is 0.90.
The London Borough of Haringey has a much greater proportion of ethnic

minorities than the country at large. In SAR, it is represented by 386 adult
men from minorities and 1428 white men; the minority men form 21.3% of
the borough’s subsample. The direct estimate of the rate of economic activity
is 75.9%, the univariate shrinkage estimate is 75.8%, and the bivariate shrink-
age estimate is 76.8%. The estimated standard errors of these estimators are
2.2%, 2.0% and 1.6%. Shrinkage is not very effective in this case because the
borough’s sample size in SAR is quite large. Note that the improvement by the
bivariate shrinkage is greater than by the univariate shrinkage. Information
from within the local area (the rate for white men, estimated from a large
subsample) is more valuable than from the rates of the minorities in other
local areas. This is so because many other local areas have much smaller sub-
sample sizes for minorities, and the rates of economic activity of minorities
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and white men are very similar; the standard deviation of their differences is
only

√
19.7 + 14.5 − 2 × 15.2 = 1.95%, whereas the standard deviation of the

rates for minorities is
√

19.7 = 4.4%. Moreover, the local-area rate for white
men in Haringey is estimated with high precision (standard error 1.2%).

Next we discuss estimation of the rate for minority men in Falkirk, Scot-
land. The area is represented in SAR by 1671 adult men, but only four of
them are from minorities, and three of these are economically active. Thus,
the naive estimate of the standard error of the direct estimator exceeds 20%;
four subjects yield next to no information about any proportion. The univari-
ate shrinkage estimate is 75.5%, and its estimated standard error is 4.4%, a
radical improvement over the direct estimator. Bivariate shrinkage increases
the precision further; the estimate, 74.5%, is associated with estimated stan-
dard error 2.3%. Of course, such an estimate is based almost solely on auxiliary
information. If Falkirk is an exceptional local area in some aspect related to
economic activity, shrinkage would be both inappropriate and the assessment
of its precision grossly incorrect. However, the direct estimator is not viable
for any purpose, despite being valid, as there is no dispute about the sampling
design applied to create SAR.

Estimation of the area-level rates for minority women is much less success-
ful. The estimated area-level variance matrix for minority and white (adult)
women is

Σ̂B =
(

72.0 16.8
16.8 15.3

)
.

The correlation in this matrix, 0.51, is smaller than among the rates for mi-
nority men and women, see (10.1), but the subsample sizes of white women
are so much greater than for minority men that white women provide better
auxiliary information. The gains in precision for minority women are indeed
much more modest than for minority men, although bivariate shrinkage still
yields a substantial improvement for many areas.

Haringey is represented in SAR by 1876 adult women, 365 of them from
ethnic minorities (19.5%). The direct estimate of the rate of economic activity
of minority women in Haringey is 60.3% (estimated standard error 2.6%); the
univariate shrinkage estimate is 59.6% (2.5%), and the bivariate shrinkage
estimate 60.1% (2.4%). Here, shrinkage contributes little to the precision of
the estimated rate.

For Falkirk, shrinkage is much more effective. The area is represented in
SAR by six adult women from minorities and 1826 adult white women. Of
course, the direct estimator is not competitive (estimate 50.0%, standard error
22.3%). The univariate shrinkage estimate is 51.9%, with estimated standard
error 8.0%, and bivariate shrinkage estimate 51.8% (7.0%). The improvement
by the univariate shrinkage is more modest for women than for men because
the local-area rates for women are much more dispersed. The improvement
by the bivariate shrinkage is only slight because the differences of the local-
area rates for minority and white women are not strongly correlated. The
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Figure 10.7. The direct, univariate and bivariate shrinkage estimates of the local-
area rates of economic activity of the ethnic minorities; SAR 1991.
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standard deviation of the differences of the local-area rates of minority and
white women is 7.3%, much greater than for men (1.95%).

We conclude by graphically summarising the shrinkage estimates of the
rates of economic activity for minorities in Figure 10.7, and the estimated
standard errors in Figure 10.8. In panel A of Figure 10.7, local areas are rep-
resented by segments, each connecting the point with the coordinates defined
by the direct estimates for minority men and women with the corresponding
coordinates for the univariate shrinkage estimates (marked by black dots).
The segments are plotted for a 20% systematic sample of the areas. Panel B
has the same layout, connecting the univariate and bivariate shrinkage esti-
mates for minority men and women. The panels illustrate that the changes
from the direct to the univariate shrinkage estimates are much greater than
from the univariate to the bivariate shrinkage estimates.

In Figure 10.8, each area is represented by a vertical segment that ‘drops’
from the estimated standard error of the direct estimator to the estimated
standard error of the bivariate shrinkage estimator. The estimated standard
error of each univariate shrinkage estimator is marked by a dash – . For men
(panel A), the estimated standard errors of the univariate shrinkage estimator
are in a narrow range, except for the areas for which even the direct estimator
is very precise. For bivariate shrinkage, the standard errors are in an even
narrower range. The gains in precision by univariate shrinkage for minority
women (panel B) are much more modest, and the contribution of the white
women’s rates to their estimation (the improvement of the bivariate shrinkage
over univariate shrinkage) is only slight.
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Figure 10.8. The estimates of the standard errors for the direct, univariate and
bivariate shrinkage estimators of the local-area rates of economic activity of the
ethnic minorities; SAR 1991.
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10.3 Norwegian municipalities

In the government statistics community, the Scandinavian countries are
renowned for comprehensive population registers. The registers are a product
of a substantial investment made decades ago, followed by years of fine-tuning
of the data collection procedures, and later transferring the information to
computers and arranging that their updating is as seamless as possible. The
transparent benefit of these registers is that the population can be studied
much more dynamically than by carefully planned extensive surveys that ob-
serve the population through a random sample at one or a few fixed time
points.

This section describes the analysis of a sampling exercise carried out as
part of the 1990 decenial population census in Norway. A survey embedded
in the census was conducted, in which information about the employment
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Table 10.1. The sampling fractions in the Norwegian municipalities.

Population range 6000–7999 8000–9999 10 000–49 999 50 000+

Municipalities 41 26 91 8

Sampling fraction 1/5 1/7 1/10 1/12

status was collected from a stratified random sample of the adult residents
(aged 16 or over on the day of the Census, 3rd November 1990). We are
concerned about the rates of employment within age-by-sex categories and
about the composition of the employed within the Norwegian municipalities
(kommune). Here, composition refers to the percentages of employed in the
following nine industrial sectors:

AF — Agriculture, hunting, forestry and fishing;
MQ — Mining, quarrying and oil production;
MN — Manufacturing;
EW — Electricity, gas and water supply;
CB — Construction;
WR — Wholesale and retail trade, restaurants and hotels;
TC — Transport, storage and communications;
FB — Finance, insurance, real estate and business services;
SP — Social and personal services.

Each employed person, or an instance of paid employment, is associated with
one of these sectors. In the survey, a binary variable was recorded indicating
whether the subject was in paid employment for at least 100 days between
the dates of 3rd November 1989 and 3rd November 1990.

Of the population of Norway, approximately 4.25 million, about half were
members of the labour force in 1990. The population is distributed extremely
unevenly over Norway’s territory. Administratively, Norway is divided into
448 municipalities. Only eight (urban) municipalities had (in 1989) more than
50 000 residents; 96 municipalities had population between 10 000 and 49 999,
and 275 municipalities (61%) had fewer than 6000 residents.

Except for seven municipalities, the survey sampling design comprised
independent random draws in each municipality with population of at least
6000, with the sampling fractions (probabilities) given in Table 10.1. In the
municipalities with population below 6000 as well as the seven ‘exceptional’
municipalities with greater population, full enumeration was conducted. The
survey involved 595 000 subjects, 415 000 of them from municipalities in which
full enumeration was conducted.

The results of the survey were reported in the form of tables of direct
estimates of municipality-level rates of employment, accompanied by their es-
timated standard errors. The following reporting conventions were adopted,
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based on the relative standard error (RSE), defined as the ratio of the esti-
mated standard error and the estimate. When the RSE is smaller than 0.2,
both the estimate and standard error are reported; when the RSE is in the
range 0.2–0.3, only the estimate is reported, in parentheses; and when the RSE
is greater than 0.3, no figures are reported. As all the estimated proportions
are distant from zero and unity, these rules for reporting direct estimates can
be converted to (threshold) sample sizes that depend only on the sampling
fraction. Implied in these rules is the requirement for a minimum precision
of each reported estimate. We apply multivariate shrinkage and evaluate its
efficiency by how many more figures would be reported than with direct esti-
mation.

We discuss first (simultaneous) estimation of the rates of employment for
the categories defined by sex and the following age groups: teenagers (16–
19 years of age, T), young (20–24 years, Y), middle-aged (25–59 years, M),
veterans (60–66 years, V), and retirement-aged (67 years and above, R). We
refer to these groups by acronyms that code the age group (the capital letter
given in parentheses) and sex (m or f, for men and women, respectively). For
example, Yw denotes the group of women aged 20–24.

Our targets are the 2×5 tables of rates for the 166 municipalities in which
sampling (not enumeration) was conducted. As the survey domain, we can
adopt either the whole country, or only these non-enumerated municipalities.
The advantage of the former is the substantially greater sample size, whereas
with the latter we protect our inference against the bias due to municipalities
that are different from (less populous than) the target municipalities. We
choose the former solution; otherwise a lot of useful information would be
discarded. The impact of the data from the enumerated municipalities can
be reduced by associating their rates with a positive sampling variance, for
instance, the variance that corresponds to the sampling rate of 80%.

The value of the univariate shrinkage is easy to illustrate by the fol-
lowing example. A typical municipality with just under 10 000 residents is
represented in the survey by about 1400 subjects, half of them (700) men,
and about one-seventh of those (100) in the age group 20–24 (young men).
Suppose the employment rate of this group is 80%. Then the standard er-
ror of its direct estimator is 4%. The national rate for the young men has
municipality-level standard deviation 5.45%, so the national rate is less effi-
cient for estimating the municipality’s employment rate than the direct es-
timator. However, the (univariate) shrinkage estimator has estimated stan-
dard error

√
16 − 162/(16 + 5.452 + 0.752) .= 3.25%, a non-trivial improve-

ment over the direct estimator.
The estimates of the national rates of employment are given in Table 10.2.

They show that the rates of employment are highest for the middle-aged
and are higher for men than for women. The estimated correlation of the
municipality-level rates is
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Table 10.2. The estimated rates (percentages) of employment of the sex-by-age
groups; Norway, 1990. Each cell contains the estimate and estimated standard error
(in parentheses).

Age group

T (16–19) Y (20–24) M (25–59) V (60–66) R (67+)

Men 46.0 (1.1) 80.3 (0.7) 88.6 (0.6) 57.7 (1.4) 9.9 (0.6)

Women 43.7 (1.2) 74.3 (1.0) 76.5 (0.8) 39.8 (1.4) 3.9 (0.3)

Table 10.3. The estimated variances of the municipality-level rates of employment
of the sex-by-age groups.

Age group

T (16–19) Y (20–24) M (25–59) V (60–66) R (67+)

Men 9.31 5.45 3.87 10.30 4.08

Women 9.91 6.57 5.19 9.41 1.92

1
100

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

100 49 44 55 49 50 48 46 44 50
49 100 60 56 38 42 46 21 41 28
44 60 100 77 39 33 41 49 60 40
55 56 77 100 55 37 39 58 75 61
49 38 39 55 100 32 24 35 51 53

50 42 33 37 32 100 56 53 49 45
48 46 41 39 24 56 100 58 46 40
46 21 49 58 35 53 58 100 65 49
44 41 60 75 51 49 46 65 100 62
50 28 40 61 53 45 40 49 62 100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tm
Ym
Mm
Vm
Rm

Tw
Yw
Mw
Vw
Rw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with the submatrices for men and women separated by added space. The
estimated variances of the municipality-level rates are given in Table 10.3. The
correlation matrices for men and women (the 5×5 submatrices in the top left-
hand and bottom right-hand corners) have higher entries than the correlations
between the sexes (the off-diagonal blocks of the correlation matrix). In the off-
diagonal blocks, the diagonal elements (the correlations between the two sexes
in the same age-group) tend to be higher. The neighbouring age categories
tend to have higher correlations. But overall, the correlations of the groups
are not very high, suggesting that shrinkage estimation is not substantially
more efficient than direct estimation.

The result of the analysis is a table of 166 × 10 estimates and associated
standard errors. It is not informative to present them in a tabular form, or
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indeed, in a set of maps, each for one or two of the sex-by-age groups. The
estimates are presented graphically in Figure 10.9, in separate panels for the
sexes (columns) and sizes of the municipalities (rows). In each panel, a mu-
nicipality is represented by the two sets of connected segments, one for the
direct (sample) and one for the shrinkage estimates. The estimates of employ-
ment rates for the five age groups of each sex are connected by solid lines and
the sets of direct (sample) and shrinkage estimates are placed side by side.
To reduce the clutter, the estimates are drawn only for random samples of
municipalities; for the population range 6000–8000, one in two, and for the
population range 10 000–50 000, one in four municipalities are selected at ran-
dom. For the other two population ranges, all municipalities are represented
in the diagrams.

We see that only modest shrinkage takes place, as the ‘shrinkage curves’
are aligned only slightly more than the ‘sample curves’ of the estimated rates.
However, even the sample curves are quite close to the average (national)
trend, drawn by thick dashes, so there is little scope for extensive shrinkage.
This is a consequence of the large sample sizes and only moderate correlation
among the employment rates of the age groups. Also, the vertical axes of the
plots cover the entire range 0–100%, so the variation for each age group is
displayed without focus. The curves are similar across the population sizes of
the municipalities; that justifies our decision to include the enumerated mu-
nicipalities in the estimation of the municipality-level variation. The greater
dispersion of the estimated employment rates for women, in the group Mw
in particular, reflects their greater municipality-level variation. First, the di-
rect estimates are more dispersed (except for the retirement-aged), because
the employment rates tend to be closer to 50%, where the binary variance
p(1 − p) attains its maximum. Second, less shrinkage takes place because
there is greater heterogeneity among the municipality-level employment rates
of women, except for the elderly.

The gains in precision can be assessed directly, by inspecting the estimated
standard errors, but it is more practical to look at the ratios of the estimated
standard errors for the two estimators. We define the relative and absolute
reductions of the standard error by

1 −
√

eMSE(p̃k,d)
var(p̂k,d)

and √
var(p̂k,d) −

√
eMSE(p̃k,d) ,

respectively, for category k in municipality d. The naive estimates of these
quantities are plotted in Figure 10.10 using a layout similar to that in Figure
10.9. The diagrams show that shrinkage is least effective for the middle-aged.
As they cover a range of 35 years, their subsample sizes are much greater than
for the other groups, so improvement in estimation for them is less important
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Figure 10.9. The direct (sample) and multivariate shrinkage estimates of the sex-
by-age municipality-level employment rates in the sampled (not enumerated) Nor-
wegian municipalities. The national estimates are drawn by thick dashes.
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Figure 10.10. The estimated gains in precision of the shrinkage over direct esti-
mators of the sex-by-age municipality-level employment rates in the sampled (not
enumerated) Norwegian municipalities.
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than for the much less numerous groups. The estimated gains differ much
less across the sexes, although the differences in the gains are perceptible for
the retirement-aged in particular. This is a consequence of the much smaller
municipality-level variance for the retirement-aged women than men, see Table
10.3.

The improvement in estimating the municipality-level sex-by-age rates of
employment can be summarised by counting the estimated rates that would
be reported as being sufficiently precise. With direct estimation, 271 items are
not reported (16% of the 10 × 166 estimated rates), and 326 are reported in
parentheses (borderline precision, RSE 0.20–0.30). With shrinkage estimation,
only 171 items (10%) would not be reported and 127 (8%) would be reported
in parentheses. The most substantial improvement occurs for teenagers. With
direct estimation, nine items are not reported and 117 are reported in paren-
theses, whereas with shrinkage estimation every item would be reported and
only 30 of them in parentheses. This comparison of the direct and shrinkage
estimators favours shrinkage slightly because the standard error of the direct
estimator is estimated with greater precision than its shrinkage counterpart.
This is not only due to ignoring the uncertainty about the municipality-level
variance matrix, but also because eMSE is used instead of MSE.

10.3.1 Composition of the labour force by industrial sectors

The municipalities require the numbers or percentages of workers in each of
the nine industrial sectors listed on page 283. Although the overall sample
size for each municipality is quite large, the sample sizes for some of the in-
dustrial sectors are quite modest. The sectors AF (agriculture and fisheries),
MN (manufacturing) and SP (social and personal services) have widely dif-
fering representation in the municipalities, whereas CB (construction) and
TC (transport and communications) are distributed much more evenly. This
information is presented in Table 10.4, listing the estimated national compo-
sition of employment, with the estimated standard errors attached, and the
estimated municipality-level standard deviations of the rates. It may appear
surprising that the municipality-level variances for MQ (mining and oil pro-
duction) and EW (utilities) are so small. The rates for these sectors are very
small in most municipalities, so the substantial rates in a few municipalities
where they are concentrated (cities, locations of power stations, and the like)
do not ‘raise’ the municipality-level variation to the levels for other sectors
that employ much greater fractions of the labour force. In other words, com-
parisons of variances (or standard deviations) of rates are meaningful only
when the underlying (national or average) rates are similar.

The distinct skew (non-normality) of the municipality-level rates is not an
obstacle to applying multivariate shrinkage, although it would be a problem
with estimation based on a model that assumes normality of the municipality-
level deviations. In any case, the multivariate shrinkage in not very effective
because most of the correlations in Σ̂B are small. Instead of reproducing the
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Table 10.4. The estimated national rates of employment in industrial sectors and
the estimated municipality-level standard deviations; Norway, 1990.

Industrial sector

AF MQ MN EW CB WR TC FB SP

Estimate 6.09 1.17 15.85 1.07 7.53 18.10 7.75 7.69 34.75

St. error 1.50 0.32 1.04 0.20 0.38 0.75 0.30 0.61 0.87√
diag(Σ̂B) 10.56 2.24 7.31 1.42 2.63 5.27 2.10 4.28 6.06

(9×9) estimated correlation matrix, we discuss only the correlation submatrix
for the sectors AF, WR and FB,

1
100

⎛⎝ 100 −74 −76
−74 100 75
−76 −74 100

⎞⎠ .

It contains the highest correlations (in absolute value). Next in the order of
magnitude are the correlations between CB and FB (−0.51) and of AF with
MN (0.50) and SP (0.40). The high correlations can be attributed to the con-
centration of some sectors in cities and towns (banking, wholesale and retail)
and others in rural areas (agriculture and fishing). But the division is not
so clear-cut because the correlations for some other sectors are much smaller
than might be expected. Commuting to work across municipality boundaries
may be one reason for this.

Thus, multivariate shrinkage is only slightly more effective than univariate
shrinkage, and the estimated gains in precision are very modest for both, es-
pecially for AF and MN which have large municipality-level variances, and for
MQ because it is unrelated to any other sector. The estimated gains over direct
estimation exceed 10% for CB and TC for the municipalities with the smallest
sample sizes (population) in each group of municipalities with the sampling
fractions 1:5, 1:7 and 1:10 (population size 6000–50 000), and for WR and
FB for fewer municipalities with the sampling fractions 1:5 and 1:7 (popu-
lation size 6000–10 000). Most of these gains would be realised by univariate
shrinkage, and appreciable additional gain (say, more than 1%) is realised by
multivariate shrinkage only for AF, WR and FR for a few municipalities.

Since these assessments of the gains may be optimistic, multivariate shrink-
age is not advisable. In any case, we would get at most a meagre return for the
complex computing involved. Nevertheless, the expenditure on computing, in
terms of the analysts’ time and cost of equipment, is minute in comparison
with the effort required to collect and process the data.

The data on the employment status, involving a mix of enumeration and
sampling, provide us with a unique opportunity to assess the properties of
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the shrinkage estimator empirically. We draw a subsample from the available
dataset, apply the direct and shrinkage estimators, and compare the direct
and (multivariate) shrinkage estimates for the 282 originally enumerated mu-
nicipalities with their population rates established in the original survey. The
comparison can be based on the count of ‘winners’ — how many times each
estimator is closer to the target, or on the totals of ‘discrepancies’, such as∑

d(p̂dk − pdk)2 and
∑

d(p̂
C
dk − pdk)2, or

∑
d(p̂dk − pdk)2/(pdk + 0.001) and∑

d(p̂
C
dk − pdk)2/(pdk + 0.001), for the respective direct and shrinkage esti-

mates of the rates for municipality d and sex-by-age group (or sector) k. The
latter pair of summaries impose relatively greater penalty for a given differ-
ence when the population rate pdk is small. The totals are calculated over the
municipalities that were originally enumerated. The denominator is increased
by a token rate of 0.1% to avoid dividing by zero.

These comparisons confirm the superiority of the multivariate shrinkage
estimator, for both sex-by-age groups and industrial sectors, although the
gains are far from impressive. For example, the multivariate shrinkage esti-
mator of the rates for the sex-by-age groups is superior for between 52.4%
and 63.5% of the municipalities. The percentage is smallest for middle-aged
men and women and greatest for women over the age of 66. For the industrial
sectors, the percentages of municipalities are even smaller, but exceed 50%
for all municipalities except one (MN, 49.8%), and that can probably be at-
tributed to chance. The discrepancy statistics favour multivariate shrinkage
for every sex-by-age group and industrial sector.

Although the primary purpose of the study, to estimate the rates and
composition of employment, may be regarded as a failure because only trivial
gains over the direct estimator were achieved, the application of shrinkage is
not detrimental to efficiency. An important result is the estimated variance
structure of the municipality-level employment rates for the subpopulations,
because it informs us about the efficiency of the shrinkage estimator in surveys
that might be planned in the future. However, national surveys of employment
in Norway have been superseded since the 1990 Census by a comprehensive
national register. In fact, one purpose of the survey was to assess the quality
of the employment register at the time.

10.4 The Scottish House Condition Survey

The Scottish House Condition Survey (SHCS) collects information about the
extent of disrepair of the housing stock in Scotland. This section discusses
estimation of the funds required to bring all housing units (dwellings) up to
a specified standard, based on the survey conducted in 1996. Since then, the
survey was conducted in 2002; the collected information is being processed
and analysed at the time of writing.

In 1996, over 18 000 dwellings were included in the survey. The sample
comprised 11 000 dwellings drawn by a systematic sampling design from the
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Figure 10.11. The subsample sizes of the Scottish unitary authorities in SHCS
1996. Each authority is represented by a vertical bar of height equal to the author-
ity’s subsample size, split into segments according to period of construction (age).
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list of all addresses in Scotland (in December 1995), and over 11 000 dwellings
from those included in the previous survey in 1991. Some additional samples
were drawn to satisfy specific requests of the clients, for example, for more pre-
cise information about certain local authorities. We do not deal with the issue
of data incompleteness here (refusals, non-availability, unoccupied dwellings,
and the like), but point out that the list of addresses may be out of date and
contain dwellings that are (temporarily) not occupied or are not residential.
The latter cases do not amount to nonresponse; they are more appropriately
classified as imperfections of the sampling frame. Nevertheless, as in most
large-scale surveys, nonresponse (non-cooperation) is a serious issue.

In the analysis of the survey, the national means of several variables re-
lated to the state of the housing stock were estimated; see [249] and [110].
This section describes estimation of the mean repair costs for publicly owned
housing in the Scottish unitary authorities. There are 32 such authorities in
Scotland. Their population sizes are very disparate: the Cities of Glasgow and
Edinburgh contain a substantial fraction of the population of Scotland (over 5
million), whereas the Orkneys, Shetland Islands, Western Isles, but also East
Dunbartonshire, East Renfrewshire and Clackmannanshire, have populations
of tens of thousands each, and they are represented in the survey by very small
subsamples. The authorities’ subsample sizes are graphically represented in
Figure 10.11 by vertical bars. Each bar is divided to the subsample sizes of
three categories of age of the dwelling, defined below.

There are 4640 publicly owned dwellings in the SHCS sample, about 25% of
the entire sample. We point out at the outset that information about privately
owned dwellings is an obvious auxiliary information for small-area estimation
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of quantities related to publicly owned housing. However, the relevant data
were not made available when the analysis was conducted.

The key outcome variable is the comprehensive repair cost (CRC); it is de-
fined for a dwelling as the cost of repairs required to maintain it to a specified
standard over the period of ten years from the present on. The cost comprises
a large number of elements, such as roof, structural integrity, plumbing, deco-
ration of internal walls, driveway, doors and windows, staircases and electrical
wiring. In the survey, trained surveyors visit the sampled dwellings assigned
to them and assess all the elements that are applicable for the dwelling. For
example, assessment of the roof is not applicable for a flat (apartment), and a
single-storey house has no staircase. The assessment for most elements, when
applicable, is on the ordinal scale 0–10, related to the replacement cost; the
surveyor assigns category k when he or she assesses that the element requires
repairs that amount to 10k% of its replacement cost. The issue of inconsistency
of the surveyors is addressed in Section 5.4. CRC is calculated using exten-
sive tables that take into account the type, size, location and other details of
the dwelling and its maintenance regime. A ‘discount’ is applied in instances
when a lot of repairs are required and economies of scale can reasonably be
anticipated.

Our targets are the mean CRC for all publicly owned dwellings and their
categories defined by age, in each Scottish unitary authority. The sponsor of
the surveys, the Scottish Office, has asked the identity of the authorities not
to be revealed. On the one hand, the target quantities are arithmetic subpop-
ulation means; on the other, working with log(CRC) has several analytical
advantages, foremost among them the proximity of their distribution to nor-
mality (with a token £1 added to avoid taking the logarithm of zero). Another
difficulty with CRC is the strong heteroscedasticity, common to variables in
monetary units.

Small-area estimation of authority-level mean CRC by shrinkage requires
a reliable estimate of the sampling variance of the direct estimator. The sam-
pling variance is a function of the within-authority variance of CRC. For the
least populous authorities, represented in the sample by only a handful of
dwellings each (and in some subpopulations in particular), this variance is
estimated with very little precision. If the within-authority variances were
similar, the pooled estimator would be much more efficient for the authorities
with small and moderate population sizes. However, the sample means (di-
rect estimates) and sample standard deviations for the authorities are strongly
associated, approximately linearly, suggesting that this association would be
removed by the log transformation of CRC. The sample means and standard
deviations are plotted in Figure 10.12, on the linear and log scales. The di-
ameter of each circle is proportional to the subsample size of the authority it
represents. Note that one of them, with by far the smallest sample mean and
standard deviation, would be an influential observation. The fitted regression,
drawn by dashes in panel A, is 380.6 + 0.666ĈRC . The pooled (estimated)
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Figure 10.12. The direct estimates of the authority-level means and standard
deviations of CRC on the original scale (panel A) and log scale (panel B). The
diameters of the circles are proportional to the subsample sizes of the authorities.
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standard deviation on the log scale, equal to 0.844, is drawn by horizontal
dashes in panel B.

We apply shrinkage to estimate the within-authority variances on the log
scale, where shrinkage to a constant is well motivated. Then we apply the same
amount of shrinkage on the linear scale, and estimate the sampling variance
of the direct estimator based on this shrinkage variance estimate.

We assume that the estimator of the sampling variance of each authority’s
sample mean is associated with χ2 distribution with nd−1 degrees of freedom.
This enables estimation of the authority-level variance of the means (on the
log scale) by moment matching. The estimate of the authority-level standard
deviation is 0.0805, less than one-tenth of the pooled standard deviation. This
indicates that, on the log scale, most of the variation in the estimated sampling
variances of the smaller authorities (small nd) is due to sampling variation. In
calculating the shrinkage coefficients, we do not ignore the correlation of the
authority and national sample quantities because each of several of the most
populous authorities form a sizeable part of the country.

The shrinkage coefficient derived for the log scale is then applied on the
original scale, pulling the sample standard deviations toward the fitted linear
regression of the standard deviation on the mean. Of course, this is con-
tentious; why should the same extent of shrinkage be suitable on both scales?
We can justify this only empirically, arguing that the estimates of the standard
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Figure 10.13. Shrinkage estimation of the within-authority standard deviations of
CRC. The discs mark the shrinkage estimates and the crosses the direct estimates
for the six authorities with the smallest subsample sizes.
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deviations are obviously shrunk in the right direction. In any case, shrinkage
brings about substantial changes only for the least populous authorities.

The results of the shrinkage are summarised by the two plots in Figure
10.13. In both panels, the pairs of sample (direct) and shrinkage estimates
of the standard deviation are connected by vertical segments. Each shrinkage
estimate is marked by a black disc. The sample estimates for the six authorities
with the smallest sample sizes are marked by crosses. Shrinkage is substantial
only for some of them, because the sample estimate is close to the target of
shrinkage in a few instances. The shrinkage coefficient is smaller than 0.1 for
seven and exceeds 0.5 for four authorities.

The authority-level means of CRC are estimated by univariate shrinkage.
The results are illustrated in Figure 10.14. The vertical segments connecting
the sample and shrinkage estimates (the latter marked by black discs) are
placed in the ascending order of the sample sizes nd from left to right. The
impression gained at first may be that shrinkage is not particularly useful
because the shrinkage estimates differ little from the sample estimates (panel
A). However, the changes due to shrinkage should be considered in the context
of substantial differences among the authorities, both in the level of CRC and
in the sample sizes. The estimate of the authority-level standard deviation is
σ̂B = £506.90, almost one quarter of the estimated national mean, £2151.60
(standard error £121.60). Shrinkage is redundant for the most populous au-
thorities, but it is very useful for the least populous authorities.
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Figure 10.14. Shrinkage estimation of the authority-level mean CRC. The author-
ities are displayed in the ascending order of their subsample sizes.
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The reduction of the (estimated) standard error (panel B) is strongly asso-
ciated with the sample size, although the value of the authority’s (estimated)
mean CRC is also a factor. Thus, the improvement for the authority with
the smallest sample size is smaller because so is its sample mean. Despite the
considerable shrinkage applied to its within-authority sample variance, the
estimated sampling variance of its direct estimator remains smaller than for
other authorities of similar size.

10.4.1 Estimation for subpopulations

The age of a residential building is an important correlate of the repair costs,
and authorities are interested in the values of mean CRC for dwellings clas-
sified by the period of their construction. We consider estimation of the
authority-level mean CRC for the subpopulations of dwellings administra-
tively classified in the following categories: pre-1945 (built before 1945), 1945–
1964, and post-1964. Their respective national subsample sizes are 1082, 2138
and 1420. The within-authority subsample sizes are indicated in Figure 10.11.

It is essential to estimate these subpopulation quantities simultaneously, by
trivariate shrinkage, because the subsample sizes for several age-by-authority
combinations are small, and the mean CRCs within the authorities are likely
to be correlated. Where more funds are required to repair old buildings, more
funds are likely to be needed also for repairing more recently constructed
buildings.

The national subsample means of CRC for the respective age-categories
pre-1945, 1945–1964 and post-1964 are £2522.80, £2190.00 and £1811.50.
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Their estimated standard errors are £214.50, £136.40 and £114.40, respec-
tively. The latter is smaller than the estimated standard error of the national
mean CRC. This ‘paradox’ arises because the values of CRC for post-1964
dwellings tend to be lower and less dispersed than the costs in general. As
anticipated, the authority-level means are highly correlated; their estimated
correlation matrix is

1
100

⎛⎝ 100 70 53
70 100 63
53 63 100

⎞⎠ ⎡⎣ Pre 1945
1945–1964
Post 1964

⎤⎦
and the corresponding estimated standard deviations are £817.7, £541.3
and £461.4. Note that higher (national) means are associated with greater
authority-level variation.

The results of trivariate shrinkage estimation of the age-specific means of
CRC in the authorities are displayed in Figure 10.15. In the top panel, the
segments connecting the direct and shrinkage estimates and in the bottom
panel their estimated standard errors are plotted. The shrinkage estimates
are marked by symbols that distinguish among the three categories of age,
with the authorities placed in the order of their (overall) subsample sizes.
The national estimates of mean CRC are marked by the three horizontal
dashed lines.

Although some extreme shrinkage takes place for ‘small’ authorities, the
extent of shrinkage is not associated with the subsample size very strongly.
There are three reasons for this. First, the categories of age are not represented
in the authorities’ subsamples evenly. Second, small authorities are typically
associated with little auxiliary information because the subsample sizes for the
other two categories tend to be small. And third, higher means are associated
with higher variances of the age-by-authority combinations. As a consequence,
more shrinkage takes place in the downward direction; the shrinkage on the
log scale would be closer to symmetry.

The standard errors are reduced much more for the means of the pre-
1945 dwellings, for which the auxiliary information is relatively richer. Also,
in some more populous authorities, only a small fraction of the housing stock
remains from before 1945. Estimation of the mean CRC for such stock in
the authorities exploits the similarity with the mean CRC for the other two
categories that have substantial subsample sizes in the survey.

10.5 Suggested reading

The sections of this chapter are adapted from [164] (Section 10.1), [156] (Sec-
tion 10.2), [160] (Section 10.3) and [167] (Section 10.4), where further details
can be found. Splus, [279], and R, [41] and [215], were used for all the com-
puting. There is no software package in which these computations could be
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Figure 10.15. Trivariate shrinkage estimation of the age-specific mean CRC in the
Scottish authorities.
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carried out in a modular form. The customisation for each specific problem is
essential, but the programming effort required is not extensive.

A range of applications of small-area methods at Statistics Canada is out-
lined by [74]. Reference [246] is a collection of applications of small-area meth-
ods in U.S. Government programmes and [27] is an account of methods used
for estimation of the mean income and the rates of poverty in small areas
in the U.S.A., with an agenda for future development. The potential of ad-
ministrative registers as sources of auxiliary information is discussed by [275].
References [62] and [63] are motivated by the practice of small-area estimation
in the Italian National Statistics Institute.
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Experience with population registers in the Scandinavian countries is dis-
cussed by [195], [168] and [276]. See [277] and [7] for accounts from two post-
communist countries.

Four papers on several aspects of composite estimation in the Canadian
Labour Force Survey, exploiting the similarity over time, appeared in [266].
A model-based approach to small-area estimation for cross-classifications is
presented by [287]. An important consideration in their approach is structure
preservation — that the estimates should have the same margins as the avail-
able population quantities. For motivation of this approach, called SPREE,
see [214].



Part III

Combining estimators



11

Model selection

Sir, there is nothing wrong with the shoe.
It’s your foot . . .

We can motivate the problem of small-area estimation as selecting between
two alternative models, A and B. Model A assumes that the population quan-
tities θd for districts d = 1, . . . , D are unrelated, so each θd can be estimated
only from the subsample of subjects from district d. Model B assumes that
these quantities coincide, θ1 = θ2 = . . . = θD ; that is, the country is homo-
geneous with respect to θD . In most established approaches, we choose one of
the models, A or B, and proceed by relying on it, assuming that it is appropri-
ate for estimating each θd , and possibly other population quantities as well.
In Chapter 6, we found this approach poorly suited for small-area estimation.
In this chapter, we apply the method found to be suitable for small areas to
the standard model-selection problem.

11.1 The problem

The information we would like to have about a population is a description in
terms of a set of parameters, such as θ1, . . . , θD , and possibly the area-level
variance σ2

B in a small-area setting. For a general problem, we specify the space
of possible values of these parameters, the parameter space, denoted by Θ. The
parameter values will be estimated by identifying a data-based element of this
space. The space Θ should be delineated generously; if it does not contain the
value of the parameter, the estimation process is severely handicapped. By the
term model we understand a subset of Θ (or the space itself). For example,
model A introduced above corresponds to all configurations of θ1 , . . . , θD ,
(the entire parameter space), whereas model B to the subset defined by the
constraint that θ1 = . . . = θD .

In ordinary regression, models are frequently identified with sets of regres-
sion variables. For example,

yi = β0 + xiβ1 + εi , i = 1, . . . , n , (11.1)

is a model with parameters (β0, β1, σ
2), associated with the covariate x, and
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yi = β0 + εi (11.2)

is another, with parameters (β0 , σ2); it is derived from (11.1) by imposing the
constraint that β1 = 0, that is, by ‘excluding’ x from the model in (11.1). In
both models, we make the usual assumptions of normality, independence of
the εi and homoscedasticity, and that the values x1 , . . . , xn are set a priori.
Other models may have different assumptions.

The model in (11.1) is characterised by the class of distributions

y ∼ N (β01n + xβ1 , σ2In) ,

with arbitrary (real) scalars β0 and β1 and non-negative σ2. We use the matrix
notation with y = (y1 , . . . , yn)� and x = (x1,, . . . , xn)�. The model in (11.2)
is characterised by

y ∼ N (β01n , σ2In) .

It is a special case of the model in (11.1); it is said to be a submodel of
(11.1). While we are satisfied that the data behave according to a model, say
(11.1), we cannot identify the parameter values (β0 , β1 and σ2) according
to which the data are generated. Instead of identifying, we estimate them,
in the case of (11.1) by ordinary least squares (OLS). Efficient estimation of
each parameter β0 , β1 and σ2 amounts to making a choice, informed by y,
of values of β̂0 , β̂1 and σ̂2 in the parameter space, so that their MSEs are as
small as possible. The estimation would involve less uncertainty if we could
reduce the ‘candidate’ parameter space — if we could concentrate our search
on a narrower range of possible values of β0 , β1 and σ2. The submodel in
(11.2) can be regarded as such a reduction, defined by β1 = 0. It is easy to
verify that if indeed β1 = 0 estimation of σ2 is more efficient with (11.2) than
with (11.1), where we regard β1 as unknown. Thus, the incentive to narrow
down the parameter values to a smaller set (reduce the model) is obvious, but
so are the risks — we should not assume that β1 = 0, unless all nonzero values
of β1 can be ruled out. Thus, model reduction does not come free, because the
decision to rely, or not, on a submodel is usually not correct with certainty.
In practice, a submodel is adopted when we fail to find evidence against it
that is stronger than an a priori specified threshold. This section concludes
that this is a highly questionable practice, and the remainder of the chapter
develops an alternative approach.

We consider the following general setting. A mechanism is defined for
generating values of a set of variables Y using a matrix of covariates X. The
covariates X are fixed, that is, in replications of the study their values would
be unchanged, although the values of Y might be different as the mechanism
involves some randomness (inconsistency). A regression model for dataset
(X,Y), comprising matrices of outcomes Y and covariates X, is specified
as a class of (joint) conditional distributions (Y |X). A particular model, A,
is assumed to be valid, that is, (Y |X) belongs to its class of distributions.
The distributions are described by their vectors of parameters ξ or, more
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precisely, by the parameter space defined by all the possible values of the
vector of parameters ξ.

Ideally, we would like to establish the value of a quantity θ that is a
function of the underlying distribution or its characterisation by ξ ; θ = θ(ξ).
An estimator θ̂A = θ̂A(Y; X) is available; given that model A is valid it has
good properties — no bias and sampling variance smaller than some of its
competitors that also assume that model A is valid. If a specified submodel
B of A were also valid, θ could be estimated more efficiently, by an unbiased
estimator θ̂B . Other submodels of A, some of them also submodels of B, may
be considered, each associated with an estimator of θ that is unbiased if the
submodel is valid. The analyst has an incentive to search for submodels that
are valid, because θ can then be estimated more efficiently. At the extreme, if
the parameter space were reduced to a single vector ξ, the target θ could be
established without any estimation error.

Established approaches define rules for selecting between model A and its
submodel B. If model B is selected, it is from then on assumed to be valid,
and either the estimator θ̂B is applied or further reduction of the parameter
space is sought by exploring one or several submodels of B. Such a model
selection procedure can be based on hypothesis testing, e.g., based on the
likelihood ratio statistic, or on related criteria, such as the Akaike or Bayes
information criteria (AIC and BIC), and the like. In hypothesis testing, model
B is regarded as the null-hypothesis (special case), and evidence is sought
against it, in favour of A or, more precisely, in favour of the complement of
B in A (denoted by A\B). If such evidence is found, model B is regarded as
not valid; otherwise the reduction to model B is deemed appropriate. More
generally, a statistic uA,B(Y,X) is evaluated and compared against a critical
value u∗

A,B(Y,X); if u > u∗, model B is rejected, and model B is regarded as
valid otherwise.

A profound deficiency of such an approach is that the choice (decision)
made to reduce the candidate parameter space is usually not correct with
certainty. Errors of two kinds can be committed. First, by failing to reduce
model A to B we miss out on some variance (MSE) reduction. Second, by
reducing model A to B inappropriately we incur bias and we underestimate
MSE(θ̂B). Hypothesis testing involves a logical inconsistency. Failure to reject
the null-hypothesis is inappropriately regarded as its confirmation and action
is taken that would be suitable only when the null-hypothesis is correct. In a
typical hypothesis test, the size of the test is set, by convention, to 0.05, and
the power of the test for a range of alternatives (distributions in A\B) falls
short of 1.0. When several hypothesis tests are carried out in the search for a
‘small’ submodel of A, the probability of ending up with an invalid model, or
a valid model that should have been reduced (further), becomes too large and
is usually impossible to evaluate or even approximate. However, instead of the
probability of identifying the appropriate model we should be concerned with
the quality of the inferential statements made under inappropriate assump-
tions.
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The analyst may document the exhaustive attempts at model reduction
by showing that each parameter retained in the model is essential (could
not be eliminated by constraining it to zero or to another ‘special’ value). We
argue in this section that such an effort is misdirected on several counts. First,
the decisions made during model selection are not correct with certainty, but
they are regarded as such. Second, the model selection process is subject to
uncertainty, that is, a different model may be selected in a replication. The
distribution of an estimator chosen a priori differs from the distribution of an
estimator obtained by selection, but the inferential statement has no means of
reflecting this. By way of an example, suppose model C has been selected and
the value of the estimator θ̂C is quoted, together with its estimated standard

error ŝC =
√

v̂ar(θ̂C). The distribution of the estimator is bound to depend
on the details of how the selection was made: which models were compared,
in what order, with what criteria and other details, but also on the models
that would have been considered had some of the intermediate decisions gone
in different ways. In brief, the conditional distribution of an estimator given
a model selection process differs from its unconditional distribution.

The third line of argument against model selection is that its ambition is
to find the most efficient of the estimators based on the candidate models.
We develop a method that has a higher ambition, to outperform each of these
models. The ambition is not always fulfilled, but the method does not have
the weaknesses of the approaches based on model selection.

We start by introducing some terminology. Suppose the candidate models
are indexed by integers 0, 1, . . . , and model 0 is regarded as valid a priori. In
most practical settings, models m = 1, 2, . . . , M would be its submodels. For
example, in a setting with two candidate models, 1 and 2, suppose neither
is a submodel of the other. We could then also consider a model 0 for which
both 1 and 2 are submodels. The derivations that follow make no assumptions
about the relationship of model 0 to the other models.

Each model m is associated with an estimator θ̂m of the same target θ. If
model m is valid, θ̂m is unbiased and may have some other desirable properties.
We refer to θ̂m , m = 1, . . . , M , as the single-model based estimators. The
selection process is defined as the function that assigns to each conceivable
dataset Y a selected model m. We omit X from the ‘dataset’ because it is
assumed to be fixed. The aim of the selection process is to identify a minimal
valid model ; this is a model that is valid, but none of its submodels among the
models 1, 2, . . . , m are. The minimal valid model is in most practical settings
unique. Let Im be the indicator of the selected model (selection indicator);
Im = 1 when model m is selected, and Im = 0 otherwise. Finally, let M be
the selected model; that is, M = m when Im = 1.

The estimation process is the collection of all operations applied to the
data between compiling the dataset Y and formulating a statement of the
form

(θ̂ , ŝ)
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(estimate, estimated standard error), or similar. We are concerned with es-
timation processes that comprise two steps: model selection and estimation
based on the selected model. The result of such an estimation process is the
selected-model based estimator defined as

θ̂M = I0θ̂0 + I1θ̂1 + · · · + IM θ̂M . (11.3)

This formulation makes it clear that the distribution of θ̂M depends not only
on the selected model but on

• all the models that have a positive probability of being selected;
• the details of the selection process — the joint distribution of M and the

estimators θ̂m ,

as well as the distribution (Y |X). The distribution of θ̂M is difficult to estab-
lish even in some very simple cases, when the probabilities pm = P(Im = 1 | ξ)
and the joint distribution of the estimators θ̂m are known. The source of the
difficulty is that the selection indicators Im are correlated with the estimators
θ̂m , both within and across models m. The selected-model based estimator
θ̂M is a mixture. The expectation and variance of a mixture are easy to de-
rive only when the mixing indicators (Im) and the distributions being mixed
(of θ̂m) are mutually independent. When the model selection process is disre-
garded, as is the common practice, quoting the estimated standard error of a
selected-model based estimator corresponds to

ŝM = I0ŝ0 + I1ŝ1 + · · · + IM ŝM .

We will give examples and general derivations showing that θ̂M is not unbiased
and ŝ2

M grossly underestimates var(θ̂M).
We consider the distributions of θ̂m , m = 0, 1, . . . , M , assuming model 0,

being aware that the other models, even if selected, may not be valid. Instead
of attempting to reduce the parameter space, while not abandoning validity,
we aim to achieve efficiency directly, without relying on models judged to be
valid by fallible criteria. The approach can be motivated by an example from
small-area estimation. By selecting one of the candidate models, A, that each
district has a different population mean, or B, that the districts have identical
means, we end up applying for every district d either the direct estimator θ̂d

or the national estimator θ̂. This approach, discussed in Section 6.2.1, was
dismissed soon thereafter.

11.1.1 EM algorithm

In this section, we point out a contradiction of the attempt to find a minimal
valid model. Suppose each single-model based estimator is based on maxi-
mum likelihood (ML). If we knew that a particular model m∗ is the minimal
valid model, estimation of θ would entail evaluation of the single-model based
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estimator θ̂m∗ . We can regard m∗ as the missing data (item) and apply the
EM algorithm. In its estimation step (E), we calculate the conditional proba-
bilities p̂m that model m is the minimal valid model, given the data and the
current values of the model parameter estimates. In the subsequent maximi-
sation step (M), we evaluate θ̂M with the selection indicators Im replaced by
the probabilities p̂m , that is,

θ̂EM = p̂0θ̂0 + p̂1θ̂1 + · · · + p̂M θ̂M . (11.4)

Unless all but one of the probabilities p̂m vanish, the ML estimator is a con-
vex combination of the single-model based estimators. Suppose a model and
its submodel m are among the candidate models, and the submodel is de-
fined by restricting one of the model parameters, ξ, from an interval, such as
(−∞,+∞), to zero. As zero is but one of innumerably many possible values,
the submodel would be associated with probability p̂m = 0, unless there is
some specific information that supports the hypothesis ξ = 0, at the exclusion
of all other values of ξ, even those arbitrarily close to zero. This suggests that
the iterations of EM algorithm would conclude with p̂0 = 1, that is, at the
starting point — model 0.

This example of the EM algorithm leads to a contradiction because validity
of the model is regarded as an imperative. An estimator based on an invalid
model may be more efficient than its counterpart for a valid model if the
departure from validity is only slight, but the invalid model is much simpler.

The conclusion that the most complex model yields the ML estimator may
be paradoxical for finite sample sizes. However, in large (infinite) samples
any bias implies inefficiency (inconsistency), since the variance inflation due
to redundant model terms is infinitesimally small, so long as the number of
parameters in the asymptotic consideration increases at a much slower rate
than the number of observations. The ML estimator with a valid model is
optimal in asymptotics; in finite samples some invalid models may be more
efficient.

11.1.2 Example

Figure 11.1 presents the results of a simulation of the selected-model based
estimator of the mean for a group in the setting of a balanced one-way random-
effect analysis of variance (rANOVA) with K = 8 groups, J = 10 observations
in each group, overall mean µ = 0, within-group variance σ2

1 = 1 and between-
group variance σ2

B = 0.25. The target of estimation is the mean of group 1,
µ1 = 0.35. Ten thousand values of the estimator µ̂1,M are generated, together
with the estimates of the nominal sampling variance, ŝ2

M , that would be
reported conventionally. The hypothesis test of equal group-level means is
applied, with 5% significance level and symmetric confidence interval based
on the t-statistic.

Panels A and B present the respective histograms of the simulated esti-
mates µ̂1,M and estimated sampling variances (MSEs) ŝ2

1,M , with the parts
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Figure 11.1. Histograms of the simulated values of the selected-model based esti-
mator of the group-level mean µ1 (panel A) and the associated reported (estimated)
sampling variance (panel B). Shading in both panels represents the values generated
when the hypothesis of equal means in rANOVA is not rejected.
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that correspond to failure to reject the null-hypothesis shaded. The target
values, µ1 = 0.35 and MSE(µ̂1,M) = 0.111, the latter established by the
replications, are marked by vertical solid lines and the means of the replicate
values of their respective estimates by vertical dots. Contrary to the con-
ventional claim, the estimator µ̂1,M is biased and its distribution deviates
from normality. It is arguable whether the bias, −0.061 is substantial or not.
However, the bias of ŝ2

1,M in estimating MSE(µ̂1,M) is substantial and the
distribution of ŝ2

1,M bears no resemblance to a χ2. Its sets of realised values
for the two outcomes of the hypothesis test are prefectly separated. Figure
11.1 illustrates that model selection cannot be ignored and that statements
that are conditional on the selected model can be grossly misleading. Model
selection is not conducive to efficiency.

Note that the conditional distributions of µ̂1,M , given the selected model,
differ substantially. This property is specific to the model selection applied
and the target µ1 . Estimation of the within-group variance σ2

W provides an
example of conditional distributions that are much more similar. Figure 11.2
summarises the simulated values of the selected-model based estimator σ̂2

W,M
in the same set of replications as in Figure 11.1. The estimator has only a
small bias and the two conditional distributions, given the outcome of the
hypothesis test, differ only slightly.
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Figure 11.2. Histogram of the simulated values of the selected-model based es-
timator of the within-group variance σ2

W in one-way balanced rANOVA. Shading
represents the values generated when the hypothesis of equal means is not rejected.
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11.2 Why model selection fails

In this section, we show that the two properties pointed out in the previous
section, distinctness of the conditional distributions (θ̂M | M), that is, the
dependence of θ̂M on M, and the negative bias (underestimation) of ŝ2

M , are
connected. Let p0 = P(M = 0) be the probability that model 0 is selected, and
p1 = P(M = 1) its complement. Elementary operations yield the identities

E(θ̂M) − θ = p0E(θ̂0 | M = 0) + p1E(θ̂1 | M = 1) − θ

= p1E(θ̂1 − θ̂0 | M = 1) (11.5)

(as θ̂0 is unbiased) and

MSE(θ̂M ; θ) = p0MSE(θ̂0 ; θ | M = 0) + p1MSE(θ̂1 ; θ | M = 1)

= p0var(θ̂0 | M = 0) + p1var(θ̂1 | M = 1)

+ p0

{
E(θ̂0 | M = 0) − θ

}2
+ p1

{
E(θ̂1 | M = 1) − θ

}2
.

(11.6)

obtained after substituting p0E(θ̂0 | M = 0) + p1E(θ̂0 | M = 1) for θ. (Note
that the conditioning is on the model choice, not on the appropriate model.)
These identities show when and why the selected-model based estimator is
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biased and its MSE underestimated. The bias of θ̂M arises when the single-
model based estimators have different conditional expectations, given the se-
lection of their models, and the probability of selecting the submodel, p1 ,
is not trivial. Usually E(θ̂1 | M = 1) .= θ, but E(θ̂0 | M = 0) differs from θ
substantially when p0 is smaller than 1.0. The first two terms in the conclud-
ing expression in (11.6) are estimated with little or no bias by ŝ2

M . However,
the sum of the last terms is positive whenever model selection is subject to
uncertainty (p0p1 > 0) and the conditional means of θ̂0 and θ̂1 , given the
choice of the respective models, differ. That is the case in Figure 11.1. Thus,
model-selection based estimation can be dishonest (its sampling variation is
underestimated). There are no means of identifying model selection processes
that have this deficiency, other than by simulations. The derivations in (11.5)
and (11.6) are general, applying to all selection procedures with two alterna-
tives (options). Some procedures may have greater probabilities of leading to
the appropriate choice (the minimal valid model), but no improvement will
rule out the occasional selection of an inappropriate model. Although reducing
the conditional probabilities of choosing an inappropriate model is a natural
goal, our analysis suggests that this may not be effective and is insufficient
to make the conventional statements based on the selected model M valid
(honest).

11.2.1 Limitations of model selection

The two examples in Section 11.1.2 suggest that model selection should be
informed by the purpose to which the selected model is to be applied. In
this respect, any solution that concludes with a single choice is very rigid.
It may be qualified by an assessment of our confidence in it, but provides
no prescription for reflecting this confidence (or its lack) in the applications
and inferences that follow. The conclusions of inferences made may state, as a
caveat, that they are based on a model that may not be appropriate (valid),
but a typical user of such a conclusion (client) would not know how to account
for the implied uncertainty. In any case, the uncertainty is difficult to evaluate
or describe because it depends on the range of models considered and on the
process of model selection that was employed.

Model selection has two serious limitations. First, it contemplates no other
choices than the candidate single-model based estimators, even though in
the perspective of (11.3), θ̂M is an estimator different from either single-
model based candidate θ̂m . The candidate estimator based on a model that
is rejected only narrowly is treated in the same way as the estimator based
on a model that is rejected outright, with a great deal of confidence. The
second limitation is that the same model is selected irrespective of the target
of estimation. The possible ‘error’ committed in model selection leaves its
mark on every estimator and predictor based on the selected model.

The first limitation is effectively addressed by Bayes factors in [104]. In-
stead of selecting one of the estimators, their convex combination,
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θ̃ = b1θ̂1 + · · · + bK θ̂K ,

is used. Note the obvious parallels with the EM solution in (11.4). The co-
efficients (weights, or Bayes factors) bk are set so as to reflect the strength
of support for the alternative models; they are non-negative and add up to
unity. The support is defined as the relative size of the likelihood; see [123]
and [104] for details and variations on the general theme. Bayes factors are
very appealing because they resolve the coarseness of the conventional model
selection, but they have the second limitation: the factors b = (b1 , . . . , bK)�

apply to every target, because the support for a model is defined without any
regard for the target of inference. Note that the factors are a random vector b.
As they are correlated with θ̂ = (θ̂1 , . . . , θ̂K)�, establishing the distribution
of the composition θ̃ is a non-trivial problem even when the joint distribution
of θ̂ is known and is simple.

The model is not a function of the target, and so involving the target
in the model selection might appear counterintuitive. However, maximising
the chance of selecting the appropriate model is not the right goal because
an inappropriate choice, even if made with a small probability, may have
a disastrous impact on the distribution of the selected-model based estima-
tor. Parallels can be drawn with multiple imputation (MI, Part I). There we
considered two stages of analysis — completing the dataset (imputations for
missing values) and analysis of the completed dataset. We concluded that the
completion by optimal estimation of each missing item is not conducive to
efficient estimation. In estimation with model uncertainty, an optimal way
of selecting a model is also not conducive to efficient estimation. A common
feature of the two general problems is that the uncertainty in the first stage
has to be reflected in the second stage, otherwise the composition of the two
stages is inefficient, even if either stage on its own would be for its respective
purpose. The main difference between MI and estimation under model uncer-
tainty is that with the latter we step beyond the paradigm that associates
valid models with efficient inference.

Suppose a non-trivial model M is known to be the minimal valid model
and θ̂M is an (approximately) unbiased estimator that would be considered as
efficient for target θ. For instance, θ̂M may be the ML estimator in a regular
and easy-to-solve problem. At first glance, it may seem that θ̂M cannot be
improved on. However, an estimator of θ based on a submodel of M, although
biased, has a smaller sampling variance. Should we reject this estimator alto-
gether because the model it is based on is not valid? Does the incurred bias
always outweigh the reduction in variance?

For a given target, the estimator based on a simpler but invalid model may
have only a slight bias but its variance is reduced substantially; we should
not hesitate to use the invalid model for estimating this target. For another
target, the estimator based on the invalid submodel may have a substantial
bias, overwhelming the variance reduction. The simpler model should not be
used for estimating this target.
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Examples of these two cases were found in Section 11.1.2. In the next
section, we address the problem of model uncertainty by setting aside the
issues of model validity and simply search for estimators with minimum MSE.

11.3 Synthetic estimation

The combination in (11.4) motivates the estimator introduced in this section.
We pursue the path of efficient estimation directly, without the intermediate
step of model selection. Instead of the choice among the single-model based
estimators θ̂0 , θ̂1 , . . . , θ̂M , that is, their mixture θ̂M , we consider the convex
combination

θ̂S = (1 − b+)θ̂0 + b1θ̂1 + · · · + bM θ̂M , (11.7)

in which b1 , . . . , bM are some constants and b+ is their total. Let b =
(b1 , . . . , bM )�, so that b+ = b�1, and θ̂ = (θ̂1 , . . . , θ̂M )�. Note that b0 and
θ̂0 are not included in b and θ̂, respectively; this will make the notation more
convenient. Let ∆ = E(θ̂)−θ1 be the vector of biases, V = var(θ̂) the variance
matrix of the estimators, and C = cov(θ̂, θ̂0) the vector of their covariances
with the unbiased estimator θ̂0 . The variance (and MSE) of θ̂0 is denoted by
V0 . All the (co-)variances and biases are evaluated under model 0, or another
model assumed to be valid a priori. We assume that the estimators θ̂m are
distinct, that is, none of the differences θ̂m − θ̂m′ , m �= m′, vanish with prob-
ability 1.0. If any pair of such estimators does, one of them can be omitted
without any loss.

We call θ̂S a synthetic estimator because it is composed by synthesis of
the candidate models. We can write more compactly

θ̂S(b) = (1 − b+)θ̂0 + b�θ̂ . (11.8)

The addition of the argument b to θ̂S is essential, because we will consider a
range of values of b and, after identifying an optimum, b∗, estimate it, by b̂

∗
.

We find the vector b for which θ̂S attains its minimum MSE. Elementary
operations yield the identities

MSE{θ̂S(b)} = (1 − b+)2V0 + b�Vb + 2(1 − b+)C�b + (b�∆)2

= V0 − 2b�(V01 − C) + b�(V011�− C1�− 1C�+ V + ∆∆�)b

= V0 − 2b�P + b�Qb , (11.9)

with P = cov(θ̂01 − θ̂, θ̂0) and Q = E
{

(θ̂01 − θ̂) (θ̂01 − θ̂)�
}

. This MSE
is a quadratic function of b. Its (matrix-)quadratic term, Q, is non-negative
definite, so the MSE has a minimum. We assume that Q is non-singular,
otherwise one or several estimators would have to be excluded from θ̂, but
the purpose of that would be only to obtain a unique minimum, one of those
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attained also with the original P and Q. The minimum of MSE{θ̂S(b)} is
found as the root of its vector of first-order partial differentials:

∂MSE(θ̂S)
∂b

= 2 (Qb − P) , (11.10)

that is, b∗ = Q−1P, if Q is non-singular. The minimum attained is

MSE
{

θ̂S(b∗)
}

= V0 − P�Q−1P.

If the value of b∗ could be established the ideal synthetic estimator θ̂S(b∗)
would be at least as efficient as either of the candidate estimators θ̂m , because
these estimators are special cases of the convex combination in (11.8), with b
equal to 0 (for θ̂0) or to the appropriate indicator vector (with its components
equal to zero, except for the mth element equal to unity for θ̂m).

In most settings, b∗ depends on unknown parameters, and so has to be
estimated. Unlike θ̂S(b∗), the synthetic estimator θ̂S(b̂

∗
), with b estimated,

is not necessarily more efficient than each candidate estimator θ̂m . Of course,
the efficiency of θ̂S(b̂

∗
) depends on the estimator b̂

∗
. The properties of θ̂S(b̂

∗
)

are difficult to explore even in some simple cases, but so are the properties of
the selected-model based estimator θ̂M .

11.3.1 One submodel

The properties of the general synthetic estimator are easier to discuss when
there are only two candidate models, that is, M = 1, and the alternative
model 1 is a submodel of the a priori valid model 0. When M = 1, P and Q
are scalars, and the weight assigned to model 1 in the ideal synthetic estimator
is

b∗ =
V0 − C

V0 + V − 2C + ∆2 ,

where V , C and ∆ are the respective univariate versions of V, C and ∆. The
synthetic estimator coincides with θ̂0 only when V0 = C. In this case, as

var
(

θ̂0

θ̂1

)
=
(

V0 C
C V

)
,

necessarily V > C; otherwise the ‘variance’ matrix would have a negative
eigenvalue. When V0 = C and (θ̂0 , θ̂1) has a bivariate normal distribution, θ̂1

can be expressed as θ̂1 = θ̂0 + δ with a random variable δ ∼ N (d, V − V0)
independent of θ̂0 . Thus, b∗ = 0 only when the estimator based on model 1
can be formed from the unbiased (model-0 based) estimator by adding ‘white
noise’ to it. In a typical setting, V < V0 , so C < V0 and b∗ > 0. The coefficient
b∗ exceeds unity when V − C + ∆2 < 0. In the settings explored in Sections
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11.4 and 11.5, V = C and ∆ > 0, so b∗ < 1 and synthetic estimation has
a natural interpretation as combining the (constituent) single-model based
estimators with positive weights 1 − b∗ and b∗.

A single-model based estimator with variance greater than an alternative
estimator should not be discarded. This conclusion contradicts the aim of
model selection. When θ̂0 and θ̂1 are independent (C = 0) and unbiased
(∆ = 0), the synthetic estimator based on them has b∗ = V0/(V0 + V ). It
is also unbiased, and its sampling variance, V0V/(V0 + V ), is smaller than
min(V0 , V ). Whenever C < V0 , the biased estimator θ̂1 contributes to θ̂S,
even when its variance is greater than V0 . Thus, synthesis has a potential to
outperform model selection. The principal hurdle in realising this potential is
that the coefficient b∗ has to be estimated.

Suppose we substitute for b∗ a value b† �= b∗. For example, b† may be an
estimate of b∗. Of interest is the sensitivity of θ̂S(b) to b, that is, what extent
of the ‘error’ b† − b∗ (or b†/b∗) can be committed without θ̂S(b†) losing its
superiority over the single-model based estimators θ̂0 = θ̂S(0) and θ̂1 = θ̂S(1).
We have

MSE
{

θ̂S(b†)
}

= V0 − 2b†(V0 − C) + b†2
(V0 + V − 2C + ∆2) ,

and this is smaller than both var(θ̂0) = V0 and MSE(θ̂1) = V + ∆2 when

2b∗ − 1 < b† < 2b∗ . (11.11)

As 0 < b† < 1, only one of these inequalities is relevant; the first when
b∗ > 1

2 , and the second otherwise. Figure 11.3 displays four examples. In each
panel, MSE(θ̂S) is plotted as a function of b. In panel A, the MSE attains its
minimum at b∗ = 0.625, marked by vertical dashes. The MSE is lower than
for both θ̂0 and θ̂1 while 0.25 < b < 1.0, so a considerable ‘error’ in the guess
(or estimation) of b∗ is allowed. Panel B presents the mirror-image setting
(reflected around b = 0.5). Here b∗ = 0.375 and θ̂S is superior to both θ̂0 and
θ̂1 for 0.0 < b < 0.75, so the synthetic estimator is quite robust to the setting
of b.

Panels C and D present a pair of mirror-image settings in which θ̂S is
much less robust with respect to the value of b. In panel C, b∗ = 0.125,
and the synthetic estimator is more efficient than for both θ̂0 and θ̂1 only
when 0.0 < b < 0.25. However, the MSE is a flat function of b even to the
right of b = 0.25, so when b moderately exceeds 0.25, MSE{θ̂S(b)} exceeds
V0 = var(θ̂0) only slightly.

The MSE of the synthetic estimator with 0 < b∗ < 1 decreases at b = 0
and increases at b = 1. If we know that V0 < V + ∆2, but are not certain
about the value of b∗, we need to be concerned only about outperforming θ̂0 .
The chances of that are increased by erring on the side of smaller b, because
the MSE is more likely to be decreasing at that value of b. However, if too
small a value of b is chosen, synthesis is far from optimal; a greater value of
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Figure 11.3. The MSE of a synthetic estimator as a function of the coefficient b.
Settings with different values of V0 , V , C and ∆.
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b would yield a much smaller MSE. Note the parallels with the discussion of
composite estimation for small areas in Section 6.3.2.

11.4 Analysis of variance

This section discusses applications of synthetic estimation to ANOVA. We
consider the one-way model

ykj = µ + δk + εkj , (11.12)
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with an unknown mean µ, group-level deviations δk and within-group devia-
tions εkj ∼ N (0, σ2

W), and the usual assumptions of mutual independence of
the ε’s. The deviations δk are unknown parameters. For simplicity, we assume
a balanced design, with groups k = 1, . . . , K and J observations in each group
(j = 1, . . . , J). The overall sample size is denoted by N ; N = JK.

We are interested in estimating the mean of a group, say, µ1 = µ+δ1 . The
commonly contemplated options are the within-group mean µ̂1,A = (y11+y12+
· · ·+y1J)/J and the sample mean µ̂B = (y11 + · · ·+y1J +y21 + · · ·+yKJ)/N .
They are implied by the established test of the hypothesis that the groups
have identical means. Presumably, when the hypothesis is rejected µ1 would
be estimated by µ̂1,A , and if not rejected, by µ̂B .

For the ideal synthetic estimator of µ1 , we require the following quantities:

var(µ̂1,A) = V0 =
σ2

W

J

var(µ̂B) = V =
σ2

W

N

cov(µ̂1,A , µ̂B) = C =
σ2

W

N

E(µ̂B) − µ1 = ∆ = −δ1 . (11.13)

The expression for V holds even when model B applies but, in general, V , C
and ∆ are evaluated assuming model A. From (11.13), we have

MSE
{

θ̂S(b)
}

= σ2
W

{
1
J

− 2bg + b2(g + γ2
1)
}

,

where g = 1/J − 1/N = (K − 1)/N and γ1 = δ1/σW is the relative deviation
of group 1. The optimal coefficient is

b∗ =
g

g + γ2
1

,

and the corresponding MSE is

MSE
{

θ̂S(b∗)
}

= σ2
W

(
1
J

− g2

g + γ2
1

)
. (11.14)

This represents a reduction of MSE by σ2
Wg2/(g + γ2

1) over the variance of
µ̂1,A and by σ2

Wg γ2
1/(g + γ2

1) over the MSE of µ̂B . But these gains would be
realised only if γ1 were known, and in that case, µ̂B + γ1σ̂W would be a more
efficient estimator of µ1 .

If a value γ† �= γ1 is applied, the conditions in (11.11) translate to

gγ2
†

2g + γ2
†

< γ2
1 < 2γ2

† + g . (11.15)
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The inequality on the left-hand side is always satisfied when γ2
1 > g and on the

right-hand side when γ2
1 < g. The interval in (11.15) is wider than (1

2γ2
1 , 2γ2

1).
Nevertheless, the interval is quite narrow when γ1 is small. That happens when
µ1

.= µ, when µ̂B is more efficient than µ̂A . In Section 11.4.1, we consider a
class of synthetic estimators that are less efficient than µ̂B when µ1 is in the
vicinity of µ, but are much more efficient than µ̂B when µ1 is distant from µ,
when MSE(µ̂B) is very inefficient.

The coefficient b∗ can be interpreted as a shrinkage coefficient, pulling the
unbiased estimator µ̂1,A toward the low-variance (stable) but biased estima-
tor µ̂B . A parallel can be drawn with the setting of small-area estimation,
regarding each group k as a district.

11.4.1 Minimax estimation

Since MSE(µ̂B ; µ1) is an increasing function of γ2
1 , efficient estimation is a

greater priority for large values of γ2
1 . Suppose we have a priori information

that γ2
1 does not exceed a given value Γ 2. We apply the synthetic estimator

µ̂S
1 with b∗ evaluated at γ2

1 = Γ 2, and explore the properties of this estimator,
denoted by µ̂S

1,Γ 2 , when in fact γ2
1 < Γ 2.

The MSE of this estimator is

MSE(µ̂S
1,Γ 2) = σ2

W

{
1
J

− 2g2

g + Γ 2 +
g2(g + γ2

1)
(g + Γ 2)2

}
.

The estimator is more efficient than µ̂1,A when

γ2
1 < g + 2Γ 2 ,

and more efficient than µ̂B when

γ2
1 >

gΓ 2

2g + Γ 2 ;

the two inequalities are derived similarly to (11.15). So, µ̂S
1,Γ 2 is more efficient

than µ̂1,A for values of γ2
1 well in excess of Γ 2 and more efficient than µ̂B

for all but the smallest values of γ2
1 for which µ̂B has a very small MSE.

The threshold gΓ 2/(2g + Γ 2) is smaller than both g and Γ 2/2. The MSE
of µ̂S

1,Γ 2 is a linear increasing function of γ2
1 , but its slope on γ2

1 , equal to
σ2

Wg2/(g + Γ 2)2, is not as steep as for MSE(µ̂B).
The MSEs of the estimators µ̂1,A , µ̂B and µ̂S

1,Γ 2 , as functions of the relative
deviation γ1 , are compared in Figure 11.4 for the following setting: K = 8
groups, J = 10 observations within groups, σ2

W = 1, and assuming Γ 2 = 0.4
and Γ 2 = 0.25. All the MSE’s considered are symmetric functions of γ1 ,
so it suffices to discuss their behaviour for γ1 > 0. The synthetic estimator
µ̂S

1,0.4 provides an effective protection against the large bias of µ̂B , while being
uniformly more efficient than µ̂1,A . As µ̂S

1,0.4 is efficient when γ2
1 = Γ 2 = 0.4,
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Figure 11.4. The single-model based (A — µ̂1,A and B — µ̂B) and minimax
synthetic estimators (0.25 — µ̂S

1,0.25 and 0.4 — µ̂S
1,0.40) of the mean of a group in

ANOVA. The vertical dashes mark the upper limits Γ = 0.5 and Γ =
√

0.4.
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and attains the highest MSE at that value, µ̂S
1,0.4 is the minimax estimator of

µ1 ; it is superior in the worst plausible scenario for all the synthetic estimators
µ̂S

1(b).
When Γ 2 can be set to a smaller value, say, Γ 2 = 0.25, µ̂S

1,0.25 is more
efficient than µ̂S

1,0.4 for all values of γ2
1 up to 0.25 and slightly beyond. Thus,

‘tighter’ information about γ1 is rewarded by (uniformly) more efficient esti-
mation. There is some leeway — the penalty for basing µ̂S

1,Γ 2 on too small a
value of Γ 2 becomes harsh only when γ2

1 exceeds Γ 2 by a wide margin. The
curve drawn in Figure 11.4 by short dashes is the MSE of the ideal synthetic
estimator, based on the actual value of γ1 . It represents a lower bound for
the MSE; µ̂B attains it for γ1 = 0, µ̂S

1,Γ 2 for γ1 = Γ , and the MSE approaches
var(µ̂1,A), very slowly, as γ1 diverges to +∞.

11.4.2 Estimating σ2
W

In this section, we derive the synthetic estimator of the within-group variance
σ2

W . We show that synthetic estimators of µ1 and σ2
W have different ideal

coefficients b∗. The need for such flexibility in estimation was anticipated in
Section 11.2.

For the single-model based estimators
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σ̂2
W,A =

1
N − K

K∑
k=1

J∑
j=1

(yjk − µ̂k,A)2

σ̂2
W,B =

1
N − 1

K∑
k=1

J∑
j=1

(yjk − µ̂B)2 ,

based on the N − K and N − 1 degrees of freedom, respectively, we have

var(σ̂2
W,A) = V0 =

2σ4
W

N − K

MSE(σ̂2
W,B) = V =

2σ4
W

N − 1
+

4σ2
W

(N − 1)2

K∑
k=1

δ2
i

cov(σ̂2
W,A , σ̂2

W,B) = C =
2σ4

W

N − 1

E(σ̂2
W,B) − σ2

W = ∆ =
J

N − 1

K∑
k=1

δ2
k . (11.16)

Hence the ideal coefficient for estimating σ2
W is

b∗ =
2qσ4

W

2qσ4
W + 4σ2

W
∑

k δ2
k + J2 (

∑
k δ2

k)2

=
2q

2q + 4
∑

k γ2
k + J2 (

∑
k γ2

k)2
, (11.17)

where q = (K−1)(N −1)/(N −K). The ideal coefficient b∗ = b∗
σ2
W

differs from
its counterpart b∗

µ1
; it depends on the relative deviations γk exchangeably,

through their sum of squares, whereas b∗
µ1

depends only on γ1 .
The minimax synthetic estimator of σ2

W can be derived in analogy with its
counterpart for µ1 , although the algebra is somewhat more involved. However,
in most settings, σ̂2

W,B is not worth considering, and b∗ or its estimator is quite
small. This can be motivated by considering the degrees of freedom of the two
candidate estimators. In the setting considered earlier, σ̂2

W,A is associated with
N − K = 72 degrees of freedom. With σ̂2

W,B we gain an additional K − 1 = 7
degrees of freedom. The increase by about 10%, at the risk of incurring bias,
is hardly worth it. In contrast, the alternatives available for estimating µ1 are
based on either J = 10 on N = 80 observations; the threat of bias should
be assessed differently, in view of an overwhelming reduction of the sampling
variance.

The naive estimation of
∑

k δ2
k is very inefficient, unless the within-group

sample size J is substantial. We may estimate this sum of squares from the
finite-sample variance σ2

B = varK(δK). The subscript K is used to indicate
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expectation or variance over the groups k, similarly to D for districts in small-
area estimation. Simple moment matching yields the estimator

σ̂2
B =

K∑
k=1

(µ̂k,A − µ̂B)2 − K

J
σ̂2

W .

Some advantage is derived by erring on the side of smaller b. This can be
achieved by overestimating σ2

B , that is, making the groups to appear more
dispersed.

11.4.3 Estimated coefficient b̂∗

In this section we return to the problem of estimating µ1 in one-way balanced
ANOVA. In practice, b∗ has to be estimated, and µ̂S(b̂∗) need not be more
efficient than both candidates µ̂1,A and µ̂B . We can ensure that the synthetic
estimator is more efficient than the unbiased estimator µ̂1,A by reducing b̂∗

so much that it is very likely smaller than b∗. However, by ‘shrinking’ b̂∗ too
much we may forego much of the advantage of synthetic estimation.

To assess the loss of efficiency due to not knowing b∗, we express the MSE
of µ̂S

1 by conditioning on b̂∗:

MSE
(
µ̂S

1 ; µ1
)

= E
{

var(µ̂S
1 | b̂∗)

}
+ var

{
E(µ̂S

1 | b̂∗)
}

+
[
E
{

E(µ̂S
1 | b̂∗)

}
− µ1

]2

=
{

1 − E(b̂∗)
}2 σ2

W

J
+
{

E(b̂∗)
}2 σ2

W

N
+ 2E(b̂∗)

{
1 − E(b̂∗)

} σ2
W

N

+ gσ2
W var(b̂∗) + δ2

1 var(b̂∗) + δ2
1

{
E(b̂∗)

}2

= σ2
W

[
1
J

− 2gE(b̂∗) + (g + γ2
1)
{

E(b̂∗)
}2

+ (g + γ2
1) var(b̂∗)

]
;

in the first line, the inner expectation or variance are over the distribution
of µ̂S

1 and the outer over b̂∗. When b∗ is estimated with little or no bias,
E(b̂∗) .= b∗,

MSE
{

µ̂1(b̂∗); µ1

}
.= MSE

{
µ̂S

1(b∗); µ1
}

+ σ2
W(g + 2γ2

1) var(b̂∗) .

Hence, the inflation of MSE(µ̂S
1 |µ1) owing to (unbiased) estimation of b∗ is

approximately σ2
W(g + 2γ2

1) var(b̂∗). This can be compared directly with the
gains of the ideal synthetic estimator over the single-model based estimators.

The coefficient b∗ can be estimated naively, by (µ̂1,A − µ̂B)2/σ̂2
W,A . The

numerator and denominator are independent and the ratio has a scaled non-
central F -distribution with one and N − K degrees of freedom. The bias of
the numerator can be adjusted for, but the adjustment is itself estimated and
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may result in a negative value of the numerator. In any case, the ratio T̂ /Û of
unbiased estimators of some quantities T and U is not an unbiased estimator
of T/U ; see Section 9.1.1. With a χ2-distributed denominator (subject to
a scale factor), the bias can be corrected. However, the objective is not to
estimate b∗ without bias, but to estimate µ1 as efficiently as possible. The
pursuit of unbiasedness of the estimators of some intermediate quantities is
not conducive to this goal.

11.4.4 Simulations

Apart from introducing synthetic estimators, we want to illustrate the de-
ceitful nature of selected-model based estimators, reinforcing the message of
Section 11.1.2. Synthetic estimation also involves dishonesty if we estimate
b (or b), and regard the estimate as the ideal coefficient b. Since the dis-
tribution of neither µ̂S

1(b̂∗) nor µ̂1,M is available in any analytical form, we
compare them by simulations. For µ̂1,M , we use the standard hypothesis
testing process with 5% significance level, using the obvious F -test statistic.
The statistic depends on all the data, so we have to set the (population)
means of all K = 8 groups. The results are described for the vector of means
µ = (δ, δ, −δ, −δ, 0, 0, 0, 0)�. We set µ = 0 and σ2

W = 1; the value of σ2
W is

immaterial for estimating the relative deviation γ1 . The actual outcomes ykj

are not required in the simulations, as it suffices to generate δ̂1 ∼ N (δ, g) and,
independently, (N − K)σ̂2

W ∼ χ2
N−K .

The empirical MSEs of the two single-model based, the ideal and estimated-
shrinkage synthetic, and the selected-model based estimators are compared in
Figure 11.5. Panel A shows that the selected-model based estimator µ̂1,M
(nearly) coincides with the sample mean µ̂B in the range | γ1 | < 1.3, and they
are both efficient only for very small values of γ1 , | γ1 | < 0.2. The synthetic
estimator with b∗ estimated is less efficient than µ̂1,M for small values of γ1 ,
slightly less efficient than µ̂1,A for γ1 ∈ (0.5, 1.0), and for | γ1 | > 1 its perfor-
mance is indistinguishable from µ̂1,A . Panel B zooms in on the comparison
of the synthetic estimator and the within-group mean µ̂1,A . Unlike the ideal
synthetic estimator (drawn by dots), µ̂S

1(b̂∗) is not uniformly more efficient
than µ̂1,A , but it is less efficient only slightly and in a narrow range.

In conclusion, the selected-model based estimator is a very poor choice,
but the synthetic estimator does not deliver on the promise of outperforming
both single-model based estimators. Against µ̂B it ‘fails’ for small | γ1 |, when
MSE(µ̂B ; µ1) is small, so this cannot be regarded as a serious deficiency.
Against µ̂1,A it fails for intermediate values of | γ1 |, so that should be regarded
as a more serious drawback.

We suggested earlier that erring on the side of lower coefficient b is prefer-
able. The impact of using rb̂∗ = rg/(g + γ̂2

1) instead of b̂∗ is studied in Figure
11.6 for factors r = 0.5, 0.6, . . . , 1. The diagram shows that a reduction of b̂∗

improves the efficiency of µ̂S
1 in the range where it is least efficient, (0.5, 1.0).
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Figure 11.5. The root-MSEs of estimators of µ1 as functions of the relative devi-
ation δ1 .
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For 1.28-fold reduction of b̂∗, r = 0.78, µ̂S
1(rb̂∗) is uniformly more efficient

than µ̂1,A . This improvement comes at the expense of reduced efficiency for
the smallest values of γ1 . Such a trade-off is advantageous if we prefer avoid-
ing any circumstances in which µ1 is estimated with large MSE to retaining
a chance that µ1 may be estimated with high precision.

11.4.5 ANOVA with random effects

In the random-effect version of (11.12), the group-level deviations δk are as-
sumed to be a random sample from N (0, σ2

B). As µ1 is a random variable in
this model, its estimation is meaningful only by a reference to replications in
which it is held fixed. Therefore, all the items required for (ideal) synthetic
estimation are derived conditionally on µ1 :

var(µ̂1,A |µ1) = V0 =
σ2

W

J

MSE(µ̂B ; µ1 |µ1) = V =
σ2

W

N
+

(K − 1)σ2
B

K2

cov(µ̂1,A , µ̂B |µ1) = C =
σ2

W

N
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Figure 11.6. The root-MSEs of synthetic estimators of µ1 with underestimated
coefficient b̂∗.
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E(µ̂B |µ1) − µ1 = ∆ = −δ1
K − 1

K
. (11.18)

For example, without conditioning, V0 = σ2
B +σ2

W/J . Note that in the expres-
sion for V , we indicate µ1 as both the target and the condition, because µ1 is
regarded as fixed, unlike the means of the other groups. The ideal coefficient
is

b∗ =
g

g + {ω + γ2
1(K − 1)}(K − 1)/K2 ,

where ω = σ2
B/σ2

W is the variance ratio. Estimation of b∗ is simplified by
replacing γ2

1 with its expectation over the groups, equal to ω. As in Section
11.4.4, conservatism corresponds to underestimating b∗, or overestimating γ2

1
or ω. To affect this, γ2

1 can be replaced by a multiple of ω, such as 2ω.
The ideal synthetic estimator µ̂S

1(b∗) has MSE (conditional on µ1)

σ2
W

{
1
J

− g2

g + ω(K − 1)/K2 + γ2
1(K − 1)2/K2

}
.

It is smaller than its counterpart for fixed effects, (11.14), when

γ2
1 < ω

K(K − 1)
2K − 1

.
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Thus, the assumption of randomness of the deviations δk leads to more precise
estimation of the within-group mean for groups with smaller absolute devia-
tions | δk |. It is more useful when a greater number of groups K is observed
and when the variance ratio ω is greater. These comparisons are slightly unfair
to the fixed-effect ANOVA because in the rANOVA, b̂∗ requires estimation
of ω in addition to γ2

1 . The advantages of random-effect ANOVA cannot be
attributed to borrowing strength (as in [194]), because a form of borrowing
strength takes place in synthetic estimation even for fixed effects, although
this is not exploited in ML estimation.

11.5 Ordinary regression

This section develops synthetic estimation first for simple regression, then
extends it to multiple regression, and concludes with an outline of further
generalisations.

We consider the problem of predicting the outcome y∗ in response to a
stimulus x∗ given that the stimulus and outcome are related by the simple
regression model

y = β0 + β1x + ε (11.19)

with the usual assumptions of homoscedasticity, independence and normality
of ε. The values of the parameters β0 , β1 and σ2 = var(ε) are not known
and all the information about them is contained in a random sample y =
(y1 , . . . , yn)� of outcomes generated in response to a vector of stimuli x =
(x1 , . . . , xn)�. To avoid the problem becoming trivial, assume that x∗ differs
from the sample mean x = (x1 + · · · + xn)/n and that the values of x are not
all identical. No generality is lost by assuming that x = 0 because a change in
the origin of x can be compensated by a change in the intercept β0 . Denote
by Sx = x2

1 + · · · + x2
n the sum of squares of the x’s.

Predicting y∗ can be regarded as a problem of estimating β0 + β1x
∗, al-

though the meaning of β0 and β1 has to be connected with the assumed model.
Alternatively, y∗ can be regarded as E(y |x = x∗). The obvious predictor of y∗

is β̂0 + β̂1x
∗, where (β̂0 , β̂1) is the ordinary least squares estimator of (β0 , β1).

It may be worth considering the submodel

y = µ + ε

that does not involve x, because the degree of freedom saved may outweigh
the bias that is due to lack of validity of the model. The predictor based on
this model is the sample mean y = (y1 + · · · + yn)/n.

The expressions required for synthetic estimation are

var(ŷ∗) = V = σ2
(

1
n

+
x∗2

Sx

)
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var(y) = V1 =
σ2

n

cov(ŷ∗, y) = C =
σ2

n

E(y) − y∗ = ∆ = −β1x
∗ ,

evaluated assuming the model in (11.19). Hence

b∗ =
σ2x∗2/Sx

σ2x∗2/Sx + β2
1x∗2 =

1
1 + γ2Sx

,

where γ2 = β2
1/σ2 is the squared relative slope. The corresponding MSE is

MSE
{
ŷS(b∗) |x∗} = σ2

(
1
n

+
x∗2γ2

1 + γ2Sx

)
.

As γ2 is not known, and depends on the slope β1 , we seem not to have
resolved much. The form of b∗ suggests that, if we were wedded to the choice
between ŷ∗ and y, an approach superior to model selection might be based
on whether or not γ2, or γ̂2, exceeds 1/Sx . However, the convex combination
of the candidate estimators widens the horizon considerably. In particular, b∗

never vanishes and equals to unity only when the submodel is valid (γ = 0).
In the latter case, ŷ∗ would be genuinely burdened by the degree of freedom
used up for estimating the slope β1 = 0. The optimal coefficient b∗ does not
depend on x∗.

ANOVA can be regarded as a special case of ordinary regression, and so
some of the discussion of the synthetic estimators in Section 11.4 carries over
to simple regression with only minimum changes. Thus, if an incorrect value
γ2

† of γ2 is used the synthetic predictor ŷS† is more efficient than both ŷ∗ and
y, so long as

γ2
†

2 + γ2
†/Sx

< γ2 < 2γ2
† +

1
Sx

. (11.20)

The squared relative slope γ2 can be estimated naively, although the bias of its
numerator β̂2 can be adjusted straightforwardly using the identity E{(β̂1)2} =
E(β̂2

1) − var(β̂1). The drawback of such an adjustment is that it may result
in a negative estimate of β̂2

1 . The bias of 1/σ̂2 can be adjusted for similarly.
Apart from reducing the bias of the elements contributing to b̂∗, it may be
more constructive to weigh the consequences of under- and overestimating b∗.
As in ANOVA, it is preferable to err on the side of smaller b∗, and this can
be arranged by overestimating γ2. The impact of such (or further) reduction
of b∗ can be explored by simulations.

11.5.1 Estimating σ2

The fact that synthetic prediction of y∗ combines the candidate estimators
with the same coefficient b∗ for every value of x∗ is quite unusual. A different
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coefficient is obtained for estimating the residual variance σ2. The single-
model based estimators are the mean residual square, σ̂2

0 = ê�ê/(n − 2),
where ê = y − β̂0 − β̂1x, and σ̂2

1 = ê�
0 ê0/(n − 1), where ê0 = y − y1. It can

reasonably be expected that for moderate to large n the regression-based σ̂2
0

will be preferred because it is hardly worth sacrificing unbiasedness for only
one additional degree of freedom. The ideal synthetic estimator of σ2 is based
on the following identities:

var(σ̂2
0) = V0 =

2σ4

n − 2

var(σ̂2
1) = V =

2σ4

n − 1

cov(σ̂2
0 , σ̂2

0) = C =
2σ4

n − 2

E(σ̂2
1) − σ2 = ∆ =

β2
1Sx

n − 1
.

Hence the optimal coefficient is

b∗ =
2

2 + γ4S2
x(n − 2)/(n − 1)

. (11.21)

For all but very small n, the fraction (n−2)/(n−1) can be ignored. Then b∗ has
the same form as for predicting y∗, with γ2Sx replaced by (γ2Sx)2/2. Thus, the
optimal coefficients for predicting y∗ and estimating σ2 differ substantially.
Figure 11.7 shows this graphically for sample size n = 20. The horizontal
axis is for u = γ2Sx . The vertical axis is cut off at b = 0.5, to improve the
resolution of the plot. The coefficient b∗ for y∗ exceeds its counterpart for
σ2 for u > 2. The two functions, b∗

y∗(u) and b∗
σ2(u) cross at u = 2, that is,

when β2
1 = 2σ2/Sx . So, when the slope β1 is very shallow the submodel is

preferred more for estimating σ2 than for prediction of y∗. However, the weight
given to the submodel for estimating σ2 drops precipitously toward zero with
increasing u, so that, for instance, it is about 0.005, ten times smaller than
its counterpart for y∗, when u = 20.

11.5.2 Several covariates

Suppose first that only two models, A (valid) and its submodel B are consid-
ered, with respective vectors of covariates xA and xB , so that xB is formed by
deleting one or several variables in xA . The respective regression-design ma-
trices are denoted by XA and XB , and their cross-products by SAB = X�

AXB ,
SA = X�

AXA , and the like. Denote by xD the vector of variables included in
model A, but not in B. No generality is lost by assuming that xD comprises
the right-most components of xA , so that xA = (xB , xD), and that xB and
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Figure 11.7. The optimal shrinkage coefficients b∗ for predicting y∗ and for esti-
mating σ2 in simple regression. The curve drawn by dots approximates b∗ in (11.21)
by replacing (n − 2)/(n − 1) with 1.0.
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xD are orthogonal, SBD = 0. Further, we assume that xA are centred; that
is, X�

A1n = (n, 0)�, where n is the sample size.
Let ŷA be the linear predictor of y for a vector of covariates x∗

A = (x∗
B , x∗

D),
based on the (valid) model A, and let ŷB be its counterpart based on model
B; ŷA = x∗

Aβ̂A and ŷB = x∗
Bβ̂B . To avoid trivial cases, we assume that XA is

of full rank and x∗
D �= 0.

The elements required for synthetic estimation are

V = σ2x∗
AS−1

A x∗
A

�

V1 = σ2x∗
BS−1

B x∗
B

�

C = σ2x∗
BS−1

B x∗
B

�

D = −x∗
DβD ,

derived directly from the expressions β̂A = S−1
A X�

Ay and β̂B = S−1
B X�

By, its
equivalent for model B, and realising that SBD = X�

BXD = 0.
The optimal coefficient is

b∗ =

{
1 +

(x∗
DβD)2

σ2x∗
DS−1

D x∗
D

�

}−1

.
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Unlike in the univariate case, b∗ depends on the value of x∗. However, it
depends on x∗ only through the direction of its subvector x∗

D , as x∗
D and cx∗

D
are associated with the same coefficient b∗ for any c �= 0.

For problems with several candidate models, no conceptual difficulties
arise, as the vector P and matrix Q defined in (11.9) require variances, co-
variances and biases, all of them assuming the validity of the ‘super’-model 0,
similar to the case of two candidate models. The vector P and matrix Q have
to be estimated but, apart from σ2, the only uncertainty is about the biases,
linear functions of β, whose squares and cross-products contribute to Q. The
analysis of the synthetic estimator with two candidate models suggests that
overestimation of the variances and underestimation of the covariances in Q
contribute to efficiency, but it is difficult to formulate a general rule about the
extent of such an adjustment that is useful.

In problems with many alternative models, the matrix Q is likely to be
ill-conditioned. This can be interpreted that there are numerous competing
compositions of the single-model based estimators that are close to the ideal
synthetic estimator. As Q is estimated, and the inverse of the estimate used,
the naive (or probably any other) estimator of b̂

∗
is not very efficient, the

advantage of the wide space of compositions is not converted to efficient esti-
mation. The handicap of a narrower space of compositions may be overcome
by more efficient estimation of the elements of Q−1 when Q has smaller di-
mensions.

The balance between casting our ‘modelling net’ too wide and focussing on
too small a set of models is difficult to find and insights by other means than
from simulations are hard to come by. Making sure that the ‘good’ model is not
omitted is essential, but it does not guarantee efficient estimation. In model
selection approaches, this model or its close competitor has to be identified.
In synthetic estimation submodels of the minimal valid model may contribute
to more efficient estimation, but do not necessarily outweigh the influence of
some of its submodels.

11.6 Discussion

An obvious limitation of the synthetic estimator is that a large system of lin-
ear equations, b̂

∗
= Q̂

−1
P̂, has to be solved, with each quantity involved in

P and Q estimated. Thus, ill-conditioning and non-linear transformation of
an estimator may conspire to erode the efficiency of the synthetic estimator.
In contrast, model selection does not encounter such problems because the
selection can be conducted in stages. However, each of these stages is prob-
lematic, and the deficiencies are likely to compound over the stages. Synthetic
estimation can also be conducted in stages. The candidate models are divided
into groups and synthesis is first applied in each group separately. Synthesis
is then applied ‘across’ the groups, by combining the within-group synthetic
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estimators. Some efficiency is lost in the process but synthesis becomes compu-
tationally manageable. If the synthesis within a group is still not manageable,
the models in the group can be sub-divided and synthesis carried out in an-
other stage. While conventional model selection works, in effect, on the same
principle, with choice made between pairs of models, multi-stage synthesis is
more flexible because elementary synthesis can be applied to several models at
a time, limited only by the concerns about robustness and stability of Q̂

−1
. In

other words, multi-stage model selection can be improved by replacing each
model selection step by synthesis, and further improvement is achieved by
reducing the number of stages. The term ‘improvement’ has to be qualified
carefully. Synthesis is not uniformly more efficient than model selection but,
in ordinary regression, it protects inferences from excessive deficiencies. The
estimated conditional sampling variance ŝ2

M underestimates the unconditional
MSE of the selected-model based estimator, and the cause of such dishonesty
is not only the unacknowledged bias of θ̂M .

The synthetic estimator is also biased, and there is no unbiased estimator
of its MSE. The naively estimated MSE of the ideal synthetic estimator un-
derestimates the MSE of the estimator θ̂S(b̂∗), but the underestimation is not
as blatant as with model selection.

Identifying a dataset, together with its context, with a single (minimal
valid) model is an attractive proposition, but it is a poor practice to disregard
models that come in a close second in a contest in which the judging is im-
perfect. Using an estimator or any other form of inference based on the model
that won the contest, even if correctly selected, is not as efficient as generally
perceived because the estimator based on an invalid submodel may be more
efficient. And the combination of the two estimators may be more efficient
still. This suggests that the generally adopted standard of ML estimation
with the appropriate model should be raised to the optimal combination of
the ML estimators for such a model and for (some of) its submodels. The ML
estimator with a valid model is efficient only asymptotically; for finite sam-
ples, submodels can contribute to the efficiency. Reference [163] presents an
example in which a patently inappropriate model, which describes the mod-
elled setting very poorly, is assigned a weight close to unity for estimating a
quantity of interest. Of course, for another quantity, a different combination
of the single-model based estimators is used.

One purpose of model selection is to eliminate unimportant covariates.
Synthetic estimation provides an alternative to hypothesis testing, although it
may appear as rather relunctant to discard any covariates. With synthesis, it is
appropriate to discard a covariate if the coefficient associated with any model
that involves it is very small for the range of inferences (targets) considered.
This requires specifying the range of targets as well as the threshold b◦ for
which any model with coefficient | b̂∗ | < b◦ would be regarded as redundant.
(In principle, the coefficient b∗ may be negative.) A more rigorous criterion
may be that, if all models that involve the covariate in question are discarded,
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the MSE of the synthetic estimator is increased by not more than a given
threshold for every target. Of course, it is not advisable to propose a threshold
that would be suitable as a convention, similar to the 5% level of significance
in hypothesis testing.

Nuisance parameters are quantities that are not involved in the target of
estimation, but the estimator of the target and its distribution depend on their
values. Handling nuisance parameters is an issue related to model selection.
Should the target be estimated using the estimated values of the nuisance
parameters, or should a default value, such as 0, be assumed for them? The
latter option is attractive because the reduced model it implies is associated
with greater efficiency if the reduction is appropriate. Synthetic estimation
arbitrates between these two extreme positions, and moves the problem from
the dichotomy to a continuum, searching for the best combination of the
alternative single-model based estimators.

11.7 Other applications of synthesis

Synthesis is applicable generally, whenever there is a set of alternative esti-
mators of a target. Simply, instead of choosing one of them, aiming to match
the efficiency of the most efficient of them, the estimators are combined; the
combination may be more efficient than either of the candidate estimators.

11.7.1 Meta-analysis

In meta-analysis, studies k = 1, . . . , K are conducted, each yielding an un-
biased estimator θ̂k , and its associated estimated sampling variance ŝ2

k . The
studies aim to estimate the same quantity θ, such as a treatment effect that
applies universally to all the (human) subjects suffering from a particular
condition. As a consequence of the study-specific settings, conventions, mea-
surement and assessment instruments, and the like, the estimators θ̂k are
not unbiased for θ, although they are unbiased for the context specific to
study k. For example, the studies may be conducted in different countries,
different years, recruiting subjects through different agents or channels, and
using slightly different protocols. The estimators based on most studies have
sampling variances that are too large for a particular purpose, so pooling in-
formation across the studies is necessary. Also, it would be a waste not to
take advantage of all the studies, since they relate to the same set of treat-
ments and the biases for settings different from any specific study are at most
moderate.

Standard approaches to meta-analysis estimate θ assuming that the study-
specific parameters are a random sample from a distribution centred around
θ. An alternative viewpoint accepts that there is no universal treatment ef-
fect θ and defines a target θ∗ that applies for a specific setting used by
one of the studies, k∗, so that it is estimated without bias by θ̂k∗ . The
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other studies estimate this target with bias, but they can nevertheless con-
tribute to estimating θk∗ . No estimates of the biases are available, but they
are known not to be very large. In fact, the between-study variance of θk ,
k = 1, . . . , K, can be estimated, in analogy with small-area estimation. A
conservative application of synthesis bases coefficients b̂ in the synthetic es-
timator θ̂S

k∗ = (1 − b+)θ̂k∗ + b̂θ̂−k∗ on an overestimate of the (squared) bias
for each study. The squared bias can be replaced by the estimated study-level
variance, or by its suitable overestimate. The resulting estimator combines the
unbiased estimator with ‘full’ weight, reflecting its (estimated) sampling vari-
ance, and the other estimators with reduced weights, corresponding to their
sampling variances inflated by a factor. Extensions of this approach impose
a structure on the studies; some are closer to the context of the target, so
the inflation factor for them is smaller than for studies with a more distant
context. Such an approach can incorporate expert judgement; as it is subjec-
tive, it is essential to accompany it with a sensitivity analysis exploring some
deviations from the adopted way of setting the coefficients b.

11.7.2 Multiple sources and prior information

A typical setting with several estimators of the same quantity arises when
several, say K + 1, studies are conducted independently, so that their es-
timators θ̂k , k = 0, . . . , K, of the same target θ are mutually independent.
Meta-analysis can be regarded as their special case. Suppose the estimator for
the study that is assigned index 0 has no bias. One of the estimators θ̂k has to
be unbiased, or have a known bias, otherwise the problem of estimating θ is
ill-posed. When all the estimators are unbiased, synthesis yields the estimator
that combines the single-study estimators with coefficients that reflect their
relative precisions. To show this, we evaluate the vector of ideal coefficients
b∗, given that the vector of covariances C vanishes:

b∗ =
(
V + V011�)−1

1V0 ,

where V is the (diagonal) sampling variance matrix of the estimators θ̂ =
(θ̂1 , . . . , θ̂K)�. The inverse of the matrix can be expressed as(

V + V011�)−1
= V−1 − V−1 V0

1 + 1�V−11V0
11�V−1 ,

and hence

b∗ =
(
I − V−1 V0

1 + 1�V−11V0
11�

)
V−11V0

=
1

1/V0 + 1�V−11
V−11 .

The result now follows by realising that V−11 is the vector of the precisions
(reciprocals of the variances) of the single-study estimators (with study 0



11.7 Other applications of synthesis 333

omitted), and 1�V−11 is their total. If another study is completed and its data
becomes available, the synthesis need not be conducted for the K + 2 studies
because the combination is identical to the synthesis of the estimator based
on studies 0, . . . , K combined with the new study K + 1. Such an updating
would be suboptimal if the estimators were correlated.

The task of incorporating prior information in Bayesian analysis is a spe-
cial case of such an updating. The prior information about θ is expressed in
the form of a prior distribution θ0 and data from a study (source) is used to
update it and obtain the posterior distribution of θ. Without the Bayesian
perspective and computational machinery, this task can be regarded as syn-
thesis of the prior (old-data) and new (current-study) estimators of θ. With
synthesis, we operate only with the first two moments (means and variances)
of the estimators, so all evaluations are much simpler and require no input
about the shapes and types of the distributions involved. In contrast, Bayes
methods are much more involved, but their outcome is the posterior distribu-
tion of θ, a much more detailed and complete inferential statement, although
the detail is sometimes difficult digest and interpret.

11.7.3 Secondary outcomes and auxiliary information

Studies designed to estimate a target θ, based on a variable y, often record
several other variables x that are intended for other analyses, or to support
the evidence obtained about the value of θ. They are referred to as secondary
variables (or outcomes), and y as primary. Usually, the estimator based on
y is treated formally and the estimators based on the secondary variables
informally, leaving the interpretation largely to the client. The roles of the
variables in x can be formalised by agreeing on the largest plausible bias asso-
ciated with each variable and combining the single-variable based estimators,
assuming these biases. The impact of the assumptions about the biases can
be explored by sensitivity analysis.

This problem can be formulated also as estimating one component of the
vector θ, say w�θ, where w = (1, 0, . . . , 0)�. Apart from the obvious, estimat-
ing w�θ by w�θ̂, other convex combinations u�θ̂ may be considered. This
may be useful when the components of θ̂ are highly correlated. For example,
θ̂2 may contribute to estimating θ1 when var(θ̂2) is much smaller than var(θ̂1),
the two estimators are highly correlated, and the underlying quantities θ1 and
θ2 differ insubstantially. In practice, a single realisation of θ̂ cannot inform us
about this, and so synthesis is not useful. When some external information
is available, the auxiliary estimators in θ̂ can be exploited, although the co-
variances and biases required for the synthesis are only estimated. Drawing
parallels with multivariate shrinkage estimation for small areas is left as an
exercise.
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11.8 Suggested reading

The deficiency of ignoring model uncertainty is highlighted by [26] and [50].
However lucid and eloquent they may have been, much of the current sta-
tistical practice is firmly wedded to the idea of selecting one model — to
find the best model, [137] and [122]. ANOVA is the most elementary example
of this, familiar to most of us from university lectures and textbooks. The
likelihood ratio is probably the most popular criterion used for model selec-
tion. The Akaike information criterion (AIC), the Bayes information criterion
(BIC), [283], and Mallows’ Cp , [176], are attempts to ‘correct’ some of its
deficiencies. Reference [288], among others, shows that they come way short.

Although model selection is a quintessentially small-scale data problem
(asymptotically, any model-related question is resolved correctly with high
probability), there is scope for studying asymptotic properties of model selec-
tion procedures, [265] and [255].

Bayes factors is the subject of [123], [216] and [104] in the (original)
Bayesian perspective and [103] formulate Bayes factors for the frequentist.
The method described in this chapter was originally proposed by [163], ex-
pressing the ‘heretical’ view that bad (poorly fitting) models may be useful
for estimation or prediction, and documenting it on an example.

The term and subject of meta-analysis were greatly promoted by [98]. It
is the methodological staple of the systematic reviews, [280]. Publication bias
is a term for the poor representation of the studies reported in the literature
among all the conducted studies; [35] describes a sensitivity analysis that
protects the inferences from this problem. A Bayesian method for pooling
information across two samples is described in [54]. An open and unaddressed
problem is how to deal with the fact that the collection of studies in a meta-
analysis does not have a sampling design (even if every study did have one),
and so the population of contexts may not be represented well among them.

11.9 Exercises

1. Generate a set of about n = 50 outcomes from a simple regression model
(11.1) with the (non-constant) values of x specified in some simple way,
such as c, 2c, . . . , nc, and residual variance σ2 = 1. Apply your favourite
criterion for selecting between the models in (11.1) and (11.2). Replicate
this exercise (with the same set of values of x) 1000 times and count the
number of times each model is selected. Conduct a similar exercise with an
(automatic) diagnostic procedure. Find, by trial and error, a regression
slope β1 for which either model is selected about the same number of
times. Comment on the fallibility of both of these procedures.

2. Relate the mean and variance of the mixture θ̂M in (11.3) to the means
and variances of the single-model based estimators θ̂0 , . . . , θ̂M when the
selection M is independent of these estimators.
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Hint: Express the moments of θ̂M in terms of the conditional moments of
θ̂M given M.

3. Describe and implement the EM algorithm for fitting a mixture of two
(univariate or multivariate) normal distributions. For help, consult [44] or
[184].

4. Review the theoretical results about the efficiency of the ML estimators
(see, e.g., [37]) and relate them to how they are used (by yourself and
others) in practice.

5. Replicate the example described in Section 11.1.2, not necessarily with
the same values of the parameters and sample sizes. Use your favourite
model selection criterion.

6. Prove the rules for matrix differentiation of a quadratic form, used in
(11.10). Consult [173] if necessary.

7. Discuss the traditional way of using the (one-way) ANOVA table for a
severely unbalanced design and assess the drawbacks of estimating the
means of groups represented by the largest and smallest samples. Gen-
eralise the results about the ideal synthetic estimator for the ANOVA
setting in Section 11.4 to unbalanced designs. Derive the corresponding
minimax estimator (Section 11.4.1).

8. Compare the ideal shrinkage coefficients bµ1 and bσ2 , either graphically
for a range of settings, or analytically as far as it is possible.

9. Prove the inequalities in (11.20) and discuss them in the context of a
simple regression problem (real or simulated) of your choice. Explore the
MSE of prediction, for a given value of x, as a function of an incorrect
value of ω.

10. Derive the ideal synthetic estimator that minimises a criterion for effi-
ciency different from the MSE. For example, if efficiency is defined by
small var(θ̂) + r{E(θ̂ − θ)2}, greater emphasis is placed on bias reduction
when r > 1. Show that the coefficient b associated with a biased estimator
is a decreasing function of r. Consider the limit r → +∞, and compare
the limiting synthetic estimator with the preference for estimators based
on valid models.

11. Consider the setting with K + 1 studies yielding mutually independent
estimators θ̂k , k = 0, 1, . . . , K, of the same target θ. Let their sampling
variances be vk and suppose θ̂0 is unbiased. Suppose further that the bias
of each θ̂k does not exceed a positive value ∆k . Show that the MSE of
the synthetic estimator, that is based on the assumption that the biases
are equal to ∆k , is an increasing function of the bias of each estimator
θ̂k , and derive the loss of efficiency due to not knowing the biases.
Hint: Define the ratios rk of the bias of θ̂k and the largest plausible bias
∆k .
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matrix, 204
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estimator, 82, 152, 247
ideal, 247
univariate, 221

matrix, 217
multivariate, 221, 262



Index 357

similarity, 144
small area, 143
stratification, 30, 90

more detailed, 30
subject-level model, 180
sufficient statistics, 53

minimal, 53
superpopulation, 268
synthetic estimator, 208, 313

ideal, 314

target, 4
variable, 181

Taylor expansion, 135, 253
transition probability, 83
two-level

GLM, 202
model, 177, 180, 195, 203, 208

UK Labour Force Survey (LFS), 41, 97,
257
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