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Voor mijn lieve Tonneke



Foreword

Over my nearly forty years of teaching and conducting research in the
field of psychometric methods, I have seen a number of major technical
advances that respond to pressing educational and psychological measure-
ment problems. The development of criterion-referenced assessment was the
first, beginning in the late 1960s with the important work of Robert Glaser
and Jim Popham, in response to the need for assessments that considered
candidate performance in relation to a well-defined body of knowledge
and skills rather than in relation to a norm group. The development of
criterion-referenced testing methodology with a focus on decision-theoretic
concepts and methods, content validity, standard-setting, and the recogni-
tion of the merits of both criterion-norm-referenced and criterion-referenced
assessments has tremendously influenced current test theory and testing .

The second major advance was the introduction of item response-theory
(IRT) and associated models and their applications to replace classical
test theory (CTT) and related practices. Beginning slowly in the 1940s
and 1950s with the pioneering work of Frederic Lord, Allan Birnbaum, and
Georg Rasch, by the 1970s the measurement journals were full of important
research studies describing new IRT models, technical advances in model
parameter estimation and model fit, and research on applications of IRT
models to equating, test development, the detection of potentially biased
test items, and adaptive testing. The overall goal has been to improve and
expand measurement practices by overcoming several shortcomings of clas-
sical test theory: dependence of test-item statistics and reliability estimates
on examinee samples, dependence of examinee true score estimates on the
particular choices of test items, and the limitation in CTT of modeling ex-
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aminee performance at the test level rather than at the item level. The last
two shortcomings are especially problematic for adaptive testing, where it
is important to be able to assess ability independently of particular test
items and closely link item statistics to examinee ability or proficiency for
the optimal selection of test items to shorten testing time and improve mea-
surement precision on a per item basis. Today, the teaching of item-response
theory is common in graduate training programs in psychometric methods,
and IRT models and applications dominate the field of assessment.

The third major advance was the transition of testing practices from
the administration of tests via paper and pencil to administration via the
computer. This transition, which began in the late 1970s in the United
States with considerable research funding from the armed services and with
the leadership of such important scholars as Frederic Lord, Mark Reckase,
Howard Wainer, and David Weiss, is widespread, with hundreds of cre-
dentialing exams (e.g., the Uniform Certified Public Accountancy Exams,
the nursing exams, and securities industry exams in the United States),
admissions tests (e.g., the Graduate Record Exam, the Graduate Manage-
ment Admissions Test, and the Test of English as a Foreign Language), and
achievement tests (e.g., high-school graduation tests in Virginia) being ad-
ministered to candidates via computers, with more tests being added every
month. The computer has added flexibility (with many testing programs,
candidates can now take tests when they feel they are ready or when they
need to take the tests), immediate scoring capabilities (thus removing what
can often be months of waiting time for candidates), and the capability of
assessing knowledge and skills that could not be easily assessed with paper-
and-pencil tests. On this latter point, higher-level thinking skills, complex
problem-solving, conducting research using reference materials, and much
more are now being included in assessments because of the power of the
computer.

Assessing candidates at a computer is becoming routine, and now a
number of very important lines of research have been initiated. Research
on automated scoring of constructed responses will ensure that computer-
based testing can include the free-response test-item format, and thus the
construct validity of many assessments will be enhanced. Research on auto-
mated item generation represents the next stage in test-item development
and should expedite item writing, expand item pools, and lower the costs of
item development. Automated item generation also responds to one of the
main threats to the validity of computer-based testing with flexible candi-
date scheduling, and that is the overexposure of test items. With more test
items available, the problem of overexposure of test items will be reduced.

Perhaps the most researched aspect of computer-based testing concerns
the choice of test design. Initially, the focus was on fully adaptive tests.
How should the first test item be selected? How should the second and third
items and so on, be selected? When should testing be discontinued? How
should ability or proficiency following the administration of each item be
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estimated? Other test designs have been studied, too: multistage computer-
based test designs (instead of selecting one optimal item after another, a
block of test items, sometimes called “testlets” or “modules” are selected
in some optimal fashion), and linear on-the-fly test designs (random or
adaptive selection of tests subject to a variety of content and statistical
constraints). Even the conventional linear test has been popular with one
of a number of parallel forms being selected at random for administration to
a candidate at a computer. But when computer-based testing research was
initiated in the late 1970s, aptitude testing was the focus (e.g., the Armed
Services Vocational Aptitude Battery), and detailed content-validity con-
siderations were not a central concern. As the focus shifted to the study of
computer-based achievement tests and credentialing exams (i.e., criterion-
referenced tests) and the use of test scores became more important (e.g.,
credentialing exams are used to determine who is qualified to obtain a
license or certificate to practice in a profession), content considerations be-
came absolutely central to test defensibility and validity, and balancing
tests from one examinee to the next for the length of item stems, the bal-
ance of constructed and selected response items, minimizing the overuse of
test items, meeting detailed content specifications, building tests to match
target information functions, and more, considerably more sophisticated
methods for item selection were needed. It was in this computer-based
testing environment that automated test assembly was born.

I have probably known about automated test assembly since 1983 (Wendy
Yen wrote about it in one of her many papers), but the first paper I recall
reading that was dedicated to the topic, and it is a classic in the psy-
chometric methods field today, was the paper by Professor Wim van der
Linden and Ellen Boekkooi-Timminga published in Psychometrika in 1989.
In this paper, the authors introduced the concepts underlying automated
test assembly and provided some very useful examples. I was fascinated
that just about any content and statistical criteria that a test developer
might want to impose on a test could be specified by them in the form
of linear (in)equalities. Also, a test developer could choose an “objective
function” to serve as the goal for test development. With a goal for test
development reflected in an “objective function,” such as with respect to
a target test-information function (and perhaps even several goals), and
both content and statistical specifications described in the form of linear
constraints, the computer could find a set of test items that maximally
met the needs of the test developer. What a breakthrough! I might add
that initially there was concern by some test developers that they might
be losing control of their tests, but later it became clear that the computer
could be used to produce, when desired, first drafts of tests that could then
be reviewed and revised by committees.

The 1989 van der Linden and Boekkooi-Timminga paper was the first
that I recall that brought together three immensely important technologies,
two that I have already highlighted as major advances in the psychometric
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methods field—item-response theory and the use of the computer—and also
operations research. But what impresses me today is that automated test
assembly impacts or capitalizes on all of the major advances in the last 40
years of my career: criterion-referenced and norm-referenced assessments,
item-response theory, computer-based testing, and new computer-based
test designs, as well as emerging new assessment formats.

By 2004, I had accumulated a hundred papers (and probably more) on
the topic. Most are by Professor Wim van der Linden and his colleagues
in the Netherlands, but many other researchers have joined in and are
producing important work and advancing the field. These papers overflow
my files on item-response theory, test design, computerized adaptive test-
ing, item selection, item-bank inventory, item-exposure controls, and many
more topics. My filing system today is simply not capable of organizing and
sequencing all of the contributions on the topic of automated test assembly
since 1989, and I have lost track of the many lines of research, the most im-
portant advances, and so on. Perhaps if I were closely working in the field,
the lines of research would be clearer to me, but like many measurement
specialists, I have a number of research interests, and it is not possible to-
day to be fully conversant with all of them. But from a distance, it was clear
to me that automated test assembly, or optimal test design, or automated
test construction, all terms that I have seen used in the field, was going to
provide the next generation of test-design methods—interestingly whether
or not a test was actually going to be administered at a computer! Now,
with one book, van der Linden’s Linear Models for Optimal Test Design,
order in my world has been restored with respect to this immensely impor-
tant topic, and future generations of assessment specialists and researchers
will benefit from Professor Wim van der Linden’s technical advances and
succinct writing skills.

I believe Linear Models for Optimal Test Design should be required
reading for anyone seriously interested in the psychometric methods field.
Computers have brought about major changes in the way we think about
tests, construct tests, administer tests, and report scores. Professor van der
Linden has written a book that organizes, clarifies, and expands what is
known about test design for the next generation of tests, and test design is
the base or centerpiece for all future testing. He has done a superb job of
organizing and synthesizing the topic of automated test assembly for read-
ers, providing a step-by-step introduction to the topic, and offering lots of
examples to support the relevant theory and practices. The field is much
richer for Professor van der Linden’s contribution, and I expect this book
will both improve the practice of test development in the future and spur
others to carry out additional research.

Ronald K. Hambleton
University of Massachusetts at Amherst
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The publication of Spearman’s paper “The proof and measurement of as-
sociation between two things” in the American Journal of Psychology in
1904 was the very tentative start of a new field now known as test theory.
This book appears almost exactly a century later. During this period, test
theory has developed from a timid fledgling to a mature discipline, with
numerous results that nowadays support item and test analysis and test
scoring at nearly every testing organization around the world.

This preface is not an appropriate place to evaluate a hundred years of
test theory. But two observations may help me to explain my motives for
writing this book. The first is that test theory has developed by careful
modeling of response processes on test items and by using sophisticated
statistical tools for estimating model parameters and evaluating model fit.
In doing so, it has reached a current level of perfection that no one ever
thought possible, say, two or three decades ago. Second, in spite of its
enormous progress, although test theory is omnipresent, its results are used
in a peculiar way. Any outsider entering the testing industry would expect
to find a spin-off in the form of a well-developed technology that enables
us to engineer tests rigorously to our specifications. Instead, test theory is
mainly used for post hoc quality control, to weed out unsuccessful items,
sometimes after they have been pretested, but sometimes after they have
already been in operational use. Apparently, our primary mode of operation
is not to create good tests, but only to prevent bad tests. To draw a parallel
with the natural sciences, it seems as if testing has led to the development
of a new science, but the spin-off in the form of a technology for engineering
the test has not yet been realized.
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Part of the explanation for our lack of technology may be a deeply in-
grained belief among some in the industry that test items are unique and
that test development should be treated as an art rather than a technol-
ogy. I certainly believe that test items are unique. In fact, I even hope they
will remain so; testing would suffer from serious security problems if they
ceased to be so. Also, as a friend of the arts, I am sensitive to the aesthetic
dimension of human artifacts. The point is, however, that these qualities
do not relieve testing professionals of their duty to develop a technology.
To draw another parallel, architecture has a deep artistic quality to it, and
good architects are true artists. But if they were to give up their technology,
we would have no place to live or work.

The use of design principles is an essential difference between technology-
based approaches and the approaches with post hoc quality control hinted
at above. Another difference is the use of techniques to guarantee that
products will operate according to our specifications. These principles and
techniques are to be used in a process that goes through four different
stages: (1) establishing a set of specifications for the new testing program,
(2) designing an item pool to support the program, (3) developing the item
pool, and (4) assembling tests from the pool to meet the specifications.
Although it is essential that the first stage be completed before the others
are, the three other stages are more continuous and are typically planned
to optimize the use of the resources in the testing organization. But it is
important to distinguish between them because each involves the use of
different principles and techniques.

At a slightly more formal level, test design is not unique at all; some of
its stages have much in common with entirely different areas, where pro-
fessionals also develop products, have certain goals in mind, struggle with
constraints, and want optimal results. In fact, in this book I borrow heavily
from the techniques of linear programming, widely used in industry, busi-
ness, and commerce to optimize processes and products. These techniques
have been around for a long time, and to implement them, we can resort to
commercial computer software not yet discovered by the testing industry.
In a sense, this book does not offer anything new. Then, to demonstrate
the techniques’s applicability, we had to reconceptualize the process of test
design, introduce a new language to deal with it, integrate the treatment
of content and statistical requirements for tests, and formulate typical test-
design goals and requirements as simple linear models. More importantly,
we also had to demonstrate the power and nearly universal applicability
of these models through a wide range of empirical examples dealing with
several test-design problems.

Although the topic of this book is test design, the term is somewhat
ambiguous. The only stage in the design process at which something is
actually designed is the second stage, item-pool design. From that point on,
the production of a test only involves its assembly to certain specifications
from a given item pool. The stages of item-pool design and test assembly
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can be based on the same techniques from linear programming. But these
techniques are much more easily understood as tools of test assembly, and
for didactic reasons, I first treat the problem of test assembly and return
to the problem of item-pool design as one of the last topics in this book.

In particular, the book is organized as follows. Chapter 1 introduces
the current practice of test development and explains some elementary
concepts from test theory, such as reliability and validity, and item and
test information. Chapter 2 introduces a standard language for formulat-
ing test specifications. In Chapter 3, I show how this language can be used
to model test assembly problems as simple linear models. Chapter 4 dis-
cusses general approaches available in mathematical programming, more
specifically integer or combinatorial programming, to solve these models.
A variety of empirical examples of the applications of the techniques to
test-assembly problems, including such problems as IRT-based and clas-
sical test assembly, assembling multiple test forms, assembling tests with
item sets, multidimensional test assembly, and adaptive test assembly, are
presented in Chapters 5–9. The topic of item-pool design for programs with
fixed and adaptive tests is treated in Chapter 10 and 11, respectively. The
book concludes with a few more reflective observations on the topic of test
design.

My goal has been to write a book that will become a helpful resource on
the desk of any test specialist. Therefore, I have done my utmost to keep
the level of technical sophistication in this book at a minimum. Instead,
I emphasize such aspects as problem analysis, nature of assumptions, and
applicability of results. In principle, the mathematical knowledge required
to understand this book comprises linear equalities and inequalities from
high-school algebra and a familiarity with set theory notation. The few
formulas from test theory used in this book are discussed in Chapter 1.
In addition, a few concepts from linear programming that are required to
understand our modeling approaches are reviewed in Appendix 1. Never-
theless, Chapter 4 had to be somewhat more technical because it deals with
methods for solving optimization problems. Readers with no previous ex-
perience with this material may find the brief introductions to the various
algorithms and heuristics in this chapter abstract. If they have no affin-
ity for the subject, they should read this chapter only cursorily, skipping
the details they do not understand. They can do so without losing any-
thing needed to understand the rest of the book. Also, it is my experience
that the subject of multidimensional test assembly in Chapter 8 and, for
that matter, the extension of adaptive test assembly to a multidimensional
item pool in the last sections of Chapter 9, is more difficult to understand,
mainly because the generalization of the notion of information in a unidi-
mensional test to the case of multidimensionality is not entirely intuitive.
Readers with no interest in this subject can skip this portion of the book
and go directly to Chapter 10, where we begin our treatment of the subject
of item-pool design.
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Although this book presents principles and techniques that can be used
in the three stages of test specification, item-pool design, and test assembly,
the stage of item-pool development is hardly touched. The steps of item
pretesting and calibration executed in this stage are treated well in several
other books and papers (e.g., Hambleton & Swaminathan, 1985; Lord, 1980;
Lord & Novick, 1968), and it is not necessary to repeat this material here.
As for the preceding step of writing items for a pool, I do go as far as to
show how blueprints for items can be calculated at the level of specific item
writers and offer suggestions on how to manage the item-writing process
(Chapter 10). But I do not deal with the actual process of item writing.
Current item-writing practices are challenged by rapid developments in
techniques for algorithmic item writing (e.g., Irvine & Kyllonen, 2002). I
find these developments, which are in the same spirit as the “engineering
approach” to test design advocated in this book, most promising, and I
hope that, before too long, the two technologies will meet and integrate.
This integration would reserve the intellectually more challenging parts of
test design for our test specialists and allow them to assign their more
boring daily operations to computer algorithms.

Several of the themes in this book were addressed in earlier research
projects at the Department of Research Methodology, Measurement, and
Data Analysis at the University of Twente. Over a period of more than
15 years, I have had the privilege of supervising dissertations on problems
in test assembly and item-pool design by Jos J. Adema, Ellen Timminga,
Bernard P. Veldkamp, and, currently, Adelaide Ariel. Their cooperation,
creativity, and technical skills have been greatly appreciated. Special men-
tion is deserved by Wim M.M. Tielen, who as a software specialist has
provided continuous support in numerous test-assembly projects.

The majority of the research projects in this book were done with finan-
cial support from the Law School Admissions Council (LSAC), Newtown,
Pennsylvania. Its continuous belief in what I have been doing has been an
important stimulus to me, for which I am much indebted to Peter J. Pash-
ley, Lynda M. Reese, Stephen T. Schreiber, and Philip D. Shelton. My main
contact with the test specialists at the LSAC was Stephen E. Luebke, who
provided all of the information about the item pools and test specifications
that I needed for the projects in this book.

This book was written while I was a Fellow of the Center for Advanced
Study in the Behavioral Sciences, Stanford, California. My fellowship was
supported by a grant to the Center from the Spencer Foundation, for which
I am most grateful. The tranquil location of the Center, on the top of a hill
just above the Stanford campus, and the possession of a study overlook-
ing a beautiful portion of the Santa Cruz Mountains, enabled me to view
things in a wide perspective. I thank Doug McAdam, Director, and Mark
Turner, Associate Director, as well as their entire staff, for their outstand-
ing support during my fellowship. I am indebted to Kathleen Much for her
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editorial comments on a portion of this book as well as on several other
papers I wrote while at the Center.

Seven chapters of this book were tried out in a course on advanced top-
ics in educational measurement at Michigan State University by Mark D.
Reckase. His critical comments and those of his students led to many im-
provements in the original text. Bernard P. Veldkamp read several earlier
versions of the manuscript and checked all exercises, while Adelaide Ariel
went far beyond her call of duty with her help with the preparation of the
graphs in this book. I am also grateful to Krista Breithaupt, Simon Buss-
man, Britta Colver, Alexander Freund, Heiko Grossman, Donovan Hare,
Heinz Holling and Tobias Kuhn, whose comments helped me tremendously
to polish the final version of the manuscript. The last chapter was completed
while I enjoyed a fellowship from the Invitational Fellowship Program for
Research in Japan at the University of Tokyo. I am indebted to the Japan
Society for the Promotion of Science (JSPS) for the fellowship and to Kazuo
Shigemasu for having been such a charming host.

Last but not least, I would like to thank John Kimmel, Executive Editor,
Statistics, at Springer for being a quick and helpful source of information
during the production of this book.

Each of the people whose support I acknowledge here have made my task
as an author much more pleasant than I anticipated when I began working
on the book.

Wim J. van der Linden
University of Twente
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1
Brief History of Test Theory and
Design

Standardized testing was common practice in some ancient cultures long
before western civilization developed—a well-known example is nationwide
testing for civil service in ancient China. But we had to wait until the early
twentieth century before it was introduced in western psychology. In 1905,
Binet and Simon developed their intelligence test to identify students with
mental retardation in Paris schools (Binet & Simon, 1905). Remarkably,
this test already had most of the features characteristic of modern adaptive
testing. The test was meant for individualized administration with a human
proctor who scored the students during the test and selected the items.
Standardization was obtained through the use of the same item pool and
the application of the same detailed rules of item selection and scoring for
all test takers.

The idea of standardized testing was extended from individualized test-
ing to group-based, paper-and-pencil testing later in the twentieth century.
The main stimuli for this transition were the necessities of placing large
numbers of conscripts in the U.S. army during World Wars I and II and
of fair admission methods to regulate the huge increase in student inflow
into higher education in the second half of the twentieth century. These de-
velopments led to the large-scale use of multiple-choice tests—the ultimate
format with objective, machine-based scoring of the test takers’ responses
to the test items.

In the early 1970s, a different type of testing emerged, first exclusively
in education but later also in psychology. This new development was moti-
vated by attempts to improve student learning in schools through frequent
feedback on their achievements by tests embedded in the instruction. The
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first idea was to offer students self-paced routes through series of small in-
structional modules, each finishing with a mastery test. Later, this idea was
extended with choices between alternative modes of learning and students
working more freely on series of assignments. A natural consequence of this
development for individualized instruction was the need for item banking to
support testing on demand (also referred to as “walk-in testing”). As a re-
sult, the earlier notion of a standardized test as the same paper-and-pencil
form for each test taker evolved into the idea of testing from item pools
defined by extensive lists of specifications and algorithmic item writing and
test assembly. The advent of cheap personal computers with plentiful com-
putational power in the early 1990s stimulated these changes enormously.
When a few years later the technology of item banking and individualized
testing matured and eventually led to the large-scale introduction of com-
puterized adaptive testing in education, it began to find applications in
psychological testing as well.

It is remarkable how these developments have their parallels in two dif-
ferent periods in the history of testing. The first period covers the first
half of the twentieth century, when classical test theory (CTT) was devel-
oped. This theory mainly supports standardized testing with a group-based
paper-and-pencil test for a fixed population of test takers. In the 1950s,
ideas for a new test theory were explored and a second period began,
in which item-response theory (IRT) was developed. It received its first
comprehensive formalization in the late 1960s, a more thorough statistical
treatment in the 1970s–1980s, and began to be applied widely in the 1990s.
As a matter of fact, it is still in the process of being extended, particularly
into the direction of models for more complicated response formats, mod-
els with more comprehensive parameterization (for instance, to deal with
background variables of the test takers, sophisticated sampling designs, and
multidimensional abilities), and models for response times. The introduc-
tion of IRT has been critical to the development of the new technology of
item banking and individualized testing. Also, IRT allows for item formats
that are closer to the current instructional requirements and relies heav-
ily on the (real-time) use of the computational power provided by modern
computers.

In the next sections of this chapter, we review these two stages in some-
what more detail and introduce the basic concepts in test development and
test theory on which this book relies.

1.1 Classical Test Design

1.1.1 Standardized Testing in Psychology
Classical test design has been strongly dominated by the idea of a stan-
dardized test developed in psychology. Psychological tests are typically
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produced as an encore to a development in psychological theory. The re-
sult of such a development is a theoretical network around one or more
new constructs, for example, certain special abilities, personality traits, or
psychodiagnostic dimensions. Test development begins if more systematic
empirical research is needed to test hypotheses on these constructs against
empirical reality.

As a result, psychological tests are seldom developed by test specialists
but mostly by psychologists familiar with the research on the constructs for
which they are to be used as a measurement instrument. These researchers
use their knowledge to design the tasks or items in the test and to choose
the rules for scoring them. Usually, the items are written together as a set
that is assumed to cover the construct best. Typically this set is somewhat
larger than actually needed, to allow for a possible failure of some of the
items during pretesting.

This developmental process can be characterized as a one-shot approach
based on the best theories and insights available at the time. New items are
written and tried out only if a new version of the test has to be developed,
which happens if new insights and progress in psychological theory make
the current version obsolete. The same psychological test can be easily used
for over a decade before the need for a subsequent version is felt.

Empirical pretesting of items usually serves a threefold purpose. First, it
allows for a screening of estimates of the item parameters and the possible
removal of items with estimates suggesting undesirable behavior. The pa-
rameters used in a classical item analysis are briefly reviewed in the next
section. Second, predictions following from the theory underlying the con-
structs are confronted with empirical data. These predictions may be on
the correlational structure of the test scores with other measures in the
study (for example, in a multitrait-multimethod study) or on differences
between the score distributions of certain groups of persons. The results
from this part of the study are used both to test the psychological theory
and validate the test. Third, the test is normed for its intended population
of persons. This part of the tryout involves extensive sampling of the pop-
ulation and the estimation of a norm table for it. If a new version of an
existing test is pretested, the data are used for score equating. The goal
then is to estimate the transformation that maps the score scale of the
new version of the test to the scale of the old version. This transformation
generates the same norm table for both versions. To the knowledge of the
author, the first large-scale study with this type of score equating ever was
for the new version of Wechsler-Bellevue Intelligence Scale in 1939.

This process of development of a standardized test has a more than
superficial relation with CTT. In the next section, we review a few basic
concepts from CTT. These concepts will be used later in this book and will
also help us to discuss the close relation between test theory and design in
a subsequent section.
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1.1.2 Classical Test Theory
The core of classical test theory (CTT) is a two-level model that decom-
poses the observed test scores into so-called true scores and errors. The
presence of two levels in the model is due to the fact that CTT addresses
both the case of a fixed test taker and a random person sampled from a
population. At either level, the test is considered as fixed; for instance, the
case of testing with random samples of items is not addressed.

Fixed Person
Let Xjt be the observed score of fixed person j on test t. A basic assumption
in CTT is that this observed score, which can be any quantity defined on the
item scores of the person, is a random variable. The assumption reflects the
belief that if we replicated the test several times, a distribution of outcomes
would be observed. This experiment can actually be done for tests of stable
physical abilities, for which memory and learning do not play a role, but
is hypothetical for the more mental and cognitive abilities. Although Xjt is
random, the shape of its distribution is unknown. In fact, the goal of test
theory is to provide models that help us make inferences of the properties
of this distribution from actual observed scores of the person.

Observed score Xjt can be used to define two new quantities:

τjt = EXjt, (1.1)

Ejt = Xjt − τjt. (1.2)

The first quantity is the true score for person j on test t, τjt, which is de-
fined as the expected value or mean of the observed-score distribution. The
second is the error in the observed score, Ejt, which is defined as the differ-
ence between the person’s observed score and true score. Both definitions
are motivated by practical considerations only; if we have to summarize
the distribution of the observed score by a single fixed parameter, and the
distribution is not known to be skewed, it makes sense to choose its mean,
and if an actual observation of Xjt is used to estimate this mean, we make
an error equal to Ejt.

The definitions in (1.1) and (1.2) imply the following model for the score
of a fixed person:

Xjt = τjt + Ejt. (1.3)

This model is nothing but a convenient summary of the preceding introduc-
tion. The only assumption underlying it is the randomness of the observed
score Xjt; the fact that the true score and error are combined additively
does not involve anything new above or beyond the definition of these two
quantities.
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Random Person
If the persons are sampled randomly from a population, the true score
also becomes random. In addition, the observed score and error contain
two levels of randomness, one level because we sample a person from the
population and another because we sample an observed score from the
person’s distribution. Let J represent the random person sampled from the
population and TJt the random true score. The model in (1.3) becomes:

XJt = TJt + EJt. (1.4)

Again, the only new assumption underlying this extension of the model is
on the random status of a variable—this time the true score; no assumption
of linearity whatsoever has been made.

Item and Test Parameters
One of the major roles of CTT is as a producer of meaningful parameters
for item and test analysis. All parameters reviewed in this section are at
the level of the population model in (1.4).

A key parameter is the reliability coefficient of the observed score XJt,
usually (but incorrectly) referred to as the reliability of the test instead
of a score. This parameter is defined as the squared (linear) correlation
coefficient between the observed and true scores on the test, ρ2

TX . (Because
the level of modeling is now well understood, we henceforth omit the indices
of the scores where possible.)

The choice of the correlation between X and T is intuitively clear: If
X = T for the population of persons, (1.4) shows that X does not contain
any error for each of them, and the correlation between X and T is equal
to 1. Likewise, it is easy to show that if X = E (that is, X contains only
error for each person), the correlation is equal to 0.

The fact that we do not define reliability as the correlation coefficient
between X and T but as the square of it is to treat ourselves to another
useful interpretation. A standard interpretation of a squared correlation
coefficient is as a proportion of the explained variance. Analogously, in
CTT, the reliability coefficient can be shown to be equal to

ρ2
TX =

Var(TJt)
Var(XJt)

, (1.5)

which is the proportion of of the true-score variance relative to the observed-
score variance in the population of persons. This equality thus shows that
the true-score variance in a population of persons can be conceived of as
the proportion of observed-score variance explained by the differences in
true scores between the persons.

If test scores are used to predict a future variable, Y (for example, success
in a therapy or training program), the reliability coefficient remains a key
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parameter, but the correlation of observed score X with Y , instead of with
its true score T, becomes the ultimate criterion of success for the test. For
this reason, we define the validity coefficient of a test score X as its (linear)
correlation with criterion Y , ρXY .

Observe that, unlike the reliability coefficient, the validity coefficient is
not a squared correlation coefficient. The reason for this lies in the following
two results for the reliability coefficient that can be derived from the model
in (1.4). First, using well-known rules for variances and covariances, it can
be shown that if X and X ′ are the observed scores on two replications of
the test for the same persons, it holds that

ρ2
XT = ρXX′ . (1.6)

This result is most remarkable in that it shows that the reliability coeffi-
cient, which is the squared correlation between the observed scores and
their unobservable true scores, is equal to the correlation between two
replications of the observed scores. Likewise, it can be shown that

ρXT ≥ ρXY (1.7)

for any score Y . The result (1.7) tells us that the predictive validity co-
efficient of a test can never exceed the correlation between its observed
score and true scores; or, the other way around, the observed score on a
test is always the best “predictor” of its true score. Observe that (1.7) also
relates the correlation of an unobservable score to the correlation between
two observed scores.

An important item parameter in CTT is the item difficulty or π value.
Let Ui be the score on item i in the test, with Ui = 1 the value for a correct
response and Ui = 0 the value for an incorrect response. The classical
difficulty parameter of item i is defined as the expected value or mean of
Ui in the population of persons

πi = EUi. (1.8)

CTT also has an item-discrimination parameter, which is defined as the
correlation between the item score and the observed test score

ρiX = Cor(Ui, X) =
σiX

σiσX
, (1.9)

where σiX , σi, and σX are the covariance between Ui and X, and the stan-
dard deviations of Ui and X, respectively. Obviously, a large value for ρiX

implies a score on item i that discriminates well between persons with a
high and a low total score on the test; hence the name “discrimination pa-
rameter.” Recall, however, that X is composed of the scores on all items in
the test; it is therefore somewhat misleading to view a correlation between
Ui and X as an exclusive property of item i.



1.1 Classical Test Design 7

Analogously to (1.9), we define the correlation between the score on item
i and the observed score Y on a success criterion,

ρiY = Cor(Ui, Y ) =
σiY

σiσY
, (1.10)

as the item validity or the item-criterion correlation for item i. It represents
how well score Ui discriminates between persons with high and low scores
on criterion Y in a predictive validity study.

All the parameters above were defined as population quantities. They
can be estimated directly by their sample equivalents, with the exception
of the reliability coefficient, which is based on the correlation with an unob-
servable true score. The equality in (1.6) suggests estimating the reliability
coefficient by the sample correlation between observed scores X and X ′ on
two replicated administrations of the test. But, in practice, due to learning
and memory effects, it is seldom possible to realize two exact replications.

An alternative is to use the inequality

ρ2
XT ≥ α, (1.11)

which can be derived from the model in (1.4), where coefficient α is defined
as

α =
n

n − 1

⎡⎢⎢⎣1 −

n∑
i=1

σ2
i

σ2
X

⎤⎥⎥⎦ (1.12)

and n is the length of the test. Coefficient α is a coefficient for the internal
consistency of a test; that is, the degree to which all item scores in a test
correlate positively with one another. The relation in (1.11) thus shows that
the reliability of an observed score can never be smaller than the internal
consistency of the item scores on which it is calculated. Coefficient α can
be estimated in a single administration of the test; it only contains the
item variances, σ2

i , and the total observed-score variance, σ2
X , which can

be estimated directly by their sample equivalents. If the test approximates
the ideal of a unidimensional test, the error involved in the estimation of
ρ2

XT through α tends to be small.
It is helpful to know that the following relation holds for the standard

deviation of observed score X:

σX =
n∑

i=1

σiρiX . (1.13)
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Replacing σ2
X in (1.12) by the square of this sum of products of item

parameters leads to:

α =
n

n − 1

⎡⎢⎢⎢⎣1 −

n∑
i=1

σ2
i(

n∑
i=1

σiρiX

)2

⎤⎥⎥⎥⎦ (1.14)

Except for the (known) test length n, this expression for α is entirely based
on two item parameters, σi and ρiX . It allows us to calculate how the
removal or addition of an item to the test changes the value of α.

For the validity coefficient, we are also able to derive an expression based
entirely on sums of item parameters. The expression is

ρXY =

n∑
i=1

σiρiY

n∑
i=1

σiρiX

. (1.15)

It shows us how the predictive validity of a test is composed of the item
variances, item-discrimination parameters, and item validities.

We will rely heavily on the expressions in (1.14) and (1.15) when we
discuss models for classical test assembly in Section 5.2.

1.1.3 Discussion
Classical test design and classical test theory are different sides of the same
coin. Both are based on identical methodological ideas, of which the notion
of standardization is the core.

When a test is designed, the conditions in the testing procedure that
determine the ability to be tested are standardized. Standardization implies
the same conditions over replications. The definition of the observed score
in CTT as random over replications of the test is entirely consistent with
this idea of standardization. The mean of the distribution of this score is a
fixed parameter that summarizes the effects of all standardized conditions.
It seems natural to call this mean the true score. The error score summarizes
the effects of conditions that have been left free. Because these effects are
random across replications, the error score is random.

At approximately the same time as the introduction of classical test the-
ory, similar notions were developed in the methodology of experimental
design, with its emphasis on manipulation and randomization. In fact, just
as CTT is the statistical analog of standardized testing, the analog of ex-
perimental design is analysis of variance. It is therefore not surprising that
strong parallels exist between the linear models in (1.3) and (1.4) and some
models in analysis of variance.
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The assumption of sampling from a fixed population is another common
characteristic of classical test design and CTT. For example, one of the main
goals of psychological testing is to estimate the test taker’s relative standing
in this population, often with the intention of seeing if this person belongs
to the “normal” portion of the population distribution or an “abnormal”
tail. The interest in norm tables is a logical consequence of this goal. In
CTT, this interest finds its parallel in the assumption of random sampling
of persons from a fixed population.

To get an accurate estimate of the true scores of a population of test tak-
ers, the test should be designed to discriminate maximally between as many
persons in the population as possible. Statistically, this goal is realized best
by a test with its π values close to .50 and values for the item-discrimination
parameter ρiX as large as possible. This choice of parameter values has been
the standard of the testing industry for a long time. The fact that these
parameters can be interpreted only for a population of persons was not ob-
served to be a hindrance but was a prerequisite according to the prevalent
conception of testing (Exercise 1.1).

The classical conception of test development involved no stimulus to
item banking whatsoever. If the test items are the best given the current
state of psychological theory and have been shown to meet the statistical
requirements for the intended population, there is no need whatsoever to
write more items. Producing more can only lead to an increase in quality.
The only reason to write new items is if the test becomes obsolete due to
new developments in psychological theory.

It is not our intention to suggest that this classical complex is wrong.
On the contrary, it is coherent, well-developed, and statistically correct. If
a single test for a fixed population has to be developed, and the interest
is exclusively in estimating score differences in a population of persons,
the combination of classical test design and classical test theory is still a
powerful choice. The methodology offered in this book can also be applied
to classical test design (see Section 5.2).

But if testing has to serve a different goal, another choice of test-design
principles and theory has to be made. As discussed in the next section, this
was precisely what happened when testing was applied to instructional
purposes.

1.2 Modern Test Design

1.2.1 New Notion of Standardization
The first large-scale use of educational tests was for admission to higher
education. For this application, the assumption of a fixed population still
made sense, but the assumption of a fixed test involved going through the
whole cycle of test development on an annual basis. This requirement put
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a serious claim on the resources of the testing organizations. They soon
discovered that it was more efficient to use item banking. In item banking,
test items are written and pretested on a more continuous basis, and tests
are assembled from the pool of items currently present in the item-banking
system.

The need for a new test theory was felt more seriously when the use of
tests for instructional purposes was explored, particularly when the ideas
moved into the direction of individualized instruction. The assumption that
students are sampled from a fixed population does not make much sense
if individual students take different instructional routes. In fact, it is even
inconsistent with the notion of learning at all. A score distribution of a
population of students can only remain fixed if their abilities are—not if
they develop as a result of learning and forgetting. Likewise, the idea of a
single best test soon had to be killed. If students are tested individually and
at different levels of development, larger numbers of tests with measurement
qualities geared to the individual student’s level are necessary.

If the assumptions of a fixed population and a single best test have to
be dropped, other features of the classical complex become problematic,
too. For example, classical item and test parameters, such as the π value,
item-discrimination parameter, and reliability coefficient, are based on the
assumption of a fixed population and lose their meaning if no such pop-
ulation exists. Likewise, the definition of the true score in CTT is based
on the assumption of a single fixed test. If different students take different
tests, their number-correct scores are no longer comparable. Also, if the
same student is retested using different tests, it is impossible to use this
score for monitoring what this person has learned.

It is obvious that with the emergence of these newer types of testing, a
new test theory was required. Item-response theory (IRT), of which the key
concepts are introduced in the next section, has filled the void. It is not for
a fixed test for a fixed population but for a pool of items measuring the
same ability and for individual persons demonstrating the ability in their
responses to these items. It also offers us the tools for calibrating items
taken by different persons on a fixed scale. In addition, item parameters in
IRT describe the properties of the items relative to this scale instead of a
population of persons. Therefore, these parameters can be used to assemble
a test that is locally best (i.e., has optimal accuracy at the person’s ability
level). They can also be used to score persons on the same scale, no matter
what test they take from the pool.

In fact, the emergence of these newer types of testing and the simul-
taneous development of IRT have led to the replacement of the “classical
complex“ in testing in Section 1.1.3 by a new paradigm. The core of this
paradigm is a changed notion of standardization. To standardize a test, it is
no longer necessary to give each person an identical set of items (or, for that
matter, test them under identical conditions). It is sufficient that the items
be written to explicit content specifications and that the remaining differ-
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ences between them be adequately parameterized (that is, represented by
parameters) in the test-theory model. A parallel exists between this notion
of standardization and that of model-based inference elsewhere in statis-
tics. In fact, whereas CTT and (one-way) analysis of variance have much in
common, IRT is more in the spirit of the tradition of correcting for nuisance
factors by introducing separate parameters for them in the model, which
has analysis of covariance as its prime example. But it is beyond the scope
of this book to elaborate on these observations.

As a result of this change, IRT enables us to design tests to different sets
of specifications and delegate their actual assembly to computer algorithms.
These two possibilities constitute the main theme of this book. A few basic
notions from IRT that are required to understand its role in modern test
design and test assembly are introduced in the next section.

1.2.2 Item-Response Theory
The focus of IRT is on the responses by a single person to a single test
item. These responses are modeled as the outcome of a random process
with probabilities that depend on a number of parameters. If the responses
are scored dichotomously (for instance, as correct or incorrect), only the
probability of a correct response needs to be modeled. This probability also
fixes the probability of an incorrect response.

Typically, the parameters can be classified as item and person parame-
ters. In more complex models, we may also have parameters for the condi-
tions under which the person interacts with the items, raters who evaluate
the responses, and the like. Person parameters represent the ability, level
of knowledge, skill, or whatever property of the person the items measure,
while item parameters stand for such properties of an item as its difficulty
and discriminating power.

It is customary to present the probability of a response as a function of
the person parameter. In this book, we use the term ability parameter as
a generic name for the person property measured by the items and denote
this parameter as θ. Mathematical functions used for the description of
the probability of a response on an item as a function of θ are known as
item-response functions. For dichotomous models, the focus is thus always
on response functions for the correct response. Although the test-design
principles and algorithms in this book hold for any of the IRT models cur-
rently known, our presentation will mostly be based on the three-parameter
logistic (3PL) model for dichotomous responses.

The 3PL model is flexible and has been shown to fit large pools of items
written for the same content domain in educational testing; in fact, it has
become the industry standard for such applications. An example of a set
of response functions from the 3PL model estimated for a test of English
as a foreign language in a school-leaving exam in the Netherlands is given
in Figure 1.1. Each of these curves represents the probability of a correct
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FIGURE 1.1. Set of response functions for a test of English as a foreign language.

response of a single item. Observe that all functions run smoothly from a
lower asymptote to the upper asymptote at one. They do so at different
rates. Also, they are located at different positions along the θ scale. As will
be discussed later, the scale for θ for the 3PL model is arbitrary in the
sense that it has no fixed origin or unit.

The 3PL model has three item parameters, which are explained in Figure
1.2. The height of the lower asymptote of the response function for item i is
parameter ci. This parameter can be interpreted as the minimum probabil-
ity of a correct response on the item reached at an “infinitely low” ability
level. Because nearly all items allow for some form of guessing if the person
does not know the correct answer, ci is known as the guessing parameter of
item i. Parameter bi can be interpreted as the difficulty parameter of item
i. Its value represents the location of the item along the θ scale. A more
difficult item is located more to the right on the scale, and to produce a
correct response with a given probability of success on this item, a higher
level of ability is required. Under the 3PL model, bi is the value of θ at
which the probability of a correct response is equal to the middle between
the height of the lower and upper asymptotes, that is, bi is the value of θ at
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FIGURE 1.2. Graphical meaning of the item parameters in the three-parameter
logistic response model in (1.16).

which the probability is equal to (ci + 1)/2. Parameter ai is proportional
to the slope of the response function of the item at this point. A larger
value means a steeper slope, and hence an item that discriminates better
between the success probabilities for the persons just to the left and right
of θ = bi. Parameter ai is therefore known as the discrimination parameter
of item i.

Each of the response functions in Figure 1.1 is a member of the family
described by the mathematical function

pi(θ) = Pr(Ui = 1 | θ) = ci + (1 − ci)
eai(θ−bi)

1 + eai(θ−bi)
, (1.16)

where Ui is the response variable for item i and Pr(Ui = 1 | θ) is the prob-
ability of a correct response on this item by a person with ability level θ.
Because the response curves represent this probability as a function of θ,
we denote it as pi(θ). The scale of θ runs from −∞ to ∞. Parameter bi rep-
resents the location of item i on the same scale; it therefore has the same
range of possible values. From the definition of ci as a lower asymptote for
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a probability, it follows that ci takes values in the interval [0, 1]. Finally,
though items with a negative value for ai are conceivable, such items have a
direction opposite to θ and are usually ignored or reformulated. We there-
fore focus only on items with values for ai running from 0 to ∞. Finally,
the powers in the numerator and denominator in (1.16) have the number
e = 2.718... as their base. This choice of base is arbitrary but has become
standard because it leads to some convenience in the statistical treatment
of the model (Exercise 1.5).

Multidimensional Response Model
Sometimes the items in the pool measure multiple abilities, and the ne-
cessity of multidimensional test assembly arises. A familiar example is the
case of a pool with mathematics items with a substantial verbal component.
Such items measure the mathematical abilities of the persons but may also
be sensitive to their verbal abilities. If so, we need to replace the model
in (1.16) with one that has more than one ability parameter. In Chapter
8, which is devoted to the case of test assembly from a pool with multi-
ple abilities, we use a logistic model with two ability parameters, θ1 and
θ2. For this model, the probability of a correct response defines a function
that describes a response surface over a two-dimensional ability space. An
example of this surface is given in Figure 1.3.

The logistic model for this surface that will be used in Chapter 8 is

pi(θ1, θ2) =
ea1iθ1+a2iθ2−bi

1 + ea1iθ1+a2iθ2−bi
. (1.17)

This function has two discrimination parameters, a1i and a2i, which control
the slope of the surface along θ1 and θ2, respectively, and a parameter bi

that represents its generalized difficulty. The model in (1.17) does not yet
have a guessing parameter but the extension to a model with such a pa-
rameter, which has a structure identical to that of (1.16), is straightforward
(Exercise 1.6).

1.2.3 Item Calibration and Ability Measurement
Applications of IRT typically consist of two different stages. The first stage
is item calibration and the second stage ability measurement.

During item calibration, response data for a sample of persons on a set
of items are collected and the values of the item parameters are estimated
from the data. Standard statistical methods for parameter estimation, such
as maximum-likelihood (ML) and Bayesian methods, are available for the
estimation of these values.

The stage of item calibration also encompasses an empirical test of the
goodness of fit of the IRT model to the response data. This fit replaces the
evaluation of the estimates of the CTT item parameters in traditional item
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FIGURE 1.3. Example of the response surface of an item for the two-dimensional
logistic response model in (1.17).

analysis. Items that do not show a satisfactory fit are diagnosed; the reason
for their misfit may run from a wording problem to sensitivity of the item
to abilities other than the one measured by the majority of the items in
the pool.

The goal of item calibration and goodness-of-fit analysis is to establish a
pool of items measuring a common ability with known values for the item
parameters. Such pools are the core of the item-banking systems discussed
above. The treatment of the statistical methods of item calibration and
goodness-of-fit analysis used to establish item pools are beyond the scope
of this book; references to literature on these topics are given at the end of
this chapter.

The second stage in the application of IRT is that of ability measure-
ment. A set of items from the pool is administered, and an estimate of the
person’s score (that is, a value for the ability parameter θ for the item pool)
is calculated from the responses. To calculate this estimate, one of the sta-
tistical methods for parameter estimation referred to earlier can be used.
If the item pool has been calibrated with enough precision, the person’s
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value of θ can be calculated with known values for the item parameters in
the estimation equations. The presence of these values automatically cor-
rects for differences between the features of the items represented by these
parameters. As a result, differences in item selection among persons do not
create any (asymptotic) bias in their ability estimates. In this sense, we are
thus free to choose whatever subset of items from the pool we want.

However, the accuracy of ability estimates depends directly on the values
of the item parameters in the test relative to the ability of the person. For
an operational item pool, it is not unusual to be able to create two tests
of equal length and find that for some ability levels one of them is several
times as accurate as the other. In the next section, we discuss the notion
of an information function used in IRT to analyze the accuracy of ability
estimates.

1.2.4 Test and Item Information Functions

Let θ̂ denote the estimated value of the ability parameter for a person with
true ability level θ. Obviously, the variance of θ̂ over replications of the test
for this person is an appropriate measure for the accuracy of the ability
estimates. This variance can be denoted as Var(θ̂ | θ).

Instead of this variance, it is more convenient to use a measure known as
the test information function (TIF) in item-response theory. This measure,
which we denote as I(θ), is an instance of a more general measure, known
as Fisher’s information, in statistics, which reflects the information in a
sample about an unknown parameter. In the application of this measure
to IRT, the responses to the test items constitute the sample, and the
person’s ability θ is the unknown parameter. Fisher’s information measure
has several properties, of which the following two are particularly useful.
First, the test information function is asymptotically equal to the inverse
of the variance function of the ML estimator of θ:

I(θ) =
1

Var(θ̂ | θ)
. (1.18)

(By “asymptotic” we mean that the equality holds approximately for short
tests but that the approximation improves with increasing test length.)
This property thus suggests that the two measures can be used interchange-
ably.

We prefer the information function because of the second property. In-
formation functions can also be defined at the item level as an item in-
formation function (IIF). We use Ii(θ) to denote the information function
of item i. An IIF reflects the contribution of the response on an item to
the information on θ in the test. An attractive property of information
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functions is that they are additive. For example, for the TIF it holds that

I(θ) =
n∑

i=1

Ii(θ). (1.19)

Item and test information functions are easy to calculate. For a dichoto-
mous response model, the IIF is equal to

Ii(θ) =
(p′

i(θ))
2

pi(θ)[1 − pi(θ)]
, (1.20)

where p′
i(θ) is the first derivative of the response function with respect to

θ. For the 3PL model in (1.16), this derivative is a simple expression, and
(1.20) can we written as

Ii(θ) = a2
i

1 − pi(θ)
pi(θ)

(
pi(θ) − ci

1 − ci

)2

, (1.21)

which depends only on the item parameters. Thus, for a calibrated item
pool, all IIFs are automatically known, and, because of the additivity in
(1.18), we also know the TIF for any test assembled from the pool.

Graphical examples of IIFs for five different items are given in Figure
1.4. The functions of the more difficult items in this figure are located
more to the right. This is as it ought to be because more difficult items
are appropriate for the measurement of more able students. Also, a higher
value for the guessing parameter means a function more skewed to the left.
The reason for this effect is a relatively larger loss of information for less
able persons because they guess more frequently than more able persons.

The most dramatic impact on the shape of the IIF has the discrimination
parameter. For a larger value of this parameter, the function becomes more
peaked, indicating better measurement near the location of the item. The
price we pay is relatively lower information farther away from this location,
where the response function tapers off to ci or 1 and the item hardly dis-
criminates. But the general effect of a larger value for the discrimination
parameter is always positive. For example, if ci = 0, the area under the IIF
can be shown to be equal to ai; hence, a larger value for this parameter
means higher average information in the item score across the ability scale.

Figure 1.4 also shows the TIF associated with these five items. This
function is the sum of the IIFs. Its shape is therefore entirely determined
by the values of the item parameters.

1.2.5 Test Characteristic Function
In addition to the test information function, we will occasionally use one
more function to characterize a test. Like the TIF in (1.19), this function,
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FIGURE 1.4. Graphical examples of five item information functions and their
associated test information function (bold line).

known as the test characteristic function (TCF), is also additive in the
items in the test. It is defined as the sum of the response functions:

τ(θ) =
n∑

i=1

pi(θ). (1.22)

The TCF links the ability parameter θ to the classical true score τ for the
observed number-correct score on the test. This interpretation follows if we
note that the expected value of the score Ui on item i for a person with
ability level θ is equal to

E(Ui | θ) = 1.pi(θ) + 0.[1 − pi(θ)] = pi(θ). (1.23)

Therefore, τ(θ) is the expected sum of the item scores, or, according to
(1.1), the true number-correct score.
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1.2.6 Comparison Between Classical and IRT Parameters
It is interesting to compare the relation between the test and item informa-
tion functions in (1.19) with the one between coefficient α and the classical
item parameters in (1.14). Three differences should be observed.

First, the relation between the information functions is additive, whereas
that between α and the classical item parameters is not. As will be dis-
cussed later in this chapter, the additivity of the information functions
simplifies the process of test assembly enormously.

Second, the item parameters in (1.14) do not only miss this additivity
but are even dependent on each other. Although ρiX is generally referred
to as an item parameter, it is a correlation with the observed test score.
Consequently, it depends on the covariances between all items. Because of
these dependencies, the effects of the removal or addition of an item to the
test are unpredictable; the addition of an item even leads to an occasional
decrease of the reliability of the test instead of an intended increase. The
IIFs in (1.19) are entirely independent of each other; if an item is added to
the test, we know beforehand what will happen to the TIF.

Third, information functions are local measures of measurement accu-
racy; they show how accurate the ability estimate will be for a person with
a given θ value. On the other hand, classical item and test parameters are
global measures; they implicitly average the local accuracy given θ over the
population of persons.

It is easy to misinterpret the meaning of a global measure. For instance,
a high value for the classical reliability coefficient seems to suggest a test
that is uniformly accurate for all possible applications. But this impression
is misleading. This test cannot be accurate for persons who are too able
for it; that is, it cannot discriminate between the finer differences in ability
level among such persons and tends to make large errors in their ability
estimates. Local measures of accuracy, however, do enable us to tailor the
accuracy of a test optimally to the ability levels for which it is intended.

1.2.7 Ability Scale and Item Mapping
The scale of θ in the response model in (1.16) has an arbitrary origin
and unit. This is immediately clear from the portion of the model in the
argument of the logistic function in (1.16), ai(θ−bi). If we change the origin
of the scale (that is, replace θ by θ+ d, where d is the new origin), we also
have to replace bi, the location of the item on the old scale, by bi + d. But
then the two values of d cancel, and the model predicts the same response
probability for each person. The same occurs if we introduce a new unit d.
We then not only have to replace θ by θd but also bi by bid, and, because
this parameter is proportional to the slope of the response function, ai by
ai/d. These three values of d also cancel.
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This indeterminacy of origin and unit is not much of a problem. During
item calibration, we just fix the scale at an arbitrary origin and unit. But
the arbitrariness of the scale of θ has consequences for the shape of the item
and test information functions. For instance, if we increase the unit of the
scale of θ by a factor d, the values of the information function are reduced
by the same factor. Likewise, if we change the origin of the scale, the point
at which an information function reaches its maximum also changes. Infor-
mation functions thus have no absolute meaning; by using an appropriately
chosen unit and origin, they can be given any desired height and location
for their maximum. (As a matter of fact, by choosing an appropriate mono-
tone transformation of θ, an information function can even be given any
desired shape. This conclusion follows from the presence of the square of
the derivative, p

′
i(θ), in the definition of the information function in (1.20).

If a monotone transformation is applied to θ, the chain rule in differen-
tial calculus tells us that the new information function differs from the old
function by a factor equal to the square of this derivative. We can therefore
manipulate the shape of a TIF just by choosing the transformation with
the desired effect.)

Although a mathematical truth, this fact should not be taken to imply
that the same arbitrary test can be made optimal for any goal we have
in mind simply by transforming its information function into a target. In
practice, we always work with information functions and targets on a scale
that is “fixed by interpretation.” If a testing program is developed, one of
the first steps is to fix the scale for its scores. Over time, those involved
in the program become familiar with the item parameters in the pool and
the scores of the persons on this fixed scale. If old items in the pool are
replaced by new ones, they are always calibrated on the same scale. As a
result, though the composition of the pool changes continuously, the scale
keeps its empirical interpretation in the form of a stable distribution of
item content. It therefore remains possible to interpret scores on this scale
and set meaningful targets for information functions on it.

A graphical technique that is useful for understanding the empirical
meaning of a θ scale is item mapping. In this technique, we place a sample
of the items along the θ scale in the form of labels with brief descriptions of
their content. The items are placed at the points at which a person would
have a fixed probability of a correct response to them, say, .80. Item maps
help us to infer how item content is distributed over the θ scale and to set
meaningful targets for test information functions on it. An example of the
use of item mapping for a domain of elementary arithmetic items is given
in Figure 1.5.

Multidimensional Model
The ability space of the multidimensional response model in (1.17) is not
only arbitrary with respect to its origin and units but also to the direction
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FIGURE 1.5. Example of an item map for the domain of elementary arithmetic,
with the location of the ability levels of three ficticious test takers.

of its dimensions. If we rotate the space to another direction, the values
of the parameters change because of the transformation we apply, but the
response probabilities for the new set of parameter values remain the same.
This arbitrariness allows us to rotate the ability space to dimensions that
are more convenient to interpret (Exercise 8.3). We will use this opportunity
in Section 8.4.3 when we treat the case of multidimensional test assembly
with an interest in scores for a combination of abilities.

1.2.8 Birnbaum Approach to Test Design
In 1968, Birnbaum introduced a new approach to test design that capital-
ized on the additive relation between the item and test information func-
tions in (1.19). The approach, which forms the foundation of our current
view of test assembly, consists of the following three steps:

1. The goal of the test is formulated. Examples of possible goals are
placement of students in courses, diagnosis of the intelligence of chil-
dren in the lower tail of a given distribution, selection of applicants
for a job, and assembly of a new version of a test that has to be
parallel to the current version.

2. The goal is translated into a target for the TIF. If the goal is to
diagnose the intelligence of children in the lower tail of a distribution,
it makes sense to choose a target that is high over this tail and does
not impose any constraint on the TIF everywhere else. If the goal
is selection of applicants, the most important point on the ability
scale is the cutoff score used in the decision, and a target with high
values in a small interval about this score seems an obvious choice.
The result of this step is a function T (θ) that serves as the target for
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FIGURE 1.6. Examples of three possible targets for a test information function:
(1) a test used for admission decisions with cutoff score θ = 0; (2) a diagnostic
test over lower range of abilities; and (3) a test with an information function that
follows a given population distribution.

the information function of the new test. Examples of a few possible
targets are given in Figure 1.6.

3. A test is assembled from the pool such that its information function
approximates T (θ) best. During the selection process, the additive re-
lation between the IIFs and the TIF helps us to predict what happens
to the latter if an item is added to or removed from the test.

The power of Birnbaum’s approach lies in the fact that it forces the test
assembler to reflect both on the goal of the test and the combination of
items in the pool that guarantees the best results. Although Birnbaum’s
proposal underlies all modern approaches to test assembly, his original for-
mulation has served only as a point of departure for our current, more
practical methods of test assembly.

For one thing, Birnbaum’s proposal did not offer any suggestion of an
algorithm for finding the best combination of items in the pool. At first
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sight, it may seem straightforward to use a trial-and-error method in which
we move from one possible combination of items to another, each time
checking the match between the TIF and the target. Obviously, to check
the results, we would need a computer program for plotting a TIF against a
target or calculating a numerical criterion for their match. A fatal difficulty
of this approach, however, is that to identify an optimal solution in the
pool, all possible combinations of items have to be checked. If the pool
consists of N items and a test of length n is needed, the number of possible
combinations is equal to

(
N
n

)
. For realistic values of N and n , this number

is of an astronomical order of magnitude, and in practice we are unable to
find a test that is close to optimal by trial and error. (See Exercise 1.10.)

Another shortcoming of Birnbaum’s approach is that it overlooks the
fact that tests are always assembled to meet an (often elaborate) set of
specifications. These specifications formulate requirements with respect to
their content, item format, the total time available to take the test, the
length of the test form in print, and so forth. Each specification implies a
constraint that has to be imposed on the selection of the items. Although
such constraints lead to a reduction in the number of feasible combinations
of items in the pool, typically the remaining set of combinations is still
much too large for all of its members to be checked. As a matter of fact, we
are even bound to meet a new problem: For a realistic set of constraints,
it easily becomes too difficult to find any feasible combination of items in
the pool by trial and error (Exercise 1.12).

Finally, Birnbaum’s approach was for the simple case of a single test
from a pool of discrete items with an optimal match between the TIF and
its target, whereas the practice of test assembly involves a large variety of
different problems. For example, we may have to assemble a test from a pool
with item sets organized around common stimuli, a set of tests that have
to be parallel to a reference test, a set of subtests for use in a multistage
testing system, a test with maximum predictive validity, or a test from a
pool measuring more than one ability. It is not immediately obvious how
Birnbaum’s approach could be generalized to deal with such problems.

1.3 Test Design in This Book

In this book, we view the design of a testing program as a process consisting
of the following stages:

1. For each of the tests in the program, a set of specifications is es-
tablished. These specifications address all desired attributes the tests
should have, such as the content categories of their items, their val-
ues for certain statistical parameters, word counts, and the degree of
item overlap between them.
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2. An item pool to support the program is designed. The goal of this
stage is a blueprint that details the number of items with the vari-
ous combinations of attributes needed in the pool. The blueprint is
calculated to support the assembly of the required number of tests
within a chosen planning horizon.

3. The item pool is developed. This stage consists of such activities as
item writing, item review, pretesting of the items, item calibration,
and analysis of the goodness of fit of the response model.

4. The assembly of the tests from the item pool according to their
specifications.

The process does not need to go through these stages of test specifica-
tion, item-pool design, item-pool development, and test assembly exactly
in the order in which they have been presented here. It is essential that the
first two stages be completed before the development of the item pool and
assembly of the tests begins. But the last two stages are often interwoven
because of restrictions in the resources with which the testing organization
has to cope. The result is a continuous mismatch between the blueprint
of the item pool and the operational pool. Consequently, the projections
of the number of items to be added to the pool change frequently, and
item pool-design and item-pool management become essentially the same
process.

Our use of the term “test design” may seem misleading in that the only
product actually designed during the four stages above is the item pool;
the tests themselves are just assembled from the item pool. But because
the pool should be designed to support the assembly of these tests, use of
the term “test design” for the entire process is nonetheless appropriate.

The fact that nearly all chapters in this book are on test assembly might
even further obscure the relation between item-pool design and test assem-
bly. However, as we will be able to illustrate later, the techniques for the
optimal assembly of tests are essentially the same as those for calculating
an optimal blueprint of the pool. Because these techniques are much easier
to explain using test-assembly problems, and we have to deal with a large
variety of them, the subject of item-pool design is not treated until the end
of the book.

1.3.1 Four Modes of Test Assembly
Four different modes of test assembly from an item pool are discussed
in this section. The first two modes were popular when the interest in
individualized testing emerged but the computational power needed for
the application of IRT was still lacking. When personal computers became
more powerful, the last two modes became prevalent.
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Random Sampling of Tests
In this mode of test assembly, a test of fixed length is randomly sampled
from the item pool for each individual person. The test model used to con-
trol measurement error is the binomial-error model, which is the classical
test-theory model for a fixed person in (1.1) with the additional assump-
tion of a binomial distribution for the observed number-correct score Xjt.
Under this assumption, the classical true score is equal to the binomial
success parameter, πj . For a large pool, this parameter can be interpreted
as the proportion of items in the pool “mastered” by the person.

This mode of test assembly has two disadvantages: First, any change in
the item pool also changes the value of πj for a person and therefore leads
to incomparable test scores. Second, unless complicated stratified sampling
techniques are used, tests cannot be assembled to specifications.

Sequential Sampling of Tests
For the binomial model to realize the same error of estimation for π̂j ,
smaller samples of items are necessary for values of πj closer to .50. There-
fore, it is more efficient to sample tests sequentially. In this mode, after
each new item sampled from the pool, the standard error of estimation in
π̂j is estimated from the person’s updated proportion of correct answers,
and the test is stopped as soon as a predetermined level of error is realized.

Sequential testing was particularly popular for mastery testing. In this
application, sampling is stopped as soon as a mastery decision with a fixed
cutoff score for πj can be made with a predetermined level of error.

Optimal Test Assembly
Optimal test assembly is a generalization of the Birnbaum approach that
deals with the various realistic aspects of test-assembly problems discussed
at the end of Section 1.2.8. Methods of optimal test assembly allow us to
assemble a test or set of tests with a potentially elaborated list of speci-
fications, from a large variety of item pools, with a result that is optimal
with respect to an objective chosen from a large set of alternative by the
test assembler.

The first attempts at optimal test assembly resulted in heuristic meth-
ods for the problem of assembling a single test from a pool of discrete
items with a target for the information function addressed by Birnbaum.
These methods were heuristic in that they based their search for the best
combination of items on a plausible principle but no optimal results were
guaranteed. The next developments were generalizations of these heuristics
for use with several of the other problems discussed in Section 1.2.8.

In the mid 1980s, Birnbaum’s problem was redefined as a problem of
combinatorial optimization or 0-1 integer programming. During the next
two decades, it appeared possible to formalize nearly every conceivable
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test assembly problem as an optimization problem in this class. At the
same time, the algorithms needed to solve such optimization problems were
improved, and nowadays powerful implementations of them are available
as commercial software.

Adaptive Test Assembly
Adaptive test assembly resembles sequential sampling of items in that one
item is picked from the pool at a time. However, the items are not picked at
random but optimally: The person’s ability estimate is updated during the
test, and each next item is chosen to be maximally informative at the last
update. Because the ability estimates converge to the person’s true ability
level, item selection improves during the test and the ideal of a test with
maximum information at the person’s true ability level is approached.

Adaptive test assembly assumes real-time ability estimation and item
selection. This became possible when PCs became both more powerful
and cheaper in the early 1990s. Shortly thereafter, computerized adap-
tive testing (CAT) was implemented in large-scale testing programs, and
nowadays large numbers of persons are tested worldwide using this type of
test assembly.

1.3.2 Choice of Test Assembly Modes
The test-assembly modes dealt with in this book are optimal and adaptive
test assembly. In Chapter 9, we will show how adaptive test assembly can
be optimized using the same techniques from integer programming as for
the optimal assembly of a fixed test. A few of the basic ideas underlying
the use of integer programming for assembling a fixed test are illustrated
in the next section.

1.4 An Application of Integer Programming to
Test Assembly

Suppose we want to assemble a fixed test from a pool of 100 calibrated
items. The items in the pool are at two different cognitive levels: (1)
knowledge of facts and rules and (2) application of knowledge to real-life
problems. The pool has 50 items on knowledge and 50 on applications. The
information function of the test has to meet a given target, T (θ). Finally,
we want the test to be as short as possible, but it should contain at least
ten knowledge items and ten application items.

The requirement of the shortest test possible involves a minimization
problem. The three other requirements are constraints to be imposed on
the selection of the items. The problem can be formulated more compactly
as
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minimize test length
subject to

1. TIF everywhere above target;
2. At least ten knowledge items;
3. At least ten application items.

In an optimal test-assembly approach to this problem, we first reformu-
late it as a mathematical optimization problem using decision variables.
Decision variables are variables defined such that the solution of the opti-
mization problem (i.e., the set of values for which the objective function is
optimal and all constraints are satisfied) identifies the best decision that can
be made. General rules for the choice of decision variables in test-assembly
problems will be introduced in Section 3.1.

The current problem can be solved by the following choice of variables.
Let i = 1, ..., 100 denote the individual items in the pool. We assume that
the pool is organized such that items i = 1, ..., 50 are knowledge items and
items i = 51, ..., 100 are application items. The decision variables we choose
are binary variables, one for each item, which take the value xi = 1 if the
item i is selected for the test and the value xi = 0 if item i is not selected.

The sum of the decision variables for the entire item pool is
100∑
i=1

xi.

As xi = 1 only for the items selected, this sum is equal to the number of
items in the test. Likewise, the sum of variables for the first 50 items in the
pool is equal to the number of knowledge items in the test, while the sum
for the last 50 items is the number of application items.

We also need the weighted sum
100∑
i=1

Ii(θ)xi,

where Ii(θ) still denotes the information function of item i. Again, as xi =1
only for the items selected, this expression is the sum of the IIFs in the
test; that is, its TIF. We will control the TIF at a number of points θk,
k = 1, ..., K, where we require it to take a value at least equal to a target
value Tk. The number and the spacing of these points are supposed to be
chosen by the test assembler.

The solution to the following minimization problem is the best possible
test from the pool:

minimize
I∑

i=1

xi (1.24)

subject to
100∑
i=1

Ii(θk)xi ≥ Tk, for all k, (1.25)
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50∑
i=1

xi ≥ 10, (1.26)

100∑
i=51

xi ≥ 10, (1.27)

xi ∈ {0, 1}, for i=1,...,100. (1.28)

The objective function in (1.24) minimizes the length of the test. The
constraints in (1.25) impose the target values as lower bounds on the TIF at
θ1, ..., θK . Because the test length is minimized, the TIF is approximated
from above. The constraints in (1.26) and (1.27) guarantee the required
minimum number of items on knowledge and applications (Exercise 1.13).

Both the objective function and the constraints in (1.24)–(1.27) are linear
in the variables. The model is therefore an example of a linear 0-1 integer
programming problem. This fact simplifies the calculation of its solution
enormously. The solution is an array of 0-1 values for x1, ..., x100 for which
the objective function is minimal and all constraints are satisfied. This
array identifies the best test in the pool.

The test-assembly problem in this example was unrealistically small. In
later chapters, we will meet models with larger and more complicated item
pools, different objective functions, and a huge range of possible constraints.
To solve these models, we will often need different types of variables, and
sometimes even combinations of different types of variables in the same
problem. The common feature of all of these models is that they are linear
in variables that, except for a few possible variables added to the model for
technical reasons, take integer values. In addition, we will demonstrate that
the same type of modeling can be used to optimize adaptive test assembly
and to calculate optimal blueprints of item pools.

Before discussing all of these models, we will show how test specifications
can be formulated as objective functions or constraints (Chapter 2), how a
test-assembly problem can be modeled using such objective functions and
constraints (Chapter 3), and what algorithms are available to solve our
models (Chapter 4).

1.5 Literature

The standard text on the history of testing is Dubois’ (1970) History of
Psychological Testing. This book does not treat any of the modern devel-
opments in Section 1.2, and its selection of topics shows a bias against
large-scale educational testing, but it should be consulted by anyone with
an interest in this topic. Another classic is Cronbach’s (1970) Essentials
of Psychological Testing, which treats both the development and analysis
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of tests from a CTT point of view. A few more recent examples of the
development of psychological tests can be found in Butterfield, Nielsen,
Tangen, and Richardson (1985), Pellegrino, Mumaw, and Shute (1985),
and Sternberg and McNamara (1985). The transition from classical stan-
dardized testing to item banking and its parallel development in test theory
is discussed in van der Linden (1986).

The first comprehensive text on CTT was Gulliksen’s (1950). A key refer-
ence in test theory is Lord and Novick (1968), which contains an advanced,
precise treatment of CTT, the first comprehensive introduction to IRT (at
the time mainly known as latent-trait theory), and Birnbaum’s (1968) pro-
posal to assemble a test to a target for its information function. Examples
of introductions to IRT at a more intermediate level are Hambleton and
Swaminathan (1985) and Lord (1980), while an elementary introduction is
given in Hambleton, Swaminathan, and Rogers (1991). A comprehensive
review of a large number of response models is offered in van der Linden and
Hambleton (1997). The multidimensional logistic response model in (1.17)
was introduced in McKinley and Reckase (1983) and further developed in
Béguin and Glas (2001), Reckase (1985, 1997), and Segall (1996). For more
concise introductions to CTT and IRT, see van der Linden (2005b, 2005c).

This book deals with the formulation of test specifications, item-pool de-
sign, and test assembly, but not with the topic of item-pool development,
with its steps of item writing, calibration, and goodness-of-fit testing. Ex-
cellent examples of modern developments in algorithmic item writing are
discussed in Haladyna (1994) and Irvine and Kyllonen (2002), whereas in-
troductions to the topics of item-parameter estimation and goodness-of-fit
testing are provided in the earlier references to the introductory texts on
IRT.

A brief review of the four different modes of test assembly in Section 1.3.1
(random sampling, sequential sampling, optimal test assembly, and adap-
tive test assembly) is given in van der Linden (2001b). The first applications
of 0-1 mathematical programming to optimal test-assembly problems can
be found in Feuerman and Weiss (1973) and Votaw (1952). The idea of
applying this technique to IRT-based test assembly was suggested in Yen
(1983). The first to show how the technique could be applied to assem-
ble a test to a target for its information function was Theunissen (1985).
The model he suggested was the one for test-length minimization discussed
in Section 1.4. Theunissen’s paper stimulated several others, including the
author of this book, to further explore the power of mathematical program-
ming for solving a large variety of problems in test design. Introductions
to the various types of mathematical programming and its algorithms are
given in Chapter 4 and in Appendix 1 of this book.
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1.6 Summary

1. The history of testing shows two different types of test development:
a period of classical test design in which testing was mainly modeled
after the ideal of a standardized test for a fixed population developed
in psychology, and a period of development toward individualized
testing using item banking and algorithmic test design.

2. The first period has its parallel in classical test theory (CTT). This
theory assumes random sampling of persons from a fixed population,
a true score defined by the standardized conditions in the testing
procedure, and random error to represent the effects of the remaining
conditions.

3. The second period has its parallel in item-response theory (IRT). This
theory has been developed to explain the response probabilities of
single persons on single test items. It supports testing from calibrated
item pools, optimal test assembly, and scoring of persons on a scale
defined independently of a single test.

4. Item and test information functions are local measures of the accuracy
of an ability estimate. These functions are additive. This feature is
used in the Birnbaum approach to test design, which consists of the
following steps: (i) analysis of the goal of the test, (ii) translation of
this goal into a target for the information function of the test, and
(iii) assembly of a test from the pool with an information function
that best approximates this target.

5. Birnbaum introduced his approach for the simple problem of as-
sembling a single test from a pool of discrete items, with no other
specifications than a target for the information function, and trial-
and-error selection of the items. Optimal test assembly generalizes
this approach to problems with a variety of types of item pools, elab-
orated sets of test specifications, and the use of algorithms for optimal
selection of the items from the pool.

6. A key feature of optimal test assembly is its modeling of the prob-
lem as a linear constrained optimization problem using integer-valued
decision variables. A solution to this problem is an array of values
for the variables that optimizes its objective function and satisfies
all constraints. Solutions to integer programming problems can be
calculated using standard commercial software.

7. In this book, optimal test assembly is treated as part of the larger
problem of test design, which runs through the following stages: (i)
formulating the specifications for the tests that the program has to
support, (ii) designing an item pool, (iii) developing the item pool
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(that is, writing, pretesting, and calibrating the items), and (iv)
assembling the tests from the pool according to their specifications.

8. The design of an item pool is documented in the form of a blueprint
that details the number of items with the various combinations of
attributes needed in the pool. Optimal blueprints can be calculated
using the same techniques of integer programming as for optimal test
assembly.

9. Besides optimal test assembly, the following three modes of assem-
bling tests from an item pool have been used: (i) random sampling of
tests, (ii) sequential sampling of tests, and (iii) adaptive test assembly.
The first two modes were popular when not enough computational
power was available to implement an optimal test-assembly approach.
Adaptive test assembly is treated as a special case of optimal test
assembly in this book.

1.7 Exercises

1.1 The classical goal in psychological testing is a test with item difficul-
ties equal to .50 and item discrimination as large as possible. Suppose
we have been successful in creating a test of n items each with πi = .50
and ρiX = 1. How would the distribution of the number-correct score
X for the population of test takers look? What would happen if a
test with these properties was used to evaluate learning in school or
for selection or admission?

1.2 Assume the 3PL model in (1.16) holds for item i with parameter
values ai = .9, bi = 1.0, and ci = 0. For what value of θ does a test
taker have a probability of a correct response equal to .50? What
happens to this value of θ if ci increases?

1.3 What are the probabilities of a correct response on the item in Exer-
cise 1.2 for test takers at θ = .8 and θ = 1.2? What happens to these
probabilities if ai increases?

1.4 Show that the structure of the 3PL model in (1.16) can be derived
from the assumption that the person knows the correct answer with
probability eai(θ−bi)/[1+eai(θ−bi)] or guesses at random with a prob-
ability of success equal to ci.

1.5 What happens to the model in (1.16) if the base of the powers in
the denominator and numerator is changed to a number other than
e—for instance, 10?
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1.6 Extend the multidimensional logistic model in (1.17) with a guessing
parameter ci, using the same argument as in Exercise 1.4. Why do we
need a single guessing parameter ci for this model and no separate
parameters c1i and c2i? Why does this multidimensional model have
a single difficulty parameter bi?

1.7 Calculate the values of the IIF for the item in Exercise 1.2 at θ = .8,
1.0, and 1.2. What happens to these values if ai increases to 1.8?
What happens if ci increases to .2? Explain the results.

1.8 Assume the 3PL model in (1.16) holds with ci = 0. Derive a general
expression for the maximum value for the IIF.

1.9 Assume again that the 3PL model in (1.16) holds with ci = 0. Derive
a general lower bound on the number of items needed for the TIF in
(1.19) to reach a target value T (θ). What happens to this bound if
ai increases? What if ci increases? Which of the two parameter has
the largest effect on the required test length?

1.10 Use trial values to find the minimum size of the item pool required
to give each living person a different test of ten items. (Hint: The
current world population is over 6.4 billion.)

1.11 Suppose an item pool contains I items, half of which are multiple-
choice and half have a constructed-response format. How many dif-
ferent tests of length n with nMC multiple-choice items and nCR

constructed-response items are possible?

1.12 Suppose we want to assemble a test of ten items from a pool of 48
items. An analysis of the pool shows that it has approximately 13,000
different tests that satisfy the set of content specifications. What is
the probability that a random selection of ten items from the pool
satisfies the test specifications?

1.13 Find a useful lower bound for the length of the test produced by the
test-assembly model in (1.24)–(1.28). What quantities in the model
have an impact on the actual length of the solution? Suppose the TIF
is controlled only by a lower bound Tk at θk = 0. Use the general ex-
pression derived in Exercise 1.9 to suggest a better lower bound for the
length of the test, assuming the average value for the discrimination
parameter in the item pool is equal to 1.5.
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Formulating Test Specifications

As discussed in the previous chapter, a new testing program begins with
the formulation of a set of specifications for the tests it has to support.
These specifications are used to design an item pool for the program. Once
the item pool has been realized, they are also used to guide the assembly
of the tests from the pool.

Although test specifications are key to the design of a testing program,
we lack a standard language for them. It is not uncommon, even within the
same organization, to find different traditions of formulating test specifica-
tions. Sometimes they are formulated verbally as a set of learning objectives
or a list of dos and don’ts for the test developers. But they can also be in
the form of one or more classification tables for the items, with numbers
that indicate their desired distribution in the test. Also, occasionally test
specifications are not available in explicit form at all but exist simply as
part of the history of the program shared by its test developers.

It is the goal of this chapter to introduce a universal language for dis-
cussing test specifications, review possible types of specifications formulated
in this language, and discuss a standard format for a set of specifications.
Our treatment of these topics should not be viewed as an attempt to in-
troduce another set of personal preferences into a field that has already
shown little standardization. Instead, it is motivated by a formal analogy
between problems of test design and problems in other industries that are
known to belong to the class of constrained combinatorial optimization
problems. This analogy will be explained more precisely in Chapter 4. Un-
til then, we define constrained combinatorial optimization loosely as the
process of searching a set of entities for the best subset meeting a number
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of constraints. Problems of optimal test assembly fit this general descrip-
tion because they imply the search for a best test in an item pool that has
to satisfy a given set of test specifications.

2.1 Examples of Test Specifications

The examples of test specifications in Table 2.1 are entirely fictitious, and
the set does not have any coherent structure. Also, it is much smaller than
the sets of test specifications typically found in real-life testing programs,
which can easily contain hundreds of them. The only purpose in giving
these examples is to show a sample of the large range of verbal statements
of test specifications that can be met in practice.

The following observations are made about these examples. First, each
of them addresses one or more properties of the items or the test. Examples
of such properties are: content (nos. 7, 14, and 17), word count (no. 15),
reliability (no. 3), presence of certain stimulus material (no. 4), response
format (no. 5), response time (no. 12), and in a stimulus common with
other items (no. 11).

We will use attribute as a generic term for any property relevant for the
design of a test. Below, we will classify attributes both by level (e.g., item or
test attribute) and by type (e.g., quantitative attribute). The notion of an
attribute enables us to give a useful definition of the term test specification.
Throughout this book, the following definition is adhered to:

A test specification is a statement that formulates a requirement
for an attribute of a test or its items.

Second, some of the specifications in Table 2.1 are simple (that is, they
formulate one requirement), whereas others are composites, involving more
than one requirement. An example of a composite specification is the one
on test length (no. 1), which can be split into two simple requirements: one
that the test length be greater than 60 and another that it be smaller than
75.

Third, some specifications are formulated in an unnecessarily compli-
cated way. For example, the specification on item bias (no. 8) can easily be
reduced to: “The numbers of items biased against males and females should
be equal.” Likewise, it is unnecessary that the specification on the mini-
mization of test length (no. 16) refers to all other specifications; a shorter
but equally effective form would be: “The test length should be minimal.”

Fourth, specifications can also be incomplete. An example of an incom-
plete specification is the one with respect to the time available to take the
test (no. 12), which does not refer to any explicit item or test attribute. A
complete version of it could be: “The sum of the expected response times
on the items should be smaller than 60 minutes.”
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1. Test length between 60 and 75 items
2. Number of items on applications equal to 24
3. Reliability of the test should be as high as possible
4. At most ten items with graphics
5. No more than half of the items can have a multiple-choice format
6. Items with explicit gender/minority orientation should be avoided
7. Number of items on nervous system smaller than five
8. For an item biased against males, there should be one against

females
9. Item p-values between .40 and .60
10. Test information function as close as possible to the target
11. Size of sets of items with a common reading passage between 4

and 6
12. Total time available to take the test is 60 minutes
13. Items 17 and 103 never in the same test
14. Number of items on nervous system and blood vessels between 10

and 15
15. No item should have more than 150 words
16. Test should meet all specifications, with a minimum number of

items
17. As many items on addition as on subtraction

TABLE 2.1. Examples of test specifications.

Fifth, some of these specifications use different wordings but express
essentially the same kind of requirement with respect to an attribute. For
example, expressions such as “smaller than,” “no more than,” “at most,”
and “total time available” all impose an upper bound on an attribute.
Likewise, expressions such as “should be avoided,” “smallest,” “minimum
number,” and “as close as possible” point at minimization of an attribute.
In Section 2.3, we will show that all test specifications basically fall into
two different categories: They either formulate a constraint that imposes a
bound on an attribute or formulate an objective that involves minimization
or maximization of an attribute.

To avoid ambiguities and possible complications in test design, partic-
ularly with larger sets of test specifications, an important principle in
formulating test specifications is the following:

Each test specification should be (1) simple, (2) concise, but (3)
complete.

If a test specification does not satisfy this principle, it might not only
be hard to determine whether it implies a constraint or an objective but
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may also cause uncertainty in the design of the test and hence lead to
unpredictable results.

2.2 Classification of Attributes

Two classifications of item and test attributes are presented, one by type
and the other by level. Being able to identify the correct type and level
of an attribute is important because, as will be shown in Chapter 3, this
identification helps us to model test-assembly problems correctly.

2.2.1 Type of Attribute
The following types of attributes can be distinguished:

1. Quantitative attributes. Examples of quantitative attributes are word
counts, expected response times, frequency of previous item or stim-
ulus usage, reliability, statistics such as the item p-value and test
information, indices for gender or minority orientation of items, and
readability indices. The common feature of all quantitative attributes
is that they take numerical values. These values can be real (e.g.,
response times or item information) or integer (e.g., word counts),
but this distinction plays no further role in the formulation of a
specification with a quantitative attribute.

2. Categorical attributes. Examples of categorical attributes are con-
tent category, response format of items (e.g., constructed response,
multiple-choice, or completion), cognitive level (e.g., knowledge, anal-
ysis, or application), use of auxiliary material (e.g., graph or table),
mental operation required to solve an item, and the author of the
item. The common feature of all categorical attributes is that they di-
vide or partition the item pool into subsets of items with the same at-
tribute (e.g., subsets of items on certain biological topics or containing
the same type of graphical material).

3. Logical attributes. These attributes differ from quantitative and cat-
egorical attributes in that they are not properties of single items or
tests but of pairs, triples, and so forth of them. The logical attributes
used in this book mainly involve relations of exclusion and inclusion
between items or tests. For example, a relation of exclusion between
items exists if they cannot be selected for the same test because one
has a clue to the solution of the other (so-called “enemy items”). A
relation of inclusion exists if items belong to a set with a common
stimulus and the selection of any item implies the selection of more
than one. Specifications no. 11 and no. 13 in Table 2.1 involve logical
attributes.
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It is sometimes possible to reduce a quantitative attribute to a categorical
attribute by pooling items with values close to one another. To be able to
deal with quantitative attributes, some of the heuristics for test assembly
in Chapter 4 use this option. We are not in favor of this practice. It is
rarely necessary to follow it and often leads to errors of a size that is hard
to determine.

If a test-assembly problem has more than one categorical attribute, each
separate attribute introduces a partition of the item pool. The same holds
for any possible combination of attributes (for example, when item content
is classified along multiple dimensions or using a hierarchy of topics). Which
partitions are relevant should follow from the set of test specifications.
Specification no. 14 in Table 2.1, which refers to items that are on both the
nervous system and blood pressure, is an example of a specification that
involves a partitioning of the item pool by a combination of two attributes.

2.2.2 Level of Attribute
Attributes exist at the following levels:

1. Item level. Several examples of attributes at the item level have
already been met in the previous pages. Item attributes are funda-
mental in the sense that several higher-level attributes are actually
aggregates of them. In Chapter 1, we already pointed out that, for
instance, coefficient α and the TIF are defined as aggregates of item
attributes; see (1.14) and (1.19).

2. Stimulus level. This level of attribute is met when an item pool con-
sists of sets of items organized around a common stimulus, as is a
usual format, for example, in testing reading comprehension. Basi-
cally, stimuli can have the same types of attributes as items. Although
they often have quantitative attributes (e.g., a word count), it is
unlikely for them to have psychometric attributes.

3. Item-set level. In addition to attributes of a stimulus, we need to allow
for the attributes of the set of items associated with it. Except for an
obvious attribute such as the number of items in the set, attributes at
this level are mostly aggregates of item attributes, such as the average
p-value in the set, the number of items with a certain response format,
and the distribution of item content.

4. Test level. Examples of test attributes are test length, TIF, classi-
cal reliability coefficient, a distribution of item content, number of
item sets, and total word count. Attributes at this level are invari-
ably quantitative and, like item-set attributes, often aggregate toward
lower-level attributes.
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5. Multiple-test level. If the problem consists of the assembly of a set of
tests, we need additional attributes at this level to specify the required
result. Examples of multiple-test attributes are item overlap between
a pair of tests in a set, the degree to which tests are statistically
parallel, and shifts in the distribution of item content between tests.

This classification of attributes by level is not exhaustive. For instance,
sometimes tests consist of sections or subtests, each dealing with a differ-
ent type of knowledge or ability, and we may be able to identify relevant
attributes of these sections or subtests. Because their existence does not
involve any new technical difficulties, we skip the treatment of such levels
in this book. An exception is Section 8.4.3, however, where the problem
of assembling a multidimensional test with different sections measuring
different ability dimensions is addressed (Exercise 2.1).

2.3 Constraints and Objectives

As already noted, in spite of seemingly large differences in wording, test
specifications often express identical requirements. Provided they are writ-
ten in a simple, concise, and complete form, each specification has the basic
format of a constraint on a test or an objective for an attribute of it:

1. A test specification is a constraint if it requires an attribute to satisfy
an upper or lower bound.

2. A test specification is an objective if it requires an attribute to take
a minimum or maximum value possible for the item pool.

In Table 2.1, specification no. 4 is a constraint because it requires the
number of items with graphics in the test (the test attribute) to be less
than or equal to 10 (the upper bound), whereas no. 1 can be rewritten
as two constraints, one with an upper bound of 75 and the other with a
lower bound of 60 on the length of the test (the test attribute). In Chapter
3, we will show that constraints can always be modeled as mathematical
(in)equalities.

On the other hand, specifications nos. 3, 6, 10, and 16 are objectives
because each of them requires an attribute (such as the test reliability,
number of items with gender or minority orientation, “distance” to a tar-
get information function, and test length) to be maximal or minimal. In
Chapter 3, we will show that objectives can be modeled as mathematical
functions that have to be minimized or maximized. The function that is
minimized or maximized is known as the objective function of the problem
(Exercise 2.2).

For brevity, throughout this book we will refer to constraints by the
type and level of attribute they address. That is, if a constraint is on
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a categorical, quantitative, or logical attribute, we will refer to it as a
categorical, quantitative, or logical constraint. Likewise, if a constraint is
at the item or test level, we will refer to it as an item-level or test-level
constraint. The same practice will be followed for objectives.

Although some types and levels are met more frequently than others,
it is possible to have meaningful constraints and objectives with nearly
all possible combinations of type and level of attribute. In Chapter 3, we
will formalize the full range of possible constraints and objectives for each
possible combination of type and level (Exercise 2.12). Following are a few
verbal examples:

1. All items with a certain combination of topics should be excluded
from the test (a set of categorical constraints at the item level).

2. Minimize item overlap between alternative tests at the second stage
of a multistage testing system (a logical objective at the multiple-test
level).

3. Maximize item information at ability estimates in an adaptive test
(a set of quantitative objectives at the item level).

4. Two given passages for a reading comprehension test exclude one
another (a logical constraint at the stimulus level).

When formulating a set of test specifications, we may have the choice
between formulating a specification as an objective or a constraint. Such
choices are possible particularly when we are familiar with the item pool
and know that either option leads to approximately the same result. For
example, if an item pool is known to have only ten items with graphics and
the distribution of attributes in the pool shows no dependencies between
them, a constraint imposing a lower bound equal to nine or ten, say, on
the number of items with graphics and the objective of maximizing this
number can be expected to produce approximately the same result.

Although the term “objective” suggests something of primary impor-
tance, in test assembly constraints actually are more useful than objectives.
The critical difference between the two is the degree of control over the
composition of the test they offer. If we want to have absolute control over
attributes, the best strategy is to formulate constraints with tight bounds
on them. If we formulate an objective for one of them, the only thing we
know in advance is that it will get a maximum or minimum value possible
for the pool given all constraints, but its actual value may be much higher
or lower than anticipated.
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optimize Objective Function

subject to

Constraint 1
Constraint 2

...
Constraint N

TABLE 2.2. Standard form of a set of test specifications.

2.4 Standard Form of the Set of Test Specifications

If a set of test specifications is in a simple, concise, and complete form, it
can always be presented in the standard form in Table 2.2. In Section 4.1,
we will introduce a few more conventions for this standard form, such as
conventions to present the types and levels of constraints in a fixed order,
include one of the more standard technical constraints, and add descriptive
labels to the objective and constraints.

2.4.1 Number of Objective Functions
Only one objective function can be optimized at a time. If we tried to op-
timize two functions simultaneously, each of them would draw the results
into a different direction, and a gain for one would necessarily mean a loss
for the other. A good example of this trade-off is offered by the objectives
with respect to test reliability (no. 3) and test length (no. 16) in Table 2.1.
It is a well-known result from test theory that, under mild assumptions, re-
liability increases monotonically with the number of items. Maximizing the
reliability of a test and minimizing its length are thus entirely antagonistic
objectives.

Nevertheless, sometimes we may have a test-assembly problem with more
than one attribute that, ideally, has to take the largest or smallest value
possible for the item pool, while these attributes are not entirely as antag-
onistic as reliability and test length. One valid reason for this problem to
happen is uncertainty about the bounds on the attributes that are realistic
for a given item pool. Another example is a test measuring a multidimen-
sional ability structure that we want to be as efficient as possible along each
of the dimensions. For such problems of multiobjective test assembly, sev-
eral strategies for reformulating them as an optimization problem with one
technical objective function exist, such as optimizing a weighted average of
the attributes, prioritizing the objectives and optimizing them sequentially,
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and minimaxing over the objectives (i.e., optimizing a common bound to
them). These strategies will be discussed in more detail in Section 3.3.4.

An interesting question is how to proceed if all existing test specifications
imply constraints and there appears to be no objective. This problem is
not realistic because for a testing program it should always be possible to
identify a new attribute that, however secondary its importance, could be
optimized, and it would be a loss of opportunity to ignore this possibility.
But if the case were to arise, it is actually one in which a test assembler is
only interested in selecting a test from the subset of tests from the pool that
meet the constraints (called a feasible subset; see Section 2.4.2). Because
the test assembler is actually indifferent as to the differences between the
tests in this subset, a simple strategy for this case is to choose an arbitrary
objective function (for instance, one based on a dummy variable added
to the model) and use one of the algorithms in this book to find a test.
This strategy is recommended because, as already indicated at the end of
Section 1.2.8, for a realistic set of constraints, the task of finding a test in
this subset is certainly not trivial.

2.4.2 Number of Constraints
Although unlikely to happen, a test-assembly problem need not have any
constraint at all. In this case, we would just have an unconstrained opti-
mization problem, and all we have to do to solve it is find a test with the
best value for the objective function among the set of all possible tests from
the pool.

On the other hand, we have no upper limit on the number of constraints.
To explain this lack of limit, we need a few new notions. A feasible test
is a test that meets all constraints. The feasible set of solutions for a
test-assembly problem is the set of all possible feasible tests. An objective
function helps us to identify a best test in the feasible set, which is known
as an optimal feasible solution. If the set of feasible solutions is empty, the
problem is known as infeasible.

If an extra constraint is added to a test-assembly problem, its only effect
on the set of feasible solutions is a possible decrease in its size. If a size
decrease happens, we have to select the test from a smaller subset and, con-
sequently, the solution may deteriorate (that is, have a less favorable value
for the objective function). Both effects do not need to happen, however.
If the new constraint is redundant (i.e., already implied by the old con-
straints), nothing happens at all. But if it is stringent and becomes active
in the solution, the set of feasible solutions becomes smaller and the solution
deteriorates. Adding too many such constraints can lead to overconstrain-
ing the problem (that is, to an infeasible problem). Thus, it is the nature
of the constraints and not their number that determines when we have too
many of them. The notions in this section are graphically illustrated for a
two-variable linear optimization problem in Section A1.2.2.
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In practice, infeasibility is rarely a problem in test assembly. Several of
the empirical examples of test assembly later in this book had hundreds,
or even thousands, of constraints and still have a solution. Two caveats are
necessary, however. First, it is always recommended to avoid constraints
that take the form of a mathematical equality. Such constraints imply an
enormous reduction of the set of feasible solutions, and the presence of one
or two of them easily overconstrains the problem, particularly if they are
quantitative. The only exception we will make is an equality constraint on
the length of the test. The issue of test assembly with equality constraints
will be picked up again in the discussion of (3.50) in Section 3.2.4. Second,
the item pool should be large enough and on-target. If the pool is small, it
may be depleted quickly, and certainly will be if it is supposed to support
a series of tests. An item pool is off-target if (1) it is short on certain
attributes or (2) has a correlational structure among the attributes that
makes it impossible to select items with some attributes without running
short on items with others.

2.5 Literature

Although several introductory textbooks deal with the topic of item writing
and test construction, specialized literature with rules for formulating test
specifications is hardly available. This omission may be due to the fact that
psychological tests are typically developed as the direct result of research
on the constructs they are assumed to measure (Section 1.1.1), whereas
educational testing has had a long tradition of test development based on
instructional objectives (e.g., Popham, 1978).

There are a few exceptions, however. A textbook that has provided gen-
erations of testing specialists with their first introduction to test design is
Bloom, Hastings and Madaus’s (1971), Handbook on Formative and Sum-
mative Evaluation of Student Learning. The tradition of specifying a test
by a two-way table, with a content classification defining one dimension
and a behavioral taxonomy the other, was introduced in this text. The
notion of a behavioral taxonomy has been developed further, for example,
in Fleishman and Quaintance (1984), whereas Wigdor and Green (1991)
investigate the possibilities of test specification based on task analysis.

The distinction between constraints and objectives is standard in the field
of mathematical programming. A few introductory textbooks on mathe-
matical programming are discussed at the end of Appendix 1. The classi-
fication of attributes, constraints, and objectives into different types and
levels has been developed over the history of the author’s work on test de-
sign. The three basic types of attributes, constraints, and objectives were
introduced in van der Linden (1998a), whereas the distinction between the
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different levels of attributes, constraints, and objectives in this chapter was
formulated in van der Linden (2000b).

2.6 Summary

1. The first step in the design of a new test program is the formulation
of a set of specifications for its tests.

2. A test specification is a statement that formulates a requirement for
an attribute of a test or its items.

3. Attributes are substantive or statistical properties of a test. Attributes
can be (i) quantitative, (ii) categorical, or (iii) logical. In addition,
they can be formulated at the level of (i) individual items, (ii) stimuli,
(iii) item sets in a test, (iv) individual tests, or (v) sets of tests that
are to be assembled.

4. A test specification can be formulated as (i) a constraint that requires
an attribute to satisfy an upper or lower bound or (ii) an objective
that requires it to take a minimum or maximum value possible for
the item pool. For brevity, constraints and objectives are referred to
by the type and level of attribute they address.

5. Each specification should be (i) simple, (ii) concise, but (iii) com-
plete. This principle allows us to determine whether a specification
is a constraint or an objective. Also, if some of the specifications do
not obey this principle, the desired composition of the tests becomes
ambiguous and the control of the quality of the tests in the program
becomes less than optimal.

6. The standard form of a test-assembly problem is as an objective func-
tion to be optimized subject to a number of constraints. Although a
problem always has a single objective function, there exists no upper
limit on its number of constraints.

7. Constraints define the set of feasible tests for a given item pool. The
objective function expresses our preferences for the tests in this fea-
sible set. An optimal feasible test is one in the set of feasible tests
with an optimal value for the objective function.

8. Unless redundant, the addition of a constraint to a test-assembly
problem leads to a smaller set of feasible tests. If the set of feasible
tests becomes smaller, the optimal value of the objective function for
the item pool can deteriorate but never improve.
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9. Although the number of constraints is unlimited, depending on their
nature, a test-assembly problem can be infeasible for a small number
of them. But, in practice, infeasibility is no problem, provided the set
of constraints is well formulated and the item pool is on-target.

10. Equality constraints should be avoided because they easily overcon-
strain the test-assembly problem, particularly if they are quantitative.

2.7 Exercises

2.1 Identify the attributes in each of the specifications in Table 2.1, and
determine their type and level.

2.2 Which of the specifications in Table 2.1 imply a constraint? Which
imply an objective?

2.3 Reformulate the specifications in Table 2.1 as explicit constraints with
upper or lower bounds or objectives with minimization or maximiza-
tion.

2.4 There always exists a trade-off between objectives for test assembly
problems. Which pairs of objectives in Table 2.1 can be expected to
have the strongest trade-offs? Which will have the weakest?

2.5 Why should we relax specification no. 2 in Table 2.1? How could it be
relaxed if it occurred in a problem with minimization of the length
of the test? How could it be relaxed in a problem with maximization
of the reliability of the test?

2.6 Specification no. 4 in Table 2.1 implies a constraint with an upper
bound equal to 10. Why might it be less meaningful to reformulate
this specification as an objective with minimization of the distance
between the number of items on graphics in the test and a goal value
equal to 10?

2.7 Specification no. 5 in Table 2.1 is somewhat unusual in that it does
seem to imply a constraint but has no explicit bound. Reformulate
this specification as a constraint with an explicit bound. What bound
should be used?

2.8 Specification no. 9 in Table 2.1 implies two different constraints. Re-
formulate this specification as an objective with about the same effect
as the two constraints. For which other specifications in this table is
this reformulation possible?
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2.9 Specification no. 10 in Table 2.1 requires an entire TIF to approx-
imate a target. In Section 1.4, we dealt with this type of problem
by constraining the TIF to target values at points θk, k = 1, ..., K.
The objective of minimal test length in (1.24) forces the TIF to ap-
proximate the target values Tk from above. Formulate an alternative
objective function with the same effect.

2.10 Specification no. 13 in Table 2.1 is somewhat unusual in that it seems
to imply neither a constraint nor an objective. Choose 0-1 variables
x17 and x103 and formulate the specification as a constraint. Suppose
this constraint makes the problem infeasible. Can this constraint be
relaxed (that is, its upper bound made less tight)? Can it be replaced
by an objective function with approximately the same effect?

2.11 Specification no. 15 in Table 2.1 implies an item-level constraint for
each item in the pool. Reformulate this set of constraints as a single
constraint. What strategy would allow us to drop these constraints
at all?

2.12 Section 2.3 gives an example of a logical objective at the multiple-
test level and a quantitative objective at the item level. Formulate a
meaningful example of:

(a) quantitative and categorical objectives at the multiple-test level;

(b) quantitative, categorical, and logical objectives at the test level;

(c) categorical, quantitative, and logical objectives at the stimulus
level;

(d) quantitative, categorical, and logical objectives at the item-set
level;

(e) categorical and logical objectives at the item level.
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Modeling Test-Assembly Problems

Although the idea of modeling a test-assembly problem may seem far-
fetched, it is actually a very effective way of approaching the problem.
Once a problem has been modeled, we can study its structure, use a stan-
dard algorithm to calculate a solution, and evaluate the impact of possible
changes in the test specifications on the solution. The alternative approach
would be to develop a separate algorithm for each problem. The advan-
tages of modeling hold especially if the model turns out to have a simple
structure, such as the linear structure for the test-design problems in this
book.

The process of modeling a test-assembly problem goes through the fol-
lowing four steps:

1. identifying the decision variables;
2. modeling the constraints;
3. modeling the objective;
4. solving the model for an optimal solution.

At first sight, the more challenging steps in this process may seem to be
the modeling of the constraints and the objective, but actually it is that
of identifying the decision variables. This step typically involves a concep-
tual reorganization of the problem into a set of elementary decisions with
outcomes that together define the complete set of possible solutions to the
problem. Once the variables have been identified, the steps of modeling
the constraints and objective become relatively straightforward. In the sec-
tions below, we will present the basic formulations for each possible type
and level of constraint and objective. As a result, these two steps mostly re-
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duce to the identification of the nature of the constraints and objective and
an appropriate choice from the menu of available options in this chapter.

In the fourth step, the model is fed into a (commercial) computer pro-
gram with an integer programming algorithm (commonly known as a solver
or an optimizer), which calculates the solution. A discussion of these algo-
rithms is postponed until Chapter 4.

The constraints and objectives discussed in this chapter are for the stan-
dard problem of assembling a single test from a pool of discrete items. As
a consequence, we do not yet deal with constraints and objectives for prob-
lems with multiple tests and item sets. These topics will be treated in later
chapters.

3.1 Identifying Decision Variables

To facilitate the task of identifying decision variables, it helps to think
of test-assembly problems as selection or assignment problems in which
“objects” (such as discrete items, stimuli, and sets of items) are selected
from a pool and assigned to an empty test. The assignment should be
such that an optimal value for the objective function is obtained and all
constraints are satisfied. Another analogy, which will be discussed in more
detail in section 4.3, is that of shipping or transporting items from one
location to another. We use i = 1, ..., I to indicate the items in the pool.

Ignoring all constraints, the number of different tests possible from a pool
of I items is 2I . As already noted in the preceding chapter, this is an astro-
nomical number even for item pools much smaller than those typically met
in practice (see Exercise 1.10). We have several ways to index the different
tests that can be assembled from an item pool. One is to produce a list of
them and code each test on the list using one integer variable, y = 1, ..., 2I .
This variable is a decision variable in the sense that its range represents
all possible outcomes of the unconstrained version of the problem, and the
decision on what test to select is equivalent to the choice of a value for this
variable. Choosing y as the decision variable is not very helpful, however.
The job of listing all possible tests is unrealistic for any item pool of non-
trivial size. Also, there exist another choice of decision variables that allows
us to formulate the test specifications as explicit objective functions and
constraints.

This more effective choice of variables is based on the fact that each
of the 2I possible tests can be coded by a string of zeroes and ones. The
coding scheme is given in Table 3.1. If this scheme is used, the selection
of a test from the pool amounts to a series of decisions, one for the code
of each item. The decision problem now has I decision variables xi, each
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Item 1 2 ... i ... I − 1 I
Variable x1 x2 ... xi ... xI−1 xI

Test 1 0 0 ... ... ... 0 0
Test 2 1 0 ... ... ... 0 0
Test 3 1 1 ... ... ... 0 0

... ... ... ...
Test 2I 1 1 ... ... ... 1 1

TABLE 3.1. 0-1 decision variables for the items in the pool.

defined as:

xi =
{

1 if item i is selected in the test
0 if item i is not selected in the test. (3.1)

These variables were already used in the example in Section 1.4.
This choice of variables does allow us to introduce constraints on the

selection of the test that reduce its choice from the full set of possible tests
to a choice from the subset of feasible tests. For example, the constraint
that the length of the test be equal to n reduces the set to the subset of tests
for which the number of ones in Table 3.1 is equal to n. Because we have
0-1 variables, the same reduction is obtained if the sum of the variables xi

is set equal to n; that is, if the equality constraint

I∑
i=1

xi = n (3.2)

is imposed on the selection of the test. A well-known rule from combina-
torics tells us that this constraint reduces the size of the feasible set to(

I
n

)
.

Suppose that the next constraint to be imposed on the problem is that
items 11 and 14 not enter the test together. For the variables x11 and x14,
this means that either of them is allowed to have the value zero or one but
the combination of two ones must be excluded. A simple way to formulate
this constraint is by imposing an upper bound on the sum of their values:

x11 + x14 ≤ 1. (3.3)

If this constraint is added to the problem, the set of feasible tests becomes
smaller again.

If more constraints are added to the problem (for real-world problems
we often need several hundred of them to model all test specifications), the
composition of the set of feasible tests quickly becomes difficult to track. In
fact, we easily lose track of the size of this set! Even for the combination of
the two constraints in (3.2) and (3.3), the combinatorics needed to calculate
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the size of the feasible set is not trivial. Basically, if we want an optimal
test that meets a set of specifications, we have to search for the proverbial
needle in the haystack, but with the additional complications that both the
size and the shape of the haystack are unknown.

Fortunately, as we will see in Chapter 4, we have algorithms that allow us
to search “unknown” sets of feasible solutions for a best solution. For now,
the only point to note is that by choosing decision variables of the type in
(3.1), we appear to be able to formulate different types of constraints on
the selection of a test.

Observe that the choice of decision variable y was at the highest level
in the test, whereas the choice of the variables xi was at the lowest level
possible, namely the individual items. Generally, as higher-level attributes
are mostly aggregates of lower-level attributes (Section 2.2.2), a choice at
a lower level is advantageous in that it gives us the flexibility to formulate
constraints and objectives at the same or any higher level in the test.

Another type of decision variable is used to model the problem of item-
pool design (see Chapters 10 and 11). A design for an item pool is a
blueprint that shows us how many items have to be written for each possi-
ble combination of attributes. The problem of finding an optimal blueprint
can also be treated as an instance of constrained combinatorial optimiza-
tion, this time with integer decision variables yd=0, 1, 2... defined over
possible combinations of attributes, d. These variables constitute a set of
decision variables for the problem because each possible array of their values
corresponds to a blueprint of the pool.

The choices of 0-1 or fully integer variables do not exhaust all of our
options. In later chapters, we will meet real-valued variables, introduced
mainly for technical reasons, 0-1 variables defined for each possible com-
bination of an item in the pool with an individual test in a multiple-test-
assembly problem, and variables chosen at intermediate levels in the test
(e.g., stimulus level). We will also meet problems that need to be modeled
using combinations of different types of variables (Exercise 3.1).

The reader may still have the impression that, in spite of the formal ap-
proach to test assembly introduced in this book, formulating test-assembly
problems still remains somewhat of an art. This impression is certainly
correct. But the most important part of this art is to choose appropriate
decision variables. A test assembler skilled in the approach in this book
knows what types of variables are available, how to combine them in one
problem, how to use them to formulate constraints and objectives, and
what types of formulations should generally be avoided. In addition, this
person keeps an eye on the total number of variables required as well as
the algorithms available to calculate a solution.



3.2 Modeling Constraints 51

3.2 Modeling Constraints

Separate sections are devoted to the formulation of quantitative, categor-
ical, and logical constraints. In each of these sections, we show how these
constraints can be formulated at the various levels distinguished in the test.
After all types of constraints have been introduced, we show how to check a
given set of constraints both for correctness and feasibility (Section 3.2.4).

3.2.1 Quantitative Constraints
Quantitative attributes are attributes that take numerical values. Each of
the constraints in this section addresses such an attribute. We will use qi as
a generic symbol for the value of item i on a quantitative attribute.

Quantitative Constraints at the Test Level
The basic format of a quantitative test-level constraint is

I∑
i=1

qixi � bq, (3.4)

where the relation symbol denotes the choice of a inequality or equality.
The right-hand-side coefficient in this constraint, bq, is the bound imposed
on the weighted sum of variables on the left-hand side. Because xi = 1
only for the items in the test, the sum in (3.2) is equal to the sum

∑
qi

for a test from the pool. This fact is used in the verbal interpretations of
the examples of test-level constraints below, in which we refer just to “the
test” and skip the reference to the decision variables.

Suppose that we want to assemble a test for which the total amount of
time needed to solve the items is not larger than, say, 60 minutes. Suppose
also that we have estimates of the amount of time a typical test taker
needs to answer the items in the pool; for example, estimates of the 90th
percentiles in the distributions of the actual response times in a previous
sample of test takers. If ti denotes the estimate for item i, the constraint
can be formulated as

I∑
i=1

tixi ≤ 60. (3.5)

This constraint should be read as, “The total amount of time needed to
answer the items in the test should not be larger than 60 minutes.”

To make a set of tests look equally fair, it is often important that their
lengths in print do not differ too much. Let li denote the number of lines
needed to print item i. Suppose a printed page consists of 25 lines and we
need test forms that are close to six pages in print; say, not shorter than
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five lines below this limit, but certainly not longer. This requirement is met
if the following two constraints are imposed on the selection of the items:

I∑
i=1

lixi ≤ 150, (3.6)

I∑
i=1

lixi ≥ 145. (3.7)

This set of constraints should be read as, “The total number of lines needed
to print the test should not be larger than 150 or smaller than 145.”

Quantitative attributes regularly met in IRT-based test-assembly prob-
lems are the item and test information functions (Section 1.2.4). Suppose
a test is assembled for admission decisions with a cutoff score at θc. Let
Ii(θc) denote the value of the information function of item i at this point.
The test is only considered adequate for the admission decisions if its in-
formation function has a minimum value of eight at the cutoff score. The
required constraint is

I∑
i=1

Ii(θc)xi ≥ 8. (3.8)

This constraint should be read as, “The value of the test information
function at θc should be larger than or equal to eight.”

After some practice, the reader will be able to immediately interpret
constraints presented as mathematical (in)equalities. Also, the reverse step
of writing verbal constraints as mathematical (in)equalities will quickly
become routine.

Quantitative Constraints at the Item-Set Level
All previous examples of constraints were at the test level because their
sums ranged over the variables of all items in the pool. This observation
immediately suggests how to formulate quantitative constraints at lower
levels in the test.

If a pool has item sets with common stimuli, the sets are often larger
than required for the test. If so, it may make sense not only to constrain
the size of the sets in the tests but also to impose certain bounds on some
of their quantitative attributes. Let Vs be the set of indices of the items
for stimulus s available in the pool. Item i ∈ Vs is thus an arbitrary item
in the set in the pool associated with stimulus s. Suppose that the sum of
the π values of the items for stimulus s has to be between the values 2 and
3. The following constraints force the sum of π values to be between these
bounds: ∑

i∈Vs

πixi ≤ 3, (3.9)
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i∈Vs

πixi ≥ 2. (3.10)

These constraints should be read as, “The sum of π values of the set of
items for stimulus s in the test should not be larger than 3 or smaller than
2.”

Observe that the sums in these two constraints are no longer over the
variables of all items in the pool but only over those in the item set for
stimulus s. An alternative formulation of the constraints is possible if the
items in each set are indexed using adjacent values for i. For example, if
the range for stimulus s runs from i = 23 to i = 35, the sum in (3.9) and
(3.10) can be formulated as

∑35
i=23 πixi. However, the notation with the

sum over a set of item indices is more general and works for any type of
pool.

If the constraints hold for multiple stimuli s = 1, ..., S, each with possibly
different upper and lower bounds bmax

s and bmin
s , respectively, they can be

written more compactly as the following two sets of inequalities:∑
i∈Vs

πixi ≤ bmax
s , for all s, (3.11)

∑
i∈Vs

πixi ≥ bmin
s , for all s. (3.12)

Observe that (3.9)–(3.12) constrain the sums of π values as desired but
have an undesirable effect on the selection of the item sets: Their presence in
a test-assembly model leads to the selection of each item set that meets the
bounds, no matter how many sets there are in the pool. This unconditional
selection of item sets is usually undesirable. Besides, if the model also has
a constraint fixing the number of sets in the test, the problem is bound to
become infeasible. To avoid such complications, we need logical constraints
that allow us to constrain the attributes of an item set conditional on its
selection. If we use such constraints, the required number of item sets can be
specified independently by another constraint. The introduction to logical
constraints is postponed until Section 3.2.3.

Quantitative Constraints at the Item Level
As the variables xi are at the item level, we are able to introduce constraints
on the selection of individual items. Suppose we wish to be more stringent
than the constraints in (3.9)–(3.12) and require each item in the test to
have a π value between .40 and .60.

The upper bound of .60 is imposed on each item in the test by the
following set of constraints:

πixi ≤ .60, for all i. (3.13)
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These constraints work because xi can be equal to 1 only for items with
π values not larger than .60, whereas the constraint is still true for any π
value if xi = 0.

It may seem natural to impose the lower bound of .40 by reversing the
inequality in (3.13), that is, imposing πixi ≥ .40 for all items. But this type
of constraint does not work. For items in the pool with a π value smaller
than .40, the inequality is always false: for both xi = 0 and xi = 1, the left-
hand side is always smaller than the lower bound of .40 on the right-hand
side. (A more general treatment of the notions of true and false constraints
and their role in a check on the correctness of constraints is given in Section
3.2.4.)

The following set of constraints, however, does work well:

.40xi ≤ πi, for all i. (3.14)

These constraints restrict the selection of items to those that have a π value
larger than .40 but do not impose anything on the π values of the items
that are not selected (that is, if xi = 0).

The constraints in (3.13) and (3.14) have no summation sign. A more
coherent way of looking at them, however, is as the limiting case of a
constraint with a sum over one individual item. The constraints in (3.13)
and (3.14) were formulated for all items in the pool. If we need to constrain
the π values of a certain subset of items, they should be formulated for the
indices in this subset only.

Discussion
If quantitative attributes are constrained at the test or item-set level and
the same is done for their number of items, we in fact constrain average
values of the attributes. Direct constraints on averages are also possible.
For a test-level constraint, the only thing we need to do is adapt the basic
format in (3.2) to

n−1
I∑

i=1

qixi � µq, (3.15)

where µq is the required bound on the average of attribute q, and the test
length is assumed to be fixed to n. This constraint is also linear in the
decision variables. Generally, we try to avoid such composite constraints,
however. According to the principle of formulating test specifications dis-
cussed in Section 2.1, it is safer to formulate simple constraints for separate
attributes. Possible shortcuts should be introduced only when the com-
plete set of constraints has been checked (see Section 3.2.4) and combining
constraints into a new one is known not to introduce any problems.

It is possible to have specifications that seem to constrain two different
quantitative attributes. If this occurs, they should be modeled as a bound
on the difference or sum of two of the weighted sums

∑I
i=1 qixi in (3.2).
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The result is again a linear (in)equality in the decision variables and does
not present any problem for the optimization techniques used in this book
(Exercise 3.5).

Sometimes, however, a closer look reveals a different type of constraint.
A case in point is specification no. 8 in Table 2.1. Measures of gender and
minority orientation can be defined in different ways. For example, one
possible definition of gender orientation is as a single quantitative attribute
gi with negative and positive values for the degree of male and female
orientation. For this definition, no. 8 requires the sum of the attribute values
gi over all items in the pool to be equal to zero. Because we generally avoid
equality constraints on quantitative attributes, the sum should be forced
to be in a small interval about zero; that is, the constraints should be
formulated as

I∑
i=1

gixi ≤ δ, (3.16)

I∑
i=1

gixi ≥ −δ, (3.17)

with δ an arbitrary small positive number selected by the test assembler
that defines an interval (−δ,δ) about zero. As will be shown at the end
of Section 3.2.2, gender orientation can also be defined as a categorical at-
tribute. In this case, we need a single constraint that combines two different
sums.

An alternative way to realize item-level constraints is to remove the
items that do not meet them from the pool before the test is assembled.
Any selection from the remaining pool would then automatically meet the
constraints. In addition, this measure would reduce both the number of
constraints and the number of decision variables. A disadvantage, however,
is that we may have to recode all items and reformulate the remaining
constraints to meet the new code. Fortunately, most commercial software
programs for combinatorial optimization preprocess the model before a so-
lution is calculated. During this stage, unneeded variables and constraints
are removed from the model. If this occurs, the item pool is automatically
recoded and the constraints are reformulated. If the program provides this
option, the easiest way to proceed with item-level constraints, such as those
in (3.13) and (3.14), is to insert them into the test-assembly model and let
the program “clean up” the item pool and constraint set.

3.2.2 Categorical Constraints
Categorical attributes partition the item pool into subsets of items with
a common attribute. We will use C to denote the class of subsets in the
partition and c as a generic symbol for a subset or category. Categorical
constraints are always on the number of items selected from these subsets or
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from combinations of them. Because the decision variables are binary, the
selection of certain numbers of items from a given subset or combination
of subsets can be realized by imposing bounds on simple sums of their
variables; no weighting whatsoever is needed.

Categorical Constraints at the Test Level
Suppose we need to constrain the distribution of categorical attributes in
the test; such as item content. We use Vc to represent the set of indices of
the variables of the items in subset c. Constraints on the distribution of
the items in the test can be formulated as∑

i∈Vc

xi ≤ nmax
c , for all c, (3.18)

∑
i∈Vc

xi ≥ nmin
c , for all c, (3.19)

where nmax
c and nmin

c are upper and lower bounds on the number of items
from set Vc, respectively. These constraints should thus be read as, “The
number of items in the test with content attribute c should not be larger
than nmax

c or smaller than nmin
c .”

The same type of constraints can be formulated with respect to any
other categorical attribute, such as a behavioral taxonomy, item author,
the presence of certain auxiliary material in a stimulus (graphs, tables, or
mathematical equations), a cognitive operation required for the solution
of the item. Because these extensions are straightforward, we skip their
treatment.

The generalization to a constraint on a combination of categorical at-
tributes is as follows. Suppose we want to assemble a test in which items
with a certain content have a certain format (e.g., biology items have a
multiple-choice format). In addition to the subsets Vc, we introduce sub-
sets Vf , which contain the indices of the items for format f available in
the pool. Constraints on combinations of item content and format can be
formulated using the intersection Vc ∩ Vf :∑

i∈Vc∩Vf

xi ≤ nmax
cf , for all c and f, (3.20)

∑
i∈Vc∩Vf

xi ≥ nmin
cf , for all c and f, (3.21)

where nmax
cf and nmin

cf are bounds on the number of items with content c and
format f .

The formal difference between the constraints in (3.18) and (3.19) and
(3.20) and (3.21) is the use of a set operation in the definition of the range
over which the sum in the last two constraints is taken. This operation
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could have been avoided by introducing a joint partition of the item pool
with respect to c and f using a new single index. But we prefer the nota-
tion in (3.20) and (3.21) because it correctly suggests that any categorical
constraint can be formulated by set operations on a few basic classifications
of the items in the pool with a known substantive interpretation.

Each of the sets of constraints in (3.18)–(3.21) is for the entire collection
of subsets. If we want to constrain the selection of items from a smaller
collection, we should choose the ranges of c and f correspondingly.

Categorical Constraints at the Item-Set Level
The constraints in (3.18)–(3.21) are at the test level because they control
the distribution of the items in the test; they do not necessarily impose a
constraint at a lower level in the test. The only thing needed to formulate
a constraint at a lower level is to choose the appropriate set of items for
which the bounds must hold.

Recall that we used Vs to denote the sets of indices of the items in the pool
associated with stimuli s = 1, ..., S. Constraints on the selection of items
from these sets with respect to content attribute c can be formulated as
bounds on the number of items from the intersections Vs ∩Vc. Let nmax

sc and
nmin

sc be the upper and lower bounds on the number of items needed from
these intersections. The required constraints are:∑

i∈Vs∩Vc

xi ≤ nmax
sc , for all c and s, (3.22)

∑
i∈Vs∩Vc

xi ≥ nmin
sc , for all c and s. (3.23)

Again, as in (3.9)–(3.12), these constraints lead to unconditional selection
of items from any set in the pool. How to make the selection of individ-
ual items from a set conditional on the selection of the entire set will be
discussed in Section 3.2.3.

Categorical Constraints at the Item Level
It is also possible to formulate categorical constraints at the item level.
The two most common types of constraints at this level occur if some of
the items in the pool have a unique combination of attributes and the test
assembler wants to include these items in the test or exclude them from it.
Let i be an item with such a combination of attributes. The two constraints
that include and exclude item i are

xi = 1 (3.24)

and
xi = 0, (3.25)
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respectively.
If these two constraints have to be formulated for more than one item,

the use of set notation makes a compact formulation possible. Let V1 and
V0 be two sets of items that have to be constrained in and out of the test,
respectively. The required constraints are

xi = 1, i ∈ V1, (3.26)

xi = 0, i ∈ V0. (3.27)

In fact, it is possible to go one step further and replace either set of
constraints in (3.26) and (3.27) by a single constraint:∑

i∈V1

xi = n1, (3.28)

∑
i∈V0

xi = 0, (3.29)

where n1 is the number of items in set V1. Because the decision variables
are 0-1, (3.28) and (3.29) impose the same constraints on item selection as
the constraints in (3.26) and (3.27).

Discussion
A special attribute of a test is its length. The type of constraint needed to
restrict the length of a test was already introduced in Section 3.1:

I∑
i=1

xi � n. (3.30)

The same type of constraint can be formulated on the size of an item set.
If we want to constrain the selection from set Vs between nmax

s and nmin
s ,

the necessary constraints are ∑
i∈Vs

xi ≤ nmax
s , (3.31)

∑
i∈Vs

xi ≥ nmin
s . (3.32)

Test length and item-set size are in fact quantitative attributes, which in
set theory are known as the cardinality of a set. Nevertheless, the format of
the constraints in (3.30)—3.32) resembles that of a categorical constraint.
This happens because the contributions by the items to the length of a test
or the size of a set are qi = 1. For convenience, however, from now on we
will refer to (3.30)–(3.32) as categorical constraints. This decision allows
us to describe:
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1. quantitative constraints as constraints with real-valued bounds on
weighted sums of variables and

2. categorical constraints as constraints with integer bounds on un-
weighted sums of variables.

We continue the discussion at the end of Section 3.2.1 on the type of
attribute involved in gender orientation in specification no. 8 in Table 2.1.
If gender orientation is defined as a categorical attribute with possible
values “male orientation” and “female orientation,” we need constraints on
two subsets of items in the pool. Let Vm and Vf denote the sets of indices
of items in the pool with a male and a female orientation, respectively. The
required constraints are no longer those in (3.16) and (3.17) but∑

i∈Vm

xi −
∑
i∈Vf

xi ≤ δ, (3.33)

∑
i∈Vm

xi −
∑
i∈Vf

xi ≥ −δ, (3.34)

where δ now has an integer value close to zero. If we know that the item
pool supports an equality constraint on this attribute, we can set δ = 0.

3.2.3 Logical Constraints
The types of constraints considered in this section are logical because they
deal with attributes that exist as logical relations between pairs, triples,
and so on of items. The most important relations imply if-then, or condi-
tional, selection of items. Two different kinds of conditional constraints are
discussed.

The first kind arises if a set of items has the attribute of exclusion;
that is, if one of the items in the set is selected, we cannot select any of
the others. Such items are sometimes referred to as “enemies”. Let i0 and
i1 be the indices of a pair of enemies. The constraint needed to prevent the
selection of one item if the other is selected is

xi0 + xi1 ≤ 1. (3.35)

This type of constraint was already met in Section 3.1.
If larger sets of enemies exist, the following generalization of (3.35) is

needed: ∑
i∈Ve

xi ≤ 1, (3.36)

where Ve is a set of enemies. For multiple sets of enemies e ∈ E, the set of
constraints can be formulated more compactly as∑

i∈Ve

xi ≤ 1, for all e. (3.37)
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The second kind of constraint arises if the set has the attribute of inclu-
sion; that is, if one of the items in the set is selected, we need to select more
than one. The foremost example of this problem is test assembly from a
pool with sets of items with a common stimulus. In Chapter 7, we will in-
troduce several strategies for dealing with such item sets. Here, we already
discuss one strategy that allows us to illustrate the logical nature of the
constraints needed to model the relation.

Suppose each item set in the pool has one item that can be considered
as its ideal representative—for example, because it has an optimal combi-
nation of attributes for the stimulus. We call such items pivot items. Let
i∗s be the index of the pivot item in the set associated with stimulus s.
The following adjustment of (3.31) and (3.32) makes the selection of the
required number of items from the set conditional on the selection of pivot
item i∗s: ∑

i∈V s

xi ≤ nmax
s xi∗

s
, (3.38)

∑
i∈V s

xi ≥ nmin
s xi∗

s
. (3.39)

The bounds in these constraints, which are still linear in the variables,
are equal to zero if xi∗

s
= 0 but equal to nmax

s and nmin
s if xi∗

s
= 1. Thus,

dependent on the selection of the pivot item, we select zero or between
nmax

s and nmin
s items from the set. However, these types of constraints do

not work if the only bound imposed on the set size is a lower bound, that
is, if we use (3.39) without (3.38) (Exercise 3.6).

It is easy to verify that the same type of constraint can be used if the
size of set s should be equal to ns items:∑

i∈V s

xi = nsxi∗
s
. (3.40)

The same adjustments to the bounds are needed for constraints on the
attributes of item set Vs in the model. If the attribute is quantitative, the
set of constraints in (3.11) and (3.12) needs to be adjusted as∑

i∈Vs

qixi ≤ bmax
s xi∗

s
, for all s, (3.41)

∑
i∈Vs

qixi ≥ bmin
s xi∗

s
, for all s. (3.42)

For categorical attribute constraints, such as those in (3.22) and (3.23), the
adjustments are ∑

i∈Vs∩Vc

xi ≤ nmax
sc xi∗

s
, for all c and s, (3.43)

∑
i∈Vs∩Vc

xi ≥ nmin
sc xi∗

s
, for all c and s. (3.44)
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3.2.4 Checking Constraints
Although it was immediately clear for most of the previous constraints that
they functioned as required, for some of them, such as the constraints with
the upper bounds on quantitative item attributes in (3.14) and the logical
constraints on item sets in (3.38)–(3.44), further analysis was required to
establish their correctness. In this section, we first offer a simple rule that
can be used to check whether a constraint is correct (that is, whether it
represents the test specification we have in mind). We then address the
issues of checking the feasibility of an individual constraint and a set of
constraints.

Checking Constraints for Correctness
A well-formulated constraint is true for some combinations of values for its
decision variables and false for others. Consider for example the constraint

xi0 + xi1 ≤ 1, (3.45)

which was used in (3.35) to represent the specification that items i0 and
i1 are enemies and cannot be selected simultaneously in the test. This
constraint is true for the combinations of values (xi0 ,xi1)=(0,0), (1,0), and
(0,1) but false for (1,1).

Generally, a solution to a test-assembly model is an array of values for
the decision variables for which all constraints are true. If we insert the
constraint in (3.45) into a model, the solution will thus consist of the com-
binations (xi0 ,xi1)=(0,0), (1,0), or (0,1), but never the combination (1,1).
This is precisely as desired because the first three combinations represent
outcomes that are admissible according to our specification, whereas the
last combination is an inadmissible result.

This conclusion generalizes to the following rule for checking the correct-
ness of a constraint:

To check whether a constraint is correct, it has to be established
whether (i) it is true for all combinations of values that repre-
sent an admissible outcome according to the specification and
(ii) it is false for all other combinations.

Observe that both conditions formulated in this rule have to be checked.
It is tempting to check whether the true combinations are admissible and
forget about the false combinations. For example, the following constraint
may seem attractive as an alternative representation of the same test
specification:

xi0 + xi1 = 1. (3.46)

This alternative is true for (xi0 , xi1)=(1,0) and (0,1), which are admissible
outcomes. But it should not be chosen because it is false for (xi0 , xi1)=(0,0),
which is also an admissible outcome.
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An alternative to (3.45) is

xi0 + xi1 < 2, (3.47)

which is also true for all combinations of values that are admissible and false
for all combinations that are not. This result is trivial, of course; it follows
directly from a comparison between (3.45) and (3.47). (This constraint is
only given for illustration; readers should generally avoid constraints in the
form of strict inequalities.)

For simple constraints such as those in (3.45)–(3.47), it is possible to
check all possible combinations of values for their variables. For more com-
plicated constraints with larger numbers of variables, it often suffices to
check combinations of values for critical variables. For example, the left-
hand side of (3.38) and (3.39) consists of a sum of variables with a simple
direct interpretation, but xi∗

s
on the right-hand side is a more critical vari-

able. To establish whether these two constraints are correct, we only need
to check the admissibility of the outcomes for the two possible values of
xi∗

s
.
In spite of our plea for simple constraints in Section 2.1, the relation

between test specifications and constraints is not always one-to-one. An
exception has already been met in (3.38)–(3.42). Each of these constraints
imposes a separate bound on item set Vs. But, at the same time, the entire
set of these constraints is needed to realize the logical specification of a
common stimulus for this item set.

If multiple constraints appear to be necessary to realize one test spec-
ification or, put the other way around, one constraint realizes multiple
specifications, we should use the rule formulated in this section to check
each individual relation.

Checking Individual Constraints for Feasibility
We began the previous section by stating that a well-formulated constraint
is true for some combinations of values for its decision variables and false
for others. It is instructive to look more closely into “constraints” that are
either true or false for all possible combinations of values. Examples of such
constraints are the following two inequalities for the same variables as in
(3.45):

xi0 + xi1 ≤ 2, (3.48)

xi0 − xi1 > 1. (3.49)

The first is true for all possible combinations of values. Such constraints
are compatible with any solution that satisfies the other constraints in the
problem; they are thus redundant (Section 2.4.2). Constraints of this type
are harmless in the sense that they do not reduce the set of feasible solutions
or change the value of the objective function for the solution in any way.
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(Whether we want such constraints in our model formulation is an issue
with technical implications that we want to avoid here.)

The second constraint is false for each possible combination of values. The
presence of this type of constraint makes a test-assembly model infeasible;
it becomes impossible to find a single combination of values for which all
constraints are true. Infeasibility of a simple categorical constraint with
a few variables, such as the one in (3.49), is easy to detect. More subtle
types of constraints that easily lead to infeasibility are equality constraints,
particularly if they are on quantitative attributes.

At the test level, a quantitative equality constraint has the form

I∑
i=1

qixi = bq, (3.50)

where the attribute values q1, ..., qI are empirical values for the items in the
pool but the bound bq is set by the test assembler. Generally, it is unlikely
that a combination of values for the variables x1, ..., xI exists for which the
sum in (3.50) exactly matches the bound for the actual attribute values of
the items in a given pool. It was for this reason that in Section 2.4.2 we
recommended constraining quantitative attributes to small intervals, such
as in (3.16) and (3.17), instead of to a single value.

Checking Constraint Sets for Feasibility
Even if each individual constraint passes the check, we have no guarantee
whatsoever that the full set is feasible. A test-assembly model is also infea-
sible if it has an inconsistent subset of constraints. A subset of constraints
is inconsistent if there exists no combination of values for the variables for
which all its members are true.

An example of an inconsistent set of two constraints is

xi0 + xi1 < 1, (3.51)

xi0 + xi1 > 1. (3.52)

This example is trivial; more subtle forms of inconsistency typically arise
for larger sets of constraints in problems with larger numbers of variables.

To detect such cases, it may seem as if we have to check all possible
combinations of constraints for all possible combinations of values for their
variables—a task that, for purely combinatorial reasons, is just impossible
for real-life problems. A practical alternative is just to run a solver for the
problem and see what happens. If no solution exists, the computer program
may report so in reasonable time.

If a problem is infeasible, our first strategy for finding a solution should
be to replenish the item pool or, if a multiple-test problem is to be solved,
reduce the number of tests required. A more complicated strategy is to ten-
tatively relax the bounds for the constraints expected to cause the problem.
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If the removal of one constraint removes the infeasibility, we may also de-
cide to reformulate it as an objective function and formulate the previous
objective as a constraint (see Section 2.3).

In practice, test assemblers mostly avoid inconsistencies intuitively. For
example, more elaborate content classifications of test items often have a
tree structure, with levels of attributes nested under each other. A test
assembler working with such structures is automatically aware of the fact
that bounds set at one level have to be consistent with those set at another.
If infeasibility does arise, it typically is the result of a capacity problem such
as when a large multiple-test-assembly problem has to be solved or the pool
has been depleted of some types of items.

3.3 Formulating Objective Functions

After the preceding introduction to the different types and levels of con-
straints possible in test assembly, the formulation of an objective function
is straightforward. In principle, any attribute formulated as an expression
on the left-hand side of one of the preceding constraints can serve as an
objective function. The only exceptions are the logical attributes in Sec-
tion 3.2.3, which involve the necessity of conditional item selection. These
attributes are dealt with more conveniently as constraints.

3.3.1 Quantitative Objective Functions
The general form of a quantitative objective function at the test level is

optimize
I∑

i=1

qixi. (3.53)

For each choice of attribute qi, we get a different objective function. For
example, if we choose qi to be the value of the information function of item
i at a cutoff score θc in an admissions-testing problem, the function

maximize
I∑

i=1

Ii(θc)xi (3.54)

is an alternative to the constraint in (3.8) that requires the information in
the test at θc to satisfy a lower bound.

To show a few more examples, let ti, fi, and ρi denote the estimated time
needed to answer item i, the number of times item i was selected in previous
tests, and the value of item i for a classical item-discrimination index (e.g.,
the point-biserial correlation coefficient). The objective functions

minimize
I∑

i=1

tixi, (3.55)
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minimize
I∑

i=1

fixi, (3.56)

maximize
I∑

i=1

ρixi (3.57)

optimize the total time needed to answer the items in the test, the sum of
the previous exposure rates of the items, and the sum of the values of the
item-discrimination index.

Quantitative objective functions at a lower level in the test are possible
but less common. For example, if word counts are available for the stimulus
of each item set s = 1, ..., S in the pool, we may want to select the sets
such that the total count for their stimuli is minimal. This objective can
be realized by using the decision variable for the pivot items i∗s in Section
3.2.3 as a carrier of the word count ws for their stimulus s. The objective
function then becomes

minimize
S∑

s=1

wsxi∗
s
. (3.58)

Adaptive Testing
It is even possible to formulate quantitative objectives at the item level.
The foremost example of test assembly with this type of objective, already
alluded to in our third example of objective functions of different type
and level in Section 2.3, is adaptive testing with item selection based on
the objective of maximum information at the last update of the ability
estimate, θ̂. Let R be the set of items in the pool not yet administered to
the test taker. We realize the objective by selecting a test of length one
from set R using the objective function and constraint

maximize
∑
i∈R

Ii(θ̂)xi (3.59)

subject to ∑
i∈R

xi = 1. (3.60)

At first sight, this formulation may seem somewhat overdone because
we can pick the item that maximizes the information at θ̂ directly from
the pool. The conclusion would be correct if in adaptive testing the items
were selected only on the basis of their information. In real-world adaptive
testing programs, they also have to be selected to satisfy a common set of
content constraints for each person as well as some technical constraints
specific to adaptive testing. In Chapter 9, we will show that this can be
done by using a sequence of n extended versions of the basic model in
(3.59) and (3.60). Item selection based on these models is known as the
shadow-test approach to adaptive testing.
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3.3.2 Categorical Objective Functions
A categorical objective function has the general form

optimize
∑
i∈V

xi, (3.61)

where V is an appropriately chosen set of items.
For example, if items of a certain content have to be de-emphasized in the

test but we cannot constrain their number directly because of the danger
of infeasibility, an objective function of the type in (3.61) could do the job.
If the items with the intended content are in set Vc, the objective function
is

minimize
∑
i∈Vc

xi. (3.62)

If we want to de-emphasize items from multiple sets—say, V1, V2, and V3—
the objective function changes to

minimize
∑
i∈V1

xi +
∑
i∈V2

xi +
∑
i∈V3

xi, (3.63)

or, equivalently,
minimize

∑
i∈V1∪V2∪V3

xi. (3.64)

Observe that the objective functions in (3.63) and (3.64) actually ad-
dress multiple objectives and weigh each objective equally; approaches with
differential weighting are discussed in Section 3.3.4.

To give another example, suppose that an item pool has set-based items
and we want to minimize the presence of items of a certain format in
the item sets in the test. As before, let Vs denote the set of items for
stimulus s = 1, ..., S and Vf the set of items with the format we want to
de-emphasize. The objective function required is

minimize
S∑

s=1

∑
i∈Vs∩Vf

xi (3.65)

(Exercise 3.3).
Analogous to the quantitative objective function in (3.59), it is possible

to formulate a categorical objective function at the level of an individual
item. One possible application is the presence of an item with a unique
combination of attributes that we would like to select, but only if its selec-
tion keeps the problem feasible. If item i is the intended item, the following
objective function should be used:

maximize xi. (3.66)
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Likewise, if we want to avoid this item, the objective function becomes

minimize xi. (3.67)

It is instructive to compare these two objective functions with the con-
straints in (3.24) and (3.25), which require item i to be in and out of the
test, respectively. If the item pool is poor, these constraints may cause the
problem to become infeasible.

We can also choose the subset in (3.61) to be the entire pool. If so, the
objective function minimizes the length of the test:

minimize
I∑

i=1

xi. (3.68)

From a measurement point of view, it only makes sense to adopt this ob-
jective function, which was already used in the introductory example in
Section 1.4, if the test-assembly model has enough constraints to guaran-
tee both the content validity of the test and the statistical precision of
its scores. But even then the actual length of the test that is found may
unpleasantly surprise the test assembler!

3.3.3 Objective Functions with Goal Values
It is possible to formulate an objective function that minimizes the distance
between a test attribute and a goal value.

For example, a classical ideal in test assembly is to have the average π
value of the items as close as possible to .50 (Section 1.1.3). Suppose the
test is constrained to have n items. The same objective is then realized if we
require the sum of the π values to be as close as possible to .5n. Observe
that the sum can be on either side of the goal value of .5n. Thus, what
we actually want is the following minimization of the absolute difference
between this sum and the goal value:

minimize

∣∣∣∣∣
I∑

i=1

πixi − .5n

∣∣∣∣∣ . (3.69)

The function in (3.69) is not linear. But a standard trick to get a linear
representation of the same objective is to constrain the sum to a small
interval about the goal value and minimize the size of the interval. Let
(.5n− y, .5n+ y) be the interval, where y is a new, nonnegative real-valued
variable that controls its size. We formulate the problem as

minimize y (3.70)

subject to
I∑

i=1

πixi ≤ .5n + y, (3.71)
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I∑
i=1

πixi ≥ .5n − y, (3.72)

y ≥ 0, (3.73)

where the constraints define the interval and the objective function mini-
mizes its size.

It is instructive to compare this formulation with the constraints in (3.16)
and (3.17). To use the latter, we must be able to specify exact bounds on
the attribute; the alternative in (3.70)–(3.73) can always be used if we have
a goal value.

Variable y is a real-valued decision variable. Therefore, the optimization
problem in (3.70)–(3.73) contains a mixture of integer variables (restricted
to 0-1) and a real variable. Such problems are known as problems of mixed
integer programming (MIP) (see Section A1.1.4).

3.3.4 Multiobjective Test Assembly
The standard format of a test-assembly problem has one objective function
(Section 2.4). If a set of test specifications implies a problem with multiple
objectives, the first option should always be to try reformulating all but
one of them as a constraint. If this appears to be impossible, some of
the methods of multiobjective test assembly in this section can be tried.
Basically, these methods combine different objectives into a single function
or optimize them sequentially.

Weighting Objectives
This method can be used if the test assembler is able to specify his or
her preferences for the objectives by a set of weights. Suppose a problem
has the objectives of minimizing both the total time needed to answer the
items and the number of times the items were administered earlier. If these
objectives were to be taken separately, they would lead to the objective
functions formulated in (3.55) and (3.56). But if the test assembler is able
to specify weights wt and wf for the two objectives, they can be combined
into a single objective function as

minimize wt

I∑
i=1

tixi + wf

I∑
i=1

fixi. (3.74)

The choice of weights in a multiobjective test-assembly problem of this
nature may be problematic, particularly if the objectives are on different
scales. Also, if some of the weights are chosen close to each other, the solu-
tion becomes unpredictable because of the trade-off between the attributes.
A partial remedy to the problem of choosing weights is to run the problem
first for the separate objective functions. The optimal values found in these
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runs tell us what values would be obtained if the entire weight was put
on one of the objectives and no weight on any of the others. The actual
weights could then be set by compromising between these values.

Goal Programming
The notion of a goal value for an objective function was already introduced
in Section 3.3.3. If we have a problem with multiple objectives with goal
values for their attributes, an alternative approach becomes possible.

Suppose the sets V1 and V2 contain items that belong to two different
content categories and we have goal values n

(g)
1 and n

(g)
2 for the number of

items from the two sets in the test. The following generalization of (3.70)–
(3.73) compromises between the two objectives:

minimize y1 + y2 (3.75)

subject to ∑
i∈V1

xi ≤ n
(g)
1 + y1, (3.76)

∑
i∈V1

xi ≥ n
(g)
1 − y1, (3.77)

∑
i∈V2

xi ≤ n
(g)
2 + y2, (3.78)

∑
i∈V2

xi ≥ n
(g)
2 − y2, (3.79)

y1, y2 ≥ 0. (3.80)

The constraints require the numbers to be in intervals about their goal
values, [n(g)

1 − y1, n
(g)
1 + y1] and [n(g)

2 − y2, n
(g)
2 + y2], and the objective

function minimizes the sum of the sizes of these two intervals.
An attractive aspect of this method relative to the previous one is that

the introduction of the goal values leads to better control of the results. The
objective function in (3.75) still suffers from a trade-off between the objec-
tives, however. If the test assembler is able to choose weights for the two
goals in this problem, more control is obtained if this function is replaced by
a weighted sum of the decision variables, w1y1+w2y2. A version of goal pro-
gramming based on this type of weighting underlies the Swanson-Stocking
heuristic for test assembly discussed in Section 4.4.3.

Maximin Approach
The idea underlying the maximin approach can be explained using the
problem in (3.75)–(3.80). This time we have no goal values for the number
of items from V1 and V2 but want to have the maximum number from each
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set. We follow a maximin approach to this problem with two objectives if
we simplify the objective function and constraints in (3.75)–(3.80) to

maximize y (3.81)

subject to ∑
i∈V1

xi ≥ y, (3.82)

∑
i∈V2

xi ≥ y, (3.83)

y ≥ 0. (3.84)

The new variable y is a common lower bound to the number of items
from the two attribute sets V1 and V2. This bound is maximized in (3.81),
hence the name maximin approach. Although y is real-valued, it will take
an integer value in the solution because the left-hand sides of (3.82) and
(3.83) are integer.

It is instructive to compare this approach with the previous one based
on weighting of the objectives. If equal weights are chosen, as was done
in (3.81)–(3.84), the objective function of weighted-objectives approach in
(5.74) takes the form

maximize
∑
i∈V1

xi +
∑
i∈V2

xi. (3.85)

But using (3.85) can easily lead to a solution with an unexpectedly large
number of items from one set compensated by a small number from the
other. Generally, if the objectives are on the same scale, a maximin ap-
proach gives a better safeguard against unexpected extreme values for the
individual objectives than the method with the weighting of the objectives.

The same type of control of unexpected results is possible if we want to
select the maximum number of items from V1 and V2 but these numbers
have to satisfy a proportional relation. Suppose the relation is r1 : r2. The
only thing to do is add the coefficients r1 and r2 to the right-hand sides of
(3.82) and (3.83):

maximize y (3.86)

subject to ∑
i∈V1

xi ≥ r1y, (3.87)

∑
i∈V2

xi ≥ r2y, (3.88)

y ≥ 0. (3.89)
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If the test-assembly problem is a minimization problem, decision variable
y can be chosen to be an upper bound that is minimized, and the approach
in (3.81)–(3.84) and (3.86)–(3.89) is then known as a minimax approach.

Maximin and minimax approaches require all objectives to have at-
tributes on the same scale. Otherwise, the attributes have to be rescaled.
The condition is automatically satisfied in test assembly with different goal
values for the test information function at different ability levels, which is
one of the common multiobjective problems in IRT-based test assembly.
In Chapter 5, we will show how the maximin and minimax approaches ap-
ply naturally to this class of problems. The core of our approach will be
a modified version of the model in (3.86)–(3.89). In Chapters 6 and 8, the
approach is generalized to the more complicated multiobjective problems of
assembling a set of tests and assembling a test measuring multiple abilities.

Sequential Optimization
All previous methods combine multiple objectives into a single function,
which either is a weighted sum of their attributes or a common bound on
it. The method of sequential optimization is based on an entirely different
idea. It assumes that the test assembler is able to rank the objectives from
most to least important. The test-assembly problem is then replaced by a
sequence of problems, one for each objective.

The sequence begins with the problem for the most important objective.
At this step, all other objectives are ignored. The value of the objective
function for the solution of this problem is recorded. The next problem ad-
dresses the second objective function, but the problem now has a constraint
on the attribute in the first objective with a bound derived from the value
of the objective function found in the solution to the first problem. These
steps are continued until the last problem has been solved, the solution of
which is the solution to the multiobjective problem.

We illustrate this approach for the problem with the objectives for the
total time needed for the test and the exposure rates of the items in (3.55)
and (3.56). Suppose

minimize
I∑

i=1

fixi (3.90)

is the more important objective, and a solution to the problem with this
objective yields the optimal value b∗

f for the objective function. The second
problem is formulated as:

minimize
I∑

i=1

tixi (3.91)
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subject to
I∑

i=1

fixi < b∗
f + δ, (3.92)

with δ a small tolerance added to the upper bound in (3.92) to keep
the problem feasible. The solution to this problem is the one used as the
solution to our original problem.

In sum, in this sequential approach, we first find an optimal solution
for the most important objective. Then we search a neighborhood of this
solution in the set of feasible solutions for one that has an optimal value for
the second objective. The procedure is repeated until all objectives have
been processed. The solution to the last problem is our overall solution.

3.3.5 Nonlinear Objectives
The examples in (3.59) and (3.60) and (3.70)–(3.73) demonstrate a trick
used more frequently later in this book, namely the realization of a (possibly
nonlinear) objective through a combination of a linear objective function
and linear constraints. In Section 5.2, we will use this trick to deal with
problems in which the classical reliability and validity coefficients are max-
imized. Both coefficients are nonlinear in the items. In Section 8.3.1, we
will use this trick to linearize multidimensional test-assembly problems.

3.4 Literature

Several of the constraints and objective functions in this chapter have been
used to solve test-assembly problems in the research papers in the bibliog-
raphy at the end of this book. A first review of them appeared in van der
Linden and Boekkooi-Timminga (1989) and a more comprehensive review
in van der Linden (1998a). Several examples of logical constraints in test
assembly are given in Theunissen (1986). For an extensive review of mul-
tiobjective decision-making approaches to test assembly, the reader should
consult Veldkamp (1999).

The problem of building a mathematical programming model is dealt
with more generally in Williams (1990). This textbook is a rich source
of suggestions for those with a deeper interest in modeling test-assembly
problems.

3.5 Summary

1. The process of solving a test-assembly problem consists of four steps:
(i) identifying the decision variables; (ii) modeling the constraints;
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(iii) modeling the objective; and (iv) using an algorithm to solve the
model for an optimal solution.

2. A set of decision variables for the problem of assembling a single test
from a pool of discrete items is a set of variables whose combinations
of values identify all possible tests from the pool.

3. To find good decision variables for a problem, it helps to think of a
test-assembly problem as a selection or assignment problem in which
“objects” (items, stimuli, or sets of items) are selected from a pool
and assigned to an empty test.

4. Choosing variables at a lower level in the test gives us more flexibility
to model constraints and objective functions at the same and higher
levels in the test.

5. A quantitative constraint has the form of an inequality that imposes
a real-valued bound on a weighted sum of decision variables. The
weights are the values of the items for a quantitative attribute.

6. A quantitative constraint is at the test level if its sum ranges over
the entire item pool, at the item-set level if it ranges over an item
set, and at the item level if it ranges over an individual item.

7. A categorical constraint has the form of an inequality that imposes
an integer bound on an unweighted sum of decision variables. The
level of a categorical constraint is also determined by the range of
this sum.

8. Logical constraints are on attributes defined on pairs, triples, and
so on, of items. They are typically necessary to perform conditional
item selection. Two common types of logical constraints are for the
selection of items from sets of “enemies” and from sets with a common
stimulus.

9. Constraints can be checked for correctness by determining if they are
true or false for those combinations of values that are admissible and
not admissible according to the test specifications they represent.

10. A single constraint leads to an infeasible test-assembly problem if it
is false for each combination of values for its variables. We generally
avoid equality constraints on attributes because they are most likely
to create an infeasible problem, particularly if they are formulated
for quantitative attributes.

11. A test-assembly problem also becomes infeasible if it has a subset of
constraints that cannot be true simultaneously; that is, a subset that
is inconsistent.
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12. A quantitative objective function consists of a weighted sum of de-
cision variables, where the weights are the values of the items for a
quantitative attribute. A categorical objective function consists of an
unweighted sum of decision variables.

13. The level of the objective function is determined by the range of the
variables over which its sum is defined.

14. Objective functions can be used to minimize the distance between an
attribute and a goal value for it.

15. If a test-assembly problem has more than one objective, they should
be (i) combined into a single objective function that is a weighted
sum of their attributes (ii) used in a maximin or minimax approach
in which a common bound on their attributes is optimized or (iii)
optimized sequentially.

3.6 Exercises

3.1 Suppose an item pool consists of item sets for stimuli s = 1, ..., S.
Let ncs be the number of items with categorical attribute c in the
set for stimulus s, and let qs be the sum of the values of the items
in the set for s on quantitative attribute q. Use 0-1 variables xs to
formulate a test-level constraint on the categorical and the quanti-
tative attributes. Use these variables to formulate a stimulus-level
constraint on the two attributes. Why is it impossible to formulate
constraints at the item-set and item level using these variables?

3.2 Use 0-1 variables for the selection of the (pivot) items to formulate
the following constraints:

(a) The number of multiple-choice items on vocabulary should not
be smaller than 15.

(b) The sum of π values of items with a short-answer format on
biology should be larger than eight.

(c) The item sets on geography should have a stimulus with a map.

(d) The number of printed lines for each stimulus should be larger
than or equal to then.

(e) The number of printed lines for each item set should be larger
than or equal to 35.

(f) Stimuli 18 and 27 should not be in the same test.

3.3 Use 0-1 variables for the selection of (pivot) items to formulate the
following objectives:



3.6 Exercises 75

(a) Minimize the absolute difference between the number of items
biased against and in favor of second-language test takers.

(b) Minimize the number of items on algebra or geometry.

(c) Minimize the number of items on spelling and vocabulary.

(d) Maximize the number of items on social studies that refer to
social tension.

(e) Minimize the absolute difference between the expected total
time on the test and the available time of 60 minutes.

3.4 Use 0-1 variables for the selection of (pivot) items to formulate the
following conditional constraints:

(a) If item 8 is in the test, the expected time on the other items in
the test should be less than 105 minutes.

(b) Item 39 can be in the test only if it has at least one item that does
not involve a computation. (What happens to the constraint if
item 39 involves a computation itself?)

(c) If stimulus 11 and 12 are in the test, the total number of item
sets should not be larger than five.

(d) There should be no item overlap between two tests if both of
them have a length smaller than 30. (Hint: Use different sets of
variables for the selection of items for the two tests.)

3.5 Minimize the absolute difference between the average item difficulty
parameter bi of two different tests, assuming the lengths of the tests
are constrained to n1 and n2.

3.6 What happens if the decision variables for the pivot items are added
to the right-hand sides of (3.38) and (3.39) but not to the right-hand
sides of (3.41)–(3.44)? Show why the constraint in (3.39) does not
work if (3.38) is not present. How can this problem be fixed if we
have to model the specifications of a test from a set-based pool with
only a lower bound on the size of a set or on its attributes?

3.7 Suppose all items have been coded using a readability index r. A test
assembler wants both to maximize the readability of the items in the
test and to minimize the difference between the average π value of the
items and a goal value of .50. How should the strategies for combining
multiple objectives in the test-assembly problem in Section 3.3.4 be
applied? Which strategy seems best? (Assume that the test length is
constrained to be equal to a known value for n.)

3.8 A pool with items on mathematical ability has the following content
categories: items 1–5: arithmetic; items 26–50: graphs; items 51–75:
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use of pocket calculator. The values of the IIFs at θ = −1 and 1
for each item are known. Furthermore, each item requires about the
same amount of time from the test takers. A test assembled from
the pool should have a TIF between 7 and 8 at both θ values. The
number of items on arithmetic should not be larger than the total
number of items on graphs or the use of a pocket calculator. If one
of items 61–65 is in the test, all other items should be in the test as
well. The test should have a minimal administration time. Formulate
these specifications in standard form. Which of the constraints is not
likely to be active in the solution?



4
Solving Test-Assembly Problems

Now that we know how to model objective functions and constraints for
test-assembly problems, we are able to formulate the standard model for
the problem of assembling a single test from a pool of discrete items. This
will be done in (4.1)–(4.10) in Section 4.1.

A solution to this model is a vector of values for the 0-1 variables
(x1..., xI) that satisfies all of its constraints and optimizes its objective
function. A basic feature of the model is its linearity in the decision vari-
ables. Because of it, the model can be solved using one of the algorithms
developed in the field of integer linear programming. A few such algorithms
are discussed in Sections 4.2 and 4.3. Due to continuous optimization of
implementations of these algorithms, virtually all test-assembly problems
met in practice can now be solved in a routine fashion using commercial
software. Before the current level of performance was reached, larger prob-
lems often had to be solved by an approximation algorithm or a heuristic
technique developed for it. A selection of heuristic techniques for test as-
sembly is presented in Sections 4.4 and 4.5. A critical difference between
exact algorithms and these techniques is discussed in Section 4.6. Optimal
design methods are methods of sample optimization for parameter esti-
mation developed in statistics. These methods have also been applied to
test-design problems. Because our approach to the problem of item-pool
design in Chapters 10 and 11 can be viewed as a generalization of the op-
timal design method in statistics, its basic ideas are introduced in Section
4.7.

Readers can go through the rest of this chapter in two different ways.
If they trust the algorithms and their major goal is only to get familiar
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with the various applications of the test-design methodology in this book,
the rest of this chapter can be read cursorily. In fact, it is even possible to
skip everything after Section 4.1 and go directly to Chapters 5 through 12
without missing anything needed to understand them. Readers who first
want to know how solutions to test-design problems are obtained should
read the rest of this chapter more carefully. In Sections 4.2 and 4.3, we
assume familiarity with a few basic notions from linear programming (LP).
Appendix 1 gives a brief introduction to these notions.

4.1 Standard Model for a Single Test

The standard model for the assembly of a single test with a quantitative
objective from a pool of discrete items is

optimize
I∑

i=1
qixi (objective) (4.1)

subject to possible constraints at the following levels:

Test Level

I∑
i=1

xi � n, (test length) (4.2)

∑
i∈Vc

xi � nc, for all c, (categorical attributes) (4.3)

I∑
i=1

qixi � bq; (quantitative attributes) (4.4)

Item Level ∑
i∈V1

xi = n1, (categorical attributes) (4.5)

∑
i∈V0

xi = 0, (categorical attributes) (4.6)

qixi ≤ bmax
q , for all i, (quantitative attributes) (4.7)

bmin
q xi ≤ qi, for all i, (quantitative attributes) (4.8)∑

i∈Ve

xi ≤ 1, for all e; (enemies) (4.9)
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Definition of Variables

xi ∈ {0, 1}, for all i, (range of variables) (4.10)

In this model, qi, Vc, V0, and V1 are the same generic symbols for quan-
titative and categorical attributes as in the preceding chapter, Ve denotes
a set of enemy items, and � indicates the choice of an equality or an
inequality sign.

In specific applications, the basic model in (4.1)–(4.10) will have to be ex-
tended and/or reduced in several possible ways. For instance, the objective
function needed can be a categorical function rather than a quantitative
function, or a function defined at a different level in the test. To deal with
the entire set of test specifications in a real-world problem, we also typically
need more than one constraint of the types in (4.2)–(4.9). Finally, several
of the extensions addressed in subsequent chapters, such as multiple-test-
assembly problems or test assembly from pools with item sets, are ignored
here. We will present updates of (4.1)–(4.10) when we deal with these
extensions in later chapters.

Any test-assembly model presented in this book will have its constraints
presented in the same order as in (4.1)–(4.10). The principles that govern
this order are:

1. Higher-level constraints precede lower-level constraints.

2. Categorical constraints precede quantitative constraints.

3. Quantitative constraints precede logical constraints.

4. Constraints on the ranges of the variables are presented last.

Another convention we will follow is to add labels to constraints with
the names of the attributes they address wherever this is meaningful and
the typographical space allows us to do so.

Exceptions to these conventions are sometimes necessary, however. For
example, if an objective is formulated as a combination of an objective func-
tion and one or more definitional constraints, such as in (3.81)–(3.84) and
(3.86)–(3.89), we will present these constraints directly after the objective
function.

It is customary in mathematical programming to write constraints with
all variables on the left-hand side of the (in)equality and a known con-
stant on the right-hand side. We will abandon this convention in favor of
representations that further a more direct interpretation.
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4.1.1 Checking Interactions Between the Objective Function
and Constraints

In Section 3.2.4, we pointed out the necessity of checking constraint sets
both for correctness and feasibility before calculating solutions to test-
assembly models. Here we add the recommendation to check the inter-
actions between the objective function and the constraints. This check is
not necessary to guarantee the existence of a solution but helps us under-
stand the nature of the solution and may lead to an occasional last-minute
simplification of the model.

The check should be for possible patterns of correlation between the
attributes in the constraints and the objective function over the items in
the pool. If positive correlations exist and the attribute in the objective
function is maximized, the constraints tend to be realized at larger values
between their bounds. Likewise, if the objective function is minimized, the
constraints tend to be realized at smaller values. For negative correlations,
the opposite tendencies are observed. If no correlation exists, the results
become less predictable.

Attributes that always correlate positively are categorical attributes and
quantitative attributes with positive values qi. If a quantitative attribute of
this type is maximized, the solution tends (i) to promote values xi = 1 for
the items with the largest values for qi (ii) for as many items as possible.
The second tendency implies a test with larger values for its categorical
attributes. The opposite tendencies are observed if an attribute of this
type is minimized.

An example of a categorical attribute that correlates with several other
attributes is test length. For instance, if the objective is to maximize the
value of the TIF at one or more θ values, the test length will show a
tendency to go to its upper bound. The same occurs if we maximize the
sum of the classical item-discrimination indices. The opposite occurs, for
example, if we minimize the total word count for the test.

In Section 2.4.2, the notion of an active constraint was introduced as
a constraint that is realized at a bound in the solution (see also Section
A1.2.2). We can conclude that active constraints tend to be found among
those attributes that correlate strongly with the attribute that is optimized.

The result of a check on the interactions between the objective function
and constraints can lead to useful changes in the model. For example, if
the model involves maximization, typically, for a well-designed item pool,
it makes no sense to have constraints with lower bounds on attributes that
correlate positively with the objective function. For the same reason, we
can often replace an equality constraint in a set of original specifications for
a maximization problem by a larger-than-or-equal constraint and expect a
solution close to the original bound. This trick helps us avoid infeasibility
due to equality constraints.
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Observe, however, that all of these relations are only tendencies. Whether
a constraint will be realized close to its upper or lower bound ultimately
depends on the joint distribution of the item attributes in the pool and how
realistically the bounds have been chosen relative to it. As a matter of fact,
one of the more difficult aspects of the combinatorial optimization problems
addressed in this book is that their solutions are difficult to predict because
they depend on the nature of the entire problem rather than a single feature.
By the nature of a problem we mean the number and types of constraints,
the values of their coefficients and bounds, the coefficients in the objective
function, and the direction of optimization. (For a more formal definition,
see Section A1.1.1.)

4.2 Branch-and-Bound Search

Branch-and-bound algorithms are based on implicit enumeration of all pos-
sible solutions to a problem (Section A1.5). They search the entire solution
space for an optimum but do so efficiently, cutting off entire portions of the
space for which an optimum appears to be impossible.

Branch-and-bound algorithms search iteratively. They begin in a point
in the space of the relaxed version of the problem (i.e., with all integer
constraints removed) and then jump systematically from point to point,
each time checking the value of the objective function. The incumbent is
the feasible integer point with the best value for the objective function
visited so far. The algorithms stop as soon as no improvements on the
incumbent are possible. This is then declared to be an optimal solution to
the problem.

Branch-and-bound algorithms capitalize on two simple but important
principles. Both principles deal with the effect of adding a constraint to a
problem. The principles are:

(i) If a constraint is added to a maximization problem, the
value of the objective function for the solution may decrease
but cannot increase.

(ii) If a problem is infeasible, adding a constraint to it cannot
make it feasible.

Branch-and-bound algorithms begin with a solution to the fully relaxed
version of the original problem and then systematically restore the integer
constraints on the variables. If a new integer bound on a variable yields a
solution worse than the incumbent, the first principle above tells us that
later problems with the same bound can never be better and should be ig-
nored. If a new integer bound on a variable results in an infeasible problem,
the second principle tells us that all later problems with the same bound
are infeasible and should be ignored.
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More precisely, for a 0-1 maximization problem, these algorithms are as
follows:

1. The solution to the fully relaxed problem (that is, with all integer
constraints removed) is calculated. The solution to this problem has a
value for the objective function that is an upper bound to the optimal
solution for the original problem.

2. The integer constraint on one variable is restored. This leads to two
new problems, one with xi = 1 for this variable and one with xi = 0.

3. The solutions to these two problems are calculated and checked:

(a) If the problem is infeasible or leads to a solution with a value for
the objective function lower than the incumbent, it is ignored
along with all possible future problems with the same value for
xi.

(b) If a solution is already entirely integer and has a higher value
for the objective function, it becomes the new incumbent.

4. Steps 2 and 3 are repeated until all possible solutions have been
checked or are known to be ignorable.

The power of these algorithms thus exists in the application of the two
principles of constraint addition in step 3: If a solution with a known in-
teger value for a given variable does not beat the incumbent, any problem
with additional constraints on the remaining free variables cannot beat
it either and can be ignored. Likewise, if the problem becomes infeasible,
adding integer constraints on the remaining free variables can never give
us feasibility in return. Therefore, if the solution gives a value for the ob-
jective function lower than the incumbent, or if infeasibility occurs while
branching on xi, all future problems with the same value of xi are ignored.

4.2.1 Tree Search
The graphical illustration of the branch-and-bound method in Figure 4.1
shows that the algorithm performs what can be called a tree search. The
node at the root of the tree represents the fully relaxed solution. Each
branch represents a variable constrained to the value one or zero. If a
solution has a smaller variable for the objective function than for the in-
cumbent, the branch is pruned ; problems represented by nodes further
along this branch can never improve on the incumbent and are ignored.
The same happens if the problem is infeasible. If a branch is pruned, the
algorithm moves back in the tree and begins a search along another branch.
The algorithm stops if all nodes are investigated or pruned. The process
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FIGURE 4.1. Graphical illustration of a tree search by a branch-and-bound
algorithm.

of branching and pruning using the current bound provided by the incum-
bent explains why an algorithm based on this type of search has the name
“branch-and-bound.”

Unlike what we might have expected for an algorithm that searches for
a solution to an IP problem, branch-and-bound algorithms do not jump
from discrete point to discrete point in the feasible space of the problem.
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They begin in the fully relaxed (i.e., real-valued) solution space and restrict
themselves to “more discrete” subsets of it at subsequent steps.

Another characteristic feature of branch-and-bound algorithms is their
backtracking ; that is, their ability to move back and continue the search
along another branch. These algorithms use backtracking to prevent from
getting trapped in a suboptimal solution or having to violate constraints to
be able to produce a “solution.” This feature is absent in the constructive
heuristic techniques for test assembly in Section 4.4, but a random version
is present in the local search algorithms in Section 4.5.

4.2.2 Implementation Decisions
Before the branch-and-bound method can be used, several implementation
decisions have to be made. For example, it has to be decided (1) how to
initialize the incumbent, (2) where to start the algorithm (i.e., on which
variable to branch first), (3) what priority order to follow for the branch-
ing on the remaining variables, (4) what algorithm to use to calculate the
solutions at the nodes, and (5) how to backtrack if a branch is pruned.
Commercial software with branch-and-bound-based solvers typically offers
numerous options or settings for dealing with these decisions. The perfor-
mance of an algorithm for a problem can be boosted enormously by making
appropriate choices. A current trend in the software industry is to auto-
mate this step; the software then diagnoses the problem and optimizes the
settings of the solver for it.

Typically, the solutions at the nodes during the search are found using a
simplex algorithm. For this algorithm, implementation decisions have to be
made as well (Section A1.3). As the integer values for the fixed variables at
the nodes are known, the simplex algorithm is only used to calculate opti-
mal values for the variables that are still free. If the search proceeds along
the same branch, at each subsequent step, the number of fixed variables
increases and the simplex algorithm is executed for an increasingly smaller
set of variables.

Clever strategies for branching capitalize on the structure of the problem.
For example, earlier branching on variables with a high impact on the other
variables in the problem generally leads to more effective pruning (i.e., an
earlier and/or larger reduction of the search tree) and therefore to a faster
search. This strategy is useful for the test-assembly problems with item sets
in Chapter 7, where we will use variables for both the selection of the items
and the stimuli in the test. Branching on the variables for the stimuli has a
higher impact than branching on the variables for the items. For example,
if a variable for a stimulus is fixed at zero, the same value is implied for
the variables for the entire set of items associated with it in the pool.

If a good feasible solution is known, it should be chosen as the first
incumbent. This strategy, which also leads to more effective pruning, is
recommended for the shadow-test approach to adaptive test assembly in
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Chapter 9. In this approach, each item for the adaptive tests is selected
from a shadow test assembled to the same set of specifications, fixing the
variables of the items already administered to the test taker at one. Be-
cause the set of content constraints remains the same throughout the test
and only the objective function changes, the previous solution provides an
excellent initial solution for the next shadow test (Section 9.1.5). For more
details on strategies for implementing branch-and-bound algorithms, see
the technical literature at the end of this chapter.

The previous discussion was for an application of a branch-and-bound
algorithm to a problem with 0-1 variables. If the problem is integer and
has variables that are not 0-1, branching in step 2 occurs by imposing a
series of constraints on these variables that successively split their range at
an integer value into two smaller intervals. If the problem belongs to MIP,
variables that are not integer are just left unconstrained.

4.2.3 Problem Size and Solution Time
It is impossible to know the actual running time of a branch-and-bound
algorithm for a test-assembly problem in advance. Depending on the imple-
mentation of the algorithm, a solution can be found in a few steps, but an
unfortunate implementation can also make us wait forever. Because exact
predictions are impossible, we have to resort to (1) predictions based on
worst-case analyses, (2) predictions based on the average for a large class
of similar cases, and (3) practical experience.

As for the worst-case performance, a useful distinction exists between
the computational complexity of mathematical programming problems that
are solvable in polynomial time and problems that are not. A problem is
solvable in polynomial time if there exists an algorithm that solves it with
an upper bound to its running time that is a polynomial in the size of the
problem, where the size of the problem is defined as, say, the number of bits
required to represent the model in the computer. Problems for which this
bound is not known to exist are NP-hard (nondeterministic polynomial-
time hard). Many test-assembly and item-pool-design problems in this book
are, as a class, NP-hard. These problems are currently solved only with
significantly longer exponential-time algorithms.

However, practical experience shows us that for test-assembly problems
of a realistic size this need not be a problem, provided some elementary
implementation decisions are made. More importantly, as already indicated,
the software industry has been successful in automating these decisions,
and modern software programs help the user by preprocessing the problem
and finding a fast implementation of the algorithm. For such programs,
it becomes less and less necessary to override the default settings in the
program.

The maximum number of nodes in a branch-and-bound problem with
0-1 decision variables depends on the number of variables, which is never
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smaller than the number of items in the pool. It follows that a basic deter-
minant of the running time for the algorithm is the size of the item pool.
This fact may seem somewhat counterintuitive to readers familiar with the
idea of assembling a test by one of the constructive heuristics in Section 4.4.
Such heuristics pick one item at a time, and, consequently, have a running
time that is linear in the size of the test. In 0-1 test assembly, however, test
length is just a bound in a constraint; see (3.30). A longer test implies a
larger bound but does not imply more time.

The majority of the empirical examples in this book were for a pool
of 300–800 items and had some 100–400 constraints. Typically, their solu-
tion required a handful of seconds on a PC with a Pentium II 860 MHz
processor and 128 MB of memory for the integer solver in the CPLEX
software discussed in Section 4.2.5. The only exceptions were a multiple-
test-assembly problem with an extremely large number of variables (Section
11.5.4) and a severely constrained problem with a set of tests for a balanced-
incomplete-block design (Section 6.6). The former was solved using the
standard approximation discussed in Section 4.2.4, whereas we used a local
search heuristic discussed in Section 4.5.2 to solve the latter.

In numerous simulations of the shadow-test approach to adaptive testing
in Chapter 9, the assembly of shadow tests from pools of comparable size
never took more than a second.

4.2.4 A Useful Approximation
The largest problems addressed in this book are in Chapter 11, where
we show results for the simultaneous assembly of ten tests from a pool
with 5,316 items. Each of these problems had over 53,000 variables and
more than 6,000 constraints. The objective function was of the maximin
type. The solution of two of these problems took 87 seconds. For the third
problem, something occurred that might happen if we try stretching the
limit. This problem was a version of the first two problems with a few
seemingly innocent changes in a few constraints. Nevertheless, it appeared
impossible to calculate an optimal solution in realistic time. We therefore
resorted to an approximation that can always be used as a backup: The
program was stopped as soon as an integer solution with a value for the
objective function close enough to an upper bound was found.

A useful upper bound to the value of an objective function in a maximiza-
tion problem is always available in the form of the value for a solution to
the fully relaxed version of the problem. This follows immediately from the
first principle of constraint addition in Section 2.4.2 that played a central
role in our discussion of the branch-and-bound method above. This prin-
ciple implies that relaxation of the integer constraints in a test-assembly
problem leads to an extension of its feasible space and therefore a larger
potential maximum value of the objective function in the solution.
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In practice, it often occurs that the final solution is found early but the
search of the entire tree has to be completed just to prove the optimality of
the current solution. In such a case, the introduction of the upper bound
with a reasonable tolerance does no harm at all.

For the third problem in Chapter 11, we chose a tolerance equal to 5%,
and the solution was found in approximately 3 hours. This solution was thus
known to be closer than 5% to the true optimum value of the objective
function for the problem.

4.2.5 Software
A test-assembly software package based on integer programming is Con-
TEST 2.0 (Section 4.8). This package has an interface that allows the user
to specify constraints and the objectives in the natural language used in
Chapter 2. All necessary mathematical modeling is done by ConTEST 2.0.
The program runs on a DOS platform; Windows software with the same
functionality for the larger class of test-design problems in this book has
been planned. The DOS-based program OTD by Verschoor (1991) can be
used to run the model with minimum test length in Section 1.4.

All problems in this book were solved using the integer solver from
CPLEX, a package of solvers for linear and quadratic programming prob-
lems published by ILOG, Inc. (Section 4.8). Users with their own software
for writing out the model for their test-assembly problems can directly
use the appropriate solver from this package. Alternatively, OPL Studio,
also by ILOG, Inc., can be used. This general-purpose modeling system
helps users to specify their problems using an intuitive programming lan-
guage and reduces the amount of programming necessary. The system also
comes with OPLScript, a command language for dealing with sequences of
models or solving models interactively. Solutions to models in OPL Studio
are found by a solver started directly from the program. An example of a
small test-assembly problem specified in OPL Studio that illustrates some
of these options is given in Appendix 2.

For instructional purposes, it is possible to use the LP options in Excel
in Microsoft Office to illustrate how to model and solve small test-assembly
problems. The solvers provided in this program do not have enough power
for any real-life test-assembly problem, however.

4.3 Network-Flow Approximation

Network-flow problems are integer programming problems with a special
structure. Thanks to this structure, the simplex algorithm boils down to
a simple and extremely fast algorithm. If all bounds in a network-flow
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problem are integer, the fully relaxed version of the model has an integer
solution, which is always found by this fast algorithm (Section A1.4).

An approximate but nowadays less frequently needed approach to solving
test assembly is to approximate the original problem by a problem with
a network-flow structure. To get a satisfactory approximation, it may be
necessary to remove some of the constraints in the original problem and
solve a version of the model with a penalty term for them in the objective
function (Lagrangian relaxation; see below). Sometimes, this approximate
problem is embedded in a larger heuristic scheme that iteratively improves
on the first solution.

A graphical representation of a network-flow problem is given in Figure
A1.4. Suppose the supply points of this network represent the different
classes of items, i = 1, ..., m, in a joint partition of the item pool based on
the categorical item attributes. The supply of items available for class i is
Si. The demand points, j = 1, ..., n, represent the same partition for the
test, and the minimum numbers of items needed at these points are Dj .
The problem of assembling a test to meet these numbers can be represented
by the following network-flow formulation (compare (A1.11)–(A1.14)):

minimize
m∑

i=1

n∑
j=1

ϕijxij (transportation costs) (4.11)

subject to
n∑

j=1
xij ≤ Si, (supply) (4.12)

m∑
i=1

xij ≥ Dj , (demand) (4.13)

xij ≥ 0, for all i and j, (range of variables) (4.14)

where xij is the number of items shipped from i to j and the objective func-
tion minimizes the transportation costs, ϕij . The model can be extended
with transshipment points, which have equal supply and demand.

To implement this approach, an adequate definition of the transporta-
tion costs has to be found. For example, if the objective is to maximize the
information in the test at a cutoff score θ0, the transportation costs should
be taken to be −Ii(θ0), where Ii(.) is the average value of the item informa-
tion functions at supply point i and the minus sign changes (4.11)–(4.14)
into a maximization problem. Observe that (4.14) defines a problem with
real-valued variables, but an integer solution is found because the bounds
Si and Dj are integer.

Comparing this problem with (4.1)–(4.10), it is obvious that not all real-
world test-assembly problems would fit this representation. Particularly if
we have quantitative constraints, enemy sets, or problems with item sets
(Chapter 7), the standard network formulation has to be extended. Several
strategies for dealing with such extensions are possible. An obvious strategy
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for quantitative attributes is to categorize them. More ingenious strategies
exploit the fact that transshipment points can be added to the problem
(Section A1.4) or use the technique of Lagrangian relaxation.

In Lagrangian relaxation, the more difficult constraints are replaced by a
penalty term added to the objective function. For example, for the general
model in (4.1)–(4.10), we could leave out the quantitative constraints in
(4.4) and introduce penalty terms for them in the objective function, which
would lead to the following expression for (4.1):

I∑
i=1

qixi +
Q∑

q=1
λq[

I∑
i=1

qixi − bq]. (Lagrange multipliers) (4.15)

Positive values for the Lagrange multipliers λq are to be selected by the test
assembler. Obviously, for larger values of λq, minimization of this expression
leads to realizations of the test attributes

∑I
i=1 qixi closer to bq but also to

larger values than necessary for the original objective function,
∑I

i=1 qixi.
Because solutions to this type of problem are obtained extremely fast, it
is possible to embed a series of them in an iterative heuristic scheme that
uses previous results to improve on values chosen for λq.

4.4 Constructive Heuristics

Heuristic techniques, heuristics for short, are procedures for finding a solu-
tion to a test-assembly problem based on a plausible intuitive idea. Heuris-
tics are designed with the structure of a specific class of problems in mind.
As a consequence, they have to be adapted or replaced by another type of
heuristic if we move to a problem in another class. We resort to heuristics
if the problem is too large to be solved optimally in realistic time.

Constructive heuristics are usually extremely fast. However, by defini-
tion, we have no mathematical proof of their optimality. Therefore, we
have to evaluate their attractiveness against the plausibility of the ideas on
which they are based or by scrutinizing the solutions they produce.

The three heuristics below were developed for the same type of problem
as addressed in the Birnbaum approach in Section 1.2.8; that is, (1) IRT-
based test-assembly problems in which the objective is to minimize the
distance between the test information function and a target, where (2)
only a few categorical constraints have to be imposed, and (3) the pool
consists of discrete items. These heuristics are constructive in that they
literally build the test one item at a time.

4.4.1 Greedy Heuristics
Heuristics of this type have been invented (and reinvented!) in almost every
area of application of mathematical programming. Their basic idea is to
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solve the problem by taking a sequence of steps, each time doing whatever
is locally best. In a maximization problem, these heuristics produce the
largest increase for the objective function possible at each step. Because
they ignore all future consequences of the steps, the nickname of greedy
heuristic is appropriate.

Suppose we have target values at θk, k = 1, ..., K for the information
function of a test we want to assemble. These target values are denoted
as Tk. The value of the information function of item i at θk is denoted as
Ii(θk). A greedy heuristic picks items that fill the gap between the target
and current values of the information function maximally. Suppose items
i1, ...ig−1 have already been selected, and the next item to be selected is
the gth item. The information in the first g − 1 items at θk is

∑g−1
j=1 Iij (θk).

A greedy heuristic would select this item using the following two rules:

1. Find the θk value with the largest positive difference,

Tk −
g−1∑
j=1

Iij (θk). (4.16)

2. Select the item in the pool that has the largest value for its informa-
tion function Ii(θk) at the value θk found in the previous step.

If constraints on categorical attributes have to be imposed, greedy heuris-
tics typically rotate the selection of the items among the partition classes in
the item pool introduced by the attributes. To deal with differences between
the numbers of items needed from these classes, they visit them propor-
tionally. Quantitative constraints can only be imposed by this method if
we pool their values into a few categories first. If multiple parallel forms of
a test have to be assembled, item selection is rotated both over classes of
items in the pool and the individual tests. This rotation works only if the
number of constraints is not too large and all constraints are equalities.

Because of the greedy nature of the heuristic, the result often is a test
information function that overshoots its target values. From a measurement
point of view, more is not necessarily worse. But if a sequence of tests is
to be assembled and there is no interim replenishment of the pool with
items of the same quality, greedy algorithms produce a first test with an
information function that overshoots its target, while later tests show a
quick deterioration of their quality. The phenomenon holds universally for
any type of sequential selection of items or tests (Section 4.6), but the
deterioration is largest for greedy algorithms. To remedy such problems,
test-assembly heuristics usually have a second stage in which items are
swapped between the test(s) and the pool to get more desirable results.
Essentially, such stages introduce a form of backtracking, which, as we saw
in Section 4.2, branch-and-bound algorithms perform in a complete and
much more effective way.
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4.4.2 Luecht Heuristic
The Luecht heuristic is based on the same principle of local optimization as
the class of greedy heuristics in the preceding section, but it is a projection
method in the sense that it looks forward and uses the differences between
the target and current values for the test information function to reduce
its greediness to desirable proportions.

The Luecht heuristic finds the gth item by taking the following steps:

1. Divide the remaining difference between the target values and current
values of the information function in (4.16) in equal portions. If g −1
items have been selected, these portions are equal to

[Tk −
g−1∑
j=1

Iij
(θk)]/(g − n + 1). (4.17)

2. Select the item with an information function that matches (4.17) best
over all values θk, k = 1, ..., K, using a weighted criterion that favors
an item more strongly, if its information better matches the norm in
(4.17) at θk values where this norm is larger.

The Luecht heuristic has also been extended to deal with constraints
and multiple-test problems, exactly as for the previous class of heuris-
tics. Because of its criterion of a weighted match to (4.17), this heuristic,
which is also known as the normalized weighted absolute deviation heuristic
(NWADH), does not have the tendency to overshoot target values for in-
formation functions, though its solution can still be improved by a second
stage of item swapping.

4.4.3 Swanson-Stocking Heuristic
This heuristic was motivated by the idea of goal programming (Section
3.3.4). It assumes test specifications with upper and lower bounds for all of
their attributes, including the test information function, but treats these
bounds as goal values rather than strict bounds. In addition, it requires
the specification of weights by the test assembler, one for each attribute,
to reflect their relative importance.

The heuristic also selects one item at a time but does so by minimizing a
criterion based on a weighted sum of deviations from all bounds, including
those on the information function. Let h = 1, ..., H be the constraints and
aih the value of item i on the attribute in constraint h. If h is categorical,
aih ∈ {0, 1}, whereas if h is quantitative, aih = qi . In addition, we use Rg

to represent the set of I − g +1 items in the pool after the first g −1 items,
i1, ..., ig−1, have been selected.

The Swanson-Stocking heuristic identifies the gth item by taking the
following steps:
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1. Calculate the contribution of each item in the pool to each constraint
h as the sum of (1) the attribute values of the g − 1 items already
selected, (2) the attribute value of the candidate item, and (3) n − g
times the average attribute value of all other I − g items in the pool:

πigh =
g−1∑
j=1

aijh + aigh + (n − g)

∑
i∈Rg\{ig}

aih

(I − g)
. (4.18)

2. For each constraint h, calculate the distance between contribution
πigh and the bound as ∣∣πigh − bh

∣∣ . (4.19)

If the constraint has both an upper and a lower bound, and πigh is
between the bounds, (4.19) is set equal to zero.

3. Select the item with the smallest weighted sum of distances; that is,
according to

H∑
h=1

wh

∣∣πigh − bh

∣∣ , (4.20)

where the weights wh have to be specified by the test assembler.

Like the Luecht heuristic, the Swanson-Stocking heuristic is a projection
method. It represents the items to be selected at later stages by the average
attribute values of the remaining items in the pool (i.e., the third term of
(4.18)). Also, like the preceding two heuristics, it has a second stage with
backtracking in the form of item swapping between the initial solution and
the pool.

4.5 Local Search Heuristics

The two heuristics for local search that we discuss in this section belong
to the flourishing field of Monte Carlo optimization. Readers familiar with
Bayesian methods in test theory will recognize one of these heuristics (sim-
ulated annealing) as the popular Metropolis algorithm for drawing from
posterior distributions in parameter estimation in IRT.

Both heuristics are inspired by natural processes that seem to imply
some form of optimization. The genetic algorithms in Section 4.5.1 model
optimization as an evolutionary process in a population of candidate solu-
tions. The terminology used to describe these algorithms borrows heavily
from evolutionary theory in biology. The method of simulated annealing in
Section 4.5.2 simulates the thermal process of cooling a solid physical body
in a heat bath to an optimum, a well-known problem in statistical physics.
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The analogy between these heuristics and the empirical processes that
have inspired them makes them fancy but does not guarantee their success
as an optimization method for an arbitrary mathematical problem. Rather,
we should view them as schemes that are much more general than the con-
structive heuristics in the preceding sections and that have to be optimized
for the application at hand. Their generality is both a strength and a weak-
ness. On the one hand, these schemes are not just for IP problems, but can
be applied to any constrained combinatorial optimization problem, which
makes them a likely choice for problems with objective functions or con-
straints that are hard to represent linearly. On the other hand, to define a
good local search, deep knowledge of the specific structure of the problem
is required.

The basic idea underlying any local search heuristic is that of a walk
through a chain of subsets of points in the feasible space of the problem.
These subsets can be viewed as neighborhoods of the interim solutions found
during the walk. The link to a new neighborhood is established by searching
the neighborhood of the current solution for improvement, hence the name
local search. An instructive analogy is that of the walk through an unknown
area of a blindfolded person who uses a cane to explore his neighborhood
before making a step and keeps doing so until a satisfactory destination is
reached.

Important differences between local search heuristics exist in the defini-
tion of the neighborhoods (unlike the analogy with the blindfolded person
above, a good neighborhood does not necessarily consist of points that are
close in a physical sense!) and the way the neighborhoods are searched.
Sections 4.5.1 and 4.5.2 illustrate such differences.

4.5.1 Genetic Algorithms
The class of genetic algorithms is diverse. Each of its algorithms is based
on the idea of an entire generation of candidate solutions evaluated at one
time instead of a single candidate. The candidates are allowed to produce
offspring. The fittest candidates are then selected as the new generation,
whereas the weaker candidates die. This step is repeated a large number of
times, upon which the fittest candidate met so far is declared to be the so-
lution. Obviously, for this process to work for an optimization problem, the
fitness function should have a monotonic relation to the objective function
that is optimized.

The rule for the production of offspring defines the neighborhoods in a
genetic algorithm, whereas the operation of selection determines the out-
come of a local search. Finding effective rules and operations is part of the
problem of finding a good implementation of the algorithm.

This basic formulation of a genetic algorithm as a continuous process
of offspring generation and selection is usually extended with other ge-
netic operations, such as mutation and recombination. Mutations are small
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perturbations of candidate solutions. In a test-assembly problem, a typical
perturbation is the (random) swap of an item between a candidate test and
the set of remaining items in the pool. Recombination is the operation of
combining two candidates into a new one. In a test-assembly problem, re-
combination would mean combining the strings of items from two different
tests into a new test (crossover). These operations can be chosen to have
a random component and/or a step involving local optimization, such as
finding a best mate, before recombination.

An example of a genetic algorithm for a test-assembly problem with
minimization of the objective function could consist of the following steps:

1. Use the item pool to create an initial generation of tests.

2. Use the operations of mutation and recombination to expand the set
of tests.

3. Calculate the values of the objective function for the tests.

4. Use these values to select a new generation of tests.

5. Repeat the previous three steps until a test with an acceptably low
value for the objective function is met.

Of course, the larger the number of iterations, the better the solution
expected. In fact, the current enormous power of our computers has stim-
ulated the interest in local search heuristics.

A problem requiring considerable ingenuity is that of how to keep the
algorithm operating within the feasible space for the optimization problem.
Ideally, the initial pool should contain feasible candidates only, and this
feasibility is maintained during the processes of mutation and offspring
generation. Incidental operation outside this space is no problem, provided
we know that the process returns to it with improved values for the fitness
function. For real-life test-assembly problems, with hundreds of constraints
and hence a size of the feasible space of much lower order than the full
space of all possible tests, this requirement is a frequent obstacle.

One standard approach for reducing infeasibility, reminiscent of the tech-
nique of Lagrangian relaxation in Section 4.3, is to use penalty terms for
constraint violation. These penalty terms are combined with the objective
function into a fitness function. The idea is that because of low fitness
the majority of infeasible solutions sooner or later die. For test-assembly
problems, the definition of effective penalties is still an area of exploration.

4.5.2 Simulated Annealing
This heuristic scheme differs from genetic algorithms in that the process
moves from the search of a single candidate solution to the next. The search
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is performed by simulating the technique of annealing in condensed matter
physics. Annealing is a thermal process for obtaining a minimum-energy
arrangement of particles in a solid, such as a crystal. The arrangement is
obtained by melting the solid and then carefully cooling it.

The simulation of this process is based on a Monte Carlo technique intro-
duced in the 1950s. In this technique, the next energy state of the solid is
obtained by a random perturbation of the previous state, which is then ac-
cepted with a certain probability. (If the perturbation is not accepted, the
solid remains in the same state.) The process is controlled by a parameter
that governs the distribution of the acceptance probabilities. A sequence of
values for this control parameter systematically lowers the probability of
acceptance of worse solutions during the process. This sequence is known
as the cooling schedule for the process.

The analogy between the physical process of annealing and local search
in a combinatorial minimization problem arises if we equate (i) each ar-
rangement of particles in the solid to a candidate solution, (ii) its energy
level to the value of the objective function, and (iii) the minimum-energy
state to the solution that is sought.

The neighborhoods in a search based on simulated annealing are defined
by the perturber used to generate new candidate solutions. Typically, a
random mechanism is chosen that ranges over the entire solution space.
The acceptance of a new candidate is also always a random event. Be-
cause of these features, simulated annealing implies a random walk through
the space of solutions until one with an acceptable value for the objective
function is found.

For a test-assembly problem with minimization of the objective function,
simulated annealing involves the following steps:

1. Choose a test as the incumbent solution for the optimization problem.

2. Perturb the test randomly and calculate its value for the objective
function.

3. If the new test has a lower value for the objective function, accept it
as the new incumbent. If it has a larger value, accept it with a (small)
probability that depends both on the degree of deterioration of the
objective function and the control parameter.

4. Lower the value of the control parameter.

5. Repeat the previous three steps until a test with an acceptably low
value for the objective function has been found.

The probability of accepting a worse solution in step 3 is often defined
as

Pr{acceptance | t} =

{
1 if o(p) < o(i)
exp
[
− o(p)−o(i)

t

]
if o(p) ≥ o(i), (4.21)
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where o(i) and o(p) are the values of the objective function for the incum-
bent and the new solution proposed by the perturber, respectively. This
probability density is derived from the Boltzmann distribution in physics,
which describes the distribution of energy states of a solid as a function of
the temperature. Parameter t in (4.21) is the control parameter; lowering
its value gives new probabilities of acceptance that are uniformly lower in
the degree of deterioration of the objective function, o(p) − o(i). It is not
necessary to work with this density function; in principle, another function
decreasing in o(p) − o(i) with a parameter that can be used to lower the
acceptance probabilities uniformly to zero might do as well.

The fact that the algorithm accepts worse solutions with decreasing prob-
abilities helps it leave a local optimum and is critical to its success. The
same feature is introduced by the mutation operation in a genetic algorithm
and the possibility of backtracking in a branch-and-bound algorithm (see
Section 4.6). Like genetic algorithms, the more challenging part of using
simulated annealing for test assembly is to find a perturber that ranges
over the entire feasible space of tests but does not leave it.

An empirical example of an application of the method of simulated an-
nealing to a test-assembly problem is given in Section 6.6, where we use
this method to calculate a set of test booklets that constitutes an optimal
balanced-incomplete-block design for a large-scale educational assessment.

4.6 Simultaneous and Sequential Optimization

The three constructive heuristics in Section 4.4 are sequential; they as-
semble a test by selecting one item at a time. On the other hand, the
branch-and-bound algorithms in Section 4.2 optimize over all decision vari-
ables simultaneously; at each iteration step, they evaluate an entire solution
against an incumbent. The same holds for the network-flow formulation in
Section 4.3 and the local search heuristics in Sections 4.5.1 and 4.5.2.

A basic problem inherent in using a sequential heuristic for solving a
combinatorial optimization problem is that consequences of unfortunate
earlier decisions can only be discovered later, when they can no longer be
undone. As a result, sequential heuristics are bound to lead to suboptimal
solutions and often have to violate constraints to find a test at all.

An example of these two tendencies is given for the following small test-
assembly problem for the item pool in Table 4.1:

maximize
5∑

i=1
Ii(θc) (maximum information at θc) (4.22)

subject to
5∑

i=1
xi = 2, (test length) (4.23)
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Item Ii(θc) V1 V2 VE

1 .50 + + +
2 .40 + − +
3 .30 + + −
4 .20 − + +
5 .10 − + −

TABLE 4.1. Example of constraint violation by a sequential heuristic.∑
i∈V1

xi ≥ 2, (attribute 1) (4.24)∑
i∈V2

xi ≤ 1, (attribute 2) (4.25)∑
i∈Ve

xi ≤ 1, (enemies) (4.26)

xi ∈ {0, 1}, i = 1, ..., 5. (range of variables) (4.27)

The objective of this problem is to maximize the test information at a
cutoff score θc. In Table 4.1, “+” and “−” are used to indicate which items
have and do not have attributes 1 and 2 used in the categorical constraints
in (4.24) and (4.25) and which items are in enemy set Ve in (4.26). From
this table, it is immediately clear that the optimal solution is the test
consisting of items 2 and 3, which has a maximum value of .70 for the
objective function.

A greedy heuristic would pick item 1 as the first item for the test because
it has the largest value for Ii(θc). It would then get stuck: Item 2 cannot
be selected because its choice would lead to violation of constraint (4.26),
whereas choosing item 3 would violate constraint (4.25), item 4 constraints
(4.24)–(4.26), and item 5 constraint (4.25). Other heuristics may begin with
another item but are bound to run into comparable problems. Heuristics
therefore need strategies to compromise between constraints in such cases.
For example, in the Swanson-Stocking heuristic, the weights in (4.20) set
by the test assembler determine which constraints are violated.

If a heuristic has to be used, one of the local search heuristics in Section
4.5 appears to be a better choice. These heuristics are based on simul-
taneous optimization. It is interesting to compare the various rules and
strategies used in the constructive and local search heuristics discussed
earlier in this chapter. For example, a reproduction rule in a genetic algo-
rithm is, in fact, the equivalent of an item-swapping rule in the second stage
of the constructive heuristics above, but it is applied with greater sophis-
tication and much more force to a larger set of potential solutions. Also,
the critical difference between a branch-and-bound algorithm and a local
search heuristic is that the former is based on complete enumeration of the
space of possible solutions, whereas the latter evaluates only a (random)
subset of it.
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The same discussion of sequential and simultaneous optimization returns
if we deal with the problems of multiple-test assembly (Chapter 6) and
adaptive test assembly (Chapter 9). If more than one test has to be assem-
bled, sequential optimization results in tests of deteriorating quality. The
tests also have an increasing tendency to violate some of the constraints.
Nevertheless, multiple-test problems sometimes are too large for simultane-
ous optimization and have to be found in a sequential fashion. In addition,
item selection in adaptive testing is sequential by nature.

If sequential optimization has to be performed, the only way to avoid a
sequence of solutions with deteriorating results and increasing tendency of
constraint violation is by looking forward. This is exactly why in the Luecht
heuristic the projection of the remaining portion of the information func-
tion in (4.17), and in the Swanson-Stocking heuristic the projection of the
attribute values of the remaining items in the test in (4.18), are calculated.
In Chapters 6 and 9, we introduce shadow-test methods for multiple-test as-
sembly and adaptive testing, which project in a more effective way. They do
so by calculating predictions of the entire test that is sought and requiring
these to be both feasible and optimal.

4.7 Optimal Design Approach

Optimal design methods have been developed in statistics. Their goal is to
optimize the design of a sample for parameter estimation.

A classical example is the design of a sample for estimating the regression
parameters in the simple linear model

E(Y | x) = β0 + β1x, (4.28)

where Y is a (random) dependent variable, x a fixed predictor, and β0 and
β1 are the regression parameters (intercept and slope parameters). A pos-
sible design for a (fixed-size) sample for estimating these parameters is a
specification of the distribution of units sampled at preselected values of
the predictor variable, x. Intuitively, the necessity of optimizing a sample
for this problem makes sense. For example, the stability of the estimators
of β0 and β1 depends on the range of x values. If the range is small, the
sample needs to be large for the estimators to become stable. But if the
range increases, stable estimators are obtained for smaller sample sizes. Or,
in graphical terms, the larger the range of x values, the more certain we
are of how to draw a regression line in a bivariate scatter plot of the data.

The criterion for the optimization of the sample should be based on the
(asymptotic) 2×2 covariance matrix of the estimators of these unknown
parameters β0 and β1. A common criterion for parameter estimation prob-
lems in the optimal design literature is the determinant of these matrices
(D-optimality). The determinant of the covariance matrix is a generalized
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variance measure for the normal approximation to the (joint) sampling
distribution of the estimators. If this criterion leads to an intractable opti-
mization problem, it is often approximated by the criterion of A-optimality
(the trace of covariance or information matrix) or L-optimality (the largest
eigenvalue of these matrices). Usually it is convenient to approximate the
covariance by the information matrix and define the criteria on the latter.
In this section, we follow this practice; for a problem with a covariance
matrix, see our treatment of the topic of multidimensional test assembly
in Chapter 8.

A more formal characterization of an optimal design for an estimation
problem such as the one in (4.28) is as follows. The set of all possible values
of x is called the design space. If this space is continuous or consists of a
large number of discrete points, the problem is typically reduced to that
of finding an optimal sample over a well-chosen selection of design points
d = 1, ..., D from it. For each point d, an integer sampling weight wd is
defined. A sample design for the estimation of the parameters (β0, β1) is a
specification of the values of (d, wd), d = 1, ..., D, which thus tells us how
many units are to be sampled at each point. An optimal sample design is
the set of values for (d, wd), d = 1, ..., D, that minimizes one of the criteria
above for the estimators (β̂0, β̂1) of (β0, β1).

Suppose we want to design a test that is optimal for measuring the
ability θp in the 3PL model in (1.16) for a test taker p. If we focus only
on the item parameters (a, b,c) and ignore all other item attributes, the
problem of finding an optimal test can be conceived of as an optimal design
problem with optimization over possible designs (d, wd) with design points
defined as d = (a, b, c). Each of these designs is a possible distribution of
the item-parameter values for the test.

A natural objective function for this problem is the value of the test-
information function in (1.19) at θp, which can be written as

I(θp) =
D∑

d=1

wdId(θp), (4.29)

with Id(θp) the value of the item-information function in (1.20) at θp and
wd the number of items at point d = (a, b, c). Observe that there is no need
to choose between the criteria of D- and A-optimality for this problem.
Since we optimize an estimator of a single parameter, both criteria reduce
to (4.29). Obviously, the best solution is one that puts all weight on a design
point with b close to θp and a maximal.

Since the parameter θp is unknown, the usual approach is to assume
an array of ability values, θ1, ..., θP , P > 1, that is representative of the
population of test takers and optimize the test for their estimators θ̂1, ..., θ̂P .
This assumption creates a multiobjective decision problem because the test
has to be optimized jointly with respect to the accuracy of P different
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estimators. In Section 3.3.4, we introduced several approaches for dealing
with test-assembly problems with multiple objectives.

In the optimal design literature on test assembly, it is customary to treat
the array θ1, ..., θP as a P -dimensional parameter. Because the estimators
θ̂1, ..., θ̂P are independent, the criteria of D- and A-optimality simplify to
the product and sum of the diagonal elements of the information matrix,
respectively; that is, to

D =
P∏

p=1

[
D∑

d=1

wdId(θp)

]
(4.30)

and

A =
P∑

p=1

[
D∑

d=1

wdId(θp)

]
, (4.31)

where the bracketed term is the value of the test information function at
θp in (4.29). A test with maximum value for one of these criteria can be
easily found using a branch-and-bound search over all design points (see
Section 4.2).

We are not in favor of this approach. In statistics, the criteria of D-
and A-optimality have been proposed to reduce an information matrix to
a scalar that can be used as an objective function in an optimization prob-
lem. As the application does not involve a true multidimensional problem
but that of estimating a set of P unidimensional parameters, it is more
appropriate to use a multiobjective approach to compromise between the
accuracy of the estimators. In fact, the function in (4.31) can already be
viewed as an implicit choice of the weighted-objectives approach in (3.74)
with all weights set equal to w = 1. The criterion in (4.30) also combines
the P objectives into a single function but, from the perspective of mul-
tiobjective decision-making, the use of a product for this purpose is less
satisfactory.

Most of the approaches for dealing with multiple objectives in test assem-
bly problems in Section 3.3.4 give us much better control of the individual
objectives than (4.30) and (4.31). Particularly, to prevent unexpectedly low
accuracy for some of the P ability estimators, a maximin approach is more
effective. Several applications of this approach will be discussed when we
treat the problem of IRT-based test assembly directly as a multiobjective
decision problem in Section 5.1.

It is certainly not our intention to claim that an optimal design approach
to test assembly is never appropriate. If the ability parameter space is truly
multidimensional, we need such criteria as D- and A-optimality to formu-
late an objective function. Chapter 8 is entirely devoted to problems of this
type. Also, in Chapters 10 and 11, we will introduce methods for item-pool
design that generalize the idea of a design space to include nonstatistical
item attributes. They will also allow for a large number of constraints to



4.8 Literature 101

deal with the content specifications of the tests in the program that the
pool has to serve. These methods enable us to calculate a blueprint for the
item pool that shows us what distribution of items over the design space
is optimal for the testing program.

In sum, the most important differences between an optimal design ap-
proach and the optimal test-assembly methods in this book are:

1. In an optimal design approach, a set of values for the item-parameter
values is sought that is theoretically best, whereas in an optimal test-
assembly problem the search is for the best combination of items in
an existing pool.

2. In optimal design, the focus is only on statistical parameters, whereas
in optimal test assembly items are selected both for their statistical
and nonstatistical attributes.

3. In optimal test assembly, the optimization of a test for a set of
a unidimensional ability parameters is treated more explicitly as a
multiobjective decision problem.

4. An optimal design approach typically deals with unconstrained prob-
lems, whereas in optimal test assembly we have the additional com-
plexity of a set of content constraints that is typically large, predomi-
nantly nonstatistical, and constitutes the most important part of the
problem (see Section 2.3).

4.8 Literature

Introductions to the branch-and-bound method can be found in the refer-
ences to the linear programming literature at the end of Appendix 1. The
question of how to optimize an implementation of this method for a test-
assembly problem is addressed in Adema (1992b) and Veldkamp (2001,
chapter 4). The references to the test-assembly package ConTEST 2.0
mentioned in Section 4.2.5 are Timminga, van der Linden, and Schweizer
(1996, 1997). The current versions of the software with the integer solvers
referred to in Section 4.2.5 are CPLEX 9.0 and OPL Studio 3.7 (ILOG,
Inc., 2003). A trial version of OPL Studio with restricted capacity can
be downloaded from www.ilog.com. An alternative package of solvers is
available in Lindo 6.1 (LINDO Systems, Inc., 2003). A trial version of
this package can be downloaded from www.lindo.com. Paragon Decision
Technology (2004) offers an alternative modeling system called AIMSS 3.5
(URL: www.aimms.com).

A review of network-flow approximations to test-assembly problems is
given in Armstrong, Jones, and Wang (1995). A more detailed treatment
of network-flow approximation for the problem of assembling multiple tests
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meeting the same target information function is found in Armstrong, Jones,
and Kunce (1998) and Armstrong, Jones, and Wu (1992). Generalizations
of this approach for the problem of assembling a set of tests for use in
a multistage testing system are presented in Armstrong and Little (2003)
and Wu (2001). The problem of assembling classically parallel tests is ad-
dressed in Armstrong, Jones, and Wang (1994), whereas Armstrong and
Jones (1992) show how a network-flow approximation can be used to solve
item-matching problems. Armstrong, Jones, Li, and Wu (1996) present re-
sults from a comparative study between network-flow approximation and
the Luecht heuristic.

A greedy heuristic for test assembly in this chapter is presented in Ack-
erman (1989; see also Wang & Ackerman, 1998). The Luecht heuristic was
published in Luecht and Hirsch (1992); a more detailed treatment of it
is given in Luecht (1998). For details on the Swanson-Stocking heuristic,
refer to Swanson and Stocking (1993). Case studies for this heuristic are
reported in Stocking, Swanson and Pearlman (1993).

A excellent reference for local search heuristics is Aarts and Lenstra
(2003). This volume contains interesting introductory chapters on genetic
algorithms (Mühlenbein, 2003) and simulated annealing (Aarts, Korst, &
van Laarhoven, 2003), as well as on tabu search (Hertz, Taillard, & de
Werra, 2003) and neural networks (Peterson & Söderberg, 2003), which are
other types of heuristics with potential applicability to test assembly. Appli-
cations of genetic algorithms to test assembly are given in Verschoor (2004),
whereas van der Linden, Veldkamp, and Carlson (2004) and Veldkamp
(2002) should be consulted for applications of the method of simulated
annealing to test-assembly problems.

Classical introductions to optimal design in statistics are Atkinson (1982)
and Fedorov (1972). These texts are rather advanced. An intermediate
introduction to this topic is given in Silvey (1980). Applications of optimal
design techniques to item calibration and test assembly are reported in
a series of papers by Berger (1994, 1997, 1998), Berger and Matthijssen
(1997), Berger and van der Linden (1992, 1995), Berger and Veerkamp
(1996), and van der Linden (1994a).

4.9 Summary

1. It is useful to check test-assembly models for interactions between the
objective function and the constraint set. The check may help us to
understand at which bounds constraints tend to be realized and may
suggest simplifications of the model.

2. Branch-and-bound algorithms for solving integer programming prob-
lems are based on a tree search. The search begins with the calcu-
lation of a solution to the fully relaxed version of the problem, after
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which the integer constraints on the variables are restored in an it-
erative fashion. If a node in the tree has a solution that does not
beat the incumbent, the branch departing from the node is pruned,
the algorithm backtracks, and the search is continued along another
branch.

3. The class of test-assembly problems are NP-hard; it has not been
proven that solutions to the problems in this class can be found by
a polynomial-time algorithm. However, this property refers only to
an upper bound approximated in a worst-case scenario. Due to con-
tinuous optimization of implementations of the branch-and-bound
method for classes of problems, we are now able to find solutions to
test-assembly problems with large numbers of variables in reasonable
time.

4. Several test-assembly problems can be approximated by a network-
flow formulation or solved by a heuristic with a sequence of network-
flow problems embedded in it. Solutions to network-flow problems are
found with small polynomial running time.

5. Heuristics are techniques for finding a solution to a test-assembly
problem based on a plausible idea. The quality of their solutions has
not been proven to be optimal but has to be assessed by scrutinizing
their nature.

6. Constructive heuristics build a test by selecting one item at a time.
Greedy heuristics select items that are locally best. Both the Luecht
and Swanson-Stocking heuristics are more careful in that they select
items by evaluating projections of the future consequences of local
steps.

7. Local search heuristics search neighborhoods of interim solutions for
improvements. They stop when an acceptable solution has been found.
These heuristics should be viewed as general schemes that have to be
adapted to the specific structure of test-assembly problems. Finding
an implementation that restricts the search to the set of feasible tests
is critical to their success.

8. Genetic algorithms are local search heuristics that simulate an evolu-
tionary process for a pool of candidate solutions using such operations
as selection, mutation, and recombination to produce a next gener-
ation of solutions. Simulated annealing is a local search technique
that models the search analogously to the thermal process of a solid
reaching a minimum-energy arrangement of its particles through a
cooling schedule.
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9. Constructive heuristics for test assembly perform sequential optimiza-
tion, whereas branch-and-bound algorithms and local search heuris-
tics optimize simultaneously (i.e., over all decision variables at the
same time). Solutions obtained by sequential optimization tend to be
suboptimal and to violate constraints.

10. An optimal design approach to test assembly views a test as a set
of values for its statistical item parameters that has to be optimized
to produce the best ability estimates for a population of persons.
Our basic method of item-pool design in Chapters 10 and 11 can
be viewed as a generalization of this approach that allows for the
presence of nonstatistical attributes of the tests and large sets of
content constraints.



5
Models for Assembling Single Tests

This chapter deals with applications of the methodology introduced in the
previous chapters to four different classes of test-assembly problems. In
each of these problems, the task is to assemble a single test from an item
pool, but they differ in the objectives with which the tests are assembled.

The first class of problems departs from Birnbaum’s (1968) problem of
assembling a single test of discrete items to a target for its information
function (Section 1.2.8). An important difference between absolute and
relative targets is introduced. We discuss a few methods for specifying both
types of targets. In addition, we show how once a target of either type is
specified, the test-assembly problem can be modeled as an MIP problem.

Whereas the first class of problems assumes the fit of the item pool
to an IRT model, the second class of problems is based on classical test
theory only. The objectives are to assemble a test with optimal reliability
or predictive validity, respectively. In principle, these objectives lead to
problems with nonlinear objective functions. Because we generally want to
avoid such functions, an important part of our treatment is to show how
these problems can be linearized.

In the third class of problems, the objective is to assemble a test to
match a prespecified observed-score distribution for a given population of
test takers. The observed-score distribution may be one for a previous test
in the same program, but it is also possible to specify a target distribution
based on practical considerations only. This objective may seem somewhat
unusual. But, as a matter of fact, an identical objective is pursued in
the practice of observed-score equating, where, once a test is assembled
and administered, the number-correct score is transformed to produce the
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same score distribution as for a reference test. We show that this form of
post hoc equating can be avoided by imposing a set of constraints on the
test-assembly problem. Surprisingly, the constraints we need have a simple
linear form.

The final class consists of item-matching problems. In item matching,
the objective is to assemble a new test that matches a reference test item
by item. The method we discuss can be used with any combination of
item attributes: classical item indices, IRT parameters, or more substantive
quantitative or categorical attributes. If a test is assembled to have the
same information function or reliability as a reference test, the two tests
are weakly parallel. Item matching enables us to assemble a test that is
parallel to a reference test in a much stronger sense.

As just noted, the critical difference between these four classes of test-
assembly problems resides mainly in their objective functions. These func-
tions may require a few technical constraints. But for any of these models
it is possible to add a set of substantive constraints to the model to deal
with the remaining content specifications. As numerous examples of such
constraints were already presented in Chapter 3, we will omit a further
discussion of this option in this chapter.

5.1 IRT-Based Test Assembly

A target for a TIF is a function T (θ) that provides goal values for it along
the θ scale in use for the item pool. For mainstream response models, such
as the 3PL model in (1.16), TIFs are well-behaved, smooth functions. It
therefore holds that if we require a TIF to meet a smooth target T (θ)
at one point on the θ scale, it automatically approximates the target in
a neighborhood of this point. Also, target values for fewer points tend
to result in much faster solutions. In practice, we therefore specify target
values for TIFs at only a few points on the θ scale, which we denote as
T (θk), k = 1, ..., K. Extensive simulation studies and ample experience
with practical test-assembly problems have shown that this number need
not be larger than 3–5 points.

As already discussed in Section 1.2.7, we assume that these points are
selected by a test assembler familiar with both the numerical scale and the
substantive interpretation of the θ scale in use for the item pool. To give an
idea of a typical choice of a set of values θk, we consider the case of a target
for the TIF that has to provide diagnostic information on a population
of persons centered at θ = 0 with standard deviation σθ = 1. For the
3PL model, target values that can be expected to yield excellent results
are typically specified at (θ1, θ2, θ3) = (−1.0, 0, 1.0) or (θ1, θ2, θ3, θ4) =
(−1.5,−.5, .5, 1.5).
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The problem of assembling a test with an information function that has
to meet a target is a multiobjective test-assembly problem. More specif-
ically, if we intend to minimize the differences between the TIF and its
target at values θk, k = 1, ..., K, we have a problem with K different objec-
tives. General approaches to multiobjective test-assembly problems were
discussed in Section 3.3.4. These approaches will be used extensively to
solve our current class of problems.

5.1.1 Absolute and Relative Targets
An important distinction exists between absolute and relative targets. A
target is absolute if it specifies a fixed number of information units at the
points θk. This type of target was assumed when Birnbaum introduced his
approach to test assembly (Section 1.2.8). To specify a meaningful absolute
target, we need to be familiar not only with the θ scale but also with the
unit of the information measure that the scale implies. If we are unfamiliar
with it, unexpected results may occur (for example, unrealistically long
or short tests if the test length is left free, or large deviations from the
target if it is constrained). For this reason, absolute targets are used almost
exclusively when tests are assembled to be parallel to a known reference
test. We will use Tk as shorthand notation for the absolute target values
T (θk), k = 1, ..., K, for the TIF.

If an absolute target is specified, we in fact imply that more information
than specified by the target is undesirable. From a measurement point
of view, this implication seems peculiar, but in practice it often makes
sense. An example is admissions testing, with different institutions setting
their own admission scores on an observed-score scale for the test. If the
information function of a new test overshot the target along a portion of the
θ scale, the observed-score distribution would change in the neighborhood
of some of the admission scores. As a consequence, without any change in
the population of examinees, the proportion of examinees that qualify for
admission may go up or down, a result that would certainly embarrass the
institutions concerned.

However, in other applications more information is always better, as long
as it is distributed along the θ scale in a way that reflects the objectives
for the test. Examples are found in broad-range diagnostic testing and
testing for licensing with a fixed minimum level of performance required
for passing. The only thing we then want to control is the shape of the
information function. But if we are interested only in the shape of the
target but not in its height, we in fact have a relative target for the TIF.
Formally, a relative target can be defined as a set of numbers Rk > 0 that
represent the required amount of information at θk relative to the other
points in the set k = 1, ..., K. For instance, if we want the test to have
twice as much information at θk as at θk+1, the numbers Rk and Rk+1
need to be chosen such that Rk/Rk+1 = 2. Because we have to specify
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FIGURE 5.1. Example of two targets for a test information function with the
same shape but heights differing by a factor of 1.5.

ratios of numbers only, fortunately to select them we need not be familiar
with the unit of the information measure. Hence, as will become clear below,
the choice of a relative target is less likely to result in test assembly with
unexpected results.

An example of two target information functions with the same relative
shape is given in Figure 5.1. The two targets have identical ratios for their
values at each pair of θ values. As a consequence, their height differs only
by a common factor, which is 1.5 in this example. When we model test-
assembly problems with a relative target below, we introduce a new decision
variable to represent this factor.

5.1.2 Methods for Specifying Targets for Information
Functions

To specify an absolute target for a new testing program, we could simply
follow a trial-and-error method, alternately selecting a set of values for the
target function and checking the actual TIFs for the tests assembled from
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the pool. In principle, this method works fine because solutions are quickly
obtained. The following alternative methods are more direct, however:

1. The first alternative is based on descriptive statistics of the distribu-
tion of the item parameters in the pool. From these statistics, we can
choose a set of n combinations of values that are typical of the pool,
where n is the intended test length. We can then calculate the infor-
mation function for this set and edit it to improve its representation
of the primary objectives for the testing program. For instance, if the
test has to be diagnostic over a θ interval, we could replace the infor-
mation function by one with a uniform shape at average height. Or
if the test is for decision making at one or more cutoff scores θc, we
may feel obliged to increase the information at these scores, taking
information away from other areas along the scale.

2. A second alternative is to ask test specialists to assemble manually
a specimen of the tests that should be used in the program. This
specimen should meet all other specifications, except those involving
the information functions of the items, and consists of items that
the specialists consider typical. The actual information function of
the specimen provides us with a good estimate of the general level
of information possible for the test. The function can then be edited
for better representation of the goals for the testing program. An
advantage of the second method is that it takes all nonstatistical
item attributes into account and therefore is based on a feasible test
from the item pool. A disadvantage is that it is not based on the
distribution of the item parameter values in the pool.

3. An interesting method is the Kelderman method, which is based
on the equality in (1.18) between the information function and the
inverse of the (asymptotic) variance of the ML estimator of θ

[I(θ)]−1 = Var(θ̂ | θ), (5.1)

where our notation shows the dependence of the variance on the true
value of θ. For two persons with true abilities θ1 and θ2, it holds for
the variance of the difference between their estimators that

Var(θ̂1 − θ̂2 | θ1, θ2) = Var(θ̂1 | θ1) + Var(θ̂2 | θ2)

= [I(θ1)]−1 + [I(θ2)]−1. (5.2)

Because both estimators have an (asymptotic) normal distribution,
it follows that

Pr{θ̂1 > θ̂2 | θ1, θ2} = Φ

(
θ1 − θ2

{[I(θ1)]−1 + [I(θ2)]−1}1/2

)
, (5.3)



110 5. Models for Assembling Single Tests

where Φ(.) is the distribution function of the standard normal dis-
tribution. If θ1 < θ2, Pr{θ̂1 > θ̂2 | θ1, θ2} is the probability that the
scores on the tests for persons at θ1 and θ2 are ordered erroneously.
Making the information values explicit, we obtain

[I(θ1)]−1 + [I(θ2)]−1 =
{

(θ1 − θ2)[Φ−1(Pr{θ̂1 > θ̂2 | θ1, θ2})]−1
}2

.

(5.4)
In the Kelderman method, a set of pairs of points (θ1, θ2 ) is presented
to a panel of test specialists, who are asked to specify the probabilities
with which they are willing to accept test scores for persons at these
points who order them erroneously. If these probabilities are known,
so is the right-hand side of (5.4), and we have a set of equations,
one for each pair, that can be solved for the unknown information
values on their left-hand sides, which serve as target values. Although
this method also runs the risk of resulting in target values leading
to unexpected test lengths, it has the advantage of translating the
costs due to measurement errors directly into target values for the
information function.

To specify a relative target for a TIF, the following two approaches are
available:

1. Each of the three methods above can be used, but we ignore the
absolute nature of the resulting numbers, using them only as relative
target values in the test-assembly models we introduce below.

2. A simpler alternative is to offer test specialists an arbitrary number
of chips (100, say) and ask them to distribute them over the points θk,
k = 1, ..., K, in an item map (Figure 1.5) such that their distribution
reflects the relative accuracy needed in the test scores for persons at
these points. The number of chips at θk is then the relative target
value Rk. The total number of chips is arbitrary because the numbers
Rk are unitless.

5.1.3 Assembling Tests for Absolute Targets
Before discussing several examples of objective functions that can be used
to select a TIF to meet a set of target values, we discuss a set of constraints
that also does the job. Let δk ≥ 0 and εk ≥ 0 be small tolerances with which
the TIF is allowed to be larger or smaller than the target values Tk. Adding
the following set of constraints to the model forces the TIF to be close to
the target:

I∑
i=1

Ii(θk)xi ≤ Tk + δk, for all k, (5.5)
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I∑
i=1

Ii(θk)xi ≥ Tk − εk, for all k. (5.6)

The tolerances in (5.5.) and (5.6) are indexed by k to allow them to be
dependent on the value of Tk; for example, somewhat larger for the middle
values of Tk or at values θk where the item pool has been relatively depleted.

An advantage of using a set of constraints to realize a target is that we
still have the opportunity to formulate an objective function for another
attribute. On the other hand, to avoid infeasibility, the tolerances δk and εk

have to be chosen realistically for the item pool. If we follow the alternatives
below, for a well-designed item pool infeasibility is no problem.

Our first approach to the multiobjective problem of matching a target
at K points is the weighted-objectives approach in Section 3.3.4. Let wk

be the weight for the objective of minimizing the positive deviation of the
TIF from target value Tk. The following combination of objective function
and constraints allows us to minimize a weighted sum of positive deviations
from the K target values,

minimize
K∑

k=1

wk

I∑
i=1

Ii(θk)xi, (5.7)

subject to
I∑

i=1
Ii(θk)xi ≥ Tk, for all k (5.8)

(Exercise 5.1).
If we had omitted the set of constraints in (5.8), the objective function

would minimize the total weighted sum of the TIF values at the values θk.
Because of the presence of the constraints, the objective function minimizes
only positive deviations from the target values.

The objective in (5.7) and (5.8) permits compensation between individual
values of the TIF, and the result may therefore show an undesirably large
local deviation. This element of unpredictability is absent in the following
application of the minimax principle introduced in Section 3.3.4:

minimize y (5.9)

subject to
I∑

i=1
Ii(θk)xi ≤ Tk + y, for all k, (5.10)

I∑
i=1

Ii(θk)xi ≥ Tk, for all k, (5.11)

y ≥ 0, (5.12)

where y is a real-valued decision variable. The constraints in (5.11) require
the TIF to be larger than the target values, while the constraints in (5.10)
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define decision variable y as an upper bound to all positive deviations
from these values. The upper bound is minimized in (5.9). Ideally, the best
possible result is obtained for y = 0, but typically a slightly larger value is
obtained because it is hard for a sum of item-information functions from a
pool to meet a set of target values exactly (Exercise 5.2).

Thus far, one of our assumptions has been that small positive deviations
of the TIF from the target values are permitted but negative deviations
are forbidden. If both types of deviations are considered equally undesir-
able, the target values become goal values for the TIF, and the following
alternative to the model for the weighted-objective approach in (5.7) and
(5.8) can be useful:

minimize
K∑

k=1

wk(ypos
k + yneg

k ) (5.13)

subject to
I∑

i=1
Ii(θk)xi = Tk − ypos

k + yneg
k , for all k, (5.14)

ypos
k ≥ 0, for all k, (5.15)

yneg
k ≥ 0, for all k, (5.16)

with wk ≥ 0 for all k.
The constraints in (5.14)–(5.16) define the new decision variables ypos

k and
yneg

k as possible positive and negative deviations from the target values Tk.
If the objective function takes a minimal value, at each θk only one of the
two variables can be positive and the other is equal to zero. For example,
substitution of ypos

k = 0 in (5.14) shows that yneg
k is a possible negative

deviation at θk in the solution. Likewise, ypos
k is a possible positive deviation

(Exercise 5.3).
The attribute in (5.13) is the weighted sum of absolute deviations of the

TIF values from Tk; (5.13)–(5.16) is thus a linear equivalent of the following
objective function, which minimizes the sum of the absolute deviations from
the target values:

minimize
K∑

k=1

wk

∣∣∣∣∣
I∑

i=1

Ii(θk)xi − Tk

∣∣∣∣∣ . (5.17)

It is for this reason that (5.13)–(5.16) can be used as a two-sided alternative
to (5.7) and (5.8).

Likewise, (5.9)–(5.12) can be replaced by a minimax approach in which
the largest absolute deviation from Tk is minimized. The optimization prob-
lem then becomes

minimize y (5.18)
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subject to
I∑

i=1
Ii(θk)xi ≤ Tk + y, for all k, (5.19)

I∑
i=1

Ii(θk)xi ≥ Tk − y, for all k, (5.20)

y ≥ 0. (5.21)

The constraints in (5.19) and (5.20) enclose the differences between the
TIF and target values in an interval about zero, [−y, y], and the size of the
interval is minimized by (5.18) (Exercise 5.4).

Our favorite approach is the minimax model in (5.18)–(5.21), particu-
larly if the test is assembled in a program where a fixed target has to be
maintained over time. In such applications, positive and negative deviations
from the target values are equally undesirable. By minimizing the largest
deviation from the target, the model presses the TIF as closely as possible
against the target, avoiding surprises in the form of large local deviations.

5.1.4 Assembling Tests for Relative Targets
If the target for the TIF is relative, we maximize its height at each θk,
k = 1, ..., K, but at the same time want to maintain its relative shape.
Intuitively, the problem seems to be one with K objectives and a set of
additional constraints to maintain the shape of the TIF.

We begin with the formulation of the constraints. Because the target
values Rk have no fixed unit, one of them can be set equal to one, provided
we adjust all other values correspondingly. Suppose we choose to set R1 =
1. The following K − 1 constraints require the TIF at θk to be Rk times as
large as at θ1 and therefore guarantee the desired shape of the TIF:

I∑
i=1

Ii(θk)xi = Rk

I∑
i=1

Ii(θ1)xi, for k ≥ 2 (5.22)

(Exercise 5.5).
By imposing these constraints, we automatically reduce the number of

K objectives to one. Therefore, to maximize the TIF at the K values θk

simultaneously, we only need to maximize the TIF value at one of these
values. Suppose we choose to maximize test information at θ1. In principle,
the following objective function then seems to complete our formalization
of the problem:

maximize
I∑

i=1

Ii(θ1)xi. (5.23)

An annoying complication, however, is that (5.22) contains equality con-
straints on a quantitative test attribute. Such constraints should always
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be avoided because of possible infeasibility; see our discussion of (3.50). A
simple remedy may seem to replace them by the following inequalities:

I∑
i=1

Ii(θk)xi ≥ Rk

I∑
i=1

Ii(θ1)xi, for k ≥ 2. (5.24)

A consequence of this step is that, though the solution can be expected
to realize these inequalities close to equality, the information at θ1 tends
to stay somewhat behind. This effect can be remedied by lowering the
target values at θ2,...,θK somewhat relative to the value at θ1. But a more
satisfactory solution is to substitute a new variable y for the common factor∑I

i=1 Ii(θ1)xi in the lower bounds in (5.24) and formulate the model as

maximize y (5.25)

subject to
I∑

i=1
Ii(θk)xi ≥ Rky, for all k, (5.26)

y ≥ 0. (5.27)

This argument has resulted in another application of the maximin prin-
ciple. This claim becomes clear if both sides of (5.26) are divided by Rk.
Variable y then becomes an explicit common lower bound to the relative
information R−1

k

∑I
i=1 Ii(θ1)xi at the points θk, which is maximized in

(5.25).

5.1.5 Cutoff Scores
If a test is used for decisions with a cutoff score θc, often all we need is
informative estimates θ̂ in the neighborhood of θc. If these estimates have
to meet a prespecified level of information, the results in Section 5.1.3,
which are for simultaneous optimization at θk, k = 1, ..., K, specialize to
optimization only at θc.

For the same case of decision making, a relative target for the TIF boils
down to simple maximization at θc, ignoring the information at all other
values of θ; that is, to the objective function

maximize
I∑

i=1

Ii(θc)xi. (5.28)

5.1.6 Empirical Examples
An empirical example of a single test assembled from a previous pool of
753 items from the Law School Admission Test (LSAT) is given. The total
length of the test was 101 items. The items were in three different sections
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and measured analytic reasoning, logical reasoning, and reading compre-
hension. As in the LSAT, one of these sections was doubled in our example.
The specifications of the LSAT were modeled as constraints dealing with
such attributes as test and section length, item type and content, answer
key, gender and minority orientation of the items, and word counts. The
objective function was that for the maximin model in (5.18)–(5.21). All
specifications were modeled except those for the stimuli and item sets in
two of the sections of the test that have an item-set structure. Examples
for the LSAT that do include these specifications are given in Chapter 7,
which is devoted entirely to the assembly of tests with item sets.

The LSAT has an information function between two functions over the
interval between θ = −3.0 and θ = 3.0 that serve as its lower and upper
bound. To show an example with an absolute target function, we chose the
function that represented the midpoints between these bounds. To show
the impact of the number of θ values at which the TIF is controlled, three
different tests were assembled. The TIF of the first test was controlled only
at θk=0, the TIF of the second test was controlled at θk=−1.2, 0, and 1.2,
and the TIF of the third test was controlled at θk=−2.1, −1.2, 0, 1.2 , and
2.1. The three models had a total of 754 variables (the number of items
in the pool plus minimax variable y), 114 content constraints, and 2–10
constraints used to control the TIFs.

As shown in the top panel of Figure 5.2, the TIF for the first test met
the target at θk=0, exactly as required. But it was too low for the smaller
θ values and too high for the larger values. The addition of the constraints
on the TIF at θk=−1.2 and 1.2 was already sufficient to meet the target
function over the entire range. In fact, the TIFs in the middle panel of
Figure 5.2 obtained for this case and the one with an additional control at
θk=−2.1 and 2.1 in the bottom panel are indistinguishable for all practical
purposes. These results confirm what we have found in numerous IRT-based
test-assembly problems and had already formulated as a recommendation
in the introduction to Section 5.1: In practice, it is sufficient to control the
TIF only at 3–5 well-chosen values.

Although the results in Figure 5.2 may look impressive, the graphs do
not reveal the most important result in these examples—which is the fact
that each of these three tests met the entire set of the content specifications
for the LSAT.

5.2 Classical Test Assembly

A classical objective in test assembly is to maximize the reliability co-
efficient of the test. If the test is used for prediction of an external cri-
terion (e.g., success in a program or a job), tests are assembled to have
maximum predictive validity. Both objectives are nonlinear. To apply the
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FIGURE 5.2. Information functions of three LSAT forms assembled for a com-
mon target (bold line) at θk = 0 (top), θk = −1.2, 0, 1.2 (middle), and
θk = −2.1, −1.2, 0, 1.2, 2.1 (bottom).
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methodology in this book, we thus have to decide how to linearize these
objectives.

5.2.1 Maximizing Test Reliability
Generally, it is difficult to estimate the reliability coefficient of a test.
But a well-known lower bound to the reliability coefficient is Cronbach’s
coefficient α, which was written in (1.14) as

α =
n

n − 1

⎡⎢⎢⎢⎣1 −

n∑
i=1

σ2
i(

n∑
i=1

σiρiX

)2

⎤⎥⎥⎥⎦ , (5.29)

where n is the length of the test, σ2
i and ρiX are the variance and discrim-

inating power (item-test correlation) of item i, respectively, and X is the
observed score on the test.

Suppose we have a pool of items, i = 1, ..., I, with estimates of the item
parameters σ2

i and ρiX and want to assemble a test of n items with a
maximum value for (5.29). We postpone a discussion of a problem involved
in the definition of the scale of X in ρiX to Section 5.2.4.

If we use 0-1 decision variables for the selection of the items, the value
of α for an arbitrary test with n items from the pool can be written as

α =
n

n − 1

⎡⎢⎢⎢⎣1 −

I∑
i=1

σ2
i xi(

I∑
i=1

σiρiXxi

)2

⎤⎥⎥⎥⎦ . (5.30)

Hence, selecting a test with α as the objective function involves an opti-
mization problem that is nonlinear in the variables.

However, as n is fixed, maximization of α is equivalent to the minimiza-
tion problem

minimize

I∑
i=1

σ2
i xi(

I∑
i=1

σiρiXxi

)2 (5.31)

subject to
I∑

i=1

xi = n, (5.32)

xi ∈ {0, 1}, for all i. (5.33)

Although the objective function is still nonlinear, both its denominator
and numerator contain expressions that are linear in the variables xi. The
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problem is therefore equivalent to an optimization problem with two lin-
ear objectives: (1) minimization of

∑I
i=1 σ2

i xi and (2) maximization of∑I
i=1 σiρiXxi.
A standard approach in multiobjective optimization is to formulate one

of the objectives as the objective function and reformulate the other as
a constraint (Section 3.3.4). We choose to formulate the first objective as
the constraint and the second as the objective function, and we replace
(5.31)–(5.33) by the problem

maximize
I∑

i=1

σiρiXxi (5.34)

subject to
I∑

i=1

σ2
i xi ≤ κ, (5.35)

I∑
i=1

xi = n, (5.36)

xi ∈ {0, 1}, for all i, (5.37)

where κ > 0 is a constant.
Our choice to formulate the constraint on

∑I
i=1 σ2

i xi can be motivated by
the fact that further analysis of (5.31) shows that α is more sensitive to its
denominator than its numerator. In addition, for dichotomous items, (5.35)
constrains the sum of the item variances σ2

i = πi(1−πi), which has a known
range of possible values: Its minimum is equal to zero and its maximum
equal to .25n. It can be shown that larger values for α tend to be obtained
for κ closer to .25n than to zero. Empirical results substantiating this claim
are reported in Section 5.2.4. If the applications are for a new item pool
and we have no idea what value to choose for κ, the best approach is to
solve the model in (5.34)–(5.37) for a sequence of values of κ approaching
the maximum and choose the solution with the largest values of α.

5.2.2 Maximizing Predictive Validity
A similar approach is possible for the problem of maximizing the predictive
validity of a test. Let Y be the external criterion that the test has to
predict; the validity coefficient is the product-moment correlation between
test scores X and Y , ρXY .

As shown in (1.15), for a test of n items, the validity coefficient can be
written as

ρXY =

I∑
i=1

σiρiY

I∑
i=1

σiρiX

, (5.38)
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where ρiY is the item-criterion correlation or item validity. Both the nu-
merator and denominator of the validity coefficient have expressions that
are linear in the items, and the same type of linear decomposition as for
coefficient α is possible.

In this case, the decision of which expression to optimize is based on the
following argument: Both expressions depend on σi, but we can expect the
item discriminations, ρiX , to show a somewhat larger variation than the
item validities, ρiY . It therefore makes sense to choose the expression in
the denominator for the objective function.

The following model results:

minimize
I∑

i=1

σiρiXxi (5.39)

subject to
I∑

i=1

σiρiY xi ≤ κ, (5.40)

I∑
i=1

xi = n, (5.41)

xi ∈ {0, 1}, for all i. (5.42)

The minimum and maximum values possible for σiρiY xi are equal to
zero and .50, respectively. The maximum is reached if πi = .50 and ρiY is
1.0, but it is unlikely to have values of ρiY larger than .40 in practice. For a
new problem, again it is recommended to run the model with κ varying the
between the minimum and maximum possible values of the sum in (5.40)
for the item pool and choose the solution test with the largest value for
ρXY as the solution.

5.2.3 Constraining Test Reliability
Applications of classical test theory can be met in which the intention is
not to maximize the test reliability but to keep it as close as possible to a
target value. This treatment of reliability is standard in a testing problem
for which each next test form has to be parallel to a reference test.

A simple set of constraints to maintain the value of α in a testing program
is

I∑
i=1

σiρiXxi ≤ κ1 + δ, (5.43)

I∑
i=1

σiρiXxi ≥ κ1 − δ, (5.44)
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I∑
i=1

σ2
i xi ≤ κ2 + ε, (5.45)

I∑
i=1

σ2
i xi ≥ κ2 − ε, (5.46)

where κ1 is the empirical value of the reference test for
∑n

i=1 σiρiX , κ2 the
value for

∑n
i=1 σ2

i , and δ and ε are small tolerances.
In principle, the same type of constraints are possible for the predictive

validity coefficient in (5.38), but we are not aware of any problems in the
practice of testing for which this solution would make sense.

Observe that in (5.43)–(5.46) we constrain two sums of item attributes
across tests. Tests can be made parallel in a stronger sense if we constrain
attributes on an item-by-item basis. This problem belongs to the topic of
item matching, which will be addressed in Section 5.4.

5.2.4 Empirical Example
The model in (5.34)–(5.37) was used in a simulation study with a pool of
500 items and values for the item variances and discriminations generated
for a population of test takers with a standard normal distribution of θ.
The test length was set at n = 20. The maximum value of

∑I
i=1 σ2

i xi was
5, and the bound κ in (5.35) was varied between 3 and 5, with step size .5.

One of the problems with banking large numbers of items on empirical
values for their classical indices is the definition of the item-discrimination
index ρiX . Using this index makes sense only if the total scores X are
comparable across items. In practice, this requirement can be met if the
values of the index have been collected using tests that are (approximately)
parallel. In this simulation study, we were able to calculate the values of the
index using the observed scores of simulated test takers for the entire item
pool, B. We first assembled the test using the item-bank correlations, ρiB .
Once the test was assembled, we used simulated observed scores on it to
calculate the actual item-test correlation, ρiX , and recalculated α. Because
all responses were generated under the unidimensional 3PL model, the two
correlations were monotonically related, and optimization using ρiB and
ρiX resulted in the same test.

The results are presented in Table 5.1. The second and third columns
report the values of coefficient alpha for ρiB and ρiX , denoted as α∗ and α,
respectively. These columns show that the values of α were always higher
than those of α∗. This inequality holds because α was calculated for a total
score on the best items in the (unidimensional) pool. Table 5.1 also shows
better results for larger values of κ. In fact, the best results were obtained
for κ = 5, which is the maximum value of

∑I
i=1 σ2

i xi possible for a test
with n = 20 items. For this value of κ, the constraint in (5.35) was thus
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κ α∗ α

5.0 .8395 .8712
4.5 .8388 .8678
4.0 .8288 .8559
3.5 .8008 .8401
3.0 .7696 .8205

TABLE 5.1. Values of coefficient alpha for tests assembled for κ=3.0 (.5) 5.0.

redundant; the same results would have been obtained if we had selected
the n items with the largest values for σiρiX .

This conclusion does not generalize to test-assembly problems with em-
pirical values for the item indices, however: If the pool is not purely unidi-
mensional, the optimum value of α is obtained for κ somewhat lower than
the maximum. More importantly, if the test has to be selected to meet a set
of content specifications, we cannot pick the n items with the largest values
for σiρiX but need (5.34)–(5.37) as the core of a full-fledged test-assembly
model to select the best test from the set of feasible solutions.

5.3 Matching Observed-Score Distributions

Most long-running testing programs report their scores on a scale intro-
duced before they began to use IRT for analyzing the test items and
assembling their tests. These scales are typically observed-score scales; for
example, number-correct scales with an additional (monotonic) transfor-
mation to give the scores a standard range. In this section, we ignore this
additional transformation without any loss of generality.

The use of observed-score scales entails the necessity of score equating,
and the method of equipercentile equating has been the standard of the
testing industry for a long time. In an equipercentile equating study, the
new test is administered along with a reference test; for example, using a
sampling design with randomly equivalent groups. The data from the study
are used to find the transformation that maps the new number-correct
scores to the scale of the reference test.

It is possible to replace this form of post hoc observed score equating
by a few simple constraints in the test-assembly model that guarantee
the number-correct scores on the new test to be on the same scale as the
number-correct scores on the reference test. The test-assembly model then
automatically performs what can be called observed-score pre-equating.

Test assembly with these constraints has several practical advantages:

1. No resources are spent on separate equating studies.

2. Scores on the new test can be reported immediately after the test is
administered.
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3. The scale for the scores on the new test is not distorted by a nonlinear
transformation but keeps its interpretation as a number-correct scale.
In principle, a simple count of the correct answers on the new test is
all that is needed to report scores.

4. Uncertainties inherent in traditional equating studies, such as those
due to imperfect implementation of an equating design, an arbitrary
population definition, and smoothing of the observed-score distribu-
tions, are avoided.

5. The observed scores on the new test are equitable; for any person,
they have the same error distribution as the scores on the reference
test.

Of course, these advantages are only realized if the items fit the response
model used in the testing program. This condition is stringent. But if it is
not met, the quality of the item pool may be doubtful. If the cause of misfit
is a violation of the unidimensionality assumption for θ, observed-score
equating becomes a meaningless operation at all.

5.3.1 Conditions on the Response Functions
Suppose we have two tests, each consisting of n items. The response func-
tions of the items in the two tests are denoted as pi(θ) and pj(θ), where
both i and j run over 1, ..., n. We use X and Y to denote the number-
correct scores on the two tests. The rth power of the response probabilities
of item i is denoted as pr

i (θ). For example, if r = 2, it thus holds that p2
i (θ)

is the square of the probability of a correct response on item i by a person
with ability θ.

A general property of the distributions of the observed scores X and Y
on these two tests is the following:

Proposition 5.1. For any population of persons, the distributions of the
observed scores X and Y are identical if and only if

n∑
i=1

pr
i (θ) =

n∑
j=1

pr
j(θ), − ∞ < θ < ∞, (5.47)

for r = 1, ..., n.

For r = 1, the sum of the response functions in (5.47) is known as the
test characteristic function, or TCF, in (1.22). The proposition thus shows
that for two observed-score distributions to be identical, not only should
the characteristic functions of the two tests match, but the same should
hold for the sums of the higher-order powers of their response functions.
In addition, it is known that the importance of these conditions strongly
decreases with the order of the power. In fact, if the test length increases,
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eventually all conditions for r ≥ 2 become superfluous. For the test lengths
met in practice, the conditions have to be satisfied only for, say, the first 2
or 3 powers.

The conditions in (5.47) are on expressions that are well-behaved, smooth
functions of θ. For this reason, just as for the TIFs in Section 5.1, if the con-
ditions are approximated for a few well-chosen values of θ, they are in fact
approximated over the entire portion of the scale covered by these values.
Also, note that, though they contain powers of response probabilities, the
conditions in (5.47) are linear in the items. Both features suggest incorpo-
rating constraints into the test-assembly model that realize the conditions
with respect to a reference test. The model then automatically produces
a test that has the same observed-score scale as the reference test for any
population of test takers.

5.3.2 Constraints in the Test-Assembly Model
Let j = 1, ..., n denote the items in the reference test. The sums of the
powers of the response probabilities in (5.47) for this test at a given set of
values θk, k = 1, ..., K, are known constants,

Trk =
n∑

i=1

pr
i (θk), (5.48)

which can be calculated directly from the response functions of the reference
test. We use Trk as target values for the sums of the rth powers of the
response probabilities of the test that is assembled from the pool, that is,
for the sums

I∑
i=1

pr
i (θk)xi (5.49)

for all k.
The problem is another example of a multiobjective test-assembly prob-

lem. We therefore propose the following weighted minimax approach:

minimize y (5.50)

subject to

I∑
i=1

pr
i (θk)xi ≤ Trk + wry, for all k and r ≤ R, (5.51)

I∑
i=1

pr
i (θk)xi ≥ Trk − wry, for all k and r ≤ R, (5.52)

I∑
i=1

xi = n, (5.53)
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xi ∈ {0, 1}, for all i, (5.54)

y ≥ 0, (5.55)

where wr > 0 is the weight for the rth power and R is the condition with
the highest order used. The constraints in (5.51) and (5.52) enclose the dif-
ferences between the sums of powers of the probabilities for the test and the
target values in intervals about zero, [−wry, wry], and the common factor
y in the size of these intervals is minimized in (5.50). Generally, because
pr

i (θk) is smaller for a larger value of r, we should choose smaller values of
wr for lower values of r. However, in the empirical examples discussed in
Section 5.3.4, we already got excellent results using wr = 1 for all values of
r.

5.3.3 Discussion
Unlike the target values Trk in (5.48) suggest, these values need not be
calculated for an actual test. They can also be derived from a typical set of
item-parameter values in the item pool and then be maintained during the
program. This setup guarantees the maintenaince of a fixed observed-score
scale. Changes in the actual observed-score distributions are then entirely
due to changes in the ability distribution of the persons, and we can directly
use the former to monitor the latter.

The attentive reader may have noted that the conditions in (5.47) are in
fact on the conditional distributions of X and Y given θ. If it holds that the
two conditional distributions are identical over the whole range of values of
θ, the marginal distributions are identical for any population of test tak-
ers. The method in the preceding section is thus population-independent.
Another advantage of the current method of local observed-score equating
over the practice of using marginal observed-score distributions is that the
equated scores are equitable; that is, they have identical error distributions
for each test taker (see point 5 in the introduction to Section 5.3). A dis-
cussion of all key differences between local and global equating is, however,
beyond the scope of this book.

5.3.4 Empirical Examples
The same pool of 753 items from the LSAT and the same set of content
constraints as in the examples in Section 5.1.6 was used.

A reference test was assembled from the pool to meet all the constraints
using the same target information function as in Section 5.1.6. The target
values Trk in (5.48) were calculated from the response functions of this
test. The remaining part of the item pool was used to assemble a test to
meet these target values. The model used to assemble the test was exactly
the same as for the reference test, except for the objective function and
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constraints on the TIF in (5.18)–(5.20), which were replaced by those on
the sums of powers of the response probabilities in (5.50)–(5.55).

The tests were assembled under three different conditions: (1) constraints
on the target values for the first-order sums of powers (r = 1), (2) on the
first two orders (r = 1, 2), and (3) on the first three orders (r = 1, 2, 3). For
each condition, two different tests were assembled, one with the constraints
only at θk = 0 and the other at θk = −1.2, 0, and 1.2. For each case, the
weights in the constraints were put equal to wr=1. The observed-score
distributions for the solutions and the target test were calculated for a
population of test takers with a standard normal distribution for θ using
the well-known Lord-Wingersky algorithm. (For this algorithm, see the
literature section at the end of this chapter.)

The observed-score distributions for the solutions and their targets are
displayed in Figures 5.3–5.5. For each of the three conditions, the best
results were always obtained for the constraints at three θ values. Never-
theless, the results for one θ value in the condition with r = 1 were already
surprisingly good. The best results in these six examples were obtained for
the constraints for r = 1, 2 at three θ values (lower panel in Figure 5.4),
with those for r = 1 at three θ values (lower panel in Figure 5.4) being
virtually identical.

5.4 Item Matching

Several of the test-assembly problems addressed so far can be considered
as problems in which we tried to optimize a match between a test attribute
and a target. The test attributes were generally sums of item attributes
(item-information functions and powers of item response functions). As
will be demonstrated in this section, it is also possible to assemble a test
with the objective of matching the attributes with those of a reference test
item by item. This type of matching is much stronger: If two tests are
matched at the item level, they are also matched with respect to the sums
of their attributes. But the reverse is not necessarily true; if we match at the
test level only, large compensation between the attributes of the individual
items is possible.

Two main versions of this type of test assembly are discussed. We first
show how to model the problem of matching the items in a new test to
those in a reference test. Thereafter, we show how the same approach can
be used to split a given test into two halves that are as parallel as possible;
for example, in terms of their classical item parameters. This problem arises
if we try to optimize a split-half estimate of the test reliability; split-half
coefficients are estimates of a lower bound to the test reliability, and the
closer the two halves are to being parallel, the sharper the bound. Our
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FIGURE 5.3. Observed-score distribution (dashed line) for a test assembled to a
target (bold line) at θk = 0 (top) and θk = −1.2, 0, 1.2 (bottom) (r = 1).
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FIGURE 5.4. Observed-score distribution (dashed line) for a test assembled to a
target (bold line) at θk = 0 (top) and θk = −1.2, 0, 1.2 (bottom) (r = 1, 2).
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FIGURE 5.5. Observed-score distribution (dashed line) for a test assembled to a
target (bold line) at θk = 0 (top) and θk = −1.2, 0, 1.2 (bottom) (r = 1, 2, 3).
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method is a generalization of a graphical method for splitting a test into
two halves known as Gulliksen’s matched random subsets method.

In item-matching problems, the objective typically is with respect to a
few quantitative item attributes, mostly statistical attributes such as the
classical item parameters πi and ρiX , the IRT parameters ai , bi, ci, and
the values of the item-response or item-information functions, pi(θ) and
Ii(θ), at a few well-chosen θ values. Categorical item attributes, which are
usually needed to deal with the content specifications of the test, can be
dealt with by imposing additional categorical constraints on the test. So
far, we have used qi as a generic symbol for a quantitative attribute of item
i. Because we will now be dealing with multiple quantitative attributes, we
adopt a second index and use qjl, l = 1, ..., L, to denote the L attributes
considered.

Like most of the earlier problems in this chapter, the problem of matching
items on L attributes is another multiobjective problem. In fact, due to the
type of decision variables needed to formalize the problem, the number of
objectives is much larger than L. We deal with these objectives in two
different fashions, which, by now, have become our standard treatment of
such problems: by combining them into a single objective function using a
weighting procedure or applying the minimax principle.

5.4.1 Matching Items in a Reference Test
Suppose we have a reference test with items to which the new test has to be
matched. The items in the reference test are denoted as j = 1, ..., n. Their
attributes are the targets for a new test assembled from a pool of items,
i = 1, ..., I. In Section 3.1, we indicated that a fruitful way of identifying
the decision variables for a new type of test-assembly problem is to view
the selection of the items from the pool as an assignment problem. The
current problem is one in which we need to assign n items from the pool
to the n items in the reference test such that together they form a set of
n pairs with optimally matching attributes. This formulation suggests the
use of a separate decision variable for each possible pair of items, (i, j);
that is, decision variables

xij =
{

1 if item i is matched with item j
0 otherwise. (5.56)

The total number of variables is n × I. Item matching thus involves a
much larger optimization problem than the ones discussed earlier in this
chapter. The choice of these variables also involves a new problem. We
now have to keep the values of these variables consistent across pairs; if an
item is assigned to a pair, it cannot be assigned to another pair. Finally,
the choice of variables makes clear that we have a problem with n × L
objectives; for each of the n pairs, the items have to be matched on L
different attributes.
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In each of our approaches to the current problem, we combine the item
attributes into a measure for the distance between two items. A useful
measure is the following weighted version of the Euclidean measure, δij ,
between items i and j:

δij =

[
L∑

l=1

wl(qil − qjl)2
]−1/2

, (5.57)

with wl > 0.
If all weights are set equal to wl = 1, the measure is the length of the

line between items i and j in a multivariate plot of their attributes. The
possibility of choosing different weights wl for each attribute ql can be used
to allow for possible differences in scale and/or importance between the
item attributes.

The first model is

minimize
n∑

j=1

I∑
i=1

δijxij (5.58)

subject to
I∑

i=1
xij = 1, for all j, (5.59)

n∑
j=1

xij ≤ 1, for all i, (5.60)

xij ∈ {0, 1}, for all i and j. (5.61)

The objective function in (5.58) minimizes the sum of the distances be-
tween the items in the pairs. In principle, we could have chosen a weighted
sum. But because all pairs are equally important, no further weighting
seems necessary. The constraints in (5.59) and (5.60) are to keep the val-
ues of the variables consistent; each of the items in the reference test has
exactly one item assigned to it, and each item in the pool can be assigned
at most once.

For the objective function in (5.58), results are possible in which an un-
expected large term is compensated by a set of smaller terms. The minimax
principle deals directly with such cases. Two different applications of the
principle are possible. In the first application, we replace (5.58) by

minimize y (5.62)

subject to
δijxij ≤ y, for all i and j, (5.63)

δijxij ≥ −y, for all i and j. (5.64)
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This combination of objective function and constraints minimizes the largest
distance between the items over all pairs (Exercise 5.8).

It is also possible to apply the principle at the level of the individual
attribute values of the items. We then replace the constraints in (5.63) and
(5.64) by

(qil − qjl)xij ≤ wly, for all i, j, and l, (5.65)

(qil − qjl)xij ≥ −wly, for all i, j, and l. (5.66)

In this version of the problem, the distance measure in (5.57) is no longer
needed. The weights wl in this measure now figure in the definitions of
the intervals [−wly, wly] about zero, in which the differences between the
attribute values qil − qjl for the items in the pairs are enclosed. Just as in
the somewhat less stringent preceding version of the problem, the objective
function minimizes the common factor y in the size of these intervals.

5.4.2 Test Splitting
The previous problems can be solved for any set of quantitative item at-
tributes. The next problem is typically formulated for the classical item
indices πi and ρiX . We now have a test consisting of the items i = 1, ..., n,
and we want to split the test into two halves with an optimal match be-
tween their items. Upon correcting for test length, the correlation between
the scores on the two test halves, known as the “split-half reliability co-
efficient,” is a lower bound to the reliability coefficient of the test. If the
two test halves are chosen to be as parallel as possible, the lower bound
approximates the reliability coefficient.

A traditional graphical method for finding an optimal split is Gulliksen’s
matched random subsets method. The method is based on a bivariate scatter
plot of the n items with the values πi and ρiX as coordinates. An example
of a Gulliksen plot is given in Figure 5.6 later in this chapter. Using this
plot, pairs of items are formed that minimize the distances between the
items in the pairs. The two test halves are formed by randomly assigning
to them the two items in each pair.

To formulate this method as an MIP problem, we need the same decision
variables as in (5.56) but now with both i and j running over the same items
1, ..., n in the test. As the measure of the distance between i and j, we use
(5.57) with πi and ρiX as attributes. Just as in the Gulliksen method, the
problem is solved in two stages.

First-Stage Model
In the first stage, we form pairs of items solving the model

minimize
n∑

i=1

n∑
j=1

δijxij (5.67)
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subject to ∑
j|j �=i

xij = 1, for all i, (5.68)

xij = xji, for all i �= j, (5.69)∑
i,j|i=j

xij = 0, (5.70)

xij ∈ {0, 1}, for all i and j (5.71)

(Exercise 5.9).
The objective function is defined as the sum of the distances over all

possible pairs of items in the test, whereas the constraints in (5.68) require
that each item be assigned precisely to one pair. Because i and j run over
the same set of items, it holds that pair (i, j) is identical to (j, i) and that
pairs can only be formed between items i �= j. These conditions are imposed
by the constraints in (5.69) and (5.70). A more parsimonious formulation
of this model is given in Section 5.4.3 below.

Second-Stage Model
In the second stage, we have n/2 pairs of items, and our task is to assign
the items in these pairs to the test halves h = 1, 2. We use ip = 1, 2 to
identify the items in pair p. Rather than assigning the items randomly, as
in the Gulliksen method, we use this stage for further optimization. To do
so, we need the variables

xiph =
{

1 if item ip is assigned to test half h
0 otherwise. (5.72)

The model for classical test assembly in Section 5.2.1, as well as the
fact that optimal results were obtained in the empirical example in Section
5.2.4 with the constraint in (5.40) redundant, suggests to assign items to
test halves such that the difference between the sums

∑
σiρiX for the two

halves is minimal. The following minimax model realizes this objective:

minimize y (5.73)

subject to
2∑

i=1

n/2∑
p=1

σipρipX(xip1 − xip2) ≤ y, (5.74)

2∑
i=1

n/2∑
p=1

σipρipX(xip1 − xip2) ≥ −y, (5.75)

2∑
i=1

xiph = 1, for all p and h, (5.76)
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n/2∑
p=1

2∑
h=1

xiph = 1, for all i, (5.77)

xiph ∈ {0, 1}, for all i, p, and h. (5.78)

The constraints in (5.76) enforce the assignment of one item from each
pair p to each test half h, whereas those in (5.77) are necessary to guarantee
that each item is assigned to a test half.

5.4.3 Discussion
The formulation in (5.67)–(5.71) was chosen for didactic reasons only. A
more parsimonious formulation is possible if we use the variables in (5.56)
only for i < j; that is, in the upper off-diagonal triangle of the matrix of
all possible values of (i, j). The previous model can then be replaced by

minimize
n−1∑
i=1

n∑
j=i+1

δijxij (5.79)

subject to
j−1∑
i=1

xij +
n∑

i=j+1
xji = 1, for all j, (5.80)

xij ∈ {0, 1}, for all i < j. (5.81)

The sum in the objective function is now only over the variables in the
upper triangle, and the constraints use the same set of variables to force
each item to be assigned to exactly one pair. The sets of constraints in
(5.69) and (5.70) are thus no longer needed (Exercise 5.10).

Item-matching problems are instructive in that they illustrate several
new definitions of decision variables. Also, the problem of splitting a test
into halves that are item-by-item parallel shows that some test-assembly
problems can only be solved in more than one stage.

It is easy to generalize the problem of test splitting above to the problem
of splitting a set of items into three or more parallel parts. This problem
arises, for example, when we assemble a set of rotating item pools for use
in adaptive testing (Section 11.5.5).

5.4.4 Empirical Example
The method of splitting a test into two parallel halves was applied to a
20-item version of an achievement test from the IEA Second Mathematics
Study. The values of the items for πi and ρiX were estimated from a sample
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Item πi ρiX Item πi ρiX

1 .85 .39 11 .83 .52
2 .50 .41 12 .68 .54
3 .60 .40 13 .80 .43
4 .66 .60 14 .84 .45
5 .87 .25 15 .86 .34
6 .28 .37 16 .52 .47
7 .87 .40 17 .62 .58
8 .48 .48 18 .61 .40
9 .74 .47 19 .51 .48
10 .65 .60 20 .66 .58

TABLE 5.2. Estimated values for item difficulty and discrimination index.

Item Pair |πi − πj | |ρiX − ρjX |
1,7 .02 .01
2,6 .22 .04
3,18 .01 .00
10,4 .01 .00
5,15 .01 .09
8,19 .03 .00
9,13 .06 .04
14,11 .01 .07
20, 12 .02 .04
16, 17 .10 .11

TABLE 5.3. Optimal item pairs and test halves (first items in the same half).

of 5,418 students in the Dutch part of this study. The estimates are given
in Table 5.2; the Gulliksen plot of these estimates is given in Figure 5.6.
For some of the items in the plot, it is obvious how to pair them; for others,
several alternatives are possible.

Table 5.3 shows the results obtained for the models in stages 1 and 2
above, with all weights wl in (5.57) set equal to one. The item pairs in
Table 5.3 are reported such that the first items in each pair were those
assigned to the first test half and the second items to the second half. The
table also shows the differences between the πi and ρiX values of the items
in the pairs. All differences were small except the one for πi for the pair
with items 2 and 6. Figure 5.5 shows that item 6 was an outlier in the
distribution of πi values on the horizontal axis; a solution with a small
difference in πi values was thus impossible.
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FIGURE 5.6. Gulliksen plot with estimates of πi and ρiX for a test from the IEA
Second Mathematics Study.

5.5 Literature

Kelderman’s method for specifying target information functions was for-
mulated in his 1987 paper. The maximin approaches to test assembly with
absolute or relative targets for a TIF were introduced in van der Linden
and Boekkooi-Timminga (1989). For a more comprehensive discussion of
the differences between absolute and relative targets, see van der Linden
and Adema (1998). Using extensive simulation studies, Timminga (1985)
showed that controlling the test-information function at a smaller number
of θ values generally resulted in faster solutions and that problems with
3–5 values already gave excellent results. Both Baker, Cohen, and Barmish
(1988) and de Gruijter (1990) addressed the case of a uniform absolute
target for the test-information function. They pointed to the fact that the
results for this type of target can be sensitive to the composition of the
item pool, particularly to the number of items available near the endpoints
of the interval over which the target is specified. Test assembly with target
values for the TIF at a cutoff score is discussed in Glas (1988). Reviews
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of IRT-based test assembly are given in Adema, Boekkooi-Timminga, and
Gademan (1992), Adema, Boekkooi-Timminga, and van der Linden (1991),
Armstrong, Jones, and Wang (1995), Timminga and Adema (1995), van der
Linden (1994b, 1998a, 2001b, 2002), and Veldkamp (2005).

The models for classical test assembly in Sections 5.2.1 and 5.2.2 were
formulated in Adema and van der Linden (1989) and van der Linden
(submitted), respectively. An alternative approach to the problem of max-
imizing the reliability of a test was offered in Armstrong, Jones, and Wang
(1998), who used network-flow programming with Lagrangian relaxation
(Section 4.3) to formulate a search procedure for a solution to the nonlinear
objective in (5.31).

The idea of assembling a test to meet a target for its observed-score distri-
bution was formulated in van der Linden and Luecht (1996). These authors
tried to achieve this goal by matching both the characteristic function and
the information function of the test to a target. Their intuition was that the
former would control the true scores and the latter the errors on the test; to-
gether they would therefore control its observed-score distribution. The fact
that this job can only be done by controlling sums of (lower-order) powers
of the response functions was derived in van der Linden and Luecht (1998).
The differences between global and local observed-score equating discussed
in Section 5.3.3 were further explored in van der Linden (2000c, 2005e).
The Lord-Wingersky algorithm for calculating observed-score distributions
on tests was presented in their 1984 paper.

Gulliksen introduced his matched random subsets method in his 1950
monograph on test theory. The formalization of the method in Section 5.4.2
and 5.4.3 was given in van der Linden and Boekkooi-Timminga (1988).
Armstrong and Jones (1992) suggested extending the model with a set
of constraints that enable solution of the model in polynomial time (see
Section 4.2.3).

5.6 Summary

1. Tests can be assembled both to an absolute and a relative target
for their information function. An absolute target requires the test-
information function to be at a fixed height. If a relative target is
used, only the shape of the test-information function is specified, but
its height is optimized.

2. If the test-assembly model has a constraint that fixes the length of the
test, an absolute target can easily lead to infeasibility. For a relative
target, this is impossible.

3. Because information functions are smooth, the number of points at
which target values for a TIF should be specified need not be larger
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than 3–5 well-chosen points. If the objective is to maximize the test
information at a cutoff score, the model has only one point.

4. An absolute target for a TIF can be derived from descriptive statistics
of the distribution of the item parameters in the pool, a specimen of
the test assembled manually, or from (asymptotic) probabilities of
test scores ordering the abilities of persons erroneously specified by a
panel of test specialists (Kelderman method).

5. A simple way of specifying a relative target for a TIF is by asking test
specialists to distribute an arbitrary number of chips over the points
θk in an item map such that their distribution reflects the relative
accuracy of the test scores needed at these points.

6. Test-assembly problems with targets for the test-information func-
tions are problems with multiple objectives, one for each target value.
The models presented in this chapter solve them by combining the
objectives as a weighted sum or applying the minimax principle.

7. In classical test assembly, we maximize the reliability or the predic-
tive validity of the test. Both objectives involve a nonlinear function
consisting of two linear expressions. We can maximize both the re-
liability and the validity by using one of these expressions as the
objective function and constraining the other by a well-chosen upper
bound.

8. A test can be assembled to have an observed-score distribution match-
ing the distribution of a reference test for the same population of test
takers. The only things required are a few constraints on the sums of
the lower-order powers of the response probabilities at a few points
θk in the test-assembly model.

9. In item-matching problems, a new test is assembled with attributes
that match those in a reference test item by item. The same type
of problem arises when we want to split a given test into two halves
with an optimal match between their item attributes.

10. Item-matching problems lead to the definition of decision variables at
the level of pairs of items or combinations of items and test halves.

5.7 Exercises

5.1 The model in (5.7) and (5.8) yields a test with a TIF approaching the
target values Tk from above. Reformulate the model for a test with a
TIF approaching the target values from below.
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5.2 A run with the test-assembly model in (5.9)–(5.12) for T1 = 10, T2 =
15, and T3 = 10 and the test length fixed at n = 40 yields a solution
with a value for the objective function equal to y = .8. Interpret
the result. How reasonable is the result for a pool with an average
item-discrimination parameter ai equal to 1.3?

5.3 A run with the test-assembly model in (5.13)–(5.16) for the same
target values as in Exercise 5.2 and wk = 1, k = 1, 2, 3, gives the
following results for the variables in the objective function: ypos

1 = .4
ypos
2 = 0, ypos

3 = .7, yneg
1 = 0, yneg

2 = .5, and yneg
3 = 0. Calculate the

values of the TIF at k = 1, 2, 3.

5.4 A run with the test-assembly model in (5.18)–(5.21) yields a solution
with a value for the objective function equal to y = .8. How do we
know if this value represents a positive or a negative deviation from
a target value for the TIF?

5.5 The model in (5.25)–(5.27) maximizes the TIF subject to a set of
constraints on its shape. Formulate a model for maximizing the height
of a TIF that accepts small positive and negative deviations from the
intended shape.

5.6 Formulate a model for minimizing the difference between the relia-
bility of a test and a reference test.

5.7 The results in Figure 5.5 show a minor deterioration of the observed-
score distribution for the example with the extra constraint for r = 3,
whereas (5.47) predicts a better approximation if this constraint is
added. Explain the result.

5.8 The constraints in (5.63) and (5.64) are quantitative constraints at
the item level. Why does (5.64) not need the form with the inverse
inequality sign in (3.14)?

5.9 Generalize the model in (5.67)–(5.71) to the case of splitting a test
into three parallel parts.

5.10 Show that (5.79)–(5.81) is identical to (5.67)–(5.71).

5.11 A five-item reference test has the following values for the difficulty
parameter: b1 = −1, b2 = −1, b3 = 0, b4 = .5, and b5 = 1. Formulate
a model for the selection of a new test of five items from a pool of I
items with values for the difficulty parameter matching those in the
reference test as closely as possible. Why does the model not need a
constraint on the length of the test?



6
Models for Assembling Multiple Tests

Each of the models in the preceding chapter was for the assembly of a
single test. Although the notion of parallel tests has already turned up in a
few places, it has always been used to describe the problem of assembling
a single test to be parallel to a reference form—not a set of tests to be
mutually parallel or to meet another attribute at the multiple-test level.
(See Section 2.2.2 for the definition of attributes at this level.) In this
chapter, we do address models for the assembly of such sets. The following
are examples of a few applications:

1. A set of tests has to be assembled that are mutually parallel in a
weaker or stronger sense of the notion. A familiar example is that of
a testing program with a periodic assembly of sets of parallel forms of
a paper-and-pencil test for administration at different time slots or lo-
cations. Each of these forms has to meet exactly the same content and
statistical specifications. Another example is a computer-based pro-
gram with a pool of parallel forms stored in the computer and random
sampling of a form for each person (“linear on-the-fly testing”).

2. The set of tests has to consist of tests differing systematically in dif-
ficulty or information function; otherwise each test has to meet the
same content specifications. An example is a set of two tests for use
in an evaluation study of a treatment or educational program with
a pretest-posttest design. Typically, the posttest has to be efficient
at a higher level than the pretest to allow accurate measurement of
changes in the abilities of the subjects. More sophisticated exam-
ples arise in large-scale educational assessments, where the progress
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of schools in achievement domains is followed. In such studies, sets
of test booklets assembled from an item pool covering the domain
are administered according to a stratified sampling plan. The book-
lets have to meet certain content specifications. Besides, we often
want them to have an overlap in items, which is required to estimate
correlations between scales or subscores. Designs for educational as-
sessments with these features are known as balanced incomplete-block
(BIB) designs.

3. The set of tests has to be assembled for use in a computer-based mul-
tistage adaptive testing system. In this mode of testing, each person
begins with a broad-range subtest (or “routing test”) after which the
computer calculates an interim estimate of his or her ability level.
At the next stage, the computer selects a subtest from a small set
of available tests that matches the estimate best. This procedure
can be repeated a few more times. The sets of subtests used in the
system have to cover the ability scale systematically, and each test
therefore has to be assembled to its own statistical specifications. In
addition, we typically want subtests for the same stage to meet the
same content specifications.

4. The last example of the assembly of multiple tests is that of the as-
sembly of a pool of testlets for use in testlet-based adaptive testing.
In this type of adaptive testing, at each step a testlet is selected to
match the update of the ability estimate of the person. The pool of
testlets has to be assembled to statistical specifications guaranteeing
systematic coverage of the ability scale. As for the content specifica-
tions, subsets of testlets in the pool have to meet different subsets of
specifications. To run a testlet-based adaptive test, we need an algo-
rithm for constrained adaptive testing that realizes the same set of
content constraints for each person (Chapter 9).

Each of the examples above involves a distinct objective for each of its
tests. Therefore, we typically have problems with more objectives than
those in the previous chapter. For example, if we assemble T tests and each
test has to meet a target for its information function at K ability points,
the problem has K × T objectives. However, these larger multiobjective
test-assembly problems can be solved using a direct generalization of the
approaches we have used before.

In the next sections, we will first show that sequential assembly of a set
of tests is not a good idea, even if we follow up with a heuristic correction
to reduce aberrations in the results. We will then present a general model
for simultaneous assembly of a set of tests that always produces an optimal
solution. For some real-life problems, the model may occasionally be too
large to find an exact solution. If so, our recommendation is to use the “big-
shadow-test method” introduced at the end of this chapter, which solves the
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original simultaneous problem through a sequence of smaller simultaneous
problems.

6.1 Sequential Assembly

Let t = 1, ..., T denote the tests in the set we want to assemble. In a
sequential approach, we assemble test t = 1 using an appropriate choice of
model from Chapter 5. After the test has been assembled, we remove the
items in the test from the pool and assemble test t = 2. The procedure is
repeated until all T tests have been assembled.

If sets of tests have to be parallel, at each step the model remains the
same. If the tests have to differ systematically, the objective functions
and/or some of the constraints in the model change. It is also possible
to choose an entirely different model at each step; in principle, a sequential
approach can be used with any combination of the models in Chapter 5.

Each time a test is assembled, the pool changes. To prevent recoding
of the remaining items in the pool after each new test, we can insert the
following set of constraints in the models for t = 2, ..., T :

xi = 0, for all i already selected. (6.1)

A sequential approach to the assembly of a set of tests suffers from the
same two disadvantages as sequential heuristics for the solution of a model
for a single test discussed in Section 4.6. First, the value of the objective
function of the solution to each subsequent model deteriorates; the best
items are picked for the first test, the next best items for the second test,
and so on. This process is immediately clear for the classical test-assembly
model for maximization of the test reliability in (5.34)–(5.37). As the empir-
ical example in Section 5.2.4 showed, the constraint in (5.35) needs a large
value for κ and tends to be redundant. Consequently, the model tends to
pick the n items with the largest values for σiρiX in the pool (subject to
all content constraints). After the first test has been assembled, the best
n items in the pool have been skimmed off, and the optimal value of the
objective function for the second test will be lower. Generally, the deterio-
ration is most serious for sets of parallel tests. If a combination of a pretest
and posttest for an evaluation study has to be selected, both tests are less
likely to compete for the same items (though they will compete if the items
in some content categories are scarce). The size of the pool is also a critical
factor; generally, the smaller the pool, the stronger the effect.

Second, even though the pool contains a feasible set of T tests, we can
easily run into infeasibility problems before the whole set is assembled. The
problem is illustrated in Table 6.1, which shows the same phenomenon as
in Table 4.1 at the level of a set of tests. Suppose we want to assemble two
tests from this pool with maximum contribution to the objective function.
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Item Contribution to Target Attribute V1 Attribute V2

1 .30 + −
2 .85 + +
3 .89 + +
4 .48 + −

TABLE 6.1. Example of unnecessary infeasibility in sequential test assembly.

Each test has to consist of two items with attribute V1 and at least one
item with attribute V2. The pool of four items in this example admits a
solution, namely, that with the first two items in one test and the last two
in the other. An attempt to assemble the two tests sequentially, however,
would result in test t = 1 consisting of the second and third items and
infeasibility for t = 2 (Exercise 6.1).

6.1.1 Heuristic Correction
The example in Table 6.1 shows that a sequential approach operates in fact
as a greedy heuristic (Section 4.4.1) at the level of the set of tests. Just
as for the case of greedy heuristics for the assembly of a single test, it is
desirable to succeed with a second stage in which we try to improve on the
initial result. An obvious second-stage procedure is to swap items between
the T tests until results with a more satisfactory quality are obtained. This
swapping enables us to improve on the values of the objective functions
but does not necessarily fix the problem of infeasibility.

6.2 Simultaneous Assembly

The previous problems are absent if the tests are assembled simultaneously
(that is, as a solution to a single model). This type of assembly requires
a restructuring of the problem using a new type of decision variable. The
variables we need remind us of those for the test-splitting problem in (5.72),
which were used to assign items to test halves. These variables had double
indices, one for the items in the pool and the other for the test halves.

For the current problem, the variables become

xit =
{

1 if item i is assigned to test t
0 otherwise, (6.2)

for all i and t. As before, we need to complement these variables with a set
of constraints that keeps their values consistent; that is, we must prevent
the assignment of an item to more than one test.

Using (6.2), any model for a single test can be reformulated as a model for
multiple tests. To illustrate the claim, we reformulate the standard model
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for a single test in (4.1)–(4.10). The model is

optimize
T∑

t=1

I∑
i=1

qixit (objective) (6.3)

subject to possible constraints at the following levels:

Multiple-Test Level
T∑

t=1
xit ≤ 1, for all i; (no overlap) (6.4)

Test Level
I∑

i=1
xit � nt, for all t, (test length) (6.5)∑

i∈Vc

xit � nct, for all c and t, (categorical attributes) (6.6)

I∑
i=1

qixit � bqt, for all t; (quantitative attributes) (6.7)

Item Level ∑
i∈V1

xit = n1t, for all t, (categorical attributes) (6.8)∑
i∈V0

xit = 0, for all t, (categorical attributes) (6.9)

qixit ≤ bmax
qt , for all i and t, (quantitative attributes) (6.10)

bmin
qt xit ≤ qi, for all i and t, (quantitative attributes) (6.11)∑

i∈Ve

xit ≤ 1, for all e and t; (enemies) (6.12)

Definition of Variables

xit ∈ {0, 1}, for all i and t. (range of variables) (6.13)

The changes in (6.3)–(6.13) relative to the original model in (4.1)–(4.10)
are:

1. the replacement of the variables xi by xit;

2. the extension of the objective function to the case of T tests;

3. the addition of the no-overlap constraints in (6.4);

4. the indexing of the bounds in the constraints by t.
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The generalization of the objective function in (6.3) is simple and con-
sists of taking an (unweighted) sum over the tests. Another example of
an objective function for simultaneous test assembly is the generalization
of the minimax principle in (6.14)–(6.17) below. The bounds in the con-
straints are indexed by t to enable us to assemble sets of tests with different
specifications. If some types of constraints are not needed for some of the
tests, we can simply leave them out or give them bounds that are small or
large enough to make them redundant.

The objective function in (6.3) is for a generic quantitative test attribute.
If the tests are assembled to meet targets for their information functions,
we replace the function by a generalized version of one of the alternatives
in Section 5.1. For example, if each test has to meet a set of absolute target
values and we want to use the minimax principle in (5.18)–(5.21) instead
of the sum in (6.3), the latter should be replaced by

minimize y (6.14)

subject to
I∑

i=1
Ii(θkt)xit ≤ Tkt + wty, for all k ∈ Vt and t, (6.15)

I∑
i=1

Ii(θkt)xit ≥ Tkt − wty, for all k ∈ Vt and t, (6.16)

y ≥ 0, (6.17)

where the target values Tkt in (6.15) and (6.16) are indexed by t to allow
us to set different targets for different tests. In addition, as k can be given
a different set of values Vt for each test, we can specify the target values at
a different set of θ values for each test. Finally, we have added weights wt

to (6.15) and (6.16) to have the option of weighing deviations from target
values differently for different tests.

If the tests have to satisfy sets of relative target values Rkt, we can
generalize the application of the minimax principle in (5.25)–(5.27) in the
same way as has been done in (6.14)–(6.17).

6.2.1 Item Overlap
Occasionally, item overlap between tests is less of a concern, or it may even
be necessary to have overlap between some of the tests. Two different types
of overlap control are relevant.

First, if items are allowed to be assigned to more than one test but we
want to constrain the number of tests for which each item is allowed to
be selected, we can simply relax (6.4), replacing its right-hand side by a
number nmax

o > 1:
T∑

t=1
xit ≤ nmax

o , for all i. (6.18)
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Second, we may want to constrain the amount of overlap between some
pairs of tests. Unfortunately, this problem is more complicated, the reason
being that the items now have to be selected conditionally; in fact, we then
require that if a certain set of items is assigned to one test, a subset of it
must be assigned to the other test, and conversely.

To formulate the logical constraints necessary to deal with such problems,
we need additional decision variables

zitt′ =
{

1 if item i is assigned to test t and t′

0 otherwise, (6.19)

for all i and for each pair of tests t and t′ for which control is needed.
If the overlap has to be between upper and lower bounds nmax

tt′ and nmin
tt′ ,

respectively, the following constraints replace those in (6.4) for tests t and
t′:

I∑
i=1

zitt′ ≤ nmax
tt′ , (6.20)

I∑
i=1

zitt′ ≥ nmin
tt′ , (6.21)

2zitt′ ≤ xit + xit′ , for all i, (6.22)

zitt′ ≥ xit + xit′ − 1, for all i. (6.23)

The last two constraints are necessary to keep the values of zitt′ , xit,
and xit′ consistent. The constraints in (6.22) force xit = 1 and xit′ = 1 if
zitt′ = 1, whereas those in (6.23) guarantee the opposite, namely zitt′ = 1
if xit = xit′ = 1.

Problems constraints on item overlap between larger sets of tests easily
run the danger of becoming prohibitively large. The number of additional
variables that they require is

(
T
2

)
I, whereas the number of constraints

needed of the type in (6.22) and (6.23) is twice as large (Exercise 6.5).

6.2.2 Controlling Targets Through Constraints
We began our discussion of the assembly of a single test for an absolute
target for its information function in Section 5.1.3 by showing that informa-
tion functions can also be controlled through a set of constraints. The same
holds for problems with multiple tests. The following simple generalization
of (5.5) and (5.6) does the job:

I∑
i=1

Ii(θkt)xit ≤ Tkt + δkt, for all k ∈ Vt and t, (6.24)

I∑
i=1

Ii(θkt)xit ≥ Tkt − εkt, for all k ∈ Vt and t. (6.25)
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Just as in (6.15) and (6.16), these constraints enable us to formulate a
different set of target values at a different set of θ values for each test.

6.3 Big-Shadow-Test Method

Models for the assembly of multiple tests lead to problems larger than
those for single tests. The number of decision variables defined in (6.2)
necessary to formulate a problem of T tests from a pool of I items is equal
to TI. This number increases linearly with the number of tests. Models
for multiple tests also always have I more constraints than those for single
tests because of the no-overlap constraints in (6.4). If we want to control
the overlap between pairs of tests using (6.20)–(6.23), the increase becomes
much larger. In the worst case, with overlap controlled between each pair of
tests, the number of variables is equal to TI +

(
T
2

)
I and the model has

(
T
2

)
I

more constraints to specify the required overlap, where
(
T
2

)
is the binomial

coefficient. As already indicated in Section 4.2.3, due to recent optimization
of commercial MIP solvers, problem size is no longer the limiting factor
it used to be. Nevertheless, it may be convenient to have an alternative
method for problems that still appear to be too large.

A useful backup method is the big-shadow-test method explained in this
section. A graphical presentation of this method is given in Figure 6.1. The
basic idea underlying this method is to solve a large simultaneous problem
as a sequence of smaller simultaneous problems.

For example, if we need to assemble a set of T = 10 tests, and the entire
problem is too large but solutions to sets of three tests can be obtained in
reasonable time, we can solve the problem through the following five steps.
At the first step, tests t = 1 and 2 and a shadow test representing the
remaining tests t = 3, ..., 10 are assembled simultaneously. The items for
tests t = 1 and 2 are removed from the pool, but the items in the shadow
test are replaced. At the second step, tests t = 3 and 4 are assembled
simultaneously along with a new shadow that now represents tests t =
5, ..., 10. Again, the items for tests t = 3 and 4 are removed and those in
the shadow test are replaced. The procedure is repeated until, at the last
step, we assemble tests t = 9 and 10. It should be noted that the size of
the test is only a constraint in the model and not a basic determinant of
the computation time (see Section 4.2.3). This feature allows us to include
a shadow test in the problem that is solved at each step.

Shadow tests are no regular tests; their items are always returned to the
pool. They are only assembled to balance the selection of items between
current and future tests. Because of their presence, they neutralize the
greedy character inherent in sequential test-assembly methods. In doing
so, they prevent the best items from being assigned only to earlier tests
and keep the later test-assembly problems feasible.
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FIGURE 6.1. Graphical representation of the big-shadow-test method for
assembling multiple tests.

The set of specifications for the shadow tests is the aggregate of the
specifications for the regular tests they represent. Their size is thus always
the sum of the sizes of these tests. We call this method the big-shadow-test
method because in Chapter 9 we will introduce a method for item selection
in adaptive testing (Chapter 9) with shadow tests that always have the size
of a single fixed test.

How to aggregate the specifications of a set of tests to those for the
shadow test is illustrated for the case in which at each step one regular
test and one shadow test are assembled. Although the two tests are assem-
bled simultaneously, for notational simplicity we will not use variables with
double indices but separate sets of variables for the regular and the shadow
tests, xi and zi, respectively, where i = 1, ..., I now denote the current items
in the pool. Suppose we have a (possibly different) relative target for each
of the tests t = 1, ..., T , with weights Rkt for the information in test t at
ability value θk.
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The standard model for the simultaneous assembly of test t and the
shadow test representing tests t + 1, ..., T, with the maximin principle for
the relative targets proposed in (5.25) and (5.27), is

maximize y (objective function) (6.26)

subject to possible constraints at the following levels:

Multiple-Test Level

xi + zi ≤ 1, for all i; (no overlap) (6.27)

Test Level
I∑

i=1
Ii(θk)xi ≥ Rkty, for all k, (target for test t) (6.28)

I∑
i=1

Ii(θk)zi ≥
T∑

g=t+1
Rkgy, for all k, (target for shadow test) (6.29)

I∑
i=1

xi � nt, (length of test t) (6.30)

I∑
i=1

zi =
T∑

g=t+1
ng, (length of shadow test) (6.31)

∑
i∈Vc

xi � nct, for all c, (categorical attributes of t) (6.32)

∑
i∈Vc

zi �
T∑

g=t+1
ncg, for all c, (categorical attributes of shadow test)

(6.33)
I∑

i=1
qixi � bqt, (quantitative attributes of t) (6.34)

I∑
i=1

qizi �
T∑

g=t+1
bqg; (quantitative attributes of shadow test) (6.35)

Item Level ∑
i∈V1

xi � n1t, (categorical attributes of t) (6.36)∑
i∈V0

xi = 0, (categorical attributes of t) (6.37)

∑
i∈V1

zi �
T∑

g=t+1
n1g, (categorical attributes of shadow test) (6.38)

∑
i∈V0

zi = 0, (categorical attributes of shadow test) (6.39)
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qixi ≤ bmax
q , for all i, (quantitative attributes of t) (6.40)

bmin
q xi ≤ qi, for all i, (quantitative attributes of t) (6.41)

qizi ≤ bmax
q , for all i, (quantitative attributes of shadow test)

(6.42)
bmin
q zi ≤ qi, for all i, (quantitative attributes of shadow test) (6.43)∑

i∈Ve

xi ≤ 1, for all e, (enemies) (6.44)∑
i∈Ve

zi ≤ 1, for all e; (enemies) (6.45)

Definition of Variables

xi ∈ {0, 1}, for all i, (range of xi) (6.46)

zi ∈ {0, 1}, for all i. (range of zi) (6.47)

All bounds in the constraints for the shadow test are obtained by sum-
ming the corresponding bounds for the tests t+1, ..., T . The only exceptions
are the quantitative constraints at the item level in (6.42) and (6.43); these
are required to hold for any item in the pool.

Observe that the model above has a set of relative targets for the indi-
vidual tests that are maximized simultaneously. Thus, the big-shadow-test
method enables us to maximize the joint height of the information func-
tions of all individual tests—a feature that is impossible to realize through
an ordinary sequential approach.

If the tests are to be assembled to absolute targets, we use the constraint
set in (6.27)–(6.45) completed with the following objective function and
constraints to deal with the targets:

minimize y (objective function) (6.48)

I∑
i=1

Ii(θk)xi ≤ Tkt + wkty, for all k, (target for test t) (6.49)

I∑
i=1

Ii(θk)xi ≥ Tkt − wkty, for all k, (target for test t) (6.50)

I∑
i=1

Ii(θk)zi ≤
T∑

g=t+1
Tkg + wk(t+1,T )y, for all k,

(target for shadow test) (6.51)
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I∑
i=1

Ii(θk)zi ≥
T∑

g=t+1
Tkg − wk(t+1,T )y, for all k.

(target for shadow test) (6.52)

The weights wkt and wk(t+1,T ) have been added to the model to show
that it is possible to use different tolerances for the information functions
of test t and the shadow test representing tests t + 1, ..., T .

6.3.1 Discussion
In each of the implementations of the big-shadow-test method discussed
above, one shadow test was assembled at each step (except the last). It is
also possible to implement the method with multiple shadow tests. This
choice is attractive, for example, if a set of nonparallel tests with subsets
differing considerably in their specifications has to be assembled. During
the assembly process, each of these subsets can then be represented by a
different shadow test.

It is also possible to vary the number of tests assembled at each step.
For instance, if a large number of tests have to be assembled, the size of
the item pool decreases quickly and, at the later steps, we might be able to
increase the number of regular tests assembled per step. To date, neither
this version nor the preceding version of the big-shadow-test method have
been studied in detail.

The targets for the regular test and the shadow test in (6.49)–(6.52) are
formulated at the same set of values θk, k = 1, ..., K. If targets for different
tests need to be controlled at different values θk, it is recommended to
have k range over the union of sets of all values and drop the individual
constraints in (6.49)–(6.52) for which no control is needed.

The big-shadow-test method is a general heuristic scheme. It has four
features that distinguish it from the more specialized heuristics we reviewed
earlier. First, the degree to which the method behaves as a heuristic can
be controlled by the test assembler. The critical parameter is the number
of steps. The model in (6.26)–(6.47), with one single test at each step, has
T − 1 steps and illustrates one extreme of the range of possibilities. The
simultaneous model in (6.3)–(6.13), with T tests and no shadow test, is
the other extreme. The smaller the number of steps, the closer the result
can be expected to be to the exact solution obtained by the simultaneous
model. The only restriction in our attempt to get as close as possible to
the exact solution is computation time.

Second, unlike the heuristics with second-stage item swapping discussed
in Section 6.1.1, the big-shadow-test method looks ahead and prevents
unbalanced solutions instead of fixing them after the fact.

Third, whereas other heuristics are typically formulated for a specific
type of objective function and/or class of constraints, the big-shadow-test
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method is based on a general scheme that can be used with any type of
problem for which a model for a single test can be formulated; that is, with
any of the models introduced in Chapter 5.

Finally, as already indicated in our discussion of the model in (6.26)–
(6.47), the big-shadow-test method enables us to assemble a set of tests for
relative targets whose heights are maximized simultaneously. This feature
cannot be realized by a purely sequential heuristic.

6.4 Alternative Backup Methods

Other general methods with heuristic elements have been proposed, each of
them for the problem of assembling a set of parallel tests. These methods
are based on the idea of splitting the item pool or other collections of items
into equivalent parts. For the sake of completeness, we review them briefly
here:

1. The idea underlying the first method is to split the item pool into
T (randomly) equivalent subpools. The T tests are then assembled
sequentially from different subpools using a single-test model. The
splitting of the pool prevents the problem of solutions with a deterio-
rating value for the objective function inherent in sequential assembly.
The price to be paid, however, is a lower value for the objective func-
tion. This can easily be seen by noting that, in fact, each individual
problem is solved subject to the following set of constraints:

xi = 0, for all i in the T − 1 other subpools. (6.53)

This set of constraints is much larger than that in (6.1), and problems
with larger sets always tend to result in lower values for the objective
function.
If the pool is split at random, the addition of the ineligibility con-
straints above can lead to infeasibility of some of the T separate
problems. This possibility can be prevented by splitting the total
pool subject to the condition that each subpool contains at least one
solution. But this choice leads to a generalization of the test-splitting
problem in Section 5.4.2 that is of the same order of complexity as
our original problem of assembling T parallel tests, whereas each test
still has to be assembled subject to the constraint in (6.53).

2. The second alternative involves the use of network-flow program-
ming. The problem of assembling T tests is reconceptualized as that
of shipping items from the pool to demand nodes that represent
combinations of the (categorical) attributes addressed in the test
specifications (see Section 4.3). If each test is required to have nj

items at demand node w, the number of items shipped is equal to
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njT . The actual selection of the items is performed by optimizing an
objective function (for example, one derived from a common target
for the information functions of the test or a lower bound on their
reliability).
In a second stage, the collection of items at each node is split into
T parallel portions, one for each test. The split can be random, with
additional swapping of items to improve on the initial result, but ex-
plicit optimization is also possible.
In principle, network-flow programming applies only to tests with
categorical constraints, preferably formulated as equalities. Quanti-
tative or logical constraints have to be dealt with using the technique
of Lagrangian relaxation (Section 4.3) and/or by introducing other
heuristic elements. The method is fast and has been shown to pro-
duce excellent results for a number of specific problems, but it lacks
the general applicability of the big-shadow-test method.

3. The last alternative is similar to the previous one. The only difference
exists in the first stage, which now consists of the assembly of one big
test that is required to meet specifications T times as large as for the
regular tests. The test is then split into T separate tests.
The first-stage test is assembled using an appropriate choice from
the models for single tests in Chapter 5. The specifications for this
test are established using the same principles as for the part of the
model for the shadow test in (6.26)–(6.47). Only heuristic methods
for the splitting of the test into T separate tests have been investi-
gated. But splitting one big test into T parallel tests seems possible
using a generalization of the test-splitting method in Section 5.4.2.
Thus, in this respect the third method seems to have important ad-
vantages over the first method, which involves an application of the
test-splitting method to the entire pool. It also has wider applicabil-
ity than the second method; its first-stage problem is not restricted
to one for which a network-flow formulation exists but can be based
on any MIP model of test assembly.
A critical difference between this method and the big-shadow-test
method is that in the latter each of the T tests is assembled from the
entire pool exactly to its specifications, whereas in the former they
are obtained by splitting one big test selected from the pool. The
current method thus offers fewer degrees of freedom when optimizing
the T tests than the big-shadow-test method.

6.5 Optimizing BIB Designs

In large-scale educational assessments, such as those conducted by the Na-
tional Assessment of Educational Progress (NAEP), usually sets of test
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booklets covering an achievement domain are randomly assigned to stu-
dents in schools. These booklets have to meet certain specifications. For
example, we often want them to have a minimum overlap in items to be
able to estimate correlations between scales covered by different booklets.

In the educational assessment literature, a balanced incomplete-block de-
sign (BIB design) consists of preassembled blocks of items assigned to
booklets according to certain principles. (Unfortunately, the use of this term
is not entirely in agreement with the experimental-design literature.) These
principles can be viewed as constraints on the following design parameters:

1. number of blocks assigned to each booklet;

2. number of booklets to which each block is assigned;

3. number of booklets to which each pair of blocks is assigned.

An example of a BIB design from the 1996 NAEP Grade 8 Mathemat-
ics Project with 13 blocks of items, 26 booklets, and each pair of blocks
assigned to at least one booklet is given in Table 6.2.

Although it is already difficult to assemble test booklets for a BIB design
if a large number of content constraints have to be imposed, an even more
challenging task is to optimize such designs (for example, to assemble the
booklets such that an optimal match exists between the difficulties of the
items and prior knowledge of the ability distributions of the schools in
certain strata in the population). Optimization becomes possible if the
task is modeled as an MIP problem.

Let b = 1, ..., B denote the booklets that are to be assembled from blocks
j = 1, ..., N . Because we have constraints on the assignment of pairs of
blocks, we need a second index, k = 1, ..., N , for the blocks. The decision
variables necessary to model the problem are

xjb =
{

1 if block j is assigned to booklet b
0 otherwise, (6.54)

zjkb =
{

1 if the pair of blocks (j, k) is assigned to booklet b
0 otherwise. (6.55)

A BIB design requires the following set of constraints in the model:

N∑
j=1

xjb � κ1, for all b, (6.56)

B∑
b=1

xjb � κ2, for all j, (6.57)

B∑
b=1

zjkb � κ3, for all j < k, (6.58)
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Booklets Blocks
1 2 3 4 5 6 7 8 9 10 11 12 13

1 x x x
2 x x x
3 x x x
4 x x x
5 x x x
6 x x x
7 x x x
8 x x x
9 x x x
10 x x x
11 x x x
12 x x x
13 x x x
14 x x x
15 x x x
16 x x x
17 x x x
18 x x x
19 x x x
20 x x x
21 x x x
22 x x x
23 x x x
24 x x x
25 x x x
26 x x x

TABLE 6.2. Feasible BIB design for the 1996 NAEP Grade 8 Mathematics
Project.

2zjkb ≤ xjb + xkb, for all b and j < k, (6.59)

zjkb ≥ xjb + xkb − 1 for all b and j < k, (6.60)

xjb ∈ {0, 1}, for all b and j, (6.61)

zjkb ∈ {0, 1}, for all b and j < k. (6.62)

The constraints in (6.56) require that the number of blocks per booklet
satisfy bounds κ1, the constraints in (6.57) impose bounds κ2 on the number
of booklets per block, and the constraints in (6.58) impose bounds κ3 on
the number of booklets per pair of blocks. To qualify as a BIB design, at a
minimum, (6.58) should contain a lower bound larger than or equal to one
on the number of booklets for each pair of blocks. The constraints in (6.59)
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and (6.60) are necessary to make the assignment consistent; they guarantee
that the pair of blocks (j, k) is assigned if and only if the individual blocks
j and k are. Observe that these constraints have the same form as the
item-overlap constraints in (6.22) and (6.23). The last two constraints in
the model define the ranges of the variables.

The objective function for the model has to be formulated using the
decision variables xjb and/or zjkb. Also, in a real-life application the model
has to be extended with a set of content constraints on the booklets.

The approach is based on the assumption that the items in the pool have
been prepackaged in blocks. This practice is often followed to guarantee a
balanced composition of the booklets and/or to make them fit a uniform
time slot available for administering the booklets. But this step is not
necessary. Such constraints can also be met if the booklets are assembled
directly from the pool. As a matter of fact, as we will see in the empirical
example with a BIB design below, prepackaging items in blocks is a strategy
that forces us to give up much of the leeway that otherwise could have been
used for optimization.

6.6 Empirical Examples

Several examples of the assembly of multiple tests are given. The first two
examples are for a set of three parallel forms of the LSAT. (For empirical
examples with a much larger number of tests, see Section 11.5.3.) The item
pool and the test specifications were the same as those for the problem
of a single version with an absolute target for its information function in
Section 5.1.6. In the first example, the three forms were assembled using
the standard simultaneous approach in (6.3)–(6.13). The objective function
was that based on the minimax principle in (6.14)–(6.17) with wt = 1 for
each form. The TIFs of the three forms are shown in the upper panel of
Figure 6.2.

In addition, three parallel forms of the LSAT were assembled using the
big-shadow-test method in Section 6.3. The method was implemented in
two steps. At the first step, one form of the LSAT and a shadow test twice
as big were assembled. At the second step, two additional forms of the
LSAT were assembled. At each step, we used the same minimax principle
in (6.14)–(6.17). The TIFs for this set of forms are shown in the lower panel
of Figure 6.2. Both methods produced sets of tests with TIFs that were
parallel for all practical purposes. In addition, it hardly appears possible
to prefer the results for one method over the other.

The third example consists of a set of two tests assembled for a study with
a pretest-posttest design. These two tests were assembled from the same
LSAT pool and were required to satisfy the same set of constraints. We
assembled these tests using the standard simultaneous approach in (6.3)–
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FIGURE 6.2. Information functions of three parallel forms of the LSAT assembled
using the method of simultaneous assembly (top) and the big-shadow-test method
(bottom).

(6.13). The only difference from the previous examples was that the posttest
was required to have a TIF shifted to the right over a distance of 1.2 on
the θ scale. The targets for the TIFs were realized using a generalization of
the minimax objective in (5.14)–(5.17) to two tests with different targets.
(See the description of this generalization at the end of the introduction to
Section 6.2.). The TIFs obtained for the two tests are shown in Figure 6.3.

The fourth example consists of a set of seven tests assembled for a three-
stage adaptive testing system with one test at the first stage and two tests at
the second and third stages. The LSAT consists of three different sections,
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FIGURE 6.3. Information functions of two versions of the LSAT assembled for a
pretest-posttest study with a shift in location equal to 1.2.

which were assigned to these stages in an arbitrary order. For the first
stage, the test was required to meet 29 content constraints, and for the
second and third stages there were 53 and 32 constraints, respectively. The
first-stage test was required to meet a uniform relative target at θk =-1.2,
0, and 1.2. The assembly of this test was therefore an application of the
maximin principle in (5.25)–(5.27) with Rk = 1 for k = 1, 2, 3. The sets
of three tests for the second and third stages were required to have single
peaks at the same selection of θ values; that is, the TIF of the easy test
was maximized at θk = −1.2, that for the average test at θk = 0, and that
for the difficult test at θk = 1.2. Each set of three tests was assembled
simultaneously using a generalization of the same maximin principle with
the same relative target values Rkt for each test.

The TIFs obtained for the seven tests are displayed in Figure 6.4. These
TIFs thus have the maximum height possible given the sets of content
constraints for the sections in the item pool. In addition, each of the TIFs
has the shape we would expect for this multistage testing application. The
differences in height between the TIFs for the second and third stages follow
from the number of content constraints for these stages (53 vs. 32) as well
as the number of items in the two sections of the pool available (240 vs.
305).

The last example consists of post hoc optimization of the design for the
1996 Grade 8 Mathematics NAEP project. An example of a feasible design



158 6. Models for Assembling Multiple Tests

−3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

θ

I(
θ)

−3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

θ

I(
θ)

−3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

θ

I(
θ)

FIGURE 6.4. Information functions for a set of subtests for a multistage testing
system (top: stage 1; middle: stage 2; bottom: stage 3).

for this study was already shown in Figure 6.2. The bounds on the con-
straints in (6.56)–(6.58) used in the project were an equality bound κ1 = 3
on the number of blocks per booklet, an upper bound κ2 = 6 on the number
of booklets per block, and a lower bound κ3 = 1 on the number of booklets
per pair of blocks. In total, 26 booklets had to be assembled. We assumed
that ten booklets had to be assembled to perform best for schools at the
50th percentile of the estimate of the national distribution found in the
1996 project and eight booklets each to perform best at the 25th and 75th
percentile. To achieve this objective, we minimized the differences between
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the expected (relative) item scores at these percentiles and a target value
of .50 using the minimax principle.

This example was one of the two reported in this book for which the MIP
solver could not find a solution in reasonable time. It can be shown that
for the total of 13 blocks and the values for the bounds in (6.56)–(6.58)
the constraints could only be satisfied at equality for all bounds. In fact,
we thus had a severely constrained problem, with huge numbers of equality
constraints, and the reason why we could not find a solution is expected to
reside in this nature of the problem. However, a solution was found using
the method of simulated annealing in Section 4.5.2; for the implementation
chosen for this method, see the references in the literature section at the
end of this chapter.

The solution we found is shown in Table 6.3. All expected (relative) item
scores for the three populations were in the range of .536–.836, with an
average deviation from the target value equal to .217. A better solution
would have been possible if the items had been assigned directly to the
booklets. We would then have missed all implicit equality constraints on
the composition of the 13 blocks and had much more space for optimization.

This might be a good point to remind the reader again that the most
important results in the first four examples in this section are not visible
in Figures 6.2–6.4. Exactly as required, each of the tests in these figures
satisfied all of its content constraints.

6.7 Literature

Sequential approaches to the assembly of sets of parallel tests with a sec-
ond stage of heuristic corrections were presented in Ackerman (1989),
Wang and Ackerman (1998), Luecht (1998), and Luecht and Hirsch (1992),
whereas Adema (1990b) explored a sequential approach to the problem of
assembling a set of tests for a two-stage testing system.

The first to investigate a simultaneous approach to the problem of assem-
bling a set of parallel tests was Boekkooi-Timminga (1987). A simultaneous
approach with test information controlled by constraints was given in Glas
(1988); his application was to construct a set of tests with equal accuracy
of measurement at a common cutoff score. Sanders and Verschoor (1998)
used a simultaneous approach to assemble a set of tests to be item-by-item
parallel in their classical item indices. Their method was a generalization
of the test-splitting method in Section 5.4.2.

The big-shadow-test method has its origins in Adema (1990a, chapter
5), where it was applied to solve the problem of assembling a set of parallel
tests. The method was generalized in van der Linden (1998c) and van der
Linden and Adema (1998) to deal with any type of multiple-test assembly.
These authors used the name “dummy-test approach” for the method; it
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Booklet Blocks
1 2 3 4 5 6 7 8 9 10 11 12 13

1 x x x
2 x x x
3 x x x
4 x x x
5 x x x
6 x x x
7 x x x
8 x x x
9 x x x
10 x x x
11 x x x
12 x x x
13 x x x
14 x x x
15 x x x
16 x x x
17 x x x
18 x x x
19 x x x
20 x x x
21 x x x
22 x x x
23 x x x
24 x x x
25 x x x
26 x x x

TABLE 6.3. Optimal feasible BIB design for the 1996 NAEP Grade 8
Mathematics Project.

has been replaced by “big-shadow-test method” in this chapter to empha-
size its analogy with the shadow-test method for item selection in adaptive
testing (Section 9.1). The generalization of the method to multiple shadow
tests discussed in Section 6.3.1 has not yet been investigated.

A solution to the problem of assembling a set of parallel tests based
on the idea of item-pool splitting was investigated in Boekkooi-Timminga
(1990a). Network-flow formulations for the assembly of a set of tests with
parallel information functions were given in Armstrong, Jones, and Kunce
(1998) and Armstrong, Jones, and Wu (1992), whereas Armstrong, Jones,
Li, and Wu (1996) compared the results of a network-flow approach with
those by the Luecht heuristic. A network-flow formulation for the problem
of classically parallel tests was published in Armstrong, Jones, and Wang
(1994). Wu (2001) showed how simultaneous and network-flow solutions
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for the problem of assembly of sets of tests for use in a multistage testing
system can be found.

The alternative method based on the idea of splitting one big single test
into a set of parallel tests was explored in Adema (1992a).

An excellent introduction to the notion of balanced incomplete-block
design in educational assessments is Johnson (1992). A more extensive
treatment of the problem of optimizing sets of test booklets for use in edu-
cational assessments, with a discussion of alternative objectives, is given in
van der Linden (1998c) and van der Linden, Veldkamp, and Carlson (2004).
The latter should also be consulted for the implementation of the method
of simulated annealing used in the empirical example in Section 6.6.

6.8 Summary

1. If a set of tests has to be assembled, the set typically is required to
have one or more attributes at the multiple-test level. Examples of
these attributes are the requirements that the tests be parallel, differ
systematically in difficulty or information function, cover different
collections of content specifications, and show a certain degree of
item overlap.

2. If the tests are assembled sequentially, the procedure operates as a
greedy heuristic at the level of the set of tests. Hence, the quality
of each subsequent test can be expected to decrease quickly. It is
possible to improve on a set of sequential solutions using a second-
stage heuristic, such as one that swaps items between tests until a
more satisfactory uniform result is obtained.

3. A second disadvantage of sequential test assembly is the possible
infeasibility of later problems in the sequence. Effective second-stage
heuristics for solving this type of infeasibility are not known.

4. Exact solutions to problems with multiple tests are obtained by solv-
ing a single model for the simultaneous assembly of the tests. A model
for simultaneous assembly can be derived from any model for the
assembly of a single test by: (i) replacing the decision variables by
doubly indexed variables; (ii) generalizing the objective function over
the set of tests; (iii) adding constraints to deal with item overlap;
and (iv) choosing appropriate bounds in the constraints for each test.
None of the features of the models for single tests met in Chapter 5
need to be sacrificed.

5. It is possible to specify bounds on item overlap in problems with
multiple tests. If the bounds are on the number of items common to
pairs of tests, the operation entails the necessity of an additional set
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of decision variables for each pair and large numbers of additional
constraints in the model. Such bounds therefore lead to a strong
increase in problem size.

6. If problems with multiple tests become too large, an appropriate
backup method is the big-shadow-test method. This method solves
the problem as a sequence of smaller simultaneous problems. At each
step in the sequence, a smaller set of tests is assembled along with one
or more shadow tests representing the specifications of the remaining
tests. The only purpose of the shadow tests is to balance the quality
of the current and future tests and prevent the infeasibility of tests
assembled later in the sequence.

7. Alternative backup methods for the case of assembling a set of parallel
tests have been investigated. Each of these is based on the idea of
splitting the item pool or a smaller collection of items in it. These
methods do not seem to have the same general applicability as the big-
shadow-test method, and their generalization to sets of nonparallel
tests has not yet been explored.

8. The assembly of sets of test booklets for use in an educational as-
sessment from a set of prepackaged blocks of items can be modeled
as an MIP problem with constraints on the number of blocks per
booklet, the number of booklets per block, and the number of pairs
of booklets per block. Alternatively, the problem can be modeled as
a multiple-test-assembly problem with selection of the items directly
from the pool.

6.9 Exercises

6.1 Formulate the test-assembly model for the example in Table 6.1.

6.2 In Exercise 5.11, we formulated a model for a test with an item-by-
item match between the values for the item-difficulty parameter and
the values of a reference test. Formulate a version of this model for
the problem of assembling T tests matching the reference test.

6.3 Formulate a test model for the assembly of two tests with different
lengths but TIFs that are as close as possible at a set of points θk,
k = 1, ..., K.

6.4 Formulate a model for the problem of assembling three parallel ver-
sions of a test of knowledge of psychological theory. Each test should
consist of ten multiple-choice items on perception, ten constructed-
response items on information processing skills, ten items on language
formation, and no items that have been administered earlier more
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than a three times. In addition, the three tests should have maximum
information at a cutoff score θ = 1.

6.5 Suppose we want to assemble three 80-item tests from a pool of
700 items. We want the overlap between each pair of tests to be
no larger than five items. Calculate the number of extra variables
and constraints needed in the model to satisfy this requirement.

6.6 Formulate a version of the standard model for the big-shadow-test
approach in Section 6.3 for the assembly of two regular tests and one
shadow test of size T − 2. The model should only have the test-level
constraints in (6.28)–(6.35).

6.7 Formulate a model for the network-flow approach in Section 6.4 for
the assembly of a set of T tests with test-level constraints on cate-
gorical attributes c ∈ C. Add a test-level constraint on a quantitative
attribute q to the problem. Would it be possible to add constraints
on enemy items?

6.8 Formulate the set of constraints for a multiple-test problem for use
in an assessment with a balanced incomplete-block design in which:
(i) the number of blocks per booklet should not be smaller than 3
or larger than 4; (ii) the number of booklets per block should not be
smaller than 5; and (iii) each triplet of blocks should be assigned to
at least one booklet.

6.9 Formalize the objectives for each of the three stages in the example
with the multistage testing problem in Section 6.6.



7
Models for Assembling Tests with
Item Sets

Tests with sets of items organized around common stimuli are popular
because of the efficiency of their format. By combining more than one item
with the same stimulus, we are able to ask questions using more complex
stimuli, such as reading passages, descriptions of cases, or problems with
data in a set of tables or graphs, without having to sacrifice too many items
for the test to meet the time limit. But the presence of such sets in the
item pool complicates the process of assembling the test in the following
ways:

1. Attributes at two additional levels in the test are possible, namely at
the item-set and stimulus levels. Hence, new constraints to deal with
these attributes have to be included in the model.

2. More than one set of decision variables is necessary to select both the
items and stimuli in the test.

3. Logical constraints have to be added to the model to make the selec-
tion of items and stimuli consistent.

Attributes at the item-set level are typically of the same type as those
at the test level. For example, they consist of the size of the item set,
the distribution of item contents in the set, the average p-value of the
set, and its total expected response time. On the other hand, attributes
at the stimulus level often resemble those at the item level. They may
include such types as content classification, word counts, and the presence
of certain stimulus material (e.g., graphics). The presence of item-set and
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stimulus attributes not only leads to new constraints at these levels but to
new constraints at the test level as well, for example, constraints on the
total number of sets in the test and the total word count for the stimuli.

The use of special decision variables to deal with item-set problems was
already touched on in Section 3.2.3, where certain items were assigned
the status of a pivot item and their variables implied the selection of a
stimulus as well. In the next section, we will generalize this idea and work
with different sets of variables for the selection of items and stimuli.

The necessity of consistent selection of items and stimuli involves the
following two logical requirements for each item and stimulus in the pool:

1. An item is selected if and only if its stimuli is.

2. If any of the items in a set is selected, a bounded number of them are
to be selected.

Below we will show how to formulate these requirements efficiently; that
is, with a minimum increase in the number of variables and constraints in
the model.

The purpose of this chapter is not only to show how set-based test-
assembly problems can be modeled and solved. How to do this has been
known for some time, but until recently the complexity of the problems
for a realistic item pool did not always admit a solution close enough to
optimality in realistic time. To deal with this complexity, several alternative
methods and heuristics were introduced. These alternatives are no longer
necessary for the typical problem size in the current testing practice, but
they do offer nice insights into the general solution strategies available in
case we happen to run into a large problem. For this reason, we discuss a
selection of them in Sections 7.2–7.5.

7.1 Simultaneous Selection of Items and Stimuli

In spite of the presence of item sets in the pool, the test-assembly problem
still belongs to the domain of constrained combinatorial optimization. The
only changes are that: (i) we now have to search the pool for an optimal
combination of items and stimuli, and (ii) the constraint set becomes more
complex. An efficient way to enumerate all possible combinations of items
and stimuli in the pool (see Section 3.1) is by using separate sets of decision
variables for each of them. In this section, we will demonstrate how these
variables can be used to model the objective function and constraints that
define an optimal feasible combination.

In practice, item pools sometimes have a mixed nature, and the test may
be required to have both discrete items and items in sets. For generality,
we present a model for the selection of items and stimuli for the mixed
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case. The special cases of fully set-based and fully discrete problems follow
directly from this model.

We suppose the item pool has S − 1 sets with a stimulus. These stimuli
are denoted as s = 1, ..., S − 1. In addition, the pool has a set of discrete
items; we represent this set by a dummy stimulus s = S. The items nested
under stimulus s are denoted as is = 1, ..., Is. This nested type of coding
reflects the structure of the item pool; we always know which items are in
which set. It is for this reason that we do not need separate variables for
the item sets. (But, as will be shown in the next section, an alternative
approach with variables only at this level is possible.)

The decision variables are binary variables zs for the stimuli and binary
variables xis for the items, which are defined as follows:

zs =
{

1 if stimulus s is assigned to the test
0 otherwise, (7.1)

xis
=
{

1 if item is is assigned to the test
0 otherwise. (7.2)

Both the stimuli and items can have quantitative and categorical at-
tributes. We use qs and qis

as generic symbols for the values of stimulus
s and item is for a quantitative attribute. A special quantitative item at-
tribute is the value of the IIF for a person with ability level θ, which is
denoted as qis = Iis(θ) for item is. Subsets of items and stimuli in the
pool that share a common categorical attribute are represented by sets of
indices V item

c and V stim
c , respectively. Finally, in addition to the sets of item

enemies V item
e , we use V stim

e to denote sets of stimulus enemies.
We present the standard model for a test-assembly problem with item

sets and a quantitative objective function as a more general version of the
standard problem with discrete items in Section 4.1. For lack of typograph-
ical space, we have to leave out the references to the items and stimuli in
the descriptive labels we add to the constraints. If a constraint is defined
on variables xis , it is automatically understood to be on an item attribute
or a higher-level attribute defined using item attributes; if it is on variables
zs, it deals with a stimulus attribute or a higher-level version thereof.

The standard model is

optimize
S∑

s=1

Is∑
is=1

qisxis or
S−1∑
s=1

qszs (objective) (7.3)

subject to possible constraints at the following levels:

Test Level
S∑

s=1

Is∑
is=1

xis � n, (number of items) (7.4)
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S−1∑
s=1

zs � m, (number of stimuli) (7.5)

S∑
s=1

∑
is∈V item

c

xis � nitem
c , for all c, (categorical attributes) (7.6)

S∑
s=1

Is∑
is=1

qis
xis

� bitem
q , (quantitative attributes) (7.7)∑

s∈V stim
c

zs � nstim
c , for all c, (categorical attributes) (7.8)

S−1∑
s=1

qszs � bstim
q , (quantitative attributes) (7.9)∑

is∈V item
e

xis
≤ 1, for all e, (enemy items) (7.10)∑

s∈V stim
e

zs ≤ 1, for all e; (enemy stimuli) (7.11)

Item-Set Level
Is∑

is=1
xis � nset

s zs, for all s ≤ S − 1, (number of items per set)

(7.12)∑
is∈V item

c

xis � nset
c zs, for all c and s ≤ S − 1, (categorical attributes)

(7.13)
Is∑

is=1
qisxis � bset

q zs, for all s ≤ S − 1; (quantitative attributes)

(7.14)

Stimulus Level ∑
s∈V stim

1

zs = nstim
1 , (categorical attributes) (7.15)∑

s∈V stim
0

zs = 0, (categorical attributes) (7.16)

qszs ≤ bstim, max
q , for all s ≤ S − 1, (quantitative attributes) (7.17)

bstim, min
q zs ≤ qs, for all s ≤ S − 1; (quantitative attributes) (7.18)

Item Level ∑
is∈V item

1

xis = nitem
1 , (categorical attribute) (7.19)∑

is∈V item
0

xis
= 0, (categorical attributes) (7.20)

qisxis
≤ bitem, max

q , for all i and s, (quantitative attribute) (7.21)

bitem, min
q xis

≤ qis
, for all i and s; (quantitative attributes) (7.22)
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Definition of Variables

xis ∈ {0, 1}, for all i and s, (7.23)

zs ∈ {0, 1}, for all i. (7.24)

The constraints in this model should be interpreted as follows: Those in
(7.4) and (7.5) control the length of the test, n, and the number of stimuli
or item sets in it, m. The composition of the test is controlled by the
constraints in (7.6)–(7.11). The bounds nitem

c and nstim
c in the constraints

in (7.6) and (7.8) can be used to obtain the required distribution of the
categorical item and stimulus attributes in the test, whereas the constraints
in (7.7)–(7.9) require sums of the quantitative items and stimulus attributes
to meet the bounds bitem

q and bstim
q . The constraints in (7.10) and (7.11)

preclude the occurrence of more than one item from the sets of enemies
V item

e and more than one stimulus from the sets of enemies V stim
e .

At the item-set level, (7.12) is used to impose bounds nset
s on the number

of items per set and (7.13) and (7.14) to impose bounds nset
c and bset

q on
the categorical and quantitative attributes of the sets. These three types of
constraints are logical; they are the only ones that involve both item and
stimulus variables. The role of zs on the right-hand side of these constraints
is to impose the desired bounds only if stimulus s is chosen (that is, if
zs = 1); otherwise the right-hand sides are equal to zero and no item from
the set is chosen. It is assumed that at least one of the constraints in (7.12)–
(7.14) is used for each item set. Otherwise, the variables for the items and
stimuli would not not necessarily be consistent.

Also, just as for the earlier constraints with the variables for the pivot
items in Section 3.2.3, we can use (7.12)–(7.14) only to impose a combina-
tion of a lower and upper bound on the size of the sets or their attributes.
If we have to impose a lower bound only, the best strategy is to add a con-
straint with an inactive upper bound; for example, we could set the upper
bound on the number of items per stimulus in (7.12) equal to the size of
the set available in the pool (see Exercise 3.6).

Finally, observe that zs must be present in each item-set constraint. If
we used these variables only in the constraints on the number of items per
set in (7.15), which may seem a natural restriction, the total collection of
item-set constraints would become inconsistent and the model would have
no solution.

The two sets of constraints at the stimulus level in (7.15)–(7.18) and
item level in (7.19)–(7.22) are entirely analogous. We can use (7.15) and
(7.16) and (7.19)–(7.20) to include numbers of items and stimuli (bounded
by nitem

1 and nstim
1 ) with certain special (combinations of) categorical at-

tribute(s) in the sets V item
1 and V stim

1 in the test or exclude items and
stimuli with undesirable attributes in the sets V item

0 and V item
o , respec-

tively. The constraints in (7.17) and (7.18) and in (7.21) and (7.22) impose
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upper and lower bounds on the values of the individual stimuli and items
in the tests for the quantitative attributes qs and qis

, respectively.
As for the choice of objective, two different types of quantitative functions

are offered in (7.3), one in terms of the item variables and one in terms
of the stimulus variables. These two types have been given to show that
the degree of adaptation of the earlier objective functions in Chapter 3
of this book necessary to deal with the presence of item sets is minor. If
the objective function is defined in terms of the item variables, usually the
introduction of the double sum in (7.3) suffices, and the formulation of a
function of stimulus variables is straightforward.

As a more substantive example of an objective function, a typical choice
in the current practice of IRT-based large-scale testing is to assemble a test
to a set of absolute target values for its information function. If we want
to use the minimax criterion introduced for the case of a test with discrete
items only in (5.18)–(5.21), the adaptation necessary to deal with item sets
is

minimize y (7.25)

subject to
S∑

s=1

Is∑
is=1

Iis(θk)xis ≤ Tk + y, for all k, (7.26)

S∑
s=1

Is∑
is=1

Iis(θk)xis ≥ Tk − y, for all k, (7.27)

y ≥ 0. (7.28)

7.2 Power-Set Method

An alternative formulation of the problem of set-based test assembly is
discussed in this section. It leads to a model with different variables and
constraints that is nevertheless equivalent to the method in Section 7.1 in
the sense that it has exactly the same optimal solution (provided there
is a unique solution). We return to the discussion of the exact differences
between the two models at the end of this section.

This alternative formulation is based on a conceptual reorganization of
the item pool, in which each item set is replaced by the collection of all
possible subsets of it. Because in set theory the collection of all possible
subsets of a set is known as its power set, we call this method the power-
set method. The test-assembly problem can then be reformulated as that of
selecting an optimal combination of subsets from the pool that has to meet
a set of constraints. The constraint set has to include the requirement that
we select no more than one subset for each of the stimuli s = 1, ..., S − 1.
If the size of the item sets in the test is bounded, which often is the case
in practice, we can restrict ourselves to a pool consisting of the set of all
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feasible subsets for every stimulus s; that is, subsets that meet the given
bounds on their size. This step permits us to reduce the number of variables,
which easily becomes prohibitively large in this approach.

We denote the subsets for stimulus s as ps = 1, 2, ..., Ps. Index ps is thus
the pth element in the power set for stimulus s = 1, ..., S −1. We formulate
the model for the mixed case with item sets and discrete items and keep
dummy stimulus S to denote the set of discrete items in the pool. The 0-1
variables for the selection of subset p for stimulus s are denoted as zps . In
addition, we keep the variables xiS

for the selection of item iS from the set
of discrete items. (Observe the capital S in the last two symbols and when
we use them below.)

Because the pool now has subsets instead of sets, attributes formerly
at the item-set or stimulus levels need to be redefined at the level of the
subsets. The new definitions are as follows:

kps : number of items in subset ps;
qps : sum of values for quantitative attribute q of items in subset ps;
kcps

: number of items in subset ps with categorical attribute c;
k1ps

: number of items in subset ps and attribute set V item
1 ;

v0ps : indicator variable equal to one if subset ps contains an item from
attribute set V item

0 and equal to zero otherwise;
V stim

c : set of subsets ps with a stimulus with categorical attribute c;
V item

e : set of subsets ps and items iS with an enemy relation;
V stim

e : set of subsets ps with stimuli with an enemy relation.

The power-set approach offers the following alternative to the model in
(7.3)–(7.24):

optimize
S−1∑
s=1

P∑
p=1

qpszps +
IS∑

iS=1
qiS

xiS
or

S−1∑
s=1

P∑
p=1

rpszps (objective)

(7.29)
subject to possible constraints at the following levels:

Test Level
S−1∑
s=1

P∑
p=1

kpszps +
IS∑

iS=1
xiS

� n, (number of items) (7.30)

S−1∑
s=1

P∑
p=1

zps � m, (number of stimuli) (7.31)

S−1∑
s=1

P∑
p=1

kcpszps +
∑

iS∈V item
c

xiS
� nitem

c , for all c, (categorical attributes)

(7.32)
S−1∑
s=1

P∑
p=1

qps
zps

+
IS∑

iS=1
qiS

xiS
� bitem

q , (quantitative attributes) (7.33)
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ps∈V stim

c

zps
� nstim

c , for all c, (categorical attributes) (7.34)

S−1∑
s=1

P∑
p=1

qszps � bstim
q , (quantitative attributes) (7.35)

∑
ps∈V item

e

zps +
∑

iS∈V item
e

xiS
≤ 1, for all e, (enemy items) (7.36)

∑
ps∈V stim

e

zps ≤ 1, for all e; (enemy stimuli) (7.37)

Item-Set/Stimulus Level

P∑
p=1

zps
≤ 1 for all s ≤ S − 1, (at most one set per stimulus ) (7.38)

P∑
p=1

kcpszps � nset
c , for all c and s ≤ S − 1, (categorical attributes)

(7.39)
P∑

p=1
qpszps � bset

q , for all s ≤ S − 1, (quantitative attributes) (7.40)

∑
s∈V stim

1

P∑
p=1

zps = nstim
1 , (categorical attributes) (7.41)

∑
s∈V stim

0

P∑
p=1

zps
= 0, (categorical attributes) (7.42)

qszps ≤ bstim,max
q for all p and s ≤ S − 1, (quantitative attributes)

(7.43)

bstim,min
q zps

≤ qs for all p and s ≤ S − 1; (quantitative attributes)
(7.44)

Item Level

S−1∑
s=1

P∑
p=1

k1ps
zps

+
IS∑

iS∈V item
1

xiS
= nitem

1 , (categorical attributes) (7.45)

S−1∑
s=1

P∑
p=1

v0ps
zps

+
IS∑

iS∈V item
0

xiS
= 0; (categorical attributes) (7.46)
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Definition of Variables

zps
∈ {0, 1}, for all i, (7.47)

xiS
∈ {0, 1}, for all iS . (7.48)

The differences between this model and that in the previous section are:

1. Nearly all expressions are defined in terms of subset variables zps
; the

only other variables are the variables xiS
for the discrete items in the

set S.

2. The constraints in (7.38) have been added to the model to guarantee
that for each stimulus no more than one subset in the pool is chosen.

3. As all items have been prepackaged in possible item sets with an
associated stimulus, the selection of items and stimuli is coordinated
implicitly. Hence, the model no longer contains the logical constraints
in (7.12)–(7.14).

4. For the same reason, the earlier distinction between constraints at
the item-set and stimulus levels disappears. The constraints in (7.38)–
(7.40) contain sums over p for each s. However, because (7.38) admits
a value zps

= 1 for no more than one value of p, (7.39) and (7.40) are
in fact equivalent to the earlier item-set-level constraints.

5. We have left the item-level constraints in (7.21) and (7.22) out of the
model and assumed that they were met when formulating the subsets
ps and set of discrete items S.

With a power-set approach, the objective with absolute target values
for the TIF in (7.25)–(7.28) requires the definition of a subset information
function for each ps, which is simply the sum of its IIFs. Denoting this
function as Ips

(θk), the constraints in (7.26) and (7.27) become

S−1∑
s=1

Ips(θk)zps +
S∑

iS=1
IiS

(θk)xiS
≤ Tk + y, for all k, (7.49)

S−1∑
s=1

Ips(θk)zps +
S∑

iS=1
IiS

(θk)xiS
≥ Tk − y, for all k. (7.50)

As already observed, in spite of the different variables and expressions,
the current and previous models are entirely equivalent in the sense that if
a unique solution exists for a problem, either model will return it. As both
the number of variables and the number of constraints in the power-set
method are much larger, the simultaneous model in (7.3)–(7.24) is more
efficient and should be preferred.



174 7. Models for Assembling Tests with Item Sets

7.3 Edited-Set Method

To implement the power-set approach, the item pool has to be preprocessed;
each item set has to be replaced by its power sets or collection of all of its
feasible subsets. The item-set attributes also have to be recalculated at the
level of all of these subsets. It is possible to go one step further and ask
test specialists to inspect the item sets and edit each of them in the sense
of removing the least desirable items from them. If bounds on the size of
the item sets in the test exist, the removal could be continued until each
set meets its bounds.

As a result, the model for simultaneous selection of items and stimuli in
(7.3)–(7.24) requires fewer item variables. If the sets have been edited to
meet the bounds on them, we can also drop the constraints on the set size in
(7.12). For the power-set method, we obtain a smaller collection of subsets,
and the number of variables is also reduced. Observe, however, that in this
approach, even if the sets are edited to meet existing bounds on their size,
we still need to formulate the model for the collection of all possible subsets
for each edited set; otherwise we would give up the possibility of selecting
a smaller number of items from the sets in the pool.

As a matter of fact, it is always favorable to preprocess the item pool
and remove items that are undesirable for some reason. The test assembler
should be aware, however, of the fact that if too many items with critical
features are removed from the pool, it may no longer be possible to find
a test that meets all specifications. That is, the editing of the sets should
not result in an infeasible problem.

7.4 Pivot-Item Method

The idea of using pivot items in set-based test assembly was already met in
Section 3.2.3. Whereas, in the previous method, the least desirable items are
removed from the sets, the pivot-item method starts at the other extreme
by asking the test specialist to identify the most desirable item in the set.
Formally, a pivot item is defined as an item that is always selected for the
test if and only if its stimulus is selected. In practice, a pivot item is the item
in the set that, according to the test specialist, has the best combination
of attributes with respect to its stimulus.

For each set only one item needs to have the status of a pivot item. Let
i∗s be the index of the pivot item for stimulus s. Because of the formal
definition of a pivot item, it holds for its decision variable xi∗

s
that

xi∗
s

= zs, for all s. (7.51)

We can therefore use the variable for a pivot item as a carrier of the at-
tributes of both its stimulus and item set, and we can drop the stimulus
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variables in the model in (7.3)–(7.24). The only thing necessary to imple-
ment a pivot-item approach is to replace the decision variables zs by xi∗

s

throughout the model; no redefinition of attributes or constraints whatso-
ever is required. The constraints in (7.12)–(7.14) still guarantee that items
and stimuli are chosen together as sets.

Test assembly with pivot items leads to a reduction of the number of
variables in the recommended model of simultaneous selection of items and
stimuli in (7.3)–(7.24). This reduction is not obtained at the price of any
loss of flexibility; all previous types of constraints are still possible.

7.5 Two-Stage Method

In this approach, we split the larger problem of selecting items and stim-
uli into two smaller problems that are solved in two subsequent stages: a
first stage of stimulus selection and a second stage in which the items for
these stimuli are selected. The model for the first stage has only stimulus
variables; the model for the second stage has a small subset of the original
item variables.

Unlike all previous approaches, this approach is sequential. Therefore,
all of our earlier warnings against sequential procedures (Sections 4.6 and
6.1) apply. The potential danger is unfortunate choices at stage 1 and,
consequently, less than optimal results or even infeasibility at stage 2. Using
effective heuristics tricks to minimize the occurrences of such choices is
therefore essential.

In the next two sections, we describe a few tricks that could be followed
in the first stage and formulate models for the two stages. For simplicity,
we only address the case of set-based item selection; generalization to the
mixed case of set-based and discrete items is straightforward.

7.5.1 Stage 1: Selection of Stimuli
The model for this stage can be best understood as a reduction of the model
for simultaneous selection of items and stimuli in Section 7.1. To formulate
the model, we need the following new definitions:

ks: number of items in set s;
kcs: number of items in set s with categorical attribute c;
qitem
s : sum of values of the items for quantitative attribute q in set s.

The model has the following standard form

optimize
S∑

s=1
q

s
zs (objective) (7.52)

subject to possible constraints at the following levels:
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Test Level
S∑

s=1
kszs ≥ n, (number of items) (7.53)

S∑
s=1

zs = m, (number of stimuli) (7.54)

S∑
s=1

kcs
zs ≥ nitem

c , for all c, (categorical item attributes) (7.55)

S∑
s=1

qitem
s zs ≥ bitem

q , (quantitative item attributes) (7.56)

∑
s∈V stim

c

zs ≥ nstim
c , for all c, (categorical stimulus attributes) (7.57)

S∑
s=1

qszs ≥ bstim
q , (quantitative stimulus attributes) (7.58)

∑
s∈V stim

e

zs ≤ 1, for all e; (enemy stimuli) (7.59)

Stimulus Level

nset
s zs ≤ ks, for all s, (number of items per set) (7.60)

nset
c zs ≤ kcs, for all c and s, (categorical item attributes) (7.61)

bset
q zs ≤ qitem

s , for all s, (quantitative item attributes) (7.62)∑
s∈V stim

1

zs = nstim
1 , (categorical attributes) (7.63)∑

s∈V stim
0

zs = 0, (categorical attributes) (7.64)

qszs ≤ bstim,max
q , for all s, (quantitative attributes) (7.65)

bstim,min
q zs ≤ qs, for all s; (quantitative attributes) (7.66)

Definition of Variables

zs ∈ {0, 1}, for all i. (7.67)

The differences between this model and that for the simultaneous selec-
tion of items and stimuli in Section 7.1 are:

1. The model contains stimulus variables only.
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2. All item attributes have been aggregated at the stimulus level. For
example, instead of using a categorical attribute at the item level,
we used the number of items with the attribute in the set, kcs, as an
attribute for its stimulus. Similarly, we used the sum of the values
for the quantitative attribute of the items in the set, qitem

s , as the
stimulus attribute.

3. Because of this aggregation, the original constraints at the item-set
level in (7.12)–(7.14) now return as constraints at the stimulus level in
(7.60)–(7.62). In point 5 below, we explain why we formulated these
constraints with a lower bound and ignored possible upper bounds.

4. Some of the constraints in the original problem have been postponed
until stage 2. These are the constraints on the enemy items in (7.10)
and the entire collection of item-level constraints in (7.19)–(7.22).

5. All constraints at the test level, except those on the number of stimuli
in (7.54) and enemy stimuli in (7.59), have been formulated with lower
bounds. This measure is to maximize our degrees of freedom in stage
2. If upper bounds had been imposed, we might have constrained
away larger sets with items needed later. If no lower bounds had
been imposed, we might select sets that are too small and be faced
with a shortage of sets in stage 2.

The objective function in this model has been formulated for a quan-
titative test attribute defined in terms of stimulus variables. If the actual
objective is based on item variables, aggregation is necessary and qs in
(7.52) has to be replaced by a sum of quantitative item attributes. Some of
the objectives discussed in this book entail one or more constraints with an
upper bound on a quantitative attribute. For these, it is recommended to
average the attribute over the items in the sets instead of summing them.
An example of this averaging is given for the constraints with absolute tar-
get values in (7.26) and (7.27). These constraints are scaled down entirely
to the item level as:

S−1
S∑

s=1
Is(θk)zs ≤ n−1Tk + y, for all k, (7.68)

S−1
S∑

s=1
Is(θk)zs ≥ n−1Tk − y, for all k, (7.69)

where Is(θk) is the average value of the IIFs for the items in set s at θk,
and n is the intended test length. This measure is only necessary for stage
1. When in the next stage the items are selected, we return to the standard
item-level formulation of these constraints (Exercise 7.5).



178 7. Models for Assembling Tests with Item Sets

7.5.2 Stage 2: Selection of Items from Sets
In stage 2, the pool is reduced to a collection of m item sets. We denote
these sets by the same index s as before, which now runs over 1, ..., m. The
items in set s are still denoted as is = 1, ..., Is.

The standard model for stage 2 is

optimize
m∑

s=1

Is∑
is=1

qisxis (objective) (7.70)

subject to possible constraints at the following levels:

Test Level
m∑

s=1

Is∑
is=1

xis � n, (number of items) (7.71)

m∑
s=1

∑
is∈V item

c

xis � nitem
c , for all c, (categorical attributes) (7.72)

m∑
s=1

Is∑
is=1

qis
xis

� bitem
q , (quantitative attributes) (7.73)

∑
is∈V item

e

xis ≤ 1, for all e; (enemy items) (7.74)

Item-Set Level
Is∑

is=1
xis

≤ nset,max
s , for all s, (number of items per set) (7.75)

Is∑
is=1

xis
≥ nset,min

s , for all s, (number of items per set) (7.76)

∑
is∈V item

c

xis � nset
c , for all c and s, (categorical attributes) (7.77)

Is∑
is=1

qis
xis

� bset
q , for all s; (quantitative attributes) (7.78)

Item Level ∑
is∈V item

1

xis = nitem
1 , (categorical attribute) (7.79)∑

is∈V item
0

xis = 0, (categorical attributes) (7.80)

qisxis ≤ bmax
q , for all i and s, (quantitative attribute) (7.81)

bmin
q xis ≤ qis , for all i and s; (quantitative attributes) (7.82)
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Definition of Variables

xis
∈ {0, 1}, for all i and s. (7.83)

The differences between this model and that for stage 1 are:

1. The model contains item variables only.

2. All stimulus-level constraints and test-level constraints on stimulus
attributes have already been realized in stage 1. Consequently, they
have been removed from the model.

3. In stage 1, all item-level constraints and constraints with upper bounds
were omitted; in the current model, they have been restored.

4. The constraints on the size of the item sets with upper bounds in
(7.75) and lower bounds in (7.76) have been presented explicitly. Al-
though the latter were already imposed in (7.60), it is necessary to do
so again in stage 2. If these constraints had been left out, the solution
might contain fewer sets than required, compensating for the loss of
sets by making some of the remaining sets larger than permitted.

7.5.3 Alternative Version
The preceding method involves a dramatic reduction of the number of
variables in its models relative to the simultaneous model in (7.3)–(7.24).
But the reduction in stage 1 is disadvantageous if we are left with a pool at
stage 2 that no longer contains a feasible solution. The trick of removing all
constraints with upper bounds in stage 1 minimizes the likelihood of this
happening, but, like all previous sequential methods, no 100% guarantee of
a feasible solution exists.

An alternative trick is to select a larger than necessary number of item
sets in stage 1. The only thing required to implement this version of the two-
stage method is an increase of the right-hand-side coefficient of (7.54) to a
number larger than the m stimuli actually needed. As all other constraints
are based on lower bounds, they need not be adapted. In stage 2, we select
the final stimuli and items simultaneously using the model in Section 7.1,
which is then defined over a smaller portion of the pool.

7.6 Empirical Example

To investigate the differences in performance among all of these methods,
they were used to assemble the two sections of the LSAT with an item-set
structure. These sections are labeled here as SA and SB. The composition
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Item Pool Test
Section # Items Stimuli Set Size # Items Stimuli Set Size

SA 208 24 5–11 22–24 4 5–7
SB 240 24 8–12 26–28 4 5–8

TABLE 7.1. Number of items and stimuli in the pool and needed in the test.

of the item pool used in this study and the required numbers of items and
stimuli for the two sections are given in Table 7.1.

The only method excluded from this example was the power-set method
(Section 7.2), the reason being the large number of subsets possible for
each item set in the LSAT pool and, hence, the large number of variables
this using this method would entail. For example, the item pool for section
SB contained between 8 and 12 items for each set, whereas only 5–8 items
per set had to be selected for the section. If we restrict ourselves to feasible
subsets, the number of variables required for only one set in the pool would
have been equal to (12

5

)
+
(12

6

)
+
(12

7

)
+
(12

8

)
= 3,003. (7.84)

To account for all 24 item sets in the pool, the number of variables would
have to be as large as 72,072.

For the methods with pivot items and edited sets, test specialists from
the Law School Admission Council were asked to select the pivot items and
edit the sets. As for the size of the edited sets, the specialists were free to
stop removing items from them as long as the result met the bounds on
their size in the test specifications (see Table 7.1). The alternative version
of the two-stage method in Section 7.5.3 was implemented with twice as
many item sets selected in stage 1 as actually required for the test.

For both sections, we specified an absolute target for their information
functions. These targets are depicted in Figure 7.1, along with the infor-
mation functions for the two pools scaled down to the required size of the
test from the two sections. The figures show general agreement between the
distribution of information in the pool and the distribution required for the
two tests. For each method, five target values were specified at θk=−1.8,
−0.9, 0, 0.9, and 1.8. The targets for the two tests were approximated using
the maximin criterion in (7.25)–(7.28). The total number of variables and
constraints for the methods in this example are given in Table 7.2.

For each method, a feasible solution was found, except for the alternative
version of the two-stage method, for which the collection of sets selected
in stage 1 did not offer a feasible solution in stage 2. Inspection of the
results showed that feasibility could be obtained by relaxing one of the
item-set constraints in the stage 1 model; the only change needed was the
replacement of an “=2” constraint by a less stringent “≤ 3” constraint.

The TIFs found for the two sections assembled are given in Figures 7.2
and 7.3. Both figures have separate panels for the results by the simulta-
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FIGURE 7.1. Pool information functions (dashed lines) and targets for section
information functions (bold line) for sections SA (top) and SB (bottom). The
pool information functions have been scaled down to the required section length.
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FIGURE 7.2. Information functions for section SA. Top: simultaneous method
(dash-dotted line) and pivot-item method (dashed line). Bottom: edited-set
method (dashed line), two-stage method (dash-dotted line), and alternative
two-stage method (dotted line). The bold line is the target for the information
functions.
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FIGURE 7.3. Information functions for section SB. Top: simultaneous method
(dash-dotted line) and pivot-item method (dashed line). Bottom: edited-set
method (dashed line), two-stage method (dash-dotted line), and alternative
two-stage method (dotted line). The bold line is the target for the information
functions.
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Method Variables Constraints
Simultaneous Method

Section SA 233 91
Section SB 265 109

Pivot-Item Method
Section SA 209 91
Section SB 241 109

Edited-Set Method 3
Section SA 25 41
Section SB 25 60

Two-Stage Method (Stage 1)
Section SA 25 29
Section SB 25 37

Two-Stage Method (Stage 2)
Section SA 33* 36
Section SB 37* 58

Alternative Two-Stage Method (Stage 1)
Section SA 25 29
Section SB 25 37

Alternative Two-Stage Method (Stage 2)
Section SA 74* 57
Section SB 88* 75

TABLE 7.2. Number of variables and constraints for each method. (Starred
numbers are dependent on the output of stage 1.)

neous method and the pivot-item method (upper panel) and the edited-set
method and the two-stage methods (lower panel). This division reflects our
expectations: We expected the TIFs for the simultaneous method to match
their targets nearly perfectly, comparable with the results for the earlier
case of a single test for the LSAT without item sets presented in the lower
two panels of Figure 5.2. For the pivot-item method, we expected a slightly
less satisfactory fit; this method also involves simultaneous selection but
with the additional constraints that four items from the set of pivot items
in the pool be chosen (see the column with the number of stimuli in Table
7.1). Because this number of additional constraints was low, its impact was
expected to be minor. Both expectations were confirmed by the results in
Figures 7.2 and 7.3.

The edited-set method and the two versions of the two-stage method
are heuristic methods. In addition, they entail extra constraints, which
reduced the effective size of the item pool considerably. (See the column
with the number of variables in Table 7.2.) We therefore expected the
results to be much less favorable. These expectations were also confirmed.
But, as the lower panels of Figures 7.2 and 7.3 show, there were important
differences between the results for these methods. The best results were
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obtained for the edited-set method. The performances of the two versions
of the two-stage method varied wildly: Both versions produced a poor TIF
for section SA (Figure 7.3) but better TIFs for section SB, with the TIF
for the alternative version of the two-stage method suddenly approaching
perfection. The erratic pattern for this alternative version is typical of most
heuristic methods of test assembly; it is generally impossible to predict with
certainty how close their solutions will be to optimality.

7.7 Literature

There does not exist much literature on the problem of set-based test as-
sembly. The same methods as in this chapter are discussed in van der
Linden (2000b). The method with power sets was suggested in Swanson
and Stocking (1993). Luecht and Hirsch (1992) incorporated the same idea
in the Luecht heuristic. The method with pivot items was introduced in
van der Linden (1992).

7.8 Summary

1. The problem of set-based test assembly involves a search for the
best combination of items and stimuli in the pool that meets all
constraints. To identify all possible combinations, we use separate
decision variables for the items and the stimuli.

2. The problem also involves the necessity of new types of constraints to
deal with test specifications that address the stimulus and item-set
attributes in the test. As a result, the set of constraints is usually
much larger than for a pool of discrete items.

3. Exact solutions for set-based test-assembly problems can be found
using a model for the simultaneous selection of items and stimuli,
with logical constraints to coordinate their selection.

4. The power-set method is an alternative method of simultaneous se-
lection, which consists of the following steps: (i) forming all possible
candidate sets from the item sets in the pool, (ii) aggregating the item
attributes at the level of these sets, and (iii) formulating a model
based entirely on the variables for the selection of these sets. This
method does not need any constraints to coordinate the selection
of items and stimuli, but it does require constraints to prevent the
selection of more than one candidate set per stimulus.

5. Pivot items are items selected if and only if their stimulus is selected.
The status of pivot item is assigned by test specialists evaluating
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their attributes. If each set in the pool has a pivot item, we can use
them as carriers of the properties of their stimuli and no longer need
stimulus variables in the model. The use of pivot items thus leads
to a reduction of variables but no loss of flexibility in formulating
constraints.

6. In the method with edited items, we ask the test specialist to remove
the least desirable items from the sets. This method leads both to a
dramatic reduction of the number of item variables in the model for
simultaneous selection and the number of set variables in the power-
set method. This reduction may result in a less satisfactory result,
however.

7. An obvious heuristic is to split set-based test assembly problems into
two smaller problems that are solved in two different stages—a first
stage in which the stimuli are selected, and a second stage in which
items are assigned to the selected stimuli. This heuristic is sequential
and may suffer from less than optimal results or even infeasibility in
the second stage due to unfortunate selection in the first stage. Both
outcomes occurred in the empirical example in Section 7.6 of this
chapter.

7.9 Exercises

7.1 Reformulate the constraints in Exercises 3.2(c)–(f) and 3.4(c).

7.2 Use 0-1 variables for the selection of items and/or stimuli to formulate
the following constraints:

(a) The test should have no item sets with more than two items
with a data display.

(b) All stimuli with a newspaper clip should be in the test.

(c) The average value for the difficulty parameter of the items per
set should not be smaller than 1.5.

(d) The total number of items on optics in the sets for stimuli 5–9
should not be larger than 2.

(e) Stimulus 7 should be in the test if and only if stimulus 8 is in
the test.

(f) Stimuli 22 and item 8 for stimulus 27 should not be in the same
test.

7.3 Use 0-1 variables for the selection of items and/or stimuli to formulate
the following objectives:
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(a) The total word count for the stimuli should be as close as pos-
sible to 750.

(b) Minimize the difference between the average readability of the
items in the set and the readability of its stimulus.

(c) Minimize the total previous exposure of the stimuli in the test.

(d) Maximize the number of items with sets that are not required
to have more than five items.

(e) Minimize the difference between the total number of items in
sets and the number of discrete items in the test.

7.4 Use both 0-1 variables for the selection of the items and/or stim-
uli and, when necessary, auxiliary 0-1 variables ζ to formulate the
following conditional constraints:

(a) The overlap between the items in the sets for stimuli 8 and 14
should not be larger than 3.

(b) The number of sets for which the number of items with a con-
structed response format exceeds the number of items with a
multiple-choice format should not be smaller than 10.

(c) If a stimulus has more than one item with a majority or minority
orientation, the number of items with a majority and minority
orientation should be equal to one another.

7.5 Why should the quantitative attribute in (7.68) and (7.69) be aver-
aged instead of summed? Why should we sum and not average in
stage 2 of this method?



8
Models for Assembling Tests
Measuring Multiple Abilities

At first sight, the problem of assembling a test from a pool calibrated
under a multidimensional model may seem to involve a straightforward
generalization of the objective functions for the unidimensional problems
in Chapters 5–7. For example, if the model is the two-dimensional logistic
model in (1.17), it may seem as if all we have to do is specify target values for
the “test-information function” over a grid of points (θ1k, θ2l), k = 1, ..., K
and l = 1, ..., L, and define an objective function with respect to these
values.

This impression is incorrect for the following two reasons. First, different
cases of multidimensional test assembly exist, each going back to a different
evaluation of the multidimensional ability structure in the pool. To choose
an appropriate multidimensional model for test assembly, we first have to
determine which case applies. Second, if the response model is multidimen-
sional, Fisher’s information measure in (1.19) and 1.20) does not remain
the simple function of θ for a unidimensional model but becomes an infor-
mation matrix. It is not immediately clear how to specify a target for this
matrix, let alone how to assemble a test to meet it.

In the following sections, we first discuss five different cases of multi-
dimensional test assembly from which we have to choose one before we
assemble a test. The next section analyzes Fisher’s information matrix for
a multidimensional model and shows how to derive a set of linear objectives
for the minimization of the variance functions of the ability estimators from
it. In subsequent sections, we present the basic models for assembling a mul-
tidimensional test for an absolute and a relative target for these variance
functions, and we show how to apply these models to the five different cases.
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We also discuss generalizations of other types of objectives to multidimen-
sional test assembly, including the objectives of matching observed-score
distributions and matching a test item by item to a reference test. The
chapter is concluded with an empirical example.

8.1 Different Cases of Multidimensional Testing

The fact that an item pool is sensitive to more than one ability is not always
intentional but sometimes happens by accident; for example, because the
test is taken by students who have been exposed to curricula with a different
emphasis on different types of knowledge or skills. It can also happen out of
necessity. This case arises when the ability of interest can only be measured
by items with a format sensitive to another ability; for example, when
an essentially nonverbal ability has to be tested by items with a verbal
component.

Another reason why we have to distinguish between different cases of
multidimensional test assembly is an ability structure for the test we may
have in mind. For example, we may require the test to have sections for
which different abilities are dominant. In a slight abuse of this term, which
has a more precise definition in factor analysis, we will refer to the structure
of a test with one dominant ability per section as a simple structure.

The cases discussed in the next sections therefore differ with respect to:

1. whether the abilities are intentional or a “nuisance”;

2. whether or not the test should have a simple structure for its abilities.

For convenience, in this chapter, we assume that the two-dimensional
response model in (1.17) has been fitted to the pool. The generalization
to more than two abilities does not involve any new complications. Also,
the differences between the models in this chapter mainly reside in their
objective functions. As in the preceding chapters, we will therefore skip a
discussion of the constraints needed to deal with the content specifications
of the test. Any of the constraints met in a test-assembly models elsewhere
in this book can be inserted into a model for a multidimensional problem.

8.1.1 Both Abilities Intentional
In this case, the item pool has been designed to measure two abilities.
The test is scored with a separate estimate of each ability for each person.
This case has hardly been used in real-life testing. But with the current
advances in the statistical treatment of multidimensional response models,
it is expected to become operational soon. One of the main advantages
of this case over that of two separate tests measuring a single ability is
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an increase in the accuracy of scoring. This increase can be realized by
using information on the correlation between θ1 and θ2 in the pool when
estimating the values of these two parameters.

As will be shown below, the case of two intentional abilities can be solved
using an approach based on the two-dimensional grid of points (θ1k, θ2l)
proposed in the introduction to this chapter. The only difference is that
we now have to derive an appropriate objective function over the grid from
the information matrix for the two-dimensional response model.

8.1.2 One Nuisance Ability
As already noted, an item pool designed to measure a single ability some-
times appears to be sensitive to another ability. This other ability is then
a nuisance in the sense that we would have preferred a pool that is not
sensitive to it.

Ignoring the nuisance ability by trying to fit a unidimensional model to
the pool does not work. The nuisance ability would then bias the scores
and give the impression that some of the items in the test “function dif-
ferentially” (i.e., show different response functions for subpopulations with
different distributions for the nuisance ability). The only possible way to
get rid of a nuisance ability is by acknowledging its presence, fitting a mul-
tidimensional model with a parameter for it, and ignoring the estimates of
this parameter.

If an item pool measures a nuisance ability, tests from it should be as-
sembled to optimize the accuracy of the estimator of the intentional ability.
Contrary to expectations, we should not try to minimize the accuracy of the
estimator for the nuisance ability simultaneously or to put a lower bound
on it. We simply ignore this estimator, and the same should be done for its
accuracy. Any attempt to also optimize or constrain a test with respect to
the estimator of a nuisance ability is likely to result in a lower accuracy of
the estimator of the intentional ability (Exercise 8.1).

8.1.3 Composite Ability
Sometimes an item pool measures more than one intentional ability but
the test has to be scored by a single number. This happens, for example,
because the tradition of a single score existed before the item pool evolved
to multidimensionality or because the test is used for decision-making (e.g.,
selection) and the decision makers find multiple scores difficult to handle.

An attractive solution to this problem is to define a convex combination
of the intentional ability parameters (that is, a combination

λθ1 + (1 − λ)θ2, 0 ≤ λ ≤ 1, (8.1)

with weights λ and 1 − λ) and score the test using an estimate of this
combination. This solution forces us to be explicit about our weights for
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the two abilities instead of using implicit weights implied by some arbitrary
score or by calibrating the items under a unidimensional model that does
not fit the responses.

If the linear combination in (8.1) is chosen as the new parameter of
interest, the test should be assembled to optimize its estimator. How this
can be done will be shown below.

8.1.4 Simple Structure of Multidimensional Abilities
This case arises if all abilities are intentional and the test is required to
consist of different sections with a different dominant ability. This structure
is desirable if the test is released after it has been administered and the
test takers are encouraged to inspect its items for an interpretation of their
scores (see Section 1.2.7 on item mapping). They can then use a different
section for each score. Observe that, although the scores can be interpreted
best using different sections, they are still calculated from the responses to
the entire test.

This case is one in which all abilities are intentional at the level of the
test, but at the level of the individual sections one ability should be treated
as intentional and the others as a nuisance. Assembling a set of different
sections for a test with this structure is actually an instance of the problem
of multiple-test assembly dealt with in Chapter 6. The only difference is
the adjustment needed to deal with the multidimensionality of the pool.

8.1.5 Simple Structure of Unidimensional Abilities
If an item pool does not fit a unidimensional model, it can still consist of
subpools that do fit such a model. If so, the notion of a test with a simple
ability structure boils down to one of a test with sections with items selected
from different subpools. A test with this structure has the same attractive
possibility of score interpretation as the preceding case, but the scores are
now calculated from the responses to individual sections.

This case also implies a multiple-test-assembly problem. However, be-
cause each section is assembled from a different pool, the sections do
not have to compete for the best items in a pool. Therefore, simultane-
ous assembly is not necessary, and the sections can be assembled sequen-
tially from their pools (see Section 6.1). Because this type of assembly is
straightforward, we will not return to it in this chapter.

8.2 Variance Functions

For a dichotomous model with two ability parameters, such as the two-
dimensional logistic model in (1.17), Fisher’s information for a test of n
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items is the 2×2 matrix

I(θ1, θ2) =

⎡⎢⎢⎣
n∑

i=1
a2
1ipiqi
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a1ia2ipiqi
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a1ia2ipiqi

n∑
i=1

a2
2ipiqi

⎤⎥⎥⎦ , (8.2)

where pi = pi(θ1, θ2) is the probability of a correct response and qi = 1−pi

the probability of an incorrect response. For the unidimensional case, the
relation in (1.18) showed that the information measure is asymptotically
equal to the inverse of the variance of the ability estimator. Analogously,
for the multidimensional case, it can be shown that, asymptotically, the
information matrix and the covariance matrix of the two ability estimators
are one another’s inverse.

Inverting (8.2) yields

Var(θ̂1, θ̂2 | θ1, θ2) =
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where

|I(θ1, θ2)| =
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(8.4)

is the determinant of the information matrix in (8.2), which is assumed to
be nonzero because otherwise (8.3) is not determined. (For example, this
assumption excludes the case where a1i = a2i for all items.)

The diagonal elements of (8.3) are the variances of θ̂1 and θ̂2 given
(θ1, θ2). Observe that these variances depend not only on the ability pa-
rameter for their own estimator but also on the other parameter. The
off-diagonal elements of (8.3) are the covariances of θ̂1 and θ̂2 given (θ1, θ2).

The two variances can be written more explicitly as

Var(θ̂1 | θ1, θ2) =

n∑
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and
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)2 . (8.6)
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We will treat these two variances as a function of (θ1, θ2) and use the name
variance function for them. It is customary to assume that the test is long
enough for these functions to approximate the actual conditional variances
of the two ability estimators closely enough for practical application.

Graphical examples of the two variance functions in (8.5) and (8.6) for
a small fictitious test are given in Figure 8.1. The values for a1i in this
example were approximately twice as large as those for a2i; hence the lower
surface for θ̂1. Both surfaces also have a “valley” that is typical of the
two-dimensional response model in (1.17). The variances of θ̂1 and θ̂1 are
relatively high if θ1 and θ2 are both small or large; that is, if the sum
a1iθ1 + a2iθ2 in (1.17) is much smaller or larger than bi for all items. In
this case, the response probabilities approach 0 or 1, and the test is not
informative. If the sum a1iθ1 + a2iθ2 approximates bi for the items, the
response probabilities go to .50 and the test becomes informative.

8.3 Linearization of the Problem

The two variance functions in (8.5) and (8.6) can be written as a func-
tion of 0-1 decision variables for the selection of the items. Division of the
expressions in (8.5) and (8.6) by their numerator yields

Var(θ̂1 | θ1, θ2) =

⎡⎢⎢⎢⎣
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, (8.7)
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The functions are not linear in the variables; it is therefore impossible
to introduce them directly as objective functions in one of the approaches
to multiobjective test assembly used earlier in this book. In the following
sections, we show two different ways of transforming a multidimensional
test-assembly problem with objectives based on variance functions into a
linear model.

8.3.1 Linear Decomposition
Although the variance functions in (8.7) and (8.8) are not linear in their
decision variables, they consist of components that do have a linear form.
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FIGURE 8.1. Examples of the variances function of ̂θ1 (top) and ̂θ2 (bottom) for
a two-dimensional test, with considerably larger values for a1i than for a2i.
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In fact, the functions remind us of the earlier problem of maximizing coef-
ficient α in Section 5.2.1. Maximization of α also led to a function that was
nonlinear but consisted of two linear components. In the model in (5.34)–
(5.37) that we proposed for this case, one component was used as our
objective function and the other as a constraint. A comparable approach
is followed here.

If we want to minimize the value of the variance function of θ̂1 for a fixed
pair of values (θ1, θ2), (8.7) shows that the items should be selected such
that

n∑
i=1

a2
1ipiqixi is maximal, (8.9)

n∑
i=1

a2
2ipiqixi is maximal, (8.10)

and
n∑

i=1

a1ia2ipiqixi is minimal. (8.11)

These objectives cannot be optimized simultaneously for a given pool of
items. Particularly if our primary objective is to select a combination of
items with a maximum value for (8.9), we are immediately faced with a
trade-off between (8.10) and (8.11). Because the latter contains the prod-
ucts of the parameters a1i and a2i, a low value for (8.11) is only possible if
the items have low values for a2i; that is, when (8.10) also takes a low value.
Since (8.7) contains the square of (8.11), if our interest is in the variance
function for the estimator of θ1, the best choice is to sacrifice the objective
in (8.10) and choose items with low values for a2i. Of course, the values
of the difficulty parameter bi cannot be ignored, but their role is minor.
They have an impact only through the products piqi in (8.9)–(8.11), which
typically show much less variation than the two discrimination parameters.

Observe that these three objectives (8.9)–(8.11) are symmetric in θ1 and
θ2. If our primary interest is in minimizing the variance function for the
estimator of θ2, we have to select items with high values for a2i and low
values for a1i.

This analysis suggests a test-assembly model in which we choose the
minimization of

n∑
i=1

a1ia2ipiqixi

as our objective and impose constraints on

n∑
i=1

a2
1ipiqixi



8.4 Main Models 197

and
n∑

i=1

a2
2ipiqixi

with bounds that reflect our relative interest in the two variance functions.

8.3.2 Linear Approximation
Another approach is to minimize a linear approximation to a weighted
sum of the variance functions. Let w1 and w2 be our weights for the accu-
racy of the estimators θ̂1 and θ̂2, respectively. The function that has to be
approximated is

w1Var(θ̂1 | θ1, θ2) + w2Var(θ̂2 | θ1, θ2). (8.12)

A standard approximation is that based on the first two terms of the
Taylor expansion of (8.12) about the point (θ1k, θ2l). This approximation
can be shown to result in

d1kl

n∑
i=1

a2
1ipiklqikl + d2kl

n∑
i=1

a2
2ipiklqikl + d3kl

n∑
i=1

a1ia2ipiklqikl, (8.13)

where pikl = pi(θ1k, θ2l) and d1kl, d2kl, and d3kl are constants calculated
from the weights w1 and w2 and the partial derivatives of pi(θ1, θ2) at
(θ1, θ2) = (θ1k, θ2l). This expression is linear in the items and can be used
directly in an integer programming model for test assembly.

The criterion in (8.12) can be viewed as a weighted version of the A-
criterion (see Section 4.7 and the discussion in Section 8.4.1 below). An
attractive feature of the expression in (8.13) is that it is the result of a
Taylor approximation to the criterion of D-optimality, too; the only adap-
tation necessary is a change in the values of coefficients d1kl, d2kl, and d3kl.
However, empirical research suggests that the approximation is not always
satisfactory, and it is not yet known under which conditions we could rely
on it. Besides, we are not in favor of approaches to multiobjective test as-
sembly based on weighted combinations of objectives, especially if strong
trade-offs between them exist. This is the case for the objectives in (8.9)–
(8.11) because these expressions are controlled by common parameters a1i

and a2i. The remainder of this chapter is therefore based on the linear
decomposition approach in the preceding section.

8.4 Main Models

If we want to optimize each of the objectives in (8.9)–(8.11) over the grid
points (θ1k, θ2l), with k = 1, ..., K and l = 1, ..., L, the total number of
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objectives is equal to 3KL. This number is much larger than in the problem
of assembling a unidimensional test with K target values for its information
function. It thus becomes critical to have explicit control over all objectives.
For this reason, we prefer a model of the minimax type that minimizes the
maximum of the expression in (8.11) over the grid points (θ1k, θ2l).

We will present two models, one for the case of relative targets for the
two variance functions and one for the case of absolute targets.

8.4.1 Model for Relative Targets
The following model can be used:

minimize y (8.14)

subject to
I∑

i=1
a1ia2ipiklqiklxi ≤ y, for all k and l, (8.15)

I∑
i=1

a2
1ipiklqiklxi ≥ w1klκ, for all k and l, (8.16)

I∑
i=1

a2
2ipiklqiklxi ≥ w2klκ, for all k and l, (8.17)

n∑
i=1

xi = n, (8.18)

xi ∈ {0, 1}, for all i, (8.19)

y ≥ 0, (8.20)

with pikl = pi(θ1k, θ2l) and qikl = 1 − pikl.
The constraints in (8.15) require the expression in (8.11) to take values

at the points (θ1k, θ2l) not larger than a common bound, y. This bound
is minimized in (8.14). The constraints in (8.16) and (8.17) impose lower
bounds on the expressions in (8.9) and (8.10), where κ is a fixed common
factor in the bounds, and w1kl and w2kl are relative weights that control the
shapes of the two variance functions over the points (θ1k, θ2l), k = 1, ..., K
and l = 1, ..., L, respectively. The values for the factor and weights are
selected by the test assembler.

Choice of Bounds
As discussed in Section 8.3.1, minimization of the expression in (8.15) has a
downward effect on the two expressions in (8.16) and (8.17). Because both
expressions are constrained by lower bounds, we can expect the solution
to be at or closely above these bounds. By manipulating the size of the
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weights w1kl and w2kl and the common factor κ, we have explicit control
of all three left-hand-side expressions in (8.15) and (8.16).

As for the choice of weights, the following two principles hold:

1. The differences between the two sets of weights {w1kl} and {w2kl},
with k = 1, ..., K and l = 1,...,L, determine the relative heights of the
two variance functions for θ̂1 and θ̂2.

2. The differences within these two sets of weights determine the relative
shapes of the separate variance functions over the ability space.

The values for the weights w1kl and w2kl thus have no absolute meaning.
The only thing that counts is their ratio. (Compare this with the discussion
of the specification of relative targets for a TIF in Section 5.1.1.)

As for κ, the idea is to solve the model for a sequence of trial values for
this factor and pick the solution with the pair of variance functions that
best approaches our ideal. An obvious strategy for choosing trial values is
to begin with a low value and continue with a series of increments until
one of the lower bounds in (8.16) and (8.17) becomes too large and no
feasible solution is left. If the range of possible values for κ is unknown, it
is efficient to begin with a set of large increments. During a second stage,
we can then zoom in, searching the neighborhood of the best solution for
improvements. An empirical example of this strategy for a two-dimensional
test-assembly problem with relative targets for its variance functions will
be given in Section 8.6.

Criterion of Optimality
In Section 4.7 on the optimal design approach to test assembly, we discussed
the criteria of D- and A-optimalities. The expressions for these criteria in
(4.30) and (4.31) used in the optimal design literature were simple be-
cause they were for the independent estimators of a set of unidimensional
ability parameters. However, if we have a model with multiple ability pa-
rameters, their estimators are dependent. This fact is demonstrated by the
nonzero covariances in (8.3). The dependence complicates the criterion of
D-optimality, which now involves minimization of the determinant of the
covariance matrix in (8.3). But the criterion of A-optimality remains a
simple sum of the variances of the estimators in (8.5) and (8.6).

The model in (8.14)–(8.20) along with the strategy of trial values for κ
can be viewed as an application of a weighted version of the criterion of A-
optimality. The weights are introduced to define the status of the abilities
that the test measures; that is, to indicate which abilities are intentional
and a nuisance.

Interestingly, the same model can also be used for an application of the
criterion of D-optimality. The only change needed is manipulation of the
bounds in (8.16) and (8.17) until we find a solution with the best values
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for the determinant of the information matrix in (8.3) over the grid of
(θ1kl, θ2kl). We are not entirely in favor of this approach because it forces
us to give up our explicit weights for the relative accuracy of the test with
respect to the individual abilities it measures.

8.4.2 Model for Absolute Targets
If a new test has to be parallel to a reference test, the variance functions of
both tests should be identical. From the values of the item parameters for
the reference test, we can calculate its values for the left-hand expressions in
(8.15)–(8.17). Let κ0kl, κ1kl, and κ2kl denote these values. They can be used
as absolute targets in a version of the previous model with (8.14)–(8.17)
replaced by

minimize y (8.21)

subject to

I∑
i=1

a1ia2ipiklqiklxi ≤ κ0kl + y, for all k and l, (8.22)

I∑
i=1

a1ia2ipiklqiklxi ≥ κ0kl − y, for all k and l, (8.23)

I∑
i=1

a2
1ipiklqiklxi ≤ κ1kl + y, for all k and l, (8.24)

I∑
i=1

a2
1ipiklqiklxi ≥ κ1kl − y, for all k and l, (8.25)

I∑
i=1

a2
2ipiklqiklxi ≤ κ2kl + y, for all k and l, (8.26)

I∑
i=1

a2
2ipiklqiklxi ≥ κ2kl − y, for all k and l. (8.27)

8.4.3 Applications to Different Cases
Because the weights w1kl and w2kl in (8.14)–(8.20) offer us explicit control
over the relative size of the accuracy of the estimators θ̂1 and θ̂2, putting
appropriate constraints on them is key to the applications of the model to
the different cases of multidimensional test assembly discussed in Section
8.1. How these weights should be constrained in these cases is discussed in
this section.

We will not discuss these cases of multidimensional test assembly for
the model with absolute targets in (8.21)–(8.27). The only purpose of this
model is to assemble a test to match a reference test, regardless of its ability
structure.
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Both Abilities Intentional
The case where both abilities were intentional suggests an application in
which the weights w1kl and w2kl for the two variance functions are pointwise
equal over the grid (θ1k, θ2l). This case thus amounts to a choice of bounds
in (8.16) and (8.17) subject to the restrictions

w1kl = w2kl, for all k and l. (8.28)

Otherwise, the values for w1kl and w2kl can be chosen to produce the com-
mon shape for the variance functions we have in mind; for instance, weights
that produce lower variance functions where the majority of the persons
are expected, or lower functions at lower values of (θ1k, θ2l) because the
test is used for diagnosing test takers with poor performances.

One Nuisance Ability
If the pool is sensitive to a nuisance ability, we should ignore this ability
and introduce a target only for the intentional ability. If θ2 is the nuisance
ability, all we have to do is to set

w2kl = 0, for all k and l, (8.29)

that is, guarantee that the constraints for the estimator of this ability in
(8.17) cannot become active. If positive values for w2kl were selected, these
constraints could become active, and the result for the variance function for
θ̂1 would be less favorable. (See the discussion of ignoring variance functions
for nuisance abilities in Section 8.1.2.)

Composite Ability
The model in (8.14)–(8.20) was developed for separate variance functions
for the two ability estimators and not for a single variance function for a
composite ability. As a simple estimator of the linear composite in (8.1),
a plug-in estimator can be chosen; that is, the same linear combination of
the individual estimators, λθ̂1 + (1 − λ)θ̂2. The variance of λθ̂1 + (1 − λ)θ̂2
given (θ1, θ2) is equal to

λ2Var(θ̂1 | θ1, θ2) + (1 − λ)2Var(θ̂2 | θ1, θ2)

+ λ(1 − λ)Cov(θ̂1, θ̂2 | θ1, θ2). (8.30)

The first two terms in this expression are the variance functions in
(8.5) and (8.6); the last term is the covariance function defined by the
off-diagonal elements in (8.3).

This variance function is based on the same three expressions as in (8.9)–
(8.11). Formulating a test-assembly model with this function is certainly
possible. But it is easier to apply a transformation to the discrimination



202 8. Models for Assembling Tests Measuring Multiple Abilities

parameters in the response model that rotates the ability space to a space
that has the composite ability λθ1 + (1 − λ)θ2 as one of its dimensions.
The case then becomes one with one dimension representing an intentional
ability and the other a nuisance ability, and the model in (8.14)–(8.20) with
the constraint on the weights in (8.29) can be used (Exercise 8.3).

Simple Multidimensional Structure of Abilities
We assume that the sections have been coded such that θ1 is the intentional
ability for section 1 and θ2 for section 2. In addition, we use the index
t = 1, 2 to denote the two sections of the test and use 0-1 variables xit for
the selection of item i for section t.

The version of the model in (8.14)–(8.20) needed for the case of a simple
structure for the test is

minimize y (8.31)

subject to

I∑
i=1

a1ia2ipiklqiklxit ≤ y, for all k, l, and t, (8.32)

I∑
i=1

a2
1ipiklqiklxit ≥ w1tklκ, for all k, l, and t, (8.33)

I∑
i=1

a2
2ipiklqiklxit ≥ w2tklκ, for all k, l, and t, (8.34)

I∑
i=1

xit = nt, for all t, (8.35)

xit ∈ {0, 1}, for all i and t, (8.36)

y ≥ 0, (8.37)

with the following constraints on the selection of the weights in (8.33) and
(8.34):

w1tkl = 0 and w2tkl = 1 if t = 2, for all k and l, (8.38)

w1tkl = 1 and w2tkl = 0 if t = 1, for all k and l. (8.39)

The differences between this model and the original one in (8.14)–(8.20)
are:

1. The variables in the model have been indexed by the sections in the
test.

2. The same has been done for the weights in the lower bounds in (8.33)
and (8.34).
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3. Extra constraints have been added in (8.35) to control the length of
the sections.

Because of the extra index for the weights, we are able to formulate the
restrictions in (8.38) and (8.39). These restrictions help us to ignore the
estimators of the nuisance abilities at the level of the individual sections in
the test.

8.5 Alternative Objectives for Multidimensional
Test Assembly

In Chapter 5, in addition to models for the assembly of a unidimensional
test for a target for its information function, we also presented models for
classical test assembly (Section 5.2), matching an observed-score distribu-
tion for the test (Section 5.3), and item matching (Section 5.4). It does not
make sense to generalize classical test assembly to the multidimensional
case, but the generalization of the two other types of models to this case is
straightforward.

8.5.1 Matching Observed-Score Distributions
The model for matching an observed-score distribution in (5.50)–(5.55)
followed from a necessary and sufficient condition for two tests to have
the same observed-score distribution. This condition, which was given in
(5.47), was on the probabilities of a correct answer for the two tests. The
condition is neutral as to the question of where these probabilities come
from; they can be calculated from any type of response model, provided
the two tests are calibrated on the same scale.

If the reference test is calibrated under a two-dimensional response model,
the set of target values in (5.48) can be calculated as

Trkl =
n∑

j=1
pr

ikl, r = 1, ..., R, (8.40)

for k = 1, ..., K and l = 1, ..., L, where pr
ikl is the rth power of the response

probability pi(θ1k, θ2l) in (1.17) and R is the largest value of r adopted in
the test-assembly model.

To assemble a test from a two-dimensional pool to match an observed-
score distribution on a reference test (Section 5.3), we can use the same
model as in (5.50)–(5.55) but have to replace the constraints in (5.51) and
(5.52) by

I∑
i=1

pr
iklxi ≤ Trkl + wry, for all k, l, and r ≤ R, (8.41)
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I∑
i=1

pr
iklxi ≥ Trkl + wry, for all k, l, and r ≤ R. (8.42)

8.5.2 Item Matching
Generalization of the models for item matching discussed in Section 5.4
is also straightforward. In fact, if the items are matched on the item pa-
rameters in a multidimensional response model, the only thing we have to
do is define the measure for the distance between two items in (5.57) on
these parameters. Thus, if we want to assemble a test to be item-by-item
parallel to a reference test or to split a test into two parallel halves, we
should define this metric as

δij = [w1(a1i − a2j) + w2(a2i − a2j) + w3(bi − bj)]
−1/2 (8.43)

for items i and j and select the appropriate model from Section 5.4.

8.5.3 Other Generalizations of Unidimensional Problems
Generalizing the models for multiple-test assembly (Chapter 6) and pools
with item sets (Chapter 7) to the multidimensional case does not yield any
new complications. An example of a model for the assembly of multiple
multidimensional tests was already given in (8.31)–(8.37). If a multidimen-
sional pool has item sets, we should use the same types of variables for
item and stimulus selection and the same logical constraints to keep their
values consistent as in the standard model in (7.3)–(7.24).

8.6 Empirical Example

The model for multidimensional test assembly in (8.14)–(8.20) was ap-
plied to a mathematics item pool for the ACT Assessment Program. The
pool consisted of 176 items for which the two-dimensional logistic response
model in (1.17) yielded a satisfactory fit. A 50-item test was assembled.

The two abilities were identified as an algebra ability and a geometry
ability. The items in the pool were classified with respect to three algebra
and three geometry areas, as well as three different levels of skill (basic skill,
application, analysis). The model for the assembly of the test therefore had
to be extended by nine constraints to deal with the existing specifications
with respect to these classifications.

Both abilities were deemed to be equally important, and we settled on
relative targets for the two variance functions with a flat shape over the
ability space. It follows from (8.28) that these targets can be implemented
by choosing

w1kl = w2kl = 1, for all k and l, (8.44)
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κ µ σ

.0 1.59 .92

.1 1.59 .92

.2 1.59 .92

.3 1.59 .92

.4 1.56 .83

.5 1.34 .51

.6 1.31 .38

.7 1.28 .37

.8 1.17 .32

.9 1.07 .28
1.0 1.06 .27
1.1 1.12 .29
1.2 1.20 .34
1.3 1.85 .48
1.4 * *

TABLE 8.1. Mean and standard deviation of values of two variance functions.
(Note: * denotes an infeasible solution)

for the weights in the lower bounds in (8.16) and (8.17). This choice effec-
tively sets these lower bounds equal to κ. This common bound was imposed
at the points (θ1k, θ2l) in the grid defined by all possible combinations of
θ1k, θ2l = −2.0, −1.8, ..., 1.8, 2.0.

We ran the model for a series of values for κ with increments of .1 until
the model became infeasible. This happened for κ = 1.4.

Since in each run of the model we obtained values for the two variance
functions at a large set of grid points, we only report their mean (µ) and
standard deviation (σ) in Table 8.1. A lower mean implies a lower height
of the variance functions, whereas a lower standard deviation implies a
flatter shape. The best results were obtained for κ = 1.0 with µ = 1.06 and
σ = .27.

Plots of the two variance functions for the test assembled for κ = 1.0 are
given in Figure 8.2. The variance function for θ̂2 appeared to be flatter,
while that for θ̂1 showed a slight upward curve for the higher θ1 values over
the entire range of θ2 values. This increase in variance is the result of a
combination of a relative scarcity of items in the pool with good discrimi-
nating power along θ1 in this area in combination with an unfavorable ratio
of the test length to the pool size.

It is instructive to diagnose the pattern in the solutions for the range
of values for κ in Table 8.1. From κ = 0 through κ = .3, the constraints
in (8.16) and (8.17) are not yet active at any of the points (θ1k, θ2l), and
the solution remains the same. They then improve until κ = 1.0, for which
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FIGURE 8.2. Variance functions of ̂θ1 (top) and ̂θ2 (bottom) for a
two-dimensional test assembled to flat targets.
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the best solution is obtained. After κ = 1.0, the constraints become more
and more severe, and the solution deteriorates. When κ = 1.4, the model
becomes overconstrained and no solution is left. The pattern in these solu-
tions corresponds exactly with our motivation of the model in (8.14)–(8.20)
in Section 8.4.1.

8.7 Literature

References to the multidimensional logistic response model used as an
example in this chapter were given in the literature section of Chapter
1.

Not much literature on multidimensional test assembly is available. The
different cases of multidimensional testing in Section 8.1, the linear decom-
position of the weighted sum of the variance function in Section 8.3.1, and
the ideas underlying the models in Section 8.4 have been introduced in
van der Linden (1996). An empirical study of multidimensional test assem-
bly from the point of view of multiobjective decision-making is given in
Veldkamp (1999). The linear approximation to a weighted combination of
variance functions in Section 8.3.2 was proposed in Veldkamp (2002); this
reference should also be consulted for an empirical comparison between the
results of multidimensional test assembly based on this approximation, a
greedy heuristic, and a random method. More details on the model for mul-
tidimensional test assembly with a target for its observed-score distribution
can be found in van der Linden and Luecht (1998).

The more challenging part of multidimensional test assembly is the es-
tablishment of statistical criteria for accurate estimation of the ability
parameters. Once a criterion has been derived and linearized, formulation
of a test-assembly model for it becomes relatively straightforward. Readers
with an interest in the statistical treatment of ability estimation in mul-
tidimensional adaptive test assembly should consult Luecht (1996), Segall
(1996, 2000), van der Linden (1999b), and Veldkamp and van der Linden
(2002).

8.8 Summary

1. If tests are assembled from a pool with items sensitive to more than
one ability, we have to distinguish between the cases in which (i)
the abilities are intentional or a “nuisance” and (ii) the test is or
is not required to have a simple ability structure. If all abilities are
intentional but the test has to be scored by a single number, the
best strategy is to score the test with respect to an explicit linear
composite of the abilities.
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2. For a response model with more than one ability parameter, Fisher’s
information measure is a matrix. The matrix is (asymptotically) equal
to the inverse of the covariance matrix of the estimators of the ability
parameters.

3. A useful objective for multidimensional test assembly is minimization
of the (weighted) variance functions of the ability estimators, which
are the diagonal elements of the (asymptotic) covariance matrix taken
as a function of the value of the ability parameters.

4. This objective is a weighted version of the criterion of A-optimality
in the optimal design literature discussed in Section 4.7. It is also
possible to minimize the determinant of the covariance matrix—an
objective known as the criterion of D-optimality in the literature.
But we then lose our explicit weights for the relative accuracy of the
test with respect to the individual abilities it measures.

5. To use this objective in an integer programming approach to test
assembly, it has to be linearized. One possible strategy is linear de-
composition; that is, choosing one of the linear components of the
variance functions as the objective function and imposing appropri-
ate constraints on the other components. Another strategy is linear
approximation based on a Taylor expansion of a weighted sum of the
variance functions.

6. The first strategy offers explicit control of the relative importance
of the variance functions. The conditions under which the linear
approximations in the second strategy are satisfactory are not yet
known.

7. If one of the abilities measured by the test is a nuisance, the con-
straints for its variance function in the multidimensional test-assembly
model should be made inactive. If our interest is in a linear compos-
ite of the abilities, it is convenient to rotate the ability space such
that one dimension coincides with the composite and the other di-
mensions can be treated as nuisances. If the test is required to have
a simple ability structure, a multidimensional version of a model for
multiple-test assembly can be used.

8. Generalization of the unidimensional models for matching observed-
score distributions, matching a test item by item to a reference test,
and splitting a test into parallel halves in the earlier chapters to the
case of multidimensional test assembly is straightforward. The same
holds for the assembly of multiple tests and tests from multidimen-
sional pools with item sets.
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8.9 Exercises

8.1 Suppose one of the two abilities measured by a two-dimensional item
pool is a nuisance. Use the objectives in (8.9)–(8.11) to explain why
it may be disadvantageous to have a constraint or objective in the
model with respect to this ability.

8.2 Suppose the model in (8.14)–(8.20) is formulated over a grid of points
(θ1k, θ2l) consisting of all possible combinations of the values (−2, −1,
0, 1, 2). Propose a set of weights {w1kl, w2kl} for the case where: (i)
the variance function for θ̂1 should have a flat surface, (ii) the vari-
ance function for θ̂2 should have a “valley” for (θ1k, θ2l)=((−2, 2),
(−1, 1), (0, 0), (1,−1), (2,−2), and (iii) the surface for θ̂1 and the
valley for θ̂2 should be at the same height.

8.3 Derive the transformation that rotates the ability space of the two-
dimensional response model in (1.17) to a space with λθ1+(1−λ)θ2 as
its first dimension. Why does this transformation not involve difficulty
parameter bi? Calculate the transformation for the special case in
which θ1 and θ2 are weighted equally.
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Models for Adaptive Test Assembly

In adaptive test assembly, items are selected from the pool in a sequen-
tial fashion. The response to a new item is used to update the test taker’s
ability estimate, and the next item is then selected to have maximum accu-
racy at the updated estimate. Adaptive tests are highly efficient. Extensive
computer simulations have shown that to yield equally accurate ability es-
timates, adaptive tests require only 40–50% of the items needed for a fixed
test.

Large-scale adaptive testing became possible in the 1990s when the com-
puter revolution led to PCs that were powerful enough to perform real-time
ability estimation and item selection at the testing site. Until then, adap-
tive testing had been restricted to an occasional experimental program run
on a mainframe computer or to the use of approximate, computationally
less intensive procedures for ability estimation and item selection.

One approximate procedure was multistage testing in which adaptation
took place only at the level of a few alternative subtests, with estimation of
θ replaced by simple number-correct scoring of the subtests. Also, to avoid
the use of computers, experiments with paper-and-pencil adaptive testing
at the level of the individual items were conducted using a testing format
known as flexilevel testing. In this format, the test taker answered the items
by scratching an alternative on the answer sheet, whereupon a reference to
the next item on the test form became visible. The form was organized such
that the difficulty of the items went up after a correct response and down
after an incorrect response. The absolute size of the adjustments followed
a predetermined sequence of numbers. This item-selection procedure, more
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generally known in statistics as a Robbins-Monro procedure, was also tried
in the early computerized versions of adaptive testing.

At first, research on adaptive testing was primarily statistical and ad-
dressed such topics as the relative efficiency of adaptive tests versus fixed
tests, alternative criteria for item selection, simplifying methods for updat-
ing ability estimates, the stabilization of ability estimators as a function of
test length, and the impact of the choice of the initial item. But the intro-
duction of large-scale adaptive testing in the 1990s marked the beginning
of a whole new era of adaptive-testing research.

For one thing, it became clear that it was not enough for adaptive tests
to be statistically efficient. In addition, they had to meet the same con-
tent specifications as their paper-and-pencil predecessors, which created a
dilemma because when items are selected adaptively, each test taker gets
a different set of items from the pool. Next, the issue of how to deal with
adaptive tests from pools with set-based items quickly became manifest.
An even more urgent new problem was item security. By its very nature, an
adaptive-testing algorithm tends to capitalize on a small set of high-quality
items in the pool; if the item pool is used for some time, those items become
vulnerable to security breaches. An equally serious, though less generally
understood, problem is that of differential speededness in adaptive testing.
Since test takers get different sets of items, some may end up with a set
that is very time-intensive, whereas others have ample time to answer their
items. Finally, as the practice of releasing the items after the test became
no longer affordable for adaptive testing, the question of how to use item
content to report test scores in an informative fashion announced itself
quickly.

The parallels between these early developments in adaptive test assembly
and those after Birnbaum introduced his approach to fixed test assembly
in 1968 are conspicuous. As was already pointed out in Section 1.2.8, Birn-
baum’s approach focused exclusively on the statistical aspects of testing,
too. To become realistic, it had to be adjusted to problems with elaborate
sets of content specifications and more complicated types of item pools.
Moreover, the initial heuristic techniques for item selection developed to
implement Birnbaum’s method had to be replaced by flexible algorithms
with optimal results. Basically, the same challenges were met again when
the first large-scale adaptive-testing programs were launched in the 1990s.

In this chapter, we will show how the optimal test-assembly approach in
the previous chapters can also be used to solve the problems in adaptive
testing above. We will first model adaptive test assembly from a pool of
discrete items as an instance of 0-1 programming. The result will be a
modification of the standard test-assembly model for a single fixed test
presented in Section 4.1. Although the model changes only a little, a major
difference with fixed-form test assembly is that an updated version of the
model has to be solved for the selection of each subsequent item in the
test. We will then discuss a few alternative objective functions for adaptive
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testing and extend our standard model with the different sets of constraints
necessary to solve the various new problems discussed above. Some of these
constraints are direct generalizations of the ones we used to extend the
model for a fixed test in Section 4.1 to those for the special problems in
Chapters 5–8, whereas others require a bit more ingenuity.

Because both our basic model for adaptive test assembly and all ad-
ditional constraints remain linear in the decision variables, the branch-
and-bound searches discussed in Section 4.2 can also be used to run an
adaptive-testing program. As a matter of fact, thanks to a special feature
of adaptive item selection, much faster implementations of these searches
than for fixed test assembly are possible, which enables us to execute them
in real time.

9.1 Shadow-Test Approach

In Section 2.3, we classified the objective used in adaptive testing as a quan-
titative objective at the item level. The objective was modeled in Section
3.3.1 as

maximize
∑
i∈R

Ii(θ̂)xi (maximum information) (9.1)

subject to ∑
i∈R

xi = 1, (selection of one item) (9.2)

xi ∈ {0, 1}, for all i, (range of variables) (9.3)

where R denotes the items in the pool that the person has not yet taken
and θ̂ is his or her current ability estimate.

The representation is not yet realistic for the following reasons:

1. For a complete test, a set of these problems has to be solved, one for
each of its items.

2. For each of the problems in this set, we have to update the estimate
θ̂ in the objective function.

3. The problems in the set are dependent in the sense that once an item
has been administered, it cannot be chosen again in a later problem.

Thus, the model in (9.1)–(9.3) needs to be reformulated. We will do this
first for adaptive testing with a random test length and then for the case
of a fixed test length.
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9.1.1 Random Test Length
In early research on adaptive testing, the ideal of a stopping rule based on
a common level of accuracy of the final ability estimator θ̂ for all test takers
was advocated. This ideal can easily be realized by estimating the accuracy
of θ̂ online, monitoring the estimates, and stopping when a predetermined
threshold is passed.

This case of a random test length can be modeled as follows. Let g =

1, 2, ... denote the items in the adaptive test. We use θ̂
(g−1)

to represent
the update of the ability estimate after the first g − 1 items; this update is
thus used to select the gth item. Furthermore, we use Rg to denote the set
of items in the pool that is still available for administration when the gth
item for the adaptive test is selected.

The previous model for the selection of the kth item can then be refor-
mulated as:

maximize
∑

i∈Rg

Ii(θ̂
(g−1)

)xi (maximum information) (9.4)

subject to ∑
i∈Rg

xi = 1, (selection of one item) (9.5)

xi ∈ {0, 1}, for all i. (range of variables) (9.6)

This model depicts adaptive test assembly as a process in which after

each new response the ability estimate θ̂
(g−1)

and the set of items Rg are
updated and the model is run again to select the next item. The only dif-
ference with the preceding model is that (9.1) and (9.2) are now formulated
explicitly as a dynamic objective function and constraint.

9.1.2 Fixed Test Length
The ideal of a common level of accuracy for the ability estimator was soon
abandoned in favor of adaptive testing with the same fixed number of
items for all persons who take the test. Typically, this length is chosen to
guarantee a desirable minimum level of accuracy over the ability range for
which the test is used. The choice of a fixed test length was necessary to
deal with the requirement that each test taker get a test assembled for a
common set of content specifications. A more mundane reason was that
adaptive-testing sessions cannot be planned efficiently if the time spent on
the test is not known in advance. In this chapter, we further focus on the
case of adaptive test assembly with a fixed test length.

To select an adaptive test of fixed length, we could simply run the model
in (9.4)–(9.6) and stop after a fixed number of items has been administered.
But a much more useful model arises if we adopt an explicit constraint on
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the test length in the model. If we do so, we also must have a constraint
that sets the variables of the items already administered equal to one.

The result is the following set of models for g = 1, ..., n:

maximize
I∑

i=1
Ii(θ̂

(g−1)
)xi (maximum information) (9.7)

subject to
I∑

i=1
xi = n, (test length) (9.8)

∑
i∈Rg

xi = g − 1, (previous items) (9.9)

xi ∈ {0, 1}, for all i, (range of variables) (9.10)

where Rg is the set of items not in Rg; that is, the items already adminis-
tered. Observe that (9.9) is a single constraint that sets each of the g − 1
variables in Rg equal to one; this type of constraint was already introduced
in (3.28).

Instead of selecting one item, this model selects an entire test of n items

with maximum information at θ̂
(g−1)

. The item that is administered as the
gth item in the adaptive test is the one among the n − g free items with

the maximum value of Ii(θ̂
(g−1)

). Thus, the original objective of an item
with maximum information at the ability estimate is now realized through
a two-stage optimization procedure in which:

1. a test of length n with maximum information at θ̂
(g−1)

is assembled;

2. the free item in this test with maximum information at θ̂
(g−1)

is
selected.

Although at first sight the model in (9.7)–(9.10) may look somewhat
overdone, it has an attractive feature: Its constraint set can be extended
with whatever other content constraint we find useful. Because the same
set of constraints is imposed on each of the n tests assembled for the test
takers, the adaptive test automatically satisfies each of its constraints. We
document this feature as an explicit principle:

Any type of constraint available to give a fixed test a certain
feature can be inserted in the basic model in (9.7)–(9.10) to
give an adaptive test the same feature.
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FIGURE 9.1. Graphical representation of the shadow-test approach to adaptive
test assembly.

9.1.3 Definition of Shadow Tests
Tests calculated by the model in (9.7)–(9.10) are known as shadow tests in
adaptive testing. Their name reminds us of the big-shadow-test method for
multiple-test assembly in Section 6.3. In this method, shadow tests were
assembled to keep a sequence of test-assembly problems feasible with re-
spect to their constraints. The same principle is implemented at the item
level by (9.7)–(9.10). Items in a shadow test that are not selected for ad-
ministration are returned to the pool; they are made available again when
the shadow test is reassembled at the next update of θ̂. Their only purpose
is to keep the adaptive test feasible with respect to its constraints when an
individual item is selected.

A graphical representation of the shadow-test approach (STA) to adap-
tive testing is given in Figure 9.1. The horizontal axis represents the se-
quence of items in the adaptive test and the vertical axis the ability mea-
sured by the item pool. The vertical position of the shadow tests corre-
sponds with the current ability estimate; the higher the test, the larger the
estimate. Also, a higher position indicates that the preceding response was
correct and a lower position that it was incorrect. The smaller differences
between the vertical positions of the shadow tests toward the end of the
test reflect the stabilization of the ability estimates. The darker portions of
the shadow test represent the items already administered and the lighter
portions the parts that are reassembled at the new ability estimate. The
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last test is the actual adaptive test that has been administered; it auto-
matically meets the common set of content constraints imposed on each of
the individual shadow tests.

9.1.4 Standard Model for a Shadow Test
For a pool of discrete items, the standard model for a shadow test follows
directly from the model for a fixed test introduced in Section 4.1. For the
selection of item g = 1, ..., n, the model is

maximize
I∑

i=1
Ii(θ̂

(g−1)
)xi (objective) (9.11)

subject to possible constraints at the following levels:

Test Level

I∑
i=1

xi = n, (test length) (9.12)

∑
i∈Vc

xi � nc, for all c, (categorical attributes) (9.13)

I∑
i=1

qixi � bq; (quantitative attributes) (9.14)

Subtest Level ∑
i∈Rg

xi = g − 1; (previous items) (9.15)

Item Level ∑
i∈V1

xi = n1, (categorical attributes) (9.16)

∑
i∈V0

xi = 0, (categorical attributes) (9.17)

qixi ≤ bmax
q , for all i, (quantitative attributes) (9.18)

bmin
q xi ≤ qi, for all i, (quantitative attributes) (9.19)∑

i∈Ve

xi ≤ 1, for all e; (enemies) (9.20)
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Definition of Variables

xi ∈ {0, 1}, for all i. (range of variables) (9.21)

Observe that, except for the objective function in (9.11) and the extra
constraint in (9.15), the model is identical to that for a single fixed test
with discrete items. This fact illustrates our earlier observation that an
adaptive test can be given any feature possible for a fixed test.

The only dynamic quantities in the model are the objective function
and constraint in (9.11) and (9.15). The updates of the objective function
make the selection of the items adaptive with respect to the interim ability
estimates and, in doing so, give the test its favorable statistical features for
the estimation of θ. The updates of the constraint force the new items in the
shadow test to have attributes that complement the attributes of the items
already administered with respect to the other constraints in (9.9)–(9.20)
(Exercise 9.1).

9.1.5 Calculating Shadow Tests
Shadow tests in adaptive testing have to be calculated in real time. It
is therefore important to use a fast implementation of the branch-and-
bound search discussed in Section 4.2. Fortunately, such implementations
are possible because of a special feature of the set of n models for the
shadow tests in (9.11)–(9.21).

The differences between the models for two subsequent shadow tests re-
side in the updates of (9.11) and (9.15). Generally, the collection of feasible
tests in a test-assembly problem is determined only by the constraints in
the model. The changes in the objective function in (9.11) thus do not have
any impact on this set. On the other hand, the update of the constraint
in (9.15) does have an impact. But since the update consists only of the
fixing of one more decision variable, and all other constraints in (9.11)–
(9.21) remain the same, the collection of feasible tests for the next problem
is always a subset of the collection for the preceding problem. More im-
portantly, since the variable is fixed at the value found in the solution of
the preceding solution, this solution remains feasible for the next problem.
Finally, because the value of the objective function changes gradually be-
tween subsequent shadow tests, new shadow tests tend to be found in the
neighborhood of their predecessor in the feasible collection.

This argument shows that the preceding shadow test is a good initial
solution in a branch-and-bound algorithm for the calculation of a shadow
test. In all our applications, this choice has dramatically sped up the search
for shadow tests. For problems with constraint sets and item pools com-
parable to those in the empirical examples in the next section, the current
integer solver in CPLEX (Section 4.2.5) finds the shadow tests in a split
second.
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When selecting the first item in the adaptive test, no previous shadow
test is available. However, an initial solution can easily be calculated before
the adaptive testing program is operational. All we have to do is choose
a typical value for θ̂ in the objective function in (9.11) and calculate a
solution. Because the content constraints remain identical for all test takers,
the same initial solution can be used for each of them.

As an aside, we observe that the same argument shows that the presence
of the constraints on the previous items in (9.15) can never be a reason
for a shadow test to become infeasible. If an initial shadow test can be
assembled, all later problems are feasible. Because the shadow tests for all
test takers are subject to a common set of content constraints, it follows
that if the item pool has at least one feasible test, the STA will never run
into feasibility problems.

9.1.6 Empirical Example
Computer simulations of a 50-item adaptive version of the Law School Ad-
mission Test (LSAT) were conducted. The item pool was the same pool of
753 items used in the previous examples for the LSAT. The full set of spec-
ifications for the test was used, including the specifications needed to deal
with the item-set structure of two of the three sections in the test. (The
topic of how to model adaptive tests with item sets will be addressed in
Section 9.3.) The only difference with the earlier paper-and-pencil version
of the LSAT was a proportional reduction of the bounds in the constraints
to account for the reduction of the test length to 50 items. The number of
variables and constraints needed to model the three sections were: 232 vari-
ables and 179 constraints for Section SA, 264 variables and 218 constraints
for Section SB, and 305 variables and 30 constraints for Section SC.

The order of the sections in the adaptive test was (i) SC, (ii) SA, and
(iii) SB. This order allowed the ability estimator in the objective function
to stabilize somewhat before the more severely constrained sections were
introduced. The test administrations were replicated for 100 test takers at
θ = −2.0,−1.5, ..., 2.0. The first item in the test was selected at a common
value θ̂ = 0 for all test takers. The updates of the ability estimates were
calculated using the expected a posteriori (EAP) estimator with a uniform
prior distribution.

The study was repeated a second time without any of the content con-
straints on the items. The differences between the results for these two
studies enable us to evaluate the efficiency of the STA in the presence of
large numbers of constraints on the test.

Because the test takers were simulated, we knew their true ability levels
and were able to estimate the bias and mean-squared error (MSE) in their
ability estimates. Figure 9.2 shows the estimated bias as a function of the
true values in the simulation study after 10, 20, 30, and 40 items were
administered. The differences between the functions for adaptive testing
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FIGURE 9.2. Bias functions for n = 10 and 20 (top) and n = 30 and 40 (bot-
tom) for adaptive testing with (solid line) and without (dashed line) content
constraints.

with and without the constraints were already small after n = 10 items
but, for all practical purposes, disappeared with the increase in test length.
Essentially the same results were observed for the MSE functions in Figure
9.3.

The main conclusion from this study is that the presence of large sets of
content constraints on the tests did not have any noticeable impact on the
quality of the ability estimation, and the STA appeared to be an efficient
way to impose these constraints.
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FIGURE 9.3. MSE functions for n = 10 and 20 (top) and n = 30 and 40 (bot-
tom) for adaptive testing with (solid line) and without (dashed line) content
constraints.

9.1.7 Discussion
There exists a fundamental dilemma between sequential and simultaneous
item selection in adaptive testing: To realize the objective of maximum
information, items have to be selected sequentially with an update of the
ability estimate in the objective function after each item. But to realize
the constraints on the test, they have to be selected simultaneously. If they
were selected sequentially, we could easily run into the problems illustrated
in Table 4.1: After a few items, it would become impossible to select a new
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item without violating a constraint and/or making a suboptimal choice.
The STA solves the dilemma by treating adaptive test assembly as a se-
quence of n simultaneous optimization problems. The importance of this
principle was already explained in Section 6.3 when we introduced the
big-shadow-test method for the assembly of multiple tests.

Another way to view the STA is as a projection method. At each ability
update, the STA projects the remaining part of the adaptive test for the
test taker and picks the best item from this projection.

It is instructive to compare this interpretation of the STA with an appli-
cation of the Swanson-Stocking heuristic in adaptive testing (Section 4.4.3)
known as the weighted-deviations method (WDM) for adaptive testing. The
WDM selects the items using the criterion of a weighted sum of projections
of the deviations of the contributions of the items from the bounds in the
constraints of the model. Suppose g − 1 items have been administered. The
weighted sum was formulated in (4.20) as

H∑
h=1

wh

∣∣πigh − bh

∣∣ , (9.22)

where h = 1, ..., H denote the constraints on the test, bh their bounds,
and πigh the prediction of the contribution of item i to constraint h when
selected as the gth item in the test. The prediction is calculated according
to (4.19) as

πigh =
g−1∑
j=1

aijh + aigh + (n − g)

∑
i∈Rg\{ig}

aih

(I − g)
. (9.23)

The first term in this prediction is the sum of the attribute values aigh in
constraint h for the first g − 1 items in the test, the second term is the
attribute value of candidate item i, and the last term equals n − g times
the average attribute value calculated over all remaining items in the pool.

The last term of (9.23) is the actual projection of the remaining part of
the adaptive test for each constraint h by the WDM. But it is unlikely that
the pool contains a feasible subset of n − g items with average values for
H attributes equal to these projections. Therefore, the WDM is vulnerable
to constraint violation. The STA uses the best feasible subset of n−g items
in the pool at the ability estimate as a projection and does not suffer from
this problem.

9.2 Alternative Objective Functions

The standard model for a shadow test in (9.11)–(9.21) offers a menu of
options from which a choice has to be made to accommodate our applica-
tions. Several of these options will be discussed later in this chapter. We first
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discuss a few alternative choices for the objective function in (9.11). The
discussion will be rather concise; for a more elaborate treatment of these
objectives, we refer to the literature on the statistical aspects of adaptive
testing at the end of this chapter.

9.2.1 Kullback-Leibler Information
The objective function in (9.11) is based on Fisher’s information measure in
(1.18). A useful alternative measure for adaptive testing is Kullback-Leibler
information. For item i, this information is defined as

Ki(θ̂, θ) = E
[
ln

pi(θ̂)Ui [1 − pi(θ̂)]1−Ui

pi(θ)Ui [1 − pi(θ)]1−Ui

]
, (9.24)

where pi(.) is the response function for the 3PL model in (1.16), Ui is the
random response on item i for a test taker with true ability θ, and θ̂ is the
estimate of θ. The expectation is taken with respect to the distribution of
Ui at θ̂.

Since θ is unknown, it should be integrated out of (9.24), preferably over
its posterior distribution. Let f(θ | ui1 , ..., uig−1) denote the density of the
posterior distribution of θ after the responses (ui1 , ..., uig−1) to the first
g − 1 items. The ith item is selected such that

Ki(θ̂) =
∫

Ki(θ̂, θ)f(θ | ui1 , ..., uig−1)dθ (9.25)

is maximal.
This criterion can easily be adopted in the model for the shadow test.

The only thing we have to do is replace the objective function in (9.11) by

maximize
I∑

i=1

Ki(θ̂
(g−1)

)xi. (9.26)

The gth item in the adaptive test is then the one in the shadow test with
a maximum value for (9.25).

An attractive feature of Kullback-Leibler item selection is its robustness
to the uncertainty on θ̂ in the beginning of the test. Another attractive
feature is that the criterion for item selection in (9.25) generalizes easily to
multidimensional response models. We will show this generalization in an
application of the STA to multidimensional adaptive testing in Section 9.7.

9.2.2 Bayesian Item-Selection Criteria
Although the use of information measures dominates, item selection in
adaptive testing is a natural area for the application of Bayesian criteria.
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One obvious criterion is to select the items that minimize the expected
posterior variance of θ.

Suppose we evaluate the candidacy of item i in the pool for administra-
tion as the gth item in the test. If item i is selected, the posterior variance
of θ can be expected to be

E [Var(θ | ui1 , ..., uig−1 , Ui)], (9.27)

where the expectation is taken with respect to the posterior predictive
distribution of Ui given the responses (ui1 , ..., uig−1). This expected value
is a useful criterion for item selection; it tells us what reduction of posterior
variance of θ to expect if item i is administered.

A shadow-test approach with this criterion has the objective function

minimize
I∑

i=1

E
[
Var(θ | ui1 , ..., uig−1 , Ui)

]
xi. (9.28)

This function results in the selection of a test with the n−g items with the
largest reductions of the expected posterior variance of θ possible given all
constraints on the test. The item that is administered is the one with the
smallest value for (9.27).

Other Bayesian criteria are possible, all of which share the fact that
they are defined for the posterior distribution of θ given the preceding item
responses. In fact, if the Kullback-Leibler measure is integrated over the
posterior distribution, as we suggested for (9.25), it can also be considered
as a Bayesian criterion for item selection.

9.3 Adaptive Testing with Item Sets

If the item pool contains set-based items, the model for the shadow test in
(9.11)–(9.21) should be adjusted to the model for the simultaneous selection
of items and stimuli in (7.3)–(7.24). Obviously, we retain the objective
function in (9.11) as well as the constraint on the previous items in (9.15).
The only addition necessary is a constraint on the previous stimuli in the
test comparable to (9.15).

Let l = 1, ..., m represent the stimuli in the adaptive test, and suppose
that the test taker has already seen the first l − 1 stimuli. We use Rl

to denote the set of stimuli in the pool available for selection as the lth
stimulus in the test. Thus, Rl is the set of l−1 stimuli already administered.
Analogously to (9.15), the following constraint has to be added to the
model: ∑

s∈Rl

zs = l − 1. (9.29)

This constraint must be updated every time a new stimulus is administered.
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Typically, if a new stimulus becomes active, we want to continue ad-
ministering items for it until the bounds on the number of items in (7.12)
are satisfied. This practice is supported by the updates of (9.29). Once the
first item for a stimulus is selected, (9.29) sets the decision variable for the
stimulus equal to one. Consequently, the bounds on the number of items
in (7.12) become active and remain so during the rest of the test. We are
therefore able to administer the best items from the set until no free item
in it is left. Then, an item for a new stimulus is selected and the process is
repeated (Exercise 9.2).

Two of the three sections of the LSAT in the example in Section 9.1.6
were set-based. The model for the shadow tests for these two sections in
the example was exactly as described here.

9.4 Controlling Item Exposure

It is necessary to control the exposure rates of the items in adaptive test-
ing. The objective of maximum information in (9.11) involves a preference
for the small subset of items in the pool with information functions that
dominate the IIFs of all other items in the pool over an interval of θ. With-
out control, these items would be frequently seen by test takers and easily
passed on to a person who takes the test later.

The preference for the subset of most informative items is mitigated
somewhat by the content constraints imposed on the test. To satisfy the
constraints, it becomes necessary to select items with less than optimal
information at the ability estimate. But then if the item pool has relatively
few items with the combinations of attributes required by the constraints,
these items easily become overexposed.

In this section, we discuss three different methods of item-exposure con-
trol for the STA. Two of these methods are based on the idea of adding
one or more constraints to the model for the shadow test with a direct im-
pact on the item-exposure rates; they differ only in the type of constraint
that is imposed. The other method is an implementation of the well-known
Sympson-Hetter method for the STA. Furthermore, in Chapter 11 we will
discuss a few approaches to item-pool design for adaptive testing that pre-
vent tendencies to overexpose items by building special constraints into the
design of the item pool.

9.4.1 Alpha Stratification
Although the selection of items with maximum information at the test
taker’s ability estimate θ̂ makes intuitive sense, it is not necessarily a strat-
egy that is always good. In the beginning of the test, when the errors in
θ̂ are relatively large, the item with the highest peak for its information
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function at θ̂ is not necessarily the one with the highest peak at the true
θ value of the test taker. For example, it is easy to find two points on the
ability scale in Figure 1.4, one for a test taker’s true ability and the other
for an estimate of it, where the best item at the latter is not the best at the
former. Furthermore, if we select the items with the highest peaks for their
information functions early in the test, we cannot use them later when the
estimates θ̂ are close to the true θ.

In alpha-stratified adaptive testing, we select less informative items first
and postpone the selection of the more informative items until the end
of the test. This strategy is implemented by stratifying the pool on the
values of item-discrimination parameter a and restricting the selection of
the items to the consecutive strata in the pool. That it is effective to stratify
the pool on the values of a for the items instead of their more complicated
information functions follows from the analysis of the impact of a on the
IIF at the end of Section 1.2.4.

The option of alpha stratification is discussed here not because of its
potentially beneficial impact on ability estimation but because of its ten-
dency toward more uniform item usage. It prevents the adaptive-testing
algorithm from capitalizing on a small subset of items with high values for
a and enforces a more uniform distribution of the items in the test on this
parameter.

Alpha stratification can be implemented simply by introducing a new
constraint into the model for the shadow tests. Suppose the item pool has
been stratified into strata Qp, with p = 1, ..., P . The question of how to
stratify a pool is postponed until Section 11.5.1. We assume that fixed
numbers of items np are selected from the strata. The constraint to be
imposed on the shadow tests is

∑
i∈Qp

xi = np. (9.30)

The set Qp in this constraint is updated after n1, ..., nP items in the test;
(9.30) is thus another example of a dynamic constraint on an adaptive
test. Because fixed numbers of items are selected from each stratum, the
constraint on the total length of the adaptive test in (9.12) is redundant
and can be removed from the model.

If the strata in the pool are chosen to be narrow, the only remaining
parameter with an impact on the information functions of the items is the
difficulty parameter bi. (The guessing parameter has hardly any impact
on item selection in adaptive testing.) It has therefore been suggested to
simplify item selection for alpha-stratified adaptive testing and select the

items from the strata with their values for b closest to θ̂
(g−1)

. This sugges-
tion implies an objective with a goal value for the shadow test (see Section
3.3.3).
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Minimax implementation of this objective leads to the replacement of
(9.11) by

minimize y (9.31)

subject to (
bi − θ̂

(g−1)
)

xi ≤ y, for i ∈ Qp, (9.32)

(
bi − θ̂

(g−1)
)

xi ≥ −y, for i ∈ Qp. (9.33)

Empirical Example
The 50-item adaptive version of the LSAT in Section 9.1.6 was used to
evaluate the impact of the alpha-stratification constraint in (9.30) on the
exposure rates of the items. The item pool was divided into P = 5 strata
each with 20% of the items. The maximum values of a for the successive
strata were: .559, .700, .813, .959, and 1.686. From each stratum, np = 10
items were selected for the test.

The model for the shadow test had all earlier content constraints for the
LSAT, but the item-set structure for two of its sections was ignored. We
simulated test administrations both with and without alpha stratification.
For the case with alpha stratification, we also used the objective function
in (9.31)–(9.33). The two cases were repeated with all content constraints
removed from the model, which enabled us to evaluate the impact of alpha
stratification on the exposure rates above and beyond the impact of the
content constraints.

The distributions of the exposure rates of the 753 items in the pool
for the four cases are displayed in Figure 9.4. For adaptive testing both
with and without content constraints, the exposures rates with the alpha-
stratification constraint were much closer to uniformity than without the
constraint. The presence of the content constraints in the model did not
have any discernible impact on these distributions. Although alpha strati-
fication did have a favorable impact on the exposure rates, the results still
show high rates for a few items in the pool.

We conclude that the introduction of the alpha-stratification constraint
in the model appears to be an effective method for obtaining a more uniform
distribution of the item-exposure rates. To reduce the rates for the last few
items, stricter control is necessary, however. Stricter control is obtained if
we increase the number of strata, P . But the problem would then likely
become overconstrained, and the statistical quality of the ability estimates
might deteriorate seriously.

More importantly, in practice, we always want to control the conditional
exposure rates of the items at a series of well-chosen θ values because control
of the marginal rates only does not preclude the possibility of high rates
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FIGURE 9.4. Item-exposure rates for adaptive testing without (dashed line) and
with (solid line) alpha stratification for the cases without (top) and with (bottom)
content constraints on the test. The items are ordered by exposure rate.
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for test takers with ability levels close to each other. Without conditional
control, it would still be easy for such test takers to share items.

Alpha stratification by itself does not control the conditional exposure
rates of all items. We are therefore more in favor of combining a smaller
number of strata with additional probabilistic control of the conditional
item-exposure rates. The following sections describe two such probabilistic
methods that can be used with the STA.

9.4.2 Sympson-Hetter Method
The Sympson-Hetter method reduces the exposure rates of the more pop-
ular items by introducing a probability experiment in the adaptive-testing
algorithm that is conducted after each item has been selected. The experi-
ment is to decide if the item is actually administered or if it is rejected in
favor of the item with the next-highest information at θ̂.

For the case of conditional item-exposure control, the Sympson-Hetter
experiment can be modeled as follows. Let Si be the event of item i being
selected and Ai the event of item i being administered. The conditional
probabilities of these events given θ are denoted as P (Si | θ) and P (Ai |
θ), respectively. The probabilities P (Ai | θ) are the expected conditional
exposure rates of the items. An item cannot be administered without being
selected. Thus, P (Si | Ai, θ) = 1. It therefore holds that

P (Ai | θ) = P (Ai | Si, θ)P (Si | θ). (9.34)

For a given item pool and set of constraints on the tests, the probabilities
P (Si | θ) are fixed for all items. The conditional probabilities P (Ai | Si, θ)
serve as control parameters for the experiment. By manipulating these
probabilities for items with P (Si | θ) > 0, their expected exposure rates can
be increased or decreased. To find the optimal values for these parameters
at a set of θ values, we iteratively adjust them in a series of simulations
of adaptive test administrations prior to the operational use of the test
until they are below an upper limit, rmax. The limit is set by the program
administrator (Exercise 9.4).

If the test is operational, the Sympson-Hetter experiment is usually im-
plemented as follows: Instead of selecting the most informative item at θ̂,
an ordered list with a number of the most informative items is identified.
The control probabilities P (Ai | Si, θ̂) for the items are those at the θ val-
ues closest to θ̂. The probabilities are renormed (i.e., their sum for the list
is set equal to one), and one item is sampled from this list that conducts
the multinomial experiment defined by the control probabilities. All items
on the list more informative than the item sampled are removed from the
pool, and all items less informative items than the sample are returned to
the pool.

A longer list of items for the Sympson-Hetter experiment implies lower
exposure rates for the more popular items in the pool. But if the list be-
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comes too long, we lose too many good items during the test, and pay a
price in the form of less accurate ability estimation. In practice, we com-
promise between these two tendencies. For the STA, a natural candidate
for the list is the set of free items in the shadow test; they are the most
informative items given all content constraints in the model. However, for
a shorter adaptive test, this set may become too small toward the end of
the test.

9.4.3 Multiple-Shadow-Test Approach
An effective way to get a larger set of free items is to use a multiple-shadow-
test approach (MSTA). In this approach, at each step, a set of parallel
shadow tests is selected, and the experiment is conducted over the list of
the most informative items assembled from the free items in these tests. At
first sight, it may seem cumbersome to implement an MSTA, but the only
thing required to do so is to adjust the model for the single shadow test in
(9.11)–(9.21) to that for simultaneous selection of multiple tests.

As an example, we formulate the core of a model for an adaptive test
with set-based items and omit possible content constraints:

maximize y (objective) (9.35)

subject to

S∑
i=1

Is∑
i=1

Iis
(θ̂

(g−1)
)xist ≥ y, for all t, (test information) (9.36)

T∑
t=1

xist ≤ 1, for all is ∈ Rg, (item overlap) (9.37)

T∑
t=1

zst ≤ 1, for all s ∈ Rl, (stimulus overlap) (9.38)∑
is∈Rg

xist = g − 1, for all t, (previous items) (9.39)∑
s∈Rl

zst = l − 1, for all t, (previous stimuli) (9.40)

Is∑
is=1

xist � nset
s zs, for all s and t, (number of items per set) (9.41)

xist ∈ {0, 1}, for all i, s and t, (range of variables) (9.42)

zst ∈ {0, 1}, for all s and t. (range of variables) (9.43)

Observe that the decision variables zst and xist are now for the assign-
ment of stimulus s and the items in its set is = 1s, ..., Is to shadow test t,
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respectively. Of course, for the MSTA to be effective, we do not want the
free items and stimuli in the shadow tests to overlap; hence the constraints
in (9.37) and (9.38). The constraints in (9.39) and (9.40) guarantee the
presence of the previous items and stimuli in each of the shadow tests. The
constraints in (9.41) do not only control the size of the item sets but also
coordinate the values of the variables zst and xist. If the set sizes are not
constrained, alternatively the constraint in (7.13) or (7.14) should be used
to play this role (see the discussion in Section 7.1).

Empirical Example
We introduced Sympson-Hetter exposure control in the 50-item adaptive
version of the LSAT in Section 9.1.6 using the MSTA. The number of
parallel shadow tests was equal to T = 2. At each step, the Sympson-
Hetter experiment was conducted over all free items in the two shadow
tests.

To set the values of the control parameters in (9.34), we conducted an
iterative series of simulated administrations of the LSAT for test takers
with abilities equal to θ = −2.0,−1.5, ..., 2.0. For each θ value, the limit
for the exposure rates was rmax =.25. To get stable estimates of the ex-
posure rates, 1,000 administrations were simulated for each θ value. The
values for the control parameters were adjusted according to the standard
procedure for the Sympson-Hetter method. (See the literature at the end
of this chapter.) Even though we ran a series of 21 simulations for each θ
value, we were unable to produce a set of values for the control parameters
with all exposure rates below the limit. The best results were obtained in
the 15th iteration; the values found in this iteration were used in the main
study.

In the main study, CAT administrations both without and with Sympson-
Hetter exposure control were simulated. For the case without control, we
used the STA with a single shadow test, whereas for the case with control,
we used the MSTA.

Figure 9.5 shows the distributions of the conditional exposure rates for
the item pool at θ = −2.0,−1.5, . . . , 2.0 for the two cases. Without exposure
control, the conditional exposure rates were much too high for a consid-
erable number of items. The introduction of control reduced the rates to
below .25 for nearly all of the items. The only exceptions were sets of 5–
10 items for each of the θ values with exposure rate slightly above .25.
The maximum rate of .29 among these items occurred only once. These
exceptions were due to the fact that no entirely satisfactory set of values
for the control parameters could be found, a result not uncommon for the
Sympson-Hetter method.
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FIGURE 9.5. Conditional item-exposure rates at θ = −2.0, −1.5, . . . , 2.0 for
adaptive testing without (top) and with (bottom) Sympson-Hetter exposure
control. The items are ordered by exposure rate.
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9.4.4 Method with Ineligibility Constraints
Finding appropriate values for the control parameters in the Sympson-
Hetter method is quite time-consuming. In the preceding example, 189
computer simulations were required to identify the set of values with accept-
able exposure rates (21 simulations at nine θ values each). Also, every time
the item pool is updated and/or the adaptive-testing algorithm changed,
the control parameters have to be adjusted anew.

An alternative approach is based on the idea of eligibility decisions for
the items in the pool. These decisions are based on probability experi-
ments, too. But unlike the Sympson-Hetter method, the experiments are
conducted only once for each test taker—before the test begins. If item
i is decided to be ineligible for the test taker, the following ineligibility
constraint is added to the model for the shadow tests:

xi = 0. (9.44)

If an item is decided to be eligible, no constraint is added.
Obviously, the lower the probability of eligibility for an item, the lower

its exposure rate. But if an item is eligible, it is not necessarily selected
for administration. It is therefore not immediately clear what values the
eligibility probabilities should have to constrain the exposure rates to a
given range. Appropriate goal values for these probabilities can, however,
be derived in the following way.

In addition to the event Ai introduced for (9.34), we define event Ei as
item i being eligible for a test taker. For an unfavorable combination of
item pool and content constraints, adding a large number of ineligibility
constraints could make the shadow-test model infeasible. We therefore de-
fine F as the event of the shadow test remaining feasible after all eligibility
constraints have been added to the model. The event of the model becom-
ing infeasible is denoted as F . If infeasibility happens, the model for the
shadow test is solved with all ineligibility constraints removed. We discuss
the likelihood of F and its consequences for the exposure rates of the items
below.

An item can be administered only if it is eligible or the ineligibility
constraints are removed from the model because it is infeasible. Thus,
P (Ei ∪ F | Ai, θ) = 1, and, analogous to (9.34),

P (Ai | θ) = P (Ai | Ei ∪ F , θ)P (Ei ∪ F | θ). (9.45)

It follows that the requirement that all expected exposure rates P (Ai | θ)
be below a limit rmax is met if

P (Ei ∪ F | θ)P (Ai | Ei ∪ F , θ) ≤ rmax (9.46)

for all i. This inequality does not impose any direct constraint on the
probabilities of item eligibility, P (Ei | θ). But using probability calculus,
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(9.46) can be shown to lead to the bound on these probabilities

P (Ei | θ) ≤ 1 − 1
P (F | θ)

+
rmaxP (Ei ∪ F | θ)
P (Ai | θ)P (F | θ)

, (9.47)

with P (Ai | θ) > 0 and P (F | θ) > 0. (For a derivation, see Exercise 9.5.)
Suppose e persons have taken the tests, and we want the items with a

tendency to overexpose to meet the upper bound rmax. The ineligibility
constraints for test taker e + 1 are then drawn with probabilities

P (e+1)(Ei | θ) = 1 − 1
P (e)(F | θ)

+
rmaxP (e)(Ei ∪ F | θ)

P (e)(Ai | θ)P (e)(F | θ)
, (9.48)

with P (e)(F | θ) > 0 and P (e)(Ai | θ) > 0. The superscripts in these
probabilities denote their status with respect to the succession of the test
takers. Observe that all probabilities on the right-hand-side bound are for
the preceding test taker e, while the eligibility probability on the left-hand
side is for the new test taker e + 1. Also, the inequality in (9.47) has been
replaced by an equality.

The right-hand side of (9.48) can be easily estimated for an operational
adaptive testing program using counts of the events Ai, F , and Ei. We
recommend recording the counts conditional on the final ability estimates
for the test takers, θ̂n. Since conditional exposure rates are robust with
respect to small changes in θ, the impact of the remaining estimation error
in θ̂n can be disregarded.

The bounds on the probabilities in (9.48) are self-adaptive. As soon as
P (e)(Ai | θ) becomes larger than rmax for a test taker in the program, prob-
ability P (e+1)(Ei | θ) goes down, whereas if P (e)(Ai | θ) becomes smaller
than rmax, it goes up again. (For a derivation, see Exercise 9.6.) This fea-
ture of self-adaptation permits us to apply this type of exposure control in
an operational testing program without any previous adjustment of con-
trol parameters. The exposure rates of the items automatically adapt to
optimal levels. The same holds if we have to change the item pool dur-
ing operational testing; for instance, to remove some items with security
breaches.

The only precaution that has to be taken is setting P (e+1)(Ei | θ) = 1
until a shadow test is found and the item has been administered once at
the ability level. This measure is necessary to satisfy the conditions of
P (e)(F | θ) > 0 and P (e)(Ai | θ) > 0 for (9.48).

For a well-designed item pool, the ineligibility constraints will hardly ever
lead to infeasibility. If it does, the adaptive nature of (9.48) automatically
corrects for the extra exposure of the items in the test due to the removal
of the constraints.
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Empirical Example
The empirical example with the adaptive version of the LSAT in the preced-
ing section was repeated with the Sympson-Hetter exposure-control method
replaced by the method with random ineligibility constraints discussed in
this section. All other aspects of the earlier study remained the same, ex-
cept that we were a bit more ambitious and set the limit on the conditional
exposure rates at rmax = .2. We simulated 3,000 administrations for test
takers at θ = −2.0,−1.5, ..., 2.0 each.

The distributions of the conditional exposure rates for the cases without
and with exposure control are shown in Figure 9.6. For the case with con-
trol, the exposure rates were effectively reduced to below .20. Due to the
remaining estimation error in the right-hand-side probabilities of (9.48), a
few items exceeded the limit by .01–.02, however.

We also recorded the number of times the model for the shadow test was
feasible in this study. No cases of infeasibility were observed.

9.5 Controlling the Speededness of the Test

Test items differ as to the amount of time they require. An obvious factor
with an impact on the time an item requires is its difficulty, but other
factors, such as the amount of reading or encoding of symbolic information
that is required, also play a role.

If the test is fixed, each test taker gets the same set of items. Conse-
quently, the test is equally speeded for each of them. But if the test is
adaptive, each test taker gets a different set, and the test easily becomes
differentially speeded. Some of the test takers may then be able to complete
their test early, whereas others run out of time. If this happens, the test
can lose much of its validity.

One solution to the problem of differential speededness would be to
choose the time limit for the test takers as a function of the time intensity
of the items he or she gets. This strategy is technically possible as soon as
we have good estimates of the time required by the items but is bound to
run into practical problems, such as the impossibility of planning adaptive
testing sessions efficiently.

Another solution would be to keep a common time limit for all test
takers but to stop the test as a function of the time intensity of the items
administered. This strategy leads to a different test length for different test
takers and therefore has the disadvantage of less accurate ability estimates
for some of them. It also becomes difficult for the test to satisfy a common
set of content specifications for all test takers.

A better solution therefore is to constrain the test to become equally
speeded for all test takers. This approach requires good estimates of the
time intensity of the items. But if they have been pretested by seeding
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FIGURE 9.6. Conditional item-exposure rates at θ = −2.0, −1.5, . . . , 2.0 for
adaptive testing without (top) and with (bottom) probabilistic ineligibility
constraints. The items are ordered by exposure rate.
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them into regular adaptive-test administrations, their response times have
been automatically recorded, and estimates of the time parameters of the
items can easily be obtained as part of regular item calibration. We discuss
a lognormal model for the response times on test items that had excellent
fit to a data set used in the empirical study later in this section and then
show what constraints can be used to make a test equally speeded.

9.5.1 Response-Time Model
The response-time model is for the distribution of random variable Ti for
the response time of a person operating at speed τ on item i. In addition
to the person parameter, the model has two item parameters, one for the
time intensity of item i, βi, and the other for its discriminating power, αi.

The model has the density function

f(ti; τ, αi, βi) =
αi

ti
√

2π
exp
{

−1
2

[αi(ln ti − (βi − τ))]2
}

, (9.49)

which is known as the lognormal density because it is identical to the
density of a normal distribution for the logarithm of the response time. This
model is not yet identified; we therefore propose the following constraint
on the speed parameters for the persons j = 1, ..., N in the data set:

N∑
j=1

τj = 0. (9.50)

The speed parameter τ and time-intensity parameter βi are both on a
scale from −∞ to ∞, while the discrimination parameter takes values from
0 to ∞. Observe that the distribution of lnTi has expected value βi − τ .
Thus, the more time the item requires or the slower the person operates, the
larger the expected logtime for the test taker on the item. The difference
between ti and the expected value βi − τ is modified by the discrimination
parameter αi. The larger this parameter, the smaller the variance of the
distribution, and the better the item discriminates between the response-
time distributions of persons operating at a speed just above and below
βi.

Just as for the parameters in the IRT model, the estimates of the values
of item parameters βi and αi are treated as their true values during the
operational use of the item pool. For details on this estimation procedure,
see the literature at the end of this chapter.

We discuss two different types of control, one based on the features of
the items only and another that also corrects for the individual speed of the
test takers. Which type of control is appropriate depends on what the test
was designed to measure. Following up on our discussion of the different
cases of multidimensional testing in Section 8.1, the following two different
cases are distinguished:
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1. Both speed and ability are intentional factors measured by the test. In
this case, it would be better to score the test with separate estimates
of θ and τ, but this is not yet current practice. Instead, typically
a single score is supposed to reflect a combination of ability and
speed. In this hybrid type of testing, the test has a time limit that
is supposed to put the test takers under certain pressure. The limit
has to be equally effective for all test takers. But since the test is
adaptive, each test taker gets a different selection of items, and we
have to control the selection of the items for their time intensity.

2. Ability is intentional but speed is a nuisance factor. In this case,
the test is in fact a power test, and the scores can be interpreted as
an estimate of θ only. The test may have a time limit for practical
reasons, but we do not want the limit to be effective, let alone put
a different amount of pressure on different test takers. In this case,
item selection has to be controlled both for the test taker’s speed and
the time intensity of the items to prevent the test taker from running
out of time.

9.5.2 Ability and Speed as Intentional Factors
If the calibration sample is large and can be viewed as a random sample
from the population of test takers, the identifiability constraint in (9.50)
sets the average speed of the population of test takers equal to zero. As a
consequence, the time-intensity parameter βi becomes the expected logtime
on item i for an average test taker in the population.

If the total time available for the test, ttot, is well-chosen for the majority
of the test takers, item selection can be controlled for differences in time
intensity between the items by including the following constraint in the
model for the shadow test:

I∑
i=1

exp(βi)xi ≤ ttot, (9.51)

where the exponential transformation is needed because βi is on the logtime
scale.

We assume that (9.15) is present in the model for the shadow test so
that the left-hand sum of this constraint automatically contains the values
of βi for the items already administered.

The constraint in (9.51) makes item selection equally speeded for all test
takers at the level of the total test. If stricter control is required, in the
sense of more homogeneous speededness throughout the test, we can also
impose the constraint at the level of subsequent blocks of items in the test.

The constraint in (9.51) ignores the differences in the dispersion of the
total time on the test between different test takers. For an adaptive test of
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regular length, this is not much of a problem. Because the total time is the
sum of the response times on the items, the standard deviation of the total
time quickly decreases with increasing length of the test (Exercise 9.8).

9.5.3 Speed as a Nuisance Factor
If speed is a nuisance factor according to the definition of the test, we should
estimate the test takers’ speed during the test and use these estimates as
well to create unspeeded tests for all test takers.

Suppose the response times on the first g − 1 items have already been
recorded, and we are to select the gth item in the test. The maximum-
likelihood estimate of the test taker’s speed parameter τ after g − 1 items
can be shown to be equal to

τ̂ (g−1) =
∑
i∈Rg

(βi − ln ti)/(g − 1). (9.52)

The estimate is used in the following constraint on the test:

I∑
i=1

exp(βi − τ̂ (g−1))xi ≤ ttot. (9.53)

This constraint thus controls the expected total time of the test takers on
the test, no matter how fast they work.

A more sophisticated version of (9.53) is possible if we update our es-
timates of τ in a Bayesian fashion (i.e., as the posterior distribution of τ
given the response times on the previous items, ti1 , ..., tig−1). The posterior
distribution of τ can be used to predict the time distribution for each of
the remaining items in the pool for the test taker, which are known to also
be lognormal for the model in (9.49). (For a derivation, see the literature
section at the end of this chapter.) Let f(ti | ti1 , ..., tig−1) denote the den-
sity of the predicted response-time distribution for item i in the remaining
set of items in the pool, Rg. It is easy to calculate the πth percentiles of
these distributions, which we denote as t

πg

i . The following constraint on
the shadow tests should be used:∑

i∈Rg

ti +
∑
i∈Rg

t
πg

i xi ≤ ttot. (9.54)

This constraint restricts the sum of the actual response times on the first
g−1 items and πgth percentiles of the predicted response-time distributions
on the n − g free items in the shadow test by the total amount of time
available for the test. It makes sense to specify a sequence of percentiles
for the successive items that increases toward the end of the test. Such a
sequence makes the predictions more conservative when less time is left.
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Just as discussed for the constraint in (9.51) on the item parameters only,
(9.53) and (9.54) can also be imposed at the level of subsequent blocks of
items to realize a more homogeneous level of unspeededness throughout
the test.

In principle, for this second type of control, if test takers understand the
procedure, they may try manipulating the choice of items; for example,
by working more slowly initially than they need to and speeding up later
in the test, when the algorithm selects items that require less time. If the
item parameters in the IRT model do not correlate with the parameters
in the response-time model, such strategies have no impact on the ability
estimates. If these parameters do correlate, they can only have an impact
on the accuracy of the estimates of θ because of less than optimal item
selection. But if θ is estimated statistically correctly, such strategies cannot
introduce any bias in the estimates that would be advantageous to the test
taker.

Empirical Example
A simulation study was conducted in which the Bayesian constraint in
(9.54) was used to control the speededness of the test. We used the adap-
tive version of the Arithmetic Reasoning Test from the Armed Services
Vocational Aptitude Battery (ASVAB). The item pool was a previous pool
of 186 items for this test calibrated using the 3PL model in (1.16). The
test has a length of 15 items and is administered without any content con-
straints. An initial analysis of the actual response times in the data set
showed that the time limit of 39 minutes (2,340 seconds) for the test was
rather generous and the test thus could be viewed as a power test. This
impression justifies the use of (9.54) to avoid differences in speededness
between test takers due to the adaptive nature of the test.

The response-time model we used was the lognormal model with a dif-
ferent parameterization, which involved the constraint αi = α on the
discrimination parameter for all items in the pool. The model showed a
satisfactory fit to the response times of a sample of N = 38,357 test takers.

The items were selected to have maximum information at the interim
estimates of θ̇. The first item was selected to be optimal at θ̂

(0)
= 0. Interim

estimates during the test were obtained using expected a posteriori (EAP)
estimation with a uniform prior distribution for the first estimate. The
percentile chosen for the posterior predicted response-time distributions in
(9.54) was the 50th percentile for the selection of the first item, but we
moved linearly to the 95th percentile for the selection of the last two items
in the test. The prior distribution of τ was a normal distribution with
mean and variance equated to the mean and variance of the distribution of
τ estimated from the sample of persons in the data set. After each item,
the test taker’s response time was used to update this prior distribution in
a Bayesian fashion.
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We simulated test takers with abilities θ = −2.0, 1.5, ..., 2.0 and speed
τ = −.6,−.3, 0, .3, and .6. This range of values for the speed parameter
covered the estimated values for the sample of test takers for the version
of the response-time model used in this study.

We first simulated test administrations without the response-time con-
straint. The average times used by the test takers at the different ability
and speed levels are reported in the first panel of Figure 9.7. The major
impression from the results is that the majority of the test takers have
ample time to complete the test, which therefore can be viewed as a power
test. Of course, the slower test takers used more time, but this finding does
not necessarily point to differential speededness of the test but only to in-
dividual differences between test takers. However, the fact that a minority
of the test takers ran out of time does reveal that the test was differentially
speeded.

We then repeated the study with the response-time constraint in (9.54)
added to the shadow-test model. The results are given in the second panel
of Figure 9.7. This time, all test takers were able to meet the limit of 2,340
seconds. Also, the amount of time they used was distributed much more
uniformly over τ . These results were obtained in spite of the fact that the
test takers operated at exactly the same levels of speed as in the first study!

To stretch the limit, we also repeated the study with a time limit equal
to ttot = 34 minutes (2,040 seconds) and then ttot = 29 minutes (1,740
seconds). The third and fourth panels in Figure 9.7 show the time used
by the test takers for these limits. Again, the response-time constraint
appeared to be effective. In spite of the decrease in time available, the test
takers had no difficulty completing the test in time, and the distributions
of the times they needed to complete the test were more uniform still.

It may be surprising to note that the test takers who ran out of time in
the unconstrained version of the test were those with a low value for τ but a
high value for θ. (See the upper left panel of Figure 9.7.) This result can be
explained by the correlation of .65 between the item-difficulty parameter
bi and the time-intensity parameter βi we found for the data set. As a
result of this correlation, adaptive selection of the items for the more able
test takers led not only to items that were more difficult toward the end
of the test but also to items that were more time-intensive. Consequently,
the slower test takers among them ran out of time.

9.6 Reporting Scores on a Reference Test

To enhance the interpretation of test scores, testing agencies usually give
the test taker a sample of the test items. In a program with a group-
based fixed test administered only once, the test itself can be released
for this purpose, but this practice is not possible for adaptive tests. The
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FIGURE 9.7. Average time used by examinees of different levels of ability θ and
speed τ for the cases without the time constraint (top left) and with the time
constraint and a time limit of 2,340 seconds (top right), 2,040 seconds (bottom
left), and 1,740 seconds (bottom right). All curves are ordered by θ, with θ = 2.0
for the highest curves and θ = −2.0 for the lowest curves. The dashed lines
indicate the time limits.

testing agency would then have to replenish the item pool too frequently—
an activity that not only would entail prohibitively large costs but could
also be expected to lead to a quick deterioration of the quality of the pool.

A standard solution for an adaptive-testing program is to give the test
takers a paper-and-pencil test with items representative of the pool as a
reference test. If the test takers’ ability estimates, θ̂, have been equated to
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the number-correct scores on the reference test, X, the reference test can
be used to evaluate their performances on the adaptive test.

Typical equating methods used to transform θ̂ to a number-correct score
on the reference test are traditional equipercentile equating or true-score
equating using the test characteristic function τ(θ) in (1.22) for the refer-
ence test. If equipercentile equating is used, both the adaptive test and the
reference test have to be administered to random samples from the popu-
lation of test takers, and estimates of the population distributions of θ̂ and
X need to be used to find the score transformation. This equating study is
not necessary if the test characteristic function of the reference test, τ(θ), is
used. This function follows directly from the response functions of the items
in the reference test, and substitution of the final estimate θ̂ on the adap-
tive test into τ(θ) gives an estimate of the test taker’s true number-correct
score on the reference test.

Both score transformations can be shown to be seriously biased in the
presence of measurement error on the reference test and adaptive test. The
reason for this bias is the use of a common transformation for all test takers,
which has to compromise between their different error distributions along
the scales of the two tests. An alternative is to use a local transformation at
the position of the test taker on this scale. The discussion of such techniques
is beyond the scope of this book. But an alternative that does fit the subject
of this book can be derived from the constraints for matching observed-
score distributions in Section 5.3.

When applied to adaptive testing, we impose the condition on the sums
of powers of the response probabilities in (5.47) on the shadow tests. Let j =
1, ..., n denote the items in the reference test. Suppose we are to assemble
the shadow test for the selection of the gth item in the adaptive test.
Analogous to (5.48), the target values are now the known constants

Tr(g−1) =
n∑

j=1
pr

j(θ̂
(g−1)

), for r ≤ R, (9.55)

where R is the condition in (5.47) with the highest order used. These target
values have to be met by the shadow test; that is, by

I∑
i=1

pr
i (θ̂

(g−1)
)xi, for r ≤ R. (9.56)

These target values are enforced by imposing the following constraints
on the shadow tests:

I∑
i=1

pr
i (θ̂

(g−1)
)xi ≤ Tr(g−1) + δ, for all r ≤ R, (9.57)

I∑
i=1

pr
i (θ̂

(g−1)
)xi ≥ Tr(g−1) − δ, for all r ≤ R, (9.58)
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where δ is a small tolerance needed to avoid infeasibility due to an equality
constraint in the model; see the discussion of (3.50) in Section 3.2.4.

A critical difference with the constraints for the case of a fixed test in
Section 5.3 is that (9.57) and (9.58) control the conditions in (5.47) only
at the current estimate θ̂g−1, while in (5.51) and (5.52) they are controlled
at a fixed series of values θk, k = 1, ..., K. In the example for a fixed test
in Section 5.3.4, we saw that the best results were obtained for the cases
with control at two or three θ values. We therefore recommend adding
constraints at the values θ̂g−1 + ε and θ̂g−1 − ε, where ε is a constant
chosen by the test administrator. The target values for the reference test
at these points, T +ε

r(g−1) and T −ε
r(g−1), are calculated analogously to (9.55).

These target values are enforced by the following additional constraints:

I∑
i=1

pr
i (θ̂

(g−1)
+ ε)xi ≤ T +ε

r(g−1) + δ, for all r ≤ R, (9.59)

I∑
i=1

pr
i (θ̂

(g−1)
+ ε)xi ≥ T +ε

r(g−1) − δ, for all r ≤ R, (9.60)

I∑
i=1

pr
i (θ̂

(g−1) − ε)xi ≤ T −ε
r(g−1) + δ, for all r ≤ R, (9.61)

I∑
i=1

pr
i (θ̂

(g−1) − ε)xi ≥ T −ε
r(g−1) − δ, for all r ≤ R. (9.62)

Unlike the fixed set of constraints in (5.51) and (5.52), the current set is

dynamic. It imposes the conditions in (5.47) at a window about θ̂
(g−1)

of

size 2ε, which stabilizes if θ̂
(g−1)

does.
We do not yet expect this application to automatically work as well as the

one for the fixed test in Section 5.3. One reason is that the best combination
of choices of values for δ and ε still has to be determined. Another is that
an unfortunate initialization of θ̂

(0)
may lead to an initial series of wild

estimates with response functions of the selected items that are hard to
compensate for later in the test, when θ̂ is close to the test taker’s true θ.
In fact, it may well be that control at a fixed series of well-chosen θ values
works equally well or even better than (9.57)–(9.62) for an adaptive test.
Both points require further research.

This research is worth the effort because automatic equating of an adap-
tive test to a reference test entails two major advantages. First, the equating
is local; that is, conditional on the final ability estimate of the test taker.
As indicated in Section 5.3.3, this type of equating is strong and satisfies
the important requirement of equitability: It yields equated scores with the
same error distribution as the test taker would have had on the reference
test. Second, by imposing the conditions in (5.47) on an adaptive test, the
test automatically produces the same observed number-correct scores as the
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reference test. No additional score transformation is needed. The test taker
can interpret his or her number-correct score on the adaptive test directly
as the number of items he or she would have had correct on the reference
test. More amazingly, because the adaptive test is equated to the same
reference test for all test takers, their scores are also equated mutually:
Different test takers can directly compare their numbers of items correct
even though they received a different selection of items from the pool.

Empirical Example
The set of constraints in (9.57)–(9.62) was used in a simulation study with
adaptive-test administrations from the same item pool for the LSAT used
in the examples in the preceding sections. We first assembled a fixed test
from the pool and then randomly took a set of nested reference tests from
it, with test lengths of n = 10, 20, 30, and 40 items; that is, the reference
test of 10 items was nested in the test of 20 items, and so on.

No constraints were imposed on the adaptive test. The tolerance param-
eter δ was set at .5. This choice is equivalent to a half score point on the
number-correct scale. During a tryout of this study, we discovered a few
cases of infeasibility later in the adaptive test due to first estimates θ̂ that
were far off. If this happened, the algorithm increased the value of δ by .2.
The parameter ε was always kept at .5. The target values in the constraints

in (9.59)–(9.62) were thus calculated at θ̂
(g−1) − .5, θ̂

(g−1)
, and θ̂

(g−1)
+ .5.

Three different replications of the study were conducted, in which the con-
straints in (9.57)–(9.62) were imposed for (i) r = 1, (ii) r = 1 and 2, and
(iii) r = 1, 2, and 3.

We used a Bayesian initialization of θ̂, where θ̂
(0)

was calculated using
regression on a background variable that was assumed to correlate .60 with
θ. The prior distribution was also provided by the correlation with the
background variable. Subsequent estimates of θ were expected a posteriori
(EAP) estimates. (For details on this procedure, see the literature section
at the end of this chapter.)

Adaptive test administrations were simulated for 30,000 test takers ran-
domly sampled from a standard normal distribution for θ. For each sim-
ulated test taker, we recorded the number-correct score after n = 10, 20,
30, and 40 items. The distributions of these scores for the 30,000 test tak-
ers are shown in Figures 9.8–9.10. The observed-score distributions on the
reference tests were calculated using the Lord-Wingersky algorithm with a
standard normal distribution for θ. (For this algorithm, see the literature
section at the end of this chapter.)

The results for the set of constraints with r = 1, 2 and r = 1, 2, 3 were
quite close. Also, they were generally better than those for r = 1 only.
For the lengths of 30 and 40 items, the number-correct score distributions
on the adaptive test matched those on the reference test reasonably well.
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FIGURE 9.8. Observed-score distributions on an adaptive test (dashed lines) and
a reference test (solid line) for n = 10 and 20 (top) and n = 30 and 40 (bottom)
(r = 1).

For the shorter test lengths, there was still a mismatch. The question of
whether the results for the test lengths of 30 and 40 items, which are typical
lengths for real-world adaptive tests, are good enough for score-reporting
purposes is subject to further research. This research should involve other
choices of δ and ε as well as the alternative of permanent control at a
fixed series of values θk, k = 1, ..., K. Also, the bias and accuracy of this
equating method should be evaluated against the alternatives based on the
test characteristic function and traditional equipercentile equating.
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FIGURE 9.9. Observed-score distributions on an adaptive test (dashed lines) and
a reference test (solid line) for n = 10 and 20 (top) and n = 30 and 40 (bottom)
(r = 1, 2).

In this study, we also checked the impact of the constraints on the sta-
tistical quality of the final ability estimator for the test. There was no
discernible loss of accuracy over the main portion of the θ scale. At the
extremes of the scale, there was some loss, equivalent to only a few test
items. This loss could thus easily be compensated for by making the test
slightly longer.
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FIGURE 9.10. Observed-score distributions on an adaptive test (dashed lines)
and a reference test (solid line) for n = 10 and 20 (top) and n = 30 and 40
(bottom) (r = 1, 2, 3).

9.7 Multidimensional Adaptive Test Assembly

9.7.1 Minimizing Error Variances
If the item pool is multidimensional, the model for the shadow tests can be
derived from the standard model for the assembly of a fixed multidimen-
sional test in (8.14)–(8.20). In Section 8.4.3, we showed how to specialize
this model to different cases of multidimensional test assembly by imposing
certain restrictions on the sets of weights in the key constraints in (8.16)
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and (8.17). These cases included multidimensional testing in which all abil-
ities measured by the items are intentional, cases where only some of them
are intentional and the others are a nuisance, and cases of testing with an
interest in a linear combination of the abilities.

The modification of the model in (8.14)–(8.20) that is required for a mul-
tidimensional model for shadow tests in adaptive testing is straightforward.
As before, we formulate the model for the selection of the gth item in the
adaptive test. The updates of the estimates of the two ability parameters

after the first g − 1 items are denoted as θ̂
(g−1)
1 and θ̂

(g−1)
2 . For brevity,

we denote the probabilities of correct and incorrect responses under the
two-dimensional model in (1.17) at these estimates as

p
(g−1)
i = pi(θ̂

(g−1)
1 , θ̂

(g−1)
2 ), (9.63)

q
(g−1)
i = 1 − pi(θ̂

(g−1)
1 , θ̂

(g−1)
2 ).

The core of the shadow-test version of the model in (8.14)–(8.20) is

minimize y (9.64)

subject to
I∑

i=1

a1ia2ip
(g−1)
i q

(g−1)
i xi ≤ y, (9.65)

I∑
i=1

a2
1ip

(g−1)
i q

(g−1)
i xi ≥ w1κ, (9.66)

I∑
i=1

a2
2ip

(g−1)
i q

(g−1)
i xi ≥ w2κ, (9.67)

n∑
i=1

xi = n, (9.68)

∑
i∈Rg

xi = g − 1, (9.69)

xi ∈ {0, 1}, for all i, (9.70)

y ≥ 0. (9.71)

If the item pool contains set-based items, the constraint in (9.29) has to
be added to this model.

Observe that we no longer control two variance functions over an entire
grid of points in the ability space, that is, at points (θ1kl, θ2kl), with k =
1, ..., K and l = 1, ..., L, as we did for the assembly of a fixed test in Chapter
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8, but only control the variances of the ability estimators at (θ1, θ2) =

(θ̂
(g−1)
1 , θ̂

(g−1)
2 ). For this reason, the original sets of weights in (8.16) and

(8.17) specialize to the two relative weights w1 and w2 in (9.66) and (9.67).
If both θ1 and θ2 are intentional, the weights should be chosen to reflect

the relative importance of minimization of the variance of θ̂1 relative to the
variance of θ̂2. If both objectives are equally important, we should choose

w1 = w2 = 1, (9.72)

which means that the weights can be removed from (9.66) and (9.67).
If θ2 is a nuisance ability, we should choose

w1 = 1, (9.73)

w2 = 0. (9.74)

This choice puts all weight on the constraint in (9.66) and makes (9.67)
redundant.

The criterion for picking the best item from the free items in the shadow
test follows directly from the definition of the variances of estimators θ̂1
and θ̂2 in (8.5) and (8.6). To evaluate the candidacy of item i, we calcu-
late projections for these variances after administration of item i at the

current estimate (θ1, θ2) = (θ̂
(g−1)
1 , θ̂

(g−1)
2 ). We propose using the following

projections derived from (8.5) and (8.6):

Var(θ̂
(g−1+i)
1 | θ̂

(g−1)
1 , θ̂

(g−1)
2 ) =

A2

A1A2 − A12
, (9.75)

Var(θ̂
(g−1+i)
2 | θ̂

(g−1)
1 , θ̂

(g−1)
2 ) =

A1

A1A2 − A12
, (9.76)

with
A1 =

∑
j∈Rg∪{i}

a2
1jp

(g−1)
j q

(g−1)
j , (9.77)

A2 =
∑

j∈Rg∪{i}
a2
2jp

(g−1)
j q

(g−1)
j , (9.78)

A12 =
∑

j∈Rg∪{i}
a1ja2jp

(g−1)
j q

(g−1)
j , (9.79)

where Rg still denotes the set of g − 1 items already administered.

The item with the minimal value for

w1Var(θ̂
(g−1+i)
1 | θ̂

(g−1)
1 , θ̂

(g−1)
2 ) + w2Var(θ̂

(g−1+i)
2 | θ̂

(g−1)
1 , θ̂

(g−1)
2 ) (9.80)

is the best item for administration. The values of the weights w1 and w2
in this sum are subject to the same restrictions as in (9.72) or (9.73) and
(9.74).
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The expression (9.80) represents a weighted version of the criterion of
A-optimality discussed in Section 8.4.1 for the case of a fixed test. Alterna-
tively, we could use the criterion of D-optimality and evaluate projections
of the determinant of the covariance matrix in (8.3) for each of the free
items in the shadow test (Exercise 9.10).

9.7.2 Computational Aspects
Although the criterion for the second-stage selection of the item in (9.80)
can easily be calculated in real time for the set of free items in the shadow
test, the computation time required to calculate the shadow tests is an as
yet unexplored aspect of multidimensional adaptive testing. As discussed
in Section 8.4.1, the model in (9.63)–(9.71) should be solved for a sequence
of increments of κ, and the best solution according to (9.80) should be
picked. The empirical example with a fixed test in Section 8.6 illustrated
this approach. With adaptive test assembly, the computations have to be
performed in real time.

It is possible to optimize these computations along the same lines as in
Section 9.1.5. If we start the constraints in (9.66) and (9.67) with a large
value for κ and relax by small decreases of κ, the preceding solution is
always in the feasible space of the next problem and is an attractive initial
solution for the next shadow test. However, except for the case of adaptive
testing for a linear combination of abilities (see the literature at the end
of this chapter), we do not yet have much experience with this type of
multidimensional adaptive-test assembly, and our computational ideas still
have to be tried out empirically.

9.7.3 Maximizing Kullback-Leibler Information
An alternative approach to multidimensional adaptive testing is to choose
an objective function for the shadow-test model based on the multivariate
version of the posterior expected Kullback-Leibler information in (9.26). As
already observed in Section 9.2.1, the generalization of the Kullback-Leibler
measure to more than one dimension only involves the replacement of the
unidimensional response model in (9.24) by the two-dimensional model in
(1.17). Likewise, in (9.25) we have to integrate the multidimensional version
of this measure over the joint posterior distribution of (θ1, θ1) given the
previous responses (ui1 , ..., uig−1).

To maximize Kullback-Leibler information in multidimensional adaptive
testing, the objective function in the standard model for the shadow test
in (9.11)–(9.21) has to be replaced by

maximize
I∑

i=1

Ki(θ̂
(g−1)
1 , θ̂

(g−1)
2 )xi. (9.81)
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The only price we pay for using this objective function is that the different
cases of multidimensional test assembly introduced in Section 8.4.3 can no
longer be addressed with explicit weights for the ability dimensions, as
we were able to do for (9.66), (9.67), and (9.80). But alternative ways to
address these cases do exist.

We discuss the following three cases:

1. If θ1 and θ2 are both intentional abilities, the free item in the shadow
test with the largest contribution to (9.81) should be selected. This
criterion leads to the selection of items that are most informative in
the sense of giving the best discrimination between the current esti-

mates (θ̂
(g−1)
1 , θ̂

(g−1)
2 ) and the points in the two-dimensional ability

space at which the posterior distribution is concentrated.

2. If θ1 is intentional but θ2 is a nuisance ability, we recommend the
following change for the objective function in (9.81): (i) Substitute

the current estimate θ̂
(g−1)
2 for θ2 in the denominator of the Kullback-

Leibler information in (9.24) and (ii) perform the integration in (9.25)
over the marginal posterior distribution of θ1 given (ui1 , ..., uig−1). As
a result of this change, the items in the shadow test become most in-
formative with respect to the variation in the two-dimensional ability
space in the direction along the θ1 axis, while the variation along the
θ2 axis is ignored.

3. If one is interested in a linear combination λθ1 + (1 − λ)θ2, with 0 <
λ < 1, following our earlier suggestion in Section 8.4.3, we recommend
rotating the ability space such that this combination coincides with
the first dimension in the new space. The case then becomes identical
to the preceding case.

9.7.4 Empirical Examples
We simulated administrations of a 50-item adaptive test for the three dif-
ferent cases of multidimensionality in the preceding section using the same
pool of 176 mathematics items for the ACT Assessment Program as in the
empirical example with a fixed multidimensional test in Section 8.6. For
each case, the items were selected using the modification of the Kullback-
Leibler information criterion in (9.81) above. Otherwise, the model for the
shadow test was entirely identical to the model for the fixed test in the

example in Section 8.6. The test was started with (θ̂
(0)
1 , θ̂

(0)
2 ) = (0, 0) for

each simulated test taker. The ability estimates were updated using joint
EAP estimation.

The case where we are interested in a linear combination of abilities had
equal weights λ = .5. That is, we used ξ1 = .5θ1 + .5θ2 as the intentional
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ability and ξ2 = −.5θ1 + .5θ2 as the nuisance ability. The case was imple-
mented using the transformations a∗

1 = a1 + a2 and a∗
2 = a2 − a1 for the

two discrimination parameters. (See Exercise 8.3 for details.)
The test administrations were simulated at the 441 different combina-

tions of θ1, θ2 = −2.0, −1.8, ..., 2.0. At each combination, we calculated the
average variances in (8.5) and (8.6) for the final estimates θ̂1 and θ̂s across
the replications. The number of replications at each different combination
was equal to 25. The plots with average variances were smoothed using a
standard procedure in Matlab.

The results for the case where θ1 and θ2 are both intentional are given
in Figure 9.11. As expected, the two plots show surfaces at about the same
height. The fact that the test was adaptive led to an improvement of the
surfaces relative to those for the fixed test where θ1 and θ2 are intentional
in Figure 8.2. The fact that the improvement was modest is due to the
unfavorable size of the item pool in relation to the test length.

Figure 9.12 shows the estimates of the two variance functions for the
case where θ1 is the only intentional ability. Since the item selection no
longer had to compromise between the variances of the estimators of two
intentional ability parameters, the surface for θ̂1 was more favorable than
in Figure 9.11, while, as expected, the surface for θ̂2 was less favorable.

An excellent variance function was obtained for the linear combination
of interest, ξ1, in the third case. As Figure 9.13 shows, the surface was not
only low but also nearly uniform over the entire space of combinations of
values of ξ1 and ξ2 studied. Apparently, the items in this pool were written
and selected with this kind of combination of abilities in mind. Of course,
the large improvement in the variance of the estimator of ξ1 in Figure 9.13
relative to that of θ1 in Figure 9.12 was obtained at the price of a much
deteriorated variance for the combination ξ. But the latter did not interest
us.

9.8 Final Comments

So far, we have only discussed adaptive test assembly with adaptation at
the level of individual items. Alternative options are testlet-based adaptive
testing, multistage adaptive testing, and adaptive linear on-the-fly testing.
These alternatives have a decreasing level of adaptation: In testlet-based
adaptive testing, the ability estimate is updated after testlets of 3–5 items,
in multistage adaptive testing after longer subtests, and in linear on-the-fly
testing the possibility of adaptation arises only if the individual tests given
to test takers are assembled to be optimal at an a priori estimate of their
ability derived from background information; for instance, an earlier test
score.
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FIGURE 9.11. Estimated variance functions for ̂θ1 (top) and ̂θ2 (bottom) for a
two-dimensional test with both θ1 and θ2 intentional abilities.
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FIGURE 9.12. Estimated variance functions for ̂θ1 (top) and ̂θ2 (bottom) for a
two-dimensional test with θ1 an intentional ability and θ2 a nuisance ability.
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FIGURE 9.13. Estimated variance functions for ̂ξ1 (top) and ̂ξ2 (bottom)
for a two-dimensional test with ξ1 = .5θ1 + .5θ2 an intentional ability and
ξ2 = −θ1 + .5θ2 a nuisance ability.
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The two main reasons for accepting a lower level of adaptation that have
been put forward are: (i) the wish to have content specialists review intact
units in the test before they become operational, and (ii) the opportunity
for test takers to go back and review their response to an earlier item.
The former is certainly a valid reason. If one wants the content specialist
to review units in the test because the results of automated test assembly
cannot be trusted (for example, because the items have not yet been coded
completely), adaptation is only possible at the level of these intact units.

But the latter is not valid; in adaptive testing, it is always possible to
have test takers review earlier items. An obvious strategy is to give them
permission to go back to any of the last m items they have taken and change
their response if they find it necessary to do so. The only consequence is the
necessity to recalculate the current ability estimate from the likelihood for
the response vector with the corrected responses. The test is then continued
with the new estimate.

In fact, this type of item review is much more efficient than the review
offered in testlet-based or multistage adaptive testing, where updating the
ability estimate is always postponed until a fixed number of items have
been answered. Typically, test takers change their responses only for an
occasional item. In this case, the revision of the ability estimate can be
expected to lead to a minor change, particularly after the first ten items or
so.

An instructive way to view testlet-based, multistage, and adaptive linear
on-the-fly testing is as severely restricted versions of the STA. The graphical
representation of the method in Figure 9.1 shows that the STA is the case
of adaptive testing with the largest number of stages (n) as well as the
largest choice of alternative test units (all items in the set of feasible tests
in the pool) available at each stage. The other forms of adaptive testing are
obtained by restricting the number of stages and/or the number of units
available after an update. The restriction is maximal for adaptive linear on-
the-fly testing, which is in fact equivalent to an STA with only one shadow
test. Obviously, the price for these restrictions is lower precision of the test
scores.

9.9 Literature

Pioneering work on adaptive test assembly was reported in Lord (1970;
1971; 1980, chapter 10) and in numerous research reports by David J. Weiss
of the University of Minnesota (see Weiss, 1982). More recent treatments
of adaptive testing have been given in van der Linden and Glas (2000) and
Wainer (2000), while Parshall, Spray, Kalohn, and Davey (2002) should be
consulted for the more practical aspects of adaptive testing.
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The shadow-test approach (STA) was introduced in van der Linden
and Reese (1998) and further extended in van der Linden (2000a). The
weighted-deviations method (WDM) was published in Stocking and Swan-
son (1993). For an extensive comparison between the STA and the WDM,
see van der Linden (2005d); a case study with these two approaches is
reported in Robin, van der Linden, Eignor, Steffen and Stocking (2004).

The idea of using use Kullback-Leibler information as an objective in
adaptive test assembly was formulated in Chang and Ying (1996). Alterna-
tive Bayesian criteria for item selection in adaptive testing were proposed
in van der Linden (1998d) and van der Linden and Pashley (2000).

Chang and Ying (1999) were the first to suggest the use of alpha stratifi-
cation in adaptive test assembly. The implementation of alpha stratification
using a shadow test with (9.30)–(9.33) was investigated in van der Linden
and Chang (2003). The Sympson-Hetter method of item-exposure control
for adaptive testing was presented in Sympson and Hetter (1985); a case
study with an application of this method to the adaptive version of the
Armed Services Vocational Aptitude Battery (ASVAB) can be found in
Hetter and Sympson (1997). Stocking and Lewis (1998) suggest using a con-
ditional version of the Sympson-Hetter method, whereas formal properties
of the Sympson-Hetter method and some alternative adjustment schemes
for its control parameters are presented in van der Linden (2003). For
details of the multiple-shadow-test approach (MSTA), the reader should
consult Veldkamp and van der Linden (submitted). The method of item-
exposure control based on random ineligibility constraints was introduced
in van der Linden and Veldkamp (2004); a derivation of the bounds on the
ineligibility probabilities in (9.47) as well as a proof of their property of
self adaptation can be found in this reference. For the conditional version
of this method, see van der Linden and Veldkamp (submitted). A review
of all current methods of item-exposure control will be offered in Segall (in
preparation).

The version of the lognormal model for response times was formulated in
van der Linden (2005a); this reference should also be consulted for statis-
tical methods for calibrating an item pool and testing the fit of this model
against response-time data. The Bayesian constraint on the predicted re-
sponse times for the test taker in (9.54) was introduced in van der Linden,
Scrams, and Schnipke (1999). For other uses of response times to improve
adaptive testing, see van der Linden (in preparation).

The idea of equating number-correct scores on an adaptive test to those
on a reference test using an adaptive version of the constraints for matching
observed-score distributions was developed in van der Linden (2001a). De-
tails of the procedure for the Bayesian initialization of the ability estimator
used in the empirical example in Section 9.6 are given in van der Linden
(1999a).

Multidimensional adaptive testing with the criterion of minimum error
variance for a linear combination of abilities in (9.79) was examined in
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van der Linden (1999b), whereas a more systematic treatment of multidi-
mensional adaptive testing with the posterior expected Kullback-Leibler
criterion is given in Veldkamp and van der Linden (2002). For a case
study of multidimensional adaptive testing with the STA, see Li (2002).
A Bayesian version of the criterion of D-optimality for use in adaptive test
assembly was studied in Luecht (1996) and Segall (1996, 2000).

9.10 Summary

1. In adaptive test assembly, items for the test are selected sequentially;
each subsequent item is selected to be most informative at an up-
date of the test taker’s ability estimate calculated after the preceding
response.

2. Adaptive tests have to be assembled to three different sets of con-
straints: (i) content constraints representing the test specifications,
(ii) dynamic constraints necessary to implement the process of adap-
tation, and (iii) extra constraints to deal with such new problems
in adaptive-testing programs as the necessity to constrain the expo-
sure rates of the items, make the test equally speeded for each test
taker, and equate the scores to a reference test released for score
interpretation.

3. In a shadow-test approach (STA), the constraints are imposed on
shadow tests assembled prior to the selection of a new item. Shadow
tests are fixed tests that (i) have maximum information at the current
ability estimate, (ii) meet all constraints, and (iii) contain all items
already taken by the person. The item that is actually administered
is the most informative free item in the shadow test. Because each
shadow test meets all constraints, the adaptive test always does also.

4. The models used to assemble shadow tests are the same integer pro-
gramming models as for fixed tests. The only modifications necessary
are: (i) the addition of the second and third sets of constraints men-
tioned in the first point of this summary and (ii) the replacement of
an objective function that controls the TIF at a series of fixed values
θk, k = 1, ..., K, by a function that maximizes to the value of the TIF
only at the current estimate θ̂g−1.

5. The STA can be viewed as a projection method for adaptive item
selection. At each next ability estimate, it predicts the optimal fea-
sible remaining part of the test and picks the best item from it for
administration.
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6. The STA can also be viewed as a solution to the dilemma invoked by
the combination of sequential item selection and the fact that the con-
straints can only be satisfied if all items are selected simultaneously.
The STA resolves this dilemma by treating adaptive test assembly as
a sequence of n simultaneous optimization problems.

7. Adaptive test assembly can be conducted with objectives other than
maximizing Fisher’s information; for example, objectives based on
Kullback-Leibler information and/or Bayesian objectives based on
the posterior distribution of θ updated during the test.

8. If the pool contains set-based items, the model for the shadow tests
can be derived from the standard model for the simultaneous selection
of items and stimuli in Chapter 7. The model then has to be extended
with a constraint that sets the variables of the stimuli already chosen
equal to one.

9. An effective way to reduce the item-exposure rates of the more popu-
lar items in the pool is through alpha stratification; that is, restricting
the selection of the items to subsequent strata in the pool with
increasing values for the item-discrimination parameter. Alpha strat-
ification can be implemented by adopting a special constraint in the
shadow-test model.

10. An alternative way to reduce the exposure rates for the more popu-
lar items is through probabilistic control using the Sympson-Hetter
method. The method can be implemented effectively using a multiple-
shadow-test approach (MSTA) with the Sympson-Hetter experiment
conducted over a list of items composed from the free items in par-
allel shadow tests. The model for the MSTA can be derived from
the standard model for the simultaneous selection of multiple tests in
Chapter 6.

11. A more efficient form of probabilistic exposure control is through ran-
dom ineligibility constraints on the items in the pool. The constraints
can be drawn with probabilities that are self-adaptive (that is, they
automatically maintain the item-exposure rates at optimal levels and
do not require any previous adjustment of control parameters).

12. Adaptive tests tend to be differentially speeded in the sense that some
test takers get selections of items that require more time than others.
If the items have been calibrated under a response-time model, the
test can be made equally speeded by including a special constraint in
the model for the shadow tests.

13. If the speed at which the test takers operate is an intentional part
of the ability measured by the item pool, the constraint should be
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based on the item parameters in the response-time model only. But
if it is a nuisance factor, the constraint should be based both on the
item and person parameters in the model.

14. Number-correct scores on adaptive tests can be automatically equated
to scores on a reference test released for score interpretation by includ-
ing an adaptive version of the constraints for matching the observed-
score distribution in Section 5.3 in the model for the shadow tests.
These constraints also allow for a direct comparison of the number-
correct scores of different persons taking the adaptive test.

15. If the item pool is multidimensional, the model for the shadow tests
can be derived from the standard model for the assembly of a fixed
multidimensional test in Chapter 8. The item that is actually admin-
istered is the item with a minimal value for a weighted projection
of the variances of the ability estimators. The weights offer direct
control of the relative importances of these variances in the different
cases of multidimensional testing discussed in Chapter 8.

16. Alternatively, the model for the shadow tests can be given an objec-
tive function based on a multidimensional generalization of (poste-
rior) expected Kullback-Leibler information. This option allows us to
deal with different cases of multidimensional testing, too, but without
explicit weights for the individual ability estimators.

17. Testlet-based adaptive testing, multistage testing, and adaptive linear
on-the-fly testing are restricted versions of the STA, with smaller
numbers of stages at which the ability estimate is updated and smaller
numbers of test units to choose from after the updates. The price paid
for these restrictions is lower precision of the test score.

9.11 Exercises

9.1 Formulate a version of the standard model for a shadow test in (9.11)–
(9.21) for the case of an adaptive test with random test length in
Section 9.1.1.

9.2 In Section 9.3, the next stimulus in an adaptive test is identified by
the most informative free item in the shadow test. An alternative
criterion would be to select the free stimulus in the shadow test with
the largest average information for its items. Which criterion is best?

9.3 Show that the sum of the exposure rates of the items in the pool in
adaptive testing is always equal to the test length, n. What is the
effect on the other items in the pool of lowering the exposure rate
of an item with a tendency toward overexposure to less than rmax?



262 9. Models for Adaptive Test Assembly

For an adaptive test of 15 items, would it be possible to design an
exposure-control method that forces the exposure rates of all items
in a pool of 350 to be between .05 and .10?

9.4 Let t = 1, 2, ... be the iteration steps in a sequence of adaptive-testing
simulations conducted to adjust the control parameters P (Ai | Si, θ)
in the Sympson-Hetter method. After each step, we have new esti-
mates of the probabilities of selecting the items, P (t)(Si | θ). The
Sympson-Hetter method uses the following adjustment rule for the
control parameters:

P (t+1)(Ai | Si, θ) =
{

1 if P (t)(Si | θ) ≤ rmax ,
rmax/P (t)(Si | θ) if P (t)(Si | θ) > rmax .

Motivate the adjustment of the control parameters for P (t)(Si | θ) >
rmax . Does it make sense to set the control parameters equal to 1 if
P (t)(Si | θ) ≤ rmax? Formulate a few alternatives for this part of the
adjustment rule.

9.5 Show that the upper bound for P (Ei | θ) in (9.47) follows from (9.46)
along with the assumption that P (Ei ∩ F | θ) = P (Ei | θ)P (F | θ).
How reasonable is this independence assumption?

9.6 For a well-designed adaptive test, the probability of a feasible test for
test taker e can be expected to be equal to P (e)(F | θ) = 1. Use this
condition to show the property of self-adaptation for the updates of
the probabilities of item eligibility in (9.47).

9.7 Motivate the choice of the constraint on the time intensities of the
items in the shadow test in (9.50) using the identifiability constraint
in (9.49) and the fact that ttot has been chosen to be large enough
for the population of test takers.

9.8 Suppose the response times of the test takers have a common standard
deviation of 30 seconds for all items in the pool. What would be your
estimate of the standard deviation of the total time for a test taker
on a test of 25 items?

9.9 In the empirical example in Section 9.5.3, we began the test with the
50th percentile of the posterior predicted response-time distributions
in the constraint in (9.53). Why is this choice reasonable? Why does
it make sense to move to the 95th percentile for the selection of the
last two items in the test.

9.10 Suppose both abilities measured by the items in a two-dimensional
pool are intentional. In addition, suppose it holds that if the weights
w1 and w2 for an adaptive test are set as in (9.71), the STA meets
the criterion of D-optimality (i.e., it minimizes the determinant of
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the covariance matrix in (8.4)). Formulate the criterion for item se-
lection that has to replace (9.80) if the items from the shadow test
are selected to be D-optimal?



10
Designing Item Pools for Programs
with Fixed Tests

As has become clear in the previous chapters, our interest in this book
is not in the design of an individual test but of a program of tests. This
choice is in line with the modern practice of testing, with its emphasis on
item banking, multiple testing occasions, the possible reuse of items, and
the assembly of tests to different specifications from the same item pool
(see Section 1.2.1). If we were interested only in the design of a single test
administration, it would be more efficient to write the items directly for the
test, review them, and pretest a trial version of the test. In fact, we would
then return to the classical practice of standardized testing (see Section
1.1.1).

Consequently, the models for item-pool design in this chapter are also
at the level of an entire testing program. But, of course, no item pool can
support a testing program forever, and we have to limit our planning hori-
zon. We do so by assuming explicit parameters for the number of parallel
forms of each test to be administered in the program.

The models in this chapter are for different types of testing programs.
The simplest program is one that administers parallel forms of a single test.
A more complicated type of program is one with parallel forms of multiple
tests, where, not surprisingly, a further complication arises if one or more
of the tests consists of item sets.

A solution to a design model is a blueprint for the item pool that tells us
what items to write. The blueprint is optimal in that it minimizes a cost
function; the nature of this function is explained in this chapter.

It is possible to use the design models in this chapter in a one-shot ap-
proach in which no test forms are assembled until the item pool is complete.
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But a more dynamic application, in which the item pool is still developed
while test forms are already assembled, seems more realistic. We will there-
fore introduce dynamic versions of the models, which enable us to adapt
our blueprint permanently to the actual practice of item writing and test
assembly.

Before introducing the models, we have to make our notion of an item
pool, which in the general testing parlance seems to encompass virtually
any collection of items, somewhat more precise. A basic distinction is be-
tween a master pool and an operational pool. We define a master pool as
an inventory of test items maintained by the testing organization and an
operational pool as a pool of items from which the test forms are actually
assembled. Typically, a master pool is much less structured than an oper-
ational pool. Its items may be in various stages of development, while the
items in an operational item pool have passed all preparatory stages and
the pool is ready for test assembly.

The design models in this chapter are for calculating an optimal blueprint
for an operational item pool. The blueprint has all the information required
to instruct the item authors. The items can be written directly for the
operational pool. But, as an interim step, they can also be collected in the
master pool first. The development of the operational pool then involves
the additional step of assembling the operational pool to the blueprint.
This step is common for programs with adaptive testing but less so for
programs with fixed tests, where the distinction between a master pool
and an operational pool typically is only conceptual.

All design models in this chapter are integer programming models. Con-
sequently, it is easy to solve them; basically, all we have to do is use an
IP solver to calculate a solution. Nevertheless, the best way to view these
models is not as test-assembly models with fully relaxed integer variables
but as a generalization of the optimal design approach discussed in Section
4.7 that includes the full set of item attributes as well as all constraints
required to represent the test specifications in the program. It is recom-
mended to reread Section 4.7 at this point, particularly the list of critical
differences between optimal test design and optimal test assembly at the
end of it.

10.1 Definition of Design Space

A key notion in this chapter is that of a design space for the item pool. A
design space D is defined as the Cartesian product of all item attributes
figuring in the specifications of the tests in the program. These attributes
can be of any of the types distinguished in Chapter 2, though several of
the logical attributes that may occur in test specifications do not play any
role in item-pool-design problems (see below).



10.1 Definition of Design Space 267

The design space is often high-dimensional and large. On the other
hand, it makes no sense to consider all possible values for the quantita-
tive attributes. We therefore assume that each quantitative attribute is
represented by a smaller set of values for it. This assumption basically re-
duces D to a multivariate table, with each cell representing a combination
of attribute values.

We will refer to these combinations as the design points d = 1, ..., D for
the item pool. The order of the individual attributes in d, as well as the
order in which the combinations are represented in D, is not important;
we assume that they have been fixed in a known way. The only thing that
matters is that each design point d represents a possible combination of
attribute values

(attribute 1, attribute 2, ...) (10.1)

for a potential item in the pool. Unlike the optimal design approach in
Section 4.7, the current points thus represent a potentially wide range of
attributes, running from classifications of item content, format, and cog-
nitive level to such attributes as statistical item parameters, word counts,
and expected response times for the items.

If the values are chosen well, the reduction of a quantitative attribute to
a smaller set of discrete values is not dramatic. Typically, the results are
robust with respect to minor variations in the values of the quantitative
attributes. A case in point are the values for the item parameters in the
3PL model in (1.16). The reduction of these parameters to a smaller set
of values reminds us of a similar decision made in Chapter 5, where we
decided to consider target values for TIFs only at a few discrete values θk,
k = 1, ..., K.

We will use (ad, bd, cd) to denote the values of the item parameters at
point d. At each point, the combination of values for the three parameters
fixes the item-information function in (1.21). We will use Id(θ) to denote
the function at point d. Typically, in test assembly, we constrain large sums
of these functions, and the sums are reasonably robust with respect to small
deviations in the parameter values for some of the items.

It is important to note that each possible test from the item pool can be
represented by an array of integers

(x1, ..., xD), (10.2)

which tells us how many items in the test have the combination of attributes
at point d = 1, ..., D. The integers xd are not restricted to 0-1 values; a test
can have more than one item with the same attributes. In a design model
for an item pool, these integers do not represent an existing test. Instead,
they are decision variables that allow us to calculate how many items in
the pool are required at each point d to assemble all tests in a program.

It makes sense to optimize the design of an item pool for a program
with respect to the costs involved in the production of the items. To this
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end, we introduce a cost function, ϕd. This function, which will be further
explored in Section 10.4, represents the costs of writing an item with the
combinations of attributes at d = 1, ..., D.

We first apply our ideas to the problem of designing an item pool for a
program with parallel forms of a single test and then generalize the model
to the case of a program with parallel forms of multiple tests.

10.2 Programs with Parallel Forms of a Single Test

As already alluded to, the model will be formulated using the decision
variables

xd = number of items at point d ∈ D. (10.3)

Suppose the pool has to support a planning period with N parallel forms
of the test. The number of items at design point d needed in the pool is
then

Nd = Nxd. (10.4)

These numbers enable us to define a design or a blueprint for the item pool
as the array

(N1, ..., ND). (10.5)

This array can also be viewed as a collection of item blueprints; for each
design point, we know exactly what combination of attributes its items
should have. The expression (10.5) can therefore be used to instruct the
item authors or as input to item-generation software.

To represent the constraints on the categorical attributes of the test,
we use the earlier sets Vc as our generic notation for a partition of D in
which each set of points represents a different category of an attribute
c. That is, if d ∈ Vc, the attribute at d belongs to category c. Likewise,
we use qd as the generic symbol for the value of a quantitative attribute
q at design point d. We have already defined Id(θ) as the IIF associated
with the item-parameter values at point d. For a program with N parallel
forms, it is unlikely that the forms have to be assembled to a relative target.
We therefore assume that their information function has to meet absolute
target values Tk at θk, k = 1, ..., K.

10.2.1 Standard Design Model
Following is our standard model for calculating an optimal blueprint for a
program with parallel forms of a single test:

minimize
D∑

d=1
ϕdxd (minimal costs) (10.6)

subject to possible constraints at the following levels:
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Test Level
D∑

d=1
Id(θk)xd � Tk, for all k, (test information) (10.7)

D∑
d=1

xd � n, (test length) (10.8)∑
d∈Vc

xd � nc, for all c, (categorical attributes) (10.9)

D∑
d=1

qdxd � bq; (quantitative attributes) (10.10)

Item Level∑
d∈V1

xd = n1, (special combinations of attributes) (10.11)∑
d∈V0

xd = 0; (special combinations of attributes) (10.12)

Definition of Variables

xd ∈ {0, 1, ...}, for all d. (range of variables) (10.13)

The objective in (10.6) is minimization of the total cost of item produc-
tion, which is to be realized subject to the constraints in (10.7)–(10.13). The
constraints represent the specifications of the test forms in the program.
The constraints in (10.7) guarantee a TIF that meets the target values
Tk at θk, k = 1, ..., K, whereas the constraints in (10.8) control the test
length. The constraints in (10.9) and (10.10) represent the usual options
of categorical and quantitative constraints at the test level. To be able to
include items with certain desirable combinations of attributes in the test
or exclude undesirable combinations, the constraints in (10.11) and (10.12)
are available. The decision variables xd are defined to take (nonnegative)
integer values in (10.13).

It is instructive to reflect on the precise differences between (10.6)–(10.13)
and the model for the assembly of a single test in (4.1)–(4.10), from which
it is obviously derived. The differences are as follows:

1. The variables are not for the combinatorial problem of selecting a
combination of items from an existing pool but represent the number
of items with the different combinations of attribute values needed in
the pool to assemble the test. Hence, they are no longer restricted to
0-1 values but are fully integer.

2. Just as in (4.1), the objective function in (10.6) is still formulated
for a test-level quantity, but the quantity is now the value of the cost
function for a single test form in the program.
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3. All test specifications are dealt with as constraints. Although most of
the models for IRT-based test assembly in Chapter 5 had an objec-
tive function formulated for the TIF, the change is not critical. For
example, if the test forms will be assembled using (5.9)–(5.12), the
TIF approximates the target values Tk from above. Likewise, (10.7)
can be used to include the TIF in a small band just above a target
function.

4. The design model does not have an equivalent to the constraints
on enemy items in (4.9) simply because we do not have any items
yet. Constraints on enemy items are only required when review of
an actual item pool leads to the detection of a few sets of items
that appear to exclude each other. If certain combinations of item
attributes are expected to increase the likelihood of enemy items in
the pool, we can restrict the number of items with these combinations
by using ∑

d∈Ve

xd ≤ 1, for all e, (10.14)

where the sets Ve are the sets with such combinations of attributes.
These sets may consist of single points d.

5. The model also misses the quantitative item-level constraints in (4.7)
and (4.8). If a range of values for a quantitative attribute has to be
excluded, a direct way of dealing with these requirements is to avoid
the range in our choice of design points d = 1, ..., D.

6. Just as in (4.5) and (4.6), the remaining item-level constraints in
(10.11) and (10.12) can be used to include or avoid items with certain
combinations of categorical attributes. But in fact they have become
more general; they now also allow us to include or avoid items at de-
sign points d with combinations of categorical attributes with certain
quantitative attribute values.

10.3 Programs with Parallel Forms of Multiple
Tests

A more interesting case arises if the item pool has to serve a collection of
tests t = 1, ..., T during the planning period. These tests are different in
that they have to satisfy different sets of bounds for the constraints; for
example, a different test length or content distribution, or different sets of
target values for their TIFs. But since the specifications of each test are
still formulated using the same set of attributes, the same design space
holds for the entire set of tests.
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In principle, this design problem could be solved using the preceding
model for each separate test and adding the values of the decision vari-
ables for the solutions. This approach would not lead to any of the usual
problems involved in the sequential assembly of multiple tests discussed in
Section 6.1; in the current application, the solutions would no longer have
to “compete for the best items in the pool,” and there is thus no danger of a
deteriorating value of the objective function or of later problems becoming
infeasible.

But unless the size of the problem is too large, a simultaneous approach
is to be preferred: First, it is always more convenient to get a solution as
the result of a single run of a model. This point holds particularly if the
model is used in a series of updates in the dynamic implementation of a
design model to be discussed in Section 10.7 below. Second, a simultaneous
model enables us to deal with the possible overlap required between test
forms.

For the case where the number of variables in the model becomes too
large, we present a (somewhat less general) alternative simultaneous model
below.

10.3.1 Simultaneous Model
The following set of variables is needed to formulate the model:

xdt = number of items at point d ∈ D for test t. (10.15)

Suppose Nt parallel forms are to be assembled for test t during the
planning period. The total number of items needed in the pool at design
point d is then

Nd =
T∑

t=1

Ntxdt. (10.16)

The blueprint for the item pool is now the array of the numbers in (10.16)
for d = 1, ..., D.

Following is our standard model for calculating an optimal blueprint for
a program with parallel forms of multiple tests:

minimize
T∑

t=1

D∑
d=1

ϕdxdt (minimal costs) (10.17)

subject to possible constraints at the following levels:

Test Level
D∑

d=1
Id(θk)xdt � Tkt, for all k and t, (test information) (10.18)
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D∑
d=1

xdt � nt, for all t, (test length) (10.19)∑
d∈Vc

xdt � nct, for all c and t, (categorical attributes) (10.20)

D∑
d=1

qdxdt � bqt, for all t; (quantitative attributes) (10.21)

Item Level∑
d∈V1

xdt = n1t, for all t, (special combinations of attributes)

(10.22)∑
d∈V0

xdt = 0, for all t; (special combinations of attributes) (10.23)

Definition of Variables

xdt ∈ {0, 1, ...}, for all d and t. (range of variables) (10.24)

Analogous to the model for a program with a single test, (10.17)–(10.24)
is a direct generalization of the model for the simultaneous assembly of
multiple tests in (6.3)–(6.13). It does not, however, have any equivalent
to the item-overlap constraints in (6.4). The reason is the same as for the
absence of the enemy constraints in the preceding model; the only thing
a design model has to guarantee is an item pool with the right number of
items with the various combinations of attributes for the tests to be assem-
bled in the program. The model in (10.17)–(10.24) does so for a program
with no item overlap between its test forms.

10.3.2 Item Overlap
If the program admits reuse of items in test forms, the design model has
to be adjusted. For notational convenience, we restrict our treatment to
the model for a program with constraints on the common numbers in two
tests, t and t′.

Analogous to the case of the simultaneous assembly of a pair of tests in
(6.19), we need to add the following variables to the model:

zdtt′ = number of items at point d ∈ D for tests t and t′, (10.25)

for all d. The version of the model in (10.17)–(10.24) that admits a number
of common items in tests t and t′ between bounds nmax

tt′ and nmin
tt′ is

minimize
D∑

d=1

ϕd(xdt + xdt′ + zdtt′) (10.26)

subject to possible constraints at the following levels:
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Test Level

D∑
d=1

Id(θk)(xdt + zdtt′) � Tkt, for all k, (TIF of t) (10.27)

D∑
d=1

Id(θk)(xdt′ + zdtt′) � Tkt′ , for all k, (TIF of t′) (10.28)

D∑
d=1

(xdt + zdtt′) � nt, (length of t) (10.29)

D∑
d=1

(xdt′ + zdtt′) � nt′ , (length of t′) (10.30)

∑
d

zdtt′ ≤ nmax
tt′ , (overlap) (10.31)

∑
d

zdtt′ ≥ nmin
tt′ , (overlap) (10.32)

∑
d∈Vc

(xdt + zdtt′) � nct, for all c, (categorical attributes of t)

(10.33)∑
d∈Vc

(xdt′ + zdtt′) � nct′ , for all c, (categorical attributes of t′)

(10.34)
D∑

d=1
qd(xdt + zdtt′) � bqt, (quantitative attributes of t) (10.35)

D∑
d=1

qd(xdt′ + zdtt′) � bqt′ ; (quantitative attributes of t′) (10.36)

Item Level∑
d∈V1

(xdt + zdtt′) = n1t, (special combinations of attributes of t)

(10.37)∑
d∈V0

(xdt + zdtt′) = 0, (special combinations of attributes of t)

(10.38)∑
d∈V1

(xdt′ + zdtt′) = n1t′ , (special combinations of attributes of t′)

(10.39)∑
d∈V0

(xdt′ + zdtt′) = 0; (special combinations of attributes of t′)

(10.40)
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Definition of Variables

zdtt′ ∈ {0, 1, ...}, for all d, (range of variables) (10.41)

xdt, xdt′ ∈ {0, 1, ...}, for all d. (range of variables) (10.42)

The following differences exist between the model in (10.26)–(10.42) and
the preceding model for a program without overlap:

1. The decision variables xdt for test t have been replaced by xdt +
zdtt′. The same has been done for test t′. These substitutions redefine
the variables xdt and xdt′ as the number of unique items for tests t
and t′ at design point d, whereas zdtt′ is the number of common items
at d in tests t and t′.

2. In the objective function, the costs for the common items have been
included only once.

3. The new constraints in (10.31) and (10.32) control the size of the
overlap between the two tests t and t′.

Observe that the model does not need any constraints analogous to (6.22)
and (6.23) to keep the values of the variables xdt, xdt′ , and zdtt′ consistent.
The reason is the same as for the absence of certain constraints in the
preceding models: Design models do not assign any actual items to tests;
the only thing they have to guarantee is that the right number of items for
each design point be available in the item pool. The increase of the number
of constraints in the design model for a program with item overlap is thus
much smaller than the one entailed by the model for the actual assembly
of the test forms in (6.20)–(6.24).

If it is necessary to restrict the overlap between tests only to items with
certain attribute combinations, the following constraint should be added
to the model: ∑

d∈V0

zdtt′ = 0, (10.43)

where V0 now is the set of points d ∈ D for which no overlap is permitted.
Of course, the numbers Nd for the blueprint in (10.16) have to be adjusted

for the overlap between the variables xdt and xdt′ . For a set of T tests, these
numbers are now equal to

Nd =
∑

{t,t′}
xdt + xdt′ + zdtt′ , (10.44)

where {t, t′} denotes the set of all possible pairs of the T tests. Each of the
terms in (10.44) is the sum of the number of unique items for t and t′ plus
the number of common items in the pair.
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10.3.3 Model with Aggregated Bounds
If the design space for the model in (10.17)–(10.24), and hence its number
of variables, becomes large, a simultaneous solution is still possible using a
version of the model similar to (10.6)–(10.13) but with aggregated bounds.
We first present the model and then explain its features.

minimize
D∑

d=1
ϕdxd (minimal costs) (10.45)

subject to possible constraints at the following levels:

Test Level
D∑

d=1
Id(θk)xd �

T∑
t=1

Tk, for all k, (test information) (10.46)

D∑
d=1

xd �
T∑

t=1
nt, (test length) (10.47)

∑
d∈Vc

xd �
T∑

t=1
nct, for all c, (categorical attributes) (10.48)

D∑
d=1

qdxd �
T∑

t=1
bq; (quantitative attributes) (10.49)

Item Level∑
d∈V1

xd =
T∑

t=1
n1t, (special combinations of attributes) (10.50)∑

d∈V0

xd = ; (special combinations of attributes) (10.51)

Definition of Variables

xd ∈ {0, 1, ...}, for all d. (range of variables) (10.52)

The bounds in this model are equal to the sums of the original bounds
over all tests t = 1, ..., T in (10.17)–(10.24). This type of model works
best if it has categorical constraints only; a solution to it can always be
split into sets of different numbers of items required for each category in the
individual tests. But this additivity does not necessarily hold if quantitative
constraints are present. For example, the fact that the sum of the item-
information functions meets the sum of target values in (10.46) does not
necessarily imply the existence of subsets of items that meet the values for
the individual tests. We do not expect this to be much of a problem for
larger programs, with the exception of the case in which the TIFs of the
tests are to be constrained at different points θk (Exercise 10.4).
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10.3.4 Discussion
So far, the design models have been rather straightforward modifications
of some of the earlier models for test assembly in this book. As a matter of
fact, the modifications invariably led to models simpler than their originals.
This feature is the result of the fact that we were able to leave out certain
constraints because they

1. did not apply to design problems, such as the (logical) constraints on
enemy items and item overlap, or

2. could be met more directly by our definition of the design space.

If the pool has to be designed for a program with item sets, we will intro-
duce a comparable modification for the model for set-based test assembly
in (7.3)–(7.24), but this time the result appears to be somewhat more com-
plicated. Before discussing this case, we first address an issue touched upon
only briefly so far, namely the idea of using a cost function to optimize the
blueprint of an item pool.

10.4 Cost Function

The cost function ϕd represents our estimates of the production costs of an
item for the design points d ∈ D. Item production usually involves several
steps, such as (i) the actual writing of the item, (ii) one or more reviews, (iii)
pretesting, (iv) the amount of fixing necessary, and (v) the final decision
to accept or reject the item. Usually, the costs of some of these steps—for
example, the cost of reviewing and pretesting—are approximately equal for
all items. Since we use the cost function in an optimization problem, all
constant components can be removed from it without changing the solution.
Basically, it suffices if the function covers only the costs of (i) writing an
item and (ii) the risk of having to fix or reject it.

Ideally, we have direct estimates of all relevant costs. These may be avail-
able as the result of earlier research on the testing program or as currently
budgeted costs. If the program is new, we may be able to start with rough
initial estimates and update them when we gather more experience with the
item-production process. A formal framework for doing so will be presented
in Section 10.7.

If no direct cost estimates are available, it makes sense to look for proxies
of item-writing costs. Again, since we use this function in an optimization
problem only, proxies of monotonic functions of the costs work equally
well. Examples of such proxies are: (i) the average time needed to write
an item for the various attribute combinations, (ii) the frequencies with
which items for these combinations have been written in the past, and (iii)
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the number of times such items have been rejected as the result of review
and/or pretesting.

Also, it is seldom necessary to have cost estimates based on the entire
combination of attributes that defines D. Often, a few known attributes
dominate the costs. For example, it is a well-known experience that it is
more difficult to write items with a multiple-choice format than with a
constructed-response format or items with more alternatives if this is a
relevant attribute. In such cases, our estimate of ϕd can be chosen to vary
mainly with these attributes. Conversely, we sometimes have attributes
known to show hardly any variation at all. An example is guessing parame-
ters c in the 3PL model in (1.16) when the number of response alternatives
of the items is fixed. Such attributes should be removed from the definition
of D; they lead to a simplification of the cost function.

In the empirical examples in Sections 10.6 and 10.7.3, we used a simple
proxy for the cost function derived from a previous item pool for the same
testing program. It was based on the assumption that items with attribute
combinations written more frequently in the previous history of the pro-
gram apparently were easier to write, showed less risk of being rejected,
and were thus obtained at lower cost.

Even if this assumption leads to an incorrect estimate of the actual costs,
it makes sense to optimize the design of an item pool capitalizing on the
patterns of frequencies of attribute combinations in a representative item
pool reflected in this type of cost function. The choice enables us to au-
tomatically account for the empirical correlations between the attributes
in D; that is, the design model guarantees an item pool that supports the
required set of test forms but avoids combinations less likely to be written
due to tendencies for specific attributes to correlate (for example, item con-
tent and difficulty). The benefits become even stronger if we add the item
authors involved in the program as a categorical attribute to the design
space (see Section 10.7.2).

The main point put forward in this section is that we often have access to
more sources of information on the costs of item production for a testing
program than we may realize. It is always advantageous to improve the
design of the item pool using as much information from these sources as
possible.

10.4.1 Smoothing Cost Functions
If we have inaccurate estimates of ϕd for some points of D, or no estimates
at all, we may be able to improve our cost function by using a smoothing
technique. Of course, smoothing only makes sense for the quantitative at-
tributes in the design space. In the examples in Sections 10.6 and 10.7.2,
we used a simple technique known as k-nearest-neighbor regression. In this
technique, the smoothed cost estimate at design point d is calculated as
the average of the estimates of the costs in a neighborhood of d. Let ϕ∗

d
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denote the smoothed cost at d, and suppose we work with a neighborhood
of size k. It then holds that

ϕ∗
d = k−1

∑
d′∈Nk(d)

ϕd′ , (10.53)

where the neighborhood of d, Nk(d), is defined as the set of the k points
in D closest to d.

The size of the neighborhood determines the degree of smoothing. Usu-
ally, a neighborhood that includes the first one or two neighbors in each
direction suffices. For the cost function used in the example in Section 10.6,
smoothing was effective in the areas of the design space with only an oc-
casional point with lack of data but became less effective for areas with
sparser data. This point suggests that it might be worthwhile to look into
the application of an adaptive smoothing technique, with the size of the
neighborhood defined as a function of the data.

If we have direct estimates of all major cost components but estimates
of the full costs for a subset of the points only, we could also use a model-
based technique. For example, we could fit parametric regression models to
the data and generalize the result for the best-fitting model to the entire
space. With this approach, smoothness is imposed directly by the model.

10.5 Item Sets

If the program has set-based tests, the design model can be derived from the
model for the simultaneous selection of items and stimuli in (7.3)–(7.24).
This time the adjustment reaches a bit farther since the model now has to
be formulated for two design spaces simultaneously: one for the items and
one for the stimuli. We will formulate the model for the case of a program
with parallel forms of multiple tests.

10.5.1 Simultaneous Model
Analogous to design space D for the items, we now need a space E with
points e = 1, ..., E, for the stimuli. This space is defined as the Cartesian
product of all stimulus attributes in the test specifications. Typically, the
number of stimulus attributes is much smaller than the number of item
attributes; the same therefore holds for the size of E . Also, it is rare to
have statistical parameters for stimuli. But if they do occur, the choice
of design points e = 1, ..., E should be representative of their range of
empirical values.

A model for the design of a set-based item pool has separate variables for
the numbers of stimuli and items, each indexed by its own design points.
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The variables are

zet = number of stimuli at point e ∈ E for test t (10.54)

and

xdet = number of items at point d ∈ D for stimulus e and test t. (10.55)

The model will have special constraints to relate the two sets of variables
to one another.

If Nt parallel forms of test t are to be assembled during the planning
period, the numbers of stimuli and items needed at points e and d are

Ne =
T∑

t=1

Ntzet (10.56)

and

Nde
=

T∑
t=1

Ntxdet. (10.57)

Hence, the blueprint in (10.5) is now replaced by the following two arrays:

(N1, ..., NE) (10.58)

and ⎛⎝ N11 ... N1E

... ... ...
ND1 ... NDE

⎞⎠ . (10.59)

In addition, we need separate functions to represent the costs of pro-
ducing an item and a stimulus. We use the function ϕe for the costs of a
stimulus with the attributes at design point e ∈ E , and the function ϕde for
the cost of an item at design point d ∈ D for a stimulus at e ∈ E . Observe
that these definitions allow for an interaction between the two spaces on
the costs of item writing. If no interaction exists, the functions ϕdesimplify
to

ϕde = ϕd for all e, (10.60)

and the same simplification holds for the decision variables for the items
(see below).

To denote categorical attributes for the items and stimuli, we use sets
V item

c and V stim
c , whereas the quantitative attributes for the items and stim-

uli are denoted as qde and qe, respectively. The rest of our other notation is
analogous to the model for assembling tests with item sets in (7.3)–(7.24).

The standard model for a program with item sets is

minimize
T∑

t=1

(
E∑

e=1

D∑
d=1

ϕde
xdet +

E∑
e=1

ϕezet

)
(minimal costs) (10.61)

subject to possible constraints at the following levels:
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Test Level
E∑

e=1

D∑
d=1

Id(θk)xdet � Tkt, for all k and t, (test information) (10.62)

E∑
e=1

D∑
d=1

xdet � nt, for all t, (test length) (10.63)

E∑
e=1

zet � mt, for all t, (number of stimuli) (10.64)

E∑
e=1

∑
d∈V item

c

xdet � nitem
ct , for all c and t, (categorical attributes)

(10.65)
E∑

e=1

D∑
d=1

qdxdet � bitem
qt , for all t, (quantitative attributes) (10.66)∑

e∈V stim
c

zet � nstim
ct , for all c and t, (categorical attributes) (10.67)

E∑
e=1

qezet � bstim
qt , for all t; (quantitative attributes) (10.68)

Item-Set Level
D∑

d=1
xdet � nset

t zet, for all e and t, (number of items per set) (10.69)∑
d∈V item

c

xdet � nset
ct zet, for all c, e, and t, (categorical attributes)

(10.70)
D∑

d=1
qdexdet � bset

qt zet, for all e and t; (quantitative attributes)

(10.71)

Stimulus Level∑
e∈V stim

1

zet = nstim
1t , for all t, (special combinations of attributes)

(10.72)∑
e∈V stim

0

zet = 0, for all t; (special combinations of attributes)

(10.73)

Item Level∑
d∈V item

1

xdet = nitem
1t , for all t, (special combinations of attributes)

(10.74)∑
d∈V stim

0

xdet = 0, for all t; (special combinations of attributes)

(10.75)
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Definition of Variables

xdet ∈ {0, 1, ...}, for all d, e, and t, (range of variables) (10.76)

zet ∈ {0, 1, ...}, for all e and t. (range of variables) (10.77)

The objective function in (10.61) does not weigh the costs for the items
and stimuli differently; both are assumed to be on the same scale.

The constraints at the item-set level in (10.69)–(10.71) have the same
structure as those in the test-assembly model in (7.12)–(7.14) in spite of
the fact that the current variables are no longer restricted to 0-1 values.
They operate as follows: If zet = 0 in (10.69), no stimulus is assigned to
point e, and neither are any items to the combination of any d ∈ D with
e. If zet = 1, 2, ..., the constraints in (10.69) guarantee the assignment of
multiples of nset

t items to the combinations of d ∈ D with e. Comparable
control on the item-set attributes is exerted by the constraints in (10.70)
and (10.71). As already noted in Section 7.1, some of these constraints,
with upper bounds on the item-set attributes, should always be included
in the model. If the test specifications do not imply upper bounds, dummy
constraints should be used (Exercise 3.6).

Finally, no quantitative constraints are formulated at the stimulus level.
If certain ranges of quantitative attributes for stimuli have to be avoided, it
is much more efficient to exclude them in our choice of design points e ∈ E .

10.5.2 Three-Stage Approach
The model in (10.61)–(10.77) is for the calculation of a joint blueprint for
the items and stimuli, with immediate assignment of the number of items
to the stimuli for which they have to be written. If the problem is too large,
and the item-writing costs show no interaction (that is, if (10.60) holds),
we can also design the pool using a method consisting of the following three
stages:

1. calculating an optimal blueprint for the stimuli using a model analo-
gous to the one in (10.17)–(10.24) defined on E ;.

2. calculating an optimal blueprint for the items using the model for a
program with multiple tests in (10.17)–(10.24);

3. assigning the items to the sets for the stimuli using a network-flow
model with the points d ∈ D as supply nodes and the individual
stimuli needed at e ∈ E as demand nodes (Exercise 10.7).

It may seem unusual to split a problem for a single pool into three sep-
arate stages, but, again, the solution we seek is for a design problem, and
all it should enable us to do is calculate an optimal combination of the
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item and stimulus blueprints in (10.58) and (10.59). Of course, once this
combination has been calculated, the items and stimuli for the individual
sets have to be produced in a coordinated fashion.

10.6 Calculating Solutions

All design models discussed so far were IP models that can be solved using
a commercial solver (Section 4.2.5). If correct implementation decisions are
made, we expect no special problems. For example, in problems with item
sets, it is efficient to have the solver branch on the stimulus variables before
the item variables (see Section 4.2.2).

If the problem still appears to be too large, we may feel inclined to resort
to the approximation algorithm in Section 4.2.4, but another, simpler alter-
native is definitely more attractive. The alternative is to drop the integer
constraints on the variables and solve the relaxed model using one of the
standard implementations of the simplex algorithm.

The solution will then contain some variables with fractional values, but
these can be rounded upward. The only effect of this rounding is a few extra
items, but the pool will still support the assembly of the tests planned for it.
Besides, it is always sensible to plan some spare items. The general problems
discussed for the application of this rounding heuristic to problems with
0-1 variables (see Section A1.5) can be ignored when they are applied to
item-pool-design problems.

Nevertheless, it is always recommended to reduce the size of the problem
as much as possible. One possible reduction has already been mentioned: If
an attribute shows hardly any empirical variation, it should be removed
from the definition of the design space. Besides, if the test consists of
sections with independent sets of specifications, it is simpler to calculate
separate blueprints for the parts of the item pool that have to support the
individual sections. (See the empirical example below.) As a final exam-
ple, we refer to a possible choice between the simultaneous model for a
program with multiple tests and the model with aggregated bounds in
(10.45)–(10.52). Our recommendation is to use the latter when (i) the
simultaneous problem becomes too large, (ii) no overlap constraints be-
tween tests are required, and (iii) a relaxed solution with rounding is not
acceptable for some reason.

Infeasibility is not expected to be a problem in item-pool design, the rea-
son being that, unlike test assembly, where an item pool may run into an
occasional supply problem because of bad planning, all models are formu-
lated over a design space with unlimited capacity. If equality constraints on
quantitative attributes are avoided, and the usual care is taken with respect
to the consistency of the constraints (Section 3.2.4), the model always has
a feasible solution.
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Section # Attributes # Design Points # Constraints
SA

Items 5 1,920 70
Stimuli 4 8 1

SB
Items 6 6,144 97
Stimuli 4 31 6

SC
Items 5 11,520 65

TABLE 10.1. Summaries of the design spaces for the three different sections of
the pool.

Empirical Example
An item pool was designed for a fictitious program with three different
versions of the LSAT: one version with the regular target for the TIF and
two versions with the targets shifted .6 to the left and .6 to the right. Each
version had to satisfy the full set of content specifications for the test.

As indicated in earlier examples, the LSAT contains three sections, one
section with discrete items and two sections that are set-based. We calcu-
lated the parts of the blueprint for each of these three sections in the pool
separately. For the section with discrete items, we used the design model for
programs with multiple tests in (10.17)–(10.24). For the sections with item
sets, we used the three-stage approach in Section 10.5.2. An application
of the simultaneous model for a program with item sets in (10.61)–(10.77)
will be discussed in a second example for the LSAT in Section 10.7.3.

Summaries of the design spaces for the three different sections of the
pool are given in Table 10.1. Although the items were assumed to fit the
3PL model in (1.16), we ignored the guessing parameter c in the definition
of the design space because all items in a section had the same number
of alternatives and this parameter has a negligible impact on the optimal
design of an item pool. Item information functions Id(θ) were calculated
using the average value of c for a previous pool of 5,316 items for the LSAT.
Our definition of the item space was based on eight equally spaced values
for discrimination parameter a and ten values for difficulty parameter b;
both sets of values covered the actual range of values for these parameters
in the same previous item pool.

Our cost function was also derived from this previous item pool. We first
classified the items and stimuli according to the design points. (The quan-
titative attributes were classified using the shortest distance as criterion.)
Let ηd denote the number of items in our classification at point d of the
item space. The cost function we used was based on the proxy

ϕd = f

(
1

ηd + δ

)
, (10.78)
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with f(.) a monotonically increasing function and δ an arbitrary constant
close to zero that is needed to avoid infinite costs at points with ηd = 0.
In fact, because (10.78) yields the same result for any choice of f(.), we
simply used ϕd = (ηd + δ)−1. Although the item pool had a total of 5,316
items, the number was still small relative to the size of our design spaces
(see Table 10.1). We therefore smoothed the function using the method of
k-nearest-neighbor regression outlined in Section 10.4.1. The method was
applied over the quantitative coordinates of d only. That is, for each point
d, we calculated the average value of (ηd + δ)−1 over the neighborhood
defined by the quantitative coordinates of d and assigned the average value
as the smoothed value ϕ∗

d to d. The size of the neighborhood varied with
the sparseness of points with ηd = 0 in the space.

The three models appeared to have a unimodular structure (for a def-
inition of this structure, see the more technical literature at the end of
Appendix 1), which guarantees a solution that is fully integer for the re-
laxed version of the model. Since the solutions are just arrays of numbers
of the form displayed in (10.58) and (10.59), it is no use showing them here.

10.7 Dynamic Versions of Design Models

Although the presentation of the design models in the preceding sections
seems to suggest a one-shot approach to item-pool development, testing
organizations seldom have the time and resources to wait until the pool
is complete before beginning test assembly. In this section, we therefore
present a dynamic version of the design models that can be used to guide
the item-writing process while tests are assembled.

In fact, a more dynamic form of item-pool design helps us to address
an issue we have not yet discussed: Although it is relatively easy to write
items with the prespecified categorical attributes and with such quantita-
tive attributes as reading time and word counts, it becomes more difficult
to realize item blueprints that include the classical item parameters and
IRT parameters reviewed in Chapter 1. Only recently have we begun to
learn more about what makes an item difficult. But writing items with a
prespecified combination of values for a difficulty and discrimination pa-
rameter is still beyond our reach. As we will see below, a dynamic use of the
design models earlier in this chapter helps us to manage the item-writing
process and to adapt it to the actual developments in the item pool.

10.7.1 Dynamic Models
We use the case of a program with multiple tests as an example. If the
item pool is developed on a continuous basis, the process can be based on
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a series of updates of the blueprint for the item pool, each consisting of the
following steps:

1. establishing the number of parallel forms of each test to be assembled
in the next planning period;

2. updating the model in (10.17)–(10.24) to account for the current
composition of the item pool;

3. updating the cost function in the model using the cumulative expe-
riences with item writing;

4. running the model to determine the number of new items that have
to be written for each design point d ∈ D in the next planning period.

The updates in steps 2–4 can be based on an aggregated version of the
model in (10.17)–(10.24) that accounts for the numbers of items with the
different attribute combinations already present in the pool. Let p be the
planning period for which the new update is needed. The composition of
the item pool at the end of period p − 1 can be represented by the array

(η(p−1)
1 , ..., η

(p−1)
D ). (10.79)

We want to know the number of new items at each point d that have to be
written for p. Hence, we replace the decision variables in (10.15) by

x
(p)
dt = number of items at point d ∈ D for test t in period p. (10.80)

In addition, let N
(p)
t be the number of forms for test t planned for period

p. The supplement of the item pool required for the assembly of these test
forms is thus

(N (p)
1 , ..., N

(p)
D ), (10.81)

with

N
(p)
d =

T∑
t=1

N
(p)
t x

(p)
dt . (10.82)

The experiences with item writing during the preceding p − 1 periods
can be used to update the cost function. For example, if the function in
(10.78) is chosen, we can use the new data in (10.79) for an update of the
function. Let ϕ

(p)
d denote the update for period p.

The model for the supplement of the current item pool for period p is

minimize
T∑

t=1

D∑
d=1

ϕ
(p)
d x

(p)
dt (minimal costs) (10.83)

subject to possible constraints at the following levels:
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Test Level
D∑

d=1
Id(θk)

(
η
(p−1)
d +

T∑
t=1

N
(p)
t xdt

)
�

T∑
t=1

N
(p)
t Tkt, for all k, (10.84)

D∑
d=1

(
η
(p−1)
d +

T∑
t=1

N
(p)
t xdt

)
�

T∑
t=1

N
(p)
t nt, (10.85)

∑
d∈Vc

(
η
(p−1)
d +

T∑
t=1

N
(p)
t xdt

)
�

T∑
t=1

N
(p)
t nct, for all c, (10.86)

D∑
d=1

qd

(
η
(p−1)
d +

T∑
t=1

N
(p)
t xdt

)
�

T∑
t=1

N
(p)
t bq; (10.87)

Item Level ∑
d∈V1

(
η
(p−1)
d +

T∑
t=1

N
(p)
t xdt

)
=

T∑
t=1

N
(p)
t n1t, (10.88)

∑
d∈V0

(
η
(p−1)
d +

T∑
t=1

N
(p)
t xdt

)
= 0; (10.89)

Definition of Variables

xdt ∈ {0, 1, ...}, for all d and t. (10.90)

The aggregated bounds in this model remind us of the model in (10.45)–
(10.52), but this time all sums are weighted by the number of planned test
forms, N

(p)
t . The decision variables are also summed over the tests using

the same weights. The presence of η
(p−1)
d in each of the constraints corrects

the number of items needed at point d for the number of items already
available in the pool. Observe that the objective function in (10.83) is not
corrected for these numbers; it does not make sense to minimize the cost
of items that have already been written.

As in (10.45)–(10.52), the use of the aggregated bounds in the constraints
does not lead to automatic satisfaction of the quantitative constraints at
the level of the individual test forms to be assembled from the new pool.
But, again, for larger programs we do not expect this to be much of a
problem.

10.7.2 Item Author as Attribute
If the program has a fixed group of item authors, an attractive manage-
ment tool becomes possible: We can add the item authors as an explicit
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(categorical) attribute to the design space for the item pool. As each de-
sign point is then associated with a specific item author, the solution to the
model in (10.83)–(10.90) automatically assigns item blueprints to optimal
authors. Of course, this option becomes more advantageous the larger the
interaction between the item authors and the other item attributes on the
costs; that is, if it appears to be easier for some item authors to produce
an item with a given combination of attributes than for others.

For a new program, we may not immediately be able to specify cost func-
tions for individual item authors. But we could start with a function based
on their preferences, and move to more empirical estimates if information
relevant to the actual costs is accumulated in the program. Each period,
the item-writing assignments then become better adjusted to the actual
skills of the item authors.

Usually, item authors have restricted capacities. These restrictions can
be introduced as constraints in the design model. Let w = 1, ..., W denote
the set of item authors and Vw the subset of a point in D with item author
w as attribute. If each item author has a maximum capacity of nw items,
the set of constraints required for period p is∑

d∈Vw

T∑
t=1

N
(p)
t x

(p)
dt ≤ nw, for all w. (10.91)

To date, we do not have much practical experience with dynamic use
of item-pool design models. If more experience is gathered, we expect new
tools and ideas for tuning item-pool development to item-writing skills to
become available. The only point we want to advocate right now is that in
a more dynamic environment item-pool management can only be successful
if we permanently have a clear picture of what kinds of items are needed to
supplement the item pool. Updates of the blueprints based on the model
in (10.83)–(10.90) provide us with useful pictures.

In the next section, we discuss a few results from a simulation study con-
ducted to follow the developments in the costs of item writing for different
scenarios based on the model in (10.83)–(10.90).

10.7.3 Empirical Example
The fictitious testing programs simulated in this study consisted of two
parallel forms of three different tests for one of the sections of the LSAT.
The three tests differed only in the location of their TIF, but all other spec-
ifications were identical. The total number of test forms to be assembled
during each simulated planning period was thus equal to six. The oper-
ational item pools used for this program consisted of 350 items, whereas
each test form had 50 items. Ideally, the pools thus had just enough items
to assemble one spare form for each program.

We used a previous pool of 2,436 items for this study. The items were
collected from different sources but all were written for the LSAT. The dis-
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Scenario Initial Pool Management Item Writing
1 + + +
2 + + −
3 + − +
4 + − −
5 − + +
6 − + −
7 − − +
8 − − −

TABLE 10.2. Summary of features of eight different scenarios in simulation study.

tribution of the items in this pool was used to estimate the cost function in
(10.78). The function was smoothed with respect to the item difficulty and
discrimination parameter using the method of k-nearest-neighbor regres-
sion outlined in Section 10.4.1. As in the other examples in this chapter,
the guessing parameter was ignored.

Eight different scenarios of item-pool development were simulated, each
based on a different combination of the following three factors:

1. Initial operational item pool optimal or less than optimal. The op-
timal pool was assembled using a blueprint calculated according to
the simultaneous model in (10.17)–(10.24). For the condition with a
less than optimal pool, we assembled five test forms and sampled the
remaining 100 items randomly from the old item pool.

2. Item-pool management optimal or less than optimal. Optimal item-
pool management was simulated using the dynamic version of the
design model in (10.83)–(10.90). Less than optimal management con-
sisted of sampling the blueprints for the new items randomly from
the old pool.

3. Item writing optimal or less than optimal. In both cases, the quanti-
tative attributes of the items were perturbed randomly. For the case
of less than optimal item writing, the perturbations were larger. For
example, for the b parameter, the absolute error was uniform in the
interval between .20 and .30, whereas for the case of optimal item
writing it was between .15 and .20.

To make the eight scenarios, which are summarized in Table 10.2, more
realistic, each of them had a mild form of item attrition (outdated items,
detected flaws, etc.). The attrition was simulated to have a level of 5%;
that is, in each scenario, after each planning period, a random sample of
5% of the items from the pool was deleted. The items were replaced using
the item-writing style simulated for the scenario.

The eight different scenarios were evaluated using the following two
criteria:



10.7 Dynamic Versions of Design Models 289

Initial Pool: Optimal
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Period Forms Costs Forms Costs Forms Costs Forms Costs
1 6.0 .17 6.0 .17 6.0 .17 6.0 .17
2 6.0 .17 6.0 .50 4.6 .47 3.8 1.63
3 6.0 .17 6.0 .38 3.3 .47 2.0 1.73
4 6.0 .17 6.0 .50 2.2 .47 1.1 1.45
5 6.0 .17 6.0 .37 2.2 .49 1.0 1.56
6 6.0 .17 6.0 .42 1.6 .51 0.4 2.13

Initial Pool: Less than Optimal
Scenario 5 Scenario 6 Scenario 7 Scenario 8

Period Forms Costs Forms Costs Forms Costs Forms Costs
1 5.0 .48 5.0 .48 5.0 .48 5.0 .48
2 3.3 .17 3.0 .39 3.4 .48 2.6 1.71
3 4.4 .19 4.0 .65 2.6 .47 1.8 1.09
4 5.2 .18 4.2 .66 2.0 .51 1.2 1.36
5 5.4 .18 4.4 .41 1.1 .45 1.0 1.26
6 6.0 .17 3.0 .53 1.1 .50 0.2 1.53

TABLE 10.3. Number of feasible test forms and average cost per item during six
planning periods for eight different scenarios of item-pool development.

1. average number of feasible forms that could be assembled from the
pool during the planning periods;

2. average cost per item written during the planning periods.

Each scenario was replicated five times. The average results across repli-
cations are shown in Table 10.3. As expected, the first scenario yielded the
best results. For each of the six periods, all six forms in the program could
be assembled. In addition, the first scenario had the lowest costs of item
writing, and the costs did not change over time. A comparison between
scenarios 2 and 3 shows that it was better to have optimal management
with less than optimal item writing than the other way around, particu-
larly as to the number of forms that could be assembled. In scenario 4, both
management and item writing were less than optimal. The results show a
strong interaction effect: The number of feasible test forms as well as the
cost per item deteriorated much faster than could have been expected on
the basis of the results for scenarios 2 and 3.

As the results for scenario 5 show, the combination of optimal manage-
ment and item writing was able to undo most of the negative effects of the
less than optimal initial item pool on the item-writing costs, but it was
much harder to assemble the required number of test forms. Optimal man-
agement (scenario 6) and optimal item writing only (scenario 7) produced
approximately the same number of test forms as for scenario 5 but at a
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higher cost level. In scenario 8, both management and item writing were
less than optimal, and the program deteriorated much faster over time.

10.8 Assembling an Operational Item Pool

If an operational pool has to be assembled from a master pool, two different
cases may apply:

1. If the master pool contains all items listed in the blueprint for the
operational pool, we can simply pick the items from it. The selection
does not involve any kind of optimization.

2. If the statistical item parameters play a more dominant role, we typ-
ically have the less than ideal case of having more than enough items
with the required combinations of attributes for each design point d,
except for the values for the item parameters, which are somewhat
off-target.

The second case involves an optimization problem. For each point d,
we have to select Nd items from the master pool with values for the item
parameters closest to the design point that has the required combination
of all other attributes. The problem can easily be solved manually or by a
simple sorting algorithm. However, we present an optimization model for
this problem, mainly because we will need a generalization of it for the more
complicated case of assembling a system of rotating item pools for adaptive
testing addressed in Section 11.5.5. The model will be formulated for the
item parameters in the 3PL model. As before, the guessing parameter is
ignored. But, if necessary, it can easily be included in the objective function.
The same holds for other quantitative attributes that may be troublesome.

Let Vd be the set of items in the master pool that have the required
combination of attributes at d, except for the values for discrimination
parameter a and difficulty parameter b. These sets need to be considered
only at the points d with Nd > 0. Points with Nd = 0 play no role; items
at these points are not required for the operational pool. The set of points
d ∈ D with Nd > 0 is denoted as W .

We use (ai, bi) for the values of item i ∈ Vd for the two parameters, and
(ad, bd) for the values required at their design point d ∈ W. The following
measure is for the distance between the actual values of item i and the
values at its point d

δid =
√

(bi − bd)2 + w2(ai − ad)2, (10.92)

where weight w should be used to compensate for the scale differences
between the two parameters. The measure is an instance of (5.57), which
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was used for the problem of matching a test to a reference test in Section
5.4.1. An obvious choice of weight is

w = (bmax − bmin)/(amax − amin), (10.93)

with the superscripts denoting the maximum and minimum values of the
parameters in the master pool.

Let xid be the 0-1 variable for the assignment of item i ∈ Vd to point
d. If an item is assigned to point d, it is assumed to be assigned to the
operational pool as well.

The model is as follows:

minimize
∑
d∈W

∑
i∈Vd

δidxid (10.94)

subject to∑
i∈Vd

xid = Nd, for all d ∈ W, (content constraints) (10.95)

xid ∈ {0, 1}, for all i ∈ Vd and d ∈ W. (range of variables) (10.96)

The solution to the model assigns the best items to each point d subject
to the optimal blueprint defined by the numbers Nd in (10.95).

10.9 Final Comment

This chapter did not cover all possible optimization problems that can be
met in the practice of item-pool design and development. For example, for
a testing program, it may be important to maintain a constant quality of
its operational pools over time. If the pools are assembled sequentially, the
usual evil associated with sequential assembly can be expected to strike
again: Earlier item pools are then likely to contain better items.

Solutions to this problem are possible, for instance, by assembling a set of
parallel pools, keeping one pool and returning all but one of these pools to
the master pool. This measure guarantees that the future item pool always
contains a subset of items with the same quality as the current operational
pool. An optimization model for the problem of simultaneous assembly of
multiple pools is formulated in Section 11.5.5. If the problem becomes too
large, we could use a generalized version of the big-shadow-test method in
Section 6.3 and assemble one new operational pool and a shadow pool that
is the aggregate of a set of future pools. The items in the shadow pool are
then returned to the master pool.

Another example of a problem we have not yet discussed is the design
of item pools for programs with tests of a special format. Although we will
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discuss the problem of item-pool design for programs with adaptive tests
in the next chapter, programs with testlet-based or multistage adaptive
testing are not addressed in this book. The same holds for programs with
a random sampling of fixed tests for the individual test takers (“linear
on-the-fly testing”).

Research on these and other topics is being done, and hopefully the
results will reach the testing literature before too long.

10.10 Literature

If the composition of an item pool is unbalanced, the quality of the tests is
low and we may even run the risk of an infeasible problem. In this sense,
the composition of the item pool is “our most important constraint on
test-assembly problems.” It is therefore amazing that the problem of item-
pool design has received so little attention in the psychometric literature.
Fortunately, the situation changed somewhat when large-scale adaptive
testing programs were introduced and testing organizations became aware
of the impact of the item pool on the exposure rates of the items.

The first to introduce integer programming in item-pool design was
Boekkooi-Timminga (1991). Her model was for the improvement of an
existing pool calibrated under the Rasch model; its objective was maxi-
mization of the TIFs of the tests to be assembled from it.

This chapter approaches the problem of item-pool design as an opti-
mization problem over a design space for the item pool. It borrowed this
perspective from optimal design theory in statistics (Section 4.7). For an
introduction to optimal design in statistics and applications to test de-
sign, we refer to the literature section at the end of Chapter 4. The basic
ideas were introduced in van der Linden, Veldkamp, and Reese (2000). This
reference should also be consulted for details of the empirical example in
Section 10.6. Dynamic versions of item-pool design models were suggested
in the same paper; they were developed further in Ariel, van der Linden,
and Veldkamp (in press). The example in Section 10.7.3 was also taken
from Ariel, van der Linden, and Veldkamp (in press). A review of several
other aspects of item-pool design for programs with fixed tests is offered
in Veldkamp, van der Linden, and Ariel (2003). For the k-nearest-neighbor
regression method proposed as a smoother for the cost functions in this
chapter, see, for example, Hastie, Tibshirani and Friedman (2001, chapters
2 and 13).
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10.11 Summary

1. The problem of item-pool design should be addressed at the level of
a program of tests. The two basic programs addressed in this chapter
are programs with parallel forms of single tests and programs with
parallel forms of multiple tests.

2. Design models are formulated over a design space D defined as the
Cartesian product of all item attributes figuring in the specifications
of the tests in the program. Quantitative attributes are represented
by a set of discrete values. Points in D are referred to as design points.

3. Design models have decision variables defined as the number of items
with the combinations of attributes at the design points required in
the pool. The models have constraints that represent the specifica-
tions of the tests in the program and minimize an objective function
representing the costs of writing the items.

4. Design models are integer programming models that can be solved
using a regular IP optimizer. An optimal blueprint for the item pool is
calculated from the solution to a design model. The blueprint defines
the combinations of attributes of the items to be written for the pool.

5. The notion of optimal item-pool design was motivated by the the-
ory of optimal design for parameter estimation in statistics. The
differences between the design models in this chapter and those for
parameter estimation problems in statistics are: (i) an extension of the
design space to include all nonstatistical attributes of the problem,
(ii) the presence of a large collection of constraints representing the
test specifications, and (iii) the replacement of an objective function
for the accuracy of the estimator by a cost function.

6. Design models for programs with single and multiple tests resemble
the earlier models for test assembly in this book, except for the follow-
ing differences: (i) the decision variables are no longer restricted to 0-1
values but are fully integer, (ii) all test specifications, including those
for the TIF, are dealt with as constraints, (iii) logical constraints on
enemy items and item overlap between tests are not required, and
(iv) quantitative constraints at the item level are not required.

7. Cost functions for item writing can be based on direct estimates of
the costs of the items. But they can also be based on such proxies as
(i) the amount of time required to write items to their blueprints, (ii)
the risk of having to fix or reject an item, or (iii) the number of items
in a previous item pool of the program with the attributes associated
with the design points.
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8. Since the cost functions are used in an optimization problem, mono-
tone functions of (proxies to) actual costs work equally well. We
can therefore eliminate all constant components in our estimates and
focus on costs varying with the more dominant item attributes.

9. For larger design spaces, it is recommended to improve the cost es-
timates by using a smoothing technique or fitting a model to the
estimates.

10. If the program has set-based items, the design model should be for-
mulated over the joint design spaces for the items and stimuli. The
optimal blueprint for the item pool shows which items to write for
which stimuli.

11. It is possible to design an item pool in a more continuous fashion,
with items being written while tests are already being assembled.
We then use a dynamic version of the design model that allows us
to calculate an optimal update of the blueprint for each subsequent
planning period.

12. If the program has a fixed group of item authors, it is attractive to add
them as categorical attributes to the design space. The model then
automatically assigns item blueprints to optimal item authors. If the
authors have restricted capacity, the restrictions can be included as
constraints in the design model.

13. If an operational pool is to be assembled from a master pool, the
assembly can be done using a simple optimization model. The model
assigns the items in the master pool to the points in the design space
that minimize the deviations of the actual values for the statistical
item parameters from the values at their design points, subject to
the condition that the blueprint is realized with respect to all other
attributes that describe these points.

10.12 Exercises

10.1 Define the design space for the test specifications in Exercise 3.8.
How many design points does this space have. What could be done
to reduce the size of the space?

10.2 Formulate the design model for a program with five parallel forms of
the tests in Exercise 3.8, with the test length constrained to be equal
to n = 30 instead of being minimized, assuming we have estimates of
the cost function for the items.
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10.3 Reformulate the model in Exercise 10.2 for an extension of the pro-
gram with eight parallel forms of a test with the same content spec-
ifications but the bounds on the TIF imposed at θ = 0 and θ =
2.

10.4 Formulate the version of the model in Exercise 10.3 with aggregated
bounds in Section 10.3.3.

10.5 Formulate the version of the model in Exercise 10.3 for the case where
the two types of tests should have an overlap between four and eight
items.

10.6 A testing program consists of six parallel forms of a set-based physics
test on the following four topics: static electricity, magnetism, current
electricity, and light. The test should have two sets on each topic.
The number of items per set should be 4–6, while the total number
of items should equal 40. For each item set, the number of items
measuring the use of a physical law should not be smaller than the
number measuring knowledge of a concept or a principle. At most,
18 items should require computational activity. No more than four of
the stimuli should contain a description of an experiment. Formulate
the model for the optimal blueprint of the item pool, assuming we
have estimates of the cost functions for the stimuli and items.

10.7 Formulate the models for the three-stage approach in Section 10.5.2
for the design problem in Exercise 10.6.



11
Designing Item Pools for Programs
with Adaptive Tests

A blueprint of an item pool for an adaptive testing program is the same
type of array (N1, ..., ND) over the design space for the program as in the
preceding chapter. But the numbers can no longer be calculated from the
solution (x1, ..., xD) to a single design model. The reason is, of course, that
in adaptive testing each individual test taker gets a different selection of
items adapted to his or her response vector. Consequently, there exists
no single item pool that is optimal for the response vectors of all test
takers. We therefore use a Monte Carlo method and simulate adaptive test
administrations for ability levels randomly sampled from the population of
test takers. The design space serves as the item pool in this simulation. The
optimal blueprint for the program is estimated using counts of the number
of times each point in the design space is visited during the simulations.

The simulations are conducted using the shadow-test approach (STA)
to adaptive testing. The STA comes in handy because the model for the
shadow tests enables us to impose the full set of specifications for the
adaptive test on the selection of the items. Besides, its objective function
can be used to optimize the design with respect to a cost function. In fact,
the model for the shadow test in the simulations now becomes our design
model for the item pool.

One of the key features of the shadow-test model in this application is
that it is fully dynamic; each time an item is administered, all constraints
in the model are updated. In spite of these updates, the model is less
complicated than the standard model for the assembly of shadow tests
in Chapter 9. For the same reason as for the design models in Chapter
10, we can suspend most of the logical constraints implied by the test
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specifications. The same also holds for the item-ineligibility constraints
introduced in Chapter 9 to control the exposure rates of the items. These
constraints are replaced by a simple adjustment of the results from the
simulations.

Operational item pools in adaptive testing programs are typically assem-
bled from a master pool. The basic model for assembling an operational
pool to a blueprint was already presented in Section 10.8. The model does
not change if the pool is used for adaptive testing; we therefore do not need
to discuss it again. Instead, attention will be paid to a few new problems
that may emerge when preparing an item pool for adaptive testing. For
example, we will discuss how to optimally stratify an item pool for use
in adaptive testing with alpha stratification (Section 9.4.1). In addition,
we will present an intuitively attractive principle for assembling an item
pool from a master pool that can be used as an alternative to the basic
item-pool-assembly model in Section 10.8 if no blueprint for the pool is
available. Finally, we will show how to assemble a system of item pools for
rotating among testing sites to minimize the risk of item compromise.

11.1 Programs with a Single Adaptive Test

The basic idea is thus to simulate adaptive test administrations for test
takers j = 1, ..., J with ability levels randomly sampled from the population
for which the pool is designed. The items in these administrations have the
combinations of attributes at the points in the design space D defined by
the specifications of the adaptive test (Section 10.1).

Relative to regular adaptive testing, two modifications are required: First,
analogous to a program with fixed tests, we have to reformulate the model
for the assembly of a shadow test in (9.11)–(9.21) as an IP model over the
design space. Second, we have to formulate a rule for selecting items from
the shadow test for administration to the simulated test takers.

11.1.1 Design Model for Shadow Tests
We use decision variables xd to represent the number of items selected at
the design points d = 1, ..., D. More precisely, these variables are defined
as

xd = number of free items at design point d in the shadow test. (11.1)

In the model, these variables are combined with counters for the number
of items at each of the points d ∈ D already administered to the test
taker. Specifically, we use η

(j,g−1)
d to denote the number of items with the

combination of attributes at d already administered to test taker j during
the first g − 1 items in the test.
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Just as for design models for programs with fixed tests, we control the
TIF using constraints with lower bounds representing values of a target
function T (θ). But each time, only one bound is active. As before, we use

θ̂
(g−1)
j to denote the ability estimate of test taker j after g − 1 items in the

adaptive test. The bound on the TIF active in the shadow test for the gth

item is the value of the target function T (θ) at θ = θ̂
(g−1)
j . The bound is

denoted as T (g−1)
j .

The design model for the shadow test for the selection of the gth item
is the following adjusted version of the standard model for the assembly of
shadow tests in (9.11)–(9.21):

minimize
D∑

d=1
ϕdxd (objective) (11.2)

subject to possible constraints at the following levels:

Test Level
D∑

d=1
Id(θ̂

(g−1)
j )(η(j,g−1)

d + xd) ≥ T (g−1)
j , (test information) (11.3)

D∑
D=1

(η(j,g−1)
d + xd) = n, (test length) (11.4)

∑
d∈Vc

(η(j,g−1)
d + xd) � nc, for all c, (categorical attributes) (11.5)

D∑
D=1

qd(η
(j,g−1)
d + xd) � bq; (quantitative attributes) (11.6)

Item Level∑
d∈V1

(η(j,g−1)
d + xd) = n1, (special combinations of attributes) (11.7)∑

d∈V0

(η(j,g−1)
d + xd) = 0; (special combinations of attributes) (11.8)

Definition of Variables

xd ∈ {0, 1, ...}, for all d. (range of variables) (11.9)

The points d ∈ D for which the shadow test has a value xd ≥ 1 are the
active design points during the selection of item g. The item selected for
administration has the combination of attributes at the active point with
the minimum value for the cost function ϕd.

At first sight, it might seem more attractive to select an item at the de-

sign point with maximum information at θ̂
(g−1)
j . However, since the bounds
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in (11.3) are imposed on each shadow test, the adaptive test automatically
realizes values for the TIFs close to the target function T (θ) for the pop-
ulation of test takers. More importantly, since the objective is to find the
item pool with minimum cost, the same objective should be used when
selecting items for administration.

If an item with attributes at point d is administered, its counter η
(j,g−1)
d

is updated. As a result of these updates, after J simulated test takers, we
are able to calculate the array of counts

(η1, ..., ηD) (11.10)

with

ηd =
J∑

j=1

η
(j,n)
d , (11.11)

where η
(j,n)
d is the last update of η

(j,g−1)
d for test taker j.

It is instructive to compare the design model in (11.2)–(11.9) with the
earlier design model for a program with a single fixed test in (10.6)–(10.13),
as well as with the standard model for the assembly of a shadow test in
(9.11)–(9.21):

1. Most of the model in (11.2)–(11.9) follows from (10.6)–(10.13) upon
substitution of the expression η

(j,g−1)
d + xd for the variables xd in

the constraints. The set of counters η
(j,g−1)
d , d ∈ D, represents the

items in the shadow test that have already been administered. The
set of decision variables xd represents the number of free items in the
shadow test.

2. Analogous to (10.83), the substitution does not take place for the
objective function in (11.2). It only makes sense to minimize the costs
of items not yet administered; the costs of items that have already
been administered are fixed.

3. Because of the presence of the counters in the model, the constraint
on the previous g − 1 items in the model for the assembly of shadow
tests in (9.15) can be omitted.

4. For the same reason as for the design models for fixed tests in Chapter
10, both the constraints on enemy items and the item-level constraints
on quantitative attributes have been omitted.

5. In the shadow-test model in (9.11)–(9.21), the ability estimate θ̂
(g−1)

and the constraint on the previous items in (9.15) are the only expres-
sions updated after each new item. In the current model, the counts
η
(j,g−1)
d and target value T (g−1)

j are also updated. As a consequence,
each constraint in the model is dynamic.
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The substitution of η
(j,g−1)
d + xd for xd parallels the one in the model

for the update of an item-pool blueprint in (10.83)–(10.90), which was
introduced to correct this model for the attributes of the items already in
the pool at the beginning of a new planning period.

In practical applications, the design model in (11.2)–(11.9) may have to
be extended with a few of the special features of adaptive testing discussed
in Chapter 9, such as alpha stratification or control of speededness. Each
new constraint entailed by these extensions has to be subjected to the same
substitution. Not surprisingly, the only extension that is more complicated
is adaptive testing with item sets. In Section 11.3, we will show how to
optimize a blueprint for a pool with set-based items.

11.1.2 Blueprint without Item-Exposure Control
In the adaptive-testing jargon, the counts in (11.10) are the number of times
an item at d ∈ D was “exposed” to a random test taker. The simulations
thus yield estimates of the (marginal) exposure rates of the items at the
points d ∈ D that are equal to ηd/J .

If the adaptive test has no item-exposure control, the blueprint for the
item pool follows directly from these exposure rates. For any point with a
positive rate, the item pool should have an item. In view of the generaliza-
tions below, we formulate the conclusion slightly more formally and define
the blueprint for the item pool as the array

(N1, ..., ND) (11.12)

with
Nd = int

(ηd

J

)
, (11.13)

where the int(.) function returns the first integer value not smaller than its
argument.

It generally holds that the average exposure rate for an item pool in
adaptive testing is equal to n/I, where n is the length of the adaptive test
and I the size of the item pool (Exercise 9.3). An estimate of this average
can be calculated directly from (11.10) as

D∑
d=1

ηd

JD
. (11.14)

Ignoring the rounding operation, the size of the item pool corresponding
with the exposure rates ηd/J in (11.13) is thus equal to

I∗ =
nJD
D∑

d=1
ηd

. (11.15)
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If for some reason a larger item pool, with a size minimally equal to Imin >
I∗, is required, the numbers in (11.13) should therefore be replaced by

Nd = int
(

ηdI
min

JI∗

)
. (11.16)

11.1.3 Blueprint with Marginal Item-Exposure Control
For the case of item-exposure control, one might have expected special con-
straints in the model for the shadow tests, especially the item-ineligibility
constraints in (9.43). The reason we did not include them is the same as for
the omission of the constraints on enemy items and item overlap: there are
no actual items yet, and there is thus nothing to control. Rather, we design
the item pool such that the necessity of item-exposure control for the ac-
tual adaptive test (that is, the expected number of ineligibility constraints
on its shadow tests) is minimized.

This goal can be realized using the following simple adjustment. Let
rmax still denote the upper bound on the marginal item-exposure rates.
The blueprint can then be calculated from the estimates ηd/J from the
simulated test administrations as

(N1, ..., ND) (11.17)

with
Nd = int

( ηd

Jrmax

)
, (11.18)

The division by rmax in the argument guarantees that the share of the
total exposure for each of the Nd items at d is not larger than rmax. If the
item pool is required to have a predetermined minimum size, a correction
similar to that in (11.16) should be applied to (11.18) (Exercise 11.1).

11.1.4 Blueprint with Conditional Item-Exposure Control
If conditional exposure rates of the test have to be controlled, the counts
should be recorded for a partitioning of the θ scale into a collection of small
intervals. If the intervals are indexed by k = 1, ..., K, their counts can be
denoted as η

(k)
d . Likewise, the number of test takers sampled from interval

k can be denoted as J (k).
Since all conditional exposure rates have to be controlled simultaneously,

we propose to calculate the blueprint for the item pool such that the max-
imum conditional exposure rate over the K intervals satisfies rmax. The
blueprint is then given by

Nd = int

(
max

k

{
η
(k)
d

J (k)rmax

})
. (11.19)
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The price paid for this slightly conservative approach is an item pool that
is somewhat larger than actually required for most of the test takers. To
realize a prespecified minimum size for the item pool, a correction similar
to (11.16) should be applied (Exercise 11.1).

11.1.5 Empirical Example
A Monte Carlo study based on the model in Section 11.1.1 was conducted
to design an item pool for an adaptive version of the quantitative portion of
the Graduate Management Admission Test (GMAT). The specifications of
the test involved eight different attributes: five content attributes and the
three item parameters for the response model in (1.16). We chose represen-
tative sets of nine values for the discrimination parameter and 14 values
for the difficulty parameter and ignored the guessing parameter. The total
number of design points was equal to 12,096. The IIFs at the design points
were calculated using the values for the difficulty and discrimination pa-
rameters associated with the design points along with the average value for
the guessing parameter in a previous pool of 397 items. The total number
of constraints in the model for the shadow tests was equal to 30.

The cost function was the one in (10.78) estimated from the same pre-
vious pool. No attempt was made to smooth this function, which was
thus rather coarse. Because we had no target for the information func-
tion of the GMAT, the constraint in (11.3) was replaced by the following
weighted combination of test information at the ability estimates and the
cost function:

maximize w1

D∑
d=1

Id(θ̂
(g−1)
j )xd + w2

D∑
d=1

ϕdxd, (11.20)

with a negative value for w2.
The administrations were simulated for θ values sampled from N(1, 1),

which seemed a reasonable guess for the GMAT population. Consequently,

the initial ability estimate was set equal to θ̂
(0)

= 1 for each simulated test
taker. The estimates were updated using the expected a posteriori (EAP)
estimator with a noninformative prior distribution.

The key result from the simulated test administrations was the esti-
mate of the exposure rates, ηd/J, that enables us to calculate an optimal
blueprint for any upper limit on the item-exposure rates for the GMAT us-
ing (11.18) or (11.19). Because the result was an array of 12,096 numbers,
it is not shown here.
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11.2 Programs with Multiple Adaptive Tests

Two different programs with multiple adaptive tests are discussed: (i) a
program in which tests with different specifications are administered from
the same item pool, and (ii) a program in which tests with the same
specifications are administered from different item pools.

11.2.1 Different Tests from the Same Item Pool
In the first type of program, the test specifications are different in the sense
that they require different bounds for some of the constraints on the shadow
tests. This definition includes the case of different subsets of constraints for
different tests, which can be realized by selecting values for some of the
bounds that make their constraint inactive. By changing the bounds, the
tests may thus have different lengths, different targets for their information
functions, different content distributions, and so on.

To the author’s knowledge, programs with different adaptive tests from
the same item pool do not yet exist. But they are technically possible and
offer several advantages over programs in which the same set of tests is
administered from different pools.

An attractive area of application for such programs is multidimensional
adaptive testing. In Section 9.7, several cases of multidimensional adaptive
testing with different combinations of intentional and nuisance abilities
were discussed (see also Section 8.1). Tests for different combinations can
be administered from the same multidimensional item pool. If the model
for adaptive testing with minimum error variance in (9.63)–(9.70) is used,
the only operation involved in the transition from one test to another is
a change of the weights in the constraints that define the different cases
of multidimensionality. Comparable operations are possible for the model
with maximization of the Kullback-Leibler information in Section 9.7.3.

Applications for which such programs are welcome are testing for ad-
mission and placement with different success criteria, such as testing for
admission to different educational programs or for placement in different
jobs in an organization. Current testing for these purposes consists mainly
of batteries of unidimensional tests with different weighting of their scores
for different criteria. However, instead of post hoc weighing of scores, both
the validity and efficiency of the test can be improved by designing pools
with items that reflect the multidimensional complexities of the criteria
and imposing the weights directly on the selection of the items using the
test-assembly model in (9.63)–(9.70).

Relative to a program with a single test, designing an item pool for a
program with multiple adaptive tests hardly involves any extra work. The
only thing that has to be done is to repeat the simulated administrations
for each test, with an appropriate change of the constraints in the model for
the shadow tests. The ability levels of the test takers in the simulations have
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to be sampled from the different populations to which the tests are to be
administered, with sample sizes proportional to the size of the populations.
The blueprint for the item pool is calculated by aggregating the counts in
(11.11) over the different tests.

11.2.2 Same Test from Different Item Pools
An example of the second type of program is adaptive testing with rotating
item pools. In this application, which has been proposed to discourage test
takers from trying to share items, different versions of the item pool are
rotated among the testing sites. Because the tests, and hence the item
pools, should be parallel, the design of a system of rotating pools does not
involve anything new. For each of these pools, the same blueprint applies.
In Section 11.5.5, we will discuss the problem of how to assemble such
systems of pools simultaneously.

11.3 Item Sets

Just as for the problem of designing a set-based item pool for a program
with fixed tests addressed in Section 10.5, we use separate design spaces D
for the items and E for the stimuli. The blueprints for the numbers of items
and stimuli have the same format as the arrays in (10.58) and (10.59).

11.3.1 Design Model
Following (10.54) and (10.55), the decision variables for the items and stim-
uli are denoted as ze and xde

, whereas we use ϕe and ϕde
to denote the

cost functions. As before, g = 1, ..., n and l = 1, ..., m denote the items and
stimuli in the adaptive test, respectively. For notational convenience, we
suppose the item set for stimulus l − 1 has been completed and that item
g is the first item selected for the lth stimulus.

A key difference with the problem of an item pool of discrete items is
that when selecting a new stimulus in the simulated test administrations
we also have to account for the stimuli already administered. Therefore, we
introduce counters for the number of stimuli at e ∈ E administered to the
test taker. Specifically, in addition to η

(j,g−1)
d , we use µ

(j,l−1)
e to denote the

number of stimuli at point e administered to test taker j during the first
l − 1 stimuli in the test.

The model for the shadow test for the selection of the gth item is as
follows:

minimize
E∑

e=1

D∑
d=1

ϕdexde +
E∑

e=1

ϕeze (11.21)

subject to possible constraints at the following levels:
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Test Level
E∑

e=1

D∑
d=1

Ide(θ̂
(g−1)
j )

(
η
(j,g−1)
de

+ xde

)
≥ T (g−1)

j , (11.22)

E∑
e=1

D∑
d=1

(
η
(j,g−1)
de

+ xde

)
= n, (11.23)

E∑
e=1

(
µ(j,l−1)

e + ze

)
= m, (11.24)

E∑
e=1

∑
d∈V item

c

(
η
(j,g−1)
de

+ xde

)
� nitem

c , for all c, (11.25)

E∑
e=1

D∑
d=1

qd

(
η
(j,g−1)
de

+ xde

)
� bitem

q , (11.26)

∑
e∈V stim

c

(
µ

(j,l−1)
e + ze

)
� nstim

c , for all c, (11.27)

E∑
e=1

qe

(
µ(j,l−1)

e + ze

)
� bstim

q ; (11.28)

Item-Set Level
D∑

d=1

(
η
(j,g−1)
de

+ xde

)
� nset

(
µ

(j,l−1)
e + ze

)
, for all e, (11.29)

D∑
d=1

(
η
(j,g−1)
de

+ xde

)
� nset

c

(
µ

(j,l−1)
e + ze

)
, for all e, (11.30)

D∑
d=1

(
η
(j,g−1)
de

+ xde

)
� bset

q

(
µ

(j,l−1)
e + ze

)
, for all e; (11.31)

Stimulus Level ∑
e∈V stim

1

(
µ(j,l−1)

e + ze

)
= nstim

1 , (11.32)

∑
e∈V stim

0

(
µ(j,l−1)

e + ze

)
= 0; (11.33)

Item Level ∑
d∈V item

1

(
η
(j,g−1)
de

+ xde

)
= nitem

1 , (11.34)

∑
d∈V stim

0

(
η
(j,g−1)
de

+ xde

)
= 0; (11.35)
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Definition of Variables

xde ∈ {0, 1, ...}, for all d and e, (11.36)

ze ∈ {0, 1, ...}, for all e. (11.37)

The descriptive labels for the constraints are omitted because of lack of
space; however, they parallel those in (10.61)–(10.77). Observe that, except
for the objective function, we have not only substituted η

(j,g−1)
de

+xde
for xde

but also µ
(j,l−1)
e +ze for ze. Together, counters η

(j,g−1)
d and µ

(j,l−1)
e represent

the part of the shadow test that has already been administered. As a result,
the earlier constraints on the previous items and stimuli in (9.15) and (9.29)
could be omitted. Also, recall that the item-level constraints in (11.29)–
(11.31) should always have an upper bound (Section 7.1).

The points e ∈ E for which the shadow test has a value ze > 0 are
the active design points during the selection of a stimulus. Let e(l) be the
point at which the current stimulus, l, was chosen. We now need rules for
selecting the items as well as the stimuli. We propose the following rules:

1. The items are selected at the active points de(l) in D associated with
the current stimulus point e(l). The criterion for selecting an item
is a minimum value for the cost function for the items, ϕd

e(l) . Item
selection from this subset of points is continued until the shadow test
has no free items for the current stimulus. (That is, a new solution
has a value for ze(l) one lower than the current value.) We then select
a new stimulus.

2. The new stimulus is chosen to be the stimulus at the active point e
with the lowest costs for an item set associated with it. The cost of
the item set is calculated as

ϕe +

D∑
d=1

ϕdexde

D∑
d=1

xde

, (11.38)

where xde has the value for the current shadow test. The criterion is
equal to the cost of the stimulus plus the average costs of the items
associated with it.

The condition to select items for stimulus point e(l) until the shadow test
has a solution with a lower value for its decision variable ze(l) guarantees
that the items are treated at the level of an entire set. If a set has been
administered, the competition between the stimulus points opens up again,
and the test is allowed to move to another point (or stay at the same point
if this appears to be more advantageous).
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The item-set level constraints in (11.29)–(11.31) guarantee that the ac-

tive points in D and E are always consistent. The updates of θ̂
(g−1)

in the
constraint on the test-information function in (11.22) introduce a tendency
for other points in D and E to become active after a new item and/or
stimulus is selected.

11.3.2 Calculating the Blueprint
For brevity, the calculations are presented for a program with control of
the marginal exposure rates only. The generalization to conditional rates
is straightforward (Exercise 11.2).

In addition to (11.10) and (11.11), we now also have the counts of the
number of stimuli at the points e ∈ E ,

µe =
E∑

e−1

µ(j,m)
e , (11.39)

where µ
(j,m)
e is the last update of µ

(j,l−1)
e for test taker j. Since the exposure

rate of an item can never exceed the rate of its stimulus, it makes sense
to apply the rounding in (11.13) to the counts for the stimuli and then
calculate the blueprint for the items.

If the upper limit on the exposure rates is rmax, the blueprint for the
stimuli can be written as

(N1, ..., NE), (11.40)

with
Ne = int

( µe

Jrmax

)
. (11.41)

Due to the upward rounding in (11.41), we get extra stimuli in the pool.
As a result, we also need a few extra items to complete the sets for these
stimuli. Let

εe = int
( µe

Jrmax

)
− µe

Jrmax (11.42)

be the effect of the rounding. It is proposed to calculate the blueprint for
the items as ⎛⎝ N11 ... N1E

... ... ...
ND1 ... NDE

⎞⎠ , (11.43)

with

Nde
= int

(
(1 + εe)ηde

Jrmax

)
. (11.44)

If a minimum size for the item pool has been set in advance, a correction
similar to (11.16) should be applied.
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11.4 Calculating Shadow Tests

The only difference with the regular case of adaptive test assembly dis-
cussed in Section 9.1.5 is that the shadow tests are calculated over a design
space much larger than the actual pool. Hence, they take much more time.

On the other hand, the goal is not to simulate real-time CAT admin-
istrations. Besides, the entire process of item-pool development is rather
time-intensive, and a day or so spent on simulations to optimize the design
of the pool should be a worthwhile investment.

In principle, the only points in the design space that we need to address
in the model are those that become active during the simulations. Since
the computing time depends directly on the number of points, the time
can be lowered by looking for methods to reduce the design space. A key
factor in this reduction is the cost structure of the problem; points with
prohibitively large costs are unlikely ever to become active and could be
removed from the model. Methods for identifying such points in advance
have not yet been researched in detail.

11.5 Some Remaining Topics

In adaptive testing, it is common practice to assemble the operational item
pool from a master pool. The model for this problem was already presented
in Section 10.8. In this section, we address a few remaining topics of item-
pool development for adaptive testing, namely (i) optimizing item-pool
stratification, (ii) item-pool assembly without a blueprint for the pool, and
(iii) the assembly of a system of rotating item pools for adaptive testing.

11.5.1 Stratifying an Item Pool
To introduce alpha stratification in adaptive testing, the item pool has to
be stratified on the item-discrimination parameter, a. During the test, a
fixed number of items are selected from each subsequent stratum.

Alpha stratification can be implemented by inserting the constraints in
(9.30) into the model for the shadow test. The definition of these constraints
was based on two different arrays, one that defines the strata in the pool,

(Q1, ..QP ), (11.45)

and another that defines the number of items to be administered from the
strata,

(n1, ...., nP ). (11.46)

In this section, we address the question of how to stratify an operational
item pool for which the stratification (Q1, ..QP ) has already been deter-
mined. The more important question of how to design a new item pool for
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alpha-stratified adaptive testing appears to be too complicated. We then
have to optimize simultaneously (i) a blueprint (N1, ..., ND) with respect to
a cost function over D and (ii) a stratification (Q1, ..QP ) for the blueprint
with respect to a statistical criterion. The only possible approach seems
to be a trial-and-error method in which we try to find the best values for
(N1, ..., ND) given trial values for (Q1, ..QP ), or conversely.

Since adaptive testing with alpha stratifications has been studied mainly
for the objective function in (9.31)–(9.33), we discuss a model for the joint
stratification of a given item pool on item parameters a and b. Stratification
on both parameters allows us to choose from items with a wide range of
values for the difficulty parameter within every stratum Qp visited during
the test.

The idea is to replace the original space by a new two-dimensional at-
tribute space D defined by item-difficulty parameter b and discrimination
parameter a only. The points in this space form a grid with coordinates
for b that are representative of the range of values bi in the item pool and
the coordinates for a in (Q1, ..., Qd). (Of course, we are free to choose new
coordinates for a if that results in a better solution.)

As in the model in Section 10.8, we assign the items i = 1, ..., I in the
pool to the attribute points d ∈ D such that the sum of the distances
between the items and the points is minimized. If we choose the same
distance measure as in (10.92), the model is

minimize
I∑

i=1

D∑
d=1

δidxid (11.47)

subject to
D∑

d=1
xid = 1, for all i, (supply) (11.48)

I∑
i=1

xid = nd, for all d, (demand) (11.49)

xid ≤ 1, for all i and d, (range of variables) (11.50)

where nd is the prespecified number of items needed at point d.
Because of the equality constraints in (11.48) and (11.49), the model has

the form of a (semiassignment) network-flow problem. (A full assignment
problem arises if nd = 1 for all d.) As discussed in Section A1.4, we therefore
relaxed the integer constraints on the values of xid in (11.50). The result
is a fast solution that is always fully integer.

11.5.2 Empirical Example
The model for optimal stratification in (11.47)–(11.50) was applied to a
pool of 360 items for an adaptive version of the quantitative test of the
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Stratum 1 Stratum 2 Stratum 3 Stratum 4
# Items 90 90 90 90
Parameter a

Mean .53 .75 .93 1.26
SD .11 .10 .13 .21
Range .26–.73 .54–.99 .63–1.23 .98–2.00

Parameter b
Mean −.10 −0.03 .13 .54
SD 1.18 1.03 .92 .60
Range −2.89–2.02 −2.89–1.79 −2.47–1.76 −.92–1.21

TABLE 11.1. Results for the GRE item pool for an application of the stratification
model in (10.126)–(10.129).

Graduate Record Examination (GRE). The pool was calibrated using the
3PL model in (1.16).

We chose an attribute space of 20 points defined by the four values .55,
.74, .95, and 1.28 for parameter a and the five values −2.0, −1.0, 0, 1.0, and
2.0 for parameter b. Both sets of values were representative of the actual
range of the values of the items in the pool for the two parameters. (The
parameter values for b were scaled to have a mean of zero.) To each of the
20 points d ∈ D we assigned nd = 18 items. The items were assigned using
the distance measure in (10.92) with the weights in (10.93) calculated for
the actual ranges of parameter values in the item pool.

The results from the stratification are summarized in Table 11.1. The
means, standard deviations, and ranges for parameter a show the desired
differences between the four strata. There is some overlap between the
ranges, which is the result of our attempt to get uniform distributions
for the values of parameter b within each stratum. It appeared somewhat
difficult to realize both goals simultaneously; particularly the range of b
for the highest stratum deviates from the other strata. This deviation is
the result of substantial correlation between the two item parameters in
the pool (.44). The deviation was thus the price paid for the fact that
an arbitrary item pool was taken instead of one specially optimized for
adaptive testing with alpha stratification.

11.5.3 Assembling an Item Pool as a Set of Fixed Test Forms
At face value, an item pool may seem to serve an adaptive testing program
best if the distribution of points at which the items in the pool have max-
imum information follows the distribution of θ for the population of test
takers. We would then have sufficient items everywhere along the θ scale.
Also, as the two distributions have identical shapes, the item pool would
have the same built-in type of exposure control pursued in the calculation
of the item-pool blueprint in (11.17)–(11.19). This point of view is not cor-
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rect, however; it overlooks the fact that the test has to meet a set of content
specifications as well. For each estimate of θ during the test, we need not
be able to find an informative item close to it but an informative shadow
test that meets each of the content specifications.

A practical advantage of this method over the standard model for item-
pool assembly in Section 10.8 is that no blueprint for the item pool is
required. It can be used directly to assemble an operational item pool from
any master pool (though we get better results if the items have been written
to an optimal blueprint for the operational pool).

Suppose the operational item pool is assembled as a set of fixed test
forms with the following two features:

1. Each form meets all constraints to be imposed on the test.

2. The distribution of the points at which the forms have maximum
information reflects the ability distribution of the population of test
takers.

For a pool of this type, the STA would always be able to find a shadow
test close to the current estimate of θ. And since the distribution of the
locations of the peaks of the TIFs reflects the ability distribution of the test
takers, we would always have more shadow tests available in areas where
we have more test takers and thus introduce a trend to more uniform item
exposure as well. (Of course, shadow tests always contain the items that
were optimal at the different θ values visited earlier by the test taker, but
this feature of adaptive test assembly cannot be avoided.)

A set of fixed test forms with these two features can easily be assembled
using one of the regular models for the assembly of multiple tests in Chapter
6. In the empirical example below, we used the model for simultaneous
assembly in (6.3)–(6.13) in combination with a relative target value for
the TIF of each individual test. The target values were imposed using the
following version of the maximin principle in (5.25)–(5.27) for multiple-test
problems:

maximize y (11.51)

subject to
I∑

i=1
Ii(θt)xit ≥ y, for all t, (11.52)

y ≥ 0, (11.53)

where the values θt are the single values at which the information in test
t = 1, ..., T is maximized. Also, observe that (11.52) is (5.26) with Rk = 1.

The distribution of the θt values should be chosen to follow the ability
distribution of the population of test takers. Let g(θ) denote a density
that describes this population. A straightforward method for choosing a
set of values (θ1, ..., θT ) reflecting g(θ) as closely as possible consists of the
following steps:
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1. Choose the size of the item pool T times as large as the size of the
test length.

2. Partition the θ scale into T intervals, where each interval has an equal
portion of the probability mass in g(θ) (ignoring the extremes of the
tails).

3. Choose points θt, t = 1, ..., T , to represent these T intervals; for ex-
ample, the points with equal mass in the interval on each side. The
distribution of these points reflects the shape of g(θ) (Exercise 11.3).

11.5.4 Empirical Example
We used a pool of 5,316 items for the LSAT as the master pool from which
we assembled an operational pool for the 50-item adaptive version of the
test. The pool had to consist of T = 10 test forms, each meeting the full
set of content constraints for the LSAT. As in some of our earlier examples,
we ignored the item-set structure of two of the sections in the test. The
population of test takers was assumed to have an N(0, 1) distribution. The
values θt were determined using the method in the preceding section. The
total number of variables in the model was equal to 53,161 (5,316 variables
for each of the ten forms plus minimax variable y). For the computational
aspects of this extremely large example, see our report in Section 4.2.4.

The item pool was evaluated against a second pool in which the dis-
tribution of the total information in the pool reflected the population
distribution g(θ). This second pool represents the naive view of item-pool
design referred to at the beginning of the preceding section.

To make the second pool otherwise as comparable as possible, it was
assembled as a set of ten parallel forms, each satisfying the same set of
specifications for the test and with a shape reflecting the standard normal
distribution of θ. The only change in the model needed to assemble the
second set of test forms was the replacement of (11.52) by

I∑
i=1

Ii(θk)xit ≥ g(θk)y, for all k and t, (11.54)

where g(.) is the standard normal density function. Observe that the left-
hand side represents the information functions of the test forms and that
the right-hand side imposes the population distribution as a common target
on each of them.

The information functions of the sets of fixed test forms in the two pools
are shown in Figure 11.1. As a consequence of the application of the max-
imin principle with equal relative target values Rt = 1 in (11.51)–(11.53),
the information functions for the pool assembled according to the method
proposed in this section had peaks of about the same height. In addition,
the location of the peaks was denser closer to θ = 0 due to the distribution
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of points θt at which the target values were imposed. The second pool con-
sisted of a set of test forms with information functions that were parallel,
each with a shape that, except for its height, reflected the standard normal
distribution.

The two pools were evaluated against one another by comparing the re-
sults of 1,000 adaptive test administrations simulated at each of the values
θ = −2.0, −1.5, ..., 2.0. The shadow-test model for the two series of simula-
tions was the same regular model for the adaptive version of the LSAT. We
simulated versions both with and without additional item-exposure control
using the method with the ineligibility constraints in Section 9.4.4 with
rmax = .25.

The bias and MSE functions calculated from the ability estimates for
each of the four different conditions are given in Figure 11.2. Both panels
show a function for the pool assembled by the method proposed in this
section which much better results for the high and low ability values than
for the pool with the parallel test forms. This result is entirely due to
the fact that the proposed method effectively breaks down the correlations
between the item attributes and the item-parameters existing in the master
pool and, in doing so, creates a sufficient supply of items close to each point
on the θ scale.

Although we used a known true ability distribution g(θ) in this study to
assemble the item pools, in practice this distribution is not known. In an
additional study, we assessed the effects of replacing g(θ) by the distribution
of ability estimates θ̂ for a large sample of test takers from g(θ). For all
practical purposes, the results for the two distributions were identical. The
conclusions from this study therefore seem to apply to item-pool assembly
with an empirical estimate of the distribution of ability estimates as well.

11.5.5 Assembling a System of Rotating Item Pools
To offer test takers comparable tests in an adaptive testing program with
rotating item pools, the pools should be parallel. Let h = 1, ..., H denote
the item pools in the system. To achieve parallelness, the H pools should be
assembled to the same blueprint. Thus, the problem is a generalization of
the problem of assembling a single pool to a blueprint discussed in Section
10.8. A topic of this section is how to solve this more general problem.

As for the case of a single pool, we only have to consider the attribute
points d ∈ D in the blueprint with Nd > 0, and we denote the set of these
points as W . Also, we expect the master pool to contain the minimum
number of items required with the attribute combinations at the points
d ∈ W , except for a (hopefully slight) mismatch for their values for the
item-difficulty and discrimination parameters. Specifically, we expect the
master pool to have at least HNd of such items at the points d ∈ W .
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FIGURE 11.1. Ten test forms in the item pool with information functions with
maximizers reflecting the standard normal density (top) and ten parallel forms
with information functions each reflecting the standard normal density (bottom).
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FIGURE 11.2. Bias functions (top) and MSE functions (bottom) for adaptive
testing without (left) and with item-exposure control (right). The solid lines are
for the item pool assembled according to the proposed method; the dashed lines
are for the item pool with parallel forms.

Picking sets of exactly HNd items from the master pool with the smallest
values for the distance measure δid in (10.92) is a simple task that can be
done manually or by a sorting algorithm. Since the pools have to be parallel,
each of these sets has to be split into H subsets of Nd items with values
(ai, bi) for the item parameters that match each other as closely as possible.
The H operational pools can then be created by assigning one of the H
subsets at the points d ∈ W to each pool.
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Obviously, the problem resembles the two-stage test-splitting problem
treated in Section 5.4.2. The only differences are:

1. We now split a collection of test items into item pools instead of a
test into subtests.

2. In the second stage of the process, we assign sets of Nd items to the
pools instead of individual items to subtests.

The problem can be solved using an adjusted version of the models in the
two-stage solution process for the test-splitting problem in Section 5.4.2.
For notational convenience, we discuss the models for the case of H = 2
item pools.

First-Stage Model
Let i = 1, ..., 2Nd denote the 2Nd best items in the set preselected for point
d ∈ W . Because each of these sets has to be split into Nd pairs of items, we
use a second index j = 1, ..., 2Nd. Analogous to (5.56), decision variables
xijd are defined as:

xijd =
{

1 if items i and j at d are assigned to a pair
0 otherwise. (11.55)

The pairs of items are found for all sets at d ∈ W simultaneously us-
ing a slight extension of the model in (5.79)–(5.81), which was a more
parsimonious alternative to the one in (5.67)–(5.71):

minimize
∑
d∈W

2Nd−1∑
i=1

2Nd∑
j=i+1

δijxijd (11.56)

subject to

j−1∑
i=1

xij +
2Nd∑

i=j+1
xji = 1, for all j and d ∈ W, (11.57)

xijd ∈ {0, 1}, for all i < j and d ∈ W. (11.58)

Observe that the model is separable. If the problem is too large to be
solved in a reasonable time, it can be divided into a series of separate
problems for subsets of points in W with a joint solution equal to the
solution for the full model.
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Second-Stage Model
The result from the first stage is a set of I pairs of items, where I is the
common size of the two item pools to be assembled. The pairs are denoted
as p = 1, ..., I, while we use ip = 1, 2 to denote the items in pair p. The set
of pairs of items at point d ∈ W is denoted as Vd.

The problem is to assign the items in every pair p to the item pools
h = 1, 2 such that each pool satisfies the blueprint (N1, ..., ND) and they
are as parallel as possible with respect to the item parameters. Rather than
matching the pools on the values (ai, bi), our proposal is to match them
directly on their information functions, which are the quantities actually
used when assembling tests from the pools. Analogously to (5.72), decision
variables xiph are used for the assignment of item i in pair p to pool h.

The version of the second-stage model in (5.73)–(5.78) we need is

minimize y (11.59)

subject to
2∑

i=1

I∑
p=1

Iip(θk)(xip1 − xip2) ≤ y, for all k, (11.60)

2∑
i=1

I∑
p=1

Iip(θk)(xip1 − xip2) ≥ −y, for all k, (11.61)

∑
p∈Vd

2∑
i=1

xiph = Nd, for all d ∈ W and h, (11.62)

2∑
h=1

xiph = 1, for all i and p, (11.63)

xiph ∈ {0, 1}, for all i, p, and h. (11.64)

It is useful to compare this model with that for the assembly of a single
test in (10.94)–(10.96). Although they have different objective functions,
the differences between their constraints are more important. The set of
constraints in (11.62) is a generalization of (10.95); the constraints now
guarantee realization of the same blueprint (N1, ..., ND) for each individual
pool. The model in (10.94)–(10.96) also misses the constraints in (11.63).
These constraints are necessary only in the case of multiple pools; they
require that each item be assigned to one pool and thus prevent overlap
between pools.

Models for the Case without a Blueprint
If no blueprint for the item pools is available, the optimal numbers (N1, ...,
ND) are unknown. This lack of knowledge has two different consequences
for the problem of assembling a set of parallel item pools:
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1. The subset of design points W with Nd ≥ 1 cannot be identified.

2. The optimal size of the item pool I, which is equal to the sum of the
numbers Nd, is unknown.

These consequences suggest an approach in which a preselected portion
of the master pool is split into the necessary number of operational pools,
requiring the pools to be matched as closely as possible on the combinations
of item attributes we select as relevant.

For the version of the problem with H = 2 item pools, the proposed
method consists of the following steps:

1. Select a set of design points in D with the combinations of attributes
on which the item pools should match.

2. Select the items in the pool with the combinations of categorical
attributes at these design points. (If necessary, go back and forth
between the current step and the preceding step.)

3. Split the sets of items at these points into pairs with values for the
item parameters that match each other as closely as possible.

4. Assign the items in the pairs to different item pools, if necessary with
constraints on possible remaining quantitative attributes to match the
composition of the pools with respect to these constraints as well.

Let Vd denote the set of items in the master pool with the combination
of categorical attributes at the points d ∈ D selected in step 1 above. The
model in (11.56)–(11.58) can then be used to split each of the sets Vd into
the pairs of items referred to in step 3 above. (If some of these sets have
an odd number of items, we ignore the item with the worst set of distances
δij to all other items in Vd.)

In the second stage of the procedure, we use the model in (11.59)–(11.64)
to assign the items to the two pools. The only change in the model is the
replacement of (11.62) by

2∑
i=1

xiph = 1, for all p and h. (11.65)

This change is necessary because we do not have a blueprint with the opti-
mal number of items Nd. Instead, we require that one item from each pair
p be assigned to each item pool. How many items with the combinations of
attributes at d the two pools will have depends entirely on the composition
of the master pool.

If quantitative attributes other than the item parameters are relevant,
we can add constraints to the model in (11.59)–(11.64) to force the pools to
be parallel with respect to them as well. Specifically, we can force the sum
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of the values of these attributes to be between the same (tight) bounds for
each pool using constraints of the type

P∑
p=1

2∑
i=1

qip
xiph � bq, for all h. (11.66)

Another disadvantage of assembling a system of rotating item pools with-
out a blueprint is that they miss the tendency for equal exposure rates for
adaptive tests from the pools built into (11.17)–(11.19). It is possible to
compensate for this by assigning items expected to be less popular to more
than one pool. Because the pools are used randomly, the exposure rates of
items assigned to more pools tend to increase.

If this option is used, in the first stage of the procedure, the sets Vd may
have to be split into subsets of different sizes. For example, if some of the
items are assigned to two pools, the size of the subsets to which they are
assigned decreases by one.

For the general case of H pools, we have to replace the no-overlap
constraint in (11.63) by

H∑
h=1

xiph ≤ nmax
o , for some i and p, (11.67)

and
H∑

h=1
xiph ≥ nmin

o , for some i and p, (11.68)

where 1 < nmin
o ≤ nmax

o ≤ H are the maximum and minimum number of
tests these items are allowed to share.

11.5.6 Empirical Example
Two systems of rotating pools were assembled from a master pool consisting
of 2,131 items for the section of the LSAT that consists of discrete items
only. One system was assumed to have four pools without any item overlap;
the other system was assumed to have six pools with item overlap. The
amount of overlap was based on the values of the discrimination parameter
for the items, the idea being that items with lower values tend to be less
popular in adaptive testing. The range of values in the pool was divided
into seven equally wide intervals; the items in the highest interval were
assigned to one pool only, those in the second highest interval to two pools,
and so on.

We addressed the case of no blueprint for the pool and used the second
approach above. The section of the test used in this example had items
with nine different combinations of categorical attributes for which the set
of content specifications implied 20 different constraints. All items in the
master pool were classified with respect to these combinations. In the first
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stage of the assembly process, the collections of items for each of these
combinations were split into the maximum number of subsets of size four
for the system without item overlap. For the system with item overlap,
the size of the subsets was adapted according to the required overlap. The
split was made using the version of the first-stage model in (11.56)–(11.58),
with the distance measure δij in (10.92) for w = 1, ignoring the guessing
parameter c.

For the second stage, we used the model in (11.59)–(11.64) with the re-
placement of (11.62) by (11.65) for the system without item overlap and
(11.67) and (11.68) for the system with overlap. The model was also ex-
tended with a set of constraints of the type in (11.66) to match the pools as
closely as possible on one remaining quantitative attribute (word count).

We evaluated the two systems in a study with 1,000 simulated adminis-
trations of the adaptive test at each of the values θ = −2.0, −1.5, ..., 2.0
using the STA. To obtain a baseline, we also ran these simulations with
the systems of rotating pools replaced by the master pool of 2,131 items.
All simulations were thus conducted with approximately the same number
of items, but the active pool for the simulated test taker in the system of
rotating item pools was much smaller than the master pool.

Figure 11.3 shows the exposure rates of the items for the system with four
nonoverlapping and six overlapping pools relative to the master pool. From
these plots, it is clear that the method of rotating item pools reduces the
exposure rates effectively. Figure 11.4 shows the estimated bias and MSE
functions. For each of the three pools, bias appeared to be negligible for
all practical purposes. For adaptive testing from the master pool, the MSE
was smaller at the lower part of the θ scale than for the two cases with
rotating item pools, particularly for the system with overlapping pools.
The reason was that in adaptive testing from the master pool we have
permanent access to the best items in the pool, whereas for the two other
cases only a portion of it was active at a time. The fact that the system
with overlapping pools performed worse than the one without overlap was
due to the use of the discrimination parameter as the criterion for the size
of the overlap; items with lower values for it were assigned to more pools.
The differences were more clearly manifest at the lower part of the scale
because of the relative scarceness of items in the LSAT pool for this part
of the scale.

The conclusion from this study is that using a system of rotating pools
appears to be an effective measure to reduce the exposure rates of the more
popular items, but the price that has to be paid is an increase in the MSE
of the ability estimates that is somewhat higher than expected .
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FIGURE 11.3. Item-exposure rates for adaptive testing using a system of rotating
item pools (solid lines) with four nonoverlapping pools (top) and six overlapping
pools (bottom). The dashed lines are for adaptive testing from the master pool.
The items are ordered by their exposure rates; items not shown had zero exposure.
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FIGURE 11.4. Bias functions (top) and MSE functions (bottom) for adaptive
testing using a system of rotating item pools (solid lines) with four nonoverlapping
pools (left) and six overlapping pools (right). The dashed lines are for adaptive
testing from the master pool.

11.6 Literature

General discussions of the problem of item-pool design for programs with
adaptive tests, with an emphasis on their security, are given in Way (1998),
Way, Steffen, and Anderson (1998), and Way, Swanson, Steffen, and Stock-
ing (2001).

The Monte Carlo approach to item-pool design for a program with
adaptive testing was introduced in Veldkamp and van der Linden (2000);
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an update of the theory and a few new empirical examples are given in
Veldkamp and van der Linden (in preparation).

For a derivation of the relation between test length, item pool size,
and the sum of exposure rates used in (11.14), see van der Linden (2003,
Appendix).

Chang and van der Linden (2003) presented the model for optimal strat-
ification of an item pool for alpha-stratified adaptive testing. The idea of
assembling an item pool as a set of fixed test forms was introduced in
van der Linden, Ariel, and Veldkamp (2005). Stocking and Swanson (1998)
used their weighted-deviations method (WDM; Section 4.4.3) to solve the
problem of assembling a system of rotating item pools. The fact that this
problem shares much of its structure with the test-splitting problem in
Chapter 5 was discussed in Ariel, Veldkamp, and van der Linden (2004).
This reference also presents several heuristics for solving this problem, and
should also be consulted for more details of the empirical example in Section
11.5.6.

11.7 Summary

1. Design models for programs with adaptive tests are formulated for
their shadow tests. The optimal blueprint is calculated using a Monte
Carlo study with test administrations at ability levels randomly sam-
pled from the population of test takers. The items administered have
the combinations of attributes at the points in the design space.

2. The design model has counters for the number of items adminis-
tered at each design point. The blueprint for the item pool is calcu-
lated from the counts, adjusting them to create uniform (marginal or
conditional) exposure of the items.

3. Programs with multiple adaptive tests from a single item pool are
technically feasible. They are expected to be particularly efficient for
multidimensional item pools used in such applications as testing for
admission and placement with multiple criteria because they replace
post hoc weighting of scores on different tests by a score on a multidi-
mensional test directly assembled to measure the desired combination
of intentional abilities.

4. If the program has set-based adaptive tests, the Monte Carlo study
is conducted over two design spaces simultaneously, one for the items
and the other for the stimuli. The model then has counters both for
the items and stimuli administered at the points in the two spaces.

5. Operational pools for adaptive testing are typically assembled from
a master pool. The model for assembling an item pool for a program
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with adaptive tests is identical to the model for a program with fixed
tests in Section 10.8.

6. Item pools for adaptive testing with alpha stratification can be strat-
ified optimally using a semiassignment network-flow model.

7. If no blueprint is available, item pools for adaptive testing can be
assembled as a set of fixed test forms that satisfy the specifications of
the test and have a distribution of the maximizers of their information
functions reflecting the ability distribution of the population of test
takers. Such pools always have a shadow test that is optimal at a
point close to the current ability estimate of the test takers during
the test.

8. The problem of assembling a system of rotating parallel item pools
from a master pool resembles the test-splitting problem addressed
in Chapter 5. The problem can be solved by assigning items with
an optimal match between their item-parameter values to the pools
subject to the requirement that each pool realize the same blueprint
with respect to all other attributes.

9. A similar approach can be followed if the pools have to be assembled
without a blueprint for them. But we are then uncertain as to the
set of design points that should be used and the optimal size of the
item pool. In addition, the exposure rates of the items have to be
controlled by constraints on the number of pools to which each item
is assigned.

11.8 Exercises

11.1 Derive an equation for the optimal number of items in the blueprint
in (11.18) for the case of marginal exposure control, where the item
pool is required to have a minimum size of Imin. Do the same for the
case of conditional exposure control in (11.18).

11.2 Formulate an equation for the optimal number of items in the blueprint
for a set-based item pool in (11.41) and (11.44) for the case of con-
ditional exposure control.

11.3 Suppose we stratify an item pool on discrimination parameter a only
but want to impose constraints on the values of the b parameter to
get an acceptable item-difficulty distribution per stratum. Formulate
a model for this type of stratification. Evaluate the model against the
one in (11.47)–(11.50).
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11.4 Calculate the values θt at which the TIFs for a pool of nine test forms
should be optimized to reflect a standard normal distribution using
the method proposed in Section 11.5.3. Assume that the last 5% of
the mass in each tail can be ignored.

11.5 The problem of assembling a system of rotating item pools can be
redefined as a problem of assigning the items in the master pool
directly to the subpools. Formulate a model of this type. Evaluate
the model against the two-stage procedure in Section 11.5.5.



12
Epilogue

We began the preface to this book with the observation that during the
first century of its existence test theory has developed into a mature dis-
cipline with powerful models and statistical tools. On the other hand, the
development has not shown much spin-off in the form of a technology that
helps us “to engineer tests rigorously to our specifications.” This book was
motivated by the wish to fill this void. At the end of it, it may be appro-
priate to review the principles that have guided us in our efforts to do so.
We consider three principles as crucial.

Principle 1: Any specification that a test has to satisfy can be
realized by imposing one or more constraints on its composition.

The chapters in this book contain numerous illustrations of this principle.
For some specifications the answer to the question of what constraint to
choose was straightforward. Examples are the length of the test, its content
distribution, the fact that its information function should deviate from a
target function by no more than a prespecified tolerance, and the exclusion
of items that are too difficult. Other illustrations of Principle 1 may have
been more surprising, such as the level of speededness of a test, a pre-
existing observed-score scale that the test should have, an item-by-item
match between two tests, a maximum exposure rate for an item pool for
adaptive testing, item overlap between tests, the status of an ability as an
intentional or a nuisance parameter in a multidimensional test-assembly
problem, and the inclusion of items in a set for the same stimulus.

A major effort in this book was directed at establishing menus with
constraints for all possible features consumers and developers may want a
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test to have. Also, we classified the constraints by their level and type and
discussed the formal characteristics of constraints for each possible com-
bination of level and type. Finally, we extended the principle to adaptive
test assembly, which appeared to be possible through the introduction of
the notion of a shadow test.

A test specification can also be formulated as an objective for an op-
timization problem. But, as we explained in Section 2.3, constraints are
actually more useful than objectives. They give us maximum control of
attributes, and we know exactly what test we get in advance. Objectives
should be reserved for attributes with values for which we are less certain,
such as estimates of statistical attributes. In fact, for several of the models
in this book, we chose an objective function of a more technical nature
that did not contain any test attribute at all. The foremost example of this
choice was the objective function used to implement the maximin/minimax
principle, which was just an auxiliary variable.

Throughout this book, we have been keen on formulating specifications
as linear constraints. One reason for this preference was emphasized on
many occasions in the earlier chapters: As long as a test-design problem
remains linear, there is not much reason to be concerned about the algo-
rithmic aspect of finding a solution. The algorithms reviewed in Chapter
4 always worked for the real-world-size problems used as examples in this
book. (This observation should not be taken as an invitation to carelessness,
however; see our comment on the skillful test assembler at the end of Section
3.1.) But a second, equally important reason to formulate specifications as
linear constraints is that linear constraints can always be formulated inde-
pendently. That is, we can focus on just one attribute at a time, model the
specifications in which it occurs as linear constraints, and insert the con-
straints into the model. As long as we make no consistency errors (Section
3.2.4), there is no need to be concerned about possible interactions of a
new constraint with earlier or later constraints. This basic property of lin-
ear programming makes test design most convenient. It enables us to mold
our tests simply by adding and removing constraints from the optimization
model.

We followed different approaches to formulating specifications as linear
constraints. First, often we were able to use the fact that higher-level at-
tributes in the test were additive in item attributes. A straightforward
example was the time spent on a test (sum of the response times on its
items). Second, occasionally we were able to exploit the possibilities of-
fered by the use of different sets of decision variables; for example, the use
of different 0-1 variables for items and stimuli to model the inclusion of
items in sets with common stimuli. Third, we also used real-valued auxil-
iary variables to formulate constraints linearly, primarily in the application
of the minimax approach to IRT-based test assembly with an absolute tar-
get for the TIF. In this type of test assembly, our actual objective was
to minimize the (two-sided) area between the TIF and its target. But
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we were able to approximate this nonlinear objective by a linear formu-
lation that involved minimization of a common bound at a set of selected
θ values. (This approximation also capitalized on the fact that TIFs are
smooth mathematical functions!) Fourth, some problems that were non-
linear in their actual objectives could be reformulated using the technique
of linear decomposition; that is, decomposing the actual objective into a
combination of a linear objective and linear constraints. This approach
was used in our examples of classical and multidimensional test assembly.
Fifth, sometimes we were able to use a linear statistical approximation to
a nonlinear actual objective. An example of this approach was the use of
a set of linear constraints on powers of response probabilities in observed-
score pre-equating of a test to a reference test. (In fact, the same principle
was followed in test assembly with information functions; we use informa-
tion functions in IRT-based test assembly only because they are convenient
asymptotic approximations to the sampling variance of ability estimates.)
Lastly, to constrain the exposure rates of items in adaptive testing, we used
probabilistic constraints. The constraints that were actually imposed were
simple linear item-ineligibility constraints, whereas the more complicated
nonlinear aspects of the problem were captured by the probabilities with
which they were imposed.

Principle 2: Constraints should be imposed as early in the test-
development process as possible.

To appreciate the second principle, it is important to understand that
constraints are not only imposed when selecting items from a pool. They
can also occur as implicit constraints that are imposed, for instance, when
coding the items in the pool in a special way, adding or excluding cer-
tain types of items from the pool, forcing the item-selection process to go
through different stages, choosing a testing format, or adjusting a test after
it has been assembled.

The history of test design can be viewed as a (sometimes slow) process of
adhering to the notion that prevention is better than cure, which motivates
the second principle. For example, in large-scale testing programs, it is now
common practice to pretest items before they are used operationally. This
choice allows us to constrain items with unfortunate statistical attributes or
otherwise undesirable behavior out of the test. It is difficult to imagine that
the idea of pretesting initially met with considerable resistance, primarily
because of concern about item security. The testing industry reacted to
these concerns by developing ingenious pretesting designs, after which the
resistance disappeared.

It is even harder to remember the times when an independent review of
new test items was not yet standard practice. In fact, independent review
is still lacking in most testing in schools. The quality of teacher-made tests
would improve greatly if they were not administered immediately but given
to a few colleagues for review first.
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These two examples do not exhaust the possibilities for early constraints
to prevent later problems. Item pools are frequently treated just as an
inventory of items for a content domain, which develops over time. A result
of this view may be a large collection of items that are never used or a
shortage of items with combinations of attributes that are badly needed.
On the other hand, the method of item-pool design proposed in this book
was motivated entirely by the principle of early constraint imposition above.
In spite of its new terminology and modeling, it is nothing but the idea to
impose the test specifications in a program directly on the blueprint for its
item pool. By imposing them this early, we increase the likelihood that the
specifications can be met if the tests are actually assembled.

In fact, we went back even one step further and suggested imposing
the constraints where they can be expected to be most effective—on the
authors that have to write the items! In fact, a blueprint for an item pool
is just a collection of blueprints for its items. Instead of inviting authors to
write items for a content domain and giving them a list of dos and don’ts,
it is much more effective to ask them to write their items precisely to the
combinations of attributes listed in their blueprints. Our proposal to add
item authors for a program as an explicit attribute to the design space and
manage the item-pool development process with respect to their capacity
(Section 10.7.2) was motivated by the same principle of early constraint
imposition.

More subtle applications of the second principle can be met in some of
the other topics addressed in this book. For example, our plea to assemble
multiple test forms simultaneously rather than sequentially goes back to
the same principle. Sequential test assembly always needs to be followed
by a second corrective stage to realize a satisfactory solution. Constructive
heuristics for test assembly (Section 4.6) suffer from the same problem.

Another application of the second principle is item-exposure control in
adaptive testing using the item-ineligibility method (Section 9.4). In the
Sympson-Hetter method of exposure control, tendencies toward overexpo-
sure are corrected after an item is selected for a test taker, whereas in the
item-ineligibility method, constraints on the item-exposure rates are im-
posed before a test taker begins. Because it corrects only afterward, the
Sympson-Hetter method may be removing more items from the pool than
are actually required.

One area where the idea of early control has not had much impact on the
testing industry is observed-score equating of a fixed or adaptive test to a
reference test. The current routine is to ignore the observed-score metric
when the test is assembled and then correct by adjusting the test scores
afterward. In Sections 5.3 and 9.6, we identified the constraints that can
be included in the optimization model to assemble tests with the same
observed-score metric as a reference test. Using them prevents an expen-
sive post hoc equating study. It also prevents the loss of optimality of the
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test assembled by the optimization model due to a later change of scoring
metric.

As indicated in Section 11.2.1, a comparable case may hold with respect
to the predictive validity of a test battery in testing for admission or place-
ment. The current practice is to design unidimensional tests and then use
a weighted combination of scores to maximize the validity with respect to
a criterion. Alternatively, it may be worth looking into the possibilities of
designing a pool with more complex multidimensional items and imposing
the weights through the model in (8.14)–(8.20) or (9.63)–(9.70) used to as-
semble tests from it. Empirical research is needed to determine how much
efficiency can be gained if a test battery scored for a combination of abilities
is replaced by a test optimally designed to measure the combination.

Principle 3: Constraints that do not serve any desired feature of
the test should be avoided.

This principle is the counterpart of Principle 1. It seems straightforward
but is not always followed. In particular, it is easily violated by implicit
constraints.

Examples of implicit constraints due to forcing an item-selection process
to go through different stages are found in the alternative back-up methods
for multiple-test assembly discussed in Section 6.4. One method was based
on the idea of first splitting a pool into a subpool for each test and then
assembling a single test from each subpool. This method involved the rather
stringent set of ineligibility constraints in (6.53) on the individual tests. In
another method, first a big test was assembled, and this was then split into
individual tests. This method should be viewed as one that imposes the
composition of the big test as a set of constraints on the assembly of the
individual tests. Similar forms of overconstraining occur in the heuristics
for the assembly of tests with item sets in Chapter 7, especially in the
two-stage methods in Section 7.5.

Another example of implicit constraints are those involved in the choice
of the adaptive testing formats discussed in Section 9.8. If the choice is
between a fully adaptive, a multistage adaptive, and an adaptive linear on-
the-fly format, it is important to be aware of the extra constraints implied
by each of these formats relative to the content specifications of the test. As
indicated in Section 9.8, both a multistage and a linear on-the-fly format
imply a large set of logical constraints to keep their subtests or linear tests
together. For the same item pool, the price of a larger number of active
constraints is loss of information. It is therefore important to identify the
feature that these extra constraints makes possible—in the case of the
multistage and linear on-the-fly formats, the possibility of reviewing intact
test units before they are used operationally (see Section 9.8) and deciding
if it is worth the loss.

Another example of implicit constraints is adaptive testing from rotating
item pools (Section 11.5.5). If the system has H pools of equal size, the
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procedure is equivalent to adaptive testing from a pool with all items but
ineligibility constraints on (H − 1)/Hx100% of them. Viewing the use of
rotating item pools from this perspective opens up an entire range of alter-
natives to adaptive testing with rotating item pools—for instance, testing
from a large pool with random ineligibility constraints on a smaller portion
of the pool. Or constraints only for the part of the pool that has already
been exposed. An important problem is then to determine what level of
constraining is actually necessary to realize the desired level of security of
the items.

In sum, when designing a testing program, we should identify the con-
straints that represent our test specifications and impose them as early in
the developmental process as possible. Also, we should be aware of con-
straints imposed implicitly during the test-development process, or by our
choice of testing format, that do not entail a necessary feature of the test.



Appendix 1
Basic Concepts in Linear
Programming

A1.1 Mathematical Programming

Mathematical programming belongs to a field of problem solving that
emerged in such areas as operations research, decision analysis, economics,
and management science. The problems it addresses typically belong to the
daily operations of a business or organization, deal with decisions that have
consequences for their costs or profits, and are approached from a manage-
rial point of view; hence, its links with the areas above. Examples of these
problems include optimization of a manufacturer’s product mix, schedul-
ing production, job assignment, transportation decisions, factory location,
inventory control, maintenance, and economic planning.

The reason that mathematical programming approaches can be applied
to test-design problems is their formal analogy with some of these examples.
For instance, there is not much difference between the formal structure of
problems in job assignment and test selection, nor between problems in
inventory control and item-pool design.

The problems addressed in mathematical programming are mostly too
complicated to be solved intuitively, and more formal approaches involving
mathematical modeling and the use of computer algorithms are required.
Mathematical programming techniques are frequently implemented in soft-
ware systems that help users model their problems, calculate solutions
under varieties of conditions, and show them how to interpret results. The
software used to calculate a solution is often referred to as a solver or
optimizer.
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More generally, in mathematical programming, one seeks to optimize an
objective for the solution of a decision problem that can be modeled as
a function of a set of variables that describe all possible outcomes. These
variables are related to each other through one or more constraints on their
values.

The general form of a mathematical programming problem is

optimize z = f(x1, ..., xn) (A1.1)

subject to
g1(x1, ..., xn) � b1,

...

gm(x1, ..., xn) � bm, (A1.2)

where (x1, ..., xn) are the variables that characterize the problem, z =
f(x1, ..., xn) is the objective function that is optimized, and gj(x1, ..., xn),
j = 1, ..., m, are m constraints on the variables with bounds bj . The con-
straint set includes constraints that follow from the substantive structure
of the problem but also constraints on the range of values the variables can
take.

A specific problem is obtained from (A1.1) and (A1.2) by making choices
for the variables (x1, ..., xn), the functions f(x1, ..., xn) and gj(x1, ..., xn),
and the bounds bj . If such choices are made, the general structure of the
problem in (A1.1) and (A1.2) specializes. Or, in other words, the problem
has been “programmed”; hence the name mathematical programming. Be-
cause these choices have to be realistic for the empirical structure of the
problem, we also refer to the result as a model.

A1.1.1 Linear Programming
If all functions f(x1, ..., xn) and gj(x1, ..., xn) are linear, the problem is
known as a linear programming (LP) problem. Its standard or canonical
form is

maximize z = c1x1 + ... + cnxn (A1.3)

subject to
a11x1 + ... + a1nx1n ≤ b1,

...

am1x1 + ... + amnxmn ≤ bm,

xi ≥ 0, i = 1, ..., n. (A1.4)

Note that in (A1.3) and (A1.4) all variables are nonnegative, the con-
straints are less-than-or-equal-to inequalities, and the objective function is
maximized. This form can always be realized using the fact that:
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1. A minimization problem can be converted into a maximization prob-
lem by taking the negatives of the coefficients ci in the objective
function.

2. The sense of an inequality can be changed by taking the negatives of
coefficients aji and bound bj .

3. An equality can be formulated as a combination of two inequalities
with the same bound, with a subsequent change of the sense of the
larger-than inequality using the preceding operation.

4. Variables that take positive and negative values can be transformed
to nonnegative variables by adding a sufficiently large number to their
values.

If a problem needs to be reformulated into the form in (A1.3) and (A1.4),
its solution can always be transformed back to a solution for the original
formulation by performing the inverse operations. In this appendix, we
assume that LP problems are always in their standard format. This as-
sumption was ignored everywhere else in this book because we wanted to
remain as close as possible to the original formulation of the problems.

Observe that any linear program is completely defined by a vector c =
(ci) with coefficients for the objective function, a matrix A = (aji) for the
left-hand-side coefficients in the constraints, and a vector of b = (bj) for
the bounds, with i = 1, ..., n and j = 1, ..., m. If we refer to the structure
of an LP problem, we refer to the values of these vectors and matrix.

A1.1.2 Nonlinear Programming
If the objective function f(x1, ..., xn) is quadratic but all constraints are lin-
ear, the problem is known as a quadratic programming problem. Techniques
for solving quadratic programming problems are available, but frequently
it is more advantageous to approximate the original problem by a linear
formulation. Examples of linear decomposition and approximation of prob-
lems with quadratic objectives are given in Section 5.2.1 (classical test
assembly) and 8.3 (multidimensional test assembly).

Different forms of nonlinear programming arise if both the objective func-
tion and the constraints are quadratic or take another nonlinear form. Such
problems hardly exist in test assembly. If they occur, again the best strat-
egy is to avoid algorithmic complications and approximate them by a linear
formulation of the problem.

A1.1.3 Other Forms of Mathematical Programming
If decisions are made under conditions of uncertainty but we have hy-
potheses on the form of the probability distributions of the conditions,
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the decision problem becomes one of stochastic programming. Problems of
stochastic programming have one or more random coefficients, and typ-
ically the objective is to optimize an expected value defined over these
coefficients.

Another common form of mathematical programming arises if time is an
important characteristic of the problem and the outcomes of later decisions
depend on outcomes of earlier decisions. Problems of this type belong to
the domain of dynamic programming.

Sequential and adaptive test assemblies (Section 1.3.1) have both features
and can be classified as problems of stochastic dynamic programming. Se-
quential test assembly is not addressed in this book, but we deal with the
problem of adaptive testing in Chapter 9. Treatment of adaptive testing as
an instance of stochastic dynamic programming is not realistic, however.
The probability structure involved in the selection of each possible next
item as a function of all possible responses to all possible previous combina-
tions of items quickly becomes unmanageable if the length of adaptive tests
increases to realistic values. Instead, we treat adaptive testing as a series
of deterministic mixed-integer problems (though the notion of a stochastic
constraint is introduced to deal with the problem of item-exposure control
in adaptive testing in Section 9.4.3).

A1.1.4 Constraints on Variables
If all variables in (A1.3) and (A1.4) are real, the problem is known as an LP
problem. If all variables are integer, as was the case for the problems of item-
pool design in Chapter 10, the problem is known as an integer programming
(IP) problem. A special case of IP arises if all variables are 0-1. The problem
is then known as a 0-1 IP or binary programming problem. Some of the test-
assembly problems in this book are pure 0-1 integer or binary programming
problems, while others have both integer and real variables. The latter
are known as mixed-integer programming (MIP) problems. Most of the
test-design problems in this book are of this type.

In this book, we also refer to test-assembly problems as problems of com-
binatorial optimization. Generally, in a combinatorial optimization prob-
lem, the task is to identify an optimal combination of elements from a
finite set subject to one or more constraints. An optimization problem of
this type thus differs fundamentally from that of finding an optimum of a
function defined over a real-valued domain in calculus. Because 0-1 vari-
ables can be used as indicator variables for the choice of elements from a
set, the test-assembly problems we are interested in can appropriately be
modeled as 0-1 IP problems.

It is key to note that if the variables in an LP problem are replaced
by integer variables, the new problem is more severely constrained; hence
the standard practice of formulating the range of these variables as integer
constraints at the end of the constraint set of a problem. Conversely, if
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integer constraints are removed, the new problem becomes less severely
constrained, or relaxed.

Although the set of feasible solutions for a problem generally becomes
smaller if its variables are subjected to integer constraints, it becomes more
difficult to find a solution to the problem. This fact, which goes against our
intuition, is discussed in Section A1.5 below.

A1.2 Graphical Example

We give a graphical representation of an example of a common LP problem
with two variables. This representation helps us to discuss and motivate
several basic concepts in linear programming.

A1.2.1 Problem
The problem is that of a small manufacturer who has to decide on the mix
of products it should produce. Suppose the choice is between products 1
and 2. Either product is made from materials A, B, and C. To produce one
unit of product 1, we need two units of A, one unit of B, and one unit of
C, whereas for one unit of product 2 we need one unit of A, one unit of B,
and two units of C. Due to inventory restrictions, the company cannot use
more than 31, 24, and 20 units of A, B, and C during its planning period.
The profit made on the production of one unit of products 1 and 2 is $25
and $20, respectively.

Our first step is to identify the variables that help us calculate the best
solution to this problem. Clearly, the objective of the company is to maxi-
mize its profit, and profit is a function of the number of units of products
1 and 2 that are produced. Let x1 and x2 be the variables that represent
the number of units of these products. Profit is then 25x1 +20x2. The only
constraints in this problem are those due to the inventory restrictions on
the materials A, B, and C. If x1 and x2 units of each product are produced,
we need 2x1 + x2 units of A, x1 + x2 units of B, and x1 + 2x2 units of C.

The LP model we have to solve for the optimal values of x1 and x2 is
therefore

maximize 25x1 + 20x2 (profit) (A1.5)

subject to

2x1 + x2 ≤ 31, (inventory restriction for A) (A1.6)

x1 + x2 ≤ 24, (inventory restriction for B) (A1.7)

x1 + 2x2 ≤ 20, (inventory restriction for C) (A1.8)

x1, x2 ≥ 0. (range of variables) (A1.9)
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FIGURE A1.1. Graph of the product-mix problem in (A1.5)–(A1.9).

A1.2.2 Graphical Representation
A graph with the problem is given in Figure A1.1. The space of possible
solutions for the unconstrained version of the problem consists of all points
in the first quadrant. The constraints reduce this space to the subspace of
feasible solutions. Each of the constraints is met by the half-planes below
the lines x2 = −2x1 + 31 (inventory restriction for A), x2 = −x1 + 24
(inventory restriction for B), and x2 = −.5x1 + 10 (inventory restriction
for C), respectively. The set of feasible solutions is therefore the intersection
of these half-planes, represented by the shaded area in the figure.

For every value z of the objective function, we obtain a line z = 25x1 +
20x2. Two possible lines, for z = 700 and 800, are given in the graph.
Observe that these lines are parallel and that the line for the larger value
of z is higher. Maximization of the objective function means finding the
line with the largest possible value for z that intersects the feasible space.
Obviously, the largest value is obtained when the line coincides with vertex
(14, 3), where the lines x2 = −2x1 + 31 for A and x2 = −.5x1 + 10 for
B intersect. This point thus represents the optimal feasible solution. Its
coordinates are the optimal values of x1 and x2; they tell us how many
units of each product have to be produced to get the maximum profit of
z = 25 × 14 + 20 × 3 = 410.
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Although Figure A1.1 is only for a two-variable LP problem with real
values, it allows us to illustrate graphically some of the notions in the
MIP test-assembly problems with large numbers of variables discussed in
this book. In Section 2.4.2, the issue of the number of constraints possible
for a test-assembly problem was discussed. The graph illustrates that this
number is free as long as the problem remains feasible. A problem remains
feasible as long as a new constraint added to it leaves the feasible space
intact or “cuts off only a small piece of it.”

Possible effects on the feasible space of a new constraint added to the
problem in (A1.5)–(A1.9) are illustrated in Figure A1.2. The feasible space
in the lower-left portion of this figure is the same as in Figure A1.1. Con-
straint D is an example of a constraint that would be redundant if it were
added to the current problem; its presence would not imply any further re-
duction of the feasible space. Constraint E would entail a reduction of the
feasible space but would not make it empty. Its addition would thus keep
the problem feasible. But constraint F is an example of one that would
make it infeasible. It is met by the points that lie in the half-plane away
from the origin, and the intersection of this half-plane with the original
feasible space is empty. Constraint F is thus inconsistent with any of the
constraints in our original problem. The notion of inconsistent constraints
is discussed in Section 3.2.4.

Another notion that can be illustrated using Figure A1.1, is that of an
active constraint introduced in Section 4.1.1. In Figure A1.1, constraints A
and C are the only constraints active in the solution: If the problem had
been relaxed by leaving out all other constraints, the solution would still
have been the same. Whether an constraint is active depends not only on
its coefficients but also on those in the objective function; a change in the
latter could make other constraints active.

In Section 4.1.1, it was recommended to check the objective function of a
test-assembly problem against its constraints before calculating a solution.
This check helps us to interpret the solution found and may lead to a more
parsimonious formulation of the problem. The idea can be illustrated using
Figure A1.1. Because the problem involves maximization, the solution is
found in the upper-right corner of the feasible space. Constraints with lower
bounds tend to cut off only a portion of the feasible space near its lower-left
corner. They are generally inactive and can be left out. But, as discussed
in Section 4.1.1, these conclusions involve only tendencies, and we should
always be careful. For example, if for some reason the manufacturer in
the problem in (A1.5)–(A1.9) had to produce a minimum of five units for
product 2, the constraint

x1 ≥ 5 (A1.10)

would have replaced constraint A as an active constraint in the solution of
the problem and we could not have left (A1.10) out.
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FIGURE A1.2. Example of an LP problem with a redundant constraint (D) and
inconsistent constraints (F versus the other constraints).

A1.2.3 Number of Solutions
The shape of the feasible space in Figure A1.1 is the result of a set of linear
constraints cutting off the portions of the first quadrant that do not belong
to their half-planes. It therefore has straight edges and vertices that point
outward. A space of this shape is known as convex. A formal definition of
a convex space is based on the property that the line connecting any two
of its points is always included in it. It is easy to verify visually that this
feature holds for the feasible space in Figure A1.1.

Convex spaces can be both bounded and unbounded. An example of
an unbounded feasible space for a two-variable problem with two con-
straints is given in Figure A1.3. (Note that the formal definition of a convex
space still holds for this example but that the more intuitive feature of
outward-pointing vertices does not.) If a feasible space is unbounded in
the direction in which the objective function is maximized, the solution is
unbounded, too. In Figure A1.3, value z of the objective function can be
made arbitrarily large without leaving the feasible space.

If the feasible space is bounded, the solution to the problem has to be
along the border of the feasible space. The solution is unique if it is at a
vertex. But we have infinitely many solutions, each consisting of a different
combination of values for the decision variables but with the same value
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FIGURE A1.3. Example of an LP problem with an unbounded solution.

for the objective function, if the objective function coincides with an edge
of the feasible space.

In summary, for each LP problem, the solution set:

1. is empty (problem is infeasible);

2. has one solution (vertex of the feasible space);

3. has infinitely many solutions (all solution points on an edge connect-
ing two vertices); or

4. is unbounded.

This result generalizes to LP problems with more than two variables but
does not generally hold for problems with integer variables, for which we
can have a finite solution set with more than one solution.

A1.3 Simplex Method

The question of how to find the numerical value of a solution to an LP
problem has not yet been addressed. For a standard LP problem, the sim-
plex method is available. The simplex method is an iterative method; it
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begins with an initial solution that is improved on at each next step. We
only give a geometric interpretation of the simplex method and refer to the
references at the end of this appendix for an algebraic treatment.

The steps taken in the simplex method are:

1. Choose one of the vertices of the feasible space as the initial solution.

2. Move to a new vertex that has a higher value for the objective
function.

3. Repeat the previous step until no further improvements are possible.
The last vertex visited represents a solution to the problem.

To execute the method, several implementation choices have to be made.
For step 1, it is sometimes possible to choose the origin as the point of
departure (where all variables are equal to zero), but an advanced start
with an initial solution closer to optimality is always attractive. In step
2, the simplex method finds the next vertex in step 2 by embedding the
LP problem in a problem with a larger number of variables and replacing
the inequality constraints by equalities. A vertex in the original problem
corresponds with a combination of values for a subset of the variables in
this larger problem. A new vertex is obtained by replacing variables in
the current subset. Important implementation decisions on which variables
to remove and add are made. Arithmetically, a simplex process proceeds
as a series of operations on the coefficients and bounds in the LP prob-
lem arranged in a convenient array known as the simplex tableau. For
an introduction to these operations, see the literature at the end of this
appendix.

Although the simplex method has exponential worst-case running time,
there are polynomial time algorithms that typically solve problems with
large numbers of variables and constraints in a small amount of time. The
method has been refined and adapted to problems with special structures
and is no longer the only method available to solve LP problems. But it has
remained popular, and a version of it known as the revised simplex method
is the industry standard for LP applications in many fields.

A1.4 Network-Flow Problems

Network-flow, or transportation, problems are LP problems with a spe-
cial structure of values for their coefficients and bounds. They have all of
the properties of regular LP problems, but their special structure leads to
a major simplification of the simplex method. Another attractive feature
is that, for a widely used subclass of network-flow problems, the simplex
method automatically produces an integer-valued solution. Early exam-
ples of network-flow problems dealt with actual transportation problems.
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The name “network-flow problem” was introduced later to emphasize the
applicability of its models to a larger class of problems.

Suppose we have a transportation problem involving the shipment of
a certain commodity from i = 1, ..., m points with a supply of Si units
to j = 1, ..., n different points with a demand of Dj units. The costs of
shipping one unit from point i to point j are ϕij . The problem is to find
a solution for the variables xij representing the number of units shipped
from i to j. The LP formulation of the problem is

minimize
m∑

i=1

n∑
j=1

ϕijxij (transportation costs) (A1.11)

subject to
n∑

j=1
xij ≤ Si, for all i, (supply) (A1.12)

m∑
i=1

xij ≥ Dj , for all j, (demand) (A1.13)

xij ∈ {0, 1, ...}, for all i and j, (range of variables) (A1.14)
with all of their coefficients ϕij and bounds Si and Dj nonnegative. For
the case of m = 4 supply points to n = 3 demand points, the network is
shown in Figure A1.4.

A special case of a network-flow problem is the assignment problem,
which (1) has equality constraints instead of inequality constraints and (2)
the value one for all bounds Si and Dj . An example of an assignment
problem is a scheduling problem in which workers have to be assigned to
jobs; for example, minimizing the total time of completion. An example
of an assignment problem in test assembly is the item-matching problem
discussed in Chapter 5.

In more detail, the two advantages associated with network-flow prob-
lems are:

1. The simplex method becomes computationally less intensive: It is
easier to choose an initial feasible solution and the only operations
on the simplex tableau needed to find the next feasible solution are
addition and subtraction.

2. If the bounds Si and Dj are integer, the set of solutions always con-
tains one with integer values for all values xij . The simplex method
finds this solution.

These two advantages are retained if the problem is allowed to have
transshipment points; that is, points with both a positive input and a posi-
tive output that are located between the pure supply and demand points in
the network in Figure A1.4. Several types of test-assembly problems can be
approximated by a network-flow formulation (see Section 4.3). Solutions to
these problems are found without the computational complexities involved
in solving the integer problems discussed in the next section.
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FIGURE A1.4. Example of a network-flow problem with V = 4 supply nodes and
W = 3 demand nodes.

A1.5 Solving Integer Problems

If a problem has integer constraints on its variables, its space of feasible
solutions becomes discrete. An example of the feasible space for a small
two-variable problem with integer variables is given in Figure A1.5. Ob-
serve that this space does not have the convex shape with straight edges
and vertices that the problem in Figure A1.1 had. In Section A1.3, the sim-
plex method was intuitively described as an iterative method that walks
from vertex to vertex of the feasible space until an optimum is found. This
method does not work for a space of discrete points, where we can only
walk from single point to single point.

At first sight, a solution to an integer problem seems possible by ignoring
the discreteness of the feasible space, using the simplex method for the
relaxed version of the problem, and rounding the solution to integer values.
The following small example shows why this rounding heuristic sometimes
is dangerous:

maximize 35x1 + 30x2 (A1.15)

subject to
21x1 + 14x2 ≤ 60, (A1.16)

x1, x2 = 0, 1, ... . (A1.17)
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FIGURE A1.5. Example of an IP problem for which the rounding heuristic yields
a solution with values for the decision variables entirely different from those for
the exact solution.

The feasible space for this problem is represented by the bold dots in
the lower-left corner of the graph in Figure A1.5. The feasible space for the
relaxed problem is the shaded area. The solution to the relaxed problem is
found by the dotted line for the objective function and is equal to (0, 60/14).
Rounding this solution to the nearest integer values would result in (0, 4).
As illustrated by the bold line for the objective function, the exact solution
to the integer problem is (2, 1). Using a rounded solution of a relaxed version
of an integer problem instead of its exact solution can thus have a dramatic
impact on the values of the decision variables!

The conclusion should not be that rounding heuristics always lead to
wrong solutions. The item-pool-design problems in Chapter 10 have in-
teger variables representing the number of items for each combination of
attributes needed in the pool. For these problems, upward rounding of the
values in the solution of a relaxed version of them results in only a few
spare items, which may be needed after all.

As already indicated, if an LP problem is integer and an exact optimal
solution is required, we can no longer restrict the search for the solution
to a walk along the edges and vertices of a feasible space but have to
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search the entire solution space. Algorithms for such searches are known as
enumeration methods. The simplest form of enumeration would be explicit
enumeration, in which all feasible solutions are listed and each solution is
checked for optimality. Given the astronomical size of the feasible space for
a typical test-assembly problem, this method is impractical.

Fortunately, we do have methods of implicit enumeration. These methods
move from one possible solution to the next but do so intelligently, avoiding
subsets that cannot contain an optimum and cutting off portions of the
solution space that need not be searched. One of these methods, the well-
known branch-and-bound method, is discussed in Section 4.2. For other
methods, such as the Balas algorithm or cutting plane algorithms, see the
references in the next section.

A1.6 Literature

Mathematical programming is a well-developed area of applied mathemat-
ics, and textbooks with introductions to it abound. We only refer to a small
selection of books, and our choice is based on personal experience and bias.

Classical introductory texts are Wagner (1975) and Williams (1990). The
former mixes a discussion of theory with numerous applications; the latter
emphasizes model building. An introduction to the bare-bones essentials of
linear programming is offered in Feiring (1986). Textbooks specializing in
integer and combinatorial programming are Nemhauser and Wolsey (1999)
and Papadimitriou and Stieglitz (1982). The former is up to date and treats
the theory at an advanced level; the latter emphasizes computational as-
pects. A comprehensive treatment of nonlinear programming is given in
Graham, Sherali, and Shetty (1993).

In Section A1.1.3 we indicated that sequential testing can be optimized
using techniques from dynamic programming but did not discuss any de-
tails. Readers interested in this topic should consult Lewis and Sheehan
(1990) or Vos (1999).



Appendix 2
Example of a Test-Assembly Problem
in OPL Studio

OPL Studio (ILOG, Inc., 2003) is an environment for developing math-
ematical programming applications. It helps us to create models using
its OPL (Optimization Programming Language) modeling language, de-
bug models, select mathematical programming options, find solutions, and
browse models, solution processes, and results. A helpful tool for IP ap-
plications is its dynamic visualization of the search tree. OPL Studio is
available in versions for Windows and UNIX operating systems.

OPL Studio includes OPLScript, a scripting language for dealing with
sequences of models or problems that require interactive input of data
and/or instructions. For example, this language enables us to find solutions
for problems that require the output of a previous model as the input of the
next model. Possible applications of OPLScript in test design are multiple-
test-assembly problems that require the use of the big-shadow-test method
(Section 6.3) or problems with item sets for which two-stage selection of
items and stimuli is necessary (Section 7.5).

A important notion in OPL Studio is that of a project, which basically
is an association between a model file and one or more data files. Projects
are helpful in that they separate model and data and allow us to solve the
same type of problem repeatedly for different sets of data. Once a project
is started, new data files can always be inserted. Obvious applications in
test design are the assembly of test forms in a program with an item pool
that changes over time or with tests with different specifications.

OPL allows us to establish connections to a database or a spreadsheet.
When a connection has been set up, we can read from a database or spread-
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sheet or write to it. For the same project, connections to multiple databases
or spreadsheets are possible.

The following set of test specifications for a pool of 35 items on English
is used to illustrate how OPL Studio can be used to solve a test-assembly
problem: (i) The TIF should meet a target value of T (θc) =4.0 at a cutoff
score θc = 0, (ii) the test length should be equal to ten items, (iii) the
test should have at least four items on vocabulary, at most four items on
grammar, and at least two items measuring reading comprehension, (iv)
the total word count for the test should be between 600 and 700 words, (v)
the test should have no items easier than b = −1.0, and (vi) items 7 and
16 should not be together in the test.

The problem is represented by the model

minimize
35∑

i=1
Ii(0)xi (objective) (A2.18)

subject to
35∑

i=1
Ii(0)xi ≥ 4, (target value for TIF) (A2.19)

35∑
i=1

xi = 10, (test length) (A2.20)∑
i∈VV

xi ≥ 4, (vocabulary) (A2.21)∑
i∈VG

xi ≤ 4, (grammar) (A2.22)∑
i∈VRC

xi ≥ 2, (reading comprehension) (A2.23)

35∑
i=1

wixi ≤ 750, (word count) (A2.24)

35∑
i=1

wixi ≥ 700, (word count) (A2.25)

bixi ≥ −1, for i = 1, ..., 35, (item difficulty) (A2.26)

x7 + x16 ≤ 1, (enemies) (A2.27)

xi ∈ {0, 1}, for i = 1, ..., 35. (range of variables) (A2.28)

A model in the OPL language and the data set for the problem in (A2.1)–
(A2.11) are given in Table A2.1 and A2.2.

The OPL model for this problem consists of three different sections: (i)
Instructions 1–13 declare all constants, integer ranges, and variables in the
model, (ii) instructions 14–25 represent the objective and constraints, and
(iii) instructions 26 and 27 create the output of the model.
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1. int PoolSize = ...;
2. int VocalLB = ...;
3. int VocalUB = ...;
4. int GrammLB = ...;
5. int GrammUB = ...;
6. int ReadCompLB = ...;
7. int ReadCompUB = ...;
8. range ID [1..PoolSize];
9. float Information[ID] = ...;
10. float Difficulty[ID] = ...;
11. int WordCount[ID] = ...;
12. range ZeroOne 0..1;
13. var ZeroOne Item[ID];
14. minimize
15. sum(i in ID) Information[i] * Item[i]
16. subject to {
17. sum(i in ID) Information[i] * Item[i] >= 1;
18. sum(i in ID) Item[i] = 10;
19. sum(i in Vocabulary) Item[i] >= 0;
20. sum(i in Grammar) Item[i] <= 10;
21. sum(i in ReadingComprehension) Item[i] >= 0;
22. sum(i in ID) WordCount[i] * Item[i] <= 1,000;
23. sum(i in ID) WordCount[i] * Item[i] >= 0;
24. forall(i in ID) Difficulty[i] * Item[i] >= −1.0;
25. Item[7] + Item [16] <= 1; };
26. {ID} Test = {i|i in ID : Item[i] = 1};
27. display Test;

TABLE A2.1. Example of an OPL model for the test-assembly problem in
(A2.1)–(A2.11).

More specifically, instructions 1–7 declare integer constants to represent
the size of the item pool and the ranks of the first and last items in the sec-
tions on Vocabulary, Grammar, and Reading Comprehension in the pool,
respectively. The data for these constants are given in the first seven lines of
Table A.2.2. Instruction 8 declares the integer range that indexes the items
in the pool. Real numbers for Ii(θ0) and the difficulty parameter bi of the
items as well as integers for their word counts are declared in instructions
9–11. The data for these item attributes are given in the remaining portion
of Table A2.2. Next, instruction 12 declares a range ZeroOne, which is used
in the declaration of the variables required to formulate the objective and
constraints in the next instruction.
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PoolSize = 35;
VocalLB = 1;
VocalUB = 15;
GrammLB = 16;
GrammUB = 25;
ReadCompLB = 25;
ReadCompUB = 35;
Information =

[0.55, 0.38, 0.61, 0.44, 0.51, 0.29, 0.66,
0.48, 0.47, 0.62, 0.33, 0.58, 0.37, 0.19,
0.56, 0.31, 0.44, 0.47, 0.59, 0.59, 0.38,
0.46, 0.65, 0.52, 0.18, 0.33, 0.57, 0.56,
0.64, 0.41, 0.35, 0.45, 0.53, 0.46, 0.29];

Difficulty =
[0.22, −0.05, −0.08, −0.25, −0.11, −1.34, −0.04,
0.25, −0.06, −0.08, −0.11, −0.07, −0.21, −1.18,

−0.12, −0.38, −0.09, −0.06, −0.00, −0.12, −0.22,
0.23, −0.11, −0.15, −1.93, −1.02, −0.33, −0.24,
0.07, −0.09, −0.16, −0.33, −0.13, −0.04, −1.24];

WordCount =
[98, 56, 33, 79, 82, 66, 78,
89, 57, 64, 88, 51, 77, 64,
57, 86, 57, 29, 54, 56, 76,
86, 57, 92, 57, 56, 67, 81,
71, 69, 62, 58, 89, 77, 63];

TABLE A2.2. Data set associated with OPL model in Table A2.1.

The objective function and constraints are formulated in instructions 14–
25. They follow the model in (A2.1)–(A2.11) line by line and have a format
that is easy to comprehend. Instruction 24 collects the indices of the items
selected by the program in a set called Test, where the last line instructs
the program to display Test as the output of the problem. If these last
two instructions in the model are omitted, the output is just a sequence of
zeroes and ones for all item variables.

A run of the model for the data set in Table A2.2 yielded the following
output:

Optimal solution with objective value: 4.000.
Test = {2, 11, 13, 15, 16, 21, 30, 31, 32, 34}.

From the data in Table A2.2, it is easy to verify (i) that the sum of
Ii(θc) for the items selected is equal to 4.00, (ii) four items in the test are
on Vocabulary, two on Grammar, and four on Reading Comprehension,
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(iii) the total word count is 706, (iv) items 6 and 25, which had bi values
smaller than −1.00, were not selected, and (v) item 16 is in the test but
item 7 is not.

This example did not fully exploit the possibilities of separating the
model and data. For example, it would also have been possible to declare
formal constants for the bounds in the constraints in (A2.2)–(A2.10), use
these in the formulation of the objective and constraints, and specify their
data for the current application in the data file as well. Likewise, we could
have separated the constraint on enemy sets from the membership of items
of these sets. These and other options would allow us to reuse the model
for data files representing alternative item pools and/or bounds in the
specifications.
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Chapter 1
1.1 The distribution would be bimodal with one half of the scores equal

to X = 0 and the other half equal to X = n.
It would be meaningless to use this test to evaluate learning in school;
the score distribution would already be known prior to administering
the test. If the test were used for selection or admission decisions,
half of the test takers would be selected or admitted.
In practice, these ultimate consequences of the classical goal of test
assembly are not visible because we have never been able to construct
tests with ρiX = 1 for the items.

1.2 Substituting the parameter values into (1.16) results in a probability
equal to .50 for a test taker with θ = 1.0.
If ci increases, the probability of .50 is realized at θ < 1.0, the reason
being a nonzero probability of guessing the item correctly.

1.3 The probabilities at θ = .8 and θ = 1.2 are approximately equal to
.45 and .55. Because ci = 0, the probabilities are symmetric about
.50.
If ai increases, the two probabilities move away from .50, showing
the effect of increased discrimination by the item. For example, for
ai = 1.8, they are approximately equal to .41 and .59.

1.4 From probability calculus, it follows that Pr(correct)=Pr(correct|know-
ing)Pr(knowing)+ Pr(correct|not knowing)Pr(not knowing). The prob-
ability of correct given knowing is equal to 1, the probability of



354 Answers to Exercises

knowing is equal to e−ai(θ−bi)/[1 + e−ai(θ−bi)], and the probabil-
ity of correct given not knowing is equal to ci. Substituting these
probabilities and rewriting the result gives the model in (1.16).

1.5 It generally holds that ax = b
ln a
ln b x. Thus, if we change the base of the

powers in (1.16) from e to 10, the exponent has to be multiplied by
a constant ln e/ ln 10 = (ln 10)−1. The effect is only a change of unit
of scale.

1.6 The version of the model with a guessing parameter is

pi(θ1, θ2) = ci + (1 − ci)
ea1iθ1+a2iθ2−bi

1 + ea1iθ1+a2iθ2−bi
.

The probability of guessing correctly does not depend on the test
taker’s abilities; only the probability of knowing does. We therefore
need only one (dimensionless) guessing parameter.
Introducing separate difficulty parameters, b1i and b2i, for each di-
mension would lead to a model with bi replaced by b1i + b2i. But this
model would not be identified; that is, although we could estimate
the sum of these two parameters, we would not be able to estimate
their individual values. Alternatively, in the two-dimensional model,
parameter bi can be viewed as a parameter that already captures the
joint effect of the difficulties of the item along the two dimensions.

1.7 If ci = 0, the expression for the IIF in (1.21) reduces to Ii(θ) =
a2

i pi(θ)[1 − pi(θ)]. At θ = 1.0, the probability of a correct response is
equal to .50 and Ii(1.0) = .92 × .50 × .50 ≈ .20.
For the probabilities at θ = .8 and θ = 1.2, see Exercise 1.3. At
these two values, Ii(θ) is only slightly smaller than at θ = 1.0. See
Exercise 1.3 for the probabilities for ai = 1.8. At θ = 1.0, Ii(1.0) =
1.82 × .50 × .50 ≈ .81, while Ii(.8) and Ii(1.2) are still only slightly
smaller.
The differences between the information-function values show their
dependence on ai. They also show that the IIF hardly changes for
small deviations from θ = bi; an item informative at bi remains so in
its neighborhood.
If ci = .2, the values of the IIF have to be calculated using (1.21).
For example, if ai = .9, the value at θ = bi = 1.0 is no longer equal to
.20 but to .11. At all θ values, an item with ci = .2 is less informative
than an item with ci = 0 due to guessing.

1.8 In Exercise 1.7, we saw that, for ci = 0, the expression in (1.21)
reduces to Ii(θ) = a2

i pi(θ)[1−pi(θ)]. The maximum value of pi(θ)[1−
pi(θ)] is .25, which is reached at θ = bi. Thus, the maximum value of
Ii(θ) is .25a2

i .
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1.9 From Exercise 1.8, it follows that a lower bound on the number of
items required to get a TIF larger than T (θ) is 4T (θ)/a2

i .
If ai increases, the item becomes more informative and the bound
becomes smaller. If ci increases, the item becomes less informative
and the bound becomes greater.

1.10 The number of different sets of n items from a pool of size I is equal to(
I
n

)
. For n = 10, the choice of I = 48 gives us 6,540,715,896 different

sets. Thus, a pool of 48 items is already large enough to give every
living person a different test of 10 items!

1.11 The tests have to satisfy a constraint both on the number of multiple-
choice items and the number of constructed response items. Since we
have I/2 items in the pool of each type, the total number of different
tests possible from a pool of I items is equal to the product of

(
I/2

nMC

)
×(

I/2
nCR

)
.

1.12 In Exercise 1.10, we already saw that a pool of 48 items enables us
to assemble approximately 6.5 × 109 different tests of 10 items. The
number of tests that satisfy the specifications is equal to 13 × 103.
The probability that a random set of ten items from the pool satisfies
the specifications is therefore approximately equal to 2 × 10−6; that
is, just 0.0002%.

1.13 The test should have a minimum of ten knowledge and ten application
items. Because the subsets of items in the pool with these formats
are disjoint, the solution has a minimum of 20 items.
The actual size of the test calculated by the model depends on the
target values T (θk) imposed as lower bounds on the TIF and the
values of the IIFs at θk for the items in the pool. If the average value
of ai is equal to 1.5, the expression derived as a general lower bound
in Exercise 1.9 suggests an expected minimum test length equal to
4T (0)/1.52 ≈ 1.78T (0) (assuming the conditional distributions of ai

given the two formats do not differ too much).

Chapter 2

2.1 The attributes in Table 2.1 are: (1) test length (categorical/test level),
(2) applications (categorical/test level), (3) reliability (quantitative/
test level), (4) graphics (categorical/test level), (5) multiple-choice
format (categorical/test level), (6) gender orientation and minor-
ity orientation (categorical/test level), (7) nervous system (categori-
cal/test level), (8) bias against males and bias against females (cate-
gorical/test level), (9) p-value (quantitative/item level), (10) test in-
formation (quantitative/test level), (11) set size (categorical/item-set



356 Answers to Exercises

level), (12) response time (quantitative/test level), (13) enemy rela-
tion (logical/item level), (14) nervous system and blood vessels (cat-
egorical/test level), (15) number of words (quantitative/item level),
(16) test length (categorical/test level), and (17) addition, subtrac-
tion (categorical/test level).
For a discussion of why such attributes as in specifications 1 and 2
are classified as categorical, see the Discussion at the end of Section
3.2.1.

2.2 Specifications 3, 6, 10, and 16 are objectives; the others imply con-
straints.

2.3 The specifications in Table 2.1 can be reformulated as:
(1a)–(1b) The test length should be larger than or equal to 20; the
test length should be smaller than or equal to 24.
(2) The number of items on applications should be equal to 24.
(3) Maximize the reliability of the test.
(4) The number of items with graphics should be smaller than or
equal to 10.
(5) The number of multiple-choice items should be smaller than or
equal to half the test length.
(6a)–(6b) Minimize the number of items with gender orientation; min-
imize the number of items with minority orientation.
(7) The number of items on the nervous system should be smaller
than 5.
(8) The number of items biased against males should be equal to the
number biased against females.
(9a)–(9b) All item p-values should be larger than or equal to .40; all
item p-values should be smaller than or equal to .60.
(10) Minimize the differences between the TIF and its target func-
tion.
(11a)–(11b) The number of items in sets with a common passage
should be larger than or equal to 4; the number of items in sets with
a common passage should be smaller than or equal to 6.
(12) The expected time required to take the test should be less than
60 minutes.
(13) Items 17 and 103 should not be in the same test.
(14a)–(14b) The number of items on nervous system and blood ves-
sels should be larger than or equal to 10; the number of items on
nervous system and blood vessels should be smaller than or equal to
15.
(15) The number of words in all items should be smaller than or equal
to 150.
(16) Minimize the length of the test.
(17) The number of items on addition should be equal to the number
on subtraction.
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2.4 The trade-offs between objectives 3 and 16 and 10 and 16 are expected
to be strongest. The trade-offs between objectives 3 and 10 and 6 and
19 are expected to be weakest.

2.5 Specification 2 is an equality constraint, and this type of constraint
easily leads to infeasibility (particularly for quantitative attributes).
If the objective is to minimize the length of the test or maximize its
reliability, the constraint should be reformulated as: The number of
items on applications should be larger than or equal to 24.
In either case, we expect the number of items for the solution to be
close to 24.

2.6 If the constraint is reformulated as an objective, we lose the possibility
of formulating another specification as an objective; for example, a
specification that would otherwise imply an equality constraint (see
Exercise 2.5). Of course, we assume that specification 4 reflects the
intentions of the test assembler correctly; especially, the upper bound
of ten should not be a hidden goal value.

2.7 If the test length is constrained to be equal to n, this specification
implies a number of items with a multiple-choice format equal to
n/2. To avoid a constraint of this type, it could be replaced by two
inequality constraints with bounds equal to, for instance, n/2−1 and
n/2 + 1. If the test length is not constrained to a fixed number of
items, the specification could be replaced by two constraints on the
difference between the number of items with and without a multiple-
choice format, for instance, constraints with bounds equal to +1 and
−1.

2.8 An objective with about the same effects as specification 9 is: Mini-
mize the differences between the p-values of the items and .50. The
same type of reformulation is possible for specifications 1, 11, and 14.

2.9 The following objective function minimizes the total information at
the points θk:

minimize
100∑
i=1

K∑
k=1

Ii(θk)xi.

In Section 5.1, we will also introduce an objective function that min-
imizes the largest deviation of the TIF from the target values at a
series of points θk.

2.10 The constraint is x17 + x103 ≤ 1.
If the upper bound of 1 is relaxed, the constraint loses its effect; both
items could then be selected in the test.
Alternatively, the constraint could be replaced by the objective

minimize x17 + x103.
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But this choice implies a preference for a test with neither item 17
nor item 103. Also, the actual result may be a test that contains both
items, which happens if there is no feasible test with one or none of
these items, that is, when x17 + x103 ≤ 1 cannot be satisfied.

2.11 A single constraint would be: The number of items with more than
150 words should be equal to zero.
If all of these items are removed from the pool prior to the assembly of
the test, these constraints can be dropped (but we would then have to
recode all items, redefine the variables, and rewrite the constraints).

2.12 Examples of these objectives are:

(a) Minimize the total number of items with auxiliary material in
the set of tests (categorical/multiple-test level).

(b) Minimize the differences between the information functions of
the tests in the set (quantitative/multiple-test level).

(c) Maximize the number of reading passages with newspaper clips
in the test (categorical/test level).

(d) Minimize the number of printed lines in the test form (quanti-
tative/test level).

(e) Maximize the presence of stimulus 8 in the test (categorical/stim-
ulus level).

(f) Minimize the word count of the first stimulus in the test (quan-
titative/stimulus level)

(g) Minimize the simultaneous presence of stimuli 17 and 19 (logi-
cal/stimulus level).

(h) Maximize the number of items on the nineteenth century in item
set 12 (categorical/item-set level).

(i) Maximize the average information at an ability estimate in the
item set (for an adaptive test) (quantitative/item-set level).

(j) Minimize item overlap between item sets 12 and 22 (logical/item-
set level)

(k) Minimize the presence of item 112 in the test (categorical/item
level).

(l) Minimize the simultaneous presence of items 259 and 334 in the
test (logical/item level).
Some of these objectives may look artificial at first sight, in
particular the objectives at the item and stimulus levels, but do
make sense. For example, the objective in 2.12(e) is useful when
we would like stimulus 8 to be present in the test but only if it
keeps the test-assembly problem feasible.
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For the reason why we view the objectives in 2.12(e) and 3.12(k)
as categorical, see the discussion on categorical and quantitative
attributes in Section 3.2.2.
Observe that quantitative and categorical objectives at the item
level have an identical effect on the presence of the item in the
test. The same holds at the stimulus level. Consider for example
the following quantitative objective at the item level: Maximize
the discrimination index of item 112. Because item 112 is either
selected or not, the objective would have the same effect as the
objective in 2.12(k).
For the interpretation of the objectives in 3.12(g) and 3.12(l),
see Exercise 2.10.

Chapter 3
3.1 Examples of a categorical and quantitative constraint at test level are∑

s∈V stim
c

nsxs ≥ nmin
c for all c,

and
S∑

s=1

qsxs ≥ bmin
q ,

where V stim
c is the set of stimuli with attribute c.

Examples of constraints at the stimulus level are

xs = 1, s ∈ V stim
1 ,

and
15xs ≤ qs, for all s,

where V stim
1 is the set of indices of the stimuli with a combination of

attributes required in the test. The second set of constraints requires
all stimuli in the test to have an attribute value qs ≥ 15; compare
this with (3.14).
It is only possible to formulate constraints at the item or item-set
level if we have variables at the item level.

3.2 The constraints are

(a) ∑
i∈VMC∩VV

xi ≥ 15,

where VMC and VV are the sets of indices of the items in the
pool with a multiple-choice format and those on vocabulary.



360 Answers to Exercises

(b) ∑
i∈VSA∩VB

πixi > 8,

where VSA and VB are the sets of indices of the items with a
short-answer format and those on biology.

(c)
xi∗

s
= 0, for i∗s ∈ VG ∩ V M ,

with VG and VM the sets of indices of the items on geography
and with a map.

(d)
10xi∗

s
≤ li∗

s
,

with i∗s the index of the pivot item for stimulus s and l∗is
the

total number of lines in this stimulus.

(e) ∑
i∈Vs

xi ≤ ksxi∗
s
, for all s,∑

i∈Vs

lixi ≥ 35xi∗
s
, for all s,

where i∗s, Vs, and ks denote the index of the pivot item, the set
of indices of the items, and the number of items in the pool for
stimulus s, respectively. (For the reason why we need to add the
first set of constraints, see Section 3.2.3 and Exercise 3.6.)

(f)
xi∗

18
+ xi∗

27
≤ 1.

3.3 The objectives are

(a)
minimize y

subject to ∑
i∈VA

xi −
∑
i∈VF

xi ≤ y,

∑
i∈VA

xi −
∑
i∈VF

xi ≥ −y,

where VA and VB are the sets of indices of the items biased
against or in favor of second-language test takers.

(b)
minimize

∑
i∈VA∪VG

xi,

where VA and VG are the sets of indices of the items on algebra
and geometry.
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(c)
minimize

∑
i∈VS∩VV

xi,

where VS and VV are the sets of indices of the items on spelling
and vocabulary.

(d)
minimize

∑
i∈VSS∩VST

xi,

where VSS and VST are the sets of indices of the items on social
studies and social tension.
If VST ⊂ VSS , the objective should be formulated as

minimize
∑

i∈VST

xi.

(e)
minimize y

subject to
I∑

i=1

tixi ≤ 60 + y,

I∑
i=1

tixi ≥ 60 − y,

where ti is the expected time on item i.

3.4 Conditional constraints of these types are not treated in this book.
They can often be modeled by an appropriate choice of auxiliary 0-1
variables, but this is not necessary for the constraint in 3.4(a) and
(b).

(a) The constraint is equivalent to

x8 = 1 −→
∑
i �=8

tixi ≤ 105,

which can be represented as

∑
i �=8

tixi − 105 < (
I∑

i=1

ti)(1 − x8),

where
∑
i�=8

denotes the sum over all indices except i = 8.
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(b) Let VC the set of indices of the items that involve a computation.
The constraint is equivalent to∑

i∈V C

xi = 0 −→ x39 = 0,

which can be represented as

x39 ≤
∑

i∈V C

xi.

If item 39 involves a computation, the constraint is always true
and thus is redundant.

(c) The constraint is equivalent to

xi∗
11

+ xi∗
12

= 2 −→
S∑

s=1

xi∗
s

≤ 5,

which can be represented as

xi∗
11

+ xi∗
12

− 1 ≤ ζ,

S∑
s=1

xi∗
s

− 5 ≤ S(1 − ζ),

where it is assumed that the total number of stimuli is equal to
S.

(d) These constraints are equivalent to

I∑
i=1

xi1 < 30 ∩
I∑

i=1
xi2 < 30 −→ xi∗

1
+ xi∗

2
≤ 1, for all i,

where xi1 and xi2, i = 1, ..., I, are 0-1 variables for the assign-
ment of item i to tests 1 and 2, respectively. (For the definition
of these variables, see Section 6.2.) These constraints can be
represented as

30 −
I∑

i=1

xi1 < Iζ1,

30 −
I∑

i=1

xi2 < Iζ2,

xi∗
1

+ xi∗
2

≤ 3 − ζ1 − ζ2, for all i.

Since the condition in the conditional constraints contains a con-
junction, two auxiliary variables, ζ1 and ζ2, are necessary.
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3.5 Using 0-1 variables xit for the selection of item i = 1, ..., I for test
t = 1, 2, the difference is minimal for

minimize y

subject to

n−1
1

I∑
i=1

bixi1 − n−1
2

I∑
i=1

bixi1 ≤ y,

n−1
1

I∑
i=1

bixi1 − n−1
2

I∑
i=1

bixi1 ≥ −y.

3.6 If no variables for the pivot items were added to the constraints on
the categorical and quantitative attributes of the sets, we would select
all sets with these attributes. The constraints would then be bound
to become inconsistent with respect to each other and to (3.38) and
(3.39), and the model would have no feasible solution.
If we used (3.39) only,

∑
i∈Vs

xi would satisfy nmin
s for i∗s = 1, but

this expression could take any value larger than 0 for i∗s = 0. This is
impossible if (3.38) is present, which would then enforce

∑
i∈Vs

xi = 0.
The same holds for (3.41) and (3.42) as well as (3.43) and (3.44).
If the test specifications do not involve an upper bound, a useful
solution is to add a constraint to the model with an arbitrary upper
bound that can never become active. For example, if only the lower
bound in (3.39) is required, we could add the constraint∑

i∈Vs

xi ≤ ksxi∗
s
,

where ks is the size of the set for stimulus s in the pool.

3.7 The first objective implies

maximize
I∑

i=1

rixi.

The second objective specifies a goal value for the average π value,
which can be approximated using a model as in (3.70)–(3.73).

(a) For the weighted-objectives method, we get

maximize w1

I∑
i=1

rixi − w2y

subject to
I∑

i=1

πixi ≤ .5n + y,
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I∑
i=1

πixi ≥ .5n − y,

where both w1 and w2 are assumed to be positive.

(b) Goal programming is only possible if we introduce an arbitrary
upper bound to the readability of any test from the pool, rmax.
The two objectives can then be combined as

minimize w1y2 + w2y2

subject to
I∑

i=1

rixi = rmax − y1,

I∑
i=1

πixi ≤ .5n + y2,

I∑
i=1

πixi ≥ .5n − y2,

y ≥ 0

Because the two objectives are on different scales, we have to
weigh the variables in the objective function.

(c) A minimax approach is used in the following model:

minimize y

subject to

rmax −
I∑

i=1

rixi ≤ w1y,

I∑
i=1

πixi − .5n ≤ w2y,

I∑
i=1

πixi − .5n ≥ −w2y,

y ≥ 0,

where we have added weights to the constraints to account for
the difference in scale between the two objectives.
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(d) In the sequential method, if maximum readability is the objec-
tive with the highest priority, we should first solve the problem
with the objective function

maximize
I∑

i=1

rixi.

The final solution is then obtained by solving

maximize y

subject to
I∑

i=1

πixi ≤ .5n + y,

I∑
i=1

πixi ≥ .5n − y,

I∑
i=1

rixi ≥ b∗
r − δ,

y ≥ 0,

where b∗
r is the value of the objective function in the solution of

the first problem and δ is a small tolerance.
The sequential method is easiest to implement (provided one of
the objectives has first priority) because the task of choosing
appropriate weights in the three other methods is difficult. For
the application of goal programming, we also need to produce a
satisfactory guess of the upper bound rmax.

3.8

Minimize
75∑

i=1

xi

subject to
75∑

i=1

Ii(−1)xi ≤ 8,

75∑
i=1

Ii(1)xi ≤ 8,

75∑
i=1

Ii(−1)xi ≥ 7,
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75∑
i=1

Ii(1)xi ≥ 7,

25∑
i=1

xi ≤
75∑

i=26

xi,

65∑
i=61

xi = 5x61,

xi ∈ {0, 1}, for i = 1, ..., 65.

Chapter 5

5.1

Maximize
K∑

k=1

wk

I∑
i=1

Ii(θk)xi

subject to
I∑

i=1
Ii(θk)xi ≤ Tk, for all k.

5.2 At some of the values θ1, θ2, and θ3, the TIF exceeds its target by an
amount of .8. At the other θ value(s), the difference is smaller than
.8.
If the items have an average discrimination equal to 1.3, the maximum
information in an average item is (1.3)2 × .25 ≈ .42 (see Exercise 1.8).
Thus, a difference of .8 is approximately the equivalent of half an
item located at the θ value where it occurs, which seems a reasonable
result.

5.3 The values are T (θ1) = 10 + .4 = 10.4, T (θ2) = 15 − .5 = 14.5, and
T (θ3) = 10 + .7 = 10.1.

5.4 The sign of the deviation can only be ascertained by calculating∑I
i=1 Ii(θk)xi at each θk for the values of the decision variables in

the solution and comparing the result with Tk.

5.5 One possible approach is

maximize y

subject to
I∑

i=1
Ii(θk)xi ≤ Rky + δ, for all k,
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I∑
i=1

Ii(θk)xi ≥ Rky − δ, for all k,

y ≥ 0,

where the size of the tolerance parameter δ should be chosen to avoid
both a loose result and infeasibility. The tolerances in this approach
have an absolute size. By replacing the right-hand sides of the con-
straints by (Rk + δ)y and (Rk − δ)y, respectively, their size becomes
relative to the actual height of the TIF.

5.6 Minimization of the difference between test reliability and a target
value becomes possible if we define δ and ε in (5.43)–(5.46) as decision
variables and add the objective function

minimize w1δ + w2ε

to the model. Our motivation for (5.34)–(5.37) in Section 5.2.1 sug-
gests a relatively larger value for w1 than for w2.

5.7 The result is explained by the uniformity of the weights wk. The
items are selected to compromise between the sums of first-order,
second-order, and third-order powers. Because equal weight is given
to the less important target values for the sums of the third-order
powers, the compromise turns out to be less favorable to the sums of
first-order and second-order powers.

5.8 The lower bound in (5.64) cannot be positive. As a consequence, the
constraint produces outcomes for xij = 1 and xij = 0 that are both
admissible. The constraint in (3.14) had a positive lower bound; as a
consequence, it was false for xi = 0.

5.9 This generalization requires 0-1 decision variables xijk for the assign-
ment of items i, j, and k to the same triple. The model is

minimize
n∑

i=1

n∑
j=1

n∑
k=1

δijkxijk

subject to ∑
j,k|j �=i,k �=i

xijk = 1, for all i,

xijk = xikj , for all i, j , and k,

xijk = xkij , for all i, j , and k,

xijk = xkji, for all i, j , and k,

xijk = xjki, for all i, j , and k,

xijk = xjik, for all i, j , and k,
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i,j,k|i=j=k

xijk = 0,

xijk ∈ {0, 1}, for all i, j, and k.

Observe that δijk is now a measure for the “distance” between i, j, and
k; for example, δijk = δij + δik + δjk. The model can be written more
parsimoniously, as in (5.79)–(5.81). (Try to formulate this version.)

5.10 For a fixed value of j the sum in (5.80) runs from the top of column
j in the matrix down to its diagonal, and then over the elements in
the row i = j to the right of the diagonal. The sum thus contains
all possible pairs with item j. Because the diagonal of the matrix is
ignored, (5.70) is not needed.

5.11 The model is identical to (5.58)–(5.61) with the objective function
replaced by

minimize
5∑

j=1

I∑
i=1

|bi − bj |xij .

Alternatively, we could use (5.62)–(5.64) or (5.65) and (5.66) with
|bi − bj | substituted for δij . The model does not need a constraint on
the length of the test because (5.59) guarantees the same number of
items as the reference test.

Chapter 6
Note: Several of the exercises in this and the following chapters ask for

alternative model formulations. We give only one example for each exercise
but, for some of them, other formulations are equally good.

6.1

Maximize
2∑

t=1

(.30x1t + .85x2t + .89x3t + .48x4t)

subject to ∑
i∈V1

xit = 2, for t = 1, 2,∑
i∈V2

xit = 1, for t = 1, 2,

xit ∈ {0, 1}, for i = 1, ..., 4 and t = 1, 2.

The objective function contains the total contribution by the two
tests. It is assumed that the two tests are not required to be parallel
with respect to their contributions to the target. (The assumption is
not important, however. Since the data in Table 6.1 admit only one
feasible solution, any objective would give the same result!)
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6.2 Choosing 0-1 variables xijt for the decision on the selection of item i
for test t to match item j in the reference test, the model becomes

minimize
T∑

t=1

I∑
i=1

n∑
j=1

δijxijt

subject to
I∑

i=1
xijt = 1, for all j and t,

n∑
j=1

xijt ≤ 1, for all i and t,

xijt ∈ {0, 1}, for all i, j, and t.

Observe that the coefficients in the objective function do not depend
on t.

6.3
Minimize y

subject to
I∑

i=1
Ii(θk) (xi1 − xi2) ≤ y, for all k,

I∑
i=1

Ii(θk) (xi1 − xi2) ≥ −y, for all k,

I∑
i=1

xi1 = n1,

I∑
i=1

xi2 = n2,

xit ∈ {0, 1}, for all i and t.

6.4
Maximize y

subject to
I∑

i=1
Ii(θk)xit ≥ y, for t = 1, 2, 3,∑

i∈VMC∩VP

xit ≤ 10, for t = 1, 2, 3,∑
i∈VCR∩VIP

xit ≤ 10, for t = 1, 2, 3,∑
i∈VLF

xit ≤ 10, for t = 1, 2, 3,
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fixit ≤ 3, for all i and t = 1, 2, 3,

where the subscripts of the sets V represent the appropriate categor-
ical attributes, and fi is a counter for the number of times item i has
already been administered.
We used upper bounds in the content constraints because the objec-
tive is maximization of test information.

6.5 See (6.19)–(6.23). The number of extra variables is equal to 2,100,
namely 700 for every pair of tests. The number of extra constraints is
2,103, namely 700 for (6.22)–(6.23) and one for (6.20) for each pair of
tests. The constraint in (6.21) can be dropped because we only have
an upper bound on the size of the overlap.

6.6
Maximize y

subject to possible constraints at the following levels:

Multiple-Test Level

xi1 + xi2 + zi ≤ 1, for all i;

Test Level
I∑

i=1
Ii(θk)xit ≥ Rkty, for all k and t = 1, 2,

I∑
i=1

Ii(θk)zi ≥
T∑

t=3
Rkty, for all k,

I∑
i=1

xit � nt, for t = 1, 2,

I∑
i=1

zi =
T∑

t=3
nt, for t = 1, 2,∑

i∈Vc

xit � nct, for all c and t = 1, 2,

∑
i∈Vc

zi �
T∑

t=3
nct, for all c,

I∑
i=1

qixit � bqt, for t = 1, 2,

I∑
i=1

qizi �
T∑

t=3

bqt;

Definition of Variables

xit ∈ {0, 1}, for all i and t = 1, 2,

zi ∈ {0, 1}, for i.
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6.7 See Section 4.3 or A1.4 for network-flow programming. One possible
approach (Armstrong, Jones, & Wu, 1992) is to define a reference
test with items j = 1, ..., n with a TIF equal to the target that has
to be met. These items can be used as demand nodes, while items
i = 1, ..., I in the pool are the supply nodes. In addition, we define
δij as the “distance” between the information function of item i and
reference item j (for example, the sum of distances at the points θk,
or the largest distance at these points). Suppose each test is required
to have nc items with categorical attribute c, where the number of
items with these attributes available in the pool is equal to Nc. The
decision variable for the assignment of item i to reference item j is
xij . In addition to the demand nodes j = 1, ..., n, we define a dummy
node to which all unused items are assigned. The variable for the
decision on the assignment of item i to the dummy node is denoted
as zi.
The model is

minimize
I∑

i=1

n∑
j=1

δijxij

subject to
n∑

j=1
xij = 1, for all i,

I∑
i=1

xij = T, for all j,∑
i∈Vc

zi = Nc − ncT, for all c,

xij ∈ {0, 1}, for all i and j,

zi ∈ {0, 1}, for all i.

The model assigns T items to each demand node. The categorical
constraints guarantee that ncT of the total number of items assigned
to the demand nodes are for attribute c.
The second stage of this approach consists of the assignment of all
items to T individual tests (e.g., using the simultaneous model in
(6.3)–(6.13) or a heuristic).
It is impossible to add a quantitative constraint to the problem with-
out destroying the network-flow nature of the model. But an approxi-
mation is to categorize q, define sets Vcq for all possible combinations
of c and categories of q, and redefine all constraints using bounds
on the number ncq for the combination of categories c and q. The
constraints to be added to the model are∑

i∈Vcq

zi = Ncq − ncqT, for all c and categories of q.
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An alternative approach is Lagrangian relaxation (Section 4.3).
Constraints on enemy items cannot be added to the model for the
same reason. They should be imposed during the second stage, when
the items at the demand nodes are assigned to the T tests.

6.8 Continuing the notation in Section 6.5, and adding variables xjklb

for the decision on the selection of triple (j, k, l) to booklet b, the
constraints are

N∑
j=1

xjb ≤ 4, for all b,

N∑
j=1

xjb ≥ 3, for all b,

B∑
b=1

xjb ≥ 5, for all j,

B∑
b=1

zjklb ≥ 1, for all j < k < l,

3zjklb ≤ xjb + xkb + xlb, for all b and j < k < l,

zjklb ≥ xjb + xkb + xlb − 2, for all b and j < k < l,

xjb ∈ {0, 1}, for all b and j,

zjklb ∈ {0, 1}, for all j < k < l.

6.9 The test for the first stage was selected using

minimize y

subject to
I∑

i=1

Ii(−1.2)xi ≥ y,

I∑
i=1

Ii(0)xi ≥ y,

I∑
i=1

Ii(1.2)xi ≥ y.

The three tests for the second and third stages were selected with the
same objective function but the following constraints:

I∑
i=1

Ii(−1.2)xi1 ≥ y,
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I∑
i=1

Ii(−1.2)xi2 ≥ y,

I∑
i=1

Ii(−1.2)xi3 ≥ y.

Chapter 7

7.1 The constraints can be reformulated as

(a)
zs = 0, for all s ∈ VG ∩ V M .

(b)
10zs ≤ ls.

(c)
Is∑

i=1
xis ≤ kszs, for all s.

Is∑
i=1

lis
xis

≥ 35zs, for all s.

(d)
z18 + z27 ≤ 1.

(e) The constraint in Exercise 3.4(c) is equivalent to

z11 + z12 = 2 →
S∑

s=1

zs ≤ 5,

with S the number of stimuli in the pool. Using an auxiliary 0-1
variable ζ, it can be represented as

z11 + z12 − 1 ≤ ζ,

S∑
s=1

zs − n ≤ S(1 − ζ).

7.2 The constraints can be formulated as:

(a) ∑
is∈VDD

xis
≤ 2zs, for all s,

with VDD the set of indices of the items in the pool with a data
display.
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(b)
zs = 1, for all s ∈ VNC ,

with VNC the set of indices of the stimuli in the pool with a
newspaper clip.

(c)
Is∑

is=1
bixi ≤ bmaxzs, for all s,

Is∑
is=1

bixi ≥ 1.5zs, for all s,

where bmax is the maximum value of the item-difficulty param-
eter in the pool. (See Exercise 3.6.) It is assumed that the size
of the sets is fixed in other item-set level constraints.

(d)
9∑

s=5

∑
is∈VO

xi ≤ 2,

with VO the set of indices of the items in the pool on optics. (This
constraint implies the selection of some of the stimuli 5–9.)

(e)
z7 = z8.

(f)
z22 + x827 ≤ 1.

7.3 The objectives can be reformulated as:

(a)
Minimize y

subject to
S∑

s=1

wszs ≤ 750 + y,

S∑
s=1

wszs ≥ 750 − y,

with S the number of stimuli in the pool and ws the number of
words in stimulus s.

(b)
Minimize y

Is∑
is=1

risxis ≤ rs + y, for all s,
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Is∑
is=1

risxis ≥ rs − y, for all s,

with ris and rs the readability of item is and stimulus s.

(c)

Minimize
S∑

s=1

fszs,

with S the number of stimuli in the pool and fs a counter for
the number of times stimulus s has already been exposed.

(d)
Maximize

∑
s∈V5

zs,

with V5 the set of indices of the stimuli with an upper bound
equal to five on the size of their item set.

(e)
Minimize y

subject to
S−1∑
s=1

Is∑
is=1

xis
−

IS∑
iS=1

xis
≤ y,

S−1∑
s=1

Is∑
is=1

xis
−

IS∑
iS=1

xis
≥ −y,

with S − 1 the number of stimuli in the pool and S a dummy
stimulus for the set of discrete items.

7.4 The constraints can be formulated as follows:

(a) Let V8 and V14 be the sets of indices of the items for stimuli
8 and 14, respectively, and k8 the number of items in V8. The
constraint is equivalent to

z8 + z14 = 2 →
∑

i8∈V8∩V18

xi ≤ 3,

which can be represented as

z8 + z14 − 1 ≤ ζ,∑
i∈V8∩V18

xi8 − 3 ≤ k8(1 − ζ).
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(b) Let VMC and VCR be the sets of indices of the items with
a multiple-choice and a constructed response format and ks is
the number of items in the pool available for stimulus s. The
constraint is equivalent to∑

is∈VCR

xis
−

∑
is∈VMC

xis
> 0 → zs = 1,

with the additional requirement that at least ten item sets satisfy
the condition in this implication. This case can be represented
as

S−1∑
s=1

ζs ≥ 10.

∑
is∈VCR

xis −
∑

is∈VMC

xis > −ks(1 − ζs)∑
is∈VCR

xis − ∑
is∈VMC

xis < kszs, for all s,

(c) Let VMa and VMi be the sets of indices of the items with a major-
ity and minority orientation and ks the number of items available
in the pool for stimulus s. The specification is equivalent to∑

is∈VMa∪VMi

xis > 1 →
∑

is∈VMa

xis −
∑

is∈VMi

xis = 0,

which can be represented as∑
is∈VMa∪VMi

xis − 1 < ksζ,

∑
is∈VMa

zis − ∑
is∈VMi

zis ≤ ks(1 − ζs), for all s,∑
is∈VMa

zis −
∑

is∈VMi

zis ≥ −ks(1 − ζs), for all s.

Observe, however, that the problem has a hidden implication:
If
∑

is∈VMa∪VMi
xis

= 0, it also holds that
∑

is∈VMa
xis

= 0 and∑
is∈VMa

xis
= 0. It is therefore possible to use a much simpler

unconditional representation∑
is∈VMa

zis −
∑

is∈VMi

zis = 0.

7.5 In stage 1, we average the quantitative item attributes because the
actual size of the sets in the test is unknown. In stage 2, we con-
strain the size of the set and therefore are able to formulate regular
quantitative constraints at the set level.
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Chapter 8
8.1 Suppose θ1 is the intentional ability and θ2 is a nuisance ability. If we

constrain the expression in (8.10) by an upper bound, we restrict the
set of feasible solutions and may be forced to select a test from the
pool that is less than optimal for the measurement of θ1 (Sections
2.4.2. and 4.2). For the case of an objective function with respect to
the nuisance ability, see the analysis of trade-off between (8.10) and
(8.11) in the discussion of (8.9)-(8.11).

8.2 The best approach is to set w1kl = 1 for all points (k, l) for the first
variance function. For the second function, we can set w2kl = 1 for
k = l and w2kl = 0 for k �= l. Setting a weight equal to zero effectively
removes its constraint from the model.

8.3 Draw a graph to prove that if

ξ1 = λθ1 + (1 − λ)θ2

represents the first dimension, the dimension orthogonal to it is rep-
resented by

ξ2 = −(1 − λ)θ1 + λθ2.

The transformation we seek is a mapping from the old discrimination
parameters a1 and a2 to new parameters a∗

1 and a∗
2. Since the prob-

abilities in (1.17) are invariant under the transformation, they have
to satisfy

a1θ1 + a2θ2 = a∗
1 [λθ1 + (1 − λ)θ2]

+a∗
2 [−(1 − λ)θ1 + λθ2] .

Solving for a∗
1 and a∗

2 gives

a∗
1 =

λ

λ2 + (1 − λ)2
a1 +

(1 − λ)
λ2 + (1 − λ)2

a2,

a∗
2 = − 1 − λ

λ2 + (1 − λ)2
a1 +

λ

λ2 + (1 − λ)2
a2.

Since the orientation of the ability space depends only on the portion
of the parameter structure that contains θ1 and θ2, the reparameter-
ization does not involve any change of bi.
For λ = .5, it holds that ξ1 = .5θ1 + .5θ2 and ξ2 = −.5θ1 + .5θ2, where
the parameter transformation simplifies to

a∗
1 = a1 + a2,

a∗
2 = −a1 + a2.
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Chapter 9

9.1 Because we now have a minimum level of accuracy for the abil-
ity estimates instead of a fixed test length, we make the following
assumptions:

(a) Each test taker should be guaranteed a test with information
minimally equal to T at his or her true ability level.

(b) A minimum test length nmin is derived from the distribution of
the item-parameter values in the pool (e.g., the minimum length
necessary to satisfy T if the test starts at the test taker’s true
ability θ for any possible value of θ).

(c) The categorical test-level constraints in (9.13) can be expressed
using the proportions of items in the test with attribute c, pc.

(d) The same holds for the item-level constraints on desired combi-
nations of categorical attributes in (9.16).

(e) All bounds bq in the quantitative test-level constraints in (9.14)
are specified for the minimum test length, nmin.

(f) Tolerances δ, ε, and γ are specified to guarantee feasibility of
the models for the selection of the items g = 1, ....
The model can then be formulated as

minimize
I∑

i=1
Ii(θ̂

(g−1)
)xi (objective)

subject to possible constraints at the following levels:
Test Level

I∑
i=1

Ii(θ̂
(g−1)

)xi ≥ T , (test information)

I∑
i=1

xi ≥ nmin, (minimal test length)

∑
i∈Vc

xi ≤ pc

I∑
i=1

xi + δ, for all c, (categorical attributes)

∑
i∈Vc

xi ≥ pc

I∑
i=1

xi − δ, for all c, (categorical attributes)

I∑
i=1

qixi ≤
(
bq/nmin + ε

) I∑
i=1

xi, (quantitative attributes)

I∑
i=1

qixi ≥
(
bq/nmin − ε

) I∑
i=1

xi; (quantitative attributes)
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Subtest Level ∑
i∈Rg

xi = g − 1; (previous items)

Item Level∑
i∈V1

xi ≤ p1

I∑
i=1

xi + γ, (categorical attributes)

∑
i∈V1

xi ≥ p1

I∑
i=1

xi − γ, (categorical attributes)

∑
i∈V0

xi = 0, (categorical attributes)

qixi ≤ bmax
q , for all i, (quantitative attributes)

bmin
q xi ≤ qi, for all i, (quantitative attributes)∑

i∈Ve

xi ≤ 1, for all e; (enemies)

Definition of Variables

xi ∈ {0, 1}, for all i. (range of variables)

9.2 The alternative criterion is sensitive to changes in the composition
of the shadow test after the first item for a new stimulus has been
selected, whereas the criterion proposed in Section 9.3 is sensitive to
outliers (i.e., single items in sets with extremely large information at

θ̂
(g−1)

). It is therefore not possible to formulate a general preference
for one of these criteria.

9.3 Let j = 1, ..., J be an arbitrary population of test takers and ηij an
indicator variable equal to one if item i = 1, ..., I has been exposed
to test taker j and zero otherwise. The sum of the exposure rates is
equal to

I∑
i=1

⎛⎝ J∑
j=1

ηij/J

⎞⎠ =
J∑

j=1

(
I∑

i=1

ηij

)
/J = n,

where the last transition holds because each test taker j is exposed
to n items; that is,

∑I
i=1 ηij = n for all j.

Since the sum of the exposure rates is fixed, lowering the rate of one
item results in an increase of the sum of the rates for all other items
by the same amount.
The average exposure rate for a 15-item test from a pool of 350 items
is equal to 15/350=.04. A minimum bound of .05 for the rates of all
items is therefore impossible.
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9.4 If P t(Si | θ) > rmax, it holds that

P (t+1)(Ai | θ) = P (t+1)(Ai | Si, θ)P t(Si | θ)
=

(
rmax/P t(Si | θ)

)
rmax

= rmax.

Thus, the adjustment has been chosen to yield a predicted exposure
rate at t + 1 equal to rmax. (However, the prediction is based on
the assumption that P t(Si | θ) remains constant, which is not true
because the new selection rate of an item depends on the joint effect
of the preceding adjustments for all items.)
The adjustment for P t(Si | θ) ≤ rmax does not make much sense
if the control parameter is already lower than 1. It therefore seems
safer to set P (t+1)(Ai | Si, θ) = P (t)(Ai | Si, θ) in this case or to base
the adjustment rule on the criterion of P t(Ai | θ) ≤ rmax instead of
P t(Si | θ) ≤ rmax.

9.5 From (9.45), it follows that

P (Ei ∪ F | θ) ≤ rmax

P (Ai | Ei ∪ F | θ)

=
rmaxP (Ei ∪ F | θ)

P (Ai ∩ (Ei ∪ F ) | θ)

=
rmaxP (Ei ∪ F | θ)

P (Ai | θ)
.

But

P (Ei ∪ F | θ) = 1 − P (Ei ∩ F | θ)
= 1 − P (Ei | θ)P (F | θ)
= 1 − (1 − P (Ei | θ)) P (F | θ)
= 1 − P (F | θ) + P (F | θ)P (Ei | θ),

where the independence assumption makes the second transition pos-
sible. Substituting the last result in the preceding expression and
simplifying gives (9.46).
The independence assumption is reasonable for a professionally de-
signed item pool. Typically, such pools are 8–10 times as large as
the test and have multiple items with each of the combinations of at-
tributes required for the shadow test. If so, the probability of a feasible
solution does not depend on the ineligibility of a small subset of items
in the pool. In fact, if P (F | θ) = 1, which invariably has been the case
in our simulation studies, it follows that P (Ei ∩ F | θ) = P (Ei | θ),
and independence holds trivially.
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9.6 If P (e)(F | θ) = 1, it also holds that P (e)(Ei ∪ F | θ) = P (e)(Ei | θ).
Therefore, from (9.46),

P (e+1)(Ei | θ) < P (e)(Ei | θ) if P (e)(Ai | θ) > rmax,

P (e+1)(Ei | θ) = P (e)(Ei | θ) if P (e)(Ai | θ) = rmax,

P (e+1)(Ei | θ) > P (e)(Ei | θ) if P (e)(Ai | θ) < rmax,

which shows the adaptation for test taker e + 1 based on the result
for test taker e.

9.7 Because of (9.49), it holds for an average test taker in the population
that τ = 0. As a result, βi is the expected logtime for a test taker on
item i, and

∑T
i=1 exp(βi)xi is the expected total time on the test. If

ttot has been set well for the population of test takers, they can thus
be expected to finish in time.

9.8 For n random variables with a common standard deviation σ, the
standard deviation of their sum can be approximated as σ/

√
n. A

useful estimate of the standard deviation of the total time on a test
from this pool is therefore 5 seconds.

9.9 The choice of the 50th percentile implies a constraint on the total
time for an average test taker (see Exercise 9.7). This choice makes
sense for a longer test (see Exercise 9.8). However, if we approach the
end of the test, the variance of the total time on the remaining items
becomes more sensitive to the variances of the individual items, and
the move to the 95th percentile guarantees better protection of the
test taker against running out of time.

9.10 The determinant of the covariance matrix was given in (8.4) as

|I(θ1, θ2)| =

(
n∑

i=1

a2
1ipiqi

)(
n∑

i=1

a2
2ipiqi

)
−
(

n∑
i=1

a1ia2ipiqi

)2

.

The item with the best projection for the determinant is item i with
the minimal value for⎛⎝ ∑

j∈Rg∪{i}
a2
1jp

(g−1)
j q

(g−1)
j

⎞⎠⎛⎝ ∑
j∈Rg∪{i}

a2
2jp

(g−1)
j q

(g−1)
j

⎞⎠
−

⎛⎝ ∑
j∈Rg∪{i}

a1ja2jp
(g−1)
j q

(g−1)
j

⎞⎠2

.



382 Answers to Exercises

Chapter 10
10.1 The design space for the test specifications in Exercise 3.8 is the

Cartesian product of the following attributes: (i) content (arithmetic;
graphs; use of pocket calculator); (ii) item-difficulty parameter; (iii)
item-discrimination parameter; and (iv) guessing parameter. Item in-
formation is calculated from the values of the item parameters at each
design point. We can ignore the expected response time because it is
approximately constant for each item and test taker.
If we choose ten values each for the difficulty and discrimination pa-
rameters, and three values for the guessing parameter, the design
space contains 3 × 10 × 10 × 3 = 900 points.
It is not necessary to reduce a space of this size, but if it were re-
quired, we could reduce the number of points to 300 by assuming a
common value for the guessing parameter (e.g., the reciprocal of the
number of response alternatives).

10.2

Minimize
900∑
i=1

ϕdxd

subject to
900∑
d=1

Id(−1)xd ≤ 9,

900∑
d=1

Id(1)xd ≤ 9,

900∑
d=1

Id(−1)xd ≥ 7,

900∑
d=1

Id(1)xd ≥ 7,

900∑
d=1

xd = 30,

∑
d∈VA

xd ≤
∑

d∈VG∪VP C

xd,

xd ∈ {0, 1, ...}, for d = 1, ..., 900,

where VA, VG, and VPC are the sets of the design points with the
content categories arithmetic, graphs, and use of pocket calculator.
The constraint on items 61–65 can be ignored because it is a logical
constraint at the item level.
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10.3 For this extension, a model with variables xdt, t = 1, 2, is required:

minimize
900∑
i=1

ϕdxdt

subject to
900∑
d=1

Id(−1)xd1 ≤ 9,

900∑
d=1

Id(1)xd1 ≤ 9,

900∑
d=1

Id(0)xd2 ≤ 9,

900∑
d=1

Id(2)xd2 ≤ 9,

900∑
d=1

Id(−1)xd1 ≥ 7,

900∑
d=1

Id(1)xd1 ≥ 7,

900∑
d=1

Id(0)xd2 ≥ 7,

900∑
d=1

Id(2)xd2 ≥ 7,

900∑
d=1

xdt = 30, for t = 1, 2,∑
d∈VA

xdt ≤ ∑
d∈VG∪VP C

xdt, for t = 1, 2,

xdt ∈ {0, 1, ...}, for d = 1, ..., 900 and t = 1, 2.

10.4 The aggregation of the test length is straightforward. We do not have
to aggregate the constraint on the relation between the numbers of
items on arithmetic, graphs, and the use of a pocket calculator. Be-
cause the TIFs of the two tests are constrained at different points
θk, an additional assumption with respect to the choice of target val-
ues is necessary; for instance, we could assume that it is necessary
to constrain both TIFs at all four points θ = −1, 0, 1, and 2, with
aggregated bounds equal to 14 and 18.
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10.5 The changes required for the model in the preceding answer are: (i)
substitution of xd1 + zd12 for xd1 and xd2 + zd12 for xd2, and (ii) the
addition of the constraints

900∑
d=1

zd12 ≤ 8,

900∑
d=1

zd12 ≥ 4.

10.6 Let VSE , VM , VCE , VL, and VE be the sets of stimulus points with
the attributes static electricity, magnetism, current electricity, light,
and description of an experiment, respectively, and VC , VPL, VKC ,
and VKP the sets of item points with the attributes computational
activity, use of a physical law, knowledge of a concept, and knowledge
of a principle.
The model is

minimize
E∑

e=1

D∑
d=1

ϕde
xde

+
E∑

e=1

ϕeze

subject to
D∑

d=1

xde = 40,

∑
d∈V item

C

xde ≤ 18,

∑
e∈V stim

SE

ze = 2,

∑
e∈V stim

M

ze = 2,

∑
e∈V stim

CE

ze = 2,

∑
e∈V stim

L

ze = 2,

∑
e∈V stim

E

ze ≤ 4,

D∑
d=1

xde ≤ 6ze, for all e,
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D∑
d=1

xde
≥ 4ze, for all e,∑

d∈V item
P L

xde
>

∑
d∈V item

KC ∪V item
KP

xde
, for all e,

xde
, ze ∈ {0, 1}, for all d and e.

10.7 In the first stage, the stimuli are selected using

minimize
E∑

e=1

ϕeze

subject to ∑
e∈V stim

SE

ze = 2,

∑
e∈V stim

M

ze = 2,

∑
e∈V stim

CE

ze = 2,

∑
e∈V stim

L

ze = 2,

∑
e∈V stim

E

ze ≤ 4,

ze ∈ {0, 1}, for all e.

In the second stage, the items are selected using

minimize
D∑

d=1

ϕdxd

subject to
D∑

d=1

xd = 40,

∑
d∈V item

C

xd ≤ 18,

∑
d∈V item

P L

xd >
∑

d∈V item
KC ∪V item

KP

xd,

xd ∈ {0, 1}, for all d.
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In the third stage, we use indices se = 1, ..., Se to denote the individ-
ual stimuli required at stimulus point e ∈ E according to the solution
for the stimulus model calculated in the second stage. In addition, we
have variables ydse for the assignment of the items at the points d to
the stimuli se. The items are assigned to the stimuli using

E∑
e=1

Se∑
s=1

D∑
d=1

ϕde
ydse

subject to
E∑

e=1

Se∑
s=1

ydse
= x∗

d, for all d,

D∑
d=1

ydse
≤ 6, for all s and e,

D∑
d=1

ydse
≥ 4, for all s and e,

ydse ∈ {0, 1}, for all d, s, and e,

where ϕde
is the cost of writing an item at d for a stimulus at e

and x∗
d is the value of decision variable xd in the solution for the

item model calculated in the first stage. Observe that the model has
supply constraints and item-set level constraints only. All other test
specifications have already been realized in stage one or two.

Chapter 11

11.1 Ignoring the rounding operation in (11.18), the number of items
required at d is equal to

ηd

Jrmax .

The total number of items required in the pool is equal to

I∗ =

D∑
d=1

ηd

Jrmax .

As the item pool is required to be minimally equal to Imin, the
minimum number of items needed at d is

ηdI
min

JrmaxI∗ =
ηdI

min

D∑
d=1

ηd

.
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Upward rounding gives

Nd = int

⎛⎜⎜⎜⎝ηdI
min

D∑
d=1

ηd

⎞⎟⎟⎟⎠ .

Likewise, for the case of conditional exposure control, we have

Nd = int

⎛⎜⎜⎜⎝max
k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η
(k)
d Imin

D∑
d=1

η
(k)
d

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠ .

11.2 Analogous to (11.19),

Ne = int

(
max

k

{
µ

(k)
e

J (k)rmax

})
.

Hence,

Nde = int

(
max

k

{
(1 + εe)η

(k)
de

J (k)rmax

})
,

with εe in (11.42) defined for the conditional version of (11.41).

11.3 The model is identical to (11.47)–(11.50) with the following excep-
tions: (i) the attribute space D is a one-dimensional space defined by
a set of discrete values of discrimination parameter a; (ii) the distance
measure δid is defined as the absolute difference between ai and ad;
and (iii) the following types of constraints added to the model:∑

i∈Vβ

xid � ndβ
, for all d and β,

where β = 1, ..., B is a partition of the range of values for difficulty
parameter b, Vβ is the set of indices of the items with a value in in-
terval β, and ndβ

are bounds on the number of items assigned to d
from interval β.
Although the new distance measure is simpler, a serious problem
with this alternative model is the risk of infeasibility due to the new
constraints on the distributions of the values for the difficulty param-
eter. The original model, however, always has a solution for each set
of values for the bounds nd in (11.49) with

∑D
d=1 nd = I.

11.4 The values of θt are the midpoints of the intervals with 10% of the
probability mass. They can be found by solving Φ(θt) = .10t for
θi using a conventional table for the standard normal cumulative
distribution function Φ(.).
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11.5 Let id = 1, ..., Id be the index of the ith item at design point d ∈ W ,
where W is the subset of points in D for which the pool has at least
H items. The following model uses variables xidh for the decision on
the assignment of item i at point d to item pool h = 1, ..., H:

minimize y

subject to

W∑
d=1

Id∑
id=1

Iid
(θk)(xidh′ − xidh′′) ≤ y, for all k and h′ �= h′′ = 1, ..., H,

W∑
d=1

Id∑
id=1

Iid
(θk)(xidh′ − xidh′′) ≤ y, for all k and h′ �= h′′ = 1, ..., H,

Id∑
id=1

xiph = md/H, for all d ∈ W, and h,

2∑
h=1

xidh = 1, for all i and d ∈ W,

xidh ∈ {0, 1}, for all i, d ∈ W , and h,

where md is the number of items available at d, and it is assumed
that md/H is an integer (possibly after previous editing of the master
pool).
The two-stage procedure is a heuristic, and its solutions can never be
better than those for the model above. But the model above entails
an extremely large number of variables and constraints for a master
pool of realistic size.
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0-1 programming (see
programming)

ability, 11
ability estimation, 26, 214
ability measurement, 15–16
ability parameter, 14
ability scale, 19–21
ACT Assessment Program,

204–207, 252–253
active design point, 299, 307
adaptive test assembly, 26,

211–261
adaptive testing, 65, 211

constrained ∼, 140
multidimensional ∼,

248–253, 304
testlet-based ∼, 140, 253

admissible outcome, 61
algorithm

approximation ∼, 197
branch-and-bound ∼,

81–87, 218, 346
genetic ∼, 93–94
item writing ∼, 29

Lord-Wingersky ∼, 136
polynomial-time ∼, 85
simplex ∼, 84

alpha stratification, 225–229,
309–310

A-optimality, 99, 100, 199
weighted version of ∼, 199,

251
Armed Services Vocational

Aptitude Battery
(ASVAB), 240–241

assignment problem, 48, 310, 343
attribute, 34

categorical ∼, 36
item ∼, 37
item-set ∼, 37
level of ∼, 37–38
logical ∼, 36
multiple-test ∼, 38
quantitative ∼, 36
stimulus ∼, 37
test ∼, 37
type of ∼, 36–37

backtracking, 84
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balanced incomplete-block (BIB)
design, 140, 152–155

big-shadow-test method,
146–151

binary programming (see
programming)

binomial-error model, 25
Birnbaum approach to test

assembly, 21–23
blueprint

item ∼, 268
item-pool ∼, 24, 268,

301–303, 308, 318
bound

lower ∼, 70, 114, 169
upper ∼, 72, 82, 169

branching, 82

checking constraints, 61–64
classical test design, 2–9
classical test theory (CTT), 4–9
coefficient α, 7
combinatorial optimization, 25,

33, 336
common items, 274
composite ability (see convex

combination of
abilities)

constraint, 38–39, 41–42, 51–64,
145

active ∼, 41, 80, 339
alpha-stratification ∼,

225–229, 309–310
dynamic ∼, 300
inconsistent ∼, 63, 339
ineligibility ∼, 151
redundant ∼, 41, 62, 339

convex combination of abilities,
191–192

convex space, 340
cost function, 268, 276–278

smoothing of ∼, 277–278
covariance (matrix), 98, 193
cutoff score, 114

decision variable, 27, 48–50, 267
0-1 ∼, 50
binary ∼, 27
integer ∼, 50
real-valued ∼, 68
demand node or point, 88,

151–152, 343–344
design

balanced incomplete-block
(BIB) ∼, 140, 152–155

model, 298–301, 305–308
optimal ∼, 98–101
point, 99, 267, 278
sample ∼, 99
space, 99, 266–268

design model, 298–301, 305–308
dynamic ∼, 284–290

design point, 99, 267, 278
design space, 99, 266–268, 309
D-optimality, 98, 100, 197, 199,

251
dynamic programming (see

programming)

edited-set method, 174
educational assessment, 139–140
enumeration

explicit ∼, 346
implicit ∼, 346

equating
equipercentile ∼, 121, 243
local ∼, 243
observed-score ∼, 121

equating transformation, 243
error in observed score, 4
estimation

Bayesian ∼, 14
expected a posteriori (EAP)

∼, 219
maximum-likelihood (ML)

∼, 14
exclusion, 59

feasibility, 41, 62–64
feasible solution, 338



Index 405

optimal ∼, 41, 338
feasible space, 86
feasible test, 41
Fisher–s information, 16,

192–193

genetic algorithm (see
algorithm)

goal programming (see
programming)

goal value, 67–68
goodness-of-fit analysis, 15, 29
Graduate Management

Admission Test
(GMAT), 303

Graduate Record Examination
(GRE), 310–311

Gulliksen–s matched random
subsets method, 129,
131

heuristic
constructive ∼, 89–92
greedy ∼, 89–90
local search ∼, 92–96
Luecht ∼, 91
rounding ∼, 282, 344–345
Swanson-Stocking ∼, 91–92

heuristic correction, 142

IEA Second Mathematics Study,
133–135

inclusion, 60
incumbent, 81
ineligibility constraint, 233–235,

302
infeasibility, 41–42, 63, 141–142,

282
information function

item- ∼ (IIF), 16–17, 267
target for ∼, 21–22
test- ∼ (TIF), 16–17

information matrix, 99, 100, 189,
193

integer programming (see
programming)

intentional ability or factor,
190–191, 201

item author, 277, 286–287
item banking, 10
item blueprint (see blueprint)
item calibration, 14–15
item-criterion correlation, 7
item-exposure control, 225–235,

302
item-exposure rate, 225, 227,

301, 320
item overlap, 144–145, 272–274,

320
item mapping, 20
item matching, 125–135, 204
item parameter

classical ∼, 6, 19
item-difficulty ∼, 6, 12, 241,

303
item-discrimination ∼, 6,

13, 320
guessing ∼, 12, 303
IRT ∼, 11, 19

item-parameter estimation, 29
item pool, 24

master ∼, 266, 290–291,
314, 319

operational ∼, 266, 319
parallel ∼, 291, 314, 318
rotating ∼, 305, 314–320
set-based ∼, 224–225

item-pool splitting, 151
item-pool stratification, 309
item-pool design, 265–292,

297–325
item-pool development, 29
item-pool management, 284–290
item-response function, 11,

122–123
item-response theory (IRT),

11–14
item review, 257
item selection, 211

Bayesian ∼, 223–224
conditional ∼, 59
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item set, 52–53, 57, 165–185,
224–225, 278–282,
305–308

item swapping, 152
item writing, 29, 285
item validity, 7

Kelderman method, 109–110
k-nearest-neighbor regression,

277–278
Kullback-Leibler information,

223, 251–252

Lagrangian relaxation (see
relaxation)

Law School Admission Test
(LSAT), 114–115,
155–157, 179–185, 219,
227, 231, 235, 283, 287,
313–314, 320

linear approximation, 197
linear decomposition, 194–197
linear on-the-fly testing, 139, 253
linear programming (see

programming)
lognormal model for response

times, 237–238
L-optimality, 99
Lord-Wingersky algorithm (see

algorithm)

mastery testing, 25
matching

item-by-item ∼, 125–135
observed-score-distribution

∼, 121–125
mathematical programming (see

programming)
maximin approach or model,

69–71
minimax approach or model, 71,

111–113
weighted ∼, 123

mixed-integer programming (see
programming)

Monte Carlo method, 92, 95, 303
multidimensional response

model, 14, 20–21
multidimensional test assembly,

189–208
multiobjective test assembly, 40,

68–72, 107
multiple-shadow-test approach

(MSTA), 230–232
multiple-test assembly, 139–162
multistage testing, 211, 253

National Assessment of
Educational Progress
(NAEP), 152, 157

network-flow programming (see
programming)

nondeterministic
polynomial-time hard
(NP-hard), 85

nonlinearity, 72
nonlinear programming (see

programming)
nuisance ability or factor,

190–191, 201

objective, 38, 39
objective function, 38, 40–41,

64–72, 144, 222–224,
338

observed score, 4, 244–245
observed-score distribution, 4,

107, 121–125, 203–204,
245–248

observed-score variance, 5
OPL Studio, 347–351
optimal feasible solution (see

feasible solution)
optimizer, 48, 333
overconstraining, 41, 227

parallel tests, 139
penalty term, 89
pivot item, 60, 174
pivot-item method, 174–175
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power-set method, 170–173
predictive validity, 6

maximizing ∼, 118–119
pretest-posttest design, 139
prioritizing objectives, 71
problem size, 85–86
programming

0-1 ∼, 25, 28, 336
binary ∼, 336
dynamic ∼, 336
goal ∼, 69
integer ∼ (IP), 25, 28, 336,

344–346
linear ∼ (LP), 333–346
mathematical ∼, 333–337
mixed-integer ∼ (MIP), 68,

336
network-flow ∼, 87–89,

151–152, 342–344
nonlinear ∼, 335
quadratic ∼, 335
stochastic ∼, 336

pruning, 82
psychological testing, 2–3, 28–29

quadratic programming (see
programming)

reference test, 129–131, 241–248
relaxation

Lagrangian ∼, 89
reliability coefficient, 5
reporting scores, 241–248
response function, 11, 122–123
response probability, 122
response surface, 14
response time, 237–238
rotation of ability space, 252
routing test, 140
running time (see solution time)

sampling of test items
random ∼, 25
sequential ∼, 25

selection problem, 48

sequential optimization, 71–72,
96–98

sequential test assembly, 141–142
self adaptation, 234
semiassignment problem, 310
shadow pool, 291
shadow-test approach (STA), 65,

146, 213–222, 257, 297,
312

fixed-length ∼, 214–221
random-length ∼, 214

shipping problem (see
transportation
problem)

simple structure of abilities, 190,
192

simplex algorithm or method,
84, 282, 341–342

simplex tableau, 342
simulated annealing, 94–96
simultaneous optimization,

96–98
simultaneous test assembly,

142–146
solution time, 85–86
solver, 48, 333
speededness, 235–241

differential ∼, 235
speed parameter, 237
standardized testing, 2–3
standard model for

∼ a big shadow test,
148–149

∼ a multidimensional test,
198, 200

∼ multiple tests, 143
∼ a program with parallel

forms of single tests,
268–270

∼ a program with parallel
forms of multiple tests,
271–272, 275

∼ a program with tests with
item sets, 279–281



408 Index

∼ a shadow test, 217–218,
298–299, 305–307

∼ a single test, 78–81
∼ a test with item sets,

167–169
stimulus, 37, 167, 278
stochastic programming (see

programming)
supply node or point, 343–344
Sympson-Hetter method,

229–230

target for a test-information
function, 106

absolute ∼, 107, 110–113
method for specifying a ∼,

108–110
relative ∼, 107–108, 110–113

Taylor approximation, 197
Taylor expansion, 197
test-characteristic function

(TCF), 17–18, 122
testing for admission, 107, 304
testing for placement, 304
test parameter, 5–8
test program, 265

test specifications, 23, 33–44
standard format for a set of

∼, 40–42
test reliability

constraining ∼, 119–120
maximizing ∼, 40, 117–118
split-half ∼, 131

test splitting, 131–133, 317
three-parameter logistic (3PL

model), 11–14, 290
time-intensity parameter, 237
time limit, 235, 238
transportation problem, 48,

88–89, 342–344
transshipment node or point, 88,

343
tree search, 82–84
true score, 4, 243
two-stage method, 175–179

validity coefficient, 6, 8
variance function, 192–194

weighted-deviation method
(WDM), 222

weighted-objectives approach or
method, 68–69
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