


Introduction to Modern 
Portfolio Optimization 
With NUOPT and S-PLUS



Bernd Scherer R. Douglas Martin

Introduction to Modern 
Portfolio Optimization 
With NUOPT and S-PLUS



Bernd Scherer R. Douglas Martin
Deutsche Asset Management Department of Statistics
Frankfurt 60325 University of Washington
Germany Seattle, WA 98195-4322
 USA

S+NuOpt is a trademark of Insightful Corporation. Insightful, Insightful Corporation, and S-PLUS are 
trademarks or registered trademarks of Insightful Corporation in the United States and other countries 
(www.insightful.com).

Data source: CRSP®, Center for Research in Security Prices. Graduate School of Business, The 
University of Chicago. Used with permission. All rights reserved. CRSP® data element names are 
trademarked, and the development of any product or service linking to CRSP® data will require the 
permission of CRSP® www.crsp.uchicago.edu.

Library of Congress Cataloging-in-Publication Data
Scherer, Bernd Michael.
 Introduction to modern portfolio optimization with NUOPT and S-PLUS / Bernd Scherer, 
R. Douglas Martin.
  p. cm.
 Includes bibliographical references and index.
 ISBN 0-387-21016-4 (alk. paper)
 1. Portfolio management—Data processing. I. Martin, Douglas R. II. Title.
 HG4529.5.S325 2005
 332.6′0285′53—dc22 2004058911

ISBN-10: 0-387-21016-4
ISBN-13: 978-0387-21016-2 Printed on acid-free paper.

© 2005 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, 
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use 
in connection with any form of information storage and retrieval, electronic adaptation, computer 
 software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they 
are not identifi ed as such, is not to be taken as an expression of opinion as to whether or not they are 
subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2

springer.com



 
To Katja, Jean, and Julia 

 
and 

 
In deep appreciation and fond memory of John W. Tukey 

 
 
 
 

 



vii 

Preface 

 

Purpose of Book 

This book was written to expose its readers to a broad range of modern portfolio 
construction methods. It provides not only mathematical expositions of these 
methods, but also supporting software that gives its readers valuable hands-on 
experience with them. It is our intention that readers of the book will be able to 
readily make use of the methods in academic instruction and research, and to 
quickly build useful portfolio solutions for finance industry applications. The 
book is “modern” in that it goes well beyond the classical constrained mean-
variance (Markowitz) portfolio optimization and benchmark tracking methods, 
and treats such topics as general utility function optimization, conditional-value-
at-risk (CVaR) optimization, multiple benchmark tracking, mixed-integer 
programming for portfolio optimization, transaction costs, resampling methods, 
scenario-based optimization, robust statistical methods (such as robust betas and 
robust correlations), and Bayesian methods (including Bayes-Stein estimates, 
Black-Litterman, and Bayes factor models via Markov Chain Monte Carlo 
(MCMC)). 

The computing environment used throughout the book consists of special 
limited-use S-PLUS® software that is downloadable from Insightful Corporation 
as described later in this Preface, specifically: S-PLUS, the S-PLUS Robust 
Library, the S+NUOPT™ optimization module, and the S+Bayes™ Library. In 
addition, we have provided approximately 100 S-PLUS scripts, as well as 
relevant CRSP sample data sets of stock returns, with which the user can 
recreate many of the examples in the book. The scripts represent, in effect, a 
large set of recipes for carrying out basic and advanced portfolio construction 
methods. The authors believe these recipes, along with real as well as artificial 
data sets, will greatly enhance the learning experience for readers, particularly 
those who are encountering the portfolio construction methods in the book for 
the first time. At the same time, the script examples can provide a useful 
springboard for individuals in the finance industry who wish to implement 
advanced portfolio solutions.  

Stimulation for writing the present book was provided by Scherer’s Portfolio 
Construction and Risk Budgeting (2000), which discusses many of the advanced 
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portfolio optimization methods treated here. One of us (Martin) had given a 
number of talks and seminars to quant groups on the use robust statistical 
methods in finance, and based on the enthusiastic response, we felt the time was 
ripe for inclusion of robust methods in a book on portfolio construction. It also 
seemed apparent, based on the recent increase in academic research and 
publications on Bayes methods in finance, the intuitive appeal of Bayes methods 
in finance, and the hint of a groundswell of interest among practitioners, that the 
time was ripe to include a thorough introduction to modern Bayes methods in a 
book on portfolio construction. Finally, we wanted to augment the current user 
documentation for S+NUOPT to demonstrate the many ways S+NUOPT can be 
effectively used in the portfolio game.  

Intended Audience 

This book is intended for practicing quantitative finance professionals and 
professors and students who work in quantitative areas of finance. In particular, 
the book is intended for quantitative finance professionals who want to go 
beyond vanilla portfolio mean-variance portfolio construction, professionals 
who want to build portfolios that yield better performance by taking advantage 
of powerful optimization methods such as those embodied in S+NUOPT and 
powerful modern statistical methods such as those provided by the S-PLUS 
Robust Library and S+Bayes Library. The book is also intended for any 
graduate level course that deals with portfolio optimization and risk 
management. As such, the academic audience for the book will be professors 
and students in traditional Finance and Economics departments, and in any of 
the many new Masters Degree programs in Financial Engineering and 
Computational Finance. 

Organization of the Book 

Chapter 1. This introductory chapter makes use of the special NUOPT functions 
solveQP and portfolioFrontier for basic Markowitz portfolio 
optimization. It also shows how to compute Markowitz mean-variance optimal 
portfolios with linear equality and inequality constraints (e.g., fully-invested 
long-only portfolios and sector constraints) using solveQP. The function 
portfolioFrontier is used to compute efficient frontiers with constraints. 
A number of variations (such as quadratic utility optimization, benchmark-
relative optimization, and liability relative optimization) are briefly described. It 
is shown how to calculate implied returns and optimally combine forecasts with 
implied returns to obtain an estimate of mean returns. The chapter also discusses 
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Karush-Kuhn-Tucker conditions and the impact of constraints, and shows how 
to use the linear programming special case of the function solveQP to check 
for arbitrage opportunities. 

Chapter 2. Chapter 2 introduces the SIMPLE modeling language component 
of NUOPT and shows how it may be used to solve general portfolio optimization 
problems that can not be handled by the special purpose functions solveQP 
and portfolioFrontier used in Chapter 1. The first part of the chapter 
provides the basics on how to use SIMPLE and how to solve some general 
function optimization problems, including a maximum likelihood estimate of a 
normal mixture model. Then its application to two non-quadratic utility 
functions is illustrated, as well as its application to multi-stage stochastic 
optimization. Finally, the use of some built-in S-PLUS optimization functions is 
illustrated on several simple finance problems (such as calculation of implied 
volatilities, fitting a credit loss distribution, and fitting a term structure model). 

Chapter 3. This chapter on advanced issues in mean-variance optimization 
begins by treating the following non-standard problems: risk-budgeting 
constraints, min-max optimization with multiple benchmarks and risk regimes, 
and Pareto optimality for multiple benchmarks. Then several important portfolio 
optimization problems that require mixed integer programming (MIP) are 
presented, namely buy-in thresholds and cardinality constraints (e.g., finding 
optimal portfolios with the best k-out-of-n assets, round lot constraints, and 
tracking indices with a small number of stocks). Finally the chapter shows how 
to handle transaction cost constraints (such as turnover constraints, proportional 
costs, and fixed costs). 

Chapter 4. This chapter introduces parametric and nonparametric bootstrap 
sampling in portfolio choice, with emphasis on the parametric approach 
assuming multivariate normality. It is shown that resampling when arbitrary 
short-selling is allowed recovers the Markowitz weights plus random noise that 
goes to zero as the resample size increases, whereas persistent bias is introduced 
in the case of long-only portfolios. Further exploration of the long-only case 
with a zero mean-return “lottery ticket” shows how volatility can induce bias in 
long-only portfolios, but with a trade-off due to increased risk associated with 
increased volatility. Here we discuss the deficiencies of portfolio construction 
via resampling and suggest that readers be wary of some advantages claimed for 
the approach. The chapter closes with a discussion of the use of a basic 
nonparametric bootstrap, as well as an increased precision double bootstrap, for 
assessing the uncertainty in Sharpe ratios and Sortino ratios. These are just two 
of many possible applications of the standard and double bootstrap in finance. 

Chapter 5. This chapter discusses the use of scenario-based optimization of 
portfolios, with a view toward modeling non-normality of returns and enabling 
the use of utility functions and risk measures that are more suitable for the non-
normal returns consistently encountered in asset returns. The chapter begins by 
showing how implied returns can be extracted when using a general utility 
function other than quadratic utility. Then we show a simple means of 



x Preface 

generating copulas and normal-mixture marginal distributions using S-PLUS. 
Subsequent sections show how to optimize portfolios with the following 
alternative risk measures, among others: mean absolute deviation, semi-
variance, and shortfall probability. A particularly important section in this 
chapter discusses a desirable set of “coherence” properties of a risk measure, 
shows that conditional value-at-risk (CVaR) possesses these properties while 
standard deviation and value-at-risk (VaR) do not, and shows how to optimize 
portfolios with CVaR as a risk measure. The chapter concludes by showing how 
to value CDOs using scenario optimization. 

Chapter 6. Here we introduce the basic ideas behind robust estimation, 
motivated by the fact that asset returns often contain outliers and use the S-PLUS 
Robust Library for our computations. Throughout we emphasize the use of 
robust methods in portfolio construction and choice as a diagnostic for revealing 
what outliers, if any, may be adversely influencing a classical mean-variance 
optimal portfolio. Upon being alerted to such outliers and carefully inspecting 
the data, the portfolio manager may often prefer the robust solution. We show 
how to compute robust estimates of mean returns, robust exponentially weighted 
moving average (EWMA) volatility estimates, robust betas and robust 
covariance matrix estimates, and illustrate their application to stock returns and 
hedge fund returns. Robust covariance matrix estimates are used to compute 
robust distances for automatic detection of multidimensional outliers in asset 
returns. For the case of portfolios whose asset returns have unequal histories, we 
show how to modify the classical normal distribution maximum-likelihood 
estimate to obtain robust estimates of the mean returns vector and covariance 
matrix. Robust efficient frontiers and Sharpe ratios are obtained by replacing the 
usual sample mean and covariance matrix with robust versions. The chapter 
briefly explores the use of one-dimensional outlier trimming in the context of 
CVaR portfolio optimization and concludes with a discussion of influence 
functions for portfolios. 

Chapter 7. This chapter discusses modern Bayes modeling via the Gibbs 
sampler form of Markov Chain Monte Carlo (MCMC) for semi-conjugate 
normal distribution models as well as non-normal priors and likelihood models, 
as implemented in the S+Bayes Library. Empirical motivation is provided for 
the use of non-normal priors and likelihoods. The use of S+Bayes is first 
demonstrated with a simple mean-variance model for a single stock. We then 
use it to obtain Bayes estimates of alpha and beta in the single factor model and 
to illustrate Bayes estimation for the general linear model in a cross-sectional 
regression model. We show how to use the Gibbs sampler output to produce 
tailored posterior distributions of quantities of interest (such as mean returns, 
volatilities, and Sharpe ratios). The chapter shows how to compute Black-
Litterman models with the usual conjugate normal model (for which a formula 
exists for the posterior mean and variance), with a semi-conjugate normal model 
via MCMC, and with t distribution priors and likelihood via MCMC. The 
chapter concludes by outlining one derivation of a Bayes-Stein estimator of the 
mean returns vector and shows how to compute it in S-PLUS. 
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Downloading the Software and Data 

The software and data for this book may be downloaded from the Insightful 
Corporation web site using a web registration key as described below. 

The S-PLUS Software Download 

The S-PLUS for Windows and S+NUOPT software being provided by Insightful 
for this book expires 150 days after install. As of the publication of this book, 
the S+Bayes software is an unsupported library available free of charge from 
Insightful. To download and install the S-PLUS software, follow the instructions 
at http://www.insightful.com/support/splusbooks/martin05.asp. To access the 
web page, the reader must provide a password. Please contact Insightful 
Technical Support at keys@insightful.com to obtain the password and a 
trial license web registration key. In order to activate S-PLUS for Windows 
and S+NUOPT, the reader must use the web registration key. 

S-PLUS Scripts and CRSP Data Download 

To download the authors’ S-PLUS scripts and the CRSP data sets in the files  
scherer.martin.scripts.v1.zip and scherer.martin.crspdata.zip, follow the 
instructions at http://www.insightful.com/support/splusbooks/martin05.asp. The 
first file contains approximately 100 S-PLUS scripts, and the second file contains 
the CRSP data. The reader must use the web registration key obtained from 
Insightful Technical Support to download these files. 

The S-PLUS Scripts 

As a caveat, we make no claims that the scripts provided with this book are of 
polished, professional code level. Readers should feel free to improve upon the 
scripts for their own use. 

With the exception stated in the next paragraph, the scripts provided with this 
book are copyright © 2005 by Bernd Scherer and Douglas Martin. None of these 
scripts (in whole or part) may be redistributed in any form without the written 
permission of Scherer and Martin. Furthermore the scripts may not be translated 
or compiled into any other programming language, including, but not limited to, 
R, MATLAB, C, C++, and Java. 

The script multi.start.function.ssc, which is not listed in the 
book but is included in the file scherer.martin.scripts.v1.zip, was written by 
Heiko Bailer and is in the public domain. 
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The CRSP Data 

The CRSP data are provided with permission of the Center for Research in 
Security Prices (Graduate School of Business, The University of Chicago). The 
data were provided for educational use and only for the course program(s) for 
which this book is intended and used. The data may not be sold, transmitted to 
other institutions, or used for purposes outside the scope of this book. CRSP® 
data element names are trademarked, and the development of any product or 
service link to CRSP® data will require the permission of CRSP® 
(www.crsp.uchicago.edu). 

The CRSP data zip file scherer.martin.crspdata.zip contains a number of 
CRSP data sets in S-PLUS data.dump format files. Relative price change 
returns for twenty stocks are contained in each of the following files: 

 
microcap.ts.sdd (Monthly returns, 1997–2001) 
smallcap.ts.sdd (Monthly returns, 1997–2001) 
midcap.ts.sdd (Monthly returns, 1997–2001) 
largecap.ts.sdd (Monthly returns, 1997–2001) 
 
Each of the above files contains market returns (defined as the portfolio of 

market-cap-weighted AMEX, NYEX, and Nasdaq returns), and returns on the 
90-day T-bill. In addition, the mid-cap returns file 

 
midcapD.ts.sdd  (Daily returns, 2000–2001) 
 

contains the daily stock returns and market returns. We also include the 
following file containing monthly returns for three stocks from CRSP: 

 
returns.three.ts.sdd (Monthly returns, 02/28/91–12/29/95) 
 
We note that there are a few data sets appearing in examples in the book that 

are not distributed with the book. Readers are encouraged to substitute a CRSP 
data set or other data set of their choice in such cases. 

Using the Scripts and Data 

Under Microsoft Windows, we recommend using the scripts and data as follows. 
First, create an empty project folder for the scripts with a name of your choice, 
(e.g., PortOpt), and unzip the file scherer.martin.scripts.v1.zip in that folder. 
Next, create a project folder for the data sets (e.g., named DataForPortOpt), and 
attach it below the project folder for the scripts. Unzip the file 
scherer.martin.crspdata.zip in that folder. You should then run the script 
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load.returns.ssc by opening it in S-PLUS and clicking on the Run button. 
This will load all the above data sets for the book, as well as the functions 
panel.superpose.ts. and seriesPlot, which are extended versions of 
similar functions in the S+FinMetrics package. Now you can run scripts in your 
project folder by clicking on a script to open it and clicking the Run button. 
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1 Linear and Quadratic 
Programming  

 
1.1 Linear Programming: Testing for 

Arbitrage 

1.1.1 Arbitrage 

In order to familiarize the reader with NUOPT for S-PLUS, we will start with the 
most prominent subjects in both finance and operations research and show how 
we can check for arbitrage in security returns using linear programming 
techniques.1 Suppose all securities available to investors cost one monetary unit, 
but the returns (R) they offer to investors in different states of the world differ. 
Our model consists of n  assets and m  states of the world. Security returns can 
hence be summarized in an m n×  matrix S  of gross returns known to all and 
identical for all investors (i.e., the same information and no differential 
taxation), 
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S
…

 (1.1) 

 
Each row represents a different state of the world. Each column stands for a 
different asset. If the number of assets equals the number of states of the world, 
a market is called complete. We will later come back to this definition.  

Suppose further that investors want to maximize their end-of-period wealth 
and always prefer more to less. Investors are assumed to be unrestricted 
(holdings do not have to sum to one and can be long and short) in purchasing a 
portfolio of securities, described by an 1n ×  vector ,w  where element iw  
denotes the percentage of holdings in security .i  Arbitrage exists if investors can 
either  
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• extract money by setting up a portfolio that has no further obligation 
(i.e., zero cash flows in all states of the world, or first-order 
arbitrage), or 

• purchase a portfolio at zero cost that will pay off a positive amount in 
at least one state of the world while paying out nothing in all other 
states (second-order arbitrage). 

 
Suppose an investor searches for arbitrage. Formally, we can describe the 
problem that has to be solved as a simple linear program,  

 
 min ,Tc =

w
w I  (1.2) 

 
subject to  
 ,≥Sw 0  (1.3) 
 
where the costs, c, of setting up an arbitrage portfolio (1.2) are minimized 
subject to the payoff constraint (1.3). In our notation, 0  denotes an 1m ×  vector 
of zeros, while I  denotes an 1n ×  vector of ones. It is clear that a 100% cash 
portfolio would always satisfy (1.3), but it could not be purchased at zero cost. If 
(1.2) becomes negative we have been able to generate cash. Alternatively, if it 
becomes zero, trades have either been costless or did not take place at all 
( ).=w 0  The “no trade solution” places an upper value of zero on our objective 
function. According to what we described above, we are now able to distinguish 
the three cases summarized in  
Table 1.1.  

Table 1.1 Arbitrage conditions 

Case Objective State constraint 
No arbitrage 0c =  =Sw 0  
   
First-order arbitrage c = −∞  Feasible 
   
Second-order arbitrage 0c =  Feasible, not all 

constraints binding 
 
We will now look at duality theory to extract the price of primitive securities 
that pay off one monetary unit in one state of the world and nothing in all other 
states. It is well-known from the theory of linear programming that the dual to 
(1.2)–(1.3) can be expressed using (1.4)–(1.5): 
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 max ,T
d

d 0  (1.4) 

 subject to .T ≤S d I  (1.5) 
 

We also know from the strong duality property that in the case of no arbitrage 
(where the primal problem is bounded and all state constraints are binding), both 
solutions will coincide (i.e., 0T T= =w I d 0  and equality constraints will hold): 

 
 .T =S d I  (1.6) 

 
This condition is well-known to finance students. It simply says that we can 
recover security prices (standardized to one in the current setting) by 
multiplying cash flows in each state of the world by their respective state prices. 

1.1.2 First Steps with solveQP()  

We are now equipped to solve our first little problem in NUOPT. First we need 
to generate asset returns for three states of the world. For simplicity, all returns 
are assumed to be drawn independently (with 8% expected return and 20% 
volatility)2. 
 
set.seed(10)     # Use to replicate random numbers 
n <- 3 
m <- 3 
S <- 1+matrix((rmvnorm(m, mean=rep(0.08, n), 
 cov=diag(rep((.2)^2,n)))), ncol=n) 
S 
 
         [,1]     [,2]      [,3] 
[1,] 1.120444 1.138809 1.1339732 
[2,] 1.193477 0.803357 0.9066128 
[3,] 1.036637 1.217810 0.6883356 

  
In NUOPT for S-PLUS, the command 
 
solveQP(objQ,objL,A,cLO,cUP,bLO,bUP,x0,isint,  
 type = minimize,trace=T) 

 
will generally solve linear and quadratic problems of the form 1

2
,T T

obj obj+x Q x L x  
subject to linear constraints Lo Up≤ ≤c Ax c  and ,Lo Up≤ ≤b x b  where inputs 
are defined as in Table 1.2. In order to solve our arbitrage model, we define the 
linear objective function with objL=rep(1, ncol(S)), set the lower state 
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constraints to zero with cLO=rep(0, nrow(S)), and allow an unbounded 
upside with cUP=rep(Inf, nrow(S)). 
 
module(nuopt) # load Nuopt module 
solution <- solveQP(, objL=rep(1, ncol(S)), S,  
 cLO=rep(0, nrow(S)), cUP=rep(Inf, nrow(S)), 
 type=minimize) 

 
The object solution contains all the output from NUOPT3. In order to see 
what output is available, type “solution” at the command prompt. This will 
list all the output contained in the variable solution. Individual outputs can 
be extracted from solution using the “$” operator; for example, 
solution$variables$x$current, solution$objective, etc. 
Next we want to test for first-order (test.1) and second-order arbitrages 
(test.2) using the function in Code 1.1. It returns 1 if an arbitrage opportunity 
exists and 0 otherwise.  
 

Table 1.2 Inputs for solveQP 

Input Description NUOPT notation 
objQ  Quadratic term in objective function.  

Matrix of dimension .n n×  
objQ 

objL  Linear part of the objective function. 
Vector of dimension 1.n ×  

objL 

x  Decision variables. 
Vector of dimension 1.n ×  

x0 

A  Coefficient matrix of linear constraints. 
Matrix of dimension .m n×  

A 

,Lo Upc c  Lower, upper bounds for the linear 
constraints. 
Vectors of dimension 1.m ×  

cLO, cUP 

,Lo Upb b  Lower, upper bounds for the variables. 
Vectors of dimension 1.n ×   

bLO, bUP 

— Logical 1n ×  vector (T if integer 
variable) 

isint 

— Minimization or maximization of 
objective 

type=minimize 
type=maximize 

— Logical value to indicate if execution 
trace is shown 

trace=T 
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arbitrage.check <- function(solution) 
{ 
 test.1 <- if(solution$objective < 0) 1 else 0 
 payoffs <- S%*%matrix( 
  round(solution$variables$x$current, digit=6), 
  ncol=1) 
 test.2 <- if (min(payoffs)>=0 &  
  max(payoffs)>0)) 1 else 0 
 if (max(test.1, test.2)==1) 1 else 0 
} 

Code 1.1 Function to Check for Arbitrage 

 
As there has been no arbitrage for our random draw, we can employ the dual 
problem and use (1.6) to calculate state prices for our example above.  
 
d <- solve(t(S), matrix(rep(1, nrow(S)), ncol=1)) 
d 
 
               [,1] 
[1,] 0.84982823642 
[2,] 0.04002501517 
[3,] 0.00004414494 

1.1.3 Pitfalls in Scenario Generation 

Our discussion so far has been very theoretical. How can we apply in practice 
what we just learned? Suppose we have 200 observations (either from a data 
bank or generated by simulation methods) for 100 assets.4 How can we check 
for arbitrage opportunities? Code 1.2 will run simn  simulations together with the 
associated arbitrage checks.  
 
n <- 100 
m <- 200 
n.s <- 100  # number of simulations 
count <- matrix(0, ncol=1, nrow=n.s) # storage 
 
for(i in 1:n.s){ 
 S <- 1+matrix(rmvnorm(m, mean=rep(0.08, n), 
  cov=diag(rep((.2)^2,n))), ncol=n) 
 solution <- solveQP(, objL=rep(1, ncol(S)), A=S, 
  cLO=rep(0, nrow(S)),cUP=rep(Inf, nrow(S)),,,, 
  type=minimize, trace=F) 
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 count[i] <- arbitrage.check(solution) 
} 
hist(count) 

Code 1.2 Arbitrage Check 

The results of 100 runs for 100 assets and 200 states of the world are 
summarized in Figure 1.1. It shows a roughly 36% chance that our simulated 
scenarios contain an arbitrage situation. Hence we should take great care when 
using scenario optimization for a large number of assets, as an optimizer will 
take advantage of these arbitrage situations. This will result in unintuitive results 
that are overoptimistic in what they promise can be achieved. 
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count  
Figure 1.1 Arbitrage Opportunities 

1.2 Quadratic Programming: Balancing Risk 
and Return  

1.2.1 Classical Markowitz Optimization 

Mean-variance-based portfolio construction lies at the heart of modern asset 
management.5 It rests on the presumption that rational investors choose among 
risky assets purely on the basis of expected return and risk, with risk measured 
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as variance.6 Portfolios are considered mean-variance efficient if they minimize 
the variance for a given mean return or if they maximize the expected mean 
return for a given variance. Mean-variance efficiency rests on firm theoretical 
grounds if either7 
 

• investors exhibit quadratic utility, in which case they ignore non-
normality in the data, or 

• returns are multivariate normal, in which case the specific utility 
function is irrelevant, as the set of efficient portfolios is the same for 
all investors (whatever attitudes toward risk they might have). 

 
We start with an ordinary Markowitz optimization in which we want to 
minimize risk for a given target return. In order to perform this within NUOPT 
we need to set objQ equal to the covariance matrix .Ω  While a covariance 
matrix is routinely used, we need to check whether it is positive semi-definite in 
order to ensure 0T ≥w Ωw . It is well-known from matrix algebra that this 
condition is met as long as all eigenvalues are non-negative and at least one 
eigenvalue is strictly positive. Violations arise if either we have fewer time 
periods than assets or we use an artificial covariance matrix.8  

We can use the S-PLUS function eigen() to test this condition. However, as 
we know from the previous section, this does not rule out the existence of 
arbitrage when using Ω  to randomly draw scenarios. Now the matrix of linear 
constraints contains not only the full investment constraint, 1,ii w =∑  but also 

the minimum return constraint, min ,i ii
wµ µ≤ ≤ ∞∑  while upper and lower 

bounds on variables reflect short-selling constraints. Excess returns (nominal 
returns minus cash returns) expectations for asset i are given by iµ  and 
summarized in the 1n ×  vector µ . We describe the portfolio construction using 
the notation of Table 1.2, and Code 1.3 shows how to optimize the portfolio.9 

 
Minimize 

 
1 111 1

1

T
n

n nm mn

w w

w w

σ σ

σ σ

⎛ ⎞ ⎛ ⎞⎛ ⎞
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subject to 
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The results for an arbitrary simulation run are summarized in Figure 1.2. Note 
that the optimal solution in this case is known in advance without any 
calculation. If all assets return 10% on average and also exhibit equal volatilities 
and constant correlation (across assets), the minimum-risk solution for a 10% 
target return must be an equally weighted portfolio (1% weight for each asset). 
However, due to sampling error (meaning that we do not have enough data to 
correctly estimate our inputs), we get a very concentrated portfolio (80% of the 
assets drop out of the optimal solution even though we know they should be 
included with a weight of 1%). Repeating the same exercise for 10,000 
drawings, we get closer to the optimal solution, but we are still quite 
significantly wrong, as shown in Figure 1.3. The reason for this lies in the 
high-correlation assumption we used in setting up the covariance matrix, as it is 
well-known that high correlations will increase the return sensitivity of the 
optimal solution. High correlation effectively means that assets are very close 
substitutes, with expected returns (notoriously difficult to estimate) becoming 
the distinguishing element. In the next section, we will show a simple way to 
safeguard against these solutions. 
 
Step 1: Draw random return data to generate the necessary inputs. 
n <- 100   # number of assets 
m <- 200   # states of the world 
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Figure 1.2 Optimal Portfolio Weights for 200 Observations 
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rho <- 0.7  # constant correlation 
sigma <- 0.2 # constant volatility 
mu <- 0.1  # same expected return for all assets 
Cov <- matrix(rho*sigma*sigma, ncol=n, nrow=n) 
diag(Cov) <- rep(sigma*sigma, n) 
S <- 1+matrix(rmvnorm(m, mean=rep(mu, n), 
 cov=Cov),ncol=n) 

 
Step 2: Define Inputs 
Cov <- var(S)   # calculate covariance matrix 
mu <- apply(S, 2, mean)# calculate mean vector 
mu.target <- 0.1   # define return target 
A <- rbind(mu,1)   # set up A matrix 
  
cLO <- c(mu.target,1) # set up bounds on 
cUP <- c(Inf,1)   # linear constraints 
bLO <- rep(0, n)   # set up bounds on variables 
bUP <- rep(1, n) 
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Figure 1.3 Optimal Portfolio Weights for 10,000 Observations 
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Step 3: Solve 
# optimize 
solution <- solveQP(objQ=Cov,,A,cLO,cUP,bLO,bUP,,) 

 
Step 4: Plot solution 
# address vector of portfolio weights 
w.asset <- solution$variables$x$current 
graphsheet()    # plot solution 
par(mfrow=c(1,2)) 
plot(w.asset, type="n") 
lines(w.asset,, type="h") 
hist(w.asset) 

Code 1.3 Portfolio Optimization 

NUOPT for S-PLUS offers two additional functions to solve mean-variance 
problems. While portfolioQPCov() allows us to solve problems where 
m n<  (where the covariance matrix would not be of full rank, i.e., not positive 
semi-definite), portfolioQPSparse() speeds up calculations if constraints 
or objectives are sparse (contain many zeros). We refer the reader to the NUOPT 

manual to investigate both functions.  

1.2.2 Implied Returns 

Suppose we do not know the distribution from which asset returns have been 
drawn and instead use the statistical estimates as guidance. Suppose further that 
we have a strong belief in the efficiency of an equally weighted portfolio (i.e., 
we want to anchor the solution around this portfolio and we are confident about 
our risk estimate ).Ω  It would be natural to calculate what are called the implied 
returns of an equally weighted portfolio. These are the return forecasts that 
would return the equally weighted portfolio if they were used in a 
mean-variance optimization. To back out these returns, we start from the 
well-known mean-variance objective 2 ,T TU λ= −w µ w Ωw  where λ  denotes a 
risk aversion coefficient that penalizes risk (measured as variance). Taking first 
derivatives, we get 0.dU

d λ= − =w µ Ωw  Solving for the optimal weights, we get 

the well-known expression for optimal portfolio weights * 1 1λ− −=w Ω µ . 
Working backward, however, would lead us to .impl λ=µ Ωw  Assuming that a 

given portfolio w  is optimal and hence 2λ µ σ=  (the slope of the investor’s 
utility curve equals the risk-return trade-off offered by a given portfolio, where 
µ  and 2σ  reflect portfolio return and variance), we arrive at the expression for 
implied returns 
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where we use 2σ
=

Ωw β  and MCTR  denotes an 1n ×  vector of marginal 

contributions to portfolio risk. Note that  
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where the i-th element is given by 
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Code 1.4 illustrates how to compute implied returns in S-PLUS. 
 
w.eq <- matrix(1/n, ncol=1, nrow=n) 
# Subscript [1] to make numeric 
vol.eq <- sqrt(t(w.eq)%*%Cov%*%w.eq)[1]  
mu.impl <- (Cov%*%w.eq)/vol.eq^2*mu.target 
mctr <- Cov%*%w.eq/vol.eq 
plot(mctr, mu.impl,  
 xlab="marginal contribution to risk",  
 ylab="implied return") 

Code 1.4 Implied Returns 

For a portfolio to be optimal, the relationship between marginal contribution to 
portfolio risk and marginal return (implied return) has to be linear, with slope 
equal to the Sharpe ratio of this portfolio. This is shown in Figure 1.4. As our 
risk estimates are much better than our return estimates (lower sampling error), 
the dispersion of implied returns becomes very small. It ranges between 9% and 
11%. We know that the implied returns will lead us back to a portfolio we would 
reckon to be efficient in the absence of further information. Deviations from this 
portfolio10 only occur if we have strong enough conviction that our return 
forecasts do indeed carry information. 
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Figure 1.4 Relationship Between Implied Return and Marginal Risk for 200 
Observations 

1.2.3 Adding Forecasts 

Suppose we are given an 1f ×  vector f  that contains a set of f  return 
forecasts together with an f f×  covariance matrix of estimation errors .Σ 11 
The higher the conviction of a particular forecast, the lower the corresponding 
value on the main diagonal of Σ  will be. Off-diagonal elements describe the 
covariance between forecast errors. In order to specify the forecasts, we need an 
additional f n×  matrix .P  The meaning of this matrix can be illustrated by a 
couple of examples. 

If the only return we forecast is on asset 1, P  becomes a 1 n×  vector that 
contains one as the first element and zero otherwise: ( )1 0 0=P . 
Obviously, P  becomes a diagonal matrix with ones on the main diagonal if we 
attempt to forecast all assets in the covariance matrix. Alternatively, we can 
express opinions on return differentials between various pairs of assets, 

 

 4

1 1
2 2

0 01 1
0 01 1 .

0 0 0 1

01

n×

⎛ ⎞−
⎜ ⎟

−⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠−

P  (1.13) 
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Note that we can also express more forecasts than assets ( f n> ). This 
framework offers a great deal of flexibility. We can, for example, express 
opinions such as: “I am 66% confident that the return differential between asset 
1 and asset 3 (first row above) will range between 1% and 2%.” Assuming 
normality, we should interpret this as a 1.5% outperformance on average with a 
standard deviation of 0.5% because we know from elementary statistics that 
66% of all observations are 1 standard deviation away from the mean 
(1% 1.5% 1 0.5% 2%).≤ ± ⋅ ≤  The corresponding entries would be  

 

 
21.5 0.5, .

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

f Σ  (1.14) 

 
The optimal combination of explicit return forecasts and implicit returns is a 
straightforward matrix calculation: 

 
 ( ) ( )1

.T T
impl impl

−
= + + −µ µ ΩP PΩP Σ f Pµ  (1.15) 

 
It is interesting to note that changes in implied returns are driven by both 
conviction (the natural enemy of diversification) and the covariance between 
assets via .TΩP  A high-conviction signal on a single asset would hence also 
affect all assets, depending on their historical correlation. This makes intuitive 
sense: if we changed return expectations on the German bond market, for 
example, we might not want the French bond market unchanged. It mitigates the 
problem of correlation-inconsistent return forecasts, which are the main reason 
for poor optimization results.  

Let us investigate, using Code 1.5, how the methodology introduced above 
works in the current setting. We assume that the volatility of forecast errors is 
five times the volatility of asset returns. 

 
# This code needs the results of Code 1.4 
n <- 100  # number of assets 
m <- 10000  # states of the world 
rho <- 0.7  # constant correlation 
sigma <- 0.2 # constant volatility 
mu <- 0.1  # same expected return for all assets 
Cov<-matrix(rho*sigma*sigma, ncol=n, nrow=n)   
diag(Cov)<-rep(sigma*sigma, n) 
# set up matrices 
P <- diag(rep(1,n)) 
S <- 1+matrix(rmvnorm(m, mean=rep(mu, n), cov=Cov), 
 ncol=n) 
Cov <- var(S) 
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f <- apply(S, 2, mean) 
Cov.f <- 25*Cov 
mu.ad <- mu.impl+Cov%*%t(P)%*% 
 solve((P%*%Cov*t(P)+Cov.f))%*%(f-P%*%mu.impl) 
# rerun optimization 
A <- rbind(t(mu.ad),1) 
solution <- solveQP(Cov,, A, cLO, cUP, bLO, bUP,,) 
w.asset.ad <- solution$variables$x$current 
graphsheet() 
par(mfrow=c(1,2)) 
plot(w.asset.ad, type="n") 
lines(w.asset.ad, type="h") 
hist(w.asset.ad) 

Code 1.5 Adding Forecasts 

As a result of our return adjustments, we end up with much more diversified (in 
the sense of being closer to our anchor portfolio) holdings, as can be seen in 
Figure 1.5. 

1.2.4 Variations of St. Markowitz 

In this section, we want to provide you with a number of suggestions on how to 
use solveQP()  for some nonstandard-looking portfolio optimization 
problems.12 The according procedures are summarized in Table 1.3. 

Utility Optimization. Suppose that, instead of minimizing risk for a given 
return expectation, we need to maximize utility (given as 2 )T TU λ= −w µ w Ωw  
subject to an arbitrary set of constraints. Since solveQP minimizes 
1
2 ,T T

obj obj+x Q x L x  the adjustments we need to undertake are to multiply objQ 

by ,λ−  set objL to ,µ  and set type equal to maximize. The matrix of 
coefficients for the linear constraints now only contains the 100% investment 
constraint ( )1 1A = , as returns are already included in the objective. The 
upper and lower bounds on linear constraints are now the scalars 
c 1,c 1Lo Up= = . 
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Table 1.3: Adjustments in solveQP to Solve Nonstandard Problems 

Problem Adjustment 
Utility Optimization 
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Estimation Error. If inputs are measured with error and we only have an 
noninformative prior (all we know is that the inputs are measured with error) 
about the real parameters, the world has clearly become a riskier place. The 
optimal cure (according to Bayesian statistics) in this situation is to leverage the 
covariance matrix of asset returns by multiplying it by a scalar 1

2 1.m
m nθ +

− −= ≥ 13 

This leverage factor creates a new “pseudo-risk aversion”, .λ λθ=  Estimation 
error decreases if the number of observations rises relative to the number of 
assets. Note that expected returns remain unaffected by estimation error, as there 
is (by definition) no uncertainty about an expected value. 

Asset Liability Management. Most institutional investors have some kind of 
liabilities. In fact, the only reason they need assets is because they face 
liabilities. How can we incorporate them into mean-variance analysis?14 Assume 
we not only have time series of 1n × asset returns but also one time series of 
liability returns, and assume the means and covariance of the combined data set 
are summarized in the ( )1 1n + ×  vector of mean returns, *,µ  as well as in the 
( ) ( )1 1n n+ × +  covariance matrix *Ω . Let us introduce an ( )1n n× +  
transformation matrix, ,T  

 

01 1
0 01 1 .

0 0 1
0 1 1
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Figure 1.5 Optimization results for adjusted returns 
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We can now transform mean returns as well as covariances into liability-relative 
mean returns and liability-relative covariances by calculating *=µ Tµ  and  

* .T=Ω TΩ T  For example, the element in the first row and first column of the 
covariance matrix is no longer the variance of returns for asset one but rather the 
variance of the return difference of a portfolio with a 100% long position in 
asset one and a 100% short position in the liabilities. The objective becomes to 
trade off relative returns versus relative risks ( ) ( )2 2

2
2 ,l l l

λµ µ θ σ σ ρσσ− − + −  
where lµ  represents the expected liability return, lσ  denotes the volatility of 
liability returns and ρ  expresses the correlation between returns of the asset 
portfolio with liability returns. 

Active Optimization. Active portfolio management attempts to beat a 
benchmark portfolio that serves as a yardstick for the skills of the active 
manager.15 Assume that the active manager stays within the investment universe 
of the benchmark. All we need to do is to introduce the negative benchmark 
weights as the decision variable (effectively a short portfolio) into the objective 
function (1.7), constrain benchmark weights to their current holdings, and make 
sure that asset and benchmark weights now add up to zero. This will 
automatically change the calculated risk number from a measure of total 
portfolio volatility into a measure of active volatility, 2

aσ  (tracking error), and 
expected return into expected active return, .aµ  It should be clear by now that 
liability-relative optimization can also be set up as a benchmark-relative 
optimization. 

Dual Benchmark Optimization. Finally, many investors have more than 
one benchmark.16 They might want to optimize versus their liabilities, but they 
also want to keep up with their peers. While this sounds complicated, it actually 
is not. We can transform the problem of dual benchmark optimization (that is, to 
find one vector of portfolio weights that maximizes the utility from both 
subproblems) by creating a new benchmark that effectively is a mixture of both 
benchmarks, where the weight attached to a particular benchmark depends on 
the importance (risk aversion) of the respective benchmark risk. 

1.3 Dual Variables and the Impact of 
Constraints 

1.3.1 KKT Conditions and Portfolio Optimization 

So far, we have seen what uncertainty in inputs can do to portfolio optimization. 
It is not surprising that practitioners have always been looking at ways to reduce 
the impact of estimation error on optimal portfolios and exclude solutions that 
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might make mathematical sense but little investment sense. One of the most 
obvious safeguards against the unwarranted side effects of portfolio 
optimization is to impose constraints on the set of solutions. Constraints come in 
many forms: full investment constraints (the asset weights have to add up to 
100%), non-negativity constraints (no short-selling allowed), or group 
constraints (groups of assets have to stay within bounds). In this section, we 
want to calculate the impact of constraints on portfolio construction by looking 
at how our actual forecasts are modified via constraints. 

Suppose we are given a set of forecasts for all asset returns as summarized in 
the 1f ×  vector ,f where in this case .f n=  Suppose further that we also know 
the 1n ×  vector of equilibrium returns implµ (those returns that would yield a 
portfolio assumed to be efficient; i.e., a portfolio we would hold in the absence 
of any forecasting power). A Markowitz investor wants to solve the following 
constrained portfolio optimization problem: 17 

 
Maximize 

 2 ,T Tλ−w f w Ωw  (1.17) 
subject to 

 ,Lo Up≤ ≤c Aw c  (1.18) 
 .Lo Up≤ ≤b w b  (1.19) 

 
The well-known KKT conditions for the problem described in (1.17)–(1.19) 
imply that  

 
 ,Tλ= + +A wf Ωw A Λ Λ  (1.20) 
 
where AΛ  denotes the vector of dual variables associated with the cn  group 
constraints and wΛ  represents the vector of dual variables associated with the n 
asset-specific constraints.  

Assume that we have found the optimal solution *w  to (1.17). We already 
know that the implied returns for this portfolio are given by * *λ=f Ωw . If none 
of the constraints were binding, all dual variables would be zero and we would 
get *.=f f  In this case, original forecasts and implied forecasts are the same. 
The constraints did not alter our forecasts (as they were not binding in the first 
place). However, this case is rare; constraints are often binding, particularly as 
they often have been imposed on the problem after a first unconstrained 
optimization yielded an “unpleasant” result (e.g., many assets received zero 
weight). As we can always express our forecast as impl= +f µ α  and * ,= +f f η  
we can decompose the implied returns of the optimal solution to the constrained 
optimization above as 
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 * ,impl= + −f µ α η  (1.21) 
 

where we can further decompose η  into .T +A wA Λ Λ  Now that we have set up 
the methodological foundations, we can proceed to a numerical example. 

1.3.2 Can Constraints Safeguard Against Bad 
Research?  

The objective of this section is to provide an illustration of the results above and 
a “how-to-do” it recipe for NUOPT. After the usual housekeeping operations 
 
remove(ls()) 
module(nuopt) 

 
we load the covariance data into S-PLUS and calculate .Ω  
 
# define correlation matrix 
corr <- matrix(data= 
 c(  1, 0.4, 0.5, 0.5, 0.4, 0.1, 0.1, 0.1, 
   0.4, 1.0, 0.3, 0.3, 0.1, 0.4, 0.1, 0.1, 
   0.5, 0.3, 1.0, 0.7, 0.1, 0.1, 0.5, 0.1, 
   0.5, 0.3, 0.7, 1.0, 0.1, 0.1, 0.1, 0.5, 
   0.4, 0.1, 0.1, 0.1, 1.0, 0.0, 0.0, 0.0, 
   0.1, 0.4, 0.1, 0.1, 0.0, 1.0, 0.0, 0.0, 
   0.1, 0.1, 0.5, 0.1, 0.0, 0.0, 1.0, 0.2, 
   0.1, 0.1, 0.1, 0.5, 0.0, 0.0, 0.2, 1.0), 
  nrow=8, ncol=8) 
 
# define diagonal volatility matrix 
vol <- diag(c(17, 21, 22, 20, 8, 8, 8, 8)) 
# calculate variance covariance matrix 
Cov <- vol %*% corr %*% vol 
n <- ncol(Cov) 

 
Next we can calculate implµ  assuming a weight vector w and an associated 
portfolio return of 3.5%.µ =  
 
# create implied returns 
w <- matrix(c(0.24, 0.18, 0.12, 0.06, 0.16, 0.12, 
  0.08, 0.04), ncol=1) 
mu.impl <- as.numeric(3.5 * (Cov %*% w)/ (t(w) %*%  
 Cov %*% w)[1]) 
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In Code 1.6, we assume an arbitrary set of group and asset constraints. 
 
# set up group constraint 
# full investment constraint 
group <- c(1,1,1,1,1,1,1,1) 
 
# assets 1-4 build one group 
group <- rbind(group, c(1,1,1,1,0,0,0,0)) 

 
# assets 5,6,7,8 build a 2nd group 
group <- rbind(group, c(0,0,0,0,1,1,1,1)) 
 
# define upper and lower weights 
bUP <- c(0.39, 0.33, 0.27, 0.21, 0.31, 0.27, 0.23, 
 0.19) 
# asset constraints 
bLO <- c(0.09, 0.03, 0.00, 0.00, 0.01, 0.00, 0.00, 
 0.00) 
# group constraints 
cUP <- c(1, 0.8, 0.5) 
cLO <- c(1, 0.4, 0.1) 

Code 1.6 Setup for Portfolio Optimization 

As a little exercise, the reader might want to calculate the minimum variance 
portfolio and the maximum return portfolio. The latter is quite useful if we want 
to trace out an efficient frontier in the presence of constraints. The solution is 
given in Code 1.7. 
 
# This code needs the results of Code 1.6 
# calculate minimum variance portfolio 
w.min.var <- matrix(solveQP(2*Cov, , group, cLO, 

cUP, bLO, bUP, rep(0, n), type=minimize, 
trace=T)$variables$x$current,ncol=1) 

 mu.min <- t(w.min.var) %*% mu.impl 
# calculate maximum return portfolio 
mu.max <- solveQP( , mu.impl, group, cLO, cUP, bLO, 
 bUP, rep(0, n), type=maximize, trace=T)$objective 

Code 1.7 Minimum Variance and Maximum Return Portfolios 

Let us now try to recover the portfolio weights we used in deriving the implied 
returns. A straightforward way is to use (1.17), but what value do we need to 
assume for ?λ  Recalling that for the optimal portfolio weights 
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 2 3.5 98.1 0.0357λ µ σ= = = ,  
 
we can obtain the optimal solution using solveQP as follows. 
 
solveQP(-0.0357*Cov, as.numeric(mu.impl), group, 

cLO, cUP, bLO, bUP, as.numeric(w.min.var), 
type=maximize, trace=T)$variables$x$current 

NUOPT 5.2.3a, Copyright (C) 1991-2001 Mathematical  
 Systems Inc. 
PROBLEM_NAME anon.QP 
NUMBER_OF_VARIABLES 8 
NUMBER_OF_FUNCTIONS 4 
PROBLEM_TYPE MAXIMIZATION 
METHOD LINE_SEARCH 
<preprocess begin>..........<preprocess end> 
<iteration begin> 
 res=5.2e+000 .... 5.1e-005 . 3.8e-008  
<iteration end> 
STATUS OPTIMAL 
VALUE_OF_OBJECTIVE 1.748819986 
ITERATION_COUNT 7 
FUNC_EVAL_COUNT 10 
FACTORIZATION_COUNT 7 
RESIDUAL 3.841505323e-008 
ELAPSED_TIME(sec.) 0.06 
        1         2         3          4 
0.2398441 0.1798606 0.1198895 0.05996219 
 
         5        6          7          8 
0.1600725 0.1201176 0.08013711 0.04011639 

 
This is very close to our original set of weights. If we were to increase the 
precision of NUOPT, we could recover the weights exactly. Suppose now the set 
of forecasts 
 
f <- c(4.65,3.61,8.7,6.96,0.39,0.38,1.66,0.93) 

 
are used in a portfolio optimization. Note that we keep λ  the same so that we 
can compare both solutions while maintaining the same risk-return trade-off. 
 
solution <- solveQP(-0.0357*Cov, as.numeric(f), 

group, cLO, cUP, bLO, bUP, 
as.numeric(w.min.var), type=maximize, trace=T) 
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The optimal solution *w is recovered by 
 
w.star <- matrix(solution$variables$x$current, 

ncol=1) 
round(w.star, digits = 2) 
 
     [,1] 
[1,] 0.14 
[2,] 0.03 
[3,] 0.27 
[4,] 0.19 
[5,] 0.01 
[6,] 0.05 
[7,] 0.23 
[8,] 0.07 

 
Note that asset #1 hits its upper boundary while asset #8 hits its lower boundary. 
If it were unconstrained, the optimizer would have wanted to invest further in 
asset #3 while shorting asset #8. 

We can now calculate the implied returns for the optimized portfolio: 
 
 
0.0357 * Cov %*% w.star 
 
          [,1] 
[1,] 4.8057517 
[2,] 3.7683019 
[3,] 8.7089196 
[4,] 7.1157412 
[5,] 0.5997224 
[6,] 0.5357518 
[7,] 1.6077238 
[8,] 1.0857500 

 
How does this compare with our decomposition? That is, do we get the same 
results using (1.20)? 
 
L.w <- matrix(solution$variables$x$dual, ncol=1) 
L.A <- matrix(solution$constraints$"1"$dual, 

ncol=1) 
 
f + t(group) %*% L.A + L.w 
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          [,1] 
[1,] 4.8057517 
[2,] 3.7683017 
[3,] 8.7089183 
[4,] 7.1157396 
[5,] 0.5997223 
[6,] 0.5357519 
[7,] 1.6077225 
[8,] 1.0857508 

 
Finally, we want to quantify how much each constraint contributed to the 
difference between f and *.f  First we look at which asset constraints have been 
binding: 
 
round(L.w, digits = 2) 
 
      [,1] 
[1,]  0.00 
[2,]  0.00 
[3,] -0.15 
[4,]  0.00 
[5,]  0.05 
[6,]  0.00 
[7,] -0.21 
[8,]  0.00 

 
As we have already seen, constraints on asset #3 and asset #8 have been binding. 
This is reflected in our dual variables wΛ  above. We can interpret the entries as 
follows. Without a non-negativity constraint on asset #8, we would have needed 
a 0.22 higher return on this asset in order to obtain a non-negative weighting. 
The reverse is true for asset #3: without an upper constraint on asset #3, we 
would have needed to lower return expectations for asset #3 by 0.15 to obtain 
the same result. Next we look at .AΛ  
 
round(L.A, digits = 2) 
 
     [,1] 
[1,] 0.16 
[2,] 0.00 
[3,] 0.00 

 
A positive entry in the first element of AΛ  means that the full investment 
constraint has been binding. We can interpret a positive value as the need to 
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increase the overall return by 0.47 to justify the full investment, which is 
currently imposed by the constraints. We can now come back to our starting 
question: are constraints a safeguard against bad research? If we compare our 
original alphas ( )impl= −α f µ  with the implied alphas of our constrained 

optimization * *( ),impl= −α f µ  we can observe a considerable change. For 
example, the alpha for asset #1 changed from –0.33 to 0.13.  

What are the business implications of these findings? Well, if an asset 
manager spends a large amount of money on his or her research analysts, but the 
research information entering portfolios gets lost or changed by a set of 
constraints, the asset manager should rethink his or her resource allocation. 

1.4 Analysis of the Efficient Frontier 

In this section, we will go beyond calculating a single efficient portfolio and 
trace out a complete efficient frontier. The function portfolioFrontier() 
allows us to find the minimum risk portfolios for required returns ranging from 
the return of the minimum risk portfolio to the maximum return portfolio. We 
will use the same covariance matrix and restrictions as in the last section. For a 
start, we assume expected returns. 
 
# This code needs the results of Codes 1.5-1.7 and  
# intermediate results in the text 
f <- c(3,4,5,6,0.25,0.5,0.75,1) 
frontier.uc <- portfolioFrontier(Cov, f, wmin=-Inf, 
 max.ret=max(mu.impl), n.ret=30) 
graphsheet() 
par(mfrow=c(1,2)) 
plot(frontier.uc$sd, frontier.uc$returns,  
 xlab="Risk measured in standard deviation", 
 ylab="Expected return", type="b") 
title(main="Efficient frontier (unconstrained) ") 
barplot(frontier.uc$weights) 
title(main="Frontier portfolios") 

Code 1.8 NUOPT Code for the Unconstrained Efficient Frontier 

The efficient frontier with no restrictions (apart from the restriction that all 
positions have to add up to 100%) is shown in Figure 1.6; the S-PLUS code 
needed to produce it is given in Code 1.8. It has some interesting 
characteristics18: 
 

• The maximum return portfolio is not constrained to a 5% return, as we 
excluded constraints (i.e., the optimizer can use leverage). 
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• Asset weights are either linearly rising or linearly falling with leverage, 
where long positions eventually change into short positions. 

• All frontier portfolios can be expressed as a weighted combination of 
any two frontier portfolios. 

• Leverage increases as we increase the return requirements. 
 
Next we introduce a long-only constraint (no short-selling allowed) in Code 1.9. 
 
# This code needs the results of Code 1.8 
frontier.nss <- portfolioFrontier(Cov, f, wmin=0, 
 max.ret=max(mu.impl), n.ret=30) 
graphsheet() 
par(mfrow=c(1,2)) 
plot(frontier.nss$sd, frontier.nss$returns,  
 xlab="Risk measured in standard deviation", 
 ylab="Expected return", type="b") 
title(main="Efficient frontier (no short sales)") 
barplot(frontier.nss$weights) 
title(main="Frontier portfolios") 

Code 1.9 Efficient Frontier, No Short-Selling 
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Figure 1.6 Efficient Frontier without Short-Selling Constraint 
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The results are displayed in Figure 1.7. We observe that the efficient frontier 
stretches to a maximum 6% return. Leverage has not been allowed in this 
example. 

Finally, we can add all the constraints of the previous section. 
 
wmax <- c(0.39,0.33,0.27,0.21,0.31,0.27,0.23,0.19) 
wmin <- c(0.09,0.03,0.00,0.00,0.01,0.00,0.00,0.00) 
grmat <- 

rbind(c(1,1,1,1,0,0,0,0),c(0,0,1,1,0,0,1,1)) 
grmax <- c(0.8, 0.5) 
grmin <- c(0.4, 0.1) 

 
However, in tracing out the efficient frontier, we need to specify the return on 
the maximum return portfolio, as it is not clear what the maximum return will be 
in the face of various interacting constraints. Code 1.10 illustrates how to do 
this. 
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Figure 1.7 Efficient Frontier with Short-Selling Constraints 

# This code needs the results of Code 1.9 
mu.max <- solveQP( ,f,rbind(1,grmat), 
 cLO=c(1,grmin),cUP=c(1,grmax),bLO=wmin,bUP=wmax, 
 rep(0,n),type=maximize,trace=T)$objective  
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frontier.c <- portfolioFrontier(Cov,f,wmin=wmin, 
 wmax=wmax, max.ret=mu.max, grmat=grmat, 
 grmax=grmax, grmin=grmin, n.ret=30) 
graphsheet() 
par(mfrow=c(1,2)) 
plot(frontier.c$sd, frontier.c$returns,  
 xlab="Risk measured in standard deviation", 
 ylab="Expected return", type="b") 
title(main="Efficient frontier (all constraints)") 
barplot(frontier.c$weights) 
title(main="Frontier portfolios") 

Code 1.10 Efficient Frontier with Group Constraints 

The results are summarized in Figure 1.8. Note that the frontier ranges up to the 
maximum return portfolio, which is considerably below the maximum single 
expected return within the investment universe. Portfolios for all frontiers look 
considerably constrained. 

Finally, we compare the three different frontiers in Figure 1.9 (produced 
using Code 1.11). The use of constraints increases the riskiness of portfolios for 
every level of expected returns. 

 
# This code needs the results of Codes 1.8-1.10 
label<-c("unconstrained", "no short sales",  
 "fully constrained") 
frontier.df<-data.frame(x=c(frontier.uc$sd,  
 frontier.nss$sd, frontier.c$sd), 
 y=c(frontier.uc$returns, frontier.nss$returns, 
 frontier.c$returns), type=ordered(rep(1:3, 
 rep(30,3)), labels=label)) 
xyplot(y ~ x, groups=type, lwd=3, data=frontier.df, 
 panel=panel.superpose, type="b", pch=5:7, 
 key=list(x=0.95, y=0.05, corner=c(1,0), 
text=list(label), lines=list(lwd=3, col=2:4, 
 lty=2:4, type="b", pch=5:7)),  
 xlab="Risk measured in standard deviation", 
 ylab="Expected return") 

Code 1.11 Comparison of Efficient Frontiers 
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Figure 1.8 Efficient Frontier with All Constraints 
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Figure 1.9 Comparison of Efficient Frontiers 
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We will finish this section with a puzzle to solve. If we repeat the exercise 
above, but use the implied returns as forecast instead, we get Figure 1.10. The 
constrained and unconstrained frontiers coincide most of the time. Can you 
explain this?  
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Figure 1.10 Comparison of Efficient Frontiers for Implied Returns 
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Exercises 

1. Acquire some data on yield, convexity, and duration for five yield curve 
buckets19 in the U.S. market, together with the same data for the index as a 
whole. 

 
(a) Use solveQP to find a portfolio that maximizes the relative yield 

versus the index but stays fully invested and matches duration as well 
as convexity. 

(b) Use S-PLUS to decompose the yield changes of all five buckets into 
three uncorrelated principal components and their associated loadings. 
Assume that these three loadings explain most of the variance. Is this a 
good assumption? 

(c) Calculate the tracking error of the portfolio you found under a). Where 
does the risk come from? 

(d) Use the mean-variance approach discussed in this chapter to eliminate 
active risk. What portfolio do you arrive at? 

 
In order to solve this exercise, you might find the following short digression 
useful. Using principal component analysis, we can decompose yield 
changes into three uncorrelated principal components ( ipc∆ ), which usually 
explain most of the variance of the underlying series apart from “odd” 
places such as Japan. Together with the associated loadings ( ijb ), we can 
write 

 

 
3

1
.j ij ii

y b pc
=

∆ = ∆∑   

 
We need to calculate the matrix of factor loadings b  and the covariance 
matrix of principal components pc∆Ω . We can combine this information 
with the duration vector D to arrive at active risk: 

 
 ( ) ( )2 .T T T

b pc bσ ∆= − −w w D bΩ b D w w   
 

Risk from the respective principal components can be calculated from 
( ) ( )T

pc ba

a

d
d
σ

σ
∆ −

=
Ω b D w w

pc . Hint: See Scherer (2004). 

 
2. Suppose you are given the following expected returns and covariance 

matrix of asset returns. Inputs have been calculated from ten annual 
observations. 



  Exercises 31 
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µ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Ω  

  
(a) Calculate efficient frontiers with and without the inclusion of 

estimation error. How do the slopes change? 
(b) Does the composition of the tangency portfolio change if you include a 

risk-free asset returning 3% per year? Explain. Hint: See Klein and 
Bawa (1976). 

 
3. Assume the covariance between assets is described via aaΩ  ( k k×  matrix, 

where k  equals the number of assets), while the covariance between assets 
and liabilities is described in alΩ  ( 1k ×  vector of covariances). If we 
denote the funding ratio (defined as assets divided by liabilities) by ,f  we 

can generally express total (surplus) risk 2( )σ  as 
 

 2
2

.
T

aa ala a
T
al l

f f
σ

σ

⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

Ω Ωw w

Ω
 (1.22) 

 
Expanding expression (1.22), we get 

 
 2

2 21 12 .T T
a aa a a al lf f

σ σ= − +w Ω w w Ω   

 
Suppose we now want to find the liability-mimicking portfolio (i.e., the 
asset weights that minimize asset-liability risk subject to a full investment 
constraint). Find the solution to 

 
 ( )2

21 1min 2 1 ;
a

T T T
a aa a a al l af f

σ λ− + + −
w

w Ω w w Ω w I   

 
i.e., describe how to arrive at  

 ( )
1

11
11 ,aa

a aa alfT
aa

θ
−

−
−

= − +
Ω Iw Ω Ω

I Ω I
 (1.23) 

where 11 .T
aa alfθ −= I Ω Ω  Interpret the result. 
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Endnotes

                                                           
1 See Pliska (1997) on mathematical finance and Hillier and Lieberman (1995) on 
mathematical programming in operations research. 
2 The reader can exactly reproduce results in this book that use simulated random 
numbers by using the command set.seed(10) as we have done here. If the user does 
not use set.seed at all or uses set.seed(n) with a value other than n=10, 
somewhat different results will be obtained due to the generation of different random 
numbers than we have used for the examples. 
3 Note that some S matrices will give rise to an objective of −∞  and cause solveQP to 
print an error message. This is not wrong—it indicates the existence of a first-order 
arbitrage opportunity. See  
Table 1.1. 
4 This idea is adopted from Dert (1995). 
5 See Markowitz (2000) for a reissue of his work with some interesting chapters on 
computer implementation added. 
6 Note also that we sometimes take risk to mean standard deviation or volatility. 
7 See Huang and Litzenberger (1998). 
8 When estimating covariance matrices, we need to balance sampling error (we do not 
have enough data, particularly in the presence of many assets) and specification error 
(imposing a factor structure on the covariance matrix will reduce sampling error at the 
expense of increased specification error). 
9 Note that we will use µ  to characterize expectation on either the risk premium or the 
total return. Which interpretation is meant will be clear from the context. We will use µ̂  
for sample estimates (either from history or from a drawn set of scenarios). 
10 Normally a capitalization-weighted “market” portfolio would play the “anchor” role 
here. 
11 See Satchell and Scowcroft (2000) for an excellent review on Bayesian portfolio 
choice. 
12 See Scherer (2004) for a more detailed treatment of these topics and the relevant 
literature. 
13 See Stambaugh (1997). 
14 For an excellent review of mean-variance-based single-period ALM, see Leibowitz et 
al. (1995). While solution methods for one-period methods are well-developed and 
widely available, the asset-liability problem is often inherently path-dependent, a feature 
that is not dealt with in these models. 
15 Lee (2000) provides an excellent overview on all relevant aspects of tactical asset 
allocation. 
16 Wang (1999) describes how many problems within multiple benchmark optimization 
can be dealt with using a simple mean-variance optimizer. 
17 This and the next section draw heavily on Grinold and Easton (1998). We also use the 
same data in order to encourage the reader to reproduce all results from their article. 
18 See Ingersoll (1987) or Grinold and Kahn (2000). 
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19 A bucket is a collection of assets with a certain maturity range. For example, we could 
have a bucket of 1–3 year government bonds. 
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2 General Optimization with 
SIMPLE 

 
2.1 Indexing Parameters and Variables  

So far, we have learned how to use NUOPT functions to solve a variety of 
application problems. NUOPT for S-PLUS also offers a powerful and intuitive 
modeling language called SIMPLE that allows us to formulate complicated 
models to be passed on to the numerical optimization package of NUOPT. In the 
next few sections, we will introduce the reader to SIMPLE with the use of a fully 
worked-out application example. Note that this is meant to be an introduction; 
many applications covering different aspects of SIMPLE are treated throughout 
the rest of the book. 

Suppose we invest our starting wealth of one monetary unit in a portfolio 
with n  assets. After one period, we want to minimize the average shortfall over 
m  scenarios of our final wealth, ,W  below some minimum wealth requirement, 

minW : 
 

 ( )min1

1 max ,0 .
m

ss
W W

m =
−∑   

 
Minimization of this equation takes place subject to the set of constraints 
 

 target1

1 ,
m

ss
W W

m =
≥∑  (2.1) 

 

 
1

1,
n

ii
w

=
=∑  (2.2) 

 
 0,iw ≥  (2.3) 
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where ( )
1

1
n

s i isi
W w R

=
= +∑  for all scenarios 1, , .s m=  Equation (2.1) 

states that average wealth should be above a specified target wealth, targetW , 
while (2.2) and (2.3) represent the usual full investment and non-negativity 
constraints. In order to define an optimization problem, we usually start with 
parameters and variables. Parameters are those objects that are treated as 
constants by NUOPT. Parameters could be the coefficients in an equation, the 
elements of a variance-covariance matrix or the returns in a scenario matrix. In 
the example above, the parameters that require definition are 

 
• the elements of the m n×  scenario matrix of asset returns ,S  
• the target wealth targetW , and  
• the minimum wealth min .W  

 
Apart from parameters, the problem in (2.1)–(2.3) also includes yet unknown 
quantities called variables. These are the n  asset weights. Note that we have not 
yet addressed .sW  It will be treated in the next section, as we could set it up as a 
variable or as an expression.  

Notice that all the parameters and variables in our optimization problem are 
indexed (i.e., they have subscripts). This is necessary to know exactly how 
variables and parameters interact. In SIMPLE, we need to do the same. We can 
define variables and parameters using the direct or indirect methods. Suppose 
we are given a scenario matrix of asset returns S  for six scenarios and four 
assets: 
 
m <- 6 
S <- 1 + matrix(rmvnorm(m, 
 mean = c(0.02, 0.06, 0.08, 0.12), 
 cov = diag(c(0.02, 0.05, 0.1, 0.2))),ncol = 4) 
S 
numeric matrix: 6 rows, 4 columns. 
 
          [,1]      [,2]      [,3]     [,4] 
[1,] 1.1517432 1.1100860 0.8626316 1.071162 
[2,] 0.8787766 0.9618646 0.6678107 1.009150 
[3,] 0.9797007 1.0657226 1.1382760 1.066186 
[4,] 1.1029785 1.0891477 0.7423621 1.047908 
[5,] 1.1350944 1.2769152 1.3875332 1.278555 
[6,] 1.1688834 1.3251761 1.0179170 1.175775 

 
The number of columns equals the number of assets. Let us define the set of 
subscripts needed for our variables using the direct method. It is called direct 
because it forces us to explicitly define the index set. 
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n <- Set(1:ncol(S))   # set n contains integers 
         # from 1 to 4 
i <- Element(set = n)  # i defined as elements of n 
w <- Variable(index = i) # w carries subscripts i  
w 
 1 2 3 4 
 0 0 0 0 
attr(, "indexes"): 
[1] "i" 

 
However, we can also define variables using the indirect method. The 
advantage of the indirect method is that variables are automatically assigned 
starting values.  
 
w.start <- as.array(c(rep(1/ncol(S), ncol(S))) 
# note: NUOPT expects arrays 
n <- Set() 
i <- Element(set = n) 
w <- Variable(w.start, index = i) 
w 
    1    2    3    4 
 0.25 0.25 0.25 0.25 
attr(, "indexes"): 
[1] "i" 

 
It is easy to see that the number of elements specified for w.start defines the 
number of variables, their subscripts, and their starting values. 

After defining our set of variables, we need to assign the correct subscripts to 
our parameters, too. Let’s forget for a moment that we have already defined all 
variables. We need to define two sets, the first for subscripts on assets and the 
second for subscripts on scenarios. 

 
n <- Set(1:ncol(S)) 
m <- Set(1:nrow(S)) 
# elements in set of asset subscripts 
i <- Element(set=n) 
# elements in set of scenario subscripts 
s <- Element(set=m) 
> n 
{ 1 2 3 4 } 
> m 
{ 1 2 3 4 5 6 } 
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The SIMPLE command dprod()offers an intuitive way to define parameters 
that carry two indices (such as our scenario matrix).1 

 
S1 <- Parameter(index = dprod(s, i)) 
S1 
  1 2 3 4 
1 0 0 0 0 
2 0 0 0 0 
3 0 0 0 0 
4 0 0 0 0 
5 0 0 0 0 
6 0 0 0 0 
attr(, "indexes"): 
[1] "s" "i" 
 

Note that we have not yet defined the parameters. If instead we type  
 
S2 <- Parameter(S, index = dprod(s, i)) 
S2 
 
          1         2         3        4 
1 1.1517432 1.1100860 0.8626316 1.071162 
2 0.8787766 0.9618646 0.6678107 1.009150 
3 0.9797007 1.0657226 1.1382760 1.066186 
4 1.1029785 1.0891477 0.7423621 1.047908 
5 1.1350944 1.2769152 1.3875332 1.278555 
6 1.1688834 1.3251761 1.0179170 1.175775 
 
attr(, "indexes"): 
[1] "s" "i" 

 
we automatically assign the correct index to each row and column of our 
scenario matrix. After this has been done (after the index has been set), we could 
also define variables (asset weights): 
 
w <- Variable(index=i) 

 
Parameters that also require definition are minimum wealth and target wealth. 
Note that neither parameter needs to be indexed. Therefore we can use the 
simplest definition of parameters SIMPLE can offer. 
 
Wealth.target <- Parameter(1.07) 
Wealth.min <- Parameter(1.00) 
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For later convenience, we will also define the average return an asset offers 
across all scenarios as a parameter: 
 
# calculate mean for dimension 2 (columns) of S 
mu.bar <- apply(S, 2, mean) 
# define parameter 
mu.bar <- Parameter(as.array(mu.bar), index=i) 

 
Now that we have set up variables and parameters, we need to build the model 
in (2.1)–(2.3) using arithmetic operations and expressions. 

2.1.1 Arithmetic Operations and Expressions 

Models typically involve the calculation of expressions. In our example, an 

expression that needs to be calculated is ( )
1

1
n

s i sii
W w R

=
= +∑ . The syntax is 

virtually the same as for parameters and variables: 
 
# wealth is defined(indexed) in each scenario 
W <- Expression(index=s)  

 
However, the calculation of an expression is yet new. Again SIMPLE is very 
intuitive, as it allows us to directly translate summations or products into code. 
Table 2.1 exhibits some examples from a portfolio context. In our example 
above, we still need to specify the defined expression for final portfolio wealth. 
 
W[s]~Sum(w[i]*R[s,i],i) 

 

Table 2.1 SIMPLE Definitions 

Name Mathematical Formula SIMPLE formula 
Weight on 
asset 
subgroup 

3

n
ii

w
=∑  Sum(w[i],i,i>2) 

  
Wealth for 
each 
scenario 

( )
1

1
n

i sii
w R

=
+∑  Sum(w[i]*R[s,i],i) 

  
Grand mean 
of all 
scenarios 

( )
1 1

1 1
m n

sis i
R

nm = =
+∑ ∑ Sum(Sum(R[s,i],i),s)/(n*m) 
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In terms of our objective (2.1), it is necessary to distinguish between cases 
where final wealth is higher or lower than minimum wealth. Combining 
Expression and yet another function ife(), we can achieve this. The use 
of ife(condition, Expression1, Expression2) allows 
calculating an expression contingent on whether a condition is met: 
 
# define positive and negative wealth 
W.pos <- Expression(index=s) 
W.neg <- Expression(index=s) 
# calculate expression 
W.pos[s] ~ ife(W[s]>=Wealth.min, W[s], 0) 
W.neg[s] ~ ife(W[s]<=Wealth.min, W[s], 0) 

 
We can later use W.neg[s], which effectively is ( )minmax ,0 ,sW W−  within 
our objective function to solve our simple scenario-optimization model. 

2.1.2 Constraints and Objectives 

Constraints can be used in many forms.2 The obvious use is to constrain asset 
weights in very much the same way the reader might write them down on paper.  

 
W[i]>=0  # non-negativity constraint on all  
    # assets 
W[2]>=0.2 # minimum weight constraint on asset 2 
Sum(w[i], i>2, i<6)>=0.5 # assets 3 to 5 must sum 
         # up to at least 50% 
Sum(w[i],i)==1  # full investment constraint 
 

Alternatively, we can also use constraints to implicitly define variables. Coming 
back to our original example, it might be useful to define a set of variables that 
equal ( )minmax ,0sW W−  in all scenarios.  

 
up <- Variable(index=s)  # index new variables 
dn <- Variable(index=s) 
# implicitly define deviations with the use of 
# constraints 
up[s]-dn[s] == Sum(w[i]*S2[s,i],s)-Wealth.min 
up[s] >= 0      
dn[s] >= 0 
 

We stop our discussion of constraints here, as later chapters will discuss more 
complicated modeling situations, such as the use of constraints in mixed integer 
problems, in more detail. 
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Nothing can be optimal without an objective. SIMPLE allows objectives to be 
specified in a very natural way. It only requires declaring the name of the 
objective and whether it is a maximization or a minimization problem. In this 
model, the objective is a risk measure (average shortfall) we want to minimize. 

 
risk <- Objective(type="minimize") 
 

Specification of this risk measure evolves in very much the same way as before. 
 
risk ~ Sum(dn[s],s)/nrow(S) 
 

We have now learned all the details necessary to solve our simple 
scenario-optimization model outlined at the beginning of this section. 

2.1.3 Build, Control, and Solve Models 

Remember that SIMPLE allows us to set up an optimization model that is then 
passed to the numerical algorithms available in NUOPT. How is this done? The 
first step is to build a complete model from the ingredients above by writing a 
function that contains the relevant commands, as in Code 2.1. 

 
scenario.model <- function(S, Wealth.min,  
 Wealth.target) 
{ 
 # define subscripts 
 n <- Set(1:ncol(S)) 
 m <- Set(1:nrow(S)) 
 i <- Element(set=n) 
 s <- Element(set=m) 
 
 # parameters 
 S2 <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- apply(S, 2, mean) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 Wealth.target <- Parameter(Wealth.target) 
 Wealth.min <- Parameter(Wealth.min) 
 
 # variables 
 w <- Variable(index=i) 
 up <- Variable(index=s) 
 dn <- Variable(index=s) 
 up[s]-dn[s] == Sum(w[i]*R[s,i],i)-Wealth.min 
 up[s] >= 0 
 dn[s] >= 0 
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 # objective 
 risk <- Objective(type="minimize") 
 risk ~ Sum(dn[s],s)/nrow(S) 
 
 # constraints 
 Sum(mu.bar[i]*w[i],i) == Wealth.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 

Code 2.1 Scenario Modeling in SIMPLE 

Next we need to expand the model into a system of equations that can be solved 
by NUOPT using the System command: 

 
> scenario.system <- System(scenario.model, S, 
 Wealth.min, Wealth.target) 
Evaluating 

scenario.model(S,Wealth.min,Wealth.target) 
 ... ok! 
Expanding (1/7)(2/7)(3/7)(4/7)(5/7)(6/7)(7/7)ok! 
 

Note that the fact that our expansion went well is not a guarantee that the 
NUOPT solver will be able to come up with a solution or that the solution found 
is indeed a global maximum or minimum. In order to see what has been passed 
on to NUOPT, we can view the complete system using the show command: 

 
> show(scenario.system) 
1-1 : -up[1]+dn[1]+1.15174*w[1]+1.11009*w[2] 
 +0.862632*w[3]+1.07116*w[4]-1 == 0 
1-2 : 0.878777*w[1]+0.961865*w[2]+0.667811*w[3] 
 +1.00915*w[4]-up[2]+dn[2]-1 == 0 
1-3 : 0.979701*w[1]+1.06572*w[2]+1.13828*w[3] 
 +1.06619*w[4]-up[3]+dn[3]-1 == 0 
1-4 : 1.10298*w[1]+1.08915*w[2]+0.742362*w[3] 
 +1.04791*w[4]-up[4]+dn[4]-1 == 0 
1-5 : 1.13509*w[1]+1.27692*w[2]+1.38753*w[3] 
 +1.27856*w[4]-up[5]+dn[5]-1 == 0 
1-6 : 1.16888*w[1]+1.32518*w[2]+1.01792*w[3] 
 +1.17577*w[4]-up[6]+dn[6]-1 == 0 
2-1 : up[1] >= 0 
2-2 : up[2] >= 0 
2-3 : up[3] >= 0 
2-4 : up[4] >= 0 
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2-5 : up[5] >= 0 
2-6 : up[6] >= 0 
3-1 : dn[1] >= 0 
3-2 : dn[2] >= 0 
3-3 : dn[3] >= 0 
3-4 : dn[4] >= 0 
3-5 : dn[5] >= 0 
3-6 : dn[6] >= 0 
4-1 : 1.06953*w[1]+1.13815*w[2]+0.969422*w[3] 
 +1.10812*w[4] == 1.07 
5-1 : w[1]+w[2]+w[3]+w[4] == 1 
6-1 : w[1] >= 0 
6-2 : w[2] >= 0 
6-3 : w[3] >= 0 
6-4 : w[4] >= 0 
risk<objective>:0.166667*dn[1]+0.166667*dn[2] 
 +0.166667*dn[3]+0.1666670*dn[4]+ 0.166667*dn[5] 
 +0.166667*dn[6] (minimize) 
 

While this is only informative for a small set of scenarios, it can be a useful way 
of checking the model for different optimization problems. Finally we solve the 
optimization problem using the solve command: 

 
solution <- solve(scenario.system, trace = T) 
weight <- matrix(round(solution$variable$w$current, 
 digit = 5) * 100, ncol = 1) 
weight 
       [,1] 
[1,] 25.750 
[2,]  0.000 
[3,] 20.321 
[4,] 53.929 
 

As we already know from our previous discussion, use of a small number of 
scenarios is completely inappropriate, as it might offer arbitrage opportunities 
and misrepresent the underlying distributions (sampling error). For what 
follows, we draw 1000 scenarios for four assets. In order to get a complete 
picture of investment opportunities, we want to trace out an efficient frontier 
(i.e., the geometric location of the minimal average shortfall, relative to a 
specified minimum wealth, for each given wealth target). This requires a 
function (given in Code 2.2) that returns portfolio weights and associated risks 
for a single optimization run (i.e., for a given wealth target). 
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portfolio <- function(S, Wealth.min, Wealth.target) 
{ 
 scenario.system <- System(scenario.model, S, 
  Wealth.min, Wealth.target) 
 solution <- solve(scenario.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
  digit=5)*100, ncol=1) 
 risk <- solution$objective 
 return(weight,risk) 
} 

Code 2.2 Portfolio Weights Function 

Finally, we need a function (given in Code 2.3) that returns an efficient frontier, 
ranging from a minimum to maximum wealth target. 
 
scenario.frontier <- function(S, Wealth.min, 
 Wealth.target, n.pf) 
{ 
 # contains risk return results 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 # n.pf denotes number of frontier portfolios 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 
 # define wealth targets 
 mu.max <- max(apply(S, 2, mean)) 
 mu.min <- min(apply(S, 2, mean)) 
 mu.range<-seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 
 # contains asset weights 
 weight <- matrix(0, ncol=1, nrow=ncol(S)) 
 for(i in 1:n.pf){ 
  x <- portfolio(S, Wealth.min, 
   Wealth.target=mu.range[i]) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
 } 

 
 # plots frontier and frontier portfolios 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Scenario Frontier") 
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 barplot(weight[,-1]) 
 title("Frontier Portfolios") 
 list("optimal.weights" = weight, "Risk"=Risk, 
  "Return"=Return) 
} 

Code 2.3 Scenario Model 

We can now run a frontier analysis plotting target wealth versus average wealth 
shortfall: 

 
scenario.frontier(S, Wealth.min, Wealth.target, 
 n.pf=5) 
 

As inputs, we require a scenario matrix, minimum and target wealth, and the 
number of frontier portfolios. The results are shown in Figure 2.1. Each dot 
represents a different portfolio with portfolio weights shown in the bar chart to 
the right. Optimal solutions appear to be diversified (intermediate return 
portfolios contain all four assets). Minimum and maximum wealth target 
portfolios are fully invested in the minimum and maximum return assets, 
respectively. This ends our brief discussion of SIMPLE; many more examples 
will be given in the following chapters.  

2.2 Function Optimization 

So far, we have always used SIMPLE within a portfolio context. However, we 
can also apply it to a straightforward optimization problem. This will show the 
reader the flexibility and generality of SIMPLE. We start with maximizing a 
nonlinear function of two variables, 

 
 2 2

1 1 2 2
110 4 20 ,
3

x x x x− + + +  (2.4) 

 
under nonlinear constraints 2 2

1 2 1 2 1 216, 3, 0, 0.x x x x x x+ ≤ ≥ ≥ ≥ 3 The 
necessary code is given in Code 2.4. Note that as the problem is small we 
neither defined the parameters nor indexed the variables. 
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> model.1 <- function(){     
 x1 <- Variable()     # define variables 
           # with no index 
 x2 <- Variable() 
 f <- Objective(type="maximize") # define 

objective 
 f ~ -10*x1^2 + 4*x1 + (1/3)*x2^2 + 20*x2 
 x1^2+x2^2 <= 16      # set constraint 
 x1*x2 >= 3 
 x1 >= 0 
 x2 >= 0 
} 
 
> # transform model into system of equations 
> system.model.1 <- System(model.1) 
> # check model 
> show(system.model.1) 
1-1 : x1*x1+x2*x2 <= 16 
2-1 : x1*x2 >= 3 
3-1 : x1 >= 0 
4-1 : x2 >= 0 
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Figure 2.1 Scenario Frontier and Underlying Frontier Portfolio 
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f<objective>: -10*x1*x1+0.333333*x2*x2+4*x1+ 
 20*x2 (maximize)  
 
> # solve model for x1 and x2 
> x <- solve(system.model.1) 
 
> x$variables$x1$current 
[1] 0.7640694 
> x$variables$x2$current 
[1] 3.926346 

Code 2.4 Maximizing a Nonlinear Function of Two Variables 

However, it should be noted that the existence of a solution does not guarantee 
that we have found a global maximum (minimum). Suppose we want to 
maximize instead 

 

 
( ) ( ) ( )

( ) ( )
2 2

, cos cos 3

cos sin 3 5exp
8

f x y x y x y

x yx y x y

= + −

⎛ ⎞+
+ − + + −⎜ ⎟

⎝ ⎠

 (2.5) 

 
with no constraints imposed. You should be able to write the necessary short 
piece of code yourself by now. In contrast with the previous example, we have 
used starting values to initialize the optimization: 
 
> model.2 <- function(x.start, y.start){ 
 x <- Variable(x.start) 
 y <- Variable(y.start) 
 f <- Objective(type="maximize") 
 f ~ cos(x+y)*cos(3*x-y) + cos(x-y)*sin(x+3*y) + 
  5*exp(-(x^2+y^2)/8) 
} 
 
> system.model.2 <- System(model.2, x.start=20, 
  y.start=20) 
> # trace=F limits output to what is required 
> solve(system.model.2, trace=F)$objective  
  current 
 1.799038 
 

In order to see whether this is a global maximum, we can plot (2.5) within the 
range of –5 to +5. 
 
x <- seq(-5, 5,length=50) #define range for x and y 
y <- seq(-5, 5,length=50) 
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# define function 
f <- function(x,y){ 
 cos(x+y)*cos(3*x-y)+cos(x-y)*sin(x+3*y)+ 
 5*exp(-(x^2+y^2)/8) 
} 
 
# plot function 
z <- outer(x,y,f) 
persp(x,y,z) 
contour(x,y,z, nlevels=10, xlab="x", ylab="y") 
 

The objective value of 1.79 is not a global maximum, as we can see from Figure 
2.2 and Figure 2.3. For a different set of starting values, we get the optimal 
solution shown in Code 2.5. 
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Figure 2.2 2D Plot for ( ) ( ) ( ) ( )cos x + y cos 3x - y + cos x - y sin x + 3y  
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Figure 2.3 Contour Plot for ( ) ( ) ( ) ( )cos x + y cos 3x - y + cos x - y sin x + 3y  
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> system.model.2 <- System(model.2,x.start=3.5, 
 y.start=4) 
> solve(system.model.2, trace=F)$objective 
  current 
 6.703374 

Code 2.5 Function Optimization 

Objective functions like that of (2.5) are called nonconvex. Their optimization 
will always require some heuristics. Without prior knowledge about “good” 
starting values, it is recommended to randomly search the space of admissible 
variable combinations and record the corresponding objective values in an 
attempt to find the global maximum. However, be aware that functions such as 
 

 2 2
11 exp

x y
⎛ ⎞

− −⎜ ⎟+⎝ ⎠
  

 
contain many solutions with the same maximum; see Figure 2.4 and Figure 2.5. 
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Figure 2.4 2D Plot for ⎛ ⎞
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2.3 Maximum Likelihood Optimization 

Models that can be understood intuitively and fit the data well have the greatest 
chance of receiving attention from practitioners. As market participants tend to 
think in regimes (e.g., periods of different volatility) it is natural to model a 
distribution as a combination of two (or more) normal distributions, with each 
distribution representing a different regime. Shifts from one regime to another 
take place randomly with a given probability. These mixtures of normal 
distributions have found great interest in finance, as they can model skewness as 
well as kurtosis and fit the data much better than a non-normal alternative. In 
this section, we will show how to simulate, estimate, test, and apply a 
mixture-of-normals model of asset returns (see Figure 2.6 using S-PLUS and 
NUOPT. In order to allow the reader to reproduce the calculations of this 
section, we will generate a data set by drawing a total of 15,000 samples from 
two normal distributions, each with a mean return of 10%: one with a volatility 
of 40%, representing a high-volatility regime, and one with a volatility of 15%, 
representing a low-volatility regime. The probability of a draw from the 
high-volatility regime is 1

3 .  This results in the typical fat-tailed distribution that 
is characteristic of so many financial time series. 
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. 
data <- c(rnorm(5000, 0.1, 0.4),  
 rnorm(10000, 0.1, 0.15)) 
hist(data) 

 
The likelihood function for a mixture of the two normals with densities 

 

 
21 1exp , 1,2,

22
s i

i
ii

Rf iµ
σπσ
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 (2.6) 

 
is usually written in its log form: 

 

 ( ) ( )( )1 21
log log 1

m

s
L pf p f

=
= + −∑ . (2.7) 

 
Maximum likelihood estimation then becomes the maximization of the objective 
(2.7) with respect to the variables p  (probability of drawing from distribution 
#1), 1 1,µ σ  (mean and standard deviation of returns for distribution #1), and 

2 2,µ σ . The return data sR  for all 1, ,s m= scenarios represent parameters (as 
they are fixed once the sample is drawn). We need to impose non-negativity 
constraints on standard deviations and on :p  
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Figure 2.6 Mixture of Two Normals 

 
MoN.model <- function(data){ 
 # parameter 
 m <- Set(1:length(data)) 
 s <- Element(set=m) 
 R <- Parameter(as.array(data), index=s) 
 # variable 
 I <- Set(1:5) 
 i <- Element(set=I) 
 p <- Variable(index=i) 
 # objective 
 logL <- Objective(type="maximize") 
 logL ~ Sum(log(p[1]/(sqrt(2*pi)*p[3])* 
  exp(-0.5*((R[s]-p[2])/p[3])^2) 
  +(1-p[1])/(sqrt(2*pi)*p[5])* 
  exp(-0.5*((R[s]-p[4])/p[5])^2)),s) 
 
 # constraints 
 p[1]>=0 
 p[3]>=0 
 p[5]>=0 
} 
# solve system 
MoN.system <- System(MoN.model, data=data) 
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solution <- solve(MoN.system, trace=F) 
# get parameters and likelihood function 
p <- solution$variables$p$current 
> p 
 
         1         2         3          4        5 
 0.3461775 0.1066749 0.3978774 0.09752759 0.1471847 
attr(, "indexes"): 
[1] "i" 

 
We have been able to almost exactly recover our assumed parameters when 
simulating the data set.4 This is due to the high number of observations and the 
consequent low sampling error. However if you need assurance that our 
estimated distribution is significantly different from its (single) normal 
alternative, we can employ a likelihood ratio test (with obvious significance), as 
illustrated in Code 2.6. 

 
LogL.uc <- sum(log(p[1]*dnorm(data, p[2], p[3])+ 
 (1-p[1])*dnorm(data, p[4], p[5]))) 
LogL.c <- sum(log(dnorm(data, mean(data), 
 stdev(data)))) 
LR.test <- -2*(LogL.c-LogL.uc) 
LR.test 
[1] 2242.879 

Code 2.6 Maximum Likelihood Optimization and Regime Probabilities 

So far, we have estimated the unconditional probability p  (33%) that a given 
return is drawn from a hectic (i.e., high-volatility period). However, using 
Bayes’ rule, we can also calculate the conditional probability that a given 
observation has been drawn from the hectic distribution 

 

( ) ( )
( ) ( ) ( )

1 1
1 1 2 2

1 1 2 2

,
, , , , ,

, 1 ,
s

s
s s

pf R
prob hectic R p

pf R p f R
µ σ

µ σ µ σ
µ σ µ σ

=
+ −

(2.8) 

 
where ( | , )s i if R µ σ  denotes the usual marginal density. We can calculate (2.8) 
for every data point, as shown in Figure 2.7. The probability that a given data 
point has been drawn from the hectic regime is highest when the observation is 
extreme (positive as well as negative). For small return realizations, the reverse 
is true. This calculation is useful, as we can use it to estimate the correlation 
between two assets conditional on the first asset experiencing a hectic regime.5 
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Figure 2.7 Conditional Probability 

2.4 Utility Optimization 

2.4.1 Semi-quadratic Utility Maximization 

A great deal of research has been put into determining whether some types of 
objectives in portfolio optimization are compatible with the behavior of utility-
maximizing agents. The utility function (2.9) is particularly interesting, as it has 
been shown that the decision-making under the mean-semi-variance objective 
(see Chapter 3) is fully compatible with the maximization of expected utility 
from  
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 (2.9) 

 

where ( )
1

1
n

ps i isi
R w R

=
= +∑  equals the portfolio return and κ  can be 

interpreted as a risk aversion parameter. It is also called semi-quadratic, as the 
quadratic part is only defined for .psR τ≤  Figure 2.8 shows a semi-quadratic 
utility function for 4κ = . The expected utility maximization of (2.9) allows us 
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to introduce (in Code 2.7) the use of ife() and Expression() in defining 
an objective function that is piecewise-defined. 

 
# generate scenarios for asset.1 to asset.4 
scenarios <- matrix(rmvnorm(1000,  
 mean=c(0.02, 0.04, 0.05, 0.08),  
 cov=diag(c(0.02, 0.04, 0.1, 0.2))), ncol=4) 
 
FUT.model <- function(scenarios, k, g, h) 
{ 
 # number of observations and assets  
 n.obs <- nrow(scenarios) 
 n.assets <- ncol(scenarios) 
 
 # NuOPT set up 
 asset <- Set() 
 period <- Set(1:n.obs) 
 j <- Element(set=asset) 
 t <- Element(set=period) 
 
 # define parameters  
 S <- Parameter(scenarios, index=dprod(t,j)) 
 K <- Parameter(k) 
 G <- Parameter(g) 
 H <- Parameter(h) 
 
 # define "x" variable (weights) 
 x <- Variable(index=j) 
 R <- Expression(index=t) 
 R[t] ~ Sum(x[j]*S[t,j],j) 
 u <- Expression(index=t) 
 u[t] ~ ife(R[t]>=G, R[t], R[t]-K*(R[t]-G)^H) 
 
 # define utility measure  
 utility <- Objective(type="maximize") 
 utility ~ Sum(u[t],t)/n.obs 
 
 # constraints (add up) 
 Sum(x[j],j) == 1 
 # constraints (non-negativity) 
 x[j] >= 0 
} 
 
# run model  
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FUT.system <- System(FUT.model, scenarios, k=1, 
g=0, h=2) 

solution <- solve(FUT.system, trace=T) 
weight <- matrix(round(solution$variable$x$current, 
 digit=4)*100, ncol=1) 

Code 2.7 Semi-quadratic Utility Optimization  
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Figure 2.8 Semi-quadratic Utility 

We can repeat this optimization for risk aversion parameters ranging from 1 to 
10 (this is left to the reader as an exercise) to arrive at the matrix of portfolio 
weights for different risk aversions.  
 
> weight 
      [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]   
[1,]  0.01  0.09 14.89 23.18 28.07 31.38 33.74  
[2,] 44.76 52.60 46.16 42.50 40.35 38.87 37.80  
[3,] 18.30 21.25 19.00 17.51 16.63 16.05 15.63  
[4,] 36.92 26.06 19.94 16.80 14.95 13.70 12.82  
 
     [,8]   [,9] [,10]  
[1,] 35.48 36.83 37.95 
[2,] 37.00 36.38 35.85 
[3,] 15.34 15.12 14.93 
[4,] 12.18 11.68 11.27 
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> barplot(weight, 
legend=paste("asset.",sep="",1:4), 

  names=paste("", sep="", 1:10),  
  xlab="risk aversion", ylab="weight") 
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Figure 2.9 Optimal Portfolios for Semi-quadratic Utility 

Figure 2.9 plots the resulting weights in a bar chart. As risk aversion rises, our 
portfolio optimization will reduce the weightings in the riskier assets. The reader 
might want to show that high risk aversions will recover the minimum variance 
portfolio. Why is this the case? Haven’t we explicitly stated non-mean-variance 
objectives? The answer is that our return generation has been drawing returns 
from a normal distribution; hence the set of all mean-variance-efficient 
portfolios will also be the optimal set of portfolios for non-mean-variance 
preferences.  

2.4.2 Utility Optimization using Piecewise Linear 
Approximation 

In many optimization applications, it is useful to linearize a nonlinear objective 
function to speed up calculations or to involve linear solver technology, which is 
widely available and well-developed. In this section, we will show how to do 
this within NUOPT. Suppose we assume a standard CRRA (constant relative 
risk aversion) utility function that the expresses utility in scenario s  as 
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where γ  reflects risk aversion. The higher γ , the higher the risk aversion. 
Values between 3 and 5 are assumed to be realistic for decision makers. Figure 
2.10 shows (2.10) for 5.γ =  
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Figure 2.10 Piecewise Linear Approximation of CRRA Utility Function 

 
risk.aversion <- 5 
wealth <- seq(0.5, 2, length=100) 
Utility <- 1/(1-risk.aversion)* 
 wealth^(1-risk.aversion) 
wealth.grid <- seq(0.5, 2, length=10) 
utility.grid <- 1/(1-risk.aversion)* 
 wealth.grid^(1-risk.aversion) 
plot(wealth, Utility, type="l") 
lines(wealth.grid, utility.grid, type="b", col=5) 

 
Notice that higher risk aversion is marked by greater curvature in the utility 
function. Also, for large levels of wealth, the utility function becomes extremely 
flat. Hence, for large wealth levels, a linear approximation works relatively well, 
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while for small levels of wealth it becomes more critical (i.e., more steps are 
needed). 

The utility function above is concave. We can therefore interpret the 
decreasing slopes of the approximating line segments as decreasing marginal 
utility. The notion of concavity is important, as it will allow us to use separate 
variables for each line segment. Maximizing expected utility amounts to finding 
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1max
m

ss
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m =∑w
 (2.11) 

 
subject to the usual non-negativity and group constraints. Before we present the 
final program, we will describe the basic idea behind our approach. Equation 
(2.11) is approximated with 1, ,j k= line segments. The slope of each line 
segment (marginal utility) is denoted by .ja  We also need to define wealth for 
each line segment j  and each scenario 1, , ,s m=  leaving us with m k⋅  
wealth variables. Utility in state s  is hence given by 
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Note that marginal utilities and total utility (given as the product of marginal 
utility and wealth) are defined for their respective line segments 
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where jW  reflects the boundary of the respective line segment. Next we need to 
link wealth with portfolio allocation using 
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It might immediately come to mind that we need to impose constraints on ,s jW  
that guarantee, for example, that  

 
 2, 1, 10 for .s sW W W= <  (2.14) 

 
Constraints of this format, however, would not qualify for a linear program. 
Fortunately we do not need to impose these constraints, as our utility function is 
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concave. This assures that smaller wealth variables are used first, as they have 
the largest impact on the objective function due to having the largest slopes. 
Expected utility can now be expressed as  

 

 ( ),1 1

1 m k
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a W
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The corresponding code is given in Code 2.8. 
 
utility.model <- function(S, risk.aversion, 
 wealth.grid) 
{ 
 # check data for missing values 
 if(any(is.na(S))==T) 
  stop("no missing data are allowed") 
 
 # check for number of observations and assets  
 n.obs <- nrow(S) 
 n.assets <- ncol(S) 
 n.grids <- length(wealth.grid) 
 
 # slope 
 utility.grid <- 1/(1-risk.aversion)* 
  wealth.grid^(1-risk.aversion) 
 slope <- rep(0,(n.grids-1)) 
 for(i in 1:(n.grids-1)){ 
  slope[i] <- (utility.grid[i+1]- 
   utility.grid[i])/(wealth.grid[i+1]- 
   wealth.grid[i]) 
 } 
 
 # NuOPT set up 
 asset <- Set() 
 period <- Set() 
 grid <- Set() 
 j <- Element(set=asset) 
 t <- Element(set=period) 
 k <- Element(set=grid) 
 
 # define parameters  
 R <- Parameter(S, index=dprod(t,j)) 
 slope <- Parameter(as.array(slope), index=k) 
 bounds <- Parameter(as.array(wealth.grid[-1]),  
  index=k) 
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 # define variable weights 
 asset.weight <- Variable(index=j) 
 
 # define wealth dummies 
 wealth.dummy <- Variable(index=dprod(t,k)) 
 
 # equalize utility and end-of-period wealth 
 1 + Sum(R[t,j]*asset.weight[j],j) == 
  Sum(wealth.dummy[t,k],k) 
 
 # define risk measure  
 utility <- Objective(type="maximize") 
 utility ~ Sum(Sum(wealth.dummy[t,k]* 
  slope[k],k),t)/(n.obs-1) 
 
 # constraints (add up) 
 Sum(asset.weight[j],j) == 1 
 wealth.dummy[t,k] <= bounds[k] 
 wealth.dummy[t,k]>= 0 
 asset.weight[j] >= 0 
} 
 
utility.system <- System(utility.model, S,  
 risk.aversion, wealth.grid) 
show(utility.system) 
solution <- solve(utility.system, trace=T) 

Code 2.8 Piecewise Linearization of Utility Function 

Effectively we changed a nonlinear program with a small number of variables 
(portfolio weights) into a linear program with a large number of variables 
(portfolio weights plus wealth variables). 

2.5 Multistage Stochastic Programming  

2.5.1 Sample Problem: Financial Planning  

Dynamic stochastic programming is a highly specialized and technical field in 
the application of optimization techniques to financial problems.6 In order to 
introduce readers to the core concepts of stochastic programming for asset 
allocation problems, we will use the financial planning example introduced in 
Birge and Louveaux (1997) and Brandimarte (2002). 
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Preferences. Suppose we are equipped with initial wealth 0W  and need to 
meet a future liability L  at the end of time 3T t= . In order to achieve this, we 
can invest in stocks and bonds. Preferences are modeled with a piecewise linear 
utility function (to avoid nonlinearity in the resulting mathematical program). If 
our final period wealth exactly meets the liabilities, we enjoy zero utility. 
Downside deviations are penalized with downside costs dc , while upside 
deviations provide us with rewards uc . Needless to say, the disutility from 
downside deviations is larger than the utility from upside deviations ( )d uc c> . 

Scenario Tree. In contrast with all other applications in this book, we allow 
for intermediate decisions. (We will later see single-period models that only 
allow one decision at the start of an investment period.) Apart from today, we 
can reallocate assets at times 1t and 2.t  At 3 ,t  our time horizon ends and all we 
can do is watch the outcome of our decisions made in 2t . Typically, we describe 
uncertainty in multistage stochastic programming in a (nonrecombining) 
scenario tree as described in Figure 2.11. The root of a scenario tree reflects the 
current date where we look for an optimal decision. Note that although we allow 
for future decisions (in fact we choose today knowing that we can decide again 
later, contingent on what has happened), this does not mean that we will 
implement decisions at later stages as we travel through the scenario tree. In 
fact, a scenario tree is solved on a rolling basis. Each complete path from the 
root of the tree to the leaf (for example, the sequence of nodes 
0 2 6 13)→ → →  is called a scenario. Each scenario is a realization of a 
random variable. In the tree depicted in Figure 2.11, all scenarios are equally 
probable 1

8( sp =  for all ).s  Uncertainty is revealed as we move along the path. 

While at the start 0( )t  we don’t know which of the eight scenarios will be 
realized at 3 ,t  we know considerably more at time 1.t  If we arrive at node 1, we 
can say with certainty that we are in one of the scenarios 1 2 3 4, , ,or ,w w w w  but 
we don’t yet know which. For optimization purposes, this means that all 
decisions taken at node 1 must not be arrived at with the knowledge of which 
scenario will eventually come true. This information is simply not available at 
time 1.t  Otherwise, decisions would optimize for the known future scenario, 
discarding the effect of a decision on all other scenarios (which are not relevant, 
as they are known not to become true). 

In order to keep things transparent, we have assumed that each node has two 
descendants with equal probability on each path. Hence each node has exactly 
one ancestor. 

Optimization Model. We formulate the optimization model in its most direct 
form, called the split-variable formulation. Assume s

ita  is the amount (not 
weight) invested in asset i  at the beginning of period t  in scenario s . From the 
assumptions above, it is clear we need to choose allocations for two assets 
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( 2I = , stocks and bonds) at three points in time 0 1 2( , , )t t t  for eight scenarios 

each. This amounts to 48 2 3 8= ⋅ ⋅  variables. Equally, s
itR  denotes the return of 

asset i in scenario 1, ,s S=  (if the return of an asset is 5%, then s
itR  is 1.05), 

where 8S =  in the current example. Again this means 48 return realizations. 
We can now start to formulate our simple asset-liability model. The investor’s 
objective is to maximize utility arising from period 3,t  

 
 ( )max s u s d ss

p c surplus c surplus+ −⋅ − ⋅∑  (2.16) 

 

 
Figure 2.11 Event Tree for Multistage Stochastic Programming 

where ,surplus surpluss s+ −  are variables restricted by non-negativity constraints, 
namely, 
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defining the surplus in state s . For any state, either surpluss+  (surplus) or 

surpluss−  (shortfall) is positive. 
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At times 1t  and 2 ,t  wealth accumulates over time according to  
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This ensures that we can only invest what we have earned over the last period. 
In addition to these intertemporal budget constraints, we need to add the well-
known budget constraint (to every single scenario) at time 0t  
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with the usual non-negativity constraint on invested capital  

 
 0   .s

ita s t≥ ∀ ∀  (2.20) 
 

So far, we can perfectly adjust to the scenario tree by making optimal decisions 
for every scenario, which in fact allows us to look ahead to the most favorable 
state of the world. As this will overstate the value of the objective function, we 
need to enforce nonanticipativity: at each node, we require that allocations be 
the same for all scenarios that are still undistinguishable. At node 0, all 
allocations have to be the same across all scenarios:  
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At nodes 1 and 2, we already know more about which path in the scenario tree 
we are on. However, we still need to restrict allocations to be the same for all 
paths crossing through nodes 1 and 2: 
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Again the same logic applies to decisions taken in 2t . Although we know 
considerably more in node 3, we cannot anticipate the node at which the 
stochastic process will arrive: 
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While this all looks a bit messy, we will show in the next section how we can 
easily implement this model within SIMPLE. In fact, all we have done is to set 
up a linear program with a large number of variables that are linked by 
nonanticipativity constraints. 

2.5.2 Solving a Multistage Stochastic Program with 
NuOPT 

In order to solve the problem laid out in the previous section, we need to specify 
the scenario tree first. The specification of the scenario tree is critical to the 
stochastic programming approach. In essence, a scenario tree tries to 
approximate a continuous (multivariate) distribution with a small amount of 
discrete scenarios. If the number of scenarios is too small or not representative 
of the continuous distribution, we will end up with a solution that is largely 
affected by estimation (specification) error. Making the number of scenarios 
large only partially helps: while the discrete approximation will become better, 
the number of variables will rise, making solutions computationally very 
expensive or infeasible.7 Suppose we specify two return realizations (binomial 
tree) for each asset. Either equities outperform bonds 1.25 1.14equity bondsR R= > =  
or vice versa 1.06 1.12equity bondsR R= > = . The optimization model in the above 
section can be formulated shown in Code 2.9. 

 
DSP.model <- function(s.eq, s.bd, u.c, l.c, W.init, 
 Liab) 
{ 
 scenarios <- Set() 
 steps <- Set() 
 h <- Element(set=steps) 
 s <- Element(set=scenarios) 
 s.eq <- Parameter(s.eq, index=dprod(s,h)) 
 s.bd <- Parameter(s.bd, index=dprod(s,h)) 
 u.c <- Parameter(u.c) 
 l.c <- Parameter(l.c) 
 Liab <- Parameter(Liab) 
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 W.init <- Parameter(W.init) 
 w.eq <- Variable(index=dprod(s,h)) 
 w.bd <- Variable(index=dprod(s,h)) 
 upper <- Variable(index=s) 
 lower <- Variable(index=s) 
 w.eq[s,1]+w.bd[s,1] == W.init 
 w.eq[s,1]*s.eq[s,1] + w.bd[s,1]*s.bd[s,1] ==  
  w.eq[s,2]+w.bd[s,2] 
 w.eq[s,2]*s.eq[s,2] + w.bd[s,2]*s.bd[s,2] ==  
  w.eq[s,3]+w.bd[s,3] 
 w.eq[s,3]*s.eq[s,3] + w.bd[s,3]*s.bd[s,3] ==  
  Liab+upper[s]-lower[s] 
 w.eq[s,h]>=0 
 w.bd[s,h]>=0 
 upper[s]>=0 
 lower[s]>=0 
 w.eq[1,1]==w.eq[2,1] 
 w.eq[2,1]==w.eq[3,1] 
 w.eq[3,1]==w.eq[4,1] 
 w.eq[4,1]==w.eq[5,1] 
 w.eq[5,1]==w.eq[6,1] 
 w.eq[6,1]==w.eq[7,1] 
 w.eq[7,1]==w.eq[8,1] 
 w.eq[1,2]==w.eq[2,2] 
 w.eq[2,2]==w.eq[3,2] 
 w.eq[3,2]==w.eq[4,2] 
 w.eq[5,2]==w.eq[6,2] 
 w.eq[6,2]==w.eq[7,2] 
 w.eq[7,2]==w.eq[8,2] 
 w.eq[1,3]==w.eq[2,3] 
 w.eq[3,3]==w.eq[4,3] 
 w.eq[5,3]==w.eq[6,3] 
 w.eq[7,3]==w.eq[8,3] 
 w.bd[1,1]==w.bd[2,1] 
 w.bd[2,1]==w.bd[3,1] 
 w.bd[3,1]==w.bd[4,1] 
 w.bd[4,1]==w.bd[5,1] 
 w.bd[5,1]==w.bd[6,1] 
 w.bd[6,1]==w.bd[7,1] 
 w.bd[7,1]==w.bd[8,1] 
 w.bd[1,2]==w.bd[2,2] 
 w.bd[2,2]==w.bd[3,2] 
 w.bd[3,2]==w.bd[4,2] 
 w.bd[5,2]==w.bd[6,2] 
 w.bd[6,2]==w.bd[7,2] 
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 w.bd[7,2]==w.bd[8,2] 
 w.bd[1,3]==w.bd[2,3] 
 w.bd[3,3]==w.bd[4,3] 
 w.bd[5,3]==w.bd[6,3] 
 w.bd[7,3]==w.bd[8,3] 
 utility <- Objective(type="maximize") 
 utility ~ Sum(u.c*upper[s]-l.c*lower[s],s)  
} 
 
s.eq <- matrix(cbind(c(rep(1.25,4),rep(1.06,4)), 
 rep(c(1.25, 1.25, 1.06,1.06),2),  
 rep(c(1.25, 1.06),2)), ncol=3, nrow=8) 
s.bd <- matrix(cbind(c(rep(1.14,4),rep(1.12,4)), 
 rep(c(1.14, 1.14, 1.12,1.12),2),  
 rep(c(1.14, 1.12),2)), ncol=3, nrow=8) 
u.c <- 1 
l.c <- 4 

 
W.init <- 55 
Liab <- 80 
 
DSP.system <- System(DSP.model, s.eq, s.bd, u.c, 
 l.c, W.init, Liab) 
solution <- solve(DSP.system, trace=T) 

Code 2.9 Stochastic Multiperiod Optimization 

The solution is given below. We see that the nonanticipativity constraints force 
allocations to be the same for indistinguishable states of the world.  
 
solution 
$variables: 
$w.eq: 
         1        2             3 
1 41.47927 65.09458 8.383990e+001 
2 41.47927 65.09458 8.383990e+001 
3 41.47927 65.09458 7.041860e-011 
4 41.47927 65.09458 7.041860e-011 
5 41.47927 36.74322 7.041443e-011 
6 41.47927 36.74322 7.041443e-011 
7 41.47927 36.74322 6.400000e+001 
8 41.47927 36.74322 6.400000e+001 
attr(, "indexes"): 
[1] "s" "h" 
 
$w.bd: 
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         1         2             3 
1 13.52073  2.168138 7.857768e-011 
2 13.52073  2.168138 7.857768e-011 
3 13.52073  2.168138 7.142857e+001 
4 13.52073  2.168138 7.142857e+001 
5 13.52073 22.368029 7.142857e+001 
6 13.52073 22.368029 7.142857e+001 
7 13.52073 22.368029 5.604172e-011 
8 13.52073 22.368029 5.604172e-011 
attr(, "indexes"): 
[1] "s" "h" 
 
$upper: 
        1        2        3             4        5  
 24.79988 8.870299 1.428571 1.114117e-012 1.428571  
            6             7             8 
1.114083e-012 1.079866e-012 6.548158e-013 

 
attr(, "indexes"): 
[1] "s" 
 
$lower: 
             1             2             3   
 6.548158e-013 6.548159e-013 6.548167e-013 
 
             4             5 
 1.588384e-012 6.548167e-013 
             6             7     8  
 1.588446e-012 1.663613e-012 12.16 
attr(, "indexes"): 
[1] "s" 
 
$objective: 
[1] -12.11268 

2.5.3 An Alternative Formulation 

The formulation above was intuitive but unfortunately requires us to use many 
variables (too many if the number of scenarios or variables becomes larger). 
Alternatively, we can write the financial planning problem using what is called 
the compact formulation. First let us distinguish between the root node 0n = , 
decision nodes { }1, ,6n D∈ = , and end nodes { }7,8, ,14n E∈ = . As each 
node (apart from node 0) has exactly one ancestor (nonrecombining tree), we 
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can identify every ancestor with a deterministic function ( )f n . For example, 
( )4 1f n = =  (i.e., the unique ancestor of node 4 is given by node 1). For each 

end node, we define 0,surplus surpluss s >+ −  and the objective also remains the 
same: 

 
 ( )max .s u s d ss

p c surplus c surplus+ −⋅ − ⋅∑  (2.24) 

 
The decisions at node 0  need to satisfy the budget constraint

0 01
.I s

iti
a W

=
=∑  For 

all other decision nodes, we require 
  

 , , ( ) ,1 1
.

I I
i n i f n i ni i

R a a n D
= =

= ∀ ∈∑ ∑  (2.25) 

 
We cannot use more wealth than the wealth generated by moving from the 
ancestor of n  to n  itself. Also, for all end nodes we demand  

 

 , , ( )1
.

I
i n i f n s si

R a L surplus surplus n E+ −
=

= + − ∀ ∈∑  (2.26) 

 
The model is completed with , 0i na ≥ . Apart from the usual dummy variables 
(defining nonzero surplus levels), we only require 14 2 7= ⋅  variables. The 
formulation in SIMPLE is left to readers as an exercise.8 

2.6 Optimization within S-PLUS 

2.6.1 Optimization with One Variable 

While NUOPT offers powerful optimization routines, the standard version of S-
PLUS already comes with some built-in functions. We will review these 
functions using some simple finance-related examples. 

A Simple Root Finding Problem. For continuous functions of one variable, 
S-PLUS offers the functions uniroot (find a zero) and optimize (find a 
local minimum). Suppose we need to find the internal rate of return of a savings 
plan that invested 1000 dollars every year for 10 years. The final wealth was 
18,000 dollars. Mathematically, we need to solve for 

 
 

( ) ( ) ( ) ( )1 2 10 11
1000 1000 1000 18000
1 1 1 1

0.
y y y y+ + + +

− − − − + =  
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We first write a function that calculates the internal rate of return for a series of 
equally spaced cash flows. 

 
IRR <- function(cash.flow) 
{ 

 pv <- function(x, cash.flow){ 
  sum(cash.flow* 
   (1/(1+x))^(1:length(cash.flow)-1)) 
 } 

 irr <- uniroot(pv, c(-0.99, 0.99), 
  cash.flow=cash.flow)$root 
} 
 

In the example above, our cash flows need to be expressed by cash.flow <- 
c(rep(-1000,10),18000). If we call IRR(cash.flow), we get 
0.1046 (about 10.5%). Note that we could have also used the function 
polyroot(z), as the problem of finding the appropriate internal rate of 
return is indeed a polynomial: 

 
 ( ) 12 10 111000 1000 1000 18000 0, 1 .a a a a a y −+ + − = = +  (2.27) 

 
The reader is encouraged to try this function. 

Implied Volatility. Another typical root-finding problem in finance is to find 
the implied volatility of an option from quoted prices. The implied volatility 
( impliedσ ) is defined as the volatility that equalizes model price (under the 
assumption that we use the correct model) and quoted price. We hence need to 
find  

 
 ( )- 0market Black Scholes impliedC C σ− = . (2.28) 

 
Suppose a one year, at the money European call option trades at 16%. The one 
year interest rate is 3%. We first code a function to generate Black-Scholes 
model prices, 
 

 
( ) ( ) ( )

( )
-

21
2

exp

1 log .

Black ScholesC S N d rT X N d T

Sd r T
XT

σ

σ
σ

= ⋅ − − ⋅ ⋅ −

⎛ ⎛ ⎞ ⎞= + +⎜ ⎜ ⎟ ⎟
⎝ ⎝ ⎠ ⎠

 (2.29) 

 
Black.Scholes.Call <- function(S,X,r,Time,sigma) 
{ 
 d1 <- (log(S/X)+(r+0.5*sigma^2)*Time) /  
  (sigma*sqrt(Time) ) 
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 d2 <- d1-sigma*sqrt(Time) 
 premium <- S*pnorm(d1)-exp(-r*Time)*X*pnorm(d2) 
 list("premium"=premium) 
} 

 
Now we can define and solve the root-finding problem using Code 2.10. 
 
f <- function(sigma,premium2){ 
 Black.Scholes.Call(S,X,r,Time,sigma)$premium – 

  premium2 
} 
 
iv <- uniroot(f,c(0,1),keep.xy=T,premium2=0.16) 
iv$root 

Code 2.10 Root-Finding Problems 

The implied volatility for the example above is 37%. It needed six evaluations 
(find out with iv$nf) to arrive at this result. Alternatively, we could have 
directly applied Newton’s method.9 The updating formula for volatility can be 
expressed as 

 
 ( ) ( )[ ]1

1 - ,dC
s s market Black Scholes sd C Cσσ σ σ−
+ = + −  (2.30) 

 
where 

 

 ( )21 1
22

expdC S T x
d πσ

= −  (2.31) 

 
is also called “vega” (the option sensitivity to changes in volatility). We suggest 
extending the option code by two additional lines to allow for clean 
programming. 
 
vega <- 1/(sqrt(2*pi)*exp((-d1^2)/2))*sqrt(Time) 
list("premium"=premium, "vega"=vega) 

 
Additionally we need to specify an initial estimate for σ  as well as the 
maximum number of iterations and a convergence threshold. Having done this, 
we can code the following function that allows us to find implied volatilities via 
Newton’s method: 
 
sigma <- 0.2 
max.it <- 10 
tol <- 0.000000001 
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for(i in 1:max.it) 
{ 
 diff <- premium –  
  Black.Scholes.Call(S,X,r,Time,sigma)$premium 
 vega <- Black.Scholes.Call(S,X,r,Time,sigma)$vega 
 sigma <- sigma+diff/vega 
 if(abs(diff) < tol) break 
} 
sigma 

 
The code above will loop through a maximum number of iterations (max.it) 
but will stop as soon as the difference between the actual premium and model 
premium is sufficiently small (tol). 

Portfolio Optimization and the Log-normality Assumption. Suppose now 
an investor is planning for her retirement and needs to decide how to split up her 
wealth between equities (or any other risky portfolio) and cash. Rather than 
going through the mathematics of optimal asset allocation, we will apply 
scenario optimization in conjunction with the standardized binomial density. 
The standardized binomial density can be regarded as the discrete version of the 
continuous standard normal density (at equally spaced points). The random 
variable iz  is evaluated at points 0,1, , ,i n=  where ( )2iz i n n= − . The 

associated probability ( )ib z  amounts to ( )( )( )1
2!/ ! ! nn i n i− . In S-PLUS, we 

can easily generate iz  and ( )ib z : 
 
n <- 100 
z <- (2*(0:n)-n)/sqrt(n) 
b.z <- dbinom(0:n, n, 0.5) 
 

Note that iz  has mean zero and variance 1 (and skewness of zero and kurtosis of 
3). In the first instance, we generate returns that are log-normally distributed 

( )exp 1i iR zµ σ= + − . Note that the expected return and variance of iR  can be 

calculated from ( ) ( ) ( )
1
exp

n
i ii

E R z b zµ σ
=

= +∑  and ( )Var R =  

( )( ) ( )2

0

n
i ii

R E R b z
=

−∑ . We can also find a discrete version of the normal 

distribution with exactly the same expected return and variance: 
 
R.lz <- exp(0.1+0.2*z)-1 
mean <- sum(b.z*R.lz) 
sig  <- sqrt(sum(b.z*(R.lz-mean)^2)) 
R.z  <- mean+sig*z 
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However, both distributions will exhibit different shapes. While the normal 
distribution is symmetric (offering the same odds for large negative and positive 
deviations from the mean return), the log-normal distribution shows fewer large 
negative returns and more large positive returns than the normal distribution. 
The reason for this is the positive skewness of the log-normal distribution. 
While the log-normal distribution is a correct representation of total returns 
(unleveraged losses should never exceed 100%), the normal distribution is not. 
We are accustomed to applying the normal distribution because of its additivity 
(weighted means yield portfolio mean), which unfortunately does not carry over 
to the lognormal distribution. Now we want to ask how allocations differ if we 
use the correct log-normal distribution rather than the normal distribution.10 
Suppose our investor aims at maximizing expected (power) utility. She hence 
wants to maximize  

 

 ( ) ( ) ( )[ ] ( )1
0

1 1 1 1 ,
1 1

n
i ii i

E U E W wR w r b zγ

γ γ
−

=
= = + + −

− − ∑  (2.32) 

 
where 0.03r =  denotes the risk-free rate and γ  expresses the degree of risk 
aversion. For normally distributed returns, we calculate utility from Code 2.11. 
 
utility <- function(w, R=R.z) 
{ 
 wealth <- 1+w*R+(1-w)*0.03 
 sum(1/(1-g)*(wealth)^(1-g)*b.z) 
} 

Code 2.11 Edgeworth Expansion and Portfolio Optimization 

The optimal portfolio allocation can now be found from 
optimize(utility, c(0,1), maximum=T)$maximum and amounts 
to 47.89% when 4γ = . For lognormally distributed returns, instead we find the 
optimal allocation to be 56.59%, an almost 9% difference. It becomes clear from 
this example that the choice of distribution is not trivial. 

2.6.2 General Optimization  

Credit Risk. The assessment of credit risk attracts increased interest by banks, 
regulators, and institutional investors. At its heart is the so-called loss 
distribution (i.e., the probability distribution of credit-related losses) illustrated 
in Figure 2.12. All risk quantities (expected loss, unexpected loss, economic 
capital, etc.) can be derived from it. We know from standard corporate finance 
that holding a corporate bond is equivalent to holding a long position in 
government bonds (assumed to be free of credit risk) and a short position in 
out-of-the-money put options on the underlying assets of the firm (written to 
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shareholders in exchange for a premium that allows higher coupons for 
corporate bond returns). The return due to changes in the fate of the firm (the 
market value of underlying assets) is highly asymmetric. There is a high 
likelihood of zero losses (the put expires worthless) and a small likelihood of 
very large losses (the put ends in the money and is exercised by shareholders; 
i.e., the corporation defaults). Candidates for these kinds of asymmetric 
distributions are the general Beta distribution, the Weibull distribution, and the 
Gamma distribution, among others. Suppose credit losses L  follow a Gamma 
distribution and we observe losses iL  for 1, ,i n= . How do we fit the 
distribution to the data? We suggest using maximum likelihood methods; that is, 
we work out the likelihood function for the Gamma ( ),G α β  distribution, 

 

 ( ) ( ) ( )1 exp , 0 .f L L L L
α

αβ β
α

−= − < < ∞
Γ

 (2.33) 

 
Note that ( )E L α β=  and ( ) 2Var L α β= .  
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 (2.34) 

 
Now solve for the distribution parameters ( , )α β  that give the drawn data 
sample the maximum likelihood. Calculating first and second derivatives of the 
Gamma likelihood is a tedious algebraic exercise. Fortunately, S-PLUS offers a 
fast and reliable alternative. The function nlminb (find local minimum for 
smooth functions subject to box constraints) offers the most general 
optimization routine in S-PLUS.11  

First we define the (log) likelihood function for the sampled data by summing 
over the log densities: 

 
log.L <- function(x) { 
 e <- log(dGamma(LOSSES, x[1], x[2])) 
 -sum(e) 
} 
 

Note that we put a minus sign in front of the sum, as nlminb is designed to 
minimize functions. Next we sample 1000 draws from a hypothetical 
distribution and call the optimization routine using Code 2.12. 

 
> LOSSES <- rGamma(1000, 1, 5) 
> hist(LOSSES, probability=T, xlab="LOSSES", 
  main="GAMMA DISTRIBUTION OF CREDIT LOSSES") 
> result <- nlminb(start=c(1,1), objective=log.L) 
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> result$parameters 
[1] 1.044975 5.228908 

Code 2.12 Fitting a Loss Distribution 
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GAMMA DISTRIBUTION OF CREDIT LOSSES

LOSSES  
Figure 2.12 Loss Distribution 

All we need to provide is a set of starting values (start=c(1,1)) and an 
objective (objective=log.L). The result differs from the simulated 
distribution due to sampling error. Note that we did not need a vector of first 
derivatives (gradient) or matrix of second derivatives (Hessian), as S-PLUS will 
approximate them with finite differences instead. Of course, if the derivatives 
are known (or have been calculated using deriv), they can be supplied. For 
more details, see the S-PLUS manual. 

Term Structure Calibration. Modern academic finance generates a variety 
of term structure models; it can be difficult, even for the most ambitious 
researcher, to stay current with all of them. While some models require complex 
numerical techniques, parsimonious and intuitive models are more appealing to 
practitioners. One model of this sort (a similar version is used by the French 
Central Bank to calculate monthly available zero coupon rates) is described 
below. It postulates that the zero curve has the form12  
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( ) ( ) ( )( )

( )

21 exp 1 exp
,
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, , , .

aT aT
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⎛ ⎞− − − −⎛ ⎞= − + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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θ

θ

(2.35) 

 
If maturity goes to infinity, all we are left with is the level  term. We can hence 
interpret it as the long-term interest rate. If maturity goes to zero, the spread  
converges to ( ),level R T θ−  and can hence be regarded as a long-short spread. 
The two remaining parameters are ,curvature  describing how much the curve 
bends up or down, and the scale parameter, ,a  which can be interpreted as the 
strength of the mean reversion. Assuming our yield curve model is correct, we 
create a data set by introducing random error to our parameterized model (see 
Figure 2.13): 

 
level <- 4 
spread <- 1 
curvature <- 10 
a <- 1 
Time <- seq(1,30,0.25) 
zero <- (level-spread*((1-exp(-a*Time))/(a*Time)) + 
 curvature*((1-exp(-a*Time))^2/(4*a*Time))) + 
 rnorm(length(Time))/50 
plot(Time, zero,ylab="ZERO RATE",  
 xlab="TIME TO MATURITY") 
 

In order to fit the model to the simulated data, we minimize the squared 
difference between model yield and simulated yield, 

 

 ( ) ( )[ ]2

1
min , .

n

i
R T R T

=

−∑θ
θ  (2.36) 

 
We summarize the minimization above in a special function called term.fit. 
This function is then minimized with respect to its parameter vector (see Code 
2.13). 
 
term.fit <- function(x) { 
 zero.fit <- (x[1]-x[2]* 
  ((1-exp(-x[4]*Time))/(x[4]*Time))+ 
  x[3]*((1-exp(-x[4]*Time))^2/(4*x[4]*Time))) 
  e <- sum((zero.fit-zero)^2) 
 zero.fit 
} 
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Figure 2.13 Simulated Yield Curve Data 

 
result <- nlminb(start=c(1,1,1,0.4), 
 objective=term.fit,  
 lower=c(0.0001,0.0001,0.0001,0.0001),  
 upper=c(10, 5, 40, 1)) 
x <- result$parameters 
zero.fit <- (x[1]-x[2]* 
 ((1-exp(-x[4]*Time))/(x[4]*Time)) + 
 x[3]*((1-exp(-x[4]*Time))^2/(4*x[4]*Time))) 
plot(Time, zero, pch=1, ylab="ZERO RATE",  
 xlab="TIME TO MATURITY") 
points(Time, zero.fit, type="l") 

Code 2.13 Term Structure Fitting 

The result is shown in Figure 2.14. With the principle above in mind, we could 
also fit this particular zero curve to any coupon bond curve, as the functional 
form for the zero curve is known and any coupon bond can be modeled as a 
portfolio of associated zero coupon bonds. 
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Figure 2.14 Simulated and Fitted Yield Curve Data 
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Exercises 

 
1. Repeat the scenario optimization example, but solely use Expressions 

to define end-of-period wealth. Do not include variables other than asset 
weights. 

 
2. Minimize the function: ( ) ( )( )2 2, 4f x y x y x y= − − . Check your solution. 

What is going on? 
 
3. Use SIMPLE to program an active portfolio optimization using the 

covariance approach. 
 
4. Use the program you wrote in Exercise 3 to trace out an active frontier 

without and with short-selling constraints. How do the frontiers differ? 
When does the benchmark matter in portfolio construction? Hint: See 
Grinold and Kahn (2000). 
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Endnotes

                                                           
1 We have used different names for the SIMPLE versions of S to avoid conflicts—SIMPLE 
objects do not work like regular S-PLUS objects. 
2 We always need the “ ≤ ” in order to get closed constraint sets. 
3 The reader is encouraged to check the convexity of the objective function by calculating 
the matrix of 2nd derivatives (the Hessian matrix) and checking that it is positive semi-
definite. 
4 Note that the solution to the SIMPLE system is not unique, as the roles of the two 
distributions can be interchanged (i.e., if ( )1 2 3 4 5, , , ,p p p p p is a solution, then so is 
( )1 4 5 2 31 , , , ,p p p p p− ). 

5 See Kim and Finger (2000) for more details on how to use a mixture of normals for 
stress testing and risk management.  
6 See Ziemba and Mulvey (1998) or Scherer (2004).  
7 Scenario generation is a complex field in its own right. Interested readers are referred to 
Ziemba (2003) for a nice review.  
8 Readers are encouraged to send in their solutions. The best program will be printed in 
the next edition, and the developer will get a single copy of all further editions of this 
book for free. 
9 See Judd (1998) for an economics-related textbook on numerical techniques.  
10 See the excellent exposition by Campbell and Viceira (2002). 
11 As nlminb encapsulates other functions such as ms() or nlmin() we will not 
discuss these. 
12 See El Karoui et al. (1998). It has been named the extended Vasicek model. 
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3 Advanced Issues in Mean-
Variance Optimization 

 
3.1 Nonstandard Implementations 

3.1.1 Risk Budgeting Constraints 

Risk budgeting is an increasingly trendy topic. The reason for this is clear: if a 
pension fund manager gets asked whether his plan is engaging in risk budgeting, 
it is hard to say “we do not budget risks,” as this almost sounds negligent. In 
addition, as institutional investors become disappointed with the economic value 
traditional portfolio optimization results have provided, they become more 
willing to embrace a “budgeting” framework that allows them to plan and spend 
risk budgets rather than blindly following optimization results. Promoters of risk 
budgeting would like to “separate risk budgeting and VaR measurement from 
classic investment risk practices, such as asset allocation.”1 Others would argue 
that “we should regard a risk budget as an extension of mean-variance 
optimization that enables us to decouple a portfolio’s allocation from fixed 
monetary values”2 and hence “VaR and the risk capital budgeting metaphor pour 
old wine into new casks.”3 We very much agree with the latter two comments 
and argue that the merit of risk budgeting does not come from an increase in 
intellectual insight but rather from a more accessible way of decomposing and 
presenting investment risks. 

We define risk budgeting as a process that reviews any critical assumption 
for the successful meeting of prespecified investment targets. It derives the 
appropriate trade-off between risks and returns associated with investment 
decisions. In a mean-variance world, this defaults to Markowitz portfolio 
optimization, where results are shown not only in terms of weights and 
monetary allocations but also in terms of risk contributions. A view that regards 
risk budgeting as a route to enforce diversification at least implicitly treats 
traditional Markowitz results with great suspicion. In this sense, risk budgeting 
can be viewed as a heuristic safeguard against estimation error.  
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Risk budgeting needs a decomposition of investment risk (i.e., we have to 
look for an additive description of investment risk). Standard portfolio theory, 
however, tells us that volatility is not additive. We start with the observation that 
portfolio volatility is a linear homogeneous function of portfolio weights. This 
allows us to rewrite portfolio volatility as the weighted sum of marginal risk 
contributions. 
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To facilitate interpretation we divide by σ  and arrive at risk budgets that sum to 
100% (i.e., we can now attribute x% of total volatility as arising from asset i and 
its interactions with other assets) 
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Applying risk budgeting constraints in portfolio optimization allows us to limit 
the maximum and minimum risk contributions arising from individual positions. 
Some examples of risk budgeting are the following: 

 
• No individual stock position must contribute more than 5% to total 

portfolio risk. 
• Each allocation decision should contribute at least 5% to total portfolio 

risk.  
• Market-timing decisions must not contribute more than 10% to total 

tracking error. 
• Hedge funds are limited to a 10% risk contribution. 
• None of my multiple managers must consume more than 15% of the 

total active risk budget. 
 

The portfolio optimization problem as such changes slightly. Limits on risk 
budgets are, for example, expressed by ,upperrisk budget  

 

 

min   subject to 

1

  

0.

i

i

i j iji j

i ii

ii
w upperlower d

dw

i

w w

w

w

risk budget risk budget

w

σ
σ

σ

µ µ=

=

≤ ≤

≥

∑ ∑
∑
∑

w

 (3.3) 

 



3.1 Nonstandard Implementations 83 

We can transform this into S-PLUS code. All we need to enforce a given risk 
budget for an individual asset is to add an additional line of code to the usual 
mean-variance-based portfolio optimization, as in Code 3.1. Note that min.rb 
and  max.rb denote the minimum and maximum risk budgets. 

 
mv.rb <- function(Cov, mu.bar, mu.target, min.rb,  
 max.rb) 
{ 
 asset <- Set() 
 j <- Element(set=asset) 
 i <- Element(set=asset) 
 Cov <- Parameter(Cov, index=dprod(i,j)) 
 min.rb <- Parameter(min.rb) 
 max.rb <- Parameter(max.rb) 
 w <- Variable(index=j) 
 risk <- Objective(type="minimize") 
 risk ~ Sum(Cov[i,j]*w[j]*w[i],i,j) 
 mu.target <- Parameter(changeable=T) 
 mu.bar <- Parameter(as.array(mu.bar),index=j) 
 Sum(mu.bar[j]*w[j],j) >= mu.target 
 Sum(w[j],j) == 1 
 w[j] >= 0 
 w[i]*Sum(Cov[i,j]*w[j],j)/risk <= max.rb  
 w[i]*Sum(Cov[i,j]*w[j],j)/risk >= min.rb 
} 
 
# solve model 
rb <- System(mv.rb, Cov, mu.bar, mu.target, min.rb, 
 max.rb) 
solution <- solve(rb) 
 
# extract solution and calculate risk budgets 
w <- matrix(solution$variables$w$current) 
risk <- c(t(w)%*%Cov%*%w) 
risk.budgets <- w*Cov%*%w/risk 

Code 3.1 Optimization and Risk Budgeting Constraints 

We recommend running the code above with some sample data to appreciate the 
mechanics of risk budgeting. Note again that risk budgeting constraints will 
enforce diversification at the expense of return generation. The resulting 
portfolios will lie below the unconstrained efficient frontier. 
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3.1.2 Min/Max Approach to Multiple Benchmarks 
and Rival Risk Regimes 

Investors typically have many objectives. They want to maximize the total 
return of assets per unit of risk, but at the same time they do not want to depart 
too much from what their peers are doing or what their liability profile looks 
like. To address this issue, we need to be able to optimize against multiple 
benchmarks. One complication here is that decision makers often fail to agree 
on the probability ordering of alternative risk regimes. Hence we also require a 
technique that allows us to incorporate more than one estimate of the variance-
covariance matrix. Suppose we face 1, ,s S=  risk regimes, reflected in the 
associated covariance matrices sΩ  and 1, ,b B=  benchmark portfolios. We 
assume there are n  assets available for investment; our positions in these assets 
are summarized in the vector of asset holdings, .w  We assume an investor seeks 
protection against the risk of adopting an investment strategy based on the 
wrong benchmark and/or the wrong risk regime. The optimization problem 
becomes4 
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where λ  reflects the decision maker’s risk aversion. We can reformulate (3.4) 
in a way digestible to solvers of constrained quadratic programs: 
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Note that this defaults to standard Markowitz optimization for 1, 1.s b= =  
Before we present an algorithm to solve (3.5), it will help to suggest a method to 
arrive at rival risk regimes. It is well-known that correlations break down in 
times of market meltdowns (when portfolio managers need them most). We will 
not attempt to forecast the change in input parameters. However, we look for a 
tool to evaluate the diversifying properties of assets in rival risk regimes. As 
supervisory boards become more and more concerned about short-term 
performance, investors often do not have the luxury to bet on average 
correlation or average volatility. In order to come up with correlation and 
volatility estimates for what we define as “normal” and “hectic” times, we have 
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to define exactly what we mean by “hectic” times.5 Returns from “hectic” times 
are identified due to their statistical distance from the mean vector as given in  

 
 ( ) ( )1 1 ,T T

m m m m
− −− − =R µ Ω R µ d Ω d  (3.6) 

 
where md  reflects the distance vector at time ,m  mR  is a vector of return 
observations for n  currencies at time ,m  µ  denotes a vector of average 

currency returns, and Ω  is the unconditional covariance matrix (over all m  
observations). For each cross section of stock returns we calculate (3.6) and 
compare it with the critical value ( )2

0.95 nχ . If we define an unusual observation 
as the outer 5% of a distribution (alternatively one might call it an outlier) and 
we look at five return series, our cutoff distance is 11.07. In the distance 
measure given in (3.6), return distances are weighted by the inverse of the 
covariance matrix. This takes into account volatilities (the same deviation from 
the mean might be significant for low-volatility series but not necessarily for 
high-volatility series) as well as correlations (returns of differing signs for two 
highly correlated series might be more unusual than for series with negative 
correlation). The mechanics of the algorithm described above will split up the 
data set into two subsets for “normal” and “hectic” times. Although it is clear 
from our discussion that in theory outliers are not necessarily associated with 
down markets, in practice they often are. As soon as a new data series is added 
to an existing data set, “hectic” and “normal” periods may well change. S-PLUS 
code for this methodology is provided in Code 3.2. 
 
hectic.vs.normal <- function(datamatrix, 

percentage) 
{ 
 series.names <- names(datamatrix) 
 covar <- var(datamatrix) 
 mean <- 

as.matrix(apply(datamatrix,2,mean),ncol=1) 
 distance <- 

matrix(0,ncol=1,nrow=nrow(datamatrix)) 
 
 for(i in 1:nrow(datamatrix))  { 
  distance[i] <- (datamatrix[i,]-mean) %*% 
   solve(covar) %*% (t(datamatrix[i,])-mean) 
 } 

 
 normal <- matrix( 
  datamatrix[distance<=qchisq(percentage, 
    ncol(datamatrix))],ncol=ncol(datamatrix)) 
 



86 3 Advanced Issues in Mean-Variance Optimization 

 stdev.normal <- apply(normal,2,stdev) 
 names(stdev.normal) <- series.names 
 
 hectic <- matrix( 
  datamatrix[distance>qchisq(percentage, 
   ncol(datamatrix))],ncol=ncol(datamatrix)) 
 stdev.hectic <- apply(hectic,2,stdev) 
 names(stdev.hectic) <- series.names 
  
 cor.normal <- cor(normal) 
 cor.hectic <- cor(hectic) 
 cov.normal <- var(normal) 
 cov.hectic <- var(hectic) 
  
 dimnames(cor.normal) <- list(series.names, 
  series.names) 
 dimnames(cor.hectic) <- list(series.names, 
  series.names) 

 
 dimnames(cov.normal) <- list(series.names, 
  series.names) 
 dimnames(cov.hectic) <- list(series.names, 
  series.names) 
 
 list("normal.correlation" = cor.normal, 
    "hectic.correlation" = cor.hectic, 
    "stdev.normal" = stdev.normal, 
    "stdev.hectic" = stdev.hectic, 
    "normal.covariance" = cov.normal, 
    "hectic.covariance" = cov.hectic) 
} 

Code 3.2 Covariance Estimates in Good and Bad Times 

Now we can turn to the S-PLUS code (Code 3.3) necessary to solve (3.5). To 
simplify matters, we focus on the case of two risk regimes and two benchmarks. 
 
model.db.rr <- function(mu.bar, Cov.1, Cov.2, 

bench.1, bench.2, mu.target) 
{ 
 asset <- Set() 
 i <- Element(set=asset) 
 j <- Element(set=asset) 
 Q1 <- Parameter(Cov.1, index = dprod(i, j)) 
 Q2 <- Parameter(Cov.2, index = dprod(i, j)) 
 b1 <- Parameter(list(1:length(mu.bar), bench.1), 



3.1 Nonstandard Implementations 87 

  index=i) 
 b2 <- Parameter(list(1:length(mu.bar), bench.2), 
  index=i) 
 mu.bar <- Parameter(list(1:length(mu.bar), 

mu.bar), 
  index=i) 
 mu.target <- Parameter(mu.target) 
 w <- Variable(index = i) 
 te.max <- Variable() 
 
 sigma.1 <- Expression(index = i) 
 sigma.2 <- Expression(index = i) 
 sigma.3 <- Expression(index = i) 
 sigma.4 <- Expression(index = i) 
 
 sigma.1[j] ~ Sum((w[i]-b1[i]) * Q1[i,j], i) 
 sigma.2[j] ~ Sum((w[i]-b1[i]) * Q2[i,j], i) 
 sigma.3[j] ~ Sum((w[i]-b2[i]) * Q1[i,j], i) 
 sigma.4[j] ~ Sum((w[i]-b2[i]) * Q2[i,j], i) 
 te.1 <- Expression() 
 te.2 <- Expression() 
 te.3 <- Expression() 
 te.4 <- Expression() 
 
 te.1 ~ Sum((w[i]-b1[i])*sigma.1[i],i) 
 te.2 ~ Sum((w[i]-b1[i])*sigma.2[i],i) 
 te.3 ~ Sum((w[i]-b2[i])*sigma.3[i],i) 
 te.4 ~ Sum((w[i]-b2[i])*sigma.4[i],i) 
 te.1 <= te.max 
 te.2 <= te.max 
 te.3 <= te.max 
 te.4 <= te.max 

 
 te <- Objective(minimize) 
 te ~ te.max 
 w[i] >= 0 
 Sum(w[i], i) == 1 
 Sum(mu.bar[i]*w[i], i) == mu.target 
} 

Code 3.3 Dual Benchmark, Dual Risk Optimization 

Upon a cursory inspection of the program, readers will realize one peculiarity. 
Remember that SIMPLE requires us to formulate mathematical expressions that 
involve matrices as summations. We have therefore used the reformulation 
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Experimenting with the optimization code above, readers will learn that the 
results are (not surprisingly) dominated by the worst-case risk scenario. Hence 
the solutions where we use both regimes are virtually identical to the solutions 
where we only use the hectic regimes. The model is converted into a system 
readable by NUOPT and solved below using the usual commands: 

 
sys.model.db.rr <- System(model.db.rr, mu.bar, 

Cov.1, Cov.2, bench.1, bench.2, mu.target) 
solution <- solve(sys.model.db.rr) 
 

In order to trace out an efficient frontier, we need to build a function around the 
code above that repeatedly optimizes portfolios for changing target returns. This 
is left to the reader as an exercise. 

3.1.3 Multiple Benchmarks and Pareto Optimality  

So far, we have not allowed for varying risk preferences, which would allow us 
to attach different weights to the various subproblems. We address this issue 
now.6 Suppose an investor wants to maximize the minimum risk-adjusted 
performance under various risk regimes for benchmarks as well as risk 
aversions. How would we formulate this? In mathematical terms, we can 
express this as 
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Essentially, Equation (3.8) poses the problem of maximizing the minimum risk-
adjusted performance across alternative benchmarks, risk regimes, and the 
associated risk aversion coefficients. This is equivalent to maximizing the 
minimum utility (assuming mean-variance preferences). The resulting solution 
is Pareto optimal in the sense that we cannot increase utility any further without 
pushing utility from another subproblem below the minimum utility. Note that 
(3.8) differs from the conventional treatment of multiple benchmark problems,7 
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by the presence of more than one risk regime as well as the min/max rule. S-
PLUS code that allows us to solve (3.8) is given below in Code 3.4. 

 



3.1 Nonstandard Implementations 89 

model.pareto <- function(mu.bar, Cov.1, Cov.2, 
 bench.1, bench.2, lambda.1, lambda.2) 
{ 
 asset <- Set() 
 i <- Element(set=asset) 
 j <- Element(set=asset) 
 
 Q1 <- Parameter(Cov.1, index = dprod(i, j)) 
 Q2 <- Parameter(Cov.2, index = dprod(i, j)) 
 b1 <- Parameter(list(1:length(mu.bar), bench.1), 
  index=i) 
 b2 <- Parameter(list(1:length(mu.bar), bench.2), 
  index=i) 
 lambda.1 <- Parameter(lambda.1) 
 lambda.2 <- Parameter(lambda.2)  
 mu.bar <- Parameter(list(1:length(mu.bar), 

mu.bar), 
  index=i) 
 
 w <- Variable(index = i) 
 U.min <- Variable() 
 
 sigma.1 <- Expression(index = i) 
 sigma.2 <- Expression(index = i) 
 sigma.3 <- Expression(index = i) 
 sigma.4 <- Expression(index = i) 
 sigma.1[j] ~ Sum((w[i]-b1[i]) * Q1[i,j], i) 
 sigma.2[j] ~ Sum((w[i]-b1[i]) * Q2[i,j], i) 
 sigma.3[j] ~ Sum((w[i]-b2[i]) * Q1[i,j], i) 
 sigma.4[j] ~ Sum((w[i]-b2[i]) * Q2[i,j], i) 

  
 U.1 <- Expression() 
 U.2 <- Expression() 
 U.3 <- Expression() 
 U.4 <- Expression() 
 
 U.1 ~ Sum(mu.bar[i]*(w[i]-b1[i]), i)- 
  lambda.1*Sum((w[i]-b1[i])*sigma.1[i],i) 
 U.2 ~ Sum(mu.bar[i]*(w[i]-b1[i]), i)- 
  lambda.1*Sum((w[i]-b1[i])*sigma.2[i],i) 
 U.3 ~ Sum(mu.bar[i]*(w[i]-b2[i]), i)- 
  lambda.2*Sum((w[i]-b2[i])*sigma.3[i],i) 
 U.4 ~ Sum(mu.bar[i]*(w[i]-b2[i]), i)- 
  lambda.2*Sum((w[i]-b2[i])*sigma.4[i],i) 
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 U.1 >= U.min 
 U.2 >= U.min 
 U.3 >= U.min 
 U.4 >= U.min 
 
 U <- Objective(maximize) 
 U ~ U.min 
  
 w[i] >= 0 
 Sum(w[i], i) == 1 
} 
 
system.pareto <- System(model.pareto, mu.bar, 

Cov.1, Cov.2, bench.1, bench.2, lambda.1=0, 
lambda.2=30) 

solve(system.pareto) 

Code 3.4 Dual Benchmarks and Pareto Optimality 

An example application of Code 3.4 is included in the code accompanying the 
book. 

3.2 Portfolio Construction and Mixed-Integer 
Programming 

3.2.1 Mixed-Integer Programming in SIMPLE 

If you have ever tried to sell 22.345673 stock index futures, you might 
appreciate why we have to restrict ourselves to integer variables in some 
applications. (By integer variables we mean variables that can take on only 
integer values.) In portfolio construction, the most frequently used form of 
integer variable is the binary integer variable, that is, an integer variable that can 
assume either 1 or 0. NUOPT for S-PLUS, however, also allows us to model 
general integer variables (where every integer value is allowed). The method 
used to solve problems that contain integer variables is called integer 
programming. NUOPT allows us to handle problems that contain integer 
variables only (pure integer problems) as well as problems that contain both 
integer and other variables (mixed integer problems). Users can define integer 
variables for linear as well as quadratic programming problems in 
solveQP()by supplying an additional vector isint to solveQP(). This 
vector must only include logical values; its “true” entries indicate integer 
variables (i.e., x[isint==T] represents integer variables, while 
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x[isint==F] represents continuous variables). For more general problems, 
we can also set up integer variables in SIMPLE in very much the same way as we 
set up continuous variables before: 

 
x <- IntegerVariable(index=i, type=binary) 
 

The use of integer variables allows us to model portfolio construction in a much 
more realistic setting. Some examples might help the reader appreciate the 
power of integer programming within a portfolio construction framework.8  
 

• Lower bound on weights. Portfolio managers (and their clients) often 
hate small active positions (deviations from benchmark holdings) that 
they argue show little impact on total performance. Hence we could 
enforce this by adding the constraint that if an active position is 
established it needs to be at least of x%. This is by its very nature a 
go/no-go decision. 

• Upper bound on number of assets. Portfolio diversification is helpful 
but too much of it might increase transaction costs as well as 
monitoring costs. We could hence limit the number of assets to a 
specified maximum in order to arrive at a manageable portfolio. Assets 
are counted as 0 or 1, depending on whether they are in or out of the 
solution set. 

• Fixed (and piecewise linear) transaction costs. Sometimes it is useful 
to model transaction costs that contain both a fixed amount (ticket costs 
independent of trade size) as well as a volume-dependent cost. As fixed 
costs apply for any trade irrespective of size, this is another obvious 
go/no-go decision. 

• Threshold-based risk measures. Some investors perceive risks as 
downside deviations below a specified threshold only. In the case of 
scenario optimization and non-normally distributed variables, every 
threshold violation is counted as 0 or 1. 

 
The modeling of these problems is not very widespread as very little 

commercial software has previously been available. NUOPT allows us to solve 
these problems within S-PLUS at the greatest convenience for users, as will be 
shown below. Additionally, all the powerful analytics of S+FinMetrics can 
easily be integrated into our computations. 

3.2.2 Buy-in Thresholds 

Suppose we need to determine optimal portfolio weights iw . However, we also 
want to restrict the number of assets we invest in. Note that a 0.0001% weight 
will contribute the same amount to the count of assets as a 10% weight. If we 
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introduce a new binary variable iδ  that assumes 1 if an asset is included in the 
optimal solution and 0 otherwise, we are able to model the inclusion/exclusion 
of individual assets. 

 

 
1  if asset  is selected
0 otherwise.i

i
δ

⎧
= ⎨

⎩
 (3.10) 

 
Remember that we want to count how many assets enter the optimal solution. As 
an asset is either in or out of the optimal solution, we can express this using 
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Equation (3.11) operates like a switch. If an asset is included (even at a tiny 
size), the inequality is only satisfied for 1.iδ =  As soon as the asset leaves the 
solution set, Equation (3.11) only holds for 0.iδ =  Computationally, what we 
call here a “large number” should not be made “too” large. We can extend this 
logic to model typical buy-in thresholds as summarized in Table 3.1. 

After these preliminaries we are ready to tackle our first portfolio 
construction problem using integer variables. 

Table 3.1 Formulation of Buy-In Thresholds 

Type Formula 
Either in or out ilarge number, 0,1i iw δ δ≤ ⋅ =  
 
Either in-between or out min max

i, 0,1i i i i iw w wδ δ δ≤ ≤ ⋅ =  
  
Either out or above maxlarge number, , 0,1i i i i i iw w wδ δ δ≤ ⋅ ≤ =  
 
Cardinality constraint #assetsii

δ =∑  

3.2.3 Buy-in Thresholds and Cardinality Constraints 

It is well-known that diversifying into a broader universe of assets has merits as 
well as limits. Positions may become very small, monitoring and research costs 
may rise, and diversification benefits may fade away as the number of assets 
becomes large. Investors might hence want to solve the following mixed integer 
quadratic program. 
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Problem (3.12) can easily be transformed into the SIMPLE code shown in Code 
3.5. 

 
MV.model.card <- function(S, mu.target) 
{ 
 if(any(is.na(S))==T)  
  stop("no missing data are allowed") 
 n <- Set(1:ncol(S)) 
 m <- Set(1:nrow(S)) 

 
 n.obs <- nrow(S) 
 i <- Element(set=n) 
 s <- Element(set=m) 
 
 mu.bar <- apply(S, 2, mean) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(as.numeric(mu.target), 
  changeable=T) 
 
 w <- Variable(index=i) 
 dummy <- IntegerVariable(index=i, type=binary) 
 
 w[i] <= 5*dummy[i] 
 Sum(dummy[i], i) <= 2 
 dev <- Variable(index=s) 
 Sum((S[s,i]-mu.bar[i])*w[i],i) == dev[s] 
 
 risk <- Objective(type="minimize") 
 risk ~ 1/n.obs*Sum(dev[s]^2,s) 
 
 Sum(mu.bar[i]*w[i],i) == mu.target 
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 Sum(w[i],i) == 1 
 w[i] >= 0 
} 

Code 3.5 Transformation of Buy-In Threshold Problem (3.12) into SIMPLE 
Code 

In order to obtain a better understanding of the mechanics of (3.12), we will 
apply Code 3.5 to a simulated data set. 

 
S <- matrix(rmvnorm(50,mean=c(0.02,0.04,0.05,0.08), 
 cov=diag(rep(0.2,4))),ncol=4) 
 

This code can now be used to trace out an efficient frontier and plot both 
risk/return combinations and the underlying portfolios. In our simulated data set, 
we have assumed a universe of four assets. Portfolios are restricted to contain at 
most two assets. 

 
MV.pf.card <- function(S, mu.target) 
{ 
 call(MV.model.card) 
 MV.system.card <- 

System(MV.model.card,S,mu.target) 
 solution <- solve(MV.system.card, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
  digit=5)*100, ncol=1) 
 risk <- solution$objective 
 return(weight,risk) 
} 
 

For a given set of scenarios MV.frontier() will generate an efficient 
frontier with 200 risk/return points (see Code 3.6). The results are shown in 
Figure 3.1. 

 
MV.frontier.card <- function(S, n.pf) 
{ 
 call(MV.pf.card) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 n.obs <- nrow(S) 
 equal.mean.scenarios <- S - matrix( 
  rep(apply(S,2,mean),n.obs),nrow=n.obs,byrow=T) 
 x <- 

MV.pf.card(S=equal.mean.scenarios,mu.target=0) 
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 mu.min <- t(x$weight) %*% apply(S, 2, mean)/100 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 for(i in 2:n.pf){ 
  x <- MV.pf.card(S, mu.target=mu.range[i]) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
 } 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk,Return, type="b") 
 title("Mean-Variance Frontier with Cardinality  
  Constraints") 
 barplot(weight) 
 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 
x <- MV.frontier.card(S, n.pf=200) 

Code 3.6 Optimization with Cardinality Constraints 

At first sight, this is a very odd-looking frontier. Figure 3.1 is best understood if 
we think of the frontier as the envelope for all possible pairwise combinations 
(cardinality constraint of 2) within the four-asset universe (six combinations). 
Note that tracing out the frontier by stepwise increasing return requirements will 
lead to inefficient parts. In reality, the frontier becomes discontinuous, as it 
makes little sense to invest in dominated portfolios. Needless to say, the 
cardinality-constrained portfolio plots below an efficient frontier without 
cardinality constraints. The difference tends to be largest for the minimum 
variance portfolio (where diversification normally requires many assets to be 
included as long as the assets have similar risk characteristics), and it tends to be 
zero for the maximum return portfolio (which tends to be concentrated in a 
single asset, the maximum return asset). 

We can also use the logic above to model round lots (stocks can only be 
purchased in blocks). As before, we model the holdings in the i-th asset as  

 
 ,i i iw blockδ=  
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where     
 

round lot transaction for asset i
i total wealthblock = . Note, however, that the number of 

blocks ( iδ ) times the block sizes ( iblock ) do not need to sum to one. We can 

accommodate this by introducing overshoot and undershoot variables ,ϖ ϖ+ −  
into the budget constraint, 
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i ii
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=
+ − =∑  (3.13) 

 
Overshoots and undershoots need to be penalized in the objective function with 
an “appropriate” cost factor. Our portfolio optimization model now becomes 
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Figure 3.1 Efficient Frontier for Cardinality Constrained Portfolios 
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The cost factor c  needs to be carefully chosen. 

3.2.4 Tracking Indices with a Small Number of 
Stocks 

Trading desks at investment banks very often face a similar problem. They are 
asked by clients to construct tracking baskets; that is, a group of stocks that is 
constrained in size to a maximum number of stocks. Let us denote the holdings 
of the target portfolio (the benchmark portfolio to be tracked at minimum 
tracking error) by ib . The problem of tracking an index with a small number of 
stocks now becomes 

 

 

( )( )

{ }

min   subject to 

1

large number

#

0
0,1 .

i i j j iji j

ii

i i

ii

i

i

w b w b

w

w

assets

w

σ

δ

δ

δ

− −

=

≤ ⋅

=

≥

∈

∑ ∑
∑

∑
 (3.15) 

 
The implementation of (3.15) is a straightforward change of Code 3.5 and is left 
to the reader as an exercise. 
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3.3 Transaction Costs 

3.3.1 Turnover Constraints  

Turnover constraints are implemented by practitioners to heuristically safeguard 
against transaction costs. The implicit assumption behind this indirect treatment 
of transaction costs is that if transaction costs are proportional and equal across 
assets, it is sufficient to control turnover that is directly related to transaction 
costs. In reality, transaction costs differ across assets and do not change 
proportionally with trade size. However, we will use turnover constraints as a 
starting point for the next sections. 

So far we have not needed to know the initial holdings ( initial
iw ) when 

constructing a portfolio, as we assumed no costs to turn our portfolio into cash 
and vice versa. Here, in addition to the vector of initial holdings, we need  

 
1. two new sets of variables—assets bought iw+  (positive weight changes) 

and assets sold iw−  (negative weight changes); 
2. a budget constraint for each asset that requires that the final asset 

weight iw  equal the initial weight initial
iw  plus transactions: 

initial
i i i iw w w w+ −= + − ; and 

3. the turnover constraint itself, which limits the total turnover τ  that is 
allowed to go on in portfolios to a specified number: 
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The resulting minimization problem is shown in (3.17). 
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System (3.17) can now be implemented in SIMPLE. Note again that summation 
allows us to write down the optimization problem in virtually the same way we 
would on paper; this is illustrated in Code 3.7. 

Turnover constraints effectively anchor the optimized portfolio around the 
initial holdings. Small turnover figures allow only small deviations, while the 
reverse is true for large turnover figures. Turnover constraints do not allow an 
optimal treatment of transaction costs, as transaction costs might vary 
considerably across asset classes. It is also not intuitive that an asset manager 
stops trading in June if he has already spent his turnover budget of 40% per year, 
even though investment opportunities are still around. The next section will 
therefore allow for proportional transaction costs. 

 
MV.model.turnover <- function(S, w.initial, 
 mu.target, to) 
{ 
 nobs <- nrow(S) 
 n <- Set(1:ncol(S)) 
 m <- Set(1:nrow(S)) 
 i <- Element(set=n) 
 s <- Element(set=m) 
 
 mu.bar <- apply(S, 2, mean) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(as.numeric(mu.target), 
  changeable=T) 

 
 w <- Variable(index=i) 
 to <- Parameter(as.numeric(to), changeable=T) 
 w.initial <- Parameter(as.array(w.initial), 
  index=i) 
 w <- Variable(index=i) 
 w.plus <- Variable(index=i) 
 w.minus <- Variable(index=i) 
 dev <- Variable(index=s) 
 
 Sum((S[s,i]-mu.bar[i])*w[i],i) == dev[s] 
 risk <- Objective(type="minimize") 
 risk ~ 1/nobs*Sum(dev[s]^2,s) 
 Sum(mu.bar[i]*w[i],i) == mu.target 
 w.initial[i]+w.plus[i]-w.minus[i] == w[i] 

 
 Sum(w.plus[i]+w.minus[i],i) <= to 
 Sum(w[i],i) == 1 
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 w.plus[i] >= 0 
 w.minus[i] >= 0 
 w[i] >= 0 
} 

Code 3.7 Optimization with Turnover Constraints 

3.3.2 Proportional Costs 

So far, it has been cost-free to shift portfolio allocations.9 However, in the real 
world, there are transaction costs associated with buying and selling securities. 
Let us assume that transaction costs are paid at the beginning of the period. In 
order to model transaction costs, we have to modify the budget constraint, as the 
costs associated with our transactions have to be paid out of the existing budget, 
that is, they have to be financed from asset sales, 

 

 ( ) ( )1 1
0, 0,  0,

n n
i i i i i i i ii i

w w tc w tc w w w− + + + − − + −
= =

− − + ≥ ≥ ≥∑ ∑  (3.18) 

 
where itc±  are the proportional transaction costs for buying and selling. The first 
summation denotes the proceeds from net selling, while the second summation 
denotes the associated costs. Transaction costs lead to an indirect return 
reduction, as the amount on which asset returns can be earned is reduced from 
the start of the investment period, i.e., 1.initial

i ii iw w< =∑ ∑  We can incorporate 
(3.18) into a new budget constraint by adding transaction costs to the summation 
of holdings that are left after transactions have been paid: 
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 (3.19) 

 
Note that as now 1i iw <∑ , we need to write (1 ) 1i i iw µ µ+ = +∑  instead of 

i i iw µ µ=∑ . Since (3.19) is very close to (3.17), we only need some minor 
changes to accommodate transaction costs. For simplicity, we assumed 
transaction costs to be equal across assets. We can easily change this by 
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providing vectors of transaction costs instead, together with the relevant 
indexing; this is illustrated in Code 3.8. 

 
MV.model.tc <- function(S, w.initial, mu.target, 

tc) 
{ 
 nobs <- nrow(S) 
 n <- Set(1:ncol(S)) 
 m <- Set(1:nrow(S)) 
 i <- Element(set=n) 
 s <- Element(set=m) 
 
 mu.bar <- apply(S, 2, mean) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(as.numeric(mu.target), 
  changeable=T) 
 
 w <- Variable(index=i) 
 tc <- Parameter(as.numeric(tc), changeable=T) 
 w.initial <- Parameter(as.array(w.initial), 

index=i) 
 w <- Variable(index=i) 
 w.plus <- Variable(index=i) 
 w.minus <- Variable(index=i) 
 dev <- Variable(index=s) 
 
 Sum((S[s,i]-mu.bar[i])*w[i],i) == dev[s] 
 risk <- Objective(type="minimize") 
 risk ~ 1/nobs*Sum(dev[s]^2,s) 
 Sum((1+mu.bar[i])*w[i],i) >= 1+mu.target 
 w.initial[i] + w.plus[i] - w.minus[i] == w[i] 
 Sum(w[i], i) + Sum(w.plus[i]*tc + 

w.minus[i]*tc,i) == 1 
 w[i] >= 0 
 w.plus[i] >= 0 
 w.minus[i] >= 0 
} 

Code 3.8 Optimization with Transaction Constraints 

We can illustrate the code with a numerical example. First we generate a set of 
scenarios for a universe of four assets, assuming equally weighted initial 
holdings: 
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S <- matrix(rmvnorm(100, 
mean=c(0.02,0.04,0.05,0.08), 
cov=diag(rep(0.2,4))),ncol=4) 

w.initial <- rep(1/4,4) 
 

Now we can run a single optimization (shown in Code 3.9) and investigate the 
optimal solution. 

 
MV.system.tc <- System(MV.model.tc, S, w.initial, 
 mu.target = 0.06, tc = 0.01) 
solution <- solve(MV.system.tc, trace = T) 
solution$variable$w$current 
         1          2         3         4 
 0.2056925 0.09749321 0.4485728 0.2442299 
 
attr(, "indexes"): 
[1] "i" 
sum(solution$variable$w$current) 
 
[1] 0.9959884 

 
round(solution$variable$w.plus$current,digits = 3) 
 
 1 2     3 4 
 0 0 0.199 0 
attr(, "indexes"): 
[1] "i" 

 
round(solution$variable$w.minus$current,digits = 3) 
 
     1     2 3     4  
 0.044 0.153 0 0.006 
attr(, "indexes"): 
[1] "i" 

Code 3.9 Set of Scenarios for a Universe of Four Assets 

Two interesting points are worth mentioning. First, asset weights no longer add 
up to 100% (99.6% instead), as transaction costs are dragging down initial 
wealth. Second, adjustments are made either via buying or selling, but no asset 
is bought and sold at the same time. Although this would have no direct effect 
on the net change in holdings, it would induce overly high transaction costs. 
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3.3.3 Fixed Costs 

Fixed transaction costs are another go/no-go situation; that is, fixed costs arise 
as soon as we trade in a particular asset (independent of trade size), while they 
are zero if no trade takes place. We can hence model the budget constraint for a 
combination of fixed and proportional costs according to 
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Final holdings plus fixed and proportional transaction costs have to add up to the 
initial budget. Fixed costs are summed with the use of integer variables that take 
on a value of one if trading takes place and zero otherwise. We assumed fixed 
costs to be the same for all assets. Extensions are trivial. Variables in (3.20) are 
defined as follows: 
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For ease of notation, we used constant fixed costs if  across assets. An extension 
of notation is trivial. The portfolio optimization problem now becomes  
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The S-PLUS optimization code for (3.22) is given in Code 3.10 and is a 
straightforward extension of previous code on portfolio optimization with 
proportional transaction costs. 

 
MV.model.tc <- function(S, w.initial, mu.target, 

tc, fc) 
{ 
 nobs <- nrow(S) 
 n <- Set(1:ncol(S)) 
 m <- Set(1:nrow(S)) 
 i <- Element(set=n) 
 s <- Element(set=m) 
 
 mu.bar <- apply(S, 2, mean) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(as.numeric(mu.target), 
  changeable=T) 
 w <- Variable(index=i) 
 tc <- Parameter(as.numeric(tc), changeable=T) 
 fc <- Parameter(as.numeric(fc), changeable=T) 
 w.initial <- Parameter(as.array(w.initial), 
  index=i) 
 
 w <- Variable(index=i) 
 w.plus <- Variable(index=i) 
 w.minus <- Variable(index=i) 
 dev <- Variable(index=s) 
 
 Sum((S[s,i]-mu.bar[i])*w[i],i) == dev[s] 
 
 risk <- Objective(type="minimize") 
 risk ~ 1/nobs*Sum(dev[s]^2,s) 
 Sum((1+mu.bar[i])*w[i],i) >= 1+mu.target 
 w.initial[i] + w.plus[i] - w.minus[i] == w[i] 
 dummy.plus  <- 

IntegerVariable(index=i,type=binary) 
 dummy.minus <- 

IntegerVariable(index=i,type=binary) 
 w.plus[i] <= 5*dummy.plus[i] 
 w.minus[i] <= 5*dummy.minus[i] 
 Sum(w[i], i) + 
  Sum(w.plus[i]*tc+w.minus[i]*tc,i) + 
  Sum(dummy.plus[i]*fc,i) + 
  Sum(dummy.minus[i]*fc,i) == 1 
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 w[i] >= 0 
 w.plus[i] >= 0 
 w.minus[i] >= 0 
} 

Code 3.10 Optimization with Fixed Transaction Constraints 

Note that the existence of fixed transaction costs will, ceteris paribus, lead to a 
larger focus on a small number of assets with which transactions will be 
performed for any moment in time. Across time, a small number of large 
adjustments will be preferable to a large number of infinitesimal rebalancing 
trades. 
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Exercises 

1. Check (3.1). Reformulate it in terms of individual asset betas. What can we 
say about (3.2) for the minimum variance portfolio? 

 
2. Equal-weight benchmarks try to achieve diversification by investing equal 

amounts into all assets. However, equal amounts do not lead to equal risk 
contributions. Construct an equal risk benchmark; (i.e., a portfolio where 
the percentage contribution for each asset equals the inverse of the number 
of assets). How would you evaluate such a concept theoretically and 
practically? 

 
3. Suppose you are given a covariance matrix of returns, a vector of expected 

returns, and a vector of benchmark weights. Run  
(a) a benchmark-relative optimization without constraints, 
(b) a benchmark-relative optimization with beta neutrality constraint (beta 

with respect to the benchmark equals one), and 
(c) a total return optimization.  
(d) Plot all three results in active return and active risk space. Explain. 
 

4. Suppose you have ten bonds, each with different yields, durations, and 
convexities. Write a short program that calculates the maximum yield 
portfolio for a given duration and convexity target under the constraint that 
the optimizer needs to pick exactly four bonds, with each bond having at 
least 20% weight. 

 
5. Suppose you run a standard mean-variance optimization. Suppose further 

that you include six group constraints (a group constraint limits the sum of a 
group of assets to fall within boundaries). How would you implement the 
additional constraint that at least four of these constraints need to be 
satisfied? Hint: Transform the set of constraints 
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1 6, ,i ii group i group
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1 1 6 6,..., , 4.i i ki group i group k
w c w cδ δ δ
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6. Assume an investor faces two group constraints, but regards them as 

mutually exclusive. (He wants either constraint one or two to hold, but not 
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at the same time.) How would you implement this? Hint: If we introduce a 
large number ,E  the constraints 

 
 

1 2
1 2,i ii group i group

w c w c
∈ ∈

≥ ≥∑ ∑  

  
can easily be transformed into 
 

 ( )
1 2

1 1 2, 1i i si group i group
w c E w c Eδ δ

∈ ∈
≥ + ≥ + −∑ ∑ . 

  
7. Transform (3.14) into NUOPT for S-PLUS code. 
 
8. Solve the transaction costs problems described in Section 3.3 with the use 

of solveQP(). Hint: The optimization problem of (3.17) can be rewritten 
in matrix form: 
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9. Within the main text, we assumed that transaction costs are fixed and/or 

proportional. In reality, trading costs are to a large extent made up of 
liquidity costs (market impact) that are nonlinearly increasing with trade 
size. Grinold and Kahn (2000, p. 452, Equation 16.4) suggest a transaction 
cost model of the form 

  
 % / trade volume

daily volumetc commission bid ask spread θ= + − + .  

Linearize and implement this cost function into the code of Section 3.3. 
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Endnotes

                                                           
1 See McCarthy (2000, p. 103). 
2 See Chow and Kritzman (2001, p. 58). 
3 See De Bever et al. (2000, p. 283). 
4 See Rustem and Settergren (2002). 
5 See Chow et al. (1999).  
6 See Shectman (2001).  
7 See Wang (1999).  
8 See Mitra et al. (2003) or Brandimarte (2002).  
9 Inclusion of transaction costs can be found in Mitchell and Braun (2002) or Lobo, 
Fazel, and Boyd (2002). 
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4 Resampling and Portfolio 
Choice 

 
Inputs for portfolio optimization problems are notorious for being measured 
with substantial estimation error. This is particularly troubling because 
optimization routines are often characterized as error maximization algorithms, 
leveraging errors in inputs rather than mitigating their effect. Consequently, 
financial economists and statisticians have relied on resampling techniques in 
order to understand the impact of estimation error in means and covariances 
(inputs) on the distribution of portfolio weights (outputs).1 In statistics, 
resampling methods are referred to as bootstrap methods, and there are two 
basic types: the parametric bootstrap, where one fits a parametric model and 
samples from the fitted parametric model, and the nonparametric bootstrap, 
where one samples directly from the data without fitting a parametric model. 
See, for example, Efron and Tibshirani (1998) and Davison and Hinkley (1999) 
for details. In this chapter, we concentrate primarily on the parametric bootstrap 
using a fitted multivariate normal distribution, as is common in applications to 
finance. 

Throughout the first three sections to follow, a simple numerical example 
will be used to illustrate the pitfalls of using the center of the resampled weight 
distribution for portfolio construction exercises. We need to rely on numerical 
examples in combination with Monte Carlo simulation, as no closed-form 
solutions are available.  

4.1 Portfolio Resampling 

Suppose we have estimated a mean vector and a covariance matrix of returns (in 
the following, we always assume returns come in the form of excess returns) 
from annual historical data with length ,histn  

 

 0 0

400 6.08
ˆ ˆ210 255 , 4.56 , 30.

40 15 25 0.94
histnµ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Ω  (4.1) 
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The unconstrained efficient frontier and corresponding efficient set weights are 
shown in Figure 4.1. The maximum Sharpe ratio portfolio has weights 
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Investors holding 100% in the maximum Sharpe ratio portfolio exhibit a risk 
aversion of 2

1
0 0

ˆ ˆ 0.038µ
σλ −′= = =1 Ω µ . As the maximum Sharpe ratio portfolio 

is the most prominent in finance, we will focus on this portfolio. With the 
exception of the minimum variance portfolio (which does not require return 
estimates), everything said in this chapter also applies to all other portfolios on 
the efficient frontier. 

We know that 0Ω̂  and 0µ̂  have been estimated with error. In general, 0Ω̂  is 
an n n×  matrix, where n  denotes the number of assets (here 3n = ), whereas 

0µ̂  is an 1n ×  vector. The process of resampling will draw data for a number 

drawn  of returns for each of the n  assets from the multivariate normal 

( )0 0
ˆˆ , .N µ Ω  We can use the newly created block of data in the form of an 

drawn n×  matrix of asset returns (here 30 3)×  to construct a new mean vector 
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Figure 4.1 Markowitz Portfolios (with Short Selling Allowed) 
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and covariance matrix estimates 1Ω̂  and 1µ̂ . It is often natural to set 
,draw histn n=  but this is not necessary. Obviously, the original and the 

resampled matrices will differ due to sampling error. The degree of difference 
will depend on drawn . If we make drawn  small, our estimates will fluctuate 
greatly, while we will find much less difference for a large drawn .2 Repeating 
this procedure simn  times, we create a large number of varying input vectors: 

( 1 1
ˆ ˆˆ ˆ, , , , ).

sim simn nΩ µ Ω µ…  We now ask ourselves what choices we would make if 
we repeatedly constructed optimal portfolios iw  from these resampled inputs 
and what insights can be gained from this exercise. 

In order to ensure that decisions are indeed comparable across simulations, 
we assume that investors maximize ( ) 2 ,T TU λ= −w w µ w Ωw  where the 

first-order conditions lead to the familiar formulas 1 1λ− −=w Ω µ λ=µ Ωw  for 
optimal weights and implied returns. Note that in the current example 0.038λ =  
remains constant through all simulations. As a start, we sample 

30draw histn n= =  returns from ( )0 0
ˆˆ ,N µ Ω  and compute the sample mean 

vector (for simplicity, covariances are assumed to be measured without error) 
and the corresponding optimal portfolio with a full investment constraint (i.e., 
weights need to add up to 100%). This is then repeated simn times for 

1, 2, ,500)simn = . 
We measure the distance between the center of the weight distribution and 

the original maximum Sharpe ratio portfolio that was constructed without taking 
estimation error into account (i.e., the maximum Sharpe ratio for the portfolio 
based on 0 0

ˆˆ , )µ Ω  as the squared Euclidean distance  
 

 ( ) ( )* *T
Sharpe Sharpe− −w w w w , where 1

1
,sim

sim

n
in i=

= ∑w w   

 
where iw  is the optimal weight vector for the i-th simulation. 

It can be seen in Figure 4.2 that the distance between the center of the 
resampled distribution and the maximum Sharpe ratio portfolio converges to 
zero fairly rapidly as simn  increases. Effectively this means that the center of the 
weight distribution recovers the original maximum Sharpe ratio portfolio. 
Alternatively, we can say that * ,Sharpe noise= +w w  where the noise goes to zero 
fairly rapidly as simn  increases. In this case, the use of resampling in creating 
new portfolios adds only noise to the portfolio construction. 

Figure 4.3 visualizes the distribution of portfolio weights for 500simn = . 
Large positive or negative weights can occur in single simulation runs but will 
be averaged out. This is true for every number of draws drawn  per resampling. 
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It is apparent from the results that repeatedly drawing average returns and 
subsequently averaging across optimally constructed portfolio weights, yields 
the same result as averaging across returns in the first place and then using the 
averaged returns for portfolio optimization. We could have seen that without 
having to go through the simulation exercise3: 
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 (4.2) 

 
Note that we simulated the effect of estimation error on the distribution of 
portfolio weights. Neither the average portfolio nor its risk changed. However, 
we know that if investors are uncertain about their inputs, estimation risk will 
add to investment risk and the world will become a riskier place. Computing 
average weights based on resampling is unable to catch this effect, as it is not 
designed to do so.4 However, straightforward bootstrap resampling of quantities 
such as the Sharpe ratio and the return and risk of the tangency portfolio can 
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Figure 4.2 Resampling and Convergence (Short-Selling Allowed) 
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indeed provide measures of uncertainty of operating points (see Sections 4.6 and 
6.9.4). 

In order to replicate the results above, readers can use Code 4.1, which works 
for both long/short (short=T) and long-only (short=F) optimization. 
portfolio.resampling <- function(cov, fcst, n.sim, 
 n.draw, short) 
{ 
 resampled.pf <- matrix(0,ncol=ncol(cov), 
  nrow=(n.sim+2)) 
 frontier.uc <- portfolioFrontier(cov,fcst, 
  max.ret=max(fcst),n.ret=1000, 
  unconstrained=short) 
 iopt <- order(frontier.uc$returns/ 
  frontier.uc$sd)[1000] 
 lambda <- frontier.uc$returns[iopt]/ 
  frontier.uc$sd[iopt]^2 
 resampled.pf[(n.sim+1),] <- 

frontier.uc$weights[,1] 
 resampled.pf[(n.sim+2),] <- 
  frontier.uc$weights[,iopt] 
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Figure 4.3 Distribution of Resampled Weights (Short-Selling Allowed) 
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 group <- matrix(rep(1, ncol(cov)), nrow=1) 
 if(short==T) { 
  bUP <- c(rep( Inf, ncol(cov))) 
  bLO <- c(rep(-Inf, ncol(cov))) 
 } 
 if(short==F) { 
  bUP <- c(rep(1, ncol(cov))) 
  bLO <- c(rep(0, ncol(cov))) 
 } 
 cUP <- c(1) 
 cLO <- c(1) 
 for(i in 1:n.sim){ 
  x <- rmvnorm(n.draw, fcst, cov) 
  cov.r <- var(x) 
  fcst.r <- apply(x,2,mean) 
  resampled.pf[i,] <- solveQP(-lambda*cov, 
   fcst.r, group, cLO, cUP, bLO, bUP, ,  
   type=maximize, trace=F)$variables$x$current 
  cat(" run ", i, "\n") 
 } 
 list(resampled=resampled.pf) 
} 

Code 4.1 Portfolio Resampling and Weight Convergence 

The first part of the function calculates the mean-variance frontier without 
estimation error. We can also infer the maximum Sharpe ratio portfolio from 
this (assuming expected returns and covariances are derived using the risk 
premium rather than total return). 

4.2 Resampling Long-Only Portfolios 

So far, we have allowed for short-selling in portfolio construction. We have seen 
that in this case the average resampled portfolio only adds noise to Markowitz 
portfolios. In this section, we will drop the possibility of going short in 
individual assets and return to more conventional portfolio optimization using a 
long-only constraint. Apart from this, we will perform the same calculations as 
in the previous section. 

The first thing to note about Figure 4.4 is that distance (deviation from the 
estimation error-free solution) is much smaller when short-selling is not 
allowed, as the long-only constraint reduces the opportunities to leverage on 
information. We can also see that the distance measure in our simulations does 
not converge to zero. This means that repeatedly sampling with 30drawn =  does 
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not recover the Markowitz solution. Hence we get * ,Sharpe bias noise= + +w w  
where the noise goes to zero as the number of simulations increases but the bias 
does not. A look at Figure 4.5 provides the reason for this bias. 

Weights that are less than zero due to a downward bias in some simulations 
can no longer be implemented. Hence, averaging will not lead back to the 
Markowitz solution, as individual assets are now either in or out but never short. 
The higher the volatility of an asset and/or the smaller ,drawn  the more 
pronounced this effect will be. The next section will elaborate on this in more 
detail. 

4.3 Introduction of a Special Lottery Ticket 

In order to magnify the effect we just learned in the previous section and to 
show its relevance for asset allocation decisions, we will introduce a special 
lottery ticket with zero risk premium into our analysis. Lottery tickets are 
investments that offer diversification, as they are by definition uncorrelated with 
all other assets. Since our lottery ticket has zero expected excess return, it 
exposes investors to high volatility with no expected reward. Broadening the 
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Figure 4.4 Resampling and Convergence (no Short-Selling Allowed) 
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investment universe with lottery tickets should not improve the efficient frontier 
by pushing it up and to the left. Any asset allocation mechanism that 
systematically invests in lottery tickets should be treated with utmost caution. 
The following calculations are based on a lottery ticket with 60% volatility, 0% 
expected return, and zero covariance with existing assets. 
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Figure 4.5 Distribution of Resampled Weights (no Short-Selling Allowed) 

We repeat the previous calculations, where asset 4 represents the lottery 
ticket. Figure 4.6 and Figure 4.7 summarize the results. Note that the maximum 
Sharpe ratio portfolio derived from traditional mean-variance analysis does not 
allocate to the lottery ticket. Introducing a lottery ticket increases our distance 
measure in Figure 4.6 for a sufficiently large number of simulations. This should 
come as no surprise, as allocations to the lottery ticket amount to as high as 22% 
for some allocation runs, while we can never short the lottery ticket, even for 
those runs with large negative average returns. It is the long-only constraint that 
essentially transforms asset volatility into portfolio allocations. However, this 
does not necessarily mean that the higher the volatility of our lottery ticket the 
larger the allocation will become, as there are two separate effects at work. 
Higher volatility induces an upward bias into the average resampled weight, but 
at the same time higher volatility makes the lottery ticket less attractive, as it 
worsens the risk-return trade-off for any given risk aversion. While the first 
effect becomes obviously predominant for the maximum return portfolio, its 
exact trade-off depends on the risk aversion. 
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Figure 4.6 Resampling and Convergence (Lottery Ticket and Long-only 
Constraint) 

 
Figure 4.8 shows that for a reasonably high risk aversion of 0.038,λ =  

increasing the volatility of the lottery asset will reduce the average allocation 
due to the higher risk. The volatility bias is still present, but the direct risk effect 
more than compensates for the upwards bias induced by high average returns for 
some simulation runs. For a low risk aversion of 0.01,λ =  this effect also 
exists, but it starts at higher volatility levels. Up to a volatility level of 30%, the 
resampling bias dominates. From then on, the direct risk effect leads to smaller 
allocations even though the long-only constraint leads to more and more serious 
artifacts. 

At this point, it is interesting to see what happens in a world that is affected 
by the same uncertainty about the correct inputs but that differs in institutional 
constraints. In short: does the introduction of a lottery ticket also have biased 
allocations if we are allowed to engage in short-selling? Note that allowing 
short-selling will not decrease the amount of estimation risk in the world. If 
anything, the opportunity to go short will increase the estimation error, as the 
optimizer can now establish long and short positions between similar highly 
correlated assets that look almost risk-free but yield large returns. Obviously, 
those almost arbitrage situations are most likely to be created by estimation 
error. 
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Figure 4.7 Distribution of Free Sampled Weights (Lottery Ticket and Long-
Only Constraint) 
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Figure 4.8 Risk Aversion and Volatility Bias 

We see in the simulation results of Figure 4.9 that with short-selling allowed, the 
weights for the lottery ticket allocation scatter symmetrically around an average 
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weight of 0%. Large positive allocations are counterbalanced on average by 
large negative allocations. Resampling without short-selling constraints helps us 
appreciate the dispersion in outcomes, while at the same time the average 
resampled weight is the same as the Markowitz weight. 

Another way to look at portfolio resampling is to back out the implied returns 
of the average resampled portfolio. For 30drawn =  and 500,simn =  we arrive at 

average resampled weights ( )0.21 0.32 0.44 0.03 T=w . In this case, one 

can check that the implied returns 0
ˆ

implied λ=µ Ω w  differ substantially from our 

original forecasts ( )6.45 4.67 0.92 4.15 .T
implied =µ  The risk premium for 

the lottery ticket in the latter case is more than 4%, compared with 0% for the 
portfolio with short-selling allowed. However, this is not plausible, as estimation 
error should not affect expected returns. By definition there is no uncertainty 
about expected returns. Estimation error without additional information should 
instead be reflected in the inflation of risk estimates, which now contain 
investment risk as well as estimation risk.5 
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Figure 4.9 Distribution of Free Sampled Weights (Lottery Ticket without 
Long-only Constraint) 

In order to appreciate the impact that the number of draws per resampling drawn  
has on the allocation of our lottery ticket for a long-only portfolio, we repeat a 
large number of resamplings 100,000simn =  with antithetic variance reduction 
for various levels of drawn . The results of these simulations are plotted in Figure 
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4.10. As the number of resamplings increases, and consequently the variance of 
estimated parameters decreases, the allocation into our lottery ticket decreases. 
At first sight this seems to be a confirmation of the concept of resampling. After 
all, a large number of draws per resampling means confidence in our inputs, in 
which case we would expect to recover the Markowitz solution. However, it is 
important to understand that no such effect exists if we allow short-selling. The 
average allocation into the lottery ticket would be independent of the number of 
draws even though the estimation error is the same. It is the long-only constraint 
that transforms asset volatility into asset allocation, implicitly raising the 
expected return for highly volatile assets. 

4.4 Distribution of Portfolio Weights 

The resampling procedure that results in a sequence of new covariance matrix 
and mean vector estimates allows us to generate a resampled set of optimal 
portfolio weights, thereby giving us an estimate of the distribution of portfolio 
weights. This in turn allows us to test whether two portfolios are statistically 
different using an appropriate distance in n-dimensional vector space. It may be 
tempting to use the simple Euclidean distance measure for the distance of a 
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Figure 4.10 Allocation into Lottery Ticket versus drawn  
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vector iw  of portfolio weights from the vector pw  of portfolio weights of 
another portfolio given by 

 
 ( ) ( )T

p i p i− −w w w w . (4.3) 
 

However, this is not the appropriate distance for correlated returns, and instead, 
under appropriate conditions, the proper statistical distance is given by 

 
 ( ) ( )1 ,T

p i p i
−− −ww w Ω w w  (4.4) 

 
where wΩ  is the variance-covariance matrix of portfolio weights iw  and pw  is 
the mean value of iw . When the iw  are normally distributed, this test statistic 
is distributed as a χ2 with degrees of freedom equal to the number of assets. In 
the statistical literature this distance is known as the Mahalanobis distance, and 
an intuitive explanation of the distance is provided in Section 6.6.6 

Suppose for simplicity that we have two assets with 10% mean and 20% 
volatility each. Suppose further that the correlation between the two assets is 
zero and the risk aversion coefficient is 5λ = . The optimal solution without 
estimation error is given below: 

 

 ( )

( )

2

2

1
* 0.21 1 1
* 1
2 0.2

0 0.1 0.5
0.2 .

0.1 0.50
w
w

λ∗ − −
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

w Ω µ  (4.5) 

 
A resampled version of (4.5) is now easily obtained with a few lines of S-PLUS 
code (see Code 4.2), assuming that the returns are normally distributed. 
 
# inputs 
Cov <- diag(rep(0.2^2,2)) 
mu.bar <- c(rep(0.1,2)) 
n.sim <- 1000 
n.draw <- 60 
lambda <- 0.2 
# simple resampling function 
resampling <- function(Cov, mu.bar, n.sim, n.draw, 
 lambda) 
{ 
 resampled.weights <- matrix(0, n.sim, ncol(Cov)) 
 
 
 for(i in 1:n.sim) { 
  resampled.returns <- rmvnorm(n.draw, mu.bar, 
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   Cov) 
  VarCov <- var(resampled.returns) 
  Mean <- apply(resampled.returns,2,mean) 
  w <- lambda*solve(VarCov)%*%Mean 
  resampled.weights[i,] <- t(w) 
 } 
 list("resampled.weights"=resampled.weights) 
} 
# plot results 
x <- resampling(Cov, mu.bar, n.sim, n.draw, 
 lambda)$resampled.weights 
plot(x[,1],x[,2],xlab="weight asset 1", 
 ylab="weight asset 2") 

Code 4.2 Portfolio Resampling and Weight Distribution 

Note that for illustrative purposes we have calculated optimal portfolios 
without full investment constraints in the code above. Because these portfolios 
do not require holdings to add up to one, one might be tempted to conclude that 
these are not portfolios. But one could think of cash as a third (filling) asset, as 
cash would leave the marginal risks of the portfolio, as well as the total risk of 
the risky portion of the portfolio, unchanged. While the optimal solution weight 
is 50% for both assets, Figure 4.11 shows that the estimated weights are 
scattered around this solution. Comparing the vector difference with an 
appropriate percentage point (e.g., the upper 95% point) of a chi-squared 
distribution with two degrees of freedom yields a measure of how statistically 
different a portfolio is from the optimum. 

From the definition of optimal weights, one sees that for our simple example 
the covariance matrix of the resampled weights is given by 

 

 

1

2 1 1

2 1 1

2
1

ˆcov( 1 )
ˆcov( )

(.2)

1 01 .
0 1

draw

draw

draw

n

n

n

λ

λ

λ

−

− − −

− − −

−

= −

=

=

=

⎡ ⎤= ⎢ ⎥⎣ ⎦

wΩ Ω µ

Ω µ Ω
ΩΩ Ω

Ω

 (4.6) 

 
Since 60drawn =  in our example, this gives 1/ 60 .13=  as the standard errors 
of the weights. This is consistent with the display in Figure 4.11. 
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Figure 4.11 Estimation Error and Portfolio Weights 

We remark that, for fully invested portfolios, the n-dimensional vector of 
weights will lie on an 1n −  dimensional hyperplane that intersects the 
coordinate axes at the value one. (In this simple two-dimensional case, the 
weights lie along a line through the points (0,1) and (1,0).) In such cases, we can 
simply look at the distribution of 1n −  of the weights in the 1n −  dimensional 
subspace. In our simple example above, this would amount to looking at just one 
weight, which is not very interesting. 

Now, to be ever so slightly realistic, let’s consider the estimated bivariate 
distribution of the weights based on observed data that are assumed to be 
normally distributed according to an estimated mean and covariance for the 
weights, ˆ *w  and .wΩ  For simplicity, we will use the true optimal weights 

* (.5,.5) ,′=w  leaving it to the reader to repeat the experiment with ˆ *,w  and 

compute the estimate wΩ  directly from the resampled weights (rather than 
using the previous formula). The resulting bivariate density is 
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Code 4.3 generates the perspective plot of Figure 4.12 and the contour plot of 
Figure 4.13. For the case depicted in these figures, the estimated inverse 
covariance matrix of the weights was 

 
1 27.93 0.005ˆ

0.005 27.76w
− ⎡ ⎤= ⎢ ⎥⎣ ⎦
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Figure 4.12 Bivariate Normal Weight Distribution for Resampled Portfolio 
Weights 

Cov.w <- var(x) 
w1 <- seq(-0.2, 1.5,length=100) 
w2 <- seq(-0.2, 1.5,length=100) 
 
f1 <- function(w1,w2) 
{ 
 S <- solve(Cov.w) 
 d <- (w1-0.5)^2*S[1,1]+(w2-0.5)^2*S[2,2]+ 
  2*(w1-0.5)*(w2-0.5)*S[1,2] 
 1/(2*pi*sqrt(det(Cov.w)))*exp(-1/2*d) 
} 
 
z <- outer(w1,w2,f1) 
graphsheet() 
persp(w1, w2, z, xlab="weight asset 1",  
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 ylab="weight asset 2", zlab="density")  
graphsheet() 
contour(w1, w2, z, nlevels=10,  
 xlab="weight asset 1", ylab="weight asset 2") 
points(x[,1], x[,2]) 

Code 4.3 Portfolio Resampling and Weight Distribution 
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Figure 4.13 Weight Distribution and Lines of Constant Density 

Michaud (1998) uses a different distance measure that is widely applied in asset 
management. His measure recognizes that two portfolios with the same risk and 
return might actually exhibit different allocations. The distance between two 
portfolios is defined as  

 
 ( ) ( )0

ˆT
p i p i− −w w Ω w w , (4.7) 

 
which is equivalent to the squared tracking error. The procedure runs as follows: 

 
Step 1. Define a portfolio against which to test the difference. Calculate (4.4) 

for all resampled portfolios. 
Step 2. Sort the portfolios by tracking error in descending order (highest on 

top).  
Step 3. Define TEα as the critical tracking error for the %α  level (i.e., if 1000 

portfolios are resampled and the critical level is 5%, then look at the 
tracking error of a portfolio that is 50th from the top). Hence, all portfolios 
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for which ( ) ( ) 2
0

ˆ TET
p i p i α− − ≥w w Ω w w  are labeled statistically 

different. 
Step 4. Calculate the minimum and maximum allocations for each asset within 

the acceptance region. 
 

For a three-asset example, the uncertainty about the optimal weights can be 
visualized, but it becomes “quite hard” for higher dimensions.  

It should be noted that similarity is defined with regard to the optimal weight 
vector rather than in terms of risk and return. Two portfolios could be very 
similar in terms of risk and return but very different in allocation. This is well-
known, as risk/return points below the frontier are not necessarily unique. Even 
so, this test procedure is intuitive. It should be noted that the dispersion in 
weights is large, so it will be difficult to reject the hypothesis that both portfolios 
are statistically equivalent even if they are not. The power of the suggested test 
is expected to be low. 

4.5 Theoretical Deficiencies of Portfolio 
Construction via Resampling 

4.5.1 Aggregation Problems 

Constructing “optimal” portfolios using portfolio resampling requires that we 
average portfolios in some way (e.g., we average portfolios that carry either the 
same rank or the same risk-return trade-off).7 In the case of no long-only 
constraints, the concept of resampled efficiency will coincide with Markowitz 
efficiency in the large sample limit (i.e., resampled efficiency in finite sample 
sizes equals Markowitz efficiency plus noise). Note that even though all inputs 
are measured with error, resampled efficiency will not pick this up. Asset risk 
remains unchanged even though the world becomes much riskier in the presence 
of estimation error. 

In the case of long-only constraints, the situation changes considerably. As 
assets can never be short, we will see that for some resamplings the maximum 
return portfolio will be 100% cash. This leads to a sampling of cash into the 
maximum return portfolio. Another consequence is that we cannot engineer 
portfolios that exhibit low λ ’s (without long-only constraints, we could have 
always shorted assets with a negative risk premium), which makes the similarity 
of rank- and lambda-based approaches questionable. Note also that the inclusion 
of cash in the maximum return portfolio contrasts both with intuition and 
portfolio theory. In the case of estimation error, investors will still hold a 
combination of cash and a market portfolio with the same composition as in the 
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case of no estimation error, with more weight being put on cash, as cash carries 
no investment risk and is free of estimation error.  

Finally, we note that the average is a poor indicator for the center of a 
distribution that is asymmetric due to heavy truncation at both ends (between 
0% and 100%). 

4.5.2 Overdiversification 

A portfolio construction methodology that allocates to every single asset in the 
universe across all portfolios along the efficient frontier creates 
overdiversification. The combination of the long-only constraint and portfolio 
resampling will allocate even to dominated assets as long as a lucky draw makes 
them attractive, while the worst that can happen in all other allocations is a zero 
weight. Hence, the increase in risk per unit of expected return is not due to 
estimation error but rather due to overdiversification. 

4.5.3 Optionality Problem 

Suppose two assets possess the same expected return but one of them has a 
significantly higher volatility. One could think of this as an international fixed 
income allocation on a hedged and unhedged basis. Most practitioners (and the 
mean-variance optimizer) would exclude the higher-volatility asset from the 
solution unless it has some desirable correlations. How would resampled 
efficiency deal with these assets? Repeatedly drawing from the original 
distribution will result in draws for the volatile asset with highly negative returns 
as well as highly positive returns. Quadratic programming will heavily invest in 
this asset in the latter case and short the asset in the former case. However, as 
shorting is not allowed for portfolios with long-only constraints, this will result 
in positive allocation for draws with high positive average return and zero 
allocations for draws with high negative average return. This is different from an 
unconstrained optimization, where large long positions would be offset on 
average by large negative positions. Consequently, an increase in volatility will 
yield an increase in the average allocation, and a worsening Sharpe ratio would 
be accompanied by an increase in weight. This is not a plausible result. It arises 
directly from the averaging rule in combination with a long-only constraint that 
results in assets being either in or out but never negative. This behavior is a kind 
of optionality in which the holder is hurt in terms of bias in the weights 
whenever a long-only constraint forces otherwise negative coefficients to be 
positive and less than one in value. 
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4.5.4 Statistical Foundation Issues 

Estimation Error Heritage. All resamplings are derived from the same 
initial estimates 0 0

ˆ ˆ,Ω µ  of the covariance matrix and mean returns. However, 
the true distribution is unknown. Hence, all resampled portfolios will suffer 
from the deviation of the estimates 0 0

ˆ ˆ,Ω µ  from their true values ,true trueΩ µ , in 
the same way. Averaging will not help very much in this case, as the averaged 
weights are the result of an input vector, which itself is very uncertain. Hence, it 
is fair to say that all resampled portfolios inherit the same fundamental 
estimation error. The utility of normal distribution parametric resampling relies 
on the assumption that 0 0

ˆ ˆ,Ω µ , is reasonably close to ,true trueΩ µ . If this is not 

the case, the estimation error in 0 0
ˆ ˆ,Ω µ  is passed on to 1 1

ˆˆ , ,µ Ω 2 2
ˆˆ , ,µ Ω ..., which 

one might call “estimation error heritage” (see Figure 4.14).8 
 

 
Figure 4.14 Resampling and Estimation Error Inheritance 

Parametric Bootstrap Limitations. We know that asset returns are not 
normally distributed and in some cases are quite non-normal. That makes use of 
a normal distribution parametric bootstrap highly suspect. One might well turn 
to a multivariate non-normal distribution such as a multivariate t distribution. 
This requires careful estimation of the degrees of freedom and robust estimation 
of the mean vector and covariance matrix. Another approach is to use a 
nonparametric bootstrap that makes no assumptions about the distribution of the 
returns, as discussed in Sections 4.6 and 6.9.4. 

,true trueµ Ω

,∞ ∞µ Ω

0 0,µ Ω

,i iµ Ω

1 1
ˆˆ ,µ Ω

2 2
ˆˆ ,µ Ω

ˆˆ ,
sim simn nµ Ω

1
1 1 1 1 1

ˆˆmax T Tλ−
w

w µ w Ω w

2
2 2 2 2 2

ˆˆmax T Tλ−
w

w µ w Ω w

ˆˆmax
sim sim sim sim sim

nsim

T T
n n n n nλ−

w
w µ w Ω w



4.6 Bootstrap Estimation of Error in Risk-Return Ratios 129 

Resampling Bayes. Sometimes it is argued that 0
ˆ ,Ω 0µ̂  does not need to be 

estimated from historical data but can also be the result of Bayesian calculations. 
However this is entirely against the spirit of Bayesian statistics. Once we 
calculate the predictive distribution, we have already put in all our subjectivity, 
and the Bayesian has to accept the result. Resampling from predictive 
distributions in order to construct better portfolios is pointless. 

4.5.5 Lack of Decision-Theoretic Foundation 

Resampled efficiency has no decision-theoretic foundation and as such it is 
questionable whether its use is fiduciary. What resampling actually achieves is 
some sort of return shrinkage in the presence of long-only constraints. Backing 
out implied returns from average resampled portfolios already revealed to us 
that low returns of relatively high-risk assets tend to be adjusted upward and 
vice versa. The advantage of this form of shrinkage over classical shrinkage 
methods is that portfolios constructed from it add up to 100%. This is not the 
case for the statistical shrinkage model, which in addition may still lead to 
concentrated corner portfolios. However, while we have perfect control over the 
latter, this cannot be said about the implied returns from resampling. 

4.6 Bootstrap Estimation of Error in Risk-
Return Ratios 

4.6.1 The Problem 

Reported risk-return ratios relate average returns to alternative measures of risk 
and hence involve the ratio of a random numerator and denominator (due to 
sampling error). As such, point estimates of these ratios are easy to calculate, but 
confidence intervals are much more difficult to obtain. However, we need 
confidence intervals for any kind of statistical inference (and hence for decision 
making). While asymptotic normal distributions have been obtained for the 
Sharpe ratio under idealized conditions,9 the idealized conditions do not always 
hold, and furthermore asymptotic distributions may be poor approximations in 
finite sample sizes. There is little guidance on the small-sample behavior of risk-
adjusted performance measures or on the number of data points needed to justify 
the use of asymptotic results. Moreover, these analytical solutions are either 
extremely difficult to work out or simply do not exist for modifications of the 
popular Sharpe ratio that focus more on downside risk. As an example, we look 
at the well-known Sortino ratio which relates average return to the standard 
deviation of downside returns. What we need is a general method that provides 
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us with standard errors and confidence intervals for arbitrary risk-return ratios, 
sample sizes, and distributions. 

4.6.2 Bootstrapping Theory as an Alternative 

Suppose we observe a series of excess returns 1 2, , , mr r r .10 Ex-post-risk-return 
ratios ς̂  are calculated as the ratio of the average return per unit of risk. For 
illustrative purposes, we focus on the Sharpe and Sortino ratios given below. 
Both ratios differ with respect to the risk measure used. The sample calculations 
for these two ratios are 

 

 
( )

( )( )

1
1

21
1 1

1
1

21
1 1

,

,
0

m
im i

m
im i
m

im i
m

i im i

r
Sharpe ratio

r r

r
Sortino ratio

I r r

=

− =

=

− =

=
−

=
<

∑
∑

∑
∑

 (4.8) 

 
where ( )0iI r <  denotes the indicator function. The Sharpe ratio11 employs the 
symmetric standard deviation of returns risk measure in the denominator, 
equally penalizing downside and upside deviations from the sample mean 
return. The denominator asymmetric risk measure in the Sortino ratio12 includes 
only negative returns in its calculation of squared returns. High ratios are 
preferable, everything else being equal, as they indicate a better return per unit 
of risk taken. 

We include the Sortino ratio for three reasons. First, it better captures the risk 
if returns are non-normally distributed, as is the case for hedge fund returns for 
example, and is particularly relevant when the distribution has a negative skew. 
Second, it is well-known that the Sortino ratio suffers more from estimation 
error, as it uses roughly half as many data points in the denominator risk 
measure relative to the Sharpe ratio. Third, no large sample approximations 
exist. If the small sample distribution of ς̂  is far from normal, classical methods 
are biased and unreliable. 

In any case, the analytic formulas for the large sample distributions of the 
ratios above are extremely hard to come by. In order to overcome this problem 
we rely on nonparametric bootstrapping techniques. Nonparametric bootstrap 
resampling treats the empirical distribution function of the current sample as the 
nonparametric approximation of the true distribution—in the absence of further 
information, it is the best we have. It then repeatedly draws from the empirical 
distribution and recalculates the statistic of interest many times to arrive at the 
bootstrap sampling distribution. The bootstrap sampling distribution can then be 
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used to construct standard errors, confidence intervals, and hypothesis tests; see, 
for example, Efron and Tibshirani (1998) and Davison and Hinkley (1999). 

As an example, suppose that we are given 160 monthly returns on the HFR 
fund-of-funds index ranging from January 1990 to April 2003. We use the JPM 
one month cash rate from DataStream to calculate a risk-free rate. The 
nonparametric bootstrapping procedure is as follows. 

 
1. Randomly draw 160 (original sample size) returns with replacement 

from the original sample. 
2. Calculate a new risk-return ratio *ˆbς  based on the resampled returns. 
3. Repeat this procedure for 1,...,b B=  times, arriving at 

* * * *
1 1ˆ ˆ ˆ ˆ, , , ,b Bς ς ς ς  resampled ratios. 

 
The bootstrap sampling distribution of *ˆbς  can now be used to judge whether 

the sampling distribution of ς̂  for small samples is normal and hence whether 
traditional sampling theory approximations might not be so bad after all. Setting 

10,000B =  and using Code 4.4 along with the S-PLUS functions qqplot and 
histogram, we get the results in Figure 4.15 and Figure 4.16 . In Figure 4.15, 
we see that for the Sharpe ratio all resampled realizations plot very close to a 
straight line, and so we conclude that the Sharpe ratio is quite normally 
distributed. The same cannot be said about the Sortino ratio, for which the 
normal Q-Q plot has substantial deviations from linearity at both ends, being 
heavy-tailed to the right and short-tailed to the left. As we suspected, the 
histograms in Figure 4.16 show that the Sortino ratio has a much larger 
dispersion in resampled outcomes than the Sharpe ratio and hence a much larger 
estimation error. While a small-sample normal approximation looks reasonable 
for the traditional Sharpe ratio, such an approximation is likely to be largely 
misleading for the Sortino ratio. 

 
B <- 10000 
sharpe.ratio <- function(x){ 
 mean(x,na.rm=T)/stdev(x,na.rm=T) 
} 
sortino.ratio <- function(x){  
 mean(x,na.rm=T)/sqrt(mean(pmin(x,0)^2,na.rm=T)) 
} 
simple.bs <- bootstrap(x,sortino.ratio,B) 

Code 4.4 Simple Bootstrap 

We now use the 2.5% and 97.5% percentiles of the bootstrap distribution to 
obtain a symmetric 95% confidence interval ( )* *

2.5% 97.5%ˆ ˆ,CI ς ς . The Sortino 
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ratio confidence interval is (.11, .92), and the Sharpe ratio confidence interval is 
CI(.08, .41). 
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Figure 4.15 Q-Q Plots for Bootstrapped Sampling Distribution 
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Figure 4.16 Bootstrapped Sampling Distribution 



4.6 Bootstrap Estimation of Error in Risk-Return Ratios 133 

4.6.3 Increasing the Confidence Interval Coverage 
Probability Accuracy with the Double 
Bootstrap 

So far we have relied on the 95% interval from a simple bootstrap procedure. 
However, the bootstrap is an approximate method, and it suffers to a greater or 
lesser extent from finite sample bias. Consequently, our 95% interval covers the 
true ratio with a probability that is at least somewhat different than .95. One way 
to increase the accuracy of the coverage probability of our confidence interval 
for the ratios is to use the double bootstrap, which can be thought of as 
“bootstrapping the bootstrap.” It is known that under reasonable conditions the 
double bootstrap reduces the bias in the coverage probability.13 The double 
bootstrap (Code 4.5) involves the following calculation.14  

 
1. Perform the simple bootstrap as described above. Save all 1,...,b B=  

resampled data sets as well as the resampled ratios *ˆbς . This is called 
first stage-resampling.  

2. For each of the B  resampled data sets, start a second round of 
1, ,z Z=  resamples, leading to a total of B Z⋅  resamples denoted 

as **ˆbzς . For each *ˆbς , there exists a new set of Z  resampled 

ratios ** **
1ˆ ˆ, ,b bZς ς . These are the second-stage resamples. 

3. For each *ˆ ,bς  calculate the percentage of second-stage resamples 
** **
1ˆ ˆ, ,b bZς ς  that fall below the original sample estimate of the 

risk-return ratio ς̂ , namely, calculate ( )**1
1

ˆ ˆ
Z

b bzZ z
u I ς ς

=
= <∑ . We 

choose 1000B =  and 200Z = . 
 
double.bs <- function(data, statistic, B, Z) 
{ 
 call(statistic) 
 outer.sample <- matrix( 
  sample(data, size=length(data)*B, replace=T), 
  nrow=B, ncol=length(data)) 
 outer.bs <- apply(outer.sample, 1, statistic) 
 inner.bs <- matrix(0, nrow=B, ncol=Z) 
 prob <- matrix(0, ncol=1, nrow=B) 
 estimate <- statistic(data) 
 for(i in 1:B) { 
  inner.bs[i,] <- bootstrap(outer.sample[i,], 
   statistic, Z, trace=F)$replicates 
  cat("run #", i) 
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 } 
 for(i in 1:B) { 
  prob[i] <- sum(inner.bs[i,]<estimate)/Z 
 } 
 prob 
} 

Code 4.5 Double-Bootstrapping Code 

Under ideal conditions, bu  follows a uniform distribution. Figure 4.17 shows 
that this assumption is clearly violated for the double-bootstrapped Sortino ratios 

** **
1ˆ ˆ, ,b bZς ς .15 Finally, we calculate the 2.5% and 97.5% percentiles of bu  and 

use these values to adjust the first-stage resample confidence band to 
( )2.5% 97.5%

* *ˆ ˆ,u uCI ς ς . Our resulting double-bootstrap confidence interval 

( )7.9% 96.%
* *ˆ ˆ0.18, 0.96CI ς ς= =  is moved to the right, with a higher lower bound 

of 0.18 instead of 0.11 (representing the 8% quantile rather than the 2.5% 
quantile), and a higher upper bound of .96 instead of .92. 

Renewed interest in the significance of risk-return ratios has been focused on 
closed-form solutions for the well-known Sharpe ratio, and there is increasing 
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interest in downside risk measures such as that in the Sortino ratio. This section 
provided a nonparametric methodology to evaluate the properties of the Sharpe 
and Sortino ratios’ sampling distributions, as well as a method to compute 
confidence intervals without having to rely on asymptotic approximations. We 
have seen that while the distribution of the Sharpe ratio is well-approximated by 
a normal distribution, the Sortino ratio has a quite non-normal distribution, and 
the double-bootstrap methodology leads to a significantly refined confidence 
interval. 
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Exercises 

1. This exercise points out an important linear regression model formulation of 
the Markowitz portfolio optimization without a long-only constraint, a 
context in which one can obtain standard errors of portfolio weights without 
resampling. Suppose we have n  time series of excess returns (total return 
minus cash rate) with m  observations each. We can combine these excess 
returns in a matrix X (each column contains one return series). Regressing 
these excess returns against a constant 1 1 1mx mxn nx mx= +1 X w u  yields 

( ) 1T T−
=w X X X 1 . These weights correspond to a portfolio that can be 

interpreted as the closest to a portfolio with zero risk (a vector of ones 
shows no volatility) and unit return. This would be an arbitrage opportunity. 
Rescaling the optimal weight vector (so that all weights sum to one) will 
yield ( ) ( )* 1 1

0 0 0 0
T

Sharpe
− −=w Ω µ I Ω µ , the maximum Sharpe ratio 

portfolio. This framework can also be used to test restrictions on individual 
regression coefficients (estimated portfolio weights), as well as restrictions 
on groups of assets, and test whether they are significantly different from 
zero.16 
(a) Generate a hypothetical data set and use the linear regression command 

lm() in S-PLUS to calculate optimal portfolios.  
(b) Test for the significance of individual weights using alternative 

correlations and sample length. 
(c) Repeat (a), but add the constraints to the regression. Implement 

individual constraints, group constraints, and the full investment 
constraint. 

 
2. Try to replicate Figures 4.4 to 4.9. 
 
3. Make an equal-weighted portfolio of six to ten stocks of your choice from 

the CRSP returns data sets provided with this book, and apply the bootstrap 
and double bootstrap analysis of Section 4.6 to the Sharpe ratio and Sortino 
ratio for these data. 

 
4. Repeat Exercise 3 for a new ratio obtained by modifying the Sortino ratio as 

follows: replace the denominator with the average of the losses below zero. 
How does the behavior of this ratio compare with that of the Sortino ratio? 

 
5. Take the data from Michaud (1998, p.17, 19, given below in Table 4.1) and 

generate a graph similar to the graph in Figure 4.18. 
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6. Redo the calculation in Section 4.6 with simulated data. What do you 
observe? 

 
7. Select eight mid-cap stocks from midcap.ts, and compute the following 

resampled efficient frontiers: (a) resampling with the basic Michaud 
efficient frontier resampling described in Exercise 5; (b) resampling with a 
proper parametric bootstrap (i.e., evaluate each resampled portfolio mean 
and standard deviation by using the sample mean and covariance that 
generated the portfolio weights for that resampling, not the original sample 
mean and covariance as proposed by Jorion (1992) and Michaud (1998)); 
(c) the nonparametric bootstrap as described in Section 6.9.4, with 
simplified versions of the code provided in that section. What do you 
conclude about your results in (a) versus (b)? What about (b) versus (c)? 

 

Table 4.1 Data from Michaud (1998) for Exercise 5 
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Figure 4.18 Efficient Frontier and Resampled Portfolio 
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Endnotes 

                                                           
1 Robert Michaud patented the use of the average resampled portfolio. Readers are 
referred to U. S. patent # 6003018 or to Michaud (1998). However, the basic idea of 
portfolio resampling was introduced into the finance literature by Jorion (1992). 
2 See Efron and Tibshirani (1998) for a further discussion on this question. 
3 The assumption of a known fixed risk aversion coefficient is not always realistic, and if 

instead we use the weight vector 
1

1
ˆ
ˆ
i

i
i

−

−=
′
Ω µw

1 Ω µ
 with estimated risk aversion for the 

maximum Sharpe ratio for the i-th resample, we do not get this result. 
4 The central motivation of bootstrap resampling as introduced by statisticians is to 
estimate the distribution, or aspects of the distribution of an estimate such as the mean, 
standard deviation, or confidence intervals, of complicated statistics for which the 
standard sampling distribution theory does not apply. 
5 See Chapter 7 on Bayesian methods. 
6 The idea of this test statistic is that it is obviously not enough to look at weight 
differences only. Small weight differences for highly correlated assets might be of higher 
significance than large weight differences for negatively correlated assets. 
7 The Michaud approach referenced in Endnote 1 uses the rank-based approach. 
8 In spite of this apparent limitation, bootstrap resampling methods are able to do a quite 
decent job of estimating the distribution (or a summary such as standard error) of a 
statistic for which one does not have a decent sampling-distribution approximation; see, 
for example, Efron and Tibshirani (1998). 
9 See Lo (2002) and Memmel (2003).  
10 We assume here that returns are independently drawn from a single distribution. This is 
unlikely to be true for hedge fund data, as they exhibit serial correlation. One way to deal 
with this would be to fit an autoregressive model to the data and use this parametric 
specification of the return-generating process for resampling.  
11 See Sharpe (1994) for a review.  
12 See Sortino and Price (1994). 
13 See Section 3.9 and related material in Davison and Hinkley (1999) for details. 
14 See Nankervis (2002). 
15 Formal tests such as the Kolmogorov-Smirnov test as well as the 2χ  adjustment test, 
provide p-values close to 0%. Hence the null hypothesis that Figure 4.17 comes from a 
uniform distribution can be safely rejected. 
16  The regression framework puts a central problem of portfolio construction into a 
different, well-known perspective. Highly correlated asset returns mean highly correlated 
regressors with the obvious consequences arising from multicollinearity: high standard 
deviations on portfolio weights (regression coefficients) and identification problems 
(difficulty of distinguishing between two similar assets). Simply downtesting and 
excluding insignificant assets will result in an outcome that is highly dependent on the 
order of exclusion, with no guidance where to start. This is a familiar problem for both 
the asset allocator and the econometrician. 
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5 Scenario Optimization: 
Addressing Non-normality 

 
5.1 Scenario Optimization 

5.1.1 Foundations of Scenario Optimization 

In the case of portfolio optimization, the uncertainty in the optimization process 
stems from the uncertainty of returns. One way to solve this problem (in the 
sense of addressing uncertainty, not estimation error) is to solve a very large-
scale deterministic program instead, where a large number of scenarios try to 
capture randomness. For example, we can simulate 100,000 scenarios for four 
assets from the predictive distribution of portfolio returns. After the draws have 
been made, the uncertainty is removed and we are left with solving a 
deterministic problem. This procedure is called scenario optimization. We will 
see later in this chapter that for many objectives scenario optimization can be 
solved as a linear program. Key to successful scenario optimization is the 
quality of the sampled scenarios. In particular, scenarios must be 

 
• Representative – Scenarios must offer a realistic description of the 

relevant problem and not induce estimation error. 
• Parsimonious – Scenarios should use a relatively small number of 

samples to save computing time. 
• Arbitrage-free – Scenarios should not allow the optimization 

algorithm to find highly attractive solutions that make no economic 
sense. 

 
Scenario optimization that is based on only a few unrepresentative data might 
over-adjust and lead to an overly optimistic assessment of what could be 
achieved, while scenario optimization with a very large set of scenarios and 
assets might become computationally infeasible.  

It is well-known that under normally distributed returns there is no need for 
scenario optimization, as the efficient set of solutions under arbitrary objective 
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functions would still coincide with the efficient set in a traditional mean-
variance optimization. Otherwise complicated calculations become quite simple. 
As a first step we just find the mean-variance solutions. We then calculate the 
risk measure on the efficient set of portfolio solutions in a second step. For a 
given return expectation, the portfolio with the smallest value-at-risk (VaR) or 
lower partial moment will still be the portfolio with the minimum variance. 

In order to deviate from the normality assumption, we have to ask ourselves a 
series of questions. 

 
• Are returns non-normal? 
• Are deviations from normality statistically significant? 
• Are deviations stable (i.e., can we forecast them over time)? 
• Will the non-normality vanish over time? 

 
There is no general dogmatic answer to the questions above. At the asset class 
level, this is an empirical problem. However, modelers should also be aware of 
what will be lost if we discard the normality assumption. We lose portfolio 
aggregation as well as time aggregation (risk measures often do not have closed 
forms under non-elliptical distributions). Additionally, we need a new 
equilibrium model where skewness and kurtosis are also priced. On the 
instrument level, it is clear that nonlinear derivatives (options, collateralized 
debt obligations (CDOs), etc.) require the explicit modeling of non-normalities 
that have been deliberately engineered. We discuss a relevant problem within 
the set of exercises. 

Let us now start with a visual inspection of two return series to illustrate the 
problem of non-normality. Figure 5.1 shows histogram (empirical frequency 
distribution), empirical cumulative frequency distribution (versus assumed 
normal distribution), and Q-Q plots (plots of empirical quantile versus 
hypothetical quantile of assumed distribution) for monthly returns on emerging 
market bonds (JPM.EMBI) and U. S. dollar returns versus those for the Japanese 
yen (USD.YEN).1 

 
graphsheet() 
par(mfrow=c(1,3)) 
hist(Dollar.Yen) 
Normal <- rnorm(10000, mean(Dollar.Yen), 
 sqrt(var(Dollar.Yen))) 
cdf.compare(Dollar.Yen, Normal, cex=0.7) 
ks.gof(Dollar.Yen, Normal) 
qqnorm(Dollar.Yen) 
qqline(Dollar.Yen) 

 
It is straightforward to see that returns on emerging market bonds show negative 
skewness (too many large negative returns), while currency returns are 
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approximately normal. We can also use the Kolmogorov-Smirnov test 
(calculating how distant both cumulative distributions are) for a more formal 
assessment. 
 
ks.gof(Dollar.Yen, Normal) 
 
 Two-Sample Kolmogorov-Smirnov Test 
 
data:  Dollar.Yen and Normal  
 
ks = 0.0748, p-value = 0.2116  
alternative hypothesis:  
 cdf of Dollar.Yen does not equal the cdf of  
 Normal for at least one sample point.  
 
The high p-value (0.21) confirms that the empirical distribution is not 

significantly different from the normal distribution. We can also use the 
Kolmogorov-Smirnov test to check for multivariate normality. Note that 
individual marginal distributions could all be normally distributed, while the 
corresponding multivariate distribution still might not be normal. Under 
multivariate normality, we know that 1T

m m
−d Ω d  is distributed as ( )2 nχ , where 

md  reflects the distance vector at time m  (period returns minus mean return). 

All we need is to compare the cumulative distribution of 1T
m m

−d Ω d  with 

( )2 nχ . This is a straightforward test for multivariate normality. 
Even if period-by-period returns are non-normally distributed, it is most 

likely that multiperiod returns are (log) normally distributed: the Central Limit 
Theorem states that the product of independent and identical distributed 
variables (with finite variance) will approach log-normality after approximately 
30 random drawings. We can check this using the built-in bootstrap() 
function to generate 36 month returns from the series of one month returns. 
 
JPM.EMBI.36month <- bootstrap(JPM.EMBI, 
 prod(1+sample(JPM.EMBI, 36)), 10000)$replicates 
hist(JPM.EMBI.36month) 
 
Figure 5.2 agrees with our intuition. It looks very much like a log-normal 

distribution, confirming our previous considerations that non-normality will tend 
to vanish as we move away from the very short time horizon. 
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Figure 5.1 Visual Inspection of Asset Returns in S-PLUS 
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5.1.2 Implied Returns and Arbitrary Preferences 
(Utilities) and Distributions 

One problem with non-normal returns is that we lose the ability to back out 
implied returns using reversed optimization as seen in Chapter 1. What can we 
do to back out the implied returns for investors with different preferences under 
arbitrary return distributions?2 Suppose our investor maximizes expected utility 
 

 ( ) ( )1 1
1 ,

m n
s i iss i

E U U w rπ
= =

= +∑ ∑  (5.1) 

 
where we use the same notation as throughout the previous chapters. Expected 
utility is calculated as the average utility over m  simulated scenarios. Each 
scenario is drawn with probability 1

s mπ = . In our example, utility itself is 

defined as 
 

 ( )
( )

( )

11
,     01 1

ln 1 ,      1,

r
U r

r

γ

γ
γ

γ

−⎧ +
≥⎪+ = −⎨
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where γ  denotes the risk aversion coefficient. Note that any series of historic 
returns can be written as  

 
 ,is i i isr c zµ σ= + +  (5.3) 

 
where we can isolate the degree of non-normality captured in the empirical 
distribution of isz  from our forward-looking assumptions on risk premiums ( )µ  
as well as volatilities ( )σ . Applying (5.3) to the definition of benchmark returns 

1
,

n
bs i isi

r w r
=

= ∑  we get  

 

 
1

.
n

bs b i i isi
r c w zµ σ

=
= + + ∑  (5.4) 

 
We know from standard valuation theory that3  
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( )
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π π
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=

′
=

′∑
 (5.5) 

 
where *

sπ  denotes the risk-neutral probabilities. The risk-neutral probability will 
be high in states where marginal utility is high (wealth is low). Hence, large 
weight is given to those states where wealth levels are depressed. Under the 
assumed utility function (5.3), we get  
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1
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1
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−
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 (5.6) 

 
Risk-neutral probabilities equalize all expected returns, as they correct for risk 
via (5.5). Assuming our investor finds the current (benchmark) portfolio 
optimal, we hence know that he prices all assets according to  

 

 * *
1 1

.
m m

s is s bss s
r rπ π

= =
=∑ ∑  (5.7) 

 
Inserting (5.3) and (5.4) into (5.7), we arrive at the implied return for the i-th 
asset, 
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1 1

.
m n
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Changing the risk aversion parameter will change the implied returns. The very 
risk-averse investor will require large compensations for assets that show 
considerable “tail risk.” 

5.1.3 Generation of Non-normally Distributed 
Scenarios 

Suppose we want to generate a set of returns for future scenarios. Also assume 
we want to dismiss normality and generalize our simulation methodology in two 
main aspects. First, we aim to allow marginal distributions that could take any 
arbitrary form (i.e., they could follow a blend of a normal distribution plus an 
extreme value distribution for large losses, a mixture of normals, etc.). Second, 
we want to relax the modeling of dependence beyond the concept of correlation, 
as it is well-known that empirical distributions show tail dependence that is not 
explained by correlation alone. How can we glue arbitrary return distributions 
together and still maintain their correlation structure? How can we model tail 
dependence and still keep the same marginal distributions?  

The answer to these questions is the concept of copula functions. Recall that 
a typical Monte Carlo simulation of random returns requires us to draw a 
uniform random number (0,1)su uniform∼  and then invert the cumulative 

distribution function to arrive at a simulated return observation 1
, ( )

ii s srr F u−= . 
What do we do in a multivariate context? An n -dimensional copula is a 
multivariate cumulative distribution function with uniformly distributed 
marginals. Alternatively, we can think of it as a random vector of uniformly 
distributed variables that share a specified dependence structure, 

 
 ( ) ( )11 1, , , , .nn nC u u prob u u u u= ≤ ≤… …  (5.9) 

 
As soon as we know the realization of the uniform random numbers 
( )1, , ,nu u…  we can calculate the marginals from ( ) ( )

1

1 1
1 , ,

nr r nF u F u− − . In 

general, we can say that if ( )1, , nF r r  denotes a multivariate distribution 
function with continuous marginals, it will have a unique copula representation, 

 
 ( ) ( )11, , , , .

nn r rF r r C F F=  (5.10) 
 

We can hence separate the univariate margins and the multivariate dependence 
structure.4 This proves to be very convenient in scenario generation. In what 
follows, we will not elaborate on how best to estimate the copula function (and 
the marginals) in (5.10). We rather work on the assumption that the marginals 
and copula are given. 
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In order to appreciate how scenario-based solutions (which will be presented 
later in this chapter) differ from a simple mean-variance approach, we use the 
copula approach to glue four mixtures of normals together, maintaining a 
specified correlation structure and modeling (symmetric) tail dependence 
according to a t copula. To simulate a t copula with υ  degrees of freedom, we 
have to proceed according to the following steps. 

 
1. Find the Cholesky decomposition CholeskyC  of the correlation matrix 

C (dimension: ).n n×  
2. Draw a vector of n  standard normals u  and calculate .CholeskyC u  

Alternatively, you might want to combine both steps and draw directly 
from a multivariate normal.  

3. Draw from 2~s υχ  and multiply the result of the second step by 

/ sυ , i.e., calculate v
Cholesky s

=x C u . 

4. Each element of x  1( , , )nx x  is inserted into the cumulative 
distribution function to arrive at uniformly distributed variables 

( )~i v iu t x . 
5. Repeat steps 2 to 4 many ( )m  times.  

 
What looks like a complicated procedure can be performed in S-PLUS using a 
single line of code: 
 
Corr <- matrix(c(1.0,0.8,0.2,0.2, 
        0.8,1.0,0.6,0.2, 
        0.2,0.6,1.0,0.2, 
        0.2,0.2,0.2,1.0), ncol=4, nrow=4) 
m <- 100000 
v <- 2 
copula <- pt(rmvnorm(m, mean=rep(0,ncol(Corr)), 
 cov=Corr)*sqrt(v)/sqrt(rchisq(m,v)),v) 
 

Figure 5.3 and Figure 5.4 can be replicated with the following code: 
 
x <- matrix(qnorm(copula), ncol=4) 
graphsheet() 
pairs(x, label=c("asset 1", "asset 2", "asset 3", 
 "asset 4")) 
xx <- rmvnorm(m, mean=rep(0,ncol(Corr)), cov=Corr) 
graphsheet() 
pairs(xx,label=c("asset 1", "asset 2", "asset 3", 
 "asset 4")) 
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Figure 5.5 is the result of the commands 
 
graphsheet() 
plot(x[,1],x[,2], xlab="asset 1", ylab="asset 2", 
 pch=1) 
points(xx[,1],xx[,2], pch=3) 

 
Marginal distributions for each of the four assets are assumed to be drawn from 
a mixture of normals and are plotted in Figure 5.6. 

 
asset.1 <- exp(c(rnorm(500,  0.05, 0.05), 
 rnorm(9500, 0.05, 0.05)))-1 
asset.2 <- exp(c(rnorm(500, -0.3, 0.01), 
 rnorm(9500, 0.08, 0.05)))-1 
asset.3 <- exp(c(rnorm(200, +0.4, 0.01), 
 rnorm(9800, 0.1, 0.17)))-1 
asset.4 <- exp(c(rnorm(500, -0.6, 0.1), 
 rnorm(9500, 0.12, 0.25)))-1 
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Figure 5.3 t copula with 2 Degrees of Freedom and Standard Normal 
Margins 
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Figure 5.4 Multivariate Standard Normal 
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Figure 5.5 Scatterplot for Normal Distribution versus t copula 
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graphsheet() 
par(mfrow=c(2,2)) 
hist(asset.1) 
hist(asset.2) 
hist(asset.3) 
hist(asset.4) 

 
Marginal distributions are glued together with the use of a t copula and stored in 
the scenario matrix S . The necessary operations are  
 
asset.1 <- matrix(quantile(asset.1, copula[,1])) 
asset.2 <- matrix(quantile(asset.2, copula[,2])) 
asset.3 <- matrix(quantile(asset.3, copula[,3])) 
asset.4 <- matrix(quantile(asset.4, copula[,4])) 
S <- cbind(asset.1, asset.2, asset.3, asset.4) 

 
We can now code a scenario-based Markowitz optimization (Code 5.1), where 
portfolio variance is calculated using all scenarios for each weight allocation 
rather than by supplying a single covariance matrix. 

 
MV.model <- function(S, mu.target) 
{ 
 m <- nrow(S) 
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Figure 5.6 Marginal Distributions in Four-Asset Test Case 
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 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 asset <- Set() 
 period <- Set() 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 w <- Variable(index=i) 
 r <- Variable(index=s) 
 r[s] == Sum((S[s,i]-mu.bar[i])*w[i],i) 
 risk <- Objective(type="minimize") 
 risk ~ Sum(r[s]^2,s)/(m-1) 
 Sum(mu.bar[i]*w[i],i) >= mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 
 
MV.portfolio <- function(S, mu.target) 
{ 
 call(MV.model) 
 MV.system <- System(MV.model, S, mu.target) 
 solution <- solve(MV.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
  digit=5)*100, ncol=1) 
 risk <- solution$objective 
 return(weight,risk) 
} 
 
MV.frontier <- function(S, n.pf) 
{ 
 call(MV.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 m <- nrow(S) 
 mu.min <- min(apply(S,2,mean)) 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 x <- MV.portfolio(S, mu.target=mu.min) 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
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 for(i in 2:n.pf){ 
  x <- MV.portfolio(S, mu.target=mu.range[i]) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
 } 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - Variance Frontier") 
 barplot(weight) 
 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 

Code 5.1 Mean-Variance Scenario Optimization 

Typing x <- MV.frontier(S, n.pf=10) will trace out an efficient 
frontier with ten portfolios. 
 
> x$optimal.weights 
numeric matrix: 4 rows, 10 columns.  
       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
[1,] 97.058 88.816 71.458 52.225 32.993 13.760 
[2,]  0.000  0.000  8.032 18.572 29.112 39.652 
[3,]  2.942 10.403 17.268 23.561 29.854 36.148 
[4,]  0.000  0.781  3.243  5.642  8.041 10.440 
 
       [,7]   [,8]   [,9] [,10]  
[1,]  0.000  0.000  0.000     0 
[2,] 42.869 27.675 12.481     0 
[3,] 44.131 56.363 68.596   100 
[4,] 13.000 15.962 18.923     0 
 

Figure 5.7 shows the solutions for ten return points along the efficient frontier. 
All portfolios look reasonably diversified. We can use these solutions as a 
reference point for the following scenario optimizations. 

5.2 Mean Absolute Deviation  

The first scenario-based alternative to Markowitz optimization is the Mean 
Absolute Deviation model (MAD).5 It involves the minimization of the 
probability-weighted (where sp  denotes the probability of scenario )s  sum of 
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absolute deviations subject to the usual constraints. Risk is measured in the 
context of MAD as an absolute deviation from the mean rather than the squared 
deviation as in the case of variance. 
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 (5.11) 

 
While the square function 2( )⋅ penalizes larger deviations at an increasing rate, 
this is not the case with MAD. In fact, MAD implies that an additional unit of 
underperformance relative to the mean creates the same disutility no matter how 
big the loss already is. However, one advantage of MAD is that we can specify 
the costs of deviations above and below the mean differently, putting greater 
weight (costs) on underperformance rather than outperformance. If we work on 
simulated data ( 1

s mp = ) and denote the absolute deviation of the scenario 
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Figure 5.7 Mean-Variance Solutions 
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portfolio return from the average portfolio return by sad , we can transform 
(5.11) into a linear program.  
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The MAD-based portfolio selection shown here offers a range of appealing 
properties versus variance-based models: 

 
1. There is no need to calculate a covariance matrix because we use the 

scenario matrix, which can be constructed from time series of asset 
returns. However, this is only true if we rely on historical data for 
scenario generation; simulated scenarios from a parametric distribution 
have to be drawn using a covariance matrix. 

2. Solving a linear program is much easier than mean–variance 
optimization. The number of constraints (2 2m +  in the case of MAD) 
depends on the number of scenarios, not the number of assets. 

3. The upper bound on the number of assets in the optimal solution is 
related to the number of scenarios (2 2m + in the case of MAD). 

 
We leave the solution of (5.12) in NUOPT for S-PLUS as an exercise and use 
SIMPLE instead. Let us add one more layer of complexity by attaching different 

costs to upside and downside deviations, ( ),1
0

n
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The corresponding code is given in Code 5.2. 

 
MAD.model <- function(S, cost.up, cost.dn, 

mu.target) 
{ 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 asset <- Set() 
 period <- Set() 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 cost.up <- Parameter(cost.up, changeable=T) 
 cost.dn <- Parameter(cost.dn, changeable=T) 
 w <- Variable(index=i) 
 up <- Variable(index=s) 
 dn <- Variable(index=s) 
 up[s] >= 0 
 dn[s] >= 0 
 up[s]-dn[s] == Sum((S[s,i]-mu.bar[i])*w[i],i) 
 risk <- Objective(type="minimize") 
 risk ~ Sum((cost.up*up[s]+cost.dn*dn[s]),s)/(m-1) 
 Sum(mu.bar[i]*w[i],i) >= mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 

 
MAD.portfolio <- function(S, cost.up, cost.dn, 
 mu.target) 
{ 
 call(MAD.model) 
 MAD.system <- System(MAD.model, S, cost.up,  
  cost.dn, mu.target) 
 solution <- solve(MAD.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
  digit=5)*100, ncol=1) 
 risk <- solution$objective 
 return(weight,risk) 
} 
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MAD.frontier <- function(S, cost.up, cost.dn, n.pf) 
{ 
 call(MAD.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 m <- nrow(S) 
 mu.min <- min(apply(S,2,mean)) 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 x <- MAD.portfolio(S, cost.up, cost.dn, 
  mu.target=mu.min) 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
 for(i in 2:n.pf){ 
  x <- MAD.portfolio(S, cost.up, cost.dn, 
   mu.target=mu.range[i]) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
 } 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - Mean Absolute Deviation Frontier") 
 barplot(weight) 

 
 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 

Code 5.2 Scenario Optimization Using Mean Absolute Deviation 

Hence, typing MAD.frontier(S,cost.up=1,cost.dn=1,n.pf=10) 
will trace out an efficient frontier with ten portfolios, as shown in Figure 5.8. 
 
> x$optimal.weights 
       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
[1,] 94.733 88.889 62.241 32.043  0.012  0.000 
[2,]  0.005  0.000 20.447 45.543 73.145 57.860 
[3,]  5.261 11.109 15.002 17.091 18.986 30.461 
[4,]  0.000  0.002  2.311  5.323  7.857 11.679 
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       [,7]   [,8]   [,9]  [,10] 
[1,]  0.009  0.000   0.000     0 
[2,] 42.540 27.174  11.857     0 
[3,] 41.901 52.826  64.188   100 
[4,] 15.549 20.000  23.955     0 

 
Portfolios constructed with a symmetric understanding of Mean Absolute 
Deviation (up and down costs of deviations equal one) are close to mean-
variance solutions. This is not surprising, as variance is also a symmetric 
measure of investment risk. 

5.3 Semi-variance and Generalized 
Semi-variance Optimization  

5.3.1 Properties of Semi-variance 

Mean-variance-based portfolio construction has always suffered from the 
implicit assumption of normality that dictated that risk be measured as the 
variance of returns. One of the earliest alternative risk measures is 
semi-variance. While variance uses all return realizations, semi-variance 
utilizes only those returns that either fall below the average return (lower 
semi-variance, sv− ) or above the average return (upper semi-variance, sv+ ): 
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We can combine lower and upper semi-variances to arrive at variance again. To 
see this, note that if 1,sδ = it must follow that 1 0sδ− =  and vice versa. 
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In the case of symmetry (for every return deviation below the mean, there is an 
equal return deviation above the mean), we get sv sv− += and 

 
 22 .sv σ=  (5.16) 
 
Equation (5.16) often serves as a simple check for symmetry. If the variance is 
roughly twice the semi-variance, the distribution is close to symmetric. 
(Symmetry does not imply normality, as a distribution might be symmetric but 
still exhibit fat tails.) For many assets, we can regress the difference between the 
variance and twice the semi-variance against a constant to see whether 
deviations are statistically different from zero: 

 
 ( )22 .n nsv σ α ε− = +  (5.17) 

 
Alternatively, we can test whether skewness is persistent across time. Suppose 
we have observations of returns for a number of time series. We can split the 
observations into two subperiods and test for persistence in deviations from 
symmetry, 

 
 ( ) ( )2 2

11
2 2 .tt t

sv a b sv eσ σ ++
− = + − +  (5.18) 
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Figure 5.8 Mean Absolute Deviation Frontier 
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Persistence is indicated by a significant b  and a high 2.R  

5.3.2 A General Semi-variance Model 

Traditionally, semi-variance optimization has centered around lower 
semi-variance. However, there is no reason not to merge upper and lower 
semi-variances into a combined risk measure. This allows us every flexibility in 
expressing a mixture of risk-averse and risk-seeking behaviors. 

The proposed measure uses a weighted linear combination of upper and 
lower semi-variances and is hence called the weighted semi-variance model6 
(see Figure 5.9): 

 
 ( )1 .weightedsv sv svω ω− += + −  (5.19) 

 
Note that the range of ω  is restricted to lie between zero and one. We can plot 
the new penalty function (5.19) for various weights. 
 
deviation.from.mean.return <- seq(-60, 60, 1) 
l.sv <- ifelse(deviation.from.mean.return <= 0, 
 deviation.from.mean.return^2, 0) 
u.sv <- ifelse(deviation.from.mean.return > 0, 
 deviation.from.mean.return^2, 0) 
V <- deviation.from.mean.return^2 
DB <- 2*ifelse(deviation.from.mean.return <= 0, 
 0.75*deviation.from.mean.return^2, 
 0.25*deviation.from.mean.return^2) 
UB <- 2*ifelse(deviation.from.mean.return <= 0, 
 0.25*deviation.from.mean.return^2, 
 0.75*deviation.from.mean.return^2) 
graphsheet() 
par(mfrow=c(2,2)) 
plot(deviation.from.mean.return, l.sv, type="l", 
 ylab="penalty") 
title("Lower semi-variance") 

 
plot(deviation.from.mean.return, DB, type="l", 
 ylab="penalty") 
title("75% weight on lower semi-variance") 
plot(deviation.from.mean.return, V, type="l", 
 ylab="penalty") 
title("Variance") 
plot(deviation.from.mean.return, UB, type="l", 
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 ylab="penalty") 
title("25% weight on lower semi-variance") 
 

The weighted semi-variance portfolio optimization model becomes 
 

minimize 
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Figure 5.9 Weighted Semi-variance Measure 
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where ,pf sr  denotes the portfolio return in scenario .s  Code 5.3 illustrates how 
the model given in (5.20) can be translated into NUOPT for S-PLUS. 
 
WSV.model <- function(S, mu.target, 

downside.weight) 
{ 
 if(downside.weight < 0 | downside.weight > 1) 
  stop("downside weight must range between 
   0 and 1") 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 asset <- Set() 
 period <- Set() 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(as.numeric(mu.target), 
  changeable=T) 
 dw <- Parameter(downside.weight, changeable=T) 
 w <- Variable(index=i) 
 up <- Variable(index=s) 
 dn <- Variable(index=s) 
 up[s] >= 0 
 dn[s] >= 0 
 up[s]-dn[s] == Sum((S[s,i]-mu.bar[i])*w[i],i) 
 risk <- Objective(type="minimize") 
 risk ~ Sum(dw*dn[s]^2+(1-dw)*up[s]^2,s)/(m-1) 
 Sum(mu.bar[i]*w[i],i) == mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 
 
WSV.portfolio <- function(S, mu.target,  
 downside.weight) 
{ 
 call(WSV.model) 
 WSV.system <- System(WSV.model, S, mu.target, 
  downside.weight) 
 solution <- solve(WSV.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
  digit=5)*100, ncol=1) 



5.3 Semi-variance and Generalized Semi-variance Optimization 163 

 risk <- solution$objective 
 return(weight,risk) 
} 
 
WSV.frontier <- function(S, n.pf, downside.weight) 
{ 
 call(WSV.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 m <- nrow(S) 
 mu.min <- min(apply(S, 2, mean)) 
 x <- WSV.portfolio(S, mu.target=mu.min, 
  downside.weight) 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
 
 for(i in 2:n.pf) 
 { 
  x <- WSV.portfolio(S, mu.target=mu.range[i], 
   downside.weight) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight)    
 } 

 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - Weighted Semi-variance Frontier") 
 barplot(weight) 
 title("Frontier Portfolios") 
 litle("optimal.weights"=weight) 
} 

Code 5.3 Weighted Semi-variance Model 

As usual, we run an example optimization with a simulated data set: 
 
> x <- WSV.frontier(S, n.pf=10, 

downside.weight=0.8) 
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> x$optimal.weights 
       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
[1,]    100 88.825 77.449 66.080 50.272 34.251 
[2,]      0  0.000  0.000  0.019  5.985 12.241 
[3,]      0 10.483 19.010 27.736 35.148 42.527 
[4,]      0  0.693  3.542  6.166  8.595 10.981 
 
       [,7]   [,8]   [,9] [,10]  
[1,] 18.080  1.977  0.000     0 
[2,] 18.696 25.061 12.531     0 
[3,] 49.850 57.192 68.953   100 
[4,] 13.374 15.771 18.516     0 
 

Weighted semi-variance solutions invest more cautiously in asset 2 due to the 
obvious non-normality in its returns. Although the flexibility of the weighted 
semi-variance model is appealing, little guidance can be given on how to weight 
upper and lower semi-variances. For most practical applications, investors will 
hence stick with the lower semi-variance model. Figure 5.10 illustrates the 
weighted semi-variance frontier. 

5.4 Probability-Based Risk/Return Measures  

5.4.1 Shortfall Probability, Lower Partial Moment, 
and Value-at-Risk 

Regulatory pressures (bankruptcy/default occurs if wealth falls below a liability 
threshold) as well as investment intuition (probability statements seem to be 
easier to understand than volatility numbers) often guide investors towards 
shortfall probability as their preferred measure of risk.7 We start with the general 
observation that uncertain investment returns can be decomposed into a 
threshold return (γ ) plus an upside measure, expressed as [ ]max ,0r γ−  which 
is either positive or zero, minus a downside risk measure, denoted by 

[ ]max ,0rγ −  which is also either positive or zero. In combination, we get 
 
 [ ] [ ]max ,0 max ,0 .r r rγ γ γ= + − − −  (5.21) 

 
Measures that focus on the downside of a return distribution are called lower 
partial moments, while measures that focus on the upside are called upper 
partial moments. If return distributions become non-normal, risk measures that 
capture non-normality become attractive. We have already discussed the special 
case of ,γ µ=  in which we distinguished between upper and lower 
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semi-variances. Lower partial moments characterize the moments of a return 
distribution below the specified threshold return. In general, we define the lower 
partial moment of degree k  in its discrete form (working on realized return 
scenarios rather than on a continuous distribution) as 
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Again we use the same notation as in the previous chapter, where sδ  denotes an 
integer variable that assumes either one or zero. Effectively, sδ  will decide 
which observations enter the calculation on a go/no-go basis and hence can be 
modeled using integer variables. Apart from the threshold level, we also control 
the choice of the moment parameter k . For 0,k =  we get the shortfall 
probability, for 1k = we get the average shortfall, and for 2,3, 4, ,k =  we find 
shortfall variance, skewness, kurtosis, etc. In this section, we will focus on 

0,k =  
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Figure 5.10 Weighted Semi-variance Frontier 
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because shortfall probability is closely related to value-at-risk. Note that as 
value-at-risk denotes the maximum loss (to be calculated) likely to occur in 
normal circumstances (i.e., 95% of all times, with a significance level of 

5%α = ), 
 

 ( )1 ,VaR F α−=   
 

while the shortfall probability denotes the probability (to be calculated) that the 
loss will fall below a prespecified loss of amountγ : 

 
 ( )0 .lpm prob rγ γ= ≤   

 
While we fix probability in value-at-risk calculations, we fix our loss threshold 
in the calculation of shortfall probability. Hence both measures coincide if we 
set VaRγ = : 

 
( )1 0 .VaR F lpmγ

−=

 
 

In short, the value-at-risk at a significance level of α  denotes a loss with 
shortfall probability α .8 After this short digression on value-at-risk, shortfall 
probability, and lower partial moments, we proceed with the implementation of 
shortfall probability in NUOPT for S-PLUS. We focus on the calculation of 
shortfall probability with the use of scenarios, in which case the minimization of 
shortfall probabilities requires the use of integer variables. 

5.4.2 Portfolio Construction and Shortfall 
Probability  

We focus on an investor who aims to minimize shortfall risk (relative to a return 
threshold) subject to a specified return target. Equations (5.23) and (5.24) 
provide the appropriate switches, 
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where e  denotes a very small number and E  represents a very large number. 
Each time the portfolio return is higher than the threshold return, 0sδ =  will 
simultaneously satisfy (5.23) and (5.24). Note that 1sδ =  will only satisfy 
(5.23). The portfolio construction problem becomes  
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The system (5.25) can also be brought into S-PLUS code (Code 5.4): 
 
SF.model <- function(S, mu.target, mu.threshold) 
{ 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 names(mu.bar) <- NULL 
 asset <- Set() 
 period <- Set() 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 mu.threshold <- Parameter(mu.threshold, 
  changeable=T) 
 w <- Variable(index=i) 
 dummy <- IntegerVariable(index=s, type=binary) 
 Sum(S[s,i]*w[i],i)-mu.threshold <=  
  (1-dummy[s])*10 
 Sum(S[s,i]*w[i],i)-mu.threshold >= 
   -1*dummy[s]*10+0.000001 
 risk <- Objective(type="minimize") 
 risk ~ 1/m*Sum(dummy[s],s) 
 Sum(mu.bar[i]*w[i],i) >= mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 
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SF.portfolio <- function(S, mu.target, 
mu.threshold) 

{ 
 SF.system <- System(SF.model, S, mu.target, 
  mu.threshold) 
 nuopt.options(maxitn=1000) 
 solution <- solve(SF.system, risk, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
  digit=5)*100, ncol=1) 
 risk <- solution$objective 
 return(weight,risk) 
} 
 
SF.frontier <- function(S, mu.threshold, n.pf) 
{ 
 call(SF.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.min <- min(apply(S, 2, mean)) 
 x <- SF.portfolio(S, mu.target=mu.min,  

  mu.threshold) 
 mu.min <- t(x$weight) %*% apply(S, 2, mean)/100 
 weight <- x$weight 
 Risk[1,1] <- c(x$risk[2]) 

  
  
 Return[1,1] <- mu.min 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 for(i in 2:n.pf){ 
  x <- SF.portfolio(S, mu.range[i], 

mu.threshold) 
  Risk[i,1] <- x$risk[2] 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight)    
 } 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - Shortfall Frontier") 
 barplot(weight) 
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 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 

Code 5.4 Shortfall Efficient Model 

> x <- SF.frontier(S, mu.threshold, n.pf=50) 
> x$optimal.weights 
       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
[1,]  0.000  0.000  0.000  0.000  0.063  0.000 
[2,] 77.436 68.604 58.863 49.981 40.926 27.247 
[3,] 16.393 24.086 25.763 32.667 39.386 50.680 
[4,]  6.172  7.310 15.375 17.352 19.625 22.073 
 
       [,7]   [,8]   [,9] [,10]  
[1,]  1.467  1.710  0.000     0 
[2,] 21.324 11.716  4.907     0 
[3,] 54.751 61.965 64.596   100 
[4,] 22.458 24.609 30.497     0 

 
The inspection of the left part of Figure 5.11 is disappointing. However, as VaR 
is a nonconvex function with respect to portfolio weights (and hence possesses 
many local minima), it is not surprising that standard optimization techniques 
will not always find the optimal solution. After all, heuristics are needed if 
objective functions are nonconvex. This difficulty in finding optimal portfolios 
when using VaR as a risk measure in scenario optimization is one of the major 
obstacles to its use. It is not only inconvenient but also directly related to its 
theoretical deficiencies (i.e., its lack of subadditivity; see Section 5.6). 

5.4.3 Probability of Outperformance 

Many portfolio managers and plan sponsors are given performance objectives. 
Hence their interest is to outperform their given investment targets. The problem 
of maximizing the probability of outperformance can be written as  
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We leave the implementation of (5.26) to the reader. Do you think this 
investment objective makes sense? 

5.5 Minimum Regret 

Suppose we are again given the scenario matrix S , either from historical returns 
or from a scenario simulation exercise. As in basic decision theory, we could 
choose minimax criteria, as illustrated in Figure 5.12 (i.e., we might want to 
minimize the maximum portfolio loss—minimizing regret).9 This could be the 
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Figure 5.11 Shortfall Efficient Portfolios 
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optimal strategy for investors who have to make sure under all means 
(scenarios) that they never experience a particular size of loss. Focusing on 
extreme events will have its merits if returns either substantially deviate from 
normality or if investors are extremely risk-averse. Minimizing the maximum 
loss can be written as a linear program: 
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 (5.27) 

 

The first constraint , min1
0

n
i i si

w r r
=

− ≥∑  ensures that there is no scenario for 

which the portfolio return is worse than the minimum return. As minr  is a 
variable as well as the objective in the system (5.27), it will take on the value of 
the minimum maximum loss. An alternative (equivalent) formulation to (5.27) is 
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Figure 5.12 MinMax Efficient Frontier 
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to maximize return subject to the restriction that there is no scenario for which 
the portfolio return falls below a threshold return min .r  
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 (5.28) 

 
We choose the program of (5.27) for implementation in NUOPT for S-PLUS 
(shown in Code 5.5). 
 
MinMax.model <- function(S, mu.target) 
{ 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 asset <- Set() 
 period <- Set() 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 w <- Variable(index=i) 
 mu.Min <- Variable() 
 Sum(S[s,i]*w[i],i)-mu.Min >= 0 
 MinMax <- Objective(type="maximize") 
 MinMax ~ mu.Min 
 Sum(mu.bar[i]*w[i],i) == mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 
 
MinMax.portfolio <- function(S, mu.target) 
{ 
 call(MinMax.model) 
 MinMax.system <- System(MinMax.model, S, 

mu.target) 
 solution <- solve(MinMax.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
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  digit=5)*100, ncol=1) 
 risk <- solution$objective 
 return(weight,risk) 
} 
 
MinMax.frontier <- function(S, n.pf) 
{ 
 call(MinMax.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 m <- nrow(S) 
 mu.min <- min(apply(S,2,mean)) 
 x <- MinMax.portfolio(S, mu.target=mu.min) 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 for(i in 2:n.pf){ 
  x <- MinMax.portfolio(S, 

mu.target=mu.range[i]) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
 } 
 graphsheet 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - MinMax Frontier") 
 barplot(weight) 
 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 

Code 5.5 Regret Minimization 

> x <- MinMax.frontier(S, n.pf=50) 
> x$optimal.weights 
     [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
[1,]  100 88.889 77.778 66.667 55.556 44.444 
[2,]    0  0.000  0.000  0.000  0.000  0.000 
[3,]    0 11.111 22.222 33.333 44.444 55.556 
[4,]    0  0.000  0.000  0.000  0.000  0.000 
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       [,7]   [,8]   [,9]  [,10]  
[1,] 33.333 22.222 11.111     0 
[2,]  0.000  0.000  0.000     0 
[3,] 66.667 77.778 88.889   100 
[4,]  0.000  0.000  0.000     0 
 
Minimizing maximum regret leads to concentrated portfolios. The highly 

non-normal assets 2 and 4 never enter the optimal solution. 

5.6 Conditional Value-at-Risk 

5.6.1 CVaR, Tail Conditional Loss, and VaR 

Suppose we sampled discrete realizations of portfolio returns from a continuous 
distribution to arrive at m  realizations { } 1, ,s s mr = …  of random returns. To make 

matters transparent, just think of this as a sequence of returns 
{ } 1006, 10, 3, 4,5, ,1 m=− − .10 We now define the order statistics (simply by 
ordering the returns starting with the smallest return from the left) 

1: 2: :m m m mr r r≤ ≤ ≤…  that result in the sorted returns 
{ } 10010, 5, 3, 3, 3, 3, 3, ,16 m=− − − − − − − . If we need to estimate the %α -quantile 
(value-at-risk), we simply look for 

 
 : .m mVaR rα α=  (5.29) 

 
If we set 5%α = , 100,m =  we arrive at 5:100 3VaR r= = −  (5th out of 100 
returns) in the example above.  

The estimator for the expected loss in %α of all cases, also called 
conditional value-at-risk ( CVaR ) or expected shortfall ( ES ), is calculated 
from  

 

 :1

1 .
m

s ms
ES r

m
α

α α =
= ∑  (5.30) 

 
For the example above we get 
 

  ( )
51 1

5% :1005 51
10 5 3 3 3 4.8.ss
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= = − − − − − = −∑   
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A measure similar to (5.30) is the “tail conditional loss” (TCL ) defined as 
( )E r r VaRα≤ , which looks the same at first sight. 
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 (5.31) 

 
This, however, is only true for continuous distributions, as the discrete example 
above shows. 

 
 ( )10 5 3 3 3 3 3 / 7 4.3.TCLα = − − − − − − − = −   

 
Tail conditional loss and expected shortfall differ. In general, we will find that 
expected shortfall is at least as large as tail conditional loss.  

 
 ( ) ,ES TCL TCL VaRα α α αφ= + −  (5.32) 

 
where  

 ( ) 1 0
prob r VaR

φ
α

≤
= − ≥ . 

 
The reason for this is that for discrete distributions ( ) .prob r VaR α≤ ≥  In our 

example, we find that ( ) 7
100 7%prob r VaR≤ = = , which is larger than 5%. 

Substituting the appropriate values into (5.32), we get  
 

 ( )7%4.8 4.3 1 4.3 3 .
5%

⎛ ⎞− = − + − − −⎜ ⎟
⎝ ⎠

 

 
We now show various ways to calculate the numbers above in S-PLUS. Suppose 
we simulate a mixture (of two normals) to generate a data set for the sample 
calculations below. 

 
returns <- c(rnorm(50, -0.4, 0.3),  
 rnorm(950, 0.07, 0.2)) 
graphsheet() 
par(mfrow=c(1,2)) 
hist(returns) 
qqnorm(returns) 
qqline(returns) 
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The data are plotted in Figure 5.13. It is apparent that the distribution differs 
significantly from the normal distribution in its left tail (the Q-Q plot deviates 
substantially from a straight line). S-PLUS functions that generate the required 
risk measures are given below (in Code 5.6) and can also be used to generate the 
distribution of our estimated risk measure via repeated resampling 
(bootstrapping). Bootstrapped results are shown in Figure 5.14. 
 
VaR <- function(returns, alpha){ 
 sort(returns)[trunc(length(returns)*alpha)] 
} 
 
CVaR <- function(returns, alpha){ 
 mean(sort(returns)[1:trunc(length(returns)*alpha)

]) 
} 
 
TCL <- function(VaR, returns){ 
 mean(returns[returns<=VaR(returns, alpha)]) 
} 
 
bs.VaR <- bootstrap(returns, VaR(returns, alpha)) 
bs.CVaR <- bootstrap(returns, CVaR(returns, alpha)) 
 

-1.0 -0.5 0.0 0.5

0
10

0
20

0
30

0

returns Quantiles of Standard Normal

re
tu

rn
s

-2 0 2

-1
.0

-0
.5

0.
0

0.
5

 
Figure 5.13 Sample Data 
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graphsheet() 
par(mfrow=c(1,2)) 
plot(bs.VaR, xlab="VaR", main="") 
plot(bs.CVaR, xlab="CVaR", main="") 

Code 5.6 Bootstrap Distributions of Various Risk Measures 

This way, the bootstrap function can be used to investigate which risk concept 
(VaR, CVaR, or volatility) needs more data to be estimated with the same 
precision. Note that we can address the resampled risk measures (see Figure 
5.15) directly using  

 
bs.VaR <- bootstrap(returns, 
 VaR(returns, alpha))$replicates 
 

for example. We can then use the boxplot() command to visualize the 
estimation error in all three risk measures. For this purpose, we remove the 
means of the estimates of our risk measures to plot them on the same level in 
Code 5.7. 
 
bs.VaR <- bootstrap(returns,  
 VaR(returns, alpha))$replicates 
 
bs.CVaR <- bootstrap(returns,  
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Figure 5.14 Resampled VaR and CVaR Calculations 
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 CVaR(returns, alpha))$replicates 
 
bs.Vol <- bootstrap(returns, 
 Vol(returns))$replicates 
 
demean <- function(x){x-mean(x)} 

 
boxplot(demean(bs.VaR), demean(bs.CVaR), 
 demean(bs.Vol), 
 names=c("VaR", "CVaR", "Volatility")) 

Code 5.7 Estimation Error in Various Risk Measures 

We see that the estimation error for CVaR is larger than for volatility (where 
precision is highest) or VaR. This makes intuitive sense, as CVaR looks deeper 
into the tail and is hence outlier-dependent, while large outliers do not affect 
VaR (which is economically a central weakness). Volatility, on the other hand, 
uses all the data in a sample and arrives at a very precise estimate (that might be 
completely useless in the case of serious non-normality). 

Rather than using sampled data, we could also employ the numerical 
integration techniques offered by S-PLUS to calculate the required risk measures. 
Suppose we are given the distribution behind Figure 5.13 in continuous form, 

( ) ( ) ( )1 1 2 2, , 1 , ,pf x p f xµ σ µ σ+ − , where ( ) ( )( )2

2
1
2 2

, , exp xf x µ
σ π σ

µ σ −= − . 

The value-at-risk for the 2.5% level is –45.89%. To check this, just calculate 
 

 ( ) ( ) ( )
45.89% 45.89%

1 1 2 2, , 1 , , 2.5%.p f x p xµ σ µ σ
− −

−∞ −∞

+ − =∫ ∫  (5.33) 

 
integrand.1 <- function(x){ 
 (0.05*dnorm(x,-0.4,0.3) + 0.95*dnorm(x,0.07,0.2)) 
} 
integrate(integrand.1,  - Inf, -0.4589)$integral 
[1] 0.02499479 
 

We can also calculate the expected shortfall, or conditional value-at-risk (see 
Code 5.8), 

 

( ) ( ) ( )

( ) ( ) ( )

45.89% 45.89%

45.89% 45.89%

, , 1 , ,1 1 2 2
65.366%

, , 1 , ,1 1 2 2

p xf x dx p xf x dx

p f x dx p f x dx

µ σ µ σ

µ σ µ σ

− −

−∞ −∞
− −

−∞ −∞

+ −
= −

+ −

∫ ∫
∫ ∫

.(5.34) 
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integrand.2 <- function(x){ 
 (0.05*dnorm(x,-0.4,0.3) + 

0.95*dnorm(x,0.07,0.2))*x 
} 
integrate(integrand.2,-Inf, 
 -0.458915)$integral/integrate(integrand.1,-Inf, 
 -0.458915)$integral 
[1] -0.6536664 

Code 5.8 Risk Estimates via Numerical Integration 

Numerical integration allows us to calculate arbitrary risk figures as soon as a 
continuous distribution has been fit to the data. 

5.6.2 What Do We Require from a Risk Measure? 

For portfolio managers, risk managers, and plan sponsors, there is the vital 
question: what properties are needed for a statistic of portfolio returns to qualify 
as a risk measure? The answer to this question has been given through a 
complete set of axioms. They define what has been called a coherent risk 
measure.11 A coherent risk measure is a function (that translates returns into a 
risk figure) that is  
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Figure 5.15 Boxplot for Resampled Risk Measures 



180 5 Scenario Optimization: Addressing Non-normality 

2. Positive homogeneous. If we multiply holdings (positions, exposures) 
by a linear factor, risk also rises by this factor.  

3. Invariant to translations. Adding a constant to our losses does not 
change risk.  

4. Subadditive. The risk of a portfolio is at most the combined risks of 
the single positions. 

 
The last axiom catches diversification. Adding two portfolios together must not 
create higher risks than both on a stand-alone basis. These axioms define the 
nature of the concept with a minimum set of precise formulations 
(requirements). A risk measure that violates one of the axioms above will lead to 
paradoxical results. Note that return statistics that do not fit into the axiomatic 
framework cannot be called risk measures (by the very definition).  

Let’s see how VaR, CVaR, volatility, and shortfall probability do in a simple 
setting. A plan sponsor budgets risks given to individual managers. His 
scenarios of two very diversifying managers (i.e., negative returns can only 
occur in different states) are given in Table 5.1.12 

Table 5.1 Data for Manager Combination: Active Returns 

Scenario Manager 1 Manager 2 Manager 1+2 Probability 
1 –20%     2%    –9%   3% 

2   –3%     2% –0.5%   2% 

3     2% –20%    –9%   3% 

4     2%   –3% –0.5%   2% 

5     2%     2%      2% 90% 
 
We can now calculate the risk measures mentioned above. The outcome is 

summarized in Table 5.2. While volatility and CVaR are decreasing as we move 
from a stand-alone approach to a combination of managers, this is not the case 
for shortfall probability and VaR. Hence, both statistics are not suitable risk 
measures. 

Table 5.2 Risk Measures in Multiple-Manager Example 

Risk Measure Manager 1 Manager 2 Manager 1+2 
Volatility     3.80%     3.80%   2.63% 

VaR        –3%        –3%      –9% 

Shortfall 
Probability          5%          5%      10% 

CVaR –13.20% –13.20% –5.60% 
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The reason for these paradoxical results lies in the concept of value-at-risk. It 
ignores the large –20% losses that are waiting undetected in the tail of the 
distribution. However, when we average across portfolios, these returns will be 
diversified into the portfolio risk measure and will increase risk, as they have 
been ignored before. No investor would find a risk measure that attaches equal 
weight to small losses and complete bankruptcy satisfying. Value-at-risk fails in 
detecting tail risks. 

Value-at-risk and shortfall probability are not coherent risk measures (i.e., 
they should not be called risk measures at all). Value-at-risk will only be 
subadditive in special circumstances (i.e., for so-called elliptical distributions, 
such as the normal distribution, Student’s t distribution, and the Cauchy 
distribution). In fact, value-at-risk and volatility share the same properties when 
the underlying distribution is elliptical.13 However, the distributions of many 
assets involved in portfolio construction do not belong to this class. They either 
naturally deviate from asset class characteristics (hedge fund, credit risk, etc.) or 
are deliberately created to do so using heavily skewed distributions. 
Interestingly, value-at-risk, which once was regarded as the Holy Grail in risk 
management, fails when return distributions are not elliptical. Casually stated, 
value-at-risk cannot deal with non-normality. Table 5.3 gives a concise 
summary of our discussion. 

Table 5.3 VaR versus CVaR 

Criterion VaR CVaR 
Subadditivity? No Yes 

Tail risk measure? No Yes 

Handle 
nonnormality? 

Constrained to cases for non-
normal elliptical distributions 

Yes 

Data requirements? Needs more data than the 
volatility measure to be 
measured with the same 
precision 

Needs more data than 
VaR to be measured 
with the same 
precision 
 

 
It is difficult to understand why value-at-risk is still so popular. We do warn 

against its use in portfolio optimization, as the problems above are likely to 
increase further when a portfolio optimizer leverages axiomatic shortcomings of 
VaR. 

5.6.3 The Use of CVaR in Portfolio Construction  

Not only does CVaR offer a much sounder theoretical basis for risk management 
decisions but it is also computationally more efficient. While portfolio 
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optimization using VaR becomes a complicated integer-programming problem, 
CVaR optimization only requires well-established and widely available linear 
programming tools. First, we define an auxiliary variable, 

 

 ,1
max 0,

n
s i i si

e VaR w r
=

⎡ ⎤= −⎢ ⎥⎣ ⎦∑ . (5.35) 

 
Suppose 20VaR = −  (percent), while the portfolio return for scenario s  turns 

out to be ,1
25

n
i i si

w r
=

= −∑ . Equation (5.35) would then find an excess of 

( ) ( )[ ] [ ]max 0, 20 25 max 0,5 5se = − − − = = . Conditional value-at-risk equals 
value-at-risk plus the average of all losses in excess of value-at-risk. Hence we 
can write 
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Note that 1
1

m
sm s

e
=∑ reflects the average excess loss across all m  scenarios. In 

order to scale this loss up to the average excess loss, if an excess loss occurs, we 
have to divide it by the probability of an excess loss ( ).α  As VaR  is a negative 

number, ( )1
1

/
m

sm s
VaR e α

=
− ∑  will be even more negative. A risk-averse 

investor will hence want to maximize CVaR  (–5 is larger than –20). The 
complete portfolio optimization problem can now be written down as  
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A closer look at (5.37) will reveal some of the mechanics. Note that excesses are 

forced to be positive. Any excess ( ,1
, 0s i i s si

e VaR w r e
=

≥ − ≥∑ ) will hence 

have a negative impact on the objective function. Excesses can be kept small by 

choosing the appropriate set of weights in order to prevent ,1 i i si
VaR w r

=
− ∑  

from becoming a large positive number.  
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If portfolio returns in all scenarios were positive, how could we prevent se  
from becoming negative? The optimizer can now increase VaR  and therefore 
positively impact the objective function. However, moving VaR  up too much 
will result in increasing excesses that will counterbalance this effect. The CVaR 
model is given in Code 5.9. 
 
CVaR.model <- function(S, alpha, mu.target) 
{ 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 asset <- Set() 
 period <- Set() 
 mu.VaR <- Set(1) 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 mu.VaR <- Element(set=mu.VaR) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 w <- Variable(index=i) 
 e <- Variable(index=s) 
 mu.VaR <- Variable(index=mu.VaR) 
 e[s] >= mu.VaR[1]-Sum(S[s,i]*w[i],i) 
 e[s] >= 0 
 CVAR <- Objective(type="maximize") 
 CVAR ~ mu.VaR[1]-(1/m)*(1/alpha)*Sum(e[s],s) 
 Sum(mu.bar[i]*w[i],i) == mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 

Code 5.9 CVaR Optimization 

Suppose we run the model on 100m =  scenarios with 0.05α =  and 0.04µ = . 
What are the values for VaR and CVaR? 
 
 mu.target <- 0.04 
 alpha <- 0.05 
 S.mvnorm <- matrix(rmvnorm(100, mean=c(0.02, 

0.04, 0.05, 0.08), cov=diag(rep(0.2,4))), 
ncol=4) 

 CVaR.system <- System(CVaR.model, S.mvnorm, 
alpha, mu.target) 

 solution <- solve(CVaR.system, trace=T) 
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The value for CVaR can be obtained from solution$objective, which 
returns a value of –0.7469582. We compare this to VaR, which can be 
retrieved from solution$variables$mu.VaR$current and amounts to 
-0.478263. Finally, we plot the cumulative distribution for portfolio returns 
as well as for a normal distribution in Figure 5.16 and the CVaR frontier and 
optimal portfolios in Figure 5.17. 
 
normal <- rnorm(100000, mean(returns), 
 sqrt(var(returns))) 
cdf.compare(returns, normal) 
 
CVaR.portfolio <- function(S, alpha, mu.target) 
{ 
 call(CVaR.model)  
 CVaR.system <- System(CVaR.model, S, alpha, 
  mu.target) 
 solution <- solve(CVaR.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
digit=5)*100, ncol=1) 

 risk <- -solution$objective 
 return(weight,risk) 
} 
 
CVaR.frontier <- function(S, alpha, n.pf) 
{ 
 call(CVaR.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 mu.min <- min(apply(S,2,mean)) 
 mu.max <- max(apply(S,2,mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 x <- CVaR.portfolio(S, alpha, mu.target=mu.min) 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
 for(i in 2:n.pf){ 
  x <- CVaR.portfolio(S, alpha, 
   mu.target=mu.range[i]) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
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 } 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - CVaR Frontier") 
 barplot(weight) 
 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 

Code 5.10 CVaR Frontier 

> x <- CVaR.frontier(S, alpha, n.pf=20) 
> x$optimal.weights 
 
       [,7]   [,8]   [,9]  [,10]  [,11]  [,12]  
[1,] 67.944 62.631 57.295 52.035 46.684 41.375 
[2,]  0.000  0.000  0.000  0.000  0.000  0.000 
[3,] 26.918 31.703 36.253 41.548 45.949 50.761 
[4,]  5.138  5.666  6.452  6.416  7.368  7.864 
 
      [,13]  [,14]  [,15]  [,16]  [,17]  [,18]  
[1,] 36.067 30.777 25.496 20.204 14.912  9.646 

Figure 5.16 Cumulative Distribution of Portfolio Returns 
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[2,]  0.000  0.000  0.000  0.000  0.000  0.000 
[3,] 55.592 60.589 65.685 70.666 75.647 80.882 
[4,]  8.341  8.634  8.819  9.130  9.441  9.471 
 
      [,19] [,20]  
[1,]  4.338     0 
[2,]  0.000     0 
[3,] 85.705   100 
[4,]  9.957     0 
     

Conditional value-at-risk looks deeply into the tail of a distribution. In contrast 
with mean-variance-based solutions, we note that the highly non-normal assets 2 
and 4 enter and are given much less weight. 

5.6.4 VaR Approximation Using CVaR 

It is well-known that VaR for discrete distributions is a nonsmooth, nonconvex, 
and multiextremum function with respect to iw . VaR and the related shortfall 
risk are therefore difficult to optimize, as we have already seen in Section 5.4.2. 
This section will present a heuristic that attempts to minimize VaR by solving a 
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Figure 5.17 CVaR Frontier and Optimal Portfolios 
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sequence of CVaR problems.14 As CVaR presents an upper bound on VaR 
(CVaR will always be greater than VaR, as it adds the average of the excess 
losses to VaR), one approach to minimizing VaR is to minimize the upper bound 
in a sequence of CVaR problems, gradually discarding scenarios that exhibit 
losses larger than VaR. 

Step 0. Let us assume we have generated 1000m =  scenarios for 4n =  
assets. We start with a standard CVaR minimization for a prespecified α  and 
return target µ  as described in (5.37) using all m  scenarios. The resulting 
CVaR (call it α -CVaR) represents the first upper bound on VaR for the 
prespecified α (call this α -VaR). Now we split the set of total scenarios into 
active scenarios (those used for further CVaR minimizations) and inactive 
scenarios (those discarded). From all scenarios that show losses larger than α -
VaR, we discard a fractionξ . For example, if 50 portfolio returns fall below 
VaR, we discard the largest 25 losses for further use.  

Step 1. Start a new CVaR optimization on the remaining set of active 
scenarios (if we discard 25 out of 1000 scenarios we are left with 975 scenarios). 
However, we have to modify our CVaR optimization in two important respects. 
First we need to take into account that we discarded a number of scenarios. As 
we are interested in the α -VaR, we need to ensure that the 1α -CVaR 
optimization in Step 2 focuses on the same quantile. The new 1α  for the 1α -
CVaR optimization needs to satisfy 

 

 ( ) 0,
1   

1 1 1 .
istep i

discarded scenarios in step
i mα α =

−
⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

∑   

 
An example has been calculated in Table 5.4. As the number of discarded 
scenarios rises, we need to go further into the tail to maintain the quantile with 
respect to the original set of scenarios. 
 

Table 5.4 Evolution of αi for α=0.05 and ξ=0.5 

Step i # Discarded Scenarios αi 
0   0 5.00% 

1 25 2.56% 

2 13 1.30% 

3   6 0.65% 

4   3 0.33% 

5   2 0.16% 
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Second, we need to ensure that the allocation resulting from Step 1 does not 
create losses for the active scenarios that are larger than those for the inactive 
scenarios. This is important if we want to gradually reduce the number of active 
scenarios in a meaningful way. We therefore have to add m  constraints and one 
new free variable ( )γ  to problem (5.37): 
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The constraints above will always be satisfied, as the optimizer could always 
default to the optimal allocation from the previous optimization (which we used 
to split scenarios into active and inactive scenarios). As before, we calculate α -
VaR for the optimal solution in Step 1 and use it to split up scenarios further 
(reducing the number of scenarios stepwise) for use in the next step. It is 
obvious that 1α -CVaR needs to be smaller than α -CVaR, as we discarded the 
largest losses but adjusted the quantile for the inactive scenarios. Note that the 
VaR calculation is not affected, as all losses below VaR are equally counted, no 
matter how large they are. A refined CVaR code that takes account of this is 
shown in Code 5.11. 
 
CVAR.model <- function(S.in, S.out, alpha, mu.bar, 
 mu.target, VaR.cutoff) 
{ 
 m.in <- nrow(S.in) 
 m.out <- nrow(S.out) 
 m <- m.in+m.out 
 n <- ncol(S.in) 
 asset <- Set() 
 period.in <- Set() 
 period.out <- Set() 
 mu.VaR <- Set(1) 
 i <- Element(set=asset) 
 s <- Element(set=period.in) 
 ss <- Element(set=period.out) 
 mu.VaR <- Element(set=mu.VaR) 
 S.in <- Parameter(S.in, index=dprod(s,i)) 
 S.out <- Parameter(S.out, index=dprod(ss,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 w <- Variable(index=i) 
 e <- Variable(index=s) 
 mu.VaR <- Variable(index=mu.VaR) 
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 g <- Variable(VaR.cutoff) 
 e[s] >= mu.VaR[1]-Sum(S.in[s,i]*w[i],i) 
 e[s] >= 0 
 CVAR <- Objective(type="maximize") 
 CVAR ~ mu.VaR[1]-(1/m)*(1/alpha)*Sum(e[s],s) 
 Sum(mu.bar[i]*w[i],i) == mu.target 
 Sum(w[i],i) == 1 
 Sum(w[i]*S.in[s,i],i) >= g 
 Sum(w[i]*S.out[ss,i],i) <= g 
 w[i] >= 0 
} 

Code 5.11 VaR Approximation Using CVaR 

Step 2. Repeat Step 1 as long as there are scenarios left to be discarded. The 
more scenarios we discard, the closer iα -CVaR and iα -VaR will become as 
more and more scenarios with large losses are removed (reducing CVaR), while 
this removal does not affect VaR as long as iα  is properly set. Implementing the 
algorithm above leads to the result shown in Figure 5.18 for our sample data set. 

5.7 CDO Valuation using Scenario 
Optimization 

Suppose we know the loss distribution of an underlying pool of assets valued 
today at 100 (i.e., we know ( )f l ). Note that l  can assume positive values 
(losses) as well as negative values (profits). This asset pool is financed via three 
different tranches. The first tranche is called equity (or sometimes a junior note). 
Liabilities for holders of this tranche are limited to 

1
lα , which denotes the 1α  

percentile of the loss distribution. Payoff to equity can be expressed as  
 

 ( )1 1
max ,0equityCF l l l lα α= − + − . (5.38) 

 
If the losses exceed 

1
lα , the equity is wiped out and losses will start to eat into 

the second tranche (also called the mezzanine). The second tranche promises to 
pay an amount 

1 2
l lα α− . Losses larger than 

2
lα  lead to a complete loss of the 

second tranche and eat into the last tranche, 
 

 ( ) ( )2 1 1 2
max ,0 max ,0 .mezzanineCF l l l l l lα α α α= − − − + −  (5.39) 

 



190 5 Scenario Optimization: Addressing Non-normality 

The last tranche is called a senior note. Losses will only eat into the senior note 
after the first two tranches have been wiped out, 

 
 ( ) ( )1 2 1 2

100 max ,0 .seniorCF l l l l lα α α α= − − − − −  (5.40) 

 
We can see that investors in senior notes write a limited-liability option to 
holders of mezzanine debt ( )2

max ,0l lα− , while mezzanine debt investors 

write a limited-liability option ( )1
max ,0l lα−  to equity investors. If we add all 

positions, we arrive at  
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Figure 5.18 VaR Approximation Using CvaR for a Sample Data Set 
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which is exactly the payoff to the asset pool. Assuming that the loss distribution 
is log-normal, we can use standard Monte Carlo simulation techniques to 
evaluate the attached options. However, how can we value options under 
arbitrary distributions? One simple way is to use  
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where optimal

sW  denotes the wealth in scenario s  attached to the optimal 

solution of  ( )
1

max
m

s ssw
U Wπ

=∑  and ( )1 1s f sW wr w r= + + − . Cash flows 

from a particular CDO tranche are valued with  
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assuming a particular form for ( )sU W .  

We finish this section with an example. Suppose 0.03,fr =  
1

2,lα =  and 

2
10.lα =  The returns of the underlying assets in a hypothetical CDO are 

assumed to be drawn from a normal distribution with mean 6% and volatility 
9%. Applying standard risk-neutral valuation theory, we arrive at the following 
values for the three tranches: 

 

 
6.58
6.42
87.00.
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value

value

=

=
=

  

 
These prices are required to subsequently calculate the returns for the respective 
tranches, as shown in Figure 5.19 and Figure 5.20. 
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Figure 5.19 Return Distribution for Junior Tranche 
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Exercises 

1. Write a program that uses the methodology in Section 5.1.2. 
 
2. Solve (5.12), first in Excel and then with solveQP(). How do we need to 

rewrite (5.12) in the case of different upper and lower costs of mean 
deviations? 

 
3. Download data on a high yield corporate bond index. 

(a) Calculate the value of tranches within a standard CDO that is financed 
via equity (taking the first 5% losses), mezzanine debt (taking the next 
10% of losses), and senior debt. Assume a risk-free rate of 3% and use 
Monte Carlo simulation.  

(b) Use the option prices of (a) to generate scenarios that are consistent 
with CDO pricing. 

(c) Add at least two more asset classes to the junior note and construct a 
CVaR efficient frontier. 

(d) How does the CVaR frontier differ from a mean-variance frontier? 
 
4. Can you approximate semi-variance optimization using the MAD model 

and a piecewise linearization? Hint: See Hamza and Janssen (1995). 
 
5. Extend the failed model (5.25) for shortfall probability to lower partial 

moments of degrees 1, 2,3, 4.k =  What do you observe? 
 
6. Include fixed and proportional transaction costs in the weighted 

semi-variance model.  
 
7. Assume a mixture of (two) normal distributions and write a program that 

calculates lower and upper partial moments for arbitrary threshold returns 
and moments using numerical integration. Check your results using Monte 
Carlo simulation. 

 
8. Write a program that does the calculations in Section 5.6.4. Experiment 

with the number of scenarios discarded in each step. What do you observe? 
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Endnotes

                                                           
1 The time series stretches from January 1994 to December 2002 for Emerging Markets 
(JPM.EMBI) and from February 1986 to December 2002 for the dollar/yen exchange rate 
(DOLLAR.YEN). 
2 See Grinold (1999).  
3 See Zimmermann (1998, p.67, equation 4.2).  
4 See Sklar (1996).  
5 This model was introduced into the literature by Konno and Yamazaki (1991) and 
investigated further in Feinstein and Thapa (1993). 
6 See Hamza and Janssen (1995).  
7 Satchell and Sortino (2001) provide an excellent review on downside-based risk 
measures. 
8 This relationship is only true for continuous distributions, as we show in Section 5.6.1. 
9 See Young (1998).  
10 This section draws heavily on Acerbi and Tasche (2001). 
11 See Artzner et al. (1997).  
12 A similar example can be found in Acerbi et al. (2001). 
13 See Embrechts, McNeil, and Straumann (2002).  
14 The heuristic is described in Larsen, Mausser and Uryasev (2002)  
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6 Robust Statistical Methods 
for Portfolio Construction 

 
6.1 Outliers and Non-normal Returns 

The value of robust statistical methods in portfolio construction arises because 
asset returns and other financial quantities often contain outliers. Outliers are 
data values that are well-separated from the bulk of the data values and are not 
predicted by univariate or multivariate normal distributions. Under normal 
distribution models, such an outlier sometimes occurs with exceedingly small 
probability. For example, if we fit a normal distribution to S & P 500 daily 
returns for various periods of time prior to the stock market crash of 1987, we 
find that the probability of occurrence of an event of that magnitude is so small 
that one would have to wait much longer than the history of civilization for 
another such occurrence.1 Large outliers of this type are not limited to situations 
with extreme market movements—one can find many such examples in 
individual asset returns. For example, the five-year monthly returns for the 
microcap stock with ticker EVST shown in Figure 6.1 has an extremely large 
outlier in December 1988 with value 6.88. You can make this plot with the S-
PLUS commands given in Code 6.1, in which we first extract EVST monthly 
stock returns for a five-year span from the microcap.ts time series object, 
and then plot the EVST time series: 

 
EVST.returns.ts <- microcap.ts[,"EVST"] 
plot(EVST.returns.ts, plot.args = list(type = "b", 
 pch = "."), reference.grid = F, ylab = "RETURNS", 
 main = "EVST RETURNS")  
# Add text "OUTLIER" by left-clicking mouse at  
# desired location 
text(locator(1),"OUTLIER") 
# Add line by left-clicking at each line end-point, 
# then right click 
lines(locator()) 
# This command and the next are equivalent 
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EVST.returns <- EVST.returns.ts@data[,1]  
EVST.returns <- seriesData(EVST.returns.ts)[,1] 

Code 6.1 Time Series Plot of EVST Returns 

Note that EVST.returns.ts is an S-PLUS V4 time series object, the first 
part of which looks like: 
> EVST.returns.ts 
  Positions         EVST 
  1/31/1997  0.050847456 
  2/28/1997 -0.024193548 
  3/31/1997 -0.008264462 
        ………… 
 

At the end of Code 6.1, the data from EVST.returns.ts is extracted and 
converted to a simple S-PLUS vector object.2 You can now compute the mean 
and standard deviation of the EVST returns as follows: 

 
> mean(EVST.returns) 
[1] 0.07568058 
> stdev(EVST.returns) 
[1] 0.9197129 
 

To get the value of the outlier and its time of occurrence, use the command 
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Figure 6.1 Time Series of EVST Returns 
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> EVST.returns.ts[EVST.returns.ts@data > 3,] 
  Positions     EVST 
 12/31/1998 6.878788 
 

Now let’s compute the probability of getting a return as large or larger than 6.88 
for a normal distribution with mean .076 and standard deviation .92: 

 
> 1-pnorm(6.88,.076,.92) 
[1] 7.038814e-014 

 
Under the normal distribution model, you would have to wait an unbelievable 
amount of time to see the recurrence of such an outlier in the monthly returns of 
EVST. 

We can easily assess the non-normality of these returns using a normal Q-Q 
plot with a robustly fitted straight line, as shown in Figure 6.2.3 (See Section 6.5 
for a discussion of robust straight-line fitting in the context of estimating the 
CAPM beta.) 

 
> qqnorm(EVST.returns, ylab=”EVST.returns”) 
> qqline(EVST.returns) 
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Figure 6.2 Normal Q-Q Plot of EVST Returns with Robust Line Fit 

The normal Q-Q plot indicates that the returns are non-normal because of the 
single outlier and possibly because of the other deviations of the points from a 
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straight line. You can check this easily by making a normal Q-Q plot with the 
outlier deleted: 
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Figure 6.3 Normal QQ-Plot of EVST Returns with Outlier Removed 

 
> qqnorm(EVST.returns[EVST.returns<2], ylab = "EVST 

Returns") 
> qqline(EVST.returns[EVST.returns<2]) 

 
The result in Figure 6.3 shows that some outliers and non-normality are still 
present. How are we to judge non-normality from a Q-Q plot? The answer is to 
add 95% simulation confidence bands to plots like that of Figure 6.3, which you 
can do as follows: 

 
> EVST.robfit <- 

lmRob(EVST.returns[EVST.returns<2]~1,eff=.95) 
> plot(EVST.robfit,which.plots=2) 
 

The function lmRob is a robust regression-fitting function that can estimate a 
mean robustly when used with a formula of the form x ~ 1 as the first 
argument. The use of lmRob for robustly estimating mean returns will be 
discussed further in Section 6.3. It is used here only because the generic function 
plot invokes a special plot method for an lmRob object that computes and plots 
95% simulation envelopes, which are useful for assessing whether residuals (the 
error term in the model) contain outliers. 
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Figure 6.4, showing the standardized residuals and the 95% simulation 
envelopes, indicates that there is still some non-normality in the form of 
incipient outliers (not quite outliers). This is due to a slightly heavier right-hand 
tail of the returns density.4 

-2

0

2

4

-2 -1 0 1 2

EVST.robfit

  57

  12

  48

Quantiles of Standard Normal

R
es

id
ua

ls

Normal QQ-Plot of Residuals

 
Figure 6.4 Normal Q-Q Plot with 95% Confidence Envelope 

The single outlier in the EVST returns is highly influential in that it greatly 
increases the values of the mean and standard deviation relative to the values 
you would get if December 1988 were not an outlier. You can see the effect by 
doing the computation with the outlier deleted: 

 
> mean(EVST.returns[EVST.returns < 2]) 
[1] -0.03962633 
> stdev(EVST.returns[EVST.returns < 2]) 
[1] 0.2212708 
 

The mean drops to –.040 and the standard deviation drops to .22. The latter is a 
little over four times smaller than the standard deviation that was calculated 
using all of the returns (.92). Consider the impact on the sample mean when you 
add the December 1998 return, assuming it was not originally there. A natural 
yardstick to measure the change is the standard deviation of the sample mean 
without the outlier, .22 / 60 .028= , so the influence of adding the outlier is to 
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shift the sample mean by (.076 ( .04)) / .028 4.14− − =  standard deviations, 
which is a very large influence indeed. 

It is well-known that mean returns are estimated poorly in that the standard 
deviation of the sample mean is typically a substantial fraction of the (absolute) 
value of the mean. In this example without the outlier, the standard deviation of 
the sample mean is .028, which is 70% of the size of the sample mean absolute 
value of .04. The single outliers increase the value of the sample mean by more 
than four standard deviations of the sample mean. This example emphasizes 
(most painfully) that the problem of accurately estimating asset mean returns is 
greatly compounded by the presence of outliers! 

6.2 Robust Statistics versus Classical 
Statistics 

One reason that we need to pay attention to outliers is that, as suggested by the 
example above, virtually all classical statistical parameter estimation and 
associated model-fitting methods lack robustness toward outliers. Even a single 
outlier can have an arbitrarily large adverse influence on classical model-fitting 
methods and classical statistical inference. Outliers can adversely influence not 
only mean and volatility estimates of returns but also covariance and correlation 
estimates, factor model parameter estimates, and optimal portfolio weights and 
related quantities such as Sharpe ratios. In data-oriented terms, a robust 
statistical model-fitting method is one that is not much influenced by outliers 
and provides a good fit to the bulk of the data. 

A vivid example of the difference between a classical method and a robust 
method is shown in Figure 6.5, which displays a time series of annual earnings 
per share (EPS) from 1984 to 2001 for a company with ticker INVENSYS, 
along with two straight-line fits, one the classical least squares (LS) fit and one a 
highly robust fit (ROBUST). We describe the latter in Section 6.5 in the context 
of estimating the CAPM beta. It is quite clear that there are two outlier values of 
EPS. The LS line fit is highly influenced by these outliers and consequently does 
not provide a good fit to the bulk of the data, while the opposite is true of the 
robust fit, which is influenced very little by the outliers. 

This particular example came to one of the authors from an analyst in the 
corporate finance office of a large, well-known firm. The analyst’s task was to 
compute one-year-ahead forecasts of EPS for hundreds of firms as part of a 
portfolio stock-selection process. This example indicates clearly that use of LS 
through years 1998 and 1999 would have produced very poor predictions for 
years 1999 and 2000, respectively, and can be expected to produce a poor 
prediction for 2001. It is impossible to predict the time and direction of future 
outliers with any degree of accuracy, for if this were possible one could make a 
lot of money with an appropriate investment strategy. Thus, we cannot expect to 
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accurately predict the EPS outliers in 1997 and 1998. However, with a robust fit, 
we can compute good predictions for future data that are similar to the bulk of 
the outlier-free historical data. 

While the data-oriented description of robust statistical model-fitting methods 
above has immediate appeal, it is important to know that there are rigorous 
probability-based statistical modeling foundations for robust statistics. These are 
probabilistic forms of stability of variance and minimization of bias under 
outlier-generating heavy-tailed deviations from a nominal (often normal) 
distribution model. An important approach for model parameter estimation is 
that of minimizing the maximum bias due to outlier contamination while at the 
same time achieving high statistical efficiency at the nominal model. For further 
details, see Martin and Zamar (1993) and Yohai and Zamar (1997).  

So far, we have been talking about robustness of model parameter “point” 
estimates. It is important to note that robustness is also quite important with 
regard to methods of statistical inference such as hypothesis tests, confidence 
intervals, and model selection criteria. It turns out that outliers can seriously 
distort the level and power of a t test and the coverage probability and error rate 
of a confidence interval. A robust hypothesis test is one for which neither the 
nominal error rate nor the power of the test are much affected by the presence of 
outliers. A robust confidence interval is one for which neither the confidence 
level nor the expected confidence interval length are much affected by outliers. 
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Figure 6.5 EPS versus Time with LS and Robust Line Fits 
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The importance of robust methods in finance is immediately clear—one does 
not want an investment decision to be highly influenced by a small number of 
data points. When the historical asset price or returns data are of limited extent 
and exhibit at most a small number of outliers, it is typically impossible to 
predict with any degree of certainty whether there will be outliers in the future 
investment horizon.5 In such situations, the bulk of the data is the only 
predictable part of the data, and an investment decision based on a robust 
statistical method may be preferred to the use of a procedure that is optimal 
under normality. On the other hand, robust statistics down-weight the influence 
of outlying returns, which reduces volatility estimates while reducing mean 
return estimates that have been influenced only by positive outliers and 
increasing mean return estimates that have been influenced only by negative 
outliers. Fund managers may rightly feel uncomfortable about making an 
investment decision based on a robust estimate. Such fund managers can 
nonetheless derive value from the use of robust methods as a diagnostic tool by 
comparing the results of the classical and robust methods. When both results 
agree, there is little worry about the possibility of outliers influencing the robust 
method, but when the two methods disagree substantially, the fund manager 
should be wary and look more closely at the data before making an investment 
decision. 

6.3 Robust Estimates of Mean Returns 

Suppose you have a set of identically distributed returns 1 2( , , , )nr r r  with 
common mean 1( ).E rµ =  You can estimate µ  with a variety of robust 
estimates that are influenced very little by outliers. The simplest and most 
transparent of these are the sample median and trimmed mean, both of which are 
based on the set of ordered returns 1: 2: :n n n nr r r≤ ≤ ≤  (the order statistics). 
The sample median ˆMEDµ  is the “middle” order statistic (i.e., the unique 
middle order statistic when n is odd, and the average of the two middle order 
statistics when n is even). For example, when n = 11, 6:11ˆ ,MED rµ =  and when n 

= 10, ( )5:11 6:11
1ˆ
2MED r rµ = + . An α-trimmed mean, ,ˆ ,trim αµ  is computed by 

discarding a fraction α  of the largest and smallest order statistic values and 
computing the sample mean of the remaining data points. For example, when n 
= 10, the 10% trimmed mean is  
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You can easily compute the median and trimmed mean in S-PLUS as illustrated 
below for the EVST returns. 

 
> median(EVST.returns) 
[1] -0.03863926 
> mean(EVST.returns,trim=.1) 
[1] -0.04756718  

 
You can also compute the sample mean with the outlier deleted just as you did 
in Section 6.1: 
 
> mean(EVST.returns[EVST.returns < 2]) 
[1] -0.0396 
 

The result is almost identical to the sample median and not grossly different 
from the 10% trimmed mean. 

While the simplicity of the median and trimmed means make them attractive 
robust estimators of location, they have some deficiencies that limit their general 
use. For example, it is not easy to construct confidence intervals for the sample 
median by any means other than bootstrapping, and the trimmed mean does not 
generalize nicely to other estimation problems such as fitting factor models. For 
this reason we introduce so-called M-estimators of location, a class of 
estimators that does generalize to many other model-fitting problems, including 
(as we shall see in Section 6.4) linear regression models.6 

A location M-estimator µ̂  is a solution of the minimization problem 
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where ŝ  is a robust scale estimate (see Section 6.4) and ρ  is a “robustifying” 
loss function. 

We obtain an estimating equation for µ̂  by differentiating the objective 
function (6.1) with respect to ;µ  this gives the M-estimator estimating equation 
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where .ψ ρ′=  There is an intuitively appealing weighted least squares (WLS) 
interpretation of the M-estimator: if we set 
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then we can rewrite the estimating equation (6.2) as a weighted least squares 
equation7 
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When 2( ) ,t tρ =  the psi function is the identity function ( ) ,t tψ ≡  and the 
weights wt are identically one. The solution is the least squares (LS) estimate of 
µ  (i.e., the sample mean). The sample mean lacks robustness because the 
quadratic character of the least squares loss function causes outliers to have 
undue influence on the estimate. A robust estimate is obtained by using a ρ  that 
grows more slowly than a quadratic function. The two main choices are: (a) a 

( )tρ  that grows like t  for large t, and (b) a bounded ( )tρ . It is known that the 
former choice does not provide bias robustness (Martin, Yohai, and Zamar, 
1989). Thus, we use a bounded ( )tρ  that was shown by Yohai and Zamar 
(1997) to be optimally bias-robust, subject to a constraint of specified efficiency, 
when the data are normally distributed. This ( )tρ  is implemented in the S-PLUS 
function lmRob. This type of ( )tρ  (RHO) is graphed in Figure 6.6 along with 
the corresponding ( )tψ  (PSI). 
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Figure 6.6 Optimal Bias Robust Rho and Psi Functions for 90% Gaussian 
Efficiency 

The formula for the rho function ( )tρ  is 
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The formula for the psi function ( )tψ  is easily obtained by differentiation. 

The role of the tuning constant c  is to adjust the efficiency of the estimate to the 
desired level when the returns are normally distributed. Efficiency when the 
returns are Gaussian is defined to be the variance of the least squares (LS) 
estimator divided by the variance of the robust estimator. The graphs in Figure 
6.6 show the ρ  and ψ  functions for an efficiency of 90%. This corresponds to 
an 11% increase in variance (only 3.3% in terms of increase in standard 
deviation) of the robust estimate over that of the least squares estimate (the 
sample mean in the present discussion). This increase in variance at nominal 
Gaussian returns is, in effect, a small “insurance premium” paid in exchange for 
protection against bias and inflated variance in the presence of outliers. The 
higher the premium paid, the more protection we get. If we require a Gaussian 
efficiency larger than 90%, the bound on the ρ  grows, and the cutoff points 
where the ψ  function goes to zero retreat further toward infinity. In the limit, 
when we require 100% Gaussian efficiency, the loss function becomes quadratic 
and we get the LS estimator. 

The weight function associated with the optimal ψ  function for 90% 
Gaussian efficiency has the shape shown in Figure 6.7. Note that the weight 
function is zero outside a finite interval; this means that the M-estimator will put 
zero weight wt on any return tr  that has sufficiently large scaled residuals 
ˆ ˆ ˆ( ) /tr sε µ= −  (i.e., the outliers will be totally rejected). Returns whose scaled 

residuals are sufficiently small (typically the bulk of them) will get weights wt 
equal to one.  

The S-PLUS function lmRob uses a sophisticated form of a nonlinear 
optimization method proposed by Yohai, Stahel, and Zamar (1991) to solve the 
M-estimate minimization problem (6.1). lmRob was designed for robustly 
fitting a linear regression (factor) model and computing associated robust 
statistical inference quantities such as robust standard deviations, t-statistics, and 
p-values. As a special case, lmRob can compute a robust estimate of mean 
returns (in which we have only an intercept term). We compute a robust M-
estimate of the mean and its robust standard deviation, and a plot of the weights, 
using Code 6.2. 
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EVST.mean <- lmRob(EVST.returns~1, eff=.95) 
coef(EVST.mean) 
sqrt(EVST.mean$cov) 
EVST.M.weights <- timeSeries(EVST.mean$M.weights, 
 from="1/1/1997",by="months") 
plot(EVST.M.weights,plot.args=list(type = "p"), 
 reference.grid=F, xlab="TIME",ylab=WEIGHTS") 

Code 6.2 Robust Location Estimate Weights 

Use of the eff = .95 argument gives us a robust estimate that would have 
95% efficiency if the returns were normally distributed. In the weights plot of 
Figure 6.8, we see that the huge outlier in Q4 1988 gets zero weight, as do a few 
other large returns; this is not surprising in view of Figure 6.4. 

We can repeat the commands above with a higher efficiency, say eff 
=.98, to perform a less severe down-weighting of data. This changes the robust 
mean returns estimate to –.066 and the standard deviation to .028 (which is not 
much of a change). The new weights, shown in Figure 6.9, are not very different 
from those for 95% Gaussian efficiency (shown in Figure 6.8). Note that as we 
change the efficiency, we change the cut-off values of the weight function in 
Figure 6.7. Higher efficiencies result in larger cut-off values and less severe 
rejection of outliers, while lower efficiencies result in smaller cutoff values and 
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Figure 6.7 Optimal Weight Function for 90% Gaussian Efficiency 
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more severe rejection of outliers. You are encouraged to try some lower values 
of efficiency, say .90 and .85. If you do so, you will see that while you get a few 
more zero weights and some other weights smaller than one, the robust estimate 
of mean returns and its standard deviation do not change much. This relative 
insensitivity of the robust estimate of mean returns with respect to the Gaussian 
efficiency/cutoff values is an attractive feature of the method. 

There is also an S-PLUS function location.m that computes only a robust 
M-estimate of location (the mean); i.e., it does not compute a standard error like 
lmRob. It uses a somewhat different weight function (the Tukey biweight) that 
still gives weight zero to all sufficiently large residuals. With the previous data it 
gives a location estimate of –.06 instead of –.04, a difference less than one 
standard error (.28) of the sample mean without the large outlier: 

 
> location.m(EVST.returns) 
[1] -0.0597 
 

Here are our recommendations on which estimator to use: 
 

1. If experience with your data tells you that you have only a certain 
fraction of outliers, and you do not need a standard error estimate, 
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Figure 6.8 Robust M-Estimate Weights (95% Gaussian Efficiency) 
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use the trimmed mean mean(returns, trim = alpha) 
with trimming fraction alpha slightly greater than your worst 
case estimate of the fraction of outliers. 

2. If you don’t know much about the fraction of outliers and don’t 
need a standard error, use location.m. 

3. If you need a standard error estimate, use lmRob with the default 
Gaussian efficiency of 90%. 

 
In S-PLUS, we can easily compute robust estimates of the mean returns for a 
collection of stocks with any of the robust mean (location) estimates above by 
using the apply function on the data frame of returns. To illustrate, we 
compute robust location estimates for five large cap stocks: 

 
> rob.means <- apply(largecap.ts[, 3:8]@data,2, 
  location.m) 
> round(rob.means, 3) 
   CAT    DD    G  GENZ    GM  HON 
 0.007 0.003 0.01 0.038 0.009 0.02 
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Figure 6.9 Robust M-Estimate Weights (98% Gaussian Efficiency) 
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6.4 Robust Estimates of Volatility 

It is well-known that standard deviations (volatilities) of stock returns are 
usually estimated more accurately than means. Hence, there has been a tendency 
to assume that accuracy of estimation of standard deviations is not a problem. 
As the example in Section 6.1 clearly shows, however, the presence of even a 
single outlier can cause a dramatic change in the value of the standard deviation 
(in that particular case, a little over a fourfold increase from .22 if the outlier 
were not present to .92 with the outlier present). 

There are several robust scale estimator functions in S-PLUS that provide 
robust estimates of returns volatilities and are approximately unbiased estimates 
of the standard deviation when the returns are normally distributed. These are 
the functions mad (median absolute deviation about the median), scale.a, 
and scale.tau. For the EVST returns, these functions give the following 
results: 

 
> mad(EVST.returns) 
[1] 0.1708058 
> scale.a(EVST.returns) 
[1] 0.1717936 
> scale.tau(EVST.returns) 
[1] 0.1864585 
 

These values are all similar, and any one of the estimates can be used safely. 
Since the mad is the simplest and most transparent, it can be used as a default 
(though in some applications the smoothness properties and conceptual 
transparency of scale.tau might be preferred). See the S-PLUS help files for 
more details on these robust scale estimates. 

6.4.1 Robustness Is Not Enough for Risk 
Management 

Figure 6.10 shows the time series of ZIF returns along with a histogram and two 
normal density estimates of the returns. Clearly, the ZIF returns exhibit several 
outliers.  

Code 6.3 gives the S-PLUS script to make the plot. 
 
par(mfrow = c(2, 1)) 
ZIF.returns.ts = microcap.ts[,"ZIF"] 
plot(ZIF.returns.ts, plot.args = list(type = "b",  
 pch = "."), reference.grid = F, ylab = "RETURNS", 
 main = "ZIF RETURNS") 
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returns = seriesData(ZIF.returns.ts)[,1] 
 
mu = mean(returns) 
sigma = stdev(returns) 
mu.rob = median(returns) 
sigma.rob = mad(returns) 
k = 8 
 
xlim = c(mu.rob - k * sigma.rob,  
 mu.rob + k * sigma.rob) 
hist(returns, nclass = "fd", col = 0, prob = T,  
 xlim = xlim, xlab = "RETURNS") 
x = seq(xlim[1], xlim[2], length = 100) 
lines(x, dnorm(x, mu, sigma), lty = 8, lwd = 2) 
lines(x, dnorm(x, mu.rob, sigma.rob), lwd = 2) 
leg.names = c("CLASSIC FIT", "ROBUST FIT") 
legend(-.28,9,legend=leg.names,lty=c(8,1),lwd=2) 
par(mfrow = c(1, 1)) 
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Figure 6.10 Time Series of ZIF Returns and Histogram and Two Density 
Estimates 
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mu 
mu.rob 
sigma 
sigma.rob 

Code 6.3 Classical and Robust Normal PDF Fits 

The classical and robust estimate values computed by the script above are: 
 
> mu 
[1] -0.0008619089 
> mu.rob 
[1] 0.007695105 
> sigma 
[1] 0.06311233 
> sigma.rob 
[1] 0.03714824 
 

Suppose you want to calculate a 1% value-at-risk (VaR) (i.e., the lower 1% 
point of the fitted distribution). It is obvious from Figure 6.10 that neither the 
classical nor the robust fit of the normal distribution will suffice for this purpose. 
Let’s examine the plots a bit more carefully. 

Notice that although the mean and median (MED) differ, they are both rather 
close to zero because the positive and negative outliers tend to balance. On the 
other hand, the classical standard deviation is considerably larger than the 
median absolute deviation about the median (MAD). The dashed line is a 
normal density estimate based on the mean and standard deviation. The solid 
line is a normal density estimate based on MED and MAD. Because the mean 
and MED are quite close, both densities are well-centered on zero. But because 
of the difference between the standard deviation and MAD, the normal density 
based on the latter fits the bulk of the data well but fails to adequately describe 
the tails. This is to be expected since the data require a heavy-tailed density 
description. On the other hand, the normal density (fit with the classical 
estimates) is a very poor fit to the center of the data, but because of the inflated 
standard deviation estimate does a better job of estimating the tails (though it is 
still not good enough). This behavior of the normal fit explains why some value-
at-risk (VaR) calculations are not so bad under normality at the 95% level but 
are quite inaccurate for 99% VaR. The robust MED and MAD indeed give you 
good estimates of the location and scale of the returns. But they are not a 
solution for getting better tail estimates! If you want good tail probability 
estimates, you need to fit a heavy-tailed distribution. Often for smallish sample 
sizes (such as five years of monthly data) a normal mixture with two or three 
components will do. For larger data sets (such as a year or more of daily data), 
one can do well by fitting stable distributions whose fat tails provide a good 
model for outliers (see Rachev and Mittnik, 2000). 
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6.4.2 Robust EWMA Estimates of Volatility 

It is an overlooked fact that exponentially weighted moving average (EWMA) 
estimates often badly overestimate volatility following the occurrence of an 
isolated outlier return. Fortunately, it is quite easy to obtain a robust version of 
an EWMA volatility estimate by a simple modification of the classical EWMA 
algorithm, as we describe below. Figure 6.11 illustrates the dramatic difference 
between classical and robust EWMA estimates using two years of daily returns 
for a mid-cap stock with ticker ROH. The time series of returns, shown in the 
top panel of Figure 6.11, clearly reveals several outliers indicative of unusual 
movements in the price series. The middle panel shows a classical EWMA 
volatility time series estimate using a default smoothing parameter of .93. The 
classical EWMA estimate clearly grossly overestimates the volatility following 
the occurrences of the outliers, particularly after the two negative outliers in 
early Q2 and Q3 of 2000 and the outliers near the end of Q3 of 2001. The robust 
EWMA volatility estimate, shown in the bottom panel of Figure 6.11, does not 
suffer from this defect and produces much more reasonable-looking estimates of 
the volatility following the outliers. 

The classical EWMA volatility estimate is the standard deviation series 
obtained as the square root of the variance estimates computed by the recursion 

 
 2 2 2
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Here 0t  is a starting time and 
0
2ˆtσ  is an initial variance estimate. We can easily 

construct a robust EWMA volatility estimate that in turn provides a robust 
unusual movement test (UMT) statistic with robustness of power as well as level 
of test. The robust EWMA algorithm is defined as follows: 
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The parameter a is a rejection threshold. We recommend a default value of a = 
2.5 for the rejection threshold; this results in using a pure prediction 

2 2
1ˆ ˆ   t tσ σ+ =  about 1.2% of the time when the returns are normal and 2ˆ tσ  is 

equal to the true volatility of the return at time t. 
In addition to having a good robust volatility estimate, one would sometimes 

like to have a good test statistic for providing an alert that a return is an outlier 
(and correspondingly that the asset price has made an unusually large 
movement). It is natural to use the following statistic, similar in form to a 
classical two-sided t-test: 

 



6.4 Robust Estimates of Volatility 213 

 ,ˆ
t

t
t

r
UMT

σ
=  (6.7) 

 
where tr  is the asset return at time t and ˆtσ  is the classical EWMA estimate. 
This statistic is called the classical UMT statistic. However, since we know that 
the classical EWMA estimate overestimates volatility at times following an 
outlier, the denominator of the statistic will be larger than it would be without an 
outlier present. Thus we might anticipate it will result in a UMT with low power 
for detecting an unusual movement.8 This suggests that one might obtain a 
robust UMT statistic by substituting the robust EWMA estimate ˆtσ  in the 
denominator. Results for the classical and robust UMT’s for the ROH returns 
are shown in Figure 6.12. The horizontal dashed line at c = 3.5 in Figure 6.12 is 
a test rejection threshold chosen to yield a false alarm rate of approximately 
.001. The classical UMT fails to detect any outlier returns or unusual movement 
in prices, while the robust UMT clearly detects the five largest outliers in Figure 
6.11 and gives a weak indication of two others. 

We remark that if the UMT test statistic had a standard normal distribution, a 
rejection threshold of c = 3.29 would yield a false alarm rate of .001. However, 
since this statistic is rather like a t-test, one has to naturally question the 
accuracy of a standard normal approximation. To answer this question, we make 
the Q-Q plot in Figure 6.13. This plot shows that the robust UMT statistic 
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Figure 6.11 Time Series of Returns and Estimates of Volatility for ROH 
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follows the normal distribution closely, with the exception of a few outliers and 
straggling values. 

This leads us to use a normal distribution as a crude approximation for 
purposes of computing a threshold value. We fit this normal distribution to the 
data with robust location and scale estimates. The median estimate of location 
turns out to be exactly zero (and the mean is essentially equal to the median, 
with value .0002), while the robust scale estimate is 1.068 (as compared with the 
standard deviation value of 1.21, which is inflated by the outliers). The upper 
.0005 quantile of an 2(0, (1.068) )N  distribution is 3.51, giving a false alarm rate 
of .001 for the two-sided test. These values are not quite fair because they were 
computed post hoc. But in practice one could apply the same approach using 
data prior to the times at which the test statistics were computed. 
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Figure 6.12 Classical and Robust UMT Test Statistics Time Series 

 
Code 6.4 and Code 6.5 give an EWMA function and the script, respectively, 

for making the above computations and plots above. 
 
ewma <- function(x, robust = T, lambda = 0.93,  
 nstart = 20, a = 2.5) 
{  
 n <- length(x) 
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Figure 6.13 Robust EWMA and UMT for ROH 

 
 # Compute initial variance estimate var.start 
 var.start <- scale.tau(x[1:nstart])^2 
 
 # Create output vector with padded zero's and 
 # var.start 
 varvec <- c(rep(0, nstart - 1), var.start,  
  rep(0, n - nstart)) 
 
 # EWMA recursion 
 var.old <- var.start 
 ns1 <- nstart + 1 

 for(i in ns1:n) { 
  r2 <- x[i]^2   
  if(robust && r2 > a^2 * var.old)   
   r2 <- var.old 
  var.new <- lambda * var.old +  
   (1 - lambda) * r2 
  var.old <- var.new 
  varvec[i] <- var.new 
 } 
 varvec^0.5 
} 

Code 6.4 Function to Compute Classical and Robust EWMA 
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ticker <- "ROH"  
tsdata <- midcapD.ts[,ticker] 
returns <- tsdata@data[,1] 
n <- length(returns) 
lambda <-.93 
nstart <- 20 
a <- 2.5 
thresh <- 3.5 
vol.classic <- ewma(returns, robust=F, 

lambda=lambda, nstart=nstart,a=a) 
vol.classic 
vol.rob <- ewma(returns, lambda=lambda, 

nstart=nstart, a=a) 
vol.rob 
ylim <- range(vol.classic, vol.rob) 
vol.classic.ts <- timeSeries(vol.classic,  
 positions = tsdata@positions) 
vol.rob.ts <- timeSeries(vol.rob,  
 positions = tsdata@positions) 
par(mfrow = c(3,1)) 
plot(tsdata[,ticker],reference.grid = F, 
 main = paste(ticker,"RETURNS")) 
plot(vol.classic.ts,ylim = ylim, reference.grid = 

F, main = paste(ticker,"CLASSIC EWMA 
VOLATILITY")) 

plot(vol.rob.ts,reference.grid = F, ylim = ylim,  
 main = paste(ticker,"ROBUST EWMA VOLATILITY")) 
# Compute UMT 
par(mfrow = c(2, 1)) 
umt.classic <- 
 abs(returns[nstart:n])/vol.classic[nstart:n] 
umt.classic <- c(rep(0,nstart-1),umt.classic) 
umt.classic.ts = timeSeries(pos = tsdata@positions, 
 data = umt.classic) 
umt.robust <- 

abs(returns[nstart:n])/vol.rob[nstart:n] 
umt.robust <- c(rep(0,nstart-1),umt.robust) 
umt.robust.ts <- timeSeries(pos=tsdata@positions, 
 data = umt.robust) 
ylim <- 1.1*c(0,max(thresh, 
 max(umt.classic,umt.robust))) 
plot(umt.classic.ts, plot.args=list(type="b", 
 pch="."), reference.grid=F, ylim=ylim, 
 ylab="UMT", 
 main=paste(ticker,"UNUSUAL MOVEMENT TEST")) 
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abline(thresh, 0,lty=8) 
plot(umt.robust.ts, plot.args=list(type="b", 
 pch="."), reference.grid=F, ylim=ylim,  
 ylab="ROBUST UMT", main=paste(ticker, 
 "ROBUST UNUSUAL MOVEMENT TEST")) 
abline(thresh, 0,lty=8) 
par(mfrow=c(1, 1)) 
# Q-Q plot and threshold estimate 
par(pty="s") 
umt.rob.signed <- 

returns[nstart:n]/vol.rob[nstart:n] 
qqnorm(umt.rob.signed, 
 ylab="Robust UMT Values",pch=".") 
qqline(umt.rob.signed) 
mean(umt.rob.signed) 
sigma <- stdev(umt.rob.signed) 
sigma 
abs(qnorm(.0005,0,sigma)) 
sigma.rob <- scale.tau(umt.rob.signed) 
mean(umt.rob.signed) 
sigma.rob 
abs(qnorm(.0005,0,sigma.rob)) 
par(pty = "") 

Code 6.5 Compute and Plot Classical and Robust EWMA and UMT 

We remark that the detection power of the classic UMT might be improved 
by using 1ˆtσ −  in the denominator instead of ˆ .tσ  This should clearly improve the 
ability to detect isolated outliers, but it may not suffice to detect any additional 
outliers that follow in close time proximity to a first outlier. The reader could 
check this out by modifying Code 6.5 to use 1ˆtσ −  in place of ˆtσ  in the test 
statistic (Exercise 5). 

It is apparent that the robust EWMA volatility estimate has many potential 
uses in portfolio construction and risk management calculations, as would 
potential extensions to robust EWMA covariance matrix and mean return 
estimates. Clearly, in a time period subsequent to an isolated outlying return 
(positive or negative), one does not want to rebalance a portfolio based on a 
volatility estimate that grossly overestimates the true volatility and a covariance 
matrix estimate that is quite distorted by the outlying return. Generalizations of 
the robust UMT could be used to detect regime shifts from good times to bad 
times and vice versa. 
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6.5 Robust Betas 

Beta estimates for assets are often used by portfolio managers to decide whether 
an asset should be added to a portfolio to increase or decrease its beta. It is 
therefore important to have reliable beta estimates that accurately reflect the risk 
and return characteristics of the assets under scrutiny. This section examines the 
impact of outliers on beta estimates and shows that even a single outlier in an 
asset’s returns can adversely influence the conventional estimates of beta, which 
gives a completely misleading picture of the asset’s risk and return 
characteristics. 

CAPM9 betas are typically estimated by fitting the single-factor market 
model 

 
 , ,       1, 2, , ,t M t tr r t nα β ε= + + =  (6.8) 

 
where tr  is the return on an asset or portfolio at time t, ,M tr  is the market return 
at time t, and tε  is the error term in the model. In the United States, the market 
return is often taken to be the return on a value-weighted index of stocks from 
the NASDAQ, New York, and American stock exchanges. The parameter 
estimates α̂  and β̂  are obtained by fitting a straight line to the scatterplot of tr  
versus ,M tr  by some “good” method. The sanctified “good” method is that of 

(ordinary) least squares (LS), i.e., α̂  and β̂  are obtained by minimizing the sum 
of squared residuals 
 

 ( )2
,

1
.

n

t M t
t

r rα β
=

− −∑  (6.9) 

 
This is often (but not always) good enough for large cap stocks, as the 

Microsoft example in Figure 6.14 and Figure 6.15 shows. The first of these 
figures shows the monthly time series of Microsoft returns and market returns, 
while the second displays both the LS and the robust straight-line fits and 
corresponding beta estimates. The LS and robust betas are quite close to one 
another, both on a relative basis and with respect to the ordinary LS standard 
error value of .28. 

The robust beta is computed using the optimal bias robust regression M-
estimate method described in Section 6.3, with tr µ−  replaced by 

,t M tr rα β− − . This is the method implemented by the function lmRob. The 
time series plots of Figure 6.14 and the classic and robust beta computations for 
Figure 6.15 can be replicated using Code 6.6. 
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mkt.ret.ts <- largecap.ts[,"market"] 
ticker <- "MSFT" 
stock.ret.ts <- largecap.ts[,ticker] 
par(mfrow = c(2,1)) 
plot(stock.ret.ts,plot.args = list(type = "b", 
 pch = "."), reference.grid = F, ylab = "RETURNS",  
 main = ticker)  
plot(mkt.ret.ts,plot.args = list(type = "b", 
 pch = "."), reference.grid = F, ylab = "RETURNS", 
 main = "MARKET")  
par(mfrow = c(1,1)) 
par(pty = "s") 
mkt.ret <- mkt.ret.ts@data[,1] 
stock.ret <- stock.ret.ts@data[,1] 
plot(mkt.ret,stock.ret, xlab = "MARKET RETURNS", 
 ylab = paste(ticker,"RETURNS")) 
beta.ls <- lm(stock.ret ~ mkt.ret) 
abline(beta.ls,lty = 8) 
beta.rob <- lmRob(stock.ret ~ mkt.ret) 
abline(beta.rob) 
text.ls <- as.character(round(coef(beta.ls),2)[2]) 
text.ls <- paste("LS BETA =",text.ls) 
text.rob <- 

as.character(round(coef(beta.rob),2)[2]) 
text.rob <- paste("ROBUST BETA =",text.rob) 
legend(-.15,.37,c(text.ls,text.rob),lty = c(8,1)) 
par(pty = "") 

Code 6.6 Classic and Robust Betas 

It can happen, of course, that the returns of a stock contain one or more highly 
influential outliers that adversely influence the LS beta. This behavior is 
particularly prevalent in small cap and microcap stocks and is vividly illustrated 
in Figure 6.16 for the microcap stock EVST, whose time series of returns 
contains one very large outlier value representing a return of close to 700% 
(recall Figure 6.1). You can produce Figure 6.16 by replacing largecap.ts 
by microcap.ts and ticker = "MSFT" with ticker = "EVST" in 
Code 6.6. 
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Here the single outlier causes the LS line to fit the data quite poorly when the 
market returns are positive, whereas the robust line fit is not greatly affected by 
the outlier and fits the bulk of the data quite well. Note that in this example the 
outlier resulted in an LS beta of 3.17; a consumer of the LS beta would think 
that EVST has a high level of risk and high expected excess return relative to the 
market, even though this conclusion rests on a single data point (and one that 
was an amazingly high return at that). On the other hand, the robust beta value 
of 1.13 indicates that EVST behaves for the most part like the market, which is 
essentially the conclusion one would draw if the outlier were deleted. 

Suppose that instead of the raw β̂  estimates one computed an adjusted beta 
according to the fossilized shrinkage formula sometimes used by commercial 
financial data service providers,  

 
 ˆ.33 .67 ,β β= + ⋅  (6.10) 
 
where β̂  is either the LS or robust beta estimate.10 This gives 2.45LSβ =  and 

1.09,ROBUSTβ =  respectively. The influence of the outlier would be reduced, 
but this adjustment would not solve the problem with the LS estimate. 

It is a rather surprising fact that most commercial providers of beta estimates 
appear to be totally unaware of the impact of outliers on the betas that they 
deliver. This is documented in Martin and Simin (2003), who found that out of 
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Figure 6.14 Microsoft and Market Monthly Returns for Five Years 
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the nine commercial providers of beta estimates that they surveyed, only two 
appeared to be aware of the issue.11 

In order to more fully evaluate the value of a robust beta over an LS beta, one 
needs to know whether robust betas predict robust betas better than LS betas 
predict LS betas. Martin and Simin (2003) answer this question in the 
affirmative, giving further support to the use of robust betas in practice. Our 
recommendation is to compute both LS and robust betas and signal an alert that 
one or more outliers are probably influencing the LS estimate whenever the 
difference between the two estimates is larger than a user-supplied threshold. In 
this case, the provider should supply additional information such as a time series 
plot of returns, the time(s) of occurrence of the outlier(s), and potentially 
important related information such as corporate announcements, etc. 

6.6 Robust Correlations and Covariances 

In this section, we show that multivariate outliers in asset returns can have a 
substantial influence on correlation and covariance matrix estimates, and that 
one can use robust covariance matrix estimates to accurately measure the 
covariance and correlation structure of the bulk of the data. Figure 6.17 shows 
time series of 81 monthly returns for the following assets: U.S. alternative 
investments in DM (AI), high-quality German mortgage bonds (Pfand), U.S. 
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Figure 6.15 Least Squares and Robust Betas for Microsoft 
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private equity hedged in DM (PEHinDM), and U.S. high-yield bonds hedged in 
DM (USHYHinDM).12 

The series of returns appear to have some distinct volatility regimes over 
time, and possibly a few outliers. For example, the PEHinDM and 
USHYHinDM series have relatively low volatility during the early time periods, 
while the Pfand series seems to have a lower volatility near the end of the series. 
The PEHinDM returns have an outlier during Q3 1998, and USHYHinDM 
appears to have an outlier in each of Q3 and Q4 1998 as well as an outlier in 
early 2001. The pairwise scatterplots in Figure 6.18 reveal some clear outliers 
and deviations from the elliptical shape of a multivariate normal distribution. 

Figure 6.17 is a Trellis time series plot made with a modified version of the 
Trellis time series plotting function seriesPlot that comes with the S-PLUS 
add-on module S+FinMetrics.13 Use the commands in Code 6.7 to make the 
Trellis time series plot and the pairwise scatterplots. 

 
data.ts <- normal.vs.hectic.ts[-(1:60),2:5] 
data <- seriesData(data.ts) 
y.name <- colIds(data.ts) 
seriesPlot(data.ts,one.plot=F, 
 strip.text=y.name,col=1) 
pairs(data) 

Code 6.7 Trellis Time Series Plots and Pairwise Scatterplots 
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Figure 6.16 Least Squares and Robust Betas for EVST 
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Figure 6.17 Monthly Time Series of Asset Returns 

 

PEHinDM

-0.04 0.0 0.04 -0.02 0.0 0.01

-0
.1

5
-0

.0
5

0.
05

-0
.0

4
0.

0
0.

04

USHYHinDM

AI

-0
.0

5
0.

05

-0.15 -0.05 0.05

-0
.0

2
0.

0
0.

02

-0.05 0.0 0.05

Pfand

 
Figure 6.18 Pairwise Scatterplots of the Asset Returns 
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Figure 6.19 shows visual and tabular pairwise displays of classical and robust 
correlations for these returns. The robust correlations are obtained from a robust 
covariance matrix in a manner analogous to the way a classical correlation 
matrix is obtained from a classical covariance matrix: the elements of the robust 
covariance matrix are divided by the appropriate products of robust standard 
deviation (robust scale) estimates. For two of the pairs of returns, there are 
substantial differences between the classical and robust correlations: for Pfand 
and PEHinDM the classical correlation is .14 and the robust correlation is .49, 
and for Pfand and USHYHinDM, the classical correlation is .30 and the robust 
correlation is .66. These differences are consistent with the fact that the bulk of 
the data in the corresponding scatterplots clearly have a substantial positive 
correlation, while the outliers in these plots tend to make the data look more 
circular and hence less correlated. 

Assuming you have already computed data.ts and data as in Code 6.7, 
Code 6.8 will produce Figure 6.19. 
 
cov.fm <- fit.models(list(ROBUST = covRob(data), 
 CLASSICAL = cov(data))) 
plot(cov.fm,which.plots = 3) 

Code 6.8 Robust Covariance Matrix and Correlation Display 

The function covRob, appearing in Code 6.8, allows you to use any of 
several types of robust covariance matrices, with the default being the “Fast” 
Minimum Covariance Determinant (MCD) estimate of Rousseeuw and Van 
Driessen (1999). The MCD estimate computes the covariance matrix of the 
fraction quan of the data that yield the minimum covariance determinant, with 
the default quan = .75. The MCD estimate also returns a robust estimate of 
the multivariate mean (the mean returns in this application) consisting of the 
sample mean of the fraction quan of observations that yield the minimum 
covariance determinant. The reader is encouraged to experiment with different 
values of quan for the MCD estimate, and with the other robust covariance 
matrix estimates provided through covRob (see the online Robust Library User 
Guide (Insightful Corp., 2002) and help files for further details). 

6.6.1 Uses of Robust Covariances and Correlations 

There are at least three ways robust covariances and correlations can be used in 
portfolio construction: 

 
1. As an exploratory data analysis (EDA) tool in order to discover 

whether the classical correlation and covariance estimates are 
influenced by outliers. In the case where the classical and robust 
methods agree, there is little need for concern, but when there are 
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substantial differences, one is well-advised to look more carefully at the 
data for possible explanations that will lead to better investment 
decisions. In some cases, influential outliers may be due to data errors, 
and in such cases the robust estimate will be more reliable than the 
classical estimate. In other cases, the influential outliers are valid data 
points, and the portfolio manager needs to decide whether they are 
representative of the future behavior of the returns, or are unique events 
that are unlikely to occur during the investment horizon under 
consideration and as such should be disregarded. 

2. To construct robust multivariate distances for detecting unusual 
movements in multivariate returns (e.g., detecting normal times versus 
hectic times). 

3. To obtain robust versions of Markowitz mean-variance optimal 
portfolios. By comparing the robust result with a classical mean-
variance optimal portfolio, we will be alerted to the possibility that one 
or more outliers influence a particular optimal portfolio or Sharpe ratio. 

 
The last two applications are described in the next two sections. 
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Figure 6.19 Classical and Robust Correlations for Asset Returns 



226 6 Robust Statistical Methods for Portfolio Construction 

6.7 Robust Distances for Determining Normal 
Times versus Hectic Times    

One way of defining “hectic” or “unusual” times, proposed by Scherer (2004), is 
based on the following statistical measure of the (squared) distance of a return 
vector 1 2( , , , )t t t tkr r r=r  from the vector of sample means µ̂  over the history 
of interest: 

 
 ( ) ( )2 1ˆˆ ˆ .t t td −′= − −r µ Ω r µ  (6.11) 
 
See also Chow, Jacquier, Kritzman, and Lowry (1999). Here Ω̂  is the classical 
sample covariance matrix and 1ˆ −Ω  is its inverse, and we assume a history of 
length n. In the statistical literature, this distance is called the Mahalanobis 
distance. When the returns have a multivariate normal distribution and n is not 
too small, the distances above have a distribution that is well-approximated by a 
chi-squared distribution with k degrees of freedom (dof). By definition, 
“unusual” times are those that do not happen very often and so represent a 
smallish fraction of the returns history during which the data have considerably 
different behavior than during the remaining majority of “normal” times. Thus it 
is reasonable to define unusual times as those for which the values of td  are 
larger than the square root of an upper-tail percentage point of this chi-squared 
distribution (e.g., the square root of the upper 1%, 2.5%, or 5% point). 

Scherer (2004) provides a convincing example of this approach to detecting 
unusual times when the classical sample mean and sample covariance estimates 
are used in the squared distance above. In particular, the example shows that it is 
possible to separate unusual times from normal times. In general, however, the 
use of the classical sample mean and covariance matrix may not yield a highly 
reliable method of detecting unusual times: since outliers can distort the sample 
mean and covariance estimates, the resulting squared distance may not be very 
reliable. Robust mean and covariance matrix estimates do not suffer from this 
drawback and therefore are ideal alternatives to the classical sample means and 
covariances for detecting unusual times. Thus we compute robust Mahalanobis 
distances by replacing the classical mean and covariance matrix estimates in the 
Mahalanobis distance with robust estimates. We illustrate this approach using 
the data shown in Figure 6.20. 

Figure 6.20 shows the classical and robust (Mahalanobis) distances for the 
time series of multivariate returns (i.e., the values of ).td  The horizontal dashed 
line in the figure is the upper 2.5% point of a chi-squared distribution with four 
degrees of freedom. This figure reveals that the classical distance only detects 
three unusual times (two of these are just barely detected), while the robust 
distance clearly detects thirteen unusual times in two distinct temporal clusters, a 
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cluster of seven at the end of the series and a cluster of four near the middle of 
the series. There are also two other unusual times, month 56 and month 65. 
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Figure 6.20 Robust and Classical Distances 

Given the previous computation of cov.fm in Section 6.6, you can make the 
plot in Figure 6.20 with the command 

 
plot(cov.fm,which.plots = 2,id.n = 14) 
 

Now that we know the unusual times, we can repeat the application of classical 
and robust correlations and distances to the unusual portion of the data. The 
results are shown in Figure 6.21 and Figure 6.22 for the two clusters of unusual 
times. 

The most striking bit of information revealed in Figure 6.21 is that the 
correlation between the German mortgage bond returns (Pfand) and returns on 
the other assets has switched from being positive during usual times to being 
substantially negative. This is natural during market downturns when there is a 
flight from equity investments. This behavior is also reflected in the pairwise 
scatterplots of Figure 6.23, which clearly reveal one or two outliers in the 
scatterplot of Al versus Pfand. The classical distances in Figure 6.22 completely 
miss the existence of these outliers, while the robust distances reveal two clear 
outliers and one marginal outlier. 

Code 6.9 gives the S-PLUS code for producing the analysis of Figure 6.21, 
Figure 6.22, and Figure 6.23. 
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data <- data[c(46:49,72:80),]  
cov.fm <- fit.models(list(ROBUST = covRob(data), 
 CLASSICAL = cov(data))) 
plot(cov.fm,which.plots = c(2,3),id.n = 14) 
pairs(data) 

Code 6.9 Analysis of Unusual Times Data 
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Figure 6.21 Classical and Robust Correlations for Two Clusters of Unusual 
Times 

It is worth explaining why the distance measure (classical and robust) 
introduced above is the appropriate “statistical” distance. If you imagine an 
elliptical multivariate distribution for your returns (e.g., a multivariate normal or 
multivariate t distribution), then the right statistical distance is one that is the 
same for any data point lying along the same elliptical contour. This is what the 
Mahalanobis distance provides. A useful geometrical way to see what is going 
on with this distance is to consider the following re-expression of the (squared) 
distance. We assume that the true covariance matrix and mean return vector are 
Ω  and ,µ  and without loss of generality (by a shift of origin) assume that 

.=µ 0  Then 
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Figure 6.22 Robust and Classical Distances for Two Clusters of Unusual 
Times 
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Figure 6.23 Pairwise Scatterplots for the Two Clusters of Unusual Times 
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You easily check that t′z  has the identity as its covariance matrix. Thus, 

using td  is equivalent to making a transformation of the data so that the 
distribution is spherical rather than elliptical and then using the ordinary 
Euclidean distance in this new coordinate system.  

The reason that a classical covariance matrix often fails to provide robust 
distances is that outliers often distort the estimated covariance matrix to such an 
extent that the transformation above does not result in a spherical scatter for the 
bulk of the data. Consequently, outliers are not reliably detected using the 
classical covariance matrix. 

We emphasize the point that unusual times, consisting of locally extreme 
movements of one or more of the returns in a collection of returns, are 
frequently occurring behaviors by providing a second example, using monthly 
returns of four hedge fund indices: EMERGING MARKETS, EUROPE, 
EVENT DRIVEN, and EQUITY. The classical and robust correlations shown in 
Figure 6.24 clearly indicate that some outlying returns are influencing the 
classical covariance and correlation estimates.  

Figure 6.25 shows that the classical distances give only a weak indication that 
there is something unusual going on at two or three time points, while the robust 
distances give a very strong indication of unusual movement at three to five time 
points in two clusters (time points 4 and 6 and time points 11, 12, 14, and 16). 

A quick look at all pairwise scatterplots in Figure 6.26 reveals several 
multivariate outliers. The time series plots in Figure 6.27 reveal that the first 
cluster with unusual movement is in the emerging market returns in Q2 and Q3 
of 1999, and the second cluster is joint unusual movements in the emerging 
market returns at the beginning of Q1 2000 and in the returns for Europe at the 
end of Q4 1999 and in the first and third months of Q1 2000. 

Code 6.10 gives S-PLUS code for producing Figure 6.24 through Figure 6.27. 
 
returns <- seriesData(hfunds.ts) 
cov.fm <- fit.models(list(ROBUST = covRob(returns), 
 CLASSICAL = cov(returns))) 
plot(cov.fm,which.plots = c(2,3),id.n = 14) 
pairs(returns) 
par(mfrow = c(4,1)) 
y.name = colIds(hfunds.ts) 
seriesPlot(hfunds.ts,one.plot=F, 
 strip.text=y.name,col = 1) 

Code 6.10 Robust Analysis for Hedge Fund Indices  
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Figure 6.24 Classical and Robust Correlations for Four Hedge Fund Index 
Returns 
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Figure 6.25 Robust and Classical Distances for Hedge Fund Index Returns 
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Figure 6.26 Pairwise Scatterplots for the Hedge Fund Index Returns 
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Figure 6.27 Time Series Plots of Hedge Fund Index Returns 
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6.8 Robust Covariances and Distances with 
Different Return Histories 

It often happens that histories of returns for a collection of portfolio assets cover 
different periods of time. This situation is quite prevalent in “funds of funds” 
contexts where a manager is trying to select and optimize a portfolio of funds 
from a pool in which some funds have existed for only a few years while others 
have existed for ten years or more. In such a case one does not, at first blush, 
have an obvious way to compute classical or robust covariance matrices using 
all the data available. When confronted with this situation, most managers will 
opt to use the longest common history of the data by truncating all the data to 
the length of the shortest history available, a practice that often wastes useful 
information in the asset returns with longer histories. For example, Figure 6.28 
shows five sets of hedge fund index returns, with the Emerging Markets (EM) 
index having the longest history (January 29, 1993 to March 31, 2003), and the 
High Yield (HY) and Health indices having common shortest histories (January 
31, 1997 to March 31, 2003). All of the returns above exhibit a clear negative 
outlier in 1998, when markets took a dive following the Russian credit default. 
In addition, Health (a Health and Biotech index) exhibited a wild positive swing 
in 1999 prior to the dot-com collapse, as well as a wild negative swing following 
the dot-com collapse in spring of 2000, and Events exhibits a large positive 
outlier in 1995. A good detection method should reveal these unusual 
movements, along with others that may not be so apparent, at any time in the 
entire history of the series (from the earliest date of the longest series to the end 
of the series). It would be wasteful to throw away the Equity, EM, and Events 
returns prior to January 31, 1997, in order to compute robust covariance 
matrices and robust distances. To detect unusual times (or simply unusual data) 
at every instance over the entire time span of the data, we need a method to 
compute a robust covariance matrix of appropriate dimension and the associated 
robust distances. 

Effective use of all the data is a classical missing data problem for which 
there exists a solution in the context of maximum likelihood estimation under 
multivariate normal returns (Stambaugh, 1997). Here we briefly explain the 
method in detail for the special case of two groups of assets, where each asset 
within a group has the same history, and indicate how the method is generalized 
to more than two groups. 

Let the first group have 1k  assets and let the second group have 2k  assets, 
where the first group has the longer history, 1,2, , ,t T=  and the second group 
has the shorter history, , 1, , ,t s s T= +  with 1.s >  Let ˆ ML

longµ  and ,
ˆ ML

long longΩ  be 
the Gaussian maximum likelihood estimators of the mean vector and covariance 
matrix of the first group with the long history (i.e., the usual sample mean vector 
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and sample covariance matrix with divisor T). Let ˆ truncated
longµ  be the sample mean 

vector of the longer group after truncating the returns to make their history have 
the same period as the shorter group, and let ˆ shortµ  be the sample mean vector 
of the shorter group. It is important to note that this is not the maximum 
likelihood estimator of the shorter group’s mean vector: the longer series is 
generally correlated with the shorter series and therefore contains information 
about the mean vector of the shorter series. Let , ,    1,2, , ,long t t T=r  be the 

1k -dimensional column vectors of returns of the first group, and let 

, ,    , 1, ,short t t s s T= +r , be the 2k -dimensional column vectors of the second 
group. Consider the multivariate linear regression model  

 
 , , ,    , 1, ,short t long t t t s s T= + ⋅ + = +r α B r ε  (6.13) 

 
of the shorter set of returns on the longer set of returns over the shorter history. 
Let α̂  and B̂  be the Gaussian maximum likelihood (least squares) estimates of 
the regression coefficients, and let ˆ

εΩ  be the sample covariance matrix of the 
residuals ˆ ,  , 1, , ,t t s s T= +ε  from the maximum likelihood fit. 
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Figure 6.28 Hedge Fund Index Returns with Different Starting Dates 
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We can now summarize the overall maximum likelihood estimation results. 
The maximum likelihood estimate (MLE) of the mean vector of the shorter 
group series is 

 
 ( )ˆˆ ˆ ˆ ˆ .ML ML truncated

short short long long= + ⋅ −µ µ B µ µ  (6.14) 

 
The overall mean vector MLE is  

 
 ( )ˆ ˆ ˆ,  .ML ML ML

long short=µ µ µ  (6.15) 

The maximum likelihood estimate of the overall covariance matrix is 
 

 , ,

, ,

ˆ ˆ
ˆ ,ˆ ˆ

ML ML
long long long shortML
ML ML
short long short short

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

Ω Ω
Ω

Ω Ω
 (6.16) 

 
where 

 
 , ,

ˆ ˆ ˆˆ ˆML ML
short short short shortε ′= + ⋅ ⋅Ω Ω B Ω B  (6.17) 

and 
 

 , ,
ˆ ˆˆ .ML ML

short long long long= ⋅Ω B Ω  (6.18) 
 

In applications where there are more than two groups and more than two sets of 
common histories with different starting dates, the method above can be applied 
recursively to compute an overall Gaussian maximum likelihood estimate of the 
mean vector and covariance matrix. Details may be found in Section 4 of 
Stambaugh (1997). 

6.8.1 Robustifying the Stambaugh Method 

The Stambaugh method relies heavily on a multivariate Gaussian assumption for 
the returns. As we have seen, this is not a very safe assumption when dealing 
with asset returns. Furthermore, we need a robust version of the method that is 
not much influenced by a few outliers. Fortunately, it is rather straightforward to 
create a robust version by making the following three modifications: (a) replace 
sample mean estimates by robust location estimates, (b) replace the least squares 
multivariate regression estimates α̂  and B̂  with robust regression estimates, 
and (c) replace each of the Gaussian MLE sample covariance matrix estimates 
above (including ˆ )εΩ  with a robust covariance matrix estimate. In the example 
below, we use (a) location.m for the robust location estimates, (b) lmRob to 
obtain the robust multivariate regression by computing a set of robust univariate 
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regressions, and (c) covRob, with the default fast MCD method and setting 
quan = .9. We note that the method is such that when all the component 
covariance matrix estimates below are positive definite, the overall robust 
covariance matrix 

 

 , ,

, ,

ˆ ˆ
ˆ

ˆ ˆ

ROB ROB
long long long shortROB
ROB ROB
short long short short

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

Ω Ω
Ω

Ω Ω
 (6.19) 

 
will be positive definite. 

6.8.2 Robust Distances and Degrees of Freedom at 
Different Time Points 

In order to compute a robust distance at each point in time, one needs to use the 
appropriate robust covariance matrix. Suppose that as you move through the 
history of a set of returns with different starting dates you encounter returns of 
dimensions 1 2,, , .Mk k k  Then at a time point where there exist ik  returns, you 
use the corresponding i ik k×  robust covariance matrix. Then the corresponding 
degrees of freedom for the chi-squared upper 2.5% cutoff point is .ik  

6.8.3 The Hedge Fund Indices Example 

We used the robustified Stambaugh method14 to obtain robust covariance 
matrices ˆ ,   1,2,3,ROB

i i =Ω  and associated robust distances for the hedge fund 
indices whose time series were displayed at the beginning of this section (Figure 
6.28). The results are shown in Figure 6.29. Note the increasing staircase 
behavior of the chi-squared upper 2.5% thresholds for each of the three groups 
with common starting dates owing to the increase in chi-squared degrees of 
freedom as more assets came online in 1994 and 1997. The robust distances 
detect outliers with greater power than the classical distances, thereby clearly 
revealing multivariate outliers that the classical method detects only weakly or 
not at all. 

The robust Stambaugh method code is long, and is not included with this 
book. 
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6.8.4 Comment on Using Chi-Square Percentage 
Points 

One should be aware of several points concerning use of the (square root of 
the) 2.5% upper percentage point of the chi-squared distribution as a detection 
threshold. First, the threshold is somewhat arbitrary, and one could equally well 
use an upper 5% point or upper 1% point, the former yielding a larger false 
alarm rate and the latter yielding a smaller false alarm rate than the 2.5% point. 
We advise against using anything smaller than the upper 5% point since false 
alarm rates that are too high can lead to detection of outliers and unusual times 
even when the data are perfectly stationary and normally distributed (e.g., the 
upper 25% point recommended by Chow, Jacquier, Kritzman, and Lowry (1999) 
would exhibit such behavior). As the chi-squared approximation is not very 
reliable under non-normality (see, for example, Rocke and Woodruff, 1996), one 
may prefer to make a kernel density estimate of the classical and robust 
distances and look for clustering of unusual times in terms of multimodality of 
the density estimates. 
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Figure 6.29 Classical and Robust Distances for Hedge Fund Indices 
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6.9 Robust Portfolio Optimization 

Since classical estimates of mean returns and covariances can be adversely 
influenced by the presence of one or more outliers, it should not be surprising to 
find that Markowitz mean-variance optimal portfolios based on these classical 
estimates can also be adversely influenced by such outliers. As an example of 
the extent to which outliers can influence the estimated Markowitz efficient 
frontier, consider the time series of highly volatile monthly stock returns for 
RAL, GMH, and IVX from February 28, 1991 to December 29, 1995, shown in 
Figure 6.30. 

RAL is distinguished by having a single negative outlier at the beginning of 
the series, while GHM and IVX have a relatively high volatility in the early time 
periods when compared with the rest of the series. The values of robust and 
classical sample means and standard deviations for these returns are shown in 
Table 6.1. 

It is evident that the outliers have the largest impact on RAL, where the 
sample mean and robust mean values are .003 and .009, respectively, and the 
classical and robust standard deviations are .085 and .055. The differences in 
correlations between the two estimates are shown in Figure 6.31. 
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Figure 6.30 Time Series of RAL, GMH, and IVX Returns 
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Table 6.1 Means and Standard Deviations for RAL, GHM, and IVX 

 RAL GMH IVX 
Classic Mean –.003 .019 .021 
Robust Mean   .009 .018 .020 
Classic Std. Dev.   .085 .074 .147 
Robust Std. Dev.   .055 .082 .131 

 
We see a substantial shift of +.41 for the RAL/GHM correlation and –.45 for 

the RAL/IVX correlation when substituting a robust correlation for a classical 
correlation. The S-PLUS code for the plots above is similar to Code 6.7 and Code 
6.8 provided in Section 6.6. 

We made the plots in Figure 6.30 and Figure 6.31 with Code 6.7 and Code 
6.8 using returns.three.ts in place of normal.vs.hect.ts and 
deleting the pairs command in Code 6.7. 

Now we use NUOPT to compute a robust efficient frontier with a constraint 
of no short-selling by simply replacing the classical sample mean returns and 
sample covariance estimates with robust estimates. The resulting efficient 
frontier is displayed in Figure 6.32 along with the classical efficient frontier and 
the maximum Sharpe ratios based on a monthly risk-free rate of .003. The 
display also shows the classical and robust means and standard deviations of 
each of the three stocks along with their ticker symbols. 

The (maximum) Sharpe ratios are approximately the same for both frontiers. 
However, the classical efficient frontier indicates that the investor can achieve 
about 10 to 20 basis points (monthly) more than with the robust frontiers for 
sufficiently high levels of risk. On the other hand, the robust efficient frontier 
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Figure 6.31 Classical and Robust Correlations for RAL, GHM, and IVX 
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offers higher levels of return than the classical frontier for lower levels of risk 
and a considerably lower risk for the (global) minimum variance portfolio. The 
means and standard deviations of the individual stocks in the plot above are the 
classical sample mean and sample standard deviation. Note that the main 
difference between the values of the classical and robust means and standard 
deviations are for RAL. The optimal weights for the classical and robust 
efficient frontiers are displayed in Figure 6.33. 

It should not be surprising to see that, for small levels of risk, the classical 
portfolio gives considerably less weight to RAL than does the robust portfolio 
(recall that RAL has one large negative outlier at the beginning of the series) and 
that for the largest levels of risk both portfolios give about the same relative 
weights to GMH and IVX. We also see that the robust portfolio gives no weight 
to GMH in the minimum variance portfolio and also gives considerably less 
weight to GMH than does the classic portfolio for lower levels of risk. 

Code 6.11 creates the function rob.mv.efronts for computing and 
displaying mean-variance and robust efficient frontiers and optionally plotting 
the portfolio weights for each. The last line of Code 6.11 executes the function 
on the three-asset time series object returns.three.ts: 
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Figure 6.32 Classical and Robust Efficient Frontiers for Three-Stock Portfolio 
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rob.mv.efronts <- function(returns.ts, rf=.003, 
 n.ret=50, plot.weights=F, a=1, sharpe=T, 
 display.points=T, display.names=T, 
 display.letters=F) 
{ 
 returns <- seriesData(returns.ts) 
 p <- ncol(returns) 
 # Parameter comments  
 # Use a= 1 for no short selling, and  
 # adjust a > 1 for short selling 
 # If using display.letters=T, set  
 # display.points=F and display.names=F) 
 # Compute Classical Efficient Frontier 
 meanVec1 <- apply(returns,2,mean) 
 covMat1 <- var(returns) 
 sigma1 <- diag(covMat1)^.5 
 max.ret1 <- max(meanVec1)*a 
 ef.classic <- portfolioFrontier(covMat1, 

meanVec1, 
  wmin=0, max.ret=max.ret1, n.ret=n.ret) 
 # Compute Robust Efficient Frontier 
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Figure 6.33 Weights for Classical and Robust Efficient Frontier Portfolios 
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 meanVec2 <- apply(returns,2,location.m) 
 covMat2 <- covRob(returns,estim = "mcd", 
  quan = .9)$cov 
 sigma2 <- diag(covMat2)^.5 
 max.ret2 <- max(meanVec2)*a 
 ef.robust <- portfolioFrontier(covMat2, meanVec2, 
  wmin=0, max.ret=max.ret2, n.ret=n.ret) 
 # Plot Efficient Frontiers 
 xlim <- range(ef.classic$sd,ef.robust$sd, 
  sigma1,sigma2,0) 
 ylim <- range(ef.classic$ret,ef.robust$ret, 
  meanVec1,meanVec2,0) 
 plot(ef.classic$sd,ef.classic$ret,xlim=xlim, 
  ylim=ylim, type = "n" ,xlab="SIGMA",ylab="MU") 
 lines(ef.classic$sd,ef.classic$ret,lty = 8) 
 lines(ef.robust$sd,ef.robust$ret,lwd=2) 
 # Plot Stock Mu's and Sigma's and Add Legend 
 title(main="CLASSICAL AND ROBUST EFFICIENT  
  FRONTIERS\n Three Stocks") 
 if(display.letters) { 
  for(i in 1:p) { 
   points(sigma1[i],meanVec1[i], 
    pch = letters[i]) 
   points(sigma2[i],meanVec2[i], 
    pch = LETTERS[i]) 
  } 
  if(display.names){ 
   text(sigma1 + 0.002, meanVec1, 
    names(meanVec1), adj=0) 
   text(sigma2 + 0.002,meanVec2, 
    names(meanVec2), adj=0) 
  } 
  x = xlim[1]+.15*(xlim[2]-xlim[1]) 
  y = ylim[1]+.10*(ylim[2]-ylim[1]) 
  leg.names = c("A,B,.. Robust Mu's,Sigma's", 
   "a,b,. Classical Mu's,Sigma's")  
  text(x,y,leg.names[1]) 
  text(x,y-.002,leg.names[2]) 
 } # endif display.letters 
 
 if(display.points){ 
  points(sigma1,meanVec1,pch = 2) 
  points(sigma2,meanVec2,pch = 17) 
  if(display.names){ 
   text(sigma1 + 0.002, meanVec1, 
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    names(meanVec1), adj= 0) 
   text(sigma2 + 0.002, meanVec2, 
    names(meanVec2), adj= 0)} 
   x = xlim[1]+.00*(xlim[2]-xlim[1]) 
   y = ylim[1]+.13*(ylim[2]-ylim[1]) 
   leg.names = c("   ROBUST","CLASSICAL")  
   legend(x,y,leg.names, marks = c(17,2)) 
 } #endif display.points 
 
 # Add legend 
 x = xlim[1]+.0*(xlim[2]-xlim[1]) 
 y = ylim[2]-.0*(ylim[2]-ylim[1]) 
 leg.names = c("   ROBUST","CLASSICAL")  
 legend(x,y,leg.names,lty=c(1,8)) 
 
 # Compute and Display Maximum Sharpe Ratio's,  
 # and Add Bullets 
 if(sharpe) { 
  i.maxsr.classic = order((ef.classic$ret- 
   rf)/ef.classic$sd)[n.ret] 
  i.maxsr.robust = order((ef.robust$ret- 
   rf)/ef.robust$sd)[n.ret] 
  sr.classic = ((ef.classic$ret- 
   rf)/ef.classic$sd)[i.maxsr.classic] 
  sr.robust = ((ef.robust$ret- 
   rf)/ef.robust$sd)[i.maxsr.robust] 
  points(ef.classic$sd[i.maxsr.classic], 
   ef.classic$ret[i.maxsr.classic],pch = 16) 
  points(ef.robust$sd[i.maxsr.robust], 
   ef.robust$ret[i.maxsr.robust],pch = 16) 
  x = xlim[1]+.85*(xlim[2]-xlim[1]) 
  y = ylim[1]+.1*(ylim[2]-ylim[1]) 
  text(x,y,paste("  ROBUST SR =", 
   round(sr.robust,3))) 
  y = ylim[1]+.05*(ylim[2]-ylim[1]) 
  text(x,y,paste("CLASSICAL SR =", 
   round(sr.classic,3))) 
 } #endif sharpe 
 
 # Plot Portfolio Weights for Both Efficient 
 # Frontiers 
 if(plot.weights) { 
  par(mfrow = c(1,2)) 
  barplot(ef.classic$weights, 
   legend = names(returns)) 
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  title(main = "CLASSICAL EFF. FRONTIER 
   WEIGHTS") 
  barplot(ef.robust$weights, 
   legend = names(returns)) 
  title(main = "ROBUST EFF. FRONTIER WEIGHTS") 

   par(mfrow = c(1,1)) 
  }#endif plot.weights 

} # end function definition 
 
rob.mv.efronts(returns.three.ts,plot.weights = T) 

Code 6.11 Robust Efficient Frontiers 

6.9.1 Effect of Outliers on the Sample Mean versus 
the Sample Covariance Matrix 

By making small modifications to Code 6.11 above, you can easily do a 
sensitivity analysis to see whether the influence of the outliers on the classical 
efficient frontier is primarily through distortion of the mean estimate or 
primarily through distortion of the covariance matrix estimate. To use only a 
robust covariance estimate, replace location.m with mean in the expression  
 
meanVec2 <- apply(returns,2,location.m)  

 
in the Code 6.11 function. To use only a robust mean estimate (and the classical 
covariance estimate), change the code line  
 
covMat2 <- covRob(returns)$cov 

 
to  
 
covMat2 <- var(returns). 
 

 The results of making these two changes separately are shown in Figure 6.34 
and Figure 6.35, respectively. 

These displays indicate that it is not enough to use only robust means or only 
robust covariances. Combining the information in Figure 6.33, Figure 6.34, and 
Figure 6.35, it appears that the difference between the classical and robust 
efficient frontiers is a result of outliers influencing both the sample mean and 
sample covariance estimates. 
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Figure 6.34 Robust Efficient Frontier with Robust Covariance Estimate 
Only 
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Figure 6.35 Robust Efficient Frontier with Robust Mean Only 
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6.9.2 Other Examples and Alternative Asset Plot 
Labels 

You can easily find many examples where the classical and robust efficient 
frontiers differ by a considerable amount. This is particularly true for microcap 
and small cap stocks, but you can also find examples of this type for mid-cap 
and large cap stocks. We give three examples in Figure 6.36 through Figure 6.38 
in support of this claim using options in Code 6.11 that provide for alternative 
displays of both classical and robust means and standard deviations. 

In Figure 6.36, we display the two efficient frontiers for a group of five small 
cap stocks with a solid (open) triangle symbol for the robust (classical) means 
and standard deviations of the returns of the individual stocks. Although we can 
see that there are substantial differences in the robust and classical means and 
standard deviations, we cannot see their individual changes. 

We make the plot of Figure 6.36 with the commands 
 
tickers <- c("TOPP","KWD","HAR","RARE","IBC") 
returns.ts <- smallcap.ts[,tickers]  
rob.mv.efronts(returns.ts) 
y.name <- colIds(returns.ts) 
seriesPlot(returns.ts,one.plot=F,strip.text=y.name, 
 col = 1) 
 

Figure 6.37 and Figure 6.38 are made by modifying the code above in obvious 
ways. 

We note that, in general, mid-cap and large cap stocks are less prone to 
having large outliers than small caps and microcaps, and when there are no 
influential outliers in returns, the values for classical and robust means, standard 
deviations, and covariances will be close to one another. In such situations, the 
classical and robust efficient frontiers will be very similar, as in Figure 6.38, and 
one need not worry about influential outliers. 

In the case of many stocks, the ticker symbols may overlap a lot, and you 
may prefer to use uppercase and lowercase letters in order to visualize the 
changes in individual means and standard deviations, as in Figure 6.39. You can 
get these kinds of labels in your efficient frontier plot by using the optional 
arguments display.points = F, display.names = F, and 
display.letters = T in the function rob.mv.efronts. 
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Figure 6.36 Efficient Frontiers for Small Cap Stocks with Classical and 
Robust Mu and Sigma 
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Figure 6.37 Efficient Frontiers for Mid-Cap Stocks with Ticker Symbols 
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Figure 6.38 Efficient Frontiers for Large Cap Stocks with Letters for Mu 
and Sigma 
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Figure 6.39 Typical Efficient Frontiers for Large Cap Stocks 
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6.9.3 Classical or Robust Efficient Frontier: Which to 
Use? 

It is important to keep in mind that a robust efficient frontier is based on robust 
estimates of the means and covariance matrix, which themselves represent the 
mean and covariance of the bulk of the returns. As such, a robust efficient 
frontier represents the bulk of the data. Whether this is an adequate 
representation of the future behavior of your returns is open to serious question. 
Therefore, at this point it is not clear whether you should prefer making an 
investment decision based on a robust efficient frontier rather than a classical 
efficient frontier.  

Of one thing we are sure: a robust efficient frontier is a valuable diagnostic 
tool. When the robust and classical frontiers are quite close to one another, as in 
Figure 6.39, the returns are quite likely to be free of influential outliers and 
well-approximated by a multivariate normal distribution. In this case, one can 
feel reasonably confident in using the mean-variance efficient frontier. When the 
two efficient frontiers differ by a significant amount, as in Figure 6.36 though 
Figure 6.38 above, there are likely to be influential outlying returns, and it is 
unlikely that the returns are well-approximated by a multivariate normal 
distribution. In such cases one is alerted to the need to carry out some 
exploratory data analysis (EDA) of the returns data and think carefully about 
what to do. One way to start such an EDA is by making time series plots of your 
returns to see if there are any obvious outliers, whether those outliers are 
positive or negative, and where they occur in the series of returns (e.g., early, 
middle or late in the period of interest). We illustrate what this initial step can 
reveal in the examples above. 

The Trellis time series plots of the stocks in the small cap portfolio above, 
provided in Figure 6.40, reveal that three of the series, TOPP, RARE, and IBC, 
have one or more dominant positive returns outliers and that there are no 
dominant negative outliers in any of the series of returns. In the efficient 
frontiers display of Figure 6.36, you see that the robust means and standard 
deviations of the returns for TOPP, RARE, and IBC are substantially smaller 
than those of classical means and standard deviations, as might be anticipated. 
Correspondingly, the robust efficient frontier is lower and slightly to the left of 
the classical frontier. An investor who uses the robust efficient frontier is taking 
a conservative view with regard to the potential occurrence of future positive 
outliers in one or more of the series TOPP, RARE, and IBC (i.e., he is not 
betting on such occurrences in the future). Such an investor is, in a sense, 
implementing a Bayesian approach based on his own subjective prior 
distributions about the probability of future positive outliers. 

The situation for the time series plots of the mid-cap stocks in Figure 6.41 is 
different. APCC has a number of substantially negative values but no clearly 
dominant outliers, while LXK has three or four dominant negative outliers. 
Furthermore, in each case there are no equivalent offsetting positive values. For 
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TXT, the positive and negative extreme values appear to be roughly offsetting, 
and SNV has a single positive outlier near the beginning of the series. This 
information is depicted in the efficient frontiers of Figure 6.36: the robust means 
of the APCC and LXK returns are larger than their sample means; the robust 
standard deviation of LXK is smaller than its classical sample standard 
deviation, while the robust and classical standard deviations of APCC have 
almost the same values; the robust mean and standard deviation of SNV are 
smaller than the classical sample mean and standard deviation; and there is a 
small difference between the robust and classical means and standard deviations 
for TXT. Given the different behaviors of these means and standard deviations, 
one might not expect the robust efficient frontier to dominate the classical 
frontier at all levels of risk. That this is the case reflects the fact that the larger 
values of the robust means along with the large values of the robust standard 
deviations result in considerable “leverage” effects in determining the location 
of the robust efficient frontier relative to the classical efficient frontier. 

A word of caution is in order: in this situation, would a wise investor trust the 
higher returns achievable with the robust efficient frontier? Since the negative 
returns for APCC and LXK are near the end of the series, an investor may well 
be wary of assuming that such returns will not occur again in the near future and 
therefore reject the optimism of the robust efficient frontier. 

Figure 6.42 shows the Trellis time series plots of returns for the stocks of the 
large cap portfolio whose efficient frontiers are shown in Figure 6.38. The 
tickers UTX, PG, PHA, SO, and CAT correspond to the letters “A,” “B,” “C,” 
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Figure 6.40 Small Cap Portfolio Time Series 
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“D,” “E” (and “a,” “b,” “c,” “d,” “e”). The time series plots reveal that UTX has 
one or two possible negative outliers, PG has one large negative outlier, PHA 
has one positive outlier and one negative outlier, and CAT has one large positive 
outlier. The corresponding differences in locations of the robust means and 
standard deviations (the points labeled “A,” “B,” “C,” and “E,” respectively) 
and the classical means and standard deviations (the points labeled “a,” “b,” “c,” 
and “e,” respectively) are what one would expect. In this case the overall 
configuration of the outliers in the returns and the resulting robust versus 
classical means and standard deviations is rather complex, and one cannot easily 
guess the relative positioning of the robust and classical efficient frontiers. 

While the analysis above may provide some guidance in choosing between a 
robust and classical efficient frontier when making an investment decision, 
better tools are needed to determine the relative performance of investments 
made with these two approaches. One such tool is a bootstrapped efficient 
frontier that can help determine whether the difference between a robust and 
classical efficient frontier is “real” or whether it is just a result of statistical 
variability. 
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Figure 6.41 Mid-Cap Portfolio Time Series 
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6.9.4 Bootstrapped Efficient Frontiers and Sharpe 
Ratios  

Classical and robust efficient frontiers are complicated functionals of the 
underlying distribution of the returns, and the exact distributions of efficient 
frontiers (even the mean-variance efficient frontier) are generally intractable. In 
Chapter 4, we discussed parametric portfolio resampling in which multivariate 
normal samples are generated based on the sample mean and covariance of the 
returns. In Section 4.5.4, we noted the lack of statistical foundation of the 
variant proposed by Jorion (1992) and Michaud (1998), and in Section 4.6 we 
applied nonparametric bootstrap methods to estimate confidence intervals for 
the Sharpe ratio.15 In this section we continue to use the nonparametric bootstrap 
to calculate and visualize the variability of both robust and classical mean-
variance efficient frontiers and their maximum Sharpe ratios. 

A primary advantage of using the nonparametric bootstrap to assess the 
average behavior and variability of these two types of efficient frontiers is that 
the results tell us all that the data have to say about the unknown distribution of 
the multivariate returns. In this kind of bootstrap sampling, some samples will 
have fewer outliers (sometimes zero outliers) than in the original sample and 
some will have more outliers than in the original sample. In this way, the 
efficient frontier variability is reflecting the various possible future efficient 
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Figure 6.42 Large Cap Portfolio Time Series 
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frontier curves based on samples coming from a nonparametric estimate of the 
unknown returns distribution. 

The dashed lines in Figure 6.43 show 30 bootstrapped classical mean-
variance efficient frontiers for the small cap portfolios of Figure 6.36 and Figure 
6.40, and the dashed lines in Figure 6.44 show 30 bootstrapped robust efficient 
frontiers for the same portfolio. The solid line in each figure is the efficient 
frontier based on the original set of returns. The same bootstrap replicates are 
used for each figure (i.e., for each mean-variance efficient frontier there is a 
corresponding robust efficient frontier computed with the same bootstrap 
sample). Each solid dot is the “bullet point” representing the (global) minimum 
variance portfolio for the corresponding bootstrap sample and associated 
efficient frontier. It may be noted immediately that both the original efficient 
frontiers are biased in that they are not centrally located in the scatter of 
bootstrap efficient frontiers. Since the horizontal and vertical ranges of both axes 
are the same in the two figures, you can deduce that the mean return of the 
robust minimum variance portfolio appears to be less than that of the mean-
variance minimum variance portfolio, while the risk of the former is at least as 
small as the risk of the latter. 

Figure 6.45 shows boxplots of the differences for each bootstrap sample 
between the mean returns and risks of the robust and mean-variance minimum 
variance portfolios along with the differences between the Sharpe ratios. The 
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Figure 6.43 Bootstrapped Mean-Variance Efficient Frontiers for Small 
Cap Portfolio 
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notches in the boxplots correspond to approximate 95% confidence intervals for 
the median differences. None of these confidence intervals contains zero, 
indicating that the performance of the robust optimal portfolio is significantly 
lower than that of the mean-variance portfolio at a level of 5%. The median 
difference between the mean-variance and robust Sharpe ratios is only about –
.06, which is not likely to be of much financial consequence. 

The choice B = 30 for the number of bootstrap replicates may well be too 
small to draw firm conclusions. To get an idea of how things will change with 
an increasing number of replicates, we ran the bootstrap program with B = 100 
replicates (without plotting efficient frontiers); the resulting boxplots are shown 
in Figure 6.46. For this particular example, the results are not substantially 
different from those of the bootstrap with B = 30. 

The S-PLUS and NUOPT code for the above computations is provided below 
in the form of the two functions boot.efronts (Code 6.12) and 
efront.nuopt.forboot (Code 6.13) and a short script (Code 6.14) for 
calling boot.efronts using the small cap returns. When running Code 6.12 
and Code 6.13, one must allow sufficient time for the bootstrap computations to 
finish. 
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Figure 6.44 Bootstrapped Robust Efficient Frontiers for Small Cap 
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Figure 6.45 Bootstrap Portfolio Performance Differences for B = 30 
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Figure 6.46 Bootstrap Portfolio Performance Differences for B = 100 
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boot.efronts <- function(returns.ts, B=30, rf=.03, 
 npoints=20, k.mu=4, k.sigma=1.5, mv=T, tan=F, 
 plotit=F, estim = "mcd", quan=.9) 
{ 
 # B is the number of bootstrap samples 
 # k.mu controls vertical axis plotting range 
 # k.sigma controls horizontal axis plotting range 
 # Adjust k.mu, k.sigma to minimize plot  
 # "Line out of bounds" Warnings 
 # mv = T to display bullet at minimum var. 
  portfolio 
 # tan = T to display bullet at tangency portfolio 
 # plotit = T to plot efficient frontiers 
 # estim = "mcd" to use MCD est. (avoid auto. 
 # default choice) 
 # quan is the fraction of data used by the MCD 
 # Compute Bootstrap Samples Indices 
 returns <- seriesData(returns.ts) 
 n <- nrow(returns) 
 m <- ncol(returns) 
 B <- 30 
 boot.index <- samp.boot.mc(n,B) 
 # Compute Classic Efficient Frontier 
 covmat <- var(returns) 
 mu <- apply(returns,2,mean) 
 max.ret <- max(mu) 
 ef <- portfolioFrontier(covmat, mu, wmin=0, 
  max.ret=max.ret,n.ret=npoints) 
 sd = ef$sd 
 ret = ef$returns 
 # Compute Robust Efficient Frontier 
 cov.rob <- covRob(returns,estim = estim,  
  quan = quan) 
 covmat.rob <- cov.rob$cov 
 #mu.rob <- cov.rob$center 
 mu.rob <- apply(returns,2,location.m) 
 max.ret <- max(mu.rob) 
 ef.rob <- portfolioFrontier(covmat.rob, mu.rob, 
  wmin=0, max.ret=max.ret, n.ret=npoints) 
 sd.rob <- ef.rob$sd 
 ret.rob <- ef.rob$returns 
 # Set Axis Limits 
 xlim <- k.sigma*c(0,max(sd,sd.rob)) 
 ylim <- k.mu*c(0,max(ret,ret.rob)) 
 xlim <- c(0,.2) 
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 ylim <- c(-.02, .06) 
 # Plot Original Classic Efficient Frontier 
 if(plotit) { 
  plot(sd, ret, xlim = xlim, ylim = ylim, 
   type = "l", xlab ="RISK (STD. DEV.)", 
   ylab ="EXPECTED RETURN") 
  lines(sd,ret,lwd = 2) 
  title(main="BOOTSTRAP MEAN-VARIANCE EFFICIENT 
   FRONTIERS \n Small cap Portfolios") 
 } #endif plotit 
 
 # Compute and Plot Classic Bootstrapped Frontiers 
 names <- c("SD.MV","MU.MV","SD.TAN","MU.TAN", 
  "SHARPE") 
 out <- matrix(rep(0,5*B),ncol = 5) 
 dimnames(out) <- list(NULL,names) 
 
 for(i in 1:B) { 
  ef.classic = efront.nuopt.forboot( 
   returns[boot.index[,i],],plotit, 
   robust = F, estim = estim, quan = quan, 
   rf = rf, mv = mv, tan = tan) 
  out[i,] = ef.classic 
 } # endfor i in 1:B 
 round(out,3) 
 # Plot Original Robust Efficient Frontier 
 if(plotit) { 
  plot(sd.rob, ret.rob, xlim = xlim, ylim = 

ylim, 
   xlab = "RISK (STD. DEV.)", 
   ylab = "EXPECTED RETURN",type = "l") 
  lines(sd.rob,ret.rob,lwd = 2) 
  title(main="BOOTSTRAP ROBUST EFFICIENT 

FRONTIERS 
   \n Small cap Portfolios") 
 } # endif plotit 
 
 # Compute and Plot Robust Bootstrapped Frontiers 
 names <- c("SD.MV","MU.MV","SD.TAN","MU.TAN", 
  "SHARPE") 
 out.rob <- matrix(rep(0,5*B),ncol = 5) 
 dimnames(out.rob) <- list(NULL,names) 
 for(i in 1:B){ 
  ef.rob = efront.nuopt.forboot( 
   returns[boot.index[,i],],plotit, 
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   robust = T, estim = estim, quan = quan, 
   rf = rf, mv = mv, tan = tan) 
  out.rob[i,] = ef.rob 

 } 
 round(out.rob,3) 
 par(mfrow = c(2,2)) 
 boxplot(out.rob[,2]-out[,2],notch = T,  

  ylab = c("ROBUST MINUS CLASSICAL")) 
 title(main = "MEAN RETURN DIFFERENCE \n Minimum 
  Variance Portfolios") 
 boxplot(out.rob[,1]-out[,1],notch = T, 
  ylab = c("ROBUST MINUS CLASSICAL")) 
 title(main = "RISK DIFFERENCE \n Minimum  
  Variance Portfolios") 
 boxplot(out.rob[,5]-out[,5],notch = T, 
  ylab = c("ROBUST MINUS CLASSICAL"), 
  ylim = range(out.rob[,5]-out[,5])) 
 title(main = "DIFFERENCE OF SHARPE RATIOS") 
 par(mfrow = c(1,1)) 
} 

Code 6.12 Bootstrapped Efficient Frontiers and Sharpe Ratios 

efront.nuopt.forboot <- function(returns, plotit =  
 T, robust, estim, quan, rf = 0.005, mv = T, tan =  
 F, npoints = 50) 
{ 
 if(robust) { 
  covmat <- covRob(returns,estim = estim, 
   quan = quan)$cov 
  mu <- apply(returns,2,location.m) 
 } 
 else { 
  covmat <- var(returns) 
   mu <- apply(returns,2,mean) 
 } 
 #sd <- apply(returns, 2, stdev) 
 ef <- portfolioFrontier(covmat, mu,wmin = 0,  
  max.ret = max(mu), n.ret = npoints) 
 sdopt <- ef$sd 

 
 muopt <- ef$returns 
 # Compute minimum variance portfolio 
 port.mv <- c(sdopt[1], muopt[1]) 
 names(port.mv) <- c("SD.MV", "MU.MV") 
 # Compute tangency portfolio 
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 sharpe <- (muopt - rf)/sdopt 
 iopt <- order(sharpe)[npoints] 
 sharpe.max <- sharpe[iopt] 

 
 names(sharpe.max) <- "SHARPE" 
 port.tan <- c(sdopt[iopt], muopt[iopt]) 
 names(port.tan) <- c("SD.TAN", "MU.TAN") 
 # Plot results 
 if(plotit) { 
  lines(sdopt, muopt, lty = 8) 
  #points(max(sdopt), max(muopt), pch = ".") 
  if(mv == T) 
   points(port.mv[1], port.mv[2], pch = 16) 
  if(tan == T) 
   points(port.tan[1], port.tan[2], pch = 18) 
 } 
 c(port.mv, port.tan,sharpe.max) 
} 

Code 6.13 NUOPT Efficient Frontiers for Bootstrap Function 

tickers <- c("TOPP","KWD","HAR","RARE","IBC") 
returns.ts <- smallcap.ts[,tickers] 
boot.efronts(returns.ts,plotit = T) 

Code 6.14 Bootstrap Efficient Frontiers Example 

The reader is encouraged to experiment with Codes 6.12–6.14 on a variety of 
portfolios using the returns data set included with this book. 

6.9.5 Efficient Frontiers Based on the Classical and 
Robust Stambaugh Methods 

In Section 6.7, we discussed the Stambaugh normal distribution maximum 
likelihood method of estimating a mean vector and covariance matrix for asset 
returns having unequal histories and showed how to make the method robust. 
With these two types of mean vector and covariance matrix estimates in hand, 
we can proceed as usual to compute both a classical and a robust efficient 
frontier. Figure 6.47 and Figure 6.48 show the results of doing this using the 
returns pictured in Figure 6.28. Note the dominant role of Health along with 
Events in determining the limits of the classical efficient frontier as compared 
with the dominant role of Equity along with Events in determining the robust 
efficient frontier. Note also that the reduction in risk when moving from 
classical sample standard deviations to robust standard deviations is roughly the 
same for all indices except Health, which exhibits a much more substantial 
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reduction in risk. Health also exhibits a substantial reduction in mean return 
when moving from the sample mean estimate to a robust location estimate. The 
distribution of portfolio weights along the two efficient frontiers is quite 
different, with the classical portfolio weights relying more heavily on Health at 
higher levels of risk and return. By way of contrast, the robust portfolio relies 
more heavily on Equity at higher levels of return (and risk) and gives Health a 
zero weight for all possible portfolios. 

A glance at the time series of returns for the indices in Figure 6.28 reveals 
that Health was giving exceptional gains during 1999 (probably by riding the 
dot-com bubble) and exhibited exceptional losses during the dot-com crash in 
2000, followed by relatively lower volatility and unexceptional returns during 
2001, 2002, and early 2003. Therefore, it would not be surprising to find many 
investors preferring the robust efficient frontier for making their investment 
decision. One can say the robust approach is an automatic method for down-
weighting the anomalous returns in the data, thereby calculating an efficient 
frontier that represents the “normal” behavior of the data. Lacking special 
information, the “normally” behaving data are the only part of the data that is 
predictable. 
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Figure 6.47 Efficient Frontiers for Index Returns with Unequal Histories 
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6.10 Conditional Value-at-Risk Frontiers: 
Classical and Robust 

A definition of coherent risk measure introduced by Artzner et al. (1997, 
1999) was discussed in Section 5.6.2, where it was pointed out that value-at-risk 
(VaR) is not a coherent risk measure.16 It is also the case that standard deviation 
is not a coherent risk measure, which makes the classical Markowitz mean-
variance method suspect. On the other hand, it was pointed out in Sections 5.6.2 
and 5.6.3 that conditional value-at-risk (CVaR) is a coherent risk measure that 
leads to a computationally attractive portfolio optimization approach. The 
question, therefore, is how one might make the CVaR method of portfolio 
optimization robust. We note that a CVaR optimal portfolio (CVaR portfolio for 
short) does not involve an estimate of the covariance matrix; it only involves 
estimation of the mean returns. Thus, at first glance one can make a CVaR 
robust by simply replacing the sample mean estimates of the iµ  by one of the 
robust location estimates in Section 6.2. However, outliers can also influence the 
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individual scenario returns ,1
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hence can influence the value of the objective function 

1

1 m
si

CVaR VaR e
mα =

= −
⋅ ∑  (see Section 5.6.3). In order to control the 

influence of outliers on this objective function, one needs to down-weight the 
values of the ,i sr  appearing above. 

With regard to down-weighting the , ,i sr  there are two questions. First, should 
one down-weight these values at all? After all, the whole point of using CVaR is 
to use tail risk to find optimal portfolio weights, and in general one expects that 
one or more large negative returns in a given asset will tend to reduce the weight 
in that asset in the optimal CVaR portfolio. Down-weighting such large negative 
returns might be counterproductive. Second, how should one down-weight the 
values? 

We defer the second question for a moment and address the first. As we 
pointed out earlier, the use of robust portfolio computations is not a be-all and 
end-all. The most important value of a robust portfolio is its diagnostic value: 
when the robust and classical efficient frontiers agree, there is no need to worry, 
and when they differ the portfolio manager needs to make a decision on which 
to use based on all the other information available. In the end, the manager may 
be inclined to take one of the following positions: 

 
The robust view, in which the manager does not trust that any past 
outlier returns will repeat themselves with any degree of predictability 
and therefore uses a robust portfolio solution since it reflects the 
behavior of the bulk of the data, excluding outliers;  

The pessimistic view, in which the manager does not trust that past 
positive outliers are to be expected over the investment horizon, but 
that past negative returns outliers indicate possible future negative 
returns outliers, and therefore down-weights only positive returns 
outliers;  

The optimistic view, in which the manager does not believe that past 
negative returns outliers will repeat themselves over the investment 
horizon, but that past positive returns outliers indicate possible future 
positive returns outliers, and therefore down-weights only negative 
returns outliers. 

The optimistic or pessimistic views might be taken, for example, when the 
corresponding outlier or outliers occur only during the early part of the history 
used to optimize the portfolio or when the manager has other information about 
some or all of the portfolio assets under consideration. 
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With these three managerial views in mind, one might first think to use 
robust distances based on a robust covariance matrix estimate as in Section 6.6 
to create weights for each scenario vector 1, 2, ,( , , , ),   1,2, , .s s s n sr r r r s m= =  
There are at least two reasons why this is not a highly appealing approach. First, 
it is not clear how to modify the robust distance approach in a simple manner to 
accommodate the three distinct manager views. Second, since CVaR portfolio 
optimization does not require computation of a covariance matrix (which can be 
computationally burdensome when dealing with a large portfolio), it is attractive 
to avoid this approach. Consequently, we propose a much simpler approach 
based on down-weighting outliers in each set of asset returns, one at a time, 
according to which of the views above the manager takes. While this simpler 
approach has the deficiency that it is not able to detect and down-weight 
potentially influential multivariate returns outliers that are not univariate 
outliers, it has the virtue of simplicity and appears to help in many situations 
occurring in practice. 

We use a special form of the outlier-down-weighting approach, often called 
trimming, which is done as follows: for each set of returns , ,   1, 2, , ,i sr s m=  
compute a robust location estimate ˆiµ , a robust scale estimate ˆiσ , and the 
resulting residuals , , ˆi s i s ires r µ= − . For a manager with a robust view, compute 
the symmetrically trimmed returns 
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For a manager with a pessimistic view, compute the positive-trimmed returns 
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and for a manager with an optimistic view, compute the negative-trimmed 
returns 
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We use a default value a = 3, which results in about 2.6 symmetric trimmed 
residuals out of 1000 for normally distributed returns and about 1.3 out of 1000 
for the two other cases. 

Code 6.15 gives the S-PLUS code for the function trimmed.returns that 
computes the above trimmed returns: 

 
trimmed.returns <- function(x, view = "robust",  
 a = 3) 
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{ 
 p <- ncol(x) 
 n <- nrow(x) 
 ind <- matrix(0,nrow = n, ncol = p) 
 for(j in 1:p) {  
  mu <- location.m(x[,j]) 
  scale <- scale.tau(x[,j]) 
  resid <- x[,j]- mu 
  if(view == "pessimistic") { 
   x[resid > a*scale,j] <- mu 
   ind[resid > a*scale,j] <- 1 
  } 
  else if(view == "optimistic") { 
   x[resid < -a*scale,j] <- mu 
   ind[resid < -a*scale,j] <- 1 
  } 
  else if(view == "robust") { 
   x[abs(resid) > a*scale,j] <- mu 
   ind[abs(resid) > a*scale,j] <- 1 
  } 
  else  
   stop("view must be \"pessimistic\", 
    \"optimistic\", or \"robust\"") 
  ind <- data.frame(ind) 
  names(ind) <- names(x) 
 } 
 
 list(returns.trimmed = x,ind = ind) 
} 

Code 6.15 Trimmed Returns 

Once the matrix of returns has been trimmed using the function above, you 
compute a CVaR efficient frontier in a manner similar to that used in Section 
5.6.3. We note that in Section 5.6.3 the function CVaR.frontier computes a 
frontier for long-only portfolios and for target returns ranging from the 
minimum return sample mean return to the maximum return sample mean. 
Consequently, the resulting frontier typically contains inefficient positions. In 
order to compute a CVaR efficient frontier, we first need to find the global 
minimum CVaR portfolio. This is easily done as follows. Remove the line of 
code that specifies a return constraint from the function CVaR.model in 
Section 5.6.3: 

 
Sum(mu.bar[i]*w[i],i) == mu.target. 
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Name the resulting function CVaR.globalmin.model. Now you need to 
modify the function CVaR.portfolio by replacing the code line 
 
call(CVaR.model) 
 

in that function with  
 
call(CVaR.globalmin.model) 

 
Name the new function CVaR.globalmin.portfolio. You should also 
add the lines 

 
S <- as.matrix(S) 
dimnames(S) <- NULL 
 

at the beginning of these two functions, the first to allow a data frame as an 
argument to the function and the second to remove the column names, which the 
current version of NUOPT does not accept. Since the function 
CVaR.globalmin.portfolio differs in a few other places from 
CVaR.portfolio, Code 6.16 gives the code for the revised version of  
CVaR.globalmin.portfolio: 
 
CVaR.globalmin.portfolio <- function(S, alpha) 
{ 
 S <- as.matrix(S) 
 dimnames(S) <- NULL 
 call(CVaR.globalmin.model) 
 CVaR.system <- 

System(CVaR.globalmin.model,S,alpha) 
 solution <- solve(CVaR.system, trace=T) 
 weight <- solution$variable$w$current 
 w <- as.matrix(weight) 
 mu <- as.matrix(apply(S,2,mean)) 
 mu.min <- as.numeric(t(w)%*%mu) 
 risk <- solution$objective 
 
 return(mu.min,risk) 
} 

Code 6.16 Global Minimum CVaR Portfolio 

The argument alpha above, and in what follows, specifies the tail probability 
for CVaR. 
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Code 6.17 provides CVaR.eff.frontier, a slightly modified version of 
the function CVaR.frontier in Section 5.6.3, that computes and optionally 
plots a CVaR efficient frontier:  

 
CVaR.eff.frontier <- function(S,alpha,n.pf,plot=T) 
{ 
 call(CVaR.globalmin.portfolio) 
 call(CVaR.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 x <- CVaR.globalmin.portfolio(S,alpha) 
 mu.min <- x$mu.min 
 mu.max <- max(apply(S,2,mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 x <- CVaR.portfolio(S, alpha, mu.target=mu.min) 
 weight <- x$weight 
 Risk[1] <- x$risk 
 Return[1] <- mu.min 

 
 for(i in 2:n.pf) { 
  x <- CVaR.portfolio(S,alpha, 
   mu.target=mu.range[i]) 
  Risk[i] <- x$risk 
  Return[i] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
 } 
 # Convert CVaR to a positive quantity 
 Risk = - Risk   
 if(plot) {  
  par(mfrow=c(1,2)) 
   plot(Risk, Return, type="b",xlab = "RISK",  
   ylab = "RETURN") 
  title("MEAN vs. CVaR EFFICIENT FRONTIER") 
  barplot(weight,legend = names(S)) 
  title("FRONTIER PORTFOLIOS") 
 } 
 list(Risk = Risk, Return = Return, Weights = 

weight) 
} 

Code 6.17 CVaR Efficient Frontier 
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Note that in order to use the function CVaR.eff.frontier, as in the 
examples below, you need to have already created the functions CVaR.model 
(Code 5.9) and CVaR.portfolio (Code 5.10). 

Figure 6.49 shows the time series of five years of monthly returns for four 
stocks, with tickers BKE, GG, GYMB, and KRON, for which we will compute a 
CVaR efficient frontier. 

The plots shown in Figure 6.49 were made by extracting the stocks from the 
smallcap.ts time series object and using the seriesPlot (see Code 6.7) 
function as follows: 

 
tickers <- c("BKE","GG","GYMB","KRON") 
returns.ts <- smallcap.ts[,tickers] 
seriesPlot(returns.ts,strip.text =  
 colIds(returns.ts), 
 trellis.args = list(as.table = T,type = "l"), 
 one.plot = F) 
 
Note the positive and negative returns outliers and that depending upon the 

investor’s knowledge he may wish to take any one of the three views we have 
proposed. For example, the investor may know that the large outlier in the GG 
returns was associated with a singular event that is not expected to recur in the 
next year or two and may feel that the two positive outlier returns in GYMB 
present an overly optimistic view of future performance. Consequently, he will 
want a CVaR optimal portfolio constructed with a pessimistic view. On the 
other hand, the investor may feel that most of the negative outliers are 
sufficiently far in the past, or, as in the case of KRON, are left in the dust by a 
strong positive trend, leading him to construct a CVaR portfolio based on a 
positive view. Finally, the investor may feel that the positive and negative 
outliers tend to have cancelling effects and have no good reason to believe they 
will occur in the next year. Consequently, he will compute a CVaR portfolio 
based on a robust view that reflects the behavior of the bulk of the returns.  

Assuming we have created the returns.ts object as above, we can 
compute the standard CVaR efficient frontier and barplot of weights in Figure 
6.50 with the commands (the computation takes noticeably longer than a mean-
variance optimal frontier): 

 
returns = returns.ts@data 
CVaR.eff.frontier(returns, alpha = .05, n.pf = 10) 
 

You can now use trimmed.returns to compute the CVaR efficient frontier 
based on one of the three possible manager views. For the robust view, use:  

 
returns.tr <- 

trimmed.returns(returns)$returns.trimmed 
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CVaR.eff.frontier(returns.tr,alpha = .05,n.pf = 10) 
 

The results are the CVaR efficient frontier and portfolio weights in Figure 6.51, 
where upon careful inspection you notice the change in efficient frontier 
location and the change in weights relative to those in Figure 6.50. 

Of course, what we really want to have is overlaid efficient frontiers and 
displayed values of the mean return and CVaR for each stock as in Section 6.8, 
where standard deviations were used as the risk measure. We can easily do this 
by modifying Code 6.11. The only additional function specific to the CVaR 
context that we need is a little function to compute the CVaR of each set of 
returns, rather than the standard deviation, so that we can display each stock in 
the mean return versus CVaR coordinates. This simple function is given in Code 
6.18. 

 
CVaR.simple <- function(x, alpha = .05) { 
 k = floor(length(x)*alpha)  
 #convert CVaR to a positive quantity 
 -mean(sort(x)[1:k]) 
} 

Code 6.18 CVaR Computation Function 

Now we show a few examples before providing the code needed to produce 
them. Figure 6.52 provides an overlaid version of the CVaR efficient frontiers of 

BKE

-0
.5

0.
0

0.
5

1.
0

1997 1998 1999 2000 2001 2002

GG
-0

.5
0.

0
0.

5
1.

0

1997 1998 1999 2000 2001 2002

GYMB KRON

 
Figure 6.49 Time Series of Returns for Four Stocks 
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Figure 6.50 and Figure 6.51 along with the individual stocks’ sample means and 
sample CVaRs. 

In Figure 6.52 one sees that the robust CVaR efficient frontier yields larger 
returns than the standard CVaR efficient frontier, with the difference increasing 
with increasing CVaR risk. Figure 6.53 and Figure 6.54 show the results for 
pessimistic and optimistic views, respectively. 

Figure 6.53 shows that the manager with a pessimistic view gets lower 
returns than the standard CVaR manager at all levels of CVaR below that of 
KRON, with the largest difference at the global minimum CVaR values. Finally, 
Figure 6.54 shows that the manager with an optimistic view gets mean returns 
that are uniformly higher than the classic CVaR returns at all levels of CVaR. 
Note also that the gain of the optimistic CVaR portfolio in Figure 6.53 relative 
to the robust view CVaR portfolio in Figure 6.54 is most substantial for the 
smaller values of CVaR. This is quite understandable based on the differences in 
trimming for these two views and the fact that both negative and positive outlier 
returns are evident in Figure 6.49. 
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Figure 6.50 CVaR Efficient Frontier and Weights for Stock Returns of 
Figure 6.48 
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Figure 6.51 CVaR Efficient Frontier and Weights with Robust View 
Trimming of Returns 
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Figure 6.52 CVaR and Robust View CVaR Efficient Frontiers 
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Code 6.19 gives the code for making the plots above (just change view = 
"robust" to view = "pessimistic" and view = "optimistic" 
to get Figure 6.53 and Figure 6.54, respectively): 

 
tickers <- c("BKE","GG","GYMB","KRON") 
returns.ts <- smallcap.ts[,tickers] 
returns <- returns.ts@data 
p <- ncol(returns) 
# Parameters 
alpha <- .05 
view <- "robust" 
display.letters <- F 
display.points <- T 
display.names <- T 
n.pf <- 10 
plot.weights <- F 
series.plots <- F 
# Time Series Plots 
if(series.plots) 
 seriesPlot(returns.ts, 
  strip.text = colIds(returns.ts), 
  trellis.args = list(as.table = T,type = "l"), 
  one.plot = F) 
# Compute Standard CVaR Efficient Frontier 
ef.cvar <- CVaR.eff.frontier(returns, alpha, n.pf, 
 plot = F) 
ef.cvar$Weights 
# Compute Robust CVaR Efficient Frontier 
ret.trimmed <-  
 trimmed.returns(returns,view)$returns.trimmed 
ef.cvar.robust <- CVaR.eff.frontier(ret.trimmed, 
 alpha, n.pf, plot = F) 
ef.cvar.robust$Weights 
 
# Plot Efficient Frontiers 
if(display.letters || display.points) { 
 mu1 <- apply(returns,2,mean) 
 mu2 <- apply(ret.trimmed,2,mean) 
 cvar1 <- apply(returns,2,CVaR.simple,alpha=alpha) 
 cvar2 <- apply(ret.trimmed,2,CVaR.simple, 
  alpha=alpha) 
 xlim <- range(ef.cvar$Risk,ef.cvar.robust$Risk, 
  cvar1,cvar2,0) 
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Figure 6.53 CVaR and Pessimistic View CVaR Efficient Frontiers 
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Figure 6.54 CVaR and Optimistic View CVaR Efficient Frontiers 
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 ylim <- 

range(ef.cvar$Return,ef.cvar.robust$Return, 
  mu1,mu2,0) 
}  
else { 
 xlim <- range(ef.cvar$Risk,ef.cvar.robust$Risk,0) 
 ylim <- range(ef.cvar$Return, 
  ef.cvar.robust$Return,0) 
} 
plot(ef.cvar$Risk,ef.cvar$Return,xlim=xlim, 
 ylim=ylim, type = "n",xlab="CVaR",ylab="RETURN") 
lines(ef.cvar$Risk,ef.cvar$Return,lty = 8,lwd = 2) 
lines(ef.cvar.robust$Risk,ef.cvar.robust$Return, 
 lwd=2) 
if(view == "robust") { 
 title(main="CVaR AND ROBUST CVaR FRONTIERS") 
} 
else if(view == "pessimistic") { 
 title(main="CVaR AND PESSIMISTIC CVaR FRONTIERS") 
} 
else if(view == "optimistic") { 
 title(main="CVaR AND OPTIMISTIC CVaR FRONTIERS") 
} 
 
# Add Frontiers Legend 
x <- xlim[1]+.0*(xlim[2]-xlim[1]) 
y <- ylim[2]-.0*(ylim[2]-ylim[1]) 
if(view == "robust") { 
 leg.names <- c("ROBUST CVaR","         CVaR") 
} 
else if(view == "pessimistic") { 
 leg.names <- c("PESS. CVaR","         CVaR") 
} 
else if(view == "optimistic") { 
 leg.names <- c("OPT. CVaR","         CVaR") 
}  
legend(x,y,leg.names,lty=c(1,8), lwd = 2) 
 
# Plot Stock Mu's and CVaR's and Add Legend 
if(display.letters){ 
 for(i in 1:p) { 
  points(cvar1[i],mu1[i],pch = letters[i]) 
   points(cvar2[i],mu2[i],pch = LETTERS[i]) 
 } 
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 if(display.names) { 
  text(cvar1 + 0.002, mu1, names(mu1), adj= 0) 
  text(cvar2 + 0.002, mu2, names(mu2), adj= 0) 
 } 
 x <- xlim[1]+.15*(xlim[2]-xlim[1]) 
 y <- ylim[1]+.10*(ylim[2]-ylim[1]) 
 leg.names <- c("A,B,. Robust Mu's,CVaR's", 
  "a,b,. Classic Mu's,CVaR's")  
 text(x,y,leg.names[1]) 
 text(x,y-.002,leg.names[2]) 
}  
if(display.points) { 
 points(cvar1,mu1,pch = 2) 
 points(cvar2,mu2,pch = 17) 
 if(display.names) { 
  text(cvar1 + 0.002, mu1, names(mu1), adj= 0) 
  text(cvar2 + 0.002, mu2, names(mu2), adj= 0) 
 } 
 x <- xlim[1]+.00*(xlim[2]-xlim[1]) 
 y <- ylim[1]+.13*(ylim[2]-ylim[1]) 
 leg.names <- c("  ROBUST","CLASSICAL") 
 legend(x,y,leg.names, marks = c(17,2)) 
} 
# Plot Portfolio Weights for Both Efficient  
# Frontiers 
if(plot.weights) { 
 par(mfrow = c(1,2)) 
 barplot(ef.cvar$Weights,legend = names(returns)) 
 title(main = "CVaR FRONTIER WEIGHTS") 
 barplot(ef.cvar.robust$Weights, 
  legend = names(returns)) 
 if(view == "robust") { 
  title(main="ROBUST CVaR FRONTIER WEIGHTS") 
 } 
 else if(view == "pessimistic") { 
  title(main="PESSIMISTIC CVaR FRONTIER  
   WEIGHTS") 
 } 
 else if(view == "optimistic") { 
  title(main="OPTIMISTIC CVaR FRONTIER WEIGHTS") 
 } 
 par(mfrow = c(1,1)) 
} 

Code 6.19 CVaR Efficient Frontier Plots 
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6.10.1 Manager Views and What-If Predictive 
Diagnostics 

We want to stress the predictive and diagnostic nature of the optimal CVaR 
efficient frontiers above. First of all, any kind of efficient frontier calculation is 
an “in-sample” predictive model in the sense that when one selects a particular 
portfolio to use based on such an efficient frontier, one is predicting that the 
efficient frontier is a reasonable predictor of future mean return-risk trade-off. 
Second, it may often be the case that an asset manager is at first unwilling to 
take any one of the views proposed above (robust, pessimistic, optimistic) or 
even a “standard” view that there should be no outlier treatment. In such cases, 
the manager may derive considerable diagnostic benefit from a “what-if” 
analysis based on computing CVaR efficient frontiers for each of the views. If 
the results are all in reasonable agreement, there is little cause to worry about 
influential outliers. But if there are substantial differences between two or more 
of the views, such analysis can act as a catalyst for the asset manager to 
investigate any unusual positive or negative returns that may be influencing the 
results. This may lead the manager to adopt a particular view based on a deeper 
knowledge of what has caused the events and his belief about whether they are 
likely to occur during the investment horizon. 

We also remark that the simple return trimming method used here for CVaR 
portfolio optimization could also be used as a preprocessor for Markowitz mean-
variance optimization. The additional computational burden of the robust 
covariance matrix calculation (in the case of a large number of assets) could 
then be avoided by instead using the classical mean and covariance matrix 
estimates based on univariate trimmed returns. 

6.10.2 Choice of Alpha 

Section 5.6.1 shows that estimates of CVaR are much more variable than 
estimates of VaR, which are in turn much more variable than estimates of 
standard error. This is natural in that CVaR is based on the mean value of the 
smallest %α  of the returns. Consequently, one can expect that CVaR efficient 
frontiers will be more variable than Markowitz mean-variance frontiers. (This 
could be checked with bootstrap experiments.) One way to mitigate this problem 
is to increase the value of ,α  say, to .1 or .2. Note that when .5,α =  CVaR is 
the mean of the returns below the median, which differs from lower semi-
variance only by using the median in place of the overall mean. This choice may 
be interesting to asset managers in view of its very simple interpretation as the 
average losses below the median loss. Of course, the resulting portfolio weights 
do not pay as much relative attention to the downside returns when using larger 
values of alpha as when using smaller values of alpha. Examples of CVaR 
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frontiers for .05,  .2,  and .5α =  are provided in Figure 6.55, which is produced 
with Code 6.20. 
 
tickers <- c("BKE","GG","GYMB","KRON") 
returns <- smallcap.ts[,tickers]@data 
cvar05 <- CVaR.eff.frontier(returns, alpha = .05,  
 n.pf = 10, plot = F) 
cvar2 <- CVaR.eff.frontier(returns, alpha = .2,  
 n.pf = 10, plot = F) 
cvar5 <- CVaR.eff.frontier(returns, alpha = .5,  
 n.pf = 10, plot = F) 
xlim <- range(cvar05$Risk,cvar2$Risk,cvar5$Risk) 
ylim <- 

range(cvar05$Return,cvar2$Return,cvar5$Return) 
plot(cvar05$Risk,cvar05$Return, type = "l", 
 xlim = xlim, ylim = ylim, 
 xlab = "CVaR", ylab = "MEAN RETURNS") 
title(main = "CVaR EFFICIENT FRONTIERS FOR VARIOUS 
 ALPHAS") 
lines(cvar05$Risk,cvar05$Return, lty = 1, lwd =2) 
lines(cvar2$Risk,cvar2$Return, lty = 4, lwd = 2) 
lines(cvar5$Risk,cvar5$Return, lty = 8, lwd = 2) 
leg.names = c("ALPHA = .05","ALPHA = .1", 
 "ALPHA = .5") 
legend(.26,.029,legend = leg.names, lty = c(1,4,8), 
 lwd = 2) 

Code 6.20 CVaR Efficient Frontiers for Different Values of Alpha 

From Figure 6.55 it is clear that the efficient frontiers are not obtained from one 
another simply by a uniform scaling with respect to CVaR values. It will be 
useful to compare the portfolio weight profile for each of the frontiers (Exercise 
11).  

6.11 Influence Functions for Portfolios 

Influence functions are powerful statistical tools for characterizing three key 
aspects of an estimator, namely: (a) the influence of individual data values on 
the estimator, particularly the influence of outliers; (b) the maximum bias of the 
estimator caused by small fractions of outliers; and (c) the asymptotic variance 
of the estimators.17 While influence functions have been widely applied in 
statistics (see, for example, Hampel et al., 1986), there has been almost no use of 
them in finance and in portfolio construction in particular. This section 
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introduces the basic definitions and uses of influence functions and provides 
some initial applications to portfolio construction for the purpose of sensitivity 
analysis. 

6.11.1 Introduction to Influence Functions 

Influence functions have both finite sample and asymptotic versions. The 
intuitive motivation for the asymptotic influence function (influence function 
for short) comes from a finite sample form, one version of which is as follows. 
Let ˆ ˆ ( )n n xθ θ=  be an estimator of a parameter θ  based on a sample of data 

1 2( , , , )nx x x=x  of size n, and let x be an additional data point. To fix ideas 

you can think of n̂θ  as a sample mean of returns or a sample standard deviation 
estimate of volatility for a particular stock. Then an empirical influence function 
(EIF) of n̂θ  at x  is the function of x given by 

 
 ( )ˆ ˆ ˆEIF( ; , ) ( 1) ( , ) ( ) ,n n nx n xθ θ θ= + ⋅ −x x x  (6.23) 

 
where the factor 1n +  is used to normalize the result across sample sizes.18 For 
a few simple estimators (such as the sample mean and sample median), it is 
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Figure 6.55 CVaR Efficient Frontiers for Three Values of Alpha 
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possible to compute an analytical expression for the EIF, but for most robust 
estimators this is not possible. However, one can numerically compute the EIF 
for a “typical” sample of returns x  and plot the results as a function of the value 
of the additional data point x. Thinking of a normally distributed sample of 
returns, one can choose x  to be normal random numbers whose mean and 
standard deviation are those of typical returns. A better approach that eliminates 
the variability of the random sample and gives a good rendition for small as well 
as large sample sizes is to let the sample x  be the quantiles of a normal 
distribution. 

Figure 6.56 displays the EIFs of the sample mean, the sample median, a 10% 
trimmed mean, and the optimal location M-estimate obtained from lmRob, as 
described in Section 6.3, using twenty quantiles of a standard normal 
distribution for the prototype data sample x.  The main messages from these 
EIFs are:  

 
(a) The unbounded character of the EIF for the sample mean reflects the 

fact that a single outlier can cause an arbitrarily large influence on the 
sample mean. 

(b) All the other estimates have bounded EIFs, reflecting the fact that a 
single outlier can only influence the estimate by a limited amount. 

(c) The median has a nearly discontinuous EIF, which reflects the fact that 
the median has a certain “roughness” character. 

(d) Very large outliers have zero EIF values for the optimal M-estimate, 
reflecting the fact that this estimate “rejects” sufficiently large outliers.  

 
Note that the trimmed mean, which at first glance appears to discard large 
outliers, does not in fact accomplish this goal in the same effective way as the 
optimal M-estimate. The computations and plots of Figure 6.56 are produced by 
Code 6.21. 
 
n <- 20 
probs <- (1:n - .5)/n 
xn <- qnorm(probs) 
x <- seq(-5,5,.1) 
k <- length(x) 
eif <- rep(0,k) 
par(mfrow = c(2,2)) 
par(pty = "s") 
for(i in 1:k) { 
 eif[i] <- (n+1)*(mean(c(x[i],xn))-mean(xn)) 
} 
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plot(x,eif,type = "l",ylab = "EIF", 
 main = "SAMPLE MEAN") 
for(i in 1:k) { 
 eif[i] <- (n+1)*(median(c(x[i],xn))-median(xn)) 
} 
plot(x,eif,type = "l",ylab = "EIF", 
 main = "SAMPLE MEDIAN") 
for(i in 1:k) { 
 eif[i] <- (n+1)*(mean(c(x[i],xn),trim=.1)- 
  mean(xn,trim=.1)) 
} 
plot(x,eif,type = "l",ylab = "EIF", 
 main = "10% TRIMMED MEAN") 
for(i in 1:k) { 
 eif[i]=(n+1)*(coef(lmRob(c(x[i],xn)~1))- 
  coef(lmRob(y~1))) 
} 
plot(x,eif,type = "l",ylab = "EIF", 
 main = "OPTIMAL M-ESTIMATE") 

Code 6.21 EIFs for Mean Returns Estimates 
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Figure 6.56 EIFs for Sample Mean, Median, Trimmed Mean, and Huber 
M-Estimate 
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You can easily compute EIFs for the sample standard deviation volatility 
estimate by replacing the estimator function (e.g., mean in one of the “for” 
loops in Code 6.21 with the function stdev. You can do likewise for a robust 
scale estimate of volatility, for example, by replacing the function mean with 
the function scale.tau. The results, shown in Figure 6.57, show that (a) a 
single outlier has rapidly unbounded influence on the conventional standard 
deviation volatility estimate, and (b) outliers have only a bounded influence on 
the tau-scale estimate. With respect to the sample standard deviation EIF, note 
that when the additional data point is close to zero, which is the value of the 
sample mean for the prototype x , the additional data point is an inlier that 
results in a negative value of the EIF because such an inlier decreases the value 
of the standard deviation. Note that the tau-scale volatility estimate EIF has a 
shape similar to that of the standard deviation in the central region from –2 to 2, 
except that small values of the added data point do not have so much negative 
influence except right at zero.  

As the sample size tends towards infinity, the empirical influence function 
will (under regularity conditions) converge to the influence function defined as 
follows. It is assumed that the data are generated by a parametric distribution 

,Fθ  where θ  is the true parameter value. Let ( )Fθ  be the asymptotic value of 
the parameter estimate ˆ ˆ ( )n nθ θ= x  when the data have an arbitrary distribution 
function ,F  and note that typically ( )Fθ θ≠  for an arbitrary .F  It is also 
assumed that the parameter estimate is consistent (i.e., n̂θ  converges to oθ  in 
probability), and that ( )Fθθ θ= .19 We represent the asymptotic version of the 
prototype sample x  for an arbitrary distribution F  and additional data point x 
by the mixture distribution  

 
 (1 ) ,xF Fγ γ γ δ= − ⋅ + ⋅  (6.24) 

 
where γ  is the mixture probability and xδ  is a point mass probability 
distribution located at x. The influence function IF( ) IF( ; ( ), )x x F Fθ=  is  
defined as  
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Equivalently, IF( )x  is the derivative of ( )Fγθ  evaluated at 0γ = 20: 
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A very important property of the influence function is that it provides an 
approximate expression for the large sample bias 

 
  ( ; ) ( ) ( ) ( )BIAS x F F Fγ θ γγ θ θ θ θ− = −   
 
due to a small fraction γ  of data located at x, 

 
 ( ; ) IF( )BIAS x xγ γ≈ ⋅ , (6.27) 

 
where the influence function IF( )x  is evaluated at Fθ . There is evidence that 
for good robust estimators this local linear approximation of the bias is 
reasonably good for fractions γ  as large as 5% to 10%, which covers many 
situations of importance in finance.21 

An easy computation shows that the influence function of the sample mean 
estimate x  is 
 ( ; ) ,IF x x x µ= −  (6.28) 

 
where θ µ=  is the true mean value (Exercise 13). A slightly more involved 
computation shows that the influence function of an M-estimate µ̂  of location 
(see Equation 6.2) is 
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Figure 6.57 EIFs of Standard Deviation and Robust Tau-Scale Volatility 
Estimates 
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 , ( )s
xx

sµ
µψ ψ −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (6.30) 

 
and µ  and s  are the true location and scale parameters of the returns (Exercise 
14). This influence function is the same as , ( )s xµψ  except for the scale factor in 
the denominator. So, for the optimal bias-robust location M-estimate ψ  
function shown in the right-hand plot of Figure 6.6, the corresponding 
approximating EIF (shown in the lower-right-hand plot of Figure 6.56) differs 
from Figure 6.6 only by a scale factor and a small finite-sample approximation 
error. 

6.11.2 Influence Functions for Sample Mean and 
Covariance Estimates of Returns 

The definition of influence function extends in the obvious way to the case of 
multivariate data sets of returns and multidimensional parameter estimates. The 
functional representation of the sample mean estimate 1 2( , , , )kx x x ′x =  is 

( ) ( )F dF= ∫ x xµ . A straightforward calculation leads to (Exercise 15) 

 
 IF( ; ) .= −x x x µ  (6.31) 

 
For the sample covariance matrix estimate 

 

 
1

1ˆ ( )( ) ,
n

i i
in
=

′= − −∑Ω x x x x  (6.32) 

 
one finds that the influence function is (Exercise 16) 

 
 ˆIF( ; ) ( )( ) .′= − − −Ω Ωx x xµ µ  (6.33) 

 
For the case of a single asset where k = 1, the covariance matrix estimate 
becomes a sample variance, 2σ=Ω , and we get the influence function of the 
sample variance: 

 
 2 2 2ˆIF( ; ) ( ) .x xσ µ σ= − −  (6.34) 

 
This shows that the influence of an outlier on the sample variance is 
quadratically unbounded, while that of an “inlier” at x µ=  is 2.σ−  It is easy to 
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see from its definition that the influence function of the sample standard 
deviation 2ˆ ˆσ σ=  is 

 

 ( )2 21ˆIF( ; ) ( ) ,
2

x xσ µ σ
σ

= − −   

 
which for a standard normal distribution is 2.5 ( 1)x⋅ − . In the left-hand plot of 
Figure 6.57, you see that the EIF for the sample standard deviation is a good 
approximation to ˆIF( ; )x σ  for the standard normal distribution. 

6.11.3 Influence Functions for Mean-Variance 
Optimal Tangency Portfolios 

The Markowitz mean-variance efficient frontier for unconstrained portfolios is 
completely determined by the mean vector and covariance matrix of the returns. 
In order to estimate quantities on the efficient frontier, such as the mean return 
and risk of the global minimum variance and tangency portfolios and the 
maximum Sharpe ratio, one substitutes estimates of the mean vector and 
covariance matrix for their true values in the corresponding formulas. For the 
case of the tangency portfolio with return vector µ  and an excess return vector 

,e fr= − ⋅1µ µ  the weights vector, mean return, and variance estimates, 
respectively, are 
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The functional representation of the quantities above, needed for computing 
their influence functions, is obtained by replacing the mean and covariance 
matrix estimates by their functional representations ( ) ( )e fdF rγγ = − ⋅∫ 1µ x x  

and ( ) ( ( ))( ( )) ( )dFγγ γ γ ′= − −∫Ω x x xµ µ . This results in corresponding 

tangency portfolio functional representations for ( )T γw , ( ),Tµ γ  and 2 ( ),Tσ γ  
from which one can compute influence functions. The influence function for the 
tangency portfolio weights is 
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as can be verified by careful calculation (Exercise 17). Since the influence 
function ( )IFΩ x  for the covariance matrix is quadratically unbounded in x  
(i.e., the value increases quadratically with size x),  the same is true of the 
influence function for the weights given above. Since ( ) ( ) ( ),T e Tµ γ γ γ′= ⋅ wµ  
one gets (Exercise 18) 

 
 .( )IF IF ( ) ( ) TT Te wµ = ′ ′⋅ + − ⋅µ wx x xµ  (6.39) 

One can also show that (Martin and Zhang, 2004) 
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Notice that when the additional data value x  is located at the mean return 
vector ,µ  (i.e., ),µx =  the influence function for the weight vector is 
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One can also show that ( )IF 0

Tµ =x  and 1
2IF ( ) .T Tσ σ= −x  These results are 

intuitively appealing in that when a data value x  is located at the mean returns 
vector ,µ  it is reasonable that it have no perturbing influence on the portfolio 
weights or mean return, and the negative influence on the portfolio risk is 
consistent with that of the influence of an inlier on a simple standard deviation. 
Some other interesting results on portfolio influence functions may be found in 
Martin and Zhang (2004). 

We test the use of the influence formulas above on a very simple case where 
we know the tangency portfolio solution immediately and can interpret the 
influence function results most easily. Suppose we have 60 monthly 
observations of returns on two stocks with equal mean returns, equal volatilities, 
and a diagonal covariance matrix constructed as follows:  
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> stock.names <- c("STOCK.1", "STOCK.2") 
> mutest <- c(0.01, 0.01) 
> names(mu.test) <- stock.names 
> Vtest <- diag(c(0.003, 0.003)) 
> dimnames(Vtest) <- list(stock.names, stock.names) 
> mutest 
[1] 0.01 0.01 
> Vtest 
        STOCK.1 STOCK.2 
STOCK.1   0.003   0.000 
STOCK.2   0.000   0.003 

 
Our influence function code (Code 6.22) incorporates a function port.tan for 
computing the tangency portfolio: 
 
port.tan <- function(V, mu, rf) 
{ 
 p <- length(mu) 
 one <- rep(1, p) 
 mue <- mu - rf 
 a <- solve(V, mue) 
 Vinv <- solve(V) 
 d <- as.numeric(inprod(one, a)) 
 wts <- a/d 
 n <- as.numeric(qform(mue, Vinv)) 
 muep <- n/d 
 sigma <- n^0.5/abs(d) 
 sr <- sign(d) * n^0.5 
 list(Weights = wts, Mu.e = muep, Sigma = sigma, 
  "Sharpe Ratio" = sr) 
} 

Code 6.22 Unconstrained Tangency Portfolio 

Code 6.23 gives three simple functions for computing an inner product and 
quadratic form in port.tan, as well as an outer product function needed for 
our influence function calculations: 

 
inprod <- function(x, y) { 
 as.numeric(t(matrix(x)) %*% matrix(y)) 
} 
 
qform <- function(x, A) { 
 x = matrix(x) 
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 as.numeric(t(x) %*% A %*% x) 
} 
 
outprod = function(x, y) { 
 matrix(x) %*% t(matrix(y)) 
} 
 

Code 6.23 Inner Product, Outer Product, and Quadratic Form Functions 

Now we compute the influence function value for a data point (.065, .065)= −x  
on the tangency portfolio weights, mean return, risk (standard deviation), and 
Sharpe ratio, assuming a risk-free rate of .004 and using 1/ 61γ =  in the bias 
approximation ( ; ) IF( ) :BIAS x xγ γ≈ ⋅  

 
rf <- .004 
Gamma <- 1/61 
x <- c(.0648,-.0448) 

 
if.tan(x, Vtest, mutest, rf, print.results = T,  
 Gamma, IF.relative = T) 
 
* TANGENCY PORTFOLIO WEIGHTS AND PERFORMANCE * 
 
     WT1     WT2  MUE   SIGMA SHARPE  
     0.5     0.5 0.006 0.0387 0.1549 
 
* INFLUENCE FUNCTION OF TANGENCY PORTFOLIO * 
 
[1] "GAMMA = 0.016" 
 
        X1     X2  WT1   WT2 MUE  SIGMA SHARPE  
[1,] 1.001 -1.001 0.15 -0.15   0 -0.008  0.008 
 

The tangency portfolio weights (WT1, WT2), excess mean return (MUE), risk 
(SIGMA), and Sharpe ratio (SHARPE) provided as the first output above are 
exactly as one expects. In the last line of output the X1 and X2 are standardized 
versions of (.065, .065)= −x  (i.e., they represent one standard deviations of the 
added data from the mean returns). Because we used the optional argument 
IF.relative = T, the influence function values WT1, WT2, MUE, 
SIGMA, SHARPE are all relative to the true tangency portfolio values. For 
example, the WT1 value of .15 represents an increase in the weight of 15%, 
etc. 

Code 6.24 gives the S-PLUS code for the calculation above. 
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if.tan = function(x, V, mu, rf, print.results = T, 
 Gamma = 1, IF.relative = F) 
{ 
 # Compute tangency portfolio for IF.relative 
 # calculations 
 tanport <- port.tan(V, mu, rf) 
 wts.tan <- tanport$Weights 
 mu.tan <- tanport$Mu 
 sigma.tan <- tanport$Sigma 
 sr.tan <- tanport$"Sharpe Ratio" 
 opt.tan <- c(wts.tan, mu.tan, sigma.tan, sr.tan) 

 
 p <- length(mu) 
 # Optionally print tangency portfolio 
 if(print.results) { 
  names(opt.tan) = c(paste("WT", 1:p, sep = ""), 
   "MUE","SIGMA", "SHARPE") 
   cat("\n* TANGENCY PORTFOLIO WEIGHTS AND  
   PERFORMANCE *\n\n") 
  print(round(opt.tan, 4)); cat("\n") 
 } 
 # Compute excess returns, vector of 1's,  
 # Vinverse*mu.e, Vinverse 
 mu.e <- mu - rf 
 one <- rep(1, p) 
 xcent <- x - mu 
 a <- solve(V, mu.e) 
 Vinv <- solve(V) 
 # Compute influence functions 
 IF.cov <- outprod(xcent, xcent) - V 
 A <- Vinv %*% matrix(xcent) –  
  Vinv %*% IF.cov %*% a 
 B <- 1/inprod(one, a) 
 IF.wts <- B * A - (B^2) * a * inprod(one, A) 
 IF.mu <- inprod(mu.e, IF.wts) + 
  inprod(xcent,wts.tan) #IF mu.e 
 IF.sigma <- (2*t(wts.tan) %*% V %*% IF.wts +  
  qform(wts.tan,IF.cov))/(2*sigma.tan) 
 IF.sr <- (sr.tan^2 - 1 +  
  (inprod(a,xcent)-1)^2)/(2*sr.tan) 
 IF <- Gamma * c(t(IF.wts), IF.mu, IF.sigma, 

IF.sr) 
 if(IF.relative) { 
  IF <- IF/opt.tan 
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  digits <- 3 
  x <- xcent/as.vector(diag(V)^0.5) 
 } 
 else { 
  digits <- 4 
 } 
 IF <- t(as.matrix(c(x, IF))) 
 dimnames(IF)[[2]] <- c(paste("X", 1:p, sep = ""), 
  paste("WT", 1:p, sep = ""), "MUE", "SIGMA",  
  "SHARPE") 

 
 if(print.results) { 
  cat("\n* INFLUENCE FUNCTION OF TANGENCY  
   PORTFOLIO *\n\n") 
  cat(paste("GAMMA =", round(Gamma,3))) 
  cat("\n\n") 
 } 
 round(IF, digits) 
} 

Code 6.24 Influence Function of Tangency Portfolio 

Now we can use the function if.tan in a function if.comp2, given in Code 
6.25 to compute contour plots of the tangency portfolio influence function for 
weights, mean return, and risk for a range of values of 1 2( , )x x=x . The 
resulting influence function contours shown in Figure 6.58 for the tangency 
portfolio weight 1w  show that when X1 = X2 there is no influence bias on the 
weights, while X1 > X2 results in positive bias and X2 > X1 results in negative 
bias. 

Figure 6.59 and Figure 6.60 show corresponding results for the tangency 
portfolio mean return and standard deviation. 

Figure 6.59 shows that when X1+X2 > 0, the influence bias in mean return is 
positive, and when X1 + X2 < 0, this bias is negative. Figure 6.60 shows that the 
standard deviation of the tangency portfolio increases with increasing values of 
|X1+X2|. 

The results in Figure 6.58, Figure 6.59, and Figure 6.60 may seem intuitively 
reasonable based on the very simple structure of the assumed mean vector and 
covariance matrix. In any event, by careful examination of the expressions for 
the influence functions for the weight vectors, mean return, and standard 
deviation, one can easily check that the results are qualitatively correct (Exercise 
19). 

Here is a short bit of code that uses the function if.comp2 in Code 6.25 to 
carry out the computation above and produce the plot of Figure 6.58: 
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rf <- .004 
Gamma <- 1/61 
if.comp2(Vtest, mutest, rf, plotchoice = "if.wts",  
 k=3, nsteps=9, Gamma,IF.relative = T) 

 
To get the plots of Figure 6.59 and Figure 6.60, use the optional arguments 
plotchoice = "if.mu" and plotchoice = "if.sigma", 
respectively. 
 
if.comp2 <- function(V, mu, rf, plotchoice = 

"if.wts", k=5, nsteps=3, Gamma = 1, 
IF.relative = T) 

{ 
 sigma <- diag(V)^0.5 
 rng1 <- c(mu[1]-k*sigma[1], mu[1]+k*sigma[1]) 
 rng2 <- c(mu[2]-k*sigma[2], mu[2]+k*sigma[2]) 
 x1 <- rep(seq(rng1[1], rng1[2], length = nsteps), 
  times = nsteps) 
 x2 <- rep(seq(rng2[1], rng2[2], length = nsteps), 
  times = rep(nsteps, times = nsteps)) 
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Figure 6.58 Influence Function Contours for Tangency Portfolio Weights 
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 x <- cbind(x1, x2) 
 IF <- data.frame(matrix(rep(0, 7 * nsteps^2),  
  ncol = 7)) 
 
 for(i in 1:(nsteps^2)) { 
  IF[i,  ] <- if.tan(x[i,  ], V, mu, rf, 
   print.results = F, Gamma, IF.relative) 
 } 
 
 names(IF) <- dimnames(if.tan(x[1, ],V,mu,rf, 
  print.results = F))[[2]] 
 
 if(plotchoice == "if.wts") { 
  contourplot(WT1 ~ X1*X2, data = IF,  
   main = "WT1 IF") 
 } 
 else if(plotchoice == "if.mu") { 
  contourplot(MUE ~ X1*X2, data = IF,  
   main = "MU IF") 
 } 
 else if(plotchoice == "if.sigma") [ 
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Figure 6.59 Influence Function Contours for Tangency Portfolio Mean 
Return 
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  contourplot(SIGMA ~ X1*X2, data = IF,  
   main = "SIGMA IF") 
 } 
} 

Code 6.25 IF Plots for Tangency Portfolio 

We recommend that the reader experiment with the tangency portfolio influence 
functions above using a more realistic set of mean returns and covariance matrix 
that may arise in practice. For example, you might use the following monthly 
mean returns, covariance matrix, and volatilities (Exercise 20)22: 

 
> mu3 
  SP500 GOV.BOND SMALL.CAP 
 0.0101   0.0043    0.0137 
 
> V3 
            SP500 GOV.BOND SMALL.CAP 
    SP500 0.00325  0.00023   0.00420 
 GOV.BOND 0.00023  0.00050   0.00019 
SMALL.CAP 0.00420  0.00019   0.00764 
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Figure 6.60 Influence Function Contours for Tangency Portfolio Risk 
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> round(sqrt(diag(V3)),4) 
[1] 0.0570 0.0224 0.0874 
 

You can get the correlation matrix from the covariance matrix with the function 
cov.to.corr in Code 6.26. 

 
cov.to.corr <- function(v) { 
 dimnames <- dimnames(v) 
 sigma <- diag(v)^0.5 
 s.inv <- diag(1/sigma) 
 rho <- s.inv %*% v %*% s.inv 
 dimnames(rho) <- dimnames 
 rho 
} 

Code 6.26 Convert Covariance Matrix to Correlation Matrix 

> round(cov.to.corr(V3),4) 
           SP500 GOV.BOND SMALL.CAP 
    SP500 1.0000   0.1804    0.8429 
 GOV.BOND 0.1804   1.0000    0.0972 
SMALL.CAP 0.8429   0.0972    1.0000 
 

You can compute the tangency influence function for all three of these assets 
with if.tan, but when using if.comp you need to work with two at a time. 
Note that if you use SP500 and SMALL.CAP, you have a high correlation, but if 
you use GOV.BOND and SMALL.CAP, you have a small correlation. Do not be 
surprised if you find that the influence of additional outlier data is greater in the 
case of high correlation between assets. 

6.11.4 Influence of Outliers on the Sharpe Ratio 

It turns out that the influence function for the Sharpe ratio of the tangency 
portfolio has the simple form (see Martin and Zhang, 2004) 

 

 ( )2 21IF ( ) 1 ( 1) ,
2SR SR y

SR
= + − −x  (6.42) 

 
where 

 
 1( )ey −= −µ Ω µx  (6.43) 
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Thus, somewhat surprisingly, the value of IF ( )SR x  is bounded above by 

( )2 1 / 2SR SR+  (i.e., an outlier can cause at most a bounded positive bias in the 

maximum Sharpe ratio). But since y can be made arbitrarily large by making the 
size of x  arbitrarily large, an outlier can cause an arbitrarily large negative bias 
of the Sharpe ratio. This represents a fundamental kind of asymmetry in the 
potential influence of outliers on the maximum Sharpe ratio. The reader is 
encouraged to explore the influence of outliers on the maximum Sharpe ratio by 
appropriately modifying the function if.comp2, first in such a way as to 
explore the influence of outliers in one coordinate direction at a time (i.e., in one 
set of returns at a time). 

6.11.5 Empirical Influence Functions for 
Unconstrained and Constrained Portfolios 

It is a straightforward matter to compute influence functions for weights, mean 
return, and risk of other unconstrained portfolios (such as the global minimum 
variance portfolio). Since the method is an infinitesimal one, providing a valid 
approximation for small fractions of influential data, it could in principle be 
applied to a portfolio optimized under constraints, provided none of the 
constraints are binding and the influence of an outlier does not cause some of the 
constraints to become binding. The obvious first approach to computing 
influence functions for constrained portfolios (e.g., long-only portfolios, sector 
constraints, etc.) is to compute empirical influence functions (EIFs) along the 
lines of the calculations leading to Figure 6.56. While this will be 
computationally burdensome since one has to solve a QP or LP problem for 
each outlier data position, it can no doubt be done. A first step would be to 
compute the empirical influence function for the tangency portfolio quantities in 
the unconstrained case as a check on its accuracy. Our earlier results with EIFs 
for simple location estimates were quite encouraging, but since the tangency 
portfolio estimates are much more complicated, this initial check will be useful. 
A deeper study of the QP optimization structure might lead to some efficient 
methods of computing influence functions or EIFs for optimal portfolios under 
constraints. This is a topic for further research. 
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Exercises 

1. Use the plot function in a for loop to plot time series of returns for each 
microcap stock in microcap.ts so that you can get an overall visual 
grasp of the behavior of each stock in this microcap group with respect to 
outliers and time-varying volatility. Use the plot function with arguments 
as in Code 6.1, except use a generic first argument returns, setting 
returns equal to one of the stock’s returns series for each cycle of the 
for loop. Use the graphics command par(mfrow(n1,n2)) to automate 
plotting a number of time series of returns per page for each of the market 
cap groups. Use the S-PLUS Windows toolbar menu choice “Options > 
Graph Options” and select “Every Graph” from the Auto Pages drop-down 
list in the “Traditional Graphics” region of the dialog, as this will result in 
each new page of plots appearing as a separate page of the Graph Sheet. 
Make similar plots for each of the groups smallcap.ts, midcap.ts, 
and largecap.ts. 
 

2. Make Q-Q plots of returns for a few time series from each of the four 
market cap groups, both with and without 95% simulation envelopes. 
Automate making Q-Q plots for all stock returns in the four market cap 
groups in a manner similar to the way you plotted all the time series in 
Problem 1. 

 
3. Compute classical and robust means and standard deviations of returns for 

all the stocks in the microcap group, and plot the means versus standard 
deviations for these estimates. Use one plotting symbol for the classical 
estimates and another plotting symbol for the robust estimates. Add the 
ticker symbols as text labels. (Warning: with a lot of stocks there may be 
confusing overlap of these text labels.) 

 
4. Use the classical and robust EWMA volatility estimate and UMT functions 

(Code 6.4 and Code 6.5) on a few stocks from each of the four market cap 
categories. What do you conclude about the prevalence of outliers and 
overestimation of volatility following isolated outliers? What do you 
conclude about the potential usefulness of a robust UMT? 

 
5. Modify the UMT Code 6.4 to use 1ˆtσ −  in place of ˆtσ  in the test statistic 

and evaluate the improvement in detecting initial outlier returns (unusual 
price movements). Do you think the modified method is adequate for 
detecting a returns outlier that occurs shortly after another returns outlier? 
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6. Convert Code 6.6 into an S-PLUS function that makes an array of plots (like 
that of Figure 6.17) of the input returns series, overlays the LS and robust 
regression lines, and places the legend and annotations automatically. Then 
run the function on a few of the stock returns in each of the time series data 
sets microcap.ts, smallcap.ts, midcap.ts, largecap.ts. 
You might want to do this with a for loop as in Problem 1, in which case 
you can do it for all twenty stock returns in each of the market-cap groups. 
(Alternatively, the Trellis graphics functions in S-Plus, if you are familiar 
with them, provide a clean way to do this.) For which stock returns do the 
least squares and robust betas differ significantly because of the presence of 
outliers? 

 
7. Alphas are of considerable interest to investors because they represent 

excess returns obtainable from investing in a given stock over and above 
what is predicted by the Capital Asset Pricing Model (CAPM). Modify the 
code in Exercise 6 so that you obtain the least squares and robust alphas and 
their standard errors. For what firms do the least squares and robust alphas 
differ significantly? What do you conclude about the usefulness of robust 
alphas? 

 
8. Explore small subsets of four to six multivariate stock returns in one of the 

time series data sets microcap.ts, smallcap.ts, midcap.ts, 
largecap.ts, and midcapD.ts by making pairwise scatterplots and 
classical versus robust correlations to find a subset that exhibits one or more 
substantial differences between the classic and robust correlations. Explain 
why the substantial difference or differences between classical and robust 
correlations are reasonable given the nature of the data. For such a subset, 
compute and display classical and robust Mahalanobis distances, and 
comment on any interesting aspects of the multidimensional outliers found. 

 
9. Use the multivariate returns data set of Exercise 8 for this exercise. 

Compute and display classical and robust mean-variance efficient frontiers, 
and discuss how you would use the results to guide a portfolio selection 
investment decision. 

 
10. Use the multivariate returns data of Exercises 8 and 9 or other similarly 

interesting multivariate returns data for this problem. Compute and display 
bootstrapped classical and robust efficient frontiers and boxplots of paired 
differences in classical and robust Sharpe ratios. What is the effect of 
changing the number of bootstrap samples?  How many bootstrap samples 
appear to be adequate to you? 

 
11. Compute and display the portfolio weights for the three efficient frontiers in 

Figure 6.55. What do you find?  Do the results make sense? 
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12. Use the multivariate returns data of Exercises 8 and 9 or other similarly 

interesting multivariate returns data for this problem. For alpha equal to .05, 
compute robust, optimistic, and pessimistic CVaR optimal portfolios and 
display the results of each along with the classical CVaR optimal portfolio 
(also using an alpha value of .05). Discuss how you would use the results to 
guide a portfolio selection investment decision. Do likewise for alpha 
values of .1, .2, and .5. 

 
13. Derive the expression for the influence function of the sample mean of a 

single-asset return. 
 
14. Derive the expression for the influence function of a location M-estimate. 
 
15. As a slight extension to Exercise 13, derive the expression for the influence 

function of a sample mean of multivariate returns. 
 
16. Derive the expression for the influence function of the sample covariance 

matrix. 
 
17. Verify the expression for .IF ( )

Tw x  
 
18. Verify the expression for ( )IF

T
µ x . 

 
19. Verify that the results in Figure 6.58, Figure 6.59, and Figure 6.60 are 

qualitatively correct.  
 
20. Compute and display tangency portfolio influence functions assuming that 

the mean returns vector is mu3 and the covariance matrix is V3. Explain 
why the results are reasonable. 
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Endnotes

                                                           
1 This is true even when adjusting for time-varying volatility with a GARCH model. See, 
for example, calculations by Menn (2003). 
2 If you wanted to get a data frame object with a single variable rather than a vector 
object (the default simple data object in S-PLUS), you would drop the subscript part 
“[,1]” in the following two commands. Some functions in S-PLUS will work on S-PLUS 
V4 time series objects directly (e.g., mean and var will do so, though with slightly 
different output formats, but stdev will not). Many functions that do not work on S-
PLUS V4 time series objects will work on the data frame component of a time series 
object that you would obtain as described above. Unfortunately, some functions, such as 
stdev, will not even work on a data frame but will work on a vector object, which is 
why we elected to extract the data from returns.ts as a vector in this example.  
3 The functions qqnorm and qqline are other examples of functions that do not work 
on data frames. 
4 See the online manual for the Robust Library in S-PLUS 6 for further details on the Q-Q 
plot simulation envelopes. See also Atkinson (1985). 
5 We remark that when there is a lot of data (e.g., a few hundred observations), one may 
be able to fit a heavy-tailed distribution to asset returns with a reasonably high degree of 
accuracy (see, for example, Rachev and Mittnik, 2000). Then although one cannot predict 
just when a future outlier will occur, one can be certain that a certain number will occur 
on average over a certain time interval, and this is can be very useful in the context of 
risk management. 
6 M-estimators are generalizations of maximum likelihood estimators introduced by 
Huber (1964) for estimates of location and by Huber (1973) for regression. See also 
Huber (2004) and Hampel et al. (1986) 
7 It should be noted that the weights in this case are data-dependent, which means that 
this weighted least squares equation is nonlinear.  
8 This is similar to the fact that the classical t-test lacks robustness of power toward 
heavy-tailed deviations from normality. 
9 Capital Asset Pricing Model. 
10 This general form of shrinkage estimator was justified using a Bayesian argument by 
Vasicek (1973) and by Blume (1971) using an argument of regression toward the mean. 
11 See the “Current Commercial Practice” section of Martin and Simin (2003) for further 
details. 
12 The horizontal dashed lines are located at 2.5±  times the scaled median absolute 
deviation about the median (MADM) robust scale estimate, which is an approximately 
unbiased estimate of the standard deviation when the returns are normally distributed. 
13 The modified function seriesPlot, and a modified function 
panel.superpose.ts that is called by seriesPlot, are provided in the code 
archive for this book (see the Preface).  
14 The script multi.start.function.ssc, written by Heiko Bailer and included in 
the code archive for this book (see the Preface), implements the classical and robust 
versions of the Stambaugh method. 
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15 We note that there is nothing wrong with using a parametric bootstrap so long as the 
parametric model is adequate. The problem with the Jorion and Michaud approach is the 
evaluation of the performance of their resampled portfolios using the original sample 
mean and covariance rather than the resampled means and covariances.  
16 See also Bradley and Taqqu (2003). 
17 For a thorough introduction to influence functions in the context of robust statistics, see 
Hampel et al. (1986), which discusses all the key properties of influence functions. Here 
we focus primarily on the influence of outliers and the approximate bias caused by 
outliers.  
18 This is one of several possible definitions of a finite sample influence function. See, for 
example, Mallows (1975). 
19 The latter condition is called Fisher consistency in the statistical literature. See, for 
example, Huber (2004) or Hampel et al. (1986). 
20 This is a directional or Gateaux derivative of the functional ( )Fθ at oF  in the 

“direction” Fγ . 
21 See, for example, Hampel et al. (1986) and the maximum bias curves in Martin, Yohai, 
and Zamar (1989). 
22 These are the values used in Rockafellar and Uryasev (2000) but have been slightly 
rounded. 
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7 Bayes Methods 

 
7.1 The Bayesian Modeling Paradigm 

Let ( )1 2, , , pθ θ θ=θ  be a vector of model parameters for a financial model 

(e.g., ( ) ( )2
1 2, ,θ θ µ σ= =θ  represents the mean and variance for the returns of 

a single asset, ( ) ( )1 2, ,θ θ α β= =θ  represents the intercept and slope in the 
single-factor market model, or ( ) ( )1 2 1 2, , , , , ,K Kθ θ θ µ µ µ= =θ  represents 
a set of mean returns in a mean-variance portfolio optimization problem). For 

1,2, , ,t T=  let ( )1 2, , , Kt t t tr r r=r  be the row vector of returns on p assets, 
and let R  be the T K×  matrix of such row vectors. Bayes’ Theorem for 
probability densities states that the posterior density ( )p θ R  for θ  given R  is 
given by the Bayes formula 

 

 ( | ) ( ) ( ) ( )( | ) ,
( ) ( )

p p L pp
p p

= =
R θ θ θ θθ R

R R
 (7.1) 

 
where ( ) ( | )L p=θ R θ  is the likelihood function (viewed as a function of θ  
with R  fixed), ( )p θ  is the prior probability density, and ( )p R  is the marginal 
density of R : 

 
 ( ) ( | ) ( ) ( ) ( ) .p p p d L p d= =∫ ∫R R θ θ θ θ θ θ  (7.2) 

 
Note that because R  is fixed in the posterior density for θ  given R , we have 

 
 ( | ) ( ) ( ).p L p∝θ R θ θ  (7.3) 
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Let R  be a new data matrix whose rows are ( )1 2, , , ,t t t tKr r r=r  

 1, 2, , ,t T= and assume that R  and R  are conditionally independent given 
,θ  which is typically the case. Then the Bayesian predictive density of R  

given R  is 
 

 

( | ) ( , | )

( | , ) ( | )

( | ) ( | ) .

p p d

p p d

p p d

=

=

=

∫
∫
∫

R R R θ R θ

R θ R θ R θ

R θ θ R θ

 (7.4) 

 
A major advantage of using a Bayesian model in portfolio management and 

investment decisions is that it allows the manager to combine prior information 
from one or more sources with sample returns information to arrive at a 
decision. This is particularly important in the commonly occurring situation 
where the manager has sample information in the form of a limited amount of 
returns data (e.g., monthly returns for a year or two in some cases). These are 
situations in which the prior information is not dominated by the sample 
information in the form of the likelihood, and consequently the prior information 
is likely to add value in the investment decision process. The kinds of 
information the investor may be able to use in constructing a prior include 
outputs of returns forecasting models, cross-section information, fundamentals 
research, and views or bets made based on one or more of these kinds of 
information. 

In order to construct a Bayesian model for a particular investment problem, 
all one has to do “in principle” is specify the form of the likelihood and the form 
of the prior, compute the marginal density of ,R  and plug these results into the 
Bayes formula. Then one can compute the posterior density ( )p θ R  and the 

posterior predictive density ( | )p R R  and make whatever posterior probability 
statement one wishes (e.g., a posterior mean or median, a posterior standard 
deviation, or a posterior confidence interval). 

7.1.1 Portfolio Construction via Posterior Expected 
Utility Maximizaton 

Suppose we have returns ( )1 2, , , Kr r r=r  for a time period spanning the 
present to the next time of interest (e.g., from the end of this month to the end of 
the next month), and we wish to choose portfolio weights 1 2( , , , )Kw w w′ =w  
to optimize the portfolio return pr ′= w r  in some way. If we have a probability 
density function ( | )p r θ  with parameter vector θ  and a utility function U, then 
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we choose the weights vector w  to maximize the expected utility 

[ ]( ) ( ) ( | ) ;E U U p d′ ′= ∫w r w r r rθ  that is: 

 
 argmax ( ) ( | ) .opt U p d′= ∫w

w w r r rθ  (7.5) 

 
It is common practice to replace the unknown value of θ  in ( | )p r θ  with an 

estimate θ̂  based on prior returns history. But then the maximized utility 
[ ] ˆ( ) ( ) |opt optE U E U⎡ ⎤′ ′= ⎣ ⎦w r w r θ  contains estimation risk since it does not 

account for the uncertainty in the estimate θ̂ . 
The Bayesian approach provides a natural way to account for this estimation 

risk. Let ( | ) ( | )pp r p ′=R Rw r be the posterior predictive density of the future 
portfolio return pr : 

 
 ( | ) ( | ) ( | )p pp r p r p d= ∫R Rθ θ θ . (7.6) 

 
Then we compute optimal portfolio weights by maximizing the expected utility 
under this posterior predictive density:  

 

 
[ ]argmin ( ) |

argmin ( ) ( | ) ( | )  .

opt E U

U p p d d

′=

′ ′∫ ∫

R

R

w

w

w w r

= w r w r rθ θ θ
 (7.7) 

 
The resulting maximized expected utility [ ]( ) |optE U ′ Rw r  reflects the 
uncertainty in the parameter θ  by virtue of averaging with respect to ( | )p Rθ  
in the integral above. 

7.1.2 The MCMC Method 

The use of Bayesian models in finance (and other areas of study) has been quite 
limited until recent years because of a major impediment: except for the special 
case of conjugate priors where the posterior and prior densities are in the same 
parametric family of densities, it is seldom possible to obtain a tractable analytic 
expression for the posterior density of the parameters and posterior predictive 
density. Consequently, much of the early work on Bayesian models in 
econometrics and finance concentrated on linear models with normal errors and 
multivariate normal models for mean returns, where conjugate priors were 
available, namely a normal inverse chi-squared (inverse Gamma) distribution for 
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the normal linear model and a normal inverse Wishart distribution for 
multivariate normal mean returns.1 

Unfortunately, normal distributions are often quite inadequate models for 
asset returns, as we have seen in Chapters 5 and 6, and this leads to the need for 
non-normal likelihoods. Furthermore, the cross-sectional behavior of parameters 
such as mean return, volatility, and betas are often non-Gaussian, which means 
that we need non-normal prior distributions. Use of realistic distributions for 
returns and priors such as normal mixtures and t distributions takes one outside 
the conjugate priors framework and forces one to use a computationally intense 
method of computing posterior distributions. The most viable and popular 
approach these days is one of several versions of the Markov Chain Monte 
Carlo (MCMC) method of approximating posterior distributions.2 

The basic idea behind the MCMC method is to create a Markov chain whose 
stationary distribution is ( )p θ R . Under reasonable conditions, one can start the 
chain at an arbitrary point and the distribution of the values of the chain will 
converge to the stationary distribution ( )p θ R  exponentially fast.3  Based on 
this assumption, the MCMC method proceeds in the following three steps: (1) 
First generate a long sequence of samples ,   1, 2, ,i i n=θ  from the Markov 
chain with n large enough, (2) discard the first on  “burn-in” values, and (3) use 

the remaining values ,   1, 2, ,i o oi n n n= + +θ  to form an estimate ˆ ( )p θ R  of 
the posterior density ( )p θ R , or more simply use these values in the obvious 
way to compute estimates of quantities such as the posterior mean, posterior 
standard deviation, posterior percentage points, and so on. 

A powerful aspect of this approach is that the posterior distribution of 
complicated nonlinear functions ( )g θ  may be easily estimated using the MCMC 

sequence ( )ig θ . For example, if 2σ=θ  is the variance of returns and 
2( ) ( )g Cθ σ=  is the Black-Scholes call price of a European option, then the 

posterior density ( )2( ) |p C σ R  is easily estimated using the MCMC method. 

Or if 2( , )µ σ=θ  and we are interested in the Sharpe ratio /SR µ σ= , the 
posterior density ( / | )p µ σ R  is easily estimated by MCMC. And if we want to 
optimize a portfolio by maximizing the expected utility with respect to the 
posterior predictive distribution, we can use post-burn-in samples iθ  to generate 
samples ,p i ir ′= w r  from ( | )p ip r θ  and choose w  to maximize the posterior 
estimate of expected utility 

 

 ,
1 1

1 1( ) ( )
n n

p i
i i

U r U
n n

= =

′=∑ ∑ iw r . (7.8) 
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The devil is in the details, and there are a variety of special forms of MCMC 
such as the Gibbs sampler, the Metropolis algorithm, and the Metropolis-
Hastings algorithm, with the Gibbs sampler being the workhorse for many 
common types of models, such as linear regression. See Gilks et al. (1996) for 
descriptions of these MCMC variants. The S+Bayes module used for many of 
the calculations in this chapter uses one of these three types of MCMC methods, 
depending on the model at hand.  

In order to construct a good Bayesian model for investment decisions, one 
needs to combine exploratory data analysis (EDA) with experimentation with 
Bayesian model fits based on alternative prior and likelihood specifications. 
This in turn requires that one have good, flexible Bayesian modeling and 
analysis software that provides convenient specification of priors and 
likelihoods and the MCMC computation of posteriors. The S+Bayes module 
provided with this book provides good support for such efforts. 

In Section 7.2, we provide an extensive discussion of Bayes models for mean 
returns and volatility, with a substantial number of code examples, in order to 
provide a solid foundation for dealing with more complex Bayes models. 
Section 7.3 discusses Bayes linear regression models as applied to simple factor 
models such as the single-factor market model and cross-section regression 
factor models. Section 7.4 discusses applications of the Bayes linear regression 
model to Black-Litterman models of mean returns and extensions to non-normal 
priors and likelihoods. Finally, Section 7.5 discusses in detail one form of 
Bayes-Stein estimate of mean returns. 

7.2 Bayes Models for the Mean and Volatility 
of Returns 

7.2.1 Normal Bayes Model of Mean Returns with 
Volatility Known  

Let’s assume that we have returns 1 2( , , , )Tr r r=r  for a single asset that are 
independent and identically distributed, each with a normal distribution 

2( | , )N r µ σ  with mean µ  and variance 2.σ  For now, we assume that the 

portoflio manager knows the value of 2.σ  The resulting “normal” likelihood for 
µ  is 
 

 2 2
2

11

1( ) ( | , ) exp ( ) .
2

T T

t t
tt

L N r rµ µ σ µ
σ ==

⎧ ⎫⎪ ⎪= ∝ − −⎨ ⎬
⎪ ⎪⎩ ⎭

∑∏  (7.9) 
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We also assume a normal prior 2( ) ( | , )o op Nµ µ µ σ= . This is a simple 
example of a conjugate prior distribution—one that has the same general form 
as the likelihood and consequently results in a posterior distribution of the same 
form as the prior. The latter part of this statement will be clear from the 
calculations below. The parameters oµ  and 2

oσ  are called hyperparameters, 
and they need to be specified by the portfolio manager. For the moment, let’s 
assume that, in addition to specifying the values of these hyperparameters, the 
manager knows a value for the returns volatility σ . 

Since the posterior density ( | )p µ r  is proportional to the product of the 
likelihood and the prior, we have 

 

 

2
2

1
2 2

( )
( )( | ) exp .

2 2

T

t
o t

o

r
p

µ
µ µµ

σ σ
=

⎧ ⎫
−⎪ ⎪

−⎪ ⎪∝ − −⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

∑
r  (7.10) 

 
It is an easy exercise (Exercise 7.1) to show that 
 

 2 2 2

1 1
( ) ( ) ( ) ,

T T

t t
t t

r r r n rµ µ
= =

− = − + −∑ ∑   

 
where r  is the sample mean of the returns, and plugging this in above gives 

 

 
2 2

2 2
( ) ( )( | ) exp .

2 2 /
o

o

rp
T

µ µ µµ
σ σ

⎧ ⎫− −
∝ − −⎨ ⎬

⎩ ⎭
r  (7.11) 

 
Expanding the exponent and completing the square leads to (Exercise 7.2): 

 
 2ˆ( | ) ( | , ),T Tp Nµ µ µ σ=r  (7.12) 

 
where the posterior mean is 

 

 
2 2

2 2

1

1

o
o

T

o

T r

T

µ
σ σµ

σ σ

+
=

+
 (7.13) 

 
and the posterior variance is  
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1

2
2 2

1
T

o

Tσ
σ σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

. (7.14) 

 
The posterior mean is the precision-weighted average of the prior mean oµ  

and the observed return r, where 21/ oσ  is the precision of the prior and 2/T σ  
is the precision of the sample mean r . We sometimes refer to the latter as the 
likelihood precision or data precision. It is easy to see that the posterior 
precision 21/ Tσ  is just the sum of the prior precision and the likelihood 
precision: 

 

 2 2 2
1 1 .
T o

T
σ σ σ

= +  (7.15) 

 
This example reflects a fundamental shrinkage property that appears in 

Bayes posterior means for many models: the posterior mean Tµ  is shrunk away 
from the maximum likelihood estimate (the sample mean in this case) and 
toward the prior mean by an amount depending upon the relative precisions of 
the prior and likelihood. Notice that when the likelihood precision 2/T σ  is 
large relative to 21/ ,oσ  the majority of the weight in Tµ  is given to ,r  the 
likelihood precision is said to dominate the prior precision, and in the limit Tµ  

becomes the maximum likelihood estimate r  and 2 2 /T Tσ σ→ . Conversely, if 
21/ oσ  is large relative to 2/ ,T σ  the majority of the weight in Tµ  is given to 

oµ , the prior precision is said to dominate the likelihood precision, and in the 

limit T oµ µ→  and 2 2
T oσ σ→ . 

If r  is a single new return, then the posterior predictive density for r  is 
 

 

2 2

2 2

( | ) ( , | )

( | , ) ( | )

( | ) ( | )

( ) ( )exp .
2 2

T

T

p r p r d

p r p d

p r p d

r d

µ µ

µ µ µ

µ µ µ

µ µ µ µ
σ σ

=

=

=

⎧ ⎫− −
∝ − −⎨ ⎬

⎩ ⎭

∫
∫
∫
∫

r r

r r

r
 (7.16) 

 
The exponent in the integral above is a quadratic form in the variables , ,rµ  and 
the integral is an integral of a bivariate normal distribution with respect to .µ  
Thus the posterior predictive density is the marginal density of a bivariate 
normal density and so must itself be a normal density,  
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 2( | ) ( | , ),P Pp r N r µ σ=r  (7.17) 

 
for some values of the mean Pµ  and variance 2

Pσ . It may be shown (Exercise 3) 
that 

 

 
2 2 2 .
P T

P T

µ µ

σ σ σ

=

= +
 (7.18) 

 
We see that the mean of the posterior predictive distribution is the same as the 
posterior mean for µ . However, the variance of the posterior predictive 
distribution is the variance of the returns plus the posterior variance, reflecting 
the additional uncertainty in the posterior prediction due to the uncertainty in the 
posterior estimate of mean returns. This uncertainty tends towards zero as T 
tends towards infinity. 

We illustrate application of the simple Bayes model above for the data of 
Figure 7.1, which shows monthly returns for the stock with ticker KRON for 
five years from January 1997 to December 2001. The investor sees that the 
returns have exhibited substantial time-varying volatility and perhaps a time-
varying mean value, and she decides to use a Bayesian model for mean returns 
using returns from the last twelve months of 2001 as the sample information. 
For the previous four-year period 1997 through 2000, the mean monthly return 
is .023 and the monthly volatility is .165. Based on this information, the investor 
makes the choices .02oµ =  and .04oσ = , the latter because she has relatively 
little confidence in the prior mean value of .02, and she specifies .17σ =  as a 
“known” value.4 

The resulting likelihood and prior and posterior densities are displayed in 
Figure 7.2, where it is apparent that neither the prior nor the likelihood is 
dominant. The posterior mean value .047 is the result of substantial shrinkage 
from the sample mean value .087 toward the prior mean value .02. The posterior 
standard deviation is .03 as compared with the prior standard deviation of .04. 
Both of these changes are due to the additional information provided in the 
sample of twelve monthly returns. 

The posterior prediction density is shown in Figure 7.3 along with the 
prediction density one would have if there were no uncertainty about the mean 
of the prediction density (i.e., the latter is the certainty equivalent prediction 
density). In this case there is little difference between the two because the 
returns volatility is so much larger than the prior and likelihood uncertainties. 
This will not always be the case in Bayesian modeling of asset returns and 
Bayesian portfolio construction. 
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It is important to keep in mind that the choice of values of hyperparameters 
oµ  and 2

oσ  and returns volatility 2σ  (and sample size T) have considerable 
influence on whether or not the prior or likelihood dominate in the Bayesian 
analysis. For example, suppose that the investor decides that he or she is more 
certain about the prior value .02oµ =  by choosing .015oσ =  instead of 

.04oσ = , still using as data the returns for the twelve months of 2001 and the 
value .17σ = . 

Figure 7.4 shows that, in this case, the prior strongly dominates the 
likelihood. On the other hand, if the investor is very unsure about the prior value 

.02oµ =  and chooses .15oσ =  to reflect this uncertainty, then the prior is 
relatively noninformative and the likelihood dominates the prior as shown in 
Figure 7.5. In the limit as oσ → ∞  the prior is said to be noninformative. In 
the case of a noninformative prior for the mean, the posterior distribution is 
identical to the likelihood, the Bayes posterior mean is equal to the sample 
mean, and the posterior variance is the variance of the sample mean.5 

KRON RETURNS
R

E
TU

R
N

S

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1
1997 1998 1999 2000 2001 2002

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

 
Figure 7.1 KRON Monthly Returns 
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Code 7.1 gives the S-PLUS code for making the normal Bayesian model 
computations and plots shown in Figure 7.1 through Figure 7.5: 

 
ticker <- "KRON" 
returns.ts <- smallcap.ts[,ticker] 
ret.name <- colIds(returns.ts) 
plot(returns.ts, plot.args = list(type = "b", 
 pch = "."),reference.grid= F, ylab = "RETURNS", 
 main = paste(ticker,"RETURNS")) 
returns <- seriesData(returns.ts[49:60,1])[,1] 
length(returns) 
sigma <- .17; mu0 <- .02; sigma0 <- .04 
n <- length(returns ) 
mu.min <- min(returns); mu.max <- max(returns) 
# Plot Posterior Predictive Density 
x <- seq(1.7*mu.min, 1.2*mu.max, 0.001) 
dpost.pred <- dnorm(x, mu.n,  
prec.prior <- sigma0^-2 
prec.like <- n * sigma^-2 
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Figure 7.2 Bayes Model for KRON Returns ( o oµ = .02, σ = .04, σ = .17 ) 
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Figure 7.3 Posterior Predictive Densities With and Without Estimation Risk 
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Figure 7.4 Bayes Model for KRON Returns ( o oµ = .02, σ = .015, σ = .17 ) 
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Figure 7.5 Bayes Model for KRON Returns ( o oµ = .02, σ = .15, σ = .17 ) 

prec.post <- prec.prior + prec.like 
returns.mean <- mean(returns ) 
mu.n <- (prec.prior * mu0 +  
 prec.like * returns.mean)/prec.post 
x <- seq(.57*mu.min, .6*mu.max, 0.001) 
dprior <- dnorm(x, mu0, sigma0) 
dlike <- dnorm(x, returns.mean, sigma/sqrt(n)) 
dpost <- dnorm(x, mu.n, 1/sqrt(prec.post)) 
ylim <- range(dprior,dlike,dpost) 
# Plot Prior, Likelihood and Posterior  
plot(x, dpost, type = "l", ylim=ylim, ylab="", 
 xlab = paste(ticker,"MONTHLY RETURNS")) 
lines(x,dpost ,lwd = 2)  # Thicker posterior line 
lines(x,dlike ,lty = 8,lwd = 2)   # Plot likelihood 
lines(x,dprior,lty = 4,lwd = 2)   # Plot prior 
xleg <- .12 
yleg <- ylim[2] 
legend(xleg,yleg,legend=c("POSTERIOR","PRIOR", 
 "LIKELIHOOD"),lty=c(1,4,8),lwd = 2) 
sqrt(sigma^2 + 1/prec.post)) 
dpost.pred.certain.mu <- dnorm(x, mu.n, sigma) 

 
ylim <- 1.2*range(dpost.pred,dpost.pred.certain.mu) 
xleg <- -.3 
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yleg <- ylim[2] 
plot(x, dpost.pred, type = "l", ylim=ylim, ylab="", 
 xlab = paste(ticker,"MONTHLY RETURNS")) 
lines(x, dpost.pred,lwd = 2) 
lines(x, dpost.pred.certain.mu, lty = 4,lwd = 2)  
legend(xleg,yleg,legend=c("POST. PRED. DENSITY WITH  
 ESTIMATION RISK","POST. PRED. DENSITY WITHOUT 
 ESTIMATION RISK"),lty=c(1,4),lwd=2) 
# Return Values 
list("Prior Mean" = mu0,"Prior Std. Dev." = 
 1/sqrt(prec.prior), "Sample Mean" = 
 returns.mean, "Posterior Mean" = mu.n, 
 "Posterior Std. Dev." = 1/sqrt(prec.post)) 

Code 7.1 Simple Normal Bayes Model for Mean Returns 

The code shown produces Figure 7.1, Figure 7.2, and Figure 7.3. We 
obtained Figure 7.4 and Figure 7.5 by changing the values of oσ  in Code 7.1. 

7.2.2 Normal Bayes Model for Variance of Returns 
with Mean Known 

Suppose as before that you have T independent returns 1 2( , , , )nr r r′ =r , each 

with an 2( | , )oN r µ σ  distribution but with 2σ  unknown and oµ  known.6 Then 

the likelihood for 2σ  is 
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The conjugate prior in this case is a scaled inverse chi-squared distribution 

 



312 7 Bayes Methods 

 

2 2 2 2

2

2 ( / 2 1) 2

( ) ( ; , )

1 exp
( ) 2o

o o

o o

p Inv

c ν

σ χ σ ν σ

ν σ
σ σ+

=

⎧ ⎫
= ⋅ −⎨ ⎬

⎩ ⎭

 (7.21) 

 
with degrees of freedom oν  and scale parameter 2

o oν σ .7  For further details, see 
Appendix 7A. 

Combining the likelihood and prior results in the inverse chi-squared 
posterior  
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 (7.22) 

 
This posterior density has posterior degrees of freedom ,o post o Tν ν= +  and 

posterior scale parameter 2 2
, v.o post o o Tσ ν σ= + ⋅  

7.2.2.1 Assuming 0oµ =  

Because mean returns are typically small compared with their standard 
deviations, there is sometimes little accuracy lost if you assume 0oµ =  when 

computing 2
1

1v ( )
T

t ot
r

T
µ

=
= −∑ . Code 7.2 gives a little script to check this 

claim for the case of five years of monthly returns for the four large caps stocks 
ORCL, MSFT, HON, and LLTC: 

 
tickers <- c("ORCL","MSFT","HON","LLTC") 
returns <- largecap.ts[,tickers]@data 
n <- dim(returns)[1] 
mu <- apply(returns, 2, mean) 
sigmasq <- apply(returns, 2, var) 
sigmasq0 <- sigmasq + mu^2 
sigmasq0/sigmasq 

Code 7.2 Zero Mean Effect 

This script gives as output 
 
 ORCL  MSFT   HON  LLTC  
1.034 1.041 1.006 1.048. 
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The maximum error here is at most a little under five percent, so it may 
sometimes be safe to make the assumption that 0oµ = . The reader can check 
this out further by applying Code 7.2 to data sets for other returns (Exercise 7.4). 
Of course, the investor can input a best guess at a reasonable value oµ  if  
desired. 

7.2.2.2 Determining oν  and 2
oσ  

In order to use this Bayes model, you need to specify the parameters oν  and 2
oσ  

of the scaled inverse chi-squared prior. From Appendix 7A, we see that these 
parameters may be expressed in terms of 2

2( )Eσµ σ=  and 

2
2( )SD VARσ σ=  as 

 
 22 4,o Rν = +  (7.23) 

 2

2
2

2
1 ,
2o

R
Rσσ µ +

=
+

 (7.24) 

 
where 22 / .R SDσσ

µ=  Suppose, for example, that a manager wants to carry out 

a Bayesian analysis of the volatility of the mid-cap stock with ticker KRON 
shown in  using the last year of monthly returns as the data. The manager 
believes that 2 .018σµ =  and 2 .013SDσ =  are reasonable values for the mean 

and standard deviation of the variance 2σ , which gives 7.83oν =  and 
2 .013oσ = . The resulting prior and posterior densities are shown in Figure 7.6. 

We get that figure by first running the function script in Code 7.3 and then 
running the script in Code 7.4. 

 
density.invchisq <- function(x, dof, sigsq, 

scaled=T) 
{ 
 # Set scaled = F for standard inverse  
 # chi-squared density 
 if(missing(sigsq)) sigsq <- 1 
 dof2 <- dof/2 
 
 if(scaled) {scale <- dof*sigsq} else {scale <- 1} 
 
 d0 <- (1/Gamma(dof2)) * (scale/2)^dof2 
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 d1 <- 1/(x^(dof2 + 1)) 
 d2 <- exp( - scale/(2 * x)  
 d0 * d1 * d2 

} 

Code 7.3 Scaled Inverse Chi-Squared Density 

ticker <- "KRON" 
returns <- smallcap.ts[,ticker]@data[,1] 
n <- 12 
returns <- returns[(60-n+1):60] 
# Manager's mean and stdev. of variance 
mu.var <- .018 
sd.var <- .013 
# Computation of prior d.o.f. and scale 
rsq <- (mu.var/sd.var)^2 
nu0.prior <- 2*rsq+4 
sigmasq0.prior <- mu.var*(rsq+1)/(rsq+2) 
scale.prior <- nu0.prior*sigmasq0.prior 
# Computation of posterior d.o.f. and scale  
v <- sum(returns^2)/n 
nu0.posterior <- nu0.prior + n 
sigmasq0.posterior <- (scale.prior + 
 n*v)/nu0.posterior 
# Plot prior and posterior densities 
x <- seq(.001,.06,.0001) 
dprior <-  
 density.invchisq(x,nu0.prior,sigmasq0.prior) 
dposterior <- density.invchisq(x,nu0.posterior, 
 sigmasq0.posterior) 
ylim <- c(0,max(dprior,dposterior)) 
plot(x,dposterior,type="l",ylim=ylim,xlab="", 
 ylab="") 
title(main = "PRIOR AND POSTERIOR VARIANCES FOR 
 KRON RETURNS") 
lines(x,dposterior,lwd=2) 
lines(x,dprior,lty=8,lwd=2) 
legend(.04,65,c("PRIOR","POSTERIOR"),lty=c(8,1),  
 lwd = c(2,2))  
#Same as mu.var 
mean.prior <- scale.prior/(nu0.prior-2)   
scale.posterior <- nu0.posterior*sigmasq0.posterior 
mean.posterior <-  



7.2 Bayes Models for the Mean and Volatility of Returns 315 

 round(scale.posterior/(nu0.posterior-2),3) 
text(.05,45, paste("PRIOR MEAN =",mean.prior)) 
text(.048,40,  
 paste("POSTERIOR MEAN =",mean.posterior)) 

Code 7.4 Posterior Variance of Returns with Mean Known 

We leave it as Exercise 5 for the reader to modify Code 7.4 in order to plot the 
likelihood as well as the prior and posterior densities. 

7.2.3 Normal Bayes Model for Volatility of Returns 
with Mean Known 

The main reason we introduced the normal Bayes model of variance with mean 
known is to provide a convenient stepping stone to the normal Bayes model of 
mean returns with variance unknown, which we discuss next. However, in most 
finance contexts, one is interested in volatility (i.e., the standard deviation of 
returns) rather than variance of returns. Fortunately, it is quite easy to convert 
prior and posterior densities for variance to prior and posterior densities for 
volatility. One just uses the following standard conversion formula for densities 
under a change of variable:  
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Figure 7.6 Bayes Model for Variance of KRON Returns 
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We leave it as Exercise 6 for the reader to modify Code 7.4 so that it displays 
priors and posteriors for volatility rather than for variance.  

7.2.4 Mean and Variance of Returns with Normal 
Likelihood and Conjugate Priors 

We continue to assume a normal likelihood for independent and identically 
distributed returns 1 2( , , , )Tr r r′ =r :  
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except now we use the more realistic assumption that µ  and 2σ  are both 

unknown, with joint prior density 2( , )p µ σ . There are three main classes of 
joint prior distributions: 

 
1. Noninformative priors 
2. Conjugate priors 
3. Independence priors. 

7.2.4.1 Noninformative Priors 

The joint noninformative prior combines the marginal noninformative 
prior ( ) constantp µ ∝  for the mean with the marginal noninformative 

prior 2
2

1( )p σ
σ

∝  for the variance by multiplying them together8: 

 

 2
2

1( , )p µ σ
σ

∝ . (7.27) 

 
This noninformative prior is a special case of both conjugate and independence 
priors.9 It has been used extensively in the past primarily because it results in 
closed-form analytical expressions for densities of the marginal posterior 
distributions for µ  and 2σ 10: 
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Here r  is the sample mean and ( )22

1

1
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t
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s r r
T
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− ∑  is the unbiased sample 

variance estimate of 2σ . The notation |µ r  means µ  conditioned on r , the 
notation “~” means “is distributed as,” and ( ),STν µ σ  denotes a Student’s t 
distribution with ν  degrees of freedom, location parameter ,µ  and scale 
parameter σ . 

7.2.4.2 Conjugate Priors 

The joint conjugate prior for the normal likelihood is a normal inverse chi-
squared distribution:11 
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Like the noninformative prior, the conjugate prior has been used extensively in 
the past primarily because closed-form analytic expressions exist for the 
posterior densities.12  The marginal posteriors for µ  is a t distribution, and the 

marginal posterior for 2σ  is an inverse chi-squared distribution. The joint 
posterior is a normal inverse chi-squared distribution from which it is easy to 
draw random samples. See Appendix 7B for details. 

Note that because 2σ  appears in the normal density factor of 2( , )p µ σ , the 

random variables µ  and 2σ  are dependent, with the variance of the prior for 
the mean depending upon the variance of the returns. There is little reason to 
expect this type of dependency in general applications of Bayesian modeling. In 
the particular context of asset returns, this type of dependency does not appear to 
capture the empirical evidence about the nature of dependency between mean 
returns and volatility.13 

7.2.4.3 Independence Priors 

Lacking a solid justification for the highly special dependence structure of the 
conjugate prior, one will often prefer to use an independence prior for which 
the joint density factors into the product of the marginal densities:  
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 2 2( , ) ( ) ( )p p pµ σ µ σ= ⋅ . (7.30) 
 

The class of independence priors includes the so-called semi-conjugate prior, 
where the above conjugate prior is modified by the replacement 2 2/ o okσ τ→  in 
the normal density factor. Other independence priors of interest include t 
distribution and normal mixture choices for ( )p µ . 

In the case of independence priors, we do not have closed-form analytic 
expressions for even the marginal posterior densities let alone the joint posterior 
density. However, in the special case of an independence prior with an inverse 
chi-squared prior for 2( ),p σ  one can show that the marginal posterior density 
for the mean is proportional to the product of a Student’s t density and the prior 
density ( )p µ ,14 

 ( )2( | ) | , ( ),
T Tp c ST r pνµ µ σ µ= ⋅ ⋅r  (7.31) 

where 
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 (7.32) 

 
The normalizing constant c can be easily computed via numerical integration in 
this one-dimensional case. 

7.2.5 Choice of Prior 

The use of a joint noninformative prior for the mean and variance is relatively 
uninteresting in finance applications because it does not make use of a portfolio 
manager’s prior information.15 Use of conjugate priors in finance is at best 
somewhat suspect for at least two reasons: (a) the use of a normal prior for µ  is 
not supported by the empirical behavior of asset returns, and (b) as we have 
already noted, the dependency structure of the conjugate prior does not reflect 
the empirical dependency behavior of µ  and 2σ .16  

There is another limitation of the conjugate prior: the posterior for the mean 
is unimodal and located at a fixed weighted average of the sample mean and the 
prior mean. To quote Leamer (1978, p.79):  

 
In this sense it never distinguishes sample information from prior 
information, no matter how strong their apparent conflict. This is so 
because a conjugate prior treats prior information as if it were a 
previous sample of the same process. It may be argued that most prior 
information is distinctly different from sample information, and when 
they are apparently in conflict, the posterior distribution ought to be 
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multimodal with modes at both the sample location and the prior 
location. 

 
The posterior for the mean in an independence prior with an inverse chi-

squared prior for the variance is proportional to the product of a t density and the 
prior density for the mean. This posterior for the mean can be bimodal when 
using a normal prior for the mean, as well as when using a non-normal t 
distribution or a normal mixture distribution prior for the mean. This is a strong 
argument in favor of using independence priors. 

As for the claim that a normal prior µ  is unsatisfactory, Figure 7.7 displays 
normal Q-Q plots of sample means of five years of monthly returns for each of 
the following market capitalization groups: microcaps, small caps, mid-caps, 
and large caps. The distributions of these sample means is clearly quite non-
normal for all four market cap groups. For the microcaps and smallcaps, the 
piecewise linear segments suggest that a normal mixture with three components 
may provide a good model, while a two-component mixture may work for the 
mid-caps. Several normal mixture components or some other form of prior for 
the mean may be needed for the large caps. 

The S-PLUS script given in Code 7.5 will compute plots similar to those in 
Figure 7.7 but on the smaller market cap data sets of size twenty provided with 
this book, where you will still see some evidence of non-normality of the means 
of returns17: 
 
par(mfrow = c(2,2)) 
micro <- apply(seriesData(microcap.ts),2,mean) 
small <- apply(seriesData(smallcap.ts),2,mean) 
mid <- apply(seriesData(midcap.ts),2,mean) 
large <- apply(seriesData(largecap.ts),2,mean) 
qqnorm(micro,ylab = "RETURNS", 
 main = "MICROCAPS",pch = ".") 
qqline(micro) 
qqnorm(small,ylab = "RETURNS", 
 main = "SMALL CAPS",pch = ".") 
qqline(small) 
qqnorm(mid,ylab = "RETURNS", 
 main = "MID-CAPS",pch = ".") 
qqline(mid) 
qqnorm(large,yylab = "RETURNS", 
 main = "LARGE CAPS",pch = ".") 
qqline(large) 
par(mfrow = c(1,1)) 

Code 7.5 Normal Q-Q Plots of Sample Means of Returns 
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7.2.6 Choice of Likelihood 

The normal likelihood is typically as unrealistic a model for the likelihood for a 
given set of asset returns as the normal prior is for the mean returns. In support 
of this claim we compute normal Q-Q plots of returns for the twenty microcaps 
in microcap.ts, using Code 7.6. 
 
returns <- microcap.ts@data[,-(1:2)] 
n <- dim(returns)[[2]] 
par(mfrow = c(n/5,5)) 
for(i in 1:20) { 
 qqnorm(returns[,i]);qqline(returns[,i]) 
} 

Code 7.6 Normal Q-Q Plots of Returns of Twenty Microcap Returns 

The results shown in Figure 7.8 clearly indicate pervasive heavy-tailed non-
normality with occasional extreme outliers. For small cap, mid-cap, and large 
cap stocks, you will find that each of these groups contains stocks with 
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Figure 7.7 Non-normality of Sample Means of Stock Returns 
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significant heavy-tailed non-normality and outliers (even the large cap stocks, 
for which the normal distribution approximation is often quite good).18 

The results above provide strong motivation for using non-normal likelihoods 
such as t distribution and normal mixture distribution likelihoods. We remark 
that use of such likelihoods in effect provides a robust Bayesian model in which 
outliers in individual returns for a given asset will be down-weighted so as to 
have little influence on the posterior distribution obtained. 

7.2.7 Composition Sampling From Posterior 
Distributions  

Depending on the investment problem at hand, one needs to compute posterior 
probabilities or simple posterior summaries such as means, standard deviations, 
and quantiles for µ  and 2σ  or nonlinear transformations thereof. In the case of 
nonlinear transformations, one is often faced with a numerical integration 
problem, even in the simplest cases of conjugate and noninformative priors. In 
such cases, we can obtain the desired result by sampling from a joint or marginal 
posterior distribution to estimate the quantities of interest. If the problem 
involves 2( , )µ σ  jointly, we can use a particular form of sampling from the 
posterior distributions known as composition sampling.  
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Figure 7.8 Normal Q-Q Plots of Returns of Twenty Microcaps 
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7.2.7.1 Conjugate and Noninformative Priors 

If one only wants a probability coverage, mean, standard deviation, or quantile 
of one of the marginal posteriors, these are easily computed using S-PLUS.19 On 
the other hand, computing a probability or summary statistic for a nonlinear 
transformation of either µ  or 2σ  separately (e.g., a Black-Scholes option price 
in the latter case) typically involves an unpleasant numerical integration. In such 
cases, a simple and effective approach is to sample from a Student’s t 
distribution posterior for ( | )p µ r  or an inverse chi-squared distribution for 

2( | )p σ r .20 When we need to compute a posterior probability coverage or 
summary statistic for a nonlinear transformation of 2( , )µ σ  such as the Sharpe 
ratio /µ σ , we can use the following composition sampling approach. The key 
to composition sampling is having known simple forms for the conditional 
posterior density 2( | , )p µ σ r  and the marginal posterior density 2( | )p σ r  
from which one can sample with relative ease. In the case of the conjugate prior, 
the former is a normal density 2( | , )T TN µ µ σ  and the latter is an inverse chi-
squared density. Composition sampling consists of first sampling a value 2

1σ  
from 2( | )p σ r . Then, using this value, sample a value 1µ  from 2

1( | , )p µ σ r . 
Repeat this M times to obtain the joint sample 2( , ),   1, 2, ,i i i Mµ σ =  from the 
joint posterior 2( , | )p µ σ r , and use this quantity to estimate whatever 
probability or summary statistic one wants for 2,µ σ  or a nonlinear 
transformation thereof. 

We illustrate the use of composition sampling by replicating a result in 
Scherer (2004) on optimal equity allocation at future time horizons. Assume we 
have sixty monthly returns 1 2 60( , , , )r r r ′=r  for a single equity and that the 
returns follow a standard Brownian motion model of asset prices with mean µ  
and volatility σ . We want to determine the optimal equity allocation *w  in a 
simple cash and equity portfolio for different yearly time horizons in the future: 

 

 2
1* .T

T

w µ
λ σ

= ⋅  (7.33) 

 
As in Section 4.1.1 of Scherer (2004), we assume 3λ =  and that the estimated 
mean and volatility based on the sixty months of returns are ˆ .3%µ =  and 
ˆ 6%σ = . Assuming no estimation error, and noting that T Tµ µ=  and 

2 2
T Tσ σ= , we get * 27.7%w =  independently of T. However, we have 

estimation error and need to get posterior predictive values for Tµ  and 2
Tσ  in 

order to properly compute a posterior estimate of *w . This is easily done with 
composition sampling as follows. 

The posterior for the variance 2σ  given r  is the inverse chi-squared 
distribution 
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 2 2 2 2( | ) ( | 59, (.06) ),p r Invσ χ σ=  (7.34) 
 
and the posterior for µ  given r  and 2σ  is the normal distribution 
 
 2 2( | , ) ( | .003, (.06) / 60).p Nµ σ µ=r  (7.35) 
 
The distribution of a future return Tr  at yearly time horizon T given µ  and 2σ  
under the assumed Brownian motion model is 
 
 2 2( | , ) ( | , ),T Tp r N r T Tµ σ µ σ=  (7.36) 
 
so we simulate N values of 2( , )µ σ  by composition sampling and substitute 

these values into 2( | , )Tp r µ σ  in order to simulate N values of Tr  from which 

we can compute estimates of Tµ  and 2
Tσ  under estimation error. For 

N 100,000=  we get the results in Figure 7.9 using Code 7.7. The impact of 
estimation error is considerable, increasing with the length of the investment 
horizon. 
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Figure 7.9 Equity Allocation versus Time with and without Estimation 

Error 

# Set parameters 
mu.hat <- 0.003 
sigma.hat <- 0.06 
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months <- 60 
lambda <- 3 
horizon <- 1:20 
w <- NULL 
n <- 100000 
for (k in horizon) { 
 # composition sampling in for joint posterior 
 # sample 
 sigma2.samp <-  
  (months-1)*(sigma.hat^2)/rchisq(n,months-1) 
 mu.samp <- 

rnorm(n,mu.hat,sqrt(sigma2.samp/months)) 
 # posterior predictive sample 
 r.tilde <- 
  rnorm(n,12*k*mu.samp,sqrt(12*k*sigma2.samp)) 
 # compute the optimal equity allocation 
 r.mu <- mean(r.tilde) 
 r.sigma2 <- var(r.tilde) 
 w[k] <- (r.mu/(lambda*r.sigma2))*100 
} 
plot(horizon, w, type="l", ylim=c(0,30),  
 xlab="TIME HORIZON(years)",  
 ylab="OPTIMAL EQUITY ALLOCATION (%)") 
lines(1:20,rep(27.7,20)) 
text(12,26,"Without estimation error") 
text(12,11,"With estimation error")  
axis(1,at=horizon) 

Code 7.7 Optimal Equity Allocation versus Time Horizon 

7.2.7.2 Limitations of Composition Sampling 

One might think that the composition sampling approach could be used for the 
case of independence priors, for one still has 2 2( | , ) ( | , )T Tp Nµ σ µ µ σ=r  as in 
the conjugate and noninformative cases. However, this is not the case because it 
is typically not easy to sample from 2( | )p σ r . In the special case of a semi-

conjugate prior, one can find an analytic expression for 2( | )p σ r  up to a 
normalizing constant and determine the constant by numerical integration, but 
the expression is complex and does not lead to a simple method of sampling 
from 2( | )p σ r .21 

A further limitation of composition sampling occurs in the case of multi-
dimensional parameters (e.g., as in multivariate returns and linear regression 
(factor) models for returns). In order to extend the method from the case of two 
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parameters as above to the general case of k parameters 1 2,, , ,kθ θ θ  one needs 
to be able to sample from each of the conditional distributions 1( | )p θ r , 

2 1( | )p θ θ ,r , ..., 1 1( | )k kp θ θ θ −, ,r . While it is often easy to sample from the 
so-called full conditional posteriors 1 1( | )k kp θ θ θ −, ,r , it is often difficult to 
sample from the partial conditional posteriors 1 1( | ),j jp θ θ θ −, ,r  
 2, , 1j k= −…  and marginal posterior 1( | )p θ r .22 

7.2.8 Gibbs Sampler Form of the Markov Chain 
Monte Carlo Method 

The Gibbs sampler is a simple form of the Markov Chain Monte Carlo (MCMC) 
method that may be used to estimate multivariate posterior distributions through 
simulation of samples from the posterior.23 It may be used for many common 
models in finance for which it is easy to sample from the set of full conditional 
densities as follows. Start with an arbitrary initial condition (0) (0)

2 , kθ θ , and 
then 

 
Draw  (1) (0) (0) (0)

11 2 3( | , , )kpθ θ θ θ θ∼ , ,r  

Draw  (1) (1) (0) (0)
22 1 3( | , , )kpθ θ θ θ θ∼ , ,r  

Draw  (1) (1) (1) (0) (0)
33 1 2 3( | , , , )kpθ θ θ θ θ θ∼ , ,r  

...................... 

...................... 

...................... 
Draw  (1) (1) (1) (1) (1)

1 2 3 1( | , , , )kk kpθ θ θ θ θ θ −∼ , ,r  
 

This yields ( )(1) (1) (1) (1) (1)(1)
1 2 3 1, , , k kθ θ θ θ θ−=| r , , | rθ . Repeat the process above 

M times to obtain a vector sample of size M: ( ) | ,   1,2, , .t t M=rθ  
This sequence of vector random variables is not an independent sequence but 

instead is a first-order vector Markov process that is also called a Markov chain. 
Under regularity conditions, the distributions ( )( | ) t

tp rθ  of this Markov chain 
converge to the stationary distribution of the chain, and this stationary 
distribution is the posterior distribution ( | )p rθ .24 In order to avoid distorting 
stochastic transient start-up effects when using the Gibbs sampler, one generates 
a long sequence (M large) and discards an initial “burn-in” segment of 
substantial size 0t . We can use the resulting Gibbs sampler sequence to estimate 
almost any statistical quantity of interest based on the full joint posterior or any 
finite-dimensional marginal, including the one-dimensional marginals, or any 
nonlinear transformation thereof. 



326 7 Bayes Methods 

As an example of how the Gibbs sampler works, consider the normal 
likelihood mean-variance model of returns with a semi-conjugate independence 
prior 2 2 2( , ) ( , )o o o oN Invµ τ χ ν σ⋅ . The joint posterior for 2( , )µ σ  is 
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From our earlier calculation for the normal likelihood with 2σ  known and a 
normal prior 2( , )o oN µ τ  for the mean, we know that 

2 2( | , ) ( | , )T Tp Nµ σ µ µ σ=r , from which we can sample easily. By 
conditioning on µ  and combining the first two factors in the representation 

above for the joint posterior, it follows that the conditional posterior for 2σ  
given µ  is 
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from which we can also sample easily. So the Gibbs sampler in this case 
proceeds as follows. Choose an initial value 2(0)σ  and make alternate draws 
from the two conditional distributions above: 
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The sampler could equally well have been started with an initial (0)µ . Direct 
implementation of the simple Gibbs sampler above is left as Exercise 7, and use 
of the sampler to compute the posterior distribution of a Sharpe ratio is left to 
Exercise 8. 

We note that the Gibbs sampler method may be easily extended to handle 
normal mixture and t distribution priors and likelihoods by using a data 
augmentation method initially introduced by Tanner and Wong (1987) and 
described in Tanner (1996).  

7.2.9 Introduction to S+Bayes with Several 
Examples 

We now introduce the S+Bayes (Insightful Corp., 2004) module in the context 
of several examples of computing the joint and marginal posterior distributions 
for the mean and variance of asset returns. We fit Bayes mean-variance models 
using the following S+Bayes functions for fitting a Bayes general linear model 
by specifying a linear model that contains only an intercept term.  

 
• Specify priors: bayes.normal, bayes.normal.mixture, 

bayes.t, bayes.t.mixture, bayes.invChisq 
 

• Fit Bayes model: blm, blm.prior, blm.likelihood, 
blm.sampler, blm.control 

 
• Display model results:  print, summary, plot 

 
• Predict: predict 

 
• MCMC diagnostics: diagnostics 

 
We note that the above tasks will be essentially the same for fitting other types 
of models in S+Bayes and that the tasks will generally be carried out in the order 
shown. 

The functions bayes.normal, bayes.normal.mixture, bayes.t, 
and bayes.t.mixture specify a prior for the mean as a special case of a 
multivariate prior for regression model coefficients. The function 
bayes.invChisq specifies a scaled inverse chi-squared prior for 2σ . The 
function blm.prior bundles the priors for the mean and variance, specifying 
whether you want a conjugate prior, an independence prior, or a noninformative 
prior (the default is independence priors), and produces an object to be used as 
an argument of the function blm. The function blm.likelihood specifies a 
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normal or t distribution likelihood, and the functions blm.sampler and 
blm.control (an argument of blm.sampler) specify the characteristics of 
the Gibbs sampler. The generic functions print, plot, and summary call the 
Bayes linear model methods blm.print, blm.summary, and blm.plot. 
The generic function diagnostics calls the method diagnostics.blm, 
which allows you to check on the convergence of the Gibbs sampler. See 
S+Bayes (2004) for details on MCMC convergence diagnostics. We display 
these functions with their arguments as a partial guide to their use25: 

 
bayes.normal(mean.vector, covmat, k0 = 1) 
 
bayes.invChisq(df = 0, sigma0.sq = 1) 
 
blm.prior(priorBeta = "noninformative",  
 priorSigma = "non-informative", conjugate = F) 
 
blm.likelihood(type = c("normal", "t"),  
 errorCov=NULL, df = 3) 
 
blm.sampler(control = blm.control(),  
 sampler.type = c("Gibbs","Exact"), 
 number.chains = 1,  
 init.point = c("prior", "prior + likelihood", 
 "likelihood","user's choice"), beta.init=NULL, 
 sigma.init=NULL) 
 
blm.control(bSize = 2000, simSize = 1000,  
 freqSize = 1) 

 
diagnostics.blm(x, type = c("geweke", "traces", 
 "gelmanRubin","autoCorrelations"),  
 by.chain = F, iterationUsed = 300,  
 sampleInterval = 10, fractionFirstWindow = 0.1,  
 fractionSecondWindow = 0.5) 

7.2.9.1 Example 7.1: Noninformative Prior 

The script in Code 7.8 fits a Bayes mean-variance model with a joint 
noninformative prior using as data the last twelve months of the KRON returns 
of Figure 7.1: 
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returns = smallcap.ts[49:60,"KRON"]@data 
kron.fit = blm(KRON ~ 1, data = returns) 
plot(kron.fit, which = "univariate") 
kron.fit 

Code 7.8 Bayes Model for KRON Returns with Noninformative Priors 

By default, blm uses a normal likelihood. The resulting exact posterior density 
for the mean returns is plotted in Figure 7.10 along with a straight line to 
symbolically represent the noninformative prior. In the special case of a 
noninformative prior the posterior coincides with the likelihood, and comparison 
with the likelihood in Figure 7.2 confirms that blm is indeed computing the 
correct posterior. 

The S+Bayes plots in Figure 7.11 show the Gibbs sampler result in the top 
two plots and the exact computation of the marginal posterior densities in the 
bottom two plots labeled “true posterior”. Since we are computing the posterior 
mean using a linear model with intercept term only, the posterior mean is 
labeled “(Intercept),” and since S+Bayes displays posterior standard deviations 
rather than posterior variances the other plot is labeled “sigma”.26 These plots 
are a confidence builder with regard to the accuracy of the Gibbs sampler 
computations. 

Here is the brief summary information produced by the last line of Code 7.8: 
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Figure 7.10 Noninformative Prior, Likelihood, and Posterior for KRON 
Returns 
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                mean        stdev  Bayes factor  
(Intercept) 0.08719671 0.05769628  0.070018 
 
            mean          stdev      
sigma    0.1878148  0.04248314          
 

The columns labeled “mean” and “stdev” are computed as the sample mean and 
sample standard deviation of the corresponding Gibbs sampler path outputs of 
S+Bayes. The Bayes factor is the ratio of the likelihoods for the nonzero mean 
versus a hypothesized zero mean model and can be viewed as the weight of 
evidence in favor of a nonzero mean versus evidence in favor of a zero mean. 
For intepretation of the values of Bayes factors, see Kass and Raftery (1995). 
For further discussion, see Section 2.3.3 of Carlin and Louis (2000). 
 

7.2.9.2 Example 7.2: Normal Prior with Variance Known 

Now we use the S+Bayes blm function based on the Gibbs sampler to fit the 
same normal Bayes model of mean returns with known variance as in Section 
7.2.1. There we used a 2(.02, (.04) )N  prior for µ  along a normal likelihood 
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Figure 7.11 Gibbs Sampler and Exact Marginal Posteriors for 
Noninformative Prior 
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with noise variance 2 2(.17)σ =  and used as data the last twelve months of the 
KRON returns shown in Figure 7.1. The expressions in Appendix 7A for the 
mean and variance of a scaled inverse chi-squared distribution show that you 
can approximate the case of a known fixed value of 2σ  by letting the degrees of 
freedom parameter oν  be very large and setting 2 2

oσ σ= . Code 7.9 is used to 
make the fit and plot the results: 
 
returns <- smallcap.ts[49:60,"KRON"]@data 
#mu0 = .02, tau0 = .04 
prior.mean <- bayes.normal(.02,.04) 
#nu0 = 100, sigma0 =.17 
prior.var <- bayes.invChisq(100,(.17)^2)   
my.prior <- blm.prior(priorBeta = prior.mean, 
  priorSigma = prior.var) 
#burn-in 500 
my.sampler <- blm.sampler(blm.control(500,2000)) 
kron.fit <- blm(KRON ~ 1,prior = my.prior,  
 sampler = my.sampler, data = returns) 
plot(kron.fit, which = "univariate") 
kron.fit 

Code 7.9 Normal Model for Mean with Variance Known via Gibbs Sampler 

In Code 7.9, we have illustrated how to use blm.sampler and 
blm.control to set the initial burn-in sample size at 500 and the final Gibbs 
sampler size at 2000 (rather than the default values of 2000 and 1000, 
respectively). The resulting prior, likelihood, and posterior are displayed in 
Figure 7.12, where the posterior has the largest mode, the prior has the 
second-largest mode, and the likelihood has the smallest mode. These results 
agree with those of Figure 7.2. We note that a plot of overlaid prior, posterior 
and likelihood such as those in Figure 7.10 and Figure 7.12 are only provided by 
S+Bayes for the simple mean-variance model. 

The summary statistics produced by the last line of Code 7.9 are: 
 
        mean       stdev   Bayes factor  
(Intercept)  0.0463251  0.0310182   0.08998547 
 
             mean       stdev  
sigma    0.1711013  0.01175525             
   

The posterior mean value of .046 is quite close to the exact value .047 obtained 
in Section 7.2.1. 
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7.2.9.3 Example 7.3: Semi-conjugate Prior 

Now we fit a Bayes mean-variance model using a semi-conjugate prior with the 
same normal prior for the mean returns as above, but with the inverse chi-
squared parameters 7.83oν =  and 2 2.013 (.114)oσ = =  used in Section 7.2.2 to 
represent an unknown variance. We just replace the prior.var = ... line 
in Code 7.9 with prior.var = bayes.invChisq(7.83, .013). 
Figure 7.13 shows that in this case the resulting prior, likelihood, and posterior 
are quite similar to those of Figure 7.12, with a slight difference in the 
likelihood. 

Figure 7.14 displays the resulting posterior marginal densities for µ  and 2σ  
obtained with the Gibbs sampler along with “true” posterior marginal densities. 
In this case, “true” means using an analytic formula that is known up to a 
normalizing constant that is obtained by numerical integration. The Gibbs 
sampler results are in quite good agreement with the exact results, giving one 
further confidence in the Gibbs sampler. 

In this case, the summary statistics yield values only slightly different from 
those in the previous example with known variance, giving a posterior mean 
value .050 instead of .046. 
                 mean       stdev    Bayes factor  
(Intercept)   0.05029134  0.03090387   0.06687123 
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Figure 7.12 Normal Model for KRON Returns with Known Noise 
Variance 
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             mean       stdev  
sigma     0.1578964   0.02713585 

7.2.9.4 Example 7.4: Independent Normal Mixture Prior for the 
Mean 

We continue to use the inverse chi-squared variance prior of Example 7.3 but 
now assume the investor wants to use a two-component normal mixture prior for 
the mean returns: 

 
 2 2 2 2

1 2 1 2 1 1 2 2( | , , , , ) (1 ) ( | , ) ( | , )o o o o o o o op N Nµ γ µ µ τ τ γ µ µ τ γ µ µ τ= − ⋅ + ⋅ .  
 

Suppose the investor thinks there is a 65% chance that the mean return of the 
asset has a normal distribution with parameters 1 .02oµ =  and 2 2

1 (.02)oτ =  and a 
35% chance that it has a normal distribution with parameters 2 .08oµ =  and 

2 2
1 (.02)oτ = . Then he or she modifies Code 7.9, replacing the normal prior 

distribution function bayes.normal with the normal mixture function 
bayes.normal.mixture (and using the default Gibbs sampler), to get 
Code 7.10. 
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Figure 7.13 Bayes Model for KRON Mean Returns with Semi-conjugate 
Prior 
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returns <- smallcap.ts[49:60,"KRON"]@data 
props <- c(.65,.35) 
mu0 <- c(.02,.08) 
var <- .02   #Set tau01.sq 
k <- 1    #Set tau02.sq = k*tau01.sq 
prior.mean <- bayes.normal.mixture(mu0,var,k,props) 
prior.var <- bayes.invChisq(7.83, .013)      
my.prior <- blm.prior(priorBeta = prior.mean, 
 priorSigma = prior.var) 
kron.fit <- blm(KRON ~ 1,prior = my.prior,  
 data = returns) 
plot(kron.fit, which = "univariate") 

Code 7.10 Bayes Model with Normal Mixture Prior for Mean Returns 

The resulting prior, likelihood, and marginal posterior densities are shown in 
Figure 7.15. 

The bimodal character of the posterior density is an interesting and intuitively 
appealing feature of this Bayesian analysis that is not achievable with a 
conjugate prior. In this case, the highest posterior mode favors a large mean 
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Figure 7.14 Gibbs Sampler Posteriors for KRON Returns with Semi-
conjugate Prior 
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return in the vicinity of 8%, even though the smallest prior mode was fairly well 
centered on the mean, 2 .08,oµ =  of the second mixing component. This is 
because the data more strongly favor the mean of the second component. 

The Gibbs sampler posteriors for the mean and variance in Figure 7.16 are as 
expected, comparing well with the true marginal posteriors computed as 
described for the case of the semi-conjugate prior in Example 7.3. 

It should be noted that the investor’s specification of the parameters of the 
normal mixture prior can have a considerable influence on whether or not 
bimodal posteriors are obtained and on the nature of the bimodality when it 
occurs. For example, if the investor chooses a 75%–25% mix rather than a 65%–
35% mix, the result shown in Figure 7.17 is obtained. Now the situation is 
reversed from that of Figure 7.15, with the highest posterior mode favoring a 
relatively small return in the vicinity of 3%, while the lowest posterior mode 
favors the larger return of around 8%.  

This example points out that posterior analysis based on normal mixture 
priors has a fair degree of sensitivity to the investor’s specification of the normal 
mixture parameters. On the other hand, this type of prior gives the investor an 
opportunity to effectively use his prior information in a Bayesian model. The 
reader is encouraged to experiment further with the normal mixture parameters 
as well as the location of the marginal likelihood (Exercise 10). 

7.2.9.5 Example 7.5: Normal Prior for the Mean and t Distribution 
Likelihood 

Now we fit a Bayes model to the GAIT returns shown in Figure 7.18 using a t 
distribution likelihood and a normal likelihood along with a semi-conjugate 
prior. Note the outlier at the beginning of the series, which has the potential to 
adversely influence the normal likelihood. 

Code 7.11 makes the plot in Figure 7.18, fits the Bayes model with both 
normal and t distribution likelihoods, and plots some results: 
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Figure 7.15 Bayes Model for KRON Mean Returns with 65%-35% Normal 
Mixture Prior 
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Figure 7.16 Gibbs Sampler Results for with 65%-35% Normal Mixture 

Prior 
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returns.ts <- microcap.ts[49:60,"GAIT"] 
y.names <- colIds(returns.ts) 
seriesPlot(returns.ts, one.plot = F,  
 strip.text = y.names, type = "b",col = 1) 
returns <- returns.ts@data 
prior.mean <- bayes.normal(.05,.1) 
prior.var <- bayes.invChisq(7.83, .013) 
my.prior <- blm.prior(priorBeta = prior.mean, 
 priorSigma = prior.var) 
gait.fit <- blm(GAIT ~ 1,prior = my.prior,  
 data = returns)  
# Default d.o.f. = 3 
likelihood <- blm.likelihood("t")   
gait.fit.robust <- blm(GAIT ~ 1,prior = my.prior, 
 likelihood = likelihood, data = returns) 
plot(gait.fit,  which = "box", include.sigma = T) 
plot(gait.fit.robust, which = "box",  
 include.sigma = T) 
gait.fit 
gait.fit.robust 

Code 7.11 Bayes Fit with Normal and t Likelihoods and Semi-conjugate 
Prior 
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Figure 7.17 Bayes Model for KRON Mean Returns with 75%–25% Normal 
Mixture Prior 
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In Code 7.11, we used the same inverse chi-squared distribution 
hyperparameters as in Example 7.3 but used somewhat different hyperparameter 
values for the normal prior for the mean, reflecting anticipation of a higher 
return but with greater uncertainty. 

Boxplots of the posterior mean and posterior standard deviation distributions 
for the normal and t likelihoods are shown in Figure 7.19 and Figure 7.20, 
respectively. 

Comparison of the upper boxplots in Figure 7.19 and Figure 7.20 reveals that 
the initial outlier in the GAIT returns for the normal likelihood case causes the 
posterior distribution of the mean to be shifted to a substantially higher value, 
and to be more spread out, than with the t likelihood. Comparison of the lower 
boxplots in these figures reveals that for the normal likelihood the posterior 
distribution of the standard deviation is shifted to a considerably higher value, 
and has a greater spread, relative to the posterior distribution with the t 
likelihood. The reader should compare the posterior summary statistics for the 
normal likelihood and t likelihood computed by Code 7.11. A better display to 
facilitate comparisons of results would be to have the two alpha (“(Intercept)”) 
posterior boxplots in the same plot with a common horizontal axis and likewise 
for the beta (market) posterior boxplots. In Section 7.3.2, we show how to do 
this by working directly with the S+Bayes Gibbs sampler output. 
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Figure 7.18 GAIT Monthly Returns 
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Figure 7.19 Bayes Model for GAIT with Normal Likelihood and Semi-
conjugate Prior 
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Figure 7.20 Bayes Model for GAIT with t-Likelihood and Semi-conjugate 
Prior 
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7.2.9.6 Example 7.6: A Few S+Bayes Plotting Options 

We obtain highest posterior density (HPD) or credible regions for the default 
95% level by the optional argument region = “hpd” or region = 
“credible” in the plot function. Non-default choices of level are specified 
with the level = optional argument to plot. For example, 
plot(gait.fit, region = "hpd", which = "univariate", 
include.sigma = T)gives Figure 7.21. 

We get a bivariate contour plot of the joint posterior for ( , )µ σ  along with 
the marginal posteriors, as in Figure 7.22, by using plot(gait.fit, 
which = "bivariate", include.sigma = T). 

7.2.10 Empirical Bayes Estimates of 
Hyperparameters 

Whether we use a conjugate, semi-conjugate, or other independence prior, we 
need to specify the hyperparameters for the joint prior for µ  and 2σ . For 

example, we need to specify the parameters 2, , ,o o o okµ ν σ  in the case of the 

conjugate normal inverse-chi-squared prior, the parameters 2 2, , ,o o o oµ τ ν σ  in the 
case of the semi-conjugate prior, or other hyperparameters in the case of other 
independence priors such as a normal mixture or t distribution prior. In the case 
of a t likelihood, we also need to specify the degrees of freedom. These 
hyperparameter values might be specified by the portfolio manager in a more or 
less subjective Bayesian manner (i.e., they might be values that the manager 
believes to be reasonable based on his or her extensive experience combined 
with ad hoc data analysis). This is the spirit in which the examples of Section 
7.2.9 were presented. 

On the other hand, cross sections of returns provide substantial data to 
support the use of empirical Bayes methods in which unknown hyperparameter 
values are obtained as point estimates based on cross-section returns data. A 
natural statistical methodology for doing so is to compute such point estimates 
by maximizing the marginal likelihood of the hyperparameters. Let η  denote 
the hyperparameters and let ( | )p θ η  be the prior for θ  given the 
hyperparameters, for example, in the semi-conjugate model for mean returns 

µ=θ  and 2( , )o oµ τ=η . Then Bayes’ Theorem, taking into account 
conditioning on the hyperparameters, is given by 

 

 ( | ) ( | )( | , ) ,
( | )

p pp
p

=
R θ θθ R

R
ηη

η
 (7.40) 
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Figure 7.21 Posterior Densities with 95% Highest Posterior Density Regions 
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where the conditional marginal distribution for R  in the denominator is 
computed as  

 
 ( | ) ( | ) ( | )p p p d= ∫R Rη θ θ  η θ . (7.41) 

 
Given an analytical form for ( | ),p R η  we can in principle compute η̂  by 
maximizing the marginal likelihood ( ) ( | )m p= Rη η . Unfortunately it is often 
difficult or impossible to obtain a manageable expression for ( | )p R η , and 
consequently η̂  is often computed by more or less intuitively appealing ad hoc 
methods. We illustrate some such methods for estimating the hyperparameters in 
a mean-variance returns model.  

7.2.10.1 Empirical Bayes Estimates of Hyperparameters in the Normal 
Prior  

In the case of either the conjugate or semi-conjugate prior, a natural empirical 
Bayes estimate of the hyperparameter oµ  is obtained by computing the overall 
sample mean of a representative set of asset returns over a common time 
interval. For example, if the 20 small cap stocks in smallcap.ts were 
considered to be a representative set of returns, we would compute ˆoµ  quite 
simply: 

 
> x <- microcap.ts@data[,-(1:2)] 
> mean(apply(x, 2, mean)) 
[1] 0.02623051 
 
In the case of a conjugate prior, the parameter ok  represents the strength of 

the dependency between the the variance 2 / okσ  of the prior for mean returns 
and the squared volatility of returns 2σ . In this case, there is no simple method 
of computing a point estimate of ok .27 

In the case of a semi-conjugate independence prior we can compute a point 
estimate of the hyperparameter 2

oτ  based on the generalization of the standard 
one-way random effects analysis-of-variance statistical model, 
 
 1, 2, , ,    1, 2, ,,    tk k tk t T k Kr µ ε = == +  (7.42) 
 
for a set of K asset returns. In this model, the kµ  are independent and identically 
distributed random variables with common distribution, 2( , ),o oN µ τ  and the tkε  
are independent random variables with distribution 2(0, )kN σ . The standard one-
way random effects model assumes a common error variance for all assets, 
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which is clearly an unrealistic assumption, so our generalization allows for 
different squared volatilities 2 var( )k tkσ ε=  for each asset. 

Let ˆkµ  and 2ˆkσ  be the sample mean and sample variance of returns for the k-
th asset, and let µ̂  be the overall sample mean of all K assets. Then our estimate 

of 2
oτ  is 2 2 2

ˆ
1ˆ ˆmin ,  0 ,

ko Tµτ σ σ⎡ ⎤= −⎢ ⎥⎣ ⎦
 where 2

ˆˆ
kµσ  is the cross-sectional sample 

variance of the sample means ˆkµ  and 2σ  is the cross-sectional average of the 

sample variances of each set of asset returns. It can be shown that 2ˆoτ  is an 

unbiased estimate of 2
oτ  under the model assumptions above.28 

We can apply the method above to the small cap stocks with Code 7.12. 
 
x <- microcap.ts@data[,-(1:2)] 
N <- dim(x)[1]   #Use N in place of T 
K <- dim(x)[2] 
N1 <- N/(N-1) 
K1 <- K/(K - 1) 
mean.stocks <- apply(x, 2, mean) 
mean.stocks 
var.stocks <- N1 * apply(x, 2, var) 
var.stocks 
var.means <- K1 * var(mean.stocks) 
mean.vars <- mean(var.stocks)/N 
if(var.means > mean.vars)  
 tau0sq <- var.means - mean.vars 
else  
 tau0sq <- 0 
list(TAU0 = sqrt(tau0sq), TAU0SQ = tau0sq, 
 VAR.MEANS = var.means, MEAN.VARS = mean.vars) 

Code 7.12 Estimate of 2
oτ  

This results in 2ˆ .00055oτ =  and correspondingly ˆ .023oτ = . 

7.2.10.2 Estimates of Hyperparameters of the Inverse Chi-Squared Prior 

We also need estimates of the hyperparameters oν  and 2
oσ  of the inverse chi-

squared prior for 2σ . One way to do this is to compute estimates 2ˆσµ  and 2V̂σ  

of the mean and variance of 2σ  and substitute these into the expressions for oν  

and 2
oσ   given in Appendix 7A. The mean and variance estimates needed can be 

obtained by computing the sample mean and sample variance of the sample 
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variances 2ˆkσ  of each stock.29 As a check on the resulting scaled inverse chi-
squared model, we plot the fitted inverse chi-squared density along with a 
histogram of the sample variances to confirm whether or not the fitted density 
and histogram are in reasonable agreement. We use Code 7.13 to carry out the 
computations and plot the results in Figure 7.23. 
 
# Set parameters 
x1.mult <- 4 
step <- .001 
trim.at <- 100 
# Compute invchisq parameters 
returns <- microcap.ts@data[,-(1:2)] 
dim(returns) 
var.stocks <- apply(returns, 2, var) 
mu.var <- mean(var.stocks [var.stocks < trim.at]) 
sd.var <- stdev(var.stocks [var.stocks < trim.at]) 
rsq <- (mu.var/sd.var)^2 
nu0 <- 2*rsq+4 
sigmasq0 <- mu.var*(rsq+1)/(rsq+2) 
scale <- nu0*sigmasq0 
# Plot histogram and density fit 
x1 <- seq(.001,mu.var+x1.mult*sd.var,step) 
d1 <- density.invchisq(x1,nu0,sigmasq0) 
hist(var.stocks [var.stocks <trim.at],nclass="fd", 
 probability = T, ylim = c(0,15), 
 xlab = "VARIANCE", col = 0) 
lines(x1, d1) 
list(nu0 = nu0, sigmasq0 = sigmasq0, scale = scale) 

Code 7.13 Fitted Inverse Chi-Squared Density Variances and Histogram 
Check 

We see immediately that the density fit is poor and that this is likely caused 
by two outlying variances with values just above .6 and .8, respectively. For this 
reason, Code 7.13 has a trim.at parameter that was initially set at the very 
large value of 100 so that no trimming was done. If we change this value to 
trim.at = .4 and change ylim = c(0,15) to ylim = c(0,30), we 
get the result in Figure 7.24, which is a reasonably satisfactory fit. 

This example points out the need to trim outliers in one way or another in 
order to get a robust fit to the bulk of the data for a non-normal parametric 
density.30 The reader is encouraged to experiment with Code 7.13 on the stock 
returns in smallcap.ts, midcap.ts, and largecap.ts to see if 
reasonably good fits can be obtained, trimming outliers if needed (Exercise 12). 



7.2 Bayes Models for the Mean and Volatility of Returns 345 

7.2.10.3 Limitations of Empirical Bayes Modeling 

While empirical Bayes modeling is an intuitively appealing simple method, 
there are several difficulties with its use. Focusing first on the estimate 2ˆoτ , we 
note that it is truncated at zero in order to avoid negative values.31 However, the 
resulting truncated value 2ˆ 0oτ =  leads to the unnatural assumption that the 
unknown means of the returns of each asset have the same value. The second 
problem is that asset returns often have a nonzero correlation with one another 
and the estimate 2ˆoτ  does not correct for this.32 The third problem is that the 
normality assumption is seldom justified. 

As for the inverse chi-squared parameter estimates, it remains to be seen 
through further study whether or not the inverse chi-squared model is fully 
adequate for modeling the variances of asset returns. At the very least, we have 
seen that variance estimates for a collection of asset returns can have outliers 
that need to be trimmed to obtain a good fit to the bulk of the data. The proper 
way to deal with this is to use an appropriate heavy-tailed alternative to the 
inverse chi-squared distribution. Finally, an overarching difficulty with 
empirical Bayes methods is that when we plug in point estimates for the 
hyperparameters, the posterior distribution does not reflect the uncertainty in 
these point estimates. 
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Figure 7.23 Fitted Inverse Chi-Squared Density and Histogram for 
Microcap Variances 
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7.2.10.4 Hiearchical Model Alternatives to Empirical Bayes Methods 

A good way to incorporate uncertainty about hyperparameters as well as 
circumvent the problem of negative variance estimates 2ˆoτ  is to fit a full Bayes 
hiearchical model by introducing a hyperprior density ( )p η  and average the 
conditional posterior ( | , )p Rθ η  with respect to ( )p η : 

 
 ( | ) ( | , ) ( )p p p d= ∫R Rθ θ η η η.  (7.43) 

 
Until the advent of MCMC methods, a full hierarchical Bayes modeling 
approach was generally not feasible. For further details on hierarchical Bayes 
modeling as a basis for potentially fruitful applications in finance and portfolio 
construction, see Carlin and Louis (2000) and Gelman et al. (2004). 

7.3 Bayes Linear Regression Models 

The methodology of Section 7.2 for single-asset mean-variance Bayes modeling 
may be extended to fit a Bayes general linear regression model 
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 = +Xr β ε,  (7.44) 

 
where 1 2( , , , )Kr r r′ =r  is a vector of returns for K assets, X  is a K p×  matrix 
of risk factors (also known as factor exposures, factor loadings, or factor 
sensitivities), β  is a 1p ×  vector of coefficients (also known as factor returns) 
to be estimated, and ε  is a 1K ×  zero mean error vector with covariance matrix 
Σ . This model includes as special cases cross-section factor models at fixed 
times t, Black-Litterman models, and time series macroeconomic models. It is 
usually assumed that a cross-section model has sufficient independent variable 
structure that the errors are essentially uncorrelated in the cross section, in which 
case a diagonal error covariance =Σ D  will suffice. 

Assume for the moment that ε  has a normal distribution with mean zero and 
a known covariance matrix Σ  that has full rank. In this special and rather 
unrealistic case the conjugate prior for β  is ,( ) ( | )o op MVN= Vβ β β , a 
multivariate normal density with mean oβ  and covariance matrix oV . It can be 
shown that for X  and oV , the posterior marginal joint distribution for the 
regression coefficient vector β  is a multivariate t distribution with posterior 
mean given by the shrinkage formula 

 
 ( ) ( )11 1 1 1ˆ ˆ ,o o o GLS

−− − − −′ ′= + ⋅ ⋅ + ⋅V X Σ X V X Σ Xβ β β  (7.45) 

 
where 1 1 1ˆ ( )GLS

− − −′ ′= X Σ X X Σ rβ  is the generalized least squares estimate. 
When X has less than full rank, as is often the case in the Black-Litterman 
applications discussed in Section 7.4, the posterior mean is still well-defined and 
is given by 

 
 ( ) ( )11 1 1 1ˆ .o o o o o

−− − − −′ ′= + ⋅ ⋅ +V X Σ X V X Σ rβ β  (7.46) 

 
The conjugate model above with known 2σ  is easily extended to the “full” 

conjugate model, where 2
oσ=Σ Σ  with oΣ  known and 2σ  is unknown, by 

using a multivariate normal inverse chi-squared prior (see Leamer, 1978, who 
uses an inverse Gamma equivalent of the inverse chi-squared distribution). 
However, this prior is often quite unrealistic, as in the case of the simple mean-
variance model of Section 7.2, which again motivates use of alternative semi-
conjugate priors and independence priors, with non-normal priors for β  and/or t 
distribution likelihoods. As in the mean-variance model, we do not have closed-
form analytic expressions for the posterior distributions of interest, but instead 
can use the S+Bayes Gibbs sampler to compute posterior distributions for the 
linear regression model. 
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7.3.1 Bayes Alphas and Betas 

A simple important application of Bayes linear regression is provided by the 
single-factor market model  

 
 , ,    1,2, , ,t m t tr r t Tα β ε= + ⋅ + =  (7.47) 

 
where tr  and mtr  are risk-adjusted returns for an individual stock and the overall 
market. We note that for the single-factor market model it is often reasonable to 
assume that the tε  are serially uncorrelated.33 If in addition we assume a 

constant error variance 2σ , we only need to specify a joint prior distribution for 
the two-dimensional coefficient vector ( , )α β  and the error variance 2σ  in 
order to compute posterior distributions with S+Bayes.34 We now show how to 
do so for several choices of prior. 

7.3.1.1 Example 7.7: Noninformative Prior 

In order to check on the accuracy of the S+Bayes Gibbs sampler, we first use a 
noninformative prior with a normal likelihood and compare the result with the 
LS estimate using Code 7.14. 
 
returns <- largecap.ts@data 
msft.fit <- blm(MSFT-t90 ~ market-t90, data = 

returns) 
msft.fit@model[[1]]@betaMatrix.names <- 
 c("ALPHA","BETA") 
plot(msft.fit, which = "bivariate") 
msft.lsfit <- lm(MSFT-t90 ~ market-t90,  
 data = returns) 
names(msft.lsfit$coefficients) = c("ALPHA","BETA") 
msft.fit 
msft.lsfit 

Code 7.14 Bayes Alpha and Beta for Microsoft 

This results in Figure 7.25 and the posterior summary statistics 
 
              mean        stdev      Bayes factor  
ALPHA     0.009989242  0.01562003    0.4035703 
BETA     1.692417577  0.27536771    0.0000000 
 
           mean      stdev  
sigma   0.1199513 0.01160441 
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The least-squares-fitted model msft.lsfit gives the following estimates of 
alpha and beta: 

 
    ALPHA     BETA  
 0.01047983  1.69152 
 

So we have good agreement between the S+Bayes Gibbs sampler posterior 
means of alpha and beta and the exact posterior means given by the least squares 
estimates.  

We see in Figure 7.25 that the marginal posterior densities are consistent with 
the posterior summary statistics above. We also see that the contour plot for the 
joint posterior indicates that there is a small amount of negative correlation in 
the joint posterior for alpha (“ALPHA”) and beta (“BETA”). We use the 
function summary(msft.lsfit) to calculate a correlation of –.17 for the 
least squares estimate of alpha and beta, which is reasonably consistent with the 
contour plot.  

7.3.1.2 Example 7.8: Informative Priors for Alpha and Beta 

The idea to use informative priors in computing Bayesian betas was proposed a 
long time ago by Vasicek (1973), who used a semi-conjugate model with a 
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Figure 7.25 Marginal and Joint Posteriors for Microsoft Alpha and Beta 
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normal prior for beta and a joint noninformative prior for the intercept and 
2σ .35 Naturally this led to a shrinkage estimator of beta, and the result provided 

a Bayesian motivation for computing so-called “adjusted” betas as is done by 
some financial data services providers. Let’s see what happens when we 
compute Bayesian alphas and betas using a semi-conjugate model with 
informative priors for both α  and β  and a noninformative prior for 2σ . 

We assume a bivariate normal prior with zero correlation between α  and β . 
Under the CAPM, α  is zero and in any event one does not expect large 
deviations from zero, so it is natural to assume that 2( , )N α αα µ σ∼  with 

0αµ =  and ασ  small. For our example, we let 2 2(.01)ασ = . Since betas vary 

around the market value 1,β =  we assume that 2( , )N β ββ µ σ∼  with 1βµ =  

and set 2 2(.5)βσ =  as a not too unreasonable value. The S+Bayes computations 
to fit this Bayes model are given in Code 7.15, where the first argument to 
bayes.normal specifies the mean vector ( , ) (0,1)α βµ µ = , and our use of a 
vector for the covmat = argument specifies that the covariance matrix of the 
joint prior is diagonal. Since a priorSigma argument is not used, S+Bayes 
uses the default of a noninformative prior for 2σ . 
 
returns <- largecap.ts@data 
prior.mean <- bayes.normal(c(0,1), 
 covmat = c((.01)^2,(.5)^2)) 
my.prior <- blm.prior(priorBeta = prior.mean) 
msft.fit <- blm(MSFT-t90 ~ market-t90, 
 prior = my.prior,  
 data = returns) 
msft.fit@model[[1]]@betaMatrix.names <- 
 c("ALPHA","BETA") 
msft.fit 

Code 7.15 Bayesian Alpha and Beta with Informative Semi-conjugate Prior 

The resulting posterior mean and standard deviation values are: 
 
coefficients: 
                 mean       stdev      Bayes factor 
(Intercept)   0.0037402  0.008497108    0.5191809 
     market   1.5398064  0.250437392    0.0000000 

 
scale: 
           mean      stdev  
sigma   0.1198259  0.01111548           
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The effect of using the informative prior versus a noninformative prior for alpha 
and beta has been to shift both marginal posterior distributions toward the prior 
means, with the posterior mean for alpha shifting from .01 to .004 and the 
posterior mean for beta shifting from 1.69 to 1.54. Marginal and joint posterior 
plots can be made by adding the line plot(msft.returns, which = 
"bivariate") to the code. 

7.3.1.3 Example 7.9: Alpha and Beta with t-Likelihood 

In Example 7.5, we saw that use of a t distribution resulted in robustness toward 
outlier returns. Code 7.16 computes alpha and beta posteriors for the stock with 
ticker EVST shown in Figure 6.1 using normal and t distribution likelihoods 
with the same prior as in Example 7.8. 

 
returns <- microcap.ts@data 
prior.mean <- bayes.normal(c(0,1), 
 covmat = c((.01)^2,(.5)^2))       
my.prior <- blm.prior(priorBeta = prior.mean) 
evst.fit <- blm(EVST-t90 ~ market-t90, 
 prior = my.prior, data = returns) 
likelihood <- blm.likelihood("t") 
evst.fit.robust <- blm(EVST-t90 ~ market-t90, 
 prior = my.prior, likelihood = likelihood,  
 data = returns) 
plot(evst.fit, which = "box") 
plot(evst.fit.robust, which = "box") 
evst.fit 
evst.fit.robust 

Code 7.16 EVST Posteriors with Normal and t Distribution Likelihoods 

Here are the numerical results from Code 7.16, rearranged to facilitate 
comparisons: 

 
Normal likelihood 
                   mean      stdev     Bayes factor  
ALPHA    0.000801839  0.01011735   1.05542104 
BETA     1.117184615  0.49114618   0.01442915 
 
t-likelihood 
                   mean      stdev     Bayes factor  
ALPHA    -0.01003383  0.00959187   0.15208213 
BETA      0.84098359  0.37490413   0.01684809 
 
Normal likelihood 
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           mean      stdev  
sigma   0.9123989  0.08349846           
 
t-likelihood 
           mean      stdev  
sigma   0.1647692 0.02185158            
 

We see that the posterior means of alpha and beta are both smaller with the t 
likelihood than with the normal likelihood. The posterior standard deviation of 
alpha is about the same for both likelihoods, while that of beta is noticeably 
smaller. These results are as expected because the outlier has less influence on 
the posterior distribution when using a t likelihood than when using a normal 
likelihood. The reduction in the values of the posterior mean and standard 
deviation of σ  are much greater than those of alpha and beta because the outlier 
has a greater influence on the posterior for σ  when a normal likelihood is used. 
We recommend that the reader examine the boxplots produced by Code 7.16 
(not reproduced here) to get a clear visual comparison of the posterior 
distributions associated with the normal and t distribution likelihoods. 

7.3.2 Working with the S+Bayes Gibbs Sampler 
Output 

Often we will find it is advantageous to work directly with the Gibbs sampler 
output from the S+Bayes modeling functions. For example, we may want to 
produce stylized plots to convey results more clearly than when using a built-in 
S+Bayes plotting method such as the method plot.blm invoked when the 
argument of plot is a Bayes linear model object. Or we may wish to compute 
the posterior distribution of some nonlinear function of model parameters such 
as a Sharpe ratio or information ratio. So we explain how the Gibbs sampler 
sample paths are obtained from a fitted model of class blm, and give two 
examples of applications. 

An S+Bayes linear model object of class blm, such as msft.fit, contains 
all the Gibbs sampler results in one or more components of an ordinary list 
object named model, which itself is a component of the blm object. When 
using a single MCMC chain, as we have been doing thus far, the model list 
contains only the single component model[[1]], and this component contains 
various MCMC objects. We display the names of these MCMC objects by using 
the extractor function slotNames, for example as follows36: 

 
> slotNames(msft.fit@model[[1]]) 
[1]"call"                  "betaMatrix"  
[3]"betaMatrix.names"      "scaleMatrix" 
[5]"scaleMatrix.names"     "tau2ErrorScale" 
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[7]"tau2ErrorScale.names"  "gibbs.drawing.stats" 
[9]"mixture.drawing.stats"."prior" 
[11]"control" 
 

The components of msft.fit@model[[1]] are themselves S Version 4 
objects that are again accessed using the “@” symbol. For example, we display 
the names of the Gibbs sampler sample paths matrices for alpha and beta (two 
columns) and sigma (one column) with  

 
> msft.fit@model[[1]]@betaMatrix.names 
[1] "ALPHA" "BETA" 
> msft.fit@model[[1]]@scaleMatrix.names 
[1] "SIGMA" 
 

We display the first few values of these matrices: 
 
> msft.fit@model[[1]]@betaMatrix[1:5,] 
            [,1]      [,2] 
[1,] 0.019858159  1.617498 
[2,] 0.005506613  1.451466 
[3,] 0.011686599  2.067712 
[4,] 0.015837226  1.439625 
[5,] 0.001776106  1.524045 
  
> msft.fit@model[[1]]@scaleMatrix[1:5,] 
[1] 0.1311373 0.1306821 0.1347287 0.1192026 

0.1073955 
 

In the latter case, we get a vector object because we extracted a single column 
from a matrix object. 

7.3.2.1 Example 7.10: Paired Posteriors Boxplots for Normal and t 
Likelihoods 

Revisiting the t likelihood (Example 7.9), we provide Code 7.17 to display side-
by-side boxplots for alpha, beta, and sigma in pairs corresponding to normal and 
t likelihoods.  

 
prior.mean <- bayes.normal(c(0,1), 
 covmat = c((.01)^2,(.5)^2)) 
my.prior <- blm.prior(priorBeta = prior.mean) 

 
evst.fit <- blm(EVST-t90 ~ market-t90,prior =  
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 my.prior,data = returns) 
evst.fit@model[[1]]@betaMatrix.names <- 
 c("ALPHA","BETA") 
likelihood <- blm.likelihood("t") 
evst.fit.robust <- blm(EVST-t90 ~ market-t90, 
 prior = my.prior, likelihood = likelihood,  
 data = returns) 
evst.fit.robust@model[[1]]@betaMatrix.names <-  
 c("ALPHA","BETA") 
betas <- evst.fit@model[[1]]@betaMatrix 
sigma <- evst.fit@model[[1]]@scaleMatrix 
rob.betas <- evst.fit.robust@model[[1]]@betaMatrix 
rob.sigma <- evst.fit.robust@model[[1]]@scaleMatrix 
names <- c("NORMAL","t") 
par(mfrow = c(1,3)) 
boxplot(betas[,1],rob.betas[,1],names = names, 
 main="ALPHA POSTERIOR") 
boxplot(betas[,2],rob.betas[,2],names = names, 
 main="BETA POSTERIOR") 
boxplot(sigma,rob.sigma,names = names,  
 main = "SIGMA POSTERIOR") 
par(mfrow = c(1,1)) 

Code 7.17 Using Gibbs Sampler Output for Paired Boxplots for Posteriors 

The resulting display in Figure 7.26 gives us an immediate grasp of the 
differences in the marginal posteriors due to using a normal likelihood versus a t 
likelihood. The reader is encouraged to use Code 7.17 to explore the impact of 
changing the values of the hyperparameters in the prior for alpha and beta.  

7.3.2.2 Example 7.11: Posterior Distribution of an Information Ratio 

Consider the beta regression model for portfolio returns ,P tr  of a portfolio P 
relative to the returns ,B tr  of a benchmark B: 

 
 , , , ,    1,2, ,P t P B t P P tr r t Tα β ε= + ⋅ + =  (7.48) 

 
Here Pα  is the expected residual return (alpha) and 1/ 2

, ,var ( )P P tεσ ε=  is the 
residual risk. Suppose we we have monthly returns and want to compute the 
Bayes posterior distribution of the annualized information ratio  
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,

Annualized Residual Return
Annualized Residual Risk

12  .

P

P

P

IR

ε

α
σ

=

=
 (7.49) 

We can do this quite easily by fitting a Bayes linear model for ,( , , )P P Pεα β σ  
and using the Gibbs sampler posterior path values for Pα  and ,Pεσ  in the 
expression for PIR  to estimate the desired posterior distribution. 

For the sake of illustration, let’s assume that our benchmark portfolio is an 
equal- weighted portfolio of the twenty stocks in largecap.ts and that the 
portfolio whose information ratio we are interested in is an equal-weighted 
portfolio of the twenty stocks in smallcap.ts. Code 7.18 computes the large 
cap benchmark and microcap portfolio and plots the returns of these portfolios 
shown in Figure 7.27. The code also computes and makes boxplots of posterior 
residual risk, residual return, and information ratios for both normal and t 
likelihoods, as shown in Figure 7.28. In this case, the medians of the information 
ratio posteriors are rather close to zero, with values of –.07 and –.13 for the 
normal likelihood and t likelihood respectively. The reader is encouraged to use 
Code 7.18 for other benchmarks and better-performing portfolios. 

 
# Make benchmark and portfolio time series object 
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Figure 7.26 EVST Posterior Distributions for Normal and t-Likelihoods 
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positions <- positions(largecap.ts) 
BENCHMARK <- apply(largecap.ts@data[,-(1:2)], 
 1,mean) 
bm.port <- data.frame(BENCHMARK) 
bm.port.ts <- timeSeries(bm.port,positions =  
 positions) 
PORTFOLIO <- apply(microcap.ts@data[,-(1:2)], 
 1,mean) 
port <- data.frame(PORTFOLIO) 
port.ts <- timeSeries(port,positions = positions) 
data.ts <- seriesMerge(bm.port.ts,port.ts) 
y.name <- colIds(data.ts) 
seriesPlot(data.ts,one.plot=F,strip.text=y.name, 
 col = 1) 
# Bayes models for normal and t-likelihoods 
prior.mean <- bayes.normal(c(0,1.5), 
 covmat = c((.01)^2,(.5)^2))  
my.prior <- blm.prior(priorBeta = prior.mean) 
t90 <- largecap.ts@data[,2] 
port.fit <- blm(PORTFOLIO-t90 ~ BENCHMARK-t90, 
 prior = my.prior, data = data.ts) 
likelihood <- blm.likelihood("t") 
port.fit.t <- blm(PORTFOLIO-t90~BENCHMARK-t90, 
 prior = my.prior,likelihood = likelihood,  
 data = data.ts) 
 
# Compute posterior residual returns and risks and 
# IR's 
res.ret <- 12*port.fit@model[[1]]@betaMatrix[,1] 
res.risk <- 

sqrt(12)*port.fit@model[[1]]@scaleMatrix 
IR <- res.ret/res.risk 
res.ret.t <- 

12*port.fit.t@model[[1]]@betaMatrix[,1] 
res.risk.t <- 

sqrt(12)*port.fit.t@model[[1]]@scaleMatrix 
IR.t <- res.ret.t/res.risk 
names <- c("NORMAL","t") 
boxplot(IR,IR.t,names = names,  
 main = "NORMAL AND t-LIKELHOOD INFORMATION 

RATIOS") 
names <- c("RRET (NL)","RRISK (NL)","RRET (TL)", 
 "RRISK (TL)") 
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Figure 7.27 Returns of Large cap Benchmark and Microcap Portfolio 
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Figure 7.28 Boxplot of Information Ratio Posterior Distributions  
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boxplot(res.ret,res.risk,res.ret.t,res.risk.t, 
 names = names) 
title(main = "RESIDUAL RISK AND RESIDUAL RETURN\n  
 Normal Likelhood (NL) and t-Likelihood (TL)") 
apply(cbind(IR,IR.t),2,median) 

Code 7.18 Information Ratio Posteriors 

7.3.3  Cross-Section Regression 

We provide a simple example of an S+Bayes cross-section regression for 
monthly returns for 469 stocks in the STOXX index for January 1993. The data 
frame containing these data is stoxx.cs, and the variable names are: 
 
> names(stoxx.cs) 
[1] "Returns" "Size"  "Mkt.cap"  "PE"  "PC" 
[6] "Sector"  "Country" "Country.two" 
 

Returns is the response variable, and we choose Size, log(PE) and 
Country.two as the risk-factor predictor variables. Country.two is a 
factor variable with two levels "GB" (Great Britain) and "OTHER" (any one of 
14 European countries). Our experience leads us to use the mixed prior 

2
,( , ) ( | )o op MVNσ ∝ Vβ β β  with hyperparameters (.1, .02,0,0)o = −β  and 

2 2 2 2((.01) , (.01) , (.01) , (.01) )o diag=V , where by mixed we mean that the prior 

is informative for β  and noninformative for 2σ . Code 7.19 computes a 
Bayesian model fit via the Gibbs sampler and produces the plots displayed in 
Figure 7.29 and Figure 7.30. The code also computes least squares coefficient 
estimates for comparison.  

 
form <- formula(Returns ~ Size+log(PE)+Country.two) 
prior.mean <- bayes.normal(c(.1,-.02,0,0), 
 covmat = (.01)^2) 
my.prior <- blm.prior(priorBeta = prior.mean) 
stoxx.fit <- blm(form,prior = my.prior,  
 data = stoxx.cs, na.action=na.omit) 
plot(stoxx.fit, which = c("box","bivariate")) 
stoxx.fit 
coef(summary(lm(form, data = stoxx.cs,  
 na.action = na.omit))) 

Code 7.19 Bayes Model for STOXX Cross-Section Regression 
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In this example the Size and log(PE) factors have a substantial negative 
impact on returns, while Country.two has a substantially positive impact and 
the Intercept parameter is quite positive. Several of the posterior 
correlations are negative. 
 

7.4 Black-Litterman Models 

A Black-Litterman (BL) model for portfolio optimization uses an estimate of 
mean returns that is a weighted combination of (1) a mean vector oµ  in a prior 
distribution for mean returns based on an equilibrium model and (2) an 
“estimate” that reflects an investor’s “views” about mean returns.37 The mean 
vector oµ  is usually taken to be the implied returns obtained by reversing the 
quadratic optimization result used to obtain optimal portfolio weights, instead 
taking the weight vector to be the market capitalization weights MCw ; i.e.,  
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Figure 7.29 Boxplot of Marginal Posteriors for STOXX Cross-Sectional 
Model 
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 ,MCo λ= Ωwµ  (7.50) 
 

where Ω  is the covariance matrix of the returns and λ  is a risk aversion 
parameter. Alternatively, oµ  might be obtained from the CAPM 

 
 ( ),f M fo r rµ= ⋅ ⋅ −1µ + β  (7.51) 

 
where Mµ  is the mean return of the market and 

f
r  is the risk-free rate. 

The investor’s views are uncertain and typically subjective opinions about 
mean returns, and these views may be absolute or relative (see the discussion in 
Section 1.2.3). For example, an absolute view might be “stock A will give 1% 
monthly returns while stock B will give 2% monthly return,” and a relative view 
might be “stock A will outperform stock B by .5%.” Investor views can be 
expressed with a linear regression model 

 
 = +Pg µ ε,  (7.52) 

 
where µ  is a vector of true mean returns, P  and g  are used to define an error-
free version of investor views, and ε  represents errors in the investor’s views.38 
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Figure 7.30 Bivariate Marginal Posteriors for STOXX Cross-Section Model 
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It is assumed that ε  has zero mean and has a known covariance matrix that 
represents the investor’s degree of confidence in his or her views. 

For example, with four assets A, B, C, and D and the absolute view that stock 
A will have 1% returns and stock B will have 2% returns, we set (1, 2)′ =g , 

( , , , )A B C Dµ µ µ µ′ =µ  and 
1 0 0 0

  
0 1 0 0

⎛ ⎞= ⎜ ⎟
⎝ ⎠

P . In the case of the relative view 

that stock A outperforms stock B by .5%, we set .5g= =g  and 
(1, 1,0,0)′= = −P p . In examples such as these, P  is rank-deficient, but as we 

noted at the beginning of Section 7.3, this is not a problem. 
This linear regression model implementation of investor views could also 

incorporate historical mean returns of some stocks as part of an investor set of 
views by setting some of the components of g  equal to the sample means of the 
stocks, with appropriate row entries in P  that contain a single entry value of one 
and remaining entries equal to zero and with an appropriate historical covariance 
matrix estimate for the corresponding components of ε . 

The Black-Litterman estimate is easily derived in one of two ways: (a) as the 
solution of a constrained least squares problem, as in Lee (2000), or (b) as the 
posterior mean in a Bayes version of the linear regression model above, as is 
implicit in Black and Litterman (1992) and He and Litterman (1999).39 The 
Bayes derivation of Black-Litterman uses a multivariate normal prior 

( | , )oMVN τ ⋅Ωµ µ  where oµ  is the equilibrium mean returns, Ω  is assumed 
to be known, and τ  an investor-determined tuning parameter. By applying the 
posterior mean formula from the beginning of Section 7.3 with the appropriate 
substitutions, we obtain the posterior mean shrinkage formula 

 
 ( ) ( )11 1 1 1ˆ ( ) ( ) .oτ τ

−− − − −′ ′= ⋅ + ⋅ ⋅ ⋅ +Ω P Σ P Ω P Σ gµ µ  (7.53) 

 
The size of τ  controls the relative weight put on the equilibrium returns oµ , 
with smaller values of τ  resulting in more weight on oµ . 

7.4.1 Black-Litterman Application Example 

We illustrate the use of the Black-Litterman estimate in optimizing a small 
eight-asset portfolio. Each of the assets is an equally weighted portfolio of ten 
stock returns from one of the stock returns objects micrcocap.ts, 
smallcap.ts, midcap.ts and largecap.ts. We formed two portfolios 
from each market cap group by sorting on mean returns and putting the stocks 
with the ten highest returns in one equally weighted portfolio and those with the 
ten lowest returns in the other portfolio. Portions of the rather mundane Code 
7.20 show how to construct these portfolios. 
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mu1 <- apply(microcap.ts@data[,1:20],2,mean) 
sort(mu1) 
names1 <- names(sort(mu1)[1:10]) 
names2 <- names(sort(mu1)[11:20]) 
... ... ... ... 
mu4 <- apply(largecap.ts@data[,1:20],2,mean) 

 
sort(mu1) 
names7 <- names(sort(mu4)[1:10]) 
names8 <- names(sort(mu4)[11:20]) 
pos <- positions(microcap.ts) 
mc1 <- timeSeries(apply( 
 microcap.ts[,names1]@data,1,mean),positions = 

pos) 
... ... ... ... 
mc8 <- timeSeries(apply( 
 largecap.ts[,names8]@data,1,mean),positions = 

pos) 
mc.slices <- seriesMerge(mc1,mc2,mc3,mc4,mc5, 
 mc6,mc7,mc8) 
dimnames(mc.slices@data)[[2]] <- paste("MC",1:8, 
 sep = "") 
mc.slices <- seriesMerge(microcap.ts[,20:21], 
 mc.slices) 
dimnames(mc.slices@data)[[2]][1:2] <-  
 c("MARKET","RF") 

Code 7.20 Create Eight Equal Weights Portfolios 

After running Code 7.20, we get the plots of the returns series of the eight 
portfolios in Figure 7.32 with the commands: 

 
y.name = colIds(mc.slices[,-2]) 
seriesPlot(mc.slices[,-2],one.plot=F, 
 strip.text=y.name,col = 1) 
 

The mean returns versus standard deviation plot of the market and portfolios 
returns in Figure 7.31 is obtained with Code 7.21. 
 
mc.ret <- mc.slices@data[,-(1:2)] 
mu <- apply(mc.ret,2,mean) 
sigma <- apply(mc.ret,2,stdev) 
xlim <- c(0,max(sigma)) 
plot(sigma,mu,pch = 16, xlim = xlim, 
 main = "MARKET CAP SLICE PORTFOLIOS") 
text(sigma +.003,mu, names(mu),adj = 0, cex = .8) 
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mkt <- mc.slices@data[,1] 
mu.mkt <- mean(mkt) 
sigma.mkt <- stdev(mkt) 
points(sigma.mkt,mu.mkt,pch = 16) 
text(locator(1), "MARKET") 
lines(locator()) 
out <- rbind(mu,sigma,sigma/sqrt(60)) 
row.names(out) <- c(" MEAN","SIGMA","S.E.(MEAN)") 
round(out,3) 

Code 7.21 Plot Means and Standard Deviations of Portfolios 

The last line of Code 7.21 gives the values of the sample means, standard 
deviations, and standard errors of the sample means of the eight portfolios: 
 
           MC1   MC2   MC3   MC4   MC5   MC6   MC7   MC8  
      MEAN -0.001 0.053 0.008 0.035 0.009 0.024 0.009 0.032 

     SIGMA  0.063 0.194 0.057 0.085 0.058 0.075 0.045 0.085 

S.E.(MEAN)  0.008 0.025 0.007 0.011 0.007 0.010 0.006 0.011 

 
Code 7.22 uses NUOPT to compute optimal long-only portfolio weights with a 
monthly target return of 3% for both the original returns and for the returns with 
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Figure 7.31 Means and Standard Deviations of the Eight Portfolio Returns 
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altered mean values. We perturb the mean value of the returns by increasing 
MC1 and MC3 returns by one standard deviation of their estimted values and 
decreasing MC4 and MC8 returns by one standard deviation of their estimated 
values. 

 
mc.ret <- mc.slices@data[,-(1:2)] 
n <- ncol(mc.ret) 
mu.target <- 0.03 
mu <- apply(mc.ret,2,mean) 
Cov <- var(mc.ret) 
A <- rbind(mu,1) 
cLO <- c(mu.target,1) 
cUP <- c(Inf,1) 
bLO <- rep(0, n) 
bUP <- rep(Inf, n) 
solution <- solveQP(Cov,, A, cLO, cUP, bLO, bUP,,)  
wts <- solution$variables$x$current 
# Weights with perturbed mu's 
mc.ret[,1] <- mc.ret[,1] + .008 
mc.ret[,3] <- mc.ret[,3] + .007 
mc.ret[,4] <- mc.ret[,4] - .011 
mc.ret[,8] <- mc.ret[,8] - .011 
mu <- apply(mc.ret,2,mean) 
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Figure 7.32 Returns of Market and Equally Weighted Portfolios of Ten 
Stocks 
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A <- rbind(mu,1) 
solution <- solveQP(Cov,, A, cLO, cUP, bLO, bUP,,)  
wts.pert <- solution$variables$x$current 
mu.labels <- factor(c(rep("ORIGINAL MU'S",8), 
 rep("PERTURBED MU'S",8))) 
weights <- c(wts,wts.pert) 
wts.data <- data.frame(wt.names =  
 rep(names(mc.ret),2), weights,mu.labels) 
barchart(wt.names ~ weights|mu.labels,data =  
 wts.data) 

Code 7.22 Markowitz Weights with Original and Perturbed Data 

The results in Figure 7.33 display the well-known fact that mean-variance-
optimized portfolios are often poorly diversified and the fact that optimal 
portfolio weights are often highly sensitive to small perturbations of the mean 
values of returns. 

Now suppose a manager has the absolute view that the mean return of MC1 
and MC2 will be 4% and the relative view that MC3+MC4 will outperform 
MC5+MC6 by 1%. The following code bits will create the necessary S-PLUS 
matrices p and g, labeled P and g, above: 

 
> p.abs = c(0.5, 0.5, rep(0, 6)) 
> p.rel = c(0, 0, 1, 1, -1, -1, 0, 0) 

 
> p = rbind(p.abs, p.rel) 
> p 
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]  
p.abs  0.5  0.5    0    0    0    0    0    0 
p.rel  0.0  0.0    1    1   -1   -1    0    0 
> g = rbind(0.04, 0.01) 
> g 
     [,1]  
[1,] 0.04 
[2,] 0.01 
 

In addition, we assume the manager has the following error covariance matrix 
(labeled Σ  above): 
 
> cov.investor = diag(c((0.01)^2, (0.005)^2)) 
 
Code 7.23 provides a function bl.means to compute a Black-Litterman 

estimate of the posterior shrinkage estimate of mean returns using the CAPM 
equilibrium model. The first argument, xret, is a data frame of returns, with 
market returns and the risk-free rate in the first two columns and asset returns in 
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the remaining columns (the reader can easily change this convention as needed). 
Additional required arguments are an estimate cov0 of the covariance Ω  and 
the investor’s views expressed through the values of covi, p, g, and tau.  

 
bl.means <- function(xret,cov0,covi,p,g,tau, 
 delta.betas=0,print.mus = T) { 
 # xret is a data frame of returns with market 
 # returns in column 1 and risk-free rate and in 
 # column 2 
 # Compute betas and equilibrium returns via CAPM 
 mkt <- xret[,1] 
 rf <- xret[,2] 
 betas <- rep(0,8) 
 names(betas) <- dimnames(xret[,-(1:2)])[[2]] 
 for(i in 1:8){ 
  betas[i] <- coef(lm(xret[,i+2]-rf~mkt–rf))[2] 
 } 
 betas <- betas + delta.betas 
 mu0 <- rf[60] + betas*(mean(mkt)-rf[60]) 

 
 # Compute Black-Litterman mean returns 
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Figure 7.33 Markowitz Weights for Original and Perturbed Data 
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 a1 <- solve(cov0)/tau 
 a2 <- t(p)%*%solve(covi) 
 a3 <- a2%*%p 
 muhat <- t(solve(a1 + a3)%*%(a1%*%mu0 + a2%*%g)) 
 # Output 
 mu <- apply(xret[,-(1:2)],2,mean) 
 mus <- rbind(mu,betas,mu0,muhat) 
 row.names(mus) <- c("HIST. MU'S","BETAS", 
  "EQUIL. MU'S","B-L MU'S") 
 if(print.mus) print(round(mus,5)) 
 as.matrix(mus[4,]) 
} 

Code 7.23 Black-Litterman Mean Return Estimate 

The CAPM equilibrium prior for mean returns has two sources of uncertainty 
about the value of oµ : (a) uncertainty in the estimate of market returns and (b) 
uncertainty in the beta estimates. We now examine the sensitivity of the BL 
estimate to each of these uncertainties separately in turn. 

The S-PLUS commands  
 
mean(ret[,1]) 

 
and 
 
stdev(ret[,1])/sqrt(60) 

 
compute .009 as the value of the sample mean of the market returns and .007 as 
the standard error of this sample mean. We evaluate the impact of a perturbation 
of mean market returns from its estimated value of .009 to the one standard error 
increase in value to .016. Code 7.24 uses the function bl.means, and parts of 
Code 7.22 that use NUOPT (not all of which is displayed below), to compute 
optimal portfolio weights for both the orginal sample mean of market returns 
and the perturbed sample mean of market returns. The results are displayed in 
Figure 7.34. 

 
ret <- mc.slices@data 
# Mean returns prior covariance 
cov0 <- var(ret[,-(1:2)]) #Prior covariance 

 
tau <- 1 
# Define investor’s views 
p.abs <- c(.5,.5,rep(0,6)) 
p.rel <- c(0,0,1,1,-1,-1,0,0) 
p <- rbind(p.abs,p.rel) 
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g <- rbind(.04,.01) 
#Investor covariance 
covi <- diag(c((.01)^2,(.005)^2)) 
# Black-Litterman Means 
bl.means(ret,cov0,covi,p,g,tau) 
# Optimal Black-Litterman Weights 
mc.ret <- ret[,1:] 
n <- ncol(mc.ret) 
mu.target <- 0.03 
mu <- bl.means(ret,cov0,covi,p,g,tau) 
... ... ... ... 
# barplot(wts, names = names(mc.ret)) 
# Weights with perturbed mu's 
ret[,1] <- ret[,1] + .008 
mu <- bl.means(ret,cov0,covi,p,g,tau) 
... ... ... ... 
barchart(wt.names ~ weights|mu.labels, 
 data = wts.data) 

Code 7.24 BL Optimal Weights for Original and Perturbed Data 
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Figure 7.34 BL Weights for Original and Perturbed Market Mean 
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We see in the left panel of Figure 7.34 that the BL estimate leads to a 
substantially more diversified portfolio than when using historical sample 
means, as is clear by comparison with the left panel of Figure 7.33. We also see 
in the right panel of Figure 7.34 that BL leads to optimal portfolios that are 
much more stable under perturbations of the data. (Compare it with the right 
panel of Figure 7.33.) 

Table 7.1 displays the historical (sample) means, estimated betas, CAPM 
equilibrium means, and BL means for the original sample mean of market 
returns. Table 7.2, produced using the command 

 
> round(betas.eqret(mc.slices@data),3) 
 

gives the same quantities for the perturbed sample mean of market returns. 
Note the relatively large changes in the equilibrium means, and the relatively 

small changes in the BL means.  
Now we perturb the estimated values of the betas. The function 

betas.eqret in Code 7.25 computes betas and their standard errors, along 
with CAPM equilibrium returns: 

 
betas.eqret <- function(xret) { 
 # xret is a data frame of returns with market  
 # returns in the first column and the risk-free 
 

 

 

Table 7.1 BL Means for Original and Perturbed Market Mean 

               MC1   MC2   MC3   MC4   MC5   MC6   MC7   MC8 

 HIST. MU'S -0.001 0.053 0.008 0.035 0.009 0.024 0.009 0.032 

      BETAS  0.604 1.803 0.509 1.028 0.433 0.994 0.550 1.366 

EQUIL. MU'S  0.006 0.015 0.005 0.009 0.005 0.009 0.006 0.012 

    BL MU'S  0.015 0.064 0.011 0.024 0.005 0.020 0.008 0.022 

 

               MC1   MC2   MC3   MC4   MC5   MC6   MC7   MC8 

 HIST. MU'S -0.001 0.053 0.008 0.035 0.009 0.024 0.009 0.032 

      BETAS  0.604 1.803 0.509 1.028 0.433 0.994 0.550 1.366 

EQUIL. MU'S  0.010 0.028 0.009 0.017 0.008 0.016 0.010 0.021 

    BL MU'S  0.017 0.063 0.013 0.028 0.008 0.023 0.011 0.029 

Table 7.2 Betas with Standard Errors and Equilibrium Mean Returns 

               MC1   MC2   MC3   MC4   MC5   MC6   MC7   MC8 

      BETAS  0.604 1.803 0.509 1.028 0.433 0.994 0.550 1.366 

STD. ERRORS  0.132 0.407 0.123 0.156 0.129 0.126 0.081 0.102 

EQ. RETURNS  0.006 0.015 0.005 0.009 0.005 0.009 0.006 0.012 
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 # rate in the second column 
 mkt <- xret[,1] 
 n <- nrow(xret) 
 rf <- xret[,2] 
 mu.mkt <- mean(mkt) 
 out <- data.frame(rbind(rep(0,8), 
  rep(0,8),rep(0,8))) 
 names(out) <- names(xret[,-(1:2)]) 

 
 row.names(out) <- c("BETAS","STD. ERRORS", 
  "EQ. RETURNS") 
 for(i in 1:8){ 
  out[1:2,i] <- summary(lm(ret[,i+2]-rf ~  
   mkt-rf))$coefficients[2,1:2] 
  out[3,i] <- rf[n] + out[1,i]*(mu.mkt - rf[n]) 
 } 
 out 
} 

Code 7.25 Estimated Betas and CAPM Equilibrium Returns 

We modify Code 7.24 to reflect perturbations in the estimated betas by plus or 
minus one standard deviation, with random distribution of the signs, by 
replacing the lines 

 
ret[,1] <- ret[,1] + .007 
mu.pert <- bl.means(ret,cov0,covi,p,g,tau) 
 

with the lines 
 
delta.betas <- c(-0.13,0.41,0.12,-0.16,-0.13,0.13, 
 0.08,-0.10) 
mu.pert <- bl.means(ret,cov0,covi,p,g,tau, 
 delta.betas = delta.betas) 
 

This produces the result in Figure 7.35, where comparison of the right-hand and 
left-hand panels shows that the weights are moderately stable with respect to 
pertubations of one standard deviation in all the betas. 

The historical means, estimated betas, equilibrium means, and BL means for 
the original betas are provided in the first section of Table 7.3, followed by the 
values for the perturbed betas in the second section of Table 7.3 for comparison. 

In the example we have been discussing, the results appear to be rather 
insensitive to the choice of τ  (tau), with values of tau = 5 and tau = .5 
giving almost the same results as tau = 1. The results in this example seem to 
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be relatively more sensitive to the choice of Σ . The reader is encouraged to 
experiment with the values of τ  and Σ  (Exercise 13). 
 

Table 7.3 BL Means for Original and Perturbed Betas 

               MC1   MC2   MC3   MC4   MC5   MC6   MC7   MC8 

 HIST. MU'S -0.001 0.053 0.008 0.035 0.009 0.024 0.009 0.032 

      BETAS  0.604 1.803 0.509 1.028 0.433 0.994 0.550 1.366 

EQUIL. MU'S  0.006 0.015 0.005 0.009 0.005 0.009 0.006 0.012 

   B-L MU'S  0.015 0.064 0.011 0.024 0.005 0.020 0.008 0.022 

 

               MC1   MC2   MC3   MC4   MC5   MC6   MC7   MC8 

 HIST. MU'S -0.001 0.053 0.008 0.035 0.009 0.024 0.009 0.032 

      BETAS  0.474 2.213 0.629 0.868 0.303 1.124 0.630 1.266 

EQUIL. MU'S  0.005 0.018 0.006 0.008 0.004 0.010 0.006 0.011 

   B-L MU'S  0.014 0.065 0.012 0.023 0.004 0.020 0.008 0.021 

7.4.2 Extending Black-Litterman with S+Bayes 

The BL method is based on the use of a normal likelihood and a conjugate 
normal prior with known error covariance and produces only a posterior mean 
and posterior covariance matrix based on this model assumption. S+Bayes 
allows us to extend the Black-Litterman method in several ways. On the one 
hand, the Gibbs sampler output allows one to compute posterior distributions of 
optimal portfolio quantities such as the posterior distribution of the maximum 
Sharpe ratio, an attractive possibility not available with the standard BL, even 
with its simple normal distribution conjugate prior. S+Bayes allows us to use a 
more realistic semi-conjugate prior in the linear regression model, which may 
already be a significant extension of the basic BL method. Furthermore, 
S+Bayes supports use of a multivariate t prior for equilibrium returns, a 
potentially desirable choice to reflect the possibility of an unusually large 
change in the equilibrium mean (e.g., due to a significant short-term market  or 
market segment dislocation). Finally, S+Bayes also supports use of a t 
likelihood for the linear regression model to account for the small probability of 
one or more large errors in the investor’s views. 
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First we use S+Bayes to compute the posterior distribution of mean returns 
for the eight portfolios assets in Figure 7.32 using the same prior and model 
parameters as before. Code 7.26 provides the computations needed.  

 
ret <- mc.slices@data 
# Compute equilibrium returns empirical 
# hyperparameters 
mu0 <- as.matrix(betas.eqret(ret)[3,]) 
cov0 <- var(ret[,-(1:2)])  
# Define investors views 
p.abs <- c(.5,.5,rep(0,6)) 
p.rel <- c(0,0,1,1,-1,-1,0,0) 
p <- rbind(p.abs,p.rel) 
g <- rbind(.04,.01) 
gp <- data.frame(g,p) 
names(gp) <- c("g",paste("MU",1:8,sep="")) 
#Investor covariance 
covi <- diag(c((.01)^2,(.005)^2))  
# S+Bayes computation 
prior.mean <- bayes.normal(mu0,cov0) 
prior.var <- bayes.invChisq(500,1) 
my.prior <- blm.prior(priorBeta = prior.mean, 
 priorSigma = prior.var) 
like <- blm.likelihood(errorCov = covi) 
my.samp <- blm.sampler(init.point = "user's 

choice", 
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weights  
Figure 7.35 BL Weights for Original and Perturbed Betas 
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 beta.init = t(mu0), sigma.init = 1) 
form = g ~ MU1+MU2+MU3+MU4+MU5+MU6+MU7+MU8 - 1  
mu.fit = blm(form,prior = my.prior,likelihood = 

like, 
 sampler = my.samp,data = gp) 
plot(mu.fit, which = c("box")) 
round(summary.blm( 
 mu.fit)@results[[1]]@basicStats[[1]][,1],3) 

Code 7.26 S+Bayes Semi-conjugate Prior Generalization of Black-
Litterman 

The main ingredients of the code are: (a) use of betas.eqret and var to 
compute the hyper-parameter mu0( oµ ) and cov0(Ω ), (b) creation of the 
data frame gp to specify the investor views, (c) creation of a normal prior for 
mean returns with the function bayes.normal(mu0,cov0), (d) use of  
bayes.invChisq(500,1) to force a a very nearly fixed value of one for 
the variance 2σ  that is the multiplier of the user-specified covariance matrix for 
the errors40, (e) use of blm.likelihood(errorCov = covi) to fix the 
covariance matrix for the errors, and (f) use of blm.sampler to specify a 
starting point for the Gibbs sampler. The resulting marginal posterior 
distributions for the means and for σ  are shown in Figure 7.36. 

The corresponding posterior mean values are: 
 
   MU1   MU2   MU3   MU4   MU5   MU6   MU7   MU8 
 0.016 0.064 0.011 0.022 0.005 0.018 0.007 0.024 
 

Note that these posterior mean values are relatively quite close to the BL 
posterior mean values obtained earlier, which is what we expect for a properly 
functioning S+Bayes computation. 

Now we make simple modifications of Code 7.26 to get posterior 
distributions using (a) a t likelihood with a normal prior, (b) a t prior with a 
normal likelihood, and (c) a t prior and a t likelihood. For case (a) we replace the 
code line 
 
like = blm.likelihood(errorCov = covi) 

 
with 
 
like = blm.likelihood(type = "t", errorCov = covi) 
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Figure 7.36 Marginal Posterior Distributions via S+Bayes Generalization of 
Black-Litterman (BL) 

The latter uses the degrees of freedom default df = 3. For case (b), we replace 
the code line prior.mean = bayes.normal(mu0,cov0) with 
prior.mean = bayes.t (mu0,cov0,df=3). And, for case (c), we 
make both replacements. Here are the resulting posterior means: 

 
t-likelihood and normal prior 
   MU1  MU2   MU3   MU4   MU5   MU6   MU7   MU8  
 0.019 0.06 0.013 0.027 0.007 0.022 0.008 0.024 
 
normal likelihood and t-prior 
  MU1   MU2  MU3   MU4   MU5   MU6   MU7   MU8  
 0.014 0.065 0.01 0.024 0.003 0.021 0.006 0.018 
 
t-likelihood + t-prior 
   MU1   MU2   MU3   MU4   MU5   MU6   MU7   MU8  
 0.017 0.062 0.012 0.025 0.006 0.021 0.008 0.022 
 

None of the resulting posterior means differ greatly from those obtained above 
for a normal prior and likelihood relative to the posterior variability of the latter 
(compare with Figure 7.36). 
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7.5 Bayes-Stein Estimators of Mean Returns 

We have seen in Section 7.3 that for regression models with conjugate priors the 
posterior mean for the vector of regression coefficients is a shrinkage estimator. 
Therefore, it should not be very surprising to find that if we use a Bayesian 
model for the multivariate mean returns without recourse to use of a regression 
model, we once again obtain a shrinkage estimator. The most famous class of 
shrinkage estimators for a multivariate mean were discovered in a non-Bayesian 
decision theory framework. This line of research was initiated by James and 
Stein (1961) and motivated by the earlier work of Stein (1955), who showed that 
the usual sample mean estimate of a multivariate normal mean is inadmissible in 
dimensions three and higher. Subsequent decision-theory-oriented research 
papers on the topic by L. D. Brown and by B. Efron and C. Morris, are 
documented in Jorion (1986), who used an empirical Bayesian framework to 
derive a shrinkage estimator of the mean returns vector. See also Frost and 
Savarino (1986), who derived an empirical Bayes shrinkage estimator of the 
mean returns vector. Here we present the version derived by Jorion and provide 
an S-PLUS implementation. 

As before, let ( )1 2, , , Kt t t tr r r=r  be the row vector of returns on K assets, 
and let R  be the T K×  matrix of such row vectors. It is assumed that these row 
vectors of returns are independent of one another and that each has a 
multivariate normal distribution with unknown mean and covariance µ  and Ω . 
Thus the likelihood for ( , )Ωµ  is 
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 (7.54) 

 
It is assumed that the prior for µ  has the conjugate form 

 
 1( | , , ) ( | , ),p Nη λ η λ−=Ω 1 Ωµ µ  (7.55) 

 
where the hyperparameter η  has a noninformative hyperprior 
 
 ( | , )p constantη ∝Ωµ .  
 

Let ( )1 2, , , Kr r r=r  be a new returns vector, and consider the posterior 
predictive density 
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In Appendix 7C, it is shown that ( | , , ) ( | , ),post postp Nλ =R Ω Ωµ µ µ  where the 
posterior mean is 
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with ˆmvµ  the estimated mean return of the global minimum variance portfolio 
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The corresponding posterior covariance is 
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It then follows that ( , , ) ( | , )pred predp Nλ =R Ω Ωr r µ with  
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When 0,λ =  the prior for µ  is uninformative, giving ˆ pred = rµ  and 

(1 1/ )post T+=Ω Ω . On the other hand, when λ  is large relative to T the prior is 
highly informative, and in the limit ˆ ˆpred mvµ= 1µ  and post =Ω Ω . 

In order to implement this predictive mean and predictive covariance Jorion 
(1986) proposed to use empirical sample-based estimates of λ , Ω , and 1−Ω . 
Jorion showed that the conditional density ( | , , )p λ η Ωµ  is Gamma with shape 
parameter ( 2) / 2Kα = +  and scale parameter 2 / ,dσ =  where 

1( ) ( )d η η−′= − −1 Ω 1µ µ . Jorion's proposal was to replace the unkown λ  by 
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its expected value ( 2) /K dα σ⋅ = +  in the conditional distribution 
( | , , )p λ η Ωµ  and use sample-based estimates of the unknown parameters 

1, ,η −Ωµ  in d. Jorion used ˆ rµ = , ˆ ˆmvη µ=  and the unbiased estimate of the 
inverse of the covariance matrix: 
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is the unbiased sample covariance estimate of Ω . Note that 1ˆ −Ω  denotes an 
estimate of the inverse of the covariance matrix, while 1−S  is the inverse of an 
estimate of the covariance matrix.41 

Plugging the results into the expression for expected value of λ  gives 
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and substituting λ̂  into the expression for the posterior predictive mean gives 

 
 ˆ ˆ ˆ ˆ ˆ(1 ) ,pred post mvw w µ= = − ⋅ ⋅1r +µ µ  (7.65) 
where 
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The estimated covariance matrix for ˆ predµ  is 
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Now we apply the estimator to the eight equal-weighted portfolio assets of 

Section 7.4 (see Figure 7.32). First we use Code 7.27 to compute ˆ ˆpred post=µ µ  
and the corresponding posterior and posterior predictive standard deviations.  

 
xret <- mc.slices@data[,3:10] 
print.corr <- F 
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n <- nrow(xret) # n = T 
k <- ncol(xret) 
# Compute posterior predictive mean 
mu <- as.matrix(apply(xret,2,mean)) 
one <- as.matrix(rep(1,k)) 
S <- var(xret)  # V = OMEGA 
a <- solve(S,one) 
mu.prior <- one*as.numeric(t(mu)%*%a/t(one)%*%a) 
S.inv <- solve(S) 
d <- t(mu - mu.prior)%*%S.inv%*%(mu - mu.prior) 
d <- as.numeric(d) 
lambda <- (k+2)/d 
w <- lambda/(n+lambda) 
mu.pred <- (1-w)*mu + w*mu.prior 
# Compute s.e.'s, correlations of post. pred. mean 
wc1 <- 1/(n+lambda) 
wc2 <- lambda*(n-1)/(n*(n+lambda)*(n-k-2)) 
wc2 <- wc2/as.numeric(t(one)%*%a) 
V.post <- wc1*S + wc2*one%*%t(one) 
V.pred <- S+V.post 
sigma.post <- sqrt(diag(V.post)) 
sigma.pred <- sqrt(diag(V.pred)) 
out <- rbind(t(mu.pred),sigma.post,sigma.pred) 
row.names(out) = c("POST./PRED. MEAN", 
 "POST. STD.ERR","PRED. STD.ERR") 
round(out,3) 
round(w,3) 
if(print.corr){ 
 rho.pred = diag(1/sigma)%*%V.pred%*%diag(1/sigma) 
 round(rho.pred,3) 
} 

Code 7.27 Empirical Bayes Version of Bayes-Stein Estimator 

The code computes .32w =  and gives the values in Table 7.4. 

Table 7.4 Bayes Posterior Predictive Mean and Standard Errors 

                  MC1   MC2   MC3   MC4   MC5   MC6   MC7   MC8 

 POST PRED MEAN 0.001 0.037 0.006 0.025 0.007 0.018 0.007 0.023 

 POST. STD.ERR  0.007 0.021 0.007 0.010 0.007 0.009 0.006 0.010 

 PRED. STD.ERR  0.064 0.195 0.058 0.086 0.058 0.075 0.045 0.086 

 
These posterior predictive means are substantially different from the BL 
estimates based on the same data in the top portions of Table 7.1 and Table 7.3. 
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Upon careful inspection, we see that the values MC1 and MC2 in those tables 
strongly reflect the investor view that the average of the returns of these assets is 
4%. On the other hand, the empirical Bayes estimate above does not impose 
such views, and it is therefore not surprising to find that the posterior mean 
returns of MC1 and MC2 differ, having an average value of only 1.9%. 
Similarly, the values of MC3, MC4, MC5, and MC6 in Tables 7.1 and 7.3 
almost exactly reflect the investor view that the sum of the returns for the first 
two are 1% greater than the sum of the returns for the second two, while this 
difference is only .6% for the empirical Bayes estimate. On the other hand, the 
posterior mean returns for MC7 and MC8 are almost the same for both 
estimates, which is consistent with the fact that they are not influenced by 
investor views in the BL estimate.  

One might wonder whether Jorion’s assumption that the prior is centered at 
the vector of identical returns equal to that of the minimum variance portfolio is 
reasonable. Perhaps the use of a BL equilibrium mean centering of the prior 
would make more sense. As a quick check, we altered Code 7.27, using 
betas.eqret to compute the vector of equilibrium returns for centering the 
prior. The resulting posterior/predictive mean values shown in Table 7.5 indicate 
that the estimator is not very sensitive to this type of change in centering the 
prior, at least for this example. 

Table 7.5 Posterior Predictive Means with BL Equilibrium Centering of 
Prior 

                    MC1   MC2   MC3   MC4   MC5   MC6   MC7   MC8 

 POST. PRED. MEAN 0.002 0.039 0.007 0.025 0.007 0.018 0.007 0.025 

 POST. STD.ERR    0.007 0.020 0.007 0.009 0.007 0.008 0.006 0.009 

 PRED. STD.ERR    0.064 0.195 0.058 0.086 0.058 0.075 0.045 0.086 

 
It should be noted that the posterior predictive standard errors in Table 7.4 

have values quite close to the standard deviations obtained from the diagonal of 
the estimated covariance matrix (and are always at least this large). As is often 
the case, these standard errors are much larger than the posterior standard errors. 
In any event, one is stuck with a posterior predictive covariance matrix estimate 
that is at least as large as the returns sample covariance matrix estimate. 

In order to reduce the errors in sample covariance estimates, one may want to 
consider using an improved estimate based on an appropriate Bayes method. 
Ledoit and Wolfe (2003) proposed an estimate that shrinks the sample 
covariance matrix toward a prior covariance matrix based on the single-factor 
market model, with the shrinkage determined by some large-sample frequentist 
arguments. It remains to be seen whether there is a Bayes rationale for such an 
approach. 
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7.6 Appendix 7A: Inverse Chi-Squared 
Distributions 

A standard inverse chi-squared distribution with oν  degrees of freedom (dof) is 
the distribution of W = 1/Y, where Y is a chi-squared random variable with oν  
dof. The density of the latter is 
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and a standard change of variable calculation to obtain the density of W gives 
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To get a feeling for the shape of the densities for standard inverse chi-squared 
random variables, use Code 7.28, which uses the function 
density.invchisq defined in Code 7.4 to get the plots of Figure 7.37. 
 
x <- seq(.01,.4,.005) 
#Set scaled = F for std. inv-chi-squared density 
scaled <- F 
plot(x,density.invchisq(x,30,sigmasq,scaled), 
 type="l",ylab="DENSITY") 
title(main="STANDARD INVERSE CHI-SQUARED 
 DENSITIES") 
lines(x,density.invchisq(x,20,sigmasq,scaled), 
 lty=2, lwd=3) 
lines(x,density.invchisq(x,10,sigmasq,scaled), 
 lty=3, lwd=3) 
lines(x,density.invchisq(x,5,sigmasq,scaled), 
 lty=4, lwd=3) 
legend(locator(1), 
 legend=c("dof=50","dof=15","dof=5","dof=1"), 
 lty=1:4) 

Code 7.28 Plot Standard Inverse Chi-Squared Densities 

A scaled inverse chi-squared random variable with scale parameter 2
o oν σ  is 

obtained by multiplying a standard inverse chi-squared random variable by 
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2
o oν σ  (e.g., 2 /o oW Yν σ=  is a scaled inverse chi-squared random variable). The 

probability density of a scaled inverse chi-squared random variable is easily 
obtained from the standard inverse chi-squared density by the usual 
transformation of a scaled random variable: 
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A few scaled inverse chi-squared densities, shown in Figure 7.38, are produced 
with Code 7.29, obtained by slightly modifying Code 7.28 (note the change in 

2
oσ  and in dof values). 
 
x <- seq(.01,.4,.005) 
sigmasq <- .1 
plot(x,density.invchisq(x,50,sigmasq),type="l", 
 ylab="DENSITY") 
title(main="SCALED INVERSE CHI-SQUARED DENSITIES") 
lines(x,density.invchisq(x,15,sigmasq),lty=2,lwd=3) 
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Figure 7.37 Standard Inverse Chi-Squared Densities 
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lines(x,density.invchisq(x,5,sigmasq),lty=3,lwd=3) 
lines(x,density.invchisq(x,1,sigmasq),lty=4,lwd=3) 
legend(locator(1),legend=c("dof=50","dof=15", 
 "dof=5","dof=1"),lty=1:4) 
text(locator(1), paste("SIGMASQ0 =",sigmasq)) 

Code 7.29 Scaled Inverse Chi-Squared Densities 

The mean 2σµ  and variance 2Vσ  of a scaled inverse chi-squared random 
variable are given by 
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Figure 7.38 Scaled Inverse Chi-Squared Densities 
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These equations may be inverted to give oν  and 2
oσ  in terms of the mean 2σµ  

and standard deviation 2 2SD Vσ σ=  of 2σ : 
 

 22 4,o Rν = +  (7.73) 
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where 22 /R SDσσ

µ= . 

7.6.1.1.1 Scaled Inverse Gamma Density Equivalent to an Inverse Chi-
Squared Density 

Many textbooks and research papers work with inverse Gamma priors rather 
than inverse chi-squared priors. The relationship between the two is as follows. 
The formula for a standard Gamma density is 

 

 1
( )
1( ; ) ,    0,xp x x e xα
α

α − −
Γ

= >  (7.75) 

 
and the formula for a scaled inverse Gamma density is 

 

 1
/( ; , ) ,    0

( )
s xsp x s e x

x

α

αα
α +

−= >
Γ ⋅

. (7.76) 

 
From this it is clear that the scaled inverse chi-squared density with parameters 

oν  and 2
oσ  is the same as a Gamma density with parameters 

2
oνα =  and 

2

2
o os ν σ

= . Conversely, a scaled inverse Gamma density with parameters α  and 

s  is the same as a scaled inverse chi-squared density with parameters 2oν α=  

and 2
o

sσ
α

= . 
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7.7 Appendix 7B: Posterior Distributions for 
Normal Likelihood Conjugate Priors 

For the case of the normal likelihood with a conjugate normal inverse chi-
squared prior, it may be shown that the joint posterior is a normal inverse chi-
squared distribution, with Student’s t- and inverse chi-squared distributions for 
the marginal posteriors for the mean and variance.42 Specifically 
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where 
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(7.78)

 

 
Using (7.77) and (7.78), it is quite easy to write an S-PLUS function to 

compute the joint and marginal posterior densities, an exercise that we leave to 
the reader.  

7.8 Appendix 7C: Derivation of the Posterior 
for Jorion’s Empirical Bayes Estimate 

Given the above assumptions about the likelihood and prior, we have: 
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where 
 
 1 1( ) ( ) ( ) ( )Q T λ η η− −′ ′= ⋅ − − + − −Ω 1 Ω 1µ µ µ µr r . (7.80) 

 
Straightforward rearrangement shows that 
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is the mean return of the global minimum variance portfolio. 

We can now integrate out η  in ( | , , ) ( , | , , )p p dλ η λ η= ∫R Ω R Ωµ µ , which 

gives 
 
 ( , , ) ( | , ) ( | , , )p p p dλ λ= ∫R Ω Ω R Ωr r µ µ µ,  (7.82) 

 
where 
 

 1

2
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with 
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Now some tedious rearrangement, which includes use of a matrix inversion 
lemma, allows one to complete the square in the quadratic form Q  to get 
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 1( ) ( )post post postQ constant−′= − − +Ωµ µ µ µ . (7.85) 
 
So we have ( | , , ) ( | , ),post postp Nλ =R Ω Ωµ µ µ  where 
 

 ˆ ˆpost mv
T

T T
λ

λ λ
µ

+ +
= 1µ r +  (7.86) 

 
with ˆmvµ  the estimated mean return of the global minimum variance portfolio 
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and  
 

 1

( )post T T T
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We are now in the standard situation of a normal likelihood and a 

multivariate normal posterior for µ . For this situation, it is well-known that the 

posterior predictive density ( , , ) ( | , ) ( | , , )p p p dλ λ= ∫R Ω Ω R Ωr r µ µ µ  is 

multivariate normal ( | , )pred predN Ωr µ  with ˆ ˆpred postµ = µ  and 

pred pred= +Ω Ω Ω , so we have43: 
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Exercises 

1. Show that 2 2 2

1 1
( ) ( ) ( )

T T

t t
t t

r r r n rµ µ
= =

− = − + −∑ ∑ . 

 
2. Complete that square as suggested to obtain the expression for 

2( | ) ( | , )T Tp Nµ µ µ σ=r  in Section 7.2.1. 
 
3. For the normal model of mean returns with known variance in Section 

7.2.1, show that the posterior predictive mean is P Tµ µ=  and the posterior 

predictive variance is 2 2 2
P Tσ σ σ= + . Hint: Use the iterated conditional 

expectation formula ( ) ( ( | ))E Y E E Y X=  and the variance decomposition 
var( ) (var( | )) var( ( | ))X E X Y E X Y= + . 

 
4. Use Code 7.2 on the returns data sets provided with this book to check on 

whether or not it is safe to assume that 0.oµ =  
 
5. Modify Code 7.4 so that it plots the likelihood as well as the prior and 

posterior. 
 
6. Modify Code 7.4 so that it displays priors and posteriors for volatility rather 

than variance. 
 
7. Implement the Gibbs sampler for the semi-conjugate mean variance model, 

and use it to estimate the marginal and joint posterior distributions of the 
mean and variance for a stock returns set or portfolio returns set of your 
choice. Plot your marginal posterior densities using an S-PLUS kernel 
density estimate, and plot a visualizaton of the joint posterior using the S-
PLUS contour function. 

 
8. Use the Gibbs sampler of Exercise 7 to estimate the posterior distribution of 

the Sharpe ratio for the same set of stock returns or portfolio returns you 
used in that exercise. 

 
9. Use Code 7.9 to compute the posterior distribution of mean returns for a 

stock of your choice, using what you regard as reasonable values for the 
hyperparameters. Experiment with the sensitivity of your result to your 
choice of hyperparameters by varying the latter. Try the various plotting 
options available for plotting the Bayes posterior results. 
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10. Use Code 7.10 with twelve months of returns for a stock of your choice, 

with several “reasonable” choices of the mixture probability, the two mean 
parameters, and two variance parameters. Explore possible unimodal and 
bimodal posterior densities that are achievable by using a normal mixture 
prior. 

 
11. For the generalized one-way random effects model for estimating the hyper-

parameter 2
0τ , show that the estimate 2

0τ̂  is unbiased. 
 
12. Use Code 7.13 on twenty stock returns in the data set smallcap.ts, 

experimenting with the trimming capability as needed to get a good chi-
squared density fit to the bulk of the data. How often is trimming needed? 

 
13. Experiment with the parameter τ  in the Black-Litterman weight calculation 

to determine how sensitive the resulting weights are to the choice of this 
parameter. 
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Endnotes

                                                           
1 See, for example, the early works by Zellner (1996) and Leamer (1978) or the recent 
book by Gelman et al. (2004). 
2 See, for example, Gelman et al. (2004) and Carlin and Louis (2000) for basic 
introductions to Bayesian models, including basic MCMC methods, and Gilks et al. 
(1996) for an extensive treatment of MCMC methods. See also Tanner (1996). 
3 See, for example, Carlin and Louis (2000, p. 142) for a convergence theorem. 
4 The use of the first four years of monthly returns to estimate values for oµ  and σ  

represents a very crude form of the empirical Bayes method. The choice of oσ  on the 
other hand represents a subjective Bayes method, so the overall choice here is a combined 
empirical-subjective method. 
5 An noninformative prior for µ  is formally defined by ( ) constant.p µ ∝  Such a prior 

is improper in that ( )p dµ µ = ∞∫ . Nonetheless, such formal improper priors have often 

been used in Bayesian analysis for the sake of simplicity and to give probabalistic 
inference statements as an alternative to the frequentist inference statements, along with 
the argument that improper noninformative priors can be approximated by proper priors 
with large standard deviations such that the prior is relatively flat over the region where 
the likelihood is significantly nonzero. We do not view uninformative priors as being of 
much use in finance, the point being that investors often have informative prior 
information of one form or another with which they can improve their investment 
decision payoffs. 
6 We show shortly that it usually suffices to assume that 0 0µ =  when estimating 
volatility. 
7 We are following the terminology and notation convention of Gelman et al. (2004), who 
represent the inverse Gamma form of conjugate prior in the form of an inverse chi-
squared density. 
8 This form of noninformative prior for the variance can be justified in several ways, one 
of which is a data-translated likelihood rationale. See, for example, Box and Tiao (1973).  
9 The marginal noninformative prior for 2σ  is a limiting form of inverse chi-squared 
distribution obtained with 0oν =  degrees of freedom. The marginal noninformative 
prior for µ  can be thought of as the limiting form of a normal prior for µ  with 

2
oσ = ∞ .  

10 These have the same distributional form as the sampling distributions for the Student’s 
t-statistics and sample variance. However, the interpretation is different in that these 
posteriors provide probability statements (e.g., highest posterior density intervals) and do 
not require the repeated experiments interpretation of the frequentist sampling 
distribution approach. This is perhaps the strongest justification for the use of a joint 
noninformative prior for the mean and variance, which is otherwise rather uninteresting. 
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11 The normal inverse chi-squared terminology and notation are due to Gelman et al. 
(2004). 
12 Another reason that people seem to feel comfortable with the conjugate prior is that the 
prior has the interpretation of having ok  additional observations from a process with the 
same variance as the likelihood. While this explanation no doubt brings comfort to many 
users of Bayesian methods, it is usually a quite unrealistic rationale. 
13 The fact that higher mean returns are typically associated with higher volatility begs 
the question of whether one can construct a useful dependent joint prior for the mean and 
variance of asset returns by allowing the hyperparameter oµ  to depend upon the 
variance or standard deviation of returns in a monotonic manner.  
14 See Gelman et al. (2004). In the semi-conjugate case, the marginal density 2( | )p σ r  
also has an analytic form known up to a normalizing constant. 
15 The noninformative prior is also relatively uninteresting because it results in marginal 
posterior distributions that coincide with what one obtains using a sampling theory 
approach. Of course, there is still the added value of having posterior probability 
densities. 
16 It may also be that empirical evidence does not support the use of the inverse chi-
squared distribution as the prior for the variance.  
17 To get results more like those in Figure 7.6 you will need to obtain large numbers of 
stocks in each market cap group and apply Code 7.6. 
18 You will find similar results upon examining the universe of U.S. stocks in these 
market cap groups. 
19 Probabilities for the inverse chi-squared posterior are calculated in an obvious manner 
using the S-PLUS function pchisq for computing chi-squared probabilities. 
20 Sampling from a scaled inverse chi-squared distribution is easily accomplished by 
sampling from a chi-squared distribution using the S-PLUS random number generator 
function rchisq, taking the reciprocals of the random numbers obtained and scaling by 
multiplying by 2

o oν σ .  
21 See, for example, Gelman et al. (2004). 
22 For further details on composition sampling, see Tanner (1996, p. 52). 
23 For other forms of MCMC such as the Metropolis and Metropolis-Hastings algorithms, 
see Gilks et al. (1996) and Gelman et al. (2004). 
24 See, for example, Carlin and Louis (2000, p. 142), and Gilks et al. (1996). 
25 For further details, see the S+Bayes help files for these functions. 
26 The posterior densities for the Gibbs sampler are kernel density estimates based on the 
sampler output after burn-in for the mean and (square root of) variance. Posteriors for 
standard deviations rather than variances are computed in S+Bayes because standard 
deviations are easier to interpret. 
27 One can in principle estimate ok  using the marginal maximum likelihood approach as 
in Frost and Savarino (1986). However, the method is complex. 
28 In the classical analysis of variance for the one-way random effects model with 

2 2 ,kσ σ≡  the well-known results are that 2 2 2ˆ( ) /
k oE Tµσ τ σ= +  and 2 2( )E σ σ= , 

and in this case the result follows. For the case of unequal asset variances, we replace 
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2σ  by the mean of the true variances (the “pooled” variances) 2 2

1

1 K
P kkK

σ σ
=

= ∑ , and 

one can then show that 2
0τ̂  is unbiased (Exercise 11). 

29 The sample variance of the sample variances may need a correction factor. 
30 Of course, this does not solve the problem of getting a good estimate of the density in 
the tails of the density. 
31 In the case of covariance matrix estimates for multidimensional parameters, it often 
happens that the estimates fail to be positive definite, and ad hoc methods are often used 
to force positive definiteness. See, for example, Appendix C of Fama and French (1997). 
32 This can be seen as part of the derivation in Exercise 11, where the unrealistic 
assumption of independence of returns across assets is used. 
33 The assumption is not justified in the case of illiquid assets where serial correlation 
arises because of asynchronous trading. 
34 In practice, one needs to use an exponentially-weighted moving average (EWMA) or 
Generalized Autoregressive Conditional Heteroskedastic (GARCH) volatility clustering 
model to account for time-varying volatility of returns. 
35 Vasicek (1973) reparameterized the model by centering the excess market returns so 
that they had zero mean, in which case the intercept no longer represents only the excess 
returns deviation from the CAPM. 
36 To see the names of an S Version 3 list object we use the function names. Here we 
must use slotNames because a blm object such as msft.fit is an S Version 4 
object with so-called “slots” for components. Note that components of an S Version 4 
objects are accessed with the “@” symbol rather than the “$” or “[[j]]” symbol as in 
the case of an S Version 3 object (such as a data frame or model object). 
37 See, for example, Black and Litterman (1992) and He and Litterman (1999). 
38 We use P rather than X to conform to the notation of Section 1.2.3 and that of some 
other authors such as Lee (2000). 
39 Somewhat surprisingly, the word “Bayes” seldom if ever appears in these works. 
40 For the specification of an S+Bayes linear model, it is assumed that the error 
covariance matrix is of the form 2σ=Σ Σ  where 2σ  is a random variable with an 

inverse chi-squared prior (or noninformative prior limiting case), and Σ  is a known 
error covariance matrix supplied by the user. In this example, we are assuming that 

2 1σ = , which is obtained by setting oν  at a very large value and 2 1oσ =  in the inverse 
chi-squared prior. 
41 It is a somewhat overlooked fact that while S  is an unbiased estimate of Ω , 1−S  is a 

biased estimate of 1−Ω : 1( 1)T −− ⋅ S  has an inverse Wishart distribution, with 

( ) 11 1( 1)
2

T
T K

E − −−
− −

⋅ =S Ω . See, for example, Lemma 7.7.1 of Anderson (1984). 
42 See Gelman et al. (2004). 
43 See Gelman et al. (2004) 
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