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Preface to the Second Edition

This book continues in the footsteps of the First Edition in being a snap-
shot of a highly social, and therefore decidedly unpredictable, process. The
combined personal view of functional data analysis that it presents has
emerged over a number of years of research and contact, and has been
greatly nourished by delightful collaborations with many friends. We hope
that readers will enjoy the book as much as we have enjoyed writing it,
whether they are our colleagues as researchers or applied data analysts
reading the book as a research monograph, or students using it as a course
text.

As in the First Edition, live data are used throughout for both motivation
and illustration, showing how functional approaches allow us to see new
things, especially by exploiting the smoothness of the processes generating
the data. The data sets exemplify the wide scope of functional data analysis;
they are drawn from growth analysis, meteorology, biomechanics, equine
science, economics and medicine.

“Back to the data” was the heading to the last section of the First Edi-
tion. We did not know then how well those words would predict the next
eight years. Since then we have seen functional data applications in more
scientific and industrial settings than we could have imagined, and so we
wanted an opportunity to make this new field accessible to a wider reader-
ship than the the first volume seemed to permit. Our book of case studies,
Ramsay and Silverman (2002), was our first response, but we have known
for some time that a new edition of our original volume was also required.

We have added a considerable amount of new material, and considered
carefully how the original material should be presented. One main objec-
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tive has been, especially when introducing the various concepts, to provide
more intuitive discussion and to postpone needless mathematical terminol-
ogy where possible. In addition we wanted to offer more practical advice
on the processing of functional data. To this end, we have added a more
extended account of spline basis functions, provided new material on data
smoothing, and extended the range of ways in which data can be used
to estimate functions. In response to many requests, we have added some
proposals for estimating confidence regions, highlighting local features, and
even testing hypotheses. Nevertheless, the emphasis in the revision remains
more exploratory and confirmatory.

Our treatment of the functional linear model in the First Edition was
only preliminary, and since then a great deal of work has been done on
this topic by many investigators. A complete overhaul of this material was
called for, and the chapters on linear modelling have been completely re-
worked. On the other hand, our coverage of principal components analysis
and canonical correlation still seems appropriate, and not much has been
changed. Readers reacted to the later chapters on differential equations as
being difficult, and so we have tried to make them a friendlier place to be.

In some places we have opted for an ‘intuitive’ rather than ‘rigorous’
approach. This is not merely because we want our book to be widely acces-
sible; in our view the theoretical underpinnings of functional data analysis
still require rather more study before a treatment can be written that will
please theoreticians. We hope that the next decade will see some exciting
progress in this regard.

We both believe that a good monograph is a personal view rather than a
dry encyclopedia. The average of two personal views is inevitably going to
be less ‘personal’ than either of the two individual views, just as the average
of a set of functions may omit detail present in the original functions. To
counteract this tendency, we have ensured that everything we say in our
informal and intuitive discussion of certain issues is the view of at least one
of us, but we have not always pressed for unanimous agreement!

We owe so much to those who helped us to go here. We would like to
repeat our thanks to those who helped with the First Edition: Michal Abra-
hamowicz, Philippe Besse, Darrell Bock, Catherine Dalzell, Shelly Feran,
Randy Flanagan, Rowena Fowler, Theo Gasser, Mary Gauthier, Vince
Gracco, Nancy Heckman, Anouk Hoedeman, Steve Hunka, Iain Johnstone,
Alois Kneip, Wojtek Krzanowski, Xiaochun Li, Kevin Munhall, Guy Na-
son, Richard Olshen, David Ostry, Tim Ramsay, John Rice and Xiaohui
Wang. We also continue our grateful acknowledgement of financial support
from the Natural Science and Engineering Research Council of Canada, the
National Science Foundation and the National Institute of Health of the
USA, and the British Engineering and Physical Sciences Research Council.
The seed for the First Edition, and therefore for the Revised Edition as
well, was planted at a discussion meeting of the Royal Statistical Society
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Research Section, where one of us read a paper and the other proposed the
vote of thanks, not always an occasion that leads to a meeting of minds!

Turning to the Second Edition, Sofia Mosesova and Yoshio Takane read
the entire manuscript with an eye to the technical correctness as well as the
readability of what they saw, and caught us on many points. David Camp-
bell helped with the literature review that supported our “Further readings
and notes” sections. Time spent at the University of British Columbia made
possible many stimulating conversations with Nancy Heckman and her col-
leagues. A discussion of many issues with Alois Kneip as well his hospitality
for the first author at the University of Mainz was invaluable. The oppor-
tunity for us to spend time together afforded by St Peter’s College and the
Department of Statistics at Oxford University was essential to the project.

April 2005 Jim Ramsay & Bernard Silverman
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1
Introduction

1.1 What are functional data?

Figure 1.1 provides a prototype for the type of data that we shall consider.
It shows the heights of 10 girls measured at a set of 31 ages in the Berkeley
Growth Study (Tuddenham and Snyder, 1954). The ages are not equally
spaced; there are four measurements while the child is one year old, annual
measurements from two to eight years, followed by heights measured bian-
nually. Although great care was taken in the measurement process, there
is an uncertainty or noise in height values that has a standard deviation
of about three millimeters. Even though each record involves only discrete
values, these values reflect a smooth variation in height that could be as-
sessed, in principle, as often as desired, and is therefore a height function.
Thus, the data consist of a sample of 10 functional observations Heighti(t).

There are features in this data too subtle to see in this type of plot.
Figure 1.2 displays the acceleration curves D2Heighti estimated from these
data by Ramsay, Bock and Gasser (1995) using a technique discussed in
Chapter 5. We use the notation D for differentiation, as in

D2Height =
d2Height

dt2
.

In Figure 1.2 the pubertal growth spurt shows up as a pulse of strong
positive acceleration followed by sharp negative deceleration. But most
records also show a bump at around six years that is termed the mid-spurt.
We therefore conclude that some of the variation from curve to curve can
be explained at the level of certain derivatives. The fact that derivatives
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Figure 1.1. The heights of 10 girls measured at 31 ages. The circles indicate the
unequally spaced ages of measurement.
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Figure 1.2. The estimated accelerations of height for 10 girls, measured in cen-
timeters per year. The heavy dashed line is the cross-sectional mean, and is a
rather poor summary of the curves.
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are of interest is further reason to think of the records as functions, rather
than vectors of observations in discrete time.

The ages themselves must also play an explicit role in our analysis, be-
cause they are not equally spaced. Although it might be mildly interesting
to correlate heights at ages 9, 10 and 10.5, this would not take account of
the fact that we expect the correlation for two ages separated by only half
a year to be higher than that for a separation of one year. Indeed, although
in this particular example the ages at which the observations are taken are
nominally the same for each girl, there is no real need for this to be so; in
general, the points at which the functions are observed may well vary from
one record to another.

The replication of these height curves invites an exploration of the ways
in which the curves vary. This is potentially complex. For example, the
rapid growth during puberty is visible in all curves, but both the timing
and the intensity of pubertal growth differ from girl to girl. Some type
of principal components analysis would undoubtedly be helpful, but we
must adapt the procedure to take account of the unequal age spacing and
the smoothness of the underlying height functions. One objective might
be to separate variation in timing of significant growth events, such as the
pubertal growth spurt, from variation in the intensity of growth.

Not all functional data involves independent replications; we often have
to work with a single long record. Figure 1.3 shows an important economic
indicator, the nondurable goods manufacturing index for the United States.
Data like these often show variation as multiple levels. There is a tendency
for the index to show geometric or exponential increase over the whole
century. But at a finer scale, we see departures from this trend due to the
depression, World War II, the end of the Vietnam War and other more
localized events. Moreover, at an even finer scale, there is a marked annual
variation, and we can wonder whether this seasonal trend itself shows some
longer term changes. Although there are no independent replications here,
there is still a lot of repetition of information that we can exploit to obtain
stable estimates of interesting curve features.

Functional data also arise as input/output pairs, such as in the data in
Figure 1.4 collected at an oil refinery in Texas. The amount of a petroleum
product at a certain level in a distillation column or cracking tower, shown
in the top panel, reacts to the change in the flow of a vapor into the tray,
shown in the bottom panel, at that level. How can we characterize this
dependency?
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0 20 40 60 80 100 120 140 160 180

0

1

2

3

4

 T
ra

y 
47

 le
ve

l

0 20 40 60 80 100 120 140 160 180

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

 Time

 R
ef

lu
x 

flo
w

Figure 1.4. The top panel shows 193 measurements of tray level in a distillation
column in an oil refinery. The bottom panel shows the flow of a vapor into the
tray during an experiment.



1.2. Functional models for nonfunctional data 5

1.2 Functional models for nonfunctional data

The data examples above seem to deserve the label “functional” since they
so clearly reflect the smooth curves that we assume generated them. But
not all data subject to a functional data analysis are themselves functional.

Consider the problem of estimating a probability density function p to
describe the distribution of a sample of observations x1, . . . , xn. The classic
approach to this problem is to propose, after considering basic principles
and closely studying the data, a parametric model with values p(x|θ) de-
fined by a fixed and usually small number of parameters in the vector θ.
For example, we might consider the normal distribution as appropriate for
the data, so that θ = (µ, σ2)′. The parameters themselves are usually cho-
sen to be descriptors of the shape of the density, as in location and spread
for the normal density, and are therefore the focus of the analysis.

But suppose that we do not want to assume in advance one of the many
textbook density functions because, perhaps, none of them seem to cap-
ture features of the behavior of the data that we can see in histograms
and other graphical displays. Nonparametric density estimation methods
assume only smoothness, and permit as much flexibility in the estimated
p(x) as the data require. To be sure, parameters are often involved, as in
the density estimation method of Chapter 6, but the number of parameters
is not fixed in advance of the data analysis, and our attention is focussed
on the function p itself rather than on the estimated parameter values.
Much of the technology for estimation of smooth functional parameters
was originally developed and honed in the density estimation context, and
Silverman (1986) can be consulted for further details.

Psychometrics or mental test theory also relies heavily on functional
models for seemingly nonfunctional data. The data are usually zeros and
ones indicating unsuccessful and correct answers to test items, but the
model consists of a set of item response functions, one per test item, dis-
playing the smooth relationship between the probability of success on an
item and a presumed latent ability continuum. Figure 1.5 shows three such
functional parameters for a test of mathematics estimated by the functional
data analytic methods reported in Rossi, Wang and Ramsay (2002).

1.3 Some functional data analyses

Data in many fields come to us through a process naturally described as
functional. To turn to a completely different context, consider Figure 1.6,
where the mean monthly temperatures for four Canadian weather stations
are plotted. It also shows estimates of the corresponding smooth tempera-
ture functions presumed to generate the observations. Montreal, with the
warmest summer temperature, has a temperature pattern that appears to
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Figure 1.6. Mean monthly temperatures for the Canadian weather stations. In
descending order of the temperatures at the start of the year, the stations are
Prince Rupert, Montreal, Edmonton, and Resolute.

be nicely sinusoidal. Edmonton, with the next warmest summer tempera-
ture, seems to have some distinctive departures from sinusoidal variation
that might call for explanation. The marine climate of Prince Rupert is ev-
ident in the small amount of annual variation in temperature, and Resolute
has bitterly cold but strongly sinusoidal temperature.

One expects temperature to be primarily sinusoidal in character, and
certainly periodic over the annual cycle. There is some variation in phase,
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Figure 1.7. The result of applying the differential operator L = (π/6)2D + D3 to
the estimated temperature functions in Figure 1.6. If the variation in temperature
were purely sinusoidal, these curves would be exactly zero.

because the coldest day of the year seems to be later in Montreal and
Resolute than in Edmonton and Prince Rupert. Consequently, a model of
the form

Tempi(t) ≈ ci1 + ci2 sin(πt/6) + ci3 cos(πt/6) (1.1)

should do rather nicely for these data, where Tempi is the temperature
function for the ith weather station, and (ci1, ci2, ci3) is a vector of three
parameters associated with that station.

In fact, there are clear departures from sinusoidal or simple harmonic
behavior. One way to see this is to compute the function

LTemp = (π/6)2DTemp + D3Temp. (1.2)

As we have already noted in Section 1.1, the notation DmTemp means “take
the mth derivative of function Temp,” and the notation LTemp stands for the
function which results from applying the linear differential operator L =
(π/6)2D+D3 to the function Temp. The resulting function, LTemp, is often
called a forcing function. Now, if a temperature function is truly sinusoidal,
then LTemp should be exactly zero, as it would be for any function of the
form (1.1). That is, it would conform to the differential equation

D3Temp = −(π/6)2DTemp.

But Figure 1.7 indicates that the functions LTempi display systematic
features that are especially strong in the spring and autumn months. Put
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dotted curves show the periodic extension of the data beyond either end of the
cycle.

another way, temperature at a particular weather station can be described
as the solution of the nonhomogeneous differential equation corresponding
to LTemp = u, where the forcing function u can be viewed as input from
outside of the system, or an exogenous influence. Meteorologists suggest,
for example, that these spring and autumn effects are partly due to the
change in the reflectance of land when snow or ice melts, and this would
be consistent with the fact that the least sinusoidal records are associated
with continental stations well separated from large bodies of water.

Here, the point is that we may often find it interesting to remove effects of
a simple character by applying a differential operator, rather than by simply
subtracting them. This exploits the intrinsic smoothness in the process, and
long experience in the natural and engineering sciences suggests that this
may get closer to the underlying driving forces at work than just adding
and subtracting effects, as one routinely does in multivariate data analysis.
We will consider this idea in depth beginning with Chapter 18.

Functional data are often multivariate in a different sense. Our third
example is in Figure 1.8. The Motion Analysis Laboratory at Children’s
Hospital, San Diego, collected these data, which consist of the angles formed
by the hip and knee of each of 39 children over each child’s gait cycle. See
Olshen et al. (1989) for full details. Time is measured in terms of the
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individual gait cycle, so that every curve is given for values of t in [0, 1].
The cycle begins and ends at the point where the heel of the limb under
observation strikes the ground. Both sets of functions are periodic, and are
plotted as dotted curves somewhat beyond the interval for clarity. We see
that the knee shows a two-phase process, while the hip motion is single-
phase. What is harder to see is how the two joints interact; of course the
figure does not indicate which hip curve is paired with which knee curve,
and among many other things this example demonstrates the need for
graphical ingenuity in functional data analysis.

Figure 1.9 shows the gait cycle for a single child by plotting knee angle
against hip angle as time progresses round the cycle. The periodic nature of
the process implies that this forms a closed curve. Also shown for reference
purposes is the same relationship for the average across the 39 children.
Now we see an interesting feature: a cusp occurring at the heel strike. The
angular velocity is clearly visible in terms of the spacing between numbers,
and it varies considerably as the cycle proceeds. The child whose gait is
represented by the solid curve differs from the average in two principal ways.
First, the portion of the gait pattern in the C–D part of the cycle shows an
exaggeration of movement relative to the average, and second, in the part
of the cycle where the hip is most bent, the amount by which the hip is
bent is markedly less than average; interestingly, this is not accompanied
by any strong effect on the knee angle. The overall shape of the cycle for
the particular child is rather different from the average. The exploration of
variability in these functional data must focus on features such as these.

Finally, in this introduction to types of functional data, we must not
forget that they may come to our attention as full-blown functions, so that
each record may consist of functions observed, for all practical purposes,
everywhere. Sophisticated on-line sensing and monitoring equipment is now
routinely used in research in medicine, seismology, meteorology, physiology,
and many other fields.

1.4 The goals of functional data analysis

The goals of functional data analysis are essentially the same as those of
any other branch of statistics. They include the following aims:

• to represent the data in ways that aid further analysis

• to display the data so as to highlight various characteristics

• to study important sources of pattern and variation among the data

• to explain variation in an outcome or dependent variable by using
input or independent variable information
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by the knee for a single child plotted against each other. Dotted line: The cor-
responding plot for the average across children. The points indicate 20 equally
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one-fifth of the cycle, with A marking the heel strike.

• to compare two or more sets of data with respect to certain types of
variation, where two sets of data can contain different sets of repli-
cates of the same functions, or different functions for a common set
of replicates.

Subsequent chapters explore each of these themes, and they are introduced
only briefly here.

Each of these activities can be conducted with techniques appropriate
to certain goals. Another way to characterize the strategy in a data analy-
sis is as exploratory, confirmatory, or predictive. In exploratory mode, the
questions put to the data tend to be rather open-ended in the sense that
one expects the right technique to reveal new and interesting aspects of the
data, as well as to shed light on known and obvious features. Exploratory
investigations tend to consider only the data at hand, with less concern
for statements about larger issues such as characteristics of populations or
events not observed in the data. Confirmatory analyses, on the other hand,
tend to be inferential and to be determined by specific questions about the
data. Some type of structure is assumed to be present in the data, and one
wants to know whether certain specific statements or hypotheses can be
considered confirmed by the data. The dividing line between exploratory
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and confirmatory analyses tends to be the extent to which probability the-
ory is used, in the sense that most confirmatory analyses are summarized
by one or more probability statements. Predictive studies are somewhat
less common, and focus on using the data at hand to make a statement
about unobserved states, such as the future.

Functional principal components and canonical correlation analyses are
mainly exploratory methods, and are covered in Chapters 8 to 11. Func-
tional linear models, on the other hand, are often used in a confirmatory
way, and in 12 to 17 we introduce confidence interval estimation. In general,
prediction is beyond our scope, and is only considered here and there.

1.5 The first steps in a functional data analysis

1.5.1 Data representation: smoothing and interpolation
Assuming that a functional datum for replication i arrives as a set of dis-
crete measured values, yi1, . . . , yin, the first task is to convert these values
to a function xi with values xi(t) computable for any desired argument
value t. If the discrete values are assumed to be errorless, then the process
is interpolation, but if they have some observational error that needs re-
moving, then the conversion from discrete data to functions may involve
smoothing.

Chapters 3 to 6 offer a survey of these procedures. The roughness penalty
smoothing method discussed in Chapter 5 will be used much more broadly
in many contexts throughout the book, not merely for the purpose of es-
timating a function from a set of observed values. The daily precipitation
data for Prince Rupert, one of the wettest places on the continent, is shown
in Figure 1.10. The curve in the figure, which seems to capture the smooth
variation in precipitation, was estimated using a penalty on the harmonic
acceleration as measured by the differential operator (1.2).

The gait data in Figure 1.8 were converted to functions by the simplest
of interpolation schemes: joining each pair of adjacent observations by a
straight line segment. This approach would be inadequate if we require
derivative information. However, one might perform a certain amount of
smoothing while still respecting the periodicity of the data by fitting a
Fourier series to each record: A constant plus three pairs of sine and cosine
terms does a reasonable job for these data. The growth data in Figure 1.1
and the temperature data in Figure 1.6 were smoothed using smoothing
splines, and this more sophisticated technique also provides high quality
derivative information.

There are often conceptual constraints on the functions that we estimate.
For example, a smooth of precipitation such as that in Figure 1.10 should
logically never be negative. There is no danger of this happening for a
station as moist as this, but a smooth of the data in Resolute, the driest
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Figure 1.10. The points indicate average daily rainfall at Prince Rupert on the
northern coast of British Columbia. The curve was fit to these data using a
roughness penalty method.

place that we have data for, can easily violate this constraint. The growth
curve fits should be strictly increasing, and we shall see that imposing this
constraint results in a rather better estimate of the acceleration curves that
we saw in Figure 1.2. Chapter 6 shows how to fit a variety of constrained
functions to data.

1.5.2 Data registration or feature alignment
Figure 1.11 shows some biomechanical data. The curves in the figure are
twenty records of the force exerted on a meter during a brief pinch by
the thumb and forefinger. The subject was required to maintain a certain
background force on a force meter and then to squeeze the meter aiming
at a specified maximum value, returning afterwards to the background
level. The purpose of the experiment was to study the neurophysiology of
the thumb–forefinger muscle group. The data were collected at the MRC
Applied Psychology Unit, Cambridge, by R. Flanagan; see Ramsay, Wang
and Flanagan (1995).

These data illustrate a common problem in functional data analysis. The
start of the pinch is located arbitrarily in time, and a first step is to align
the records by some shift of the time axis. In Chapter 7 we take up the
question of how to estimate this shift, and how to go further if necessary
to estimate record-specific linear transformations of the argument, or even
nonlinear transformations.
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Figure 1.11. Twenty recordings of the force exerted by the thumb and forefinger
where a constant background force of two newtons was maintained prior to a brief
impulse targeted to reach 10 newtons. Force was sampled 500 times per second.

1.5.3 Data display
Displaying the results of a functional data analysis can be a challenge. With
the gait data in Figures 1.8 and 1.9, we have already seen that different
displays of data can bring out different features of interest, and that the
standard plot of x(t) against t is not necessarily the most informative. It is
impossible to be prescriptive about the best type of plot for a given set of
data or procedure, but we shall give illustrations of various ways of plotting
the results. These are intended to stimulate the reader’s imagination rather
than to lay down rigid rules.

1.5.4 Plotting pairs of derivatives
Helpful clues to the processes giving rise to functional data can often be
found in the relationships between derivatives. For example, two functions
exhibiting simple derivative relationships are frequently found as strong
influences in functional data: the exponential function, f(t) = C1 + C2e

αt,
satisfies the differential equation

Df = −α(f − C1)

and the sinusoid f(t) = C1 +C2 sin[ω(t−τ)] with phase constant τ satisfies

D2f = −ω2(f − C1).
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Figure 1.12. The left panel gives the annual variation in mean temperature at
Montreal. The times of the mid-months are indicated by the first letters of the
months. The right panel displays the relationship between the second deriva-
tive of temperature and temperature less its annual mean. Strictly sinusoidal or
harmonic variation in temperature would imply a linear relationship.

Plotting the first or second derivative against the function value ex-
plores the possibility of demonstrating a linear relationship corresponding
to one of these differential equations. Of course, it is usually not difficult
to spot these types of functional variation by plotting the data themselves.
However, plotting the higher derivative against the lower is often more in-
formative, partly because it is easier to detect departures from linearity
than from other functional forms, and partly because the differentiation
may expose effects not easily seen in the original functions.

Consider, for example, the variation in mean temperature Temp at Mon-
treal displayed in the left panel of Figure 1.12. Casual inspection does
indeed suggest a strongly sinusoidal relationship between temperature and
month, but the right panel shows that things are not so simple. Although
there is a broadly linear relationship between −D2Temp and Temp after
subtracting the mean annual temperature, there is obviously an additional
systematic trend, which is more evident in the summer through winter
months than in the spring. This plot greatly enhances the small departures
from sinusoidal behavior, and invites further attention.

Figure 1.13 plots the estimated derivatives for the logarithm of the U. S.
nondurable goods index shown in Figure 1.3 for the year 1964. The second
derivative or acceleration on the vertical axis is plotted against the first
derivative or velocity on the horizontal axis in what is called a phase plane
plot. The plot focuses attention on the interplay between Dx and D2x
by eliminating the explicit role of argument t, and reveals a fascinating
cyclic structure that we will learn how to interpret in Chapter 2. Plotting
derivatives as well as curve values is an essential part of functional data
analysis.
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Figure 1.13. A phase plane plot of the first two derivatives of the logarithm of
the U. S. nondurable goods manufacturing index in Figure 1.3 over 1964.

1.6 Exploring variability in functional data

The examples considered so far offer a glimpse of ways in which the vari-
ability of a set of functional data can be interesting, but there is a need for
more detailed and sophisticated ways of investigating variability, and these
are a major theme of this book.

1.6.1 Functional descriptive statistics
Any data analysis begins with the basics: Estimating means and standard
deviations. Functional versions of these elementary statistics are given in
Chapter 2. But what is elementary for univariate and multivariate data
turns out to be not always so simple for functional data. Chapter 7 returns
to the functional data summary problem, and shows that curve registration
or feature alignment may have to be applied in order to separate amplitude
variation from phase variation before these statistics are used.

1.6.2 Functional principal components analysis
Most sets of data display a small number of dominant or substantial modes
of variation, even after subtracting the mean function from each observa-
tion. An approach to identifying and exploring these, set out in Chapter 8,
is to adapt the classical multivariate procedure of principal components
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analysis to functional data. In Chapter 9, techniques of smoothing or
regularization are incorporated into the functional principal components
analysis itself, thereby demonstrating that smoothing methods have a far
wider rôle in functional data analysis than merely in the initial step of con-
verting discrete observations to functional form. In Chapter 10, we show
that functional principal components analysis can be made more selective
and informative by considering specific types of variation in a special way.
For example, we shall see that estimating a small shift of time for each tem-
perature record and studying its variation will give a clearer understanding
of record-to-record temperature variability.

1.6.3 Functional canonical correlation
How do two or more sets of records covary or depend on one another? As
we saw in the cross-correlation plots, this is a question to pose for gait data,
because relationships between record-to-record variation in hip angle and
knee angle seem likely.

The functional linear modelling framework approaches this question by
considering one of the sets of functional observations as a covariate and
the other as a response variable, but in many cases, such as the gait data,
it does not seem reasonable to impose this kind of asymmetry, and we
shall develop two rather different methods that treat both sets of variables
in an even-handed way. One method, described in Section 8.5, essentially
treats the pair (Hipi, Kneei) as a single vector-valued function, and then
extends the functional principal components approach to perform an anal-
ysis. Chapter 11 takes another approach, a functional version of canonical
correlation analysis, identifying components of variability in each of the
two sets of observations which are highly correlated with one another.

For many of the methods we discuss, a näıve approach extending the
classical multivariate method will usually give reasonable results, though
regularization will often improve these. However, when a linear predictor
is based on a functional observation, and also in functional canonical cor-
relation analysis, regularization is not an optional extra but is an intrinsic
and necessary part of the analysis; the reasons are discussed in Chapters
11, 15 and 16.

1.7 Functional linear models

The classical techniques of linear regression, analysis of variance, and linear
modelling all investigate the way in which variability in observed data can
be accounted for by other known or observed variables. They can all be
placed within the framework of the general linear model

y = Zβ + ε (1.3)
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where, in the simplest case, y is typically a vector of observations, β is a
parameter vector, Z is a matrix that defines a linear transformation from
parameter space to observation space, and ε is an error vector with mean
zero. The design matrix Z incorporates observed covariates or independent
variables.

To extend these ideas to the functional context, we retain the basic struc-
ture (1.3) but allow more general interpretations of the symbols within it.
For example, we might ask of the Canadian weather data:

• If each weather station is broadly categorized as being Atlantic,
Pacific, Continental or Arctic, in what way does the geographical
category characterize the detailed temperature profile Temp and ac-
count for the different profiles observed? In Chapter 12 we introduce
a functional analysis of variance methodology, where both the pa-
rameters and the observations become functions, but the matrix Z
remains the same as in the classical multivariate case.

• Could a temperature record Temp be used to predict the logarithm of
total annual precipitation? In Chapter 15 we extend the idea of linear
regression to the case where the independent variable, or covariate, is
a function, but the response variable (log total annual precipitation
in this case) is not.

• Can the temperature record Temp be used as a predictor of the entire
precipitation profile, not merely the total precipitation? This requires
a fully functional linear model, where all the terms in the model have
more general form than in the classical case. This topic is considered
in Chapters 14 and 16.

• We considered earlier the many roles that derivatives play in func-
tional data analysis. In the functional linear model, we may use
derivatives as dependent and independent variables. Chapter 17 is
a first look at this idea, and sets the stage for the following chapters
on differential equations.

1.8 Using derivatives in functional data analysis

In Section 1.3 we have already had a taste of the ways in which deriva-
tives and linear differential operators are useful in functional data analysis.
The use of derivatives is important both in extending the range of simple
graphical exploratory methods, and in the development of more detailed
methodology. This is a theme that will be explored in much more detail
in Chapters 18, 19 and 21, but some preliminary discussion is appropriate
here.

Chapter 19 takes up the question, novel in functional data analysis, of
how to use derivative information in studying components of variation. An
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approach called principal differential analysis identifies important variance
components by estimating a linear differential operator that will annihi-
late them. Linear differential operators, whether estimated from data or
constructed from external modelling considerations, also play an impor-
tant part in developing regularization methods more general than those in
common use. Some of their aspects and advantages will be discussed in
Chapter 21.

1.9 Concluding remarks

The last chapter of the book, Chapter 22, includes a discussion of some
historical perspectives and bibliographic references not included in the main
part of our development.

In the course of the book, we shall describe a considerable number of
techniques and algorithms, to explain how the methodology we develop can
actually be used in practice. We shall also illustrate our methodology on a
variety of data sets drawn from various fields, including where appropriate
the examples we have already introduced in this chapter. However, it is not
our intention to provide a cook-book for functional data analysis.

In broad terms, we have a grander aim: to encourage readers to think
about and understand functional data in a new way. The methods we set
out are hardly the last word in approaching the particular problems, and
we believe that readers will gain more benefit by using the principles we
have laid down than by following our own suggestions to the letter.

For those who would like access to the software we have used ourselves,
a selection is available on the website:

http://www.functionaldata.org

This website will also be used to publicize related and future work by the
authors and others, and to make available the data sets referred to in the
book that we are permitted to release publicly.
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Tools for exploring functional data

2.1 Introduction

This chapter reviews topics that are notational and conceptual background
to our main development of functional data analysis beginning in Chapter 3.

Our notation will already be familiar to many readers, but some will
welcome a review, and others will encounter the notation that we use here
for the first time. We have tried hard to avoid using notation other than
what is familiar to statisticians and routine in calculus courses.

We will draw rather heavily on your expertise in matrix analysis and
multivariate statistics, and you may want to consult Section A.7, which
reviews some matrix algebra tools that we will need within framework of
the multivariate linear model. This brief account is relevant here because, in
fact, most of our functional data analyses and models will be converted to
equivalent matrix formulations through the device of representing functions
by basis function expansions, a topic that comes up in the next chapter.
Also discussed in the Appendix are matrix decompositions, projections,
and the constrained maximization of quadratic forms.

After some remarks on notation in Section 2.2, we consider the basic
anatomy of a function in Section 2.4. What features in a function might be
of interest? How are functions different from vectors? How do we quantify
the amount of information that is needed to specify a function? What does
it mean to say that a function is “smooth”?
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2.2 Some notation

2.2.1 Scalars, vectors, functions and matrices
The reader should be warned that we try to use notation that brings out
the basic structure of what is being done, and that this may entail the use
of conventions that are at first sight a little unfamiliar. For example, we do
not usually bother to distinguish in our notation between scalar quantities
(numbers) and functions. This means that a single symbol x can refer to
a scalar or to a function. The nervous reader should be assured that this
convention is only used to clarify, rather than confuse, the discussion! In
general, the context should always make clear when a symbol refers to a
scalar or function. This emphasizes our guiding intuition that a function
is to be considered as single unitary entity. The perhaps more familiar
notation x(t) refers to the value of function x at argument value t rather
to the entire function.

On the other hand, in this edition we adhere to the usual practice of
showing vectors as boldface lower case letters such as x, and matrices in
boldface upper case. We always use the notation x′ for the transpose of a
vector x. We need matrix algebra at every turn, and it seems better not to
ask readers used to bold symbols to do without this device.

If x is a vector or function, its elements or values xi or x(t) are usually
scalars, but sometimes it is appropriate for the individual xi or x(t) to be
a vector, and then we use boldface. Also, it is handy to use the notation
x(t) to denote the vector containing the values of function x at each of the
argument values in vector t.

It is often clearer to use longer strings of letters in a distinctive font
to denote quantities more evocatively than standard notation allows. For
example, we use names such as

• Temp for a temperature record,

• Knee for a knee angle

• LMSSE for a squared error fitting criterion for a linear model, and

• RSQ for a squared correlation measure.

2.2.2 Derivatives and integrals
Our notation for the derivative of order m of a function x is Dmx; this
produces cleaner formulas than dmx/dtm. It stresses that differentiation is
an operator that acts on a function x to produce another function Dx. Of
course, D0x refers to x itself. The superscript method works neatly when
we consider derivatives of derivatives, and also when we use D−1x to refer
to the indefinite integral of x, since D1D−1x = D0x = x as expected. We
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also use operators that act on functions in other ways, and it is convenient
to use a consistent notation.

The definite integral
∫ b

a
x(t) dt will often be shortened to

∫
x when the

context makes clear both the limits of integration a and b and the variable
t over which the integration takes place.

2.2.3 Inner products
Inner product notation for functions, as in

〈x, y〉 =
∫

x(t)y(t) dt, (2.1)

was used much more frequently in the first edition than in this. We found
that many readers had difficulty coping with the notation, and we also
found that we could do without it nearly everywhere. Nevertheless, inner
product notation is a powerful tool, and if a reader wishes to learn more,
the Appendix offers a summary and some illustrations. We will use rather
more frequently the notation ‖x‖ for the norm of x, a measure of its size.
The most common type of norm, called the L2 norm, is related to the inner
product through the relation

‖x‖2 = 〈x, x〉 =
∫

x2(t) dt .

The Appendix contains additional material on inner product notation.

2.2.4 Functions of functions
Functions are often themselves arguments for other functions. For example,
in Chapter 7 we will consider a nonlinear transformation h(t) of argument
t that maps t on to the same interval that it occupies. That is, for example,
time is transformed nonlinearly into time. We then need the function whose
values are x[h(t)], which we can indicate by x∗. In this case, we use the
functional composition notation x∗ = x ◦ h. The function value x∗(t) is
indicated by (x ◦ h)(t).

Moreover, in the same chapter, we will use the inverse function which
results from solving the relation h(g) = t for g given t. This function,
having values g(t), is denoted by h−1. This does not mean, of course, the
reciprocal of h, which we simply indicate as 1/h on the rare occasion that
we need it. In fact, the functional compositions h ◦ h−1 and h−1 ◦ h satisfy

(h ◦ h−1)(t) = (h−1 ◦ h)(t) = t

and, in functional composition sense, therefore h and h−1 cancel one
another.

Another type of function transforms one function into another; that is,
takes an entire function as its argument rather than a function value. The
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most important example is the transform D that transforms function x
into its derivative Dx. The indefinite integral is another example, and as
are the arithmetic operations applied to functions. We call such functional
transformations operations or operators.

2.3 Summary statistics for functional data

2.3.1 Functional means and variances
The classical summary statistics for univariate data familiar to students in
introductory statistics classes apply equally to functional data. The mean
function with values

x̄(t) = N−1
N∑

i=1

xi(t)

is the average of the functions point-wise across replications. Similarly the
variance function var has values

varX(t) = (N − 1)−1
N∑

i=1

[xi(t) − x̄(t)]2,

and the standard deviation function is the square root of the variance
function.

Figure 2.1 displays the mean and standard deviation functions for the
aligned pinch force data. We see that the mean force looks remarkably like
a number of probability density functions well known to statisticians, and
in fact the relationship to the lognormal distribution has been explored by
Ramsay, Wang and Flanagan (1995). The standard deviation of force seems
to be about 8% of the mean force over most of the range of the data.

2.3.2 Covariance and correlation functions
The covariance function summarizes the dependence of records across
different argument values, and is computed for all t1 and t2 by

covX(t1, t2) = (N − 1)−1
N∑

i=1

{xi(t1) − x̄(t1)}{xi(t2) − x̄(t2)}.

The associated correlation function is

corrX(t1, t2) =
covX(t1, t2)√

varX(t1)varX(t2)
.

These are the functional analogues of the variance–covariance and
correlation matrices, respectively, in multivariate data analysis.
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Figure 2.1. The mean and standard deviation functions for the 20 pinch force
observations in Figure 1.11 after they were aligned or registered.
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Figure 2.2. The left panel is a perspective plot of the bivariate correlation function
values r(t1, t2) for the pinch force data. The right panel shows the same surface
by contour plotting. Time is measured in seconds.

Figure 2.2 displays the correlation function of the pinch force data, both
as a surface over the plane of possible pairs of times (t1, t2) and also as a
set of level contours.

Our experience with perspective and contour displays of correlation sug-
gests that not everyone encountering them for the first time finds them
easy to understand. Here is one strategy: The diagonal running from lower
left to upper right in the contour or from front to back in the perspective
plot of the surface contains the unit values that are the correlations be-
tween identical or very close time values. Directions perpendicular to this
ridge of unit correlation indicate how rapidly the correlation falls off as two
argument values separate. For example, one might locate a position along
the unit ridge associated with argument value t, and then moving perpen-
dicularly from this point shows what happens to the correlation between
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values at time pair (t − δ, t + δ) as the perpendicular distance δ increases.
In the case of the pinch force data, we note that the correlation falls off
slowly for values on either side of the time 0.1 of maximum force, but de-
clines much more rapidly in the periods before and after the impulse. This
suggests a two-phase system, with fairly erratic uncoupled forces in the
constant background force phase, but with tightly connected forces during
the actual impulse. In fact, it is common to observe low correlations or
rapid fall-off when a system is in a resting or ballistic state free from any
outside input, but to show strong correlations, either positive and negative,
when exogenous influences apply.

2.3.3 Cross-covariance and cross-correlation functions
In the case of the gait data discussed in Section 1.3, we had both hip and
knee angles measured through time. In general, if we have pairs of observed
functions (xi, yi), the way in which these depend on one another can be
quantified by the cross-covariance function

covX,Y (t1, t2) = (N − 1)−1
N∑

i=1

{xi(t1) − x̄(t1)}{yi(t2) − ȳ(t2)}.

or the cross-correlation function

corrX,Y (t1, t2) =
covX,Y (t1, t2)√
varX(t1)varY (t2)

.

Figure 2.3 displays the correlation and cross-correlation functions for
the gait data. In each of the four panels, t1 is plotted along the horizon-
tal axis and t2 along the vertical axis. The top left panel shows a contour
plot of the correlation function corrHip(t1, t2) for the hip angles alone,
and the bottom right panel shows the corresponding plot for the knee
angles. The cross-correlation functions corrHip,Knee and corrKnee,Hip are
plotted in the top right and bottom left panels respectively; since, in gen-
eral, corrX,Y (t1, t2) = corrY,X(t2, t1), these are transposes of one another,
in that each is the reflection of the other about the main diagonal t1 = t2.
Note that each axis is labelled by the generic name of relevant data function,
Hip or Knee, rather than by the argument value t1 or t2.

In this figure, different patterns of variability are demonstrated by the
individual correlation functions corrHip and corrKnee for the hip and knee
angles considered separately. The hips show positive correlation through-
out, so that if the hip angle is larger than average at one point in the cycle
it will have a tendency to be larger than average everywhere. The contours
on this plot are more or less parallel to the main diagonal, implying that
the correlation is approximately a function of t1 − t2 and that the variation
of the hip angles can be considered as an approximately stationary process.
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Figure 2.3. Contour plots of the correlation and cross-correlation functions for
the gait data. In each panel t1 is plotted on one axis and t2 on the other; the
legends indicate which observations are being correlated against each other.

On the other hand, the knee angles show behavior that is clearly nonsta-
tionary; the correlation between the angle at time 0.0 and time 0.3 is about
0.4, while that between times 0.3 and 0.6 is actually negative. In the middle
of the cycle the correlation falls away rapidly as one moves away from the
main diagonal, while at the ends of the cycle there is much longer range
correlation. The hip angles show a slight, but much less marked, departure
from stationarity of the same kind. These features may be related to the
greater effect on the knee of external factors such as the heel strike and
the associated weight placed on the joint, whereas the hip acts under much
more even muscular control throughout the cycle.

The ridge along the main diagonal of the cross-correlation plots indicates
that Hip(t1) and Knee(t2) are most strongly correlated when t1 and t2
are approximately equal, though the main ridge shows a slight reverse S
shape (in the orientation of the top right panel). The analysis developed
in Chapter 11 will elucidate the delays in the dependence of one joint on
the other. Apart from this, there are differences in the way that the cross-
correlations behave at different points of the cycle, but the cross-correlation
function does not make it clear what these mean in terms of dependence
between the functions.

Another example is provided by the Canadian weather data. Contour
plotting in Figure 2.4 shows the correlation functions between tempera-
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Figure 2.4. Contour plots of the correlation and cross-correlation functions
for 35 Canadian weather stations for temperature and log precipitation. The
cross-correlation functions are those in the upper right and lower left panels.

ture and log precipitation based on monthly data. The correlation is high
for both temperature and precipitation on either side of the midsummer
period, so that autumn weather tends to be highly correlated with spring
weather. By contrast, winter and summer weather have a weaker correlation
of around 0.5. The cross-correlations show that midsummer precipitation
has a near zero correlation with temperature at any point in the year,
but that midwinter temperature and midwinter precipitation are highly
correlated. This is due to the fact that, in continental weather stations,
both measures tend to be especially low in midwinter, whereas in ma-
rine stations, the tendency is for both temperature and precipitation to be
higher.

2.4 The anatomy of a function

2.4.1 Functional features
What interests us when we consider functions such as the height accel-
eration curves in Figure 1.2? Certainly the peak and valley defining the
pubertal growth spurt, as well as the smaller peaks at age 6 for most girls.
Crossings of specified levels can also be important markers, such as the
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age at which acceleration is zero in the middle of the pubertal growth
spurt, marking out the point of peak growth velocity. Levels are function
values that we consider significant, such as the zero level that a growth
acceleration reaches after growth has stopped.

We can consider each of these functional features as events that are
associated with a specific value of the argument t. That is, most features
are characterized by a location. Many are also defined by amplitude, a
measure of their size. For example, the height or depth of a peak or valley,
respectively, is a matter of amplitude, as is the steepness with which a
line crosses a specified level. Finally, events like peaks and valleys are also
characterized by widths; the first peak in the knee angle curves in Figure 1.8
is narrower than the second peak.

In this sense, levels are one-dimensional events, crossings are two-
dimensional, and peaks and valleys are three-dimensional. That is, in ideal
errorless circumstances, we would need three pieces of information to fully
define a peak, namely location, amplitude, and width. This corresponds
to the fact that peaks look somewhat like parabolas, which are defined by
three parameters; crossings look like lines, requiring two parameters; and
levels are like points.

The dimensionality of a functional feature tells us a great deal about how
much information we will need to estimate it. For example, even a tiny bit
of observational error in the data will force us to provide five rather than
three function values at locations within a peak, and for data with error
levels common in functional data analyses, seven to eleven values per peak
would be wise.

2.4.2 Data resolution and functional dimensionality
This suggests the notation of the resolving power or resolution of a set of
data. This is inversely related to the width of the narrowest event that can
be estimated to our satisfaction. We mean by the phrase “high resolution
data” that they can pin down small events. The resolution of a set of data
can be a rather more useful concept than simply the number of observations
taken.

Resolution leads in turn to the notion of the dimensionality of a func-
tion. Expertise in the mathematical area of functional analysis is necessary
to understand this concept in depth, but it is easy to say some common
sensical things about the dimension of a curve. Roughly speaking, it is the
sum across functional “features” of the numbers of pieces of information
that are required to define each feature or event.

We can say that the practical dimensionality of a function is the total
amount of information required to define it to some required level. This
notion inevitably depends on the goals of the functional data analysis,
since it supposes that we ignore error and other sources of high frequency
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variation that would increase the actual dimensionality of the function
greatly.

Functions are potentially infinite dimensional. That is, a complete spec-
ification of a function x could conceivably require us to know its value x(t)
at each possible argument value t, and since there are an infinity of these,
the dimensionality of a function can be arbitrarily large. Or, put another
way, if a function can pack an infinite number of peaks and valleys within
any interval, no matter how small, we will need infinite resolving power in
any set of data concerning this curve. For example, the terms like “Brow-
nian motion” and “white noise” are used to describe functions so erratic
that no information is contained in x(t) about the value x(t+δ), no matter
how small δ is. This is somewhat depressing, because it implies that we can
never collect enough data to estimate functions like these exactly.

However, in practice we work with functions that do not display so much
complexity. It is more or less accepted, for example, that from 12 to 16
pieces of information, in a sense to be made precise in the next chapter, are
required to describe growth curves like those in Figure 1.1. Almost always
there are several ways in which we can use this much information to get
about the same result, and in the growth curve literature there are several
competing parametric models. But what matters is that all of the successful
growth curve models seem to need at least this much information.

2.4.3 The size of a function
Something like energy tends govern the behavior of many functional vari-
ables, just as it does in physics. By this we mean that change requires effort
or work, and typically the systems that we study can only muster a lim-
ited amount of whatever brings change per unit time. For example, even a
process as seemingly chaotic as the stock market reflects, on a time scale
small enough, the effort required to move money and information from one
place to another. Biological systems like growing children likewise cannot
make very rapid changes to their status due to the need to burn calories to
bring this change about. Because on a short time scale the energy available
in a system is essentially conserved, we can expect to see smooth changes,
just as we will not see extremely large accelerations in mechanical systems
with substantial mass.

Consequently, the dimensionality of a function is actually a measure of
its size in the same way that its amplitude is. That is, both amplitude
and dimensionality require energy to produce. For example, white noise
is an infinitely large function, even if its values are always within spec-
ified limits such as [−1, 1], because it would take an infinite amount of
energy to produce this much variability. Similarly, what mathematicians
refer to as Brownian motion is an abstraction inspired by the seemingly
chaotic but actually limited movements of small particles due to collision
with molecules in the medium in which they are suspended. One learns in
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functional analysis, for example, that an infinite dimensional hyper-sphere
of radius one is infinitely large. Statisticians are referring to something like
this by the colorful phrase “the curse of dimensionality.”

Dimensionality matters a great deal as a size indicator in functional data
analysis. We will return to this important theme in the next chapter when
we consider what the terms “noise” and “observational error” might mean
in a functional sense, and when we take up the notion multi-resolution
analysis.

2.5 Phase-plane plots of periodic effects

The two concepts of energy and of functional data having variation on more
than one time scale lead to the graphical technique of plotting one deriva-
tive against another, something that we will call phase-plane plotting. We
saw an example in Figure 1.13, and we now return to the U.S. nondurable
goods manufacturing index to illustrate these ideas.

Like most economic indicators, the nondurable goods index tends to ex-
hibit exponential increase, corresponding to percentage increases over fixed
time periods. Moreover, the index tends to increase in size and volatility
at the same time, so that the large relative effects surrounding the Second
World War seem to be small relative to the large changes in the 1970s and
1980s, and seasonal variation in recent years dwarfs that in early years.

2.5.1 The log nondurable goods index
We prefer, therefore, to study the logarithm of this index, displayed in Fig-
ure 2.5. The log index has a linear trend with a slope of 0.016, corresponding
to an annual rate of increase of 1.6%, and the sizes of the seasonal cycles
are also more comparable across time. We now see that the changes in the
depression and war periods are now much more substantial and abrupt
than those in recent times. The growth rate is especially high from 1960 to
1975, when the baby boom was in the years of peak consumption; but in
subsequent years seems to be substantially lower, perhaps because middle-
aged “boomers” consume less, or possibly because the nature of the index
itself has changed.

The goods index exhibits variation on four time scales:

• The longest scale is the century-long nearly linear increase in the log
index, or exponential trend in the index itself.

• There are events that last a decade or more, such as the depression,
the unusually rapid growth in the 1960s, and the slower growth in
the last two decades.
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Figure 2.5. The monthly nondurable goods production of the United States shown
in Figure 1.3 plotted on a logarithmic scale. The dotted straight line is estimated
by least squares regression, and has a slope of 0.016, corresponding to a 1.6%
increase in the index per year.

• Shorter term perturbations are also visible, such as World War II and
the end of the Vietnam War in 1974.

• On the shortest scale there is seasonal variation over an annual cycle
that tends to repeat itself.

A closer look at a comparatively stable period, 1964 to 1967 shown in
Figure 2.6, suggests that the index varies fairly smoothly and regularly
within each year. The solid line is a smooth of these data using the rough-
ness penalty method described in Chapter 5. We now see that the variation
within this year is more complex than Figure 2.5 can possibly reveal. This
curve oscillates three times during the year, with the size of the oscillation
being smallest in spring, larger in the summer, and largest in the autumn.
In fact each year shows smooth variation with a similar amount of detail,
and we now consider how we can explore these within-year patterns.

2.5.2 Phase–plane plots show energy transfer
Now that we have derivatives at our disposal, we can learn new things
by studying how derivatives relate to each other. Our tool is a plot of
acceleration against velocity. To see how this might be useful, consider the
phase-plane plot of the function sin(2πt), shown in Figure 2.7. This simple
function describes a basic harmonic process, such as the vertical position
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Figure 2.6. The log nondurable goods index for 1964 to 1967, a period of com-
parative stability. The solid line is a fit to the data using a polynomial smoothing
spline. The circles indicate the value of the log index at the first of the month.

of the end of a suspended spring bouncing with a period of one time unit
and starting at position zero at time t = 0.

The spring oscillates because energy is exchanged between two states:
potential and kinetic. At times π, 3π, . . . the spring is at one or the other end
of its trajectory, and the restorative force due to its stretching has brought
it to a standstill. At that point, its potential energy is maximized, and so
is the force, which is acting either upward (positively) or downward. Since
force is proportional to acceleration, the second derivative of the spring
position, −(2π)2 sin(2πt), is also at its highest absolute value, in this case
about ±40. On the other hand, when the spring is passing through the
position 0, its velocity, 2π cos(2πt), is at its greatest, about ±8, but its
acceleration is zero. Since kinetic energy is proportional to the square of
velocity, this is the point of highest kinetic energy. The phase-plane plot
shows this energy exchange nicely, with potential energy being maximized
at the extremes of Y and kinetic energy at the extremes of X.

Now harmonic processes and energy exchange are found in many situ-
ations besides mechanics. In economics, potential energy corresponds to
available capital, human resources, raw material, and other resources that
are at hand to bring about some economic activity, in this case the manufac-
ture of nondurable goods. Kinetic energy corresponds to the manufacturing
process in full swing, when these resources are moving along the assembly
line, and the goods are being shipped out the factory door.



32 2. Tools for exploring functional data

−10 −8 −6 −4 −2 0 2 4 6 8 10
−50

−40

−30

−20

−10

0

10

20

30

40

50

 Velocity

 A
cc

el
er

at
io

n
Max. potential energy 

Max. potential energy 

Max.
kinetic
energy

Max.
kinetic
energy

Figure 2.7. A phase-plane plot of the simple harmonic function sin(2πt). Kinetic
energy is maximized when acceleration is 0, and potential energy is maximized
when velocity is 0.

The process moves from strong kinetic to strong potential energy when
the rate of change in production goes to zero. We see this, for example, after
a period of rapid increase in production when labor supply and raw mate-
rial stocks become depleted, and consequently potential energy is actually
in a negative state. Or it happens when management winds down produc-
tion because targets have been achieved, so that personnel and material
resources are piling up and waiting to be used anew.

After a period of intense production, or at certain periods of crisis that
we examine shortly, we may see that both potential and kinetic energy are
low. This corresponds to a period when the phase-plane curve is closer to
zero than is otherwise the case.

To summarize, here’s what we are looking for:

• a substantial cycle;

• the size of the radius: the larger it is, the more energy transfer there
is in the event;

• the horizontal location of the center: if it is to the right, there is net
positive velocity, and if to the left, there is net negative velocity;

• the vertical location of the center: if it is above zero, there is a net
velocity increase; if below zero, there is velocity decrease; and

• changes in the shapes of the cycles from year to year.
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Figure 2.8. A phase-plane plot of the first derivative or velocity and the second
derivative or acceleration of the smoothed log nondurable goods index for 1964.
Letters indicate mid–months, with lowercase letters used for January and March.
For clarity, the first half of the year is plotted as a dashed line, and the second
half as a solid line.

2.5.3 The nondurable goods cycles
We use the phase-plane plot, therefore, to study the energy transfer within
the economic system. We can examine the cycle within individual years,
and also see more clearly how the structure of the transfer has changed
throughout the twentieth century. Figure 2.8, a reproduction here of Fig-
ure 1.13, phase-plane plots the year 1964, a year in a relatively stable period
for the index. To read the plot, find the lower-case “j” in the middle right
of the plot, and move around the diagram clockwise, noting the letters in-
dicating the months as you go. You will see that there are two large cycles
surrounding zero, plus some small cycles that are much closer to the origin.

The largest cycle begins in mid-May (M), with positive velocity but near
zero acceleration. Production is increasing linearly or steadily at this point.
The cycle moves clockwise through June (first J) and passes the horizontal
zero acceleration line at the end of the month, when production is now
decreasing linearly. By mid-July (second J) kinetic energy or velocity is
near zero because vacation season is in full swing. But potential energy
or acceleration is high, and production returns to the positive kinetic/zero
potential phase in early August (A), and finally concludes with a cusp at
summer’s end (S). At this point the process looks like it has run out of
both potential and kinetic energy.
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The cusp, near where both derivatives are zero, corresponds to the start
of school in September, and to the beginning of the next big production
cycle passing through the autumn months of October through November.
Again this large cycle terminates in a small cycle with little potential and
kinetic energy. This takes up the months of February and March (F and
m). The tiny subcycle during April and May seems to be due to the spring
holidays, since the summer and fall cycles, as well as the cusp, don’t change
much over the next two years, but the spring cycle cusp moves around,
reflecting the variability in the timings of Easter and Passover.

To summarize, the production year in the 1960s has two large cycles
swinging widely around zero, each terminating in a small cusp–like cycle.
This suggests that each large cycle is like a balloon that runs out of air,
the first at the beginning of school, and the second at the end of winter.
At the end of each cycle, it may be that new resources must be marshalled
before the next production cycle can begin.

2.6 Further reading and notes

These notes on other sources of information are intended only if you have
some need to go beyond what is in this book. Otherwise, please push on to
the following chapters, where we have tried to provide introductions to any
concepts that you need to deal with at least the core topics for functional
data analysis.

We find that inner product notation is appearing more and more often
in statistics, and that it is already routinely used in engineering in fields
such as signal analysis. Moore (1985) is an example of a reference oriented
to applications of functional analysis that can be consulted for further
information on many topics in this and subsequent chapters.

There have been many books that have used the notation of functional
analysis to describe multivariate statistics, with a view to generalizing that
methodology and synthesizing results within a common notational frame-
work, but unfortunately not many that would be readable by anyone except
mathematics specialists. Two references, however, have landmark qualities.
Cailliez and Pagès (1976) attempted to write a text that combined high
mathematics with an applied data analysis orientation, and the result was
a unique and exciting approach that still merits attention for those able to
read French. Our treatment of summary statistics in Section 2.3 is extended
in many ways in their work. Grenander (1980) is a much more advanced
book that we think of as dealing with many of the topics covered in this
volume.

To see more of phase–plane plotting in action, consult Ramsay and Sil-
verman (2002), where the method is used to show changes in the seasonal
trend over longer time scales. The idea is taken directly from elementary
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physics, where conservation of energy is used in so many ways. This graph-
ical tool links naturally to differential equation models that are considered
Chapter 17 and subsequently.

Since observed curves are often complex objects requiring large numbers
of parameters to describe adequately, as we shall see in the next three
chapters, finding ways to summarize their distribution can be a challenge.
In fact, it is relatively routine to have the number of curves N rather less
than the number of parameters n that must be estimated per curve. We
will use principal components analysis in Chapters 8 to 10 to capture at
least a few dimensions of the variation across curves. Hall and Heckman
(2002) propose an ingenious technique using what they call density ascent
lines to provide interesting summaries of the probability density function
for curve data.



3
From functional data to smooth
functions

3.1 Introduction

This chapter serves to introduce some ideas that are central to the next
two chapters, where we will develop methods for turning raw discrete data
into smooth functions.

Our goals in this chapter are:

• To understand what we mean when we refer to data as “functional”.

• To explore the concept of “smoothness” of a function, and relate
smoothness to the function’s derivatives.

• To consider how noise or error of measurement combines with smooth
functional variation to produce the observed data.

We will use linear combinations of basis functions as our main method
for representing functions. The use of basis functions is a computational
device well adapted to storing information about functions, and gives us the
flexibility that we need combined with the computational power to fit even
hundreds of thousands of data points. Moreover, it permits us to express
the required calculations within the familiar context of matrix algebra.

Most of the functional analyses that we discuss can be expressed directly
in terms of functional parameters using more advanced methods such as
the calculus of variations and functional analysis, but we consider these
approaches to be too technical to be useful to the readers that we have in
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mind. Moreover, the basis function approach has not, in our experience,
imposed any practical limitations on what we have needed to do.

We will consider in detail two basis function systems: The Fourier basis
and the B-spline basis. The former tends to be used to describe periodic
data, and the latter for functional information without any strongly cyclic
variation. We will not neglect, however, several other types of basis systems,
each having its own merits in certain contexts.

3.2 Some properties of functional data

The basic philosophy of functional data analysis is to think of observed data
functions as single entities, rather than merely as a sequence of individual
observations. The term functional in reference to observed data refers to
the intrinsic structure of the data rather than to their explicit form. In
practice, functional data are usually observed and recorded discretely as
n pairs (tj , yj), and yj is a snapshot of the function at time tj , possibly
blurred by measurement error. Time is so often the continuum over which
functional data are recorded that we may slip into the habit of referring to
tj as such, but certainly other continua may be involved, such as spatial
position, frequency, weight, and so forth.

3.2.1 What makes discrete data functional?
What would it mean for a functional observation to be known in functional
form x? We do not mean that x is actually recorded for every value of
t, because that would involve storing an uncountable number of values!
Rather, we mean that we assume the existence of a function x giving rise
to the observed data.

In addition, we usually want to declare that the underlying function x is
smooth, so that a pair of adjacent data values, yj and yj+1 are necessarily
linked together to some extent and unlikely to be too different from each
other. If this smoothness property did not apply, there would be nothing
much to be gained by treating the data as functional rather than just
multivariate.

By smooth, we usually mean that function x possesses one or more
derivatives, which we indicate by Dx, D2x, and so on, so that Dmx refers
to the derivative of order m, and Dmx(t) is the value of that derivative at
argument t. We will usually want to use the discrete data yj , j = 1, . . . , n
to estimate the function x and at the same time a certain number of its
derivatives. For example, if we are tracking the position x of a moving ob-
ject such as a rocket, we will want, also, to estimate its velocity Dx and
its acceleration D2x. The modelling of a system’s rates of change is often
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called the analysis of a system’s dynamics. The many uses of derivatives
will be a central theme of this book.

The actual observed data, however, may not be at all smooth due to
the presence of what we like to call noise or measurement error. Some of
this extraneous variation may indeed have all the characteristics of noise,
that is, be formless and unpredictable, or it may be high-frequency variation
that we could in principle model, but for practical reasons choose to ignore.
Sometimes this noise level is a tiny fraction of the size of the function that it
reflects, and then we say that the signal-to-noise ratio (S/N ratio) is high.
However, higher levels of variation of the yj ’s around the corresponding
x(tj)’s can make extracting a stable estimate of the the function and some
of its derivatives a real challenge.

Most of this chapter and the next are given over to how to estimate x
and some of its derivatives from noisy data.

3.2.2 Samples of functional data
In general, we are concerned with a collection or sample of functional data,
rather than just a single function x. Specifically, the record or observation
of the function xi might consist of ni pairs (tij , yij), j = 1, . . . , ni. It may
be that the argument values tij are the same for each record, but they may
also vary from record to record. It may be that the interval T over which
data are collected also varies from record to record.

Normally, the construction of the functional observations xi using the
discrete data yij takes place separately or independently for each record i.
Therefore, in this chapter, we will usually simplify notation by assuming
that a single function x is being estimated. However, where the signal-to-
noise ratio is low, or the data are sparsely sampled or few in number, it
can be essential to use information in neighboring or similar curves to get
more stable estimates of a specific curve.

Sometimes time t is considered cyclically, for instance when t is the time
of year, and this means that the functions satisfy periodic boundary con-
ditions, where the function x at the beginning of the interval T picks up
smoothly from the values of x at the end. Data for functions which do not
naturally wrap around in this way are called non-periodic.

Finally, a lot of functional data are distributed over multidimensional
argument domains. We may have data observed over one or more dimen-
sions of space as well as over time, for example. A photograph or a brain
image is a functional observation where the intensity and possibly color
composition is a function of spatial location.

3.2.3 The interplay between smooth and noisy variation
Smoothness, in the sense of possessing a certain number of derivatives, is a
property of the latent function x, and may not be at all obvious in the raw
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data vector y = (y1, . . . , yn) owing to the presence of observational error
or noise that is superimposed on the underlying signal by aspects of the
measurement process. We express this in notation as

yj = x(tj) + εj , (3.1)

where the noise, disturbance, error, perturbation or otherwise exogenous
term εj contributes a roughness to the raw data. One of the tasks in repre-
senting the raw data as functions may be to attempt to filter out this noise
as efficiently as possible. However, in other cases we may pursue the alter-
native strategy of leaving the noise in the estimated function; and instead
require smoothness of the results of our analysis, rather than of the data
that are analyzed.

Vector notation leads to much cleaner and simpler expressions, and so
we express the “signal plus noise” model (3.1) as

y = x(t) + e (3.2)

where y, x(t), t and e are all column vectors of length n.
The variance-covariance matrix for the vector of observed values y is

equal to the variance-covariance matrix for the corresponding vector ε of
residual values since the values x(tj) are here considered fixed effects with
variance 0. Let Σe be our notation for residual variance-covariance matrix,
which expresses how the residuals vary over repeated samples that are
identical in every respect except for noise or error variation.

3.2.4 The standard model for error and its limitations
The standard or textbook statistical model for the distribution of the εj ’s
is to assume that they are independently distributed with mean zero and
constant variance σ2. Consequently, according to the standard model,

Var(y) = Σe = σ2I (3.3)

where the identity matrix I is of order n.
These assumptions in the standard model, in spite of being routinely

made, are almost surely too simple for most functional data. Rather, for
example, we must often recognize that the variance of the residuals will
itself vary over argument t. We will see in Chapter 5, for example, that
the standard error of measurement of the height of children is about eight
millimeters in infancy, but declines to around five millimeters by age six.

We may also have to take into account a correlation among neighboring
εj ’s. The autocorrelation that we often see in functional residuals reflects
the fact that the functional variation that we choose to ignore is itself
probably smooth at a finer scale of resolution.

In fact, the concept of independently distributed error in the standard
model, which, as n increases, becomes what is called white noise, is not
realistic or realizable in nature because white noise would require infinite
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energy to achieve. For example, fluctuations in a large stock market are
often treated as having white noise properties, but in reality only a limited
number of stocks can be traded within a short time interval such as a
millisecond, and consequently scale stock prices will exhibit some structure
within a time scale that is small enough.

This does not necessarily mean that it will be always essential to
model the variable variance or autocorrelation structure in the residuals
or errors. Such models for Σe can burn up precious degrees of freedom,
slow down computation significantly, and finally result in estimates of
functions that are virtually indistinguishable from what is achieved by as-
suming independence in residuals. Nevertheless, a model specifically for
variance heterogeneity and/or autocorrelation can pay off in terms of bet-
ter estimation, and this type of structure may be in itself interesting. A
thoughtful application of functional data analysis will always be open to
these possibilities.

We should also keep in mind the possibility that errors or disturbances
might multiply rather than add when the data are intrinsically positive, in
which case it is more sensible to work with the logarithms of the data. We
will do this, for example, with the precipitation data for Canadian weather
stations in Chapter 14.

3.2.5 The resolving power of data
The sampling rate or resolution of the raw data is a key determinant of
what is possible in the way of functional data analysis. This is essentially
a local property of the data, and can be described as the density of the
argument values tj relative to the amount of curvature in the data, rather
than simply the number n of argument values. The curvature of a function
x at argument t is usually measured by the size of the second derivative,
as reflected in either |D2x(t)| or [D2x(t)]2.

Where curvature is high, it is essential to have enough points to estimate
the function effectively. What is enough? This depends on the amount of
error εj ; when the error level is small and the curvature is mild, we can get
away with a low sampling rate. The gait data in Figure 1.8 exhibit little
error and only mild curvature, and thus the sampling rate of 20 values per
cycle is enough for our purposes. The human growth data in Figure 1.1
have moderately low error levels, amounting to about 0.3% of adult height,
but the curvature in the second derivative functions is fairly severe, so that
a sampling rate of measurements every six months for these data is barely
sufficient for making inferences about growth acceleration.

3.2.6 Data resolution and derivative estimation
Figure 3.1 provides an interesting example of functional data. The letters
“fda” were written on a flat surface by one of the authors. The pen positions
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Figure 3.1. A sample of handwriting in which the X-Y coordinates are recorded
600 times per second.

were recorded by an Optotrak system that gives the position of an infra-
red emitting diode in three-dimensional space 600 times per second with
an error level of about 0.5 millimeters. The X and Y position functions
ScriptX and ScriptY are plotted separately in Figure 3.2, and we can see
that the error level is too small to be visible. The total event took about
2.3 seconds, and the plotted functions each have 1401 discrete values. This
is certainly a lot of resolution, but the curvature is rather high in places,
and it turns out that even with the small error level involved, this level of
resolution is not excessive.

Because the observed function looks reasonably smooth, the sampling
rate is high, and the error level is low, one might be tempted to use the
first forward difference (yj+1 − yj)/(tj+1 − tj), or the central difference
(yj+1 −yj−1)/[(tj+1 − tj−1)], to estimate Dx(tj), but Figure 3.3 shows that
the resulting derivative estimate for ScriptX is rather noisy. The second
central difference estimate of D2ScriptX

D2x(tj) ≈ (yj+1 + yj−1 − 2yj)/(∆t)2

is shown in Figure 3.3 to be a disaster. The reason for this failure is precisely
the high sampling rate for the data; taking differences between extremely
close values magnifies the influence of error enormously. Press et al. (1999)
comment on how simple differencing to estimate derivatives can go wrong
even when functions are available analytically.



3.3. Representing functions by basis functions 43

Time (sec)
0.0 0.5 1.0 1.5 2.0

-4
0

-2
0

0
20

40
X

 c
oo

rd
in

at
e

f d a

Time (sec)
0.0 0.5 1.0 1.5 2.0

-4
0

-2
0

0
20

40 f d a

Y
 c

oo
rd

in
at

e
Figure 3.2. The X and Y coordinates for the handwriting sample plotted sep-
arately. Note the strongly periodic component with roughly two cycles per
second.
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Figure 3.3. The first and second central differences for the X coordinate for
the handwriting sample. The high sampling rate causes differencing to greatly
magnify the influence of noise.

We will give a lot of attention to derivative estimation in this and the next
chapter, including methods for estimating confidence intervals for derivative
estimates. Many challenges remain, however, and there is plenty of room
for improvement in existing techniques.

3.3 Representing functions by basis functions

A basis function system is a set of known functions φk that are mathe-
matically independent of each other and that have the property that we
can approximate arbitrarily well any function by taking a weighted sum or
linear combination of a sufficiently large number K of these functions. The
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most familiar basis function system is the collection of monomials that are
used to construct power series,

1, t, t2, t3, . . . , tk, . . . .

Right behind the power series in our list of golden oldies is the Fourier
series system,

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), sin(3ωt), cos(3ωt), . . . ,

sin(kωt), cos(kωt), . . .

Basis function procedures represent a function x by a linear expansion

x(t) =
K∑

k=1

ckφk(t) (3.4)

in terms of K known basis functions φk.
By letting c indicate the vector of length K of the coefficients ck and φ

as the functional vector whose elements are the basis functions φk, we can
also express (3.4) in matrix notation as

x = c′φ = φ′c . (3.5)

In effect, basis expansion methods represent the potentially infinite-
dimensional world of functions within the finite-dimensional framework of
vectors like c. The dimension of the expansion is therefore K. It would be
a mistake, though, to conclude that functional data analysis in this case
simply reduces to multivariate data analysis; a great deal also depends on
how the basis system, φ, is chosen.

An exact representation or interpolation is achieved when K = n, in the
sense that we can choose the coefficients ck to yield x(tj) = yj for each j.
Therefore the degree to which the data yj are smoothed as opposed to inter-
polated is determined by the number K of basis functions. Consequently,
we do not view a basis system as defined by a fixed number K of param-
eters, but rather we see K as itself a parameter that we choose according
to the characteristics of the data.

Ideally, basis functions should have features that match those known to
belong to the functions being estimated. This makes it easier to achieve a
satisfactory approximation using a comparatively small number K of basis
functions. The smaller K is and the better the basis functions reflect certain
characteristics of the data,

• the more degrees of freedom we have to test hypotheses and compute
accurate confidence intervals,

• the less computation is required, and

• the more likely it is that the coefficients themselves can become
interesting descriptors of the data from a substantive perspective.
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Consequently, certain classic off-the-rack bases such as polynomials and
Fourier series may be ill-advised in some applications; there is no such
thing as a universally good basis.

The choice of basis is particularly important for a derivative estimate

Dx̂(t) =
K∑
k

ĉkDφk(t) = ĉ′Dφ(t). (3.6)

Bases that work well for function estimation may give rather poor derivative
estimates. This is because an accurate representation of the observations
may force x̂ to have small but high-frequency oscillations that have dreadful
consequences for its derivatives. Put more positively, one of the criteria for
choosing a basis may be whether or not one or more of the derivatives of
the approximation behave reasonably.

Chapter 21 touches on tailoring a basis to fit a particular problem. For
now, we discuss some popular bases that are widely used in practice and
when to use them. To summarize what follows, most functional data analy-
ses these days involve either a Fourier basis for periodic data, or a B-spline
basis for non-periodic data. Where derivatives are not required, wavelet
bases are seeing more and more applications. Poor old polynomials are
now the senior citizens of the basis world, relegated to only the simplest of
functional problems.

3.4 The Fourier basis system for periodic data

Perhaps the best known basis expansion is provided by the Fourier series:

x̂(t) = c0 + c1 sin ωt + c2 cos ωt + c3 sin 2ωt + c4 cos 2ωt + . . . (3.7)

defined by the basis φ0(t) = 1, φ2r−1(t) = sin rωt, and φ2r(t) = cos rωt.
This basis is periodic, and the parameter ω determines the period 2π/ω.
If the values of tj are equally spaced on T and the period is equal to the
length of interval T , then the basis is orthogonal in the sense that the cross
product matrix Φ′Φ is diagonal, and can be made equal to the identity by
dividing the basis functions by suitable constants,

√
n for j = 0 and

√
n/2

for all other j.
The Fast Fourier transform (FFT) makes it possible to find all the co-

efficients extremely efficiently when n is a power of 2 and the arguments
are equally spaced, and in this case we can find both the coefficients ck

and all n smooth values at x(tj) in O(n log n) operations. This is one of
the features that has made Fourier series the traditional basis of choice for
long time series, but newer techniques such as B-splines and wavelets can
match and even exceed this computational efficiency.
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Derivative estimation in a Fourier basis is simple since

D sin rωt = rω cos rωt
D cos rωt = −rω sin rωt

(3.8)

This implies that the Fourier expansion of Dx has coefficients

(0, c1,−ωc2, 2ωc3,−2ωc4, . . .)

and of D2x has coefficients

(0,−ω2c1,−ω2c2,−4ω2c3,−4ω2c4, . . .).

Similarly, we can find the Fourier expansions of higher derivatives by mul-
tiplying individual coefficients by suitable powers of rω, with sign changes
and interchange of sine and cosine coefficients as appropriate.

The Fourier series is so familiar to statisticians, engineers and applied
mathematicians that it is worth stressing its limitations. Invaluable though
it may often be, neither it nor any other basis should be used uncritically.
A Fourier series is especially useful for extremely stable functions, meaning
functions where there are no strong local features and where the curvature
tends to be of the same order everywhere. Ideally, the periodicity of the
Fourier series should be reflected to some degree in the data, as is certainly
the case for the temperature and gait data. Fourier series generally yield
expansions which are uniformly smooth. But they are inappropriate to some
degree for data known or suspected to reflect discontinuities in the function
itself or in low order derivatives. A Fourier series is like margarine: It’s cheap
and you can spread it on practically anything, but don’t expect that the
result will be exciting eating. Nevertheless, we find many applications for
Fourier series expansion in this book.

3.5 The spline basis system for open-ended data

Spline functions are the most common choice of approximation system for
non-periodic functional data or parameters. They have more or less re-
placed polynomials, which in any case they contain within the system.
Splines combine the fast computation of polynomials with substantially
greater flexibility, often achieved with only a modest number of basis func-
tions. Moreover, basis systems have been developed for spline functions
that require an amount of computation that is proportional to n, a vital
property since many applications involve thousands or millions of observa-
tions. In this section we first examine the structure of a spline function,
and then describe the usual basis system used to construct it, the B-spline
system.



3.5. The spline basis system for open-ended data 47

0 2 4 6

−1

−0.5

0

0.5

1
 O

rd
er

 =
 2

 sine(t)

0 2 4 6

−1

−0.5

0

0.5

1

 D sine(t)

0 2 4 6

−1

−0.5

0

0.5

1

 O
rd

er
 =

 3

0 2 4 6

−1

−0.5

0

0.5

1

0 2 4 6

−1

−0.5

0

0.5

1

 O
rd

er
 =

 4

 t
0 2 4 6

−1

−0.5

0

0.5

1

 t

Figure 3.4. In the left panels the solid line indicates spline function of a particular
order that fits the sine function shown as a dashed line. In the right panels the
corresponding fits to its derivative, a cosine function, are shown. The vertical
dotted lines are the interior breakpoints or knots defining the spline fits.

3.5.1 Spline functions and degrees of freedom
The anatomy of a spline is illustrated in Figure 3.4, where three spline
functions are fit to sin(t) over the interval [0, 2π] in the left panels, and
where we also see the fit to its derivative, cos(t), in the right panels.

The first step in defining a spline is to divide the interval over which
a function is to be approximated into L subintervals separated by values
τ�, � = 1, . . . , L − 1 that are called breakpoints or knots. The former term
is, strictly speaking, more correct for reasons that will be indicated shortly.
We see in the figure that three breakpoints divide the interval into four
subintervals. If we include the endpoints 0 and 2π as breakpoints, we may
number them τ0, . . . , τL, where L = 4.

Over each interval, a spline is a polynomial of specified order m. The
order of a polynomial is the number of constants required to define it,
and is one more than its degree, its highest power. Thus, the spline in the
top left of Figure 3.4 is piecewise linear, the center left spline is piecewise
quadratic, and the bottom left piecewise cubic, corresponding to orders 2, 3
and 4, respectively. An order one spline can be seen in the top right panel,
and this is a step function of degree zero.

Adjacent polynomials join up smoothly at the breakpoint which sepa-
rates them for splines of order greater than one, so that the function values
are constrained to be equal at their junction. Moreover, derivatives up to
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order m − 2 must also match up at these junctions. For example, for the
commonly used order four cubic spline, the second derivative is a polygonal
line and the third derivative is a step function. See a few paragraphs fur-
ther on in this section, however, for an account of the possibility of reducing
these smoothness constraints by using multiple knots at junction points.

We see in the top left panel of Figure 3.4, where an order two spline is fit
to the sine curve, that only the function values join. Thus that there is one
constraint on adjacent lines. Since there are two degrees of freedom in a
line, and we have four lines, the total number of degrees of freedom in this
line is calculated as follows. We count a total of 2 × 4 coefficients to define
the four line segments, but we subtract one degree of freedom for each of
the continuity constraints at each of the three junctions. This makes five
in all.

Similarly, in the center left panel, the piecewise polynomials are
quadratic, giving 3 × 4 = 12 coefficients, but this time both the func-
tion value and the first derivative join smoothly, so that we subtract six to
get six remaining degrees of freedom. Finally, in the third row, where the
polynomials are cubic, and where the function values, first derivatives and
second derivatives must join, the accounting gives 4× 4 = 16 less 3× 3 = 9
constraints, leaving us with seven degrees of freedom. The rule is simple:

The total number of degrees of freedom in the fit equals
the order of the polynomials plus the the number of interior
breakpoints.

If there are no interior knots, the spline reverts to being a simple
polynomial.

We see that with increasing order comes a better and better approxima-
tion to both the sine and its derivative, and that by order four the fit is
very good indeed. In fact, if we were to increase the order to five or beyond,
we would also get a fine fit to the second derivative as well.

The main way to gain flexibility in a spline is to increase the number of
breakpoints. Here we have made them equally spaced, but in general, we
want more breakpoints over regions where the function exhibits the most
complex variation, and fewer where the function is only mildly nonlinear.
A subsidiary consideration is that we certainly do not want intervals that
do not contain data, but then this seems reasonable since we cannot expect
to capture a function’s features without data.

We mentioned above that breakpoints are not quite the same thing as
knots. This is because we can have two or more breakpoints that move
together to coalesce or be coincident. When this happens, there is a loss of
continuity condition for each additional coincident breakpoint. In this way,
we can engineer abrupt changes in a derivative or even a function value
at pre-specified breakpoints. The interested reader should consult de Boor
(2001) for further details.
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Thus, the term breakpoint, strictly speaking, refers to the number of
unique knot values, while the term knot refers to the sequence of values
at breakpoints, where some breakpoints can be associated with multiple
knots. The knots are all distinct in most applications, and consequently
breakpoints and knots are then the same thing. But we will encounter data
input/output systems where the inputs are varied in a discrete step-wise
way, and these will require coincident knots to model these sharp changes
in level.

To review, a spline function is determined by two things: The order of the
polynomial segments, and the knot sequence τ . The number of parameters
required to define a spline function in the usual situation of one knot per
breakpoint is the order plus the number of interior knots, m + L − 1.

3.5.2 The B-spline basis for spline functions
We have now defined a spline function, but have given no clue as to how
to actually construct one. For this, we specify a system of basis functions
φk(t), and these will have the following essential properties:

• Each basis function φk(t) is itself a spline function as defined by an
order m and a knot sequence τ.

• Since a multiple of a spline function is still a spline function, and since
sums and differences of splines are also splines, any linear combination
of these basis functions is a spline function.

• Any spline function defined by m and τ can be expressed as a linear
combination of these basis functions.

Although there are many ways that such systems can be constructed, the
B-spline basis system developed by de Boor (2001) is the most popular, and
code for working with B-splines is available in a wide range of program-
ming languages, including R, S-PLUS and MATLAB R©. Other spline basis
systems are truncated power functions, M-splines and natural splines, and
these and others are discussed by de Boor (2001) and Schumaker (1981).

Figure 3.5 shows the thirteen B-spline basis functions for an order four
spline defined by the nine equally spaced interior breakpoints, which are
also shown in this figure. Notice that each of the seven basis functions in
the center only is positive over four adjacent sub-intervals. Because cubic
splines have two continuous derivatives, each basis function makes a smooth
transition to the regions over which it is zero. These central basis splines
have the same shape because of the equal spacing of breakpoints; unequally
spaced breakpoints would define splines varying in shape. The left-most
three basis functions and their three right counterparts do differ in shape,
but nevertheless are also positive over no more than four adjacent sub-
intervals.
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Figure 3.5. The thirteen basis functions defining an order four spline with nine
interior knots, shown as vertical dashed lines.

The property that an order m B-spline basis function is positive over no
more than m intervals, and that these are adjacent, is called the compact
support property, and is of the greatest importance for efficient computa-
tion. If there are K B-spline basis functions, then the order K matrix of
inner products of these functions will be band-structured, with only m − 1
sub-diagonals above and below the main diagonal containing nonzero val-
ues. This means that no matter how large K is, and we will be dealing
with values in the thousands, the computation of spline function can be
organized so as to increase only linearly with K. Thus splines share the
computational advantages of potentially orthogonal basis systems such as
as Fourier and wavelet bases.

The three basis functions on the left and the three on the right are dif-
ferent. As we move from the left boundary towards the center, the intervals
over which the basis functions are positive increase from one to four, but
always make the same smooth twice-differentiable transition to the zero
region. On the other hand, their transition to the left boundary varies in
smoothness, with the left-most spline being discontinuous, the next being
continuous only, and the third being once-differentiable. The same thing
happens on the right side, but in reverse order. That we lose differentiability
at the boundaries makes good sense, since we normally have no information
about what the function we are estimating is doing beyond the interval on
which we collect data. We therefore are allowing for the possibility that the
function may be discontinuous beyond the boundaries.
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This boundary behavior of B-spline basis functions is achieved by placing,
in effect, m knots at the boundaries. That is, when B-splines are actually
computed, the knot sequence τ is extended at each end to add an additional
m − 1 replicates of the boundary knot value. As we noted before, there
are some applications where we do not want m − 2 continuous derivatives
at certain fixed points in the interior of the interval. This can be readily
accommodated by B-splines. We place a knot at such fixed points, and then
for each reduction in differentiability an additional knot is placed at that
location as well. For example, if were were working with order four splines,
and wanted the derivative to be able to change abruptly at a certain value
of t but still wanted the fitted function to be continuous, we would place
three knots at that value.

The notation Bk(t, τ) is often used to indicate the value at t of the B-
spline basis function defined by the breakpoint sequence τ . Here k refers to
the number of the largest knot at or to the immediate left of value t. The
m−1 knots added to the initial breakpoint are also counted in this scheme,
and this is consistent with the fact that the first m B-spline basis functions
all have supports all beginning at the left boundary. This notation gives us
m + L − 1 basis functions, as required in the usual case where all interior
knots are discrete. According to this notation, a spline function S(t) with
discrete interior knots is defined as

S(t) =
m+L−1∑

k=1

ckBk(t, τ) . (3.9)

It remains to give some guidance as to where the interior breakpoints or
knots τ� should be positioned. Many applications default to equal spacing,
which is fine as long as the data are relatively equally spaced. If they are
not, it may be wiser to place a knot at every jth data point, were j is
a number fixed in advance. This amounts to placing interior knots at the
quantiles of the argument distribution. A special case is that of smoothing
splines that we will take up in the next chapter, where a breakpoint is
placed at each argument value. Finally, one can depart from either of these
simple procedures to place more knots in regions known to contain high
curvature, and fewer where there is less.

Figure 3.6 shows an example of using coincident knots to measurements
of the level of a fluid in a tray in a oil refinery distillation column, previously
shown in Figure 1.4. At time 67 a valve was turned and the flow of fluid
into the tray changed abruptly, whereupon the fluid level increases rapidly
at first, and then more and more slowly as it approaches its final value.
It is clear that the first derivative should be discontinuous at time 67, but
that the fluid level is essentially smooth elsewhere. These data were fit with
B-splines of order four, with a single knot mid-way between times 0 and 67,
three equally spaced knots between times 67 and 193, and three coincident
knots at time 67. Now an order four spline has a third derivative that is
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Figure 3.6. The oil refinery tray 47 level shown in Figure 1.4. The heavy smooth
line is a fit to the data using B-spline basis functions with knots located as shown
by the vertical dashed lines. There are three coincident knots at time 67 in order
to achieve the discontinuity in the first derivative of the fit.

discontinuous at single knot locations, and, recalling that each additional
coincident knot decreases the order of continuity by one, we achieve first
derivative discontinuity at time 67. This can be seen in the smooth line fit
to the data by the methods described in the next chapter. Go to Chapter 17
for further analyses of these data.

One possibly disconcerting feature of spline bases is that increasing K
does not always improve certain aspects of the fit to the data. This is
because, when the order of a spline is fixed, the function space defined
by K B-splines is not necessarily contained within that defined by K + 1
B-splines. Complicated effects due to knot spacing relative to sampling
points can result in a lower-dimensional B-spline system actually producing
better results than a higher-dimensional system. However, if K is increased
by either adding a new breakpoint to the current τ , or by increasing the
order and leaving τ unchanged, then the K-space is contained within the
(K + 1)-space.

There are data-driven methods for breakpoint positioning. Some ap-
proaches begin with a dense set of breakpoints, and then eliminate
unneeded ones by an algorithmic procedure similar to variable selection
techniques used in multiple regression. See, for example, Friedman and Sil-
verman (1989). Alternatively, one can optimize the fitting criterion with
respect to knot placement at the same time that one estimates the coeffi-
cients of the expansion. However, this can lead to computational problems,
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since fitting criteria can vary in highly complex ways as a function of
knot placement. Some useful techniques for improving knot placement are
discussed by de Boor (2001).

It is not easy to find a readable introduction to splines, but the func-
tional data analysis website, www.functionaldata.org, offers a beginner’s
treatment. The most comprehensive reference is de Boor (2001), which con-
tains a wealth of information on computational as well as theoretical issues.
But it is for advanced readers only, whereas Eubank (1999) and Green and
Silverman (1994) are at a more intermediate level.

3.6 Other useful basis systems

We must not, however, forget about a number of other potentially impor-
tant basis systems. In fact, two contrasting developments in recent years are
having a large impact on data analysis. On the side of great mathematical
sophistication we have wavelets that combine the frequency-specific ap-
proximating power of the Fourier series with the time- or spatially-localized
features of splines. On the other hand, we have seen a fascinating resur-
gence of interest in exceedingly simple bases such as step functions (order
one splines in effect) and polygons (order two splines) (Hastie, et al. 2001).

3.6.1 Wavelets
We can construct a basis for all functions on (−∞,∞) that are square-
integrable by choosing a suitable mother wavelet function ψ and then
considering all dilations and translations of the form

ψjk(t) = 2j/2ψ(2jt − k)

for integers j and k. We construct the mother wavelet to ensure that the
basis is orthogonal, in the sense that the integral of the product of any two
distinct basis functions is zero. Typically, the mother wavelet has compact
support, and hence so do all the basis functions. The wavelet basis idea is
easily adapted to deal with functions defined on a bounded interval, most
simply if periodic boundary conditions are imposed.

The wavelet expansion of a function f gives a multiresolution analysis in
the sense that the coefficient of ψjk yields information about f near position
2−jk on scale 2−j , i.e., at frequencies near c2j for some constant c. Thus
wavelets provide a systematic sequence of degrees of locality. In contrast
to Fourier series, wavelet expansions cope well with discontinuities or rapid
changes in behavior; only those basis functions whose support includes the
region of discontinuity or other bad behavior are affected. This property, as
well as a number of more technical mathematical results, means that it is
often reasonable to assume that an observed function is well approximated
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by an economical wavelet expansion with few non-zero coefficients, even if
it displays sharp local features.

Suppose a function x is observed without error at n = 2M regularly
spaced points on an interval T . just as with the Fourier transformation,
there is a discrete wavelet transform (DWT) which provides n coefficients
closely related to the wavelet coefficients of the function x. We can calculate
the DWT and its inverse in O(n) operations, even faster than the O(n log n)
of the FFT. As a consequence, most estimators based on wavelets can be
computed extremely quickly, many of them in O(n) operations.

Now suppose that the observations of x are subject to noise. The fact that
many intuitively attractive classes of functions have economical wavelet
expansions leads to a simple nonlinear smoothing approach: Construct the
DWT of the noisy observations, and threshold it by throwing away the
small coefficients in the expansion and possibly shrinking the large ones.
The basic motivation of thresholding is the notion that any coefficient that
is small is entirely noise and does not reflect any signal at all. This nonlinear
thresholding has attractive and promising theoretical properties (see, for
example, Donoho, Johnstone, Kerkyacharian and Picard, 1995), indicating
that thresholded wavelet estimators should adapt well to different degrees
of smoothness and regularity in the function being estimated.

3.6.2 Exponential and power bases
Exponential basis systems consist of a series of exponential functions,

eλ1t, eλ2t, . . . , eλkt, . . .

where the rate parameters λk are all distinct, and often λ1 = 0. Linear
differential equations with constant coefficients have as solutions expansions
in terms of exponential bases.

Power bases,

tλ1 , tλ2 , . . . , tλk , . . .

likewise are important from time to time, often when t is strictly positive
so that negative powers are possible.

3.6.3 Polynomial bases
The monomial basis φk(t) = (t − ω)k, k = 0, . . . , K is also classic, where ω
is a shift parameter that is usually chosen to be in the center of the interval
of approximation. Care must be taken to avoid rounding error in the com-
putations, since monomial values are more and more highly correlated as
the degree increases. However, if the argument values tj are equally spaced
or can be chosen to exhibit a few standard patterns, orthogonal polyno-
mial expansions can be obtained, implying O((n + m)K) operations for all
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smooth values. Otherwise we are condemned to contemplate O((n+m)K2)
operations.

Like the Fourier series expansion, polynomials cannot exhibit very local
features without using a large K. Moreover, polynomials tend to fit well in
the center of the data but exhibit rather unattractive behavior in the tails.
They are usually a poor basis for extrapolation or forecasting, for example.

Although derivatives of polynomial expansions are simple to compute,
they are seldom satisfactory as estimators of the true derivative because of
the rapid localized oscillation typical of high order polynomial fits.

3.6.4 The polygonal basis
Smoothing the observed rough data is not always necessary, and especially
if our interest is not in the fit to the data itself, but rather in some func-
tional parameter not directly connected to the data. In the chapters on the
functional linear model, we will see that we can interpolate the data with
a simple basis, and move the smoothing issue to where it belongs, namely
the estimation of the functional parameter. In fact, polygonal or piecewise
linear data fits have much to recommend them, and can even offer a crude
estimate of the first derivative.

3.6.5 The step-function basis
Data mining problems often involve huge numbers of variables combined
with phenomenal sample sizes. Because computational constraints can be-
come critical, and we look for the simplest methods that will work. One of
the great success stories in modern statistics has the usefulness of simple
splits of variables into two categories, and the construction of tree-based
representations of relationships or classification schemes. A split of variable
values can be viewed as a functional transformation with a basis consisting
of two step functions. This is, in effect, an order one B-spline system with a
single interior knot. A recent reference on data mining in general that has
considerable material on tree-based classification is Hastie, Tibshirani and
Friedman (2001). It is somehow refreshing that we return to basics from
time to time and rediscover that “effective” is not always the same thing
as “sophisticated”.

3.6.6 The constant basis
We shouldn’t neglect the most humble of bases, the single basis function
1(t) whose value is one everywhere. It comes in handy surprisingly of-
ten. Firstly, it provides a useful point of reference or null hypothesis when
we estimate regression coefficient functions for the functional linear model
and elsewhere. Secondly, it is explicitly in systems like the Fourier, and
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implicitly into B-spline bases. Finally, we can view a scalar observation
as a functional datum whose value is the same everywhere, and conse-
quently its value becomes the coefficient for the constant basis. Using this
device we can, in effect, include most multivariate statistical techniques
into functional data analysis in a seamless manner.

3.6.7 Empirical and designer bases
If choosing a basis that matches the characteristics of the data is important,
can’t we design our own basis systems? The answer is positive in two ways.
First, we will discuss basis systems associated with differential equation
models for functional data in Chapter 21, and the chapter preceding this
will show how such models can be fit empirically to the data.

Designer bases can also be constructed empirically using functional prin-
cipal components analysis, the subject of Chapters 8 to 10. Such bases have
the property of optimizing the amount of variance in the data explained
by basis systems of size K. If one wants the most compact basis possible
with the sole objective of fitting the data, principal components analysis is
usually the method that is first considered.

3.7 Choosing a scale for t

From the perspective of mathematics, the choice of unit of measurement
for argument t may appear to be of no great consequence. But the implica-
tions for computation can be dramatic, and especially when we work with
derivatives.

The two main bases that we intend to work with, the B-spline and Fourier
systems, have normalized basis function, meaning that basis function values
are bounded. In the case of B-splines, the bounds are zero and one, and
at any point t the sum of B-spline basis functions that are nonzero at that
point is exactly one. The only B-splines that attain the upper limit of one
are those at the extreme ends of the interval. In the Fourier series case,
function values are found within [-1,1].

As a result, if large number of basis functions are packed into a small
interval, their derivatives are bound to be large. This is particularly easy
to see in the Fourier series case, where the mth derivative of sin kωt will
attain limits ±(kω)m. For example, if we opt to define the unit of time for
the daily weather data to be one year, we decide to work with a saturated
basis containing 365 basis functions, then we will be looking at values of
the fourth derivative oscillating between ±1.7 × 1012, as opposed to about
±1560 if we use the day as the unit of time.

The same applies to B-splines. For example, the handwriting data has
1401 sampling points equally spaced between zero and 2.3 seconds. On
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this time scale, if we use 1405 basis functions of order six with knots at
the time points, which is not an unreasonable proposal, we will see fourth
derivative values of about 213. On the other hand, if we use a time scale
of milliseconds, then we see the same derivatives reaching values of only
about 20.

Why does this matter? We will at many points in our investigation want
to combine derivatives of various orders. For example, in Chapter 5, we
will use the fourth derivative to stabilize or smooth estimates of the second
derivative, and will do this by combining within the same fitting criterion
B-spline basis functions values with their fourth derivatives. When you try
to add together quantities of the order of one with quantities of the order
of 1012, it is easy to run into prodigious rounding error problems if you
are not careful. All this trouble can be avoided by using using a unit for
t which is roughly equal to the period of oscillation of the most rapidly
varying basis function that you will use. In any case, we tend to find that
our clients do not take well to seeing plots or tables of quantities far beyond
magnitudes that they can imagine.

3.8 Further reading and notes

We imagine that the Fourier series needs little introduction for most of
our readers. Most introductory calculus texts cover the topic, and many
branches of statistics apply it.

Spline functions are another thing entirely. We have not found many
treatments that are for beginners, and have often been brought up short
when asked for something to read. This is why we have supplied the rather
lengthy account that this chapter contains, at the risk of boring spline
experts. The introduction to splines in Hastie and Tibshirani (1990) has
proven helpful, and Green and Silverman (1994) is useful those with more
intermediate exposures to mathematics and statistics. Even after a revision,
de Boor (2001) remains a challenging book, but is unequalled in its coverage
of splines. Texts devoted to smoothing and nonparametric regression such
as Eubank (1999) and Simonoff (1996) are also useful references. Schumaker
(1981) is an important but more advanced treatment of splines. Wahba
(1990) is often cited, but if you can understand that book, you shouldn’t
be reading these early chapters!

Wavelet bases are comparatively recent, and they have considerable
promise in many functional data analysis contexts. For further reading,
see Chui (1992), Daubechies (1992), Press et al. (1992), Nason and Silver-
man (1994), Donoho et al. (1995) and Johnstone and Silverman (1997),
as well as the many references contained in these books and papers. An
entire issue in 1999 of the Philosophical Transactions of the Royal Society
of London, Series A, was devoted to wavelet applications and theory, and
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the papers there by Silverman (1999) and Silverman and Vassilicos (1999),
as well as Silverman (2000) are to be recommended to newcomers to this
exciting field.

Polynomial and power bases appear often under other titles. Power series,
treated in all calculus texts, and the Taylor and Maclaurin expansions found
there are specialized methods for estimating polynomial expansions. Later
in Chapter 21 we will consider ways of generalizing these important tools.



4
Smoothing functional data by least
squares

4.1 Introduction

In this chapter and the next we turn to a discussion of specific smoothing
methods. Our goal is to give enough information to those new to the topic
of smoothing to launch a functional data analysis. Here we focus on the
more familiar technique of fitting models to data by minimizing the sum of
squared errors, or least squares estimation. This approach ties in functional
data analysis with the machinery of multiple regression analysis. A number
of tools taken from this classical field are reviewed here, and especially those
that arise because least squares fitting defines a model whose estimate is a
linear transformation of the data.

The treatment is far from comprehensive, however, and primarily because
we will tend to favor the more powerful methods using roughness penalties
to be taken up in the next chapter. Rather, notions such as degrees of
freedom, sampling variance, and confidence intervals are introduced here
as a first exposure to topics that will be developed in greater detail in
Chapter 5.

4.2 Fitting data using a basis system by least
squares

Recall that our goal is to fit the discrete observations yj , j = 1, . . . , n using
the model yj = x(tj)+ εj , and that we are using a basis function expansion
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for x(t) of the form

x(t) =
K∑
k

ckφk(t) = c′φ.

The vector c of length K contains the coefficients ck. Let us define the n
by K matrix Φ as containing the values φk(tj).

4.2.1 Ordinary or unweighted least squares fits
A simple linear smoother is obtained if we determine the coefficients of the
expansion ck by minimizing the least squares criterion

SMSSE(y|c) =
n∑

j=1

[yj −
K∑
k

ckφk(tj)]2. (4.1)

The criterion is expressed more cleanly in matrix terms as

SMSSE(y|c) = (y − Φc)′(y − Φc) . (4.2)

The right side is also often written in functional notation as ‖y − Φc‖2.
Taking the derivative of criterion SMSSE(y|c) with respect to c yields the

equation

2ΦΦ′c − 2Φ′y = 0

and solving this for c provides the estimate ĉ that minimizes the least
squares solution,

ĉ = (Φ′Φ)−1Φ′y . (4.3)

The vector ŷ of fitted values is

ŷ = Φˆ̂c = Φ(Φ′Φ)−1Φ′y . (4.4)

Simple least squares approximation is appropriate in situations where
we assume that the residuals εj about the true curve are independently
and identically distributed with mean zero and constant variance σ2. That
is, we prefer this approach when we assume the standard model for error
discussed in Section 3.2.4.

As an example, Figure 4.1 shows the daily temperatures in Montreal
averaged over 34 years, 1960–1994, for 101 days in the summer and 101
days in the winter. There is some higher frequency variation that seems to
require fitting in addition to the smooth quasi-sinusoidal long-term trend.
For example, there is a notable warming period from about January 16 to
January 31 that is present in the majority of Canadian weather stations.
The smooth fit shown in the figure was obtained with 109 Fourier basis
functions, which would permit 108/2 = 54 cycles per year, or roughly one
per week. The curve seems to track nicely these shorter-term variations in
temperature.
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Figure 4.1. The upper panel shows the average daily temperatures for 101 days
over the summer in Montreal, and the lower panel covers 101 winter days, with
the day values extended into the following year. The solid curves are unweighted
least squares smooths of the data using 109 Fourier basis functions.

4.2.2 Weighted least squares fits
As we noted in Section 3.2.4, the standard model for error will often not
be realistic. To deal with nonstationary and/or autocorrelated errors, we
may need to bring in a differential weighting of residuals by extending the
least squares criterion to the form

SMSSE(y|c) = (y − Φc)′W(y − Φc) (4.5)

where W is a symmetric positive definite matrix that allows for unequal
weighting of squares and products of residuals.

Where do we get W? If the variance-covariance matrix Σe for the
residuals εj is known, then

W = Σ−1
e .

In applications where an estimate of the complete Σe is not feasible, the
covariances among errors are often assumed to be zero, and then W is
diagonal with, preferably, reciprocals of the error variance associated with
the yj ’s in the diagonal. We will consider various ways of estimating Σe

in Section 4.6.2. But in the meantime, we will not lose anything if we
always include the weight matrix W in results derived from least squares
estimation; we can always set it to I if the standard model is assumed.
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The weighted least squares estimate ĉ of the coefficient vector c is

ĉ = (Φ′WΦ)−1Φ′Wy . (4.6)

Whether the approximation is by simple least squares or by weighted least
squares, we can express what is to be minimized in the more universal
functional notation SMSSE(y|c) = ‖y − Φc‖2.

4.3 A performance assessment of least squares
smoothing

It may be helpful to see what happens when we apply least squares smooth-
ing to a situation where we know what the right answer is, and can therefore
check the quality of various aspects of the fit to the data, as well as the
accuracy of data-driven bandwidth selection methods.

We turn now to the growth data, where a central issue was obtaining a
good estimate of the acceleration or second derivative of the height function.
For example, can we trust the acceleration curves displayed in Figure 1.1?

The parametric growth curve proposed by Jolicoeur (1992) has the
following form:

h(t) = a

∑3
�=1[b�(t + e)]c�

1 +
∑3

�=1[b�(t + e)]c�

. (4.7)

Jolicoeur’s model is now known to be a bit too smooth, and especially in
the period before the pubertal growth spurt, but it does offer a reasonable
account of most growth records for the comparatively modest investment of
estimating eight parameters, namely a, e and (b�, c�), � = 1, 2, 3. The model
has been fit to the Fels growth data (Roche, 1992) by R. D. Bock (2000),
and from these fits it has been possible to summarize the variation of pa-
rameter values for both genders reasonably well using a multivariate normal
distribution. The average parameter values are a = 164.7, e = 1.474,b =
(0.3071, 0.1106, 0.0816)′, c = (3.683, 16.665, 1.474)′. By sampling from this
distribution, we can simulate the smooth part of as many records as we
choose.

The standard error of measurement has also been estimated for the Fels
data as a function of age by one of the authors, and Figure 4.2 summarizes
this relation. We see height measurements are noisier during infancy, where
the standard error is about eight millimeters, but by age six or so, the error
settles down to about five millimeters. Simulated noisy data were generated
from the smooth curves by adding independent random errors having a
mean of zero and standard deviation defined by this curve to the smooth
values at the sampling points. The reciprocal of the square of this function
was used to define the entries of the weight matrix W, which in this case
was diagonal. The sampling ages were those of the Berkeley data, namely
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Figure 4.2. The estimated relation between the standard error of height
measurements and age for females based on the Fels growth data.

quarterly between one and two years, annually between two to eight years,
and twice a year after that to eighteen years of age.

We estimated the growth acceleration function by fitting a single set of
data for a female. For the analysis, a set of 12 B-spline basis functions were
used of order six and with equally spaced knots. We chose order six splines
so that the acceleration estimate would be a cubic spline and hence smooth.
A weighted least squares analysis was used with W being diagonal and with
diagonal entries being the reciprocals of the squares of the standard errors
shown in Figure 4.2.

Figure 4.3 shows how well we did. The maximum and minimum for the
pubertal growth spurt are a little underestimated, and there are some peaks
and valleys during childhood that aren’t in the true curve. However, the
estimate is much less successful at the lower and upper boundaries, and
this example is a warning that we will have to look for ways to get better
performance in these regions. On the whole, though, the important features
in the true acceleration curve are reasonably reflected in the estimate.

4.4 Least squares fits as linear transformations of
the data

The smoothing methods described in this chapter all have the property
of being linear. Linearity simplifies computational issues considerably, and
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Figure 4.3. The solid curve is the estimated growth acceleration for a single set of
simulated data, and the dashed curve is the errorless curve. The circles indicate
the ages at which simulated observations were generated.

is convenient in a number of other ways. Most smoothing in practice gets
done by linear procedures. Consequently, before we turn to other smoothing
methods, we need to consider what linearity in a smoothing procedure
means.

4.4.1 How linear smoothers work
A linear smoother estimates the function value ŷj = x̂(tj) by a linear
combination of the discrete observations

x̂(tj) =
n∑

�=1

Sj(t�)y� , (4.8)

where Sj(t�) weights the �th discrete data value in order to generate the
fit to yj .

In matrix terms,

x̂(t) = Sy , (4.9)

where x̂(t) is a column vector containing the values of the estimate of
function x at each sampling point tj .

In the unweighted least squares case, for example, we see in (4.4) that

S = Φ(Φ′Φ)−1Φ′. (4.10)
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In regression analysis, this matrix is often called the “hat matrix” because
it converts the dependent variable vector y into its fit ŷ.

In the context of least squares estimation, the smoothing matrix has the
property of being a projection matrix. This means that it creates an image
of data vector y on the space spanned by the columns of matrix Φ such
that the residual vector e = y − ŷ is orthogonal to the fit vector ŷ,

(y − ŷ)′ŷ = 0 .

This in turn implies that the smoothing matrix has the property SS = S,
a relation called idempotency. In the next chapter on roughness-penalized
least squares smoothing, we shall see that property does not hold.

The corresponding smoothing matrix for weighted least squares smooth-
ing is

S = Φ(Φ′WΦ)−1Φ′W . (4.11)

Matrix S is still an orthogonal projection matrix, except that now the
residual and fit vectors are orthogonal in the sense that

(y − ŷ)′Wŷ = 0 .

In this case ŷ = Sy is often said to be a projection in the metric W.
Figure 4.4 shows the weights associated with estimating the growth ac-

celeration curve in Figure 4.3 for ages six, twelve, and eighteen. For ages
away from the boundaries, the weights have a positive peak centered on
the age being estimated, and two negative side-lobes. For age twelve in the
middle of the pubertal growth spurt for females, the observations receiving
substantial weight, of either sign, range from ages seven to seventeen. This
is in marked contrast to second difference estimates

D2x(tj) ≈
(yj+1 − yj

tj+1 − tj
− yj − yj−1

tj − tj+1

)
/(tj+1 − tj−1),

which would only use three adjacent ages.
At the upper boundary, we see why there is likely to be considerable

instability in the estimate. The final observation receives much more weight
than any other value, and only observations back to age fifteen are used at
all. The boundary estimate pools much less information than do interior
estimates, and is especially sensitive to the boundary observations.

Many widely used smoothers are linear. The linearity of a smoother is a
desirable feature for various reasons: The linearity property

S(ay + bz) = aSy + bSz

is important for working out various properties of the smooth representa-
tion, and the simplicity of the smoother implies relatively fast computation.
On the other hand, some nonlinear smoothers may be more adaptive
to different behavior in different parts of the range of observation, and
may be robust to outlying observations. Smoothing by the thresholded
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Figure 4.4. The top panel indicates how observations are weighted in order to
estimate growth acceleration at age six in figure 4.3. The central panel shows the
weights for age twelve, and the bottom for age eighteen. The dots indicate the
ages at which simulated observations were generated.

wavelet transform, discussed in Section 3.6.1, is an important example of
a nonlinear smoothing method.

Speed of computation can be critical; a smoother that is useful for a
few hundred data points can be completely impractical for thousands.
Smoothers that require a number of operations that is proportional to
n to compute n smoothed values x̂(sj), abbreviated O(n) operations, are
virtually essential for large n. If S is band-structured, meaning that only
a small number K of values on either side of its diagonal in any row are
nonzero, then O(n) computation is assured.

4.4.2 The degrees of freedom of a linear smooth
We are familiar with the idea that the model for observed data offers an
image of the data that has fewer degrees of freedom than are present in the
original data. In most textbook situations, the concept of the degrees of
freedom of a fit means simply the number of parameters estimated from
the data that are required to define the model.

The notion of degrees of freedom applies without modification to data
smoothing using least squares, where the number of parameters is the
length K of the coefficient vector c. The number of degrees of freedom
for error is therefore n − K.
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When we begin to use roughness penalty methods in Chapter 5, how-
ever, things will not be so simple, and we will need a more general way of
computing the effective degrees of freedom of a smooth fit to the data, and
consequently the corresponding degrees of freedom for error. We do this by
using the “hat” matrix S by defining the degrees of freedom of the smooth
fit to be

df = traceS (4.12)

where the trace of a square matrix means the sum of its diagonal elements.
This more general definition yields exactly K for least squares fits, and
therefore does not represent anything new. But this definition will prove
invaluable in our later chapters.

There are also situations in which it may be more appropriate to use the
alternative definition

df = trace (SS′) (4.13)

but most of the time (4.12) is employed. In any case, the two definitions
give the same answer for least squares estimation.

4.5 Choosing the number K of basis functions

How do we choose the order of the expansion K? The larger K, the better
the fit to the data, but of course we then risk also fitting noise or variation
that we wish to ignore. On the other hand, if we make K too small, we may
miss some important aspects of the smooth function x that we are trying
to estimate.

4.5.1 The bias/variance trade-off
This trade-off can be expressed in another way. For large values of K, n
the bias in estimating x(t), that is

Bias[x̂(t)] = x(t) − E[x̂(t)], (4.14)

is small. In fact, if the notion of additive errors having expectation zero
expressed in (3.1) holds, then we know that the bias will be zero for K = n.

But of course, that is only half of the story. One of the main reasons that
we do smoothing is to reduce the influence of noise or ignorable variation
on the estimate x̂. Consequently we are also interested in the variance of
estimate

Var[x̂(t)] = E[{x̂(t) − E[x̂(t)]}2] . (4.15)

If K = n, this is almost certainly going to be unacceptably high. Reducing
variance leads us to look for smaller values of K, but of course not so small
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as to make the bias unacceptable. The worse the signal-to-noise ratio in the
data, the more reducing sampling variance will outweigh controlling bias.

One way of expressing what we really want to achieve is mean-squared
error

MSE[x̂(t)] = E[{x̂(t) − x(t)}2] , (4.16)

also called the L2 loss function. In most applications we can’t actually
minimize this since we have no way of knowing what x(t) is without using
the data. However, one of the most important equations in statistics links
mean squared error to bias and sampling variance by the simple additive
decomposition

MSE[x̂(t)] = Bias2[x̂(t)] + Var[x̂(t)] . (4.17)

What this relation tells us is that it would be worthwhile to tolerate a little
bias if the result is a big reduction in sampling variance. In fact, this is
almost always the case, and is the fundamental reason for smoothing data
in order to estimate functions. We will return to this matter in Chapter 5.

Figure 4.5 shows some total squared error measures as a function of var-
ious numbers of basis functions. The measures were computed by summing
mean squared error, sampling variance and squared bias across the ages
ranging from three to sixteen. This range was used to avoid ages near the
boundaries, where the curve estimates tend to have much greater error lev-
els. The results are based on smoothing 10,000 random samples constructed
in the same manner as that in Figure 4.3.

Notice that the measures for sampling variance and squared bias sum
to those for mean squared error, as in (4.17). Sampling variance increases
rapidly when we use too many basis functions, but squared bias tends to
decay more gently to zero at the same time. We see there that the best
results for totaled mean squared error are obtained with ten and twelve
basis functions, and we broke the tie by opting for the result with the least
bias.

It may see surprising that increasing K does not always decrease bias.
If so, recall that, when the order of a spline is fixed and knots are equally
spaced, K B-splines do not span a space that lies within that defined by K+
1 B-splines. Complicated effects due to knot spacing relative to sampling
points can result in a lower-dimensional B-spline system actually producing
better results than a higher-dimensional system.

Although the decomposition mean squared error (4.17) is helpful for
expressing the bias/variance tradeoff in a neat way, the principle applies
more widely. In fact, there are many situations where it is preferable to use
other loss functions. For example, minimizing E[|x̂(t) − x(t)|], called the
L1 norm, is more effective if the data contain outliers. For this and nearly
any fitting criterion or loss function for smoothing, we can assume that
when bias goes down, sampling variance goes up, and some bias must be
tolerated to achieve a stable estimate of the smooth trend in the data.
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Figure 4.5. The heavy solid line indicates mean squared error totaled across the
ages of observation between three and sixteen. The dashed line shows the totaled
sampling variance, and the dotted-dashed line shows the totaled squared bias.

4.5.2 Algorithms for choosing K

The vast literature on multiple regression contains many ideas for deciding
how many basis functions to use. For example, stepwise variable selection
would proceed in a step-up fashion by adding basis functions one after
another, testing at each step whether the added function significantly im-
proves fit, and also checking that the functions already added continue to
play a significant role. Conversely, variable-pruning methods are often used
for high-dimensional models, and work by starting with a generous choice
of K and dropping a basis function on each step that seems to not account
for a substantial amount of variation.

These methods all have their limitations, and are often abused by users
who do not appreciate these problems. The fact that there is no one gold
standard method for the variable selection problem should warn us at this
point that we face a difficult task in attempting to fix model dimensionality.
The discrete character of the K-choice problem is partly to blame, and the
methods described in Chapter 5 providing a continuum of smoothing levels
will prove helpful.
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4.6 Computing sampling variances and confidence
limits

4.6.1 Sampling variance estimates
The estimation of the coefficient vector c of the basis function expansion
x = c′φ by minimizing least squares defines a linear mapping (4.6) from
the raw data vector y to the estimate. With this mapping in hand, it is a
relatively simple matter to compute the sampling variance of the coefficient
vector, and of anything that is linearly related to it.

We begin with the fact that if a random variable y is normally distributed
with a variance-covariance matrix Σy, then the random variable Ay defined
by any matrix A has the variance-covariance matrix

Var[Ay] = AΣyA′ . (4.18)

Now in this and other linear modelling situations that we will encounter,
the model for the data vector y, in this case x(t), is regarded as a fixed
effect having zero variance. Consequently, the variance-covariance matrix of
y using the model y = x(t) + ε is the variance-covariance matrix Σe of the
residual vector ε. We must in some way use the information in the actual
residuals to replace the population quantity Σe by a reasonable sample
estimate Σ̂e.

For example, to compute the sampling variances and covariances of the
coefficients themselves in c, we use that fact that in this instance

A = (Φ′WΦ)−1Φ′W .

to obtain

Var[c] = (Φ′WΦ)−1Φ′WΣeWΦ(Φ′WΦ)−1 . (4.19)

When the standard model is assumed, Σe = σ2I, and if unweighted least
squares is used, then we obtain the simpler result that appears in textbooks
on regression analysis

Var[c] = σ2(Φ′Φ)−1 . (4.20)

However, in our functional data analysis context there will seldom be
much interest in interpreting the coefficient vector c itself. Rather, we will
want to know the sampling variance of some quantity computed from these
coefficients. For example, we might want to know the sampling variance of
the the fit to the data defined by x(t) = φ(t)′c. Since we now have in hand
the sampling variance of c through (4.19) or (4.20), we can simply apply
result (4.18) again to get

Var[x̂(t)] = φ(t)′Var[c]φ(t) (4.21)
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and the variances of all the fitted values corresponding to the sampling
values tj are in the diagonal of the matrix

Var[ŷ] = ΦVar[c]Φ′

which, in the standard model/unweighted least squares case, and using
(4.10), reduces to

Var[ŷ] = σ2Φ(Φ′Φ)−1Φ′ = σ2S .

4.6.2 Estimating Σe

Clearly our estimates of sampling variances are only as good as our
estimates of the variances and covariances among the residuals εj .

When we are smoothing a single curve, the total amount of informa-
tion involved is insufficient for much more than estimating either a single
constant variance σ2 assuming the standard model for error, or at most a
variance function with values σ2(t), that has fairly mild variation over t. It
is important to use methods which produce relatively unbiased estimate of
variance in order to avoid underestimating sampling variance. For example,
if the standard model for error is accepted,

s2 =
1

n − K

n∑
j

(yj − ŷj)
2 (4.22)

is much preferred as an estimate of σ2 than the maximum likelihood esti-
mate that involves dividing by n. In fact, we shall see in the next chapter
that this estimate is related to a popular more general method for choosing
smoothing level called generalized cross-validation.

One reasonable strategy for choosing K is to add basis functions until s2

fails to decrease substantially. Figure 4.6 shows how s decreases to a value
of about 0.56 degrees Celsius by the time we use 109 Fourier basis functions
for smoothing the Montreal temperature data shown in Figure 4.1. There
are places where s2 is even lower, but we worried that the minimum at 240
basis functions corresponded to over-fitting the data.

A common strategy for estimating at least a limited number of covari-
ances in Σe given a small N , or even N = 1, is to assume an autoregressive
(AR) structure for the residuals. This is often realistic, since adjacent resid-
uals are frequently correlated because they are mutually influenced by
unobserved variables. For example, the weather on one day is naturally
likely to be related to the weather on the previous day because of the in-
fluence of large slow-moving low or high pressure zones. An intermediate
level text on regression analysis such as Draper and Smith (1998) can be
consulted for details on how to estimate AR structures among residuals.

When a substantial number N of replicated curves are available, as in
the growth curve data and Canadian weather data, we can attempt more
sophisticated and detailed estimates of Σe. For example, we may opt for



72 4. Smoothing functional data by least squares

0 100 200 300

0.3

0.4

0.5

0.6

Number of basis functions

V
ar

ia
nc

e 
es

tim
at

e

Figure 4.6. The relation between the number of Fourier basis functions and
the unbiased estimate of the residual variance (4.22) in fitting the Montreal
temperature data.

estimating the entire variance-covariance matrix from the N by n matrix
E of residuals by

Σ̂e = (N − 1)−1E′E.

However, even then, an estimate of a completely unrestricted Σe requires
the estimation of n(n−1)/2 variances and covariances from N replications,
and it is unlikely that data with the complexity of the daily weather records
would ever have N sufficiently large to do this accurately.

4.6.3 Confidence limits
Confidence limits are typically computed by adding and subtracting a
multiple of the standard errors, that is, the square root of the sampling
variances, to the actual fit. For example, 95% limits correspond to about
two standard errors up and down from a smooth fit. These standard errors
are estimated using (4.21). Confidence limits on fits computed in this way
are called point-wise because they reflect confidence regions for fixed values
of t rather than regions for the curve as a whole.

Figure 4.7 shows the temperatures during the 16 days over which the
January thaw takes place in Montreal, along with the smooth to the data
and 95% point-wise confidence limits on the fit. The standard error of the
estimated fit was 0.26 degrees Celsius.
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Figure 4.7. The temperatures over the mid-winter thaw for the Montreal temper-
ature data. The solid line is the smooth curve estimated in Figure 4.1 and the
lower and upper dashed lines are estimated 95% point-wise confidence limits for
this fit.

We will have much to say in the next chapter and elsewhere about the
hazards of placing too much faith in sampling variances and confidence
limits estimated in these ways. But we should at least note two important
ways in which confidence limits computed in this way may be problematic.
First, it is implicitly assumed that K is a fixed constant, but the reality is
that K for smoothing problems is more like a parameter estimated from the
data, and consequently the size of these confidence limits does not reflect
the uncertainty in our knowledge of K. Secondly, the smooth curve to which
we add and subtract multiples of the standard error to get point-wise limits
is itself subject to bias, and especially in regions of high curvature. We can
bet, for example, that the solid curve in Figure 4.7 is too low on January
23rd, the center of the January thaw. Thus, the confidence limits calculated
in this way are themselves biassed, and the region covered by them may
not be quite as advertised.

4.7 Fitting data by localized least squares

For a smoothing method to make any sense at all, the value of the function
estimate at a point t must be influenced mostly by the observations near
t. This feature is an implicit property of the estimators we have considered
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so far. In this section, we consider estimators where the local dependence
is made more explicit by means of local weight functions.

Keeping within the domain of linear smoothing means that our estimate
of the value of function x at argument tj is of the form

x(tj) =
n∑
�

w�y� .

It seems intuitively reasonable that the weights w� will only be relatively
large for sampling values t� fairly close to the target value tj . And, indeed,
this tends to hold for the basis function smoothers (4.10) and (4.11).

We now look at smoothing methods that make this localized weighting
principle explicit. The localizing weights wj are simply constructed by a
location and scale change of a kernel function with values Kern(u). This
kernel function is designed to have most of its mass concentrated close
to 0, and to either decay rapidly or disappear entirely for |u| ≥ 1. Three
commonly used kernels are

Uniform: Kern(u) = 0.5 for |u| ≤ 1, 0 otherwise
Quadratic: Kern(u) = 0.75(1 − u2) for |u| ≤ 1, 0 otherwise
Gaussian: Kern(u) = (2π)−1/2 exp(−u2/2).

If we then define weight values to be

w�(t) = Kern

(
t� − tj

h

)
, (4.23)

then substantially large values w�(t) as a function of � are now concentrated
for t� in the vicinity of tj . The degree of concentration is controlled by the
size of h. The concentration parameter h is usually called the bandwidth
parameter, and small values imply that only observations close to t receive
any weight, while large h means that a wide-sweeping average uses values
that are a considerable distance from t.

4.7.1 Kernel smoothing
The simplest and classic case of an estimator that makes use of local weights
is the kernel estimator. The estimate at a given point is a linear combination
of local observations,

x̂(t) =
n∑
j

Sj(t)yj (4.24)

for some suitably defined weight functions Sj . Probably the most popular
kernel estimator the Nadaraya-Watson estimator (Nadaraya, 1964; Watson,
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1964) is constructed by using the weights

Sj(t) =
Kern[(tj − t)/h]∑
r Kern[(tr − t)/h]

. (4.25)

Although the weight values wj(t) for the Nadaraya-Watson method are
normalized to have a unit sum, this is not essential. The weights developed
by Gasser and Müller (1979, 1984) are constructed as follows:

Sj(t) =
1
h

∫ t̄j

t̄j−1

Kern(
u − t

h
) du, (4.26)

where t̄j = (tj+1 + tj)/2, 1 < j < n, t̄0 = t1 and t̄n = tn. These weights are
faster to compute, deal more sensibly with unequally spaced arguments,
and have good asymptotic properties.

The need for fast computation favors the compact support uniform and
quadratic kernels, and the latter is the most efficient when only function val-
ues are required and the true underlying function x is twice-differentiable.
The Gasser-Müller weights using the quadratic kernel are

Sj(t) =
1
4
[{3rj−1(t) − r3

j−1(t)} − {3rj(t) − r3
j (t)}]

for |tj − t| ≤ h and 0 otherwise, and where

rj(t) =
t − t̄j

h
. (4.27)

We need to take special steps if t is within h units of either t1 or tn.
These measures can consist of simply extending the data beyond this range
in some reasonable way, making h progressively smaller as these limits
are approached, or sophisticated modifications of the basic kernel function
Kern. The problem that all kernel smoothing algorithms have of what to do
near the limits of the data is one of their major weaknesses, and especially
when h is large relative to the sampling rate.

Estimating the derivative just by taking the derivative of the kernel
smooth is not usually a good idea, and in any case kernels such as the
uniform and quadratic are not differentiable. However, kernels specifically
designed to estimate a derivative of fixed order can be constructed by al-
tering the nature of kernel function Kern. For example, a kernel Kern(u)
suitable for estimating the first derivative must be zero near u = 0, positive
above zero, and negative below, so that it is a sort of smeared-out version
of the first central difference. The Gasser-Müller weights for the estimation
of the first derivative are

Sj(t) =
15
16h

[{r4
j−1(t) − 2r2

j−1(t)} − {r4
j (t) − 2r2

j (t)}] (4.28)

and for the second derivative are

Sj(t) =
105
16h2 [{2r3

j−1(t)−r5
j−1(t)−rj−1(t)}−{2r3

j (t)−r5
j (t)−rj(t)}] (4.29)
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Figure 4.8. The second derivative or acceleration of the coordinate functions for
the handwriting data. Kernel smoothing was used with a bandwidth h = 0.075.

for |tj − t| ≤ h and 0 otherwise. It is usual to need a somewhat larger value
of bandwidth h to estimate derivatives than is required for estimating the
function.

Figure 4.8 shows the estimated second derivative or acceleration for the
two handwriting coordinate functions. After inspection of the results pro-
duced by a range of bandwidths, we settled on h = 0.075. This implies that
any smoothed acceleration value is based on about 150 milliseconds of data
and about 90 values of yj .

4.7.2 Localized basis function estimators
The ideas of kernel estimators and basis function estimators can, in a sense,
be combined to yield localized basis function estimators, which encompass
a large class of function and derivative estimators. The basic idea is to
extend the least squares criterion (4.1) to give a local measure of error as
follows:

SMSSEt(y|c) =
n∑

j=1

wj(t)[yj −
K∑

k=1

ckφk(tj)]2, (4.30)

where the weight functions wj are constructed from the kernel function
using (4.23).

In matrix terms,

SMSSEt(y|c) = (y − Φc)′W(t)(y − Φc), (4.31)
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where W(t) is a diagonal matrix containing the weight values wj(t) in its
diagonal. Don’t be confused by the formal similarity of this expression with
(4.5); the matrix W(t) plays a very different role here.

Choosing the coefficients c(t) to minimize SMSSEt yields

ĉ(t) = [Φ′W(t)Φ]−1Φ′W(t)y,

and substituting back into the expansion x̂(t) =
∑K

k=1 ĉkφk(t) gives a linear
smoothing estimator of the form (4.8) with smoothing weight values Sj(t)
being the elements of the vector

S(t) = W(t)Φ[Φ′W(t)Φ]−1φ(t), (4.32)

where φ(t) is the vector with elements φk(t).
The weight values wj(t) in (4.30) are designed to have substantially

nonzero values only for observations located close to the evaluation ar-
gument t at which the function is to be estimated. This implies that only
the elements in S(t) in (4.32) associated with data arguments values tj close
to evaluation argument t are substantially different from zero, and conse-
quently that x̂(t) is essentially a linear combination of only the observations
yj in the neighborhood of t.

Since the basis has only to approximate a limited segment of the data
surrounding t, the basis can do a better job of approximating the local
features of the data and, at the same time, we can expect to do well with
only a small number K of basis functions. The computational overhead for
a single t depends on the number of data argument values tj for which wj(t)
is nonzero, as well as on K. Both of these are typically small. However, the
price we pay for this flexibility is that the expansion must essentially be
carried out anew for each evaluation point t.

4.7.3 Local polynomial smoothing
It is interesting to note that the Nadaraya-Watson kernel estimate can
be obtained as a special case of the localized basis expansion method by
setting K = 1 and φi(t) = 1. A popular class of methods is obtained by
extending from a single basis function to a low order polynomial basis.
Thus we choose the estimated curve value x̂(t) to minimize the localized
least squares criterion

SMSSEt(y|c) =
n∑

j=1

Kernh(tj , t)[yj −
L∑

�=0

c�(t − tj)�]2 . (4.33)

Setting L = 0, we recover the Nadaraya-Watson estimate. For values of
L ≥ 1, the function value and L of its derivatives can be estimated by the
corresponding derivatives of the locally fitted polynomial at t. In general,
the value of L should be at least one and preferably two higher than the
highest order derivative required.
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Local polynomial smoothing has a strong appeal; see, for example, the
detailed discussion provided by Fan and Gijbels (1996). Its performance is
superior in the region of the boundaries, and it adapts well to unequally
spaced argument values. Local linear expansions give good results when we
require only an estimate of the function value. They can easily be adapted in
various ways to suit special requirements, such as robustness, monotonicity
and adaptive bandwidth selection.

4.7.4 Choosing the bandwidth h

In all the localized basis expansion methods we have considered, the pri-
mary determinant of the degree of smoothing is the bandwidth h, rather
than the number of basis functions used. The bandwidth controls the bal-
ance between two considerations: bias and variance in the estimate. Small
values of h imply that the expected value of the estimate x̂(t) must be close
to the true value x(t), but the price we pay is in terms of the high variabil-
ity of the estimate, since it is be based on comparatively few observations.
On the other hand, variability can always be decreased by increasing h,
although this is inevitably at the expense of higher bias, since the values
used cover a region in which the function’s shape varies substantially. Mean
squared error at t, which is the sum of squared bias and variance, provides
a composite measure of performance.

There is a variety of data-driven automatic techniques for choosing an
appropriate value of h, usually motivated by the need to minimize mean
squared error across the estimated function. Unfortunately, none of these
can always be trusted, and the problem of designing a reliable data-driven
bandwidth selection algorithm continues to be a subject of active research
and considerable controversy. Our own view is that trying out a variety
of values of h and inspecting the consequences graphically remains a suit-
able means of resolving the bandwidth selection problem for most practical
problems.

4.7.5 Summary of localized basis methods
Explicitly localized smoothing methods such as kernel smoothing and local
polynomial smoothing are easy to understand and have excellent compu-
tational characteristics. The role of the bandwidth parameter h is obvious,
and as a consequence it is even possible to allow h to adapt to curva-
ture variation. On the negative side, however, is the instability of these
methods near the boundaries of the interval, although local polynomial
smoothing performs substantially better than kernel smoothing in this re-
gard. As with unweighted basis function expansions, it is well worthwhile
to consider matching the choice of basis functions to known characteristics
of the data, especially in regions where the data are sparse, or where they
are asymmetrically placed around the point t of interest, for example near
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the boundaries. The next chapter on the roughness penalty approach looks
at the main competitor to kernel and local polynomial methods: spline
smoothing.

4.8 Further reading and notes

This chapter and the next are so tightly related that you may prefer to
read on, and then consider these notes along with those found there.

Much of the material in this chapter is an application of multiple
regression, and references such as Draper and Smith (1998) are useful sup-
plements, and especially on other ways of estimating residual covariance
structures.

For more complete treatments of data smoothing, we refer the reader to
sources such as Eubank (1999), Green and Silverman (1994), Härdle (1990)
and Simonoff (1996). Fan and Gijbels (1996) and Wand and Jones (1995)
focus more on kernel smoothing and local polynomial methods. Hastie and
Tibshirani (1990) use smoothing methods in the context of estimating the
generalized additive or GAM model, but their account of smoothing is
especially accessible. Data smoothing also plays a large role in data mining
and machine learning, and Hastie, Tibshirani and Friedman (2001) is a
recent reference on these topics.

We use spline expansions by fixing the knot locations in advance of the
analysis, and optimizing fit with respect to the coefficients multiplying the
spline basis functions defined by this fixed knot sequence. The main argu-
ment for regarding knots as fixed is computational convenience, but there
is also a large literature on using the data to estimate knot locations. Such
splines are often called free-knot splines. The least squares fitting criterion
is highly nonlinear in knot locations, and the computational challenges
are severe. Nevertheless, in certain applications where strong curvature is
localized in regions not known in advance, this is the more natural ap-
proach. For recent contributions to free-knot spline model estimation, see
Lindstrom (2002), Lindstrom and Kotz (2004) and Mao and Zhao (2003).

We hope that we have not left the reader with the impression that least
squares estimation is the only way to do smoothing. One of the most im-
portant developments in statistics in recent years has been the development
of quantile regression methods by R. Koenker and S. Portnoy, where the
model estimates a quantile of the conditional distribution of the dependent
variable. Least squares methods, by contrast, attempt to estimate the mean
of this distribution. Quantile regression minimizes the sum of absolute val-
ues of residuals rather than their sum of squares. Koenker and Portnoy
(1994) applied quantile regression to the spline smoothing problem.



5
Smoothing functional data with a
roughness penalty

5.1 Introduction

We saw in Chapter 4 that basis expansions can provide good approxima-
tions to functional data provided that the basis functions have the same
essential characteristics as the process generating the data. Thus, a Fourier
basis is useful if the functions we observe are periodic and do not exhibit
fluctuations in any particular interval that are much more rapid than those
elsewhere. However, fitting basis expansions by least squares implies clumsy
discontinuous control over the degree of smoothing, and we wonder if it is
not possible to get better results with other methods.

Kernel smoothing and local polynomial fitting techniques, on the other
hand, are based on appealing, efficient and easily understood algorithms
that are fairly simple modifications of classic statistical techniques. They
offer continuous control of the smoothness of the approximation, but they
are seldom optimal solutions to an explicit statistical problem, such as
minimizing a measure of total squared error, and their rather heuristic
character makes extending them to other smoothing situations difficult.

In this chapter we introduce a more powerful option for approximating
discrete data by a function. The roughness penalty or regularization ap-
proach retains the advantages of the basis function and local expansion
smoothing techniques developed in Chapter 4, but circumvents some of
their limitations. More importantly, it adapts gracefully to the more general
functional data analysis problems that we consider in subsequent chapters.
Finally, it often produces better results, and especially in the estimation of
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derivatives. This roughness penalty approach will be our smoothing method
of choice throughout this book.

Like the least squares methods of Chapter 4, roughness penalty methods
are based on optimizing a fitting criterion that defines what a smooth of
the data is trying to achieve. But here the precise meaning of “smooth” is
expressed explicitly at the level of the criterion being optimized, rather than
implicitly in terms of the number of basis functions being used. Moreover,
roughness penalty approaches can be applied to a much wider range of
smoothing problems than simply estimating a curve x from observations
of x(tj) for certain points tj . Green and Silverman (1994) discuss a variety
of statistical problems that can be approached using roughness penalties,
including those where the data’s dependence on the underlying curve is
akin to the dependence on parameters in generalized linear models. Here
we extend still further the scope of roughness penalty methods by discussing
various functional data analysis contexts where roughness penalties are an
elegant way to introduce smoothing into the analysis.

Figure 5.1 shows what we are trying to achieve. The refinery data from
the top panel of Figure 1.4 show measurements that seem flat up to time
67, followed by a sharp upward turn and then an smooth approach toward
a new level. In Chapter 17 we will want to model the change or derivative
of this trend. A good estimate should show near zero derivative to time
64, an abrupt increase to a maximum value, and then an approximately
exponential decay thereafter. Three estimates of this derivative computed
by penalizing the roughness of the derivative are shown in the Figure. The
best of these seems to be the heavy line, which combines a near zero value
on the left with the abrupt upward turn, high peak value, and fairly smooth
decay that we want. The smoother of the other two curves fails at both the
upward turn and at the peak, and the other is too wild below time 50.

5.2 Spline smoothing

Let us consider how regularization works in the simplest functional case
when the goal is to estimate a non-periodic function x on the basis of
discrete and noisy observations in a vector y. We continue with the data-
smoothing problem described in Chapter 4. However, we will reserve the
term “spline smoothing” for using roughness penalties in the way described
in this section. By contrast, the smoothing literature often refers to the
least squares fitting of B-spline expansions that we described in Chapter 4
as “regression spline smoothing.”
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Figure 5.1. Three estimates of the rate of change or first derivative of the data
shown in the top panel of Figure 1.4. Each curve has its roughness penalized.

5.2.1 Two competing objectives in function estimation
The spline smoothing method estimates a curve x from observations yj =
x(tj) + εj by making explicit two conflicting goals in curve estimation. On
the one hand, we wish to ensure that the estimated curve gives a good fit to
the data, for example in terms of the residual sum of squares

∑
[yj −x(tj)]2.

On the other hand, we do not wish the fit to be too good if this results in
a curve x that is excessively “wiggly” or locally variable.

These competing aims correspond to the elements of the basic principle
of statistics, discussed in Section 4.5,

Mean squared error = Bias2 + Sampling variance,

where bias, sampling variance and mean squared error were defined in
Section 4.5.1. A completely unbiased estimate of the function value x(tj)
can be produced by a curve fitting yj exactly, since this observed value is
itself an unbiased estimate of x(tj) according to our error model. But any
such curve must have high variance, manifested in the rapid local variation
of the curve.

In spline smoothing, as in other smoothing methods, the mean squared
error, usually abbreviated MSE, is one way of capturing what we usually
mean by the quality of estimate. We noted in Section 4.5.1 that other loss
functions may be preferable in certain situations, but that the notion of a
trade-off between bias and sampling variance applies more widely to these
situations as well, although not with this exact decomposition.
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MSE can often be dramatically reduced by sacrificing some bias in or-
der to reduce sampling variance, and this is a key reason for imposing
smoothness on the estimated curve. By requiring that the estimate vary
only gently from one value to another, we are effectively “borrowing infor-
mation” from neighboring data values, thereby expressing our faith in the
regularity of the underlying function x that we are trying to estimate. This
pooling of information is what makes our estimated curve more stable, at
the cost of some increase in bias. The roughness penalty makes explicit
what we sacrifice in bias to achieve an improvement MSE or some other
loss function.

5.2.2 Quantifying roughness
Here is popular way to quantify the notion “roughness” of a function. The
square of the second derivative [D2x(t)]2 of a function at t is often called
its curvature at t, since a straight line, which we all agree has no curvature,
also has a zero second derivative. Consequently, a natural measure of a
function’s roughness is the integrated squared second derivative

PEN2(x) =
∫

[D2x(s)]2 ds . (5.1)

Highly variable functions can be expected to yield high values of PEN2(x)
because their second derivatives are large over at least some of the range
of interest. For example, consider the two acceleration curves displayed in
Figure 4.3, the estimated and actual growth acceleration according to the
Jolicoeur model. The values of PEN2(x) for these curves are 0.22 and 1.42,
respectively, indicating the the estimated acceleration curve is substantially
rougher than the true curve.

Of course, since these curves are themselves second derivatives, these
values are actually the values of

PEN4(x) =
∫

[D4x(s)]2 ds,

where x is a height function. This suggests that we may need to generalize
the roughness penalty (5.1) by allowing a derivative Dmx of arbitrary order
so as to work with the penalty

PENm(x) =
∫

[Dmx(s)]2 ds . (5.2)

5.2.3 The penalized sum of squared errors fitting criterion
We now need to modify the last squares fitting criterion (4.5), defined in
Chapter 4, so as to allow the roughness penalty PEN2(x) to play a role
in defining x(s). Let x(t) be the vector resulting from function x being
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evaluated at the vector t of argument values. We define a compromise that
explicitly trades off smoothness against data fit by defining the penalized
residual sum of squares as

PENSSEλ(x|y) = [y − x(t)]′W[y − x(t)]2 + λ × PEN2(x) , (5.3)

Our estimate of the function is obtained by finding the function x that
minimizes PENSSEλ(x) over the space of functions x for which PEN2(x) is
defined.

The parameter λ is a smoothing parameter that measures the rate of ex-
change between fit to the data, as measured by the residual sum of squares
in the first term, and variability of the function x, as quantified by PEN2(x)
in the second term. As λ becomes larger and larger, functions which are not
linear must incur a more and more substantial roughness penalty through
the term PEN2(x), and consequently the composite criterion PENSSEλ(x)
must place more and more emphasis on the smoothness of x and less and
less on fitting the data. For this reason, as λ → ∞ the fitted curve x
must approach the standard linear regression to the observed data, where
PEN2(x) = 0.

On the other hand, for small λ the curve tends to become more and more
variable since there is less and less penalty placed on its roughness, and as
λ → 0 the curve x approaches an interpolant to the data, satisfying x(tj) =
yj for all j. However, even in this limiting case the interpolating curve is not
arbitrarily variable; instead, it is the smoothest twice-differentiable curve
that exactly fits the data.

5.2.4 The structure of a smoothing spline
Suppose for the moment that we make no assumptions about function x
except that it has a second derivative.1 We also assume here that sampling
points tj , j = 1, . . . , n are distinct. What kind of function minimizes this
penalized error sum of squares?

A remarkable theorem, found in de Boor (2002) and other more advanced
texts on smoothing, states that the curve x that minimizes PENSSEλ(x|y)
is a cubic spline with knots at the data points tj . Note that we have not
here assumed anything about how x is constructed; the spline structure
of x is a consequence of this theorem, in which an objective function is
optimized with respect to an entire function. Solutions to problems that
involve optimizing with respect to functions rather than with respect to
parameters are called variational problems.

Placing knots at data points eliminates one of the issues in the use of
regression splines: where to place the knots. Smoothing splines adapt nat-

1More technically, a slightly weaker assumption is required: that the integral of the
squared second derivative is finite.
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urally to unequal spacing of sampling points, and thus automatically take
advantage of regions where data density is high, and at the same time are
especially smooth over regions where there are few observations.

The most common computational technique for spline smoothing is to use
an order four B-spline basis function expansion with knots at the sampling
points, and to minimize criterion (5.3) with respect to the coefficients of
the expansion. In this case, the fitting function is piece-wise cubic, and the
method is often referred to as cubic spline smoothing.

Recalling the relation between number of knots, the order of the spline
and the number of basis functions that was described in Chapter 3, using
order four B-splines in this way implies that we have n + 2 basis functions,
which are obviously enough to fit n data points exactly if λ = 0.

5.2.5 How spline smooths are computed
Reminding ourselves of expressions and relations drawn from Chapter 4
will help us to see how the use of a roughness penalty changes the smooth-
ing process from a projection to something that generalizes the idea of a
projection.

Recall that, without a roughness penalty, the coefficient vector c in the
expansion

x(t) =
K∑
k

ckφk(t) = c′φ(t) = φ′(t)c,

where c is the K-vector of coefficients and φ is the K-vector of basis
functions, has the solution

ĉ = (Φ′WΦ)−1Φ′W′y (5.4)

where n by K matrix Φ contains the values of the K basis functions at the
n sampling points, W is a weight matrix to allow for possible covariance
structure among residuals, and where y is the vector of discrete data to be
smoothed. The corresponding expression for the vector of fits to the data
is

ŷ = Φ(Φ′WΦ)−1Φ′Wy = Sφy, (5.5)

where Sφ is the projection operator

Sφ = Φ(Φ′WΦ)−1Φ′W (5.6)

corresponding to the basis system φ.
We can re-express the roughness penalty PENm(x) in matrix terms as

follows.

PENm(x) =
∫

[Dmx(s)]2 ds



5.2. Spline smoothing 87

=
∫

[Dmc′φ(s)]2 ds

=
∫

c′Dmφ(s)Dmφ′(s)c ds

= c′[
∫

Dmφ(s)Dmφ′(s) ds]c

= c′Rc , (5.7)

where

R =
∫

Dmφ(s)Dmφ′(s) ds . (5.8)

Note that we will often encounter matrices like R that contain integrals of
outer products of vectors of functions, and it will keep the notation cleaner
if we can suppress the argument s and ds and use the notation

R =
∫

DmφDmφ′ .

By adding the error sum of squares SSE(y|c) and PENm(x) multiplied by
a smoothing parameter λ, we obtain

PENSSEm(y|c) = (y − Φc)′W(y − Φc) + λc′Rc . (5.9)

Taking the derivative with respect to parameter vector c, we obtain

−2Φ′Wy + Φ′WΦc + λRc = 0,

from which we obtain the expression for the estimated coefficient vector

ĉ = (Φ′WΦ + λR)−1Φ′Wy . (5.10)

5.2.6 Spline smoothing as a linear operation
The expression for the data-fitting vector ŷ is

ŷ = Φ(Φ′WΦ + λR)−1Φ′Wy = Sφ,λy , (5.11)

where the order n symmetric “hat” matrix is

Sφ,λ = Φ(Φ′WΦ + λR)−1Φ′W . (5.12)

Comparing this expression with (5.6) shows us that the only change is the
addition of λR to the cross-product matrix Φ′WΦ prior to its inversion,
and that the two operators become identical when λ = 0. The more general
operator (5.12) can be called a sub-projection operator because, unlike the
projection operator, the sub-projection does not satisfy the idempotency
relation, since

Sφ,λSφ,λ �= Sφ,λ.
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In plain language, this says that the spline smooth of a spline smooth is
even smoother.

Expressions of the form (5.10) occur often in statistics where linear mod-
els are used. For example, in multilevel or random coefficient models, a
similar expression arises when information about within-level regression
coefficients is borrowed across levels. In Bayesian versions of multiple re-
gression, the variance-covariance matrix Σ0 of the prior density for the
regression coefficient matrix shows up where we have R. Indeed, we can
think of the roughness penalty as analogous to the logarithm of a prior
density, just as the error sum of squares term is, except for a scale fac-
tor, the logarithm of a likelihood. An early example of regularization, ridge
regression, also used this operator.

Computing the matrix R will generally require approximating the inte-
gral in (5.8) by a numerical quadrature scheme, although exact expressions
are possible where both B-spline and Fourier bases are involved. In fact, it
is seldom necessary to have very high accuracy in the approximation. An
illustration of this point is that replacing R by a matrix of mth order differ-
ence operators applied to the coefficients themselves appears to work very
well as a smoothing technique for equally spaced sampling points (Eilers
and Marx, 1996).

It is also useful to plot the linear filter defined by the smoothing pro-
cess for estimating acceleration. Let Φ(2) contain the values of the second
derivatives of the basis functions evaluated at the sampling points, that
is, D2φk(tj), and let ŷ(2) be the vector of acceleration estimates at the
sampling points. Then

ŷ(2) = Φ(2)(Φ′WΦ + λR)−1Φ′Wy = S(2)
φ,λy ,

where S(2)
φ,λ is the matrix mapping the data vector into the vector of ac-

celeration estimates. Rows in this matrix corresponding to acceleration
estimates at ages one, ten and eighteen years are displayed in Figure 5.2.
Notice that the acceleration estimate at

• age one requires some weighting of data all the way up to eight years,

• age ten, in the middle of the pubertal growth spurt, uses data from
ages seven to thirteen, and

• age eighteen uses data back to age thirteen.

If the widths of these age ranges seems surprising, recall, firstly, that accel-
eration is intrinsically much harder to estimate than height; and, secondly,
that the sparse sampling of function values forces us to borrow informa-
tion from widely dispersed sampling points. Put another way, acceleration
at age ten is a composite of a peak, a valley, and a peak, and uses about
twelve data points, which works out to four per feature, and this in turn is
close to the minimum possible of three per feature.
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Figure 5.2. The solid curve indicates the weights placed on observations in the
growth data for estimating acceleration at age ten. The dashed line corresponds
to weights for height acceleration at age one, and the dashed-dotted line for age
eighteen.

Another useful application of Sφ,λ is in computing a degrees of freedom
value for a spline smooth,

df(λ) = traceSφ,λ . (5.13)

Hastie and Tibshirani (1990) discuss this and other ways of assessing the
degrees of freedom of a smoothing procedure and, more generally, any esti-
mation procedure that maps the data vector linearly to a parameter vector.
Zhang (2003) offers a more in-depth update of this issue.

5.2.7 Spline smoothing as an augmented least squares problem
Expression (5.9) can be interpreted as arising from an augmented least
squares problem. First, since R is a positive semidefinite matrix because of
its cross-product structure, we can express it as

R = L′L

by applying, among other possibilities, the Choleski decomposition. Now
let

ỹ =
[

y
0

]
,
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where the zero vector is of the same length as c. We can match this
augmented response vector by the augmented design matrix

Φ̃ =
[

Φ√
λL

]
.

Finally, we augment the weight matrix W with the identity matrix I on
the diagonal and zeros elsewhere to get the augmented weight matrix W̃.

Now we can express coefficient vector c using the roughness penalty as
the solution to the weighted least squares problem

SSE(ỹ|c) = (ỹ − Φ̃c)′W̃(ỹ − Φ̃c) . (5.14)

This version of the roughness penalty problem makes clear that a roughness
penalized least squares is a regular least squares where the data y are
augmented by a vector of zeros, and the zeros are fit using the augmented
portion of the design matrix

√
λL. Moreover, using the QR decomposition

to minimize (5.14) rather than using (5.10) directly is preferable from the
standpoint of rounding error in computing ĉ.

5.2.8 Estimating derivatives by spline smoothing
Many functional data analyses call for the estimation of derivatives, either
because these are of direct interest, or because they play a role in some
other part of the analysis. The penalty (5.1) may not be suitable, since it
controls curvature in x itself, and therefore only slope in the derivative Dx.
It does not require the second derivative D2x even to be continuous, let
alone smooth in any sense.

If the derivative of order m is the highest required, one should actually
penalize the derivatives of order m + 2 in order to control the curvature of
the highest order derivative. For example, the estimate of acceleration is
better if we use

PEN4(x) =
∫

[D4x(s)]2ds = ‖D4x‖2 (5.15)

in (5.3) since this controls the curvature in D2x.
We can use relation (5.13), for example, to compare the acceleration

estimates by least squares and roughness penalized smoothing from the
single simulated observation in Figure 4.3. By solving for the value of λ
that produces a value of df of 12, we obtain λ = 0.06. Smoothing the data
with this observation produces the acceleration estimate shown as a heavy
line in Figure 5.3. This estimate does much better at the boundaries than
the least squares estimate, which is also shown. Over the interior of the
interval, however, the two estimates are rather similar, although the spline
smooth does a slightly better job on the pubertal growth spurt.
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Figure 5.3. The heavy solid curve is the estimated growth acceleration for a single
set of simulated data shown in Figure 4.3 computed by roughness penalized spline
smoothing. The lighter solid line is for least squares smoothing, and the dashed
curve is the errorless true curve.

5.3 Some extensions

The spline smoothing procedure given above can be extended in many ways,
and many of these extensions are of great importance in applications. We
summarize fairly briefly a number of these in this section.

5.3.1 Roughness penalties with fewer basis functions
In applications such as the study of handwriting and other forms of move-
ment, we may use motion capture equipment that produce observations
hundreds or thousands of times per second. Even the nondurable goods
manufacturing index involves nearly a thousand sampling points. In these
situations, placing a knot at every sampling point may imply a prohibitive
amount of computation. Moreover, rounding errors may accumulate in the
calculations to the point where the results are seriously inaccurate. See
Section 5.4.3 below for more comments on this problem.

In these situations involving very large numbers of sampling points, it
may entirely reasonable to use a lower-dimensional B-spline basis defined
by some appropriate more limited knot sequence τ , provided that there
remains sufficient flexibility to capture the features of interest. For example,
handwriting data in Ramsay (2000) involved sampling pen position 400
times per second. The strokes making up the characters being produced
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each lasted around 120 milliseconds, and thus included about 50 argument
values, but was found that only about ten equally-spaced knots per stroke
was more than sufficient to capture the shape of any stroke as well as three
of its derivatives.

As a further example, 34 years of daily weather measurements represents
about 12,500 observations, and it is a heavy chore to use that many basis
functions. Instead, a system of 500 spline basis functions was considered
sufficient in Ramsay and Silverman (2002) to capture all the variation of
interest, and a roughness penalty was then used with this system to impose
further smoothness on the result.

None of the mathematics outlined above changes when we use fewer
knots than sampling points, and yet roughness penalization can remain an
effective way to ensure a smooth fit and stable derivative estimates.

5.3.2 More general measures of data fit
There are aspects of the roughness penalty method that are really use-
ful in our treatment of functional data analysis. For example, instead of
quantifying fit to the data by the residual sum of squares, we can penalize
any criterion of fit by a roughness penalty. For instance, we might have a
model for the observed yj for which the log likelihood of x can be written
down. Subtracting λ×PEN2(x) from the log likelihood and then finding the
maximum allows smoothing to be introduced in a wide range of statistical
problems, not merely those in which error is appropriately measured by a
residual sum of squares. These extensions of the roughness penalty method
are a major theme of Green and Silverman (1994).

In the functional data analysis context, we adopt this philosophy in con-
sidering functional versions of several multivariate techniques. The function
estimated by these methods is expressed as the solution of a maximization
(or minimization) problem based on the given data. For example, principal
components are chosen to have maximum possible variance subject to cer-
tain constraints. By penalizing this variance using a roughness penalty term
appropriately, the original aim of the analysis can be traded off against the
need to control the roughness of the estimate. There are different ways of
incorporating the roughness penalty according to the context, but the over-
all idea remains the same: Penalize whatever is the appropriate measure of
goodness-of-fit to the data for the problem under consideration.

5.3.3 More general roughness penalties
The second extension of the roughness penalty method uses measures of
roughness other than ‖D2x‖2. We have already seen one reason for this
in Section 5.2.8, where the estimation of derivatives of x was considered.
However, even if the function itself is of primary interest, there are two
related reasons for considering more general roughness penalties. On the
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one hand, we may wish that the class of functions with zero roughness were
wider than, or otherwise different from, those that are of the form a + bt.
On the other hand, we may have in mind that, locally at least, curves x
should ideally satisfy a particular differential equation, and we may wish
to penalize departure from this.

For example, if we are analyzing periodic data, it would be more natural
to use the harmonic acceleration operator

Lx = D3x + ω2Dx (5.16)

since zero roughness implies that x is of the form

x(t) = c1 + c2 sin ωt + c3 cos ωt,

where ω is the period.
We can achieve both of these goals by replacing the second derivative

operator D2 with a more general linear differential operator L, defined as

Lx = w0x + w1Dx + . . . + wm−1D
m−1x + Dmx,

where the weights wj may be either constants or functions wj(t). Then we
can define

PENL(x) =
∫

[(Lx)2](t) dt = ‖Lx‖2, (5.17)

the integral of the square of Lx.
As an alternative to pre-specifying the differential operator, we can

use observed functional data to estimate the operator L. These ideas are
developed further in Chapters 19 and 21.

5.3.4 Computing the roughness penalty matrix
The roughness penalty matrix R defined in (5.8) is composed of the inte-
grals of products of a derivative Dm of basis functions. For B-spline bases,
Fourier bases, and most of the basis systems that we are likely to work with
in practice, these integrals can be computed analytically. In the B-spline
case, however, the details (see de Boor, 2002) are intricate, and few users
of FDA will want to write programming code for this problem. There are
functions in the MATLAB R©, R and S-PLUS languages that can do this
work for you.

When more general roughness penalties are involved of the kind defined
in (5.17) above, it will be necessarily to resort to numerical approximation
of the integrals in (5.8) for matrix R. There are two main strategies in this
case.

The safer approach is to use a numerical method that iteratively im-
proves its estimate of an integral until a test for its accuracy is satisfied.
A classic approach is to use a simple method such as the trapezoidal rule
and to double the number of points at which the integrand is evaluated
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until an estimate of the integral is judged to have converged. We have had
good experience with Romberg integration, also called Richardson’s extrap-
olation, and have used variants of the algorithm described in Press et al.
(1999). However, there are more modern methods that may well perform
even better.

However, these adaptive methods can be too slow for applications where
R must be evaluated many times during the course of a calculation. In
this case, a lower accuracy non-iterative approach that is still considered
to be sufficiently accurate may be preferable. For example, the integrals
in (5.8) can be converted to matrix products using a fine mesh of values
of t and a numerical quadrature method such as Simpson’s Rule (Stoer
and Bulirsch, 2002). As a rough guideline, we have found that about 21
evaluation points per interval when working with B-spline basis functions
gives a level of accuracy that has sufficed for our purposes.

If multiple knots at the same location are used in order to allow for
discontinuity in a derivative or function value, be careful not to evaluate
the discontinuous quantity at the function value. Aside from the fact that
the value is not defined mathematically, available software for evaluating
spline basis functions can fail to warn you that you did something wrong,
and cheerfully return a function value of large and unpredictable size, which
will play havoc with your integral approximation. The better procedure is
to carry out the integration piecewise over each interval, and integrate only
up to a t-value separated from the knot location by a small constant.

5.4 Choosing the smoothing parameter

When we fit data using a roughness penalty instead of least squares, we
switch from defining the smooth in terms of degrees of freedom K to
defining the smooth in terms of the smoothing parameter λ. Neverthe-
less, strategies for selecting λ are rather similar to those that we used in
Chapter 4 in that we use a “discounted” measure of fit that compensates
for the degrees of freedom in the data used up by the fit.

5.4.1 Some limits imposed by computational issues
Although from a mathematical perspective we can contemplate any positive
values of λ, the realities of floating point computation actually impose some
severe limits. These limits are due to the need to solve a system of linear
equations with the coefficient matrix

M(λ) = Φ′WΦ + λR,
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where R is defined in (5.8). The two matrices Φ′WΦ and R can have
elements of radically different sizes. In particular, the size of

‖R‖ =
√∑

k

∑
�

r2
k�

increases by roughly an order of magnitude for each increase in the order
m of derivative that is used to define the roughness penalty.

Now R itself has rank K−m, and so cannot itself be useful as a coefficient
matrix. This implies that we cannot have λR so large as to overwhelm
Φ′WΦ; otherwise, attempting to invert M(λ) will either produce an error
message or, worse, a result that is so full of rounding error as to lead to
seriously wrong results further on down the line. A rough rule of thumb is
that the size of λR should not be more than 1010 times the size of Φ′WΦ.

Consider the handwriting data, for example. There are 1401 sampling
points evenly spaced between 0 and 2.3 seconds. We will need to estimate
the third derivative of the X and Y coordinates of pen position in Chap-
ter 19, and consequently will need to penalize the size of the derivative of
order m = 5. The minimal order of B-spline that will serve to define an
integrable fifth derivative is 7. If we choose to use smoothing splines with
a knot at each sampling value, this implies 1406 basis functions defining
matrix Φ. The size ‖R‖ of R in this context is about 2 × 1031! By con-
trast, ‖Φ′WΦ‖ ≈ 20. Hence, by our rule of thumb, we will be in trouble if
λ > 10−20 or so.

This illustrates the importance of some preliminary explorations along
these lines before plunging into functional data analysis, and especially
when high orders of derivatives are involved. In any case, the cure is simple;
as we indicated in Section 3.7, these problems arise because the unit of
measurement, 2.3 seconds, for t is far larger than the length of the interval
over which a spline basis function is nonzero. Measuring time in milliseconds
removes the problem.

On the lower limit side, we clearly cannot always use λ = 0; in this
example, there are more basis functions than data points and consequently
Φ′WΦ would not be invertible. Again, a rule of thumb can be proposed:
Choose λ at least large enough to ensure that the size of λR is at least
with ten orders of magnitude of the size of Φ′WΦ.

Now we turn to two strategies for choosing smoothing parameter
somewhere between these broad limits.

These difficulties are actually a result of the way the penalized least
squares criterion is defined in almost all the statistical literature. The appli-
cation of the method of dimensional analysis used routinely in the physical
sciences can be helpful here. The basic idea is that two quantities that are
added should have the same units of measurement.

Now the error sum of squares ‖y − ŷ‖2 has the unit of measurement
of x squared. In the handwriting data, this would be squared meters, for
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example. We should probably also divide this criterion by n to allow for
the number of sampling points.

Smoothing parameter λ can be made dimensionless by using its loga-
rithm, which is consistent with the idea that it will be a positive quantity.
Thus, we should multiply a roughness penalty such as PENm(x) by 10ν

where ν = log10 λ. In fact, we basically do this already since we tend to
vary λ by multiplying it by a fixed factor.

Finally, the units of Dmx are those of x itself divided by the time unit,
that we can indicate by τ , taken to the power m. This suggests that PENm(x)
should be multiplied by T 2m, where T is the length of time in τ units over
which the integration takes places. This will cancel out the role of the time
unit in the integrand. We might divide the integral, on the other hand, by
T itself to allow for the summation over time that the integral represents.
Putting this all together, it would be better to redefine the penalized least
squares criterion as

PENSSE(x) =
1
n

‖y − ŷ‖2 + 10νT 2m−1PENm(x). (5.18)

For the handwriting data, for example, if we use the time unit τ = 1
second, so that the interval of integration is 2.3 seconds, along with m = 5
to control the curvature of the third derivative, then T 9 ≈ 1800, but if we
opt for milliseconds as the time unit, then T 9 ≈ 1.8× 1012. Now, of course,
the fifth derivative takes on huge values in the time scale of seconds, but
comparatively mild values on the time scale of milliseconds so that, finally,
we will wind up using the same value of ν in either time scale.

5.4.2 The cross-validation or CV method
The basic idea behind cross-validation is to set part of the data to one
side, calling it a validation sample, and fit the model to the balance of the
data, called the training sample. In that way, we see how well the model fits
data that were not used to estimate the model, thus avoiding the somewhat
incestuous procedure of using the data to both fit the model and assess fit.

A versatile technique for choosing a smoothing parameter involves taking
this notion to the extreme situation where we leave only one observation out
as the validation sample, fitting the data to the rest, and then estimating
the fitted value for the left out data value. If this procedure is repeated for
each observation in turn, and the resulting error sum of squares summed
over all values, the result is the cross-validated error sum of squares. We
compute this criterion over a range of values of λ, and choose that value
that yields its minimum.

Cross-validation can be used in a wide range of situations, and in effect
rests only on the assumption that observations are relatively independent
of one another. However, the method has two problems. First, it is usually
computationally intensive, and not the sort of thing that would be feasible
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for sample sizes in the thousands. However, there are specific situations in
which some computational tricks can be used to reduce the computational
burden. The second problem is that minimizing CV can lead to under-
smoothing the data because the method tends too often to favor fitting
noisy or high-frequency types of variation that we would prefer to ignore.

5.4.3 The generalized cross-validation or GCV method
A measure that is popular in the spline smoothing literature is the gen-
eralized cross-validation measure GCV developed by Craven and Wahba
(1979). It was originally developed as a simpler version of the cross-
validation procedure that avoided the need to re-smooth n times. But it
also has been found to be rather more reliable than cross-validation in the
sense of having less of a tendency to under-smooth. The criterion is usually
expressed as

GCV(λ) =
n−1 SSE

[n−1trace (I − Sφ,λ)]2
,

where df is the equivalent degrees of freedom measure (5.13) and Sλ is the
smoothing operator defined in (5.12). But it can be more revealing to use
the equivalent expression

GCV(λ) =
( n

n − df(λ)
)( SSE

n − df(λ)
)

. (5.19)

Notice that this is a twice-discounted mean squared error measure. The
right factor is the unbiased estimate of error variance σ2 familiar in regres-
sion analysis, and thus represents some discounting by subtracting df(λ)
from n. The left factor further discounts this estimate by multiplying by
n/(n − df(λ)).

As a practical matter, C. Gu (2002) reports that the remaining tendency
for GCV to yield under-smoothing can be further reduced by multiplying
df by factors such as 1.2 or 1.4 in (5.19). This is a third level of discounting,
in effect. Apparently the additional discounting does not seriously increase
the odds of over-smoothing the data.

The minimization of GCV with respect to λ will inevitably involve trying
a large number of values of λ, whether grid-search or a numerical optimiza-
tion algorithm is used. The computation of GCV(λ) can be greatly speeded
up by performing a preliminary generalized eigenanalysis. Criterion GCV
can be expressed in terms of the n by N data matrix Y, the n × K matrix
Φ of basis function values and the order K penalty matrix R as follows:

GCV(λ) =
n trace{Y′[I − Sφ,λ]−2Y}

{trace[I − Sφ,λ]}2 ,

where the “hat” matrix Sφ,λ has the expression

Sφ,λ = ΦM(λ)−1Φ′W
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and where, in turn

M(λ) = Φ′WΦ + λR.

Note that we have dropped the weight matrix W from these expressions
to keep the notation a little simpler.

We actually don’t need to invert M(λ) each time we change λ, but we
do need to solve a linear system of equations for which it is the coefficient
matrix, and this is that we want to avoid. This can be achieved if we first
solve the generalized eigenvalue problem

RV = Φ′WΦVD,

where D is the matrix of eigenvalues of R in the metric defined by Φ′WΦ
and V, the columns of which are the corresponding eigenvectors of R,
satisfy the orthogonality condition

V′Φ′WΦV = I.

Note that the generalized eigenvalue problem has a solution only if
Φ′WΦ is nonsingular. This will not be the case if knots are placed at
every data point. However, a trick recommended by de Boor (2002) is to
drop enough knots next to the boundary to make the number of basis
functions equal to the number of sampling points. For example, if we are
working with cubic smoothing splines of order four and we have 101 sam-
pling points, then this implies 103 basis functions. But if we drop the knots
associated with sampling points 2 and 100, the number of basis functions
drops to 101, and Φ′WΦ will be nonsingular, at least if sampling points
are reasonably well-spaced. It is, needless to say, always a good idea to
check Φ′WΦ for singularity.

We now express, for any new value of λ, the required inverse very
efficiently as

M(λ)−1 = V(I + λD)−1V′,

since the matrix now being inverted is diagonal. Moreover, taking the
derivative of GCV(λ) involves calculating the matrix

M(λ)−1Φ′WΦM(λ)−1 = V(I + λD)−2V′

so that providing a derivative value to a numerical optimization algo-
rithm is also computationally efficient and likely to decrease the number of
evaluations of GCV(λ) substantially.

Gu (2002) offers a detailed and up to date discussion of theoretical and
computational issues associated with the CV(λ), GCV(λ) and other methods
for choosing λ.
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Figure 5.4. A sample of twenty height acceleration curves for females generated
using the Jolicoeur model.

5.4.4 Spline smoothing the simulated growth data
We illustrate here some of the points made in this chapter by the analysis
of 1000 simulated records for females using the Jolicoeur model described
in Section 4.3. A random sample of twenty acceleration curves from this
model are shown in Figure 5.4.

Figure 5.5 shows the variation of the generalized cross-validation statistic
GCV over a range of log10(λ) values in its top panel. We see that the
minimum GCV is attained at λ = −0.1. At this smoothing level, the degrees
of freedom measure has the value of 11.4, which is not far from the number
twelve of basis functions that we used in least squares smoothing.

In the lower panel, we see the square root of the mean squared error
(RMSE) of the acceleration curve values at ages eight, before puberty;
twelve, mid-puberty for the average girl; and sixteen, post-puberty for most
girls. These curves do not bottom out at the same value as the GCV curve,
but they come close to doing so. It is not surprising that the curve for age
twelve favors a lower value of λ; the curvature of the acceleration function is
much sharper for the average girl at mid-puberty. The more stable curves
typical for most girls at ages eight and sixteen favor higher values of λ.
Nevertheless, the GCV-favored value gives nearly optimal values for RMSE.

Figure 5.6 indicates the variation in RMSE, bias, and sampling standard
error over age for the smoothing level minimizing GCV. We see that the
curve estimates are of limited value for ages less than three years or more
than sixteen years. But they aren’t bad at all in between these extremes,
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Figure 5.5. The top panel displays the relation between the GCV statistic and
smoothing level for 1000 simulated female records. The bottom panel displays
the root-mean-squared error in acceleration estimates at the selected ages of 8,
12 and 16 years of age.

and the bias in particular is small. Of course, we could do better if we had
sampled height more often. It is also not surprising that sampling error is
higher during the pubertal growth spurt when curvature is high.

Perhaps the main conclusion to be drawn here is that the spline smooth-
ing method does a good job in this context, and especially given that there
are only 31 observations in each record. Choosing λ using the GCV criterion
gets us close to the best answer, on the average.

5.5 Confidence intervals for function values and
functional probes

We now want to see how to compute confidence limits on some useful
quantities that depend on an estimated function x that has, in turn, been
computed by the smoothing with a roughness penalty a vector of discrete
data y.

For example, how precisely is the function value at t, x(t), determined by
our sample of data y? Or, what sampling standard deviation can we expect
if we re-sample the data over and over again, estimating x(t) anew with
each sample? Can we construct a pair of confidence limits such that the
probability that the true value of x(t) lies within these limits is a specified
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Figure 5.6. The root-mean-squared error for the GCV-optimal smoothing level
as a function of age is shown in the top panel, and the corresponding values of
bias and sampling standard error are shown in the middle and bottom panels,
respectively.

value, such as 0.95? Displaying functions or their derivatives with point-
wise confidence limits is a useful way of conveying how much information
there is in the data used to estimate these functions. See Figure 5.7 below
for an example.

However, do be aware of the distinction between these point-wise limits,
which tell us only the precision at a fixed location, and global confidence
limits, which would tell us a region of confidence for the entire function.
Constructing an upper and a lower curve such that the probability that
the entire true curve lies between these functional limits can be achieved
by computationally intensive methods such as bootstrapping (Efron and
Tibshirani, 1993).

5.5.1 Linear functional probes
More generally, we may wish to examine quantities of the form

ρξ(x) =
∫

ξ(t)x(t) dt . (5.20)

We use the term functional probe for the quantity ρξ(x) and linear probe
function for the weighting function ξ that defines it. The probe function,
in turn, is chosen so as to highlight some interesting feature, such as a
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peak, valley, or difference between function values over two non-overlapping
regions.

A probe is a generalization of the notion of a contrast in analysis of
variance, used there to probe a set of treatment effects for specific types of
variation. However, there is no need for the values of ξ to integrate to zero.
If we have multiple probes, it may be helpful for pairs of probe functions
to be orthogonal, but this is not essential.

For example, to highlight the behavior of x over an interval, an appro-
priate probe function ξ might be the box function, which takes the value 1
within the interval and 0 elsewhere. Or, to highlight the difference between
x in two intervals A and B of equal length, one could use a probe function
taking the value 1 on A, −1 on B, and 0 elsewhere. In cases like these, we
will want to compute the sampling standard deviation of the scalar ρξ in
order to decide whether it differs significantly from some reference value
like zero.

Functional probes ρξ of this nature include the simpler situation of x(t)
as a special case, since x(t) can be obtained by choosing ξ to be nonnegative
and concentrating its nonzero values arbitrarily near t while preserving unit
area under the its curve. We can denote such a probe by

ρt(x) = x(t) , (5.21)

and it is called the evaluation map because it maps function x into its value
x(t) at t. Probes of this nature are taken up in detail in Section 20.3.

Probe ρξ is a linear function of the estimated smoothing function x in
the sense if that we multiply two such functions, x1 and x2 by the constants
a and b, respectively, then

ρξ(ax1 + bx2) = aρξ(x1) + bρξ(x2).

This linearity implies that there is a linear transformation of the coefficient
vector c that defines x that yields the value ρξ(x). At the same time, we
already worked out in this chapter the linear transformation that takes or
maps the data vector y to the coefficient vector c.

5.5.2 Two linear mappings defining a probe value
In order to study the sampling behavior of ρξ, we need to compute these two
linear mappings plus their composite. They are given names and described
as follows:

1. Mapping y2cMap, which converts the raw data vector y to the coef-
ficient vector c for the basis function expansion of x. If y and c are
lengths n and K, respectively, the mapping is a K by n matrix S
such that

c = Sy .
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2. Mapping c2rMap, which converts the coefficient vector c to the scalar
quantity ρξ(x). This mapping is a 1 by K row vector L such that

ρξ(x) = Lc .

3. The composite mapping called y2rMap defined by

y2rMap = ρξ(x) = c2rMap ◦ y2cMap,

which takes data vector y directly to the probe value and is the 1 by
n row vector LS that yields

ρξ(x) = LSy .

As an illustration, consider a conventional linear regression model with
design matrix Z

y = Zc + e,

where the regression coefficient vector c is estimated by ordinary least
squares. Then, since c = (Z′Z)−1Z′y, the matrix corresponding to y2cMap
is S = (Z′Z)−1Z′. Now suppose that for some reason we want to estimate
the difference between the first and second regression coefficients, possibly
because we conjecture that they may be equal in the population. Then
the probe function ξ is equivalent to the probe vector L = (1,−1, 0, . . .),
and this is the row vector corresponding to mapping c2rMap. Finally, the
composite mapping y2rMap taking y directly into the value of this difference
is simply the row vector L(Z′Z)−1Z′.

Now the random behavior of the estimator of whatever we choose to
estimate is ultimately tied to the random behavior of the data vector y.
Let us indicate the order n variance-covariance matrix of y as Var(y) = Σe,
as we did in Sections 4.6.1 and 4.6.2. Recall that we are operating in this
chapter with the model

y = x(t) + ε ,

where x(t) here means the n-vector of values of x at the n argument values
tj . In this model x(t) is regarded as fixed, and as a consequence Σe =
Var(ε).

5.5.3 Computing confidence limits for function values
Now let’s express these mappings in the context of estimating confidence
limits specifically for a function value x(t). Let n by K matrix Φ contain
the values φk(tj), and let the matrices R and W be defined as before. Then
the matrix corresponding to y2cMap is

S = (Φ′WΦ + λR)−1Φ′W

for smoothing parameter λ.
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Suppose that we are interested in the sampling behavior of the function
value ρt(x) = x(t). We know that

x(t) = φ′(t)c = φ′(t)Sy,

and from this we can see that the 1 by K matrix L corresponding to c2rMap
is simply φ′, the row vector resulting from evaluating each of the basis
functions at t. And of course the composite mapping y2rMap corresponds
to the matrix LS. Consequently, using the expression for the variance of a
linear transform of a random vector, we have that

Var[x̂(t)] = LSΣeS′L′. (5.22)

The matrix LS used in (5.22) is also of interest in itself. Each row of
this matrix indicates the profile of weights on the data used to define what
is being estimated for that row. For example, if row j corresponds to the
function evaluation ρtj (x) at time tj , then a plot of the values in this row
shows the entries in y that are used to define this estimate. A row of this
matrix is often called a linear filter for estimating the quantity in question
by engineers. See Figure 5.7 below for an example.

5.5.4 Confidence limits for growth acceleration
With this information in hand, we can gain an impression of how well the
acceleration function can be estimated using the results in Section 5.5. If we
use spline smoothing using order six B-splines as the basis for smoothing,
a smoothing parameter λ = 0.1, and weight matrix W a diagonal matrix
containing the values of the variances of estimate as derived from Figure 4.2,
then Figure 5.7 shows the acceleration curve for the Jolicoeur model based
on using the mean coefficients along with point-wise 95% confidence limits.
The confidence limits balloon out at the extremes because of the difficulty
of estimating derivatives in these regions.

5.6 A bi-resolution analysis with smoothing splines

We now turn to a more general approach, of which spline smoothing turns
out to be a special case. So far we have used basis functions in two essen-
tially different ways. In section 4.2 of Chapter 4, we forced the function x
to lie in a relatively low dimensional space, defined in terms of a suitable
basis. On the other hand, in Section 4.7, we did not assume that the whole
function was in the span of a particular basis, but rather we considered
a local basis expansion at any given point. In this section, we allow the
function to have a higher-dimensional basis expansion, but use a roughness
penalty in fitting the function to the observed data.
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Figure 5.7. The solid curve is an acceleration curve derived from the Jolicoeur
model. The dashed lines are 95% point-wise confidence limits on the curve
based on a smoothing spline estimate from data having the standard error of
measurement plotted in Figure 4.2.

5.6.1 Complementary bases
To develop our approach, suppose that we have two sets of basis functions,
φj , j = 1, . . . , J and ψk, k = 1, . . . , K, that complement one another. Let
functions φj be small in number and chosen to give reasonable account of
the large-scale features of the data. The complementary basis functions ψk

will generally be much larger in number, and are designed to catch local
and other features not representable by the φj . Assume that any function
x of interest can be expressed in terms of the two bases as

x(s) =
J∑

j=1

djφj(s) +
K∑

k=1

ckψk(s). (5.23)

For example, for the Canadian temperature data, the first three Fourier
series functions with ω = π/6 would be a natural choice for the φj , setting
J = 3 and letting the φ basis be the functions

1, sin(ωt), cos(ωt).

The appropriate choice for the ψk in this case would be the remaining K
functions in an order (J + K) Fourier series expansion. In the monthly
temperature data case, they could be the remaining nine Fourier series
terms needed to represent the data exactly. Usually, as in the Fourier case
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above, the bases [φj ] and [ψk] are mutually linearly independent, and the
expansion is unique, but this is not entirely essential to our method.

5.6.2 Specifying the roughness penalty
Let us now develop a roughness penalty for x so that linear combinations
of the φj are in effect completely smooth, in that they contribute nothing
to the roughness penalty. Then the roughness penalty must depend only on
the coefficients of the ψk. One way of motivating this choice is by thinking
of x as the sum of two parts, an “ultrasmooth” function xS =

∑
j djφj and

a function xR =
∑

k ckψk. Therefore we seek a measure PEN(xR) of how
rough, or in any other way important, we would consider the function xR

expressed solely in terms of the ψk. One possibility is simply to take the
usual L2 norm of xR, defining

PEN0(xR) =
∫

xR(s)2 ds =
∫

(c′ψ)2 =
∫

[
K∑

k=1

ckψk(s)]2 ds.

Another possibility is to take a certain order of derivative of the expan-
sion prior to squaring and integrating, just as we did for the function x
itself in Section 5.2. For example, we might use

PEN2(xR) =
∫

(D2xR)2 =
∫

[
K∑

k=1

ckD2ψk(s)]2 ds

to assess the importance of xR in terms of its total curvature, as measured
by its squared second derivative, or PEN4(xR) =

∫
(c′D4ψ)2 to assess the

curvature of its second derivative. More generally, we can use any linear
differential operator L, defining

PENL(xR) =
∫

(LxR)2 =
∫

[
K∑

k=1

ckLψk(s)]2 ds.

Of course, setting L as the identity operator or the second derivative
operator yields PEN0 and PEN2 as special cases.

We can express these penalties in matrix terms as

PENL(xR) = c′Rc,

where the order K symmetric matrix R contains elements

Rkl =
∫

Lψk(s)Lψl(s)ds.

If computing the integrals proves difficult, a simple numerical integration
scheme, such as the trapezoidal rule applied to a fine mesh of argument
values, usually suffices, and then we can also estimate derivatives numer-
ically. Alternatively, we can specify R directly as any suitable symmetric
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non-negative definite matrix, without explicit reference to the roughness of
the function xR.

Now we consider a general function x of the form (5.23), and simply
define the roughness of x as

PEN(x) = c′Rc.

To express the penalized sum of squares, we need to express the residual
sum of squares in terms of the coefficient vectors d and c. Working just as
in (4.1), ∑

j

[yj − x(tj)]2 = ‖y − Φd − Ψc‖2,

where the n × K matrix Ψ has elements Ψik = ψk(tj). We can now define
the composite smoothing criterion

PENSSEλ(x|y) = ‖y − Φd − Ψc‖2 + λc′Rc. (5.24)

We can minimize this quadratic form in d and c to find the fitted curve
x in terms of its expansion (5.23) as follows. The solution for d for any
fixed value of c is given by

d = (Φ′Φ)−1Φ′(y − Ψc) (5.25)

and, consequently,

Φd = Sφ(y − Ψc),

where the projection matrix Sφ is

Sφ = Φ(Φ′Φ)−1Φ′.

In words, the φ basis component of the fit is the conventional basis ex-
pansion of the residual vector y − Ψc. Substitute this solution for d into
PENSSEλ and define the complementary projection matrix Qφ by

Qφ = I − Sφ.

Recalling that because Qφ is a projection matrix, QφQφ = Qφ, we arrive
at the equations

ĉ = (Ψ′QφΨ + λR)−1Ψ′Qφy

d̂ = (Φ′Φ)−1Φ′[I − Ψ(Ψ′QφΨ + λR)−1Ψ′]y . (5.26)

5.6.3 Some properties of the estimates
The first term of (5.24) is identical in structure to the error sum of squares
criterion Q(c) defined in (4.1), except that both sets of basis functions
are used in the expansion. The second term, however, modifies the basis
function expansion problem by penalizing the roughness or size in some
sense of the ψ-component of the expansion.
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The size of the penalty on the ψ-component is controlled by the smooth-
ing parameter λ. In the limit as λ → 0, no penalty whatsoever is applied,
and the estimates obtained by minimizing the criterion PENSSEλ revert to
those obtained by an ordinary basis expansion in the combined basis of φj

and ψk. At the other extreme, when λ → ∞, the penalty is so severe that
ψ-contribution to the roughness penalty is forced to zero; if R is strictly
positive-definite, we obtain the basis function estimate corresponding to
the basis [φj ] alone. If R is not strictly positive-definite, then a contribu-
tion xR from the [ψk] basis is allowed, provided that it satisfies LxR(s) = 0
for all s.

It is instructive to study the minimizing values of the coefficient vectors
d and c. The smoothing matrix S then becomes

Sλ = SφQψ,λ + Sψ,λQφ,

where the smoothing operator Sψ,λ is

Sψ,λ = Ψ(Ψ′QφΨ + λR)−1Ψ′. (5.27)

and Qψ,λ = I − Sψ,λ. From this we can see that Sψ,λ is a kind of “sub-
projection”’ matrix in the metric of the projection Qφ in that it has the
structure of a true projection except for a perturbation of Ψ′QφΨ by λR.

Moreover, the fit vector ŷ is now partitioned into two orthogonal parts,
ŷ = ŷ0 + ŷ1, where

ŷ0 = SφQψ,λy

ŷ1 = Sψ,λQφ
y. (5.28)

The first “ultra-smooth” term comes from first smoothing y using rough
basis ψ, and then projecting the residual from that smooth onto the space
spanned by smooth basis φ. The second “rough” term comes from first
projecting y on to the orthogonal complement of the φ-space, and then
applying the ψ-smoother to the result.

This elaborates the way in which the regularized basis approach provides
a continuous range of choices between low-dimensional basis expansion in
terms of the functions φj and a high-dimensional expansion also making
use of the functions ψk.

5.6.4 Relationship to the roughness penalty approach
We conclude with some remarks about the connections between the reg-
ularized basis method and the method discussed in Section 5.3.3 above.
Firstly, to minimize the residual sum of squares penalized by ‖Lx‖2, we
need not specify any functions at all in the φj part of the basis, but merely
ensure that [ψk] is a suitable basis for the functions of interest. In the
original spline smoothing context, with L = D2, we can take the [ψk] to
be a B-spline basis with knots at the data points, and, by using suitable
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methods of numerical linear algebra, we can obtain a stable O(n) algo-
rithm for spline smoothing; this is the approach of the S-PLUS function
smooth.spline.

Secondly, if we wish to prescribe a particular ultrasmooth class F0, the
regularized basis approach allows us to choose basis functions φj to span
F0, and then allow R to be any appropriate strictly positive-definite ma-
trix. In this way, the choice of the ultrasmooth class is decoupled from the
way that roughness is measured.

5.7 Further reading and notes

We drew on the treatment of roughness penalties in Green and Silverman
(1994) in preparing this chapter, but possibly the best current reference for
fairly advanced readers is Gu (2002). Wahba (1990) reviews the many re-
markable contributions of the author and her students to spline smoothing
technology, but requires a background in functional analysis to read.

Although we have expressed roughness penalties in terms of integrated
squared derivatives, many authors have used the simpler approach of sum-
ming squared first or second difference values instead. This only works if
the sampling points tj are equally spaced, but in this context, summing
squared differences works well, and is discussed in Eilers and Marx (1996),
and also by O’Sullivan (1986) and O’Sullivan, Yandell and Raynor (1986).

Two efforts stand out as path-breaking attempts to use derivative infor-
mation in data analysis. The first of these is a series of papers on human
growth data beginning with Largo et al. (1978) that focussed on the shape
of the acceleration function. By careful and innovative use of smoothing
techniques, spline and kernel, they were able to isolate a hitherto ignored
phenomenon, the so-called mid-spurt, or hump in the acceleration curve
that precedes the pubertal growth spurt and occurs at around seven to
eight years in almost all children of either gender. These studies confirmed
a principle that we have seen in many of our own functional data analy-
ses: Exogenous influences and other interesting events are often much more
apparent in some order of derivative than in the original curves.

On a somewhat more technical note, the thesis by Besse (1979) and his
subsequent papers (Besse and Ramsay, 1986; Besse, 1980 & 1988) moved
the French data analytic school into a new realm involving data that take
values in spaces of functions possessing a certain number of derivatives.
Besse’s discussion of principal components analysis in the context of ob-
servations in Sobelev space was inspired by Dauxois and Pousse (1976),
Dauxois, Pousse and Romain (1982) and the functional analytic approaches
to spline smoothing by Atteia (1965). Ramsay and Dalzell (1991), who
coined the term functional data analysis, extended this line of work to
linear models.



6
Constrained functions

6.1 Introduction

Up to now we have only asked smoothness of our functions, but in many
situations the function that we estimate must also satisfy important side
conditions, such as being strictly increasing. Unfortunately, our central idea
of using a basis expansion can get us into trouble here. We saw in Chapters
4 and 5 that smoothing the height data often produced curves that did
not increase everywhere and consequently had negative velocities. It is, in
general, difficult to force functions defined by linear expansions to satisfy
constraints such as being everywhere positive, monotone, and so forth.

In this chapter we consider four constrained estimation situations: func-
tions which must be positive, those which must be strictly monotone, those
whose values are probabilities, and probability density functions, which
must be both positive and integrate to one. We will in each case redefine
the original problem so that the function to be estimated is unconstrained.
The idea of defining a constrained function by a differential equation will
be introduced. In the density estimation case, it will be necessary to use a
fitting criterion other than least squares.

6.2 Fitting positive functions

Data are often collected on functions that are strictly positive. The data
themselves may be zero, but these zero values indicate only that the func-
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Figure 6.1. The circles indicate squared residuals averaged across the 54 girls in
the Berkeley growth study for the ages of observation. The solid line is a positive
smooth of these data.

tion being estimated is small at that point. For example, within any year
we are apt to observe many days without any rainfall, and there can be
days where no rain is recorded in thirty years. But eventually it rains, at
least in Canada. Counts of errors, as another example, can easily be zero,
but eventually everybody makes a mistake.

We often need to use the data to estimate variances σ2(t) that vary over
argument t, and a zero or negative variance estimate can cause all kinds of
problems. We don’t want a string of zero observed variances to translate
into a zero estimate.

We can estimate a nonstationary variance function for the 54 females
in the Berkeley growth data as follows. First, we smooth the height val-
ues assuming a constant variance. We opted for smoothing splines with a
penalty on (D4x)2 and λ = 1. The squared residuals from these fits were
averaged over cases, and Figure 6.1 displays the resulting averages. The
measurement error is elevated in infancy and around the pubertal growth
spurt, but the error variance estimates near the boundaries are certainly
too small, probably due to the over-fitting that happens in these regions
due to the lack of data.

The solid line in Figure 6.1 shows the fit using a version of a smoothing
spline, to be described below, that is constrained to be positive, so as to
avoid any estimated value σ̂2(t) that is zero or negative. The fit indicates
that the standard error of measurement is about seven millimeters in in-
fancy, but is more like three millimeters in later years. We then re-smoothed
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the data using a diagonal weight matrix W containing its diagonal the re-
ciprocals of the fitting variances wj = 1/ ˆσ2(tj). We could go on to iterate
this process by re-estimating average squared residuals, and so on.

6.2.1 A positive smoothing spline
A positive smoothing function x can always be defined as the exponential
of an unconstrained function W :

x(t) = eW (t) , (6.1)

so that W is the logarithm of x. Other bases besides e for the logarithm
are, of course, always appropriate; some of our clients may prefer the base
10 to aid interpretation.

Since W (t) can be positive or negative and is not in any other way
constrained, it is reasonable to expand W in terms of a set of basis
functions,

W (t) =
∑

k

ckφk(t) , (6.2)

probably using a Fourier series for periodic data such as daily precipita-
tion levels and B-spline expansions for non-periodic data such as the mean
squared residuals for the growth data.

The roughness of a positive smoothing function x is defined as the rough-
ness of its logarithm W , so that the roughness-penalized fitting criterion
for positive smoothing, using the size of the second derivative, is

PENSSEλ(W |y) = [y − eW (t)]′W[y − eW (t)]2 + λ

∫
[D2W (t)]2 dt . (6.3)

A complication on the computational side is that we must now use nu-
merical methods to minimize criterion (6.3) with respect to the coefficients
ck of the expansion. These methods iteratively decrease an initial estimate
of W (t) until convergence is reached. However, because the exponential
transform is only mildly nonlinear, these iterative methods usually con-
verge rapidly, even from initial estimates far away from the final value.
In fact, we find that starting with W = 0 works just fine in most circum-
stances. Keep in mind, however, that if the data are mostly zero in a region,
and especially at the boundaries, the values of W (t) in that region will be
poorly defined large negative numbers.

The positive smooth of the residuals in Figure 6.1 was obtained by using
an order four B-spline expansion of W (t) with a knot located at each age
of observation. The fit was made smooth by using as a roughness penalty
the integrated squared derivative D2σ multiplied by λ = 0.0001.
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6.2.2 Representing a positive function by a differential
equation

A differential equation expresses a relationship between a function and one
or more of its derivatives, and is often an elegant way of describing functions
with special structures.

For example, what does the notation ewt, where w is here some fixed rate
constant, really mean? We may say that the notation stands for a recipe
for computing its value, namely the convergent infinite series

x(t) =
∞∑

i=0

(wt)i

i
. (6.4)

But a recipe is not the same as a taste, and a computer program is not
the same as the mathematical concept whose value it calculates. We might
prefer a definition that tells us directly about an important property of ewt.
Here it is:

Dx(t) = w(t)x(t). (6.5)

This is easier to remember, and a positive w evokes the image of a graph
that increases more and more rapidly as the function gets larger and larger,
that is, an image of explosive growth. Or, if w is negative, that the slope
of x goes to zero as the function value x(t) goes to zero.

If w(t) is a function, the solution function x for the differential equation
(6.5) is

x(t) = C exp[
∫ t

t0

w(u) du] (6.6)

for some nonzero constant C and lower limit of integration t0. In the cleaner
functional notation, x = C exp D−1w . If C > 0, then

x(t) = exp[W (t)], (6.7)

where

W (t) =
∫ t

t0

w(u) du + log C = D−1w(t) + log C.

In fact, our invocation of the infinite series (6.4) would not be correct in
a wider functional sense; the recipe (6.4) only works when w is a constant
and therefore (D−1w)(t) = wt. Three lessons are therefore to be drawn:

• Going from scalar to functional notation can turn up some surprises.

• A differential equation can be a powerful and evocative way of
defining a function.

• The solution to a differential equation is a class of functions, in this
case corresponding to the arbtrary choice of constant C.
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Perhaps the need for this little bit of mathematics will be less than
apparent here. If so, ignore it, but do expect the differential equation theme
to return again and again, and to become progressively more important.

6.3 Fitting strictly monotone functions

Now that we have the principle that smooth functions can result from
transforming the constrained smoothing problem to one that is uncon-
strained, we are ready to look at the monotone smoothing of the growth
data. A strictly monotone function has a strictly positive first derivative.
The spline smoothing approach that has been used up to now has worked
fine for ages up to about sixteen, but after that the estimated velocities
have in many cases gone negative. We hope that preventing negative esti-
mates of velocities can stabilize height, velocity and acceleration estimates
at the adult end of the fitting interval.

6.3.1 Fitting the growth of a baby’s tibia
Figure 6.2 displays a tough monotone smoothing problem. The data were
collected by M. Hermanussen et al. (1998), who developed an instrument
measuring bone lengths to within about 0.1 millimeters. They are the
lengths of the tibia, the large bone in the lower leg, in a newborn baby
measured daily for the first 40 days of its life. It is clear that growth at
this age is not a smooth process; a few days of little growth are separated
by the astonishing increase of two or more millimeters within twenty-four
hours. The only way a conventional unconstrained smoother could avoid
having negative slope would be to smooth so heavily that the data would
be badly fit. We especially need to fit the data monotonically here in order
to get a good estimate of the velocity of growth, displayed in Figure 6.3.

6.3.2 Expressing a strictly monotone function explicitly
The solution x to the strictly monotone smoothing problem is linked to
positive function estimation in Section 6.2 since velocity Dx is now as-
sumed to be positive. We can, therefore, use (6.1) by expressing Dx as the
exponential of an unconstrained function W to obtain

Dx(t) = eW (t) . (6.8)

By integrating both sides of this equation, we obtain

x(t) = C +
∫ t

t0

exp[W (u)] du , (6.9)

where C is a constant that will have to be estimated from the data.
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Figure 6.2. The length of the tibia of a newborn infant over the first 40 days of
life. The solid line is the fit to the data using a monotone smoothing spline.

6.3.3 Expressing a strictly monotone function as a
differential equation

Again we can pass directly from differential equation (6.5) to the cor-
responding equation for monotone functions by substituting Dx for
x:

D2x = wDx . (6.10)

Here function w = D2x/Dx, and is consequently the derivative of the
logarithm of velocity, the log velocity always existing because velocity is
positive.

This differential equation has the following general solution:

x(t) = C0 + C1

∫ t

t0

exp[
∫ v

t0

w(v) dv] du , (6.11)

where C1 is nonzero. This is the same equation as (6.9) if we substitute

W (u) =
∫ v

t0

w(v) dv + log C1 = D−1w(u) + log C1 .

Let us consider the role of function w. First, if w(t) = 0 for all t, we have
the solution

x(t) = C0 + C1t .
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Figure 6.3. The estimated derivative or velocity of the data in Figure 6.2.

If w is a nonzero constant, then the solution becomes

x(t) = C0 + C1e
wt .

Thus, linear functions are at the origin of a sort of one-dimensional func-
tional coordinate system defined by varying function w, and exponential
functions are contained within the same system. If w is a function, then
the closer to zero it is at an argument value t, the more its local behav-
ior around t will be linear. If C1 is positive, then positive values of w(t)
imply local exponential increase, and negative values imply an exponential
approach locally to some asymptote.

We will be especially interested in the next chapter in strictly monotone
functions, called warping functions, that monotonically transform a time
interval [0, T ] into itself. There the differential equation will reveal other
neat properties.

6.4 The performance of spline smoothing revisited

In Chapter 5 we used direct spline smoothing to fit simulated growth data
for girls. We now ask how monotone smoothing compares in performance
with this direct smoothing. We simulated 1000 samples from the mean
curve used in Section 5.5, but this time fit each curve with a monotone
smooth, penalizing the variation in the third derivative of relative accel-
eration function W with a smoothing parameter of 0.1. This is roughly
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Figure 6.4. The cross-hatched area shows point-wise 95% confidence limits ob-
tained from monotone smoothing, and the other dashed lines are the limits
obtained with direct smoothing that are shown in Figure 5.7.

equivalent to the the nature and amount of roughness penalization that we
used for the direct spline smoothing.

The results are shown in Figure 6.4 as point-wise confidence limits around
the true curve, along with the standard error estimates that we obtained
previously. There is a great improvement in precision of estimation at later
ages, where the monotonicity constraint acts as a powerful smoothing prin-
ciple in its own right. There is also much improvement in precision in the
childhood ages as well, where we very much need the extra fitting power in
order to study the smaller “mid-spurts” that are often found there. We lose,
though, in early childhood, where the steep slope on the acceleration func-
tion leaves a lot of room for variation, and where violating monotonicity is
no problem for the direct smoothing estimate.

6.5 Fitting probability functions

It is often necessary to estimate the probability of an event happening
as a function of time or some other continuum. Does, for example, the
probability that a non-smoking worker will get lung cancer depend on the
number of cigarettes smoked per hour in his workspace? This probability
function with values p(n) is an example of a dose response function of the
kind often estimated in pharmacokinetics and toxicology.
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A function p taking values on the interior of the unit interval (0, 1) can be
neatly defined by a differential equation. The differential equation Dx = wx
worked for nonzero functions because, by definition, x is never zero. In this
case, what is never zero is p(t)[1 − p(t)]. Consequently, we can propose the
nonlinear differential equation

Dp(t) = w(t)p(t)[1 − p(t)] . (6.12)

The equation implies that

w(t) =
Dp(t)

p(t)[1 − p(t)]
,

so that function w(t) is the slope of p at t relative to the variance of the
binary variable with p(t) as its parameter.

The explicit solution to this equation is

p(t) =
exp[

∫ t

t0
w(u) du]

1 + exp[
∫ t

t0
w(u) du]

, (6.13)

and, defining

W (t) =
∫ t

t0

w(u) du,

we have that

W (t) = log
[ p(t)
1 − p(t)

]
is the log odds-ratio function.

An example using of this formulation of the binomial smoothing problem
can be found in Chapter 9 of Ramsay and Silverman (2002) and in Rossi,
Wang and Ramsay (2002).

We would not normally choose to fit a set of frequency sample size pairs
(fj , Nj) by least squares estimation. Rather, we would use maximum like-
lihood estimation, or treat the model as a general linear model (GLM),
which amounts to the same thing.

6.6 Estimating probability density functions

The estimation of a probability density function p describing the distri-
bution of a set of sample values t1, . . . , tN is perhaps one of the oldest
functional estimation problems in statistics. A probability density function
is positive, and therefore is a special case of (6.6), and thus of the form

p(t) = CeW (t)
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but with the additional restriction∫
p(t) dt = 1.

The constant C in (6.6) is therefore

C = 1/
( ∫

eW (t) dt
)
.

Maximizing likelihood is the usual strategy for estimating a density func-
tion, Given N observed values tk, we would in practice maximize the log
likelihood

lnL(W |c) =
N∑
i

log p(ti)

=
N∑
i

W (ti) − N ln
∫

eW (t) dt

=
N∑
i

c′φ(ti) − N ln
∫

exp[c′φ(t)] dt (6.14)

where W (t) = c′φ(t) for a vector φ of K basis functions.
The roughness of the estimated density can always be controlled by the

number K of basis functions, but the versatility of roughness penalties that
we have already encountered suggests they might work better here, too. If
we maximize the log likelihood, we will have to subtract the roughness
penalty to control roughness.

Using the penalty

PEN3(W ) =
∫

[D3W (t)]2 dt

implies that the heavier the penalty, the more W will approximate a
quadratic function and, consequently, the more density p will approach
a normal or Gaussian density function (Silverman, 1982, 1986). Later in
Chapter 18 it will be shown that there is a linear differential operator L
corresponding to most of the textbook density functions such that penal-
izing the size of LW can permit us to smooth toward one of a wide range
of default densities.

Figure 6.5 shows the probability density function for the log of daily
rainfall at Prince Rupert, British Columbia, one of the rainiest places in
North America, over the years 1960 through 1994. Even there, however,
about a third of the days have a precipitation of 0.1 mm or less, and we
used only the 7697 days having precipitation in excess of 0.1 mm. Sixteen
B-spline basis functions of order five and equally spaced knots were used
to expand W (t), and the size of the third derivative was penalized with
λ = 10−6. The distribution is rather negatively skewed, even after taking
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Figure 6.5. The estimated probability density function for the log (base 10)
of daily precipitation at Prince Rupert, British Columbia. Only the 7697
precipitations in excess of 0.1 mm were used.

a log transformation. The sharp peak in the density suggests that rainfall
comes in two forms: a steady drizzle that leaves up to a centimeter of rain,
and large violent storms that can dump more than 10 centimeters of rain.
It is possible to show point-wise confidence regions for density estimates
such as these, but with this many observations the limits are too close to
the estimated curve to be worth plotting.

6.7 Functional data analysis of point processes

A point process is a sample of N times of events, t1, . . . , tN . These times
are usually taken relative to some time t0 at which recording begins, and
this can be taken without losing any generality as t0 = 0.

There are two questions that are central to point processes:

• Given that an event has already taken place at time ti, how probable
is it that the next event will take place at a time at or near t ≥ ti?

• What is the relation of this probability to the events already ob-
served? For example, how does the probability that the next event
will be at t depend on the time ti − ti−1 between the last two events?

The simplest of point processes, the homogeneous Poisson process, an-
swers these two questions in this way. First, let there be no relationship



122 6. Constrained functions

whatever between the time of the next event and the times of previous
events. Second, the distribution of the time to the next event, that is
t − ti, is exponential. The distribution function and density function for
an exponential distribution, respectively, are

F (t−ti|µ) = 1−exp[−µ(t−ti)] and p(t−ti|µ) = µ exp[−µ(t−ti)], (6.15)

where the parameter µ is average number of events per unit time, and is
often called the intensity parameter of the process. The exponential dis-
tribution is a model of perfect chaos in the sense that if you have waited
already to time t for an event to occur, the distribution of how much longer
you have to wait remains exponential. That is, you gain nothing by waiting.
The larger µ, the shorter your average waiting time, which is 1/µ.

The likelihood L(t1, . . . , tN ) of the sample of event times is, using t0 = 0,

L(t|µ) =
N∏
i

p(ti − ti−1|µ)

and the log likelihood is

lnL(t|µ) =
N∑
i

[lnµ − µ(ti − ti−1)] = N lnµ − µtN . (6.16)

Consequently, the maximum likelihood estimate of µ is

µ̂ =
N

tN
,

and it is interesting to note that the estimate depends only on the last
observed time, and thus ignores previous event times.

Poisson processes, although well understood by statisticians, are usually
much too simple to model real-life event times. For example, if you have
waited twenty minutes for a bus, it is reasonable to assume that you won’t
have to wait much longer. Also, the probability of a particular waiting time
is often not likely to remain constant, as (6.15) suggests; if you are waiting
for a bus at 3 a.m., you can expect to wait longer than at 5 p.m.

We may decide to keep the assumption of independence of event times,
but relax the assumption of a constant intensity parameter. Suppose, now,
that intensity parameter µ is a function of time with values µ(t). The
mathematically natural way to generalize (6.15) to this situation is

F (t − ti|µ) = 1 − exp[−
∫ t

ti

µ(s) ds]

p(t − ti|µ) = µ(t) exp[−
∫ t

ti

µ(s) ds]. (6.17)
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This more general model reduces to the Poisson process when µ(s) is a
constant. The log likelihood now becomes

lnL(t|µ) =
N∑
i

lnµ(ti) −
∫ tN

0
µ(s) ds. (6.18)

The fact that µ(t) is nonnegative suggests that we should take the
approach in Section 6.2 and use the exponentiated basis function expansion

µ(t) = exp[c′φ(t)], (6.19)

where φ is a functional vector of K basis functions, and vector c contains
the coefficients of the expansion. Substituting this into 6.18 gives us

lnL(t|µ) =
N∑
i

c′φ(ti) −
∫ tN

0
exp[c′φ(s)] ds. (6.20)

In order to compute the maximum likelihood estimate of the coefficients in
c, we need the derivative

Dc lnL(t|µ) =
N∑
i

φ(ti) −
∫ tN

0
φ(s) exp[c′φ(s)] ds. (6.21)

Setting Dc lnL to zero does not result in any simple solution for c, and we
must resort to numerical optimization methods to maximize (6.20).

If we compare the log likelihood in this situation with (6.14) for the log
likelihood in the problem density estimation, the similarity is striking. The
first term is the same, and the second term for densities involves multiplying
by N , logging and then integrating to ∞ rather than just integrating to
tN . The problems are thus essentially the same except for relatively minor
changes in the normalizing constraint.

Lupus is an autoimmune disease characterized by sudden flares in symp-
toms. Figure 6.6 shows the timings of 41 flares for a single patient over
nearly 19 years, along with the estimated intensity function µ for these
data. The intensity function reflects well the two periods when this patient
was relatively free of flares, as well as the period of intense disease activity
around year eight. The point-wise confidence limits, however, caution us
that this amount of data does not pin down the intensity function espe-
cially well. These results were achieved using 13 order four B-splines with
a roughness penalty on D2µ multiplied by smoothing parameter 5.0.

6.8 Fitting a linear model with estimation of the
density of residuals

Our default approach to fitting data has been to minimize the sum of
squared residuals. This is tantamount to assuming that the residuals are
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Figure 6.6. The times of flares in lupus symptoms for a single patient are indicated
by vertical lines on the horizontal axis. The solid line is the intensity function µ
for a nonhomogeneous Poisson process estimated from these data. The dashed
lines indicate 95% point-wise confidence limits for the intensity function.
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Figure 6.7. The estimated probability density functions of the residuals from
fitting log (base 10) of daily precipitation at Churchill, Manitoba, and Vancouver,
British Columbia.

normally distributed in the population of potential observations from which
we have sampled.

Assuming normality can be risky, and especially if the true distribution
has long tails. It would be safer if we could estimate the density of the
residuals as well as the fit to the data by combining the methodology in
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Chapters 4 and 5 with the density estimation approach of Section 6.6. For
example, if there are residuals many standard deviations from the curve,
then allowing for this in estimating the fitted curve will give a measure of
robustness to the fit. In other situations, the density of the residuals might
be interesting on its own, as we saw in Figure 6.5.

Suppose that we have a vector y of N dependent variable observations,
and an N by p design matrix Z available as a basis for a linear model for y.
In the curve-fitting situation, for example, Z will contain the values φk(tj)
of the basis functions at the sampling points ti, i = 1 . . . , N. Let a vector e
of N residuals be of the form

e = y − Zc, (6.22)

where we expect to estimate the coefficients in p-vector c.
In addition to estimating c, however, we want an estimate of the density

of the residuals e, and we want to use that density in the estimation of c. It
will often be convenient to standardize the residuals prior to estimating the
residuals by dividing them by a constant σ. If σ is a preliminary estimate
of the standard deviation of the ei’s, for example, this will normalize the
interval over which the residuals are distributed to something not too far
from [−3, 3]. Consequently, defining r to be

r = e/σ, (6.23)

we want an estimate p of the standardized residual density with values

p(ri) =
eW (ri)∫
eW (u) du

=
eW (

yi−
∑

j
zijcj

σ )∫
eW (u) du

, (6.24)

where, as with (6.2) but with a change of symbols,

W (r) =
∑

k

bkψk(r).

The computational problem is now to maximize

PENLIK(W |b, c) =
N∑
i

log p(ti) =
N∑
i

W (ti)−N

∫
eW (t) dt−

∫
[LW (t)]2 dt

(6.25)
with respect to both b and c. This criterion can, of course, be further
augmented with a roughness penalty on the fit defined by Zc.

Figure 6.7 shows the residual density functions estimated in fitting log
precipitation for Churchill high up on Hudson’s Bay and Vancouver on the
lower Pacific coast. In both cases, we see some strong departures from nor-
mality. Both densities have much heavier negative tails than the normal
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Figure 6.8. The estimated log (base 10) of daily precipitation at Churchill, Mani-
toba, and Vancouver, British Columbia. The heavy solid lines are the fits resulting
from estimating the residual densities, and the lighter dashed lines were fits using
least squares estimation.

distribution, and Vancouver in particular has a number of strong normal-
ized residuals at about −4.5. Churchill has a shoulder on the negative side
of its density, suggesting a rainy season and a dry season.

Figure 6.8 shows the two fitted precipitation curves, and in each case
also the curve fit by least squares. Both curves fitted by the estimated
density are smoother, and Vancouver’s fit is also less perturbed by some
large negative residuals in mid–summer, while the least squares fit was.
Estimating the density in this case made the fit more robust.

6.9 Further notes and readings

For a general purpose introduction to nonparametric density estimation,
see Silverman (1986). Scott (1992) also considers multivariate density es-
timation. Otherwise, there is a vast literature on this topic, and especially
using kernel smoothing methods.

A thorough reference on point processes is Snyder and Miller (1991), but
the older Cox and Lewis (1966) is rather more readable.



7
The registration and display of
functional data

7.1 Introduction

We can now assume that our observations are in functional form, and
want to proceed to consider methods for their analysis. We are not quite
ready, however; a problem of critical importance to functional data needs
a solution. We see often that variation in functional observations involves
both phase and amplitude, and that confounding these two leads to many
problems. Our main emphasis is on registration of the data, involving
transformations of the argument t rather than the values x(t).

Figure 1.2 illustrates a problem that can frustrate even the simplest anal-
yses of replicated curves. Ten records of the acceleration in children’s height
show individually the salient features of growth: the large deceleration dur-
ing infancy is followed by a rather complex but small-sized acceleration
phase during late childhood. Then the dramatic acceleration-deceleration
pulses of the pubertal growth spurt finally give way to zero acceleration in
adulthood. But the timing of these salient features obviously varies from
child to child, and ignoring this timing variation in computing a cross-
sectional mean function, shown by the heavy dashed line in Figure 1.2, can
result in a estimate of average acceleration that does not resemble any of
the observed curves. In this case, the mean curve has less variation during
the pubertal phase than any single curve, and the duration of the mean
pubertal growth spurt is rather larger than that of any individual curve.

The problem is that the growth curves exhibit two types of variability.
Amplitude variability pertains to the sizes of particular features such as the



128 7. The registration and display of functional data

Amplitude variation

Age
5 10 15 20

-4
-2

0
2

Phase variation

Age
5 10 15 20

-4
-2

0
2

Figure 7.1. The left panel shows three height acceleration curves varying only in
amplitude. The right panel shows three curves varying only in phase.

velocity peak in the pubertal growth spurt, ignoring their timings. Phase
variability is variation in the timings of the features without considering
their sizes. Before we can get a useful measure of a typical growth curve,
we must separate these two types of variation, so that features such as the
pubertal spurt occur at roughly the same “times” for all girls. The problem
is expressed in schematic terms in Figure 7.1, where we see in the left panel
two acceleration curves that differ only in amplitude, and in the right panel
two curves with the same amplitude, but differing in phase.

The need to transform curves by transforming their arguments, which
we call curve registration, can be motivated as follows. The rigid metric of
physical time may not be directly relevant to the internal dynamics of many
real-life systems. Rather, there can be a sort of biological or meteorological
time scale that can be nonlinearly related to physical time, and can vary
from case to case.

Human growth, for example, is the consequence of a complex sequence of
hormonal events that do not happen at the same rate for every child. The
intensity of the pubertal growth spurts of two children should be compared
at their respective ages of peak velocity rather than at any fixed age. A
colleague with a musical turn of mind refers to this as differences in the
tempo of growth.

Similarly, weather is driven by ocean currents, reflectance changes for
land surfaces, and other factors that are timed differently for different spa-
tial locations and different years. Winter comes early in some years, and
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late in others, and typically arrives later at some weather stations than
others. We need to assess how cold the average winter is at the time the
average temperature bottoms out rather than at any fixed time.

Put more abstractly, the values of two or more function values xi(ti) can
in principle differ because of two types of variation. The first is the more
familiar vertical variation, or amplitude variation, due to the fact that x1(t)
and x2(t) may simply differ at points of time t at which they are compared,
but otherwise exhibit the same shape features at that time. But they may
also exhibit phase variation in the sense that functions x1 and x2 should
not be compared at the same time t because they are not exhibiting the
same behavior. Instead, in order to compare the two functions, the time
scale itself has to be distorted or transformed.

We now look at several types of curve registration problems, beginning
first with the problem of simply translating or shifting the values of t by a
constant amount δ. Then we discuss landmark registration, which involves
transforming t nonlinearly in order to line up important features or land-
marks for all curves. Finally, we look at a more general method for curve
registration.

7.2 Shift registration

Many of the issues involved in registration can be illustrated by consider-
ing the simplest case, a simple shift in the time scale. The pinch force data
illustrated in Figure 1.11 are an example of a set of functional observations
that must be aligned by moving each curve horizontally before any mean-
ingful cross-curve analysis is possible. This often happens because the time
at which the recording process begins is arbitrary, and is unrelated to the
beginning of the interesting segment of the data, in this case the period
over which the measured squeeze actually takes place.

Let the interval T over which the functions are to be registered be [T1, T2].
We also need to assume that each sample function xi is available for some
region beyond each end of T . The pinch force data, for example, are ob-
served for substantial periods both before and after the force pulse that we
wish to study. In the case of periodic data such as the Canadian tempera-
ture records, this requirement is easily met since one can wrap the function
around by using the function’s behavior at the opposing end of the interval.

We are actually interested in the values

x∗
i (t) = xi(t + δi),

where the shift parameter δi is chosen in order to appropriately align the
curves. For the pinch force data, the size of δi is of no real interest, since
it merely measures the gap between the initialization of recording and the
beginning of a squeeze. Silverman (1995) refers to this situation, in which
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Figure 7.2. Temperature records for two weather stations where in the timing of
the seasons differs by a roughly constant shift.

a shift parameter must be accounted for but is of no real interest, as a
nuisance effects problem.

The Canadian temperature data present a curve alignment problem of
a somewhat different nature. As Figure 7.2 indicates, two temperature
records, such as those for St. John’s, Newfoundland, and Edmonton, Al-
berta, can differ noticeably in terms of the phase or timing of key events,
such as the lowest mean temperature and the timing of spring and au-
tumn. In this case, the shifts that would align these two curves vertically
are of intrinsic interest, and should be viewed as a component of variation
that needs careful description. It turns out that continental stations such
as Edmonton have earlier seasons than marine stations such as St. John’s,
because of the capacity of oceans to store heat and to release it slowly. In
fact, either station’s weather would have to be shifted by about three weeks
to align the two.

When, as in the temperature data case, the shift is an important feature
of each curve, we characterize its estimation as a random effects problem.
Silverman (1995) also distinguishes a third and intermediate fixed effects
case in which the shift must be carried out initially, and while not be-
ing discarded completely once the functions x∗

i have been constructed, is
nevertheless only of tangential interest.
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7.2.1 The least squares criterion for shift alignment
The basic mechanics of estimating the shifts δi are the same, whether they
are considered as nuisance or random effects. The differences become im-
portant when we consider the analysis in subsequent chapters, because in
the random effects case (and, to some extent, the fixed effects case) the
δi enter the analysis. However, for present purposes we concentrate on the
pinch force data as an example.

The estimation of a shift or an alignment requires a criterion that defines
when several curves are properly registered. One possibility is to identify a
specific feature or landmark for a curve, and shift each curve so that this
feature occurs at a fixed point in time. The time of the maximum of the
smoothed pinch force is an obvious landmark. Note that this might also be
expressed as the time at which the first derivative crosses zero with negative
slope, and landmarks are often more easily identifiable at the level of some
derivative.

However, the registration by landmark or feature alignment has some po-
tentially undesirable aspects: The location of the feature may be ambiguous
for certain curves, and if the alignment is only of a single point, variations
in other regions may be ignored. If, for example, we were to register the
two temperature curves by aligning the midsummers, the midwinters might
still remain seriously out of phase.

Instead, we can define a global registration criterion for identifying a shift
δi for curve i as follows. First we estimate an overall mean function µ̂(t) for
t in T . If the individual functional observations xi are smooth, it usually
suffices to estimate µ̂ by the sample average x̄. However, we wish to be able
to evaluate derivatives of µ̂, and so more generally we want to smooth the
overall estimate using one of the methods described in Chapters 4 and 5.
We can now define our global registration criterion by

REGSSE =
N∑

i=1

∫
T

[xi(t + δi) − µ̂(t)]2 ds

=
N∑

i=1

∫
T

[x∗
i (t) − µ̂(t)]2 ds. (7.1)

Thus, our measure of curve alignment is the integrated or global sum of
squared vertical discrepancies between the shifted curves and the sample
mean curve.

The target function for transformation in (7.1) is the unregistered cross-
sectional estimated mean µ̂. But of course one of the goals of registration is
to produce a better estimate of this same mean function. We therefore ex-
pect to proceed iteratively: beginning with the unregistered cross-sectional
estimated mean, argument values for each curve are shifted so as to min-
imize REGSSE, then the estimated mean µ̂ is updated by re-estimating it
from the registered curves x∗

i , and a new iteration is then undertaken us-
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Figure 7.3. Twenty replications of “fda” written by one of the authors.

ing this revised target. This procedure of estimating a transformation by
transforming to an iteratively updated average is often referred to as the
Procrustes method. In practice, we have found that the process usually
converges within one or two iterations.

7.3 Feature or landmark registration

A landmark or a feature of a curve is some characteristic that one can
associate with a specific argument value t. These are typically maxima,
minima, or zero crossings of curves, and may be identified at the level of
some derivatives as well as at the level of the curves themselves.

We now turn to the more general problem of estimating a possibly non-
linear transformation hi of t, and indicate how we can use landmarks to
estimate this transformation. Coincidentally, the illustrative example we
use shows how vector-valued functional data can be handled by obvious
extensions of methods for scalar-valued functions.

The landmark registration process requires for each curve xi the identi-
fication of the argument values tif , f = 1, . . . , F associated with each of F
features. The goal is to construct a transformation hi for each curve such
that the registered curves with values

x∗(t) = xi[hi(t)]

have more or less identical argument values for any given landmark.
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Figure 7.4. The average length of the acceleration vector for the 20 handwriting
samples. The characters identify the 15 features used for landmark registration.

Consider, for example, the 20 replications of the letters “fda” in Fig-
ure 7.3. Each sample of handwriting was obtained by recording the position
of a pen at a sampling rate of 600 times per second. There was some pre-
processing to make each script begin and end at times 0 and 2.3 seconds,
and to compute coordinates at the same 1,401 equally-spaced time-values.
Each curve xi in this situation is vector-valued, since two spatial coordi-
nates are involved, and we use ScriptXi and ScriptYi to designate the X-
and Y-coordinates, respectively.

Not surprisingly, there is some variation from observation to observation,
and one goal is to explore the nature of this variation. But we want to take
into account that, for example, variation in the “f” can be of two sorts.
There is temporal variation due to the fact that timing of the top of the
upper loop, for example, is variable. While this type of variation would not
show up in the plots in Figure 7.3, it may still be an important aspect of
how these curves vary. On the other hand, there is variation in the way the
shape of each letter is formed, and this is obvious in the figure.

We estimated the accelerations or second derivatives of the two coor-
dinate functions D2ScriptXi and D2ScriptYi by the local polynomial
method described in Chapter 4. Figure 7.4 displays the average length
of the acceleration vector

√
(D2ScriptXi)2 + (D2ScriptYi)2
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Figure 7.5. The first handwriting curve with the location of the 15 landmarks
indicated by the characters used in Figure 7.4.

and we note that there are 15 clearly identified maxima, indicating points
where the pen is changing direction. We also found that these maxima were
easily identifiable in each record, and we were able to determine the values
of tif corresponding to them by just clicking on the appropriate points in a
plot. Figure 7.5 shows the first curve with these 15 features labelled, and we
can see that landmarks labelled “4” and “A” mark the boundaries between
letters. Figure 7.6 plots the values of the landmark timings tif against the
corresponding timings for the mean function, t0f . We were interested to
see that the variability of the landmark timings was rather larger for the
initial landmarks than for the later ones, and we were surprised by how
small the variability was for all of them.

The identification of landmarks enabled us to compare the X- and Y-
coordinate values for the 20 curves at the landmark times, but of course we
also wanted to make comparisons at arbitrary points between landmarks.
This required the computation of a function hi for each curve, called a
time-warping function in the engineering literature, with the properties
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Figure 7.6. The timings of the landmarks for all 20 scripts plotted against the
corresponding timings for the mean curve.

• hi(0) = 0

• hi(2.3) = 2.3

• hi(t0f ) = tif , f = 1, . . . , 15

• hi is strictly monotonic: s < t implies that hi(t) < hi(t).

The values of the adjusted curves at time t are ScriptX[hi(t)] and
ScriptY[hi(t)]. In all the adjusted curves, the landmarks each occur at
the same time as in the mean function. In addition, the adjusted curves are
also more or less aligned between landmarks. In this application, we merely
used linear interpolation for time values between the points (t0f , tif ) (as
well as (0,0) and (2.3,2.3)) to define the time warping function hi for each
curve. We introduce more sophisticated notions in the next section. Fig-
ure 7.7 shows the warping function computed in this manner for the first
script record. Because h1 is below the diagonal line in the region of “f,” the
aligned time h1(t) is earlier than the actual time of features, and hence the
actual times for curve 1 are retarded with respect to the mean curve.

We can now re-compute the mean curve by averaging the registered
curves. The result is in Figure 7.8, shown along with the mean for the
unregistered data. Although the differences are not dramatic, as we might
expect given the mild curvature in h1, we do see that the upper and lower
loops of the “f” are now more pronounced, and in fact do represent the
original curves substantially better.
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Figure 7.7. The time warping function h1 estimated for the first record that
registers its features with respect to the mean curve.

X coordinate

Y
 c

oo
rd

in
at

e

-30 -20 -10 0 10 20 30

-2
0

0
20

Figure 7.8. The solid line is the mean of the registered “fda” curves, and the
dashed line is the mean of the unregistered curves.
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7.4 Using the warping function h to register x

Now that a warping function h has been estimated from landmark registra-
tion, or by using the continuous method described in a later section, you
will want to calculate the registered function values x∗(t) = x[h(t)]. This
requires two steps.

First, estimate the inverse warping function h−1(t) with the property
h−1[h(t)] = t. Note that this is not an inverse in the sense of the reciprocal.
Instead, h−1(t) is computed by smoothing or interpolating the relationship
between h(t) plotted on the horizontal axis and t plotted on the vertical
axis. You can then use simple interpolation to get the values of this inverse
function at an equally spaced set of values of t if required. Note that it will
be essential that this smoothing or interpolation function be strictly mono-
tonic, so you may have to use lots of values of t and/or employ monotone
smoothing described in Chapter 6.

The second step is to smooth or interpolate the relationship between
h−1(t) plotted on the abscissa and x(t) plotted on the ordinate. You can
then use simple interpolation to get the values of this registered function
at an equally spaced set of values of t if required.

7.5 A more general warping function h

The linear interpolation scheme that we used on the handwriting data to
estimate the time-warping function h has two limitations. First, if we want
to compute higher order derivatives of the curves with respect to warped
time, the warping function must also be differentiable to the same order, a
linear interpolation would not carry us beyond the first derivative. Secondly,
we will shortly consider continuous registration methods that do not use
landmarks and where the idea of interpolating a sequence of points will not
be helpful.

Time is itself a growth process, and thus can be linked to our discussion
in Chapter 6 on how to model the children’s growth curves. That is, we
can use the formulation

h(t) = C0 + C1

∫ t

0
exp W (u) du (7.2)

that we used in (6.9). Here the constants C0 and C1 are fixed by the
requirement that h(t) = t at the lower and upper limits of the interval
over which we model the data. Or, if shift registration is a possibility, the
constant term C0 can be allowed to pick any constant phase shift that is
required.

Physical or clock time grows linearly, of course, and thus corresponds
to W (u) = 0. If W (u) is positive, then h(t) > t, warped time is growing
faster than clock time, and this is what we want if our observed process
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Figure 7.9. The left panel shows the target function, x0(t) = sin(4πt), as a dotted
line; an early function, xE(t) = sin(4πt0.8), as a solid line; and a late function,
xL(t) = sin(4πt1.2), as a dashed line. The corresponding warping functions that
register the early and late curves to the target are shown in the right panel.

is running late. Similarly, for negative values of W (u), h(t) < t, and clock
time is being slowed down for a process that is running ahead of some
target.

The left panel of Figure 7.9 displays two examples. Here the target
or standard function is x0(t) = sin(4πt), the early function is xE(t) =
sin(4πt0.8) and the late function is xL(t) = sin(4πt1.2). Warping hE(t) =
t0.125 will register the first example since sin[4π(t0.8)1.25] = sin(4πt), and
similarly hL(t) = t0.833. Approximations to the two warping functions by
a method to be described below are presented in the right panel, and we
can see there how early functions are associated with time-decelerating
warpings, and late functions with time-accelerating warpings.

The use of (7.2) as a representation of a warping function has a very
handy bonus. Providing that the warp h is reasonably smooth and mild, the
inverse warp h−1 is achieved to a close approximation by merely replacing
W in the equation by −W .

7.6 A continuous fitting criterion for registration

The least squares criterion (7.1) worked well for simple shift registration,
but gets us into trouble for more general warping functions. The lower
panel in Figure 7.10 shows why. When two functions differ in terms of
amplitude as well as phase, the least squares criterion uses time warping to
also minimize amplitude differences by trying to squeeze out of existence
regions where amplitudes differ. Put another way, the least squares fitting
criterion is intrinsically designed to assess differences in amplitude rather
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Figure 7.10. The upper two panels show results for an artificial registration prob-
lem using the minimum eigenvalue criterion. The dotted curve in the upper-left
panel is the curve to be registered to the curve indicated by the dashed line.
The solid line is the registered curve. The upper-right panel contains the warping
function for this case, h(t) = t. The lower panels show the same results using the
least squares criterion.

than phase. This wasn’t a problem when only time shifts were involved
since such simple time warps cannot affect amplitude differences.

Suppose two curves x0 and x1 differ only in amplitude but not in phase,
such as in the left panel of Figure 7.10. Then, if we plot the function values
x0(t) and x1(t) against each other, we will see a straight line. Amplitude
differences will then be reflected in the slope of the line, a line at 45o

corresponding to no amplitude differences.
Now thinking about a line as a one-dimensional set of points on a plane,

we can turn to principal components analysis as just the right technique for
assessing how many dimensions are required to represent the distribution
of these points. This technique will yield only one positive eigenvalue if the
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point spread is, in fact, one-dimensional. That is, the size of the smallest
eigenvalue measures departures from unidimensionality.

Let us consider now evaluating both the target function x0 and the reg-
istered function x∗ at a fine mesh of n values of t to obtain the pairs of
values (x0(t), x[h(t)]). Let the n by two matrix X contain these pairs of
values. Then the two-by-two cross-product matrix X′X would be what we
would analyze by principal components.

The following order two matrix is the functional analogue of the cross-
product matrix X′X.

T(h) =
[ ∫

{x0(t)}2 dt
∫

x0(t)x[h(t)] dt∫
x0(t)x[h(t)] dt

∫
{x[h(t)]}2 dt

]
(7.3)

We see that the summations over points implied by the expression X′X
have here been replaced by integrals. Otherwise this is the same matrix.
We have expressed the matrix as a function of warping function h to remind
ourselves that it does depend on h.

Consequently, we can now express our fitting criterion for assessing the
degree to which two functions are registered as follows:

MINEIG(h) = µ2[T(h)], (7.4)

where the function µ2 is the size of the second eigenvalue of its argument,
which is an order two symmetric matrix. When MINEIG(h) = 0, we have
achieved registration, and h is the warping function that does the job.

As is now routine, we will want to apply some regularization now and
then to impose smoothness on h, so we extend our criterion to

MINEIGλ(h) = MINEIG(h) + λ

∫
{W (m)(t)}2 dt. (7.5)

Here we are assuming that h is of the form (7.2), and that we achieve
smoothness in h by smoothing the function W that defines it.

The results in Figure 7.9 were achieved by expanding W in terms of 13
B-splines with equally spaced knots, and penalizing the size of its second
derivative using a smoothing parameter of λ = 106.

7.7 Registering the height acceleration curves

The 10 acceleration functions in Figure 1.2 were registered by the Pro-
crustes method and the regularized basis expansion method set out in
Section 7.6. The interval T was taken to be [4, 18] with time measured
in years. The break-values τk defining the monotone transformation family
(7.2) were 4, 7, 10, 12, 14, 16 and 18 years, and the curves were regis-
tered over the interval [4,18] using criterion (7.5) with λ = 0.001. A single
Procrustes iteration produced the results displayed in Figure 7.11. The
left panel displays the 10 warping functions hi, and the right panel shows
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Figure 7.11. The left panel contains the estimated time warping functions hi

for the 10 height acceleration curves in Figure 1.2. The right panel displays the
registered curves.
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Figure 7.12. The cross-sectional means of the registered and unregistered height
acceleration curves displayed in Figure 1.2.

the curve values xi[hi(t)]. Figure 7.12 compares the unregistered and reg-
istered cross-sectional means. We see that the differences are substantial,
and moreover that the mean of the registered function tends to resemble
much more closely most of the sample curves.
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7.8 Some practical advice

Before registration, remove amplitude effects that can be accounted for
by vertical shifts or scale changes, by centering and possibly rescaling the
curves. This is standard advice in data analysis; deal with obvious effects
in a simple way before moving on to more sophisticated procedures.

In general it is not clear that variation in the amplitude of curves can be
cleanly separated from the variation that the registration process aims to
account for. It is easy to construct examples where a registration function
h that is allowed to be highly nonlinear can remove variation that is clearly
of an amplitude nature, and the lower panels of Figure 7.10.

This problem of lack of identifiability of the two types of variation,
horizontal and vertical, is perhaps less of a concern if only linear trans-
formations are permitted, and is also not acute for landmark registration,
where the role of the transformation is to only align curve features.

However, there is one situation that implies relatively unambiguous sep-
aration of the two types of variation. This happens with curves that cross
zero at a number of points. At and near these zero crossings, only phase
variation is possible. In effect, zero crossings are landmarks that should be
aligned. Consequently, it may be wise to consider registering a derivative of
a curve rather than the curve itself, since derivatives often cross zero. This
is why we registered the acceleration curves above rather than the height
or velocity curves.

If flexible families of monotone transformations such as those described
above are used in conjunction with a global fitting criterion such as MINEIG,
allow transformations to differ from linear only with caution by careful
application of regularization.

In general, we have found it wise to first register on any landmarks that
are clearly identifiable before using the continuous registration procedure.
For example, in our work with the growth data we first register the curves
using the zero-crossing in the middle of the pubertal growth spurt as a
single landmark. Then we use the curves resulting from this preliminary
registration as inputs to a continuous registration. If we use the notation
hL and hC|L to refer to the landmark warps and the continuous warps
after landmark registration, respectively, then the final composite warping
function is h(t) = hC|L[hL(t)] or h = hC|L ◦ hL.

7.9 Computational details

7.9.1 Shift registration by the Newton-Raphson algorithm
We can estimate a specific shift parameter δi iteratively by using a mod-
ified Newton-Raphson algorithm for minimizing REGSSE. This procedure
requires derivatives of REGSSE with respect to the δi. If we assume that the
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differences between x∗
i and µ̂ at the ends of the interval can be ignored

(this is exactly true in the periodic case, and often approximately true in
the non-periodic case if the effects of real interest are concentrated in the
middle of the interval), then we have

∂

∂δi
REGSSE = 2

∫
T

{xi(t + δi) − µ̂(t)}Dxi(t) dt

∂2

∂δ2
i

REGSSE = 2
∫
T

{xi(t + δi) − µ̂(t)}D2xi(t) dt

+ 2
∫
T

{Dxi(t)}2 dt. (7.6)

The modified Newton-Raphson algorithm works as follows:
Step 0: Begin with some initial shift estimates δ

(0)
i , perhaps by aligning

with respect to some feature, or even δ
(0)
i = 0. But the better the initial

estimate, the faster and more reliably the algorithm converges. Complete
this step by estimating the average µ̂ of the shifted curves, using a method
that allows the first two derivatives of µ̂ to give good estimates of the
corresponding derivatives of the population mean, such as local polynomial
regression of degree 4, or roughness penalty smoothing with an integrated
squared fourth derivative penalty.

Step ν, for ν = 1, 2, . . .: Modify the estimate δ
(ν−1)
i on the previous

iteration by

δ
(ν)
i = δ

(ν−1)
i − α

(∂/∂δi)REGSSE
(∂2/∂δ2

i )REGSSE
,

where α is a step-size parameter that can sometimes simply be set to one.
It is usual to drop the first term (7.6) in the second derivative of REGSSE
since it vanishes at the minimizing values, and convergence without this
term tends to be more reliable when current estimates are substantially far
from the minimizing values. Once the new shifts are estimated, recompute
the estimated average µ̂ of the shifted curves.

Although the algorithm can in principle be iterated to convergence, and
although convergence is generally fast, we have found that a single iteration
is often sufficient with reasonable initial estimates. For the pinch force data,
we began by aligning the smoothed curves by setting the location of the
maximum of each curve at 0.1 seconds. The shifts involved ranged from
−20 to 50 milliseconds. We then carried out a single Newton-Raphson
update (ν = 1 above) where the range T of integration was from 23 to 251
milliseconds. The changes in the δi ranged from −3 to 2 milliseconds, and
after this update, a second iteration did not yield any changes larger than
a millisecond. The aligned curves are shown in Figure 7.13.

As part of a technique that they call self-modelling nonlinear regression,
which attempts to estimate both parametric and nonparametric compo-
nents of variation among several curves, Kneip and Gasser (1988) use linear
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Figure 7.13. The pinch force curves aligned by minimizing the Procrustes criterion
REGSSE.

transformations of t, that is both shift and scale changes. Kneip and En-
gel (1995) use such shift-scale transformations to identify “shape invariant
features” of curves, which remain unaltered by these changes in t.

7.10 Further reading and notes

The classic paper on the estimation of time warping functions is Sakoe and
Chiba (1978), who used dynamic programming to estimate the warping
function in a context where there was no need for the warping function to
be smooth.

Landmark registration has been studied in depth by Kneip and Gasser
(1992) and Gasser and Kneip (1995), who refer to a landmark as a structural
feature, its location as a structural point, to the distribution of landmark
locations along the t axis as structural intensity, and to the process of aver-
aging a set of curves after registration as structural averaging. Their papers
contain various technical details on the asymptotic behavior of landmark
estimates and warping functions estimated from them. Their papers on
growth curves (Gasser et al., 1990, 1991a,b) are applications of this pro-
cess. Another source of much information on the study of landmarks and
their use in registration is Bookstein (1991).

Ramsay (1996b) and Ramsay and Li (1996) developed the fitting of a
general and flexible family of warping functions hi making use of a regular-
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ization technique. Their work used a piecewise linear basis for function W
in order to avoid numerical integration, but our subsequent work has found
numerical integration to be easy to apply here as well as elsewhere, and
consequently W may now be expanded in terms of any basis. Kneip, Li,
MacGibbon and Ramsay (2000) developed a method that is rather analo-
gous to local polynomial smoothing for identifying warping functions that
register a sample of curves.

Wang and Gasser (1997, 1998, 1999) and Gervini and Gasser (2004) have
evolved registration technology that does not use landmarks in a number
of useful ways, and consider some important theoretical issues. Liu and
Müller (2004) advanced their theoretical framework by discussing curve
registration in the context of a model for random or stochastic functions
where time is itself transformed in a random manner. They propose the
operation of taking a functional convex sum as a way of computing convex
sums of unregistered functions. This operation defines a type of mean that
preserves the locations and shapes of features. See also Rønn (2001) for a
model-based approach to shift registration.

The functional two-sample functional testing problem considered by
Munoz, Maldonado, Staniswalis, Irwin and Byers (2002) uses landmark
registration of some image density curves as a pre-processing step.



8
Principal components analysis for
functional data

8.1 Introduction

For many reasons, principal components analysis (PCA) of functional data
is a key technique to consider. First, our own experience is that, after the
preliminary steps of registering and displaying the data, the user wants
to explore that data to see the features characterizing typical functions.
Some of these features are expected to be there, for example the sinusoidal
nature of temperature curves, but other aspects may be surprising. Some
indication of the complexity of the data is also required, in the sense of
how many types of curves and characteristics are to be found. Principal
components analysis serves these ends admirably, and it is perhaps also for
these reasons that it was the first method to be considered in the early
literature on FDA.

Just as for the corresponding matrices in the classical multivariate case,
the variance-covariance and correlation functions can be difficult to in-
terpret, and do not always give a fully comprehensible presentation of
the structure of the variability in the observed data directly. The same
is true, of course, for variance-covariance and correlation matrices in classi-
cal multivariate analysis. A principal components analysis provides a way
of looking at covariance structure that can be much more informative and
can complement, or even replace altogether, a direct examination of the
variance-covariance function.

PCA also offers an opportunity to consider some issues that reappear in
subsequent chapters. For example, we consider immediately how PCA is
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defined by the notion of a linear combination of function values, and why
this notion, at the heart of most of multivariate data analysis, requires
some care in a functional context. A second issue is that of regularization;
for many data sets, PCA of functional data is more revealing if some type of
smoothness is required of the principal components themselves. We consider
this topic in detail in Chapter 9.

8.2 Defining functional PCA

8.2.1 PCA for multivariate data
The central concept exploited over and over again in multivariate statistics
is that of taking a linear combination of variable values,

fi =
p∑

j=1

βjxij , i = 1, . . . , N, (8.1)

where βj is a weighting coefficient applied to the observed values xij of the
jth variable. We can express (8.1) as

fi = β′xi, i = 1, . . . , N, (8.2)

where β is the vector (β1, . . . , βp)′ and xi is the vector (xi1, . . . , xip)′.
In the multivariate situation, we choose the weights so as to highlight or

display types of variation that are very strongly represented in the data.
Principal components analysis can be defined in terms of the following
stepwise procedure, which defines sets of normalized weights that maximize
variation in the fi’s:

1. Find the weight vector ξ1 = (ξ11, . . . , ξp1)′ for which the linear
combination values

fi1 =
∑

j

ξj1xij = ξ′
1xi

have the largest possible mean square N−1 ∑
i f2

i1 subject to the
constraint ∑

j

ξ2
j1 = ‖ξ1‖2 = 1.

2. Carry out second and subsequent steps, possibly up to a limit of
the number of variables p. On the mth step, compute a new weight
vector ξm with components ξjm and new values fim = ξ′

mxi. Thus,
the values fim have maximum mean square, subject to the constraint
‖ξm‖2 = 1 and the m − 1 additional constraint(s)∑

j

ξjkξjm = ξ′
kξm = 0, k < m.
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The motivation for the first step is that by maximizing the mean square,
we are identifying the strongest and most important mode of variation in
the variables. The unit sum of squares constraint on the weights is essen-
tial to make the problem well defined; without it, the mean squares of the
linear combination values could be made arbitrarily large. On second and
subsequent steps, we seek the most important modes of variation again, but
require the weights defining them to be orthogonal to those identified pre-
viously, so that they are indicating something new. Of course, the amount
of variation measured in terms of N−1 ∑

i f2
im will decline on each step. At

some point, usually well short of the maximum index p, we expect to lose
interest in modes of variation thus defined.

The definition of principal components analysis does not actually specify
the weights uniquely; for example, it is always possible to change the signs
of all the values in any vector ξm without changing the value of the variance
that it defines.

The values of the linear combinations fim are called principal component
scores and are often of great help in describing what these important com-
ponents of variation mean in terms of the characteristics of specific cases
or replicates.

To be sure, the mean is a very important aspect of the data, but we
already have an easy technique for identifying it. Therefore, we usually
subtract the mean for each variable from corresponding variable values
before doing PCA. When this is done, maximizing the mean square of
the principal component scores corresponds to maximizing their sample
variance.

8.2.2 Defining PCA for functional data
How does PCA work in the functional context? The counterparts of vari-
able values are function values xi(s), so that the discrete index j in the
multivariate context has been replaced by the continuous index s. When
we were considering vectors, the appropriate way of combining a weight
vector β with a data vector x was to calculate the inner product

β′x =
∑

j

βjxj .

When β and x are functions β(s) and x(s), summations over j are replaced
by integrations over s to define the inner product∫

βx =
∫

β(s)x(s) ds. (8.3)

Within the principal components analysis, the weights βj now be-
come functions with values βj(s). Using the notation (8.3), the principal
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component scores corresponding to weight β are now

fi =
∫

βxi =
∫

β(s)xi(s) ds. (8.4)

For the rest of our discussion, we will often use the short form
∫

βxi for
integrals in order to minimize notational clutter.

In the first functional PCA step, the weight function ξ1(s) is chosen to
maximize N−1 ∑

i f2
i1 = N−1 ∑

i(
∫

ξ1xi)2 subject to the continuous ana-
logue

∫
ξ1(s)2ds = 1 of the unit sum of squares constraint. This time, the

notation ‖ξ1‖2 is used to mean the squared norm
∫

ξ1(s)2ds =
∫

ξ2
1 of the

function ξ1.
Postponing computational details until Section 8.4, now consider as an

illustration in the upper left panel in Figure 8.1. This displays the weight
function ξ1 for the Canadian temperature data after the mean across all 35
weather stations has been removed from each station’s monthly tempera-
ture record. Although ξ1 is positive throughout the year, the weight placed
on the winter temperatures is about four times that placed on summer
temperatures. This means that the greatest variability between weather
stations will be found by heavily weighting winter temperatures, with only
a light contribution from the summer months; Canadian weather is most
variable in the wintertime, in short. Moreover, the percentage 89.3% at the
top of the panel indicates that this type of variation strongly dominates all
other types of variation. Weather stations for which the score fi1 is high
will have much warmer than average winters combined with warm sum-
mers, and the two highest scores are in fact assigned to Vancouver and
Victoria on the Pacific Coast. To no one’s surprise, the largest negative
score goes to Resolute in the High Arctic.

As for multivariate PCA, the weight function ξm is also required to satisfy
the orthogonality constraint(s)

∫
ξkξm = 0, k < m on subsequent steps.

Each weight function has the task of defining the most important mode of
variation in the curves subject to each mode being orthogonal to all modes
defined on previous steps. Note again that the weight functions are defined
only to within a sign change.

The weight function ξ2 for the temperature data is displayed in the upper
right panel of Figure 8.1. Because it must be orthogonal to ξ1, we cannot
expect that it will define a mode of variation in the temperature functions
that will be as important as the first. In fact, this second mode accounts
for only 8.3% of the total variation, and consists of a positive contribution
for the winter months and a negative contribution for the summer months,
therefore corresponding to a measure of uniformity of temperature through
the year. On this component, one of the highest scores fi2 goes to Prince
Rupert, also on the Pacific coast, for which there is comparatively low
discrepancy between winter and summer. Prairie stations such as Winnipeg,
on the other hand, have hot summers and very cold winters, and receive
large negative second component scores.
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Figure 8.1. The first four principal component curves of the Canadian temper-
ature data estimated by two techniques. The points are the estimates from the
discretization approach, and the curves are the estimates from the expansion
of the data in terms of a 12-term Fourier series. The percentages indicate the
amount of total variation accounted for by each principal component.

The third and fourth components account for small proportions of the
variation, since they are required to be orthogonal to the first two as well
as to each other. At this point they are difficult to interpret, but we look
at techniques for understanding them in Section 8.3.

Displays such as Figure 8.1 can remind one of the diagrams of modes of
vibration in a string fixed at both ends always found in introductory physics
texts. The first and dominant type is simple in structure and resembles a
single cycle of a sine wave. Subdominant or higher order components are
also roughly sinusoidal, but with more and more cycles. With this analogy
in mind, we find the term harmonics evocative in referring to principal
components of variation in curves in general.

8.2.3 Defining an optimal empirical orthonormal basis
There are several other ways to motivate PCA, and one is to define the
following problem: We want to find a set of exactly K orthonormal functions
ξm so that the expansion of each curve in terms of these basis functions
approximates the curve as closely as possible. Since these basis functions
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are orthonormal, it follows that the expansion will be of the form

x̂i(t) =
K∑

k=1

fikξk(t),

where fik is the principal component value
∫

xiξk. As a fitting criterion for
an individual curve, consider the integrated squared error

‖xi − x̂i‖2 =
∫

[x(s) − x̂(s)]2 ds

and as a global measure of approximation,

PCASSE =
N∑

i=1

‖xi − x̂i‖2. (8.5)

The problem is then, more precisely, what choice of basis will minimize the
error criterion (8.5)?

The answer, it turns out, is precisely the same set of principal component
weight functions that maximize variance components as defined above. For
this reason, these functions ξm are referred to in some fields as empirical
orthonormal functions, because they are determined by the data they are
used to expand.

8.2.4 PCA and eigenanalysis
In this section, we investigate another characterization of PCA, in terms
of the eigenanalysis of the variance-covariance function or operator.

Assume for this section that our observed values, xij in the multivariate
context and xi(t) in the functional situation, result from subtracting the
mean variable or function values, so that their sample means N−1 ∑

i xij ,
or cross-sectional means N−1 ∑

i xi(t), respectively, are zero.
Texts on multivariate data analysis tend to define principal components

analysis as the task of finding the eigenvalues and eigenvectors of the co-
variance or correlation matrix. The logic for this is as follows. Let the N ×p
matrix X contain the values xij and the vector ξ of length p contain the
weights for a linear combination. Then the mean square criterion for finding
the first principal component weight vector can be written as

max
ξ′ξ=1

N−1ξ′X′Xξ (8.6)

since the vector of principal component scores fi can be written as Xξ.
Use the p×p matrix V to indicate the sample variance-covariance matrix

V = N−1X′X. (One may prefer to use a divisor of N − 1 to N since the
means have been estimated, but it makes no essential difference to the
principal components analysis.) The criterion (8.6) can now be expressed
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as

max
ξ′ξ=1

ξ′Vξ.

As explained in Section A.5, this maximization problem is now solved by
finding the solution with largest eigenvalue ρ of the eigenvector problem or
eigenequation

Vξ = ρξ. (8.7)

There is a sequence of different eigenvalue-eigenvector pairs (ρj , ξj) sat-
isfying this equation, and the eigenvectors ξj are orthogonal. Because
the mean of each column of X is usually subtracted from all values in
that column as a preliminary to principal components analysis, the rank
of X is N − 1 at most, and hence the p × p matrix V has, at most,
min{p, N − 1} nonzero eigenvalues ρj . For each j, the eigenvector ξj satis-
fies the maximization problem (8.6) subject to the additional constraint of
being orthogonal to all the eigenvectors ξ1, ξ2, . . . , ξj−1 found so far. This
is precisely what was required of the principal components in the second
step laid out in Section 8.2.1. Therefore, as we have defined it, the multi-
variate PCA problem is equivalent to the algebraic and numerical problem
of solving the eigenequation (8.7). Of course, there are standard computer
algorithms for doing this.

Now consider the functional version of PCA. Define the covariance
function v(s, t) by

v(s, t) = N−1
N∑

i=1

xi(s)xi(t). (8.8)

Again, note that we may prefer to use N − 1 to define the variance-
covariance function v; nothing discussed here changes in any essential
way.

The more general results set out in Section A.5.2 can be applied, to find
the principal component weight functions ξj(s). Each of these satisfies the
equation ∫

v(s, t)ξ(t) dt = ρξ(s) (8.9)

for an appropriate eigenvalue ρ. The left side of (8.9) is an integral transform
V of the weight function ξ defined by

V ξ =
∫

v(·, t)ξ(t) dt. (8.10)

This integral transform is called the covariance operator V . Therefore we
may also express the eigenequation directly as

V ξ = ρξ, (8.11)
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where ξ is now an eigenfunction rather than an eigenvector. By suitable
choice of notation, the equation (8.11) for functional PCA now looks the
same as the eigenequation (8.7) relevant to conventional PCA.

There is an important difference between the multivariate and func-
tional eigenanalysis problems, concerning the maximum number of different
eigenvalue-eigenfunction pairs. The counterpart of the number of variables
p in the multivariate case is the number of function values in the functional
case, and thus infinity. However, provided the functions xi are not linearly
dependent, the operator V will have rank N − 1, and there will be only
N − 1 nonzero eigenvalues.

To summarize, in this section we find that principal components analysis
is defined as the search for a set of mutually orthogonal and normalized
weight functions ξm. Functional PCA can be expressed as the problem
of the eigenanalysis of the covariance operator V . By suitable choice of
notation, the formal steps to be carried out are the same, whether the data
are multivariate or functional.

In Section 8.4 we discuss practical methods for actually computing the
eigenfunctions ξm, but first we consider some aspects of the display of
principal components once they have been found.

8.3 Visualizing the results

The fact that interpreting the components is not always an entirely straight-
forward matter is common to most functional PCA problems. We now
consider some techniques that may aid their interpretation.

8.3.1 Plotting components as perturbations of the mean
A method found to be helpful is to examine plots of the overall mean
function and the functions obtained by adding and subtracting a suitable
multiple of the principal component function in question. Figure 8.2 shows
such a plot for the temperature data. In each case, the solid curve is the
overall mean temperature, and the dotted and dashed curves show the
effects of adding and subtracting a multiple of each principal component
curve. This considerably clarifies the effects of the first two components.
We can now see that the third principal component corresponds to a time
shift effect combined with an overall increase in temperature and in range
between winter and summer. The fourth corresponds to an effect whereby
the onset of spring is later and autumn ends earlier.

In constructing this plot, it is necessary to choose which multiple of
the principal component function to use. Define a constant C to be the
root-mean-square difference between µ̂ and its overall time average,

C2 = T−1‖µ̂ − µ̄‖2, (8.12)
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Figure 8.2. The mean temperature curves and the effects of adding (+) and
subtracting (−) a suitable multiple of each PC curve.

where

µ̄ = T−1
∫

µ̂(t) dt.

It is then appropriate to plot µ̂ and µ̂ ± 0.2Cγ̂j , where we have chosen the
constant 0.2 to give easily interpretable results. Depending on the overall
behavior of µ̂, it may be helpful to adjust the value 0.2 subjectively. But
for ease of comparison between the various modes of variability, it is best
to use the same constant for all the principal component functions plotted
in any particular case.

In Figure 8.3, we consider the hip angles observed during the gait of 39
children, as plotted in Figure 1.8. The angles for a single cycle are shown,
along with the results of a functional PCA of these data. The effect of the
first principal component of variation is approximately to add or subtract
a constant to the angle throughout the gait cycle. The second component
corresponds roughly to a time shift effect, which is not constant through
the cycle. The third component corresponds to a variation in the overall
amplitude of the angle traced out during the cycle.
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Figure 8.3. The hip angle observed in the gait cycles of 39 children, and the effect
on the overall mean of adding and subtracting a suitable multiple of each of the
first three principal component functions.

8.3.2 Plotting principal component scores
An important aspect of PCA is the examination of the scores fim of each
curve on each component. In Figure 8.4, each weather station is identified
by a four-letter abbreviation of its name given in Table 8.1. The strings are
positioned roughly according to the scores on the first two principal com-
ponents; some positions have been adjusted slightly to improve legibility.
The West Coast stations Vancouver (VANC), Victoria (VICT) and Prince
Rupert (PRUP) are in the upper right corner because they have warmer
winters than most stations (high on PC 1) and less summer-winter temper-
ature variation (high on PC 2). Resolute (RESO), on the other hand, has
an extremely cold winter, but does resemble the Pacific weather stations
in having less summer/winter variation than some Arctic cousins, such as
Inuvik (INUV).

8.3.3 Rotating principal components
In Section 8.2 we observed that the weight functions ξm can be viewed
as defining an orthonormal set of K functions for expanding the curves
to minimize a summed integrated squared error criterion (8.5). For the



8.3. Visualizing the results 157

Component 1 Score

C
om

po
ne

nt
 2

 S
co

re

-60 -40 -20 0 20

-1
0

-5
0

5
10

15

SJNS

CHAR
HLFX

SYDN
YARM

FRED

ARVI
MTRL

QBEC

SHEF

SHER

KPSK
LOND

OTWA

THUN TRTO

CHUR

TPAS
WINN

PALBREGI

BEAV

CALG

EDMO
KAML

PGEO

PRUP

VANC

VICT

DAWS

WHIT

IQAL

INUV

RESO

YELL

Figure 8.4. The scores of the weather stations on the first two principal compo-
nents of temperature variation. The location of each weather station is shown by
the four-letter abbreviation of its name assigned in Table 8.1.

Table 8.1. The Canadian Weather Stations

Arvida, Que. Kapuskasing, Ont. St. John’s, Nfld
Beaverlodge, B.C. London, Ont. Sydney, N.S.
Calgary, Alta. Montreal, Que. The Pas, Man.
Charlottetown, P.E.I. Ottawa, Ont. Thunder Bay, Ont.
Churchill, Man. Prince Albert, Sask. Toronto, Ont.
Dawson, Yukon Prince George, B.C. Vancouver, B.C.
Edmonton, Alta. Prince Rupert, B.C. Victoria, B.C.
Fredericton, N.B. Quebec City, Que. Whitehorse, Yukon
Halifax, N.S. Regina, Sask. Winnipeg, Man.
Inuvik, N.W.T. Resolute, N.W.T. Yarmouth, N.S.
Iqualuit, N.W.T. Schefferville, Que. Yellowknife, N.W.T.
Kamloops, B.C. Sherbrooke, Que.

temperature data, for example, no set of four orthonormal functions will do
a better job of approximating the curves than those displayed in Figure 8.1.

This does not mean, however, that there aren’t other orthonormal sets
that will do just as well. In fact, if we now use ξ to refer to the vector-valued
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function (ξ1, . . . , ξK)′, then an equally good orthonormal set is defined by

ψ = Tξ, (8.13)

where T is any orthonormal matrix of order K, meaning that T′T = TT′ =
I. From a geometrical perspective, the vector of functions ψ is a rigid ro-
tation of ξ. Of course, after rotation, we can no longer expect that ψ1
will define the largest component of variation. But the point is that the or-
thonormal basis functions ψ1, . . . , ψK are just as effective at approximating
the original curves in K dimensions as their unrotated counterparts.

Can we find some rotated functions that are perhaps a little easier to
interpret? Here again, we can borrow a tool that has been invaluable in
multivariate analysis, VARIMAX rotation. Let B be a K × n matrix rep-
resenting the first K principal component functions ξ1, . . . , ξK . For the
moment, suppose that B has, as row m, the values ξm(t1), . . . , ξm(tn) for
n equally spaced argument values in the interval T . The corresponding
matrix A of values of the rotated basis functions ψ = Tξ will be given by

A = TB. (8.14)

The VARIMAX strategy for choosing the orthonormal rotation matrix T
is to maximize the variation in the values a2

mj strung out as a single vector.
Since T is a rotation matrix, the overall sum of these squared values will
remain the same no matter what rotation we perform. In algebraic terms,∑

m

∑
j

a2
mj = traceA′A = traceB′T′TB = traceB′B.

Therefore, maximizing the variance of the a2
mj can happen only if these

values tend either to be relatively large or relatively near zero. The values
amj themselves are encouraged to be either strongly positive, near zero,
or strongly negative; in-between values are suppressed. This clustering of
information tends to make the components of variation easier to interpret.

There are fast and stable computational techniques for computing the
rotation matrix T that maximizes the VARIMAX criterion. A C function
for computing the VARIMAX rotation can be found through the book’s
world-wide web page described in Section 1.9.

Figure 8.5 displays the VARIMAX rotation of the four principal compo-
nents for the temperature data. There, n = 12 equally spaced time points
tj were used, and the variance of the squared values ψ2

m(tj) was maxi-
mized with respect to T. The resulting rotated functions ψm, along with
the percentages of variances that they account for, are now quite different.

Collectively, the rotated functions ψm still account for a total of 99.7%
of the variation, but they divide this variation in different proportions. The
VARIMAX rotation has suppressed medium-sized values of ψm while pre-
serving orthonormality. (Note that the rotated component scores are no
longer uncorrelated; however, the sum of their variances is still the same,
because T is a rotation matrix, and so they may still be considered to
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Figure 8.5. Weight functions rotated by applying the VARIMAX rotation crite-
rion to weight function values, and plotted as positive and negative perturbations
of the mean function.

partition the variability in the original data.) The result is four functions
that account for local variation in the winter, summer, spring and autumn,
respectively. Not only are these functions much easier to interpret, but we
see something new: although winter variation remains extremely important,
now spring variation is clearly almost as important, about twice as impor-
tant as autumn variation and over three times as important as summer
variation.

Another way of using the VARIMAX idea is to let B contain the coef-
ficients for the expansion of each ξm in terms of a basis φ of n functions.
Thus we rotate the coefficients of the basis expansion of each ξm rather
than rotating the values of the ξm themselves. Figure 8.6 shows the results
using a Fourier series expansion of the principal components. The results
are much more similar to the original principal components displayed in
Figure 8.2. The main difference is in the first two components. The first
rotated component function in Figure 8.6 is much more constant than the
original first principal component, and corresponds almost entirely to a
constant temperature effect throughout the year. The general shape of the
second component is not changed very much, but it accounts for more of
the variability, having essentially taken on part of the variability in the first
unrotated component. Because the first component originally accounted for
such a large proportion, 89.3%, of the variability, it is not surprising that a
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Figure 8.6. Weight functions rotated by applying the VARIMAX rotation cri-
terion to weight function coefficients, and plotted as positive and negative
perturbations of the mean function.

fairly small change in the shape of the second component results in moving
about 10% of the total variability from the first to the second compo-
nent. The third and fourth components are not enormously affected by the
VARIMAX rotation in the Fourier domain.

By no means is the VARIMAX criterion the only rotation criterion
available. References on factor analysis and multivariate statistics such as
Basilevsky (1994), Johnson and Wichern (1988), Mulaik (1972) and Seber
(1984) offer a number of other possibilities. Even from the relatively brief
discussion in this section, it is clear that much research remains to be done
on rotation schemes tailored more directly to the functional context.

8.4 Computational methods for functional PCA

Now suppose that we have a set of N curves xi, and that preliminary
steps such as curve registration and the possible subtraction of the mean
curve from each (curve centering) have been completed. Let v(s, t) be the
sample covariance function of the observed data. In this section, we consider
possible strategies for approaching the eigenanalysis problem in (8.9). In
all cases, we convert the continuous functional eigenanalysis problem to an
approximately equivalent matrix eigenanalysis task.
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8.4.1 Discretizing the functions
A simple approach is to discretize the observed functions xi to a fine grid
of n equally spaced values sj that span the interval T . This yields an
N ×n data matrix X that can be fed into a standard multivariate principal
components analysis program such as the S-PLUS routine prcomp. This
produces eigenvalues and eigenvectors satisfying

Vu = λu (8.15)

for n-vectors u.
Notice that we may well have n much larger than N . Rather than working

with the n × n matrix V, one possible approach to finding the solutions of
the eigenequation (8.15) is to work in terms of the SVD UDW′ of X. The
variance matrix satisfies NV = WD2W′, and hence the nonzero eigenval-
ues of V are the squares of the singular values of X, and the corresponding
eigenvectors are the columns of U. If we use a standard PCA package, these
steps, or corresponding ones, will be carried out automatically in any case.

How do we transform the vector principal components back into func-
tional terms? The sample variance-covariance matrix V = N−1X′X will
have elements v(sj , sk) where v(s, t) is the sample covariance function.
Given any function ξ, let ξ̃ be the n-vector of values ξ(sj). Let w = T/n
where T is the length of the interval T . Then, for each sj ,

V ξ(sj) =
∫

v(sj , s)ξ(s)ds ≈ w
∑

v(sj , sk)ξ̃k,

so the functional eigenequation V ξ = ρξ has the approximate discrete form

wVξ̃ = ρξ̃.

The solutions of this equation will correspond to those of (8.15), with
eigenvalues ρ = wλ. The discrete approximation to the normalization∫

ξ(s)2ds = 1 is w‖ξ̃‖2 = 1, so that we set ξ̃ = w−1/2u if u is a normalized
eigenvector of V. Finally, to obtain an approximate eigenfunction ξ from
the discrete values ξ̃, we can use any convenient interpolation method. If
the discretization values sj are closely spaced, the choice of interpolation
method will not usually have a great effect.

The discretization approach is the earliest approach to functional princi-
pal components analysis, used by Rao (1958, 1987) and Tucker (1958), who
applied multivariate principal components analysis without modification to
observed function values. We discuss the idea of discretizing the integral in
more detail in Section 8.4.3, but first we consider an alternative approach
that makes use of basis expansions.

8.4.2 Basis function expansion of the functions
One way of reducing the eigenequation (8.9) to discrete or matrix form is to
express each function xi as a linear combination of known basis functions
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φk. The number K of basis functions used depends on many considerations:
how many discrete sampling points n were in the original data, whether
some level of smoothing was to be imposed by using K < n, how efficient or
powerful the basis functions are in reproducing the behavior of the original
functions, and so forth. For the monthly temperature data, for example, it
would be logical to use a Fourier series basis orthonormal over the interval
[0,12], with K = 12 the maximum possible dimension of the basis for the
monthly temperature data, because only 12 sampling points are available
per curve. Actually, for these data, a value of K as small as 7 would capture
most of the interesting variation in the original data, but there is little point
in reducing K below the value of 12.

Now suppose that each function has basis expansion

xi(t) =
K∑

k=1

cikφk(t). (8.16)

We may write this more compactly by defining the vector-valued function
x to have components x1, . . . , xN , and the vector-valued function φ to have
components φ1, . . . , φK . We may then express the simultaneous expansion
of all N curves as

x = Cφ,

where the coefficient matrix C is N × K. In matrix terms the variance-
covariance function is

v(s, t) = N−1φ(s)′C′Cφ(t),

remembering that φ(s)′ denotes the transpose of the vector φ(s) and has
nothing to do with differentiation.

Define the order K symmetric matrix W to have entries

wk1,k2 =
∫

φk1φk2

or W =
∫

φφ′. For some choices of bases, W will be readily available.
For example, for the orthonormal Fourier series that we might use for the
temperature data, W = I, the order K identity matrix. In other cases, we
may have to resort to numerical integration to evaluate W.

Now suppose that an eigenfunction ξ for the eigenequation (8.9) has an
expansion

ξ(s) =
K∑

k=1

bkφk(s)

or, in matrix notation, ξ(s) = φ(s)′b. This yields∫
v(s, t)ξ(t) dt =

∫
N−1φ(s)′C′Cφ(t)φ(t)′b dt

= φ(s)′N−1C′CWb.
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Therefore the eigenequation (8.9) can be expressed as

φ(s)′N−1C′CWb = ρφ(s)′b.

Since this equation must hold for all s, this implies the purely matrix
equation

N−1C′CWb = ρb.

But note that ‖ξ‖ = 1 implies that b′Wb = 1 and, similarly, two func-
tions ξ1 and ξ2 will be orthogonal if and only if the corresponding vectors of
coefficients satisfy b′

1Wb2 = 0. To get the required principal components,
we define u = W1/2b, solve the equivalent symmetric eigenvalue problem

N−1W1/2C′CW1/2u = ρu

and compute b = W−1/2u for each eigenvector.
Two special cases deserve particular attention. As already mentioned, if

the basis is orthonormal, meaning that W = I, the functional PCA problem
finally reduces to the standard multivariate PCA of the coefficient array
C, and we need only carry out the eigenanalysis of the order K symmetric
array N−1C′C.

As a rather different special case, particularly appropriate if the number
of observed functions is not enormous, we may also view the observed
functions xi as their own basis expansions. In other words, there are N basis
functions, and they happen to be the observed functions. This implies, of
course, that C = I, and now the problem becomes one of the eigenanalysis
of the symmetric matrix N−1W, which has entries

wij =
∫

xixj .

As a rule, these entries will have to be computed by some quadrature
technique.

In every case, the maximum number of eigenfunctions that can in princi-
ple be computed by the basis function approach is K, the dimension of the
basis. However, if the basis expansions have involved any approximation
of the observed functions, then it is not advisable to use a basis expan-
sion to K terms to calculate more than a fairly small proportion of K
eigenfunctions.

The results of both strategies that we have discussed are illustrated in
Figure 8.1, which shows the first four estimated eigenfunctions ξm of the
centered temperature functions

xi = Tempi − 1
35

∑
j

Tempj .

The smooth curves give the estimated eigenfunctions using the complete
12-term Fourier series expansion. For comparison purposes, the results of
applying the discretization approach to the data are also displayed as points
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indicating the values of the eigenvectors. There is little discrepancy between
the two sets of results. The proportions of variances for the basis function
analysis turn out to be identical to those computed for the discretization
approach. No attempt has been made to interpolate the discretized values
to give continuous eigenfunctions, but if the Fourier series interpolation
method were used, the results would be identical to the results obtained
by the basis method; this is a consequence of special properties of Fourier
series.

8.4.3 More general numerical quadrature
The eigenequation (8.9) involves the integral

∫
xi(s)ξ(s) ds, and the dis-

cretization strategy is to approximate this integral by a sum of discrete
values. Most schemes for numerical integration or quadrature (Stoer and
Bulirsch, 2002, is a good reference) involve an approximation of the form∫

f(s) ds ≈
n∑

j=1

wjf(sj) (8.17)

and the method set out in Section 8.4.1 is a fairly crude special case. We
restrict our attention to linear quadrature schemes of the form (8.17). There
are three aspects of the approximation that can be manipulated to meet
various objectives:

• n, the number of discrete argument values sj

• sj , the argument values, called quadrature points

• wj , the weights, called quadrature weights, attached to each function
value in the sum.

A simple example is the trapezoidal rule, in which the interval of inte-
gration is divided into n − 1 equal intervals, each of width h. The sj are
the boundaries of the interval with s1 and sn the lower and upper limits of
integration, respectively, and the approximation is∫

f(s) ds ≈ h[f(s1)/2 +
n−1∑
j=2

f(sj) + f(sn)/2]. (8.18)

Note that the weights wj are h/2, h, . . . , h, h/2 and that accuracy is con-
trolled simply by the choice of n. The trapezoidal rule has some important
advantages: the original raw data are often collected for equally spaced ar-
gument values, the weights are trivial, and although the accuracy of the
method is modest relative to other more sophisticated schemes, it is often
entirely sufficient for the objectives at hand. The method we set out in Sec-
tion 8.4.1 is similar to the trapezoidal rule, and indeed if we use periodic
boundary conditions, the methods are the same, since the values f(sn) and
f(s1) are identical.
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Other techniques, Gaussian quadrature schemes for example, define
quadrature weights and points that yield much higher accuracy for fixed
n under suitable additional conditions on the integrand. Another class of
procedures chooses the quadrature points adaptively to provide more res-
olution in regions of high integrand curvature; for these to be relevant to
the present discussion, we must choose the quadrature points once for all
the functions considered in the analysis.

Applying quadrature schemes of the type (8.17) to the operator V in
(8.10), yields the discrete approximation

V ξ ≈ VWξ̃, (8.19)

where, as in Section 8.4.1, the matrix V contains the values v(sj , sk) of the
covariance function at the quadrature points, and ξ̃ is an order n vector
containing values ξ(sj). The matrix W is a diagonal matrix with diagonal
values being the quadrature weights wj .

The approximately equivalent matrix eigenanalysis problem is then

VWξ̃ = ρξ̃,

where the orthonormality requirement is now

ξ̃
′
mWξ̃m = 1 and ξ̃

′
m1

Wξ̃m2
= 0, m1 �= m2.

Since most quadrature schemes use positive weights, we can put the
approximate eigenequation in more standard form, analogous to the
calculations carried out in Section 8.4.2:

W1/2VW1/2u = ρu,

where u = W1/2ξ̃ and u′u = 1. Then the whole procedure is as follows:

1. Choose n, the wj ’s, and the sj ’s.

2. Compute the eigenvalues ρm and eigenvectors um of W1/2VW1/2.

3. Compute

ξ̃m = W−1/2um.

4. If needed, use an interpolation technique to convert each vector ξ̃m

to a function ξm.

If the number n of quadrature points is less than the number of curves
N , we cannot recover more than n approximate eigenfunctions. However,
many applications of PCA require only a small number of the leading
eigenfunctions, and any reasonably large n will serve.

To illustrate the application of this discretizing approach, we analyze the
acceleration in human growth described in Chapter 1. Each curve consists
of 141 equally spaced values of acceleration in height estimated for ages
from 14 to 18 years, after spline smoothing and registration by certain
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Figure 8.7. The solid curve in each panel is the mean acceleration in height
in cm/year2 for girls in the Zurich growth study. Each principal component is
plotted in terms of its effect when added (+) and subtracted (−) from the mean
curve.

marker events. Full details of this process can be found in Ramsay, Bock
and Gasser (1995). The curves are for 112 girls who took part in the Zurich
growth study (Falkner, 1960).

Figure 8.7 shows the first three eigenfunctions or harmonics plotted as
perturbations of the mean function. Essentially, the first principal com-
ponent reflects a general variation in the amplitude of the variation in
acceleration that is spread across the entire curve, but is particularly
marked during the pubertal growth spurt lasting from 10 to 16 years of
age. The second component indicates variation in the size of acceleration
only from ages 4 to 6, and the third component, of great interest to growth
researchers, shows a variation in intensity of acceleration in the prepubertal
period around ages 5 to 9 years.

8.5 Bivariate and multivariate PCA

We often wish to study the simultaneous variation of more than one func-
tion. The hip and knee angles described in Chapter 1 are an example; to
understand the total system, we want to know how hip and knee angles
vary jointly. Similarly, the handwriting data require the study of the simul-
taneous variation of the X and Y coordinates; there would be little point
in studying one coordinate at a time. In both these cases, the two variables
being considered are measured relative to the same argument, time in both
cases. Furthermore, they are measuring quantities in the same units (de-
grees in the first case and cm in the second). The discussion in this section
is particularly aimed towards problems of this kind.
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8.5.1 Defining multivariate functional PCA
For clarity of exposition, we discuss the extension of the PCA idea to deal
with bivariate functional data in the specific context of the hip and knee
data. Suppose that the observed hip angle curves are Hip1, Hip2, . . . , Hipn

and the observed knee angles are Knee1, Knee2, . . . , Kneen. Let Hipmn and
Kneemn be estimates of the mean functions of the Hip and Knee processes.
Define vHH to be the covariance operator of the Hipi, vKK that of the Kneei,
vHK to be the cross-covariance function, and vKH(t, s) = vHK(s, t).

A typical principal component is now defined by a 2-vector ξ = (ξH, ξK)′

of weight functions, with ξH denoting the variation in the Hip curve and ξK

that in the Knee curve. To proceed, we need to define an inner product on
the space of vector functions of this kind. Once this has been defined, the
principal components analysis can be formally set out in exactly the same
way as previously.

The most straightforward definition of an inner product between bivari-
ate functions is simply to sum the inner products of the two components.
Suppose ξ1 and ξ2 are both bivariate functions each with hip and knee
components. We then define the inner product of ξ1 and ξ2 to be

〈ξ1, ξ2〉 =
∫

ξH1ξH2 +
∫

ξK1ξK2 . (8.20)

The corresponding squared norm ‖ξ‖2 of a bivariate function ξ is simply
the sum of the squared norms of the two component functions ξH and ξK.

What all this amounts to, in effect, is stringing two (or more) func-
tions together to form a composite function. We do the same thing with
the data themselves: define Anglesi = (Hipi, Kneei). The weighted linear
combination (8.4) becomes

fi = 〈ξ, Anglesi〉 =
∫

ξHHipi +
∫

ξKKneei. (8.21)

We now proceed exactly as in the univariate case, extracting solutions of
the eigenequation system V ξ = ρξ, which can be written out in full detail
as ∫

vHH(s, t)ξH(t) dt +
∫

vHK(s, t)ξK(t) dt = ρξH(s)∫
vKH(s, t)ξH(t) dt +

∫
vKK(s, t)ξK(t) dt = ρξK(s). (8.22)

In practice, we carry out this calculation by replacing each function Hipi

and Kneei with a vector of values at a fine grid of points or coefficients
in a suitable expansion. For each i these vectors are concatenated into a
single long vector Zi; the covariance matrix of the Zi is a discretized version
of the operator V as defined in (8.7). We carry out a standard principal
components analysis on the vectors Zi, and separate the resulting principal
component vectors into the parts corresponding to Hip and to Knee. The
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Figure 8.8. The mean hip and knee angle curves and the effects of adding and
subtracting a multiple of each of the first two vector principal components.

analysis is completed by applying a suitable inverse transform to each of
these parts if necessary.

If the variability in one of the sets of curves is substantially greater
than that in the other, then it is advisable to consider down-weighting the
corresponding term in the inner product (8.20), and making the consequent
changes in the remainder of the procedure. In the case of the hip and knee
data, however, both sets of curves have similar amounts of variability and
are measured in the same units (degrees) and so there is no need to modify
the inner product.

8.5.2 Visualizing the results
In the bivariate case, the best way to display the result depends on the
particular context. In some cases it is sufficient to consider the individual
parts ξHm and ξKm separately. An example of this is given in Figure 8.8, which
displays the first two principal components. Because ‖ξHm‖2 +‖ξKm‖2 = 1 by
definition, calculating ‖ξHm‖2 gives the proportion of the variability in the
mth principal component accounted for by variation in the hip curves.

For the first principal components, this measure indicates that 85% of
the variation is due to the hip curves, and this is borne out by the pre-
sentation in Figure 8.8. The effect on the hip curves of the first combined
principal component of variation is virtually identical to the first principal
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component curve extracted from the hip curves considered alone. There is
also little associated variation in the knee curves, apart from a small asso-
ciated increase in the bend of the knee during the part of the cycle where
all the weight is on the observed leg. The main effect of the first principal
component remains an overall shift in the hip angle. This could be caused
by an overall difference in stance; some people stand up more straight than
others and therefore hold their trunks at a different angle from the legs
through the gait cycle. Alternatively, there may simply be variation in the
angle of the marker placed on the trunk.

For the second principal component, the contributions of both hip and
knee are important, with somewhat more of the variability (65%) due to
the knee than to the hip. We see that this principal component is mainly a
distortion in the timing of the cycle, again correlated with the way in which
the initial slight bend of the knee takes place. There is some similarity to
the second principal component found for the hip alone, but this time there
is very substantial interaction between the two joints.

A particularly effective method for displaying principal components in
the bivariate case is to construct plots of one variable against the other.
Suppose we are interested in displaying the mth principal component
function. For equally spaced points t in the time interval on which the
observations are taken, we indicate the position of the mean function val-
ues (Hipmn(t), Kneemn(t)) by a dot in the (x, y) plane, and we join this dot
by an arrow to the point (Hipmn(t) + CξHm(t), Kneemn(t) + CξKm(t)). We
choose the constant C to give clarity. Of course, the sign of the principal
component functions, and hence the sense of the arrows, is arbitrary, and
plots with all the arrows reversed convey the same information.

This technique is displayed in Figure 8.9. The plot of the mean cycle
alone demonstrates the overall shape of the gait cycle in the hip-knee plane.
The portion of the plot between time points 11 and 19 (roughly the part
where the foot is off the ground) is approximately half an ellipse with axes
inclined to the coordinate axes. The points on the ellipse are roughly at
equal angular coordinates — somewhat closer together near the more
highly curved part of the ellipse. This demonstrates that in this part of
the cycle, the joints are moving roughly in simple harmonic motion but
with different phases. During the other part of the cycle, the hip angle is
changing at a approximately constant rate as the body moves forward with
the leg approximately straight, and the knee bends slightly in the middle.

Now consider the effect of the first principal component of variation.
As we have already seen, this has little effect on the knee angle, and all
the arrows are approximately in the x-direction. The increase in the hip
angle due to this mode of variation is somewhat larger when the angle
itself is larger. This indicates that the effect contains an exaggeration (or
diminution) in the amount by which the hip joint is bent during the cycle,
and is also related to the overall angle between the trunk and the legs.
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Figure 8.9. A plot of 20 equally spaced points in the average gait cycle, and the
effects of adding a multiple of each of the first three principal component cycles
in turn.

The second principal component demonstrates an interesting effect.
There is little change during the first half of the cycle. However, during
the second half, individuals with high values of this principal component
would traverse roughly the same cycle but at a roughly constant time ahead.
Thus this component represents a uniform time shift during the part of the
cycle when the foot is off the ground.

A high score on the third component indicates two effects. There is some
time distortion in the first half of the cycle, and then a shrinking of the
overall cycle; an individual with a high score would move slowly through
the first part of the cycle, and then perform simple harmonic motion of
knee and hip joints with somewhat less than average amplitude.

8.5.3 Inner product notation: Concluding remarks
One of the features of the functional data analysis approach to princi-
pal components analysis is that, once the inner product has been defined
appropriately, principal components analysis looks formally the same,
whether the data are the conventional vectors of multivariate analysis,
scalar functions as considered in Section 8.2.2, or vector-valued functions
as in Section 8.5.1. Indeed, principal component analyses for other possible
forms of functional data can be constructed similarly; all that is needed
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is a suitable inner product, and in most contexts the definition of such an
inner product will be a natural one. For example, if our data are functions
defined over a region S in two-dimensional space, for example temperature
profiles over a geographical region, then the natural inner product will be
given by ∫

S
f(s)g(s)ds,

and the principal component weight functions will also be functions defined
over s in S.

Much of our subsequent discussion of PCA, and of other functional data
analysis methods, will use univariate functions of a single variable as the
standard example. This choice simplifies the exposition, but in most or all
cases the methods generalize immediately to other forms of functional data,
simply by substituting an appropriate definition of inner product.

8.6 Further readings and notes

An especially fascinating and comprehensive application of functional prin-
cipal components analysis can be found in Locantore, Marron, Simpson,
Tripoli, Zhang and Cohen (1999). These authors explore abnormalities in
the curvature of the cornea in the human eye, and along the way extend
functional principal components methodology in useful ways. Since the
variation is over the spherical or elliptical shape of the cornea, they use
Zernicke orthogonal basis functions. Their color graphical displays and the
importance of the problem make this a showcase paper.

Viviani, Grön and Spitzer (2005) apply PCA to repeated fMRI scans of
areas in the human brain, where each curve is associated with a specific
voxel. They compare the functional and multivariate versions, and find
that the functional approach offers a rather better image of experimental
manipulations underlying the data. They also find that the use of the GCV
criterion is particularly effective in choosing the smoothing parameter prior
to applying functional PCA.

While most of our examples have time as the argument, there are many
important problems in the physical and engineering sciences where spectral
analysis is involved. An example involving elements of both registration and
principal components analysis is reported in Liggett, Cazares and Semmes
(2003). Kneip and Utikal (2001) apply functional principal components
analysis to the problem of describing a set of density curves where the
argument variable is log income.

Besse, Cardot and Ferraty (1997) studied the properties of estimates of
curves where these are assumed to lie within a finite-dimensional subspace,
and where principal components analysis is used in the estimation process,
and Cardot (2004) extended this work.
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Valderrama, Aguilera and Ocaña (2000) is a monograph in Spanish that
contains many interesting applications of principal components analysis to
functional data at the University of Granada, some of which precede the
publication of our first edition. Ocaña, Aguilera and Valderrama (1999)
discuss the role of the norm used to define functional principal components
analysis.

James, Hastie and Sugar (2000) have developed a useful extension of
functional principal components analysis that permits the estimation of
harmonics from fragments of curves. They analyze measurements of spinal
bone mineral density in females children and young adults taken at vari-
ous ages. Yao, Müller and Wang (2004) is a more recent reference on this
important problem.

There is a considerable literature on cluster analysis of samples of curves,
a topic not far removed from principal components analysis. Abraham,
Cornillion, Matzner-Lober and Molinari (2003) and Tarpey and Kinateder
(2003) are recent references. James and Sugar (2003) adapt their func-
tional principal components approach to this problem. Tarpey, Petkova and
Ogden (2003) use functional cluster analysis to profile placebo responders.



9
Regularized principal components
analysis

9.1 Introduction

In this chapter, we discuss the application of smoothing to functional princi-
pal components analysis. In Chapter 5 we have already seen that smoothing
methods are useful in functional data analysis in preprocessing the data
to obtain functional observations. The emphasis in this chapter is some-
what different, in that we incorporate the smoothing into the principal
components analysis itself.

Our discussion provides a further insight into the way the method of
regularization, discussed in Chapter 5, can be used rather generally in func-
tional data analysis. The basic idea is to put into practice, in any particular
context, the philosophy of combining a measure of goodness-of-fit with a
roughness penalty.

Consideration of the third component in Figure 8.1 indicates that some
smoothing may be appropriate when estimating functional principal com-
ponents. A more striking example is provided by the pinch force data
discussed in Section 1.5.2. Rather than smoothing the data initially, con-
sider the data in Figure 9.1, which consists of the original records of the
force exerted by the thumb and forefinger during each of 20 brief squeezes
or pinches. The observed records are not very smooth, and consequently
the principal component curves in Figure 9.2 show substantial variability.
There is a clear need for smoothing or regularizing of the estimated princi-
pal component curves. In this chapter, we develop a method for smoothed
principal component analysis, but first of all the application of the method
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Figure 9.1. The aligned original recordings of the force relative to a baseline value
exerted during each of 20 brief pinches.
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Figure 9.2. The first four principal component curves for the pinch force data
without regularization.
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Figure 9.3. The first four smoothed principal components for the pinch force data,
smoothed by the method of Section 9.3. The smoothing parameter is chosen by
cross-validation.

to the pinch force data is demonstrated. In subsequent sections, the method
is defined in detail and various aspects of its implementation are discussed.

9.2 The results of smoothing the PCA

Figure 9.3 shows the effect of applying principal components analysis using
the method for smoothed PCA set out subsequently in this chapter. The
method incorporates a smoothing parameter λ to control the amount of
smoothing applied, and this has been chosen by a cross-validation method
set out in Section 9.3.3. The smoothing method achieves the aim of remov-
ing the considerable roughness in the raw principal component curves in
Figure 9.2.

Figure 9.4 displays the effects on the mean curve of adding and subtract-
ing a multiple of each of the first four smoothed principal components. The
first component corresponds to an effect whereby the shape of the impulse
is not substantially changed, but its overall scale is increased. The second
component (with appropriate sign) corresponds roughly to a compression
in the overall time scale during which the squeeze takes place. Both of these
effects were removed in the analysis of Ramsay, Wang and Flanagan (1995)
before any detailed analysis was carried out. It is, however, interesting to
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Figure 9.4. The effect on the overall mean curve of adding and subtracting a
suitable multiple of each of the first four smoothed principal component curves
provided in Figure 9.3.

note that they occur as separate components and therefore are essentially
uncorrelated with one another, and with the effects found subsequently.
The third component corresponds to an effect whereby the main part takes
place more quickly but the tail after the main part is extended to the right.
The fourth component corresponds to a higher peak correlated with a tail-
off that is faster initially but subsequently slower than the mean. The first
and second effects are transparent in their interest, and the third and fourth
are of biomechanical interest in indicating how the system compensates for
departures from the (remarkably reproducible) overall mean. The smooth-
ing we have described makes the effects very much clearer than they are in
the raw principal component plot.

The estimated variances σ2 indicate that the four components displayed
respectively explain 86.2%, 6.7%, 3.5% and 1.7% of the variability in the
original data, with 1.9% accounted for by the remaining components. The
individual principal component scores indicate that there is one curve with
a fairly extreme value of principal component 2 (corresponding to moving
more quickly than average through the cycle) but this curve is not unusual
in other respects.
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9.3 The smoothing approach

9.3.1 Estimating the leading principal component
Our smoothed PCA approach is based on a roughness penalty idea, as
discussed in Chapter 7. Suppose ξ is a possible principal component curve.
As in standard spline smoothing, we usually penalize the roughness of ξ
by its integrated squared second derivative over the interval of interest,
PEN2(ξ) = ‖D2ξ‖2.

Consider, first, the estimation of the leading principal component. In an
unsmoothed functional PCA as described in Chapter 8, we work with the
sample variance var

∫
ξxi of the principal component scores

∫
ξxi over the

observations xi. The first principal component weight function is chosen
to maximize var

∫
ξxi subject to the constraint ‖ξ‖2 = 1. As explained in

Section 8.2.4, this maximization problem is solved by finding the leading
solution of the eigenfunction equation V ξ = ρξ.

However, maximizing this sample variance is not our only aim. We also
want to prevent the roughness PEN2(ξ) =

∫
ξ′′(t)2dt of the estimated prin-

cipal component ξ from being too large. The key to the roughness penalty
approach is to make explicit this possible conflict. As usual in the rough-
ness penalty method, the trade-off is controlled by a smoothing parameter
λ ≥ 0 which regulates the importance of the roughness penalty term.

Given any possible principal component function ξ with ‖ξ‖2 = 1, one
way of penalizing the sample variance var

∫
ξxi is to divide it by {1 + λ ×

PEN2(ξ)}. This gives the penalized sample variance

PCAPSV(ξ) =
var

∫
ξxi

‖ξ‖2 + λ × PEN2(ξ)
. (9.1)

Increasing the roughness of ξ while maintaining λ fixed decreases
PCAPSV(ξ), as defined in (9.1), since PEN2(ξ) increases. Moreover, PCAPSV
reverts to the raw sample variance as λ → 0. On the other hand, the larger
the value of λ, the more the penalized sample variance is affected by the
roughness of ξ. In the limit λ → ∞, the component ξ is forced to be of the
form ξ = a in the periodic case and ξ = a + bt in the nonperiodic case, for
some constants a and b.

9.3.2 Estimating subsequent principal components
Of course, it is usually of interest not merely to estimate the leading prin-
cipal component, but also to estimate the other components. The way our
procedure works is to estimate each ξj to maximize the penalized variance
PCAPSV(ξ) as defined in (9.1), subject to two constraints. The first con-
straint is the usual requirement that ‖ξj‖2 = 1. Secondly, we impose a
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modified form of orthogonality to the previously estimated components∫
ξj(s)ξk(s)ds +

∫
D2ξj(s)D2ξk(s)ds = 0 for k = 1, . . . , j − 1. (9.2)

The use of the modified orthogonality condition (9.2) means that we can
find the estimates of all the required principal components by solving a
single eigenvalue problem, and this will be explained in Section 9.4, where
practical algorithms are discussed. Silverman (1996) provides a detailed
investigation of the theoretical advantages of this approach.

9.3.3 Choosing the smoothing parameter by cross-validation
How should the smoothing parameter λ be chosen? It is perfectly adequate
for many purposes to choose the smoothing parameter subjectively, but we
can also use a cross-validation approach to choose the amount of smoothing
automatically. Some general remarks about the use of automatic methods
for choosing smoothing parameters are found in Section 3.1 of Green and
Silverman (1994).

To consider how a cross-validation score could be calculated, suppose
that x is an observation from the population. Then, by the optimal ba-
sis property discussed in Section 8.2.3, the principal components have the
property that, for each m, an expansion in terms of the functions ξ1, . . . , ξm

can explain more of the variation in x than any other collection of m func-
tions. To quantify the amount of variation in x accounted for by these
functions, we define x∗ to be the projection of x onto the subspace spanned
by ξ1, . . . , ξm and let ζm be the residual component x−x∗. Thus, ζm is the
component of x orthogonal to the functions ξ1, . . . , ξm.

If we wish to consider the efficacy of the first m components, then a
measure to consider is E‖ζm‖2; in order not to be tied to a particular m,
we can, for example, minimize

∑
m E‖ζm‖2. In both cases, we do not have

new observations x to work with, and the usual cross-validation paradigm
has to be used, as follows:

1. Subtract the overall mean from the observed data xi.

2. For a given smoothing parameter λ, let ξ
[i]
j (λ) be the estimate of ξj

obtained from all the data except xi.

3. Define ζ
[i]
m (λ) to be the component of xi orthogonal to the subspace

spanned by {ξ
[i]
j (λ) : j = 1, . . . , m}.

4. Combine the ζ
[i]
m (λ) to obtain the cross-validation scores

CVm(λ) =
n∑

i=1

‖ζ [i]
m (λ)‖2 (9.3)
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and hence

CV(λ) =
∞∑

m=1

CVm(λ). (9.4)

In practice, we would of course truncate the sum in (9.4) at some
convenient point. Indeed, given n data curves, we can estimate at
most n − 1 principal components, and so the sum must be truncated
at m = n − 1 if not at a smaller value.

5. Minimize CV(λ) to provide the choice of smoothing parameter.

Clearly there are other possible ways of combining the CVm(λ) to produce
a cross-validation score to account for more than one value of m, but we
restrict attention to CV(λ) as defined in (9.4).

In the pinch force data example considered Section 9.2, it was found sat-
isfactory to calculate the cross-validation score on a grid (on a logarithmic
scale) of values of the smoothing parameter λ and pick out the minimum.
The grid can be quite coarse, since small changes in the numerical value of
λ do not make very much difference to the smoothed principal components.
For this example, we calculated the cross-validation scores for λ = 0 and
λ = 1.5i−1 for i = 1, . . . , 30, and we attained the minimum of CV(λ) by
setting λ = 37.

9.4 Finding the regularized PCA in practice

In practice, the smoothed principal components are most easily found by
working in terms of a suitable basis. First of all, consider the periodic case,
for which it is easy to set out an algorithm based on Fourier series.

9.4.1 The periodic case
Suppose, for simplicity, that T is the interval [0, 1] and that periodic
boundary conditions are valid for all the functions we are considering. In
particular, this means that the data xi(s) themselves are regarded as being
periodic. Let {φν} be the series of Fourier functions defined in (3.7). For
each j, define ω2j−1 = ω2j = 2πj. Given any periodic function x, we can
expand x as a Fourier series with coefficients cν =

∫
xφν , so that

x(s) =
∑

ν

cνφν(s) = c′φ(s).

The operator D2 has the useful property that, for each ν,

D2φν = −ω2
νφν ,
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meaning that we can also expand D2x as

D2x(s) = −
∑

ν

ω2
νcνφν(s).

By standard orthogonality properties of trigonometric functions, the φν

are orthonormal, and it follows that the roughness penalty ‖D2x‖2 can be
written as a weighted sum of squares of the coefficients cν :

‖D2x‖2 =
∫

(−
∑

ν

ω2
νcνφν)(−

∑
ν

ω2
νcνφν) =

∑
ν

ω4
νc2

ν .

Now proceed by expanding the data functions to sufficient terms in the
basis to approximate them closely. We can use a fast Fourier transform
on a finely discretized version of the observed data functions to do this
efficiently. Denote by ci the vector of Fourier coefficients of the observation
xi(s), so that xi(s) = c′

iφ(s) where φ is the vector of basis functions. Let
V be the covariance matrix of the vectors ci, and let S be the diagonal
matrix with entries

Sνν = (1 + λω4
ν)−1/2.

The matrix S then corresponds to a smoothing operator S.
Let y be the vector of coefficients of any potential principal component

curve ξ, so that

ξ(s) =
∑

ν

yνφν(s) = y′φ(s). (9.5)

In terms of Fourier coefficients, we have

PCAPSV(ξ) =
y′Vy

y′S−2y
. (9.6)

Furthermore, if y(j) denotes the vector of Fourier coefficients of the curve
ξk, then the constraint (9.2) can be written as y′

(j)S
−2y(k) = 0 for k =

1, . . . , j − 1.
It follows from standard arguments in linear algebra that the estimates

specified in Section 9.3 have Fourier coefficients that satisfy the eigenvector
equation

Vy = ρS−2y, (9.7)

which can be rewritten

(SVS)(S−1y) = ρ(S−1y). (9.8)

The matrix SVS is the covariance matrix of the vectors Sci, the Fourier
coefficient vectors of the original data smoothed by the application of the
smoothing operator S.

To find the solutions of (9.8), suppose that u is an eigenvector of SVS
with eigenvalue ρ. Finding the eigenvectors and eigenvalues of SVS corre-
sponds precisely to carrying out an unsmoothed PCA of the smoothed data
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Sci. Then it is apparent that any multiple of Su is a solution of (9.8) for the
same ρ. Because we require ‖y‖2 = 1, renormalize and set y = Su/‖Su‖.
The functional principal component ξ corresponding to y is then computed
from (9.5).

Putting these steps together gives the following procedure for carrying
out the smoothed principal component analysis of the original data:

1. Compute the coefficients ci for the expansion of each sample function
xi in terms of basis φ.

2. Operate on these coefficients by the smoothing operator S.

3. Carry out a standard PCA on the resulting smoothed coefficient
vectors Sci.

4. Apply the smoothing operator S to the resulting eigenvectors u, and
renormalize so that the resulting vectors y have unit norm.

5. Compute the principal component function ξ from (9.5).

9.4.2 The nonperiodic case
Now turn to the nonperiodic case, where Fourier expansions are no longer
appropriate because of the boundary conditions. Suppose that {φν} is a
suitable basis for the space of smooth functions S on [0, 1]. Possible bases
include B-splines on a fine mesh, or possibly orthogonal polynomials up to
some degree. In either case, we choose the dimensionality of the basis to
represent the functions xi(s) well. As in the discussion of the periodic case,
let ci be the vector of coefficients of the data function xi(s) in the basis
{φν}. Let V be the covariance matrix of the vectors ci.

Define J to be the matrix
∫

φφ′, whose elements are
∫

φjφk and K the
matrix whose elements are

∫
D2φjD

2φk. The penalized sample variance
can be written as

PCAPSV =
y′JVJy

y′Jy + λy′Ky
(9.9)

and the eigenequation corresponding to (9.7) is given by

JVJy = ρ(J + λK)y. (9.10)

Now perform a factorization LL′ = J + λK and define S = L−1. We
can find a suitable matrix L by an SVD or by Choleski factorization, in
which case L is a lower triangular matrix. The equation (9.10) can now be
written as

(SJVJS′)(L′y) = ρL′y.

We can now work through stages corresponding to those for the periodic
case. The algorithm obtained is as follows:
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1. Expand the observed data xi with respect to the basis φ to obtain
coefficient vectors ci.

2. Solve Ldi = Jci for each i to find the vectors di = SJci.

3. Carry out a standard PCA on the coefficient vectors di.

4. Apply the smoothing operator S′ to the resulting eigenvectors u by
solving L′y = u in each case, and renormalize so that the resulting
vectors y have y′Jy = 1.

5. Transform back to find the principal component functions ξ using
(9.5).

If we use a B-spline basis and define L by a Choleski factorization, then
the matrices J, K and L are all band matrices, and by using appropriate
linear algebra routines, we can carry out all the calculations extremely
economically. Even in the full matrix case, especially if not too many basis
functions are used, the computations are reasonably fast because S never
has to be found explicitly.

9.5 Alternative approaches

In this section, we discuss two alternative approaches to smoothed
functional PCA.

9.5.1 Smoothing the data rather than the PCA
In this section, we compare the method of regularized principal compo-
nents analysis with an approach akin to that discussed earlier in the book.
Instead of carrying out our smoothing step within the PCA, we smooth the
data first, and then carry out an unsmoothed PCA. This approach to func-
tional PCA was taken by Besse and Ramsay (1986), Ramsay and Dalzell
(1991) and Besse, Cardot and Ferraty (1997). Of course, conceivably any
smoothing method can be used to smooth the data, but to make a reason-
able comparison, we use a roughness penalty smoother based on integrated
squared second derivative. For simplicity, let us restrict our attention to
the case of periodic boundary conditions.

Suppose that x is a data curve, and that we regard x as the sum of a
smooth curve and a noise process. We would obtain the roughness penalty
estimate of the smooth curve by minimizing

PENRSS = ‖x − g‖2 + λ‖D2g‖2

over g in S. As usual, λ is a smoothing parameter that controls the trade-off
between fidelity to the data and smoothing. This is a generalization of the
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Figure 9.5. The pinch force data curves, smoothed by a roughness penalty method
with the same smoothing parameter as used for the smoothed PCA, and with
the baseline pressure subtracted.

spline smoothing method discussed in Chapter 5 to the case of functional
data.

Consider an expansion of x and g in terms of Fourier series as in
Section 9.4.1, and let c and d be the resulting vectors of coefficients. Then

PENRSS = ‖c − d‖2 + λ
∑

ν

ω4
νd2

ν ,

and hence the coefficients of the minimizing g satisfy

d = S2c, (9.11)

where S is as defined in Section 9.4.1. Note that this demonstrates that
the smoothing operator S used twice in the algorithm set out in Sec-
tion 9.4.1 can be regarded as a half-spline-smooth, since S2 is the operator
corresponding to classical spline smoothing.

Now let us consider the effect of smoothing the data by the operator
S2 using the same smoothing parameter λ = 37 as in the construction of
Figures 9.3 and 9.4. The effect of this smoothing on the data is illustrated
in Figure 9.5. Figure 9.6 shows the first four principal component curves of
the smoothed data. Although the two methods do not give identical results,
the differences between them are too small to affect any interpretation.
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Figure 9.6. The first four principal component curves of the smoothed data as
shown in Figure 9.5.

However, this favorable comparison depends rather crucially on the way
in which the data curves are smoothed, and in particular on the match
between the smoothing level implied in (9.11) and the smoothing level used
for the PCA itself. For example, we tried smoothing the force functions
curves individually, selecting the smoothing parameters by the generalized
cross-validation approach used in the S-PLUS function smooth.spline.
The result was much less successful, in the sense that the components were
far less smooth. The reason appears to be that this smoothing technique
tended to choose much smaller values of the smoothing parameter λ.

Kneip (1994) considers several aspects of an approach that first smooths
the data and then extracts principal components. Under a model where
the data are corrupted by a white noise error process, he investigates the
dependence of the quality of estimation of the principal components on
both sample size and sampling rate. In an application based on economics
data, he shows that smoothing is clearly beneficial in a practical sense.

9.5.2 A stepwise roughness penalty procedure
Another approach to the smoothing of functional PCA was set out by Rice
and Silverman (1991). They considered a stepwise procedure incorporat-
ing the roughness penalty in a different way. Their proposal requires a
separate smoothing parameter λj for each principal component. The prin-
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cipal components are estimated successively, the estimate ξ†
j of ξj being

found by maximizing var
∫

ξxi − λj‖D2ξ‖2 subject to the conventional
orthonormality conditions ‖ξ‖2 = 1 and

∫
ξξ†

k = 0 for k = 1, . . . , j − 1.
This approach is computationally more complicated because a separate

eigenproblem has to be posed and solved for each principal component;
for more details, see the original paper. Theoretical results in Pezzulli
and Silverman (1993) and Silverman (1996) also suggest that the proce-
dure described in Section 9.3 is likely to be advantageous under conditions
somewhat milder than those for the Rice-Silverman procedure.

9.5.3 A further approach
Yao, Müller, Clifford, Dueker, Follet, Lin, Bucholz and Vogel (2003) reg-
ularize the principal component scores fim by shrinking them towards
zero.



10
Principal components analysis of
mixed data

10.1 Introduction

It is a characteristic of statistical methodology that problems do not al-
ways fall into neat categories. In the context of the methods discussed in
this book, we often have both a vector of data and an observed function
on each individual of interest. In this chapter, we consider some ways of
approaching such mixed data, extending the ideas of PCA that we have
already developed.

In Chapter 7 we have discussed one way in which mixed data can arise.
Consider the Canadian temperature data as a specific example. The reg-
istration process finds, for each weather station, a suitable phase shift to
apply to the raw observed curve; the phase shifts are chosen to make the
shifted records fit together as well as possible. The vector part of the record
is in this case just the single number giving the size of the shift. The
functional part of the record is the shifted curve.

The method we will develop in this chapter produces principal compo-
nent weights that have the same structure as the mixed data themselves. So
the variability accounted for by each principal component can itself be split
into two parts, the part corresponding to variability in the phase shifts and
the part corresponding to variability in the registered functions. The first
four principal components for the Canadian temperature data are shown
in Figure 10.1. Let µ̂(s) be the mean of all the registered curves, in other
words the mean of the functional parts of all the observations. We assume
that the mean of all the phase shifts is zero.
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Figure 10.1. The mean Canadian temperature curve and the effects of adding
and subtracting a suitable multiple of each PC curve, with the shift considered
as a separate parameter.

The effect of each principal component is specified by a pair (ξi(s), vi),
where ξ(s) is the effect of variation in that component on the functional
part, and vi is the effect on the shift. Suppose, just for example, that the
score at a particular weather station is 2.5 on the ith principal component
and zero on all others. Then the functional part of the observation would
be µ̂(s) + 2.5ξi(s) and the phase shift would be 2.5vi. Note that the two
effects go together, and the multiple of ξi(s) is the same as that of vi. In
each case, the sign of the principal component has been taken to make the
shift positive; this is by no means essential, but it leads to some simplicity
of interpretation.

In the figure, the functional part of each principal component is illus-
trated by showing the effect on the overall mean µ̂ of adding and subtracting
a suitable multiple of the relevant ξj . The fine dotted curve corresponds
to adding the ξj and the dashed curve to subtracting. The shift part vi

is given numerically, for example 1.8 days for the second component. The
figure also states what percentage of variability of each PC is accounted for
by shift variability as opposed to the variability of the functional part.

Now consider the figure in detail. The first principal component—
accounting for 89.1% of the variability in the original observations—entirely
concerns the functional part, with 0% of the variability being in the shift
component. A high score on this component goes along with a weather
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station that is warmer than average all the year round, but with a larger
variation in the winter months.

The second component has 10.7% of its variability accounted for by a
shift component, of size 1.8 days. The functional part of this component
corresponds to a change in amplitude of the annual temperature variation.
High positive scores on this component would indicate lower-than-average
temperature variation over the year (cool summers and relatively warm
winters) together with a positive shift value. The third component is very
largely shift variation (71.7% of the variability). Associated with a positive
shift is an increase in temperature at the high point of the summer, with
very little effect elsewhere.

A comparison between Figure 10.1 and Figure 8.2 is instructive. Because
the shift component has been explicitly separated out, less skill is needed
to interpret the principal components in Figure 10.1. The percentage of
variation explained by each of the first four principal components is very
similar, but not quite identical, in the two analyses, for a reason discussed
further in Section 10.4.2.

Of course, there are many other situations where we have numerical
observations as well as functional observations on the individuals of interest,
and the PCA methodology we set out can be easily generalized to deal with
them.

10.2 General approaches to mixed data

We now consider mixed data in a more general context, bearing in mind
the Canadian temperature data as a specific example. To be precise about
notation, suppose that our observations consist of pairs (xi,yi), where xi

is a function on the interval T and yi is a vector of length M . How might
we use PCA to analyze such data?

There are three different ways of viewing the yi. First, it may be that the
yi are simply nuisance parameters, of no real interest to us in the analysis,
for example corresponding to the time at which a recording instrument is
activated. In this case we would quite simply ignore them. The yi can be
thought of as one of the features of almost all real data sets that we choose
not to include in the analysis.

On the other hand, as in the temperature data example, both the func-
tions xi and the observations yi may be of primary importance. The PCA
of such hybrid data (xi,yi) is the case to which we give the most attention,
from Section 10.3 onwards. There is some connection with the methodology
described in Section 8.5 for bivariate curve data with values (xi(t), yi(t)),
though in our case the second component is a scalar or vector rather than
a function.
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As a third and somewhat intermediate possibility, the yi may be of
marginal importance, our central interest being in the functions xi. In this
case, we could ignore the yi initially and carry out a PCA of the curves
xi(t) alone. Having done this, we could investigate the connection between
the scores on the principal component scores and the variable(s) yi. We
could calculate the sample correlations between the principal component
scores and the components of the yi. Alternatively or additionally, we could
plot the yi against the principal component scores or use other methods for
investigating dependence. In this general approach, the yi would not have
been used in the first part of the analysis itself; however, they would have
played a key part in interpreting the analysis. It would be interesting, for ex-
ample, to notice that a particular principal component of the xi was highly
correlated with yi. We develop this approach further in Section 10.5.2.

10.3 The PCA of hybrid data

10.3.1 Combining function and vector spaces
A typical principal component weight function would consist of a pair (ξ,v),
where v is an M -vector, and the principal component score of a particular
observation would then be the sum

ηi =
∫

xi(s)ξ(s) ds + y′
iv. (10.1)

Another way of saying this is that the principal component would be
made up of a functional part ξ and a vector part v, corresponding to the
functional and vector (or numerical) parts of the original data. A typical
observation from the distribution of the data would be modelled as(

xi

yi

)
=

∑
j

ηij

(
ξj

vj

)
, (10.2)

where (ξj ,vj) is the jth principal component weight and, as j varies, the
vectors of principal component scores ηij =

∫
xiξj + y′

ivj are uncorrelated
variables with mean zero.

This kind of hybrid data PCA can very easily be dealt with in our general
functional framework. Define Z to the space of pairs z = (x,y), where x is
a smooth function and y is a vector of length M . Given any two elements
z(1) = (x(1),y(1)) and z(2) = (x(2),y(2)) of Z, define the inner product

〈z(1), z(2)〉 =
∫

x(1)x(2) + y′
(1)y(2). (10.3)

From (10.3) we can define the norm ‖z‖2 = 〈z, z〉 of any z in Z.
Now that we have defined an inner product and norm on Z, write zi for

the data pair (xi,yi). To find the leading principal component, we wish to
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find ζ = (ξ,v) in Z to maximize the sample variance of the 〈ζ, zi〉 subject
to ‖ζ‖2 = 1. The 〈ζ, zi〉 are of course exactly the same as the quantities
ηi =

∫
xi(s)ξ(s) ds + y′

iv specified in equation (10.1).
Subsequent principal components maximize the same sample variance

subject to the additional condition of orthogonality to the principal com-
ponents already found, orthogonality being defined by the hybrid inner
product (10.3). Principal components found in this way yield principal com-
ponent scores that are uncorrelated, just as for conventional multivariate
PCA.

The PCA of hybrid data is thus very easily specified in principle. How-
ever, there are several important issues raised by this idea, and we discuss
these in the following sections.

10.3.2 Finding the principal components in practice
How do we carry out the constrained maximization of the sample variance
of the 〈ζ, zi〉 in practice? Suppose that φk is a basis of K functions in
which the functional parts xi of the hybrid data zi can be well approxi-
mated. Given any element z = (x,y) of Z, define the K-vector c to be the
coefficients of x relative to the basis φ. Now let p = K + M , and let w be
the p-vector

w =
[

c
y

]
.

Suppose that the basis φ is an orthonormal basis, the Fourier functions,
for example. Then the inner product (10.3) of any two elements z(1) and
z(2) of Z is precisely equal to the ordinary vector inner product w′

(1)w(2) of
the corresponding p-vectors of coefficients. Thus, if we use this method of
representing members of Z by vectors, we have a representation in which
the vectors behave exactly as if they were p-dimensional multivariate ob-
servations, with the usual Euclidean inner product and norm. It follows
that we can use standard multivariate methods to find the PCA.

In summary, we can proceed as follows to carry out a PCA:

1. For each i, let ci be the vector of the first K Fourier coefficients of
xi.

2. Augment each ci by yi to form the p-vector wi.

3. Carry out a standard PCA of the wi, by finding the eigenvalues and
eigenvectors of the matrix N−1 ∑

i wiw′
i.

4. If u is any resulting eigenvector, the first K elements of u are the
Fourier coefficients of the functional part of the principal component,
and the remaining elements are the vector part.
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Since the procedure we have set out is a generalization of ordinary
functional PCA, we may wish to incorporate some smoothing, and this
is discussed in the next section.

10.3.3 Incorporating smoothing
To incorporate smoothing into our procedure, we can easily generalize the
smoothing methods discussed in Chapter 9. The key step in the method
is to define the roughness of an element z = (x,y) of Z. Let us take the
roughness of z to be that of the functional part x of z, without any reference
to the vector part y. To do this, define D2z to be equal to the element
(D2x, 0) of Z so that the roughness of z can then be written ‖D2z‖2, just
as in the ordinary functional case. The norm is taken in Z, but since the
vector part of D2z is defined to be zero, ‖D2z‖2 = ‖D2x‖2 as required.

Once we have defined the roughness of z, we can proceed to carry out
a smoothed PCA using exactly the same ideas as in Chapter 9. As far as
algorithms are concerned, the Fourier transform algorithm for the periodic
case requires slight modification. Let z∗ be the vector representation of an
element z, of length K + p. The first K elements of z∗ are the Fourier
coefficients of the functional part x and the last p elements simply the
vector part y. The roughness of z is

∑K−1
k=0 ω4

kz∗
k
2 so the matrix S used in

the algorithm described in Section 9.4.1 must be modified to have diagonal
elements (1 + λω4

k)−1/2 for k < K, and 1 for K ≤ k < p.
Apart from this modification, and of course the modified procedures for

mapping between the function/vector and basis representations of elements
of Z, the algorithm is exactly the same as in Section 9.4.1. Furthermore,
the way in which we can apply cross-validation to choose the smoothing
parameter is the same as in Section 9.3.3.

To deal with the nonperiodic case, we modify the algorithm of Sec-
tion 9.4.2 in the same way. The matrix J is a block diagonal matrix where
the first K rows and columns have elements

∫
φjφk and the last M rows and

columns are the identity matrix of order M . The matrix K has elements∫
(D2φj)(D2φk) in its first K rows and columns, and zeroes elsewhere.

10.3.4 Balance between functional and vector variation
Readers who are familiar with PCA may have noted one potential difficulty
with the methodology set out above. The variations in the functional and
vector parts of a hybrid observation z are really like chalk and cheese:
they are measured in units which are almost inevitably not comparable,
and therefore it may well not be appropriate to weight them as we have.
In the registration example, the functional part consists of the difference
between the pattern of temperature on the transformed time scale and
its population mean; the vector part is made up of the parameters of the
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time transformation. Clearly, these are not measured in directly compatible
units!

One way of noticing the effect of noncomparability is to consider the
construction of the inner product (10.3) on Z, which we defined by adding
the inner product of the two functional parts and that of the two vector
parts. In many problems, there is no intrinsic reason to give these two inner
products equal weight in the sum, and a more general inner product we
could consider is

〈z(1), z(2)〉 =
∫

x(1)x(2) + C2y′
(1)y(2) (10.4)

for some suitably chosen constant C. Often, the choice of C (for example
C = 1) is somewhat arbitrary, but we can make some remarks that may
guide its choice.

First, if the interval T is of length |T |, then setting C2 = |T | gives the
same weight to overall differences between x(1) and x(2) as to differences
of similar size in a single component of the vector part y. If the measure-
ments are of cognate or comparable quantities, this may well be a good
method of choosing C. On the other hand, setting C2 = |T |/M tends to
weight differences in functional parts the same as differences in all vector
components.

Another approach, corresponding to the standard method of PCA rela-
tive to correlation matrices, is to ensure that the overall variability in the
functional parts is given weight equal to that in the vector part. To do this,
we would set

C2 =
∑

i ‖xi − x̄‖2∑
i ‖yi − ȳ‖2 ,

taking the norm in the functional sense in the numerator, and in the usual
vector sense in the denominator.

Finally, in specific problems, there may be a particular rationale for
some other choice of constant C2, an example of which is discussed in
Section 10.4.

Whatever the choice of C2, the most straightforward algorithmic ap-
proach is to construct the vector representation z of any element z = (x, y)
of Z to have last M elements Cy, rather than just y. The first K elements
are the coefficients of the representation of x in an appropriate basis, as
before. With this modification, we can use the algorithms set out above.
Some care must be taken in interpreting the results, however, because any
particular principal component weight function has to be combined with
the data values using the inner product (10.4) to get the corresponding
principal component scores.
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10.4 Combining registration and PCA

10.4.1 Expressing the observations as mixed data
We now return to the special case of mixed data obtained by registering a
set of observed curves. For the moment, concentrate on data that may be
assumed to be periodic on [0, 1]. We suppose that an observation can be
modelled as

x(t + τ) = µ(t) +
∑

j

ηjξj(t) (10.5)

for a suitable sequence of orthonormal functions ξj , and where ηj are un-
correlated random variables with mean zero and variances σ2

j . The model
(10.5) differs from the usual PCA model in allowing for a shift in time τ
as well as for the addition of multiples of the principal component func-
tions. Because of the periodicity, the shifted function x(t + τ) may still be
considered as a function on [0, 1].

Given a data set x1, . . . , xn, we can use the Procrustes approach set out
in Chapter 7 to obtain an estimate µ̂ of µ and to give values of the shifts
τ1, . . . , τn appropriate to each observation. Then we can regard the data
as pairs zi = (x̃i, τi), where the τi are the estimated values of the shift
parameter and the x̃i are the shifted mean-corrected temperature curves
with values xi(t + τi) − µ̂(t). Recall that a consequence of the Procrustes
fitting is that the x̃i satisfy the orthogonality property∫

x̃iDµ̂ = 0. (10.6)

10.4.2 Balancing temperature and time shift effects
We can now consider the effect of the methodology of Section 10.3 to the
mixed data zi obtained in the registration context. We seek principal com-
ponents (ξ, v) that have two effects within the model (10.5): the addition
of the function ξ to the overall mean µ̂, together with a contribution of v
to the time shift τ .

In the special case of the registration data, there is a natural way of
choosing the constant C2 that controls the balance between the functional
and shift components in the inner product (10.4). Suppose that x is a
function in the original data function space, and that z = (x̃, τ) is the
corresponding pair in Z, so that

x(t) = µ̂(t − τ) + x̃(t − τ).

Because of the orthogonality property (10.6), we can confine attention to
x̃ that are orthogonal to µ̂.
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To define a norm on Z, a requirement is that, at least to first order,

‖z‖2 ≈ ‖x − µ̂‖2 =
∫

[x(s) − µ̂(s)]2 ds, (10.7)

the standard squared function norm for x − µ̂. This means that the norm
of any small perturbation of the mean function µ̂ must the same, whether
it is specified in the usual function space setting as x − µ̂, or expressed as
a pair z in Z, consisting of a perturbation x̃ orthogonal to µ̂ and a time
shift.

Suppose ‖x̃‖ and τ are small. If we let

C2 = ‖Dµ̂‖2, (10.8)

then, to first order in ‖x̃‖ and τ ,

x(t) − µ̂(t) ≈ −τDµ̂(t − τ) + x̃(t − τ).

By the orthogonality of x̃ and Dµ̂,

‖z − µ̂‖2 ≈
∫

x̃2(s) + C2τ2(s) ds = ‖x̃‖2 + C2‖τ‖2, (10.9)

as required.
With this calculation in mind, we perform our PCA of the pairs (x̃i, τi)

relative to the inner product (10.4) with C2 = ‖Dµ̂‖2, and this was the way
that C was chosen in Section 10.1. The percentage of variability of each
principal component due to the shift was then worked out as 100C2v2

j .
The use of this value of C provides approximate compatibility between

the quantification of variation caused simply by the addition of a curve to
the overall mean, and variation that also involves a time shift. It therefore
accounts for the similarity of the percentages of variation explained by the
various components in Figures 8.2 and 10.1.

10.5 The temperature data reconsidered

10.5.1 Taking account of effects beyond phase shift
In the temperature example, the shift effect is not necessarily the only effect
that can be extracted explicitly and dealt with separately in the functional
principal components analysis. We can also take account of the overall
annual average temperature for each weather station, and we do this by
extending the model (10.5) to a model of the form

x(t + τ) − θ = α + µ(t) +
∑

j

ηjξj(t), (10.10)

where θ is an annual temperature effect with zero population mean. The
ηj are assumed to be uncorrelated random variables with mean zero. The
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parameter α is the overall average temperature (averaged both over time
and over the population). For identifiability we assume that

∫
µ(s) ds = 0.

The data we would use to fit such a model consist of triples (x̆i, τi, θi),
where x̆i are the observed temperature curves registered to one another
by shifts τi, and with each curve modified by subtracting its overall annual
average α̂+θi. Here the number α̂ is the time average of all the temperatures
observed at all weather stations, and the individual θi therefore sum to zero.
Because the annual average α̂+ θi has been subtracted from each curve x̆i,
the curves x̆i each integrate to zero as well as satisfying the orthogonality
condition (10.6). The mean curve µ̂ is then an estimate of the mean of
the registered curves x̆i, most straightforwardly the sample mean. In the
hybrid data terms we have set up, the functional part of each data point is
the curve x̆, whereas the vector part is the 2-vector (τi, θi)′.

To complete the specification of (10.10) as a hybrid data principal compo-
nents model, we regard τ and θ as random variables which can be expanded
for the same ηj , as

τ =
∑

j

ηjvj and θ =
∑

j

ηjuj ,

where the vj and uj are fixed quantities. Thus, the jth principal component
is characterized by a triple (ξj , vj , uj), constituting a distortion of the mean
curve by the addition of a multiple of ξj , together with shifts in time and
in overall temperature by the same multiples of vj and uj , respectively.

Just as before, we carry out a PCA of the hybrid data {(x̆i, τi, θi)}
with respect to a suitably chosen norm. To define the norm of a
triple (x̆, τ, θ), consider the corresponding unregistered and uncorrected
curve x, defined by

x(t + τ) = α̂ + θ + µ̂(t) + x̆(t).

Define C1 = ‖Dµ̂‖2 and C2 = |T |. Assume that x̆ integrates to zero and
satisfies (10.6).

By arguments similar to those used previously, using the standard square
integral norm for x̆,

‖x − µ̂‖2 ≈ ‖x̆‖2 + C2
1τ2 + C2

2θ2.

Thus an appropriate definition of the norm of the triple is given by

‖(x̆, τ, θ)‖2 = ‖x̆‖2 + C2
1τ2 + C2

2θ2.

In practice, a PCA with respect to this norm is carried out by the same
general approach as before. For each i, the function x̆i is represented by a
vector c̆i of its first K Fourier coefficients. The vector is augmented by the
two values C1τi and C2θi to form the vector zi. We then carry out a stan-
dard PCA on the augmented vectors zi. The resulting principal component
weight vectors are then unpacked into the parts corresponding to ξj , vj

and uj , and the appropriate inverse transforms applied—just dividing by
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Figure 10.2. The mean Canadian temperature curve and the effect of adding
and subtracting a suitable multiple of each PC curve, with the shift and annual
average temperature considered as separate parameters.

C1 and C2 respectively in the case of the shift and overall temperature ef-
fects, and applying an inverse Fourier transform to the first K components
of the vector to find ξj .

Figure 10.2 shows the effect of this approach applied to the Canadian
temperature data. Notice that a component that was entirely variation in
overall temperature would have a temperature effect of ±1 degree, because
time is scaled to make the cycle of unit length (with time measured in
years) so that C2 = 1. Because each principal component is scaled to have
unit norm, the maximum possible value of (C2ui)2 is 1, with equality if
and only if the other components are zero. Similarly, since C1 = 365/5.4, a
component that was entirely a time shift would have vi = ±5.4/365 years,
i.e., ±5.4 days.

In each case in the figure, the proportions of variability due to the two
parametric effects, shift and overall average temperature, are combined to
give the percentage of variability due to the vector parameters. Principal
component 1 is almost entirely due to the variation in overall tempera-
ture, with a small effect corresponding to a decrease in range between
summer and winter. (Recall that the dotted curve corresponds to a pos-
itive multiple of the principal component curve ξi, and the dashed curve
to a negative multiple.) Principal component 2 has some shift component,
a moderate negative temperature effect, and mainly comprises the effect
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Figure 10.3. Principal component analysis carried out on the Canadian
temperature curves adjusted for time shift and for annual average temperature.

of a decreased annual temperature range. Within this component, overall
average temperature is positively associated with increased range, whereas
in component 1 the association was negative. Principal component 1 ac-
counts for a much larger proportion of the variability in the original data,
and a slightly different approach in Section 10.5.2 shows that within the
data as a whole, increased overall temperature is negatively correlated with
higher range between summer and winter—colder places have more extreme
temperatures.

Neither principal component 3 nor 4 contains much of an effect due to
overall temperature. As before, component 3 is very largely shift, whereas
component 4 corresponds to an effect unconnected to shift or overall
temperature.

10.5.2 Separating out the vector component
This section demonstrates the other procedure suggested in Section 10.2.
We carry out a principal components analysis on the registered curves
x̆i and then investigate the relationship between the resulting principal
component scores and the parameters τi and θi arising in the registration
process. Thus we analyze only the functional part of the mixed data, and
the vector part is only considered later.
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The effect of doing this is demonstrated in Figure 10.3. Removing the
temperature and shift effects accounts for 79.2% of the variability in the
original data, and the percentages of variability explained by the various
principal components have been multiplied by 0.208, to make them express
parts of the variability of the original data, rather than the adjusted data.
For each weather station, we have a shift and annual average temperature
as well as the principal component scores. Figure 10.3 shows the correla-
tions between the score on the relevant principal component and the two
parameters estimated in the registration.

We see that the components 3 and 4 in this analysis account for very lit-
tle of the original variability and have no clear interpretation. Component 1
corresponds to an increase in range between winter and summer—the effect
highlighted by component 2 in the previous analysis. We see that this ef-
fect is strongly negatively correlated with annual average temperature, and
mildly negatively correlated with shift. Component 2 corresponds approx-
imately to component 4 in the previous analysis, and is the effect whereby
the length of summer is lengthened relative to that of winter. This effect
is positively correlated with average temperature and negatively correlated
with shift.



11
Canonical correlation and discriminant
analysis

11.1 Introduction

11.1.1 The basic problem
In this chapter, we continue our consideration of exploratory approaches
to functional data, specifically the case where we have observed pairs of
functions (Xi, Yi), i = 1, . . . , N , such as the hip and knee angles for
the gait cycles of a number of children as discussed in Chapters 1 and
8. Suppose we wanted to know how variability in the knee angle cycle
is related to that in the hip angle. In Section 8.5 we saw how principal
components analysis can examine the variability in the two sets of curves
taken together, but we did not explicitly address the issue of interaction
between the two curves. In this chapter, we pursue a somewhat different
emphasis by considering canonical correlation analysis (CCA), which seeks
to investigate which modes of variability in the two sets of curves are most
associated with one another.

In the functional context, canonical correlation analysis provides a pair
of functions (ξ(s), η(s)) such that

∫
ξXi and

∫
ηYi are well correlated with

one another. We can think of ξ(s) and η(s) as the components of variation
in the two curves that most account for the interaction between the hip and
knee angles. Our method gives the curves shown in Figure 11.1. The values∫

ξXi and
∫

ηYi are called canonical variates, and the sample correlation
between these variates is about 0.81 in this case.

In the figure, the curves ξ and η are rather similar, and the broad inter-
pretation is that there is correlation between the two measurements Xi(s)
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Figure 11.1. Estimated canonical variate weight functions for the gait data. Solid
curve: weight function for hip observations; dotted curve: weight function for knee
observations.

and Yi(s) at any particular time. But it is interesting that the extreme in
the hip curve in the middle of the cycle occurs a little later than that in
the knee curve, whereas the order of the extremes near the beginning of
the cycle is reversed. This suggests that, in the middle of the cycle, high
variability from the norm in the hip follows that in the knee; near the ends
of the cycle, the effects occur in the opposite order. This may indicate a
physical propagation of errors caused by the relevant strike of the heel at
the beginning and in the middle of the cycle.

Having found these components of variability, we can go on to find further
components of variation. Call the (ξ, η) we have already found (ξ1, η1). We
can now look for another pair of functions (ξ2, η2) such that

• There is a high correlation between the variation in the hip angles
described by a multiple of ξ2 and that in the knee angles accounted
for by η2, but . . .

• these effects are uncorrelated with the previously found contributions
to variability corresponding to ξ1 and η1.

The functions ξ2 and η2 are shown in Figure 11.2. In this case the correla-
tion between

∫
ξ2Xi and

∫
η2Yi is about 0.72, only slightly lower than that

for the first pair of canonical variates. The points at which the functions
ξ2 and η2 cross the axis indicate conclusions similar to those outlined with
respect to the leading variates. In the middle of the cycle the hip curve
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Figure 11.2. Second pair of smoothed canonical variate weight functions for the
gait data. Solid curve: weight function for hip observations; dashed curve: weight
function for knee observations.

crosses zero considerably later than the knee curve, whereas near the be-
ginning of the cycle the hip curve crosses first. Put another way, we could
roughly transform both the first and the second canonical variates to be
identical for the hip and the knee by speeding up the hip cycle relative
to the knee cycle in the first half of the cycle, and slowing it down in the
second.

We shall see that the estimation of the weight functions as shown in
Figures 11.1 and 11.2 is not quite straightforward and that an appropriate
form of smoothing is essential. But first we review classical multivariate
CCA; a fuller discussion can be found in most multivariate analysis text-
books, such as Anderson (1984). We then go on to develop our approach
to functional CCA, largely based on the paper of Leurgans, Moyeed and
Silverman (1993), and using the gait data as a running example. Another
application is considered in Section 11.4. We shall see that some regu-
larization is essential to obtain meaningful results, for reasons discussed
briefly in Section 11.5. In Section 11.6, various algorithmic approaches and
connections with other FDA topics are explored.

Finally, in Section 11.7, we present some extensions of the ideas of func-
tional CCA to deal with problems of optimal scoring and discriminant
analysis. This is based on work of Hastie, Buja and Tibshirani (1995).
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11.2 Principles of classical canonical correlation
analysis

Suppose we have n pairs of observed vectors (xi, yi), each xi being a p-
vector and each yi being a q-vector. The object of canonical correlation
analysis is to reduce the dimensionality of the data by finding the vectors
a1 and b1 (p- and q-vectors respectively) for which the linear combinations
a′

1xi and b′
1yi are as highly correlated as possible. The canonical variates

a′
1xi and b′

1yi are the linear compounds of the original observations whose
variability is most closely related in terms of correlation. The vectors a1
and b1 are called the leading canonical variate weight vectors.

Note that multiplying a1 and/or b1 by nonzero constants of the same
sign does not alter the correlation. If the constants are opposite in sign,
the correlation itself is reversed in sign but has the same magnitude. By
convention, we choose a1 and b1 so that {a′

1xi} and {b′
1yi} both have

sample variance equal to 1, and the correlation ρ1 between the a′
1xi and

b′
1yi is positive.
We can now go on to find subsidiary canonical variates. The jth pair

of canonical variates is defined by a p-vector aj and a q-vector bj , chosen
to maximize the sample correlation ρj = corr(a′

jxi,b′
jyi) subject to the

constraints that

(a) corr(a′
jxi,a′

kxi) = 0

(b) corr(b′
jyi,b′

kyi) = 0

(c) corr(a′
jxi,b′

kyi) = 0,

where in each case the correlations are the sample correlations as i takes
the values 1, . . . , n.

11.3 Functional canonical correlation analysis

11.3.1 Notation and assumptions
We now return to the functional case, which is our main concern. As usual,
assume that the N observed pairs of data curves (Xi, Yi) are available for
argument t in some finite interval T , and that all integrals are taken over T .
Given functions ξ and η, we define ccorsq(ξ,η) to be the sample squared
correlation of

∫
ξXi and

∫
ηYi, and therefore

ccorsq(ξ,η) =
{cov(

∫
ξXi,

∫
ηYi)}2

(var
∫

ξXi)(var
∫

ηYi)
.

The use of a roughness penalty is central to our methodology. As usual we
quantify the roughness of a function f by its integrated squared curvature
‖D2f‖2=

∫
(D2f)2.
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Figure 11.3. Unsmoothed canonical variate weight functions for the gait data
that attain perfect correlation. Top panel: weight function for hip observations;
bottom panel: weight function for knee observations.

11.3.2 The naive approach does not give meaningful results
For the moment concentrate on the leading canonical variates. We might
imagine that the obvious way to proceed is simply to find functions ξ and
η that maximize ccorsq(ξ,η). This would be equivalent to maximizing
cov(

∫
ξXi,

∫
ηYi) subject to the constraints

var(
∫

ξXi) = var(
∫

ηYi) = 1. (11.1)

However, simply carrying out this maximization does not produce a mean-
ingful result. Figure 11.3 shows functions ξ and η that maximize the
sample correlation ccorsq for the gait data example. The sample correla-
tion achieved by these functions is 1. The functions displayed in Figure 11.3
do not give any meaningful information about the data and clearly demon-
strate the need for a technique involving smoothing. In Section 11.5, we
explain why this behavior is not specific to this particular data set but is
an intrinsic property of CCA applied in the functional context.

A straightforward way of introducing smoothing is to modify the
constraints (11.1) by adding roughness penalty terms to give

var(
∫

ξXi) + λ‖D2ξ‖2 = var(
∫

ηYi) + λ‖D2η‖2 = 1, (11.2)

where λ is a positive smoothing parameter.
The effect of introducing the roughness penalty terms into the constraints

is that, in evaluating particular candidates to be canonical variates, we
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consider not only their variances, but also their roughness, and compare a
weighted sum of these two quantities with the covariance term. The problem
of maximizing the covariance cov(

∫
ξXi,

∫
ηYi) subject to the constraints

(11.2) is equivalent to maximizing the penalized squared sample correlation
defined by

ccorsqλ(ξ,η) =
{cov(

∫
ξXi,

∫
ηYi)}2

{var(
∫

ξXi) + λ‖D2ξ‖2}{var(
∫

ηYi) + λ‖D2η‖2} .

(11.3)
We refer to this procedure as smoothed canonical correlation analysis.

Our method of introducing smoothing or regularization is similar to the
technique of ridge regression, which is often used in image processing and
ill-posed problems to improve the conditioning of the variance matrices
considered. The technique of ridge regression was applied to CCA by Vinod
(1976). Multiplying the curves ξ and η by constants does not affect the value
of the criterion ccorsqλ(ξ,η), and in the figures they are normalized to set∫

ξ2 =
∫

η2 = 1.

11.3.3 Choice of the smoothing parameter
The larger the value of λ, the more emphasis is placed on the roughness
penalty and the smaller will be the true correlation of the variates found by
smoothed CCA. A good choice of the smoothing parameter is essential to
give a pair of canonical variates with fairly smooth weight functions and a
correlation that is not unreasonably low. The smoothing parameter can be
chosen subjectively, but if we require an automatic procedure, a reasonable
form of cross-validation is as follows:

Let ccorsq−i
λ (ξ,η) be the sample penalized squared correlation cal-

culated as in (11.3) but with the observation (Xi, Yi) omitted. Let
(ξ(−i)

λ ,η
(−i)
λ ) be the functions that maximize ccorsq−i

λ (ξ,η). The cross-
validation score for λ is defined to be the squared correlation of the N
pairs of numbers

(
∫

ξ
(−i)
λ Xi,

∫
η

(−i)
λ Yi)

for i = 1, . . . , n. We then choose λ to maximize this correlation. It is this
choice of λ that was used for the gait data in Figures 11.1 and 11.2. The
degree of smoothing chosen by cross-validation appears to be quite heavy,
and to test the sensitivity of these conclusions, Leurgans, Moyeed and Sil-
verman (1993) examined the first two pairs of canonical variates estimated
with a value of λ reduced by a factor of 10. Though there was a little more
variability in the canonical variate curves, the broad features remained the
same.

Throughout this section, we have concentrated on the choice of smooth-
ing parameter for the leading canonical variates. If we were particularly
interested in the ideal smoothing parameter for a subsidiary canonical cor-
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Table 11.1. Smoothed and unsmoothed sample correlations for the first three
pairs of smoothed canonical variates for the gait data.

Canonical Sample squared correlations
variates ccorsqλ(ξλ,ηλ) ccorsq(ξλ,ηλ)
First 0.755 0.810
Second 0.618 0.717
Third 0.141 0.198

relation, we could formulate a relevant cross-validation score. However, our
practical experience has shown us that, although cross-validation works
well for the leading canonical variate, its behavior is much more disap-
pointing for subsequent canonical variates. We have found it to be more
satisfactory simply to use the same value of λ for any subsidiary canonical
variates considered.

We have used a single smoothing parameter λ for both ξ and η. It is
possible to use separate smoothing parameters λ1 and λ2; the conceptual
and algorithmic extensions are straightforward, but we have found a single
smoothing parameter to be adequate in the examples we have considered.

11.3.4 The values of the correlations
Once the canonical variates have been found, we can consider the values of
the correlations themselves. We can consider either the smoothed squared
correlation ccorsqλ or the unsmoothed value ccorsq; there is no firm the-
oretical footing for the choice between them and in any case it would be a
matter of some concern if the effect of smoothing was to make the values
dramatically different.

For the gait data, Table 11.1 shows the values of the smoothed and
unsmoothed squared correlations, and also includes corresponding values
for the second and third pairs of smoothed canonical variates, estimated
with the same λ. Table 11.1 shows that the second pair of canonical variates
is almost as important as the first. On the other hand, the third pair of
canonical variates have low estimated correlation, and we do not consider
them further.

Before we leave the gait example, we note that scatterplots of the
canonical variate scores (

∫
ξXi,

∫
ηYi) show that no particular curves have

outlying scores for either of the first two canonical variates. In Section 8.5,
we saw that the first principal component of variation in the hip curves
alone corresponded to an overall vertical shift in the curves. If this shift
were in any way correlated with a variation in the knee curves, the hip
canonical variate curves would be more like constants than sine waves.
Since this is not the case, we can see that this vertical shift is a property
of the hip curves alone, independent of any variation in the knee angles.
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Figure 11.4. Smoothed canonical variate weight functions for the lupus data, from
Buckheit et al. (1997). Left panel: results of CCA applied to GFR and KUC with
solid curve corresponding to GFR and dashed curve to KUC. Right panel: results of
CCA applied to GFR and GOP, with solid curve corresponding to GFR and dashed
curve to GOP.

11.4 Application to the study of lupus nephritis

Buckheit, Olshen, Blouch and Myers (1997) applied functional CCA to
renal physiology, in the study of diffuse proliferative lupus nephritis, and
we present their results here as an illustration. The original paper should be
consulted for further details; we are extremely grateful to Richard Olshen
for his generosity in sharing and discussing this work with us prior to its
publication.

They had available various measurements on a number of patients over
a 60-month period. These include the glomerular filtration rate (GFR), the
glomerular oncotic pressure (GOP) and the two-kidney ultrafiltration coeffi-
cient (KUC). They focused on nine patients labelled progressors, those whose
kidney function, as measured by GFR was clearly declining over the period
of study. The GFR measure is currently favored by clinicians as an overall
indicator of progressive glomerular disease, a particular form of kidney de-
generation, and therefore the progressors are the group suffering long-term
kidney damage, likely to require eventual dialysis or transplantation. It
is important to understand the kidney filtration dynamics in this disease,
and this is facilitated by investigating the covariation between measured
variables.



11.5. Why is regularization necessary? 209

Within the progressor group, GFR and KUC tend to decrease considerably
over the 60 month period, whereas the GOP measure increases somewhat.
This contrasts with well-functioning kidneys, where an increase in GOP
would be counteracted by an increase in KUC, resulting in steady GFR.
Functional smoothed CCA was applied to explore variability and inter-
action effects in the progressor group. The correlations between GFR and
each of KUC and GOP were investigated. Figure 11.4 shows the leading pairs
of canonical variate weight functions. It is interesting that the linear func-
tional of GFR most highly correlated with the other two variables is virtually
the same in both cases.

To interpret the figure, remember that all patients concerned show an
overall declining value of GFR. The U-shaped solid curves in the figure
therefore correspond to a canonical variate where a positive value indicates
a GFR record that starts at a value higher than average, but then declines
more rapidly than average in the first 40 months, finally switching to a
relatively less rapid decline in the last 20 months.

The left-hand panel shows that this variate is correlated with a similar
effect for KUC, but the switch in rate happens earlier. This indicates not
only that strong decline of GFR is associated with strong decline of KUC but
also suggests that the pattern of GFR in some sense follows that of KUC,
raising the hope that KUC could be used to predict future GFR behavior.
On the other hand, the right-hand panel shows that this aspect of GFR
behavior is correlated with an increase of GOP stronger than average over
the entire time period. Thus, patients with rapidly increasing GOP are likely
to be those whose GFR declines rapidly at first, though there may be some
reduction in the rate of decline after about 36 months.

In broad terms, the CCA gives insights broadly consistent with those for
the average behavior of the sample as a whole. It is interesting that the
relationships between the variables are borne out on an individual level, not
merely on an average level. Furthermore the detailed conclusions yielded
by the CCA give important avenues for future thought and investigation
concerning the way in which the variables interrelate. Of course, given
the small sample size, any conclusions must be relatively tentative unless
supported by other evidence.

11.5 Why is regularization necessary?

Apart from its importance as a practical method, canonical correlation
analysis of functional data has an interesting philosophical aspect. In the
principal components analysis context we have already seen that appropri-
ately applied smoothing may improve the estimation accuracy. However, in
most circumstances, we obtain reasonable estimates of the population prin-
cipal components even if no smoothing is applied. By contrast, as we saw
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in the gait example, in the context of functional CCA some regularization
is absolutely essential to obtain meaningful results. This is the same con-
clusion that we will draw for the functional regression context discussed in
Chapter 16. But in the canonical correlation case, the impact of smoothing
is even more dramatic.

To understand the need for regularization, compare functional CCA with
standard multivariate CCA. A standard condition of classical CCA is that
n > p + q + 1 which ensures (with probability 1, under reasonable condi-
tions) that the sample covariance matrix V12 of the n vectors (xi, yi) is
nonsingular (see Eaton and Perlman,1973). In the functional case, p and q
are essentially infinite, and so this condition cannot be fulfilled.

Furthermore, consider a sample X1, . . . , XN of functional data, and as-
sume for the moment that the N curves are linearly independent. Now
suppose that z1, . . . , zN is any real vector. By results that will be discussed
in Chapter 16, it is possible to find a curve ξ such that, for some constant
αX , zi = αX +

∫
ξXi for all i. Essentially, the reason for this is that we

only have N constraints on ξ, but infinitely many degrees of freedom in
the choice of ξ, because ξ is a function. Now suppose we have a second
sample of curves Yi, which may be correlated with the Xi in some way,
and again are linearly independent. We can find a function η such that,
for some constant αY , zi = αY +

∫
ηYi for all i. This means that the given

values zi can be predicted perfectly either from the Xi or from the Yi.
It follows that not only have we found functions ξ and η such that

ccorsq(ξ,η) = 1, because the variates
∫

ξXi and
∫

ηYi are perfectly cor-
related, but that we can prescribe the values zi taken by the canonical
variates to be whatever we please, up to a constant. In particular, we could
start with any function ξ, construct zi =

∫
ξXi, and then find a function η

such that ccorsq(ξ,η) = 1. In this sense, every possible function can arise
as a canonical variate weight function with perfect correlation!

Leurgans, Moyeed and Silverman (1993) discuss this result in greater de-
tail. They demonstrate that the assumption of linear independence among
the curves is a very mild one, and, by proving an appropriate consistency
result, they show that regularization indeed makes meaningful estimates
possible.

11.6 Algorithmic considerations

11.6.1 Discretization and basis approaches
There are several ways of carrying out our method of smoothed functional
CCA numerically. For completeness, we present the methodology for the
general case of different parameters λ1 and λ2. A direct approach is to set
up a discrete version of the covariance ccorsq and of the constraints (11.2).
Discretize the functions ξ and η and the covariance operators vjk(s, t) using



11.6. Algorithmic considerations 211

a fine grid, and replace the operator D2 by a finite difference approximation.
The problem then becomes one of maximizing a quadratic form subject to
quadratic constraints, and it can be solved by standard numerical methods.

We can also use a basis for the functions Xi and Yi, and for the weight
functions ξ and η. Suppose that φ1, φ2, . . . , φM is a suitable basis, which
for simplicity we will assume is used for all of these four functions. As usual,
define K to be the matrix with entries

∫
(D2φj)(D2φk) and J the matrix

with entries
∫

φjφk. If we use a Fourier or other orthonormal basis, then J
is the identity matrix.

Define C and D to be the matrices of coefficients of the basis expansions
of the Xi and Yi respectively, meaning that

Xi =
M∑

ν=1

ciνφν

and

Yi =
M∑

ν=1

diνφν

up to the degree of approximation involved in any choice of the number M
of basis functions considered. Write a and b for the vectors of coefficients
of the basis expansions of the functions ξ and η.

Define M ×M covariance matrices Ṽ11, Ṽ12 and Ṽ22 to be the matrices
with (ν, ρ) entries

N−1
∑

i

ciνciρ, N−1
∑

i

ciνdiρ, and N−1
∑

i

diνdiρ,

respectively, the sample variance and covariance matrices corresponding
to the basis expansions of the data. It can be shown that, in the basis
expansion domain, we carry out the smoothed CCA of the given data by
solving the generalized eigenvalue problem[

0 JṼ12J
JṼ21J 0

] [
a
b

]
= ρ

[
JṼ11J + λ1K 0

0 JṼ22J + λ2K

] [
a
b

]
.

As in Chapter 14, we should choose the number of basis functions M
large enough to ensure that the regularization is controlled by the choice
of the smoothing parameter(s) λ rather than that of dimensionality M .
Values of M of around 20 should give good results without imposing an
excessive computational burden.

11.6.2 The roughness of the canonical variates
A third algorithmic possibility is related to the idea of quantifying of the
roughness of a variate, as discussed in Chapter 5. Just as in the case of
smoothing data, this idea is of both conceptual and algorithmic value,
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and can be used to elucidate the regularization method we propose for
functional canonical correlation analysis.

Suppose zi =
∫

ξXi is a possible canonical variate value, and let z be
the N -vector containing these values. Let RX be the matrix R as derived
in Section 15.7.3, implying that z′RXz is the roughness of the smoothest
function ξ such that

∫
ξXi = zi for all i. It may be that z′RXz is equal to

‖D2ξ‖2, or it may be that zi can be obtained by integrating a smoother
function against the Xi. In any case, we can consider z′RXz in its own
right as a measure of the roughness of zi as a variate based on the Xi.

Similarly, let RY be a matrix such that the roughness of any vector of
canonical variate values w relative to the observed covariate functions {Yi}
is w′RY w. Our smoothed canonical correlation method can then be recast
as the determination of vectors z and w to maximize the sample covariance
of zi and wi subject to

var{zi} + λ1z′RXz = var{wi} + λ2w′RY w = 1. (11.4)

Once we have found in this way a pair of canonical variates, the corre-
sponding weight functions are defined as the smoothest functions ξ and η
satisfying zi =

∫
ξXi and wi =

∫
ηYi for all i.

We can maximize the sample covariance of {zi} and {wi} subject to the
constraints (11.4) by solving an eigenvalue problem. Some care is necessary
to deal with a slight complication caused by the presence of the sample
mean in the formula for variance and covariance.

Assuming without loss of generality that the canonical variates have
sample mean zero, write the constrained maximization problem as that of
finding the maximum of z′w subject to the constraints

z′z + λ1z′RXz = w′w + λ2w′RY w = 1 (11.5)

and the additional constraints

1′z = 1′w = 0. (11.6)

For the moment, neglect the constraint (11.6) and consider the maxi-
mization of z′w subject only to the constraints (11.5). This corresponds to
the eigenvalue problem[

0 I
I 0

] [
z
w

]
= ρ

[
I + λ1RX 0

0 I + λ2RY

] [
z
w

]
. (11.7)

By premultiplying (11.7) by [z′ w′] and taking the product of the two
expressions for z′w thus obtained, any solution of (11.7) satisfies

(z′w)2 = ρ2(z′z + λ1z′RXz)(w′w + λ2w′RY w) ≥ ρ2(z′z)(w′w)

and so it is necessarily the case that |ρ| ≤ 1. Since the smoothest functional
interpolant of the constant vector has roughness zero, RX1 = RY 1 = 0,
and so the condition z = w = 1 yields the leading solution of (11.7), with
eigenvalue ρ = 1.
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The solution of (11.7) with the second largest eigenvalue maximizes z′w
subject to the constraint (11.5) and the additional constraint

1′(I + λ1RX)z = 1′(I + λ2RY )w = 0. (11.8)

But since RX1 = RY 1 = 0, the constraint (11.8) is precisely equivalent
to the constraint (11.6) that we temporarily neglected. It follows that the
second and subsequent eigensolutions of (11.7) are the canonical variates
we require, and automatically have sample mean zero; the leading solution
is a constant and should be ignored.

11.7 Penalized optimal scoring and
discriminant analysis

Hastie, Buja and Tibshirani (1995) consider functional forms of the mul-
tivariate techniques of optimal scoring and linear discriminant analysis,
making use of ideas closely related to the functional canonical correlation
analysis approach discussed in this chapter. We present a brief overview of
their work; see the original paper for further details.

11.7.1 The optimal scoring problem
Assume that we have N paired observations (Xi, yi) where each Xi is
a function, and each yi is a category or class taking values in the set
{1, 2, . . . , J}. For notational convenience, we code each yi as a J-vector
yi with value 1 in position j if yi = j, and 0 elsewhere.

We aim to obtain a function β and a J-vector θ minimizing the criterion

OSERR(θ, β) = N−1
N∑

i=1

(
∫

βXi − θ′yi)
2

subject to the normalization constraint N−1 ∑
i(θ

′yi)2 = 1. The idea is
to turn the categorical variable coded by the y-vectors into a quantitative
variable taking the values θj . The θj are the scores for the various cat-
egories, chosen to give the best available prediction of a linear property∫

βX of the observed functional data.
For any given θ, the problem of finding the functions β is that of finding

a function which satisfies a finite number of linear constraints. Because
there are infinitely many degrees of freedom in the choice of a function, it
is usually possible to choose β to give perfect prediction of any specified
values θ′yi. This means that we cannot choose an optimal score vector θ
uniquely on the basis of the observed data. To deal with this difficulty,
Hastie et al. (1995) introduced the penalized optimal scoring criterion

OSERRλ(θ, β) = OSERR(θ, β) + λ × PEN(β),
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where λ is a smoothing parameter and PEN(β) a roughness penalty.

11.7.2 The discriminant problem
The discriminant problem is similar to the optimal scoring problem.
Again, we have functional observations Xi, each allocated to a category in
{1, 2, . . . , J}. For any proposed linear discriminant functional

∫
βXi, define

θj to be the average of the
∫

βXi for all Xi falling in category j. For each
fixed β, this value of θ minimizes the quantity OSERR(θ, β), which can then
be re-interpreted as the within-class variance of the

∫
βXi. The between-

class variance is simply the variance of the discriminant class means θ′yi,
defining the J-vectors yi by the same coding as above. Discriminant anal-
ysis aims to maximize the between-class variance subject to a constraint
on the within-class variance.

The roles of objective function and constraint are exchanged in passing
from optimal scoring to discriminant analysis, and minimization is replaced
by maximization. Also, primary attention shifts from the score vector θ in
optimal scoring to the discriminant functional defined by the function β
in discriminant analysis. Hastie et al. make the correspondence complete
by proposing penalized discriminant analysis where we maximize the raw
between-class variance subject to a penalized constraint on the within-class
variance

OSERR(θ, β) + λ × PEN(β) = 1.

11.7.3 The relationship with CCA
Simple modifications of arguments from multivariate analysis show that the
penalized optimal scoring and the penalized discriminant analysis problems
are both equivalent to the mixed functional-multivariate canonical corre-
lation analysis problem of maximizing the covariance of

∫
ξXi and η′yi

subject to the constraints

var(
∫

ξXi) + λ × PEN(ξ) = var(η′yi) = 1. (11.9)

In the notation we have used for CCA, the weight corresponding to the
functional part Xi of the data is itself a function ξ, whereas the vector
part yi is mapped to its canonical variate by a weight vector η. Only the
functional part ξ is penalized for roughness in the constraints (11.9). The
numerical approaches we have set out for CCA carry over to this case, with
appropriate modifications because only the Xi are functions.

To obtain the solutions (β,θ) of the discriminant and optimal scoring
problems, it is only necessary to rescale the estimated function ξ and
vector η appropriately. The subsidiary variates are also interesting for
these problems because they yield estimates of vector-valued scores θj and
discriminants

∫
βXi.
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11.7.4 Applications
Hastie et al. present two fascinating applications of these techniques. For
speech recognition, the frequency spectra of digitized recordings of various
phonemes are used as data. A roughness penalty of the form PEN(β) =∫

{D2β(ω)}2w(ω)dω is used, with the weight function w(ω) chosen to place
different emphasis on different frequencies ω.

Their other application is the recognition of digits in handwritten postal
addresses and zip codes. In this case, the observations Xi are functions
of a bivariate argument t, defined in practice on a 16 × 16 pixel grid.
The roughness penalty used is a discrete version of the Laplacian penalty∫ ∫

[∇2β(t)]2 dt.

11.8 Further readings and notes

The idea of canonical correlation between two function spaces has a rather
substantial history. Lancaster (1969) is considered an early statement of
the problem, considered in the context of a treatment of the chi-squared
distribution. Caillez, F. and Pagès, J. P. (1976) and Dauxois and Pousse
(1976) are two explorations in French of functional canonical correlation,
the first being directed to applied statisticians, and the second being a
severely abstract treatise that is yet to be published in the conventional
sense. A recent contribution on the theoretical side is He, Müller and Wang
(2003). Dauxois and Nkiet (2002) discuss some generalizations of canonical
correlation analysis within a Hilbert space framework.
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Functional linear models

12.1 Introduction

We have been exploring the variability of a functional variable without
asking how much of its variation is explainable by other variables. It is now
time to consider the use of covariates. In classical statistics, the analysis of
variance, linear regression and the general linear model serve this purpose,
and we now extend the notion of a linear model to the functional context.

Linear models can be functional in one or both of two ways:

1. The dependent or response variable x with argument t is functional.

2. One or more of the independent variables or covariates z is functional.

We will see in Chapter 13 that predicting a functional response with val-
ues x(t) by a conventional design matrix (functional analysis of variance) or
by a set of scalar variables (functional multiple regression) involves a fairly
straightforward modification of ways of thinking and computational strate-
gies already familiar in ordinary analysis of variance or multiple regression.
The main change is that regression coefficients now become regression
coefficient functions with values βj(t).

On the other hand, when one or more covariates are themselves func-
tional, a wider range of ways of using a functional covariate to explain a
response are available. Let us take a preliminary look at a few of these
situations here in this chapter before considering them in detail in later
chapters.
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Consider the weather at our 35 Canadian sites. The precipitation Prec(t)
measured over times t will be the functional dependent variable, and either

• which of four climate zones the station falls in will be a categorical
independent variable

• or the temperature Temp(s) measured over times s will be the
functional independent variable.

12.2 A functional response and a categorical
independent variable

Does the shape of the mean annual precipitation profile depend on which
climate zone the station is in? With the zones Atlantic, Arctic, Continental
and Pacific, that answer is “almost certainly.” Still, we may feel the need to
see if the data reject the null hypothesis that there is no difference. And if
this happens, then we will want to characterize the differences in functional
terms.

In formal terms, we have a number Ng of weather stations in each climate
zone g = 1, . . . , 4, and the model for the mth precipitation function in the
gth group, indicated by Precmg, is

Precmg(t) = µ(t) + αg(t) + εmg(t). (12.1)

In this model, function µ is the grand mean across all 35 weather sta-
tions, and the effect functions αg represent departures from the grand
mean specific to climate zones. The residual variation left over after we
have explained as much as we can using climate zones are captured in the
residual functions εmg(t). Our task is to use the data Precmg as well as the
design matrix coding climate zone membership to estimate the functional
parameters µ and αg.

Moreover, we may want to test more localized hypotheses such as “there
are no differences in mid-summer” or “the differences in mid-winter are
essentially differences in amount of precipitation rather than in the shape
of the precipitation profile.” That is, we may have interesting functional
contrasts specified in advance of looking at the data.

Finally, we can also have the familiar multiple comparisons problem, but
this time in functional form. That is, we may simply ask, “Over which time
intervals are there significant differences between climate zones?”

More generally, the model may involve a design matrix Z containing
values of p scalar independent variables rather than just 0’s and 1’s coding
category membership, or it may involve both types of predictors. As in the
multivariate linear model, these two situations are essentially the same,
and this applies here, too.
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From an application perspective, a functional response with scalar covari-
ates is a common situation, and our experience indicates that the majority
of functional linear model analyses are of this form. We will take up this
model in the next chapter, and there we will try to provide as many helpful
suggestions for analysis and inference as we can at this point. On the whole,
though, tools already familiar to us in working with multivariate data will
need only relatively obvious modifications to be adapted to the functional
response context.

12.3 A scalar response and a functional
independent variable

The converse of the situation considered above may apply. Consider the
question, “Does the total amount of precipitation depend on specific fea-
tures of the temperature profile of a weather station?” Here we can take
the response variable as being

Prectoti =
∫ 365

0
Preci(t) dt,

where i indexes the 35 weather stations.
Now the issue is how to weight information within the single covariate

Temp(s) across values of s. We do this using the linear model

Prectoti = α +
∫ 365

0
Tempi(s)β(s) ds + εi . (12.2)

Here the constant α is the usual intercept term that adjusts for the origin
of the precipitation variable. The functional parameter of interest is again
the regression coefficient function β.

This situation formally resembles conventional multiple regression if we
think of each time s as indexing a separate scalar independent variable,
namely Temp(s). But then we realize that we now have a potentially unlim-
ited number of independent variables at our disposal to predict 35 scalar
values. This seems ridiculous; over-fitting the data now seems inevitable.

The way out of the problem is to force the weighting of information across
s to be sufficiently smooth that we can know that a bad fit is in principle
possible. This smoothing over s will involve the regularization process that
we have already seen in action in the spline smoothing chapter 5. Chapter 15
is given over to this situation.

Note that we will always use a different letter s for the argument for a
covariate function than we use for the dependent variable. Although in this
example context both s and t index time in years over an annual cycle,
more generally they could index entirely different continua, such as space
for s and time for t.
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12.4 A functional response and a functional
independent variable

Now we throw open the gates. How does a precipitation profile depend on
the associated temperature profile? Now we consider how the functional
covariate value Temp(s) influences precipitation Prec(t) specifically at time
t. Here are some possibilities.

12.4.1 Concurrent
We might only use the temperature at the same time s = t because we
imagine that precipitation now depends only on the temperature now. Our
model is

Preci(t) = α(t) + Tempi(t)β(t) + εi(t). (12.3)

We might call this model concurrent or point-wise. Should we use
regularization to force β to be smooth in t?

This model has already been discussed in some detail prior to the first
edition of this book by Hastie and Tibshirani (1993) under the name of the
varying coefficient model. It deserves here a chapter of its own, 14, in part
because we will show that all functional linear models can be reduced to
this form.

12.4.2 Annual or total
We may prefer to allow for temperature influence on Prec(t) to extend over
the whole year. The model expands to become

Preci(t) = α(t) +
∫ 365

0
Tempi(s)β(s, t) ds + εi(t). (12.4)

We face the additional complexity of the regression coefficient function β
being bivariate; the value β(s, t) determines the impact of temperature at
time s on precipitation at time t.

We suspect from the discussion of the scalar response and functional
covariate that it may be essential to smooth β as a function of s. But what
is the difference between s-smoothing and smoothing with respect to t?

12.4.3 Short-term feed-forward
We may choose for reasons of parsimony to use only the temperature now
and over an interval back in time in order to allow for some cumulative
effects. For example, it may be that what counts is whether the temperature
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has been falling rapidly up to time t. The model expands to

Preci(t) = α(t) +
∫ t

t−δ

Tempi(s)β(s, t) ds + εi(t). (12.5)

Here δ is the time lag over which we use temperature information. In
addition to being bivariate, now β is only defined over the somewhat
complicated trapezoidal domain: t ∈ [0, 365], t − δ ≤ s ≤ t.

Since in this situation the data are periodic, so we won’t have particular
problems with s being negative at t = 0 since we can borrow information
from the previous year. But for non-periodic data, we would want to remove
the triangle implied by s < 0 from the domain.

12.4.4 Local influence
Finally, after some reflection, we may open up the model to allow integra-
tion over s within a t-dependent set Ωt. Why? Well, for example, if the
temperature first falls rapidly, and then rises rapidly immediately after,
and if the time t in question is in the middle of the summer, this may be a
thunderstorm, and will therefore have the potential for a very large amount
of rainfall within a short time period. The model may therefore be

Preci(t) = α(t) +
∫

Ωt

Tempi(s)β(s, t) ds + εi(t). (12.6)

Here there is the potential complexity of the domain over which β is defined
that will challenge our computational resources.

These examples indicate that the functional linear model has the po-
tential to be rather complex. Indeed, there is no reason why the covariate
z might not be a function of both s and t. For example, we may predict
rainfall at a station by integrating information over both space and time if
we are on the Canadian prairies where precipitation in the summer tends
to be convective, meaning thunder storms, hail storms and tornadoes that
tend to be spatially limited and to follow curvilinear tracks.

12.5 What about predicting derivatives?

We may choose to model the rate of change in precipitation, DPrec instead
of precipitation itself. When a model is designed to explain a derivative
of some order, we call it a dynamic model. In this case, the model is a
differential equation, meaning simply that a derivative is involved.

When the response is a derivative, then there is the potential for the
function itself to be a useful covariate. For example, the concurrent linear
model

DPreci(t) = Preci(t)β(t) + εi(t) (12.7)
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is a called a homogeneous first order linear differential equation in
precipitation, and if we also include an influence of temperature,

DPreci(t) = Preci(t)β0(t) + Tempi(t)β1(t) + εi(t), (12.8)

the equation is said to be nonhomogeneous rather than homogeneous.
Temperature in the equation is called a forcing function.

The final chapters in the book will take up the story of differential
equations, and we will see that the power of functional data analysis is
remarkably extended in this way.

12.6 Overview

Although we dedicate separate chapters to these situations for the good rea-
son that each involves some specialized techniques and issues, at a broader
level the differences between the various models outlined above are more
apparent than real. For example, a scalar response can always be expressed
as a functional response with a constant basis, and the same is true for
a scalar covariate. Of course, specialized computational issues arise as we
take advantage at an algorithmic level of the fact that scale variables are
involved.

A central theme common to all functional linear models is that of smooth-
ing regression coefficient functions. Functional linear models usually involve
more predictive power than we want to use for a finite amount of noisy data.
Deciding how much to smooth and how to define smoothness itself will be
a central issue in most applications.

Probably the most fundamental issue is the nature of the potentially t-
specific domain Ωt in (12.6). Both the point-wise and total influence models
are comparatively easy to deal with computationally, as we shall see. But
localized feed-forward influence is often essential, and already well repre-
sented in statistics in the form of ARIMA and state-space models in time
series analysis.
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Modelling functional responses with
multivariate covariates

13.1 Introduction

We now consider how to use data on a set of scalar predictor variables or
covariates zj , j = 1, . . . , p to fit the features of a functional response or
outcome variable x. Both of the examples in this chapter can be described
as functional analyses of variance because the values of the covariates are
0’s and 1’s coding the categories of factor variables, but the techniques that
we develop here apply equally well to measured covariates.

13.2 Predicting temperature curves from climate
zones

Let’s have a look at the Canadian weather data introduced in Chapter 1.
Monthly means for temperature and precipitation are available for each
of 35 weather stations distributed across the country, and we can use the
smoothing techniques of Chapters 4 and 5 to represent each record as a
smooth function. Thus, two periodic functions, Temp and Prec, denoting
temperature and precipitation, respectively, are available for each station.

How much of the pattern of annual variation of temperature in a weather
station is explainable by its geographical area? Dividing Canada into At-
lantic, Continental, Pacific and Arctic meteorological zones, we want to
study the characteristic types of temperature patterns in each zone.
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This is an analysis of variance problem with four treatment groups. Mul-
tivariate analysis of variance (MANOVA) is the extension of the ideas of
analysis of variance to deal with problems where the dependent variable
is multivariate. Because our dependent variable is the functional observa-
tion Temp, the methodology we need is a functional analysis of variance,
abbreviated FANOVA.

In formal terms, we have a number of stations in each group g, and the
model for the mth temperature function in the gth group, indicated by
Tempmg, is

Tempmg(t) = µ(t) + αg(t) + εmg(t). (13.1)

The function µ is the grand mean function, and therefore indicates the
average temperature profile across all of Canada. The terms αg are the
specific effects on temperature of being in climate zone g. To be able to
identify them uniquely, we require that they satisfy the constraint∑

g

αg(t) = 0 for all t. (13.2)

The residual function εmg is the unexplained variation specific to the mth
weather station within climate group g.

We note in passing that the smoothing problem discussed in Chapters 3,
4, and 5 is contained within this model by using a single covariate whose
values are all ones.

We can define a 35 × 5 design matrix Z for this model, with one row
for each individual weather station, as follows. Use the label (mg) for the
row corresponding to station m in group g; this row has a one in the first
column, a one in column g + 1, and zeroes in the rest. Write z(mg)j for the
value in this row and in the jth column of Z.

We can then define a corresponding set of five regression functions βj by
setting β1 = µ, β2 = α1, and so on to β5 = α4, so that the functional vector
β = (µ, α1, α2, α3, α4)′. In these terms, the model (13.1) has the equivalent
formulation

Tempmg(t) =
5∑

j=1

z(mg)jβj(t) + εmg(t) (13.3)

or, more compactly in matrix notation,

Temp = Zβ + ε, (13.4)

where Temp is the functional vector containing the 35 temperature func-
tions, ε is a vector of 35 residual functions, and β is the 5-vector of
parameter functions. The design matrix Z has exactly the same struc-
ture as for the corresponding univariate or multivariate one-way analysis
of variance. The only way in which (13.4) differs from the corresponding
equations in standard elementary textbooks on the general linear model is
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that the parameter β, and hence the predicted observations Zβ, are vectors
of functions rather than vectors of numbers.

13.2.1 Fitting the model
If (13.4) were a standard general linear model, the standard least squares
criterion would say that β should be chosen to minimize the residual sum
of squares. To extend the least squares principle to the functional case, we
need only reinterpret the residual sum of squares in an appropriate way.
The quantity Tempi(t) − Ziβ(t) is now a function, and so the unweighted
least squares fitting criterion becomes

LMSSE(β) =
4∑
g

Ng∑
m

∫
[Tempmg(t) −

q∑
j

z(mg),jβj(t)]2 dt. (13.5)

Minimizing LMSSE(β) subject to the constraint
∑5

2 βj = 0 (equivalent to∑4
1 αg = 0) gives the least squares estimates β̂ of the functional parameters

µ and αg. Section 13.4 contains some remarks about the way LMSSE is
minimized in practice.

Figure 13.1 displays the resulting estimated region effects αg for the four
climatic zones, and Figure 13.2 displays the composite effects µ + αg. We
see that the region effects are more complex than the constant or even
sinusoidal effects that one might expect:

• The Atlantic stations appear to have a temperature around 5 degrees
C warmer than the Canadian average.

• The Pacific weather stations have a summer temperature close to the
Canadian average, but are much warmer in the winter.

• The Continental stations are slightly warmer than average in the
summer, but are colder in the winter by about 5 degrees C.

• The Arctic stations are certainly colder than average, but even more
so in March than in January.

The cross-hatched areas indicate 95% confidence regions for the location of
the curves at fixed points. These will be discussed in Section 13.4.

13.2.2 Assessing the fit
In estimating and plotting the individual regional temperature effects, we
have taken our first step towards achieving the goal of characterizing the
typical temperature pattern for weather stations in each climate zone. We
may wish to move on and not only confirm that the total zone-specific ef-
fect αg is nonzero, but also investigate whether this effect is substantial at
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Figure 13.1. The region effects αg for the temperature functions in the functional
analysis of variance model Tempmg(t) = µ(t) + αg(t) + εmg(t). The effects αg(t)
are required to sum to 0 for all t. The cross-hatched areas indicate 95% point-wise
confidence intervals for the true effects.
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Figure 13.2. The estimated climate zone temperature profiles µ + αg for the
temperature functions in the functional analysis of variance model (solid curves).
The dashed curve is the Canadian mean function µ.
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a specific time t. As in ordinary analysis of variance, we look to summa-
rize these issues in terms of error sum of squares functions LMSSE, squared
correlation functions RSQ, and F-ratio functions FRATIO. It is the depen-
dence of these quantities on t that makes the procedure different from the
standard multivariate case.

As in the multivariate linear model, the primary source of information
in investigating the importance of the zone effects αg is the sum of squares
function

SSE(t) =
∑
mg

[Tempmg(t) − Zmgβ̂(t)]2. (13.6)

This function can be compared to the error sum of squares function based
on using only the Canadian average µ̂ as a model,

SSY(t) =
∑
mg

[Tempmg(t) − µ̂(t)]2

and one way to make this comparison is by using the squared multiple
correlation function RSQ with values

RSQ(t) = [SSY(t) − SSE(t)]/SSY(t). (13.7)

Essentially, this function considers the drop in error sum of squares pro-
duced by taking climate zone into effect relative to error sum of squares
without using climate zone information.

We can also compute the functional analogues of the quantities entered
into the ANOVA table for a univariate analysis. For example, the mean
squared for error function MSE has values

MSE = SSE/df(error),

where df(error) is the degrees of freedom for error, or the sample size N less
the number of mathematically independent functions βq in the model. In
this problem, the zero sum restriction on the climate zone effects αg implies
that there are four degrees of freedom lost to the model, or df(error) = 31.

Similarly, the mean square for regression is the difference between SSY
(or, more generally, whatever reference model we employ that is a spe-
cialization of the model being assessed) and SSE, divided by the difference
between the degrees of freedom for error for the two models. Let the dif-
ference in degrees of freedom be denoted by df(regression), which in this
case is 3. Thus

MSR(t) =
SSY(t) − SSE(t)
df(regression)

.

Finally, we can compute the F-ratio function,

FRATIO =
MSR

MSE
. (13.8)
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Figure 13.3. The left panel contains the squared multiple correlation function RSQ
and the right panel the corresponding F-ratio function FRATIO. The horizontal
dotted line indicates the 5% significance level for the F-distribution with 3 and
31 degrees of freedom.

Figure 13.3 shows the two functions RSQ and FRATIO. We can see that the
squared correlation is relatively high and that the F-ratio is everywhere
substantially above the 5% significance level of 2.92. It is interesting to note
that the differences between the climate zones are substantially stronger in
the spring and autumn, rather than in the summer and winter as we might
expect.

Basically, then, most of the statistical machinery available for univariate
analysis of variance is readily applicable to this functional problem. We
can consider, for example, contrast functions, post-hoc multiple comparison
functions, F-ratios associated with constrained estimates of region effects,
and so on, essentially because the functional analysis of variance problem
is really a univariate ANOVA problem for each specific value of t.

One question not addressed in the discussion of this example is an over-
all assessment of significance for the difference between the climate zones,
rather than an assessment for each individual time t. We remind ourselves
that the classical significance level was designed to be used for a single
hypothesis test, rather than a continuum of them as in here. Although
there is no reasonable doubt here that climate zone has an important ef-
fect somewhere in the year, in other applications we will want to protect
ourselves more effectively against falsely declaring significance somewhere
in the interval. Section 13.3.3 provides an approach to this question using
simulation in the context of a different example.

A second question is, “How can we compute confidence intervals for the
estimated regression functions?” Because this topic involves substantial
mathematical detail, we put this off until Section 13.4.
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13.3 Force plate data for walking horses

This section describes some interesting data on equine gait. The data were
collected by Dr. Alan Wilson of the Equine Sports Medicine Center, Bris-
tol University, and his collaborators. Their kindness in allowing use of the
data is gratefully acknowledged. The data provide an opportunity to dis-
cuss various extensions of our functional linear modelling and analysis of
variance methodology. For further details of this example, see Wilson et al.
(1996).

13.3.1 Structure of the data
The basic structure of the data is as follows. It is of interest to study the
effects of various types of shoes, and various walking surfaces, on the gait of
a horse. One reason for this is simply biomechanical: the horse is an animal
particularly well adapted to walking and running, and the study of its gait
is of intrinsic scientific interest. Secondly, it is dangerous to allow horses to
race if they are lame or likely to go lame. Careful study of their gait may
produce diagnostic tests of incipient lameness which do not involve any
invasive investigations and may detect injuries at a very early stage, before
they become serious or permanent. Thirdly, it is important to shoe horses
to balance their gait, and understanding the effects of different kinds of shoe
is necessary to do this. Indeed, once the normal gait of a horse is known,
the measurements we describe can be used to test whether a blacksmith has
shod a horse correctly, and can therefore be used as an aid in the training
of farriers.

In this experiment, horses walk on to a plate about 1 meter square set
into the ground and equipped with meters at each corner measuring the
force in the vertical and the two horizontal directions. We consider only
the vertical force. During the period that the horse’s hoof is on the ground
(the stance phase) the four measured vertical forces allow the instrument
to measure the point of resultant vertical force. The hoof itself does not
move during the stance phase, and the position of the hoof is measured by
dusting the plate with sawdust or is inferred from the point of force at the
end of the stride, when only the front tip of the hoof is in contact with the
ground.

The vertical force increases very rapidly at the beginning of the stance
phase but reduces more slowly at the end. Operationally, the stance phase
is defined as starting at the moment where the total vertical force first
reaches 30% of its maximum value and ending where it falls to 8% of its
maximum value. For each replication, the point of force is computed for
100 time points equally spaced in this time interval.

A typical functional observation is therefore a two-dimensional function
of time Force = (ForceX, ForceY) where t varies from 0 to 1 during the
stance phase, and ForceX(t) and ForceY(t) are the coordinates of the point
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Figure 13.4. A typical trace of the resultant point of force during the stance phase
of a horse walking onto a force plate. One hundred points equally spaced in time
are indicated on the curve. The arrows indicate the direction of time.

of force at time t. Here Y is the direction of motion of the horse, and X
measures distance in a perpendicular direction towards the body of the
horse. Thus the coordinates are defined as if looking at the plate from
above if a left foot is being measured, but with the X direction reflected if
a right foot is being measured.

The data set consists of 592 separate runs and involves 8 horses, each of
which has a number of measurements on both its right and left forelimbs.
The nine shoeing conditions are as follows: first, the horse is observed un-
shod; it is then shod and observed again; then its shoe is modified by the
addition of various wedges, either building up its toe or heel or building up
one side or the other of its hoof. Not every horse has every wedge applied.
In the case of the toe and heel wedges, the horse is observed immediately
after the wedge is fitted and one day later, after it has become accustomed
to the shoe. Finally the wedges are removed and the horse is observed with
a normal shoe.

Figure 13.4 shows a typical (ForceX, ForceY) plot. This realization is
among the smoother curves obtained. The 100 points that are equally
spaced in time are marked on the curve, and the direction of time is indi-
cated by arrows (also evenly spaced in time). We can see, not surprisingly,
that the point of force moves most rapidly near the beginning and end of
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the stance phase. The accuracy of a point measurement was about 1 mm
in each direction.

13.3.2 A functional linear model for the horse data
The aim of this experiment is to investigate the effects of various shoeing
conditions, and particularly to study the effects of the toe and heel wedges,
which change as the horse becomes accustomed to the wedge. We fit a
model of the form

Forceijkl = µ + αij + θk + εijkl, (13.9)

where all the terms are two-dimensional functions of t, 0 ≤ t ≤ 1. The
suffix ijkl refers to the data collected for the lth observed curve for side j
of horse i under condition k.

For any particular curve, use labels x and y where necessary to denote
the x and y coordinates of the vector function. The following identifiability
constraints are placed on the various effects, each valid for all t:

∑
i,j

αij(t) =
9∑

k=1

θk(t) = 0. (13.10)

We estimate the various effects by carrying out a separate general linear
model fit for each t and for each of the x and y coordinates. Since the data
are observed at 100 discrete times in practice, each Forceijkl corresponds
to two vectors, each of length 100, one for the x coordinates and one for the
y coordinates. The design matrix relating the expected value of Forceijkl

to the various effects is the same for all 200 observed values, so although the
procedure involves the fitting of 200 separate models, considerable economy
of effort is possible. The model (13.9) can be written as

Force = Zβ + ε, (13.11)

where Force and ε are both vectors of length 592, each of whose elements
is a two-dimensional function on [0, 1]. The vector β is a vector of the
26 two-dimensional functions µ, αij and θk, and Z is a 592 × 26 design
matrix relating the observations Force to the effects β. The identifiabil-
ity constraints (13.10) are incorporated by augmenting the matrix Z by
additional rows corresponding to the constraints, and by augmenting the
data vector Force by zeroes. Standard theory of the general linear model
of course then gives as the estimator

β̂ = (Z′Z)−1Z′ Force. (13.12)

Figure 13.5 plots the estimated overall mean curve µ = (µx, µy) in the
same way as Figure 13.4. Although the individual observations are some-
what irregular, the overall mean is smooth, even though no smoothing is
incorporated into the procedure.
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Figure 13.5. Estimate of the overall mean curve (µx, µy) obtained from the 592
observed point-of-force curves using model (13.9).
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Figure 13.6. The estimated residual variance in the x coordinate (solid curve)
and the y coordinate (dotted curve) as the stance phase progresses.
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Figure 13.7. The effects of the application of a toe wedge, x coordinate in the
upper panel and y coordinate in the lower. Solid curves are the immediate effect,
and dashed curves are the effect on the following day.

The general linear model fitted for each coordinate at each time point
allows the calculation of a residual sum of squares, and hence an estimated
residual variance, at each point. The residual variance curves MSEx and
MSEy for the x and y coordinates are plotted in Figure 13.6. It is very
interesting to note that the residual variances in the two coordinates are
approximately the same size, and vary in roughly the same way, as the
stance phase progresses.

13.3.3 Effects and contrasts
We can now explain how the linear model can be used to investigate various
effects of interest. We concentrate on two specific effects, corresponding to
the application of the toe wedges, and illustrate how various inferences can
be drawn. In Figure 13.7, we plot the effects of the toe wedge immediately
after it has been applied and the following day. The x and y coordinates
of the relevant functions θk are plotted separately. It is interesting to note
that the y effects are virtually the same in both cases: The application of
the wedge has an immediate effect on the way in which the point of force
moves in the forward-backward direction, and this pattern does not change
appreciably as the horse becomes accustomed to the wedge. The effect in
the side-to-side direction is rather different. Immediately after the wedge
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is applied, the horse tends to put its weight to one side, but the following
day the effect becomes much smaller, and the weight is again placed in the
same lateral position as in the average stride.

To investigate the significance of this change, we now consider the con-
trast between the two effects, which shows the expected difference between
the point of force function for a horse 24 hours after a toe wedge has been
applied and that immediately after applying the wedge. Figure 13.8 shows
the x and y coordinates of the difference of these two effects. The standard
error of this contrast is easily calculated. Let u be the vector such that
the estimated contrast is the vector function Contrast = u′β̂, so that the
component of u corresponding to toe wedge 24 hours after application is
+1, that corresponding to toe wedge immediately after application is −1,
and all the other components are zero. Define a by a2 = u′(Z′Z)−1u. The
squared point-wise standard errors of the x and y coordinates of the es-
timated contrasts are then a2MSEx and a2MSEy, respectively. Plots of ±2
times the relevant standard error are included in Figure 13.8. Because the
degrees of freedom (592 − 26 + 2) for residual variance are so large, these
plots indicate that point-wise t tests at the 5% level would demonstrate
that the difference in the y coordinate of the two toe wedge effects is not
significant, except possibly just above time 0.8, but that the x coordinate
is significantly different from zero for almost the whole stance phase.

How should we account for the correlation in the tests at different times
in assessing the significance of any difference between the two conditions?
We can consider the summary statistics

Mx = sup
t

|Contrastx(t)/a
√
MSEx(t)|

and

My = sup
t

|Contrasty(t)/a
√
MSEy(t)|.

The values of these statistics for the data are Mx = 5.03 and My = 2.01.
A permutation-based significance value for each of these statistics was ob-
tained by randomly permuting the observed toe wedge data for each leg
of each horse between the conditions immediately after fitting of wedge
and 24 hours after fitting of wedge, keeping the totals the same within
each condition for each leg of each horse. The statistics Mx and My were
calculated for each random permutation of the data. In 1000 realizations,
the smallest value of Mx observed was 3.57, so the observed difference in
the x direction of the two conditions is highly significant. A total of 177 of
the 1000 simulated My values exceeded the observed value of 2.01, and so
the estimated p-value of this observation was 0.177, showing no evidence
that the y coordinate of point of force alters its time behavior as the horse
becomes accustomed to the wedge.
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Figure 13.8. Solid curves are the differences between the effect of a toe wedge
after 24 hours and its immediate effect. Dotted curves indicate plus and minus
two estimated standard errors for the point-wise difference between the effects.
The upper panel contains x coordinates and the lower the y coordinates.

13.4 Computational issues

13.4.1 The general model
We explain how to compute the least squares estimates in the functional
linear model. Let Y be an N -vector of functional observations, and let the
q-vector β contain the regression functions. In the force-plate data example,
the individual elements of both Y and β were themselves two-dimensional
functions. We assume that Z is an N × q design matrix, and that the
expected value of y(t) for each t is modelled as Zβ(t). The functional
linear model is then

y(t) = Zβ(t) + ε(t) . (13.13)

Any linear constraints on the parameters β, such as the requirement
in the temperature data example that the individual climate zone effects
sum to zero, are expressed as Lβ = 0 for some suitable matrix L with q
columns. By using a technique such as the QR-decomposition, described in
Section A.3.3 of the Appendix, we may then say that

β = Cα (13.14)
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for some matrix C. In this case we find ourselves back at the basic model
(13.13), except that Z is now replaced by ZC and β by α.

Our aim is to minimize the least squares fitting criterion

LMSSE(β) =
∫

[y(t) − Zβ(t)]′[y(t) − Zβ(t)] dt , (13.15)

It is possible that an order N weighting matrix W should be included in
this expression between the two factors on the right in order to allow for
possible variation of importance across replications, for dependencies. How-
ever, most situations assume independence and constant error variation,
and so we will not bother with this feature in our discussion.

13.4.2 Pointwise minimization
If there are no particular restrictions on the way in which β(t) varies as
a function of t, we can minimize LMSSE(β) by minimizing ‖y(t) − Zβ(t)‖2

individually for each t. That is, we calculate β̂(t) for a suitable grid of
values of t using ordinary regression analysis, and then interpolate between
these values. This was the technique used in the force plate example, where
the grid of values was chosen to correspond with the discretization of the
original data. The fact that the same design matrix is involved for each t
makes for considerable economy of numerical effort.

13.4.3 Functional linear modelling with regularized basis
expansions

We have already noted, however, that the use of regularized basis function
expansions gives us continuous control over smoothness while still permit-
ting as much high frequency detail in the model as the data require. The
use of roughness penalties or regularization can play an important role in a
functional linear model. In particular, one may adopt the philosophy that
the representation of the response functions should be allowed to be of high
resolution, and that smoothness is imposed only on the functional param-
eters to be estimated in β. In this way, we do not risk smoothing away
important information that may impact the estimate of β when smoothing
the data giving rise to y.

Let us now assume that the observed functions yi and regression func-
tions βj are expressed in basis expansion form, as the coefficients of a
Fourier series or B-spline or some other basis system. This means that

y(t) = Cφ(t),

where

• the N -vector y contains the N observed response functions,



13.4. Computational issues 237

• the Ky-vector φ contains the linearly independent basis functions,
and

• the N by Ky matrix matrix C contains the coefficients of expansion
of function yi in its ith row.

Let us now expand the estimated parameter vector β̂ in terms of a basis
vector θ of length Kβ , expressing β̂ = Bθ for a q × Kβ matrix B. In some
cases, we may choose to use the same basis that was used to expand the
response functions, in which case θ = φ, and consequently some of what
follows becomes simpler. However, there are plenty of situations where we
need to keep the two basis systems separate.

Note, though, that we have made things somewhat easier on ourselves by
assuming that the same basis system θ is used for all q regression functions
βj . In the next chapter, we will relax this constraint, but for the time
being this assumption has the advantage of keeping the notation reasonably
simple.

Now suppose that we use a linear differential operator L to define a
roughness penalty for β as

PENL(β) =
∫

[Lβ(s)]′[Lβ(s)] ds . (13.16)

In addition, we need to define these four matrices:

Jφφ =
∫

φφ′ , Jθθ =
∫

θθ′ , Jφθ =
∫

φθ′

R =
∫

(Lθ)(Lθ)′ . (13.17)

Note that we dropped “(s)” and “ds” from the expressions in (13.17);
this makes the expressions more readable, and the context makes it clear
that what we really mean is an expression like (13.16) where they were
left in. Note, too, that since φ is a column vector of length Ky of basis
functions, φφ′ is a square matrix of order Ky containing all possible pairs
of these functions, and consequently Jφφ is constant symmetric order Ky

matrix of integrated products, and similarly for the other three matrices.
We can then obtain the following expressions for the penalized least

squares criterion:

PENSSE(y|β) =
∫

(Cφ − ZBθ)′(Cφ − ZBθ) +

λ

∫
(LBθ)′(LBθ) . (13.18)

The operation of integration and the summations implied by the matrix
products in these expressions can be interchanged, and consequently we
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can re-expressing this as

PENSSE(y|β) = trace (C′CJφφ) + trace (Z′ZBJθθB′) −
2 trace (BJθφC′Z) + λ trace (BRB′) , (13.19)

where the operation trace is defined as

traceA =
∑

i

aii

for a square matrix A. One of the properties of the trace is that its value
remains the same under any cyclic permutation of the matrix factors, so
that, for example, trace (BRB′) = trace (B′BR).

13.4.4 Using the Kronecker product to express B̂

We now need to compute the derivative of (13.19) with respect to matrix B
and set the result to zero. Using the fact that the derivative of trace (B′A)
with respect to matrix B is A, we find that B satisfies the matrix system
of linear equations

(Z′ZBJθθ + λBR) = Z′CJφθ . (13.20)

The solution B to this equation can be expressed explicitly in conven-
tional matrix algebra if we use Kronecker products. The Kronecker product
A⊗C is the super or composite matrix consisting of sub-matrices aijC. Its
usefulness in this situation derives from the fact that the matrix expression
ABC′ can be re-expressed as

vec (ABC′) = (C ⊗ A)vec (B) ,

where vec (B) indicates the vector of length qKθ obtained by writing matrix
B as a vector column-wise. Moreover, the Kronecker product is also bilinear
in the sense that

vec (A1BC′
1 + A2BC′

2) = (C1 ⊗ A1 + C2 ⊗ A2)vec (B).

The Appendix contains a discussion of properties of the Kronecker product
that have been used to obtain these expression, and other properties that
will be used subsequently.

Consequently, applying these relations to the two terms involving B on
the left side of (13.20), we obtain

[Jθθ ⊗ (Z′Z) + R ⊗ λI]vec (B) = vec (Z′CJφθ) . (13.21)

Now we have a system of qKθ linear equations expressed in the conventional
way that must be solved to obtain the elements of B. The solution is

vec (B) = [Jθθ ⊗ (Z′Z) + R ⊗ λI]−1vec (Z′CJφθ) . (13.22)

In (13.21) and (13.22) we have assumed a single smoothing parameter λ
to impose the same level of smoothness on each component βj , j = 1, . . . , q
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of the vector β, but we may need the additional flexibility of controlling
the smoothness of each component independently by using a smoothing
parameter λj using a separate roughness penalty for each component. This
involves the following minor modification of (13.21): Replace λI in this
expression by the diagonal matrix Λ containing the λj ’s in its diagonal.

Constraining β to be smooth is not the same thing as constraining the
fit ŷ to be smooth, and this latter strategy may be more important in some
situations. Again a modification of (13.21) will serve: Replace I by Z′Z, in
which case (13.22) simplifies to

vec (B) = [(Jθθ + λR) ⊗ (Z′Z)]−1vec (Z′CJφθ) . (13.23)

As in Chapter 5, smoothing parameters may be chosen by cross-
validation, generalized cross-validation and other methods.

13.4.5 Fitting the raw data
We have been assuming that the response variable y(t) is a result of previ-
ously smoothing the discrete data, but in some applications we may prefer
to go straight from the raw response data matrix Y to estimates of the re-
gression coefficient functions. The penalized least squares criterion in this
case is

‖Y − ZBΘ′‖2 + λ‖Lβ(t)‖2,

where Θ is the N by Kβ matrix of values of the basis functions for β
evaluated at the sampling points for the response functions. The normal
equations to be solved are in this case

(Z′Z)B(Θ′Θ) + λBR = Z′YΘ , (13.24)

or, using Kronecker products,

[(Θ′Θ) ⊗ (Z′Z) + R ⊗ λI]vec (B) = (Θ′ ⊗ Z′)vec (Y) . (13.25)

13.5 Confidence intervals for regression functions

13.5.1 How to compute confidence intervals
The technique for computing point-wise confidence limits for regression
functions is essentially the same as we used in Section 5.5. Recall that we
required there two mappings. The first was the mapping y2cMap from the
raw data vector y to the coefficient vector c, corresponding to the n by K
matrix Sφ,λ in the equation

c = Sφ,λy.

We still need this mapping here, but we now assume that there are
N replications, and consequently that the raw data reside in an N by n
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matrix Y to be mapped to the N by Ky matrix C of coefficients of the
basis function expansions of the functions N functions xi. Consequently,
as in Section 5.5, the y2cMap is represented by the matrix equation

C = YSφ,λ .

This may be re-expressed in Kronecker product notation as

vecC = (Sφ,λ ⊗ I)vecY,

and this permits us to express what we can now denote as Y2CMap as

Y2CMap = Sφ,λ ⊗ I. (13.26)

However, we now have a new linear mapping, namely that of the linear
model itself, which maps a coefficient matrix B to an N by n fit to the
data Ŷ by

Ŷ = ZBΘ′.

We therefore need an expression for the mapping C2BMap that maps the
coefficient matrix C for the response functions to the q by Kβ coefficient
matrix B for the regression function vector β.

Finally, we will want to compute confidence intervals for some functional
contrast or linear probe ρ(β), and this will require a mapping that we can
indicate by B2RMap that maps the coefficient matrix B to ρ(β). For example,
we may want to estimate the standard error of a regression function at a
value t, and this is the value of the evaluation function ρt(β). But we may
also be interested in functional contrasts that probe for special effects that
interest us as well.

The last stage in actually computing confidence limits is the computing of
the composite mapping Y2RMap = B2RMap ◦ C2BMap ◦ Y2CMap and applying
it to each side of Σe to get an estimate of the sampling variance of the
quantity of interest.

Now let us derive each of these matrix mappings, and put them together
as required. That is, we compute the matrix mapping the raw data to
the coefficients of the basis function expansions for the βj ’s, and then we
multiply this by the matrix mapping the regression coefficients to whatever
quantities or functionals that interest us.

The first step, then, is to compute the matrix mapping Sφ,λy from the
data to these coefficients. This is, using the results in Section 5.5 for the
response functions,

Sφ,λy = Φ(Φ′Φ + λyRy)−1Φ′ ,

where λy is the smoothing parameter used to smooth the data and Ry is the
corresponding roughness penalty matrix. Matrix Sφ,λy

is then substituted
in (13.26) to obtain Y2CMap.
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From (13.25), we have the mapping from the data coefficients to the
regression function coefficients expressed as

vec (B) = [Jθθ ⊗ Z′Z + Rβ ⊗ λβI]−1(J′
φθ ⊗ Z′)vec (C′),

where λβ and Rβ are the smoothing parameter and roughness matrix as-
sociated with the regularization of the functions βj . The qKβ by NKy

matrix

C2BMap = Sβ = [Jθθ ⊗ Z′Z + Rβ ⊗ λβI]−1(J′
φθ ⊗ Z′) (13.27)

is the matrix mapping that we need.
These last two expressions can then be combined into

Y2BMap = vec (B) = Sβ(Sφ,λy ⊗ I)vec (Y′) . (13.28)

The variance of the raw data arranged as a vector is given by

Var[vec (Y′)] = Σe ⊗ I ,

where Σe is the variance-covariance matrix of the residual vectors ei and
I is of order N . Note that these residuals are for the linear model (13.13)
and not the residuals involved in smoothing the raw data for the response
variable.

We can now put this all together to get what we need in terms of the
coefficients of the expansions of the βj ;

Var[vec (B)] = Sβ(Sφ,λy ⊗ I)(Σe ⊗ I)(Sφ,λy ⊗ I)S′
β . (13.29)

If our objective is an estimate of Var[vec (β̂)], then this is

Var[vec (β̂)] = (Θ⊗I)Sβ(Sφ,λy ⊗I)(Σe ⊗I)(Sφ,λy ⊗I)S′
β(Θ⊗I)′ . (13.30)

If both Jθθ and Z′Z are invertible, then this expression can be simplified
to

Var[vec (β̂)] = [J−1
θθ J′

φθSφ,λyΣeSφ,λyJφθJ−1
θθ ] ⊗ (Z′Z)−1 . (13.31)

If the raw data are fit directly, the corresponding expression is

Var[vec (β̂)] = [Θ(Θ′Θ)−1Θ′ΣeΘ(Θ′Θ)−1Θ′] ⊗ (Z′Z)−1 . (13.32)

13.5.2 Confidence intervals for climate zone effects
We now illustrate this method for computing confidence intervals by es-
timating climate zone effects for the daily mean temperature data for 35
weather stations. We smoothed these data with a Fourier series basis with
65 basis functions without regularization in order to economize on computer
time and work with temperature profiles that were somewhat smoother
than those that we obtained in Chapter 5. The figures in Section 13.2 were
obtained using these functional responses.
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Figure 13.9. The points indicate daily estimates of the standard error of mea-
surement for the mean temperature data computed across 35 weather stations,
and the solid line is a positive smooth of these values.

Figure 13.9 shows the raw daily standard error estimates taken across
the 35 stations as well as a positive smooth of these estimates of the kind
that we discussed in Chapter 6. These vary between 0.4 degrees Celsius in
the summer to 0.7 in the winter. This is a fair amount of variation, and
so we put the reciprocal of the smoothed variances of measurement in the
diagonal of weight matrix W in (5.3), and then re-smoothed the data.

In the functional analysis of variance step, we defined Z to be the 35 by
5 matrix containing the value 1 in column 1, and coding membership in
the Atlantic, Pacific, Continental and Arctic regions in columns two to five
as above. We used 21 Fourier basis functions to represent the 5 regression
functions βj .

The order 365 variance-covariance matrix Σe for the residuals from the
linear model was estimated in the same way that we described in Chapter 2.

Figure 13.1 displays the 95% point-wise confidence limits on the esti-
mated curve climate zone effect function. We see, for example, that it is
only in the winter months that the temperature in Pacific zones can be
considered as significantly warmer than those represented by the inter-
cept function. For the record, a direct approximation of the raw average
temperatures produced function and confidence limit estimates that were
effectively indistinguishable from these results.
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13.5.3 Some cautions on interpreting confidence intervals
Many things can go wrong in interpreting confidence interval estimates such
as those in Figure 13.1, and it is important here to stress their limitations
so as to avoid misleading ourselves and others in applications leading to
serious decisions.

First of all, point-wise limits are not the same thing as confidence regions
for the entire estimated curve. As mentioned in Section 5.5, although can
envisage of pairs of curves between which there is a specified probability
that the entire true curve is to be found, this requires the use of compu-
tationally intensive resampling methods. Point-wise regions are useful, of
course, but they are based on the assumption that conclusions are only to
be drawn at that point. So when we indicated above that we could conclude
that summer temperatures in the Pacific zone are not much different from
the national average, this was, strictly speaking, an abuse of the concept
of a point-wise region.

Secondly, the confidence region estimates that we have developed are
based on strong assumptions that may not be true. We have, as is usual
in the analysis of variance, implicitly assumed that the distribution of the
residuals is the same within each group. In fact, it is hard to imagine that,
given enough weather stations, we would not also see systematic differ-
ences in covariances and other aspects of dispersion from one climate zone
to another. In any case, the very idea of basing a confidence region on an
estimated covariance involves the strong assumption that the joint distri-
bution of two residuals is well summarized by a covariance, as would be
the case if they were normally distributed. In fact, if the actual residual
distribution is strongly skewed, if it has long tails, if it is multi-modal, or
any one of many other violations of what normality implies is operative,
these regions will not work as advertised. That is, in this case, we cannot
claim them to contain the true curve with the specified probability.

Thirdly, we are estimating something whose potential dimension can out-
strip any quantity of data that we can afford to collect. A curve can be made
arbitrarily complex given enough information. It seems likely, surely, that
someone working with ten times the number of weather stations, fifty years
worth of data, and taking spatial dependencies into account will discover
features of temperature curves that we could not capture with the num-
ber of basis functions that we used. Consequently, any claims that we may
make about the precision with which we have estimated these curves must
be understood to be conditional on the amount and quality of information
that we have at our disposal. There is no asymptotic sample size when it
comes to estimating a curve. Period. Although the results we have in this
section are what some texts would call “small sample” results, in fact, we
had to do here what is almost always done in practice, that is, substitute
a sample estimate for a population quantity, namely Σe. We really don’t
know what the full implication of this might be.
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We can put the problem this way. In classical statistics, we usually work
with a fixed number of parameters. But in nonparametric curve estimation,
the number of basis functions K has the characteristics of a random vari-
able. Two investigators working with different objectives, different number
of sampling points, different residual variance levels, different ranges, and
so forth are quite likely to work with different values of K. We really need,
therefore, to take into account variation in K in our interval estimates,
something that this chapter has not done. The interval estimation problem
is, as far as K is concerned, more suitable for a Bayesian approach than
for the classical methodology used here.

Elsewhere, moreover, we will have to substitute approximations for so-
called “exact” results. Because, for example, the monotone smoother is not
a linear function of the data, it was necessary to replace an exact calculation
of the mapping y2cMap by a first-order approximation. This is inevitably
a crude approximation in many situations, and always has the potential to
be misleading.

So what to do? In the end, there is probably no safe substitute for compu-
tationally intensive methods such as simulation, bootstrapping of various
kinds, and cross-validation methods. If these methods give results in essen-
tial agreement with these cheaper exact or asymptotically correct estimates,
perhaps we can breathe a sigh of relief and carry on. But we should always
assume that our decisions will only be reasonable until better data become
available.

13.6 Further reading and notes

Brumback and Rice (1998) reported a functional analysis of variance involv-
ing daily progesterone metabolite concentrations over the menstrual cycles
of 91 women enrolled in an artificial insemination clinic. The main exper-
imental factor was whether conception occurred (21) or not (70). Within
and between woman variation was also assessed. This work proceeded in-
dependently of Ramsay and Silverman (1997), but ended up using rather
similar methods, and identified some serious computational difficulties in-
volved with working with random functional factors. The discussion that
followed the paper highlighted a number of issues. We strongly recommend
reading this paper as a supplement to this chapter.

Faraway (1997) used functional ANOVA to study three–dimensional
movement trajectories in a complex industrial design setting. Muñoz Mal-
donado, Staniswalis, Irwin and Byers (2002) suggest three ways of testing
the equality of curves collected from samples of young and old rats. Another
application of functional ANOVA can be found in Ramsay, Munhall, Gracco
and Ostry (1996), where variation in lip movement during the production
of four syllables is analyzed at the level of both position and acceleration.
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Spitzner, Marron and Essick (2003) combine functional ANOVA with a
mixed-model approach to study human tactile perception. Fan and Lin
(1998) proposed a method for testing for significance when the response
variable is functional. Yu and Lambert (1999) fit tree models to functional
responses.

Li, Aragon, Shedden and Thomas Agnan (2003) offer an approach that
combines elements of the concurrent functional linear model discussed
in Chapter 14, principal components analysis and the varying-coefficient
model. This paper applies the sliced inverse regression or SIR method de-
veloped by Li (1991) to a functional response predicted by one or scalar
independent variables.

Chiou, Müller and Wang (2003) describe an interesting variant of the
functional linear model. They propose that principal components scores
fim, m = 1, . . . , M, associated with the response functions xi are related to
the covariate values zij through

fim = αm(
∑

j

βmjzij) + εim. (13.33)

This model combines a linear model for the arguments of the regression co-
efficient functions αm with a principal components model for the response.
Models in which argument values are themselves linear combinations of
covariates are often referred to as single index models. The med-fly life
history data to which the authors apply the model have been analyzed in
many fascinating and original ways, and a collection of the papers on these
data makes fascinating reading for anyone wishing to see functional data
analysis in action.



14
Functional responses, functional
covariates and the concurrent model

14.1 Introduction

We now consider a model for a functional response involving one or more
functional covariates. In this chapter the influence of a covariate on the
response is of a particularly elementary nature: The response y and each
covariate zj are both functions of the same argument t, and the influence is
concurrent, simultaneous or point-wise in the sense that zj only influences
y(t) through its value zj(t) at time t. This contrasts with the more general
situation that we will defer for two chapters in which the influence of zj

can involve a range of argument values zj(s).
We will see that this functional/functional model involves only minor

changes at the computational level of the functional response and multi-
variate covariate model in the last chapter. Perhaps this is not surprising,
since a scalar covariate can be viewed as a functional covariate expanded
in terms of a constant basis, where the single coefficient multiplying the
basis function value 1 is the value of the covariate. Therefore the func-
tional/multivariate model is really contained within what we take up in
this chapter. But of course the fact that the functional covariate is not
constant does add new features that now need to be considered. We begin
with a concrete problem.
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14.2 Predicting precipitation profiles from
temperature curves

14.2.1 The model for the daily logarithm of rainfall
Predicting temperature is relatively easy, but predicting rainfall is quite
another thing. Certainly there are important precipitation effects due to
climate zones, but can we get additional predictability from the behavior
of temperature? It seems likely, for example, that on days when the average
temperature is high, precipitation tends to be low, at least in the summer.
In the winter, on the other hand, most of the snowfall comes when the
temperature is only a little below freezing; when it is really cold, it seldom
snows since the atmosphere is too dry.

Here is an extension of the functional ANOVA model (13.1) that we
could describe as a functional analysis of covariance model:

log[Precmg(t)] = µ(t) + αg(t) + TempResmg(t)β(t) + εmg(t). (14.1)

We consider the log of precipitation as the response since precipitation
is a magnitude, and experience indicates that logging magnitudes tends
to improve the fitting power of linear models. As in Chapter 13, g indexes
climate zones, m indexes weather stations within climate zones, and climate
zone effects satisfy the constraint

∑
g αg(t) = 0.

The variable TempResmg is the residual temperature after removing the
temperature effect of climate zone g by using the techniques of Chapter 13.
The motivation for removing temperature climate effects from the tem-
perature profiles before using them in this model is that we have already
allowed for these effects in the model. We don’t want climate zones in the
equation twice.

14.2.2 Preliminary steps
The average daily precipitation data for some extremely dry stations such
as Resolute contain a number of zeros, and we dealt with this by replacing
these with 0.05 mm since the smallest nonzero value was 0.1 mm. This
permits us to smooth the logarithm of average precipitation directly. We
first used 365 Fourier basis functions, and the same harmonic acceleration
roughness penalty that we have been using for the weather data. The gen-
eralized cross-validation or GCV criterion was minimized for λ = 106, a
level of smoothing that is equivalent to about 9.5 degrees of freedom. In
order to speed up computation, we then opted for a simple Fourier ba-
sis expansion with eleven basis functions and no roughness penalization.
For this analysis, we used an expansion of the daily average temperature
residual in terms of 21 Fourier basis functions.

The smooth log precipitation curves for all 35 weather stations are shown
in Figure 14.1. The rainiest place in Canada is unlucky Prince Rupert,
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Figure 14.1. The logarithm (base 10) of average daily precipitation after
smoothing for 35 Canadian weather stations.
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Figure 14.2. The log10 of average precipitation at Vancouver over 34 years is
indicated by the dots, the smooth of the data using 11 Fourier basis functions by
the solid curve, and the fit to the smooth curves by the point-wise linear model
(14.1) by the dashed curve.
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Figure 14.3. The regression coefficient for temperature with climate zone effects
removed in a model predicting log10 rainfall. The solid line is the regression
function and the cross-hatched area is the point-wise 95% confidence region for
the function.

which averages nearly 12 mm of rain a day in October. The driest station
is Resolute in the high arctic, where snowfall has a barely measurable rain
equivalent of 0.1 mm per day in the winter. Figure 14.2 shows the resulting
smooth to the precipitation data for Vancouver, a station that shows a
sharp drop in rainfall during the summer months, and even records two
days with no precipitation in 34 years.

14.2.3 Fitting the model and assessing fit
The unweighted least squares criterion for assessing fit is

LMSSE(µ, αg, β) =
4∑
g

Ng∑
m

∫
LogPrecRes2

mg(t) dt, (14.2)

where

LogPrecResmg(t) = [LogPrecmg(t) − µ(t) − αg(t) − TempResmg(t)β(t)].

When we fit the model, using an approach that will be described in detail
in the next section, we obtain a standard error of 467.9. If we drop TempRes
from the model, this increases to 510.8, and these values are equivalent to
R2 = 0.08. Overall, the temperature residual functions don’t seem to im-
prove the fit by much. Figure 14.3 confirms this by showing point-wise 95%
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confidence intervals for the estimated regression function for the residual
temperature functions. The only part of the year where temperature seems
to make a contribution is December through February.

However, it is potentially misleading to report that the regression co-
efficient is “significantly different from zero” at the end of January, since
we are, in a sense, optimizing significance over a year’s worth of results.
The right way to proceed is to construct a contrast, a linear weighting of
the entire year’s information that focusses on the effect of interest. We can
reasonably say that focussing on the effect in the winter is a test that we
could propose in advance of collecting the data; we knew already that there
is much more potential variation in rainfall across weather stations in the
winter months and much more variability in temperature available then to
predict it. As a contrast function or linear probe, we could propose

ξ(t) = cos[2π(t − 64.5)/365],

where the shift value of 64.5 is defined by finding the low point in the
mean precipitation profile, marking out empirically mid-winter. The inner
product of the regression coefficient function with this probe,∫ 365

0
ξ(t)β6(t) dt = 2.32,

in effect accumulates information across the entire year about the differ-
ence between the summer and winter influence in temperature. Using the
techniques described in Section 14.4, we can also work out the sampling
standard error of this quantity, which in this case works out to 0.77. Tak-
ing ratio of the probe value to its standard error, we obtain z = 3.0. It
is fairly reasonable to interpret this as a standard normal value under the
null hypothesis of no difference in influence between summer and winter,
and the value that we obtain appears to be inconsistent with this null hy-
pothesis. It seems appropriate to declare that temperature has a small but
statistically significant capacity to predict the log precipitation mean in
mid-winter. We can conclude that, if the mean temperature residual for a
weather station is high in winter, as it would be for marine stations like
Prince Rupert, then precipitation will also be high for that station relative
to other stations within the same climate zone.

14.3 Long-term and seasonal trends in the
nondurable goods index

The nondurable goods manufacturing index, introduced in Chapter 1 and
displayed in Figure 14.4 from 1952 to 2000, is a single long time series with
a typical multiresolution structure. The global trend across these years is
rather linear over large sections after logarithmic scaling. On a shorter
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Figure 14.4. The United States nondurable goods manufacturing index plotted
in logarithmic coordinates over the years 1952 to 2000.
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Figure 14.5. Four seasonal cycles for the logged United States nondurable goods
manufacturing index are plotted with any overall linear trend removed. Two
cycles in the 60’s are plotted as dashed lines, and two cycles in the 90’s as solid
lines.
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Figure 14.6. The fit to the smoothed logged United States nondurable goods
manufacturing index using the point-wise linear model for six typical years. The
points indicate the monthly values of the smoothed index, and the solid line is the
fit based on the point-wise linear model. The dotted line indicates the estimated
smooth nonseasonal trend.

scale, however, we see shocks to the system such as the end of the Vietnam
War in 1974, and these seem to result in long-term changes in trend.

Moreover, like most economic indicators, there is a somewhat complex
seasonal trend, and this is illustrated for four fairly representative years in
Figure 14.5. There are three cycles evident in most years, separated by the
Easter/Passover, summer school, and Christmas holidays, respectively.

The seasonal behavior seems to be fairly stable from one year to the next,
but exhibits longer-term changes. The large autumn cycle shows a phase
shift between the 60’s and 90’s, but there is little change in amplitude.
The small winter cycle is much smaller in the 90’s, but the dip due to the
summer holidays is much more profound in the 60’s.

We can use the point-wise linear model to separate out the smooth long-
term trend from the seasonal trend, and at the same time show how the
seasonal trend evolves. Our objective here is also to showcase the analysis
of a single long time series rather than shorter but replicated series. This
analysis used the 577 monthly values in the years 1952 to 2000. The original
values were first smoothed by a smoothing spline with curvature penalized
with a smoothing parameter value λ = 10−6, and the smoothed version
had a degrees of freedom equivalent of about 521.

The first covariate function z1 is simply the constant function, and it
is multiplied by a regression coefficient function β1 that was expanded in
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Figure 14.7. The evolution of seasonal trend in the logged United States non-
durable goods manufacturing index. The top panel shows the modulus of the five
sine/cosine pairs with the frequencies indicated in years. The bottom panel shows
the phase for each pair, indicated as an angle in radians between −π and π.

terms of cubic B-splines with knots placed at each year. This knot spacing
is designed to allow β1 to show smooth trend, but is too coarse to accom-
modate any seasonality. To further ensure that β1 is sufficiently smooth,
we penalized curvature with a smoothing parameter λ = 0.01.

An additional 10 covariate functions z2, . . . , z11 were set up as a series of
sine/cosine pairs with periods 1, 1/2, 1/3, 1/4 and 1/5 years, respectively.
These are intended to model periodic seasonal effects. The corresponding
βj ’s were expanded in terms of seven B-spline basis functions with equal
knot spacing, and these coefficient functions permit us to see any smooth
changes in the structure of this seasonal tend.

Figure 14.6 shows the fit to the smoothed logged goods index by this
model for the years 1964 to 1970 along with the smooth nonseasonal trend
estimated by β1. We see that the fit, based on 121 parameters and some
smoothing, is quite good, and certainly captures the seasonal trend in a
reasonable way. The turbulent few years in the mid-seventies are not shown,
but the fit was not so good there, naturally, since we only allowed for rather
smooth seasonal evolution.

How does the seasonal trend evolve? The top panel of Figure 14.7 shows
the amplitude or modulus

Modj(t) =
√

β2
j (t) + β2

j+1(t)
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of the sine/cosine pairs corresponding to j = 2, 4, . . . , 10 of increasing
frequency. The conclusion seems fairly clear: In later years, more of the
seasonality is represented by the lowest harmonic with frequency of one
year, and the energies in the higher frequency components tend to decline.
Seasonal variation is tending to smooth out with time, perhaps due to the
effects of automation of production, and the shifting of manufacturing with
large seasonality to off-shore locations. The bottom panel shows the phase
angle, measured in radians,

Phasej(t) = arcsin[βj(t)/Modj(t)] .

Here we see little evolution, as we would expect since the timing of the
cycles is tied to holidays, in the case of summer and Christmas at least,
whose timing is fixed. We no doubt could have done better if we had allowed
for the variable timing of the Easter/Passover holiday.

14.4 Computational issues

We have q covariate functions zij , each multiplied by its regression
coefficient function βj . Our concurrent multiple regression model is

yi(t) =
q∑

j=1

zij(t)βj(t) + εi(t) . (14.3)

Let the N by q functional matrix Z contain these zij ’s, and let the vector
coefficient function β of length q contain each of the regression functions.
The concurrent functional linear model in matrix notation is then

y(t) = Z(t)β(t) + ε(t) , (14.4)

where y is a functional vector of length N containing the response functions.
We estimate a basis function expansion for each regression function

βj , j = 1, . . . , q along with roughness penalties to control the smoothness
of the estimates for the βj ’s. We must allow for both the basis and the
roughness penalty to vary from one βj to another; some regression func-
tions may be assumed to only pick up very smooth effects requiring only a
few basis functions, while others may be required to model high-frequency
variability in the data. This means that we will have to possibly define a
roughness penalty

PENj(βj) = λj

∫
[Ljβj(t)]2 dt

separately for each regression coefficient function. Each penalty is defined
by choosing a linear differential operator Lj that is appropriate for that
functional parameter, such as the curvature operator Lj = D2 or the
harmonic acceleration operator Lj = (2π/365)2D + D3.
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The weighted regularized fitting criterion is

LMSSE(β) =
∫

r(t)′r(t) dt +
p∑
j

λj

∫
[Ljβj(t)]2 dt, (14.5)

where

r(t) = y(t) − Z(t)β(t).

Let regression function βj have the expansion

βj(t) =
Kj∑
k

bkjθkj(t) = θj(t)′bj(t)

in terms of Kj basis functions θkj . In order to express (14.4) and (14.5)
in matrix notation referring explicitly to these expansions, we need to
construct some composite or super matrices.

Defining

Kβ =
q∑
j

Kj ,

we first construct vector b of length Kβ by stacking the vectors vertically,
that is,

b = (b′
1,b

′
2, . . . ,b

′
q)

′ .

Now assemble q by Kβ matrix function Θ as follows:

Θ =

⎡
⎢⎢⎢⎣

θ′
1 0 · · · 0

0 θ′
2 · · · 0

...
... · · ·

...
0 0 · · · θ′

q

⎤
⎥⎥⎥⎦ . (14.6)

We can now express model (14.4) as

y(t) = Z(t)Θ(t)b + ε(t) . (14.7)

Note that the model can be formally transformed to a constant coefficient
linear model by defining N by Kβ functional matrix Z∗(t) as

Z∗(t) = Z(t)Θ(t)

so that

y(t) = Z∗(t)b + ε(t) . (14.8)

This doesn’t really gain anything computationally since we achieve constant
coefficients at the price of going from q covariates to the greatly expanded
number of Kβ covariates.

But this formalism (14.8) makes clear that the functional linear model
has Kβ parameters. If each of the Yi response functions is expanded in
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terms of Ky basis functions, then the total number of degrees of freedom
for error dfe in the model becomes

dfe = NKy − Kβ .

Keeping these numbers in mind helps us to avoid over-fitting the data, an
ever-present hazard in the world of functional data analysis. We will show
in a couple of chapters that all of the functional linear models considered
in this book can be re-expressed in this constant coefficient form (14.8).

In order to take care of the roughness penalties, we also need to arrange
the order Kj roughness penalty matrices multiplied by their respective
smoothing parameters,

Rj = λj

∫
θj(t)θ′

j(t) dt ,

into the symmetric block diagonal matrix R of order Kβ :

R =

⎡
⎢⎢⎢⎣

R1 0 · · · 0
0 R2 · · · 0
...

... · · ·
...

0 0 · · · Rq

⎤
⎥⎥⎥⎦ . (14.9)

We can now write down the normal equations weighted least squares
solution for the composite coefficient vector b:

[
∫

Θ′(t)Z′(t)Z(t)Θ(t) dt + R]b = [
∫

Θ′(t)Z′(t)y(t) dt] . (14.10)

The amount of numerical integration involved in these expressions is
really quite manageable. The scalar functions

ωj�(t) =
N∑
i

zij(t)zi�(t)

play the role of weighting functions for the functional inner products∫
θj(t)θ′

�(t)ωj�(t) dt, j, � = 1, . . . , q .

Similarly, on the right side, we have a set of inner products of the basis
functions θj with the unit function 1 weighted by the scalar functions∑N

i zij(t)yi(t). Computing these inner products by numerical integration
is a fairly routine procedure.

14.5 Confidence intervals

In order to compute confidence intervals, we also have to explicate the role
of the coefficient matrix C in the basis function expansions of the response
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functions, expressed as y = Cφ, where the basis function vector φ is of
length Ky. This results in

b̂ =
[ ∫

Θ′Z′ZΘ + R
]−1[ ∫

Θ′Z′Cφ
]

=
[ ∫

Θ′Z′ZΘ + R
]−1[ ∫

φ′ ⊗ (Θ′Z′)
]
vec(C) . (14.11)

Here the Kβ by KyN composite matrix φ′ ⊗ (Θ′Z′) has the structure⎡
⎢⎣

φ1θ1Z′
1 · · · φKy

θ1Z′
1

... · · ·
...

φ1θqZ′
q · · · φKyθqZ′

q

⎤
⎥⎦ ,

where the vector function Zj is the jth column of Z. Recall that in this
expression φk is a scalar basis function, whereas θj is a basis function vector
of length Kj .

Here again, the numerical integration can be reduced considerably when
the jth covariate has the expansion Zj = Djψj . In this event, φ′ ⊗ (Θ′Z′)
is ⎡

⎢⎣
φ1θ1ψ

′
1D

′
1 · · · φKy

θ1ψ
′
1D

′
1

... · · ·
...

φ1θqψ
′
qD

′
q · · · φKyθqψ

′
qD

′
q

⎤
⎥⎦ .

We see in this expression that we need inner products 〈θj ,ψ
′
�〉 with

weighting functions φk.
Finally, the matrix representing the mapping C2BMap that we need to

put together the mapping Y2RMap to construct confidence intervals is

C2BMap =
[ ∫

Θ′Z′ZΘ + R
]−1[ ∫

φ′ ⊗ (Θ′Z′)
]

. (14.12)

14.6 Further reading and notes

Models that are closely related to the point-wise linear model have been
considered by a number of authors. West, Harrison and Migon (1985)
investigated what was essentially model (14.3), but with the restriction
that the regression coefficient functions βj(t) have a simple autoregressive
time series structure. They referred to this structure as a dynamic general-
ized linear model, and went on to consider various extensions in West and
Harrison (1989).

Hastie and Tibshirani (1993) looked at a version of this model within
what they called varying coefficient models of the form

yi =
∑

j

βj(Rij)zij + εi. (14.13)
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They explored various strategies for obtaining flexible estimates of the
functions βjs, including the use of spline basis expansions with roughness
penalties. This paper, as well as the work of West, et al (1985, 1989), con-
tain many interesting examples and illustrate the principle that a number
of estimation strategies can be developed for models like these. The discus-
sions associated with the two journal articles cited here also contain many
useful alternative perspectives.

The varying coefficient model has subsequently received a lot of atten-
tion, with much of this devoted to estimation of smooth regression functions
by kernel smoothing (Wu, Chiang and Hoover (1998)), local polynomial
smoothing (Fan, Yao, and Cai (2003); Neilsen, Nielsen and Joensen, Mad-
sen and Holst (2000); Zhang and Lee (2000); Zhang, Lee and Song (2002))
and local maximum likelihood estimation (Cai, Fan and Li (2000); Cai, Fan
and Yao (2000); Dreesman and Tutz (2001)). Gelfand, Kim, Sirmans and
Banerjee (2003) used a Bayesian model for spatial variation in regression
coefficients.

While the varying coefficient model certainly involves one or more func-
tional parameters, the data involved are more typically multivariate rather
than functional. In many applications, the argument variable rj for βj is a
spatial dimension, and the corresponding covariate zj is fixed rather than
varying over some argument. From this perspective, the varying coefficient
model is closer to the generalized additive model (Hastie and Tibshirani,
1990).

It is likely, though, that the techniques associated with varying coeffi-
cient problems will prove useful in functional data settings as well. This is
especially evident in Eubank, Muñoz Maldonado, Wang and Wang (2004),
where the model being investigated is essentially the concurrent functional
linear model.



15
Functional linear models for
scalar responses

15.1 Introduction

In this chapter, we consider a linear model defined by a set of functions,
but where the response variable is scalar or multivariate. This contrasts
with Chapter 13, where the responses and the parameters were functional,
but, because of the finite and discrete covariate information, the linear
transformation from the parameter space to the observation space was still
specified by a design matrix Z as in the conventional multivariate general
linear model

y = Zb + ε . (15.1)

We now consider a functional extension of linear regression where the pre-
diction of the scalar values yi is based on functions zi. This problem is
of interest in its own right, and also raises issues about more complicated
problems in subsequent chapters.

For illustration, let us predict total annual precipitation for a Canadian
weather station from the pattern of temperature variation through the year.
To this end, let yi = LogPreci be the logarithm of total annual precipitation
at weather station i, and let zi = Tempi be its daily temperature function.
We now replace the regression vector b in (15.1) by a function β, so that
the model now takes the form

LogPrec = α +
∫ T

0
Temp(s)β(s) ds + ε . (15.2)
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Figure 15.1. The weight function β that allows perfect prediction of log total
annual precipitation from observed annual pattern of temperature.

We see that the summation implied in the matrix product Zb in (15.1) is
now replaced by an integration over a continuous index s in (15.2).

15.2 A naive approach: Discretizing the covariate
function

It might occur to us to treat the values of temperature at each observation
point as a separate covariate, and then just proceed with ordinary multiple
regression. This would certainly get us into trouble! To see why, suppose
that Tempij is the entry for the temperature at station i on day j, and we
wish to predict LogPreci by

LogPreci = α +
365∑
j=1

Tempijβj + ei i = 1, 2, . . . , 35. (15.3)

We can view this as a finely discretized version of the functional model being
considered. This is a system of 35 equations with 366 unknowns. Even if
the coefficient matrix is of full rank, there are still infinitely many sets of
solutions, all giving a perfect prediction of the observed data. Figure 15.1
plots the bj ’s for one such solution, and it is hard to imagine that we can
make much practical use out of such a result.

Returning to the functional model (15.2), we now understand that the
regression coefficient function β is bound to be under-determined on the
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basis of any finite sample (zi, yi). This is because, essentially, we have an
infinite number of parameters β(s) available by discretizing s finely enough,
but a finite number of conditions yi = α+

∫
ziβ to approximate. Usually it is

possible to find α̂ and β̂ to reduce the residual sum of squares (15.2) to zero.
Furthermore, if β∗ is any function satisfying

∫
ziβ

∗ = 0 for i = 1, . . . , N ,
then adding β∗ to β̂ does not affect the value of the residual sum of squares.

In the weather data example, a possible approach is to reduce the number
of unknowns in problem (15.3) by considering the temperatures on a coarser
time scale. It is unlikely that overall precipitation is influenced by details
of the temperature pattern from day to day, and so, for example, we could
investigate how the 12-vectors of monthly average temperatures can be used
to predict total annual precipitation. If Z is the 35 × 12 matrix containing
these values, we can then fit a model of the form ŷ = α̂ + Zβ̂, where ŷ
is the vector of values of log annual precipitation predicted by the model,
and β̂ is a 12-vector of regression parameter estimates. Since the number of
parameters to be estimated is now only 13, and thus less than the number
of observations N = 35, we can use standard multiple regression to fit the
model by least squares.

We can summarize the fit in terms of the conventional R2 = 1−SSE/SSY
measure, and this is 0.84, indicating a rather successful fit, even taking into
account the 13 parameters in the model. The corresponding F-ratio is 9.8
with 12 and 22 degrees of freedom, and is significant at the 1% level. The
standard error estimate is 0.34, as opposed to the standard deviation of the
dependent variable of 0.69.

Figure 15.2 presents the estimated regression function β, obtained by
interpolating the individual estimated coefficients β̂j as marked on the fig-
ure. It is still not easy to interpret this function directly, although it clearly
places considerable emphasis on temperature in the months of April, May,
August and September. The lack of any very clear interpretation indicates
that this problem raises statistical questions beyond the formal difficulty
of fitting an under-determined model. In any case, the model certainly uses
up a rather large proportion of the 35 degrees of freedom available in the
data.

Since the space of functions satisfying (15.2) is infinite-dimensional, no
matter how large our sample size N is, minimizing the residual sum of
squares cannot, of itself, produce a meaningful or consistent estimator of
the parameters β in the model (15.2). Consequently, to provide an estimate
of β̂ that we can interpret or otherwise use, or even just identify uniquely,
we must use some method of regularization, and this is discussed in the
following sections.

In short, penalizing roughness when a functional covariate is involved is
no longer cosmetic, but an essential aspect of finding a useful solution. We
have already seen this issue discussed in Section 11.5 in functional canonical
correlation analysis, and we will consider it again in the next chapter.



264 15. Functional linear models for scalar responses

−0.2

−0.1

0

0.1

0.2

J    F   M    A    M    J    J    A    S   O   N    D

W
ei

gh
t f

un
ct

io
n 

β

Figure 15.2. The regression function β for the approximation of annual mean log
precipitation by the temperature profiles for the Canadian weather stations.

15.3 Regularization using restricted basis functions

To reduce the degrees of freedom in the model still further, we now expand
the regression function β in terms of a set of basis functions θk(s), and
the Fourier basis is the logical choice here because of the the underlying
smoothness and stationarity of the seasonal variation in temperature. Let
θ be a vector of Fourier basis functions of length Kβ , so that

β(s) =
Kβ∑
k

bkθk(s) or β = θ′b. (15.4)

We choose some suitably large Kβ that does not entail any significant
loss of information, but hopefully keeps Kβ small enough so that we can
reasonably interpret β.

At the same time, let us assume that the covariate functions Tempi are
also expanded in terms of Fourier basis vector ψ of length Kz, so that

Tempi(s) =
Kz∑
k

cikψk(s) or Temp(s) = Cψ(s) , (15.5)

where coefficient matrix C is N by Kz. For the monthly and daily
temperature data, for example, Kz would be 12 and 365, respectively.
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Figure 15.3. Estimated regression weight functions β using Kβ = 12, 5, 4 and 3
basis functions.

Now the model can be expressed as

ŷi =
∫ T

0
Temp(s)β(s) ds =

∫ T

0
Cψ(s)θ(s)′b ds = CJψθb , (15.6)

where Kz by Kβ matrix Jψθ is defined by

Jψθ =
∫

ψ(s)θ′(s) ds . (15.7)

We can further simplify notation by defining the (Kβ + 1)-vector ζ =
(α, b1, . . . , bK)′ and defining the coefficient matrix Z to be the N ×(Kβ +1)
matrix Z = [1 CJψθ]. Then the model (15.1) becomes simply

ŷ = Zζ̂ (15.8)

and the least squares estimate of the augmented parameter vector ζ is the
solution of the equation

Z′Zζ̂ = Z′y . (15.9)

A convenient method of regularization that we used in Chapter 4 is to
truncate the basis by choosing a value Kβ < Kz. We can then fit ζ by least
squares, and the problem is now a standard multiple regression problem.

Figure 15.3 shows the result of carrying out this procedure for the daily
weather data with varying numbers Kβ of basis functions. The choice Kβ =
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12 is intended to correspond to the same amount of discretization as using
monthly average data, and we can see that the weight function is similarly
uninformative. To obtain results more likely to be meaningful, we have
to use a much smaller number of basis functions, and, by considering the
graphs for Kβ = 4 and Kβ = 3, it appears that a predictor for high
precipitation is a relatively high temperature towards the end of the year.

But the model complexity increases in discrete jumps as Kβ varies from
three to five, and we might want finer control. Also, to obtain reasonable
results, β must be rigidly constrained to lie in a low-dimensional parametric
family, and we may worry that we are missing important features in β as
a consequence. Section 15.4 develops a more flexible approach making use
of a roughness penalty method.

15.4 Regularization with roughness penalties

The estimated function β̂ in Figure 15.1 illustrates that fidelity to the
observed data, as measured by the residual sum of squares, is not the only
aim of the estimation. The roughness penalty approach makes explicit the
complementary, possibly even conflicting, aim of avoiding excessive local
fluctuation in the estimated function.

To this end, we can define the penalized residual sum of squares

PENSSEλ(α, β) =
N∑

i=1

[yi − α −
∫

zi(s)β(s) ds]2 + λ

∫
[Lβ(s)]2 ds , (15.10)

where L is a linear differential operator that is suitable for the problem.
In this situation, it is reasonable to expect that regression function β will
be periodic, just like the average temperature function that it multiplies.
Consequently, it seems appropriate to choose harmonic acceleration as the
type of roughness to penalize. That is, we choose

Lβ = (
2π

365
)2Dβ + D3β

so that in the limit, as λ → ∞, the regression function will approach a
shifted sinusoid. Sections 15.5 and 15.7 discuss the algorithmic aspects of
minimizing (15.10).

We can choose the smoothing parameter λ either subjectively or by an
automatic method such as cross-validation. To apply the cross-validation
paradigm in this context, let α

(−i)
λ and β

(−i)
λ be the estimates of α and β

obtained by minimizing the penalized residual sum of squares based on all
the data except (zi, yi). We can define the cross-validation score as

CV(λ) =
N∑

i=1

[
yi − α

(−i)
λ −

∫
zi(s)β

(−i)
λ (s)

]2
ds (15.11)
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Figure 15.4. The cross-validation score function CV(λ) for fitting log annual pre-
cipitation by daily temperature variation, with a penalty on the size of harmonic
acceleration. The logarithm of the smoothing parameter is taken to base 10.

and minimizing CV(λ) over λ gives an automatic choice of λ. In practice,
there are efficient algorithms for calculating the cross-validation score, and
Section 15.6 discusses these.

We used 65 basis functions to represent the temperature curves and 35
Fourier basis functions to represent β. With this number of basis functions
for β, it would be possible to exactly fit the data from the 35 weather
stations. However, we wanted to see how well cross-validation would help
us in arriving at a reasonable fit by penalizing harmonic acceleration. Fig-
ure 15.4 plots the cross-validation score against the logarithms of various
values of λ. The plot shows two distinct minima over the range of values
plotted. Not shown, however, is the fact that fitting the data exactly or
nearly exactly actually gave a smaller cross-validation score than either of
these minima. We chose λ = 1012.5 for the final fit, corresponding to the
lower minimum in the plot.

Figure 15.5 shows the estimated regression function along with point-
wise 95% confidence limits. The confidence intervals in the earlier summer
months contain zero, suggesting that the influence of temperature on pre-
cipitation in that period is not important. However, we see a strong peak
in the late fall followed by a valley in the early spring. This pattern is, in
effect, computing a contrast between fall and early spring temperatures,
with more emphasis on the autumn. This pattern favors weather stations
that are comparatively warm in October and cool in spring, and where,
moreover, spring comes early. This is just what we saw in Chapter 7 for
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Figure 15.5. The estimated weight function for predicting the log total annual
precipitation from the daily temperature pattern. The estimate was constructed
by the penalizing the size of harmonic acceleration, with the smoothing parameter
λ = 1012.5 chosen by cross-validation.

the Pacific and Atlantic stations with marine climates, where the seasons
are later than average and the fall weather is warm relative to the inland
stations.

In Figure 15.6, we have plotted the observed values yi against the fitted
values ŷi obtained using this functional regression. The squared correlation
between the predicted and actual values in the plot is 0.75. This simple
regression diagnostic seems to confirm the model assumptions. However,
we didn’t do so well for Kamloops, whose predicted value of about 2.9 is
well above its actual value of a bit under 2.5. But Kamloops is deep in
the Thompson River valley, and the rain clouds usually just pass on by.
Section 15.6 describes another diagnostic plot.

15.5 Computational issues

A basis function approach has appeal because it is especially simple to
apply, and moreover some problems in any case suggest a particular choice
of basis. The periodic nature of the temperature and precipitation data,
for example, seems naturally to call for the use of a Fourier series basis.
Our first strategy is therefore to represent the regularized fitting problem
in terms of a basis function expansion, and then to apply the concept of
regularization to this representation.
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Figure 15.6. Observed values yi of log annual precipitation plotted against the val-
ues ŷi predicted by the functional regression model with the smoothing parameter
chosen by cross-validation. The straight line corresponds to zero residuals.

15.5.1 Computing the regularized solution
Suppose that we expand the covariate functions zi to Kz terms relative to
basis functions ψm and the regression function β to Kβ terms relative to
basis functions θk, as in (15.5) and (15.4), respectively. Define a matrix R
as

R =
∫

[D2φ(s)][D2φ′(s)] ds . (15.12)

In the Fourier case, note that R is diagonal, with diagonal elements ω4
k as

in Section 9.4.1. In general, the penalized residual sum of squares can be
written as

PENSSEλ(α, β) = ‖y − α − CJψθb‖2 + λb′Rb. (15.13)

where Jψθ was defined in (15.7). As before, we deal with the additional
parameter α by defining the augmented vector ζ = (α,b′)′, and at the
same time use Z as the N × (Kz + 1) coefficient matrix [1 CJψθ]. Finally,
let the penalty matrix R be augmented by attaching a leading column and
row of Kz + 1 zeros to yield R0. In terms of these augmented arrays, the
expression (15.13) further simplifies to

PENSSEλ(ζ) = ‖y − Zζ‖2 + λζ′R0ζ. (15.14)
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It follows that the minimizing value ζ̂ satisfies

(Z′Z + λR0)ζ̂ = Z′y. (15.15)

15.5.2 Computing confidence limits
We can again follow the procedure that we used in previous chapters to
compute sampling standard errors for the coefficients in b and the intercept
α in the composite parameter vector ζ. Things are simpler here in one sense
since there is no intermediate step of smoothing the response variable.
Consequently, we can drop the mapping y2cMap.

The matrix corresponding to y2bMap can be simply lifted from (15.15),
and is (Z′Z+λR0)−1Z′. The variance-covariance matrix Σe computed from
the residuals is now a scalar estimate σ2

e of the mean squared residual. The
sampling variance of ζ̂ is given by

Var[ζ̂] = σ2
e(Z′Z + λR0)−1Z′Z(Z′Z + λR0)−1 . (15.16)

15.6 Cross-validation and regression diagnostics

We have already noted the possibility of choosing the smoothing parameter
λ by cross-validation. Various economies are possible in calculating the
cross-validation score CV(λ) as defined in (15.11).

Let S be the so-called hat matrix of the smoothing procedure which maps
the data values y to their fitted values ŷ for any particular value of λ. A
calculation described, for example, in Section 3.2 of Green and Silverman
(1994), shows that the cross-validation score satisfies

CV(λ) =
N∑

i=1

(
y − ŷi

1 − Sii

)2

.

If N is large and we are considering an expansion in a moderate number
K of basis functions, then we can find the diagonal elements of S directly
from

S = Z(Z′Z + λR)−1Z′.

From S, we can also compute an indicator of the effective degrees of
freedom used up in the approximation. Either traceS or traceS2 were rec-
ommended for this purpose by Buja, Hastie, and Tibshirani (1989). For the
fit in Figure 15.5, defined by minimizing the cross-validation criterion, the
effective degrees of freedom are estimated to be trace S = 4.7.

Another important use of the hat matrix S is in constructing various
regression diagnostics. The diagonal elements of the hat matrix are of-
ten called leverage values; they determine the amount by which the fitted
value ŷi is influenced by the particular observation yi. If the leverage value
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Figure 15.7. Deleted residuals from the fitted prediction of log annual
precipitation from overall temperature pattern.

is particularly high, the fitted value needs to be treated with some care.
Two standard ways of assessing the regression fit are to examine the raw
residuals yi − ŷi and the deleted residuals (yi − ŷi)/(1−Sii); the latter give
the residual between yi and the value predicted from the data set with case
i deleted. We refer readers to works on regression diagnostics such as Cook
and Weisberg (1982).

Figure 15.7 shows a plot of deleted residuals against fitted values for the
log precipitation and temperature example, with the smoothing parameter
chosen by cross-validation. The three observations with small predicted
values have somewhat larger leverage values (around 0.4) than the others
(generally in the range 0.1 to 0.2). This is not surprising, given that they
are somewhat isolated from the main part of the data.

15.7 The direct penalty method for computing β

We now turn to a more direct way of using the roughness penalty approach
that computes β̂ direction without using basis functions. Our first task is
to show how we can set up this approach as a two-stage process involving:
(1) minimizing a simple quadratic expression to obtain the vector of values
ŷ approximating the data vector y, and (2) computing the smoothest linear
functional interpolant of these values.
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15.7.1 Functional interpolation
We have already seen that the observed data can in general be fitted exactly
by an infinite number of possible parameter choices (α, β). In some contexts,
it may be of interest to define a functional interpolant (α̃, β̃) to the given
data by the smoothest parameter function choice that fits the data exactly.
In any case, we need to consider this problem in defining the technique
used to compute the estimate for β in Figure 15.5. Therefore, we require
that estimate (α̃, β̃) minimizes ‖D2β‖2 subject to the N constraints

yi = α̃ + 〈xi, β̃〉. (15.17)

The functional interpolant is the limiting case of the regularized estimator
as λ → 0. In fact, the curve β̃ resulting from interpolating the weather data
is identical to that shown in Figure 15.1.

We can consider this minimization problem (15.17) as a way of quan-
tifying the roughness or irregularity of the response vector y relative to
the observed functional covariates xi. More generally, if z1, . . . , zN is any
sequence of values, then we can define the roughness of z relative to the
functional covariates xi as being the roughness of the smoothest function
βz such that

zi = αz + 〈xi, βz〉
for all i, for some constant αz. This method of defining the roughness of a
variate zi will be of considerable conceptual and practical use later.

15.7.2 The two-stage minimization process
Section 15.7.3 shows that we can define an order N matrix R in such a way
that the roughness of a variate z can be expressed as the quadratic form∫

[D2β(s)]2 ds = b′Rb.

Assuming this to be true for the moment, we can conceptualize the smooth-
ing problem as being solved by dividing the minimization of the penalized
residual sum of squares into two stages:

Stage 1: Find predicted values ŷ that minimize PENSSEλ(ŷ) =
∑

i(yi −
ŷi)2 + λŷ′Rŷ, the solution to which is

ŷ = (I + λR)−1y.

Stage 2: Find the smoothest linear functional interpolant (α, β) satisfying

ŷi = α +
∫

xi(s)β(s) ds. (15.18)

This two-stage procedure does indeed minimize PENSSEλ(α, β) by the
following argument. Write the minimization problem as one of first min-
imizing PENSSEλ(α, β) as a function of (α, β) but with ŷ fixed, and then
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minimizing the result with respect to ŷ. Formally, this is

min
ŷ

[min
α,β

{PENSSEλ(α, β)} ]

= min
ŷ

{
∑

(yi − ŷi)
2 + λ min

β

∫
[D2β(s)]2 ds}, (15.19)

where the inner minimizations over α and β are carried out keeping the
values of the linear functionals ŷi as defined in (15.18) fixed.

But according to our assumption, these inner minimizations yield (α, β)
as the smoothest functional interpolant to the variate ŷ, so we may now
write the equation as

PENSSEλ(α, β) = min
ŷ

{
∑

(yi − ŷi)
2 + λŷ′Rŷ}. (15.20)

Setting aside the question of how R is defined for a moment, one of the
advantages of the roughness penalty approach to regularization is that it
allows this conceptual division to be made, in a sense uncoupling the two
aspects of the smoothing procedure. However, it should not be forgotten
that the roughness penalty is used in the construction of the matrix R, and
so the functional nature of the covariates xi, and the use of

∫
(D2β)2 to

measure the variability of the regression coefficient function β, are implicit
in both stages set out above.

We can think of the two-stage procedure in two ways: First as a practical
algorithm in its own right, and second as an aid to understanding and
intuition. We also see in subsequent chapters that it has wider implications
than those discussed here.

In order to use the algorithm in practice, it is necessary to derive the
matrix R, and we now show how to do this.

15.7.3 Functional interpolation revisited
In this section, we present an algorithmic solution to the linear functional
interpolation problem presented in Stage 2 in the two-stage procedure set
out in Section 15.7.2. That is, it is of interest to find the smoothest func-
tional interpolant (α̃, β̃) to a specified N -vector ŷ relative to the given
covariates zi, i = 1, . . . , N . For practical purposes, our algorithm is suitable
for the case where the sample size N is moderate, where matrix manipu-
lations of N × N matrices do not present an unacceptable computational
burden.

Let matrix Z be defined in terms of the functional covariates zi as de-
scribed in Section 15.3. In terms of basis expansions, we wish to solve the
problem

min{ζ′Rζ} subject to Zζ = ŷ. (15.21)
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We first define some more notation. By rotating the basis if necessary,
assume that the first M0 basis functions φν span the space of all functions f
that have roughness

∫
(D2f)2 = 0. In the Fourier case, this is true without

any rotation: The only periodic functions with zero roughness are constants,
so M0 = 1, and the basis φν consists of just the constant function.

Let K2 be the matrix obtained by removing the first M0 rows and
columns of K. Then K2 is strictly positive-definite, and the rows and
columns removed are all zeroes. In the Fourier case, K2 is diagonal.

Corresponding to the above partitioning, let Z1 be the matrix of the first
M0 + 1 columns of Z, and let Z2 be the remaining columns. Defining P
to be the N × N projection matrix P = I − Z1(Z′

1Z1)−1Z′
1 permits us

to define Z∗ = PZ2. In the periodic case, Z1 has columns (1, . . . , 1) and
(x̄1, . . . , x̄N ), where x̄i =

∫
zi(s) ds for each i. Thus P is the N ×N matrix

that projects any N -vector z to its residuals from its linear regression on
x̄i.

Continuing with this partitioning process, let ζ1 be the vector of the first
M0 + 1 components of ζ, and let ζ2 be the remaining components of ζ.
Then the constraint

Zζ = Z1ζ1 + Z2ζ2 = ŷ

implies, by multiplying both sides by Z′, that

Z′
1Z1ζ1 + Z′

1Z2ζ2 = Z′
1ŷ. (15.22)

Solving for ζ1 alone gives

ζ1 = (Z′
1Z1)−1Z′

1(ŷ − Z2ζ2) and Z1ζ1 = (I − P)(ŷ − Z2ζ2). (15.23)

In the periodic case, equation (15.23) indicates that ζ1 is obtained by linear
regression of the values ŷ − Z2ζ2 on the vector with components x̄i. Thus,
once ζ2 has been determined, we can find ζ1.

Now substitute solution (15.23) for ζ1 back into the constraint (15.22)
and rearrange to show that we can find ζ2 by solving the minimization
problem

min
ζ2

{ζ′
2K2ζ2} subject to Z∗ζ = Pŷ (15.24)

using the fact that ζ′Kζ = ζ′
2K2ζ2.

Let R be defined as the Moore-Penrose g-inverse

R = (Z∗K−1
2 Z∗′)+. (15.25)

The solution of the minimization (15.24) is then given by

ζ2 = K−1
2 Z∗′Rŷ (15.26)

and the minimum value of the objective function ζ′Rζ is therefore

ζ′Rζ = ζ′
2K2ζ2
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= ŷ′RZ∗′K−1
2 K2K−1

2 Z∗Rŷ

= ŷ′RR+Rŷ

= ŷ′Rŷ. (15.27)

This is the assumption we made above in defining the two-step procedure,
and moreover we have now defined the matrix R.

We can now sum up this discussion by setting out an algorithm for
functional interpolation as follows:

Step 1: Calculate matrices P = I − Z1(Z′
1Z1)−1Z′

1 and Z∗ = PZ2. In
effect, the columns of Z∗ are the residuals from a standard regression
of the corresponding columns of Z2 on the design matrix Z1.

Step 2: Compute R as defined in (15.25) above.

Step 3: Compute ζ2 from (15.26) and use (15.23) to find ζ1.

Of course, if all we require is the roughness of ζ, then we can find ŷ′Rŷ
from (15.25) without actually calculating ζ.

Finally, returning now to our two-stage technique for smoothing, we can
now carry out the first step by solving the equation

(I + λR)ŷ = y.

Note, by the way, that if R is either diagonal (as for the Fourier basis)
or band-structured (as for the B-spline basis), that this solution is rapidly
computable, and hence trying out various values for λ is quite feasible.

If we are dealing with a large data set by truncating or restricting the ba-
sis expansion to a reasonable dimensionality K as described in Section 15.3,
then we only wish in general to assess the roughness of variates of the form
Zζ for known ζ with ζj = 0 for j > m. It is usually more appropriate to
calculate ζ′Rζ for such variates directly if it is needed.

15.8 Functional regression and integral equations

Functional interpolation and regression can be viewed as a different for-
malization of a problem already considered in detail in Chapter 6, that of
reconstructing a curve given certain indirect observations. Suppose that g is
a curve of interest, and that we have noisy observations of a number of lin-
ear functionals li(g). Such a problem was explored by Engle, Granger, Rice
and Weiss (1986); see also Section 4.7 of Green and Silverman (1994). The
problem involved in reconstructing the effect of temperature t on electricity
consumption, so that g(t) is the expected use of electricity per consumer on
a day with average temperature t. Various covariates were also considered,
but these need not concern us here.

Electricity bills are issued on various days and always cover the previous
28 days. For bills issued on day i, the average consumption (after correcting
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for covariates) would be modelled to satisfy

1
28

EYi = 〈θi, g〉,

where θi is the probability density function of temperature over the previous
28 day period. By setting zi = 28θi and β = g, we see that this problem falls
precisely into the functional regression context, and indeed the method used
by the original authors to solve it corresponds precisely to the regularization
method we have set out.

More generally, regularization is a very well-known tool for the solution
of integral equations; see, for example, Section 12.3 of Delves and Mohamed
(1985).

15.9 Further reading and notes

The subject of this chapter is probably the area in functional data analy-
sis that has undergone the most development since the publication of the
first version of this volume. The STAPH group that meets regularly at
Paul Sabatier University in Toulouse has been especially active in terms of
both applications and theory. To learn more about their work, consult the
website http://www.lsp.ups-tlse.fr/Fp/Ferraty/staph.html.

Cardot, Faivre and Goulard (2003) predicted type of land use based on
the evolution of the reflectance of a parcel of land in a specified wavelength
over time as measured by satellite imagery. They also used functional prin-
cipal components analysis to reduce the dimensionality of the reflectance
curves prior to estimating the functional linear model, an approach first
developed in Cardot, Ferraty and Sarda (1999) and discussed further in
Cardot, Ferraty and Sarda (2003). Cardot, Goia and Sarda (2004) devel-
oped a test of the hypothesis that there is no effect on the outcome variable
by the predictor variable, and Cardot, Ferraty, Mas and Sarda (2004) re-
port further developments. Cardot, Faivre and Maisongrande (2004) use
a mixed effects formulation of this model. Ferraty, Goia and Vieu (2002)
forecast United States monthly electricity consumption, and Ferraty and
Vieu (2002) predict the fat content of meat samples from spectrometric
curves. Cardot (2002) used a roughness penalty that is similar to that used
by Eilers and Marx (1996).

Escabias, Aguilera and Valderrama (2004), James (2002) and Cardot
and Sarda (2004) look at the larger problem of how to adapt the gen-
eralized linear model to the presence of a functional predictor variable,
and offer a number of examples, including the situation considered here
of a continuous dependent variable. Escabias et al. (2004) combine the
functional linear model with principal components analysis to reduce the
dimensionality of the covariate space. James (2002) also describes an in-
teresting method for estimating the between-curve variation as well as the
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within-curve structure. Müller and Stadtmüller (2004) also investigate that
they call the generalized functional linear model. James and Hastie (2001)
consider linear discriminant analysis where at one of the of independent
variables used for prediction is a function, and where the curves are irreg-
ularly sampled. Ratcliffe, Leader and Heller (2002) and Ratcliffe, Heller
and Leader (2002) use the functional covariate foetal heart rate to model
continuous and binary outcome variables.



16
Functional linear models for functional
responses

16.1 Introduction: Predicting log precipitation
from temperature

The aim of Chapter 15 was to predict a scalar response y from a functional
covariate z. We now consider a fully functional linear model in which both
the response y and the covariate z are functions. For instance, in the Cana-
dian weather example, we might wish to investigate to what extent we can
predict the complete log daily precipitation profile LogPrec of a weather
station from information in its complete daily temperature profile Temp.

Because all the functions in this example are intrinsically periodic, we
can expand both the log precipitations and the temperatures in Fourier
series. We preprocessed the data by fitting a Fourier series with 65 terms,
applying a roughness penalty smoother by tapering the series to eliminate
very local variation.

We are now interested in the functional linear model

LogPreci(t) = α(t) +
∫ 365

0
Tempi(s)β(s, t) ds + εi(t) . (16.1)

In contrast to the concurrent model discussed in Chapter 14, the re-
gression function β is now a function of both s and t. We can interpret the
regression function β(s, t) for a fixed value of t as the relative weight placed
on the temperature at day s that is required to predict log precipitation
on day t.
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Temperatures on day s quite far from day t may be important for pre-
dicting LogPreci(t). For example, continental weather stations, where the
winters are cold and the summers hot, have most of their precipitation in
the summer months, in contrast to Atlantic stations, which tend to have a
fairly even distribution of precipitation over the whole year. Also, the influ-
ence of temperature at a time s > t is allowed here since we assume that the
weather patterns are periodic, and therefore that the information “wraps
around” so that we can predict rainfall in January by using temperature
information in December.

The function α plays the part of the constant term in the standard
regression setup, and allows for a different functional origin for the log pre-
cipitation curves than the origin for the temperature curves. In effect, the
second term involving β(s, t) indicates the advantage of using temperature
information over what could be achieved by using mean log precipitation
as a predictor, which is what α(t) would be without any covariate.

The unweighted fitting criterion is the integrated residual sum of squares
that we already used in Chapter 14:

LMSSE(α, β) =
∫ N∑

i=1

[LogPreci(t)−α(t)−
∫

Tempi(s)β(s, t) ds]2 dt. (16.2)

16.1.1 Fitting the model without regularization
We consider the expression of β as a double expansion in terms of K1 basis
functions ηk and K1 basis functions θ� to give

β(s, t) =
K1∑
k=1

K2∑
�=1

bk� ηk(s)θ�(t) = η(s)′Bθ(t), (16.3)

where B is a K1 × K2 matrix of coefficients b�k, or, more compactly, as

β = η′Bθ .

We will also use the basis vector θ to expand the intercept function α as

α(t) =
K2∑
�=1

a�θ�(t) = θ′(t)a. (16.4)

The unweighted fitting criterion (16.2) now becomes

LMSSE(a,B) =
∫ N∑

i=1

[LogPreci(t) − θ′(t)a −
∫

Tempi(s)η(s)′Bθ(t) ds]2 dt.

(16.5)
We defer any further discussion of how to estimate the coefficient vector a
for α and the coefficient matrix B for β to Section 16.4.

As our first attempt to fit the model, we used the same 65 basis functions
used to expand the log precipitation and temperature functions for both
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Figure 16.1. The functional parameter function β for the prediction of log pre-
cipitation from temperature, estimated direct from the data. The value β(s, t)
shows the influence of temperature at time s on log precipitation at time t.

basis systems θ and η. We minimized the fit criterion (16.5) to obtain the
estimated function β plotted in Figure 16.1.

We see that the function β estimated by this method is extremely vari-
able. It also turns out that this β gives perfect prediction of the given data
in LogPrec. This does not make physical sense; whatever influence temper-
ature patterns may have on precipitation patterns, it is naive to imagine
that the precipitation pattern at a place can be entirely accounted for by
its temperature pattern.

The reason for this over-fitting is an extension of the discussion in
Chapter 14 on the concurrent linear model. Consider any fixed t: as in
Section 15.2, we can find a number αt and a function βt such that, for all
i,

LogPreci(t) = αt + 〈Tempi, βt〉

without any error. Just as in Chapter 15, we must somehow regularize
the functional predictor variable. Regularization by limiting the number of
basis functions is discussed in the next section, and the use of roughness
penalties is taken up in Section 16.4.
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Figure 16.2. Perspective plot of estimated β function truncating the basis for the
temperature covariates to 7 terms.

16.2 Regularizing the fit by restricting the bases

We now consider the effect of restricting each of the bases η and θ in turn
for expanding β(s, t).

16.2.1 Restricting the basis η(s)
We regularize β by setting the number of basis functions for its variation
over argument s at K1 = 7. Figure 16.2 shows the resulting estimated β
function. The resulting prediction of the annual pattern of log precipitation
at four selected stations is demonstrated in Figure 16.3. In this figure, both
the original data and the predictions for log precipitation have their annual
mean subtracted, to highlight the pattern of precipitation rather than its
overall level. The precipitation pattern is quite well predicted except for
Edmonton, which has a precipitation pattern different from other weather
stations with similar temperature profiles.

Although the plot of the estimated β function demonstrates a more plau-
sible influence of temperature pattern on precipitation pattern, it is not
easy to interpret. As a function of t for any fixed s it is irregular, and
this irregularity is easily explained. Because every Fourier coefficient of
log precipitation is allowed to be predicted by the temperature covariate,
the prediction contains frequency elements at all levels. By the arguments
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Figure 16.3. Original data (solid) and predictions (dashed) of log precipitation
relative to annual mean for each of 4 weather stations. The prediction is carried
out using an estimated β function with the temperature covariate truncated to
7 terms.

given in Chapter 15, we expect that each individual Fourier coefficient will
be predicted sensibly as a scalar response. However, in putting these to-
gether to give a functional prediction, the high-frequency terms are given
inappropriate weight. From a common-sense point of view, we cannot ex-
pect overall temperature patterns to affect a very high frequency aspect
of log precipitation at all. To address this difficulty, we consider the idea
of restricting or truncating the θ basis in terms of which the functional
response variable is expanded.

16.2.2 Restricting the basis θ(t)
In this section, we consider the approach of truncating the θ basis, allowing
the prediction of only low-frequency aspects of the response variable. In our
example, this would correspond to the idea that the very fine detail of log
precipitation could not be predicted from temperature. For the moment,
suppose that we do not truncate the η basis, but that we allow only K0 = 7
terms in the expansion of the yi, with corresponding adjustments to the
matrices C and B. Figures 16.4 and 16.5 show the resulting β functions
and sample predictions. The predictions are smooth, but otherwise very
close to the original data. The function β is similar in overall character to
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Figure 16.4. Perspective plot of estimated β function truncating the basis for the
log precipitations to 7 terms.

the unsmoothed function shown in Figure 16.1, except that it is smoother
as a function of t. However, it is excessively rough as a function of s. Thus,
although the predictions are aesthetically attractive as smooth functions,
they provide an optimistic assessment of the quality of the prediction, and
an implausible mechanism by which the prediction takes place.

16.2.3 Restricting both bases
Sections 16.2.1 and 16.2.2 illustrated advantages in truncating both the η
basis of the predictors and the θ basis of the responses to obtain useful
and sensible estimates. It should be stressed that the reason for doing this
is not the same in both cases. Truncating the η basis for the covariates is
essential to avoid over-fitting, while the θ basis is truncated to ensure that
the predictions are smooth.

Let us combine these different reasons for truncating the bases, and trun-
cate both the predictor basis η and the response basis θ. Figures 16.6, 16.7
and 16.8 show the effects of truncating both bases to seven terms. We
can discern several aspects of the effect of temperature on log precipita-
tion. Temperature in February is negatively associated with precipitation
throughout the year. Temperature around May is positively associated
with precipitation in the summer months. Temperature in September
has a strong negative association with precipitation in the autumn and
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Figure 16.5. Original data (solid) and predictions (dashed) of log precipitation
relative to annual mean for each of four weather stations. The prediction is car-
ried out using an estimated β function with the basis for the log precipitations
truncated to 7 terms.

winter, and finally, temperature in December associates positively with
precipitation throughout the year, particularly with winter precipitation.

16.3 Assessing goodness of fit

There are various ways of assessing the fit of a functional linear model as
estimated in Section 16.2. An approach borrowed from the conventional
linear model is to consider the squared correlation function

R2(t) = 1 −
∑

i

{ŷi(t) − yi(t)}2
/ ∑

i

{yi(t) − ȳ(t)}2.

If we require a single numerical measure of fit, then the average of R2 over
t is useful, but using the entire function R2 offers more detailed informa-
tion about the fit. Figure 16.9 plots the R2 function for the fit to the log
precipitation data in Figure 16.6. The fit is generally reasonable, and is
particularly good in the first five months of the year.
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Figure 16.6. Perspective plot of estimated β function truncating both bases to
seven terms.
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Figure 16.7. Contour plot of estimated β function truncating both bases to seven
terms.
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Figure 16.8. Original data (solid) and predictions (dashed) of log precipitation
relative to annual mean for each of four weather stations. The prediction is carried
out using an estimated β function with the both bases truncated to seven terms.

A complementary approach to goodness of fit is to consider an overall
R2 measure for each individual functional datum, defined by

R2
i = 1 −

∫
{ŷi(t) − yi(t)}2 dt

/ ∫
{yi(t) − ȳ(t)}2 dt.

For the four particular stations plotted in Figure 16.8, for instance, the
values of R2

i are 0.96, 0.67, 0.63 and 0.81 respectively, illustrating that
Montreal and Resolute are places whose precipitations fit closely to those
predicted by the model on the basis of their observed temperature profiles;
for Edmonton and Prince Rupert the fit is of course still quite good in
that the temperature pattern accounts for over 60% of the variation of the
log precipitation from the overall population mean. However, Figure 16.8
demonstrates that the pattern of precipitation, judged by comparing the
predictions with the original data after subtracting the annual mean for
the individual places, is predicted only moderately well for Resolute and is
not well predicted for Edmonton. Figure 16.10 displays a histogram of all
35 R2

i values. At most of the stations, the R2
i value indicates reasonable or

excellent prediction, but for a small proportion the precipitation pattern
is not at all well predicted. Indeed, four stations (Dawson, Schefferville,
Toronto and Prince George) have negative R2

i values, indicating that for
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Figure 16.9. Proportion of variance of log precipitation explained by a linear
model based on daily temperature records. The prediction is carried out using
an estimated β function with both bases truncated to seven terms.

these places the population mean ȳ actually gives a better fit to yi than
does the predictor ŷi.

To investigate this effect further, we use Figure 16.11 to show a plot
of the residual mean square prediction error

∫
(ŷi − yi)2 against the mean

square variation from the overall mean,
∫

(yi − ȳ)2. The four places with
negative values of R2

i are indicated by 0’s on the plot. Each of the four
places plotted in Figure 16.8 is indicated by the initial letter of its name.
For most places the predictor has about one quarter the mean squared error
of the overall population mean, and for many places the predictor is even
better. The four places that yielded a negative value of R2

i did so because
they were close (in three cases very close) to the overall population mean,
not because the predictor did not work well for them. To judge accuracy of
prediction for an individual place, it is clear that one needs to look a little
further than just at the statistic R2

i .
It is possible to conceive of an F -ratio function for the fit. We have

ŷi(t) − ȳ(t) =
J0∑

j=1

Cij

(
K0∑
k=1

Bjkθk(t)

)
=

J0∑
j=1

Cijθj(t).

By analogy with the standard linear model, we can ascribe K0 − 1 degrees
of freedom to the point-wise sum of squares

∑
i{ŷi(t) − ȳ(t)}2 and n − K0
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itation explained by a linear model based on daily temperature records. The
prediction is carried out using an estimated β function with both bases trun-
cated to seven terms. The left-hand cell of the histogram includes all cases with
negative R2

i values.

degrees of freedom to the residual sum of squares
∑

i{yi(t) − ŷi(t)}2. An
F -ratio plot would be constructed by plotting

FRATIO(t) =
∑

i{ŷi(t) − ȳ(t)}2/(K0 − 1)∑
i{yi(t) − ŷi(t)}2/(n − K0)

.

However, the parameters θj(t) are not directly chosen to give the best fit
of ŷi(t) to the observed yi(t), and so the classical distribution theory of
the F -ratio could be used only as an approximation to the distribution of
FRATIO(t) for each t.

Figure 16.12 plots the F -ratio for the fit to the log precipitation data.
The upper 5% and 1% points of the F6:28 distribution are given; within this
model, this indicates that the effect of daily temperature on precipitation
is highly significant overall.

We have not given much attention to the method by which the truncation
parameters J0 and K0 could be chosen in practice. For many smoothing
and regularization problems, the appropriate method of choice is probably
subjective. The different roles of J0 and K0 lead to different ways of consid-
ering their automatic choice, if one is desired. The variable J0 corresponds
to a number of terms in a regression model, and so we could use a vari-
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Figure 16.11. Comparison, for log precipitation, between mean square prediction
errors and mean square variation from overall mean of log precipitation. The
prediction is carried out using an estimated β function with both bases truncated
to seven terms. The points for Montreal, Edmonton, Prince Rupert and Resolute
are marked as M, E, P and R respectively. The points marked 0 yield negative
R2

i values. The lines y = x and y = 0.25x are drawn on the plot as solid and
dotted, respectively.

able selection technique from conventional regression, possibly adapted to
give a functional rather than a numerical criterion, to indicate a possible
value. On the other hand, K0 is more akin to a smoothing parameter in a
smoothing method, and so a method such as cross-validation might be a
more appropriate choice. These questions are interesting topics for future
investigation and research.

16.4 Computational details

Here we indicate how the fits discussed in Section 16.1 are computed. First,
we have a look at the simpler case, used in that section, where the only
regularization principle used is restricting the number of basis functions.
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Figure 16.12. A plot of the F -ratio function for the prediction of log precipitation
from daily temperature data. The prediction is carried out using an estimated β
function with both bases truncated to seven terms. The horizontal lines show the
upper 5% and 1% points of the F6:28 distribution.

16.4.1 Fitting the model without regularization
Using more general matrix notation, our model is

y∗(t) =
∫

z∗(s)β(s, t) ds + ε(t) . (16.6)

Recall that the bivariate regression function β has the expansion

β(s, t) = θ′(s)Bη(t) ,

where basis system θ has K1 functions and η has K2 functions. By
substituting this expansion, the model becomes

y∗(t) =
∫

z∗(s)θ′(s)Bη(t) ds + ε(t)

= Z∗Bη(t) + ε(t), (16.7)

where the N by K1 matrix Z∗ is

Z∗ =
∫

z∗(s)θ′(s) ds . (16.8)

The second equation in (16.7), in effect, brings us back to the situation in
Chapter 13, and in addition has the further simplification that the basis η
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is used for all the regression functions. Thus, we can use the computational
details in that chapter to derive the following set of normal equations that
must be solved for the regression function coefficient matrix B:

Z∗′
Z∗B

∫
η(t)η′(t) dt = Z∗′

∫
y(t)η′(t) dt . (16.9)

As before, we can re-express this equation in Kronecker product notation
as

[Jηη ⊗ (Z∗′
Z∗)]vec(B) = vec(Z∗′

∫
y(t)η′(t) dt) , (16.10)

where

Jηη =
∫

η(t)η′(t) dt .

We note again that the numerical integration involved in the right side
Z∗′ ∫

yη′ is, in effect, the set of inner products of the basis function vector
η with the unit function 1 using the K1 weighting functions Z∗′

y.

16.4.2 Fitting the model with regularization
Now let us consider the alternative strategy of endowing β with a generous
number of basis functions for both θ and η. We need to define two rough-
ness penalties: one for β’s variation with respect to s, and another for its
variation with respect to t.

Consider the s situation first. Let linear differential operator Ls be an
appropriate operator for “curvature” in the larger sense to be applied to β
as a function of s only. Our penalty is

PENs(β) =
∫ ∫

[Lsβ(s, t)]2 ds dt

=
∫ ∫

[Lsθ
′(s)Bη(t)][Lsθ

′(s)Bη(t)]′ ds dt

=
∫ ∫

[Lsθ
′(s)]Bη(t)η′(t)B′[Lsθ(s)] ds dt

=
∫

trace[Bη(t)η′(t)B′R] dt

= trace[B′RBJηη] , (16.11)

where order K1 symmetric matrix R is

R =
∫

[Lsθ(s)][Lsθ
′(s)] ds .

Penalization of β with respect to t requires an analogous linear differen-
tial operator Lt to be applied to β as a function of t only. Following through
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the derivation above, we arrive at the following for the roughness penalty
for t:

PENt(β) =
∫ ∫

[Ltβ(s, t)]2 ds dt

= trace[B′JθθSB] , (16.12)

where order K2 symmetric matrix S is

S =
∫

[Ltη(t)][Ltη
′(t)] dt ,

where

Jθθ =
∫

θ(t)θ′(t) dt .

When we add these two penalties, each multiplied by their respective
smoothing parameters, the equations for B become

Z∗′
Z∗BJηη + λsRBJηη + λtJθθBS = Z∗′

∫
yη′ , (16.13)

with the Kronecker product equivalent

[Jηη ⊗ (Z∗′
Z∗)+λsJηη ⊗R+λtS⊗Jθθ]vec(B) = vec(Z∗′

∫
yη′) . (16.14)

Finally, in order to compute standard errors, we will need to specify that
y = Cφ where φ is a system of Ky basis functions and C is the associated
N by Ky coefficient matrix. In this case, we can express the estimate for
B as

vec(B̂) = [Jηη ⊗ (Z∗′
Z∗) + λsJηη ⊗ R + λtS ⊗ Jθθ]−1(Jθη ⊗ Z∗′

)vec(C) ,
(16.15)

where

Jθη =
∫

θ(t)η′(t) dt .

16.5 The general case

The functional linear model (16.6) has been useful for exploring the impli-
cations of regularizing β(s, t) with respect to each of its arguments. But it
is, nevertheless, a model that is restricted in three important ways:

• The covariate function z that we used was a function of s alone. In
fact, there is no reason why it might not also vary as a function of
t, that is, take values z(s, t). In fact, we assumed variation over t for
the point-wise linear model in Chapter 14, and we may do so here,
too.
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• That we were able to integrate the influence of z over the entire year
was made possible by the covariate being periodic, as we already
observed. In many situations, and especially when both s and t index
time, the case s > t is inadmissible since causality does not operate
backwards in time. In this case, we would have the model

yi(t) =
∫ t

0
zi(s)β(s, t) ds + εi(t)

and the matrix Z∗ defined in (16.8) would now be a function of t
rather than being constant.

• The expansion of β in (16.3), called a tensor product expansion, is
highly specialized. In fact, it tends only be suitable when argument
s can be integrated over its entire range, that is, including when the
covariate is periodic.

Consequently, we need a formulation that can encompass not only the
models that we have used up to now, but a range of others as well that
may be important in other applications.

To get away from tensor-product expansions, let us now propose the
general expansion

β(s, t) =
Kβ∑
k

bkθk(s, t) = θ′(s, t)b . (16.16)

Moreover, let us assume that the covariate z takes values z(s, t) varying
over both arguments. Finally, let the interval of integration for argument s
be allowed to vary over t, and we can use the notation Ωt to indicate the
interval associated with t. Our model now becomes

yi(t) =
∫

Ωt

zi(s, t)β(s, t) ds + εi(t)

=
∫

Ωt

zi(s, t)θ′(s, t)b ds + εi(t). (16.17)

Each of the previous models is contained within this one. For example, the
multivariate covariate zi in Chapter 13 does not vary with either argument,
and no integration is involved, so that we can simply drop argument s from
the model. The point-wise model in Chapter 14 is similar in that, since
Ωt = t, argument s is again irrelevant in the sense that it can be folded
into t itself. But in this case zi does vary over t.

In this general case, we can still make an important simplification. As
we did for the earlier specialized model, we can integrate out s by defining

z∗
ik(t) =

∫
Ωt

zi(s, t)θ′
k(s, t) ds (16.18)
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and then re-express this general model in a matrix version that no longer
has an explicit role for s:

y(t) = Z∗(t)b + ε(t), (16.19)

where Z∗ is an N by Kβ matrix function. Of course, the removal of s is
actually an illusion, since any evaluation of Z∗ will automatically involve
an integration over s.

Nevertheless, formally we now have a concurrent or point-wise functional
linear model, but where the regression coefficient functions are all constant.
In short, the most general case finally reduces to the point-wise linear
model, but of course at the expense of replacing a single covariate zi(s, t)
by a vector of K computed covariates z∗

ik(t).
The estimated parameter vector b̂ satisfies

[
∫

Z∗′
Z∗ + λsR + λtS]b̂ =

∫
Z∗′

y, (16.20)

where

R =
∫ ∫

Ωt

[Lsθ(s, t)][Lsθ(s, t)]′ ds dt

and

S =
∫ ∫

Ωt

[Ltθ(s, t)][Ltθ(s, t)]′ ds dt .

What kind of bivariate basis functions might we propose? The topic of
smoothing data over higher numbers of dimensions has generated several
examples. In thin-plate spline smoothing, for example, radial basis functions
are used of the form

θk(s, t) = ζk(s2 + t2),

where the functions ζk are a univariate basis system.
An especially convenient and powerful class of bivariate basis functions

are associated with finite element methods developed for numerical meth-
ods for solving partial differential equations over complex regions. These
typically involve the approximate coverage of the two-dimensional domain
Ωt, t ∈ T by a system of triangles, and the basis functions are piecewise
linear “hat” functions having value one at a vertex shared by six trian-
gles, and decreasing to zero on each of the distal edges. See Ramsay and
Silverman (2002, Chapter 10) for an example.

16.6 Further reading and notes

Many important issues need further attention, but they would carry us
beyond the objectives of this volume and would require technical resources
rather out of line with what we are assuming.
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There has been a considerable amount of work on reformulating time
series methods for functional data, and especially in France and Spain.
Bosq (2000) has a rather technical but broad overview. Besse, Cardot
and Stephenson (2000) and Aguilera, Ocaña and Valderrama, M. J. (1999)
developed autoregressive forecasting models for climatic variations.

From the perspective of classical frequentist statistics, just what is being
estimated here and in Chapter 15 where the covariate structure is poten-
tially of infinite dimension? As sample size increases, what conditions are
required to assure the convergence of estimates β̂ to their population val-
ues? A good coverage of this issue along with some interesting consistency
results can be found in Cuevas, Febrero and Fraiman (2002), as well as in
earlier papers by Cardot, Ferraty and Sarda (1999) and Ferraty and Vieu
(2001). These latter researchers are part of a group called STAPH that
meets regularly to exchange findings on both foundational and application
issues. Frank and Friedman (1993) also raised some of these issues in their
survey on the use of regression in chemometrics.

If we adopt a Bayesian perspective, how can we propose prior distri-
butions for the functional parameters like β that fulfill certain regularity
conditions essential for coherent estimation? We have tended to adopt the
perspective that the basis function expansion that we use is chosen essen-
tially as a matter of both capturing certain known features of the problem
and of computational convenience. This would imply that we wouldn’t want
to assume that the coefficients in the matrix B were the parameters, since
we would freely admit that other investigators might use different basis
expansions for perfectly good reasons.



17
Derivatives and functional linear
models

17.1 Introduction

This chapter is an introduction to the idea of a differential equation, and
aims to provide for readers unfamiliar with differential equations some of
the basic ideas that will carry them forward into the next chapters. We
begin with an example where we see the advantages of modelling the rate
of change of a function as the dependent variable. Of course, by term “rate
of change” we mean a derivative of a function, and in this case the first
derivative. Models for derivatives are often termed models for the dynamics
of a system, or dynamic models.

We will see how these dynamic models, expressed as differential equa-
tions, permit us to model both the function itself and one or more of its
derivatives at the same time. How does this differ from what we have al-
ready been doing, say, with the growth data? There, by contrast with a
truly dynamic model, we begin with a model for the observed data, the
height measurements. To be sure, we selected this model with an eye to
looking at derivatives, but fundamentally we modelled the data and then
let the derivatives emerge as by-products. Now, however, and in the next
chapters, we look at linking derivatives and function values together so
as to take away the privileged place of the function as the object to be
estimated.
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Figure 17.1. The upper panel shows the level of material in a tray of a distillation
column in an oil refinery, and the lower level shows the flow of material being
distilled into the tray. The points are measured values, and the solid lines are
smooths of the data using regression splines. Time is in minutes.

17.2 The oil refinery data

A distillation column or cracking tower in an oil refinery converts crude oil
to refined petroleum products like gasoline by boiling the crude and passing
the vapor through a series of trays where, at each level, the condensate
becomes more refined. Figure 17.1 shows the output from tray number 47
in the upper panel in response to the input shown in the lower panel. Both
functions have been centered on their values at time 0, the time and flow
units are unknown, and input flow has been measured in the downward
direction.

We see that the output changes slowly in response to an abrupt change in
input, although it is clearly headed toward some stable upper level between
four and five units. It seems to have a fair amount of inertia, and the results
are analogous to those of a person pushing a car on level ground. Otherwise
there does not seem to be much to understand here; we increase the flow
into a tank with an outlet, and the level rises.

The refinery data show variation on two time scales: The long-term scale
involves the overall change in level from zero to near five that takes place
over several hundred time units, and the the shorter time scale covers period
from time 67 to where the new level is achieved, covering about one hundred
units. We would like to find a way to model both the long-term change in
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Figure 17.2. The regression coefficient function β for model (17.1) for the oil
refinery data.

the output, and the rate of change over the shorter period that produces
this change.

Here are a few technical asides on how we smoothed these data. Both
functions show a sharp break at time number 67; the upper curve has a dis-
continuous derivative, and the lower curve is itself discontinuous. In order
to have the smooth curve for the output to have a derivative discontinuity
at 67, we used order four splines and placed three coincident knot values
at that time. There was also one knot positioned midway between 0 and
67, and three equally spaced knots between 67 and 193. These knot choices
imply a total of eleven basis functions. The lower curve was fit with order
one splines with a single interior knot placed at 67.

Suppose that we model these data using the concurrent functional linear
model described in Chapter 14, so that

Tray(t) = Reflux(t)β(t) + ε(t). (17.1)

We used nearly the same basis system for the single regression coefficient
β(t) except that we dropped the interior knot in the first interval, thus
using ten splines. Figure 17.2 displays the estimated regression function.
After time 67, β simply mirrors the behavior of the output, and we have
little interest in its behavior before time 67, where it captures some of the
data’s wanderings around zero. The fit to the data, not shown, is virtually
the same as that shown in Figure 17.1.

This seems disappointing. We haven’t learned much from the shape of
the regression function that we couldn’t see in the original data. In fact, a
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Figure 17.3. The first estimated derivative of Tray 47 level is shown as a solid
line, and the fit to this derivative from model (17.2) is shown as a dashed line.

little thought convinces us that simply making β negatively proportional
to Tray is going to work just fine.

Now let’s take a different approach, involving explicit use of tray 47’s
first derivative as computed from the smooth in Figure 17.1, and shown in
Figure 17.3. There is a fair amount of variability in this derivative estimate,
but we do see something like exponential decay in the derivative after time
67, which seems consistent with what we see in Figure 17.1.

We propose to make this derivative the dependent variable, and to use
two independent variables, namely Tray level itself and the input, Reflex
flow. The model is therefore

DTray(t) = −β1(t)Tray(t) + β2(t)Reflux(t) + ε(t). (17.2)

It is the usual practice in formulating a linear differential equation model
to place a minus sign in front of coefficient functions such as β1(t).

The motivation here is to model the behavior of the rate of change of the
output as a function of both the output level and the input. This time we
will impose extreme simplicity on both the regression functions by using a
constant basis for each. The results that we obtain are β1(t) = 0.02 and
β2(t) = −0.20. Figure 17.3 shows the fit to the first derivative offered by
this model, and we have captured nicely the idea of zero derivative up to
time 67 and exponential decay afterwards.

Model (17.2) is an example of a first order linear differential equation
with constant coefficients. This is to say that the equation links the first
derivative to the function value and the input function, and that the linking
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equation is linear with coefficients that are constant. In order to see how
well the result fits the data, we need to solve equation (17.2) for Tray. For-
tunately, any basic text on differential equations will give us the solution,
which is, using y(t) to stand for Tray(t) and u(t) to stand for Reflux(t),

y(t) = e−β1t[y(0) − (β2/β1)
∫ t

0
eβ1su(s) ds]. (17.3)

We can simplify this further by specifying that y(0) = 0, u(t) = 0, t ≤ 67,
and u(t) = −0.4924, t > 67 to get

y(t) = 0.4924
β2

β1
[1 − e−β1(t−67)], t ≥ 67, and 0 otherwise. (17.4)

The fit to the data offered by this equation is shown in Figure 17.4. The
two parameter values define a model that fits the data beautifully, and
predicts that the new level that Tray is approaching is 4.7.

Here’s a summary of what we learn from the model by studying equations
(17.3) and (17.4):

• When there is no input, Tray level will decay exponentially with a
rate constant of −0.02 from whatever its level is at time 0.

• When Reflux increases by one unit, the level of Tray 47 will increase
at an exponentially declining rate (rate constant again −0.02) to a
new level 0.2/0.02 = 10 units higher. This is the long-term change in
the output.

• The time from increase in Reflux to the time Tray achieves its new
level is about 4/0.02 = 200 time units, and this is the shorter term
period in which the actual change takes place.

• β1 is the rate constant, and therefore controls the rate of change of
Tray level. It models the dynamic behavior of Tray.

• β2, along with β1, controls the ultimate change; the long-term gain
per unit increase in Reflux flow is β2/β1.

17.3 The melanoma data

Figure 17.5 presents age-adjusted melanoma incidences for 37 years from
the Connecticut Tumor Registry (Houghton et al. 1980). The solid line is a
smoothing spline fit by penalizing the size of the fourth derivative D4x and
choosing the penalty parameter by minimizing generalized cross-validation
or GCV. Two types of trends are obvious: a steady linear increase and
a periodic component. The latter is related to sunspot activity and the
accompanying fluctuations in solar radiation. If we look closely, though, we
can also see that there are some changes in the periodic trend; the peaks
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Figure 17.4. The fit to the data defined by model (17.2) is shown as a solid line,
and the data as points.
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Figure 17.5. Age-adjusted incidences of melanoma for the years 1936 to 1972. The
solid curve is the polynomial smoothing spline fit to the data penalizing the norm
of the fourth derivative, with the smoothing parameter chosen by minimizing the
GCV criterion.
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around 1950 and 1960 seem stronger than those near 1940 and 1970, and
perhaps the length of each cycle changes a little, too.

In short, there are three time scales here: the unlimited time over which
linear trend is maintained, the short-term sunspot cycle of about ten years,
and the medium term covering the range of years in the data in which the
cycles themselves change.

We again want to find a simple model that will capture changes on
these three time spans, and that will also tell us something about the
dynamics of the cyclical variation. We already know that a straight line
solves the differential equation D2x = 0 and that sin(ωt) and cos(ωt) solve
the equation D2x = −ω2x for some period 2π/ω. We can put these two
ideas together working with the fourth order equation D4x = −ω2D2x.
Let’s add one more parameter to define the differential equation

D4x = −β1D
2x − β2D

3x, (17.5)

where β1 = −ω2 and β2, called the damping coefficient, allows for an expo-
nential decay in the oscillations by multiplying sin(ωt) and cos(ωt) by the
factor exp(−β2t/2) where t = year − 1935.

Here’s an algorithm for estimating the unknown coefficients β1 and β2:

1. Start by smoothing the data, as we have already done, using smooth-
ing splines penalized by using D4 with the smoothing parameter λ
that minimizes GCV.

2. Compute the derivatives of the smooth up to order four.

3. Carry out a regression of the fourth derivative values, taken at each
year, on the corresponding values for the second and third derivatives.
The regression coefficients are estimates of β1 and β2.

4. Define the linear differential operator L as

Lx = β1D
2x + β2D

3x + D4x. (17.6)

Operator L is just a re-arrangement of differential equation (17.5); x
satisfies the equation if and only if Lx = 0.

5. Now smooth the data using the roughness penalty defined by this
linear differential operator, and again choose λ to minimize GCV.
Hopefully, because this operator will annihilate more of the varia-
tion in the data than D4 would, the smooth will be better and the
estimates of the derivatives will also improve.

6. Check for convergence in the regression coefficients, or in the value of
GCV. If convergence occurs, continue on to the last step; otherwise,
return to step 2.

7. As we did for the refinery data, see how well the smooth fits the data,
and also how well the data are fit by a solution to the differential
equation (17.5).
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Figure 17.6. The light dashed line is the minimum–GCV fit to the data using a
roughness penalty on D4. The heavy solid line is the fit using a roughness penalty
on Lx, where L is defined by (17.6). The dotted line is the best fit for functions
satisfying differential equation (17.5).

This process effectively converged in five iterations, at which point β1 and
β2 are 0.56 and 0.018, respectively. We can work out that ω2 = 3β2

2/4+β1,
and this corresponds to a period of 8.39 years. The period was estimated
in the first iteration as 11.22 years.

Now we’re in a position to compare the various fits to the data:

• The same fit as in Figure 17.5 using the D4 operator.

• The smoothing fit using the converged value of operator L.

• The fit Lx satisfying Lx = 0, that is, satisfying the differential
equation (17.5).

Each of these fits are shown in Figure 17.6. The final smooth tracks the
data a bit better, especially between 1960 and 1965. But now we have a
good estimate of the trend that can be fit with an exponentially decaying
sinusoid plus linear trend, and we see that there are indeed phase differences
between the smooth and the strictly periodic fit. Actually, the exponential
decay is small, and scarcely visible in the plot.

The changes in the cycles resulting from iteratively updating the smooth-
ing function and its derivatives are more visible in the phase-plane plot in
Figure 17.7. In the right panel, showing the results for the estimated rough-
ness penalty, the amplitudes of the cycles are stronger and the behavior of



17.4. Some comparisons of the refinery and melanoma analyses 305

−0.2 0 0.2 0.4 0.6

−0.2

−0.1

0

0.1

0.2

0.3

 Velocity

 A
cc

el
er

at
io

n

 D4 smoooth

−0.2 0 0.2 0.4 0.6

−0.2

−0.1

0

0.1

0.2

0.3

 Velocity

 L smoooth

Figure 17.7. Two phase–plane plots for the fit to the melanoma data. The left
panel is for the initial roughness penalty defined by the differential operator D4,
and the right panel is for the estimated operator L defined in (17.6).

the fit at the beginning and end of the curve is consistent with its behavior
elsewhere.

17.4 Some comparisons of the refinery and
melanoma analyses

Why was the differential equation (17.2) for the refinery data of order one
and (17.5) for the melanoma model of order four? The reason is that we
could express the shape of Tray in terms of only a single function, whereas
we required four component or basis functions to express the essential struc-
ture of the melanoma data. Of course, the melanoma model required only
two constants to be estimated, but that was because we could assume that
the multipliers of x and Dx were zero. They are there, after all, but are
just not estimated from the data.

On the other hand, the refinery data involved both an input and an
output. Hence, we needed a parameter to model the impact of a change in
the input, as well as a parameter to model the internal dynamics of the
output. In the melanoma data, there was no input (although we could well
have used sunspot activity records as an input), but the internal dynamics
were, in effect, four dimensional.
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In both problems we used two levels of fitting. The low-dimensional
fit was defined by the solution of a differential equation, and the higher-
dimensional fit was achieved by keeping smoothing parameter λ low enough
that the roughness penalty did not overwhelm the data fit. This means that
we partitioned the functional variance into two parts: the low-dimensional
part captured by the differential equation, and the balance which is the
difference between the low- and high-dimensional fits. The differential
equations played key roles in this process.

For both models we estimated some parameters defining the differential
equation from the data. In effect, the process that we used for the refinery
data was simply a one-step version of the more sophisticated algorithm
that we used for the melanoma data.

Perhaps this is the most important conclusion to take away from this
chapter: We can use noisy data to estimate a differential equation that
expresses at least a substantial part of the variation in the data. This
problem is taken up in Chapter 19. First, though, you may want to read
the next chapter, which offers a review of a number of results about linear
differential equations and linear differential operators.
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Differential equations and operators

18.1 Introduction

The derivatives of functional observations have played a strong role from
the beginning of this book. For example, we chose to work with acceleration
directly rather than height for growth curves and handwriting coordinate
functions, and to inspect functions (π/6)2D Temp+D3Temp for temperature
profiles. We used D2β as a measure of curvature in an estimated regres-
sion function β so as to regularize or smooth the estimate, and applied
this idea in functional principal components analysis, canonical correla-
tion, and various types of linear models. When the objective was a smooth
estimate of a derivative Dmx, we used Dm+2x to define the roughness
penalty. Thus, derivatives can be used both as the object of inquiry and as
tools for stabilizing solutions.

In Chapter 17, we introduced the idea of incorporating derivatives into
linear models for functional data. We saw that this permitted a model for
the simultaneous variation in a function and one or more of its derivatives,
and in the oil refinery example in Section 17.2, the approach came up
with an elegant little model with only two parameters that fit the data
beautifully.

It is time to look more systematically at how derivatives might be
employed in modelling functional data. Are there other ways of using
derivatives, for example? Can we use mixtures of derivatives instead of
simple derivatives? Can we extend models so that derivatives can be used
on either the covariate or response side? Can our smoothing and regulariza-



308 18. Differential equations and operators

tion techniques be extended in useful ways? Are new methods of analysis
making explicit use of derivative information possible?

This chapter provides some background on differential equations and
their use in applications. Readers either considering differential equations
for the first time or whose memories of their first contact has dimmed
may appreciate this material. We begin with the simplest of input/output
systems commonly described by a differential equation. After considering
possible extensions, we review how linear differential operators may be used
in various ways and some basic theory. The last three sections, on constraint
functionals, Green’s functions and reproducing kernels, are more advanced.
They may therefore be profitable to those already having a working knowl-
edge of this field. We nevertheless consider these topics to be of potential
importance for statistical applications, and they play a role in subsequent
chapters.

18.2 Exploring a simple linear differential equation

An input/output system has an input function u that in some way modifies
an output function x. Perhaps you might like to return to the refinery data
in Figure 1.4 for an example.

Here is the simplest prototype for such equations:

Dx(t) = −βx(t) + αu(t) + ε(t). (18.1)

This is a functional linear model in which the dependent variable is the
derivative of output x, and the two independent variables are x itself and
input function u. To keep things as simple as possible, we have specified
that the regression coefficient functions are constant. Function ε allows for
noise and other forms of ignorable variation in the functional data. It is a
useful convention to place a minus before terms on the right side involving
output function x; most real-life systems modelled by differential equations
have positive values of β if we do this, reflecting their natural tendency to
return to their resting state.

We could, however, make things even simpler by dropping u from the
equation. Situations do arise where the goal is to model the behavior of a
function x and its derivatives without considering any external influences.
The no-input version of the equation,

Dx(t) = −βx(t) + ε(t), (18.2)

is said to be homogeneous, while (18.1) is called nonhomogeneous. Input
function u, when it is present, is often called a forcing function, and the
homogeneous version of the equation is said to be forced by αu.

Let x0 be a solution to the homogeneous equation. Given parameter
β and assuming that the noise function ε is zero, a moment of reflection
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reveals that the solution to Dx0 = −βx0, is

x0(t) = Ce−βt

for some nonzero constant C. If we knew the value of x0 at time t = 0,
then C = x0(0) and the solution is completely determined.

It is a bit harder to work out the solution of (18.1), or Dx = −βx + αu,
but here it is:

x(t) = Ce−βt + α

∫ t

0
e−β(t−s)u(s) ds . (18.3)

As with the homogeneous equation, constant C is simply x(0).
A graph helps us to see the role played by the two parameters α and

β. Engineers often study how an industrial process reacts to changes in
its inputs by stepping these inputs up or down abruptly. Accordingly, let
u(t) = 0 for 0 ≤ t ≤ 1, and u(t) = 1 for t > 1. Also, let’s set x(0) = C = 1.
Then solution (18.3) becomes

x(t) = e−βt, 0 ≤ t ≤ 1,

= e−βt + (α/β)[1 − e−β(t−1)], t > 1.

Figure 18.1 shows the solution x for β = 2, and β = 4, while fixing
α/β = 2. Over the first half of the interval, x behaves like x0, and we see
that the solution decays to zero in about 4/β time units. Over the second
half of the interval, the solution grows at an exponentially decreasing rate
towards an upper asymptote of α/β, often called the gain of the system.
Again, the gain level is achieved in about 4/β time units. The role of β
is now clear; it determines the rate of change in x in response to a step
change in u.

We can summarize the roles of these two parameters by comparing α to
the volume control on a radio playing a song carried by radio signal u; the
bigger α, the louder the sound. The bass/treble control, on the other hand,
corresponds to β; the larger β, the higher the frequency of what you hear.

We may rearrange differential equation (18.1) to put it in the form

Lx(t) = βx(t) + Dx(t) − αu(t) − ε(t) . (18.4)

Function x is a solution of the original equation when ε = 0 if and only if
Lx = 0. We call L = βI + D, where I is the identity operator, or Ix = x,
a linear differential operator, in this case with constant coefficients. This
alternative expression of the differential equation is handy, as we now know,
for defining roughness penalties, and using the roughness penalty

PEN(x) =
∫

[Lx(t)]2 dt

is equivalent to penalizing the failure of x to satisfy the differential equation
Dx = −βx corresponding to operator L.
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Figure 18.1. The solid and dashed lines are two solutions (18.3) to a first-order
constant-coefficient differential equation for two different values of the rate
constant β.

18.3 Beyond the constant coefficient first-order
linear equation

18.3.1 Nonconstant coefficients
Returning to Figure 18.1, we might be struck by an anti-symmetry: The
rate of decay over the first interval, Dx = −βe−βt is the negative of the rate
of increase over the second, Dx = βe−βt. Many systems, however, increase
more rapidly than they decrease, or vice versa. We acquire common cold
symptoms within hours and take days to recover from them, for example.
This suggests that allowing β to vary over time might be useful, and similar
arguments could be made for α. Then (18.1) becomes

Dx(t) = −β(t)x(t) + α(t)u(t) + ε(t). (18.5)

The solution to (18.5) is

x(t) = Cx0(t) +
∫ t

0
α(s)u(s)x0(t)/x0(s) ds, (18.6)

where

x0(t) = exp[−
∫ t

0
β(s) ds].
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The functional ratio x0(t)/x0(s) that occurs in the second term of (18.6)
defines the Green’s function for the differential equation; see Section 20.2
for details.

18.3.2 Higher order equations
More generally, the order of the derivative on the left side of (18.5) may be
m, with lower order derivatives appearing in the right side:

Dmx(t) = −β0(t)x(t) − β1(t)Dx(t) − . . . − βm−1(t)Dm−1x(t)
+α(t)u(t) + ε(t)

= −
m−1∑
j=0

βj(t)Djx(t) + α(t)u(t) + ε(t). (18.7)

These higher order systems are needed when there are more than two time
scales for events. This means that, in the case of a second order system,
there is a long-term trend, medium-term changes, and sharper shorter-term
events.

Figure 18.2 shows the forced second order equation

D2x(t) = −4.04x(t) − 0.4Dx(t) + 2u(t), (18.8)

where forcing function u(t) steps from 0 to 1 at time t = 2π. The
corresponding homogeneous solution is

x0(t) = e−0.2t[sin(2t) + cos(2t)].

There are three time scales involved here. The longest scale is the overall
oscillation level, first about 0 and then later about 0.5. The medium scale
trend is the exponential decay in the amplitude of the oscillation, and of
course the shortest scale is the oscillation with period π.

Consider handwriting; Ramsay (2000) observed that there were features
in script at four time scales:

1. The overall spatial position of the script, that is, the line on which it
is written, requiring some considerable seconds per line.

2. The movement of the script from left to right within a line, taking
place over several seconds.

3. The strokes and loops within the script, produced about eight times
a second.

4. Sharper transient effects due to the pen striking or leaving the paper,
lasting of the order of 10 milliseconds.

The differential equation developed in this study consequently was of the
third order.
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Figure 18.2. The solid line is the solution to the second order equation (18.8).
The dashed line is the corresponding homogeneous equation solution, and the
dotted line indicates the step function u forcing the equation.

18.3.3 Systems of equations
Often the processes that we study produce more than one output, and so
we need several output functions xi. As an example, suppose that β(t)
in (18.7) is also affected by u(t), and that we can develop a differential
equation that defines its behavior. We now have two differential equations,
one for x and one for β.

Or, as another example, suppose that an engineer develops a feedback
loop for the process permitting the output x to have an effect on the input
u. For example, a doctor adjusts the medication u of the patient according
to changes in the symptoms x. Then u and x can each be expressed as a
differential equation, and in each equation the other variable now plays the
role of an input. That is,

Dx(t) = −βx(t)x(t) + αx(t)u(t)
Du(t) = −βu(t)u(t) + αu(t)x(t). (18.9)

In fact, any differential equation of order m can be expressed as a system
of m first-order equations. For a second order system,

D2x(t) = −β0(t)x(t) − β1(t)Dx(t),
(18.10)
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for example, define y(t) = Dx(t). Then we have the equivalent system of
two linear differential equations

Dx(t) = y(t)
Dy(t) = −β1(t)y(t) − β0(t)x(t). (18.11)

18.3.4 Beyond linearity
Equation (18.7) is a linear differential equation in the sense that each
derivative or input function is multiplied by a coefficient function, and
the products added to yield the output. That is, it is linear in the same
sense that the models in Chapters 12 to 16 are linear.

The general form of a nonlinear differential equation of the first order is

Dx(t) = f [t, x(t), u(t)]

for some function f .
Linear differential equations are easier to work with. They have solu-

tions for all values of t, and their properties are much better understood
by mathematicians than nonlinear equations. However, simple nonlinear
systems can define remarkable and often complex behavior in a solution x.
The world of nonlinear dynamics is vast and fascinating, but unfortunately
beyond the scope of this book.

The term “linear” is often used in engineering and elsewhere to refer
only to linear constant coefficient systems. In this restricted case, the use
of Laplace transformations leads to expressing the behavior of solutions in
terms of transfer functions.

18.4 Some applications of linear differential
equations and operators

In this section, we review a number of ways in which linear differential
equations and operators are useful in functional data analysis. Many of
these we have already encountered, but a few new ones are also suggested.
We will assume that the linear differential operator is in the form

Lx =
m−1∑
j=0

βjD
jx + Dmx. (18.12)

18.4.1 Differential operators to produce new functional
observations

Derivatives of various orders and mixtures of them are of immediate in-
terest in many applications. We have already noted that there is much
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Figure 18.3. The left panel shows the gross domestic product of the United States
in trillion US dollars. The solid curve mostly obscured by the dots is a poly-
nomial smoothing spline constructed with a penalty on the integrated squared
fourth derivative, and the dotted curve is a purely exponential trend fit by least
squares. The solid curve in the right panel is the estimated first derivative of
GDP. The dashed curve in this panel is the value of the differential operator
L = β GDP + D GDP.

to be learned about human growth by examining acceleration profiles.
There is an analogy with mechanical systems; a version of Newton’s third
law, a(t) = F (t)/M, asserts that the application of some force F (t) at
time t on an object with mass M has an immediate impact on accelera-
tion a(t). However, force has only an indirect impact on velocity, through
v(t) = v0 + M−1

∫ t

0 F (u)du, and an even less direct impact on what we
directly observe, namely position, s(t) = s0 + v0t + M−1

∫ t

0

∫ u

0 F (z) dz du.
From the standpoint of mechanics, the world that we experience is two
integrals away from reality! The release of adrenal hormones during pu-
berty tends to play the role of the force function F , and so does a muscle
contraction with respect to position of a limb or other part of the body.

18.4.2 The gross domestic product data
The gross domestic product (GDP) of a country is the financial value of
all goods and services produced in that country, whether by the private
sector of the economy or by government. Like most economic measures,
GDP tends to exhibit a percentage change each year in times of domestic
and international stability. Although this change can fluctuate considerably
from year to year, over long periods the fluctuations tend to even out
for most countries and the long-range trend in GDP tends to be roughly
exponential.

We obtained quarterly GDP values for 15 countries in the Organization
for Economic Cooperation and Development (OECD) for the years 1980
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Figure 18.4. The solid curves are the derivatives of GDP of the United Kingdom
and Japan estimated by order 4 smoothing splines. The dashed curves are the
corresponding values of the differential operator L = βx + Dx.

through 1994 (OECD, 1995). The values for any country are expressed in
its own currency, and thus scales are not comparable across countries. Also,
there are strong seasonal effects in GDP values reported by some countries,
whereas others smooth them out before reporting.

The left panel of Figure 18.3 displays the GDP of the United States.
The seasonal trend, if any, is hardly visible, and the solid line indicates
a smooth of the data using a penalty on D4 GDP. It also shows a best
fitting exponential trend, C exp(γt), with rate constant γ = 0.038. Thus,
over this period the U.S. economy tended to grow at about 4% per year.
The right panel displays the first derivative of GDP as a solid line. The
economy advanced especially rapidly in 1983, 1987 and 1993, but there
were slowdowns in 1981, 1985 and 1990.

If we define Lx to be βx+Dx, then we may say even more compactly that
Lx = 0 implies exponential growth. When studying processes that exhibit
exponential growth or decay to some extent, it can be helpful to look at Lx
defined in this way; the extent to which the result is a nonzero function with
substantial variation is a measure of departure from exponential growth,
just as the appearance of a nonzero phase in D2x for a mechanical system
indicates the application of a force.

The right panel of Figure 18.3 shows the result of applying this differ-
ential operator to the U.S. GDP data. The result is clearly not zero; there
seem to be three cycles of shorter term growth in GDP that depart from the
longer-term exponential trend. Figure 18.4 shows the comparable curves for
the United Kingdom and Japan, and we note that the U.K. had only one
boom period with an uncertain recovery after the recession, while Japan
experienced a deep and late recession.
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18.4.3 Differential operators to regularize or smooth models
Although we have covered this topic elsewhere, we should still point out
that we may substitute Lx for D2x in any of the regularization schemes
covered so far. Why? The answer lies in the homogeneous equation Lx =
0; functions satisfying this equation are deemed to be ultrasmooth in the
sense that we choose to ignore any component of variation of this form in
calculating roughness or irregularity. In the case of the operator D2, linear
trend is considered to be so smooth that any function may have an arbitrary
amount of it, since the penalty term λ

∫
(D2x)2 is unaffected. Suppose, on

the other hand, that we are working with a process that is predominantly
exponential growth with rate parameter β. We may choose in this case to
do nonparametric regression with the fitting criterion

PENSSEλ(x) = n−1
n∑

j=1

[yj − x(tj)]2 + λ

∫
[βx(t) + Dx(t)]2 dt

in order to leave untouched any component of variation of this form.
More generally, suppose we observe a set of discrete data values generated

by the process

yj = x(tj) + εj ,

where, as in previous chapters, x is some unobserved smooth function that
we wish to estimate by means of nonparametric regression, and εj is a
disturbance or error assumed to be independently distributed over j and
to have mean zero and finite variance. Suppose, moreover, that we employ
the general smoothing criterion

PENSSEλ(x̂) = n−1
∑

j

[yj − x̂(tj)]2 + λ

∫
(Lx̂)2(t) dt (18.13)

for some differential operator L.
It is not difficult to show (see Wahba, 1990) that, if we choose x̂ to

minimize PENSSEλ, then the integrated squared bias

Bias2(x̂) = {
∫

E[x̂(t) − x(t)] dt}2

cannot exceed
∫

(Lx)2(t) dt. This is useful, because if we choose L so as to
approximate Lx = 0, then the bias is likely to be small. It then follows that
we can use a relatively large value of the smoothing parameter λ, leading
to lower variance, without introducing excessive bias. Also, we can achieve
a small value of the integrated mean squared error

IMSE(x̂) =
∫

E[x̂(t) − x(t)]2 dt

since

IMSE(x̂) = Bias2(x̂) + Var(x̂),
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where

Var(x̂) =
∫

E{x̂(t) − E[x̂(t)]}2 dt.

The conclusion, therefore, is that if we have any prior knowledge at all
about the predominant shape of x, it is worth choosing a linear differential
operator L so as to annihilate functions having that shape. We show how to
construct customized spline smoothers of this type in the next two chapters.

This insight about the role of L in the regularization process also leads
to the following interesting question: Can we use the information in N
replications xi of functional observations such as growth or temperature
curves to estimate an operator L that comes close in some sense to satisfying
Lxi = 0? If so, then we should certainly use this information to improve
on our smoothing techniques. This matter is taken up in Chapter 21.

18.4.4 Differential operators to partition variation
Linear differential operators L of the form (18.12) of degree m have m
linearly independent solutions ξj of the homogeneous equation Lξj = 0.
There is no unique way of choosing these m functions ξj , but any choice
is related by a linear transformation to any other choice. The set of all
functions z for which Lz = 0 is called the null space of L, and the functions
ξj form a basis for this space. The notation kerL is often used to indicate
this null space.

Consider, for example, the derivative operator L = Dm: The mono-
mials {1, t, . . . tm−1} are a basis for the null space, as is the set of m
polynomials formed by any nonsingular linear transformation of these. Like-
wise the functions {1, e−βt} are a solution set for βDx + D2x = 0. And
{1, sin ωt, cos ωt} were cited as the solution set or null space functions for
Lx = ω2Dx + D3x = 0 in Chapter 1.

This means, then, that we can use linear differential operators L to par-
tition functional variation in the sense that Lx splits x into two parts, the
first consisting of what is in x that can be expressed in terms of a linear
combination of the null space functions ξj , and the second being whatever
is orthogonal to these functions.

This partitioning of variation is just what happens, as we already know
from Section 4.4, with basis functions φk and the projection operator P
that expands x as a linear combination of these basis functions. That is,

Px = x̂ =
m∑

k=1

ckφk

also splits any function x into the component x̂ that is an optimal com-
bination of the basis functions in a least squares sense, and an orthogonal
residual component x− x̂ = (I −P )x. The complementary projection oper-
ator Q = I −P therefore satisfies the linear homogeneous equation Qx̂ = 0,
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as well as the m equations Qφk = 0. Thus the projection operator Q and
the differential operator L have analogous properties.

But there are some important differences, too. First, the projection op-
erator P does not pay any attention to derivative information, whereas L
does. Second, we have the closely related fact that Q is chosen to make Qx
small, while L is chosen to make Lx small. Since Lx involves derivatives up
to order m, making Lx small inevitably means paying attention to the size
of Dmx. If we think there is important information in derivatives, then it
seems right to exploit this in splitting variation.

It is particularly easy to compare the two operators, differential and
projection, in situations where there is an orthonormal basis expansion for
the function space in question. Consider, for example, the space of infinitely
differentiable periodic functions defined on the interval [0, 1] that would be
natural to model our temperature and precipitation records. A function x
has the Fourier expansion

x(t) = c0 +
∞∑

k=1

[c2k−1 sin(2πkt) + c2k cos(2πkt)].

Suppose our two operators L and Q are of order 3 and designed to eliminate
the first three terms of the expansion, that is, vertically shifted sinusoidal
variation of period 1. Then

Qx(t) =
∞∑

k=2

[c2k−1 sin(2πkt) + c2k cos(2πkt)]

while

Lx = 4π2Dx + D3x

=
∞∑

k=2

8π3k(k2 − 1)[−c2k−1 cos(2πkt) + c2k sin(2πkt)].

Note that applying Q does not change the expansion beyond the third term,
while L multiplies each successive pair of sines and cosines by an ever-
increasing factor proportional to k(k2 − 1). Thus, L actually accentuates
high-frequency variation while Q leaves it untouched; functions that are
passed through L are going to come out rougher than those passing through
Q.

The consequences for smoothing are especially important: If we penalize
the size of ‖Lx‖2 in spline smoothing by minimizing the criterion (18.13),
the roughening action of L means that high-frequency components are
forced to be smaller than they would be in the original function, or than
they would be if we penalized using Q by using the criterion

PENSSEQ
λ (x̂) = n−1

∑
j

[yj − x̂(tj)]2 + λ

∫
(Qx̂)2(t) dt. (18.14)
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But customizing a regularization process is only one reason for splitting
functional variation, and in Chapter 19 we look at a differential opera-
tor analogue of principal components analysis, called principal differential
analysis, that can prove to be a valuable exploratory tool.

18.4.5 Operators to define solutions to problems
We have already considered a number of situations in Chapter 6 requiring
smoothing functions x that had constraints such as positivity, monotonic-
ity, values in (0,1), and so forth. We saw there that functions having these
constraints can often be expressed as solutions to linear or nonlinear differ-
ential equations. This insight helped us to modify conventional linear least
squares smoothing methods to accommodate these constraints.

18.5 Some linear differential equation facts

So far in this chapter, we have set the scene for the use of linear differential
operators and equations in FDA. We now move on to a more detailed
discussion of techniques and ideas that we use in this and the following
chapters. Readers with some familiarity with the theory of linear ordinary
differential equations may wish to skip on to the next two chapters, and
refer back to this material only where necessary.

18.5.1 Derivatives are rougher
First, it is useful to point out a few things of general importance. For
example, taking a derivative is generally a roughening operation, as we
have observed in the context of periodic functions. This means that Dx
has in general rather more curvature and variability than x. It is perhaps
unfortunate that our intuitions about functions are shaped by our early
exposure to polynomials, where derivatives are smoother than the original
functions, and transcendental functions such as et and sin t, where taking
derivatives produces essentially no change in shape. In fact, the general
situation is more like the growth curve accelerations in Figure 1.2, which are
much more variable than the height curves in Figure 1.1, or the roughening
effect of applying the third order linear differential operator to temperature
functions displayed in Figure 1.7.

By contrast, the operation of partial integration essentially reverses the
process of differentiation (except for the constant of integration), and there-
fore is a smoothing operation. It is convenient to use the notation D−1x
for

D−1x(t) =
∫ t

t0

x(s) ds,
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relying on context to specify the lower limit of integration t0. This means,
of course, that D−1Dx = x.

18.5.2 Finding a linear differential operator that annihilates
known functions

We have already cited a number of examples where we had a set of known
functions {ξ1, . . . , ξm} and where at the same time we were aware of the
operator L that solved the homogeneous linear differential equations Lξj =
0, j = 1, . . . , m. Suppose, however, that we have the ξj ’s in mind but that
the L that annihilates them is not obvious, and we want to find it.

The process of identifying the linear differential operator that sets m
linearly independent functions to 0, as well as other aspects of working
with linear differential operators, can be exhibited through the following
example: Suppose we are considering an amplitude-modulated sinusoidal
signal with fixed period ω. Such a signal would be of the form

x(t) = A(t)[c1 sin(ωt) + c2 cos(ωt)]. (18.15)

The function A determines the amplitude pattern. If A is regarded as a
known time-varying function, the constants c1 and c2 determine the overall
size of the amplitude of the signal and also the phase of the signal.

Our aim, for given ω and A(t), is to find a differential operator L such
that the null space of L consists of all functions of the form 18.15. Because
these functions form a linear space of dimension 2, we seek an annihilating
operator of order 2, of the form

Lx = β0x + β1Dx + D2x.

The task is to calculate the two weight functions β0 and β1.
First, let’s do a few things to streamline the notation. Define the vector

functions ξ(t) and β(t) as

ξ(t) =
[

A(t) sin(ωt)
A(t) cos(ωt)

]
and β(t) =

[
β0(t)
β1(t)

]
. (18.16)

Also, let us use S(t) to stand for sin(ωt) and C(t) for cos(ωt). Then

ξ =
[

AS
AC

]
. (18.17)

The required differential operator L satisfies the vector equation Lξ = 0.
Recall that the first and second derivatives of S are ωC and −ω2S, re-

spectively, and that those of C are −ωS and −ω2C, respectively. Then the
first two derivatives of ζ are, after a bit of simplification,

Dξ =
[

(DA)S + ωAC
(DA)C − ωAS

]



18.5. Some linear differential equation facts 321

and

D2ξ =
[

(D2A)S + 2ω(DA)C − ω2AS
(D2A)C − 2ω(DA)S − ω2AC

]
. (18.18)

The relation Lξ = 0 can be expressed as follows, by taking the second
derivatives over to the other side of the equation:

β0ξ + β1Dξ = −D2ξ (18.19)

or, in matrix notation [
ξ Dξ

]
β = −D2ξ. (18.20)

This is a linear matrix equation for the unknown weight functions β0 and
β1, and its solution is simple provided that the matrix

W(t) =
[

ξ(t) Dξ(t)
]

(18.21)

is nowhere singular, or in other words that its determinant |W(t)| does
not vanish for any value of the argument t. This coefficient matrix, which
plays an important role in linear differential operator theory, is called the
Wronskian matrix, and its determinant is called the Wronskian for the
system.

Substituting the specific functions AS and AC for this example for ξ1 and
ξ2 gives

W =
[

AS (DA)S + ωAC
AC (DA)C − ωAS

]
. (18.22)

Thus the Wronskian is

|W| = AS[(DA)C − ωAS] − AC[(DA)S + ωAC] = −ωA2 (18.23)

after some simplification. We have no worries about the singularity of W(t),
then, so long as the amplitude function A(t) does not vanish.

The solutions for the weight functions are then given by

β = −W−1D2ξ.

This takes a couple of sheets of paper to work out, or may be solved using
symbolic computation software such as Maple (Char et al. 1991) or Mathe-
matica (Wolfram, 1991). Considerable simplification is possible because of
the identity S2 + C2 = 1, and the final result is that

β =
[

ω2 + 2(DA/A)2 − D2A/A
−2DA/A

]
,

so that, for any function x,

Lx = [ω2 + 2(DA/A)2 − D2A/A]x − 2[(DA)/A](Dx) + D2x. (18.24)

Note that the weight coefficients in (18.24) are, as we should expect, scale
free in the sense that multiplying A(t) by any constant does not change
them.
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Consider two simple possibilities for amplitude modulation functions.
When A(t) is a constant, both derivatives vanish, the operator reduces to
L = ω2I + D2 and Lx = 0 is the equation for simple harmonic motion. On
the other hand, if A(t) = e−λt so that the signal damps out exponentially
with rate λ, then things simplify to

β =
[

ω2 + λ2

2λ

]
or Lx = (ω2 + λ2)x + 2λDx + D2x. (18.25)

This is the equation for damped harmonic motion with a damping
coefficient 2λ.

The example illustrates the following general principles: First, the order
m Wronskian matrix

W(t) =
[

ξ(t) Dξ(t) . . . Dm−1ξ(t)
]

(18.26)

must be invertible, implying that its determinant should not vanish over
the range of t being considered. There are ways of dealing with isolated
singularities, however. Second, finding the vector of weight functions β =
(β0(t), . . . , βm−1(t))′ is then is a matter of solving the system of m linear
equations

W(t)β(t) = −Dmξ(t),

again with the possible aid of symbolic computation software.

18.5.3 Finding the functions ξj satisfying Lξj = 0
Let us now consider the problem converse to that considered in Sec-
tion 18.5.2. Given a linear differential operator L of order m, we might
wish to identify m linearly independent solutions ξj to the homogeneous
equation Lx = 0. We can do this directly by elementary calculus in sim-
ple cases, but more generally there is a variety of analytic and numerical
approaches to this problem. For full details, see a standard reference on
numerical methods, such as Stoer and Bulirsch (2002).

Specifically, given (18.7), a common procedure is to use a numerical
differential equation solving algorithm, such as one of the Runge-Kutta
methods, to solve the equation for initial value constraints, described be-
low, of the form B0x = Ii, where Ii is the ith column of the identity matrix
of order m. This will yield m linearly independent solutions ξi that can be
used as a basis for obtaining all possible solutions.
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18.6 Initial conditions, boundary conditions and
other constraints

18.6.1 Why additional constraints are needed to define a
solution

We have already noted that the space of solutions of the linear differential
equation Lx = 0 is, in general, a function space of dimension m, called the
null space of L, and denoted by kerL. We now assume that the linearly
independent functions ξ1, . . . , ξm form a basis of the null space.

Any specific solution of Lx = 0 requires m additional pieces of infor-
mation about x. For example, we can solve the equation βDx + D2x = 0,
defining a shifted exponential, uniquely provided that we are able to specify
that

x(0) = 0 and Dx(0) = 1,

in which case

x(t) =
1
β

(1 − e−βt).

Alternatively, x(0) = 1 and Dx(0) = 0 implies that x0 = 1 and α = 0, or
simply that x = 1.

We introduce the notion of a constraint operator B to specify the m
pieces of information about x that we require to identify a specific function
x as the unique solution to Lx = 0. This operator simply evaluates x or its
derivatives in m different ways. The most important example is the initial
value operator used in the theory of ordinary differential equations defined
over an interval T = [0, T ],

Initial Operator: B0x =

⎡
⎢⎢⎢⎣

x(0)
Dx(0)
...
Dm−1x(0)

⎤
⎥⎥⎥⎦ . (18.27)

When B0x is set to an m-vector, initial value constraints are defined. In the
example above, we considered the two cases B0x = (0, 1)′ and B0x = (1, 0)′,
implying the two solutions given there.

The following boundary value operator is also of great importance in
applications involving linear differential operators of even degree:

Boundary Operator: BBx =

⎡
⎢⎢⎢⎢⎢⎣

x(0)
x(T )
...
D(m−2)/2x(0)
D(m−2)/2x(T )

⎤
⎥⎥⎥⎥⎥⎦ . (18.28)
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Specifying BBx = c gives the values of x and its first (m− 2)/2 derivatives
at both ends of the interval of interest.

The periodic constraint operator is

Periodic Operator: BP x =

⎡
⎢⎢⎢⎣

x(T ) − x(0)
Dx(T ) − Dx(0)
...
Dm−1x(T ) − Dm−1x(0)

⎤
⎥⎥⎥⎦ . (18.29)

Functions satisfying BP x = 0 are periodic up to the derivative Dm−1 over
T , and are said to obey periodic boundary conditions.

The integral constraint operator is

Integral Operator: BIx =

⎡
⎢⎢⎢⎣

∫
ξ1(t)x(t) dx∫
ξ2(t)x(t) dx

...∫
ξm(t)x(t) dx

⎤
⎥⎥⎥⎦ , (18.30)

where ξ1, . . . , ξm are m linearly independent weight functions.

18.6.2 How L and B partition functions
Whatever constraint operator we use, consider the problem of expressing
any particular function x as a sum of two components z and e, such that
Lz = 0 and Be = 0. When can we carry out this partitioning in a unique
way? This happens if and only if x = 0 is the only function satisfying both
Bx = 0 and Lx = 0. Or, in algebraic notation,

ker B ∩ ker L = 0. (18.31)

Thus, the two operators B and L complement each other; the equation
Lx = 0 defines a space of functions ker L that is of dimension m, and
within this space B is a non-singular transformation. Or, looking at it
the other way, the equation Bx = 0 defines a space of functions ker B of
codimension m, within which L is a one-to-one transformation.

Note that the condition (18.31) can break down. Consider, for example,
the operator L = ω2I + D2 on the interval [0, T ]. The space ker L contains
all linear combinations of sinωt and cos ωt. If ω = 2πk/T for some integer
k and we use boundary constraints, all multiples of sinωt satisfy BBx = 0,
and so the condition (18.31) is violated. Some functions, namely those that
satisfy x(0) = x(T ) and Dx(0) = Dx(T ), have infinitely many decomposi-
tions as z + e with Lz = Be = 0, and are called the eigenfunctions of the
differential operator.
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18.6.3 The inner product defined by operators L and B

All the functional data analysis techniques and tools in this book depend on
the notion of an inner product between two functions x and y. We have seen
numerous examples of how a careful choice of inner product can produce
more useful results, especially in controlling the roughness of estimated
functions, such as functional principal components or regression functions.
In these and other examples, it is important to use derivative information
in defining an inner product.

Let us assume that the constraint operator is such that the orthogonality
condition (18.31) is satisfied. We can define a large family of inner products
as follows:

〈x, y〉B,L = (Bx)′(By) +
∫

(Lx)(t)(Ly)(t) dt (18.32)

with the corresponding norm

‖x‖2
B,L = (Bx)′(Bx) +

∫
(Lx)2(t) dt. (18.33)

The condition (18.31) ensures that this is a norm; the only function x for
which ‖x‖B,L = 0 is zero itself, since this is the only function simultaneously
satisfying Bx = 0 and Lx = 0.

In fact, this inner product works by splitting the function x into two
parts:

x = z + e where z ∈ ker L and e ∈ ker B.

The first term in (18.33) simply measures the size of the component z,
since Be = 0 and therefore Bx = Bz, while the second term depends only
on the size of the component e since Lx = Le. The first term in (18.32)
is essentially an inner product for the m-dimensional subspace in which z
lives and which is defined by Lz = 0. The second term is an inner product
for the function space of codimension m defined by Be = 0. Thus, we can
write

‖x‖2
B,L = ‖z‖2

B + ‖e‖2
L.

With this composite inner product in hand, that is, with a particular
operator L and constraint operator B in mind, we can go back and revisit
each of our functional data analytic techniques to see how they perform
with this inner product. This is the central point explored by Ramsay and
Dalzell (1991), to which we refer the reader for further discussion.

18.7 Further reading and notes

It is beyond the scope of this book to offer more than a cursory treatment
of a topic as rich as the theory of differential equations, and there would be



326 18. Differential equations and operators

little point, since there are many fine texts on the topic. Texts on differen-
tial equations that are designed for engineering students tend to have two
advantages. The amount mathematical detail is kept minimal and one gets
to see differential equations applied to real world problems and is thereby
helped to see them as conceptual as opposed to technical tools.

Some of our favorites references that are also classics are Coddington
(1989), Coddington and Levinson (1955), Ince (1956) and Tenenbaum and
Pollard (1963). For advice on a wide range of computational and otherwise
practical matters we recommend Press et al. (1992).

For more general results for arbitrary constraint operators B, including
the integral operator conditions that we need in the following section, see
Dalzell and Ramsay (1993) and Heckman and Ramsay (2000).



19
Fitting differential equations to
functional data: Principal differential
analysis

19.1 Introduction

Now that we have fastened a belt of tools around our waists for tinker-
ing with differential equations, we return to the problems introduced in
Chapter 17 ready to get down to some serious work.

Using a differential equation as a modelling object involves concepts
drawn from both the functional linear model and from principal com-
ponents analysis. A differential equation can certainly capture the shape
features in both the curve and its derivative for a single functional datum
such as the oil refinery observation shown in Figure 1.4. But because the
set of solutions to a differential equation is an entire function space, it can
also model variation across observations when N > 1. In this sense, it also
has the flavor of principal components analysis where we find a subspace
of functions able to capture the dominant modes of variation in the data.

We have, then, a question of emphasis or perspective. On one hand,
the data analyst may want to capture important features of the dynamics
of a single observation, and thus look within the m-dimensional space of
solutions of an estimated equation to find that which gives the best account
of the data. On the other hand, the goal may be to see how much functional
variation can be explained across multiple realizations of a process. Thus,
linear modelling and variance decomposition merge into one analysis in this
environment.

We introduce a new term here: principal differential analysis means the
fitting of a differential equation to noisy data so as to capture either the
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features of a single curve or the variation in features across curves. This
term was first used in Ramsay (1996a), and will be motivated in some detail
in Section 19.6. The abbreviation PDA will be handy, and will also serve
to remind us of the close connection with PCA.

19.2 Defining the problem

Our challenge is the identification of a linear differential operator

L = β0I + . . . + βm−1D
m−1 + Dm (19.1)

and its associated homogeneous differential equation

Dmx = −β0x − . . . − βm−1D
m−1x (19.2)

using a set of N functional observations xi along with, possibly, a set of as-
sociated functional covariates fi�, � = 1, . . . , L. We now call these covariates
forcing functions so as to keep the nomenclature already current in fields
such as engineering and physics. Although, in the examples used in this
chapter, the xi’s are univariate functions, and only one forcing function, if
at all, is used, we certainly have in mind that systems of differential equa-
tions and multiple forcing functions may be involved, and the differential
equations may be nonlinear.

First, consider the homogeneous case, where no forcing function is
present. We want to find the operator L that comes as close as possible
to satisfying the homogeneous linear differential equation

Lxi = 0, i = 1, . . . , N. (19.3)

In order to achieve this, we have to estimate up to m coefficient functional
parameters βj , j = 0, . . . , m − 1. Of course, some of these parameters may
be fixed, often to zero as we have already seen, and the constant coefficient
case is included within this framework by using a constant basis where
required.

Since we wish the operator L to annihilate as nearly as possible the given
data functions xi, we regard the function Lxi as being the residual from the
fit provided by the corresponding linear differential equation (19.2). The
least squares approach defines as the fitting criterion the sum of squared
norms of the residual functions Lxi:

SSEPDA(L|x) =
N∑

i=1

∫
[Lxi(t)]2 dt =

N∑
i=1

‖Lxi‖2. (19.4)

If an input forcing function fi has also been observed along with the
output xi for a system, then we aim to solve as closely as possible the
nonhomogeneous equation

Lxi = fi, i = 1, . . . , N.



19.3. A principal differential analysis of lip movement 329

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−15

−10

−5

0

5

10

15

 Time (sec)

 P
os

iti
on

 (
m

m
)

Figure 19.1. Twenty records of position of the center of the lower lip during the
uttering of the syllable “bob.”

The least squares fitting criterion now becomes

SSEPDA(L|x, f) =
N∑

i=1

∫
[Lxi(t) − fi(t)]2 dt =

N∑
i=1

‖Lxi − fi‖2 (19.5)

It will be evident, when we compare these criteria with those for the con-
current functional linear model (14.5), that we may use the same methods
here. Indeed, that is what we did in Chapter 17 for the oil refinery and
melanoma data. However, there are other estimation techniques available
that may be better. But before we consider these, we offer two examples
to illustrate some of the issues involved in PDA.

19.3 A principal differential analysis of lip
movement

There are several reasons why a PDA can provide important information
about the data and the phenomenon under study. Certainly, in many ap-
plications the differential equation Lx = 0 offers an interesting and useful
way of understanding the processes that generated the data.

Consider as an example to be used throughout this chapter the curves
presented in Figure 19.1. These indicate the movement of the center of
the lower lip as a single speaker said “bob.” The displayed curves are the
result of considerable preprocessing, including smoothing and the use of
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functional PCA to identify the direction in which most of the motion was
found. Details can be found in Ramsay, Munhall, Gracco and Ostry (1996).
We see in broad terms that lower lip motion shows three phases: an initial
rapid opening, a sharp transition to a relatively slow and nearly linear
motion, and a final rapid closure.

19.3.1 The biomechanics of lip movement
Because the lower lip is part of a mechanical system, inevitably having
certain natural resonating frequencies and a stiffness or resistance to move-
ment, it seems appropriate to explore to what extent this motion can be
expressed in terms of a second order linear differential equation of the type
useful in the analysis of such systems,

Lxi = β0xi + β1Dxi + D2xi = 0. (19.6)

Discussions of second order mechanical systems can be found in most
applied texts on ordinary differential equations, such as Tenenbaum and
Pollard (1963).

The first coefficient, β0, essentially reflects the position-dependent force
applied to the system at position x. Coefficient values β0 > 0 and β1 = 0
correspond to a system with sinusoidal or harmonic motion, with β

1/2
0 /(2π)

cycles per unit time and wavelength or period 2πβ
−1/2
0 ; β0 is often called

the spring constant. The second coefficient, β1, indicates influences on the
system that are proportional to velocity rather than position, and are often
internal or external frictional forces or viscosity in mechanical systems.

The discriminant of the second order operator and the mechanical system
that it represents is defined as d = (β1/2)2 − β0, and is critical in terms of
its sign. When β1 is small, meaning that d is negative, the system is under-
damped, and tends to exhibit some oscillation that gradually disappears.
When d is positive because β1 is relatively large, the system is called over-
damped, and either becomes stable so quickly that no oscillation is observed
(β1 > 0), or oscillates out of control (β1 < 0). A critically damped system
is one for which d = 0, and it exhibits non-oscillatory motion that decays
rapidly to zero.

These mechanical interpretations of the roles of coefficient functions β0
and β1 are, strictly speaking, only appropriate if these functions are con-
stants, but higher-order effects can be ignored if they do not vary too
rapidly with t, in which case β0, β1, and d can be viewed as describing the
instantaneous state of the system. When β0 = β1 = 0 the system is in
linear motion, for which D2x = 0.

The techniques we develop were used to obtain the weight functions
displayed in Figure 19.2. These are of rather limited help in interpreting the
system, but one does note that β0 is positive except for a brief episode near
the beginning, and near zero in the central portion corresponding to the
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Figure 19.2. The two weight functions β0 and β1 for the second order linear
differential equation estimated from the lip movement data.
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Figure 19.3. Two solutions of the second order linear differential equation es-
timated for the lip movement data corresponding to initial values conditions
(x(0) = 1, Dx(0) = 0) and (x(0) = 0, Dx(0) = 1).
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near linear phase of lip movement. The two solutions to the homogeneous
differential equation Lu = 0 defined by the initial value conditions (x(0) =
1, Dx(0) = 0) and (x(0) = 0, Dx(0) = 1) are shown in Figure 19.3.

19.3.2 Visualizing the PDA results
How effective is the differential operator L at annihilating variation in the
xi? We can see this by plotting the empirical forcing functions Lxi. If
these are small and mainly noise-like, we can have some confidence that
the equation is doing a good job of representing the data. It is easier to see
how successful we have been if we have a null or benchmark hypothesis. A
reasonable choice is the model defined by β0 = . . . = βm−1 = 0. The Dmxi’s
are the empirical forcing functions corresponding to this null hypothesis,
and we can therefore compare the size of the Lxi’s to these derivatives.

Figure 19.4 shows the acceleration curves for the lip data in the left panel,
and the empirical forcing functions in the right. We see that the forcing
functions corresponding to L are indeed much smaller in magnitude, and
more or less noise-like except for two bursts of signal near the beginning
and end of the time interval.

The value of the criterion SSEPDA defined above is 7.7 × 106, while the
same measure of the size of D2xi’s is 90.4×106. If we call the latter measure
SSYPDA, then we can also summarize these results in the squared correlation
measure

RSQPDA = (SSYPDA − SSEPDA)/SSYPDA, (19.7)

the value of which is 0.92 for this problem.
While it is strictly speaking not the task of PDA to approximate the

original curves (this would be a job for PCA), we can nevertheless wonder
how well the two solution curves would serve this purpose. Figure 19.5
shows the least squares approximation of the first two curves in terms of
the two solution functions in Figure 19.3, and we see that the fit is fairly
satisfactory.

Finally, we return to the discriminant function d = (β1/2)2 − β0, pre-
sented in Figure 19.6, and its interpretation. This system is more or less
critically damped over the interval 0.18 ≤ t ≤ 0.26, suggesting that its
behavior may be under external control. But in the vicinities of t = 0.08
and t = 0.30, the system is substantially under-damped, and thus behav-
ing locally like a spring. The period of the spring would be around 30
to 40 msec, and this is in the range of values estimated in studies of the
mechanical properties of flaccid soft tissue. These results suggest that the
external input to lip motions tends to be concentrated in the brief period
near t = 0.20, when the natural tendency for the lip to close is retarded in
order to allow for the articulation of the vowel.
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Figure 19.4. The left panel displays the acceleration curves D2xi for the lip
position data, and the right panel the forcing functions Lxi.
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Figure 19.5. The solid curves are the first two observed lip position functions,
and the dashed lines are their approximations on the basis of the two solution
functions in Figure 19.3.
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Figure 19.6. The discriminant function d = (β1/2)2 − β0 for the second order
differential equation describing lip position.

19.4 PDA of the pinch force data

In this section we take up an example in which the estimated linear differ-
ential operator is compared with a theoretically defined operator. The data
in this example consisted of the 20 records of brief force impulses exerted by
the thumb and forefinger in the experiment in motor physiology described
in Section 1.5.2. For the purposes of this discussion, the force impulses were
preprocessed to transform time linearly to a common metric, and to remove
some simple shape variation. The resulting curves are displayed in Figure
19.7. Details concerning the preprocessing stages can be found in Ramsay,
Wang and Flanagan (1995).

There are some theoretical considerations which suggest that the model

yi(t) = Ci exp[− log2 t/(2σ2)] (19.8)

offers a good account of any specific force function. In this application,
the data were preprocessed to conform to a fixed shape parameter σ2 of
0.05. Functions of the form (19.8) are annihilated by the differential op-
erator L0 = [(tσ)−1 log t]I + D. A goal of this analysis is to compare this
theoretical operator with the first order differential operator L = β0I + D
estimated from the data, or to compare the theoretical weight function
ω0(t) = (tσ)−1 log t with its empirical counterpart β0.

We smoothed the records using splines, with the size of the third deriva-
tive being penalized in order to get a smooth first derivative estimate. It is
clear from Figure 19.7 that the size of error variation is not constant over
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Figure 19.7. Twenty recordings of the force exerted by the thumb and forefinger
during a brief squeeze of a force meter. The data have been preprocessed to
register the functions and remove some shape variability, and the values displayed
are for the 33 values t = 0.4(.05)2.0.

time. Accordingly, we estimated the residuals in a first smoothing step, and
smoothed the logs of their standard deviations to estimate the variation of
the typical residual size over time. We then took the weights σ2

j in the
weighted spline smoothing criterion

PENSSEλ(x|y) =
∑

j

[yj − x(tj)]2/σ2
j + λ‖D3x‖2 (19.9)

to be the squares of the exponential-transformed smooth values. Finally, we
re-smoothed the data to get the spline smoothing curves and their deriva-
tives. Figure 19.8 displays the discrete data points, the smoothing function,
and also the theoretical function (19.8) fit by least squares for a single
record. The theoretical function fits very well, but in the right panel we
see that the discrepancy between the theoretical model and the smoothing
spline fit is nevertheless smooth and of the order of the largest deviations of
the points from this flexible spline fit. While this discordance between the
model and the spline is less than 2% of the size of the force itself, we are
nevertheless entitled to wonder if this theoretical model can be improved.

We applied both the point-wise and basis expansion procedures for es-
timating β0 to the smooth functions and their derivatives, as described in
Section 19.5. The basis used for the basis expansion procedure was

φ(t) = (t−1 log t, 1, t − 1, (t − 1)2)′,
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Figure 19.8. The left figure contains the data values for the first record (the
points), the smoothing spline (solid curve), and the least squares fit by the model
(19.8) (dotted curve). The right display shows the residuals arising from fitting the
points by a spline function (the points) and the difference between the theoretical
model and the spline (solid curve).
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Figure 19.9. The weight function estimated by the basis expansion method for
the pinch force data is indicated by the solid line, the theoretical function by the
dotted line, and the point-wise estimates by the dots.

chosen after some experimentation; the first basis function was suggested by
the theoretical model, and the remaining polynomial terms served to extend
this model as required. Figure 19.9 shows the theoretical, the point-wise
and the global estimates of the weight functions. These are admittedly close
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Figure 19.10. The left panel displays the forcing or impulse functions Lyi pro-
duced by the theoretical operator, and the right panel shows the corresponding
empirical operator functions.
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Figure 19.11. The solid line indicates the square root of the mean squared forcing
function for the estimated operator, and the dotted line the same quantity for
the theoretical operator.

to one another, at least in the central ranges of adjusted time, but again
we observe some slight but consistent differences between the theoretical
and empirical weight functions.



338 19. Principal differential analysis

However, the forcing functions Lyi, displayed in Figure 19.10, show a
systematic trend for the theoretical operator, while the empirical forcing
functions exhibit much less pattern. Figure 19.11 displays the root-mean-
squares of the two sets of forcing functions, and this permits us to see more
clearly that the estimated operator is superior in the epochs just before and
after the peak force, where it produces a forcing function about half the
size of its theoretical counterpart. It seems appropriate to conclude that
the estimated operator has produced an important improvement in fit on
either side of the time of maximum force. Ramsay, Wang and Flanagan
(1995) conjecture that the discrepancy between the two forcing functions
is due to drag or viscosity in the thumb-forefinger joint.

19.5 Techniques for principal differential analysis

We turn now to some methods for estimating the weight functions βj defin-
ing the linear differential operator that comes closest to annihilating the
observed functions in the sense of criterion (19.4). All but the final method
assume that we have already estimated the function and its derivatives up
to order m by smoothing the raw discrete data.

19.5.1 PDA by point-wise minimization
The first approach yields a point-wise estimate of the weight functions βj

computable by standard least squares estimation. Define the point-wise
fitting criterion

PSSEL(t) =
∑

i

[Lxi(t) − fi(t)]2 =
∑

i

[
m∑

j=0

βj(t)Djxi(t) − fi(t)]2, (19.10)

where, as above, βm(t) = 1 for all t. If t is regarded as fixed, this following
argument shows that this is simply a least squares fitting criterion.

First define the m-dimensional coefficient vector

β(t) = (β0(t), . . . , βm−1(t))′,

the N × (m + 1) point-wise design matrix Z with rows

zi(t) = {−xi(t), . . . ,−Dm−1xi(t), fi(t)}

and the N -dimensional dependent variable vector y with elements

yi(t) = Dmxi(t).

We can express the fitting criterion (19.10) in matrix terms as

PSSEL(t) = [y(t) − Z(t)β(t)]′[y(t) − Z(t)β(t)].
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Then, holding t fixed, the least squares solution minimizing PSSEL(t) with
respect to values βj(t) is

β(t) = [Z(t)′Z(t)]−1Z(t)′y(t). (19.11)

The existence of these point-wise values β(t) depends on the determinant
of Z(t)′Z(t) being bounded away from zero for all values of t, and it is
wise to compute and display this determinant as a routine part of the
computation. Assuming that the determinant is nonzero is equivalent to
assuming that Z(t) is of full column rank for all t.

Of course, if m is not large, then we can express the solution in closed
form. For example, for m = 1 we have

β0(t) = −
∑

i

xi(t)(Dxi)(t)/
∑

i

x2
i (t) (19.12)

and the full-rank condition requires that for each value of t some xi(t) be
nonzero.

Some brief comments about the connections with Section 18.5.2 are in
order. There, we were concerned with finding a linear operator of order m
that annihilated a set of exactly m functions ui. In order for this to be
possible, an important condition was the nonsingularity of the Wronskian
matrix values W(t) whose elements were Djui(t). We obtain the matrix
Z(t) from the functions xi in the same way, but it is no longer a square
matrix, since in general we will have N > m. However, the condition that
Z(t) is of full column rank is entirely analogous.

19.5.2 PDA using the concurrent functional linear model
The point-wise approach can pose problems in some applications. First,
solving the equation Lu = 0 requires that the βj ’s be available at a fine
level of detail, with the required resolution depending on their smooth-
ness. Whether or not these functions are smooth depends in turn on the
smoothness of the derivatives Djxi. Since we often estimate these deriva-
tives by smoothing procedures that may not always yield smooth estimates
for higher order derivatives, the resolution we require may be very fine in-
deed. Moreover, for larger orders m, computing the functions βj point-wise
at a fine resolution level can be computationally intensive, since we must
solve a linear equation for every value of t for which w is required. We
need an approximate solution which can be quickly computed and which
is reasonably regular or smooth.

It may also be desirable to circumvent the restriction that the rank of
Z be full, especially if the failure is highly localized within the interval of
integration. As a rule, an isolated singularity for Z(t)′Z(t) corresponds to
an isolated singularity in one or more weight functions βj , and it may be
desirable to bypass these by using weight functions sure to be sufficiently
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smooth. More generally, we may seek weight functions more smooth or
regular than those resulting from the point-wise solution.

Finally, the point-wise procedure only works if the number of functional
observations N exceeds the number of columns of the point-wise design ma-
trix Z. But we often need to fit a differential equation to a single functional
observation, and we want a method that will accommodate this case.

A strategy for identifying smooth weight functions βj is to approximate
them by using a fixed set of basis functions. This takes us directly back
to Chapter 14 on the concurrent linear model, where the computational
procedure is exactly what we need here. The only differences between PDA
and the analyses in Chapter 14 is that here the dependent variable is Dmx,
and the lower order derivatives can appear on the independent variable side
of the equation.

19.5.3 PDA by iterating the concurrent linear model
The application of the concurrent functional linear model to this prob-
lem presupposes that the estimated derivatives Djxi are reasonable. The
melanoma analysis in Chapter 17 suggests, however, that it may be worth
re-estimating the derivatives once an initial differential equation has been
estimated. We can do this by using the corresponding linear differential
operator to define the roughness penalty. This cycle can be repeated as
many times as are required in order to achieve stable derivative estimates.

A simulated data experiment illustrates the consequences of this iterative
refinement of the roughness penalty using PDA. A sample of 1000 sets of
functional data were generated using the tilted sinusoid model

xi(tj) = ci1 + ci2tj + ci3 sin(6πtj) + ci4 cos(6πtj) + εij

for the 101 values tj = (0, 0.01, . . . , 1). The coefficients cik, k = 1, . . . , 4
were independently generated from a normal distribution with mean zero.
The standard deviations were 1 for k = 1, 3 and 4, and 4 for ci2 . The
errors εij were independent standard normal deviates. Figure 19.12 shows
the first set of samples.

The errorless curves are annihilated by the operator

Lx = (6π)2D2x + D4x,

where (6π)2 = 355.3. How well can we estimate this operator from these
data? Does estimating this operator buy us anything in terms of the quali-
ties of the estimates of the curves and their derivatives? For example, how
well is the second derivative estimated when we use an estimated operator
L rather than the default choice L = D4?

The initial operator was consequently L = D4, and was used to define
the initial penalty matrix R. The basis system that we used to estimate
the true curves and their derivatives consisted of 105 order 6 B-spline basis
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Figure 19.12. The dots indicate the data generated by adding independent
standard normal deviates to the tilted sinusoid shown as the solid line.

functions with knots at the sampling points tj . We cycled through the
following process five times:

1. The value of the smoothing parameter λ minimizing the GCV cri-
terion was found using a numerical optimization method. In order
to avoid rounding error problems, an upper limit on the allowable
estimate was set to 10 − log10 traceR.

2. The data were smoothed using this value of λ.

3. A principal differential analysis was performed based on the con-
current linear model method described above. All four coefficient
functions βj , j = 0, 1, 2, 3 were estimated using the constant basis
for each.

4. The linear differential operator estimated by PDA was then used to
redefine the penalty matrix R.

The estimated λ after the first cycle was 10−9.9, and after the second cycle
it came up against the upper limit that we imposed, which for these data
was 10−8.8. Subsequent iterations hardly changed the results at all.

After the first iteration, defined by L = D4, the PDA estimated the
operator as

Lx = 2360.3x − 123.8Dx + 376.1D2x − 0.3D3x + D4x
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Figure 19.13. The solid curve is the standard error of estimate for the second
derivative of the tilted sine data after five iterations, and the dashed line is after
the first iteration.

and after all five iterations, the estimate was

Lx = 310.4x − 125.4Dx + 357.0D2x − 0.4D3x + D4x.

The estimate after one iteration is quite good, judging by the coefficients
for the key derivatives of order 2 and 3 that determine the period and
phase of the sinusoid, and only slightly improved by going through all five
iterations. For the record, we also tried fixing the first two coefficients to
zero, but the estimates of the second two coefficients were not appreciably
better.

The most striking benefit is in terms of the precision of the function
and derivative estimates. The ratios of the first iteration integrated mean
squared error to that on the fifth iteration are 1.2, 2.0, 3.8, 5.3 and 8.1
for derivatives of order 0, 1, 2, 3 and 4, respectively. The function values
are modestly improved, but the improvement brought about by iterative
refinement of L increases with the order of the derivative. To see better
both the improvement and how it is achieved, we turn to Figure 19.13
which shows the point-wise standard errors of the second derivatives after
the first and fifth iterations. The big impact is at the endpoints, where
estimating a linkage between the function value and the second derivative
greatly diminishes the standard error. Because function value estimates
are less affected by having half the number of neighbors at the endpoints
than are derivatives, estimating this linkage passes along the function value
stability to the derivatives.
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These results are probably better than we would encounter in practice,
mainly because the true curves could all be annihilated in principle by a lin-
ear differential operator within the family of those that we could estimate.
A similar study of growth curves generated by the Jolicoeur model used in
Chapters 5 and 6 came up with a much more modest improvement in the
second derivative because the variation from curve to curve is more com-
plex than can be modelled with a single order four operator. Nevertheless,
the improvements there were also more pronounced at the endpoints.

19.5.4 Assessing fit in PDA
Since the objective of PDA is to minimize the norm ‖Ly‖ of the forcing
function associated with an estimated differential operator, and since the
quality of fit can vary over the domain T , it seems appropriate to assess
fit in terms of the point-wise error sum of squares PSSEL(t) as defined in
(19.10). As in linear modelling, the logical baseline against which we should
compare PSSEL is the error sum of squares defined by a theoretical model
and its associated weight functions ωj :

PSSE0(t) =
∑

i

[
m−1∑
j=0

ωj(t)(Djyi)(t) + (Dmyi)(t)]2. (19.13)

In the event that there is no theoretical model at hand, we may use ωj = 0,
so that the comparison is simply with the sum of squares of the Dmyi.
From these loss functions, we may examine the point-wise squared multiple
correlation function

RSQ(t) =
PSSE0(t) − PSSEL(t)

PSSE0(t)
(19.14)

and the point-wise F-ratio

FRATIO(t) =
(PSSE0(t) − PSSEL(t))/m

PSSE0(t)/(N − m)
. (19.15)

19.6 Comparing PDA and PCA

19.6.1 PDA and PCA both minimize sums of squared errors
Once we have found the operator L, we can in general define m linearly
independent functions ξ1, . . . , ξm that span the null space of L, so that
any function x that satisfies Lx = 0 can be expressed precisely as a linear
combination of the ξj . This means that the functions ξj form a basis for
this space of solutions. Just how we compute such a basis is taken up in
Chapter 18.
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Let us assume that we have a sample of N observed functions xi, where
N = 1 is allowed. If these functions are not necessarily solutions to (19.3),
then we can quantify the extent to which they approach being solutions by
the size of the forcing functions εi defined by

Lxi = εi.

An example of this idea was given in Figure 1.7 where we applied the
harmonic acceleration operator to four temperature profiles and discovered
that these forcing functions were substantially nonzero.

The algorithm that we used in Section 17.3 aimed, at each iteration, to
find the operator L that minimized the integrated square of the residual
function ε. Why? Because it used the concurrent functional linear model
developed in Chapter 14 to minimize a measure of discrepancy between the
derivative that acted as the dependent variable and the fit based on two
lower order derivatives that acted as independent variables. In effect, this
minimizes a sum of squares measure for the corresponding L operator.

Consequently, we have a technique for choosing L so as to make the
Lxi as small as possible. If the technique is successful, then the residual
functions will be small relative to the highest order of derivative. We should
then expect to obtain a good approximation of the xi by expanding them
in terms of the ξj that span the subspace defined by the corresponding
differential equation.

This is closely reminiscent of PCA, where the first m principal component
functions ξj also define an m-dimensional subspace for approximating the
given data.

19.6.2 PDA and PCA both involve finding linear operators
We can pursue the comparison between PCA and PDA further by noting
that PCA can also be considered to involve the identification of a linear
operator, which we can denote by Q, such that the equation Qxi = 0 is
solved as nearly as possible. To see this, recall from Chapter 8 that the
goal of functional PCA is to find a set of m basis functions ξj such that
the least squares criterion

SSEPCA =
N∑

i=1

∫
[xi(t) −

m∑
j=1

fijξj(t)]2 dt (19.16)

is minimized with respect both to the basis functions ξj and with respect
to the coefficients of the expansions of each observed principal component
score fij .

Because the fitting criterion (19.16) is least squares, we can think of PCA
as a two-stage process: First identify a set of m orthonormal basis func-
tions ξj , and then approximate any specific curve xi by x̂i =

∑m
j=1 fijξj .

This second basis expansion step is the projection of each of the observed
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functions onto the m-dimensional space spanned by the basis functions ξj ,
and takes place after having first identified the optimal basis for these ex-
pansions. Thus x̂i is the image of xi resulting from applying a least squares
fit.

Suppose we indicate this projection as Pξ, with the subscript indicating
that the nature of the projection depends on the basis functions ξj . That
is, Pξxi = x̂i.

Associated with the projection Pξ is the complementary projection

Qξ = I − Pξ,

which produces as its result the residuals

Qξxi = xi − Pξxi = xi − x̂i.

Using these projection operators, we can alternatively and equivalently
define the PCA problem in a way that is much more analogous to the
problem of identifying the linear differential operator L: In PCA, one seeks
a projection operator Qξ such that the residual sum of squares

SSEPCA =
N∑

i=1

∫
[Qξxi(t)]2 dt (19.17)

is minimized. Indeed, one might think of the first m eigenfunctions as
the functional parameters defining the projection operator Qξ, just as the
weight functions β are the functional parameters defining L in PDA. These
eigenfunctions, and any linear combinations of them, exactly satisfy the
equation Qξξj = 0, just as the m functions ξj referred to above exactly
satisfy the equation Lβξj = 0, where we now add the subscript β to L to
remind ourselves that L is defined by the vector β containing the m weight
functions βj .

Principal differential analysis is defined, therefore, as the identification of
the differential operator Lβ that minimizes least squares criterion SSEPDA;
principal components analysis is defined as the identification of the projec-
tion operator Qξ that minimizes the least squares criterion SSEPCA. Both
operators are linear.

19.6.3 Differences between differential operators (PDA) and
projection operators (PCA)

Since the basic structures of the least squares criteria (19.17) and (19.4)
are the same, clearly the only difference between the two criteria is in terms
of the actions represented by the two operators Lβ and Qξ. Since Qξx is
in the same vector space as x, the definition of the operator identification
problem as the minimization of ‖Qξx‖2 is also in the same space, in the
sense that we measure the performance of Qξ in the same space as the
functions x to which it is applied.
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On the other hand, Lβ is a roughening transform in the sense that Lβx
has m fewer derivatives than x and is usually more variable. We may want
to either penalize or otherwise manipulate x at this rough level.

Put another way, it may be plausible to conjecture that the noise or
unwanted variational component in x is found only at the rough level Lβx.
Thus, a second motivating factor for the use of Lβ rather than Qξ is that
PDA process explicitly takes account of the smoothness of the data by first
roughening the data before minimizing error, while PCA does not.

Once we have found the operator L, we can in general define m linearly
independent functions u1, . . . , um that span the null space of L, and so
any function x that satisfies Lx = 0 can be expressed precisely as a lin-
ear combination of the uj . Hence, since L has been chosen to make the
Lxi as small as possible, we would expect to obtain a good approximation
of the xi by expanding them in terms of the uj . This is closely reminis-
cent of PCA, where the first m principal component functions ξj form a
good m-dimensional set for approximating the given data. The spirit of the
approximation is rather different, however.

We can pursue the comparison between PCA and PDA by noting that
PCA can also be considered to involve the identification of a linear operator,
which we can denote by Q, such that the equation Qxi = 0 is solved as
nearly as possible. To see this, recall from Chapter 8 that one method of
defining functional PCA is to propose to find a set of m basis functions ξj

such that the least squares criterion

SSEPCA =
N∑

i=1

∫
[xi(t) −

m∑
j=1

fijξj(t)]2 dt (19.18)

with respect both to the basis functions ξj and with respect to the coeffi-
cients of the expansions of each observed function, fij . Because the fitting
criterion (19.18) is least squares, we can think of PCA as a two-stage pro-
cess: first identify a set of m orthonormal basis functions ξj , and then
approximate any specific curve xi by x̂i =

∑m
j=1 fijξj . This second basis

expansion step is the projection of each of the observed functions onto the
m-dimensional space spanned by the basis functions ξ, and takes place af-
ter having first identified the optimal basis for these expansions. Thus x̂i

is the image of xi resulting from applying a least squares fit.
Suppose we indicate this projection as Pξ, with the subscript indicating

that the nature of the projection depends on the basis functions ξj . That
is, Pξxi = x̂i. Associated with the projection Pξ is the complementary
projection

Qξ = I − Pξ,

which produces as its result the residuals

Qξxi = xi − Pξxi = xi − x̂i.
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Using this concept, we can alternatively and equivalently define the PCA
problem in a way that is much more analogous to the problem of identifying
the linear differential operator L: In PCA, one seeks a projection operator
Qξ such that the residual sum of squares

SSEPCA =
N∑

i=1

∫
[Qξxi(t)]2 dt (19.19)

is minimized. Indeed, one might think of the first m eigenfunctions as
the functional parameters defining the projection operator Qξ, just as the
weight functions w are the functional parameters of the LDO L in PDA.
These eigenfunctions, and any linear combinations of them, exactly satisfy
the equation Qξξj = 0, just as the m functions uj referred to above exactly
satisfy the equation Lwuj = 0, where we now add the subscript w to L to
remind ourselves that L is defined by the vector w of m weight functions
βj .

Principal differential analysis is defined, therefore, as the identification
of the operator Lw that minimizes least squares criterion SSEPDA, just as
we can define PCA as the identification the projection operator Qξ that
minimizes the least squares criterion SSEPCA.

Since the basic structures of the least squares criteria (19.19) and (19.4)
are the same, clearly the only difference between the two criteria is in terms
of the actions represented by the two operators Lw and Qξ. Since Qξx is
in the same vector space as x, the definition of the operator identification
problem as the minimization of ‖Qξx‖2 is also in the same space, in the
sense that we measure the performance of Qξ in the same space as the
functions x to which it is applied.

On the other hand, Lw is a roughening transform in the sense that Lwx
has m fewer derivatives than x and is usually more variable. We may want
to either penalize or otherwise manipulate x at this rough level. Put another
way, it may be plausible to conjecture that the noise or unwanted varia-
tional component in x is found only at the rough level Lwx. Thus, a second
motivating factor for the use of Lw rather than Qξ is that PDA process
explicitly takes account of the smoothness of the data by first roughening
the data before minimizing error, while PCA does not.

As an example, imagine that we are analyzing the trajectories xi of
several rockets of the same type launched successively from some site. We
observe that not all trajectories are identical, and we conjecture that some
random process is at work that contributes variability to our observations.
Naively, we might look for that variability in the trajectories themselves,
but our friends in physics will be quick to point out that, first, the major
source of variability is probably in the propulsion system, and second since
the force that it applies is proportional to acceleration, we ought to study
the acceleration D2xi instead. That is, if the function xi is the trajectory
along a specific coordinate axis (straight up, for example), the systematic
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or errorless trajectory should obey the law

fi(t) = M(t)D2xi(t),

where M(t) is the mass of the rocket at time t. Alternatively,

−fi/M + D2xi = 0.

Taking a more empirical approach, however, we agree on the compromise
of looking for a second order linear differential equation

Lx = β0x + β1Dx + D2x

and, if our friends in physics are right, the systematic or errorless
component in the data should yield

β0xi = −fi/M and β1 = 0.

What we do understand, in any case, is that the sources of variability are
likely to be at the rough level D2xi, rather than at the raw trajectory level
xi.

Returning to the lip position curves, we might reason that variation in lip
position from curve to curve is due to variation in the forces resulting from
muscle contraction, and that these forces have a direct or proportional
impact on the acceleration of the lip tissue, and thus only indirectly on
position itself. Position is two derivatives away from the action, in short.

More generally, an important motivation for finding the operator Lw is
substantive: Applications in the physical sciences, engineering, biology and
elsewhere often make extensive use of differential equation models of the
form

Lxi = fi.

The result fi is often called a forcing or impulse function, and in physical
science and engineering applications is often taken to indicate the influence
of exogenous agents on the system defined by Lx = 0.

Section 19.5 presents techniques for principal differential analysis, along
with some measures of fit to the data. We also take up the possibility of
regularizing or smoothing the estimated weight functions βj .

19.7 Further readings and notes

Viele (2001) also analyzed the pinch force data with an alternative strategy
for testing whether the model (19.8) adequately fits the data.



20
Green’s functions and reproducing
kernels

20.1 Introduction

We now introduce two concepts that are useful for both computation and
theory. Green’s functions are important because they permit the solution
for a nonhomogeneous linear differential equation Lx = u to be explicitly
represented and calculated, no matter what the forcing function u. Well,
this is a slight overstatement, since what we mean is that the explicit solu-
tion is available provided that we know the solution to the corresponding
homogeneous equation Lx = 0. But it is often the case that we do, and even
if we only have available an approximation to the homogeneous solution, it
can still be the case that we want to compute solutions for a wide range of
forcing functions. Green’s functions can, therefore, make a real difference
in applications.

A reproducing kernel is a somewhat more theoretical concept, but many
texts, such as Gu (2002) and Wahba (1990) use the notion freely, and one
often encounters the term reproducing kernel Hilbert space in the litera-
ture using spline functions. In fact, the term has a standard abbreviation,
namely RKHS. So it can be useful to know what it means. We try in this
chapter to demystify reproducing kernels by showing their relationship to
Green’s functions.

In Chapter 21 we will use both Green’s functions and reproducing kernels
to develop new designer bases associated with any specific choice of linear
differential operator L. These bases will, like B-splines, be nonzero only over
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a small number of adjacent intervals. That is, they have band-structured
coefficient matrices, and permit smoothing in order n operations.

20.2 The Green’s function for solving a linear
differential equation

It often happens in engineering and science that the researcher has a ho-
mogeneous linear differential equation corresponding to a linear differential
operator L that has either been worked out using fundamental principles or
determined empirically. This equation describes the internal or endogenous
dynamics of some system. What he or she wants to know, however, is that
the consequences will be of adding an external or exogenous influence u to
the system, and there are a wide variety of these potentially available. For
example, a rocket may be a well-understood system as long as it is on the
launching pad, but what will happen when it is in flight under the influence
of atmospheric turbulence?

That is, what we want to know is the solution of the nonhomogeneous
equation

Lx = u (20.1)

for known L but arbitrary u? In effect, we want to reverse the effect of
applying operator L because we have a forcing function u and we want to
find x.

Of course, we recognize that the solution is not unique; if we add to any
solution x some linear combination of the functions ξj ∈ ker L that span
the null space, ker L, of L, then this function also satisfies the equation.

But let us assume that the investigator has a set of known conditions
defining a constraint operator B, and that these satisfy the complemen-
tarity condition (18.31). Typically, these will be initial value conditions
describing, for example, the status of the rocket on the launching pad. Let
m be the order of the equation. Then these constraints will be in the form

Bx = b (20.2)

for some known fixed m-vector b.
Define the matrix A as the result of applying constraint operator B to

each of the ξj ’s in turn:

A = Bξ′, (20.3)

so that the element in row i and column j of A is the ith element of vector
Bξj . Since every ξ in kerL can be written as

ξ(t) =
∑

j

cjξj(t) = ξ′c
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for an m-vector of coefficients c, then by the definition of A we have that

Bξ = b = Ac.

The conditions we have specified ensure that A is invertible, and
consequently we have that

c = A−1b.

Now suppose that ν satisfies Lν = u and also Bν = 0. That is, ν ∈ ker B,
and in this sense is the complement of ξ ∈ ker L. Then

x(t) = ξ(t) + ν(t)

satisfies

Lx = u subject to Bx = b.

Consequently, if we can solve the problem

Lν = u subject to ν ∈ ker B, (20.4)

we can find a solution subject to the more general constraint Bx = b.

20.2.1 The definition of the Green’s function
It can be shown that there exists a bivariate function G(t; s) called the
Green’s function, associated with the pair of operators (B, L) that satisfies

ν(t) =
∫

G(t; s)Lx(s) ds for ν ∈ ker B. (20.5)

Thus, for Lν = u, the Green’s function defines an integral transform

Gu =
∫

G(t; s)u(s) ds (20.6)

that inverts the linear differential operator L. That is, GLν = ν, given that
Bν = 0.

Before giving a general recipe for computing the Green’s function G, let’s
look at a few specific examples. The first is nearly trivial: If our interval is
[0, T ] and our constraint operator is the initial value constraint B0x = x(0),
then for L = D,

G(t; s) = 1, s ≤ t, and 0 otherwise.

That is, for ν such that ν(0) = 0,

ν(t) =
∫ t

0
Dν(s) ds =

∫ t

0
u(s) ds.

Now consider the first order constant coefficient equation (18.1). Looking
at the solution (18.3) for α(t) = 1, we see by inspection that

G(t; s) = e−β(t−s), s ≤ t, and 0 otherwise.
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Progressing from this situation to the variable coefficient version (18.5) is
now easy:

G(t : s) = ξ(t)/ξ(s), s ≤ t, and 0 otherwise.

20.2.2 A matrix analogue of the Green’s function
Readers of this book may be familiar enough with matrix algebra to wel-
come a closely related concept in that domain. Suppose that we have, for
n > m an n − m by n matrix L of rank n − m. If n is very large, then we
approach the functional situation where n → ∞.

Then there exists a subspace of n-vectors ξ ∈ kerL such that

Lξ = 0,

and that space is of dimension m. This means that we can construct a n
by m matrix Z whose columns span this subspace such that LZ = 0.

Also, we can always find an m by n matrix B of rank m such that there
exists a space of dimension m of n vectors ν such that

Bν = 0 ;

and, moreover, such that the only vector x satisfying simultaneously Lx = 0
and Bx = 0 is x = 0. For example, one way to compute such a matrix B is
through the singular value decomposition of L, but there are many other
ways in which to define B, which is not uniquely defined, just as the defining
conditions and operator B for differential equations are not unique.

Corresponding to a particular choice of B, we can find an n by n − m
matrix N such that BN = 0.

Now suppose that we have an arbitrary n-vector u. Then it follows that

ν = N(LN)−1u (20.7)

solves the equation

Lν = u

and, moreover, ν ∈ kerB since BN = 0. Matrix

G = N(LN)−1 (20.8)

is the analogue of the Green’s function G(s; t).
A special choice of B leads to an interesting result. Let B be chosen so

that N = L′. In that case, G = L′(LL′)−1 and G′ is the pseudo-inverse of
L.

20.2.3 A recipe for the Green’s function
We can now offer a recipe for constructing the Green’s function for any
linear differential operator L of the form (18.12) and the initial value con-
straint BI of the corresponding order. First, compute the Wronskian matrix
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W(t) defined in (18.26). Secondly, define the functions

v(t) = (v1(t), . . . , vm(t))′

to be the vector containing the elements of the last row of W−1. Then, it
turns out that initial value constraint Green’s function G0(t; s) is

G0(t; s) =
m∑

j=1

ξj(t)vj(s) = ξ(t)′v(s), s ≤ t, and 0 otherwise. (20.9)

Let’s see how this works for

L = βD + D2.

The space ker L is spanned by the two functions ξ1(t) = 1 and ξ2(t) =
exp(−βt). The Wronskian matrix is

W(t) =
[

ξ1(t) Dξ1(t)
ξ2(t) Dξ2(t)

]
=

[
1 0
exp(−βt) −β exp(−βt)

]

and consequently

W−1(t) =
[

1 0
β−1 −β−1 exp(βt)

]
,

from which we have

v(s) = −β−1[−1, exp(βs)]′

and finally

G0(t; s) = −β−1[e−β(t−s) − 1], s ≤ t, and 0 otherwise. (20.10)

We can verify that this is the required Green’s function by integration by
parts.

We do not discuss in any detail the case of any constraint functions
B other than initial value constraints. Under boundary or periodic con-
straints, it may be that additional conditions are required on the function
f or on the constraint values c, but nevertheless we can extend the basic
ideas of Green’s functions.

20.3 Reproducing kernels and Green’s functions

A bivariate function called the reproducing kernel plays a central role in
the theory of spline functions, and we will use reproducing kernels in Chap-
ter 21 to define a basis function system φ specific to any linear differential
operator L used to define a roughness penalty.
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20.3.1 What is a reproducing kernel?
We remarked in Section 18.6.3 that the concept of an inner product under-
lies perhaps about 95% of all applied mathematics and statistics. There is
no possibility here of doing more than recalling the most basic elements of
inner product spaces, and perhaps no particular need, either.

A Hilbert space is a collection of objects x for which there exists:

• linear combinations ax1 + bx2,

• an inner product 〈x1, x2〉 for any pair x1 and x2

• a property called completeness, namely that convergent sequences of
elements converge to elements within the space.

Both vectors and functions as used in applied work are typically elements of
Hilbert spaces, and Section 18.6.3 gave some functional examples of useful
inner products.

There is a sense, however, in which the Hilbert space is too loose a
concept. This revolves around the linear mapping

ρt(x) = x(t),

which we called the evaluation mapping in Section 5.5. If a function x is
smooth, we imagine that knowing x(t) tells us a great deal about x(t + δ)
when perturbation δ is sufficiently small. Unfortunately, such need not be
the case for Hilbert spaces in general.

Consequently, we need to focus on the more specialized Hilbert space
for which the evaluation map is continuous. It would be nice to imagine
that these would be called something like smooth Hilbert spaces, or con-
tinuous Hilbert spaces, but alas, mathematics does not tend to generate
its nomenclature in such a kindly way! Instead, spaces of this nature are
called reproducing kernel Hilbert spaces, not surprisingly often abbreviated
to RKHSs.

It is a basic theorem in functional analysis, called the Riesz representation
theorem, that if a linear mapping ρ(x) in a Hilbert space is continuous, then
there exists a function k in the space such that

ρ(x) = 〈x, k〉 .

Consequently, applying this idea to the evaluation map ρt(x), there must
exist a bivariate function k(s, t) such that k(·, t) is in the space for any t,
and that

ρt(x) = 〈x, k(·, t)〉 .

The term reproducing kernel comes from the consequence that

k(s, t) = 〈k(·, s), k(·, t)〉 .
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The existence of k(s, t) has many wide-ranging consequences, and plays
an especially important role in the history of the development of spline
smoothing.

So, given that we have a Hilbert space with a continuous evaluation map,
how do we find the reproducing kernel? The surprising result is: If you know
the Green’s function for the linear differential operator that defines inner
products of the type described in Section 18.6.3, you are almost there!

There are two reproducing kernels k(s, t) that we need to consider, one
for each of the function subspaces kerB and kerL. We now show how these
can be calculated, and we will put them to work in Chapter 21.

20.3.2 The reproducing kernel for ker B

The reproducing kernel for the kerB subspace, consisting of functions that
satisfy Bx = 0, has a simple relationship to the Green’s function G. First,
however, we need to explain what a reproducing kernel is in this context.

Given any two functions x and y in kerB, let us define the L-inner
product

〈x, y〉L = 〈Lx, Ly〉 =
∫

Lx(s)Ly(s) ds.

Let GI be the Green’s function as defined in Section 20.2.3, and define a
function k2(t, s) such that, for all t,

Lk2(t, ·) = GI(t; ·) and Bk2(t, ·) = 0. (20.11)

By the defining properties of Green’s functions, this means that

k2(t, s) =
∫

GI(s;w)GI(t; w) dw. (20.12)

The function k2 has an interesting property. Suppose that ν is any func-
tion in kerB, and consider the L-inner product of k2(t, ·) and ν. We have,
for all t,

〈k2(t, ·), ν〉L =
∫

Lk2(t, s)Lν(s) ds =
∫

GI(t; s)Lν(s) ds = ν(t) (20.13)

by the key property (20.5) of Green’s functions. Thus, in the space kerB
equipped with the L-inner product, taking the L-inner product of k2 using
its second argument with any function ν yields the value of ν at its first
argument. Overall, taking the inner product with k2 reproduces the func-
tion ν, and k2 is called the reproducing kernel for this function space and
inner product.

Chapter 21 shows that the reproducing kernel is the key to the important
question, “Is there an optimal set of basis functions for smoothing data?”
To answer this question, we need to use the important property

〈k2(s, ·), k2(t, ·)〉L = k2(s, t), (20.14)
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which follows at once from (20.13) setting ν(·) = k2(s, ·) and appealing to
the symmetry of the inner product.

We can put the expression (20.12) in a slightly more convenient form for
the purpose of calculation. Recalling the definitions of the vector-valued
functions ξ and v in Section 20.2.3, we have from (20.9), assuming that
s ≤ t, that

k2(s, t) =
∫ s

0
[u(s)′v(w)][v(w)′u(t)] dw = u(s)′F(s)u(t), (20.15)

where the order m symmetric matrix-valued function F(s) is

F(s) =
∫ s

0
v(w)v(w)′ dw. (20.16)

To deal with the case s > t, we use the property that k2(s, t) = k2(t, s).
The matrix analogue of the reproducing kernel k2(s, t) is

K2 = GG′,

since we see that for any ν ∈ ker B

K2L
′Lν = N(LN)−1(N′L′)−1N′L′Lν

= N(LN)−1Lν

= ν (20.17)

as required.

20.3.3 The reproducing kernel for ker L

Suppose now that f =
∑

aiξi and g =
∑

biξi are elements of ker L. We can
consider the B-inner product on the finite-dimensional space kerL, defined
by

〈f, g〉B = (Bf)′Bg = a′A′Ab.

Define a function k1(t, s) by

k1(t, s) = ξ(t)′(A′A)−1u(s).

It is now easy to verify that, for any f =
∑

i aiξi,

〈k1(t, ·), f〉B = ξ(t)′(A′A)−1A′Aa = ξ(t)′a = a′ξ(t) = f(t).

So k1 is the reproducing kernel for the space kerL equipped with the B-
inner product.

Finally, we consider the space of more general functions x equipped with
the inner product 〈·, ·〉B,L as defined in Section 18.6.3. It is easy to check
from the properties we have set out that the reproducing kernel in this
space is given by

k(s, t) = k1(s, t) + k2(s, t).
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20.4 Further reading and notes

Although the theory of reproducing kernel Hilbert spaces is considered to be
of relatively recent origin, and usually attributable to Aronszajn (1950), it
is in fact grounded in the theory of Green’s functions, a topic older by more
than a century (Green, 1828). The concept of a reproducing kernel appears
in most of the papers by G. Wahba, including Wahba (1990). More recently,
reproducing kernels are used extensively in Gu (2002). The interested and
highly motivated reader might want to consult a reference on functional
analysis with an applied orientation, such as Aubin (2000).



21
More general roughness penalties

21.1 Introduction

A theme central to this book has been the use of roughness penalties to in-
corporate smoothing, whether in the context of using discrete data to define
a smooth function in Chapter 5, functional principal components analysis
in Chapter 9, or imposing regularity on estimated regression functions in
the chapters on the functional linear model.

At the same time, the previous three chapters have dealt with the math-
ematical properties of linear differential operators L and with techniques
for estimating them from data. Principal differential analysis provides a
method of estimating low-dimensional functional variation in a sense anal-
ogous to principal components analysis, but by estimating an mth order
differential operator L rather than a projection.

Moreover, we have seen that by coupling L with a suitable set of con-
straints on the m linearly independent functions ξj satisfying Lξj = 0, we
can partition the space of smooth functions into two parts. This is achieved
by defining a constraint operator B such that Bξj �= 0, and the only func-
tion satisfying Bx = Lx = 0 is x = 0. Then any function x having m
derivatives can be expressed uniquely as

x = ξ + e where Lξ = 0 and Be = 0. (21.1)

We might call this the partitioning principle.
It is time to put these two powerful ideas together, to see what practi-

cal value there is in using the partitioning principle to define a roughness
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penalty. We want to go beyond the standard practice of defining roughness
in terms of L = D2, and even beyond the slightly more general L = Dm, to
consider what the advantages might be of using an arbitrary operator L,
perhaps in conjunction with some constraints captured in the companion
operator B. Specifically, when the goal is smoothing the data, we propose
using the criterion

PENSSE(x) =
n∑
j

[yj − x(tj)]2 + λ × PENL(x), (21.2)

where

PENL(x) =
∫

(Lx)2(t) dt.

We begin with some examples.

21.1.1 The lip movement data
Consider the lip movement data introduced in Chapter 19 and plotted in
Figure 21.1. We are interested in how these trajectories, all based on ob-
servations of a speaker saying “bob,” vary from one replication to another.
But in the experiment, the syllable was embedded in the phrase, “Say bob
again,” and it is clear that the lower lip enters and leaves the period during
which the syllable is being formed at different heights. This is nuisance
variation that we would be happy to eliminate.

Moreover, there was particular interest in the acceleration or second
derivative of the lip, suggesting that we should penalize the fourth deriva-
tive by spline smoothing with L = D4. Any cubic polynomial trend in the
records is ignored if we do that. Now we want to define the shape compo-
nent u and endpoint component ξ of each record x in such a way that the
behavior of the record at the beginning and end of the interval of observa-
tion (normalized to be [0,1]) has minimal impact on the interior and more
interesting portion of the curve. One way of achieving this objective is to
require the shape components to satisfy the constraints

u(0) = Du(0) = 0 and u(1) = Du(1) = 0.

This means that the constraint is defined by the boundary constraint
operator BB , defined as

BBx =

⎡
⎢⎢⎣

x(0)
Dx(0)
x(1)
Dx(1)

⎤
⎥⎥⎦ , (21.3)

and the shape component u satisfies BBu = 0.
We now have our two linear operators L = D4 and B = BB in hand,

and they are complementary in the sense that kerB ∩ ker L = 0. That is,
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Figure 21.1. The right panel displays the 20 cubic polynomials ξ that match the
lip position and derivative values at 0 and 1 for the smoothed versions of the
curves in Figure 19.1. The left panel shows the shape components u that have
zero endpoint positions and derivatives.

we have now unambiguously split any lip position record x into x = ξ + u,
where Bu = 0, and ξ, a cubic polynomial because Lξ = D4ξ = 0, picks up
the endpoint variation by fitting the record’s function and derivative values
at both 0 and 1. Figure 21.1 displays the endpoint and shape components
for all 20 records.

21.1.2 The weather data
We noted in the introduction that a rather large part of the mean daily or
monthly temperature curve for any weather station can be captured by the
simple function

T (t) = c1 + c2 sin(πt/6) + c3 cos(πt/6) (21.4)

and the same may be said for the log precipitation profiles. Functions of
this form can be annihilated by the operator

L = (π/6)2D + D3.

We could propose smoothing data using the criterion (21.2), where

PENL(x) =
∫

(Lx)2(t) dt =
∫

[(π/6)2Dx(t) + D3x(t]2(t) dt,

while paying attention to the periodic character of the data. What would
we gain from this? For one thing, as we have already noted in Section 18.4.3,
this procedure is likely to have considerable advantages in the estimation
of curves x from raw data.

At the same time, the function LTemp in this example is interesting
in itself, and Ramsay and Dalzell (1991) refer to this as the harmonic
acceleration of temperature. They show by functional principal components
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Figure 21.2. The solid cycles are the smoothed daily temperature and log precip-
itation data, plotted against each other, for two Canadian weather stations. The
dotted curves are the estimated cycles based on strictly sinusoidal variation, tak-
ing the first three terms of the Fourier expansion of each observed temperature
and log precipitation curve. Letters indicate the middle of each month.

and linear regression analyses that LTemp, and the harmonic acceleration of
log precipitation, contain a great deal of information about the peculiarities
of weather at any station. In order to identify the component e uniquely,
though, we must choose a matching integral constraint operator BI , and
for this application they chose

BIx =

⎡
⎣

∫
x(t) dt∫
x(t) sin(πt/6) dt∫
x(t) cos(πt/6) dt

⎤
⎦ ,

corresponding to the first three Fourier coefficients of the observed curves.
The three functions ξi that span kerL are then 1, sin(πt/6) and cos(πt/6).
Given any curve x, the partition (21.1) is achieved by setting the component
ξ to be the first three terms in the Fourier expansion of x.

The solid curves in Figure 21.2 show, for two weather stations, plots
of smoothed daily temperature against smoothed daily log precipitation
through the year. The shifted sinusoidal components ξj(t) for temperature
and for log precipitation respectively become ellipses when plotted against
each other and yield the dotted curves in the figure.
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21.2 The optimal basis for spline smoothing

In Chapter 3 we reviewed the classic technique of representing functions by
fitting a basis function expansion to the data. We took pains to point out
that not all bases are equal: A good basis has basis functions which mimic
the general features that we know apply to the data, such as periodicity,
asymptotic linearity, and so on. When we get these features right, we can
expect to do a good job with a smaller number of basis functions.

We also pointed out that when the number n of data points is large,
computing an expansion in O(n) operations is critical, and in order to
achieve this, the basis functions should at least be nonzero only locally, or
have compact support. The B-spline basis is especially attractive from this
perspective.

In Section 5.6, we extended the basis function expansion concept to em-
ploy a partitioned basis (φ, ψ) along with a penalty on the size of the
component expanded in terms of the basis functions ψ. But two properties,
relevance to the data and convenience of computation, remain essential.

We now bring these elements together: Use the partitioning principle to
define a set of basis functions that are optimal with respect to smoothing,
provide a recipe for an O(n) smoothing algorithm, and also show how these
can be put into compact support form to give the appropriate analogue of
B-splines. Further details are available in Heckman and Ramsay (2000).

We begin with a theorem that states that the optimal basis for spline
smoothing in the context of operators (B, L) is defined by the reproducing
kernel k2 defined in Chapter 20.

Optimal Basis Theorem:
For any λ > 0, the function x minimizing the spline smoothing crite-

rion (21.2) defined by a linear differential operator L of order m has the
expansion

x(t) =
m∑

j=1

djξj(t) +
n∑

i=1

cik2(ti, t). (21.5)

Equation (21.5) can be put a bit more compactly. As before, let ξ =
(ξ1, . . . , ξm)′; define another vector function

k̃(t) = {k2(t1, t), k2(t2, t), . . . , k2(tn, t)}′.

Then the optimal basis theorem says that the function x has to be of the
form x = d′ξ + c′k̃, where d is a vector of m coefficients dj and c is the
corresponding vector of n coefficients ci in (21.5). We give a proof of the
optimal basis theorem, but as usual any reader prepared to take this on
trust should simply skip to the next section.
Proof:

Suppose x∗ is any function having square-integrable derivatives up to
order m. The strategy for the proof is to construct a function x̃ of the form
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(21.5) such that

PENSSE(x̃) ≤ PENSSE(x∗)

with equality only if x̃ = x∗. It then follows at once that we need never
look beyond functions of the form (21.5) if we want to minimize the spline
smoothing criterion PENSSE.

First of all, write x∗ = u∗ + e∗ where u∗ ∈ ker L and e∗ ∈ ker B. Let
K be the subspace of ker B spanned by the n functions k2(ti, ·), and let ẽ
be the projection of e∗ onto K in the L-inner product. This means that
e∗ = ẽ + e⊥, where

ẽ = c′k̃

for some vector c, and the residual e⊥ in kerB satisfies the orthogonality
relation

〈e, e⊥〉L =
∫

(Le)(Le⊥) = 0 for all e in K. (21.6)

We now define our function x̃ = u∗ + ẽ, meaning that x̃ is necessarily of
the required form (21.5), and x∗ − x̃ is equal to the residual e⊥.

To show that PENSSE(x̃) ≤ PENSSE(x∗), note first that, by the defining
property of the reproducing kernel, for each i,

x∗(ti) − x̃(ti) = e⊥(ti) = 〈k2(ti, ·), e⊥〉L = 0

by property (21.6), since k2(ti, ·) is of course a member of K and so is
L-orthogonal to e⊥.

Therefore x∗ and x̃ agree at the arguments ti, and so

PENSSE(x∗) − PENSSE(x̃) = λ{PENL(x∗) − PENL(x̃)};

the residual sum of squares of the yi is the same about each of the two
functions x∗ and x̃. Since Lx∗ = Le∗ and Lx̃ = Lẽ, we have

PENL(x∗) − PENL(x̃) = PENL(e∗) − PENL(ẽ)
= 〈ẽ + e⊥, ẽ + e⊥〉L − 〈ẽ, ẽ〉L

= 〈e⊥, e⊥〉L + 2〈ẽ, e⊥〉L = 〈e⊥, e⊥〉L

since ẽ is in K and is therefore L-orthogonal to e⊥. Therefore PENL(e∗) ≥
PENL(ẽ), and consequently PENSSE(x∗) ≥ PENSSE(x̃). Equality holds only
if e⊥ ∈ ker L; since we already know that e⊥ ∈ ker B, this implies that
e⊥ = 0 and that x∗ = x̃. This completes the proof of the theorem.

21.3 An O(n) algorithm for L-spline smoothing

21.3.1 The need for a good algorithm
In principle, the optimal basis theorem should tell us exactly how to pro-
ceed. Since we know that the required function is of the form x = d′u+c′k̃,
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we need only express PENSSE(x) in terms of c and d and minimize to find
the best values of c and d. How would this work out?

Let K be the matrix with values k2(ti, tj). From equation (20.14) it
follows that

PENL(x) = 〈c′k̃, c′k̃〉L = c′Kc.

The vector of values x(ti) is Ud + Kc, where U is the matrix with val-
ues ξj(ti). Hence, at least in principle, we can find x by minimizing the
quadratic form

PENSSE(x) = (y − Ud − Kc)′(y − Ud − Kc) + λc′Kc (21.7)

to find the vectors c and d.
Unfortunately the matrix K is in practice usually extremely badly con-

ditioned, that is to say, the ratio of its largest eigenvalue to its smallest
explodes. A practical consequence of this is that the computations re-
quired to minimize the quadratic form (21.7) are likely to be unstable or
impossible.

Furthermore, in smoothing long sequences of observations, it is criti-
cal to devise a smoothing procedure that requires a number of arithmetic
operations that does not grow too quickly as the length of the sequence
increases. For example, the handwriting data has n = 1401 and so an al-
gorithm that was O(n2) would be impracticable and an O(n3) algorithm
virtually impossible with current computing power. By adopting a some-
what different approach, we can set out an algorithm that requires only
O(n) operations, and furthermore avoids the numerical problems inherent
in the direct minimization of (21.7).

The algorithm we use is based on the theoretical paper of Anselone and
Laurent (1967), but is also known as the Reinsch algorithm because of the
application to the cubic polynomial smoothing case (L = D2) by Rein-
sch (1967, 1970). It was subsequently extended by Hutchison and de Hoog
(1985). We do not attempt a full exposition of the rationale for this algo-
rithm here, but Heckman and Ramsay (2000) and Ramsay, Heckman and
Silverman (1997) can be consulted for details.

The algorithm requires the computation of values of two types of function
that we have already encountered:

1. ξj , j = 1, . . . , m: a set of m linearly independent functions satisfy-
ing Lξj = 0, that is, spanning kerL. As before, we refer to these
collectively as the vector-valued function ξ.

2. k2: the reproducing kernel function defined in Chapter 18 for the
subspace of functions e satisfying BIe = 0, where BI is the initial
value constraint operator.

The functions ξ and k2 are the user-supplied components of the algorithm
and are, of course, defined by the particular choice of operator L used in
the smoothing application.
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The algorithm splits into three phases:

1. an initial setup phase that does not depend on the smoothing
parameter λ

2. a smoothing phase in which we smooth the data

3. a summary phase in which we compute performance measures for the
smooth

This division of the task is of practical importance because we may want to
try smoothing with many values of λ, and do not want to needlessly repeat
either the initial setup phase or the final descriptive phase.

21.3.2 Setting up the smoothing procedure
In the initial phase, we define two symmetric (n − m) × (n − m) band-
structured matrices H and C′C where m is the order of operator L. Both
matrices are band-structured with band width at most 2m+1, which means
that all entries more than m positions away from the main diagonal are
zero. Because of symmetry, these band-structured matrices require only
(n − m)(m + 1) storage locations.

We start by explaining how to construct the matrix C. For each i =
1, . . . , n − m, define the (m + 1) × m matrix U(i) to have (l, j) element
ξj(ti+l), for l = 0, . . . , m. Thus U(i) is the submatrix of U consisting
only of rows i, i + 1, . . . , i + l. Find the QR decomposition (as discussed
in Section A.3.3)

U(i) = Q(i)R(i),

where the matrix Q(i) is square, of order m + 1, and orthonormal, and
where the matrix R(i) is (m + 1) × m and upper triangular. Let the vector
c(i) be the last column of Q(i); this vector is orthogonal to all the columns
of U(i). In fact any vector having this property will do, and in special cases
the vector can be found by some other method. For polynomial spline
smoothing, for instance, coefficients defining divided differences are used.

Now define the n × (n − m) matrix C so that its ith column has the
m+1 values c(i) starting in row i; elsewhere the matrix contains zeroes. In
practice, the argument sequence t1, . . . , tn is often equally spaced, and in
this case it frequently happens that all the coefficient vectors c(i) are the
same, and hence need be computed only once. The band structure of C
immediately implies that C′C has the required band structure, and can be
found in O(n) operations for fixed m.

The other setup-phase matrix H is the (n − m) × (n − m) symmetric
matrix

H = C′KC, (21.8)
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where K is the matrix of values k2(ti, tj). It turns out that H is also
band-structured with band width 2m − 1. This is a consequence of the
expression (20.15) for the reproducing kernel, which yields the following
two-part expression:

k2(ti, t) =
{

u(ti)′F(t)u(t) for ti ≥ t
u(ti)′F(ti)u(t) for ti ≤ t, (21.9)

for a certain matrix function F(t). This in turn implies that

Kij = {UF(tj)u(tj)}i for i ≥ j. (21.10)

Suppose k ≥ j. Because Cik is zero for i < k,

(C′K)kj =
n∑

i=k

CikKij =
n∑

i=k

Cik{UF(tj)u(tj)}i,

substituting (21.10); notice that i ≥ j for all i within the range of
summation k ≤ i ≤ n. It follows that for k ≥ j we have

(C′K)kj = {C′UF(tj)u(tj)}i = 0.

So C′K is strictly upper-triangular. Because of the band structure of C
this means that the matrix H = (C′K)C has zero entries for positions m
or more below the main diagonal, and by symmetry H has the stated band
structure.

21.3.3 The smoothing phase
The actual smoothing consists of two steps:

1. Compute the vector z, of length n − m, that solves

(H + λC′C)z = C′y, (21.11)

where the vector y contains the values to be smoothed.

2. Compute the vector of n values ŷi = x(ti) of the smoothing function
x at the n argument values using

ŷ = y − λCz. (21.12)

Because of the band structure of (H + λC′C) and of C, both of these
steps can be computed in O(n) operators, and references on efficient matrix
computation such as Golub and van Loan (1989) can be consulted for
details.

21.3.4 The performance assessment phase
The vector of smoothed values ŷ and the original values y that were
smoothed are related as follows:

ŷ = y − λC(H + λC′C)−1C′y



368 21. More general roughness penalties

= {I − λC(H + λC′C)−1C′}y. (21.13)

The matrix S defined by

S = I − λC(H + λC′C)−1C′ (21.14)

is often called the hat matrix, and in effect defines a linear transformation
that maps the unsmoothed data into its smooth image by

ŷ = Sy.

Various measures of performance depend on the diagonal values in S. Of
these, the most popular are currently

GCV = SSE/(1 − n−1traceS)2, (21.15)

where

SSE =
n∑

i=1

[yi − x(ti)]2 = ‖y − ŷ‖2

and

CV =
n∑

i=1

[{yi − x(ti)}/{1 − sii}]2, (21.16)

where sii is the ith diagonal entry of S. We can compute both measures
GCV and CV in O(n) operations given the band-structured nature of the
matrices defining S, using methods developed by Hutchison and de Hoog
(1985).

One of the main applications of these two criteria, both of which are
types of discounted error sums of squares, is as a guide for choosing the
value of the smoothing parameter λ. It is relatively standard practice to
look for the value that minimizes one of these two criteria, just as various
variable selection procedures attempt to minimize discounted error sums of
squares in standard regression analysis. Interestingly, the GCV measure was
originally introduced by Craven and Wahba (1979) as an approximation
to the CV criterion that could be computed in O(n) operations; now CV is
also available in n operations, but GCV still tends to be preferred in practice
for other reasons. For example, various simulation studies have indicated
that GCV tends to be a better basis for choosing the smoothing parameter
λ, possibly because GCV makes use of smoothing itself by replacing the
variable values 1 − sii by the average 1 − n−1traceS.

Also of great value is a measure of the effective number of degrees of
freedom of the smoothing operation. Two measures are

DF1 = traceS and DF2 = traceS′S = traceS2. (21.17)

These dimensionality measures were introduced and discussed by Buja et
al. (1989). It can be shown that in the limit as λ → ∞, both measures
become simply m, and similarly, as λ → 0, both measures converge to
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n. In between, they give slightly different impressions of how much of the
variation in the original unsmoothed data remains in the smoothed version.

21.3.5 Other O(n) algorithms
There is an intimate connection between the theory of splines and the
theory of stochastic differential equations (Wahba, 1978, 1990, Weinert,
Bird and Sidhu, 1980). This leads to the possibility of using the Kalman
filter, a technique widely used in engineering and other fields to extract an
estimate of a signal from noisy data, to compute a smoothing spline. Ansley,
Kohn and Wong (1993), using a Kalman filtering algorithm described in
Ansley and Kohn (1989), give some examples of computing an L-spline
in O(n) operations. However, except for fairly simple cases, this algorithm
appears to be difficult to implement, and its description involves substantial
mathematical detail. Nevertheless, we feel that it is important to call the
reader’s attention to this stimulating literature on smoothing by state-space
methods.

21.4 A compact support basis for L-splines

In this section our concern is the construction of compact support basis
functions from the reproducing kernel basis functions k2(ti, ·). A basis made
up of such functions may, for example, be useful for techniques such as the
regularized principal components analysis described in Section 9.4.1, and
has many numerical advantages, analogous to those of B-splines.

For any fixed i = 1, . . . , n − 2m, consider the sequence of 2m + 1 basis
functions based on the reproducing kernel:

k2(ti+�, ·), � = 0, . . . , 2m.

Let b
(i)
� , � = 0, . . . , 2m be a corresponding sequence of weights defining a

new basis function

ψi =
2m∑
�=0

b
(i)
� k2(ti+�, ·). (21.18)

The properties we are seeking are

ψi(t) = 0, t ≤ ti and ψi(t) = 0, t ≥ ti+2m.

But from the first line of (21.9), we see the first of these is achieved if

2m∑
�=0

b
(i)
� ξj1(ti+�) = 0, j1 = 1, . . . , m (21.19)
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and at the same time the second line of (21.9) indicates that the second
property is satisfied if

2m∑
�=0

b
(i)
� [

m∑
j1=1

ξj1(ti+�)fj1,j2(ti+�)] = 0, j2 = 1, . . . , m, (21.20)

where fj1,j2(ti+�) is entry (j1, j2) of F(ti+�).
Now these are two sets of m linear constraints on the 2m+ 1 coefficients

b
(i)
� , and we know that in general we can always find a coefficient vector

b(i) that satisfies them. The reason that there are only 2m constraints for
2m + 1 coefficients is that the linear constraints can only define the vector
b(i) up to a change of scale.

Let the (2m + 1) × 2m matrix V(i) have in its first m columns the
values ξj1(ti+�), j1 = 1, . . . , m and in its second set of m columns the values∑m

j1=1 ξj1(ti+�)fj1,j2(ti+�), j2 = 1, . . . , m. Then the constraints (21.19) and
(21.20) can be written in the matrix form

(b(i))′V(i) = 0.

As in the calculation of the vectors c(i) in Section 21.3.2, the required vector
b(i) is simply the last column of the Q matrix in the QR decomposition of
V(i).

If the argument values are unequally spaced, this calculation of the co-
efficient vectors b(i) must be carried for each value of i from 1 to n − 2m.
However, in the frequently encountered case where the ti values are equally
spaced, only one coefficient calculation is required, and the resulting set of
coefficients b serves for all n − 2m compact support splines ψi.

Observant readers may note that we have lost 2m basis functions by this
approach. We may deal with this difficulty in various ways. One approach
is to say that a little bit of fitting power has been lost, but that if n is
large, this may have little impact on the smoothing function, and what
little impact it has is at the ends of the interval. Alternatively, however, we
can use a technique employed in defining polynomial B-splines, and add m
additional argument values at each end of the interval. For computational
convenience in the equally spaced argument case, we can make these simply
a continuation of the sequence in both directions. This augments the basis
in order to retain the full fitting power of the original reproducing kernel
basis.

21.5 Some case studies

21.5.1 The gross domestic product data
The gross domestic product data introduced in Chapter 18 share with many
economic indicators the overall tendency for exponential growth. If we wish
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to smooth the de-seasonalized GDP record of the United States displayed
in Figure 18.3, the operator L = −γD + D2 annihilates ξ1(t) = 1 and
ξ2(t) = eγt, so these are obvious choices for the functions spanning ker L.
A reasonable choice for the matching constraint operator is simply BI , such
that BIu = {u(0), Du(0)}′, implying that the coefficients of ξ1 and ξ2 are
specified by the initial value and slope of the smoothed record.

In this case, we might decide to estimate parameter γ by estimating the
slope of the relationship between log GDP and time by ordinary regression
analysis. Another possibility is to fit all or part of the data by nonlinear
least squares regression using the two functions ξ1 and ξ2. That is, we
minimize the error sum of squares with respect to the coefficients c1 and
c2 of c1ξ1 + c2ξ2 and with respect to γ which, of course, determines ξ2.
Since for any fixed γ value, the minimizing values of the coefficients can
be computed directly by linear least squares, it makes sense to use a one-
dimensional function minimizing routine such as Brent’s method (Press
et al. 1992) to find the optimal γ value; each new value of γ within the
iterative method implies a linear regression to get the associated values of
c1 and c2. The resulting least squares estimate of γ for the U.S. data, based
on the values from 1980 to 1989, when the growth was more exponential,
is 0.054.

Using this value of γ, we used the method of Section 21.3 to find the
L-smoothing spline shown in Figure 21.3. We minimized the GCV criterion
to obtain the value λ = 0.053. The DF1 measure of equivalent degrees of
freedom was 39.6, so we purchased the excellent fit of the spline at the price
of a rather large number of degrees of freedom.

By comparison, the cubic smoothing spline that minimizes GCV produces
almost identical results in terms of GCV and DF1 values. This is perhaps not
too surprising since the curve is only slightly more exponential than linear.
But the results are rather different when we smooth with the fixed value
of DF1 = 10, corresponding to λ = 22.9. The L-spline fit using this more
economical model is just barely visible in Figure 21.3, and GCV = 0.00068.
The cubic polynomial spline with DF1 = 10 yields GCV = 0.00084, and its
poorer fit reflects the fact that some of its precious degrees of freedom were
used up in fitting the mild exponential trend.

21.5.2 The melanoma data
These data, displayed in Figure 17.5, represent a more complex relationship,
with a cyclic effect superimposed on a linear development. The interesting
operator is

L = ω2D2 + D4 (21.21)
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Figure 21.3. The line indicates the spline smooth of the U.S. GDP data using
L = −0.054D +D2 and the minimum GCV value for smoothing parameter λ. The
dashed line indicates the L-spline fit corresponding to DF1 = 10.

for some appropriate constant ω, since this would annihilate the four
functions

u(t) = (1, t, sin ωt, cos ωt)′.

Using the techniques of Chapter 18, the reproducing kernel is

k2(s, t) = ω−7[(ωs)2(ωt/2 − ωs/6) − ωt + ωs + ωt cos ωs

+ωs cos ωt + sin ωs − sin ωt + sin(ωt − ωs)
−(sinωs cos ωt)/2 + s cos(ωt − ωs)/2],
s ≤ t. (21.22)

We estimated the parameter ω to be 0.650 by the nonlinear least squares
approach. This corresponds to a period of 9.66 years, roughly the period
of the sunspot cycle affecting solar radiation and consequently melanoma.
When we smooth the data with the spline defined by the operator (21.21)
and select λ so as to minimize GCV, it turns out that λ becomes arbitrarily
large, corresponding to a parametric fit using only the basis functions ξ,
consuming four degrees of freedom, and yielding GCV = 0.076. The poly-
nomial smoothing spline with order m = 4, displayed in Figure 17.5, is
a minimum-GCV estimate corresponding to DF1 = 12.0 and GCV = 0.095.
Thus, polynomial spline smoothing required three times the degrees of free-
dom to produce a fit that was still worse in GCV terms than the L-spline
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Figure 21.4. The gross domestic product for Sweden with seasonal variation. The
solid line is the smooth using operator L = (−γD+D2)(ω2I+D2), and the dashed
line is the smooth for L = D4, the smoothing parameter being determined by
minimizing the GCV criterion in both cases.

smooth. Of the two order-4 methods, the operator (21.21) is much to be
preferred to L = D4.

21.5.3 The GDP data with seasonal effects
In the data provided by the U.S. and most other countries, the within-year
variation in GDP that is a normal aspect of most economies was removed.
But the data for Sweden, displayed in Figure 21.4, does retain this seasonal
variation. This suggests composing the operator − γD + D2 used for the
U.S. GDP data with the de-seasonalizing operator ω2I + D2 to obtain the
composite operator of order four

L = (−γD + D2)(ω2I + D2) = −γω2D + ω2D2 − γD3 + D4. (21.23)

This annihilates the four linearly independent functions given by the
components of

u(t) = (1, exp γt, sin ωt, cos ωt)′.

In this application we know that ω = 2π for time measured in years, and
the nonlinear least squares estimate for γ was 0.078.

The minimum GCV L-spline for these data is the solid line in the fig-
ure, and corresponds to GCV = 142.9, SSE = 5298, and DF1 = 10.4.
This fairly low-dimensional spline tracks both the seasonal and long-term
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variation rather well. By contrast, the minimum GCV polynomial spline
corresponding to L = D4 is shown by the dashed line, and corresponds
to GCV = 193.8, SSE = 8169, and DF1 = 7.4. As both the curve itself and
the GCV value indicate, the polynomial spline was completely unable to
model the seasonal variation, and treated it as noise. On the other hand,
reducing the smoothing parameter λ to the point where SSE was reduced
to the same value as was attained for the L-spline required DF1 = 28.2, or
nearly three times the degrees of freedom. Again we see that building the
capacity to model important sources of variation into the operator L pays
off handsomely.

21.5.4 Smoothing simulated human growth data
One of the triumphs of nonparametric regression techniques has been their
capacity to uncover previously unsuspected aspects of growth in skeletal
height (Gasser, Müller, Köhler, Molinari and Prader, 1984; Ramsay, Bock
and Gasser, 1995). In this illustration, spline smoothing using an estimated
differential operator was applied to simulated smoothing data. The objec-
tive was to see whether estimating the smoothing operator improves the
estimation of the height and height acceleration growth functions over an
a priori “off-the-rack” smoother.

To investigate how the performance of the L-spline would compare with
a polynomial spline in practice, we simulated data to resemble as much as
possible actual human growth curve records. We generated two samples: a
training sample of 100 records that was analyzed in a manner representative
of actual practice, and a validation sample of 1000 records to see how these
analyses would perform on data for which the analyses were not tuned.

The simulated data for both the training and validation samples con-
sisted of growth records generated by using the triple logistic parametric
nine-parameter growth model proposed by Bock and Thissen (1980).
According to this model, height hi(t) at age t for individual i is

hi(t) =
3∑

j=1

cij/[1 + exp(−aij(t − bij))]. (21.24)

This model, although not completely adequate to account for actual growth
curves, does capture their salient features rather well. The actual number
of parameters in the model turns out to be only eight, since parameter ai,1
can be expressed as a function of the other parameters.

We generated each record by first sampling from a population of coef-
ficient vectors having a random distribution estimated from actual data
for males in the Fels Growth Study (Roche, 1992). We computed the er-
rorless growth curves (in cm) for the 41 age values ranging from 1 to 21
in half-yearly steps, and generated the simulated data by adding indepen-
dent normal error with mean 0 and standard deviation 0.5 to these values.
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Figure 21.5. The three weight functions w0, w1, and w2 for the operator
L = w0I +w1D +w2D

2 +D3: The points indicate the point-wise-approximation,
and the solid line indicates the basis function expansion.

These simulated data had roughly the same variability as actual growth
measurements.

The first step was to use the training sample to estimate the order three
L-spline that comes as near as possible to annihilating the curves. To this
end, the first analysis consisted of polynomial spline smoothing of the sim-
ulated data to get estimates of the first three derivatives. The smoothing
operator used for this purpose was D5, implying that the smoothing splines
were piecewise polynomials of degree 9. This permitted us to control the
roughness of the third derivative in much the same way as a cubic smooth-
ing spline controls the roughness of the smoothing function itself. The
smoothing parameter was chosen to minimize the GCV criterion, and with
this amount of replicated data, this value of its minimum is sharply defined.
Since our principal differential analysis estimate of the operator L required
numerical integration, we also obtained function and derivative estimates
at 201 equally-spaced values 1(.1)21.

We estimated a third-order differential operator L using both the point-
wise technique and the basis function expansion approach described in
Chapter 19. For the latter approach, we used the 23 order 4 B-splines
defined by positioning knots at the integer values of age. Figure 21.5
displays the estimated weight functions w0, w1, and w2 for the operator
L = w0I + w1D + w2D

2 + D3. Although these are difficult to interpret,
we can see that w0 is close to 0, suggesting that the operator could be
simplified by dropping the first term. On the other hand, w1 is close to one
until the age of 15 when the growth function has strong curvature as the
pubertal growth spurt ends, and its strong variation after 15 helps the op-
erator to deal with this pronounced curvilinearity. The acceleration weight
w2 varies substantially over the whole range of ages.
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Figure 21.6. The three solutions to the homogeneous equation Lu = 0 corre-
sponding to the linear differential operator L estimated for the simulated human
growth data.

Figure 21.6 shows three linearly independent solutions ξj to Lu = 0. Lin-
ear combinations of these three functions can produce good approximations
to actual growth curves.

The next step was to use the estimated functions ξj and the techniques of
Chapter 18 to estimate the Green’s function G and the reproducing kernel
k2 associated with this operator. We approximated the integrals involved
using the trapezoidal rule applied to the values at the 201 argument values.

Now we were ready to carry out the actual smoothing of the training
sample data by using the two techniques, L-spline and polynomial spline
smoothing, both of order three, just much as one would in practice. For
both techniques, we relied on the GCV criterion to choose the smoothing
parameter. The polynomial smooth gave values of GCV, DF1 and λ of 487.9,
9.0 and 4.4, respectively, and the L-spline smooth produced corresponding
values of 348.2, 11.2 and 0.63.

How well would these two smoothing techniques approximate the curves
generating the data? To answer this question, we generated 1,000 new sim-
ulated curves using the same generation process, and applied these two
smoothers using the training sample values of λ. Since we knew the values
of the true curves, we could estimate the root-mean-squared error criterion

RMSE(t) =
√

E{x̂(t) − x(t)}2

by averaging the squared error across the 1,000 curves for a given specific
age t, and then taking the square root. This yielded the two RMSE curves
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Figure 21.7. The left panel displays root-mean-squared error (RMSE) as a func-
tion of age for the simulated growth data. The solid line is for smoothing using the
estimated differential operator L, and the dashed line is for polynomial smooth-
ing using L = D3. The right panel shows these results for the estimated height
acceleration.

displayed in Figure 21.7. We see that the estimate of both the growth curve
itself and its acceleration by the L-spline procedure is much better for all
but the final adult period, where the L-spline estimate of the acceleration
curve becomes rather noisy and unstable. The improvement in the estima-
tion of both curves is especially impressive prior to and during the pubertal
growth spurt: The mean square error for the polynomial smooth is about
four times that of the L-spline smooth. That is, using the L-spline is roughly
equivalent to using the polynomial smooth with quadruple the sample size.
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but the final adult period, where the L-spline estimate of the acceleration
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tion of both curves is especially impressive prior to and during the pubertal
growth spurt: The mean square error for the polynomial smooth is about
four times that of the L-spline smooth. That is, using the L-spline is roughly
equivalent to using the polynomial smooth with quadruple the sample size.



22
Some perspectives on FDA

22.1 The context of functional data analysis

We conclude this volume with some historical remarks and pointers to
bibliographic references which have not been included in the main course
of our development. We are, of course, acutely aware that many branches
of statistical science consider functional models and the data that go with
them. FDA has a long historical shadow, extending at least back to the
attempts of Gauss and Legendre to estimate a comet’s trajectory (Gauss,
1809; Legendre, 1805). So what we offer here is perhaps little more than
a list of personal inspirations. In addition we suggest some directions for
further research.

22.1.1 Replication and regularity
While we want to leave the question of exactly what constitutes FDA
soft around the edges, functional data problems as we have described
them have two general features: replication and regularity. These are in-
timately related. Both permit the use of information from multiple data
values to identify patterns; replication implies summaries taken across dif-
ferent observations, while regularity allows us to exploit information across
argument values.

Replication is closely bound up with the key concept of a functional
observation as a single entity, rather than a set of individual numbers or
values. The availability of a sample of N related functional observations
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then leads to an interest in structure and variability in the data that re-
quires more than one observation to detect. This is in contrast with much
of the literature on nonparametric regression or curve estimation, where
the focus is on estimating a single curve.

Functional principal components analysis, regression analysis, and canon-
ical correlation, like their multivariate counterparts, characterize variation
in terms of features that have stability across replicates. Likewise, principal
differential analysis and the use of an estimated linear differential operator
for smoothing presume a model structure that belongs to the entire sample.
Even curve registration aims to remove one important source of inter-curve
variation so as to render more obvious the structure that remains.

Regularity implies that we exploit the smoothness of the processes gener-
ating the data, even though these data usually come to us in discrete form.
The assumption that a certain number of derivatives exist has been used
in most of the analyses that we have considered. The roughness penalty
approach used throughout the book controls the size of derivatives and mix-
tures of derivatives of the functional parameters that we have estimated.
In this way we stabilize estimated principal components, regression func-
tions, monotone transformations, canonical weight functions, and linear
differential operators.

Are there more general concepts of regularity that would aid FDA? For
example, wavelet approaches to smoothing briefly discussed in Section 3.6.1
are probably relevant, because of their ability to accommodate notions of
regularity that, nevertheless, allow certain kinds of local misbehavior.

Independent identically distributed observations are only one type of
regularity. For example, can we use the replication principle implicit in
stationary time series and where the values of the process are functions, to
define useful FDAs? Besse and Cardot (1997) offer an interesting first step
in this direction.

22.1.2 Some functional aspects elsewhere in statistics
Analysis of variance is often concerned with within-replication treatments.
While an ANOVA design does not assume as a rule that these treatments
correspond to variation over time or some other continuum, in practice
this is often the case. Consequently texts on ANOVA such as Maxwell and
Delaney (2003) pay much attention to topics that arise naturally when
treatments correspond to events such as days, related spatial positions,
and so on. Modifications taking account of a more complex correlational
structure for the residuals and the use of contrasts to make inferences about
linear, quadratic, and other types of trend across treatments are examples.

As we indicated at the end of Chapter 5, fields such as longitudinal data
analysis (Diggle et al., 1994), analysis of repeated measurements (Keselman
and Keselman, 1993 and Lindsey, 1993) and growth curve analysis are
cognate to functional data analysis. Two classic papers that use principal
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components analysis to describe the modes of variation among replicated
curves are Rao (1958) and Tucker (1958); Rao (1987) offers a summary of
his and others’ work on growth curves. Two more recent applications are
Castro, Lawton and Sylvestre (1986) and Grambsch et al. (1995).

But these and the many other studies of curve structure do not give the
regularity of the phenomena a primary role, placing more emphasis instead
on replication. Likewise, empirical Bayes, hierarchical linear model, or mul-
tilevel linear model approaches do treat functional data in principle, with
the added feature of using prior information, but the nature of the prior
structure tends to be multivariate rather than functional. In particular,
as we noted in Chapter 5, the estimation of a between–curve variance-
covariance matrix whose order is equal to the number of basis functions
used to represent the curves places severe limits on the the complexity of
the functional variation.

Nevertheless, we expect that further research will show that the experi-
ence gained and tools developed in these collateral disciplines can be put
to good use in FDA.

22.1.3 Functional analytic treatments of statistical methods
One topic clearly within the scope of FDA is the description of statisti-
cal methods using functional analysis. For example, principal components
analysis is a technique that lends itself naturally to many types of
generalization. The notion of the eigenanalysis of a symmetric matrix
was extended to integral operators with symmetric kernels in the last
century, and the Karhunen-Loève decomposition of more general linear
operators (Karhunen, 1947; Loève, 1945) is essentially the singular value
decomposition in a wider context.

Parzen’s papers (1961, 1963) are classics, and have had a great influence
on the spline smoothing literature by calling attention to the important role
played by the reproducing kernel. Grenander (1981) contributed further
development, Eaton (1983) provided a systematic coverage of multivariate
analysis using inner product space notation, and Stone (1987) also proposed
a coordinate-free treatment.

Applied mathematicians and statisticians in France have been particu-
larly active in recasting procedures originally developed in a conventional
discrete or multivariate setting into a functional analytic notational frame-
work. Deville (1974) considered the PCA of functional observations with
values in L2. Cailliez and Pagès (1976) wrote an influential textbook on
multivariate statistics that was both functional analytic in notation and
coordinate-free in a geometrical sense. This was a courageous attempt to
present advanced concepts to a mathematically unsophisticated readership,
and it deserves to be better known. Dauxois and Pousse (1976) produced
a comprehensive and sophisticated functional analytic exposition of PCA
and CCA that unhappily remains in unpublished form.



382 22. Some perspectives on FDA

While the exercise of recasting the usual matrix treatments of multi-
variate methods into the more general language of functional analysis is
intrinsically interesting to those with a taste for mathematical abstraction,
it also defined directly the corresponding methods for infinite-dimensional
or functional data. Some facility in functional analysis is a decided asset for
certain aspects of research in FDA, as it already is in many other branches
of applied mathematics.

22.2 Challenges for the future

We now turn to a few areas where there is clearly need for further research.
These should be be seen as a small selection of the wide range of topics
that a functional data analytic outlook opens up.

22.2.1 Probability and inference
The presence of replication inevitably invites some consideration of random
functions and probability distributions on function spaces. Of course, there
is a large literature on stochastic processes and random functions, but be-
cause of our emphasis on data analysis we have not emphasized these topics
in the present volume.

We note, in passing, that functional observations can be random in a
rather interesting variety of ways. We pointed out in Section 21.3 that the
problem of spline smoothing is intimately related to the theory of stochastic
processes defined by the nonhomogeneous linear differential equation Lx =
f where L is a deterministic linear differential operator and f is white noise.
Should we allow for some stochastic behavior or nonlinearity in L? Is white
noise always an appropriate model for f? Should we look more closely at
the behavior of an estimate of f in defining smoothing criteria, FDAs, and
diagnostic analyses and displays, exploiting this estimate in ways analogous
to our use of residuals in regression analysis? There is a large literature on
such stochastic differential equations; see, for example Øksendal (1995).
Though stochastic differential equations are of great current interest in
financial mathematics, they have had relatively little impact on statistics
more generally. This seems like a way to go.

We discussed the extension of classical inferential tools such as the t-test
or F -ratio to the functional domain. We often need simulation to assess the
significance of statistics once we move beyond the context of inference for
a fixed argument value t. For a rather different approach to inference that
incorporates both theoretical arguments and simulation, see Fan and Lin
(1998).

Because of the infinite-dimensional nature of functional variation, the
whole matter of extending conventional methods of inference—whether
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parametric or nonparametric, Bayesian or frequentist—is one that will re-
quire considerable thought before being well understood. We consider that
there is much to do before functional data analysis will have an inferential
basis as developed as that of multivariate statistics.

22.2.2 Asymptotic results
There is an impressive literature on the asymptotic and other theoretical
properties of smoothing methods. Although some would argue that theo-
retical developments have not always had immediate practical interest or
relevance, there are many examples clearly directed to practical concerns.
For a recent paper in the smoothing literature that addresses the issue of
the positive interaction between theoretical and practical research, see, for
example, Donoho et al. (1995).

Some investigations of various asymptotic distributional aspects of FDA
are Dauxois et al. (1982), Besse (1991), Pousse (1992), Leurgans et al.
(1993), Pezzulli and Silverman (1993), Silverman (1996) and Kneip and
Engel (1995), for example. Nevertheless, theoretical aspects of FDA have
not been researched in sufficient depth, and it is hoped that appropri-
ate theoretical developments will feed back into advances in practical
methodology.

22.2.3 Multidimensional arguments
Although we have touched multivariate functions of a single argument t,
coping with more than one dimension in the domain of our functions has
been mainly beyond our scope. But of course there is a rapidly growing
number of fields where data are organized by space instead of or as well as
time. Consider, for example, the great quantities of satellite and medical
image data, where spatial dimensionality is two or three and temporal
dependence is also of growing importance.

There is a large and growing literature on spatial data analysis; see,
for example, Cressie (1991) and Ripley (1991). Likewise smoothing over
two or more dimensions of variation is a subject of active research (Scott,
1992). In particular, Wahba (1990) has pioneered the extension of regu-
larization techniques to multivariate arguments. In principle, there is no
conceptual difficulty in extending our own work on FDA to the case of
multivariate arguments by using the roughness penalties relevant to tensor
or thin-plate splines. Indeed, the paper by Hastie et al. (1995) reviewed
in Section 11.7 uses roughness penalty methods to address a functional
data analysis problem with a spatial argument. However, there are ques-
tions about multivariate roughness penalty methods in FDA that require
further research.
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22.2.4 Practical methodology and applications
Clearly, much research is needed on numerical methods, as is evident when
one considers the work on something as basic as the point-wise linear model
underlying spline smoothing. We think that regularization techniques will
play a strong role, in part because they are so intuitively appealing. But of
course there are often simpler approaches that may work more or less as
well.

It is our hope that this book will give impetus to the wider dissemination
and use of FDA techniques. More importantly than any of the detailed
methodological issues raised in this chapter, the pressing need is for the
widespread use of functional data analytic techniques in practice.

22.2.5 Back to the data!
Finally, we say simply that it is the data that we have analyzed, and our
colleagues who collected them, that are responsible for our understanding
of functional data analysis. If what this book describes is found to deserve
a name for itself, it will be because we have discovered, with each new
set of functional data, challenges and invitations to develop new methods.
Statistics shows its finest aspects when exciting data find existing statistical
technology not entirely satisfactory. It is this process that informs this book,
and ensures that unforeseen adventures in research await us all.



Appendix
Some algebraic and functional
techniques

This appendix covers various topics involving matrix decompositions, pro-
jections in vector and function spaces, and the constrained maximization of
certain quadratic forms through the solution of appropriate eigenequations.

A.1 Inner products 〈x, y〉
An advance in mathematical notation occurs when we separate the name
for an operation from explicit instructions on how to carry it out. Consider,
for example, the operation +. Suppose one opens a mathematics book at
a random page, and discovers the expression x + y. One might imagine
that everyone would always mean the same by x + y, but a moment’s
thought shows that computing the sum can involve very different techniques
depending on whether x and y are real numbers, complex numbers, vectors,
matrices of the same dimensions or functions. What really counts is that
any author who uses the symbol + can be assumed to mean an operation
that obeys the basic properties of addition, x+y = y +x and (x+y)+ z =
x + (y + z), and that this operation also interlocks with the multiplication
operation × through (x + y) × z = x × z + y × z and x × (y + z) =
x × y + x × z. The author assumes that we can actually carry out the
operation involved ourselves, or else in some exotic situations he or she
furnishes us with detailed instructions. The notation x+ y allows the basic
structure of addition to be assumed, almost subconsciously, leaving the
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details to be supplied in any particular case if necessary. Hiding the details
focusses our attention on what really matters.

A.1.1 Some specific examples
We now discuss a generic notation for inner products, extending the familiar
idea of the inner product of two vectors x and y. Consider the Euclidean
inner product operation x′y, where x and y are vectors of the same length.
The operation has the following simple properties:

Symmetry: x′y = y′x for all x and y,

Positivity: x′x ≥ 0 for all x, with x′x = 0 if and only if x = 0, and

Bilinearity: for all real numbers a and b, (ax + by)′z = ax′z + by′z for
all vectors x, y and z.

Of course, these properties follow from the instructions implied in the
definition

x′y =
∑

i

xiyi. (A.1)

However, it is important to note that the Euclidean inner product op-
eration, and the instructions defining it, are of critical importance in
multivariate data analysis because of the properties of symmetry, positiv-
ity and bilinearity, which can therefore be considered of more fundamental
significance than the definition (A.1) itself.

This basic role of symmetry, positivity and bilinearity is further empha-
sized when we realize that x′Wy, where W is a positive definite matrix
of appropriate order, also has these properties and, indeed, can be used
almost anywhere that we use x′y. So, for example, we use x′Σ−1y, where
Σ is a population covariance matrix, to define the multivariate normal dis-
tribution, to compute Mahalanobis distances, to define generalized least
squares estimates instead of ordinary least squares, and many other useful
things.

Now suppose that x and y are not vectors, but rather functions with
values x(t). The natural functional counterpart to x′y is

∫
x(t)y(t) dt, re-

placing the sum in (A.1) by an integral. Again we have an operation on
two functions x and y that is denoted by presenting the instructions for
computing its value, but we know that this, too, is symmetric in x and y,
linear in either function, and satisfies the positivity requirement. The same
conclusions can be drawn for the operation

∫
ω(t)x(t)y(t) dt, where ω is a

strictly positive weight function, and indeed for the more general operation∫ ∫
ω(s, t)x(s)y(t) ds dt if ω is strictly positive-definite, which simply means

that the positivity requirement for the inner product is satisfied.
It should by now be clear that we can achieve a great leap forward

in generality by using a common notation for these various real-valued
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operations that is understood to imply symmetry, positivity and bilinearity,
without bothering with the details of the computation. We call such an
operation an inner product, and we use the generic notation 〈x, y〉 for the
inner product of x and y. The fundamental properties of an inner product
are:

Symmetry: 〈x, y〉 = 〈y, x〉 for all x and y;

Positivity: 〈x, x〉 ≥ 0 for all x, with 〈x, x〉 = 0 if and only if x = 0;

Bilinearity: for all real numbers a and b, 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉
for all vectors x, y and z.

Note that bilinearity in the second argument follows from symmetry and
bilinearity in the first.

A.1.2 General properties: association, size, angle, distance
We can think of the inner product as defining a scalar measure of asso-
ciation between pairs of quantities x and y. The symmetric nature of the
measure means that it is, as we would usually require, invariant with re-
spect to the order of the quantities, and its bilinearity means that changing
the scale of either argument and/or using a sum as either argument leaves
the measure unchanged in its essential properties.

Positivity means that the inner product of any x with itself is essentially
a measure of its size. The positive square root of this size measure is called
the norm of x, written ‖x‖, so that

‖x‖2 = 〈x, x〉 (A.2)

with ‖x‖ ≥ 0. In the special case where x is an n-vector, and the inner
product is the Euclidean inner product (A.1), the norm of x is simply the
length of the vector measured in n-dimensional space. In the case of a

function f , a basic type of norm is ‖f‖ =
√∫

f2, and is called its L2 norm.
Whatever inner product is used, the standard properties of inner

products lead to the following properties of the norm:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0

2. ‖ax‖ = |a|‖x‖ for all real numbers a

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖.

From the properties of the inner product also follows the Cauchy-Schwarz
inequality:

|〈x, y〉| ≤ ‖x‖‖y‖ =
√

〈x, x〉〈y, y〉.
This inequality links the inner product with the derived size measure or
norm, and also leads to the cosine inequality:

−1 ≤ 〈x, y〉/(‖x‖‖y‖) ≤ 1.
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The cosine inequality links the inner product to the geometrical concept
of angle; the angle between x and y can be defined to be the angle θ such
that

cos θ =
〈x, y〉

‖x‖‖y‖ .

Where x and y are n-vectors and the inner product is Euclidean inner
product, θ is the angle between x and y in the usual geometric sense.
Similarly, the cosine of the angle between two functions f and g can be

defined as
∫

fg/
√

(
∫

f2)(
∫

g2). The use of the cosine inequality to justify
the idea of the angle between two vectors or functions further illuminates
the notion that 〈x, y〉 is a association measure. Once we have obtained a
scale invariant coefficient by dividing by ‖x‖‖y‖, we have a useful index of
the extent to which x and y are measuring the same thing.

The particular relation 〈x, y〉 = 0, called orthogonality, implies that x
and y can be considered as being at right angles to one another. Because of
bilinearity, orthogonality remains unchanged under any rescaling of either
quantity. Orthogonality plays a key role in the operation of projection that
is discussed in Section A.2.1.

From the inner product, we also derive a measure of distance between x
and y

dxy = ‖x − y‖ =
√

〈x − y, x − y〉

that has extremely wide applications; again, in the Euclidean case, distance
corresponds to the usual geometric definition.

Thus, the simple algebraic properties of symmetry, positivity and bilin-
earity of the inner product lead easily to very useful definitions of the size
of a quantity x, and of the angle and distance between x and y. We can be
confident that, no matter how we define 〈x, y〉 in a particular application,
the essential characteristics of these three measures remain unchanged.

The nature of the inner product depends on something more fundamental
about x and y: They are elements of a vector space in which elements can be
added, can be multiplied by real numbers to yield new vectors, and in which
addition distributes with respect to scalar multiplication. The ensemble of
a vector space and an associated inner product is called an inner product
space.

Finally, of the three properties, only symmetry and bilinearity are really
crucial. We can often get by with relaxing positivity to the weaker condi-
tion that 〈x, x〉 ≥ 0, so that 〈x, x〉 may be zero for some x’s that are not
themselves zero. Then the inner product is called a semi-inner product and
the norm a seminorm. Most properties of inner products remain true for
semi-inner products.
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A.1.3 Descriptive statistics in inner product notation
As an example of how inner products can work for us, we consider how
standard descriptive statistics can be expressed in inner product notation.
Consider the space of possible univariate samples x = (x1, . . . , xN ) of size
N . Define the inner product to be the Euclidean inner product

〈x, y〉 =
∑

i

xiyi = x′y.

Let 1 indicate the vector of size N all of whose elements are unity. Then
some familiar univariate descriptive statistics become

Mean: x̄ = N−1〈x, 1〉. Note that x̄, being a multiple of an inner product,
is a scalar and not a vector. The vector of length N all of whose
elements are x̄ is x̄1.

Variance: s2
x = N−1〈x − x̄1, x − x̄1〉 = N−1‖x − x̄1‖2

Covariance: sxy = N−1〈x − x̄1, y − ȳ1〉

Correlation: rxy = sxy/(sxsy).

It is easy to show that the covariance sxy is itself a semi-inner product
between x and y. It is then an immediate consequence of the cosine in-
equality that the correlation coefficient satisfies the well-known correlation
inequality

−1 ≤ rxy ≤ 1.

Now suppose that we stop using the Euclidean inner product, but instead
go for

〈x, y〉 =
∑

i

wixiyi,

where wi is a nonnegative weight to be applied to observation i. What dif-
ference would this make? None at all, except of course we must now divide
by the constant

∑
i wi instead of N in defining x̄, s2

x, and sxy. The essential
characteristics of these statistics depend on the characteristics of the inner
product, and not on precisely how the inner product is actually calculated.
Of course, the precise weighting affects the values of the statistics, but
the essential meanings of the various descriptive statistics, for example as
measures of location, scale and dependence remain basically unchanged.

We can generalize this idea further: Suppose that the sequence of ob-
servations is known to be correlated, with covariance matrix Σ. Then we
can use 〈x, y〉 = x′Σ−1y to provide a basis for descriptive statistics that
compensate for the known covariance structure on the observations.

Now consider these same statistics in the context of x being a function
with values x(t), where argument t takes values within some real interval
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such as [0, T ]. Thus the index i taking N possible values has been replaced
by the index t taking an infinity of values. Define the inner product as

〈x, y〉 =
∫ T

0
x(t)y(t) dt,

where we assume that the functions are sufficiently well behaved that the
integral is always defined and finite. Then the various descriptive statistics
continue to be defined as above, except that we divide by

∫ T

0 dt = T
instead of N and the vector 1 is replaced by the function 1 = 1(t) which
takes the value of unity for all t. In the functional case, x̄ becomes the
mean level of the function x, s2

x becomes a measure of its variation about
its mean level, and sxy and rxy measure the correspondence between the
variation of x and y. Moving to

〈x, y〉 =
∫ T

0
ω(t)x(t)y(t) dt,

for some positive weight function ω, and dividing by
∫

ω(t) dt really
wouldn’t change these interpretations in any essential way, except that
different parts of the range of t would be regarded as being of different
importance.

Finally, we note that even the divisors in these statistics can be defined
in inner product terms, meaning that our fundamental descriptive statistics
can be written in the unifying form

x̄ = 〈x, 1〉/‖1‖2

s2
x = ‖x − x̄1‖2/‖1‖2

sxy = 〈x − x̄1, y − ȳ1〉/‖1‖2.

A.1.4 Some extended uses of inner product notation
In this book, we take the somewhat unorthodox step of using inner product
notation to refer to certain linear operations that, strictly speaking, do not
fall within the rubric of inner products.

So far in our discussion, the result of an inner product has always been
a single real number. One way in which we extend our notation is the
following. Let x = (x1, . . . , xm)′ be a vector of length m, each element of
which is an element of some vector space, whether finite dimensional or
functional. Then the notation 〈x, y〉, where y is a single element of the
same space, indicates the m-vector whose elements are 〈x1, y〉, . . . , 〈xm, y〉.
Furthermore, if y is similarly a vector of length, say, n, then the notation
〈x, y′〉 defines the matrix with m rows and n columns containing the values
〈xi, yj〉, i = 1, . . . , m; j = 1, . . . , n. We only use this convention in situations
where the context should make clear whether x and/or y are vectors of
elements of the space in question.
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In the functional context, we sometimes write

〈z, β〉 =
∫

z(s)β(s) ds

even when the functions z and β are not in the same space. We hope that
the context of this use of inner product notation will make clear that a
true inner product is not involved in this case. The alternative would have
been the use of different notation such as (z, β), but we considered that the
possibilities of confusion justified avoiding this convention.

An important property is that 〈z, β〉 is always a linear operator when
regarded as a function of either of its arguments; generally speaking a
linear operator on a function space is a mapping A such that, for all f1 and
f2 in the space, and for all scalars a1 and a2, we have A(a1f1 + a2f2) =
a1Af1 + a2Af2.

A.2 Further aspects of inner product spaces

We briefly review two further aspects of inner product spaces that are useful
in our later development.

A.2.1 Projections
Let u1, . . . , un be any n elements of our space, and let U be the subspace
consisting of all possible linear combinations of the ui. We can characterize
the subspace U by using suitable vector notation. Let u be the n-vector
whose elements are the u1, . . . , un. Then every member of U is of the form
u′c for some real n-vector c.

Associated with the subspace U is the orthogonal projection onto U ,
which is defined to be a linear operator P with the following properties:

1. For all z, the element Pz falls in U , and so is a linear combination of
the functions u1, . . . , un.

2. If y is in U already, then Py = y.

3. For all z, the residual z − Pz is orthogonal to all elements v of U .

From the first two of these properties, it follows at once that PP = P 2 = P .
From the third property, it is easy to show that the operator P maps each
element z to its nearest point in U , distance being measured in terms of the
norm. This makes projections very important in statistical contexts such
as least squares estimation.



392 A.3. Matrix decompositions and generalized inverses

A.2.2 Quadratic optimization
Some of our functional data analysis methodology require the solution of
a particular kind of constrained optimization problem. Suppose that A is
a linear operator on a function space satisfying the condition

〈x, Ay〉 = 〈Ax, y〉 for all x and y.

Such an operator is called a self-adjoint operator.
Now consider the problem of maximizing 〈x, Ax〉 subject to the con-

straint ‖x‖ = 1. In Section A.5, we set out results relating this optimization
problem to the eigenfunction/eigenvalue problem Au = λu. We then go on
to consider the more general problem of maximizing 〈x, Ax〉 subject to a
constraint on 〈x, Bx〉 for a second self-adjoint operator B.

A.3 Matrix decompositions and
generalized inverses

We describe two important matrix decompositions, the singular value
decomposition and the QR decomposition. Both of these are standard tech-
niques in numerical linear algebra, and can be carried out within packages
such as S-PLUS and MATLAB R©. We do not give any details of the way the
decompositions are computed; for these see, for example, Golub and Van
Loan (1989) or the standard numerical linear algebra package LINPACK
(Dongarra et al., 1979).

A.3.1 Singular value decompositions
Suppose Z is an m×n matrix. For many purposes it is useful to carry out a
singular value decomposition (SVD) of Z. This expresses Z as the product
of three matrices

Z = UDV′ (A.3)

where, for some integer q ≤ min(m, n),

• U is m × q and U′U = Iq, where Iq is the identity matrix of order q;

• D is a q × q diagonal matrix with strictly positive elements on the
diagonal;

• V is n × q and V′V = Iq.

The diagonal elements d1, d2, . . . , dq of D are called the singular values of
Z, and the SVD can always be carried out in such a way that the diagonal
elements d1, d2, . . . , dq satisfy

d1 ≥ d2 ≥ . . . ≥ dq > 0. (A.4)
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In this case, the number q is equal to the rank of the matrix Z, i.e., the
maximum number of linearly independent rows or columns of Z.

In the special case where Z is square and symmetric, the requirement
that the diagonal elements of D are necessarily positive is usually dropped,
but the matrices U and V are chosen to be identical. Furthermore we may
allow q ≥ rank Z. The di then include all the nonzero eigenvalues of Z,
together with some or all of the zero eigenvalues if there are any. We have

Z = UDU′ with U′U = I. (A.5)

If, in addition, Z is positive semi-definite, so that x′Zx ≥ 0 for all vectors
x, then

d1 ≥ d2 ≥ . . . ≥ dq ≥ 0. (A.6)

A.3.2 Generalized inverses
Given any m×n matrix Z, we can define a generalized inverse or g-inverse
of Z to be any n × m matrix Z− such that

ZZ−Z = Z. (A.7)

If m = n and Z is an invertible matrix, then it follows from (A.7) that
Z−1 is a g-inverse of Z. Furthermore, by pre and post multiplying (A.7) by
Z−1, we see that Z−1 is the unique g-inverse of Z in this case.

In the more general case, the matrix Z− is not generally unique, but a
particular g-inverse, called the Moore-Penrose g-inverse Z+ can always be
calculated using the singular value decomposition (A.3) of the matrix Z.
Set

Z+ = VD−1U′. (A.8)

It is easy to check that Z+ is a g-inverse of Z and also that

Z+ZZ+ = Z+ and ZZ+ = UU′. (A.9)

A.3.3 The QR decomposition
The QR decomposition of an m × n matrix Z is a different decomposition
that yields the expression

Z = QR,

where Q is an m × m orthogonal matrix (so that Q′Q = QQ′ = I) and R
is an m × n upper-triangular matrix (so that Rij = 0 if i > j).

If m > n then the last (m − n) rows of R will be zero, and each of the
last (m − n) columns x of Q will satisfy x′Z = 0. Dropping these rows and
columns will yield a restricted QR decomposition Z = Q1R1 where R1 is
an n×n upper-triangular matrix and Q is an m×n matrix of orthonormal
columns.
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A.4 Projections

In discussing the key concept of projection, we first consider projection
matrices in m-dimensional spaces, and then go on to consider more general
inner product spaces.

A.4.1 Projection matrices
Suppose that an m × m matrix P has the property that P2 = P. Define
P to be the subspace of Rm spanned by the columns of P. The matrix P
is then called a projection matrix onto the subspace P. The following two
properties, which are easily checked, give the reason for this definition:

1. Every m-vector z is mapped by P into the subspace P.

2. If z is already a linear combination of columns of P, so that z = Pu
for some vector u, then Pz = z.

If P is a symmetric matrix, then P is called an orthogonal projection
matrix, and will have several nice properties. For example, for any vector
z we have

(Pz)′{(I − P)z} = z′P′(I − P)z = z′(Pz − P2z) = 0.

This means that the projected vector Pz and the ‘residual vector’ z − Pz
are orthogonal to one another, in the usual Euclidean sense. Furthermore,
suppose v is any vector in P. Then, by a very similar argument,

v′(z − Pz) = (Pv)′(I − P)z = v′P(I − P)z = 0,

so that the residual vector is orthogonal to all vectors in P.
Suppose that w is any vector in P other than Pz. Then w − Pz is also

in P and therefore is orthogonal to z − Pz. Defining 〈x, y〉 = x′y and ‖x‖
to be the usual Euclidean inner product and norm, we then have

‖z − w‖2 = ‖z − Pz‖2 + ‖Pz − w‖2 + 2〈z − Pz,Pz − w〉
= ‖z − Pz‖2 + ‖Pz − w‖2 > ‖z − Pz|2. (A.10)

This means that Pz is the closest point to z in the subspace P. Thus
orthogonal projections onto a subspace have the property of mapping each
vector to the nearest point in the subspace.

More generally, if the inner product is 〈x,y〉 = x′Wy, and if P is a pro-
jection onto the space P such that WP is symmetric, then P is orthogonal
with respect to this inner product, meaning that 〈Pz, z − Pz〉 = 0 and
〈v, z − Pz〉 = 0 for all v in P.
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A.4.2 Finding an appropriate projection matrix
Now suppose we are not given a projection matrix, but instead we are given
a subspace U of Rm, and we wish to find an orthogonal projection matrix
P that projects onto U .

Let Z be any matrix whose columns are m-vectors that span the subspace
U . There is no need for the columns to be linearly independent. Define P
by

P = ZZ−.

It is straightforward to show that P is a projection onto the subspace U as
required.

In order to get an orthogonal projection, define P using the Moore-
Penrose g-inverse Z+. Then, in terms of the SVD of Z, we have P = UU′,
so that P is a symmetric matrix and hence an orthogonal projection.

A.4.3 Projections in more general inner product spaces
We can extend these ideas to projections in more general inner product
spaces as discussed in Section A.2.1. As in that section, let u1, . . . , un be
any n elements of our space, and let u be the n-vector whose elements
are the u1, . . . , un. Let U be the subspace consisting of all possible linear
combinations c′u for real n-vectors c. Suppose that P is an orthogonal
projection onto U as specified in Section A.2.1. The proof that P maps
each element z to the nearest member Pz of U is identical to the argument
given in (A.10) because that depends only on the defining properties of an
inner product and associated norm.

How are we to find an orthogonal projection of this kind? Extend our
notation to define K = 〈u, u′〉 to be the symmetric n × n matrix with
elements 〈ui, uj〉. Given any real n-vector x, we have x′Kx = 〈x′u, u′x〉 =
‖x′u‖2 ≥ 0, so the matrix K is positive semi-definite.

Define the operator P by

Pz = u′K+〈u, z〉

for all z. By definition Pz is a linear combination of the elements of u and
hence is in P. We shall show that P is an orthogonal projection onto P.

If y is in P, then y = u′c for some real vector c, so that Py = u′K+Kc,
and y − Py = u′d where d = (I − K+K)c. Therefore, since KK+K = K,

‖y − Py‖2 = d′Kd = d′(K − KK+K)c = 0,

implying that ‖y − Py‖2 = 0 and Py = y.
Finally, given any v in P, and any z, use the property (A.9) to show that

〈Pz − v, Pz〉 = 〈P (z − v), Pz〉 = 〈z − v, u′〉K+KK+〈u, z〉
= 〈z − v, u′〉K+〈u, z〉 = 〈Pz − v, z〉
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and therefore that 〈Pz −v, z −Pz〉 = 0, completing the proof that P is the
required orthogonal projection onto P.

A.5 Constrained maximization of a
quadratic function

A.5.1 The finite-dimensional case
Suppose that A is a symmetric p× p matrix. An important result in linear
algebra concerns the constrained maximization problem

maxx′Ax for p-vectors x subject to x′x = 1. (A.11)

Let λ1 ≥ λ2 ≥ . . . ≥ λp be the eigenvalues of A, and let ui be the cor-
responding eigenvectors, each normalized to have ‖ui‖ = 1. Let U be the
matrix whose columns are the eigenvectors ui and D be the diagonal matrix
with diagonal elements λi. We then have A = UDU′, and UU′ = U′U = I.

Set y = U′x in (A.11), so that x = Uy. We have x′x = y′U′Uy = y′y,
so the constraint x′x = 1 is equivalent to y′y = 1. Therefore, in terms of
y, the maximization problem (A.11) can be rewritten as

maxy′Dy for p-vectors y subject to y′y = 1. (A.12)

This is clearly solved by setting y to be the vector (1, 0, . . . , 0)′, so that x
is the first column of U, in other words the leading normalized eigenvector
u1 of A.

By an extension of this argument, we can characterize all the eigenvectors
of A as solutions of successive optimization problems. The jth normal-
ized eigenvector uj solves the problem (A.11) subject to the additional
constraint of being orthogonal to all the solutions found so far:

maxx′Ax subject to x′x = 1 and x′u1 = x′u2 = . . . = x′uj−1 = 0.
(A.13)

Setting x = uj , we have x′Ax = λju′
juj = λj , the jth eigenvalue.

A.5.2 The problem in a more general space
Now suppose we are working within a more general inner product space.
The role of a symmetric matrix is now played by a self-adjoint linear
operator A, that is, one satisfying the condition

〈x, Ay〉 = 〈Ax, y〉 for all x and y.

We shall assume that A is a completely continuous (or compact) symmetric
transformation on a Hilbert space; there is no need at all for the reader
to understand what this means, but anyone interested is referred to Aubin
(2000) or any other standard text on functional analysis. The reader can
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always take it on trust that the assumptions are satisfied when we appeal
to the results of this section.

The problem

max〈x, Ax〉 subject to ‖x‖ = 1 (A.14)

corresponds to the maximization problem (A.11), and we can define a
sequence uj as the solutions to the succession of optimization problems

max〈x, Ax〉 subject to ‖x‖ = 1 and 〈x, ui〉 = 0 for i < j. (A.15)

Under the conditions referred to above, these optimization problems can
be solved by considering the eigenfunction problem

Au = λu

and normalizing the eigenfunctions u to satisfy ‖u‖ = 1. Suppose the
eigenvalues are λ1 ≥ λ2 ≥ . . . with eigenfunctions u1, u2, . . .. Then
the leading eigenfunction u1 solves the optimization problem (A.14) and
the value of the maximum is λ1. The successive eigenfunctions uj solve
the constrained problem (A.15), and the maximum at the jth stage is
〈uj , Auj〉 = λj‖uj‖2 = λj .

A.5.3 Generalized eigenproblems
We sometimes wish to modify the optimization problems we have consid-
ered by the introduction of a positive definite symmetric matrix B into
the constraints, replacing the constraint ‖x‖ = 1 by x′Bx = 1 or, more
generally, 〈x,Bx〉 = 1, and similarly defining orthogonality with respect to
the matrix B.

Consider the solutions of the generalized eigenproblem

Av = ρBv,

where v is either a function or a vector, and A and B are correspond-
ing linear operators acting on V . We normalize the solutions to satisfy
〈v, Bv〉 = 1. Suppose the solutions are v1, v2, . . . , with corresponding gen-
eralized eigenvalues ρ1 ≥ ρ2 ≥ . . .. Under suitable conditions, which are
always satisfied in the finite-dimensional case, and are analogous to those
noted above for more general spaces, the leading generalized eigenvector or
function v1 solves the problem

max〈v, Av〉 subject to 〈v, Bv〉 = 1, (A.16)

and the maximizing value is equal to ρ1. The jth generalized eigenvector
or function vj solves the problem

max〈v, Av〉 subject to 〈v, Bv〉 = 1 and 〈v, Bvi〉 = 0 for i < j

and the maximizing value is ρj .
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Finally, we note that the problem of maximizing the ratio

〈v, Av〉
〈v, Bv〉 (A.17)

for v � = 0 is equivalent to that of maximizing 〈v, Av〉 subject to the con-
straint 〈v, Bv〉 = 1. To see this, note that scaling any v to satisfy the
constraint does not affect the value of the ratio (A.17), and so the maxi-
mum of the ratio is unaffected by the imposition of the constraint. Once
the constraint is imposed, the denominator of (A.17) is equal to 1, and
so maximizing the ratio subject to 〈v, Bv〉 = 1 is exactly the same as the
original maximization problem (A.16).

A.6 Kronecker Products

Let A be an m by n matrix and let B be a p by q matrix. The Kronecker
product A⊗B is the super or composite matrix of order mp by nq consisting
of sub-matrices aijB. That is,

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
...

am1B am2B . . . amnB

⎤
⎥⎥⎥⎦ .

One of the most common applications of the Kronecker product is to
express a linear equation of the form

AXB′ = C,

which cannot be solved for X by conventional matrix algebra, in the form

(B ⊗ A)vec (X) = vec (C),

where vec (X) indicates the vector of length nq obtained by writing matrix
X as a vector column-wise, and, in the same way, vec (C) indicates the
vector of length mp obtained by writing matrix C as a vector column-wise.
Then we can express the solution directly as

vec (X) = (B ⊗ A)−1vec (C),

provided that, of course, matrix B ⊗ A is nonsingular.
The Kronecker product is bilinear in the sense that

vec (A1XB′
1 + A2XB′

2) = (B1 ⊗ A1 + B2 ⊗ A2)vec (X).

Other useful relations for simplifying expressions involving Kronecker
products are

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C
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(A ⊗ B)′ = A′ ⊗ B′

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
(A + B) ⊗ C = (A ⊗ C) + (B ⊗ C)
A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C)
trace (A ⊗ B) = (traceA)(traceB),

Finally, if both A and B are nonsingular, then

(A ⊗ B)−1 = A−1 ⊗ B−1.

A.7 The multivariate linear model

We now return to a more statistical topic. A review of the multivariate
linear model may be helpful, both to fix ideas and notation, and because
some of the essential concepts transfer without much more than a change of
notation to functional contexts. But a slight change of perspective is helpful
on what the design matrix means. Moreover, a notion that is used repeat-
edly for functional data is regularization, and we introduce regularization
in Section A.8 within the multivariate context.

A.7.1 Linear models from a transformation perspective
Let Y be a N × p matrix of dependent variable observations, Z be a N × q
matrix, and B be a q × p matrix. In classical terminology, Z is the design
matrix and B is a matrix of parameters.

The multivariate linear model is

Y = ZB + E. (A.18)

The rows of the disturbance or residual matrix E are often thought of, at
least at the population level, as independent samples from a common pop-
ulation of p-variate observations with mean 0 and finite covariance matrix
Σ.

Although in many contexts it is appropriate to think of the columns of Z
as corresponding to variables, it is better for our purposes to take the more
general view that Z represents a linear transformation that maps matrices
B into matrices with the dimensions of Y. This can be indicated by the
notation

Z : Rq×p → RN×p.

The space of all possible transformed values ZB then defines a subspace of
RN×p, denoted by R(Z), and is called the range space of Z.
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A.7.2 The least squares solution for B

When it is assumed that the rows of the disturbance matrix E are inde-
pendent, each with covariance matrix Σ, the natural inner product to use
in the observation space RN×p is

〈X,Y〉 = traceXΣ−1Y′ = traceY′XΣ−1 (A.19)

for X and Y in RN×p. We then measure the goodness of fit of any parameter
matrix B to the observed data Y making use of the corresponding norm

LMSSE(B) = ‖Y − ZB‖2 = trace (Y − ZB)′Σ−1(Y − ZB). (A.20)

Suppose, for the moment, that the matrix Z is of full column rank, or
that N ≥ q and the columns of Z are independent. A central result on the
multivariate linear model is that the matrix B̂ that minimizes LMSSE(B) is
given by

B̂ = (Z′Z)−1Z′Y. (A.21)

The corresponding predictor of Y is given by

Ŷ = ZB̂ = Z(Z′Z)−1Z′Y. (A.22)

The matrix Ŷ can be thought of as the matrix in the subspace R(Z) that
minimizes ‖Y − Ŷ‖2 over all possible approximations Ŷ = ZB falling in
R(Z).

Note that the least squares estimator B̂ and the best linear predictor Ŷ
do not depend on the variance matrix Σ, even though the fitting criterion
LMSSE(B) does. It turns out that when the details of the minimization of
LMSSE(B) are carried through, the variance matrix Σ cancels out. But if
there are covariances among errors or residuals across observations, con-
tained in a variance-covariance matrix Γ, say, then the inner product (A.19)
becomes

〈X,Y〉 = trace Y′Γ−1XΣ−1.

Using this inner product in the definition of goodness of fit, the estimator
of B and the best predictor of Y becomes

B̂ = (Z′Γ−1Z)−1Z′Γ−1Y

and

Ŷ = Z(Z′Γ−1Z)−1Z′Γ−1Y.

Thus, the optimal solution does depend on how one treats errors across
observations.
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A.8 Regularizing the multivariate linear model

One of the major themes of this book is regularization, and for readers
familiar with multivariate analysis, it may be helpful to introduce this idea
in the multivariate context first. Others, especially those who are familiar
with curve estimation already, may prefer to omit this section.

Suppose now that we are dealing with an under-determined problem,
where q > N and the matrix Z is of full row rank N . This means that the
range space R(Z) is the whole of RN×p.

A.8.1 Definition of regularization
Regularization involves attaching a penalty term to the basic squared error
fitting criterion:

LMSSEλ(B) = ‖Y − ZB‖2 + λ × PEN(B). (A.23)

The purpose of the penalty term PEN(B) is to require that the estimated
value of B not only yields a good fit in the sense of small ‖Y − ZB‖2,
but also that some aspect of B captured in the function PEN is kept under
control. The positive penalty parameter λ quantifies the relative importance
of these two aims. If λ is large, then we are particularly concerned with
keeping PEN(B) small, and getting a good fit to the data is only of secondary
importance; if λ is small, then we are not so concerned about the value of
PEN(B).

One example of this type of regularization is the ridge regression tech-
nique, often used to stabilize regression coefficient estimates in the presence
of highly collinear independent variables. In this case, what is penal-
ized is the size of the regression coefficients themselves, in the sense that
PEN(B) = trace(B′B), the sum of squares of the entries of B. The solution
to the minimization of LMSSEλ(B) is then

B = (Z′Z + λI)−1Z′Y.

As λ approaches zero, B approaches the least squares solution described in
Section A.7, but as λ grows, B approaches zero. Thus, ridge regression is
said to shrink the solution towards zero.

A.8.2 Hard-edged constraints
One way to obtain a well-determined problem is to place constraints on the
matrix B. For example, consider the model where it is assumed that the
coefficients in each column of B are a constant vector, so all we have to do
is to estimate a single number for each column. If we define the (q − 1) × q
matrix L to have Lii = 1 and Li,i+1 = −1 for each i, and all other entries
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zero, then our assumption about B can be written as the constraint

LB = 0. (A.24)

In order for the elements of B to be identifiable on the basis of the observed
data, the design matrix Z has to satisfy the condition

Z1 � = 0, (A.25)

where 1 is a vector of q unities.
The transformation L reduces multiples of the vector 1 exactly to zero.

The identifiability condition (A.25) can be replaced by the condition that
the zero vector is the only q-vector b such that both Lb and Zb are zero.
Equivalently, the matrix [Z′ L′] is nonsingular.

A.8.3 Soft-edged constraints
Instead of enforcing the hard-edged constraint LB = 0, we may wish to let
the coefficients in any column of B vary, but not more than really neces-
sary, by exploring compromises between the rank-one extreme implied by
(A.24) and a completely unconstrained underdetermined fit. We might con-
sider this a soft-edged constraint, and it can be implemented by a suitable
regularization procedure. If we define

PEN(B) = ‖LB‖2 = trace(B′L′LB) (A.26)

then the penalty PEN(B) quantifies how far the matrix B is from satisfying
the constraint LB = 0.

The regularized estimate of B, obtained by minimizing the criterion
(A.23), now satisfies

(Z′Z + λL′L)B = Z′Y. (A.27)

For any λ > 0, a unique solution for B requires the nonsingularity of the
matrix [Z′ L′], precisely the condition for identifiability of the model subject
to the constraint (A.24).

In the limit as the parameter λ → ∞, the penalized fitting criterion
(A.23) automatically enforces on B the one-dimensional structure LB = 0.
On the other hand, in the limit λ → 0, no penalty at all is applied, and
B takes on whatever value results in minimizing the error sum of squares
to zero, due to the underdetermined character of the problem. Thus, from
the regularization perspective, the constrained estimation problem LB = 0
that arises frequently in linear modelling designs is simply an extreme case
of the regularization process where λ → ∞ .

We have concentrated on a one-dimensional constrained model, corre-
sponding to a (q−1)×q matrix L, but of course the ideas can be immediately
extended to nonsingular s × q constraint matrices L that map a q-vector
into a space of vectors of dimension s ≤ q. In this case, the constrained
model is of dimension q−s. Note also that the specification of the matrix L
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corresponding to any particular constrained model is not unique, and that
if L is specified differently the regularized estimates are in general different.

Finally, we note in passing that Bayesian approaches to regression, in
which a multivariate normal prior distribution is proposed for B, can also
be expressed in terms of a penalized least squares problem of the form
(A.23). For further details see, for example, Kimeldorf and Wahba (1970),
Wahba (1978) or Silverman (1985).
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Atteia, M. (1965) Spline-fonctions généralisées. Comptes Rendus de l’Académie
des Sciences Série I: Mathématique, 261, 2149–2152.
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Härdle, W. (1990) Applied Nonparametric Regression. Cambridge: Cam-
bridge University Press.
Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. New York:
Chapman and Hall.
Hastie, T. and Tibshirani, R. (1990) Varying-coefficient models. Journal of
the Royal Statistical Society, Series B, 55, 757–796.



References 411

Hastie, T., Buja, A. and Tibshirani, R. (1995) Penalized discriminant
analysis. Annals of Statistics, 23, 73–102.

He, G. Z., Müller, H-G. and Wang, J. I. (2003) Functional canonical analysis
for square integrable stochastic processes. Jurnal of Multivariate Analysis,
85, 54–77.

Heckman, N. E. and Ramsay, J. O. (2000). Penalized regression with model
based penalties. Canadian Journal of Statistics. 28, 241–258.
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〈·, ·〉, 21, 167, 385–392
for hybrid data, 190

◦, 21
‖ · ‖, 21, 167, 387

alignment, see registration
amplitude modulated sinusoidal

signal, 320
amplitude variability, 127
analysis of covariance, see functional

analysis of covariance
analysis of variance, 223, 380
ANOVA, 223, 380
ARIMA models, 222
asymptotic results, 383
autoregressive forecasting models, 295

B-splines, 38, 49–53, 68, 86, 182, 236,
275, 363

band matrix, 275
basis expansions

for computing functional PCA, 161
basis functions

choice of number, 67–69
complementary, 105
definition and introduction, 43

Bayesian approaches, 296

relation with penalized least
squares, 403

Berkeley Growth Study, 1
between-class variance, 214
bias-variance tradeoff, 67
bilinearity

property of inner product, 386
biomechanics, 330
biresolution analysis, 104
bivariate functional PCA, 166–170
blacksmiths, 229
boundary conditions

periodic, 39
boundary constraint operator, 360
breakpoint

definition, 48

Canadian weather data, 5, 11, 14, 17,
60, 71, 130, 150, 154, 156, 157,
187, 198, 217, 223, 241, 248,
261, 361

ccorsq, definition, 204
ccorsqλ, definition, 206
canonical correlation analysis, 16,

201–215
algorithmic considerations, 210–213
basic problem, 201–203



420 Index

choice of smoothing parameter, 206
classic multivariate, 204
functional definition and notation,

204
need for smoothing in functional

case, 205, 209–210
regularized formulation, 205

canonical variate weight vectors
definition, 204
subsidiary, 204

canonical variates
definition, 201
quantification of roughness, 211

Cauchy-Schwarz inequality, 387
CCA, see canonical correlation

analysis
central difference, 42
chemometrics, 296
cluster analysis, 172
compact transformation in Hilbert

space, 396
complementary bases, 105
complementary projection operator,

318
completeness, 354
composition of functions, 21
concurrent functional linear model,

220, 281
application to oil refinery data, 299
application to weather data, 248
computational issues, 255
fitting model and assessing fit, 250
for fitting seasonal trends, 251
introduction, 247
link with PDA, 339

confidence intervals
for climate zone effects, 241
for concurrent functional linear

model, 257
for estimated curves, 72
for function estimates, 104
for function values, 100
for functional contrasts, 240
for functional linear models

limitations, 243
in functional linear models, 239

constant basis, 55
contrasts, 233–234, 251
correlation function, 22

correlation inequality, 389
cosine inequality, 387
covariance function, 22
critically damped system, 330
cross-correlation, 24
cross-covariance, 24
cross-validation, 96, 368

for canonical correlation analysis,
206

for smoothed PCA, 178
in functional linear models, 266,

270
curvature

of a function, 41
CV, see cross-validation

D notation, 20
D−1 as notation for integration, 319
damped harmonic motion, 322
damping coefficient, 303
data representation, 11
degrees of freedom

for spline smooth, 88
of a linear smooth, 66
of smoothing operation, 368

density estimation, 5
maximum likelihood approach, 119
of residuals to a linear model, 123

derivative notation, 20–21
derivatives

estimation of, 42, 45, 63, 75, 133
by spline smoothing, 90

use in FDA, 13, 17
descriptive statistics, 15
designer basis, 56
differential equations, 7, 307–326

higher order, 311
homogeneous, 308
introduction to use in FDA, 297
linear, 308
nonconstant coefficients, 310
nonhomogeneous, 308
nonlinear, 313
systems of equations, 312
to estimate positive functions, 114

differential operators
linear, 309
use to produce new functional

observations, 313
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use to regularize or smooth models,
316

differentiation
as a roughening operation, 319

discriminant
of a differential operator, 330

discriminant analysis, penalized, see
penalized discriminant analysis

dynamic generalized linear model,
258

dynamic models, 297

economic data, see nondurable goods
index

eigenproblem
generalized, 397

electricity consumption data, 275
empirical basis, 56
empirical Bayes, 381
equine gait data, 229–234
error

models for, 40–41
Euclidean inner product, 386
evaluation mapping, 354
exponential basis, 54

F ratio
for prediction of a function from a

function, 288
in functional analysis of variance,

227
FANOVA, see functional analysis of

variance
farriers, 229
feature alignment, 131
feedback loop, 312
financial mathematics, 382
finite element methods, 295
forcing function, 222, 308, 328, 334,

348
fourier series, 38, 45–46, 105, 179,

236, 248, 264
free-knot splines, 79
function estimation

constrained, 111–126
functional analysis, 381
functional analysis of covariance

fitting model and assessing fit, 250
specification, 248

functional analysis of variance
assessing fit, 225
computational issues, 235–241

pointwise minimization, 236
regularized basis expansion, 236

contrasts, 233–234
definition, 223
fitting, 225

functional canonical correlation
analysis, see canonical
correlation analysis

functional CCA, see canonical
correlation analysis

functional cluster analysis, 172
functional covariates

concurrent influence, see concurrent
functional linear model

functional data analysis
goals of, 9

functional features, see landmarks
functional interpolant, definition, 272
functional interpolation, 272–273
functional linear model, see also

functional analysis of variance
dependence in

concurrent, 220, 299
local, 221
short-term feed-forward, 220
total, 220

functional response and categorical
independent variable, 218

functional response and functional
independent variable, 220,
279–296

assessing fit, 285
computational considerations,

290
general dependence, 293
necessity of regularization, 280
regularization by restricting

basis, 282
functional response and scalar

independent variable, 223–245
overview, 222
predicting derivatives, 221
scalar response from functional

predictor, 219, 261–277
computational issues, 268
confidence limits, 270
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viewed as multiple regression
problem, 262

scalar response from functional
predictor

necessity of regularization, 262
testing hypotheses, 218
types of model, 217

functional linear models, 16
functional means, 22
functional multivariate data, 16
functional part

of hybrid data principal component,
190

functional PCA, see principal
components analysis

functional principal components
analysis, see principal
components analysis

functions of functions, see
composition of functions

g-inverse, see generalized inverse
gait data, 8, 11, 13, 16, 41, 155, 166,

168, 201, 204, 207
Gaussian quadrature, 165
GCV, 97, 248, 303, 341, 368, 371, 373
GDP data, 314, 370, 373
generalized additive model, 259
generalized cross-validation, see GCV
generalized eigenproblem, 397
generalized inverse, 393
Green’s function, 311, 349–357

construction for specified linear
differential operator, 352

definition, 351
for solution of linear differential

equation, 350
links with reproducing kernels, 353

Green’s functions, 376
grip force data, see pinch force data
gross domestic product data, 314,

370, 373
growth data, 1, 41, 62, 88, 112, 140,

165
simulated, 374

handwriting data, 41, 76, 95, 132
handwriting, automatic recognition,

215

harmonic acceleration, 266, 361
harmonics, 151
hat matrix, 270
hierarchical linear models, 381
Hilbert space, 349, 354, 396
homogeneous differential equations,

308
horses, 229–234
http://www.functionaldata.org,

see www.functionaldata.org
hybrid data

balance between functional and
vector variation, 192

definition of, 189
effects beyond phase shift, 195–198
principal components analysis,

190–193
algorithm, 191
incorporating smoothing, 192

impulse function, 348
inner product

for hybrid data, 190
of bivariate functions, 167

inner product notation, 21
as unifying notational principle,

170
inner product space, 388
inner products, 354, 385–392

Euclidean, 386
in specification of descriptive

statistics, 389
notation extended to linear

operations, 390
integral equations, 275
intercept function, 280
interpolation, see functional

interpolation

Kalman filter, 369
Karhunen-Loève decomposition, 381
kernel smoothing, 74
knot

definition, 48
knots

placement, 85
Kronecker product, 238, 398
Kronecker product notation, 292
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L-spline smoothing
algorithm, 364

L-splines
compact support basis, 369

land use data, 276
landmarks, 26, 131
Laplacian, 215
least squares

augmented, 89
estimation of basis coefficients, 59
for shift alignment, 131
local, 73
performance, 62
solution in multivariate linear

modelling, 400
weighted, 61

leverage values, 270
linear differential equation

homogeneous, 222
nonhomogeneous, 222

linear differential operators, 309
to partition variation, 317
use in PDA, 328

linear functional probes, 101
lip movement data, 329–332, 360
local linear fitting, 73
local polynomial smoothing, 77, 133
localized basis function estimators, 76
longitudinal data analysis, 380
lupus data, 123
lupus nephritis, 208–209

Maclaurin expansions, 58
MANOVA, 223
Maple, 321
Mathematica, 321
matrix algebra, 19
mean

functional, 22
mechanical systems, 330
melanoma data, 301–306, 371–373
MINEIG, definition, 140
mixed data

general approaches, 189
monomial basis, 54
monotone function

estimation, 115–117
explicit expression, 115

expression via differential equation,
116

Moore-Penrose inverse, 274
multidimensional arguments

in functional data, 383
multilevel linear models, 381
multiple comparisons, 218
multiresolution analysis, 29, 104
multivariate analysis of variance, 223
multivariate functional data, 8
multivariate linear model, 399–403

Nadaraya-Watson estimate, 75, 77
Newton’s third law, 314
Nobel laureates, 275
nondurable goods index, 3, 14, 29–34

functional linear model for finding
seasonal trends, 251

nonhomogeneous differential
equations, 308

nonlinear differential equations, 313
norm, 387

definition, 21
notation

conventions, 20–22
null space

of a linear differential operator, 317
numerical quadrature

in calculation of functional PCA,
164

oil refinery data, 3, 51, 82, 298–301
comparison with melanoma data,

305
optimal basis theorem, 363
Optotrak, 42
orthogonal projection, 391
orthogonality

penalized, 178
property of inner product, 388

OSERR, definition, 213

partitioning principle, 359
PCA, see principal components

analysis
PCAPSV, definition, 177
PDA

applied to lip movement data,
329–332
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applied to pinch force data,
334–338

assessing fit, 343
by pointwise minimization, 338
comparison with PCA, 332,

343–348
computational techniques, 338–343
definition, 327
using concurrent functional linear

model, 339–343
visualizing results, 332

PEN2, definition, 84
PENm, definition, 84
penalized discriminant analysis

applications, 215
definition, 214
relationship with CCA, 214

penalized optimal scoring, 213–214
penalized sample variance

definition, 177
PENSSE, definition, 85
PENSSEλ

definition for prediction of scalar
from function, 269

definition using general differential
operator, 316

periodic boundary conditions, 39
phase variability, 127
phase-plane plots, 13–14, 29–34, 305
pinch force data, 12, 22, 173, 179,

183, 334
point processes, 121
pointwise functional linear model, 220
Poisson process, 121
polygonal basis, 55
polynomial basis, 54, 58
positive functions

estimation by differential equation,
114

positive functions, estimation of, 111
positivity

property of inner product, 386
postal addresses, automatic

recognition, 215
power basis, 58
principal component scores

definition, 149
plotting, 156

principal components analysis

as eigenanalysis, 152
comparison with PDA, 343–348
computational methods, 160–165
definition for functional data, 149
for multivariate data, 148
hybrid data

algorithm, 191
incorporating smoothing, 192

introductory remarks, 15
of bivariate functions, 166
of mixed data, 187–199
of registered data

linked to registration parameters,
198

regularized, 173–185
algorithms, 179–182
by direct smoothing of data, 182
choosing the smoothing

parameter, 178
stepwise, 184

rotation, 156
smoothed, see regularized
visualization, 154–160

principal differential analysis, 319, see
PDA

probability functions, estimation, 118
probes, linear functional, 101
Procrustes fitting, 194
progesterone data, 244
projection

in general inner product space, 395
in inner product spaces, 391

projection matrix, 65, 394–395
projection operators, 318
psychometrics, 5

QR decomposition, 393
quadratic function

constrained optimization
finite-dimensional case, 396
in general inner product space,

396
quadratic optimization, 392
quantile regression, 79

R2 measure
for estimation of a function by a

function, 285
radial basis functions, 295
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rainfall data
Churchill and Vancouver, 125
Prince Rupert, 120

rate of change, 297
registered curves

principal components analysis of,
187

registration, 12, 127–145
by feature alignment, 132
fixed effects model, 130
global criterion, 131
minimum eigenvalue criterion, 140
mixed data arising from, 194
random effects model, 130
shift, 129
use of landmarks, 132

regression diagnostics, 268
for functional linear models, 270

regression spline, 298
REGSSE, definition, 131
regularity

as general aspect of FDA, 379
regularization, 81–109

by placing hard-edged constraints,
401

multivariate linear model, 401
necessity when predicting a

function from a function, 281
necessity when predicting a scalar

from a function, 263
repeated measures, 380
replication

as general aspect of FDA, 379
reproducing kernel, 354, 372, 376, 381

matrix analogue, 356
relationship with Green’s function,

355
to find optimal basis for spline

smoothing, 363
reproducing kernel Hilbert space,

349–357
resolution of data, 27, 41–42
ridge regression, 206, 401
Riesz representation theorem, 354
RKHS, see reproducing kernel Hilbert

space
roughness

of a response vector, 272
roughness of a function

quantifying, 84
roughness penalties, 81–109

based on general linear differential
operator, 359

higher order, 84
nonstandard, 92

roughness penalty
in estimation of a scalar from a

function, 266
in smoothed PCA, 177

roughness penalty matrix
computation, 88, 93
definition, 87

Runge-Kutta methods, 322

sampling functional data, 39
sampling variance, 70

estimation of, 71
satellite imagery, 276
seasonal variation, 30
second order differential equations,

311
self-adjoint operator, 392
self-modelling nonlinear regression,

143
semi-inner product, 388
seminorm, 388
singular value decomposition, 381,

392
smoothed canonical correlation

analysis, definition, 206
spatial data analysis, 383
spatial dependence

of functions, 383
speech recognition, 215
spline functions, 47–53
spline smoothing, see also roughness

penalties
algorithm, 86
as a linear operation, 87
as augmented least squares, 89
bibliographic references, 57
choice of smoothing parameter,

94–98
constrained, 113
motivation, 82
of oil refinery data, 298
optimal basis, 363
thin plate, 295
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using fourth derivative penalty, 303
using general linear differential

operator, 364
using third derivative penalty, 334

STAPH group, 276, 296
state-space models, 222
step-function basis, 55
stepwise variable selection, 69
stochastic differential equations, 369,

382
sunspots, 301
SVD, see singular value

decomposition
symbolic computation, 321
symmetry

property of inner product, 386

Taylor expansions, 58
tensor product, 294
test data, 5
thin plate splines, 295
tibia growth data, 115
tilted sinusoid model, 340
timescale

choice of, 56
trapezoidal rule, 376

ultrasmooth functions, 108

variable pruning, 69
variance

functional, 22
partitioning, 306

varimax rotation, 156
varying coefficient model, 220, 258
vector notation, 20
vector part

of hybrid data principal component,
190

visualization
of PCA, 154–160

warping, see registration
warping function

definition, 134
general, 137
use to estimate registered function,

137
wavelets, 53–54

bibilographic references, 57
web site, 18
within-class variance, 214
Wronskian, 321
www.functionaldata.org, 18

zip codes, automatic recognition, 215
Zurich growth study, 166
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