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PREFACE

This volume contains twenty-six papers selected from the scientific contributions 

to the Ninth European Workshop on Quantum Systems in Chemistry and Physics 

(QSCP-IX), which was held at Les Houches, France, in September 2004. About 

sixty scientists from twenty countries attended the meeting, which addressed the 

state of the art; they identified new trends and considered future evolution of both 

methods and applications in the field. 

The QSCP-IX workshop took place at the world-renowned conference centre 

of Les Houches, which is owned and operated by the Université Joseph-Fourier 

Ecole de Physique. The Les Houches facility is situated in the French Alps, over-

looking the famous winter resort of Chamonix, with stunning views of Europe’s 

tallest mountain, Mont-Blanc: http://lepes.grenoble.cnrs.fr/QSCP9/.

The QSCP-Les Houches workshop was divided into five morning and four 

afternoon plenary sessions, during which a total of 46 lectures, each of 30 min, 

were delivered by leading experts. There were also two evening sessions where 

32 posters were presented, each being first described in a 3-min oral presentation. 

We are very grateful to both oral speakers and poster presenters, for their energy 

and enthusiasm made the workshop the stimulating experience that it was. 

The QSCP-IX workshop followed a format that has evolved over the eight 

previous QSCP meetings, beginning with that organised by Pr Roy McWeeny at 

San Miniato, near Pisa, in 1996. At the QSCP-Les Houches workshop there were 

sessions on:

 “Density matrices and density functionals”,  

 “Electron correlation treatments: CI and MB methods”,  

 “Relativistic formulations and effects”,  

 “Valence theory; chemical bonding and bond breaking”,  

 “Nuclear motion; vibronic effects, flexible molecules”,  

 “Response theory; properties and spectra”,  

 “Atoms and molecules in strong electric and magnetic fields”,  

 “Condensed matter; clusters and crystals, surfaces and interfaces”,  

 “Molecular electronics; molecular materials”,  

 “Reactive collisions and chemical reactions”,  

 “Computational chemistry, biochemistry and chemical physics”.  

The QSCP workshops have created a unique forum in Europe for open dis-

cussion and exchange of ideas. They facilitate cooperation on the development of 

advanced methods for the description of quantum systems and their applications 

in chemistry, physics, and the molecular sciences. Workshops since 2000 have 

been organized by Professor Aristides Mavridis (Athens) on the Island of Spet-

ses, Greece, in September 2003; Professor Ivan Huba  (Bratislava) at Casta

Papiernicka, Slovakia, in September 2002; and Doctors Yavor Delchev and Alia 

Tadjer (Sofia) in the Boyana Presidential Residence, Bulgaria, in April 2001. 



PREFACE

The twenty-six papers collected in this volume have been divided into four 

sections, each addressing different aspects of the study of quantum systems in 

chemistry and physics. These are:  

Part I: Quantum Chemical Methods

Part II: Relativistic and Heavy-Element Systems  

Part III: Complexes and Clusters

Part IV: Complex Systems. 

We are pleased to acknowledge the support given to the QSCP-Les Houches

workshop by the Centre National de la Recherche Scientifique (CNRS), Dépar-

tements Chimie et SPM, the Région Rhône-Alpes, the Conseil Général de Haute-

Savoie and the City of Grenoble.

The efforts of all members of the Local Organizing Committee were very 

much appreciated, especially the invaluable work of Mrs Karen Guibreteau, Con-

ference Secretary. The supportive help of the team of Les Houches centre, par-

ticularly Brigitte Rousset and Isabelle Lelièvre, is also gratefully acknowledged. 

Special thanks are due to Martial Ducloy, Director of the Les Houches facility, 

for offering us the opportunity to hold QSCP-IX in this prestigious location. 

Professor Daudel acted as Honorary President of the Centre de Mécanique 

Ondulatoire Appliquée (CMOA) for the award of the Promising Scientist Prize,

which was won by Professor Piotr Piecuch (Michigan State University, USA). 

An impressive ceremony took place at the meeting banquet, held in the restaurant 

La Calèche at Chamonix-Mont Blanc. The Prize was awarded at the headquarters 

of UNESCO in Paris: http://www.ccr.jussieu.fr/lcpmr/prize.html.

We hope that, in this volume, we have captured some of the stimulating de-

velopments described during the QSCP-IX workshop, and that the readers will be 

fired with as much enthusiasm in consulting these proceedings as were the work-

shop participants during their time at Les Houches.

Jean-Pierre Julien 

Jean Maruani

Stephen Wilson 

Gerardo Delgado-Barrio 

Didier Mayou

xii



PART I  

QUANTUM CHEMICAL METHODS



THEORY AND COMPUTATION
IN THE STUDY OF MOLECULAR STRUCTURE

H. M. QUINEY
School of Physics,
The University of Melbourne,
Victoria 3010, Australia

AND

S. WILSON
Rutherford Appleton Laboratory,
Oxfordshire OX11 0QX, England

Abstract. In this paper, we advocate the use of literate programming
techniques in molecular physics and quantum chemistry. With a suitable
choice of publication medium, literate programming allows both a theory
and corresponding computer code to be placed in the public domain and
subject to the usual “open criticism and constructive use” which form an
essential ingredient of the scientific method.

The use of literate programming methods leads naturally to structure
and standardization in computer code. In turn, this structure leads to sub-
routine libraries and we describe the specification of a basic tensor algebra
subroutine library, which we have recently developed, and which we expect
to prove useful in a range of applications.

We briefly consider the use of literate programming techniques in en-
hancing collaborative virtual environments, which facilitate developed co-
operation between geographically distributed sites.

1. Introduction

Ziman has noted that the fact that a piece of scientific research is published
often transcends in importance the details of its contents or the medium of
communication. In his book “Real Science: What it is, and what it means”,
he emphasizes that an important characteristic of a published piece of work
is that it is [1]

3

© 2006 Springer. Printed in the Netherlands.

J.-P. Julien et al. (eds.), 

Recent Advances in the Theory of Chemical and Physical Syst sem , 3–12. 



4 H. M. QUINEY AND S. WILSON

“fully and freely available for open criticism and constructive use”
It is our submission that failure to publish computer code, together with its
documentation, and the resulting lack of “open criticism and constructive
use” has hampered the development of computational molecular physics
and quantum chemistry. It is high probable that similar statements could
be made about many other areas of computational science and engineering.

In this paper, we advocate the use of literate programming methods,
first introduced by Knuth [2], but now little used [3], as a means of placing
computer code in the public domain along side the associate theoretical ap-
paratus. Such publication not only places the work in the body of scientific
knowledge but also serves to establish authorship.

This paper is arranged as follows: In section 2, we give a brief overview
of the philosophy of literate programming. In section 3, we emphasize the
benefits of documenting code and consider the consequences of failing to
do so. As we have explained above, publication is seen as fundamental to
progress in science, in general, and so, in section 4, we consider publication
in the context of literate programming. The practicalities of literate pro-
gramming are considered in section 5. The use of literate programming in
developing libraries is considered in section 6 whilst in section 7 devolved
collaboration using literate programming methods is briefly discussed. Sec-
tion 8 contains some final comments.

2. Literate programming

D.E. Knuth introduced the concept of literate programming in 1984. He
“believe[d] that the time [was] ripe for significantly better documenta-
tion of programs, and that we [could] best achieve this by considering
programs to be works of literate.”

This requires a radical shift of emphasis in the writing of computer pro-
grams. Knuth suggests that

“instead of imagining that our main task is to instruct a computer what
to do”

we should
“concentrate rather on explaining to human beings what we want a
computer to do”

The task facing a literate programmer extends beyond that of a computer
programmer. The literate programmer must strive not only to create correct
and efficient code, but also a description of the theoretical concepts that
lie behind the code.

Literate programming is a system of programming for the generation of
structured and documented programs. As Knuth puts it,

“The practitioner of literate programming can be regarded as an es-
sayist, whose main concern is with exposition and excellence of style.
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Such an author, with thesaurus in hand, chooses the names of variables
carefully and explains what each variable means. He or she strives for
a program that is comprehensive because its concepts have been intro-
duced in an order that is best for human understanding, using a mixture
of formal and informal methods that reinforce each other.”

Thus literate programming appears ideally suited to the task of publication
in computational molecular physics and quantum chemistry, and indeed,
in other computational sciences and in engineering. This task must entail
placing both the theoretical model and the associated computer code in
the public domain, where they can be subjected to the “open criticism and
constructive use” which forms an integral part of the scientific method.

Traditionally, computer programs for molecular physics and quantum
chemistry have consisted of fortran code annotated by comments de-
scribing the function of variables, of various pieces of code and subroutines.
Literate programming changes the emphasis. Instead of the code contain-
ing the relevant documentation, literate programs consists of documenta-
tion containing the code. The literate program is a document intended to be
read by humans with code contained between “code delimiters” from which
it can be extracted and processed by literate programming tools prior to
execution on a computer.

3. Documentation

The importance of program documentation is widely recognized. In 1991,
Cordes and Brown [4] put is as follows:-

“The ability to comprehend a program written by other individuals is
becoming increasingly important in software development. Given that
the general cost of program maintenance may reach 60 per cent of the
total software costs associated with a certain product, a real demand
exists for systems that can present the program text in a readable,
understandable format.”

Literate programming afford such a system.
The failure to document a particular piece of code has several negative

consequences, but before considering these let us consider the reasons why
authors fail to document. We have identified a number of motives for this
failing:-

1. ‘Lack of resources’ is the most often given reason for not documenting
a code. Slater [5] writes

“Both management pressure and programmer’s instincts lead doc-
umentation to be left late and under-resourced.”

He continues
“This is bad strategy in the longer term.”
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because an undocumented or poorly documented code is more difficult
and therefore more costly both to maintain and develop.

2. Some code authors take the attitude that
“if it was hard to write it should be hard to use”

and either do not document or poorly document their code.
3. Often secrecy is a motive for failing to document code. This may be

to prevent collaboration or to restrict collaboration.
4. Secrecy is often required to maintain commercial confidentiality and

this may be another reason given for failure to document. However,
commercial code must be maintained and developed and this can only
be done efficiently and cost-effectively if the code is documented.

5. A lack of documentation may conceal plagiarism. Code may have been
“acquired” either illegally or improperly and this is concealed by omit-
ting documentation.

6. Ignorance may also be a reason for not documenting a piece of code,
which has been acquired properly or legally, but is not understood. The
code may performs a particular task, given what seems to be plausible
input, but its operation may not be understood.

Of course, none of these reasons stand up to scrutiny.
Failure to document makes code more costly to maintain and develop,

but it has a more serious consequence: even if it is made freely available, the
code is not placed in the public domain in a form in which it can readily be
comprehended by others. It is not subject, therefore, to the normal scientific
processes of “open criticism and constructive use”.

4. Publication

In an article published in 2003 in the journal Software - Practice and Expe-
rience, Thimbleby [3] makes the observation that, in the computer science
literature, it is

“routine to describe programming ideas without publishing, let alone
depositing, the relevant code, programs or underlying algorithms for
community access.”

He continues
“... after almost 20 years the use of literate programming for publish-
ing code in the mainstream literature is now negligible. In whatever
ways people may be using literate programming internally in software
development projects ..., it is evidently not addressing the needs of the
broader research community.”

He offers reasons for this lack of use:
“Probably the main reason for literate programming failing to survive
in the literature is that it imposes its own styles and conventions ...,
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which adds significantly to the ‘noise’ of a paper and makes it harder
to conform to journal styles.”

Thimbleby also recognized that
“... it has become inappropriate for commercial reasons to publish code.”
The computer science community have produced a significant litera-

ture on methods for implementing literate programming, including cweb,
fweb, and elucidative programming. The computational science commu-
nity, including computational molecular physics and quantum chemistry,
have not explored the application of these methods.

5. The practicalities of literate programming

In the original implementation described by Knuth, literate programs com-
bine text and code in a single file called a web file. The literate program-
ming approach does not restrict the language employed to generate the
text, although TEXor LATEXare most commonly used. Here we shall use
LATEX. The code may be written in fortran, c or even, as in Knuth’s
original work, pascal Here we shall use c.

The web file is not employed directly. It is first processed by one of two
commands:- weave and tangle. The weave command generates a LATEX
file which can be processed further to produce a formatted document in
the usual manner. So the file example.web would be processed as follows:-

weave example.web > example.tex
latex example.tex > example.dvi
dvips example.dvi > example.ps

The command tangle generates a c file from the web file which can
then be processed to produce an executable program. The same web file,
example.web, would be processed as follows:-

tangle example.web > example.c
gcc example.c > example
example < example.in > example.out

A number of schemes for formatting the web file can be envisaged. We
are not advocating any particular scheme here. Knuth suggested using the
character “@” to delimit different fragments of the web file. In his original
scheme, the web file has the following structure:-

@
LATEX code describing the c code which follows
@
c code corresponding to the LATEX above.
@
LATEX code describing the c code which follows
@
c code corresponding to the LATEX above.
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@
LATEX code describing the c code which follows
@
c code corresponding to the LATEX above.
... ... ...

but a number of other possible implementation have been proposed.
We have recently given examples of the application of literate program-

ming methods in quantum chemistry. In a paper entitled “Literate program-
ming in quantum chemistry: A simple example” [6], we describe an appli-
cation to the calculation of an approximation to the ground state energy
of the helium atom. The paper, we submit, demonstrates the pedagogical
advantages of literate programming. In a second paper, entitled “Literate
programming in quantum chemistry: A collaborative approach to code devel-
opment for molecular electronic structure theory” [7], we describe the use
of literate programming method in collaborative code development. We are
also preparing a volume with the title “Literate programming in quantum
chemistry: An introduction” [8].

6. Literate programming and libraries

The adoption of literate programming methods should lead naturally to
structure in a computer program. If we are to consider “programs to be
works of literature” then, just as a book is divided into parts and chapters,
and the chapters are further divided into sections and subsections, perhaps
supplemented by appendices, the “literate” approach to programming leads
to a modularity of the code. This modularity leads in turn to the concept
of a library, a set of fundamental building blocks from which large codes
can be synthesized.

A well known example of a library of fundamental routines upon which
large codes are based is the Basic Linear Algebra Subroutines or blas. In
1973, Hanson, Krogh and Lawson [9] identified the advantages of adopt-
ing a set of basic linear algebra subroutines for vector-vector operations in
linear algebra. Following the development of vector processing and parallel
processing with hierarchical memories, extensions of the blas were pro-
posed, first to handle matrix-vector operations [10] [11], - the Level 2 blas
or blas2, and then matrix-matrix operations [12] [13] [14] - the Level 3
blas or blas3. The blas has found application in numerical libraries such
as the nag library and in a wide range of application software. Carefully
tailored implementations of the blas, often provided by hardware vendors,
have often provided near optimal performance on a wide range of machines
by effectively exploiting their vector and/or parallel processing capabilities.
The “Level 3 BLAS” have proved to be particularly useful in obtaining close
to peak performance on many modern computer architectures because they
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amortize the cost of obtaining data from main memory by reusing data in
the cache or high level memory.

We propose [15] a set of basis tensor algebra subroutines or btas.
Tensors and tensor operators arise in many fields in the computational
sciences, including computational quantum chemistry. The nomenclature
btas(m, n), with m ≥ n, where m and n are the respective ranks of the
tensors, is proposed to establish a high level classification of tensor opera-
tions. The btas can be classified as follows:-
btas(1, 0) btas(1, 1)
btas(2, 0) btas(2, 1) btas(2, 2)
btas(3, 0) btas(3, 1) btas(3, 2) btas(3, 3)
btas(4, 0) btas(4, 1) btas(4, 2) btas(4, 3) btas(4, 4) ...

btas(m, 0) collects simple operations on tensors of rank m, e.g. copying.
btas(1, 1) is equivalent to blas1, btas(2, 1) is equivalent to blas2, and
btas(2, 2) to blas3.

Let us briefly recall a few of the basics of the algebra of tensors. An
nth rank tensor in m-dimensional space is an object with n indices and mn

components. For a general tensor a distinction is made between contravari-
ant (upper) indices and covariant (lower) indices. A tensor of rank m1 +m2

may have m1 contravariant indices and m2 covariant indices. The order
of the indices is significant. Tensors can be classified according to whether
they are
(i) symmetric with respect to the permutation of a pair of indices, i.e.

Ai...j...k...l = Ai...k...j...l (1)

(ii) antisymmetric with respect to the permutation of a pair of indices, i.e.

Ai...j...k...l = −Ai...k...j...l (2)

A general tensor can be written as a sum of a symmetric and an antisym-
metric component.

The use of literate programming techniques means that we can clearly
indicate contravariant and covariant indices in the LATEX fragment describ-
ing code for btas.

7. Literate programming and devolved collaboration

It has been noted that the literate programming paradigm is well suited to
collaborative projects [16]. The phenomenal growth in the power of comput-
ing machines in the second half of the twentieth century was accompanied
during its last two decades by an equally spectacular growth in the net-
work connecting these machines. This has created the new opportunities
for collaborative research across geographically distributed sites, often in
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different time zones. (The present work, for instance, was undertaken on
distant continents.)

A collaborative virtual environment [17] is one that actively supports
human-human communication in addition to human-machine communica-
tion and which uses a Virtual Environment as the user interface. One of
the present authors (SW) was involved in the establishment of a “Euro-
pean Metalaboratory for ab initio multireference quantum chemical meth-
ods”1, which, in addition to developing new quantum chemical method-
ology, planned the development of a pilot suite of capabilities for remote
scientific collaboration between geographically distributed sites by creating
a prototypical environment tailored to the needs of the quantum chemistry
community. Such an environment might provide a cross-platform suite of
audio, video, screen sharing, white board, and other tools for discussions,
seminars, exchange of draft manuscripts, LATEXdocuments, preprints and
reprints, data preparation and analysis, program execution, training, etc.
We submit that, in the development of new methodology and associated
computer code, literate programming techniques, in that they actively sup-
port communication between humans in addition to human-machine com-
munication, provides a promising mechanism for the exchange of infor-
mation within a collaborative virtual environment for quantum chemistry
especially when the collaborators are geographically distributed.

8. Final remarks

The historical record of computational molecular physics and quantum
chemistry, with its huge legacy of largely undocumented code written largely
in every dialect of FORTRAN, strongly indicates that the adoption of the
literate programming paradigm would yield widespread benefits. The ev-
idence suggests that many of these codes will, if they are properly main-
tained, outlive their designers, to be harnessed in unforeseen applications.
A code that is is well-documented is more likely to be used widely, and
to be revised regularly as newer, more efficient algorithms are developed.
While our own interests are in the development of public domain and open
source software, the model seems also to offer advantages to commercial
developers who may very well wish to employ highly skilled programmers

1An EU COST project under action D23 ‘Metachem: Metalaboratories for Complex
Computational Applications in Chemistry’. Project number: D23/0001/01: ‘European
Metalaboratory for multireference quantum chemical methods’ (01/02/200118/07/2005).
Participants: P. Čársky, J. Pittner (J. Heyrovsky Institute, Prague, Czech Republic), I.
Hubač (Comenius University, Slovakia), S. Wilson (Rutherford Appleton Laboratory,
UK), W. Wenzel (Universität Dortmund Germany), L. Meissner (Nicholas Copernicus
University Poland), V. Staemmler (Ruhr Universität Bochum Germany), C. Tsipis (Aris-
totle University of Thessaloniki, Greece), A. Mavridis (National and Kapodistrian Uni-
versity of Athens, Greece).
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who may be otherwise unfamiliar with the highly specialized algorithms of
molecular physics and quantum chemistry.

This change in style requires, perhaps, a commensurate change of per-
ception that reflects more accurately the technological developments and
economic imperatives that shape modern research. The very considerable
investments that have been made in the development of code should be
accorded the same respect and recognition that has been traditionally as-
sociated with scholarly works in books and journals. Given the central role
that computer programs now play in molecular physics and quantum chem-
istry and the complexity, subtlety, and beauty of the scientific ideas that
they embody, the construction of these codes should, as Knuth contends,
rightly be a regarded as an essential act of communication, rather than just
a base commodity, or a necessary evil.

In this paper, we have discussed the application of literate program-
ming methods in computational molecular physics and quantum chemistry.
The widespread adoption of these methods could significantly enhance the
development of both theory and computer code. Similar benefits could be
forthcoming in other areas of computational science and engineering. Lit-
erate programs should be considered “to be works of literature” [2] and
will therefore naturally lead to a highly structured and modular program-
ming style. The widespread adoption of such as style could significantly
enhance the development of both theory and computer code in many areas
of computational science and engineering.
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Abstract. The capability of the variational and perturbative-type ap-
proaches to the many-electron correlation problem – as represented by
the configuration interaction (CI) and coupled cluster (CC) theories – to
describe, respectively, the nondynamic and dynamic correlation effects, is
emphasized, and its exploitation in the design of the so-called externally
corrected CC methods, as well as in the formulation of Davidson-type cor-
rections that are based on the CC theory, at both single reference and
multireference levels, is reviewed. The performance of various methods of
this type is illustrated on the DZP H4 model that consists of two interact-
ing and slightly stretched hydrogen molecules in a trapezoidal geometry.
This often studied model enables a continuous transition from the degener-
ate to the nondegenerate regime by varying the degree of quasidegeneracy
via a single geometric parameter. In this way the role of higher-than-pair
clusters, particularly in the presence of intruder states, can be explored and
the performance of various approaches that exploit the complementarity of
the CI and CC approaches can be evaluated.
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1. Introduction

The computation of ab initio potential energy curves (PECs) or surfaces
(PESs) for a multitude of energetically low-lying states, within a wide range
of molecular geometries that involve various dissociation channels – partic-
ularly when a sufficiently high accuracy is required, as when computing the
ro-vibrational levels and the corresponding spectra or in reaction dynamics
calculations – represents a very challenging problem. There are essentially
two types of approaches that can be employed for this purpose, namely
those of a variational or perturbative variety. These may be either of a sin-
gle reference (SR) or of a multireference (MR) type. Clearly, when dealing
with several states that belong to the same symmetry species, the latter
MR versions are called for.

The typical variational approaches are represented by the configuration
interaction (CI) method, usually restricted to single (S) and double (D) ex-
citations for reasons of feasibility, i.e., by the SR-CISD or MR-CISD meth-
ods (see, e.g., Refs. [1, 2]). Presently, large-scale versions of these methods
represent the most useful tool for the above mentioned purposes of PESs
generation, in spite of their size-inextensive character that is routinely,
though only partially, overcome via various semiempirical, Davidson-type
corrections [3–10]. In spite of the arbitrariness of these ex post corrections
that account for the missing dynamic correlation, the great advantage of the
CI approaches is their ability to handle the static and nondynamic correla-
tion effects in a very efficient and automatic manner, not to mention their
universality and the existence of generally very efficient and well-converging
algorithms.

The perturbative-type approaches are then typified by the coupled-
cluster (CC) methods [11–14], whose superiority over the finite-order many-
body perturbation theory (MBPT) is well documented (for and overview,
see, e.g., Refs. [15–25] and references therein). Although all approaches
that are based on the Rayleigh-Schrödinger perturbation theory are size-
extensive, the great advantage of the CC methods is their efficient handling
of dynamical correlations. The standard SR CCSD method – eventually
supplemented by a perturbative correction for the triples (T) in its widely
used CCSD(T) version [26,27] – is the method of choice when high accuracy
and reliability are called for [28]. Unfortunately, in view of the perturba-
tive nature of the triples correction, the standard CCSD(T) method breaks
down in the presence of quasidegeneracy. This breakdown can be to a large
extent averted by an appropriate renormalization of the triples correction
via the completely renormalized (CR) or renormalized (R) CCSD(T) meth-
ods, as recently introduced by Kowalski and Piecuch [29–31].

The only, yet essential, limitation that is imposed on the SR version
of the CC theory is the nondegeneracy of the reference configuration |Φ〉
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the standard CCSD method performs surprisingly well and is invariably
superior to the finite-order MBPT, which also requires a considerable com-
putational effort when going beyond the second order. For closed-shells,
one usually employs the restricted Hartree-Fock (RHF) wave function as a
reference, and in high-spin open-shell cases, either the restricted open-shell
(ROHF), or even the unrestricted (UHF), HF wave functions are used for
this purpose. Clearly, in the latter case, the spin-symmetry is broken, which
may result in various shortcomings (see, e.g., Ref. [21]). For this reason,
both fully [32, 33] and approximately [34–40] spin adapted versions of the
SR CCSD method have been developed. The fully spin-adapted version re-
lies on the unitary group approach (UGA) to the many-electron correlation
problem (see, e.g., Refs. [41–43] and references therein) and can properly
handle the static correlation in low-lying singlet excited states, as well as
the high-spin doublet and triplet states [32].

Needless to say, the quasidegeneracy is invariably encountered when
breaking genuine chemical bonds, as well as in most open-shell situations
that are encountered when handling, for example, low-spin excited states or
various radicaloid species. A deteriorating performance of the standard SR
CCSD method in such situations can be at least partially offset by an ex-
plicit consideration of higher-than-pair clusters, namely of quadruples (Q)
and/or triples (T), via the full CCSDT [44–46], CCSDTQ [47,48], or higher
order [49] methods. Unfortunately, this results in a drastic increase in com-
putational cost, so that these approaches are restricted to small systems and
moderate basis sets. Moreover, in many instances (see, e.g., Ref. [50] and
below), even these high-order CC approaches become inadequate. Thus,
while all SR CC approaches are inherently size-extensive, they lack the
ability to account for nondynamic correlations. Indeed, in addition to the
size-extensive property (as guaranteed by the absence of unlinked contribu-
tions to the energy), one has to take care of the so-called size-consistency
by choosing a flexible enough reference configuration, or a set of such con-
figurations, that is capable to correctly describe the dissociation channels
of interest, particularly those involving open-shell species. For this reason,
a considerable attention was given to the MR CC approaches.

Unfortunately, in contrast to the CI method, an extension of the SR CC
theory to the MR case is far from being straightforward, since there is no
unique way in which to generalize the SR exponential Ansatz for the exact
N -electron wave function |Ψ〉, i.e.,

|Ψ〉 = exp(T )|Φ〉 , T =
N∑

k=1

Tk , Tk =
∑

j

(tk)jG
(k)
j , (1)

employed. Nonetheless, even in many highly quasidegenerate situations,
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erence (here |Φ〉), leading to the k-fold excited configuration state |Ξ(k)
j 〉 =

G
(k)
j |Φ〉 , 〈Φ|Ξ(k)

j 〉 = 0. Thus, when we wish to employ a model space M0

that is spanned by M suitable configurations |Φi〉, i = 1, 2, · · · , M (repre-
sented by either the Slater determinants or spin-adapted configurations),
so that dimM0 = M , we have essentially two options how to proceed (for
an overview, see, e.g., Refs. [16, 18,21,24]).

On the one hand, we can strive for a single cluster operator T , defining
the valence universal wave operator U , U = exp(T ), which will transform
all the model space states |Φi〉 into some linear combinations of the exact
states |Ψ̃i〉, i = 1, 2, · · · , M , which in turn span the target space M, i.e.,

|Ψ̃i〉 = U |Φi〉, U = exp(T ), (2)

The desired exact states |Ψi〉, given as linear combinations of |Ψ̃i〉 (see Sec.
2), are then obtained by diagonalizing the effective Hamiltonian Heff =
PHUP , defined on M0, as guaranteed by the projector P onto M0, i.e.,

P =
M∑

i=1

Pi, Pi = |Φi〉〈Φi| . (3)

Alternatively, we can define different cluster operators T (i), one for each
reference |Φi〉, so that

U =
M∑

i=1

exp[T (i)]Pi, (4)

and
|Ψ̃i〉 = exp[T (i)] |Φi〉 . (5)

The former approach is referred to as the valence universal (VU) or Fock
space MR CC method [51–54] and the latter one as the state universal (SU)
or Hilbert space method [55]. In spite of a great number of papers devoted
to both the VU and SU approaches, very few actual applications have been
carried out since their inception more than two decades ago. Certainly, no
general-purpose codes have been developed. This is not so much due to the
increased complexity of the MR formalism relative to the SR one, as it is
due to a number of genuine obstacles that have yet to be overcome.

While each approach has its own peculiarities, one common obstacle
arises due to the so-called intruder states. These are the states from the
orthogonal complement M0

⊥ of M0, whose energy falls within the interval
of energies characterizing the reference configurations spanning M0 or lies

when more than one reference configuration is required. Here, as in the fol-
lowing text, G

(k)
j designates a k-fold excitation operator relative to the ref-
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The above requirement is further complicated by the fact that in order
to achieve the exact size-extensivity of the theory, one should employ the
so-called complete model space (CMS), which is spanned by configurations
corresponding to all possible occupations of valence orbitals. Such CMS,
however, will often involve high-energy configurations, thus enhancing the
probability for the occurrence of intruders. For this reason, much work has
been devoted to the design of MR CC formalisms that are based on incom-
plete model spaces (IMSs). Unfortunately, even with IMSs the problem of
intruders often persists, since it is difficult to define an intruder-free model
space in the entire range of geometries of interest.

In the VU case, we encounter additional complications: In order to un-
ambiguously define the VU cluster operator one has to consider not only
the system of interest, but also an entire sequence of daughter systems that
arise by a sequential ionization of valence electrons, until the closed-shell
state involving only the core electrons is reached (for a precise formulation
of the valence universality, see Refs. [18,56]). This, in turn, may lead to ge-
nealogy problems, since one often encounters multiple solutions at various
stages of ionization [57] (note that the target space M is far from being
unambiguous). For these and other reasons, we focus in the following on
the SU-type formalism.

In order to gain a better insight into the structure of the SU CC for-
malism, we have carried out the cluster analysis of the exact full CI (FCI)
wave functions, using the SU CC Ansatz [58], for an extensively studied
(H2)2 model system [59, 60]. This enabled us to explore the importance of
various components of the SU CC equations, as well as to assess the role
of higher-than-pair clusters (see also Ref. [61] for the analysis of VU and
SU cluster relations). Based on this experience, we have formulated the
SU CCSD formalism that employs a general model space (GMS), which is
spanned by an arbitrarily selected set of configurations, regardless the split-
ting of orbitals into the core, valence (or active), and excited (or virtual)
subsets [62]. Here we relied on the so-called intermediate normalization,

〈Φi|Ψ̃j〉 = δij , (6)

which is essential if we wish to carry out the above mentioned cluster analy-
sis that is based on the SU Ansatz and which greatly simplifies the effective
Hamiltonian formalism on which all MR CC formalisms are based. This in
turn requires the imposition of the so-called C-conditions on the internal
cluster amplitudes, as will be explained below.

close to this interval. Thus, similarly as in the SR formalism, in which case
we require the reference configuration |Φ〉 not to be quasidegenerate, it is
essential in the MR version of the CC theory that the energies of reference
configurations are well separated from those spanning M0

⊥.
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introducing the (N, M)-CCSD method [71], which exploits an N -reference
(NR) CISD wave functions as a source of higher-than-pair clusters in an
M -reference SU CCSD method. Both the GMS and (N, M)-CCSD allow us
to avoid the undesirable intruder states, while providing very encouraging
results.

Let us recall, finally, that ec CCSD approaches exploit the complemen-
tarity of the CI and CC methods in their handling of the dynamic and
nondynamic correlations. While we use the CI as an external source of
higher than pair clusters, Meissner et al. [10,72–74] exploit the CC method
to correct the CI results (thus designing the CC-based Davidson-type cor-
rections). This aspect will also be addressed below.

Thus, following a brief exposition of the necessary formalism, introduc-
ing the required terminology and notation, we shall discuss the questions
of size-consistency and size-extensivity in the MR context. We shall further
illustrate these aspects using both the existing and new data.

2. Theory

2.1. EFFECTIVE HAMILTONIAN FORMALISM

We recall that the effective Hamiltonian formalism considers a model space
M0 together with a target space M,

M0 = Span{|Φi〉} = Span{|Φ̃i〉} , 〈Φi|Φj〉 = δij , (7)

M = Span{|Ψi〉} = Span{|Ψ̃i〉} , 〈Ψi|Ψj〉 = δij , (8)

where
dimM0 = dimM = M , i, j = 1, 2, · · · , M, (9)

with the relevant states interrelated via the projection operator P , Eq. (3),
and its “inverse”, the wave operator U , as follows (for an overview, see,
e.g., Refs. [16, 18,21,24])

P |Ψi〉 = |Φ̃i〉 , P |Ψ̃i〉 = |Φi〉 , (10)

U |Φ̃i〉 = |Ψi〉 , U |Φi〉 = |Ψ̃i〉 . (11)

Clearly, while the configurations |Φi〉 are mutually orthonormal, and sim-
ilarly for |Ψi〉, their tilded counterparts are not, and none of the target
states |Ψi〉 is orthogonal to M0. Thus, relating the two basis sets of M0 as
follows

We have carried out several applications showing the promise of this
procedure [63,64], as well as addressed the question of the size-consistency
and size-extensivity [65–67], to which we wish to turn our attention again in
this paper. Finally, we have also extended the idea of externally corrected
(ec) SR CCSD methods [68–70] (see also Refs. [21, 24]) to the MR case,
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Assuming, now, the intermediate normalization, Eq. (6), we find that

〈Φj |Φ̃i〉 = cij = 〈Φj |Ψi〉 , (14)

and writing the target state exact wave functions {|Ψi〉} (or, in fact, any
MR CI wave functions) in the form

|Ψi〉 =
∑

|Φj〉∈M0

cij |Φj〉+
∑

|Ξj〉∈M0
⊥

dij |Ξj〉 , D =‖ dij ‖ , (15)

with {|Ξj〉}, 〈Ξi|Ξj〉 = δij , spanning M0
⊥, while for |Ψ̃i〉 we get

|Ψ̃i〉 = |Φi〉+
∑

|Ξj〉∈M0
⊥

bij |Ξj〉 , (16)

where the coefficient matrix B is given by

B =‖ bij ‖= C−1D . (17)

Note that all the above expressions characterize the effective Hamil-
tonian formalism per se, and are independent of a particular form of the
wave operator U . Indeed, this formalism can be exploited directly, without
any cluster Ansatz for the wave operator U (see Ref. [75]). We also see that
by relying on the intermediate normalization, we can easily carry out the
SU-Ansatz-based cluster analysis: We only have to transform the relevant
set of states into the form given by Eq. (16) and employ the SU CC Ansatz,

|Ψ̃i〉 = U |Φi〉 = exp[T (i)]|Φi〉 . (18)

Then we can employ the same procedure (in fact the same codes) as in
the SR case by considering the model space configuration |Φi〉 as a new
reference (or Fermi vacuum) for each |Ψ̃i〉.

2.2. GMS SU CCSD FORMALISM

We shall now employ the SU Ansatz for the wave operator U , Eq. (4), with
the cluster operator T (i) having the same general form as in the SR case,
namely

|Φ̃i〉 =
∑

j

cij |Φj〉 , C =‖ cij ‖ , detC �= 0 , (12)

we see that the target states are related by the corresponding inverse trans-
formation, namely

|Ψi〉 = U |Φ̃i〉 =
∑

j

cij |Ψ̃j〉 . (13)
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When we employ a GMS, we have to take a special care of the excitations
that interconnect reference configurations withinM0 (cf. also Refs. [76,77]),
which we shall refer to as the internal excitations. This can be done in a
way that preserves the intermediate normalization, Eq. (6), if we employ
the C-conditions mentioned earlier (cf. also Ref. [55]). For this purpose, we
thus distinguish the internal and the external excitation operators G

(k)
j (i)

– and similarly for the corresponding cluster amplitudes t
(k)
j (i) – according

to whether the resulting configuration belongs to M0 or not, i.e., whether

G
(k)
j (i)|Φi〉 ∈ M0 or G

(k)
j (i)|Φi〉 ∈ M0

⊥ , (20)

respectively.
Now, the external cluster amplitudes are again given by the usual MR

SU CCSD equations [55], namely

〈G(k)
l (i)Φi|H|Φi〉 =

∑

j(�=i)

Γij(l)H(eff)
ji , H = exp[−T (i)]H exp[T (i)] ,

(21)
where H

(eff)
ji designates the matrix element of the effective Hamiltonian,

H
(eff)
ji = 〈Φj |H exp[T (i)]|Φi〉 , (22)

and Γij(l) is the coupling coefficient

Γij(l) = 〈G(k)
l (i)Φi| exp[−T (i)] exp[T (j)]|Φj〉 , (23)

while the internal cluster amplitudes are determined via the C-conditions
[62].

The C-conditions ascertain the validity of the intermediate normaliza-
tion, Eq. (6), by requiring that the off-diagonal transformed coefficients c̃ij

that are associated with the reference configurations |Φj〉, (j �= i) in the
target wave function |Ψ̃i〉 must vanish, since

C̃ =‖ c̃ij ‖= C−1C = I , (24)

T (i) =
N∑

k=1

Tk(i) , Tk(i) =
∑

j

t
(k)
j (i)G(k)

j (i) . (19)

Here G
(k)
j (i) designates the k-th rank excitation operator relative to |Φi〉

and t
(k)
j (i) is the corresponding cluster amplitude. In the standard SU CC

approach that employs a CMS, only excitations out of M0 are allowed.
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Thus, with the exception of one-body clusters (k = 1), the internal cluster
amplitudes do not simply vanish, but are given by the cluster amplitudes
of lower rank.

When k = 1, the C-conditions, Eq. (26), imply that the internal one-
body cluster amplitudes vanish,

tQP (i) = 0 , GQ
P (i)|Φi〉 ∈ M0 , (27)

while for the two-body internal amplitudes we find the relationships

tQ1Q2

P1P2
(1) = tQ2

P1
(1) tQ1

P2
(1)− tQ1

P1
(1) tQ2

P2
(1) (28)

and
tP1P2
Q1Q2

(2) = tP2
Q1

(2) tP1
Q2

(2)− tP1
Q1

(2) tP2
Q2

(2) , (29)

assuming that
|Φ2〉 = GQ1Q2

P1P2
|Φ1〉 . (30)

Similar relationships easily follow for higher-order amplitudes [62].
Once all the relevant cluster amplitudes have been determined by solv-

ing the SU CCSD equations, Eq. (21), while taking into account the C-
conditions, we obtain the desired energies and eigenstates by diagonalizing
the effective Hamiltonian. For details, we refer the reader to [62].

2.3. SIZE-CONSISTENCY AND SIZE-EXTENSIVITY

There has been much confusion and misunderstanding concerning these
concepts. In the context of SR theories, the size-consistency usually implies
the ability of the reference to properly describe the dissociation process
at hand. With the exception of closed-shell systems dissociating into the
closed-shell fragments (as, for example, in the case of van der Waals com-
plexes involving closed shell species), the standard RHF reference is not
size-consistent whenever we break genuine chemical bonds, while the UHF
(with all its shortcomings) will usually fit the bill. The size-extensivity, on
the other hand, implies the absence of unlinked contributions to the energy,

I being the identity matrix. Introducing an explicit notation for the exci-
tation operators, which specifies the hole and particle (spin) orbitals as,
respectively, the subscripts and superscripts,

G
(k)
l (i) ≡ GQ1Q2···Qk

P1P2···Pk
(i) , G

(k)
l (i)|Φi〉 ∈ M0 , (25)

(and similarly for the cluster amplitudes t
(k)
l (i) and coefficients c̃ij), the

C-conditions simply require that

c̃ Q1Q2···Qk
P1P2···Pk

(i) = 0 . (26)
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limiting process n →∞ will only make sense if the energy is strictly linear
in n in the noninteracting limit.

It is well known that the CC and MBPT energies are size-extensive,
while this is not the case for truncated CI methods. Indeed, it is not difficult
to verify (see, e.g., Ref. [8]) that for a system consisting of n subsystem [e.g.,
(He)n], the CISD energy is proportional to

√
n rather than to n. This is

easy to comprehend when we realize that by restricting the excitations to,
say, doubles, we ignore simultaneous double excitations on the subsystems
A and B when considering the supersystem (A+B), which now represent
quadruples, while such excitations are taken into account when handling
the systems A and B individually.

In the context of the MR-type methods, the concept of size-extensivity
takes on a much broader meaning. Until recently [65], this fact has not been
explicitly pointed out as fas as we know, since most discussions focused
solely on the lowest state or, at most, on one state at a time. Thus, when
we consider the dissociation process (31), assuming that the subsystems A
and B involve MA and MB states, respectively, with energies Ei(X), i =
1, · · · , MX, X = A, B, we must generally require that the additivity rule

Eij(A + B) = Ei(A) + Ej(B), i = 1, · · · , MA, j = 1, · · · , MB (33)

holds for all MA × MB states of the (A+B) supersystem. For this to be
the case, the model space for the supersystem must be given by a tensor
product of subsystem model spaces [65], i.e.,

M0(A + B) = M0(A)⊗M0(B) . (34)

Moreover, it can be shown [62,65–67] that the C-conditions not only warrant
the validity of the intermediate normalization, but also imply an extensive
cancellation of unlinked terms both in the effective Hamiltonian H(eff) and
in the coupling coefficients Γij(l).

In any case, we believe that for the purposes of PESs generation, the

an eventual small deviation from the size-extensivity. This is not only cor-
size-consistency, as characterized by Eq. (33), is much more essential than

so that for noninteracting subsystems A and B of the parent species AB,
the energy will be additive, i.e., when

AB −→ A + B , (31)

we have that in the separated limit

E(A + B) = E(A) + E(B) . (32)

In other words, we get the same result by considering (A+B) as a super-
system as when handling A and B subsystems separately. This is especially
important for extended systems, involving n subsystems, in which case the
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Figure 1. The PECs for the DZ model of N2 as obtained with the FCI and CCSD
methods.

of the CCSD PEC for N2, shown in Fig. 1, clearly illustrates [83]. Note that
even when we employ the UHF reference, we will not generate a smooth
PEC in view of the presence of the triplet instability (see, e.g., [84, 85]
and references therein), whose onset occurs at an intermediately stretched
geometry [86].

roborated by the MR CI results, but also by a relative success of Brillouin-
Wigner-type MR CC approaches [78–81] that are “manifestly” size-inextens-
ive. In each case, an a posteriori account of size-extensivity, which is in gen-

for any pair of noninteracting subsystems, will also warrant the correct de-
pendence on the subsystem number in the separated limit.

The essential role of the size-consistency in molecular applications is
strikingly conspicuous already in the SR case. Indeed, the SR CCSD method
is “manifestly” size-extensive, yet it fails when breaking genuine chemical

eral only approximate, yields useful results. Further, the validity of Eq. (33)

bonds, as the well-known examples illustrate [82,83]. This breakdown is of
course most prominent when multiple bonds are involved, as the example
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dynamic correlation due to a multitude of highly excited states, unless ex-
cessively large dimensions can be afforded. On the other hand, the CC
approaches are size-extensive at any level of truncation and account very
efficiently for dynamic correlation, thanks to the exponential Ansatz for the
wave operator, yet encounter serious difficulties in the presence of signif-
icant quasidegeneracy. In view of this complementarity and the fact that
both CI and CC approaches are equivalent in their FCI and FCC limit,
a conjoint treatment, if at all feasible, seems to be very desirable. This is
precisely the idea behind the ec CC methods [68–70].

2.4.1. Single-reference methods
In the SR case, where the energy is completely determined by the one-
and two-body cluster amplitudes T1 and T2, the availability of the exact
three- and four-body cluster amplitudes T3 and T4 enables us to recover the
exact FCI or FCC energy by solving the SR CCSD equations, in which we
have accounted for the terms involving higher-than-pair clusters (i.e., for
T3 and T4). Thus, even when we employ approximate three- or four-body
amplitudes, or in fact even a small subset of the most important ones, we
can significantly improve the CCSD result, particularly in the presence of
quasidegeneracy, when higher-than-pair clusters become prominent.

After exploring various possibilities for an affordable and efficient ex-
ternal source of higher-than-pair clusters [68–70], a modest MR CISD wave
functions turned out to represent an optimal choice. These can be easily
transformed into the intermediately normalized SR CI form, with any con-
figuration chosen as a reference and, subsequently, cluster analyzed to yield
a set of the most important three- and four-body cluster amplitudes. This
is precisely the essence of the RMR CCSD method [87–90], which proved
to be capable to satisfactorily describe the stretching even of a triple bond.
For example, using only eight-reference (8R) RMR CCSD, we were able to
generate a PEC for N2 yielding highly accurate ro-vibrational levels [91]:
The fundamental Raman band frequencies were computed with an error of
less than 1 cm−1 and for the vibrationally excited bands the spectra were
faithfully reproduced up to a constant shift of about 7 cm−1.

tude of states of an arbitrary spin multiplicity, regardless of the presence
of quasidegeneracy or even degeneracy, while lacking in the description of

2.4. EXTERNALLY-CORRECTED AND STATE-SPECIFIC METHODS

As already alluded to above, there exists a definite complementarity be-
tween the variational CI approaches and the perturbative CC methods [70].
The former ones, as represented by the limited CISD or MR CISD meth-
ods, are size-inextensive, but efficiently account for static and nondynamic
correlations, while the CC and MBPT approaches are size-extensive at any
level of truncation, but fail in the case of degeneracy or even strong qua-
sidegeneracy. Thus, the CI approaches can simultaneously handle a multi-



APPROACHES TO QUASIDEGENERACY 25

the external information when evaluating the energy, just as the standard
(i.e., not ec) “internally” energy correcting procedures, such as CCSD(T).
In fact, we can use an MR CISD wave function for the direct energy correc-
tion, if in the standard CCSD energy expression we replace the reference
configuration |Φ〉 by the MR CISD wave function, say |χ〉.

Generally, in the ec energy correcting approaches one employs the so-
called asymmetric energy formula [82]

E ≡ E(χ,Ψ) = D−1〈χ|H|Ψ〉 , D = 〈χ|Ψ〉 , (35)

with the only requirement that |χ〉 is not orthogonal to |Ψ〉, so that the
denominator D does not vanish. Now, if |Ψ〉 is the exact wave function (e.g.,
FCI or FCC), we recover the exact energy using any |χ〉. Likewise, when
|Ψ〉 is an approximate wave function, but |χ〉 is exact, we again recover the
exact energy. Of course, in practice, neither |Ψ〉 nor |χ〉 will be exact. For
example, in the standard CCSD approach, we have |Ψ〉 = exp(T1 + T2) |Φ〉
and |χ〉 = |Φ〉. Note that nothing will change if |χ〉 also involves singly
and doubly excited configurations that are accounted for in the CCSD
procedure. In fact, we can write [82]

E(χ,Ψ) = ECCSD + D−1
∑

k>(2)

〈χ| exp(T )|Φk〉〈Φk|H|Φ〉 ,

D = 〈χ| exp(T )|Φ〉 , (36)

where k > (2) implies that the summation extends over higher than doubly
excited configurations |Φk〉, since otherwise E = ECCSD (see Ref. [82] for
details). Here we must emphasize the close relationship of the ec energy
corrected approaches with the method of moments CC theory and the re-
lated renormalized CCSD(T) and similar methods as pursued by Piecuch
and Kowalski [29–31].

We distinguish the above mentioned procedures by the following acro-
nyms: Let N stands either for an N reference model space (NR) or for
(N, na), which designates a complete active space (CAS) with N electrons
and na active orbitals. Then N -RMR CCSD designates an amplitude cor-
rected ec CCSD using N -CISD as the external source, while CCSD-[N ]
labels the corresponding energy corrected CCSD. Combining both correc-
tions we have N1-RMR CCSD-[N2].

Although the RMR CCSD method (and similarly other ec CCSD meth-
ods) is essentially a corrected SR CCSD method, it must be classified as
a state selective or a state specific (SS) MR CC approach, since it exploits
the information originating from the MR CI wave function. It may also be
characterized as an amplitude correcting ec CCSD or SS MR CC method in
contrast to the energy correcting procedures [82,83,92]: In the former case
the external source is employed in the computation of cluster amplitudes
and the energy is obtained via the standard CCSD expression. In contrast,
the energy correcting methods use standard CCSD amplitudes and employ
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function (of the different-orbitals for different spin or DODS type) sup-
plies the exact solution in the fully correlated limit (β = 0), and can thus
serve as an external source of T4 clusters (in a singlet projected form no
odd-numer-of-times excited clusters appear due to spin restrictions).

It can be shown [95] that in such a case the T4 contribution cancels the
exclusion principle violating (EPV) quadratic terms [59]. This realization
led us to the formulation of the so-called ACPQ method (CCSD with an
approximate account for quadruples) [95], as well as to CCDQ′ and CCSDQ′

[86], the latter also accounting for singles. Up to a numerical factor of 9 for
one term involving triplet-coupled pp-hh t2 amplitudes [95], this approach
is identical with an earlier introduced CCSD-D(4,5) approach [59] and an
independently developed ACCD method of Dykstra et al. [96, 97]. This
method arises from CCSD by simply discarding the computationally most
demanding (i.e., nonfactorizable) terms (see Refs. [59, 95–97] for details).

Another way to exploit the complementarity of CI and CC approaches
was explored earlier by Meissner et al. [10]. Instead of using CI as a source of
higher-than-pair clusters and correcting CCSD, it exploits the CC theory to
correct the MR CISD results. In the spirit of an earlier work on Davidson-
type corrections for SR CISD [10], Meissner et al. formulated a CCSD-
based corrections for both SR [72] and MR [74] CISD. The latter was later
extended to higher lying excited states [73].

We must, finally, mention the SS approaches that employ a genuine
MR SU CC formalism, yet focus on one state at a time by neglecting
the coupling with other states. Such an approach was pursued earlier by
Kucharski and Bartlett [98] and, most recently by Mukherjee and collabo-
rators [99,100], who distinguish the relaxed and nonrelaxed versions of their
formalism.

2.4.2. Multireference methods
The three- and four-body clusters play an even more important role in MR
CC theories. In contrast to the SR formalism, where the energy is fully
determined by one- and two-body clusters, the higher-than-pair clusters
enter already the effective Hamiltonian. Consequently, even with the exact
one- and two-body amplitudes, we can no longer recover the exact energies
[71]. Here we must also keep in mind that the excitation order of various
configurations fromM⊥

0 is not uniquely defined, since a given configuration

The idea of the ec methodology originated in our studies of semi-empiric-
al cyclic polyene models CNHN with a nondegenerate ground state (N =
4ν + 2, ν = 1, 2, · · · ), representing a very demanding electron correlation
problem. Indeed, for large N and/or coupling constant (i.e., small reso-
nance integral β), the CCSD method [93] (or even higher order CCSDT
or CCSDTQ methods [50]) completely breaks down due to the presence
of severe quasidegeneracy (and, thus, an increasing prominence of higher-
order clusters, in particular of T4 [94]). On the other hand, the UHF wave
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amplitudes. Moreover, in this way we can also overcome the eventual in-
truder state problems by including such states in MR CISD, while excluding
them from GMS SU CCSD. In other words, while we may have to exclude
some references from M0 in order to avoid intruders, we can safely include
them in the MR CISD model space M1. In fact, we can even choose the
CMS for M1. Thus, designating the dimensions of M0 and M1 spaces by
M and N , respectively, we refer to the ec SU CCSD method employing an
NR-CISD as the external source by the acronym (N, M)-CCSD. Thus, with
this notation, we have that (N, 1)-CCSD ≡ NR-RMR CCSD and (0, M)-
CCSD ≡ MR SU CCSD. Also, (0, 1)-CCSD ≡ SR CCSD. For details of
this procedure and its applications we refer the reader to Refs. [63, 64, 71].

Let us, finally, reiterate that, similarly as the MR CISD method can
serve as an external source for correcting CCSD approaches, we can con-
versely use CCSD to formulate Davidson-type corrections for MR CISD,
both for the lowest-lying [72, 74] and the higher-lying states [73].

In the following section, it will be our objective to compare the perfor-
mance of these various approaches, using the same model system.

3. An Illustrative Example

In order to demonstrate and elucidate the above outlined assertions, we
shall employ a well-studied model system consisting of four hydrogen atoms,
namely the so-called H4 model [59]. In contrast to the original minimum
basis set (MBS) H4 model [59], we shall rely on its double-zeta plus polar-
ization (DZP) version [60], which emphasizes the dynamic correlation com-
ponent (note that the MBS H4 model involves only one quadruply-excited
state). Nonetheless, just as the MBS model, the DZP H4 model enables us
to explore the capability of a studied method to handle the nondynamic
correlation, whose importance varies as we proceed from a completely de-
generate to a nondegenerate limit by varying a single geometric parameter.

The H4 model has been widely used in the past, particularly in its
original MBS version, to evaluate the efficiency of various approaches to the
many-electron correlation problem. It consists of four hydrogen atoms that
are arranged in a trapezoidal configuration with equal and fixed internuclear
H–H separations of 2 Å. Its geometry is thus fully determined by a single
parameter α determining the �(H1H2H3) and �(H2H3H4) angles as follows

can arise via excitations from different references. Nonetheless, when we
employ the exact higher-order cluster amplitudes to correct the SU CCSD
equations (including the effective Hamiltonian), we again recover the exact
result, as in the SR formalism. However, in contrast to the SR case, we may
now require even higher-than-four-body clusters for this purpose.

It turns out that MR CISD represents again the most suitable source of
the required higher-order clusters. Carefully chosen small reference space
MR CISD involves a very small, yet representative, subset of such cluster
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SU CCSD formalism (L-CCSD), as shown in detail earlier for various MBS
H4 models [101]. The H4 model may also be conceived to represent two
slightly-stretched, interacting H2 molecules in a trapezoidal arrangement
and the transition from the degenerate square configuration to the nonde-
generate linear one as a model of a single-bond breaking. In our examples,
we use both the existing and new data ias obtained with various CI and
CC methods.

The exact FCI, as well as the RHF and UHF energies, and the corre-
sponding correlation energies of our DZP H4 model are listed in Table I.

Table I. The RHF, UHF, and FCI ground state energies (in a.u.) and
the corresponding correlation energies ∆Ecorr = E(RHF) − E(FCI) and
∆EUHF

corr = E(UHF)−E(FCI) (in mH) for the DZP H4 model with 0 ≤ α ≤
0.5.

α E(RHF) E(UHF) E(FCI) ∆Ecorr ∆EUHF
corr

0 −1.931750 −2.023191 −2.063112 131.362 39.921
0.01 −1.951444 −2.027357 −2.069401 117.957 42.044
0.02 −1.969599 −2.032340 −2.079470 109.871 47.130
0.05 −2.015652 −2.050315 −2.114299 97.647 63.984
0.1 −2.069109 −2.081256 −2.160115 91.006 78.859
0.15 −2.101808 −2.105761 −2.188929 87.121 83.168
0.2 −2.121595 −2.122762 −2.206548 84.953 83.786
0.3 −2.141080 −2.141131 −2.224122 83.042 82.991
0.4 −2.148427 −2.148427 −2.230887 82.460 82.460
0.5 −2.150367 −2.150367 −2.232700 82.333 82.333

In the α = 0 limit, we thus deal with the fully degenerate square con-
figuration, while the α = 0.5 limit characterizes a nondegenerate linear
arrangement. The internuclear separation of 2 Å between the nearest neigh-
boring atoms corresponds to that of a slightly stretched H2 molecule and
is used to emphasize the quasidegeneracy and intruder state effects. The
latter is particularly apparent when we employ the linear version of the

�(H1H2H3) = �(H2H3H4) = (α + 1
2)π . (37)



Even though a significant portion of the correlation energy is accounted
for at the UHF level in the degenerate and quasidegenerate regions, where
the RHF solution is triplet unstable, the UHF solution never yields the
exact FCI energy, as in the case of cyclic polyenes (cf., e.g., Ref. [93]). Con-
sequently, the UHF-based methods, such as the ACPQ, ACCSD, CCSDQ′,
etc., can only be partially successful, not to mention their lack of triples
contribution. Nonetheless, these methods always represent an improvement
over the standard CCSD, while requiring less computational effort.

3.1. CI-TYPE APPROACHES

Let us first consider CI results that are summarized in Table II. Note that
here, as well as in the subsequent tables, we list the differences from the
exact FCI energies in millihartrees (mH). The relative percentage errors
are not given and may be easily evaluated by relying on the data given
in Table I. We also point out that, generally, an important feature of the
computed potentials for the subsequent generation of the ro-vibrational
levels and the corresponding spectra, obtained by solving the Schrödinger
equation for the nuclear motion, is the overall shape of the PECs or PESs,
rather than the absolute energy values, which involve anyway an arbitrary
energy shift. Thus, in addition to the energy differences from the exact FCI
values we also indicate at the bottom of each subsequent table the so-called
nonparallelism error (NPE), which is defined as the difference between the
maximal and minimal deviations from the FCI potential within a given
range of geometries. Note, however, that unless the energy deviations from
the FCI potential are strictly monotonic within the considered interval,
the given NPE values only represent a lower bound to the actual NPE.
Nevertheless, these NPEs represent a useful overall characteristic of the
quality of the generated PECs or PESs.

Comparing the SR, two-reference (2R), four-reference (4R), and (2/2)R
energy differences in Table II, we immediately notice a great improvement
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We see that the largest correlation effects are associated with the degener-
ate α = 0 geometry and that these effects steadily decrease as we approach
the nondegenerate linear geometry at α = 0.5. We also see that the UHF
method can account for a substantial part (i.e., for about 70 %) of the cor-
relation energy in the degenerate limit. Consequently, in the UHF case, the
correlation effects initially increase with the increasing value of α, reaching
a shallow maximum in the interval 0.15 ≤ α ≤ 0.2 and then marginally
decrease to the RHF values, becoming identical with the standard RHF
related value for α ≥ 0.3, since for these geometries the UHF becomes
identical with RHF, which is no longer triplet (or nonsinglet) unstable [86]
(cf. Refs. [84, 85]).
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APPROACHES TO QUASIDEGENERACY

3.2. CC-TYPE APPROACHES

Turning, next, our attention to the CC methods, we first consider the SR
approaches. These results are summarized in Table III. We first note a
much better performance of SR CCSD over the SR CISD (2nd column in
Tables III and II, respectively): The CCSD deviations from FCI are much
smaller than the CISD ones, as are the corresponding NPEs. This seems
to be a general feature of the SR CCSD method, which often performs
amazingly well even in severely quasidegenerate situations.

corrections do not provide the results for the fully degenerate case (α = 0),
both results for the restricted region 0.01 ≤ α ≤ 0.5 (rNPE) are excellent,
reducing the SGDC rNPE by the factor of two or more. This improvement
is most significant in the highly quasidegenerate region of geometries, as
expected.

Considering the ec CCSD SR approaches, we notice an excellent perfor-
mance of both the 2R- and 4R- or (2/2)R-RMR CCSD methods, yielding
better results than the corresponding MR-CISD (cf. Table II) that is em-
ployed as the external source. Particularly in the latter case, the NPE is
only about half a millihartree. Similarly well-behaved is the energy correct-
ing CCSD-[2R] method, yielding qualitatively identical results as does the
2R-RMR CCSD method. In fact, the 2R-RMR CCSD-[2R] approach (8th
column in Table III), combining both the amplitude and energy corrections,
also yields very similar results. Clearly, a simultaneous application of both
types of corrections, employing the same external source, does not bring
any additional improvement, at least in this case: The corresponding NPE
is almost the same as that of CCSD-[2R] and only marginally better than
the 2R-RMR CCSD one. This is not surprising, since both 2R-RMR CCSD
and CCSD-[2R] already provide very good results for our H4 model.

31

only about half a millihartree. By far superior are, however, the corrections
that are based on the CCSD theory [72–74]. Although the authors of these

of the MR CISD results over the SR CISD ones. While there is only a small
difference between the 2R- and 4R- or (2/2)R-CISD energies (3rd and 4th or
5th columns of Table II, respectively), there is a dramatic improvement over
the SR CISD, particularly in the degenerate and highly-quasidegenerate
regions, the corresponding NPEs being reduced by an order of magnitude.

Considering, next, various Davidson-type corrections (DCs), we see that
the standard DC, and especially the renormalized DC (RDC), grossly over-
correct the SR CISD results, particularly in the quasidegenerate region of
geometries. The so-called scalar quasidegenerate DC (SQDC) [7,60] and the
scalar generalized DC (SGDC) [10, 60], applied to the 2R-CISD energies,
perform much better, particularly the latter one, whose NPE amounts to
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functions are unlikely to be very effective in the energy-correcting CCSD
approaches.

Let us, finally, consider some of the UHF-based approaches (see Refs. [86,
93,95] for details). The ACCSD′ results yield improved energies relative to
the standard SR CCSD, even though the NPEs for the whole region are
almost the same, and only the ACCSD′ rNPE is significantly better than
the SR CCSD one. Adding the perturbative correction for triples overcor-
rects the ACCSD′ energies. This is not surprising, since the perturbative
triple corrections generally break down in highly quasidegenerate situa-
tions, as witnessed by numerous results for various diatomics (see, e.g.,
Refs. [21, 24, 88]). When these corrections are applied to the SR CCSD
energies, they perform well in the nondegenerate region of geometries, as
expected, but again overcorrect in the degenerate and quasidegenerate sit-
uations. Nonetheless, the NPE of ∼1 mH represents a great improvement
over the SR CCSD result. Similar statements apply to CCSDQ′, which
may be regarded as the UHF-amplitude-corrected CCSD, and to its triple-
corrected version CCSDQ′[T] [86,95]. Obviously, the correction for triples,
which cannot be accounted for by using the singlet-projected UHF wave
function, plays here an important role, as also observed in Ref. [102]. Of
course, the perturbative account of triples is useful only in the nondegen-
erate region.

Next, we consider the MR CC results that are summarized in Ta-
bles IV and V for the ground and the excited state of the same symmetry
species (namely 1A1), respectively. For the ground state, the standard 2R-
SU CCSD ≡ (0,2)-CCSD provides a great improvement over the SR CCSD
in the degenerate and quasidegenerate regions of geometries, as it should.
Unfortunately, due to the presence of intruder states, the MR description
deteriorates as we approach the nondegenerate regime (see Ref. [101] for

33APPROACHES TO QUASIDEGENERACY

from |Φ1〉 represent quadruples relative to |Φ0〉. Clearly, all these quadru-
ples must be accounted for in order to correct for the quasidegeneracy. As
pointed out in [82], this result also indicates that the CAS-SCF-type wave

Interestingly enough, when we use the (4/4) complete active space
(CAS) CI, involving four electrons distributed over four (lowest-lying) or-
bitals, as the external source for the energy correction, we obtain a slightly
inferior results (7th column of Table II) even to the uncorrected SR CCSD.
The reason for this lies in the fact that the (4/4) CAS CI involves only one
quadruply excited configuration. Even though the latter is the most im-
portant quadruple, it is not able to correct the large discrepancy between
the CCSD and FCI energies in the degenerate region at and around α = 0.
Indeed, at α = 0, both the ground state reference |Φ0〉, and its HOMO-
LUMO doubly excited |Φ1〉 configuration (|Φ0〉 and |Φ1〉 spanning the 2R
model space), have the same weight, so that almost all double excitations
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Table V, respectively), the (2/2,2)-CCSD NPE is better by about a factor
of two than the ∆(2R)

MRCI NPE. Note also that for the excited state, the SR
CISD gives about the same NPE as for the ground state, while 2R-CISD
deteriorates in the nondegenerate region, so that the corresponding NPE is
almost three-times as large as for the ground state.

A very instructive result is also obtained by evaluating the ec H(eff),
using in each case the three- and four-body amplitudes provided by the
2R-CISD, while employing the exact FCI one- and two-body amplitudes
(approximation B given in the 7th and 10th columns in Tables IV and V,
respectively) on the one hand, and the 2R-SU CCSD amplitudes (approxi-

latter gives a better rNPE (unfortunately, the α = 0 result is not available
for the ∆(2R)

MRCI correction). This fact can most likely be ascribed to the fact
that the MR CI method is ideal for a simultaneous handling of a number of
low-lying states. Yet, for the excited state, while the ∆(2R)

MRCI NPE is again
significantly better than the (2,2)-CCSD one (11th and 6th columns of

mation A given in the 6th and 9th columns in Tables IV and V, respectively)
on the other hand [58,71]. We emphasize that in contrast to the (2,2)-CCSD
approach, the three- and four-body amplitudes are only used in the evalu-
ation of H(eff) and not in the computation of the one- and two-body ampli-
tudes as in the (2,2)-CCSD method. Consequently, for the ground state, the
A approximation yields inferior results to the (2,2)-CCSD ones, the energy
deviations being about twice as large as in the proper ec SU CCSD and,

35

In this regard, it is interesting to compare these ec results with those of
Meissner et al. [72–74], which use the CC-based corrections for MR CISD.
Although the absolute energy deviations are very similar for both (2,2)-
CCSD (3rd column of Table IV) and ∆(2R)

MRCI (10th column of Table II), the

The detrimental effect of the intruders can be efficiently alleviated by
employing the ec version employing the 2R- and 4R-CISD higher-than-pair
cluster amplitudes, as witnessed by the (2,2)-, (4,2)-, and (2/2,2)-CCSD
results (columns 3–5 of Table IV and columns 6–8 of Table V). These
results provide a particularly significant improvement over the standard
2R-SU CCSD in the nondegenerate regime. We also note that while for the
ground state the (2,2)- and (4,2)- or (2/2,2)-CCSD results are very similar,
the latter approximation gives a much improved result for the excited state,
yielding roughly the same NPE for both states.

a detailed study of intruders in the case of the MBS H4 model), yielding
inferior results to the SR CCSD.
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posteriori” corrected for the size-extensivity. Similarly as in the standard
SU CCSD method, BW MR CCSD works best in the degenerate limit
and deteriorates in both the intermediate and nondegenerate regions. The
corresponding rNPE for the ground state is about the same as for the
relaxed SS-MRCC and somewhat inferior to the ec SU CCSD ones. For
the excited state, the deviations from FCI are about the same as for the
standard SU CCSD, as is the corresponding rNPE, but significantly inferior
to (2/2,2)-CCSD.

4. Conclusions

The above presented data clearly demonstrate the usefulness of the ec CC
approaches at both the SR and MR levels. While in the SR case the energy
is fully determined by the one- and two-body clusters, and the truncation
of the CC chain of equations at the CCSD level can be made exact by
accounting for the three- and four-body clusters, the MR case is much
more demanding, since the higher-than-pair clusters appear already in the

37

Table IV), but inferior to both (2,2)- and (2/2,2)-CCSD NPEs. Unfortu-
nately, Mukherjee et al. [100] focused their work on the lowest state only
and do not provide any results for the excited state.

Finally, in the last column of Tables IV and V, we have also included
the results obtained with the single-root Brillouin-Wigner (BW) version of
the MR SU CCSD method [78–81]. Note that these results were not “a

similarly, for the corresponding NPEs. On the other hand, using the exact
one- and two-body amplitudes obtained by the cluster analysis of the FCI
wave functions, we recover almost exact energies for both states, resulting
in a very small NPE (∼ 0.1 mH), regardless whether the degenerate limit
is included or not. In fact, for reasons explained in detail in Ref. [58], the
absolute values of the energy deviations from FCI in the B approximation
are identical for both states and only differ in sign.

Considering, next, the SS results obtained by Mukherjee’s group [100]
(cf. 8th and 9th columns in Table IV), we see that the unrelaxed ver-
sion deteriorates in the nondegenerate limit, while the relaxed version per-
forms rather well when the absolute values of deviations are considered,
slightly overestimating the FCI energies in the degenerate limit and un-
derestimating them in the mid-region of geometries (reaching a maximum
at α ≈ 0.1). Consequently, the unrelaxed NPEs exceed 1 mH level, while
the relaxed ones are similar to the A approximation of H(eff) (column 6 of

effective Hamiltonian. An introduction of the “external corrections” is thus
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The SS approaches, proposed by Mukherjee’s group [99, 100], in either
relaxed or nonrelaxed version, also lead to much improved potentials, at
least for the lowest energy level. Unfortunately, we are not aware of any
information concerning their performance for the excited states of the same
symmetry species as the lowest level state, either for the H4 model or other
species that the authors considered.

The BW SU CCSD methods [78–81] also provide a viable alternative
and their recently introduced GMS version [105] should further enhance
their capabilities.

We have also seen that the said complementarity of the CC and CI
approaches can be exploited in a “reversed” order, namely that we can
rely on the MR CISD results and adjust them for their lack of dynamical
correlation via the Davidson-like corrections that are based on the CC
theory, as proposed by Meissner et al. [10, 72–74]. We have seen that, at
least for the studied DZP H4 model, either variant leads to excellent results.

38

The results that examine the role of various cluster components in the
effective Hamiltonian clearly indicate a relative insensitivity of the resulting
energies to the choice of the three- and four-body clusters on the one hand
and, on the other hand, the crucial role played by the one- and two-body
clusters, as one would expect. The latter clusters may thus be conveniently
accounted for by relying on the ec GMS SU CCSD method, namely via
(M,N)-CCSD.

even more important, and thus useful, in the MR case, particularly in the
presence of the intruder state(s), which can be often accommodated in
this manner. Relying on the GMS-version of the SU MRCC theory at the
CCSD level [62] we can thus avoid the intruder state problems by a suitable
choice of a GMS, as well as via the external corrections based on the MR
CISD wave functions. The GMS SU CCSD test calculations for a number
of model systems, for which the exact FCI results are available and in
which the intruder state problems are present, yielded most satisfactory
results [64].

Numerous earlier studies of the ec CC methods clearly indicate that the
modest size MR CISD wave functions represent the most suitable and easily
available source of higher-than-pair clusters for this purpose (see Ref. [21]
for an overview). Indeed, these wave functions can be easily transformed to
a SR form, whose cluster analysis is straightforward. Moreover, the resulting
three- and four-body amplitudes represent only a very small subset of all
such amplitudes, namely those which are most important, and which at the
same time implicitly account for all higher-order cluster components that
are present in the MR CISD wave functions.
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Abstract. New classes of noniterative coupled-cluster (CC) methods, which
improve the results of the standard equation-of-motion (EOM) and re-
sponse CC calculations for excited states dominated by two-electron transi-
tions and excited-state potential energy surfaces along bond breaking coor-
dinates, are reviewed. All of the methods discussed in this article are derived
from the method of moments of CC equations (MMCC) and all of them
are characterized by the relatively low computer costs which are similar
to those characterizing the popular ground-state CCSD(T) theory. Three
types of approaches are discussed: (i) the externally corrected MMCC ap-
proaches employing the configuration interaction and multi-reference per-
turbation theory wave functions, (ii) the completely renormalized EOMCC
methods, including their most recent extension to excited states of radicals
and other open-shell systems, and (iii) the new classes of MMCC and com-
pletely renormalized EOMCC theories employing the left eigenstates of the
similarity-transformed Hamiltonian used in CC/EOMCC theory.

1. Introduction

The single-reference coupled cluster (CC) theory [1–5] has become a stan-
dard computational tool for studying ground-state molecular properties
[6–10]. The basic approximations, such as CCSD (coupled cluster singles
and doubles approach) [11–15], and the noniterative CCSD[T] [16, 17] and
CCSD(T) [18] methods, in which the cleverly designed corrections due to
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triple excitations are added to the CCSD energy, can be routinely applied to
molecules containing dozens of light atoms, several transition metal atoms,
hundreds of electrons, and hundreds or even thousands of basis functions
(see, e.g., Refs. [19, 20]). The CCSD(T) method is currently available in the
majority of popular quantum chemistry software packages, enabling highly
accurate ab initio calculations of useful molecular properties by experts as
well as non-experts.

One of the biggest challenges in CC theory is the development of highly
accurate and affordable methods for excited electronic states that would
match the ease of applicability characterizing the ground-state CCSD and
CCSD(T) approaches. The most promising candidates in this area are
the linear-response CC theory [21–25] and the closely related equation-of-
motion CC (EOMCC) [26–29] and symmetry-adapted cluster configuration
interaction (SAC-CI) [30–34] methods. For example, the linear response
CCSD [24, 25] and EOMCCSD [26–28] approximations, which are charac-
terized by the manageable computational steps that scale as N 6 with the
system size, provide reliable information about excited states dominated
by one-electron transitions. The problem is that the linear response CCSD
and EOMCCSD methods cannot describe excited states having significant
double excitation components and excited-state potential energy surfaces
along bond beaking coordinates [35–54]. High-level EOMCC methods in-
cluding higher–than–double excitations, such as the recently implemented
full EOMCCSDT (EOMCC singles, doubles, and triples) [43, 44, 55, 56] and
EOMCCSDTQ (EOMCC singles, doubles, triples, and quadruples) [46, 57]
approaches, provide an excellent description of excited states dominated by
doubles [43, 44, 46, 49] and excited-state potential energy surfaces [44], but
large costs of the EOMCCSDT and EOMCCSDTQ calculations, which are
defined by the iterative steps that scale as N 8 and N 10 with the system
size, respectively, limit their applicability to small molecules with 2–3 light
atoms and relatively small basis sets (the EOMCC schemes with up to pen-
tuple and even hextuple excitations have been implemented too [57], but
the N 12 and N 14 scalings of the resulting EOMCCSDTQP and EOMCCS-
DTQPH methods with the system size make these approaches completely
impractical, since problems that one can tackle with such approaches are of
the type of problems that can be handled by the full configuration interac-
tion theory; moreover, the role of higher–than–quadruple excitations in the
EOMCC calculations of interest in chemistry is virtually none [57]). Other,
less expensive, ways of incorporating triple or triple and quadruple excita-
tions in the EOMCC or linear response CC formalisms must be developed
in order to make these methods applicable to a wide range of molecular
problems and excited states dominated by either one- or two-electron tran-
sitions.
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In order to improve the accuracy of EOMCCSD or linear response CCSD
calculations in applications involving states having significant doubly ex-
cited contributions, while keeping the computer costs at the reasonably low
level, a few iterative and noniterative EOMCC and linear response CC ap-
proximations including triple excitations have been proposed. The examples
are the iterative EOMCCSDT-n approaches and their noniterative EOM-
CCSD(T), EOMCCSD(T̃), and EOMCCSD(T′) counterparts [35, 36] or the
linear-response CC methods such as CC3 [38–41] and CCSDR(3) [40, 41],
which use elements of many-body perturbation theory (MBPT) to estimate
triples effects. All of these methods are characterized by the relatively inex-
pensive N 7 steps and all of them improve the EOMCCSD/linear response
CCSD results for excited states dominated by two-electron transitions, but
there are many cases where the results of EOMCCSDT-n, EOMCCSD(T),
CC3, and similar calculations are far from satisfactory. This can be illus-
trated by the large 0.4–0.5 and 0.9 eV errors in the description of the lowest
1Πg and 1∆g states of the C2 molecule, respectively, by the EOMCCSDT-1
and CC3 approaches [41] or the failure of the CC3 and CCSDR(3) meth-
ods to provide accurate information about excited-state potential energy
surfaces along bond breaking coordinates [58] (cf., also, Ref. 51 for an
additional analysis). Problems encountered in the EOMCCSDT-n, EOM-
CCSD(T), CC3, and similar calculations, when excited states dominated by
doubles and excited-state potential energy surfaces are examined, should
not come as a surprise. Similar failures are observed in the ground-state
CCSD(T) calculations. The CCSD(T) method works well for closed-shell
molecules near the equilibrium geometries, but it completely fails when
chemical bonds are stretched or broken (see, e.g., Refs. 8, 49, 50, 52, and
references therein). As is the case with the ground-state CCSD(T) ap-
proach, the EOMCC/response CC methods of the EOMCCSDT-n, EOM-
CCSD(T), or CC3 type are based on the conventional arguments originating
from MBPT and these arguments do not apply to quasi-degenerate situa-
tions, such as bond breaking or excited states dominated by two-electron
transitions. We can improve the results for excited states dominated by
doubles and excited-state potential energy surfaces by switching to the re-
cently developed active-space variant of the full EOMCCSDT approach,
in which the leading triples contributions of the EOMCCSDT method are
selected with the help of active orbitals, reducing the computer costs of full
EOMCCSDT calculations quite substantially if the number of active or-
bitals is small [42–44], but it is desirable to explore alternative approaches,
which would combine the ease-of-use of the noniterative single-reference
CC/EOMCC approximations, such as CCSD(T) or EOMCCSD(T), with
the effectiveness with which the expensive full EOMCCSDT or EOMCCS-
DTQ approaches handle excited states dominated by doubles and excited-
state potential energy surfaces.
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scription of excited states dominated by double excitations and, to a large
extent, excited-state potential energy surfaces along bond breaking coordi-
nates can be obtained by using the completely renormalized (CR) EOM-
CCSD(T) approaches [49, 51–53, 59, 60] or one of the externally corrected
variants of the excited-state generalization of the method of moments of CC
equations (MMCC) [47–50, 52] (see Refs. [61–63] for the original papers
on MMCC theory for ground electronic states). The CR-EOMCCSD(T)
and other MMCC methods are based on a simple idea of improving the
EOMCCSD or other EOMCC energies through the use of the suitably
designed noniterative corrections due to triples or triples and quadruples
that utilize the concept of the generalized moments of CC/EOMCC equa-
tions rather than the usual MBPT arguments exploited in the standard
CCSD(T)/EOMCCSD(T), EOMCCSDT-n, CC3, and similar approaches.
The CR-EOMCCSD(T) and other excited-state MMCC methods preserve
the relatively low, N 6 − N 7-like, costs of the noniterative methods of
the CCSD(T)/EOMCCSD(T) type, while providing considerable improve-
ments in the EOMCCSD results and in the results of the EOMCCSDT-n,
EOMCCSD(T), CC3, and similar calculations 60, 64].
As in the case of the ground-state MMCC and CR-CC methods
[49, 50, 52, 61–63, 65–77], the key to a successful description of
states by the CR-EOMCCSD(T) and other MMCC methods is the
very good control of accuracy that all of these methods offer by directly ad-
dressing the quantity of interest, which is the difference between the exact,
full CI, and EOMCC (e.g., EOMCCSD) energies. The MMCC formalism
provides us with precise information about the many-body structure of
these differences, suggesting several useful types of noniterative corrections
to EOMCCSD or other EOMCC energies.

The purpose of the present paper is to review the most essential ele-
ments of the excited-state MMCC theory and various approximate meth-
ods that result from it, including the aforementioned CR-EOMCCSD(T)
[49, 51, 52, 59] and externally corrected MMCC [47–50, 52] approaches. In
the discussion of approximate methods, we focus on the MMCC corrections
to EOMCCSD energies due to triple excitations, since these corrections
lead to the most practical computational schemes. Although some of the
excited-state MMCC methods have already been described in our earlier
reviews [49, 50, 52], it is important that we update our earlier work by the
highly promising new developments that have not been mentioned before.
For example, since the last review [52], we have successfully extended the
CR-EOMCCSD(T) methods to excited states of radicals and other open-
shell systems [59]. We have also developed a new type of the externally cor-

[47–53, 59,

excited

In the last three years, we have demonstrated that an excellent de-
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rected excited-state MMCC methods employing inexpensive multi-reference
MBPT (MRMBPT) wave functions in the design of noniterative corrections
to EOMCCSD energies [78]. Finally, we have started exploring an entirely
new idea of utilizing the left eigenstates of the CC/EOMCC similarity-
transformed Hamiltonian (the CC/EOMCC “bra” wave functions) in the
process of designing the noniterative MMCC corrections [79] and obtained
the first evidence how accurate the CR-EOMCCSD(T) methods are in cal-
culations of properties other than energy [59]. All of these new developments
are discussed in the present review, along with the systematic description
of other, more established, excited-state MMCC methods described in the
earlier work.

2. Generalization of the method of moments of coupled-cluster
equations to excited electronic states: Exact formalism

The key idea of the single-reference MMCC formalism [47–50, 52, 61–63] (cf.
Refs. [80–82] for a multi-reference extension) is that of the state-selective,
noniterative energy corrections

δ(A)
µ ≡ Eµ − E(A)

µ , (1)

which, when added to the energies of ground (µ = 0) and excited (µ > 0)
states, E

(A)
µ , obtained in the standard CC/EOMCC calculations, such as

CCSD/EOMCCSD, CCSDT/EOMCCSDT, etc. (designated here as
method A), recover the corresponding exact, i.e. full CI, energies Eµ. The
main goal of all approximate MMCC calculations, including the
CR-EOMCCSD(T) [49, 51, 52, 59] approaches, the MMCC and
CR-EOMCCSD(T) methods employing the left eigenstates of the similarity-
transformed Hamiltonian [79], and the CI-corrected [47–50, 52] and
MRMBPT-corrected [78] MMCC methods for excited electronic states dis-
cussed in this work, is to approximate corrections δ

(A)
µ , such that the re-

sulting MMCC energies, defined as

E(MMCC)
µ = E(A)

µ + δ(A)
µ , (2)

are close to the corresponding full CI energies Eµ.
All ground- and excited-state MMCC approximations are obtained from

the rigorous formulas for the exact corrections δ
(A)
µ in terms of the general-

ized moments of CC/EOMCC equations, derived by Kowalski and Piecuch
in Refs. [47, 61, 62] (cf., also, Refs. 49, 79). Since the proper introduction of
these formulas requires an understanding of the underlying CC/EOMCC
theory, we begin the discussion of the excited-state MMCC formalism with
the key ingredients of the single-reference CC/EOMCC theory.
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2.1. BASIC ELEMENTS OF COUPLED-CLUSTER AND
EQUATION-OF-MOTION COUPLED-CLUSTER METHODS

The single-reference CC theory is based on the exponential ansatz for the
ground-state wave function,

| Ψ0〉 =| Ψ(CC)
0 〉 ≡ eT | Φ〉, (3)

where T is the cluster operator (a particle-hole excitation operator) and
| Φ〉 is the reference determinant (often, the Hartree-Fock determinant). In
all standard CC approximations, we truncate the many-body expansion for
the cluster operator T at a given excitation level mA < N , where N is the
number of correlated electrons in a system. An example of the standard CC
approximation is the CCSD method. In this case, mA = 2 and the cluster
operator T is approximated by

T (CCSD) = T1 + T2, (4)

where
T1 = tiaa

aai (5)

and
T2 = 1

4 tijaba
aabajai (6)

are the singly and doubly excited cluster components, tia and tijab are the cor-
responding singly and doubly excited cluster amplitudes, i, j, . . . (a, b, . . .)
are the single-particle states (spin-orbitals) occupied (unoccupied) in the
reference determinant |Φ〉, and ap (ap) are the usual creation (annihila-
tion) operators associated with the orthonormal spin-orbitals |p〉. Here and
elsewhere in the present paper, we use the Einstein summation conven-
tion over repeated upper and lower indices, so that the summation symbols
corresponding to unrestricted summations over occupied and/or unoccu-
pied spin-orbitals are omitted. The general form of the truncated cluster
operator defining a standard CC approximation A, characterized by the
excitation level mA, is

T (A) =
mA∑

n=1

Tn, (7)

where

Tn =
(

1
n!

)2

ti1...in
a1...an

aa1 · · · aanain · · · ai1 (8)

(n = 1, . . . , mA) are the many-body components of T (A) and ti1...in
a1...an

are the
corresponding cluster amplitudes. The cluster amplitudes ti1...in

a1...an
are deter-

mined by solving a coupled system of nonlinear and energy-independent
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algebraic equations of the form:

〈Φa1...an
i1...in

|H̄(A)|Φ〉 = 0, i1 < · · · < in, a1 < · · · < an, (9)

where n = 1, . . . , mA,

H̄(A) = e−T (A)
HeT (A)

= (HeT (A)
)C (10)

is the similarity-transformed Hamiltonian of the CC/EOMCC theory, sub-
script C designates the connected part of the corresponding operator ex-
pression, and |Φa1...an

i1...in
〉 ≡ aa1 · · · aanain · · · ai1 |Φ〉 are the n-tuply excited

determinants relative to |Φ〉. In particular, the standard CCSD equations
for the singly and doubly excited cluster amplitudes tia and tijab, defining T1

and T2, respectively, can be written as

〈Φa
i |H̄(CCSD)|Φ〉 = 0, (11)

〈Φab
ij |H̄(CCSD)|Φ〉 = 0, i < j, a < b, (12)

where
H̄(CCSD) = e−T (CCSD)

HeT (CCSD)
= (HeT (CCSD)

)C (13)

is the similarity-transformed Hamiltonian of the CCSD/EOMCCSD ap-
proach. The explicit and computationally efficient form of these and other
equations used in CC calculations, in terms of one- and two-body matrix
elements of the Hamiltonian in the normal-ordered form, f q

p ≡ 〈p|f |q〉 and
vrs

pq ≡ 〈pq|v|rs〉−〈pq|v|sr〉, respectively, where f is the Fock operator and v

is the electron-electron repulsion term, and cluster amplitudes ti1...in
a1...an

or, in
the CCSD (mA = 2) case, tia and tijab, can be derived by applying diagram-
matic techniques of many-body theory combined with diagram factorization
methods which yield highly vectorized computer codes [59, 70, 83]. Once the
system of equations, Eq. (9), is solved for T (A) or ti1...in

a1...an
(or Eqs. (11) and

(12) are solved for T1 and T2 or tia and tijab), the CC energy corresponding
to the standard method A is calculated using the equation

E
(A)
0 = 〈Φ|H̄(A)|Φ〉 ≡ 〈Φ|H̄(A)

closed|Φ〉, (14)

where H̄
(A)
closed is a “closed” part of H̄(A) which is represented by those dia-

grams contributing to H̄(A) that have no external (uncontracted) Fermion
lines (as opposed to the “open” part of H̄(A) which is represented by the
diagrams having external or uncontracted Fermion lines).

The ground-state CC theory has a natural extension to excited elec-
tronic states |Ψµ〉 via the EOMCC or linear response CC method, in which
we write

|Ψµ〉 = |Ψ(CC)
µ 〉 ≡ RµeT |Φ〉, (15)
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where T is obtained in the ground-state CC calculations and Rµ is a linear
particle-hole excitation operator similar to T obtained by diagonalizing the
similarity-transformed Hamiltonian H̄ = e−T HeT . As in the ground-state
case, the standard EOMCC approximations are obtained by truncating the
many-body expansion for the excitation operator Rµ at a given excitation
level mA < N , which is the same as the excitation level used to define
the truncated form of T . Thus, in the EOMCCSD theory, which is a basic
EOMCC approximation where mA is set at 2, we write

R(CCSD)
µ = Rµ,0 + Rµ,1 + Rµ,2, (16)

where
R0,µ = r0(µ) 1, (17)

Rµ,1 = ri
a(µ) aaai, (18)

and
Rµ,2 = 1

4 rij
ab(µ) aaabajai (19)

are the reference, one-body, and two-body components of R
(CCSD)
µ , and

r0(µ), ri
a(µ), and rij

ab(µ) are the corresponding excitation amplitudes (1 in
Eq. (17) is a unit operator). In general, when T is approximated by T (A),
Eq. (7), the corresponding excitation operator Rµ defining the EOMCC
method A is approximated by

R(A)
µ = R

(A)
µ,0 + R(A)

µ,open, (20)

where the “open” part of R
(A)
µ is defined as

R(A)
µ,open =

mA∑

n=1

Rµ,n, (21)

with

Rµ,n =
(

1
n!

)2

ri1...in
a1...an

(µ) aa1 · · · aanain · · · ai1 (22)

representing the n-body components of R
(A)
µ . The excitation amplitudes

ri1...in
a1...an

(µ) defining R
(A)
µ,open are obtained by solving the eigenvalue prob-

lem involving the similarity-transformed Hamiltonian H̄(A) in the space
spanned by the excited determinants |Φa1...an

i1...in
〉 with n = 1, . . . , mA, i.e.

〈Φa1...an
i1...in

|(H̄(A)
open R(A)

µ,open)C |Φ〉 = ω(A)
µ ri1...in

a1...an
(µ),

i1 < · · · < in, a1 < · · · < an, (23)
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where
H̄(A)

open = H̄(A) − H̄
(A)
closed = H̄(A) − E

(A)
0 1 (24)

is the “open” part of H̄(A), represented by the diagrams of H̄(A) that have
external Fermion lines, and

ω(A)
µ = E(A)

µ − E
(A)
0 (25)

is the vertical excitation energy obtained with the EOMCC method A.
In particular, the ri

a(µ), and rij
ab(µ) amplitudes of the EOMCCSD theory

and the corresponding excitation energies ω
(CCSD)
µ are obtained by diago-

nalizing the similarity-transformed Hamiltonian H̄(CCSD), Eq. (13), in the
relatively small space of singly and doubly excited determinants |Φa

i 〉 and
|Φab

ij 〉. Equation (23) alone does not provide information about the coeffi-
cient r0(µ) at the reference determinant |Φ〉 in the corresponding EOMCC
wave function R

(A)
µ eT (A) |Φ〉. This coefficient can be determined a posteriori

using the equation

r0(µ) = 〈Φ|(H̄(A)
open R(A)

µ,open)C |Φ〉/ω(A)
µ , (26)

once the excitation amplitudes ri1...in
a1...an

(µ) defining R
(A)
µ,open are known. For

consistency of our presentation, we use the notation in which µ > 0 means
that we are dealing with excited states, whereas µ = 0 corresponds to
the ground-state problem. In particular, the excitation operator R

(A)
µ is

formally defined as a unit operator when µ = 0, i.e. r0(µ = 0) = 1 and
ri1...in
a1...an

(µ = 0) = 0 for n ≥ 1, so that the EOMCC ansatz, Eq. (15), reduces
to the ground-state CC ansatz, Eq. (3), in the ground-state, µ = 0, case.
With this definition of R

(A)
µ=0, the EOMCC system of equations, Eq. (23),

formally reduces to the standard system of the ground-state CC equations,
Eq. (9), although we must, of course, remember that in the EOMCC calcu-
lations of excited states employing Eq. (23) we only solve for the excitation
operator R

(A)
µ (or, for the corresponding excitation amplitudes ri1...in

a1...an
(µ))

using the given values of cluster amplitudes ti1...in
a1...an

defining the cluster op-
erator T (A), obtained in the corresponding ground-state CC calculations
that precede the excited-state EOMCC calculations.

The similarity-transformed Hamiltonians H̄(A) or H̄(CCSD) are not her-
mitian, so that in addition to the right eigenstates R

(A)
µ |Φ〉 or R

(CCSD)
µ |Φ〉,

which define the “ket” CC/EOMCC or CCSD/EOMCCSD wave functions,
we can also determine the left eigenstates of H̄(A) or H̄(CCSD), 〈Φ|L(A)

µ or
〈Φ|L(CCSD)

µ , respectively, which define the corresponding “bra” CC/EOMCC
or CCSD/EOMCCSD wave functions

〈Ψ̃(CC)
µ | = 〈Φ|Lµe−T (27)
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that match the “ket” states given by Eq. (15). Here, Lµ (in approximate
methods, L

(A)
µ or L

(CCSD)
µ ) is a hole-particle deexcitation operator, so that,

for example,
L(CCSD)

µ = Lµ,0 + Lµ,1 + Lµ,2, (28)

where
L0,µ = l0(µ) 1, (29)

Lµ,1 = lai (µ) aiaa, (30)

and
Lµ,2 = 1

4 lab
ij (µ) aiajabaa (31)

are the reference, one-body, and two-body components of L
(CCSD)
µ , and

l0(µ), lai (µ), and lab
ij (µ) are the corresponding deexcitation amplitudes. The

right and left eigenstates of H̄(CCSD) form a biorthonormal set,

〈Φ|L(CCSD)
µ R(CCSD)

ν |Φ〉 = δµ,ν , (32)

where δµ,ν is the usual Kronecker delta, so that the coefficient l0(µ) at 〈Φ|
in the left CCSD/EOMCCSD eigenstate 〈Φ|L(CCSD)

µ satisfies

l0(µ) = δµ,0, (33)

meaning that l0(µ) = 0 in the excited-state (µ > 0) case. In general, the
deexcitation operators L

(A)
µ generating the left eigenstates of the similarity-

transformed Hamiltonian H̄(A), 〈Φ|L(A)
µ , can be written as

L(A)
µ = L

(A)
µ,0 + L(A)

µ,open, (34)

where the “open” part of L
(A)
µ is defined as

L(A)
µ,open =

mA∑

n=1

Lµ,n, (35)

with

Lµ,n =
(

1
n!

)2

la1...an
i1...in

(µ) ai1 · · · ainaan · · · aa1 (36)

representing the n-body components of L
(A)
µ . As in the CCSD case, the left

and right eigenstates of H̄(A), 〈Φ|L(A)
µ and R

(A)
µ |Φ〉, respectively, form a

biorthonormal set,
〈Φ|L(A)

µ R(A)
ν |Φ〉 = δµ,ν , (37)
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and the zero-body part of L
(A)
µ satisfies

L
(A)
µ,0 = δµ,0 1, (38)

i.e. L
(A)
µ,0 vanishes for excited states (µ > 0), while being equal to the unit

operator in the ground-state (µ = 0) case. The deexcitation amplitudes
la1...an
i1...in

(µ) defining L
(A)
µ,open are obtained by solving the left eigenvalue prob-

lem involving the similarity-transformed Hamiltonian H̄(A) in the space
spanned by the excited determinants |Φa1...an

i1...in
〉 with n = 1, . . . , mA,

δµ,0 〈Φ|H̄(A)
open|Φa1...an

i1...in
〉+ 〈Φ|L(A)

µ,openH̄
(A)
open|Φa1...an

i1...in
〉 = ω(A)

µ la1...an
i1...in

(µ),
i1 < · · · < in, a1 < · · · < an, (39)

where ω
(A)
µ is the vertical excitation energy, Eq. (25), and where we already

used Eq. (38). In particular,

〈Φ|L(A)
µ,openH̄

(A)
open|Φa1...an

i1...in
〉 = ω(A)

µ la1...an
i1...in

(µ),
i1 < · · · < in, a1 < · · · < an, (40)

in the excited-state (µ > 0) case. When the ground-state (µ = 0) case is
considered, we usually write

L
(A)
0 = 1 + Λ(A), (41)

where

Λ(A) =
mA∑

n=1

Λn ≡ L
(A)
0,open, (42)

with

Λn =
(

1
n!

)2

λa1...an
i1...in

ai1 · · · ainaan · · · aa1 , (43)

represents the well-known “lambda” operator of the analytic gradient CC
theory [84]. The ground-state deexcitation amplitudes λa1...an

i1...in
≡ la1...an

i1...in
(0)

that define the Λ(A) operator are obtained by solving the following system
of linear equations (cf. Eq. (39)):

〈Φ|H̄(A)
open|Φa1...an

i1...in
〉+ 〈Φ|Λ(A) H̄(A)

open|Φa1...an
i1...in

〉 = 0,

i1 < · · · < in, a1 < · · · < an. (44)

The CCSD/EOMCCSD equations for the deexcitation amplitudes lai (µ),
lab
ij (µ), λa

i ≡ lai (0), and λab
ij ≡ lab

ij (0) are obtained by setting mA = 2 in Eqs.
(40) and (44).
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If the only purpose of the calculation is to obtain energies E
(A)
µ or ver-

tical excitation energies ω
(A)
µ (in the mA = 2 case, the EOMCCSD ener-

gies E
(CCSD)
µ and vertical excitation energies ω

(CCSD)
µ ), the left eigenstates

of H̄(A) or H̄(CCSD), 〈Φ|L(A)
µ or 〈Φ|L(CCSD)

µ , respectively, are not needed
and it is sufficient to solve the right eigenvalue problem involving H̄(A) or
H̄(CCSD), Eq. (23). However, if one has to calculate properties other than en-
ergy, such as the expectation values and transition matrix elements involv-
ing the CC/EOMCC states 〈Ψ̃µ| and |Ψν〉, both right and left eigenstates
of H̄(A) (or H̄(CCSD)) are important. Indeed, if θ is a property operator, we
obtain

〈Ψ̃(CC)
µ |θ|Ψ(CC)

ν 〉 = 〈Φ|Lµ θ Rν |Φ〉, (45)

where θ = e−T θ eT = (θ eT )C . In particular, when θ = apaq in Eq. (45), we
can determine the CCSD or EOMCCSD one-body reduced density matrices
in the CC/EOMCC electronic states |Ψµ〉, designated by γp

q (µ) ≡ γp
q (µ, µ),

or the corresponding transition one-body reduced density matrices γp
q (µ, ν),

µ �= ν. We obtain,
γp

q (µ, ν) = 〈Φ|Lµ apaq Rν |Φ〉. (46)

We can use the above expressions to calculate electron densities and var-
ious (transition) one-body properties, including, for example, dipole and
transition dipole moments,

〈Ψ̃(CC)
µ |θ|Ψ(CC)

ν 〉 = θq
p γp

q (µ, ν), (47)

where θq
p ≡ 〈p|θ|q〉 are matrix elements of the one-electron property op-

erator θ and γp
q (µ, ν) is defined by Eq. (46). In approximate CC/EOMCC

calculations, the cluster operator T and the excitation and deexcitation op-
erators Rµ and Lµ are, of course, replaced by their truncated forms (T (A),
R

(A)
µ , and L

(A)
µ , respectively).

Although the main use of the left eigenstates of H̄(A) or H̄(CCSD) is the
calculation of properties other than energy and analytic energy gradients
(cf., e.g., Refs. [6, 7, 28, 29, 84–90]), other uses of L

(A)
µ are possible. In par-

ticular, as mentioned in the Introduction, the left eigenstates of H̄(A) or
H̄(CCSD) (or the corresponding “bra” CC/EOMCC wave functions 〈Ψ̃µ|)
can be used to design new types of noniterative MMCC corrections to
standard CC/EOMCC energies. These new types of MMCC corrections
exploiting the left eigenstates of the CC/EOMCC similarity-transformed
Hamiltonians as well as other types of MMCC approaches to excited elec-
tronic states and their performance in benchmark calculations are reviewed
in Section 3. The basic ideas behind the underlying MMCC theory are dis-
cussed in the next subsection.
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2.2. NONITERATIVE CORRECTIONS TO COUPLED-CLUSTER AND
EQUATION-OF-MOTION COUPLED-CLUSTER ENERGIES DEFINING
THE EXACT METHOD OF MOMENTS OF COUPLED-CLUSTER
EQUATIONS

We are now equipped with all of the basic concepts of the CC/EOMCC
theory which are necessary to explain the noniterative MMCC approaches
to ground and excited electronic states. In this section, we focus on the
exact MMCC theory. The approximate MMCC schemes for excited elec-
tronic states, including the externally corrected MMCC approaches and
the CR-EOMCCSD(T) theory, and their most recent analog based on the
left eigenstates of the similarity-transformed Hamiltonian, are discussed in
Section 3.

As described in Section 2.1, the standard CC and EOMCC equations
are obtained by projecting H̄(A)|Φ〉 and H̄(A)R

(A)
µ |Φ〉 on the excited de-

terminants |Φa1...an
i1...in

〉 with n = 1, . . . , mA that correspond to the particle-
hole excitations included in the cluster operator T (A) and linear excita-
tion operator R

(A)
µ . The corresponding ground-state CC energy is obtained

by projecting H̄(A)|Φ〉 on the reference determinant |Φ〉. It is, therefore,
quite natural to expect that in order to correct the results of the stan-
dard CC/EOMCC calculations employing the cluster and excitation op-
erators truncated at mA-body terms, we have to consider the projections
of H̄(A)|Φ〉 and H̄(A)R

(A)
µ |Φ〉 on the excited determinants |Φa1...ak

i1...ik
〉 with

k > mA, which span the orthogonal complement of the subspace spanned
by the reference determinant |Φ〉 and the excited determinants |Φa1...ak

i1...ik
〉

with k = 1, . . . , mA. These projections, designated by Mi1...ik
µ,a1...ak

(mA), de-
fine the generalized moments of the CC/EOMCC equations corresponding
to method A. We obtain [47–52, 61–63, 72, 74],

M
i1...ik
µ,a1...ak

(mA) = 〈Φa1...ak
i1...ik

|(H̄(A)R(A)
µ )|Φ〉, (48)

where k > mA. Because of our convention in which R
(A)
µ=0 = 1, Eq. (48)

includes the ground-state, µ = 0, case. Indeed, when µ = 0, moments
Mi1...ik

µ,a1...ak
(mA), Eq. (48), reduce to the generalized moments of CC equa-

tions Mi1...ik
a1...ak

(mA) defining approximation A [49, 50, 52, 61–63, 72, 74],

M
i1...ik
0,a1...ak

(mA) ≡ M
i1...ik
a1...ak

(mA) = 〈Φa1...ak
i1...ik

|H̄(A)|Φ〉. (49)

It can be demonstrated that once the cluster and excitation operators,
T (A) and R

(A)
µ , respectively, and the ground- and excited-state energies E

(A)
µ

are determined by solving the relevant CC/EOMCC equations, Eqs. (9),
(23), and (26), we can obtain the exact, full CI, energies Eµ by adding the
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following state-selective corrections δ
(A)
µ to energies E

(A)
µ [47–52, 61–63, 72]:

δ(A)
µ ≡ Eµ − E(A)

µ

=
N∑

n=mA+1

n∑

k=mA+1

〈Ψµ|Cn−k(mA)Mµ,k(mA)|Φ〉/

〈Ψµ|R(A)
µ eT (A) |Φ〉. (50)

Here,
Cn−k(mA) = (eT (A)

)n−k (51)

is the (n − k)-body component of the exponential wave operator eT (A)
,

defining the CC method A, |Ψµ〉 is the full CI wave function of the µ-th
electronic state, and

Mµ,k(mA) =
(

1
k!

)2

M
i1...ik
µ,a1...ak

(mA) aa1 · · · aakaik · · · ai1 , (52)

where Mi1...ik
µ,a1...ak

(mA), k > mA, represent the generalized moments of the
CC/EOMCC equations corresponding to the approximate method A, as
defined by Eq. (48). In particular, if we want to recover the full CI energies
Eµ from the CCSD/EOMCCSD energies E

(CCSD)
µ (the mA = 2 case), we

have to add the following corrections δ
(CCSD)
µ to energies E

(CCSD)
µ :

δ(CCSD)
µ =

N∑

n=3

n∑

k=3

〈Ψµ|Cn−k(2)Mµ,k(2)|Φ〉/〈Ψµ|R(CCSD)
µ eT (CCSD) |Φ〉. (53)

Here, T (CCSD) and R
(CCSD)
µ are the cluster and excitation operators ob-

tained in the CCSD and EOMCCSD calculations, Eqs. (4) and (16), re-
spectively, Cn−k(2) is the (n− k)-body component of eT (CCSD)

, and

Mµ,k(2) =
(

1
k!

)2

M
i1...ik
µ,a1...ak

(2) aa1 · · · aakaik · · · ai1 , (54)

where
M

i1...ik
µ,a1...ak

(2) = 〈Φa1...ak
i1...ik

|(H̄(CCSD)R(CCSD)
µ )|Φ〉, (55)

with k ≥ 3, are the generalized moments of the CCSD (µ = 0) or EOM-
CCSD (µ > 0) equations. The above equations for δ

(A)
µ and δ

(CCSD)
µ , in

terms of the generalized moments Mi1...ik
µ,a1...ak

(mA) and Mi1...ik
µ,a1...ak

(2), respec-
tively, can be obtained by considering the asymmetric energy expression,

Λ[Ψ] = 〈Ψ|(H − E(A)
µ )R(A)

µ eT (A) |Φ〉/〈Ψ|R(A)
µ eT (A) |Φ〉, (56)
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referred to as the MMCC functional [47, 49, 50, 62, 72]. This expression sat-
isfies the important property

Λ[Ψµ] = Eµ − E(A)
µ , (57)

where Eµ is the exact, full CI, energy, if |Ψµ〉 is a full CI state. We re-
fer the reader to the original work by Kowalski and Piecuch [47, 62] and
Appendices in Ref. [49] for the details of the derivation of Eq. (50) using
functional Λ[Ψ], Eq. (56). It is worth mentioning here that the applicabil-
ity of the MMCC functional, Eq. (56), introduced by Kowalski and Piecuch
for the ground-state problem in 2000 [62] and extended to excited states
in 2001 [47], in direct calculations of the noniterative correction δ

(CCSD)
0

to standard CCSD energy has been examined by Li and Paldus [91, 92].
These authors showed that the asymmetric energy expression represented
by Eq. (56) is capable of improving the results of standard CC calculations
at larger internuclear separations. The only problem with applying Eq.
(56) “as is” is the fact that direct calculations of corrections δ

(A)
µ using the

MMCC functional are prohibitively expensive. After rewriting the MMCC
functional, Eq. (56), in terms of the generalized moments of CC/EOMCC
equations, as is done in Eqs. (50) and (53), one can propose a variety of
relatively inexpensive CC/EOMCC approximations that the direct appli-
cation of Eq. (56) cannot lead to. Li and Paldus have realized this and in
subsequent papers (see, e.g., Ref. 93, 94) they used the expressions for the
ground-state correction δ

(CCSD)
0 which are identical to our Eq. (53). They

have not studied the excited-state corrections δ
(A)
µ though.

Equation (50) (or its CCSD/EOMCCSD-based analog, Eq. (53)) defines
the exact MMCC formalism for ground and excited states. This equation al-
lows us to improve the CC/EOMCC (e.g. CCSD/EOMCCSD) results, in a
state-selective manner, by adding the noniterative corrections δ

(A)
µ (in prac-

tice, one of the approximate forms of δ
(A)
µ or δ

(CCSD)
µ ), obtained using the

information that can be directly extracted from the standard CC/EOMCC
calculations, such as operators T (A) and R

(A)
µ , matrix elements of H̄(A),

and generalized moments of the CC/EOMCC equations Mi1...ik
µ,a1...ak

(mA), to

the CC/EOMCC energies E
(A)
µ . The key quantities in Eq. (50) that require

more attention and that are essential for designing the approximate forms
of the MMCC corrections δ

(A)
µ are the generalized moments Mi1...ik

µ,a1...ak
(mA),

Eq. (48), and the many-body components of eT (A)
defining the Cn−k(mA)

operators, Eq. (51). The Cn−k(mA) terms are very easy to calculate. The
zero-body term, C0(mA), equals 1; the one-body term, C1(mA), equals T1;
the two-body term, C2(mA), equals T2 + 1

2T 2
1 if mA ≥ 2; the three-body

term C3(mA) equals T1T2 + 1
6T 3

1 if mA = 2 and T3 +T1T2 + 1
6T 3

1 if mA ≥ 3,
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etc. The determination of the generalized moments Mi1...ik
µ,a1...ak

(mA) is rel-
atively straightforward too, particularly for the lower-order CC/EOMCC
methods, such as CCSD and EOMCCSD (the mA = 2 case). Indeed, the
formula for the leading moment M

ijk
µ,abc(2), entering the basic MMCC(2,3)

approximation discussed in Section 3 and corresponding to the projection of
the CCSD/EOMCCSD equations on triply excited determinants |Φabc

ijk〉, in
terms of the many-body components of the CCSD/EOMCCSD similarity-
transformed Hamiltonian H̄(CCSD), Eq. (13), and the EOMCCSD excita-
tion operator R

(CCSD)
µ , Eq. (16), which enables us to correct the CCSD and

EOMCCSD energies by considering the leading term in correction δ
(CCSD)
µ ,

Eq. (53), is [47–49, 51, 52, 59]

M
ijk
µ,abc(2) = 〈Φabc

ijk |(H̄
(CCSD)
2 Rµ,2)C |Φ〉

+〈Φabc
ijk |[H̄

(CCSD)
3 (Rµ,1 + Rµ,2)]C |Φ〉

+〈Φabc
ijk |(H̄

(CCSD)
4 Rµ,1)C |Φ〉+ r0(µ)M

ijk
abc(2), (58)

where the ground-state moment M
ijk
abc(2), obtained by projecting the CCSD

equations on triply excited determinants, is given by [51, 52]

M
ijk
abc(2) = 〈Φabc

ijk |[HN (T2 + T1T2 + 1
2T 2

2 + 1
2T 2

1 T2

+1
2T1T

2
2 + 1

6T 3
1 T2)]C |Φ〉. (59)

In the above equations, the operators H̄
(CCSD)
p represent the p-body com-

ponents of H̄(CCSD) and HN = H − 〈Φ|H|Φ〉 is the Hamiltonian in the
normal-ordered form. The fully factorized expression for the triply excited
moments of the CCSD/EOMCCSD equations M

ijk
µ,abc(2), in terms of the

amplitudes defining the CCSD/EOMCCSD cluster and excitation opera-
tors, T1, T2, Rµ,0, Rµ,1, and Rµ,2, and molecular integrals f q

p and vrs
pq, which

can be used in the efficient computer implementations of all MMCC(2,3)
approximations, including the externally corrected MMCC(2,3) and CR-
EOMCCSD(T) schemes, has the following form [59]:

M
ijk
µ,abc(2) = Aabc T

ijk
µ,abc(2)

= Aabc {A i/jk [ (1
2 h̄ie

abr
jk
ec − 1

2 h̄jk
mcr

im
ab − 1

2Ijk
mct

im
ab + Iie

abt
jk
ec )

+1
2r0 (h̄ie

abt
jk
ec − I ′jkmct

im
ab ) ] } , (60)

where, for simplicity, we dropped the symbol µ in the amplitudes rjk
ec (µ),

rim
ab (µ), and r0(µ). The antisymmetrizers Apqr, Ap/qr, and Apq, which enter

Eq. (60) directly or through the matrix elements of H̄CCSD, and other
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intermediates that are needed to construct Eq. (60) and that are listed in
Table 1, are defined in a usual way,

Apqr ≡ A pqr = 1− (pq)− (pr)− (qr) + (pqr) + (prq), (61)

Ap/qr ≡ A p/qr = 1− (pq)− (pr), (62)

and
Apq ≡ A pq = 1− (pq), (63)

with (pq) and (pqr) representing the cyclic permutations of two and three
indices, respectively. The explicit spin-orbital expressions for one- and two-
body matrix elements of H̄CCSD, h̄q

p and h̄rs
pq, respectively, and other recur-

sively generated intermediates entering Eq. (60), in terms of cluster ampli-
tudes tia and tijab, excitation amplitudes ri

a ≡ ri
a(µ) and rij

ab ≡ rij
ab(µ), and

molecular integrals f q
p and vrs

pq, are given in Table 1. Similar expressions
can be given for the EOMCCSD moments Mi1...ik

µ,a1...ak
(2) with k ≥ 4 that

enter the MMCC(2,4) and other higher-order MMCC schemes. In general,
the generalized moments Mi1...ik

µ,a1...ak
(mA) corresponding to the CC/EOMCC

approximation A can be calculated using the formula [47–52]:

M
i1...ik
µ,a1...ak

(mA) = 〈Φa1...ak
i1...ik

|(H̄(A)
openR

(A)
µ,open)C |Φ〉

+
k−1∑

p=mA+1

〈Φa1...ak
i1...ik

|(H̄(A)
p R

(A)
µ,k−p)DC |Φ〉

+r0(µ) M
i1...ik
a1...ak

(mA), (64)

where r0(µ) is the coefficient at the reference determinant |Φ〉 in the many-
body expansion of R

(A)
µ |Φ〉, Eq. (20) (cf. Eq. (26) for the formula for r0(µ)),

subscripts “open,” C, and DC refer to open (i.e. having external lines), con-
nected, and disconnected parts of a given operator expression, Oj represents
the j-body component of operator O, and Mi1...ik

a1...ak
(mA) are the generalized

moments of the single-reference CC equations defined by Eq. (49).
In order to use Eqs. (50) and (53) in practical calculations, the following

two issues must be addressed. First, the exact MMCC corrections δ
(A)
µ , Eq.

(50), or δ
(CCSD)
µ , Eq. (53), are represented by complete many-body expan-

sions including the N -body contributions, where N is the number of elec-
trons in a system, corresponding to all many-body components of the wave
functions |Ψµ〉 that enter Eqs. (50) and (53) (cf. the summations over n in
Eqs. (50) and (53)). In order to develop practical MMCC methods, we must
truncate the many-body expansions for δ

(A)
µ or δ

(CCSD)
µ , given by Eqs. (50)

or (53), at some, preferably low, excitation level mB > mA. This leads to the
MMCC(mA, mB) schemes [47–52, 61–63, 72]. Examples of these schemes are
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TABLE 1. Explicit algebraic expressions for the matrix elements elements of H̄CCSD

(designated by h̄) and other intermediates (designated by I or ϑ) used to construct the

triply excited moments of the CCSD/EOMCCSD equations, M
ijk
µ,abc(2), Eq. (60).

Intermediate Expressiona

h̄a
i fa

i + tm
e vae

im

Ia
i −rm

e vae
mi

h̄bc
ai vbc

ai − tm
a vbc

mi

h̄ka
ij vka

ij + tk
evea

ij

h̄cd
ab vcd

ab + 1
2
tmn
ab vcd

mn − tm
b h̄cd

am + tm
a vcd

bm

h̄kl
ij vkl

ij + 1
2
tkl
efvef

ij − tk
e h̄le

ij + tl
ev

ke
ij

h̄jb
ia ϑjb

ia − tjm
ea veb

im − tm
a h̄jb

im

h̄ic
ab vic

ab + ti
ev

ec
ab − tm

a h̄ic
mb + tm

b ϑic
ma − tim

ab h̄c
m + tim

ae h̄ce
bm − tim

be vce
am + 1

2
tnm
ab h̄ic

nm

h̄jk
ia vjk

ia + tm
a h̄jk

mi − tj
ev

ke
ia + A jktkm

ae h̄je
im + tjk

eah̄e
i + tk

eϑje
ia − 1

2
tjk
efvef

ai

Iic
ab

1
2
h̄ec

abr
i
e − h̄ec

bmrim
ae + 1

4
h̄ic

mnrmn
ab − h̄ic

mbr
m
a

Ijk
ia Ie

i tkj
ae + 1

2
h̄ef

ai rkj
ef − h̄jk

imrm
a + A jk(h̄je

imrkm
ae + h̄je

iark
e )

I ′jk
ia h̄jk

ia − tjk
eah̄e

i

ϑjb
ia vjb

ia + tj
ev

eb
ia

a Summation over repeated upper and lower indices is assumed; fq
p = 〈p|f |q〉 and

vrs
pq = 〈pq|v|rs〉 − 〈pq|v|sr〉 are the one- and two-electron integrals in a molecular spin-

orbital basis {p} corresponding to the Fock operator (f) and the two-body part of the
Hamiltonian (v).

the CI- and MRMBPT-corrected MMCC(2,3) methods [47, 49, 50, 52, 78]
and the CR-EOMCCSD(T) approach [49, 51, 52, 59] discussed in Section
3, in which the suitably designed corrections δ

(CCSD)
µ , based on the ex-

act Eq. (53), are added to the CCSD/EOMCCSD energies. Alternatives
to the MMCC(mA, mB) schemes are the approximate MMCC methods
employing the left eigenstates of the similarity-transformed Hamiltonian
H̄(A) or H̄(CCSD) [79], in which the MMCC corrections δ

(A)
µ or δ

(CCSD)
µ are

first rewritten in a computationally convenient form that does not use the
overlap denominators 〈Ψµ|R(A)

µ eT (A) |Φ〉 or 〈Ψµ|R(CCSD)
µ eT (CCSD) |Φ〉 entering

Eqs. (50) and (53) (also discussed in Section 3). The second issue that needs
to be addressed is the fact that the wave functions |Ψµ〉 that enter the exact
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Eqs. (50) and (53) are the full CI states. Thus, we must approximate wave
functions |Ψµ〉 in some way. A few different methods of approximating |Ψµ〉
in Eq. (53), leading to the aforementioned externally corrected MMCC(2,3)
approaches and CR-EOMCCSD(T) schemes, and their analogs exploiting
the left eigenstates of H̄(CCSD), and the performance of all of these methods
in actual calculations of excited electronic states are discussed in the next
section.

3. Approximate MMCC methods for excited states and their
performance

There are two, essentially different, ways of approximating the MMCC cor-
rections δ

(A)
µ , Eq. (50), that lead to relatively inexpensive, and therefore

practical, computational schemes. In the first method, we assume that
the CI expansions of the ground- and excited-state wave functions |Ψµ〉
entering Eq. (50) are relatively short and do not contain higher–than–
mB-tuply excited components relative to the reference determinant |Φ〉,
where the excitation level mB is not much higher than the excitation level
mA defining the CC/EOMCC approximation we are trying to improve.
This leads to the externally (CI or MRMBPT) corrected MMCC(mA, mB)
schemes [47–50, 52, 78] and the CR-EOMCCSD(T) method [49, 51, 52, 59].
We discuss these approaches first, focusing on the MMCC(mA, mB) meth-
ods with mA = 2 and mB = 3, which enable us to improve the results
of the CCSD/EOMCCSD calculations by terms that represent the leading
triples effects (see Section 3.1). In the second approach, discussed in Section
3.2, which leads to the MMCC(mA, mB)L schemes, including the recently
formulated [79] and promising CR-EOMCCSD(T)L approximation, we
rewrite the “bra” wave functions 〈Ψµ| in Eq. (50) in terms of the left eigen-
states of H̄(A). The main difference between the regular MMCC(mA, mB)
approaches and the MMCC(mA, mB)L methods is the absence of the over-
lap denominator 〈Ψµ|R(A)

µ eT (A) |Φ〉 in the MMCC(mA, mB)L energy cor-
rections. The information about this denominator, which enters the reg-
ular MMCC energy formula, Eq. (50), and which helps to improve the
results for doubly excited states and excited-state potential energy surfaces
along bond breaking coordinates, is incorporated in the MMCC(mA, mB)L

methods through the use of the left eigenstates of H̄(A) (H̄(CCSD) in the
CR-EOMCCSD(T)L case).
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3.1. EXTERNALLY CORRECTED MMCC(2,3) SCHEMES AND THE
CR-EOMCCSD(T) APPROACH

The MMCC(2,3), CR-EOMCCSD(T), and other MMCC(mA, mB) meth-
ods are obtained by assuming that the CI expansions of the ground- and
excited-state wave functions |Ψµ〉 entering Eq. (50) do not contain higher–
than–mB-tuply excited components relative to the reference |Φ〉, where
mA < mB < N . In all MMCC(mA, mB) approximations, we calculate the
ground- and excited-state energies as follows [47–52, 61–63, 72]:

E(MMCC)
µ (mA, mB) = E(A)

µ + δµ(mA, mB), (65)

where E
(A)
µ is the energy of the µ-th electronic state, obtained with some

standard EOMCC method A, and

δµ(mA, mB) =
mB∑

n=mA+1

n∑

k=mA+1

〈Ψµ|Cn−k(mA)

×Mµ,k(mA)|Φ〉/〈Ψµ|R(A)
µ eT (A) |Φ〉 (66)

is the relevant MMCC correction to E
(A)
µ . As in the exact theory de-

fined by Eq. (50), the generalized moments of the CC/EOMCC equations,
Mi1...ik

µ,a1...ak
(mA), Eqs. (48) and (64), enter Eqs. (65) and (66) through quanti-

ties Mµ,k(mA)|Φ〉, Eq. (52), and Cn−k(mA) are the many-body components
of eT (A)

, defined by Eq. (51), where T (A) is the cluster operator defining
(along with the excitation operator R

(A)
µ ) the CC/EOMCC calculations A,

whose results we are trying to correct.
We limit our discussion to the low-order MMCC(mA, mB) schemes with

mA = 2 and mB = 3, which can be used to correct the results of the
CCSD/EOMCCSD calculations for the effects of triple excitations (for the
description of the MMCC(2,4) and other higher-order MMCC(mA, mB)
methods, see Refs. [48–50, 52, 61–63, 72]). The MMCC(2,3) energy expres-
sion is as follows [47–52, 61–63, 72]:

E(MMCC)
µ (2, 3) = E(CCSD)

µ + 〈Ψµ|Mµ,3(2)|Φ〉/〈Ψµ|R(CCSD)
µ eT (CCSD) |Φ〉,

(67)
where E

(CCSD)
µ is the CCSD (µ = 0) or EOMCCSD (µ > 0) energy, T (CCSD)

is the cluster operator obtained in the CCSD calculations (cf. Eq. (4)),
R

(CCSD)
µ is the corresponding excitation operator (cf. Eq. (16); when µ = 0,

R
(CCSD)
µ = 1), and

Mµ,3(2) = 1
36 M

ijk
µ,abc(2) aaabacakajai, (68)
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with M
ijk
µ,abc(2) representing the triply excited moments of the

CCSD/EOMCCSD equations defined by Eqs. (58) and (59). These mo-
ments are easy to calculate. As implied by Eqs. (58) and (59), their deter-
mination requires the explicit consideration of the triples-reference, triples-
singles, and triples-doubles blocks of the matrix representing the
CCSD/EOMCCSD similarity-transformed Hamiltonian H̄CCSD, Eq. (13).
In consequence, the most expensive steps of the ground- and excited-state
calculations using methods based on the MMCC(2,3) approximation are
essentially identical to the n3

on
4
u noniterative steps of the ground-state

CCSD(T) calculations (no and nu are the numbers of occupied and unoccu-
pied correlated orbitals, respectively). Similar remarks apply to the memory
and disk-space requirements. Clearly, these are great simplifications in the
computer effort, compared to the higher-level EOMCC approaches, such as
EOMCCSDT [43, 44, 55, 56], particularly if we realize that we only have to
use the T1 and T2 clusters, obtained in the CCSD calculations, to construct
matrix elements of H̄(CCSD) that enter M

ijk
µ,abc(2), Eqs. (58) and (59). In

practical implementations of all MMCC(2,3) methods, the simplifications
are even greater, since, as shown by Eq. (60) and Table 1, we can calculate
moments M

ijk
µ,abc(2) in a highly efficient manner, which leads to noniterative

n3
on

4
u procedures, by using recursively generated intermediates and one- and

two-body matrix elements of H̄(CCSD), h̄q
p and h̄rs

pq, respectively, expressed
in terms of the CCSD cluster amplitudes tia and tijab, EOMCCSD excitation
amplitudes ri

a(µ) and rij
ab(µ), and molecular integrals f q

p and vrs
pq.

Depending on the form of the wave function |Ψµ〉 in Eq. (67), we can
distinguish between the externally corrected MMCC(2,3) approaches for
excited states, which employ the inexpensive CI or MRMBPT (in general,
non-CC) wave functions to approximate |Ψµ〉 [47–50, 52, 61, 68, 78], and
CR-EOMCCSD(T) methods, which are based on the perturbative analy-
sis of the full EOMCCSDT problem to provide the approximate form of
|Ψµ〉 for MMCC(2,3) calculations [49, 51, 52, 59]. The CR-EOMCCSD(T)
approaches can be viewed as the excited-state extensions of the ground-
state CR-CCSD(T) method introduced in Refs. [61, 62] (see, also, Refs.
[49, 50, 52, 63, 65, 67, 69, 70, 72, 73, 75, 76]). Externally corrected MMCC
methods are very similar, in the overall idea, to the large class of the ex-
ternally corrected CC methods pioneered by Paldus and collaborators, in
which CC and non-CC concepts are combined together to improve CC
results in the presence of quasi-degeneracies [8, 17, 95–102]. In particu-
lar, the CI-corrected MMCC methods discussed in this work, which were
originally introduced in the context of the ground-state calculations by
Piecuch and Kowalski in Ref. 61, are very similar to the so-called energy-
corrected CC approaches of Li and Paldus [91–94]. We begin the discussion
of MMCC(2,3) methods with the externally corrected approaches.
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Figure 1. The orbital classification used in the active-space CI, MRMBPT, and
the CI- and MRMBPT-corrected MMCC methods, such as MMCC(2,3)/CI and
MMCC(2,3)/PT. Core, active, and virtual orbitals are represented by solid, dashed, and
dotted lines, respectively. Full and open circles represent core and active electrons of the
reference determinant |Φ〉 (the closed-shell reference |Φ〉 is assumed).

3.1.1. The CI- and MRMBPT-corrected MMCC(2,3) methods
In the CI-corrected MMCC(2,3) approach and other CI-corrected
MMCC(mA, mB) methods for excited states, originally introduced in Refs.
[47, 48], we replace the wave functions |Ψµ〉 in Eqs. (66) and (67) by the
wave functions obtained in inexpensive CI calculations that provide a qual-
itatively correct description of the ground and excited states of interest.
One of the best choices of the CI wave functions |Ψµ〉 for such calculations
is provided by the multi-reference-like, active-space CI approaches, such
as CISDt. In this case, following the philosophy of multi-reference calcula-
tions, we divide the available spin-orbitals into four groups (see Figure 1)
of core spin-orbitals (i1, i2, . . . or i, j, . . . ), active spin-orbitals occupied
in reference |Φ〉 (I1, I2, . . . or I, J, . . . ), active spin-orbitals unoccupied
in reference |Φ〉 (A1, A2, . . . or A, B, . . . ), and virtual spin-orbitals (a1,
a2, . . . or a, b, . . . ). The choice of active spin-orbitals (typically, a few
highest-energy occupied spin-orbitals and a few lowest-energy unoccupied
spin-orbitals) is dictated by the dominant orbital excitations in the ground
and excited states that we would like to calculate. An example of the good
choice of active orbitals for the calculations of the valence excited states of
CH+ can be found in Table 2.

In the specific case of the CI-corrected MMCC(2,3) approach, very good
results are obtained when the wave function |Ψµ〉 in Eq. (67) is replaced by
the wave function obtained in the active-space CISDt calculations, which
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is defined as follows:

|Ψ(CISDt)
µ 〉 = (Cµ,0 + Cµ,1 + Cµ,2 + cµ,3)|Φ〉, (69)

where
Cµ,0 = c0(µ) 1, (70)

Cµ,1|Φ〉 = ci
a(µ) aaai =

∑

i,a

ci
a(µ) aaai, (71)

and
Cµ,2 = 1

4 cij
ab(µ) aaabajai =

∑

i<j,a<b

cij
ab(µ) aaabajai (72)

are the excitation operators defining the reference, singly excited, and dou-
bly excited contributions to |ΨCISDt

µ 〉, and

cµ,3 =
∑

i<j<K,A<b<c

cijK
Abc(µ) aAabacaKajai (73)

are the internal and semi-internal triples containing at least one active
occupied and one active unoccupied spin-orbital indices, designated by K
and A, respectively. The CISDt method can be viewed as an inexpensive
variant of the CI singles, doubles, and triples (CISDT) approximation, in
which the complete set of triple excitations is replaced by a relatively small
set of triples defined by Eq. (73). The final energy expression defining the
CISDt-corrected MMCC(2,3) method, referred to as the MMCC(2,3)/CI
approximation, is:

E(MMCC/CI)
µ (2, 3) = E(EOMCCSD)

µ +
∑

i<j<K,A<b<c

[cijK
Abc(µ)]∗ M

ijK
µ,Abc(2)/DCISDt

µ ,

(74)
where M

ijK
µ,Abc(2) represent the subset of all triply excited moments of the

CCSD/EOMCCSD equations defined by Eqs. (58) and (59) and

DCISDt
µ ≡ 〈ΨCISDt

µ |R(CCSD)
µ eT (CCSD) |Φ〉 = ∆CISDt

µ,0 +∆CISDt
µ,1 +∆CISDt

µ,2 +∆CISDt
µ,3

(75)
is the overlap denominator 〈Ψµ|R(CCSD)

µ eT (CCSD) |Φ〉 appearing in the gen-
eral Eq. (67), written for the wave function |Ψµ〉 = |Ψ(CISDt)

µ 〉, Eq. (69).
The ∆CISDt

µ,0 , ∆CISDt
µ,1 , ∆CISDt

µ,2 , and ∆CISDt
µ,3 terms that contribute to the de-

nominator DCISDt
µ , Eq. (75), are defined as

∆CISDt
µ,0 = [c0(µ)]∗ r0(µ), (76)
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∆CISDt
µ,1 =

∑

i,a

[ci
a(µ)]∗ βi

a(µ), (77)

∆CISDt
µ,2 =

∑

i<j,a<b

[cij
ab(µ)]∗ βij

ab(µ), (78)

and
∆CISDt

µ,3 =
∑

i<j<K,A<b<c

[cijK
Abc(µ)]∗ βijK

Abc(µ), (79)

where c0(µ), ci
a(µ), cij

ab(µ), and cijK
Abc(µ) are the CI coefficients obtained in

the variational CISDt calculations for the µ-th electronic state and r0(µ),

βi
a(µ) = 〈Φa

i |(Rµ,1 + Rµ,0T1)|Φ〉, (80)

βij
ab(µ) = 〈Φab

ij |[Rµ,2 + Rµ,1T1 + Rµ,0(T2 + 1
2T 2

1 )]|Φ〉, (81)

and

βijk
abc(µ) = 〈Φabc

ijk |[Rµ,2T1 + Rµ,1(T2 + 1
2T 2

1 ) + Rµ,0(T1T2 + 1
6T 3

1 )]|Φ〉 (82)

are the coefficients at the reference determinant |Φ〉 and singly, doubly,
and triply excited determinants, |Φa

i 〉, |Φab
ij 〉, and |Φabc

ijk〉 respectively, in the

CI expansion of the CCSD/EOMCCSD wave function R
(CCSD)
µ eT (CCSD) |Φ〉,

which can be easily determined using the CCSD/EOMCCSD cluster and
excitation amplitudes tia, tijab, r0(µ), ri

a(µ), and rij
ab(µ). As in the case of

moments M
ijK
µ,Abc(2), we only need a subset of all triexcited coefficients

βijk
abc(µ), Eq. (82), defined through active spin-orbital indices as βijK

Abc(µ), to
calculate the triply excited contribution ∆CISDt

µ,3 , Eq. (79), to the denom-
inator DCISDt

µ . One can easily extend the above MMCC(2,3)/CI approx-
imation to higher-order CI-corrected MMCC(mA, mB) schemes, such as
MMCC(2,4)/CI, which describes the combined effect of triple and quadru-
ple excitations that are defined through active orbitals in a similar way as
the triple excitations of the CISDt wave functions (see, e.g., Refs. [48, 49, 52]).

One of the main advantages of the CI-corrected MMCC schemes, includ-
ing MMCC(2,3)/CI, is a very good control of the quality of wave functions
|Ψµ〉 used to construct the noniterative corrections δµ(mA, mB), which is
accomplished through the judicious choice of active orbitals that can al-
ways be adjusted to excited states of a given type or, when the potential
energy surfaces are examined, to a given type of bond breaking. Another
advantage of the CI-corrected MMCC methods is their relatively low com-
puter cost, which is a consequence of the fact that it is usually sufficient
to use very small active orbital spaces to obtain good results (cf., e.g., Ta-
ble 2 and Figure 2). The relatively low cost of the CI-corrected MMCC
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calculations can be explained by using the CISDt-corrected MMCC(2,3)
approach, defined by Eq. (74), as an example. As one can see, we do not
have to determine the entire set of the triexcited moments M

ijk
µ,abc(2) in the

MMCC(2,3)/CI calculations. This alone leads to considerable savings in
the computer effort, since we only have to construct ∼ NoNun2

on
2
u moments

M
ijK
µ,Abc(2), where No (Nu) is the number of active orbitals occupied (unoc-

cupied) in |Φ〉, which is a small fraction of all ∼ n3
on

3
u moments M

ijk
µ,abc(2)

when No � no and Nu � nu. Moreover, the ∼ n3
on

4
u steps related to the

construction of moments M
ijk
µ,abc(2)reduce to the N 5-like NoNun2

on
3
u steps

in the MMCC(2,3)/CI calculations. There is an additional cost related to
the CISDt calculations, needed to generate the |ΨCISDt

µ 〉 wave functions,
but again the usual n3

on
5
u steps of the parent CISDT calculations reduce

to the considerably less expensive NoNun2
on

4
u steps in the CISDt case. All

these factors contribute to the relatively low cost of the MMCC(2,3)/CI cal-
culations. The number of triples used in the CISDt-corrected MMCC(2,3)
calculations is usually very small (no more than ∼ 30 % of all triples;
sometimes even less than that [47–49, 52, 68]). The CPU times required to
construct the relevant corrections δµ(2, 3) to CCSD/EOMCCSD energies
are often on the order of the CPU time of a single CCSD/EOMCCSD
iteration [47–49, 52, 68].

We illustrate the performance of the CISDt-corrected MMCC(2,3) ap-
proach using excited states of the CH+ ion as an example (see Table 2
and Figure 2). We are comparing the MMCC(2,3)/CI results for a few
low-lying excited states of CH+ of the 1Σ+, 1Π, and 1∆ symmetries, ob-
tained with the [5s3p1d/3s1p] basis set described in Ref. [103] and the
ground-state restricted Hartree-Fock (RHF) orbitals, with the results of
the corresponding full CI calculations reported in Refs. [45, 103]. Along
with the MMCC(2,3)/CI and full CI data, we show the EOMCCSD and
full EOMCCSDT results (the latter ones obtained in Ref. [44]) and the re-
sults obtained with the perturbative triples CC3 model [39] (see Table 2).
In addition, in Figure 2, we compare the potential energy curves for excited
states of CH+, obtained with the MMCC(2,3)/CI approach, with the corre-
sponding EOMCCSD and full CI curves on the one hand and the potential
energy curves resulting from the CISDt calculations, which are used to
generate wave functions |Ψµ〉 for the MMCC(2,3)/CI method, on the other
hand. In calculating the CISDt wave functions |Ψ(CISDt)

µ 〉 and in calculating
the final MMCC(2,3)/CI energies, we used a small active space consisting
of the highest-energy occupied orbital, 3σ, and three lowest-energy unoc-
cupied orbitals, 1πx ≡ 1π, 1πy ≡ 2π, and 4σ. This choice of active space
reflects the nature of orbital excitations defining the valence excited states
of CH+ shown in Table 2 and Figure 2 (see Refs. [42, 43, 47] for details).
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We begin our discussion with the vertical excitation energies at the
equilibrium geometry, RC−H = Re = 2.13713 bohr, shown in Table 2.
In this case, the doubly excited nature of the first-excited 1Σ+ (2 1Σ+)
state and of the lowest two 1∆ states 1 1∆ and 2 1∆, and the partially
biexcited character of the second 1Π state 2 1Π (cf. Refs. [42, 43, 47, 103])
cause significant problems for the EOMCCSD approach. The errors in the
EOMCCSD excitation energies for these four states, relative to the cor-
responding full CI values, are 0.560, 0.924, 0.856, and 0.327 eV, respec-
tively. The CC3 method reduces these large errors to 0.219–0.318 eV, but
if we want to obtain errors which are less than 0.1 eV with the standard
EOMCC methodology, we must use the full EOMCCSDT approach (or its
active-space EOMCCSDt variant [43, 44]). The full EOMCCSDT approach
reduces the relatively large unsigned errors in the EOMCCSD results for
the 2 1Σ+, 1 1∆, 2 1∆, and 2 1Π states to 0.074, 0.040, 0.038, and 0.060
eV, respectively.

As shown in Table 2, the inexpensive MMCC(2,3)/CI approach is capa-
ble of providing the results of full EOMCCSDT quality. Indeed, the errors
in the vertical excitation energies for the 2 1Σ+, 1 1∆, 2 1∆, and 2 1Π
states of CH+ that have large double excitation components, obtained with
the noniterative MMCC(2,3)/CI approximation, are 0.006–0.105 eV. This
should be compared to the 0.327–0.924 eV errors in the EOMCCSD re-
sults, the 0.219–0.318 eV errors obtained with the CC3 method, and the
0.504–0.882 eV errors obtained with the CISDt approach used to construct
wave functions |Ψµ〉 for the MMCC(2,3)/CI calculations [47, 48]. For the
remaining states shown in Table 2 (the third and fourth 1Σ+ states and
the lowest-energy 1Π state), the errors in the CISDt-corrected MMCC(2,3)
results, relative to full CI, are 0.000–0.015 eV. Again, the only standard
EOMCC method that can compete with the MMCC(2,3)/CI approach is
the expensive full EOMCCSDT approximation.

The excellent performance of the CISDt-corrected MMCC(2,3) approx-
imation is not limited to vertical excitation energies at the equilibrium
geometry. As shown in Figure 2 (c), the MMCC(2,3)/CI method is capable
of providing a highly accurate description of entire excited-state poten-
tials of CH+. The very large (often > 1 eV) errors in the EOMCCSD
and CISDt results for the excited-state potential energy curves, relative
to the corresponding full CI curves (cf. Figures 2 (a) and (b)) are re-
duced in the MMCC(2,3)/CI calculations to 0.00–0.10 eV. For example,
the errors in the EOMCCSD excitation energies, relative to full CI, for
the three lowest excited states of the 1Σ+ symmetry, the two lowest 1Π
states, and the two lowest 1∆ states are 0.668, 0.124, 0.256, 0.109, 0.564,
1.114, and 2.095 eV, respectively, at RC−H = 1.5Re, and 0.299, 0.532, 0.771,
0.234, 0.467, 1.178, and 3.950 eV, respectively, at RC−H = 2Re [44]. Our
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MMCC(2,3)/CI method reduces these large unsigned errors to 0.072, 0.005,
0.025, 0.024, 0.059, 0.065, and 0.086 eV, respectively, at RC−H = 1.5Re,
and 0.074, 0.048, 0.046, 0.045, 0.007, 0.079, and 0.029 eV, respectively,
at RC−H = 2Re [47, 48]. As in the RC−H = Re case, the only stan-
dard EOMCC approach that can provide the results of this high quality
is the expensive full EOMCCSDT method [44]. Interestingly enough, the
MMCC(2,3)/CI approximation is capable of providing the reasonably cor-
rect description of the asymptotic region of the potential energy curves of
CH+, restoring almost perfectly, for example, the degeneracy of the 2 1Σ+,
2 1Π, and 1 1∆ states in the RC−H = ∞ limit, which is severely broken by
all EOMCC/response CC doubles models, including the standard EOM-
CCSD approach (cf. Figures 2 (a) and (c); see, also, Refs. [45, 47]). There
is no need to reoptimize orbitals to obtain an accurate description of ex-
cited states of CH+ in the MMCC(2,3)/CI calculations (the ordinary RHF
orbitals are sufficient) and the required computer effort is small. For exam-
ple, the fraction of all triples used in the MMCC(2,3)/CISDt calculations
discussed here was, depending of state’s symmetry, 26–29 % [47, 48].

The CI-corrected MMCC methods provide us with an excellent de-
scription of excited states dominated by double excitations and excited-
state potentials along bond breaking coordinates, but one may think of
reducing the costs of the CISDt-corrected MMCC(2,3) and similar cal-
culations even further by replacing the CI wave functions |Ψµ〉 in the
MMCC(mA, mB) energy expressions, Eqs. (65) and (66), by the wave func-
tions obtained with low-order MRMBPT approaches. We have recently
implemented the pilot version of one of the possible MRMBPT-corrected
MMCC(2,3) approaches, referred here and elsewhere in this article to as
the MMCC(2,3)/PT method [78], in which we proceed as follows: First, as
in all multi-reference calculations, and in analogy to the CISDt calculations
discussed above, we divide the available spin-orbitals into core, active, and
virtual categories, as shown in Figure 1. By distributing active electrons
among active spin-orbitals in all possible ways, we produce a certain num-
ber (designated here by M) of reference determinants |Φp〉, which span
the complete model space or P -space M0. With the judicious choice of ac-
tive spin-orbitals, we can assume that the linear combinations of reference
determinants |Φp〉, p = 1, . . . , M ,

|Ψ̄(P )
µ 〉 =

M∑

p=1

c̄pµ|Φp〉, (83)

where the coefficients c̄pµ and the corresponding eigenvalues Ēµ are ob-
tained by diagonalizing the Hamiltonian in the model space M0, represent
reasonable zero-order approximations to the ground- and excited states
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|Ψµ〉 and energies Eµ of interest. Once the model space M0 is defined, we
consider all singly and doubly excited determinants with respect to each
reference |Φp〉, p = 1, . . . , M , which span the Q-space (a subspace of the
orthogonal complement M⊥

0 ), as is often done in multi-reference CISD cal-
culations, and define the wave functions |Ψµ〉, which will eventually be used
to design the MMCC/PT (e.g. MMCC(2,3)/PT) energy corrections, as

|Ψµ〉 =
M∑

p=1

cpµ|Φp〉+
R∑

q=M+1

cqµ|Φq〉, (84)

where |Φp〉, p = 1, . . . , M , are the reference determinants and |Φq〉, q = M+
1, . . . , R, are the Q-space determinants, as defined above. We estimate the
values of the coefficients cpµ, p = 1, . . . , M , and cqµ, q = M+1, . . . , R, in Eq.
(84) by applying the partitioning technique to the Hamiltonian matrix in
the space spanned by the P -space and Q-space determinants |Φp〉 and |Φq〉,
respectively. Thus, if CPµ and CQµ are the column vectors of coefficients
cpµ with p = 1, . . . , M and cqµ with q = M + 1, . . . , R, respectively, and
if HPP , HPQ, HQP , and HQQ are the corresponding PP , PQ, QP , and
QQ blocks of the Hamiltonian, we can write the Hamiltonian eigenvalue
problem for the wave functions |Ψµ〉, Eq. (84), as follows:

(
HPP HPQ

HQP HQQ

)(
CPµ

CQµ

)
= Eµ

(
CPµ

CQµ

)
. (85)

If we approximate the QQ block of the Hamiltonian, HQQ, by the diagonal
matrix elements 〈Φq|H|Φq〉, we can immediately write

CQµ ≈ (Eµ1−DQ)−1 HQPCPµ, (86)

or, more explicitly,

cqµ ≈
M∑

p=1

(Eµ − 〈Φq|H|Φq〉)−1 〈Φq|H|Φp〉 cpµ, (q = M + 1, . . . , R), (87)

where DQ in Eq. (86) is the diagonal part of HQQ. In the MRMBPT scheme
used in our pilot implementation of the MMCC(2,3)/PT method [78], we
obtain the approximate values of the coefficients cqµ, q = M + 1, . . . , R, by
replacing the energies Eµ and coefficients cpµ, p = 1, . . . , M , in Eq. (87) by
the zero-order energies Ēµ and coefficients c̄pµ, respectively, resulting from
the diagonalization of the Hamiltonian in the model space M0 (diagonal-
ization of HPP ). We use the resulting approximate values of the coefficients
cqµ,

c̄qµ =
M∑

p=1

(Ēµ − 〈Φq|H|Φq〉)−1 〈Φq|H|Φp〉 c̄pµ, (q = M + 1, . . . , R), (88)
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along with the coefficients c̄pµ obtained by diagonalizing HPP , to define the
wave functions

|Ψ̄µ〉 =
M∑

p=1

c̄pµ|Φp〉+
R∑

q=M+1

c̄qµ|Φq〉, (89)

which can be used instead of the wave functions |Ψµ〉 in the MMCC(mA, mB)
energy expressions, Eqs. (65) and (66), to define the MMCC(mA, mB)/PT
approximations.

In the specific case of the MMCC(2,3)/PT approximation, we go one
step further and, after rewriting each |Ψ̄µ〉, Eq. (89), in the form of the CI
expansion relative to the reference determinant |Φ〉 used in the CCSD and
EOMCCSD calculations whose results we want to improve,

|Ψ̄µ〉 = (C̄µ,0 + C̄µ,1 + C̄µ,2 + C̄µ,3 + · · ·)|Φ〉, (90)

where
C̄µ,0 = c̄0(µ) 1, (91)

C̄µ,1|Φ〉 = c̄i
a(µ) aaai =

∑

i,a

c̄i
a(µ) aaai, (92)

C̄µ,2 = 1
4 c̄ij

ab(µ) aaabajai =
∑

i<j,a<b

c̄ij
ab(µ) aaabajai, (93)

and

C̄µ,3 = 1
36 c̄ijk

abc(µ) aaabacakajai =
∑

i<j<k,a<b<c

c̄ijk
abc(µ) aaabacakajai (94)

are the corresponding particle-hole excitation operators relative to |Φ〉 defin-
ing the reference, singly excited, doubly excited, and triply excited contri-
butions to |Ψ̄µ〉, we truncate the CI expansion for the MRMBPT wave
function |Ψ̄µ〉, Eq. (90), at triply excited determinants (the C̄µ,3|Φ〉 term).
As a result, the final energy formula for the MMCC(2,3)/PT energy, ob-
tained by replacing |Ψµ〉 in Eq. (67) by |Ψ̄µ〉, Eq. (90), truncated at triply
excited determinants relative to |Φ〉, is

E(MMCC/PT)
µ (2, 3) = E(EOMCCSD)

µ +
∑

i<j<k,a<b<c

[c̄ijk
abc(µ)]∗ M

ijk
µ,abc(2)/D̄µ,

(95)
where the triply excited moments M

ijk
µ,abc(2) are defined by Eqs. (58) and

(59) (and calculated using Eq. (60)), and

D̄µ ≡ 〈Ψ̄µ|R(CCSD)
µ eT (CCSD) |Φ〉 = ∆̄µ,0 + ∆̄µ,1 + ∆̄µ,2 + ∆̄µ,3 (96)



76 PIOTR PIECUCH ET AL.

is the overlap denominator 〈Ψµ|R(CCSD)
µ eT (CCSD) |Φ〉 entering Eq. (67), writ-

ten for the wave function |Ψµ〉 = |Ψ̄µ〉, Eq. (90), truncated at triples. The
∆̄µ,0, ∆̄µ,1, ∆̄µ,2, and ∆̄µ,3 contributions to the denominator D̄µ, Eq. (96),
are calculated as

∆̄µ,0 = [c̄0(µ)]∗ r0(µ), (97)

∆̄µ,1 =
∑

i,a

[c̄i
a(µ)]∗ βi

a(µ), (98)

∆̄µ,2 =
∑

i<j,a<b

[c̄ij
ab(µ)]∗ βij

ab(µ), (99)

and
∆̄µ,3 =

∑

i<j<k,a<b<c

[c̄ijk
abc(µ)]∗ βijk

abc(µ), (100)

where c̄0(µ), c̄i
a(µ), c̄ij

ab(µ), and c̄ijk
abc(µ) are the CI coefficients obtained

by rewriting the MRMBPT wave function, |Ψ̄µ〉, Eq. (89), in the single-
reference CI form of Eq. (90), and r0(µ), βi

a(µ), βij
ab(µ), and βijk

abc(µ) are
the coefficients at the reference determinant |Φ〉 and singly, doubly, and
triply excited determinants, |Φa

i 〉, |Φab
ij 〉, and |Φabc

ijk〉 respectively, in the CI

expansion of the CCSD/EOMCCSD wave function R
(CCSD)
µ eT (CCSD) |Φ〉 (for

the formulas for the coefficients βi
a(µ), βij

ab(µ), and βijk
abc(µ), see Eqs. (80)–

(82), respectively). Although the summations over i, j, k, a, b, c in Eqs. (95)
and (100) have the form of the complete summations over triples, in re-
ality the wave functions |Ψ̄µ〉, Eq. (89), contain only a small subset of
all triples, once we rewrite each |Ψ̄µ〉 in the form of the single-reference
CI expansion, Eq. (90). This is a consequence of using active orbitals in
designing the model space M0, which limit triple excitations relative to
the reference |Φ〉 to a small class of triple excitations that carry a cer-
tain number of active spin-orbital indices. Although the actual number of
triples in |Ψ̄µ〉 depends on the dimension of the active space used in the
MRMBPT calculations, in analogy to the MMCC(2,3)/CI calculations, we
only need a subset of all triexcited coefficients βijk

abc(µ), Eq. (82), and a
subset of triply excited moments M

ijk
µ,abc(2), Eqs. (58)–(60), which match

the nonzero coefficients c̄ijk
abc(µ), to calculate the MMCC(2,3)/PT energy,

Eq. (95). Again, as in the MMCC(2,3)/CI case, one can easily extend the
above MMCC(2,3)/PT approximation to higher-order MRMBPT-corrected
MMCC(mA, mB) schemes, such as the MMCC(2,4)/PT approach which
describes the combined effect of selected triple and quadruple excitations
introduced by the MRMBPT wave functions [78].

One of the main advantages of the MRMBPT-corrected MMCC schemes,
such as MMCC(2,3)/PT, is their low cost, compared to the already rather
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inexpensive CI-corrected MMCC methods. As in the case of the CI-corrected
MMCC approaches, such as MMCC(2,3)/CI, in the
MMCC(2,3)/PT method and other MRMBPT-corrected MMCC approx-
imations we have a very good control of accuracy through active orbitals
defining model space M0, which can always be adjusted to the excited states
or the bond breaking problem of interest, but unlike in the MMCC/CI
schemes, we do not have to solve the iterative CISDt or other CI-like
equations to generate the wave functions |Ψµ〉 that enter the corrections
δµ(mA, mB) of the MRMBPT-corrected MMCC theories. We calculate the
relevant CI-like coefficients, such as c̄0(µ), c̄i

a(µ), c̄ij
ab(µ), and c̄ijk

abc(µ), by
converting the relatively simple expressions that define the MRMBPT wave
functions |Ψ̄µ〉, Eq. (89), into the single-reference CI form defined by Eq.
(90). Thus, the main computer effort goes into the calculations of a small
subset of triexcited moments M

ijk
µ,abc(2), leading to the significant reduc-

tion of the n3
on

4
u steps that are normally needed to calculate all moments

M
ijk
µ,abc(2).
We illustrate the performance of the MMCC(2,3)/PT approach using

selected excited states of the CH+ ion, as described by the [5s3p1d/3s1p]
basis set of Ref. [103] (see Table 2). As in the case of the MMCC(2,3)/CI ap-
proach, we compare the MMCC(2,3)/PT results with the full CI vertical ex-
citation energies at the equilibrium geometry RC−H = Re = 2.13713 bohr,
reported in Ref. [103], and the corresponding EOMCCSD, EOMCCSDT,
and CC3 results reported in Refs. [39, 44]. In calculating the MRMBPT
wave functions |Ψ̄µ〉, Eqs. (89) and (90), we used the same small set of
active orbitals consisting of the 3σ, 1πx ≡ 1π, 1πy ≡ 2π, and 4σ orbitals as
employed in the MMCC(2,3)/CI calculations.

As shown in Table 2, the inexpensive MMCC(2,3)/PT approach is ca-
pable of providing the results which are practically as good as the excellent
MMCC(2,3)/CI results. In the case of the 2 1Σ+ and 1 1∆ states, which
have a strong double excitation character, causing the EOMCCSD approach
to fail, the MMCC(2,3)/PT corrections to CCSD/EOMCCSD energies pro-
duce the results of the EOMCCSDT quality, reducing the 0.560 and 0.924
eV errors in the EOMCCSD results to 0.102 and 0.090 eV, respectively. For
these two states, the errors relative to full CI obtained with the noniterative
MMCC(2,3)/PT approach are 2–3 times smaller than the errors obtained
with the much more expensive and iterative CC3 method. For states such as
2 1Π, which have a partially biexcited character, and for states dominated
by single excitations (3 1Σ+, 1 1Π), the MMCC(2,3)/PT results are as
good as the CC3 results. Although in this pilot study, we could not find the
MRMBPT wave functions that would have a significant overlap with the
EOMCCSD wave functions for the higher-energy 4 1Σ+ and 2 1∆ states,
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so that we could not obtain the complete set of MMCC(2,3)/PT energies,
we can conclude that the MMCC(2,3)/PT method is as accurate as the
MMCC(2,3)/CI approximation. This is good news, since MMCC(2,3)/PT
calculations are less expensive than MMCC(2,3)/CI calculations, as ex-
plained above. We have, in fact, the preliminary results for the excitation
energies corresponding to stretched geometries of the CH+ ion [78]. For ex-
ample, the MMCC(2,3)/PT approach reduces the large, 0.299, 0.532, 0.234,
0.467, and 1.178 eV errors in the EOMCCSD results for the 2 1Σ+, 3 1Σ+,
1 1Π, 2 1Π, and 1 1∆ states at RC−H = 2Re to −0.079, −0.021, 0.133,
−0.123, and 0.005 eV, respectively. The MMCC(2,3)/CI approach offers
a very similar error reduction, but we need to solve the iterative CISDt
equations to obtain the wave functions |Ψ(CISDt)

µ 〉, Eq. (69), to calculate
the MMCC(2,3)/CI corrections. This is not needed in the MMCC(2,3)/PT
calculations, which rely on the less expensive MRMBPT-like wave func-
tions |Ψ̄µ〉, Eq. (89), in the process of constructing the δµ(2, 3) corrections
to the CCSD/EOMCCSD energies.

The CI- and MRMBPT-corrected MMCC approximations lead to sig-
nificant improvements of the EOMCC excitation energies by constructing
corrections δµ(mA, mB) with the help of the wave functions |Ψµ〉 obtained
in the non-CC calculations that provide a reasonable, qualitatively correct
description of the ground and excited states of interest. The question arises
if we can achieve the same goal and similar accuracies by designing the
MMCC corrections δµ(mA, mB) using nothing else than the cluster and ex-
citation operators obtained in the CC/EOMCC calculations. This question
is addressed in the next subsection.

3.1.2. The CR-EOMCCSD(T) approach: The “black-box” MMCC method
for molecular excited states
An interesting alternative to the externally corrected MMCC methods,
discussed in Section 3.1.1, is offered by the CR-EOMCCSD(T) approach
[49, 51, 52, 59]. The CR-EOMCCSD(T) method can be viewed as an exten-
sion of the ground-state CR-CCSD(T) approach of Refs. [61, 62], which
overcomes the failures of the standard CCSD(T) approximations when
diradicals [76, 104, 105] and potential energy surfaces involving single bond
breaking and single bond insertion [49, 50, 52, 60–62, 65, 67, 69, 70, 72, 73]
are examined, to excited states.

The CR-EOMCCSD(T) approach is a purely single-reference, “black-
box” method based on the MMCC(2,3) approximation, in which the wave
function |Ψµ〉 entering Eq. (67) is designed by using the singly and dou-
bly excited cluster amplitudes tia and tijab, defining T1 and T2, respectively,
obtained in the CCSD calculations, and the zero-, one- and two-body am-
plitudes r0(µ), ri

a(µ) and rij
ab(µ), defining Rµ,0, Rµ,1, and Rµ,2, respectively,
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obtained in the EOMCCSD calculations. As with all MMCC(2,3) meth-
ods, the CR-EOMCCSD(T) approach enables us to correct the results
of the CCSD/EOMCCSD calculations through noniterative energy correc-
tions due to triples.

The wave functions |Ψµ〉 that are used to design triples corrections of
the CR-EOMCCSD(T) theory are obtained by analyzing the EOMCCSDT
eigenvalue problem, in which the most expensive triples-triples block of
the CCSDT/EOMCCSDT similarity-transformed Hamiltonian matrix is
approximated by its diagonal and in which the T3 cluster contributions
to matrix elements of the CCSDT/EOMCCSDT similarity-transformed
Hamiltonian are neglected. Depending on additional approximations in the
resulting wave functions |Ψµ〉, we can propose several variants of the CR-
EOMCCSD(T) theory [51, 52]. In the following, we focus on variant ID (the
CR-EOMCCSD(T),ID method), which represents one of the most com-
plete versions of the CR-EOMCCSD(T) approach and which often pro-
vides the most accurate description of excited states when compared to
the remaining CR-EOMCCSD(T) approximations [51–53]. Since we discuss
here only one variant of the CR-EOMCCSD(T) theory, namely, the CR-
EOMCCSD(T),ID method, we drop “,ID” from the acronym
CR-EOMCCSD(T),ID, remembering that from now on CR-EOMCCSD(T)
will stand in this paper for the CR-EOMCCSD(T),ID approach. In the
CR-EOMCCSD(T) ≡ CR-EOMCCSD(T), ID method, the wave function
|Ψµ〉 that enters Eq. (67), designated as |Ψ(CR-EOMCCSD(T))

µ 〉, is defined
as follows [51, 52, 59]:

|Ψ(CR-EOMCCSD(T)
µ 〉 = P̄ (Rµ,0 + Rµ,1 + Rµ,2 + R̃µ,3)eT1+T2 |Φ〉

= {Rµ,0 + (Rµ,1 + Rµ,0T1)
+[Rµ,2 + Rµ,1T1 + Rµ,0(T2 + 1

2T 2
1 )]

+[R̃µ,3 + Rµ,2T1 + Rµ,1(T2 + 1
2T 2

1 )

+Rµ,0(T1T2 + 1
6T 3

1 )]}|Φ〉, (101)

where P̄ is a projection operator on the subspace spanned by the refer-
ence |Φ〉 and all singly, doubly, and triply excited determinants. The triple
excitation operator R̃µ,3, entering Eq. (101), is calculated as

R̃µ,3 = 1
36 r̃ijk

abc(µ) aaabacakajai, (102)

where
r̃ijk
abc(µ) = M

ijk
µ,abc(2)/Dijk

µ,abc (103)

are the approximate values of the triple excitation amplitudes rijk
abc(µ) result-

ing from the analysis of the full EOMCCSDT eigenvalue problem [51]. As
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one can see, we calculate the approximate amplitudes r̃ijk
abc(µ) using exactly

the same set of triply excited moments M
ijk
µ,abc(2) of the CCSD/EOMCCSD

equations that enters the MMCC(2,3) energy expression, Eq. (67). The
Dijk

µ,abc quantities that enter Eq. (103) represent the perturbative denomi-
nators for triple excitations, which are defined as follows [51, 52, 59]:

Dijk
µ,abc = E(CCSD)

µ − 〈Φabc
ijk |H̄(CCSD)|Φabc

ijk〉

= ω(CCSD)
µ − 〈Φabc

ijk |H̄
(CCSD)
1 |Φabc

ijk〉

−〈Φabc
ijk |H̄

(CCSD)
2 |Φabc

ijk〉

−〈Φabc
ijk |H̄

(CCSD)
3 |Φabc

ijk〉, (104)

where H̄
(CCSD)
p , p = 1− 3, are the one-, two-, and three-body components

of the CCSD/EOMCCSD similarity-transformed Hamiltonian H̄(CCSD), re-
spectively, and ω

(CCSD)
µ is the EOMCCSD vertical excitation energy.

The use of the diagonal elements of the triples-triples block of the
H̄(CCSD) matrix rather than the more usual MBPT-like differences of bare
spin-orbital energies (εa + εb + εc − εi − εj − εk) in the definition of the de-
nominators Dijk

µ,abc, which are needed to define the approximate triexcited

amplitudes r̃ijk
abc(µ), has a positive effect on the overall accuracies of the CR-

EOMCCSD(T) calculations, while facilitating the open-shell implementa-
tion of the CR-EOMCCSD(T) method employing the restricted open-shell
Hartree-Fock (ROHF) orbitals [59]. Indeed, the use of spin-orbital energy
differences (εa + εb + εc− εi− εj− εk) instead of the complete form of the di-
agonal matrix elements of H̄(CCSD) involving triply excited determinants to
define the denominator Dijk

µ,abc, Eq. (104), would lead to formal and practical
difficulties related to the choice of the unperturbed Hamiltonian to define
orbital energies because of the presence of the off-diagonal matrix elements
in the spin-orbital form of the Fock matrix written for the ROHF orbitals
(see Refs. [54, 85, 86, 106] for a discussion of serious problems that appear
in the ROHF-based implementations of the CCSD(T) and CC3 methods).
The use of the complete form of triexcited moments M

ijk
µ,abc(2), as defined

by Eqs. (58)–(60), and the use of the complete form of the denominator
Dijk

µ,abc, Eq. (104), in which all terms resulting from 〈Φabc
ijk |H̄(CCSD)|Φabc

ijk〉
are retained, as is done in the CR-EOMCCSD(T) approach discussed here,
enables us to avoid these problems, which complicate the ROHF-based im-
plementations of the CCSD(T) [85, 86, 106] and CC3 [54] methods, since
we never have to worry about what terms in the Hamiltonian should be
regarded as the zero-order terms to calculate the approximate triple exci-
tation operator R̃µ,3, Eq. (102). This is one of the many advantages of the
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MMCC-based CR-EOMCCSD(T) theory over the conventional treatment
of triple excitations, such as CCSD(T) and CC3.

The above equations enable us to calculate the CR-EOMCCSD(T) en-
ergies by replacing |Ψµ〉 in Eq. (67) by |Ψ(CR-EOMCCSD(T))

µ 〉, Eq. (101). The
resulting energy formula,

E(CR-EOMCCSD(T))
µ = E(CCSD)

µ + 〈Ψ(CR-EOMCCSD(T))
µ |Mµ,3(2)|Φ〉/

〈Ψ(CR-EOMCCSD(T))
µ |R(CCSD)

µ eT (CCSD) |Φ〉, (105)

applies to ground and excited states (ground states when µ = 0 and ex-
cited states when µ > 0). In particular, we obtain the ground-state CR-
EOMCCSD(T) energies by replacing Rµ,0, Rµ,1, and Rµ,2 in Eq. (101) by 1,
0, and 0, respectively, and R̃µ,3, Eq. (102), by
R̃0,3 = 1

36 r̃ijk
abc(0) aaabacakajai, where r̃ijk

abc(0) = M
ijk
abc(2)/Dijk

0,abc, with

M
ijk
abc(2) representing the triply excited moments of the CCSD equations,

Eq. (59), and Dijk
0,abc given by Eq. (104) in which µ = 0 and ω

(CCSD)
0 = 0.

The state-selective nature of the CR-EOMCCSD(T) method, in which
the ground- and excited-state energies are obtained in separate, yet re-
lated, calculations using Eq. (105) and wave functions |Ψ(CR-EOMCCSD(T))

µ 〉
that result from the analysis of the EOMCCSDT equations including the
ground-state problem, leads to a much better balance between the energies
of ground and excited states compared to the standard EOMCCSD(T),
EOMCCSD(T̃), EOMCCSD(T′) [35, 36], and CCSDR(3) [40, 41]
calculations [51, 52]. In the standard approaches of the EOMCCSD(T) type,
one focuses on directly improving the EOMCCSD vertical excitation ener-
gies and this leads to large discrepancies between the accuracies of the
excited-state energies obtained from the EOMCCSD(T), EOMCCSD(T̃),
EOMCCSD(T′), and CCSDR(3) calculations and the ground-state energies
calculated with the CCSD or CCSD(T) approaches (see Ref. [51] for a de-
tailed discussion). Moreover, as shown, for example, in Refs. [51, 58], the
standard noniterative methods of the EOMCCSD(T) type and their iter-
ative analogs of the EOMCCSDT-n or CC3 type cannot be used to study
excited-state potentials along bond breaking coordinates. As shown below,
the CR-EOMCCSD(T) method is more robust in this regard, allowing one
to explore large fragments of excited-state potential energy surfaces, even
when the ground state is characterized by a large degree of nondynamic
correlation.

The above Eq. (105) is a general expression. Let us briefly discuss the
more explicit formulas for the CR-EOMCCSD(T) energies
E

(CR-EOMCCSD(T))
µ . In the most efficient implementations of the

CR-EOMCCSD(T) approach reported in Refs. [51, 59], we rewrite Eq. (105)
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as follows [59]:

E(CR-EOMCCSD(T))
µ = E(CCSD)

µ + NCR(T)
µ /DCR(T)

µ , (106)

where
NCR(T)

µ =
∑

i<j<k,a<b<c

[γijk
abc(µ)]∗ M

ijk
µ,abc(2) (107)

and
DCR(T)

µ = ∆CR(T)
µ,0 + ∆CR(T)

µ,1 + ∆CR(T)
µ,2 + ∆CR(T)

µ,3 (108)

are the numerator (〈Ψ(CR-EOMCCSD(T))
µ |Mµ,3(2)|Φ〉) and denominator

(〈Ψ(CR-EOMCCSD(T))
µ |R(CCSD)

µ eT (CCSD) |Φ〉) terms appearing in Eq. (105). As
already explained, the triply excited moments of the CCSD/EOMCCSD
equations, M

ijk
µ,abc(2), are most efficiently calculated with the help of Eq.

(60). The γijk
abc(µ) amplitudes that enter the numerator term N

CR(T)
µ , Eq.

(107), represent the coefficients at the triply excited determinants |Φabc
ijk〉 in

the CI expansion of |Ψ(CR-EOMCCSD(T))
µ 〉,

γijk
abc(µ) = 〈Φabc

ijk |Ψ(CR-EOMCCSD(T))
µ 〉 = r̃ijk

abc(µ) + βijk
abc(µ), (109)

where r̃ijk
abc(µ) and βijk

abc(µ) are given by Eqs. (103) and (82), respectively.
The ∆CR(T)

µ,0 , ∆CR(T)
µ,1 , ∆CR(T)

µ,2 , and ∆CR(T)
µ,3 terms that contribute to the

denominator D
CR(T)
µ , Eq. (108), are defined as

∆CR(T)
µ,0 = |r0(µ)|2, (110)

∆CR(T)
µ,1 =

∑

i,a

|βi
a(µ)|2, (111)

∆CR(T)
µ,2 =

∑

i<j,a<b

|βij
ab(µ)|2, (112)

and
∆CR(T)

µ,3 =
∑

i<j<k,a<b<c

[γijk
abc(µ)]∗ βijk

abc(µ), (113)

where r0(µ), βi
a(µ), and βij

ab(µ) are the coefficients at the reference deter-
minant |Φ〉 and singly and doubly excited determinants, |Φa

i 〉 and |Φab
ij 〉,

respectively, in the CI expansion of the CCSD or EOMCCSD wave func-
tions R

(CCSD)
µ eT (CCSD) |Φ〉 (for the formulas for βi

a(µ) and βij
ab(µ), see Eqs.

(80) and (81), respectively). The key elements of the algorithm that leads
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to the highly efficient general-purpose computer implementation of the CR-
EOMCCSD(T) approach, based on Eq. (106), are shown in Figure 3. As
one can read from Figure 3, we calculate moments M

ijk
µ,abc(2)“on the fly” in

the explicit loop over i < j < k and there is no explicit loop over a < b < c.
Instead, we calculate the entire set of moments M

ijk
µ,abc(2) corresponding to

all values of a, b, c and fixed values of indices i, j, k from the i < j < k
loop, which are stored in a relatively small array of dimension n3

u. This is
done to achieve a high efficiency of the resulting CR-EOMCCSD(T) code.
Indeed, we could choose an alternative coding strategy and calculate mo-
ments M

ijk
µ,abc(2) for i < j < k and a < b < c only, but this would have to

be done at the expense of the high degree of vectorization characterizing
Eq. (60) and the algorithm shown in Figure 3, which significantly benefits
from the use of fast matrix multiplication routines from the BLAS library in
determining M

ijk
µ,abc(2). For example, if we used the explicit i < j < k and

a < b < c loops, the calculation of the 1
2 h̄ie

abr
jk
ec term in Eq. (60), which is one

of the terms that defines the n3
on

4
u scaling of the CR-EOMCCSD(T) theory,

would split into a very large number of ∼ 1
36 n3

on
3
u very short matrix mul-

tiplications, each involving the summation over a single index e only. Each
of these matrix multiplications is fast, but we would have to repeat them
as many times as the number of elements in the i < j < k and a < b < c
loops and this would result in a much slower code. By having the explicit
loop over i < j < k only, the summation over e for the entire set of all a, b, c

values entering the h̄ie
abr

jk
ec term is performed with a single call to the BLAS

matrix multiplication routine, which is a much more efficient use of fast
matrix multipliers. At the same time, by calculating moments M

ijk
K,abc(2)

in the explicit loop over i < j < k, we keep the memory requirements at
the relatively low level that does not exceed n3

u words when we execute
Eq. (60). As a result, the memory requirements of the CR-EOMCCSD(T)
calculations are defined by the timae h̄ec

mb, −timbe vec
ma, and −h̄ec

bmrim
ae terms that

enter the definitions of h̄ic
ab and Iic

ab in Table 1. These memory requirements
are 2non

3
u words. The calculation of moments M

ijk
µ,abc(2) in the explicit loop

over i < j < k and for all values of a, b, c to achieve a high degree of vec-
torization creates an impression that the operation count in our algorithm
is artificially increased by a factor of 6, compared to the use of the explicit
i < j < k and a < b < c loops, but this is a false impression. To avoid over-
computing, which the calculation involving all a, b, c values seems to imply,
while enhancing, at the same time, the performance through a highly ef-
ficient use of the BLAS matrix multiplication routines, instead of enforcing
the correct symmetry of M

ijk
µ,abc(2) with respect to permutations of indices

a, b, c during the determination of M
ijk
µ,abc(2), we first calculate the nonsym-
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metric quantity T
ijk
µ,abc(2) for the given i, j, k values from the i < j < k loop

and for all a, b, c values (see Eq. (60)). Once this is done, we have at our
disposal all of the relevant T

ijk
µ,abc(2) values that are needed to construct the

final M
ijk
µ,abc(2) moment, which is obtained by simply adding the six values

of T
ijk
µ,abc(2) that correspond to six permutations of indices a, b, c, with the

appropriate permutation signs, as in the definition of the antisymmetrizer
Aabc, Eq. (61). In other words, the antisymmetrization over a, b, c is done
at the very end, once all six numerical values of T

ijk
µ,abc(2) that correspond

to six permutations of indices a, b, c are determined.

By following the algorithm described in Figure 3 and by using the idea of
recursively generated intermediates in the calculation of the triply excited
moments M

ijk
µ,abc(2) (cf. Eq. (60) and Table 1) and the CR-EOMCCSD(T)

corrections δ
CR(T)
µ = N

CR(T)
µ /D

CR(T)
µ to CCSD/EOMCCSD energies, we

achieve a very high degree of efficiency of the CR-EOMCCSD(T) computer
codes. In particular, the most expensive steps of the CR-EOMCCSD(T)
codes based on the algorithm described in Figure 3 scale as n2

on
4
u in the

iterative CCSD and EOMCCSD parts and n3
on

4
u in the noniterative part

associated with the determination of the CR-EOMCCSD(T) corrections
δ
CR(T)
µ . Specifically, the CPU time required to calculate the triples cor-

rection δ
CR(T)
µ for a given excited state is twice or three times the CPU

time required to calculate the standard (T) correction of the ground-state
CCSD(T) method (for the ground state, the timings of CR-EOMCCSD(T)
and CCSD(T) calculations are essentially the same). For comparison, the
full EOMCCSDT approach involves a lot more expensive and iterative n3

on
5
u

steps. The CC3 method, with its iterative n3
on

4
u steps, is less time-consuming

compared to EOMCCSDT, but the need to perform iterative N 7-like cal-
culations makes the CC3 approach considerably more expensive than the
CR-EOMCCSD(T) method. At the same time, as shown in Table 2, the
CR-EOMCCSD(T) results are more accurate than the corresponding CC3
results. In fact, they are almost as good as the results of full EOMCCSDT
calculations (see Tables 2 and 3; see Refs. [49, 51, 52] for other examples).

Let us, therefore, illustrate the performance of the CR-EOMCCSD(T)
approach by a few examples of benchmark calculations (for the realistic ap-
plications of the CR-EOMCCSD(T) approach, see, for example,
Refs. [51, 52, 64]). As in the case of the MMCC(2,3)/CI and MMCC(2,3)/PT
methods, we begin our discussion with the electronic excitations in the CH+

ion, as described by the [5s3p1d/3s1p] basis set of Ref. [103] (see Table 2).
A comparison of the vertical excitation energies, corresponding to the three
lowest-energy excited states of the 1Σ+ symmetry and two lowest-energy
states of the 1Π and 1∆ symmetries, obtained at the equilibrium geometry
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Solve the CCSD/EOMCCSD equations

LOOP OVER µ

Compute the CCSD/EOMCCSD total energy E
(CCSD)
µ

Compute ∆CR(T)
µ,0 , ∆CR(T)

µ,1 , and ∆CR(T)
µ,2 , Eqs. (110)–(112), respectively

DENOM = ∆CR(T)
µ,0 + ∆CR(T)

µ,1 + ∆CR(T)
µ,2

SUM = 0.0

LOOP OVER i<j<k

Calculate T
ijk
µ,abc(2) for all values of a, b, c using Eq. (60)

Calculate M
ijk
µ,abc(2) by antisymmetrizing T

ijk
µ,abc(2), as in Eq. (60)

LOOP OVER a<b<c

Calculate Dijk
µ,abc, Eq. (104)

Calculate r̃ijk
abc(µ), Eq. (103)

Calculate βijk
abc(µ), Eq. (82)

Calculate γijk
abc(µ), Eq. (109)

SUM = SUM + γijk
abc(µ) * M

ijk
µ,abc(2)

DENOM = DENOM + γijk
abc(µ) * βijk

abc(µ)

END OF LOOP OVER a<b<c

END OF LOOP OVER i<j<k

CORR = SUM/DENOM

E
(CR-EOMCCSD(T))
µ = E

(CCSD)
µ + CORR

END OF LOOP OVER µ

Figure 3. The key elements of the algorithm used to calculate the CR-EOMCCSD(T)
energy, Eq. (106).

RC−H = Re = 2.13713 bohr with the CR-EOMCCSD(T) approach, with
the analogous results obtained in the EOMCCSD, CC3, EOMCCSDT, and
full CI calculations reported in Refs. [39, 44, 103] is given in Table 2. As
one can see, the relatively inexpensive CR-EOMCCSD(T) method, which
has the ease-of-use of the standard ground-state CCSD(T) approach, pro-
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vides the results of the EOMCCSDT quality, particularly for the 2 1Σ+,
1 1∆, and 2 1∆ states that are dominated by double excitations, for which
the standard EOMCCSD approach fails. Indeed, the CR-EOMCCSD(T)
approach reduces the 0.560, 0.924, and 0.856 eV errors obtained with the
EOMCCSD method for the 2 1Σ+, 1 1∆, and 2 1∆ states of CH+ to 0.117,
0.027, and −0.002 eV, respectively. In fact, the CR-EOMCCSD(T) results
for the 2 1Σ+, 1 1∆, and 2 1∆ states are considerably better than the re-
sults of the iterative triples CC3 calculations, which give 0.230–0.318 eV
errors in this case. Similar remarks apply to the 2 1Π state, which has a
partially biexcited character (see Table 2). For the remaining three states
that are dominated by singles (the 3 1Σ+, 4 1Σ+, and 1 1Π states), the
CR-EOMCCSD(T) method improves the relatively good EOMCCSD re-
sults, reducing the 0.031–0.099 eV errors obtained with the EOMCCSD
approach to 0.007–0.025 eV, which is more or less the same level of ac-
curacy as observed in the CC3 calculations. The overall accuracy of the
CR-EOMCCSD(T) approach, which is a relatively inexpensive “black-box”
method, is as good as the accuracy of the MMCC(2,3)/CI approximation,
which requires choosing active orbitals and performing additional CISDt
calculations.

As shown in Refs. [51, 52], the excellent performance of the
CR-EOMCCSD(T) approach is not limited to the equilibrium geometry.
For example, the CR-EOMCCSD(T) method is capable of reducing the
large unsigned errors of 0.299, 0.532, 0.234, 0.467, and 1.178 eV, obtained
in the EOMCCSD calculations for CH+ at RC-H = 2Re for the 2 1Σ+,
3 1Σ+, 1 1Π, 2 1Π, and 1 1∆ states, to 0.093, 0.084, 0.061, 0.018, and 0.009
eV, respectively [51, 52]. At the significantly stretched nuclear geometries
of CH+, such as RC-H = 2Re, the CR-EOMCCSD(T) approach has some
problems with the higher-energy 4 1Σ+ and 2 1∆ states, but even in this
case we observe considerable improvements in the poor EOMCCSD re-
sults when the CR-EOMCCSD(T) method is employed (see Refs. [51, 52]
for further details). Similar remarks apply to excited-state potential en-
ergy surfaces along bond breaking coordinates of other molecules, includ-
ing strongly multi-reference systems, such as ozone [107] and C2 [53]. For
example, in a recent study [53], we have examined the performance of the
CR-EOMCCSD(T) method employing RHF orbitals in the calculations of
ground- and excited-state potential energy curves of C2, as described by
the 6-31G* basis set [108]. In addition to the ground-state (X 1Σ+

g ) curve,
we have examined two lowest-energy excited states of the 1∆g and 1Σ+

g

symmetries, designated as the B 1∆g and B′ 1Σ+
g states, respectively. The

CR-EOMCCSD(T) results have been compared with the full CI curves for
the X 1Σ+

g , B 1∆g, and B′ 1Σ+
g states of the C2/6-31G* molecule reported

by Abrams and Sherrill [109]. Our findings are summarized in Figure 4. As
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one can see, the X 1Σ+
g , B 1∆g, and B′ 1Σ+

g potential curves of C2 create a
significant challenge for the standard CCSD and EOMCCSD approaches. If
we focus on the C–C distances ranging between 1.1 and 1.8 Å, the errors in
the CCSD and EOMCCSD results for the X 1Σ+

g , B 1∆g, and B′ 1Σ+
g states

are 0.76–1.52 eV, 2.77–3.48 eV, and 2.43–3.18 eV, respectively. In partic-
ular, the error in the EOMCCSD vertical excitation energy corresponding
to the X 1Σ+

g → B 1∆g transition at the approximate equilibrium geome-
try RC−C = 1.25 Å, relative to the full CI value of 2.43 eV, is 1.98 eV. A
similarly large error in the EOMCCSD result for the X 1Σ+

g → B 1∆g ver-
tical transition in C2 was observed earlier by Christiansen et al. [41]. These
authors used a modified version of the aug-cc-pVDZ basis set [110, 111]
and noted that even the iterative CC3 and EOMCCSDT-1 methods, which
account for the triples effects, produce large errors on the order of 0.9 eV,
when the B 1∆g state is examined. In fact, in a more recent study [49],
Piecuch et al. showed that the lowest 1∆g state of C2 cannot be accurately
described by the full EOMCCSDT approach, which gives an error on the or-
der of 0.4 eV, when the modified variant of the aug-cc-pVDZ basis set used
by Christiansen et al. is employed. The only standard EOMCC method,
which is capable of providing an accurate description of the B 1∆g state of
C2, is the prohibitively expensive full EOMCCSDTQ approach [46].

As shown in Figure 4, the CCSD and EOMCCSD potentials are not
only characterized by huge errors, as described above; they are also qual-
itatively incorrect. For example, the B 1∆g potential curve is shifted to
higher energies so much that it crosses the B′ 1Σ+

g curve; this is completely
wrong since the full CI calculations show that the B 1∆g curve should
cross the X 1Σ+

g potential, not the B′ 1Σ+
g curve. In addition, the small,

∼ 0.4 eV energy gap corresponding to an avoided crossing of the X 1Σ+
g

and B′ 1Σ+
g full CI states at R ≈ 1.7 Å is absent in the CCSD/EOMCCSD

calculations. The extremely poor performance of the standard EOMCCSD
approach for the B 1∆g and B′ 1Σ+

g states of C2 confirms the well-known
fact that the EOMCCSD method cannot describe excited-state potential
energy surfaces along bond-breaking coordinates and excited states dom-
inated by two-electron transitions (in this case, the 1π2

u → 3σ2
g double

excitations relative to the RHF reference determinant).
The CR-EOMCCSD(T) approach dramatically improves the poor

CCSD/EOMCCSD results. This can be seen by comparing the
CCSD/EOMCCSD and full CI potential energy curves with the
CR-EOMCCSD(T) potential curves shown in Figure 4. Although the CR-
EOMCCSD(T) method cannot accurately describe the B 1∆g and B′ 1Σ+

g

excited states in the asymptotic region [53] (not shown in Figure 4), the
CR-EOMCCSD(T) results for the X 1Σ+

g , B 1∆g and B′ 1Σ+
g states in the
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Figure 4. Potential energy curves for the C2 molecule (energies in hartree and the C–C
distance in Å; the CCSD/EOMCCSD and full CI data taken from Refs. [53, 109]; the
CR-EOMCCSD(T)≡CR-EOMCCSD(T),ID data has not been published before). The
results include the ground state, X 1Σ+

g , and the lowest excited states of the 1∆g and
1Σ+

g symmetries, B 1∆g and B′ 1Σ+
g . The full CI curves are indicated by the dashed

lines and open symbols and the CC/EOMCC curves are indicated by the solid lines and
filled symbols. (a) A comparison of the CCSD/EOMCCSD and full CI results. (b) A
comparison of the CR-EOMCCSD(T) and full CI results.
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spectroscopic 1.1 Å≤ RC−C ≤ 1.8 Å region are quite good, particularly if we
take into consideration the single-reference character and the relatively low
cost of the CR-EOMCCSD(T) calculations and the challenge that the low-
lying electronic states of C2 create for single-reference methods [53, 109].
The CR-EOMCCSD(T) approach reduces the 0.76–1.52 eV, 2.77–3.48 eV,
and 2.43–3.18 eV errors obtained in the CCSD/EOMCCSD calculations for
the X 1Σ+

g , B 1∆g and B′ 1Σ+
g states of C2 in the 1.1 Å≤ RC−C ≤ 1.8

Å region to 0.19–0.81 eV, 0.45–0.61 eV, and 0.28–0.49 eV, respectively. In
particular, the large, 1.98 eV, error in the EOMCCSD vertical excitation
energy corresponding to the X 1Σ+

g → B 1∆g transition at the approxi-
mate equilibrium geometry RC−C = 1.25 Å reduces to 0.22 eV, when the
CR-EOMCCSD(T) method is employed. A similarly impressive error reduc-
tion in the EOMCCSD results for the X 1Σ+

g → B 1∆g vertical transition
in C2 was observed in our recent CR-EOMCCSD(T), MMCC(2,3)/CI, and
MMCC(2,4)/CI calculations employing the modified aug-cc-pVDZ basis set
of Christiansen et al. [48, 49, 51, 52].

The CR-EOMCCSD(T) curves for the X 1Σ+
g , B 1∆g and B′ 1Σ+

g

states of C2 are almost parallel to the corresponding full CI curves. Indeed,
the nonparallelity errors (NPE’s; NPE is defined as the difference between
the maximum and minimum errors along a potential energy curve) ob-
tained with the CR-EOMCCSD(T) approach in the 1.1 Å≤ RC−C ≤ 1.8
Å region are 0.62, 0.16, and 0.21 eV for the X 1Σ+

g , B 1∆g and B′ 1Σ+
g

states, respectively. This should be compared to the NPE values of 0.76,
0.71, and 0.75 eV, respectively, obtained in the EOMCCSD calculations.
We can reduce the NPE values obtained with the CR-EOMCCSD(T),ID
method discussed here even further if we employ variant III of the CR-
EOMCCSD(T) approach [51, 52]. As shown in Ref. [53], the NPE values
obtained with variant III of the CR-EOMCCSD(T) method for the X 1Σ+

g ,
B 1∆g and B′ 1Σ+

g states in the 1.1 Å≤ RC−C ≤ 1.8 Å region are 0.36,
0.06, and 0.16 eV, respectively.

As shown in Figure 4, the CR-EOMCCSD(T) approach restores the
crossing of the X 1Σ+

g and B 1∆g states in the R ≈ 1.7 Å region. It
also brings the X 1Σ+

g and B′ 1Σ+
g states much closer to each other in the

R = 1.6−1.8 Å region, trying to mimic the existence of an avoided crossing
between these two states that the standard CCSD/EOMCCSD methods fail
to describe. The only problem is that variant ID of the CR-EOMCCSD(T)
theory brings the nearly degenerate X 1Σ+

g and B′ 1Σ+
g states too close to

each other, so that they become virtually degenerate. As shown in Ref. [53],
this problem can be eliminated by replacing the denominators Dijk

µ,abc, Eq.

(104), that are used to define the approximate triexcited amplitudes r̃ijk
abc(µ)

by the MBPT-like energy differences [ω(CCSD)
µ − (εa + εb + εc− εi− εj− εk)],
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but then one looses some of the high accuracy of the CR-EOMCCSD(T),ID
and CR-EOMCCSD(T),III results. This problem will have to be addressed
in the future.

Finally, before discussing our recent attempt to formulate the MMCC
methods employing left eigenstates of the CC/EOMCC
similarity-transformed Hamiltonian [79], let us mention that the very good
performance of the CR-EOMCCSD(T) approach is not limited to singlet
electronic states or closed-shell molecules. We have recently developed the
highly efficient computer codes for the CR-EOMCCSD(T) calculations for
non-singlet electronic states of radical and other open-shell systems, as de-
scribed by the ROHF orbitals [59]. We have tested these codes on excited
states of several open shell systems, including the CH radical, which poses
a serious challenge to standard EOMCC and response CC methods, such
as EOMCCSD and CC3 [54], since some of the low-lying states of CH have
a large double excitation character which requires a highly accurate deter-
mination of the triples effects (T3 and Rµ,3) in CC/EOMCC calculations.
This can be seen in Table 3, where we characterize the low-lying excited
states of CH by the reduced excitation level (REL) defined as [59]

REL =
2∑

n=0

n 〈Φ|(Rµ,n)†Rµ,n|Φ〉 /
2∑

n=0

〈Φ|(Rµ,n)†Rµ,n|Φ〉, (114)

where Rµ,n, n = 0−2, are the zero-, one-, and two-body components of the
excitation operator R

(CCSD)
µ obtained in the EOMCCSD calculations. The

REL ≈ 1.0 value implies that a given excited state is dominated by singles
and REL ≈ 2.0 for excited states dominated by doubles. As shown in Table
3, the a 4Σ− and A 2∆ states of CH are dominated by single excitations,
whereas the B 2Σ− and C 2Σ+ states have a considerable multi-reference
character [112] and significant contributions from double excitations.

Shown in Table 3 are the total and adiabatic excitation energies Te,
obtained with the aug-cc-pVTZ basis set [110, 111], and the dipole mo-
ments µ, obtained with the aug-cc-pVDZ basis set [110, 111], in various
electronic states of CH. We compare the CR-EOMCCSD(T) results for the
total and adiabatic excitation energies and dipole moments with the cor-
responding results of the CCSD/EOMCCSD calculations and the recently
reported [46] results of the full CCSDT/EOMCCSDT calculations employ-
ing the unrestricted Hartree-Fock (UHF) reference. The relevant experi-
mental data, including the Te and µ values and the equilibrium bond lengths
used in the CC/EOMCC calculations, were taken from Refs. [113–119]. The
CCSD/EOMCCSD and CCSDT/EOMCCSDT values of the dipole mo-
ments were obtained analytically, using the right and left eigenstates of
the relevant similarity-transformed Hamiltonians, as described in Section
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2.1 (see Eqs. (45)–(47)). The CR-EOMCCSD(T) values of µ were obtained
numerically using the finite-field method.

As shown in Table 3, the CR-EOMCCSD(T) approach provides a uni-
formly accurate description of the excited states of CH, independent of
their (singly or doubly excited, doublet or quartet) character. The CR-
EOMCCSD(T) adiabatic excitation energies Te obtained with the aug-cc-
pVTZ basis set are within 0.07–0.33 eV from experiment. This includes
the B 2Σ− and C 2Σ+ states dominated by two-electron transitions, for
which the EOMCCSD approach fails, producing the 1.19 and 1.42 eV er-
rors, respectively, when the aug-cc-pVTZ basis set is employed. The CR-
EOMCCSD(T) approach reduces these large errors to 0.07 and 0.15 eV,
respectively, which is a considerable improvement. The overall description
of the excited states of CH listed in Table 3 by the CR-EOMCCSD(T) ap-
proach is almost as good as that obtained with the full
CCSDT/EOMCCSDT method, particularly for the most challenging B 2Σ−

and C 2Σ+ states dominated by doubles. In general, the differences between
the CR-EOMCCSD(T) and CCSDT/EOMCCSDT values of Te obtained
here with the aug-cc-pVTZ basis set range between 0.06 eV for the C 2Σ+

state and 0.26 eV for the A 2∆ state, which is a very good agreement,
particularly if we realize that the CR-EOMCCSD(T) method employs the
iterative n2

on
4
u and noniterative n3

on
4
u steps, which are much less expensive

than the iterative n3
on

5
u steps of the full CCSDT/EOMCCSDT approach.

The above similarities between the results of the CR-EOMCCSD(T) and
CCSDT/EOMCCSDT calculations can also be observed when we examine
the total energies of various excited states of CH listed in Table 3. The
differences between the CR-EOMCCSD(T) and the corresponding EOM-
CCSDT total energies of the excited states of CH given in Table 3 range
between 2.7 and 9.8 millihartree (the difference between the CCSDT and
CR-EOMCCSD(T) ground-state energies is only 0.5 millihartree). This is
very encouraging, particularly when we realize that a few millihartree differ-
ences between the CR-EOMCCSD(T) and EOMCCSDT energies are very
small when compared to the magnitude of triples effects in the excited-
state calculations. These effects, as measured by the differences between
the EOMCCSDT and EOMCCSD energies, can be on the order of 50 mil-
lihartree (cf., e.g., the 46.6 and 53.3 millihartree differences between the
EOMCCSDT and EOMCCSD energies for the B 2Σ− and C 2Σ+ states,
respectively, in Table 3). Finally, it is quite encouraging to observe that
the CR-EOMCCSD(T) method is capable of substantially improving the
CCSD/EOMCCSD results for the dipole moments in ground and excited
states. For the X 2Π, a 4Σ−, and A 2∆ states, the agreement between the
EOMCCSDT and CR-EOMCCSD(T) values of µ shown in Table 3 is virtu-
ally perfect. For the most challenging B 2Σ−, and C 2Σ+ states dominated
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TABLE 3. Total energies (E), adiabatic excitation energies (Te), reduced exci-
tations level (REL) values, and dipole moments (µ) of the ground and low-lying
excited states of the CH radical, as obtained with the aug-cc-pVTZ (E, Te, and
REL) and aug-cc-pVDZ (µ) basis sets [110, 111]. Experimental data and nuclear
geometries used in the CC/EOMCC calculationsa are taken from Refs. [113–119].

State Method E/hartree Te/eV REL µ/debye

X 2Π CCSD -38.409232 1.39

CCSDTb -38.413493 1.37

CR-EOMCCSD(T) -38.412954 1.37

Experiment 1.46 ± 0.06c

a 4Σ− EOMCCSD -38.372480 1.00 1.15 0.66

EOMCCSDTb -38.386466 0.74 0.65

CR-EOMCCSD(T) -38.379436 0.91 0.64

Experiment 0.74d

A 2∆ EOMCCSD -38.289817 3.25 1.12 0.82

EOMCCSDTb -38.305291 2.94 0.81

CR-EOMCCSD(T) -38.295500 3.20 0.81

Experiment 2.87e 0.77 ± 0.07f

B 2Σ− EOMCCSD -38.246634 4.42 1.81 0.97

EOMCCSDTb -38.293254 3.27 1.27

CR-EOMCCSD(T) -38.296665 3.16 1.14

Experiment 3.23g

C 2Σ+ EOMCCSD -38.212223 5.36 1.89 0.76

EOMCCSDTb -38.265474 4.03 0.87

CR-EOMCCSD(T) -38.262752 4.09 0.85

Experiment 3.94h

a The equilibrium geometries used in the CC/EOMCC calculations were taken from
experiment. They are: re = 1.1197868 Å for the X 2Π state [113], r0 = 1.0977 Å for the
a 4Σ− state [114], re = 1.1031 Å for the A 2∆ state [113], re = 1.1640 Å for the B 2Σ−

state [115], and re = 1.1143 Å for the C 2Σ+ state [116].
b The UHF-based CCSDT/EOMCCSDT results reported in Ref. [46].
c From Ref. [117].
d From Ref. [118].
e From Ref. [113].
f From Ref. [119].
g From Ref. [115].
h From Ref. [116].

by double excitations, the CR-EOMCCSD(T) approach provides substan-
tial improvements in the EOMCCSD dipole moment values, reducing the
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0.30 and 0.11 debye errors relative to the corresponding full EOMCCSDT
results to 0.13 and 0.02 debye, respectively.

All of the above examples show that the externally corrected MMCC(2,3)
approaches and the more “black-box” CR-EOMCCSD(T) method offer con-
siderable improvements in the EOMCCSD results, particularly when the
excited states of interest are dominated by two-electron transitions or when
the excited-state potential energy surfaces along bond breaking coordinates
are examined. The CR-EOMCCSD(T) approach and other MMCC(2,3)
schemes are capable of improving the results of CC3 and other standard
EOMCC/response CC calculations that incorporate triples effects in an ap-
proximate way, bringing the excitation energies closer to the corresponding
full EOMCCSDT and full CI values. Other examples of the successful appli-
cations of the excited-state MMCC(2,3) and CR-EOMCCSD(T) methods
can be found elsewhere [48, 49, 51, 52, 60, 64, 107]. In the next section, we fo-
cus on one of the most recent advances in the excited-state MMCC theory,
which is the development of MMCC and CR-EOMCC approximations that
use the left eigenstates of the CC/EOMCC similarity-transformed Hamil-
tonian.

3.2. THE MMCC SCHEMES EXPLOITING THE LEFT EIGENSTATES OF
THE SIMILARITY-TRANSFORMED HAMILTONIAN: THE
CR-EOMCCSD(T)L APPROACH

All MMCC methods discussed in the previous section are obtained by ex-
tracting the leading terms from the exact MMCC expressions for the nonit-
erative corrections δ

(A)
µ , Eq. (50), or δ

(CCSD)
µ , Eq. (53), which, when added

to the energies obtained in the standard CC/EOMCC calculations, E
(A)
µ

or E
(CCSD)
µ , respectively, recover the exact (i.e. full CI) energies Eµ of the

electronic states of interest. The resulting MMCC(mA, mB) methods are
characterized by the presence of the denominator terms 〈Ψµ|R(A)

µ eT (A) |Φ〉 or
〈Ψµ|R(CCSD)

µ eT (CCSD) |Φ〉 that renormalize the resulting corrections
δµ(mA, mB) to provide the desired improvements in the CC/EOMCC re-
sults for the excited states dominated by double excitations and for the
molecular potential energy surfaces along bond breaking coordinates (see,
e.g., Refs. [61–63, 66, 76] for a detailed discussion of the role of the
〈Ψ0|eT (A) |Φ〉 and 〈Ψ0|eT (CCSD) |Φ〉 denominator terms in improving the
ground-state CC results). The calculation of these overlap denominator
terms for the wave functions |Ψµ〉 defining the externally corrected
MMCC(mA, mB) methods and the CR-EOMCCSD(T) approach consti-
tutes a very small fraction of the total computer effort related to the de-
termination of the δµ(mA, mB) corrections, but usually these denominators
introduce small size extensivity errors, estimated at ∼ 0.5 % of the total
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correlation energy in the ground-state calculations [49, 77] (size extensiv-
ity is defined here as the absence of disconnected diagrams in the MBPT
expansion of the electronic energy; this is not necessarily the same as the
ability of a given method to describe bond breaking or separation of a
given system into noninteracting fragments; for example, size inextensive
methods, such as MRCI, can describe all kinds of system fragmentations,
while some size extensive approaches, such as CCSD(T), fail to describe
bond breaking). The size extensivity errors in the externally corrected
MMCC(mA, mB) and CR-EOMCCSD(T) calculations are much smaller
than the errors obtained with the standard CCSD, CCSD(T), EOMCCSD,
and similar methods when potential energy surfaces along bond breaking
coordinates and reaction pathways are examined [49, 105], but it is always
interesting to look for new alternatives that might eliminate the size ex-
tensivity problem from approximate MMCC calculations. Kowalski and
Piecuch have recently developed the rigorously size extensive extension of
the ground-state CR-CC methods, such as CR-CCSD(T), by introducing a
new concept of the numerator-denominator connected MMCC expansions
and the idea of local renormalization [77], but it is quite difficult to extend
these considerations to excited states at this time. Moreover, the problem
of size extensivity of the EOMCC results for excited states is much more
complicated than the extensivity of the ground-state CC calculations, since
approximate EOMCC methods, such as EOMCCSD, whose results we are
trying to improve here, are not size extensive [25, 59, 120–122]. The EOM-
CCSD method is only size intensive, meaning that it can provide the cor-
rect description of an idealized separation of a given many-electron system
into two noninteracting fragments, in which only one of the two separated
fragments is singly excited [25] (as shown later by Meissner [122], the EOM-
CCSD approach can also describe one-electron charge-transfer excitations
between separated fragments). Unfortunately, this property of EOMCCSD
does not eliminate the size extensivity error from the EOMCCSD and other
truncated EOMCC calculations. Although we cannot address all of these
issues here, it may be worth contemplating new classes of MMCC methods
that might potentially reduce the extensivity errors through the elimination
of the overlap denominators 〈Ψµ|R(A)

µ eT (A) |Φ〉 or 〈Ψµ|R(CCSD)
µ eT (CCSD) |Φ〉

from the noniterative corrections δ
(A)
µ or δ

(CCSD)
µ .

We have recently started exploring MMCC methods which are based on
the new forms of the expressions for the corrections δ

(A)
µ or δ

(CCSD)
µ that do

not use the overlap denominator terms 〈Ψµ|R(A)
µ eT (A) |Φ〉 and

〈Ψµ|R(CCSD)
µ eT (CCSD) |Φ〉 [79]. The key to such methods is the use of the left

eigenstates of the similarity-transformed Hamiltonians H̄(A) or H̄(CCSD).
This is based on an observation that the CC/EOMCC “bra” state 〈Ψ̃(CC)

µ |,
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Eq. (27), and the “ket” CC/EOMCC state |Ψ(CC)
µ 〉, Eq. (15), satisfy (cf.

Eq. (37))
〈Ψ̃(CC)

µ |Ψ(CC)
µ 〉 = 1, (115)

so that in the exact, full CI, limit the 〈Ψ̃(CC)
µ | “bra” state represents the

renormalized form of the “ket” state |Ψ(CC)
µ 〉 (this should be contrasted

with the fact that, in general, 〈Ψ(CC)
µ |Ψ(CC)

µ 〉 �= 1).
The main idea of the MMCC methods exploiting the left eigenstates of

H̄(A) is the following representation of the exact, full CI “bra” state 〈Ψµ|
entering Eqs. (50) and (53) [79]:

〈Ψµ| = 〈Φ|Lµ e−T (A)
. (116)

Here, T (A) is the cluster operator for the CC method A, whose results we
would like to improve (cf. Eq. (7)), and

Lµ =
N∑

n=0

Lµ,n, (117)

where

Lµ,n =
(

1
n!

)2

a1...an
i1...in

(µ) ai1 · · · ainaan · · · aa1 (118)

is the n-body component of Lµ, is the suitably chosen deexcitation operator
such that 〈Φ|Lµ = 〈Ψµ|eT (A)

(obviously, such operator always exists). We
can further decompose the operator Lµ into L

(A)
µ and δL

(A)
µ ,

Lµ = L (A)
µ + δL (A)

µ , (119)

where

L (A)
µ =

mA∑

n=0

Lµ,n (120)

and

δL (A)
µ =

N∑

n=mA+1

Lµ,n, (121)

with mA representing the excitation level defining the CC/EOMCC method
A. Since we can always normalize the full CI “bra” state 〈Ψµ|, which enters
Eqs. (50) and (53), in an arbitrary manner without changing the values
of corrections δ

(A)
µ and δ

(CCSD)
µ , we choose the normalization of 〈Ψµ|, Eq.

(116), such that
〈Φ|L (A)

µ R(A)
µ |Φ〉 = 1. (122)
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Equation (122) looks like Eq. (37), but this is where the similarities between
〈Φ|L (A)

µ and the left eigenstate 〈Φ|L(A)
µ , corresponding to the right eigen-

state R
(A)
µ |Φ〉 of H̄(A), end. The 〈Φ|L (A)

µ state is only one of the two con-
tributions to 〈Φ|Lµ = 〈Ψµ|eT (A)

, as defined by Eq. (119), whereas 〈Φ|L(A)
µ

is the true left eigenstate of H̄(A) corresponding to R
(A)
µ |Φ〉. The 〈Φ|L (A)

µ

and 〈Φ|L(A)
µ states can be numerically similar, but they are formally not

identical unless mA = N and δL
(A)
µ = 0.

With the above representation of the full CI “bra” state 〈Ψµ|, Eq. (116),
and with the normalization of 〈Ψµ| defined by Eq. (122), we can rewrite
Eq. (50) for the exact value of the correction δ

(A)
µ in the following way [79]:

δ(A)
µ ≡ Eµ − E(A)

µ =
N∑

n=mA+1

〈Φ|Lµ,n Mµ,n(mA)|Φ〉, (123)

where the operators Mµ,n(mA) are defined in terms of the generalized mo-
ments of CC/EOMCC equations of method A, Mi1...in

µ,a1...an
(mA), via Eq. (52).

By using Eqs. (52) and (118), we can immediately write

δ(A)
µ =

N∑

n=mA+1

∑

i1<···<in,a1<···<an

a1...an
i1...in

(µ) M
i1...in
µ,a1...an

(mA), (124)

where the generalized moments of CC/EOMCC equations are defined by
Eqs. (48) and (49) and a1...an

i1...in
(µ) are the deexcitation amplitudes defining

the n-body components of Lµ. We only need the amplitudes a1...an
i1...in

(µ) and
moments Mi1...in

µ,a1...an
(mA) with n > mA to construct Eq. (124).

As one can see, the main difference between the new MMCC expression
for the exact correction δ

(A)
µ , given by Eqs. (123) and (124), and the original

MMCC formula, Eq. (50), is the absence of the overlap denominator term
〈Ψµ|R(A)

µ eT (A) |Φ〉 in Eqs. (123) and (124). This may be a useful feature in
calculating the approximate values of corrections δ

(A)
µ , particularly when

the lack of rigorous size extensivity of the MMCC(mA, mB) methods dis-
cussed in the previous section becomes an issue. Another difference is the
absence of the Cn−k(mA) terms representing the (n− k)-body components
of eT (A)

in Eqs. (123) and (124). One can rather easily show [79] that these
terms can be summed over to eT (A)

, which cancels out the e−T (A)
operator

entering the formula for 〈Ψµ|, Eq. (116).
The details of the derivation of Eqs. (123) and (124) will be described

elsewhere [79]. Let us only mention that one can derive Eqs. (123) and (124)
by using the original MMCC formula for the correction δ

(A)
µ , Eq. (50), in
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which the exact “bra” state 〈Ψµ| is replaced by Eq. (116), or by replacing
the wave function 〈Ψ| in the MMCC functional, Eq. (56), by 〈Ψµ|, Eq. (116),
and by exploiting the resolution of identity in the N -electron Hilbert space
in a manner which is analogous to the original derivation of the MMCC
energy expressions [47, 62] (see, also, Ref. [49]). The overlap denominator
term 〈Ψµ|R(A)

µ eT (A) |Φ〉 entering Eqs. (50) and (56) disappears from the
resulting expressions for δ

(A)
µ , since

〈Φ|Lµ R(A)
µ |Φ〉 = 〈Φ|L (A)

µ R(A)
µ |Φ〉+ 〈Φ|(δL (A)

µ )R(A)
µ |Φ〉 = 1. (125)

In arriving at Eq. (125), we used Eqs. (119) and (122), and the obvious
fact that 〈Φ|(δL (A)

µ )R
(A)
µ |Φ〉 = 0 (cf. the definition of δL

(A)
µ , Eq. (121);

δL
(A)
µ contains n-body components with n > mA, whereas the n-body

components of R
(A)
µ have n ≤ mA).

The question arises how to use Eqs. (123) and (124) in practice. In
analogy to the MMCC(mA, mB) schemes defined by Eqs. (65) and (66), we
can introduce the MMCC(mA, mB)L methods in which we calculate the
energy as follows [79]:

E(MMCC)
µ (mA, mB)L = E(A)

µ + δµ(mA, mB)L , (126)

where mB > mA and and where

δµ(mA, mB)L =
mB∑

n=mA+1

〈Φ|Lµ,n Mµ,n(mA)|Φ〉

=
mB∑

n=mA+1

∑

i1<···<in,a1<···<an

a1...an
i1...in

(µ) M
i1...in
µ,a1...an

(mA) (127)

is the relevant correction to the CC/EOMCC energy E
(A)
µ . An example of

the MMCC(mA, mB)L method might be the MMCC(2,3)L approximation,
in which, in analogy to the MMCC(2,3) methods discussed in the previous
section, we correct the results of the CCSD/EOMCCSD calculations by
adding the corrections

δµ(2, 3)L = 〈Φ|Lµ,3 Mµ,3(mA)|Φ〉 =
∑

i<j<k,a<b<c

abc
ijk(µ) M

ijk
µ,abc(2) (128)

to the CCSD/EOMCCSD energies E
(CCSD)
µ .

As in the case of the MMCC(2,3) schemes, discussed in Section 2, we can
use Eq. (128) to design the analog of the CR-EOMCCSD(T) method em-
ploying the left eigenstates of H̄(CCSD). In order to accomplish this and for-
mulate the resulting CR-EOMCCSD(T)L approximation, we have to come
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up with the approximate form of the three-body operator Lµ,3, which uses
the standard elements of the CCSD/EOMCCSD theory, such the CCSD
cluster operators T1 and T2 and the zero-, one- and two-body compo-
nents of the left eigenstate 〈Φ|L(CCSD)

µ of the CCSD/EOMCCSD similarity-
transformed Hamiltonian H̄(CCSD). The desired approximate form of Lµ,3

that can be used to formulate the CR-EOMCCSD(T)L approximation can
be obtained by analyzing the equation

〈Φ|Lµ H̄(CCSD) = Eµ 〈Φ|Lµ, (129)

which is equivalent to the Schrödinger equation H|Ψµ〉 = Eµ|Ψµ〉 or, more
precisely, to its adjoint form 〈Ψµ|H = Eµ 〈Ψµ| if 〈Φ|Lµ e−T (CCSD)

is the ex-
act, full CI “bra” state 〈Ψµ|. By right-projecting Eq. (129) on the triply ex-
cited determinants |Φabc

ijk〉, while approximating the operator Lµ by

L
(CCSD)
µ + L̃µ,3, where 〈Φ|L(CCSD)

µ is the left eigenstate of the H̄(CCSD) ob-
tained in the CCSD/EOMCCSD calculations and L̃µ,3 is an approximate
form of the three-body component Lµ,3, and by replacing the exact energy
Eµ in the resulting equation by the CCSD/EOMCCSD energy E

(CCSD)
µ ,

while approximating the triples-triples block of the matrix representing
H̄(CCSD) by its diagonal, we obtain

Lµ,3 ≈ L̃µ,3 = 1
36 ̃abc

ijk(µ) aiajakacabaa, (130)

where
̃abc
ijk(µ) = 〈Φ|L(CCSD)

µ H̄(CCSD)|Φabc
ijk〉/Dijk

µ,abc, (131)

with Dijk
µ,abc defined by Eq. (104). An elementary diagrammatic analysis of

Eq. (131) shows that

̃abc
ijk(µ) = 〈Φ|[Lµ,1H̄

(CCSD)
2 + Lµ,2H̄

(CCSD)
1

+(Lµ,2H̄
(CCSD)
2 )C ]|Φabc

ijk〉/Dijk
µ,abc, (132)

where Lµ,1 and Lµ,2 are the one- and two-body components of L
(CCSD)
µ

obtained by solving the left CCSD (µ = 0) and EOMCCSD (µ > 0) equa-
tions (Eqs. (44) and (40), respectively, where mA = 2) and H̄

(CCSD)
1 and

H̄
(CCSD)
2 are the one and two-body components of H̄(CCSD). The final CR-

EOMCCSD(T)L energy is calculated as [79]

E(CR-EOMCCSD(T)L )
µ = E(CCSD)

µ +
∑

i<j<k,a<b<c

̃abc
ijk(µ) M

ijk
µ,abc(2), (133)
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where M
ijk
µ,abc(2) are the triply excited moments of the CCSD (µ = 0) or

EOMCCSD (µ > 0) equations that one can calculate using Eq. (60) and
̃abc
ijk(µ) is defined by Eq. (132). The above expression applies to ground

(µ = 0) and excited (µ > 0) states. In the former case, we simply replace
the one- and two-body components of L

(CCSD)
µ in Eq. (132) by the one- and

two-body operators Λ1 and Λ2 obtained by solving the linear system of the
CCSD “lambda” equations, Eq. (44), where A = CCSD and mA = 2. One
can easily verify that the ground-state CR-EOMCCSD(T)L energy reduces
to the energy expression defining the CCSD(2)T approach of Refs. [75, 123]
if the denominator Dijk

0,abc in Eq. (132) written for the µ = 0 case is replaced
by the usual MBPT-like difference of bare spin-orbital energies for triples,
(εi + εj + εk − εa− εb− εc) (see Refs. [124–131] for the related approaches).

The CR-EOMCCSD(T)L method is essentially as inexpensive as the
CR-EOMCCSD(T) approach of Refs. [49, 51, 52, 59], discussed in Section
3.1.2. Thus, the most expensive steps of the CR-EOMCCSD(T)L approach
scale as n2

on
4
u in the iterative CCSD and EOMCCSD parts and n3

on
4
u in the

noniterative part associated with the determination of the triples correc-
tion

∑
i<j<k,a<b<c ̃abc

ijk(µ) M
ijk
µ,abc(2). The only essential difference between

the CR-EOMCCSD(T) and CR-EOMCCSD(T)L methods is the need to
solve the CCSD “lambda” equations and the left EOMCCSD equations,
in addition to solving the usual CCSD equations and right EOMCCSD
equations, in the CR-EOMCCSD(T)L calculations. The CCSD “lambda”
equations and the left EOMCCSD equations are characterized by the n2

on
4
u

steps which are similar to the usual n2
on

4
u steps of CCSD/EOMCCSD. Thus,

the costs of the CR-EOMCCSD(T)L and CR-EOMCCSD(T) calculations
are not much different.

The CR-EOMCCSD(T)L method is currently under development, so
that we cannot show too many examples of the actual applications yet.
However, we have already tested the CR-EOMCCSD(T)L approach us-
ing the electronic excitations in the CH+ ion as an example. The CR-
EOMCCSD(T)L results for the three lowest-energy excited states of the
1Σ+ symmetry and two lowest-energy states of the 1Π and 1∆ symmetries,
obtained at the equilibrium geometry RC−H = Re = 2.13713 bohr and the
same [5s3p1d/3s1p] basis set of Ref. [103] as used in the MMCC(2,3)/CI,
MMCC(2,3)/PT, and CR-EOMCCSD(T) calculations discussed in Section
3.1, are shown in Table 2. As one can see, the CR-EOMCCSD(T)L ap-
proach is as effective in improving the EOMCCSD results as the CR-
EOMCCSD(T) method analyzed in Section 3.1.2. This is particularly true
for the 2 1Σ+, 1 1∆, and 2 1∆ states that are dominated by double exci-
tations, for which the CR-EOMCCSD(T)L approach provides the results
of the full EOMCCSDT quality, reducing the large 0.560, 0.924, and 0.856
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eV errors in the EOMCCSD calculations for the 2 1Σ+, 1 1∆, and 2 1∆
states to 0.106, 0.032, and −0.030 eV, respectively. As in the case of the ex-
ternally corrected MMCC(2,3) methods and CR-EOMCCSD(T) approach,
the CR-EOMCCSD(T)L results for the 2 1Σ+, 1 1∆, and 2 1∆ states
are considerably better than the results of the iterative CC3 calculations.
A similar superiority of the CR-EOMCCSD(T)L approach over the CC3
method is observed for the partially biexcited 2 1Π state, for which the 0.327
and 0.219 eV errors obtained with the EOMCCSD and CC3 approaches,
respectively, reduce to 0.135 eV, when the CR-EOMCCSD(T)L method
is employed. For the remaining excited states listed in Table 2 that are
dominated by one-electron transitions (the 3 1Σ+, 4 1Σ+, and 1 1Π states),
the CR-EOMCCSD(T)L approach is as accurate as the CC3 method, i.e.
only slightly less accurate than the full EOMCCSDT approach. The over-
all accuracy of the CR-EOMCCSD(T)L approach, which represents a new
type of “black-box” MMCC approximation, is very similar to the accuracy
of the externally corrected MMCC(2,3) methods and CR-EOMCCSD(T)
approach.

The performance of the CR-EOMCCSD(T)L method, which is based
on the modified form of the MMCC formalism that no longer needs the
overlap denominators of the 〈Ψµ|R(CCSD)

µ eT (CCSD) |Φ〉 type to improve the
EOMCCSD energies, is very encouraging. However, we have to perform
a larger number of calculations to see if CR-EOMCCSD(T)L offers the
same level of consistency in applications involving singly and doubly excited
states as other MMCC approximations. The results of our findings will be
reported elsewhere [79].

4. Summary and concluding remarks

We have provided a comprehensive discussion of new classes of noniterative
CC/EOMCC methods, developed by our group, that can provide an accu-
rate description of excited electronic states, particularly the most challeng-
ing excited states dominated by two-electron transitions and excited-state
potential energy surfaces along bond breaking coordinates which require a
well-balanced description of dynamic and nondynamic correlation effects.
All of the methods discussed in this article are derived from the more gen-
eral MMCC formalism, which is based on the idea of correcting standard
CC/EOMCC results, originating, for example, from CCSD and EOMCCSD
calculations, through the a posteriori noniterative energy corrections that
in the exact limit of the MMCC theory recover the exact, full CI ener-
gies of the electronic states of interest. The key elements in designing the
MMCC corrections to CC/EOMCC energies are the generalized moments
of the CC/EOMCC equations, which can be rather easily extracted from
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the approximate CC/EOMCC calculations whose results we would like to
improve, particularly when one is interested in correcting the results of
basic CCSD/EOMCCSD calculations.

We have discussed three classes of excited-state MMCC methods: (i)
the externally corrected MMCC approaches employing the configuration
interaction and multi-reference perturbation theory wave functions, (ii)
the CR-EOMCC methods, such as CR-EOMCCSD(T), and (iii) the new
classes of MMCC and CR-EOMCC theories employing the left eigenstates
of the similarity-transformed Hamiltonian used in the CC/EOMCC the-
ory. The first class of externally corrected MMCC theories is based on the
idea of combining the information that originates from the CC/EOMCC
calculations (the cluster and excitation amplitudes that define a given
CC/EOMCC approximation and the corresponding generalized moments)
with the approximate wave functions obtained in some low-order non-CC
calculations that can provide a qualitatively correct description of the bond
breaking process or excited states of interest. In our discussion of the exter-
nally corrected MMCC methods, we have focused on the MMCC(2,3)/CI
and MMCC(2,3)/PT methods that can be used to correct the results of the
CCSD/EOMCCSD calculations for the effects of triple excitations, as de-
scribed by combining the triply excited moments of the CCSD/EOMCCSD
equations with the wave functions originating from the low-order CISDt and
MRMBPT calculations.

The idea of CR-EOMCC methods, such as CR-EOMCCSD(T), is en-
tirely different. In this case, we design the MMCC corrections to the
CC/EOMCC energies due to higher-order excitations without resorting to
any non-CC calculations. For example, in the CR-EOMCCSD(T) approach
discussed in this article, we design the corrections to the CCSD/EOMCCSD
energies due to triples using the singly and doubly excited clusters ob-
tained in the CCSD calculations, the zero-, one-, and two-body components
of the linear excitation operator defining the EOMCCSD approach, and
the triply excited moments of the CCSD/EOMCCSD equations. Thus, the
CR-EOMCCSD(T) approach and other CR-EOMCC approximations are
similar in spirit to the popular computational “black-box” methods, such
as CCSD(T). In particular, the computer costs of the CR-EOMCCSD(T)
method per single electronic state are more or less the same as the costs
of the CCSD(T) calculations: both are the relatively inexpensive iterative
N 6 and noniterative N 7 procedures. The same remark applies to the ex-
ternally corrected MMCC(2,3)/CI and MMCC(2,3)/PT methods, although
one has to perform the additional CISDt and low-order MRMBPT cal-
culations, in addition to the CCSD and EOMCCSD calculations, to ob-
tain the MMCC(2,3)/CI and MMCC(2,3)/PT triples corrections. More-
over, one has to select active orbitals to carry out the MMCC(2,3)/CI
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and MMCC(2,3)/PT calculations, so that the externally corrected MMCC
methods are not as easy to use as the purely single-reference
CR-EOMCCSD(T) approach. On the other hand, the choice of active or-
bital space for the MMCC(2,3)/CI and MMCC(2,3)/PT calculations is of-
ten obvious if we have some a priori knowledge of the orbital excitations
that dominate the electronic excitations of interest.

The third and the most recent group of the MMCC and CR-EOMCC
methods is based on the idea of renormalizing the triples and other higher-
order corrections to CCSD/EOMCCSD or other CC/EOMCC energies in
situations involving two-electron excitations and excited-state potential en-
ergy surfaces along bond breaking coordinates through the left eigenstates
of the similarity-transformed Hamiltonian used in the CC/EOMCC calcu-
lations. The left eigenstates of the similarity-transformed Hamiltonian used
in the CC/EOMCC theory enable us to eliminate the overlap denominators
that are present in other methods based on the original MMCC theory. This
may have some advantages in situations where the presence of disconnected
diagrams in the CR-EOMCCSD(T) triples corrections resulting from the
use of the overlap denominators creates a potential problem. One of the
approximations in this category, which we discussed in greater detail, is
the CR-EOMCCSD(T)L approach, which is a promising candidate for the
“black-box” method for the calculations of excited states dominated by
single or double excitations that has computer costs similar to those of
CCSD(T) or CR-EOMCCSD(T).

In a few numerical examples, we have demonstrated that all of the
above MMCC and CR-EOMCC methods provide considerable improve-
ments in the EOMCCSD results, particularly when the excited states of in-
terest gain a significant double excitation or multi-reference character. The
MMCC(2,3)/CI, MMCC(2,3)/PT, CR-EOMCCSD(T), and
CR-EOMCCSD(T)L methods can often compete with the much more ex-
pensive EOMCCSDT approach. In fact, there are cases, such as the lowest-
energy 1∆g state of the C2 molecule, where the MMCC(2,3)/CI and CR-
EOMCCSD(T) methods balance the ground and excited state correlation
effects better than full EOMCCSDT. Even if this particular case is a re-
sult of the fortuitous cancellation of errors, it is very encouraging to see
that the low-cost and easy-to-use MMCC(2,3)/CI, MMCC(2,3)/PT, CR-
EOMCCSD(T), and CR-EOMCCSD(T)L methods can be as accurate as
the high-level and very expensive EOMCC methods, such as EOMCCSDT.
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1. Introduction

Modern many-body methods have become sufficiently refined that the ma-
jor source of error in most ab initio calculations of molecular properties
is today associated with truncation of one-particle basis sets (e.g. [1]- [4]);
that is, with the accuracy with which the algebraic approximation is imple-
mented. The importance of generating systematic sequences of basis sets
capable of controlling basis set truncation error has been emphasized re-
peatedly in the literature (see [4] and references therein). The study of the
convergence of atomic and molecular structure calculations with respect to
basis set extension is highly desirable. It allows examination of the conver-
gence of calculations with respect to basis set size and the estimation of
the results that would be obtained from complete basis set calculations.

Most contemporary schemes for designing atomic and molecular Gaussian
basis sets (e.g. [4]- [7]) exploit, in one form or another, the idea of even-
tempered basis sets [8], [9] (see also [4]), which have exponents, ζp, defined
by the geometric series:

ζp = αβp, p = 1, 2, ..., M (1)

The parameters α and β must be taken to be functions of M , the number of
basis functions, i.e. α = α (M) and β = β (M), if the Gaussian sets defined
by (1) are to become complete in the appropriate subspace as M →∞. In
particular, Schmidt and Ruedenberg shown that the following conditions

lim
M→∞

α (M) = 0

lim
M→∞

β (M) = 0

lim
M→∞

[β (M)]M = ∞ (2)

must be satisfied if an even-tempered basis set is to approach completeness
as M → ∞. Recently, Kryachko and Wilson [10] have generalized the em-
pirical prescription (1) proposing a more flexible choice of the parameters
α and β.

Applications based on the even-tempered prescription (1) have shown
that it can lead to atomic and diatomic Hartree-Fock ground state energies
of an accuracy approaching that achieved in numerical Hartree-Fock calcu-
lations [4]1. It is conjectured that a comparable accuracy can be achieved for
small polyatomic molecules [12], [13] by constructing basis sets according to
the prescription established for diatomic molecules. Similar procedures can

1See [11] for a recent review of applications of even-tempered basis set to the calcu-
lation of accurate molecular polarizabilities and hyperpolarizabilities within the matrix
Hartree-Fock approximation. In [11] the results finite basis set Hartree-Fock calculations
are compared with finite difference Hartree-Fock calculations.
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be used in calculations which go beyond the Hartree-Fock approximation
and take account of electron correlation effects [12], [14] and in calcula-
tions which adopt a relativistic formalism and use the Dirac-Hartree-Fock
approximation [15], [16].

There is far less reported experience for ab initio studies of electronically
excited states than for ground states. Matrix Hartree-Fock calculations for
excited states cannot be considered routine. Often the same basis set is
used for both the ground and excited state even though as long ago as 1958
Shull and Löwdin [17] demonstrated

“the desirability of using different basis sets for different states.”

This approach can provide a more compact representation of the accurate
excited state wave functions than the use of a common basis set for ground
and excited state. Most commonly used approaches for excited states in use
today are based on multireference techniques. Such techniques include con-
figuration interaction, the multiconfigurational self-consistent field method
and its “complete active space” variant designated CASSCF, multirefer-
ence perturbation theory and multireference coupled cluster expansions.
Whilst these methods are indispensable in studies of systems where single-
configuration methods cannot be applied; for example, when the weight of
the Hartree-Fock configuration in the wave function of the full configura-
tion interaction expansion is less than ∼ 0.9 [18]; it is clear that orbitals of
a single-configuration together with a basis set that has been specifically
optimized for a given excited state will probably prove more appropriate
for the development of many-body correlation methods.

Existing open-shell self-consistent field methods for ground states can-
not be applied directly to excited states of the same symmetry as a lower
state without ‘variational collapse’; that is, the approximation to the excited
state wave function is contaminated by components of a lower state. Several
useful methods have been proposed to overcome the ‘variational collapse’
problem and a number of different schemes have been proposed for obtain-
ing Hartree-Fock wave functions for excited states [19]- [24]. Some of these
approaches [19]- [21], [24]explicitly introduce orthogonality constraints to
lower states. Other methods [22], [23] introduce this restriction implicitly.
In both types of scheme, the excited state self-consistent field wave function
of interest is orthogonal to the wave function for a lower state or states of
the same symmetry, but this lower state or states are not necessarily the
best self-consistent field functions for these states [24]. An interesting en-
semble Hartree-Fock approach [25], based on the extended Raleigh-Ritz
variational principle [26] have been also proposed. This is a good compro-
mise in applications to the excited state problem within the framework of
density functional theory and has found application in wave function based
formulation as well [27]. However, in density functional theory calculations
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for excited states reported so far this scheme does not provide an accuracy
comparable with that achieved for ground state calculations.

It is worth noting that the methods mentioned give rise to Hartree-Fock
equations based on different Fock operators for the various orbitals of the
same spin. This implies that off-diagonal Lagrange multipliers appear which
cannot be eliminated by a suitable unitary transformation. Moreover, the
complications arise when excited states above the first one are considered
(see, e.g. [25] for further details).

This paper is arranged as follows:- in Section 2, we develop an alter-
native Hartree-Fock method for excited states that does not involve off-
diagonal Lagrange multipliers and avoids complications when applied to
excited states lying above the first excited state. A simple and easily
imple
which has been proposed earlier by one of us [28]- [30], was used to enforce
the orthogonality of an excited state wave function of interest to lower
functions of the same symmetry. In Section 3, we investigate the use of a
systematic sequence of even-tempered basis sets for matrix Hartree-Fock
calculations of excited state energies. We examine the convergence of the
excited state energy expectation values with respect to basis set size and
the accuracy supported by different sequences. One has been shown that a
simple reoptimization of the α and β parameters in (1) leads to a sequence
of even-tempered basis sets capable of supporting high accuracy for excited
state energies of simple atoms. Concluding remarks are given in Section 4.

2. Hartree-Fock equations for excited states

2.1. ORTHOGONALITY CONSTRAINTS FOR SINGLE DETERMINANTAL
WAVE FUNCTIONS

Before deriving the Hartree-Fock equations for the excited state orbitals,
we consider the orthogonality constraints imposed on these orbitals.

The exact many-electron wave function for an excited state, Ψi, i �= 0,
satisfies orthogonality conditions with respect to other many-electron state
including the ground state, Ψ0. For example, for the first excited state with
many-electron wave function Ψ1 we have

〈Ψ0|Ψ1〉 = 0 (3)

The exact ground state wave function, Ψ0, can be written

Ψ0 = Φ0 + χ0 (4)

where Φ0 is the many-electron ground state Hartree-Fock wave function
and χ0 is the correlation correction. Without loss of generality, we can
require that the Hartree-Fock ground state wave function and its correlation
correction be orthogonal

〈Φ0|χ0〉 = 0 (5)

mented technique for taking orthogonality constraints into account,
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Similarly, the exact excited state wave function, Ψ1, can be written

Ψ1 = Φ1 + χ1 (6)

where Φ1 is the many-electron excited state Hartree-Fock wave function
and χ1 is the corresponding correlation correction. Again, without loss of
generality, we can require that Φ1 and χ1 be orthogonal

〈Φ1|χ1〉 = 0 (7)

Substituting (6) into (3) we get

〈Ψ0|Ψ1〉 = 〈Ψ0|Φ1〉+ 〈Ψ0|χ1〉
= 0 (8)

If we require that the Hartree-Fock wave function for the excited state
be orthogonal to the exact ground state wave function then we have

〈Ψ0|Φ1〉 = 0 (9)

which implies, from (8), that

〈Ψ0|χ1〉 = 0 (10)

It is then easily shown that

〈Φ1|H |Φ1〉
〈Φ1|Φ1〉

� E1 (11)

where E1 is the exact energy of the excited state and H is the total elec-
tronic hamiltonian operator. However, equations (9) and (11) cannot be
used directly because the exact wave function for the ground state, Ψ0, is,
of course, unknown.

Substituting (4) and (6) into (3) we have

〈Ψ0|Ψ1〉 = 〈Φ0|Φ1〉+ 〈Φ0|χ1〉+ 〈χ0|Φ1〉+ 〈χ0|χ1〉
= 0 (12)

or
〈Φ0|Φ1〉 = − [〈Φ0|χ1〉+ 〈χ0|Φ1〉+ 〈χ0|χ1〉] (13)

We see the the Hartree-Fock wave functions, Φ0 and Φ1, do not, in general,
satisfy orthogonality constraints analogous to those obeyed by the exact
wave functions. However, we may impose constraints upon the Hartree-
Fock function without loss of generality so that, for example,

〈Φ0|Φ1〉 = 0. (14)
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From (13) we see that this constraint requires that

〈Φ0|χ1〉+ 〈χ0|Φ1〉 = −〈χ0|χ1〉 (15)

The imposition of the orthogonality constraint (14) to an approximate lower
state wave function, such as the Hartree-Fock function, does not, in general
yield an excited state energy which is an upper bound to the exact excited
state energy. An upper bound to the excited state energy is obtained if we
impose the additional constraint

〈Φ0|H |Φ1〉 = 0 (16)

In practice, if the lower state energy and the corresponding wave function
are known accurately then the coupling matrix element 〈Φ0|H |Φ1〉 is small.
Experience shows that, because the finite basis set approximation is more
restrictive for Φ1 than it is for Φ0, the calculated excited state energy lies
above the corresponding exact value.

The imposition of the constraint (14) is important since (i) any lack
of orthogonality of the Hartree-Fock wave functions may lead to excited
state energies lying below the corresponding exact energies (For example,
Cohen and Kelly [32] found for the He atom the first singlet excited state
energy E1 = −2.16984 Hartree, whereas the observed energy E1,exact =
−2.14598 Hartree (see also [33]).); (ii) it facilitates the development of
a simple perturbation theory expansion for correlation effects in excited
states [31]; (iii) it allows the study of properties which depend on the wave
functions of different states, e.g. in the evaluation of transition properties
(see also [24]).

We shall be concerned with ground and excited electronic states which
can be adequately described by a single determinantal wave function, i.e.
doublet states, triplet states, etc. with spin S �= 0). Let Φ0 be the Slater
determinant constructed from a set of spin-orbitals consisting of spatial
part |ϕ0iα〉, (iα = 1, 2, ..., nα) associated with α spin functions and orbitals
|ϕ0iβ 〉, (iβ = 1, 2, ..., nβ) associated with β spin functions, i.e.

Φ0 = (N !)−
1
2 det |ϕ01αα, ..., ϕ0nαα; ϕ01ββ, ..., ϕ0nββ| (17)

Without loss of generality, we define nα > nβ, nα + nβ = N , where N is a
number of electrons and S = Sz = (nα − nβ)/2 is the total spin. Similarly,
Φ1 is a single determinant wave function for the first excited state:

Φ1 = (N !)−
1
2 det |ϕ11αα, ..., ϕ1nαα; ϕ11ββ, ..., ϕ1nββ| (18)

It is well known that the orthogonality constraint for functions (17) and
(18)

〈Φ0|Φ1〉 = 0 (19)
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can be written in terms of the spatial orbitals in the form

〈Φ0|Φ1〉 = det |〈ϕ01
α |ϕ11

α〉 ... 〈ϕ0n
α |ϕ1n

α〉| ×
det |〈ϕ01

β |ϕ1n
α〉 ... 〈ϕ0n

β |ϕ1n
β 〉|

= 0 (20)

The annihilation of either one of the two determinants in (20) leads to
fulfillment of the orthogonality condition (19). From energy considerations
and previous computational experience, we impose the orthogonality re-
strictions only via the first determinant which is associated with the α set
and involves the occupied orbital highest in energy.

As is well known, the condition

det |〈ϕ01α |ϕ11α〉 ... 〈ϕ0nα |ϕ1nα〉| = 0

is fulfilled if either the rows or columns in the first overlap determinant are
linearly dependent. Therefore, two physically different schemes are possible
to satisfy (20):
either

nα∑

j

b1
j 〈ϕ0iα |ϕ1jα〉 = 0, i = 1, 2, ..., nα (21)

or
nα∑

i

b0
i 〈ϕ0iα |ϕ1jα〉 = 0, j = 1, 2, ..., nα (22)

Eq.(21) requires that all occupied ground state orbitals be orthogonal to
a linear combination of the excited state orbitals

∑nα

j b1
j |ϕ1jα〉, which de-

scribes an excited electronic state. Eq.(22) requires the orthogonality of
all occupied excited state orbital associated with α spin functions to the
arbitrary vector

∑nα

i b0
i |ϕ0iα〉 from the subspace of the occupied ground

state orbitals associated with α spin functions. In general, the coefficients
b0
i can be determined by minimizing the excited state Hartree-Fock energy.

However, calculations show that the choice

nα∑

i

b0
i |ϕ0iα〉 = |ϕ0nα〉 , (23)

where ϕ0nα is the orbital from the ground state Slater’s determinant with
the highest energy, leads to a minimum energy for the excited state. In the
limit of a complete basis set the schemes defined by (21) and (22), certainly,
yield the same energy values.

In this work, we use the second scheme, i.e. that defined by equation
(22), which upon using (23) becomes

〈ϕ0nα |ϕ1jα〉 = 0, j = 1, 2, ..., nα (24)
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to impose the orthogonality constraint (19). Equation (24) can be rewrit-
ten in symmetrical form, which is useful when deriving the Hartree-Fock
equations, as follows:

〈ϕ1jα |ϕ0nα〉 〈ϕ0nα |ϕ1jα〉 = 0, j = 1, 2, ..., nα (25)

or, since the left-hand side of (25) is not negative

nα∑

j

〈ϕ1jα |Pα
n |ϕ1jα〉 = 0 (26)

where Pα
n is the projection operator

Pα
n = |ϕ0nα〉 〈ϕ0nα | (27)

We shall now follow the unrestricted Hartree-Fock (UHF) formalism to
obtain a restricted high-spin open-shell functions as proposed in [34], [35]. In
order to eliminate spin contamination in the UHF function Φ1, the following
‘spin purity’ constraint is imposed on the spatial orbitals:

〈Φ1|
[
S2 − S(S + 1)

]
|Φ1〉 = 0 (28)

This restriction can be also written in terms of orthogonality constraints
[35]:

nβ∑

i

〈ϕ1iβ |Qα|ϕ1iβ 〉 = 0 (29)

with
Qα = I − Pα (30)

Here I is identity operator and Pα is the orthoprojector on the subspace
of occupied α-orbitals, i.e.

Pα =
nα∑

i

|ϕ1iα〉 〈ϕ1iα | (31)

Eq.(29) means that the set of orbitals associated with the β spin functions
lies completely within the space defined by the set associated with the α
spin functions.

The Hartree-Fock equations for excited states can now be obtained by
constructing a functional consisting of the UHF energy expression together
with terms imposing the orthogonality constraints (26) and (29) by the
method of Lagrange undetermined multipliers. In particular, the constraints
(26) and (29) multiplied by Lagrange multipliers λ1 and λ2, respectively, are
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added to the UHF energy EUHF
1 = 〈Φ1|H| |Φ1〉, so as to give the following

functional

EUHF = EUHF
1 + λ1

nβ∑

i

〈ϕ1iβ |Qα|ϕ1iβ 〉+ λ2

nα∑

i

〈ϕ1jα |Pα
n |ϕ1jα〉 (32)

2.2. VARIATIONAL DERIVATION OF HARTREE-FOCK EQUATIONS FOR
EXCITED STATES

The Hartree-Fock like equations for the excited orbitals can be derived by
varying the functional (32). The stationary condition has the form

δEUHF = δ



EUHF
1 + λ1

nβ∑

i

〈ϕ1iβ |Qα|ϕ1iβ 〉+ λ2

nα∑

i

〈ϕ1jα |Pα
n |ϕ1jα〉





= 0 (33)

In practical applications, we invariably invoke the algebraic approxima-
tion by parametrizing the orbitals in a finite basis set. This approximation
may be written

|ϕ1〉 = P |ϕ1〉 (34)

where P is an orthoprojector defined by a chosen basis set with dimension
M1, i.e.

P =
M1∑

p,q

∣∣χ1
p

〉 (
S−1

)
pq

〈
χ1

q

∣∣ (35)

where S is the overlap matrix with elements 〈χp|χq〉 and S−1 is its inverse
so that

|ϕ1〉 =
M1∑

p,q

∣∣χ1
p

〉 (
S−1

)
pq

〈
χ1

q |ϕ1

〉
(36)

is the approximation of the orbital |ϕ1〉 in the given basis set. It should be
stressed that, in general, the basis set for the excited state,

{
χ1

p; p = 1, 2, ..., M1

}
, (37)

is distinct from that for the ground state,
{
χ0

p; p = 1, 2, ..., M0

}
. (38)

The stationary condition (33) leads, after some manipulation, to the
following equations

P (Fα − λ1Pβ + λ2Pα
n − εa

i )P |ϕ1iα〉 = 0, iα = 1, 2, ..., nα, ..., M1

λ1, λ2 →∞
P (Fβ + λ1Qα − εβ

i )P |ϕ1iβ 〉 = 0, iβ = 1, 2, ..., nβ, ..., M1
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Here Fα and Fβ are the standard UHF Fock operators constructed from
the excited state orbitals ϕ1i .

Unlike the traditional approaches to this constrained variational prob-
lem (e.g. [36]), we shall apply a method for determining the Lagrangian mul-
tipliers λ1, λ2 which has been designated tocia for “taking the orthogonality
constraints into account”. This method was proved to be a useful tool for
solving tasks which can be formulated in terms of eigenvalue problems with
orthogonalities constraints [30], [31], [34], [35], [37], [27]. According to the
tocia method, the terms λ1P

β and λ1Q
α , λ1 → ∞, ensure spin purity

(see [34], [35] for more details) whereas the term λ2P
α
n , λ2 →∞, provides

for the orthogonality of states. This result can be easily extended to the
higher energy levels. For example, in the case of the second excited state
the operator Pα

n should be substituted by the orthoprojector

Pα
n = |ϕ0nα〉 〈ϕ0nα |+ |ϕ1nα〉 〈ϕ1nα | , etc., (39)

i.e. the problem of how to choose a determinantal wave function for the
higher excitations does not appear. In the tocia method, the only addition
computation required, beyond that arising in the standard UHF scheme,
is the evaluation of the overlap matrix element 〈ϕ0nα |ϕ1jα〉. In practical
calculations, the value λ1 is taken to be ∼ 100 − 500 a.u. so as toensure
spin purity [35], whereas taking λ2 > 1000 a.u. ensures that 〈Φ0|Φ1〉 <
10−6 − 10−6 [27].

3. Implementation of the algebraic approximation for excited
states

In this section, we turn to the approximation of the excited state in a finite
basis set. In particular, we describe three different schemes for developing
systematic sequences of even-tempered basis sets for excited states which
will approach the exact solution in the limit M1 → ∞. We define each
scheme, which we label (a), (b) and (c) in turn.

In each scheme, we generate a sequence of even-tempered basis sets,
with exponents given by (1), in which the parameters vary as a function
of M , the basis set size, in such a way that the conditions (2) are satisfied
and the basis set becomes formally complete in the limit M →∞.

In the scheme which we label (a), the same basis set is employed for
both the ground and excited state. Therefore, the same integrals over basis
functions are used for both states. The values of the even-tempered para-
meters α and β for M = 6 are those which were optimized for the ground
state of the atom as reported by Schmidt and Ruedenberg [9]. These values
are given in Table 1 of reference [9]. Larger basis sets were generated by
means of the recursion formulae [10]:

α [M ] =
[

β [M ]− 1
β [M − 1]− 1

]a

α [M − 1] (40)
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and

ln(β [M ]) =
[

M

M − 1

]b

lnβ [M − 1] (41)

with the values of a and b taken from the work of Schmidt and Ruedenberg
[9]. These values are given in Table 3 of reference [9].

In scheme (b) the basis set is optimized by invoking the variation prin-
ciple for each state considered. For the ground state the optimized values
of the even-tempered parameters α0 and β0 given by Schmidt and Rue-
denberg [9] are used. We add the subscript “0” to distinguish ground state
values. For the excited state optimal α1 and β1 values for a sequence of M1

values are determined.
In our third scheme, which we label (c), we optimized the parameter

α and β the smallest basis set considered, i.e. M = 6 and then determine
values of these parameters for the basis sets of larger size by using the
recursions (40) and (41) with the values of a and b taken from the work of
Schmidt and Ruedenberg [9].

Each of these schemes lead to sequences of basis sets which satisfy the
limits (2) and therefore lead to complete basis sets in the limit M1 →∞. We
performed prototype calculations on some simple atoms in order to study
the rate of convergence of the excited state energies and the accuracy which
could be supported before problems associated with the precision of our cal-
culations arising from computational linear dependence became significant.
In particular, we studied the 3S states of the He atom corresponding to
the configurations 1s2s, 1s3s and 1s4s, the 3S states of the Li atom cor-
responding to the configurations 1s23s and 1s24s, and the 3S states of the
Be atom corresponding to the configurations (He) 2s3s and (He) 2s4s.

4. Results and discussions

4.1. MATRIX HARTREE-FOCK ENERGIES FOR EXCITED STATES

The ground and excited state matrix Hartree-Fock energies for the He, Li
and Be atoms are presented in Tables 1, 2 and 3, respectively. All energies
are given in atomic units, (Hartree). In each of these tables, we label the
columns according to the three schemes, (a), (b) and (c), described above
for generating sequences of even-tempered basis sets. We consider each
system in turn.

For the excited states of the He atom considered in Table 1 the numer-
ical Hartree-Fock energies are known from reference [38] to be - E(1s2s) =
−2.174 26 Hartree, E(1s3s) = −2.068 49 Hartree, E(1s4s) = −2.036 44
Hartree. For none of the three states considered does the sequence of basis
sets constructed according to scheme (a) achieve satisfactory accuracy. For
the 1s2s state, the energy supported by the largest basis set, i.e. M = 72, is
in error by ∼ 0.8 mHartree For the 1s3s state this error is ∼ 0.056 Hartree,
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TABLE 1. Self-Consistent Field energies (in hartree) of the
He atom for some 3S excited states as a function of the size,
M , of the even-tempered basis set used to parametrize the
orbitals. In the column headed (a): the same even-tempered
basis set optimized for the ground state, is used for all states;
(b): the even-tempered basis set is optimized for each state;
(c): the even-tempered parameters α and β are optimized
for each basis set for the smallest basis set (M = 6) and
larger basis sets are generated using the recursions.

3S 1s2s

M (a) (b) (c)

6 -1.834 615 14 -2.169 691 48 -2.169 691 48

12 -2.095 895 65 -2.174 206 91 -2.174 162 33

18 -2.141 254 61 -2.174 249 90 -2.174 247 58

24 -2.157 041 32 -2.174 250 75 -2.174 250 59

30 -2.164 213 86 -2.174 250 77 -2.174 250 76

42 -2.170 129 77 -2.174 250 78 -2.174 250 78

54 -2.172 286 98 - -

60 -2.172 843 71 - -

72 -2.173 481 74 - -

3S 1s3s

M (a) (b) (c)

6 1.737 069 70 -2.059 022 84 -2.059 022 85

12 -1.109 789 95 -2.068 339 06 -2.067 689 10

18 -1.584 292 85 -2.068 479 75 -2.068 450 41

24 -1.760 644 49 -2.068 484 72 -2.068 473 85

30 -1.849 814 46 -2.068 484 93 -2.068 483 86

42 -1.937 546 88 -2.068 484 96 -2.068 484 88

54 -1.979 772 36 - -

60 -1.993 383 33 - -

72 -2.012 555 80 - -

3S 1s4s

M (a) (b) (c)

6 17.382 628 04 -2.001 929 36 -2.001 929 36

12 2.016 029 12 -2.036 247 88 -2.035 012 30

18 -0.098 971 53 -2.036 416 13 -2.036 012 02

24 -0.816 612 58 -2.036 434 95 -2.036 412 98

30 -1.160 495 08 -2.036 435 84 -2.036 418 53

42 -1.486 125 49 -2.036 436 41 -2.036 436 07

54 -1.640 053 15 - -

60 -1.689 869 35 - -

72 - - -
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whilst for the 1s4s state the calculation with the largest basis set failed
to converge and for the next largest set the error is ∼ 0.348 Hartree. Not
surprisingly, a basis set designed for the ground state supports an increas-
ingly poor description of excited states as the level of excitation increases.
Equally, it is not surprising that if the sequence of even-tempered basis sets
for each excited state is optimized independently then the matrix Hartree-
Fock energies converge to values in good agreement with the corresponding
numerical Hartree-Fock energies. Whatismore this level of agreement is
achieve for basis sets only 42 functions in the case of the He states consid-
ered here. Scheme (c) leads to sequences of energies which begin, of course,
with values equal to those for scheme (b) when M = 6 and converge almost
as rapidly towards the numerical Hartree-Fock values. For the 1s2s state
schemes (b) and (c) lead to energies which agree to all figures quoted, i.e.
0.01 µHartree when M = 42. For the 1s3s state there is a difference of
∼ 0.08 µHartree between the energies supported by the two schemes when
M = 42. The corresponding energy difference for the 1s4s state is ∼ 0.34
µHartree.

For the excited states of the Li atom considered in Table 2 the nu-
merical Hartree-Fock energies are known [38] to be as follows: E(1s23s) =
−7.310 22 Hartree, E(1s24s) = −7.274 88 Hartree. For neither of the two
states considered does the sequence of basis sets constructed according
to scheme (a) achieve satisfactory accuracy. Furthermore, convergence of
the self-consistent field procedure was not achieved for basis sets larger
than M = 54. For the 1s23s state, the largest basis set gave an energy
which differs from the numerical Hartree-Fock value by ∼ 0.3 mHartree.
The corresponding difference for the 1s24s state is significantly larger at
∼ 15.3 mHartree. For scheme (b) a basis set of 42 functions supports an
energy which differs from the numerical hartree-Fock value by just ∼ 0.01
mHartree for the 1s23s state and by less than 0.01 mHartree for the 1s24s
state. Scheme (c) results in a comparable level of accuracy to that achieved
with scheme (b) for both of the states considered.

For the two excited states of the Be atom considered in Table 3 the nu-
merical Hartree-Fock energies are known [38] to be as follows: E([He]2s3s) =
−14.377 54 Hartree, E([He]2s4s) = −14.324 66 Hartree. For scheme (a)
the iterative process failed to converge for basis sets containing more than
72 functions. For the [He]2s3s state, the largest basis set supports an en-
ergy expectation value which is within ∼ 0.2 mHartree of the numerical
Hartree-Fock value, whilst for the [He]2s4s state, the corresponding differ-
ence is ∼ 16.7 mHartree. Again, a basis set designed for the ground state
supports an increasingly poor description of excited states as the level of
excitation increases. When the sequence of even-tempered basis sets are
individually optimized for a particular state (scheme (b)) an accuracy of
∼ 0.04 mHartree is supported for the [He]2s3s state and ∼ 0.05 mHartree
for the [He]2s4s state. A comparable accuracy is observed for the excited
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TABLE 2. Self-Consistent Field energies (in hartree) of
2S excited states of the Li atom as a function of the size,
M , of the even-tempered basis set used to parametrize the
orbitals. In the column headed (a): the same even-tem-
pered basis set optimized for the ground state, is used for
all states; (b): the even-tempered basis set is optimized
for each state; (c): the even-tempered parameters α and
β are optimized for each basis set for the smallest basis
set (M = 6) and larger basis sets are generated using the
recursions.

1s23s

M (a) (b) (c)

6 -6.841 521 95 -7.268 417 74 -7.268 417 74

12 -7.261 404 14 -7.309 776 81 -7.309 197 38

18 -7.295 552 02 -7.310 193 98 -7.310 186 74

24 -7.304 099 99 -7.310 207 15 -7.310 205 26

30 -7.307 239 87 -7.310 207 73 -7.310 207 50

42 -7.309 318 77 -7.310 207 76 -7.310 207 76

54 -7.309 888 96 - -

1s24s

M (a) (b) (c)

6 -1.780 422 08 -7.154 657 33 -7.154 657 33

12 -6.740 485 93 -7.273 656 76 -7.271 672 62

18 -7.085 615 24 -7.274 850 25 -7.274 830 78

24 -7.176 272 56 -7.274 878 70 -7.274 861 99

30 -7.213 866 71 -7.274 883 70 -7.274 880 24

42 -7.244 980 78 -7.274 883 90 -7.274 883 86

54 -7.257 576 14 - -

state energies of the Be atom corresponding to scheme (c) in which only
the basis set for M = 6 is optimized.

4.2. SEQUENCIES OF EVEN-TEMPERED BASIS SETS FOR EXCITED
STATES

It is of interest to examine the parameters α and β defining the even-
tempered basis sets used in calculating the energies reported in Table 1, 2
and 3. Let us note that α has dimensions bohr−2 whereas β is a dimension-
less quantity.

The optimized α and β parameters for the ground states of He, Li and
Be are given in Table 1 of the work of Schmidt and Ruedenberg [9] for the
smaller basis sets considered in this work. The ground state parameters
for larger basis sets were obtained by using the recursions (40) and (41) to
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TABLE 3. Self-Consistent Field energies (in hartree) of the Be
atom for some 3S excited states as a function of the size, M , of the
even-tempered basis set used to parametrize the orbitals. In the
column headed (a): the same even-tempered basis set optimized
for the ground state, is used for all states; (b): the even-tempered
basis set is optimized for each state; (c): the even-tempered pa-
rameters α and β are optimized for each basis set for the smallest
basis set (M = 6) and larger basis sets are generated using the
recursions.

(He)2s3s

M (a) (b) (c)

6 -13.685 973 24 -14.287 433 98 -14.287 433 98

12 -14.308 751 64 -14.376 551 31 -14.376 157 39

18 -14.355 839 67 -14.377 477 84 -14.377 452 53

24 -14.368 148 73 -14.377 497 90 -14.377 496 50

30 -14.372 823 26 -14.377 498 69 -14.377 498 56

42 -14.376 028 85 -14.377 498 74 -14.377 498 74

54 -14.376 949 34 - -

60 -14.377 148 28 - -

72 -14.377 351 93 - -

(He)2s4s

M (a) (b) (c)

6 -5.206 147 93 -14.103 283 99 -14.103 283 99

12 -13.459 627 62 -14.322 849 81 -14.320 183 66

18 -14.013 438 62 -14.324 551 09 -14.324 462 05

24 -14.159 808 90 -14.324 607 13 -14.324 583 56

30 -14.221 078 84 -14.324 610 93 -14.324 607 87

42 -14.272 399 38 -14.324 611 21 -14.324 611 13

54 -14.293 550 25 - -

60 -14.299 788 29 - -

72 -14.307 983 38 - -

extend the Schmidt-Ruedenberg sets. These are the parameters determined
by Schmidt and Ruedenberg for the corresponding ground states which were
used in the present study to obtain the excited state energies in the columns
headed (a) in Tables 1, 2 and 3.

In Tables 4 and 5, the even-tempered basis set α and β parameters
corresponding to the columns headed (b) and (c) in Table 1 for the helium
atom are given, respectively. The parameters obtained by optimization of α
and β with respect to the energy for each size of a basis set, that is scheme
(b) are given in Table 4. They should be compared with the parameters
obtained from the recursion formulae (40) and (41) according to scheme
(c) in which the parameters α and β were only optimized for the smallest
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TABLE 4. Optimized even-tempered parameters α and β for 3S excited states
of He as a function of size of basis set.

1s2s 1s3s 1s4s

M α β α β α β

6 0.009 397 4.210 973 0.001 684 4.979 103 0.000 376 5.420 623

12 0.009 088 2.641 628 0.002 742 2.758 438 0.000 924 3.033 467

18 0.008 243 2.211 957 0.002 785 2.202 424 0.001 226 2.212 713

24 0.007 443 1.999 366 0.001 967 1.999 755 0.001 232 1.932 314

30 0.006 989 1.897 299 0.002 043 1.845 165 0.001 176 1.794 637

42 0.005 045 1.702 089 0.002 176 1.661 148 0.001 068 1.666 500

TABLE 5. Even-tempered α and β parameters for 3S states of He from the
recursion formulae.

1s2s 1s3s 1s4s

M α β α β α β

6 0.009 397 4.210 973 0.001 684 4.979 103 0.000 376 5.420 623

12 0.007 565 2.858 623 0.001 339 3.230 871 0.000 297 3.437 767

18 0.006 755 2.396 799 0.001 189 2.653 847 0.000 263 2.794 540

24 0.006 262 2.154 050 0.001 099 2.355 565 0.000 243 2.464 841

30 0.005 918 2.000 886 0.001 036 2.169 343 0.000 229 2.260 108

42 0.005 453 1.814 036 0.000 952 1.944 419 0.000 210 2.014 071

basis set, i.e. M = 6.
Tables 6 and 7 display the corresponding values of α and β for the

lithium atom; Table 6 giving the optimized values (scheme (b)) and Table
7 giving the values obtained by using the recursions (40) and (41) after
optimizing the values for the smallest basis set (scheme (c)).

In Tables 8 and 9, the even-tempered parameters for the two excited
states of the beryllium atom considered in this work are presented, with
Table 8 giving the parameters obtained according to scheme (b) in which
the parameters were fully optimized and Table 9 giving the parameters
obtained by means of scheme (c) in which the parameters α and β were
only optimized for the smallest basis set, i.e. M = 6.

Comparing the parameters given in Tables 4-9, it can be seen that the
fully optimized values of β (scheme (b)) display a similar behavior to the
values obtained from recursion formulae (40) and (41) after optimizing the
value for the smallest basis set. In contrast, for the α parameters resulting
from schemes (b) and (c) some differences can be observed.

The energy expectation values resulting from schemes (b) and (c) are
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TABLE 6. Optimized even-tempered α and β parame-
ters for 2S states of Li as a function of size of basis
set

1s23s 1s24s

M α β α β

6 0.002 164 5.321 302 0.000 473 6.009 700

12 0.002 993 2.961 293 0.000 276 3.364 387

18 0.003 087 2.323 756 0.000 565 2.497 936

24 0.002 937 2.046 230 0.000 659 2.067 042

30 0.002 715 1.894 460 0.000 509 1.928 593

42 0.002 446 1.707 018 0.000 493 1.699 996

TABLE 7. Even-tempered α and β parameters for 2S
states of Li from the recursion formulae.

1s23s 1s24s

M α β α β

6 0.002 164 5.321 302 0.000 473 6.009 700

12 0.001 811 3.172 344 0.000 393 3.450 384

18 0.001 654 2.533 693 0.000 358 2.711 044

24 0.001 559 2.219 463 0.000 337 2.352 045

30 0.001 491 2.029 298 0.000 322 2.136 548

42 0.001 399 1.806 306 0.000 302 1.885 728

seen to be very close together. This observation can be explained by noting
that the energy surface in the space of the parameters α and β has a smooth
structure. However, it should also be noted that the energy expectation
value is more sensitive to variation of the parameter β than to that of α.

It has been demonstrated that for the excited states of the atoms He,
Li and Be considered in the present work, a simple optimization of the α
and β parameters for each size of basis set leads to a sequence of even-
tempered basis sets capable of supporting high accuracy in Hartree-Fock
calculations for excited state energies of atoms. Furthermore, optimization
of the α and β parameters for the smallest basis set in a sequence, M = 6
in the present study, followed by application of the recursion formulae (40)
and (41) represents a good compromise which undoubtedly proved useful
in case where full optimization of these parameters for each size of basis set
is computationally demanding.
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TABLE 8. Optimized even-tempered α and β parame-
ters for 3S states of Be as a function of size of basis
set.

[He] 2s3s [He] 2s4s

M α β α β

6 0.004 884 5.142 401 0.001 057 5.809 367

12 0.004 799 2.947 601 0.001 459 3.191 957

18 0.004 552 2.370 166 0.001 709 2.424 045

24 0.004 237 2.083 730 0.001 736 2.080 558

30 0.003 912 1.921 824 0.001 663 1.899 549

42 0.003 667 1.745 016 0.001 537 1.719 092

TABLE 9. Even-tempered α and β parameters for 3S
states of Be from recursion formulae.

[He] 2s3s [He] 2s4s

M α β α β

6 0.004 884 5.142 401 0.001 057 5.809 367

12 0.003 925 3.125 481 0.000 842 3.402 319

18 0.003 513 2.513 894 0.000 751 2.692 540

24 0.003 264 2.210 162 0.000 696 2.344 631

30 0.003 092 2.025 281 0.000 659 2.134 569

42 0.002 859 1.807 301 0.000 608 1.888 741

5. Concluding remarks

We have presented a practical Hartree-Fock theory of atomic and molecular
electronic structure for individual electronically excited states that does not
involve the use of off-diagonal Lagrange multipliers. An easily implemented
method for taking the orthogonality constraints into account (tocia) has
been used to impose the orthogonality of the Hartree-Fock excited state
wave function of interest to states of lower energy.

The applicability of systematic sequence of even-tempered basis sets
with the exponents, ζp, defined by the geometric series ζp = αβp, has been
examined in Hartree-Fock energy calculations for excited states which have
the same spatial and spin symmetry as the ground state. It is shown that
a simple reoptimization of the α and β parameters leads to a sequence of
even-tempered basis sets capable of supporting high accuracy for excited
state energies of some simple atoms, He, Li and Be. In contrast, simply using
even-tempered basis sets designed for the corresponding ground states leads
to significant loss of accuracy.
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It has been demonstrated that a sequence of basis sets generated with
schemes designated (b) and (c) are capable of supporting high accuracy for
excited state energies of the atoms. Optimization of the α and β parameters
only for the smallest basis set (scheme (c)) lead to energies which are in
a good agreement with those obtained in a case where these parameters
were optimized for each size of basis set (scheme (b)). It must be concluded
that schemes (b) and (c)support comparable accuracies in the energies of
all states.

Finally, we remark that, although the in the present study attention
has been focussed on the excited states of some simple atomic systems,
the method described here can be applied to molecular systems where they
can be expected to support high accuracy as well as providing a suitable
reference with respect to which well-founded many-body expansions for
correlation effects can be developed.
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Abstract. We propose a practicable method for describing linear dynam-
ics of different finite Fermi systems. The method is based on a general self-
consistent procedure for factorization of the two-body residual interaction.
It is relevant for diverse density- and current-dependent functionals and, in
fact, represents the self-consistent separable random-phase approximation
(RPA), hence the name SRPA. SRPA allows to avoid diagonalization of
high-rank RPA matrices and thus dwarfs the calculation expense. Besides,
SRPA expressions have a transparent analytical form and so the method
is very convenient for the analysis and treatment of the obtained results.
SRPA demonstrates high numerical accuracy. It is very general and can
be applied to diverse systems. Two very different cases, the Kohn-Sham
functional for atomic clusters and Skyrme functional for atomic nuclei, are
considered in detail as particular examples. SRPA treats both time-even
and time-odd dynamical variables and, in this connection, we discuss the
origin and properties of time-odd currents and densities in initial function-
als. Finally, SRPA is compared with other self-consistent approaches for
the excited states, including the coupled-cluster method.
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1. Introduction

The time-dependent local-density-approximation theory (TDLDA) is widely
used for description of dynamics of diverse quantum systems such as atomic
nuclei, atoms and molecules, atomic clusters, etc. (see for more details
[1–5]). However, even in the linear regime, this theory is plagued by dealing
with high-rank matrices which make the computational effort too expensive.
This is especially the case for non-spherical systems with their demanding
configuration space. For example, in the Random Phase Approximation
(RPA), a typical TDLDA theory for linear dynamics, the rank of the ma-
trices is determined by the size of the particle-hole 1ph space which becomes
really huge for deformed and heavy spherical systems. The simplest RPA
versions, like the sum rule approach and local RPA (see hierarchy of RPA
methods in [6]) deal with a few collective variables instead of a full 1ph
space and thus avoid the problem of high-rank matrices. But these versions
cannot properly describe gross-structure of collective modes and the related
property of the Landau damping (dissipation of the collective motion over
nearby 1ph excitations).

In this connection, we propose a method [7–10] which combines ac-
curacy and power of involved RPA versions with simplicity and physical
transparency of the simplest ones and thus is a good compromise between
these two extremes. The method is based on the self-consistent separable ap-
proximation for the two-body residual interaction which is factorized into a
sum of weighted products of one-body operators. Hence the method is called
as separable RPA (SRPA). It should be emphasized that the factorization
is self-consistent and thus does not result in any additional parameters. Ex-
pressions for the one-body operators and their weights are inambiguously
derived from the initial functional. The factorization has the advantage to
shrink dramatically the rank of RPA matrix (usually from r = 103− 106 to
r = 2 − 14) and thus to minimize the calculation expense. Rank of SRPA
matrix is determined by the number of the separable terms in the expan-
sion for the two-body interaction. Due to effective self-consistent procedure,
usually a few separable terms (or even one term) are enough for a good accu-
racy. Ability of SRPA to minimize the computational effort becomes really
decisive in the case of non-spherical systems with its huge 1ph configuration
space. SRPA formalism is quite simple and physically transparent, which
makes the method very convenient for the analysis and treatment of the
numerical results. Being self-consistent, SRPA allows to extract spurious
admixtures connected with violation of the translational or rotational in-
variance. As is shown below, SRPA exhibits accuracy of most involved RPA
versions but for the much less expense. Since SRPA exploits the full 1ph
space, it equally well treats collective and non-collective states and, what
is very important, fully describes the Landau damping, one of the most im-
portant properties of collective motion. SRPA is quite general and can be
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applied to diverse finite Fermi systems (and thus to different functionals),
including those tackling both time-even densities and time-odd currents.
The latter is important not only for nuclear Skyrme functionals [11, 12]
which exploits a variety of time-even and time-odd variables but also for
electronic functionals whose generalized versions deal with basic current
densities (see e.g. [13]).

SRPA has been already applied for atomic nuclei and clusters, both
spherical and deformed. To study dynamics of valence electrons in atomic
clusters, the Konh-Sham functional [14,15]was exploited [7,8,16,17], in some
cases together with pseudopotential and pseudo-Hamiltonian schemes [16].
Excellent agreement with the experimental data [18] for the dipole plasmon
was obtained. Quite recently SRPA was used to demonstrate a non-trivial
interplay between Landau fragmentation, deformation splitting and shape
isomers in forming a profile of the dipole plasmon in deformed clusters [17].

In atomic nuclei, SRPA was derived [9,10,19] for the demanding Skyrme
functional involving a variety of densities and currents (see [20] for the re-
cent review on Skyrme forces). SRPA calculations for isoscalar and isovec-
tor giant resonances (nuclear counterparts of electronic plasmons) in doubly
magic nuclei demonstrated high accuracy of the method [10].

In the present paper, we give a detail, maybe even tutorial, description
of SRPA, consider and discuss its most important particular cases and
compare it with alternative approaches, including the equation-of-motion
method in the coupled-cluster theory. We thus pursue the aim to advocate
SRPA for researchers from other areas, e.g. from the quantum chemistry.

The paper is organized as follows. In Section 2, derivation of the the
SRPA formalism is done. Relations of SRPA with other alternative ap-
proaches are commented. In Sec. 3, the method to calculate SRPA strength
function (counterpart of the linear response theory) is outlined. In Section
4, the particular SRPA versions for the electronic Kohn-Sham and nuclear
Skyrme functionals are specified and the origin and role of time-odd cur-
rents in functionals are scrutinized. In Sec. 5, the practical SRPA realiza-
tion is discussed. Some examples demonstrating accuracy of the method in
atomic clusters and nuclei are presented. The summary is done in Sec. 6.
In Appendix A, densities and currents for Skyrme functional are listed. In
Appendix B, the optimal ways to calculate SRPA basic values are discussed.

2. Basic SRPA equations

RPA problem becomes much simpler if the residual two-body interaction
is factorized (reduced to a separable form)

∑

h1,h2,p1,p2

< h2p2|V̂res|p1h1 > a+
p1

a+
p2

ah2ah1 →
K∑

k,k′=1

[κkk′X̂kX̂k′ + ηkk′ ŶkŶk′ ]

(1)
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where

X̂k =
∑

ph

< p|X̂k|h > a+
p ah, Ŷk =

∑

ph

< p|Ŷk|h > a+
p ah

are time-even and time-odd one-body operators, respectively. Further, a+
p

(ah) is the creation (annihilation) operator of the particle state p (hole state
h); K is the number of the separable terms.

Conceptually, the self-consistent procedure outlined below was first pro-
posed in [21].

2.1. TIME-DEPENDENT HAMILTONIAN

The system is assumed to undergo small-amplitude harmonic vibrations
around HF ground state. The starting point is a general time-dependent
energy functional

E(Jα(�r, t)) =
∫
H(Jα(�r, t))d�r (2)

depending on an arbitrary set of densities and currents defined through the
corresponding operators as

Jα(�r, t) =< Ψ(t)|Ĵα(�r)|Ψ(t) >=
occ∑

h

ϕ∗
h(�r, t)Ĵα(�r)ϕh(�r, t) (3)

where Ψ(t) is the many-body function of the system as a Slater determinant,
and ϕ∗

h is the wave function of the hole (occupied) single-particle state. In
general, the set (3) includes both time-even and time-odd densities and
currents, see examples in the Appendix A.

Time-dependent mean-field Hamiltonian directly follows from (2)-(3):

ĥ(�r, t)ϕh =
δH
δϕ∗

h

=
∑

α

δH
δJα

δJα

δϕ∗
h

=
∑

α

δH
δJα

Ĵαϕh. (4)

In the small-amplitude regime, the densities are decomposed into static
part and small time-dependent variation

Jα(�r, t) = J̄α(�r) + δJα(�r, t). (5)

Then, to the linear order for δJα(�r, t), the mean-field Hamiltonian (4) can
be decomposed into static and time-dependent response parts

ĥ(�r, t) = ĥ0(�r) + ĥres(�r, t),

=
∑

α

[
δH
δJα

]J=J̄ Ĵα(�r) +
∑

α,α′
[

δ2H
δJαδJα′

]J=J̄δJα′(�r, t)Ĵα(�r) (6)
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and thus we get the time-dependent Hamiltonian ĥres(�r, t) responsible for
the collective motion.

2.2. SCALING PERTURBATION

Now we should specify the response Hamiltonian ĥres(�r, t). For this aim, we
use the scaling transformation and define the perturbed many-body wave
function of the system as

|Ψ(t)>=
K∏

k=1

exp[−iqk(t)P̂k]exp[−ipk(t)Q̂k]|0 > . (7)

Here both the perturbed wave function |Ψ(t)> and static ground state wave
function |0 > are Slater determinants; Q̂k(�r) and P̂k(�r) are generalized co-
ordinate (time-even) and momentum (time-odd) hermitian operators with
the propoerties.

Q̂k = Q̂+
k , T̂ Q̂kT̂

−1 = Q̂k,

P̂k = i[Ĥ, Q̂k]ph = P̂+
k , T̂ P̂kT̂

−1 = −P̂k, (8)

They generate T-even and T-odd harmonic deformations qk(t) and pk(t);
T̂ is the time inversion operator.

Using Eqs. (3) and (7), the transition densities read

δJα(�r, t) =< Ψ(t)|Ĵα|Ψ(t) > − < 0|Ĵα|0 >= (9)

= i
∑

k

{qk(t) < 0|[P̂k, Ĵα(�r)]|0 > +pk(t) < 0|[Q̂k, Ĵα(�r)]|0 >}

and the response Hamiltonian (6) is

ĥ(�r, t) =
∑

sk

{qk(t)X̂k(�r) + pk(t)Ŷk(�r)} (10)

where all the �r-dependent terms are collected into the hermitian one-body
operators

X̂k(�r) = i
∑

αα′
[

δ2H
δJαδJα′

]J=J̄ < 0|[P̂k, Ĵα′ ]|0 > Ĵα(�r), (11)

Ŷk(�r) = i
∑

αα′
[

δ2H
δJαδJα′

]J=J̄ < 0|[Q̂k, Ĵα′ ]|0 > Ĵα(�r) (12)

with the properties

X̂k = X̂+
k , T X̂kT

−1 = X̂k, X̂∗
k = X̂k, (13)

Ŷk = Ŷ +
k , T ŶkT

−1 = −Ŷk, Ŷ ∗
k = −Ŷk. (14)
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As is shown below, X̂k and Ŷk are just the T-even and T-odd operators to
be exploited in the separable expansion (1).

In the derivation above, we used the property of hermitian operators
with a definite T-parity

< 0|[Â, B̂]|0 >= 0, if TÂT−1 = TB̂T−1 (15)

which states that the average of the commutator vanishes if the operators Â
and B̂ are of the same T-parity. This property allows to classify operators
with a definite T-parity in the SRPA formalism and thus to make the
formalism simple and transparent. For example, in Eqs. (11)-(12), T-even
and T-odd densities Ĵα(�r) contribute separately to X̂k and Ŷk.

To complete the construction of the separable expansion (1), we should
yet determine the strength matrices κkk′ and ηkk′ . This can be done through
variations of the basic operators

δX̂k(t) ≡< Ψ(t)|X̂k|Ψ(t) > − < 0|X̂k|0 >= (16)

= i
∑

k′
qk′(t) < 0|[P̂k′ , X̂k]|0 >= −

∑

k′
qk′(t)κ−1

k′k ,

δŶk(t) ≡< Ψ(t)|Ŷk|Ψ(t) > − < 0|Ŷk|0 >= (17)

= i
∑

k′
pk′(t) < 0|[Q̂k′ , Ŷk]|0 >= −

∑

k′
pk′(t)η−1

k′k

where we introduce symmetric inverse strength matrices

κ−1
k′k = κ−1

kk′ = −i < 0|[P̂k′ , X̂k]|0 >= (18)

=
∫

d�r
∑

αα′
[

δ2H
δJα′δJα

] < 0|[P̂k, Ĵα]|0 >< 0|[P̂k′ , Ĵα′ ]|0 >,

η−1
k′k = η−1

kk′ = −i < 0|[Q̂k′ , Ŷk]|0 > (19)

=
∫

d�r
∑

αα′
[

δ2H
δJα′δJα

] < 0|[Q̂k, Ĵα]|0 >< 0|[Q̂k′ , Ĵα′ ]|0 > .

Then one gets

−
∑

k

κk′kδX̂k(t) = qk′(t), (20)

−
∑

sk

ηk′kδŶk(t) = pk′(t) (21)

and the response Hamiltonian (10) acquires the form

ĥ(�r, t) = −
∑

kk′
{κkk′δX̂k(t)X̂k′(�r) + ηkk′δŶk(t)Ŷk′(�r)}. (22)
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Following [1], the response Hamiltonian (22) leads to the same eigenvalue
problem as the separable Hamiltonian

ĤRPA = ĥ0 + V̂res, (23)

with

V̂res = −1
2

∑

kk′
[κkk′X̂kX̂k′ + ηkk′ ŶkŶk′ ] (24)

(see also discussion in the next subsections).
In principle, we already have in our disposal the SRPA formalism for

description of the collective motion in space of collective variables. Indeed,
Eqs. (11), (12), (18), and (19) deliver one-body operators and strength
matrices we need for the separable expansion of the two-body interaction.
The number K of the collective variables qk(t) and pk(t) and separable
terms depends on how precisely we want to describe the collecive motion
(see discussion in Section 4). For K = 1, SRPA converges to the sum rule
approach with a one collective mode [6]. For K > 1, we have a system of K
coupled oscillators and SRPA is reduced to the local RPA [6, 24] suitable
for a rough description of several modes and or main gross-structure efects.
However, SRPA is still not ready to describe the Landau fragmentation.
For this aim, we should consider the detailed 1ph space. This will be done
in the next subsection.

2.3. INTRODUCTION OF 1PH SPACE

Collective modes can be viewed as superpositions of 1ph configurations. It
is convenient to define this relation by using the Thouless theorem which
establishes the connection between two arbitrary Slater determinants [25].
Then, the perturbed many-body wave function reads

|Ψ(t) >= (1 +
∑

ph

cph(t)Â+
ph)|Ψ0 > (25)

where
Â+

ph = a†pah (26)

is the creation operator of 1ph pair and

cph(t) = c+
pheiωt + c−phe−iωt (27)

is the harmonic time-dependent particle-hole amplitude. T-even qk(t) and
T-odd pk(t) collective variables can be also specified as harmonic oscilla-
tions

qk(t) = q̄kcos(ωt) =
1
2
q̄k(eiωt + e−iωt),

pk(t) = p̄ksin(ωt) =
1
2i

p̄k(eiωt − e−iωt). (28)
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Substituting (10) and (25) into the time-dependent HF equation

i
d

dt
|Ψ(t) >= (ĥ0 + ĥres(t))|Ψ(t) >, (29)

one gets, in the linear approximation, the relation between c±ph and collective
deformations q̄k and p̄k

c±ph = −1
2

∑
k′ [q̄k′ < ph|X̂k′ |0 > ∓ip̄k′ < ph|Ŷk′ |0 >]

εph ± ω
, (30)

where εph is the energy of 1ph pair.
In addition to Eqs. (17)-(18), the variations δX̂k(t) and δŶk(t) can be

now obtained with the alternative perturbed wave function (25):

δX̂k′(t) =
∑

ph

(cph(t)∗ <ph|X̂k′ |0> +cph(t) <0|X̂k′ |ph>), (31)

δŶk′(t) =
∑

ph

(cph(t)∗ <ph|Ŷk′ |0> +cs
ph(t) <0|Ŷk′ |ph>). (32)

It is natural to equate the dynamical variations of the basic operators δX̂k

and δŶk, obtained with the scaling (7) and Thouless (25) perturbed wave
functions. This provides the additional relation between the amplitudes c±ph
and deformations q̄k and p̄k and finally result in the system of equations
for the unknowns q̄k and p̄k.

By equating (17)-(18) and (31)-(32) we get

−
∑

k

qk(t)κ−1
kk′ =

∑

ph

(cph(t)∗ <ph|X̂k′ |0> +cph(t) <0|X̂k′ |ph>),(33)

−
∑

k

qk(t)η−1
kk′ =

∑

ph

(cph(t)∗ <ph|Ŷk′ |0> +cph(t) <0|Ŷk′ |ph>). (34)

Substituting (27)-(30) into these expressions and collecting, for example,
the terms at eiωt, one finally gets

∑

k

{q̄k[F
(XX)
k′k − κ−1

kk′ ] + p̄kF
(XY )
k′k } = 0,

∑

k

{q̄kF
(Y X)
k′k + p̄k[F

(Y Y )
k′k − η−1

kk′ ]} = 0 (35)

with

F
(XX)
k′k =

∑

ph

1
ε2
ph − ω2

{< ph|X̂k|0 >∗< ph|X̂k′ |0 > (εph + ω) (36)

+ < ph|X̂k|0 >< 0|X̂k′ |ph > (εph − ω)},
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F
(Y X)
k′k = −i

∑

ph

1
ε2
ph − ω2

{< ph|Ŷk|0 >∗< ph|X̂k′ |0 > (εph + ω) (37)

+ < ph|Ŷk|0 >< 0|X̂k′ |ph > (εph − ω)},

F
(XY )
k′k = i

∑

ph

1
ε2
ph − ω2

{< ph|X̂k|0 >∗< ph|Ŷk′ |0 > (εph + ω) (38)

+ < ph|X̂k|h >< 0|Ŷk′ |ph > (εph − ω)},

F
(Y Y )
k′k =

∑

ph

1
ε2
ph − ω2

{< ph|Ŷk|0 >∗< ph|Ŷk′ |0 > (εph + ω) (39)

+ < ph|Ŷk|0 >< 0|Ŷk′ |ph > (εph − ω)}.

Equating determinant of the system (35) to zero, we get the dispersion
equation for RPA eigenvalues ων .

2.4. NORMALIZATION CONDITION

By definition, RPA operators of excited one-phonon states read

Q̂+
ν =

1
2

∑

ph

{cν−
ph Â+

ph − cν+
ph Âph} (40)

and fulfill
[Q̂ν , Q̂

+
ν′ ] = δν,ν′ , [Q̂+

ν , Q̂+
ν′ ] = [Q̂ν , Q̂ν′ ] = 0, (41)

where Â+
ph and cν±

ph are given by (26) and (30), respectively. In the qua-
siboson approximation for Â+

ph, the normalization condition [Q̂ν , Q̂
+
ν ] = 1

results in the relation
∑

ph

{(cν−
ph )2 − (cν+

ph )2} = 2. (42)

Using (30), it can be reformulated in terms of the RPA matrix coefficients
(36)-(39):
∑

ph

{(cν−
ph )2 − (cν+

ph )2} (43)

=
∑

kk′

1
4
{q̄ν

k′ q̄ν
k̄

∂F
(XX)
k′k (ων)
∂ων

+ 2q̄ν
k′ p̄ν

k̄

∂F
(Y X)
k′k (ων)
∂ων

+ p̄ν
k′ p̄ν

k̄

∂F
(Y Y )
k′k (ων)
∂ων

}=2Nν .

The variables q̄ν
k and p̄ν

k should be finally normalized by the factor 1/
√

Nν .

2.5. GENERAL DISCUSSION

Eqs. (11), (12), (18), (19), (30), (35)-(39), and (40)-(43) constitute the ba-
sic SRPA formalism. It is worth now to comment some essential points:
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• One may show (e.g. by using a standard derivation of the matrix RPA)
that the separable Hamiltonian (23)-(24) with (40) results in the SRPA
equations (35)-(39) if to express unknowns cν±

ph through q̄k̄ and p̄k̄. Gener-
ally, RPA equations for unknowns cν±

ph require the RPA matrix of the high
rank equal to size of the 1ph basis. The separable approximation allows to
reformulate the RPA problem in terms of much more compact unknows q̄k̄

and p̄k̄ (see relation (30) and thus to minimize the computational effort. As
is seen from (35), the rank of the SRPA matrix is equal to a double number
K of the separable operators and hence is low.
• The number of RPA eigen-states ν is equal to the number of the relevant
1ph configurations used in the calculations. In heavy nuclei and atomic
clusters, this number ranges the interval 103-106. For every RPA state ν,
Eq. (35) delivers a particular set of the amplitudes q̄ν

sk and p̄ν
sk which, fol-

lowing Eq. (30), self-consistently regulate relative contrubutions of different
T-even and T-odd oscillating densities to the ν-state.
• Eqs. (11), (12), (18), (19) relate the basic SRPA values with the start-
ing functional and input operators Q̂k and P̂k by a simple and physically
transparent way. This makes SRPA very convenient for the analysis and
treatment of the obtained results.
• It is instructive to express the basic SRPA operators via the separable
residual interaction (24):

X̂k = [V̂res, P̂k]ph, Ŷk = [V̂res, Q̂k]ph (44)

where the index ph means the 1ph part of the operator. It is seen that the
T-odd operator P̂k retains the T-even part of Vres to build X̂k. Vice versa,
the commutator with the T-even operator Q̂k keeps the T-odd part of Vres

to build Ŷk.
• Some of the SRPA values read as averaged commutators between T-odd
and T-even operators. This allows to establish useful relations with other
models. For example, (18), (19) and (44) give

κ−1
k′k = −i < 0|[P̂k′ , X̂k]|0 >= −i < 0|[P̂k′ , [V̂res, P̂k]]|0 >, (45)

η−1
k′k = −i < 0|[Q̂k′ , Ŷk]|0 >= −i < 0|[Q̂k′ , [V̂res, Q̂k]]|0 > . (46)

The similar double commutators but with the full Hamiltonian (instead of
the residual interaction) correspond to m3 and m1 sum rules, respectively,
and so represent the spring and inertia parameters [24] in the basis of
collective generators Q̂k and P̂k. This allows to establish the connection of
the SRPA with the sum rule approach [22,23] and local RPA [24].

Besides, the commutator form of SRPA values can considerably simplify
their calculation (see discussion in the Appendix B).
• SRPA restores the conservation laws (e.g. translational invariance) vio-
lated by the static mean field. Indeed, let’s assume a symmetry mode with
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the generator P̂sym. Then, to keep the conservation law [Ĥ, P̂sym] = 0, we
simply have to include P̂sym into the set of the input generators P̂k together
with its complement Q̂sym = i[Ĥ, P̂sym].
• SRPA equations are very general and can be applied to diverse systems
(atomic nuclei, atomic clusters, etc.) described by density and current-
dependent functionals. Even Bose systems can be covered if to redefine
the many-body wave function (25) exhibiting the perturbation through the
elementary excitations. In this case, the Slater deterninant for 1ph excita-
tions should be replaced by a perturbed many-body function in terms of
elementary bosonic excitations.
• In fact, SRPA is the first TDLDA iteration with the initial wave function
(7). A single iteration is generally not enough to get the complete conver-
gence of TDLDA results. However, SRPA calculations demonstrate that
high accuracy can be achieved even in this case if to ensure the optimal
choice of the input operators Q̂k and P̂k and keep sufficient amount of the
separable terms (see discussion in Sec. 5). In this case, the first iteration
already gives quite accurate results.
• There are some alternative RPA schemes also delivering self-consistent
factorization of the two-body residual interaction, see e.g. [21, 27–29] for
atomic nuclei and [30, 31] for atomic clusters. However, these schemes are
usually not sufficiently general. Some of them are limited to analytic or
simple numerical estimates [21, 27, 30], next ones start from phenomeno-
logical single-particle potentials and thus are not fully self-consistent [28],
the others need a large number of the separable terms to get an appropri-
ate numerical accuracy [29,31]. SRPA has evident advantages as compared
with these schemes.
• After solution of the SRPA problem, the Hamiltonian (23)-(24) is reduced
to a composition of one-phonon RPA excitations

Ĥ =
∑

ν

ωνQ̂
+
ν Q̂ν (47)

where one-phonon operators are given by (40) − (41). Then, it is easy to
get expressions of the equation-of-motion (EOM) method:

[Ĥ, Q̂+
ν ] = ωνQ̂

+
ν , [Ĥ, Q̂ν ] = −ωνQ̂ν . (48)

So, SRPA and EOM with the Hamiltonian (23)-(24) are equivalent. This
allows to to establish the connection between the SRPA and couled-cluster
EOM method with the single reference (see for reviews [32–35]). SRPA uses
the excitation operators involving only singles (1ph) and so generally carries
less correlations than EOM-CC. At the same time, SRPA delivers very
elegant and physically transparent calculations scheme and, as is shown
in our calculations, the correlations included to the SRPA are often quite
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enough to describe linear dynamics. It would be interesting to construct
the approach combining advantages of SRPA and EOM-CC.

3. Strength function

In study of response of a system to external fields, we are usually inter-
ested in the average strength function instead of the responses of particular
RPA states. For example, giant resonances in heavy nuclei are formed by
thousands of RPA states whose contributions in any case cannot be distin-
guished experimentally. In this case, it is reasonable to consider the aver-
aged response described by the strength function. Besides, the calculation
of the strength function is usually much easier.

For electric external fields of multipolarity Eλµ, the strength function
can be defined as

SL(Eλµ; ω) =
∑

ν

ωL
ν M2

λµνζ(ω − ων) (49)

where
ζ(ω − ωj) =

1
2π

∆
(ω − ων)2 + (∆/2)2

(50)

is Lorentz weight with an averaging parameter ∆ and

Mλµν =
1
2

∑

ph

< ph|f̂λµ|0 > (cν−
ph + cν+

ph ) (51)

is the transition matrix element for the external field

f̂λµ =
1

1 + δµ,0
rλ(Yλµ + Y †

λµ). (52)

It is worth noting that, unlike the standard definition of the strength func-
tion with using δ(ω − ων), we exploit here the Lorentz weight. It is very
convenient to simulate various smoothing effects.

The explicite expression for (49) can be obtained by using the Cauchy
residue theorem. For this aim, the strength function is recasted as a sum of
ν residues for the poles z = ±ων . Since the sum of all the residues (covering
all the poles) is zero, the residues with z = ±ων (whose calculation is time
consuming) can be replaced by the sum of residies with z = ω ± i(∆/2)
and z = ±εph whose calculation is much less expensive (see details of the
derivation in [8]).

Finally, the strength function for L=0 and 1 reads as

SL(Eλµ, ω) =
1
π
�
[
zL det |B(z)|
det |F (z)|

]

z=ω+i(∆/2)

(53)

+ 2
√

2
Kp,Kh>0∑

ph

εL
ph < ph|f̂λµ|0 >2 ζ(ω − εph).
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The first term in (53) is contribution of the residual two-body interaction
while the second term is the unperturbed (purely 1ph) strength function.
Further, F (z) is determinant of the RPA symmetric matrix (35) of the rank
2K, where K is the number of the initial operators Q̂k. The symmetric
matrix B of the rank (2K + 1) is defined as

Bnn′(z) = Fnn′(z), (54)
B2K+1,2K+1(z) = 0, B2K+1,n(z) = Bn,2K+1(z) = An(z)

where n, n′ = 1, ..., 2K and left (right) indexes define lines (columns).
The values An(z) read

A
(X)
n=2k−1(Eλµ, z) = 4

Kp,Kh>0∑

ph

εph < ph|X̂k|0 >< ph|f̂λµ|0 >

ε2
ph − z2

(55)

A
(Y )
n=2k(Eλµ, z) = 4

Kp,Kh>0∑

ph

z< ph|Ŷk|0 >< ph|f̂λµ|0 >

ε2
ph − z2

.

They form the right and low borders of the determinant B thus fringering
the RPA determinant F . The values −An(z) in the most right column have
the same indices as the corresponding strings of the RPA determinant. The
values An(z) in the lowest line have the same indices as the corresponding
columns of the RPA determinant.

Derivation of the strentth function, given above, deviates from the stan-
dard one in the lineary response theory. Besides, the SRPA deals with the
Lorentz weight instead of δ(ω − ων) used in the linear response theory.
At the same time, SRPA strength function and lineary response theory
are conceptually the same approaches. Since the linear response theory is
widely used in the coupled-cluster (CC) method, it would be interesting to
consider the implementation of SRPA stength function method to CC. The
linear response theory is widely used in the coupled-cluster (CC) method.
In this connection, it would be interesting to enlarge the SRPA stength
function method to CC.

4. Particular cases for clusters and nuclei

4.1. KOHN-SHAM FUNCTIONAL FOR ATOMIC CLUSTERS

Kohn-Sham functional for atomic clusters reads

Etot(t) = Ekin(t) + Exc(t) + EC(t) =
∫

d�rH(ρ(�r, t)) (56)

where

Ekin(t) =
h̄2

2me

∫
d�r τ(�r, t) , (57)
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Exc(t) =
∫

d�r ρ(�r, t) εxc(ρ (�r, t)) , (58)

EC(t) =
e2

2

∫ ∫
d�rd�r1

(ρ(�r, t)− ρi(�r))(ρ(�r1, t)− ρi(�r1))
|�r − �r1|

(59)

are kinetic, exchange-correlation (in the local density approximation), and
Coulomb terms, respectively. Further, ρi(�r) is the ionic density and ρ(�r, t)
and τ(�r, t) are density and kinetic energy density of valence electrons.

In atomic clusters, oscillations of valence electrons are generated by
time-dependent variations of the electronic T-even density ρ(�r, t) only. So,
one may neglect in the SRPA formalism all T-odd densities and their vari-
ations pk(t). This makes SRPA equations especially simple. In particular,
the density variation (9) is reduced to

δρ(�r, t) = i
∑

k

qk(t) < 0|[P̂k, ρ̂(�r)]|0 > (60)

= −4i
∑

k

qk(t)
Kp,Kh>0∑

ph

< ph|P̂k|0 > �< ph|ρ̂|0 >

= i
∑

k

qk(t)δρ(�r)

where
< ph|P̂k|0 >= 2iεph < ph|Q̂k| >, (61)

δρ(�r) = − h̄2

2me
(��ρ̄(�r) · ��Qk(�r) + 2ρ̄(�r)�Qk(�r)). (62)

Here, �< ph|ρ̂|0 > is the transition density and ρ̄(�r) is the static ground
state density of valence electrons.

It is seen from (60)-(61) that there are two alternative ways to calculate
the density variation: i) through the transition density and matrix elements
of Q̂k-operator and ii) through the ground state density. The second way
is the most simple. It becomes possible because, in atomic clusters, Vres

has no T-odd Ŷk-operators and thus the commutator of Q̂k with the full
Hamiltonian is reduced to the commutator with the kinetic energy term
only:

P̂k = i[Ĥ, Q̂k]ph = i[ĥ0, Q̂k]ph = −i
h̄2

2me
[��2

, Q̂k]ph. (63)

This drastically simplifies SRPA expressions and allows to present them in
terms of the static ground state density. The scaling tranformation (7) loses
exponents with pk(t) and reads

|Ψ(t)>=
K∏

k=1

exp{−iqk(t)P̂k}|0 > . (64)
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Other SRPA equations are reduced to

X̂k(�r) = i[
δ2H
δρδρ

]ρ=ρ̄ < 0|[P̂k, ρ̂]|0 > ρ̂(�r)

= (
∂2Hxc

∂ρ∂ρ
)ρ=ρ̄δρ(�r) + e2

∫
d�r1

δρ(�r1)
|�r − �r1|

, (65)

κ−1
k′k = κ−1

kk′ = −i < 0|[P̂k′ , X̂k]|0 >

=
∫

d�r{ δ2H
δρδρ

}ρ=ρ̄ < 0|[P̂k, ρ̂]|0 >< 0|[P̂k′ , ρ̂]|0 >

= −
∫

d�rXk(�r)δρ(�r), (66)

∑

k

q̄ν
k{F

(XX)
k′k − κ−1

kk′ ]} = 0, (67)

cν±
ph = −1

2

∑
k q̄ν

k < ph|X̂k|0 >

εph ± ων
, (68)

∑

ph

{(cν−
ph )2 − (cν+

ph )2} =
∑

kk′

1
4
q̄ν
k q̄ν

k′
∂F

(XX)
kk′ (ων)
∂ων

= 2Nν . (69)

It is seen that the basic operator (65) and strength matrix (66) have now
simple expressions via δρ(�r) from (62). The operator (65) has exchange-
correlation and Coulomb terms. For electric multipole oscillations (dipole
plasmon, ...), the Coulomb term dominates.

In recent years, there appear some new functionals where the current
of electrons instead of their density is used as a basic variable [13]. SRPA
equations for this case can be straightforwardly obtained from the general
formalism given in Sec. 2.

4.2. SKYRME FUNCTIONAL FOR ATOMIC NUCLEI

Nuclear interaction is very complicated and its explicit form is still un-
known. So, in practice different approximations to nuclear interaction are
used. Skyrme forces [11,12] represent one of the most successful approxima-
tions where the interaction is maximally simplified and, at the same time,
allows to get accurate and universal description of both ground state prop-
erties and dynamics of atomic nuclei (see [20] a for recent review). Skyrme
forces are contact, i.e. ∼ δ(�r1−�r2), which minimizes the computational ef-
fort. In spite of this dramatic simplification, Skyrme forcese well reproduce
properties of most spherical and deformed nuclei as well as characteristics
of nuclear matter and neutron stars. Additional advantage of the Skyrme
interaction is that its parameters are directly related to the basic nuclear
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properties: incompressibility, nuclear radii, masses and binding energies,
etc. SRPA for Skyrme forces was derived in [9, 10,19,26].

Although Skyrme forces are relatively simple, they are still much more
demanding than the Coulomb interaction. In particular, they deal with
a variety of diverse densities and currents. The Skyrme functional reads
[12, 36, 37]

E =
∫

d�r
(
Hkin +HSk(ρs, τs, �σs,�js, �Js) +HC(ρp)

)
, (70)

where

Hkin =
h̄2

2m
τ, (71)

HC =
e2

2

∫
d�r′ρp(�r)

1
|�r − �r′|ρp(�r′)−

3
4
e2(

3
π

)
1
3 [ρp(�r)]

4
3 , (72)

HSk =
b0

2
ρ2 − b′0

2

∑

s

ρ2
s −

b2

2
ρ∆ρ +

b′2
2

∑

s

ρs∆ρs (73)

+
b3

3
ρα+2 − b′3

3
ρα
∑

s

ρ2
s

+b1(ρτ −�j2)− b′1
∑

s

(ρsτs −�j2
s )

−b4

(
ρ�∇��+ �σ · (�∇×�j)

)
− b′4

∑

s

(
ρs(�∇��s) + �σs · (�∇×�js)

)

+b̃4

(
�σ�T − ��2

)
+ b̃′4

∑

s

(
�σs

�Ts − ��2
s

)

are kinetic, Coulomb and Skyrme terms respectively. The isospin index
s = n, p covers neutrons (n) and protons (p). Densities without this index
involve both neutrons and protons, e.g. ρ = ρp + ρn. Parameters b and α
are fitted to describe ground state properties of atomic nuclei.

The functional includes diverse densities and currents, both neutrons
and protons. They are naturally separated into two groups: 1) T-even den-
sity ρs(�r), kinetic energy density τs(�r) and spin orbital density ��s(�r) and
2) T-odd spin density σs(�r), current �js(�r) and vector kinetic energy den-
sity �Ts(�r). Explicit expressions for these densities and currents, as well as
for their operators, are given in the appendix A. Only T-even densities
contribute to the ground state properties of nuclei with even numbers of
protons and neutrons (and thus with T-even wave function of the ground
state). Instead, both T-even and T-odd densities participate in generation
of nuclear oscillations. Sec. 2 delivers the SRPA formalism for this general
case.
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4.3. T-ODD DENSITIES AND CURRENTS

Comparison of the Kohn-Sham and Skyrme functionals leads to a natural
question why these two functionals exploit, for the time-dependent prob-
lem, so different sets of basic densities and currents? If the Kohn-Sham
functional is content with one density, the Skyrme forces operate with a
diverse set of densities and currents, both T-even and T-odd. Then, should
we consider T-odd densities as genuine for the description of dynamics of
finite many-body systems or they are a pequliarity of nuclear forces? This
question is very nontrivial and still poorly studied. We present below some
comments which, at least partly, clarify this point.

Actual nuclear forces are of a finite range. These are, for example, Gogny
forces [40] representing more realistic approximation of actual nuclear forces
than Skyrme approximation. Gogny interaction has no any velocity depen-
dence and fulfills the Galilean invariance. Instead, two-body Skyrme in-
teraction depends on relative velocities �k = 1/2i · (�∇1 − �∇2), which just
simulates the finite range effects [20].

The static Hartree-Fock problem assumes T-reversal invariance and T-
even single-particle density matrix. In this case, Skyrme forces can be lim-
ited by only T-even densities: ρs(�r), τs(�r) and ��s(�r). In the case of dy-
namics, the density matrix is not already T-even and aquires T-odd com-
ponents [12]. This fact, together with velocity dependence of the Skyrme
interaction, results in appearance in the Skyrme functional of T-odd densi-
ties and currents: �ss(�r), �js(�r) and �Ts(�r) [12,36]. Hence the origin of T-odd
densities in the Skyrme functional. However, this is not the general case for
nuclear forces.

As compared with the Kohn-Sham functional for electronic systems,
the nuclear Skyrme functional is less genuine. The main (Coulomb) inter-
action in the Kohn-Sham problem is well known and only exchange and
corellations should be modeled. Instead, in the nuclear case, even the ba-
sic interaction is unknown and should be approximated, e.g. by the simple
contact interaction in Skyrme forces.

The crudeness of Skyrme forces has certain consequences. For example,
the Skyrme functional has no any exchange-correlation term since the rel-
evant effects are supposed to be already included into numerous Skyrme
fitting parameters. Besides, the Skyrme functional may accept a diverse
set of T-even and T-dd densities and currents. One may say that T-odd
densities appear in the Skyrme functional partly because of its specific
construction. Indeed, other effective nuclear forces (Gogny [40] , Landau-
Migdal [41]) do not exploit T-odd densities and currents for description of
nuclear dynamics.

Implementation of a variety of densities and currents in the Skyrme fuc-
tional has, however, some advantages. It is known that different projectiles
and external fields used to generate collective modes in nuclear reactions
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are often selective to particular densities and currents. For example, some
elastic magnetic collective modes (scissors, twist) are associated with vari-
ations in the momentum space while keeping the common density ρs(�r)
about constant. T-odd densities and currents can play here a significant
role while Skyrme forces obtain the advantage to describe the collective
motion by a natural and physically transparent way.

Relative contributions of T-odd densities to a given mode should obvi-
ously depend on the character of this mode. Electric multipole excitations
(plasmons in atomic clusters, Eλ giant resonances in atomic nuclei) are
mainly provided by T-even densities (see e.g. [19]). Instead, T-odd densi-
ties and currents might be important for magnetic modes and maybe some
exotic (toroidal, ...) electric modes.

It worth noting that T-odd denstities appear in the Skyrme functional
in the specific combinations ρsτs−�j2

s , ρs(�∇��s)+�σs ·(�∇×�js), and �σs
�Ts−��2

s.
Following [37], this ensures Skyrme forces to fulfill the local gauge invariance
(and Galilean invariance as the particular case). The velocity-independent
finite-range Gogny forces also keep this invariance. Being combined into
specific combinations, T-odd densities do not require any new Skyrme pa-
rameters [37]. So, the parameters fitted to the static nuclear properties with
T-even densities only, are enough for description of the dynamics as well.

The time-dependent density functional theory [38] for electronic systems
is usually implemented at adiabatic local density approximation (ALDA)
when density and single-particle potential are supposed to vary slowly both
in time and space. Last years, the current-dependent Kohn-Sham function-
als with a current density as a basic variable were introduced to treat the
collective motion beyond ALDA (see e.g. [13]). These functionals are robust
for a time-dependent linear response problem where the ordinary density
functionals become strongly nonlocal. The theory is reformulated in terms
of a vector potential for exchange and correlations, depending on the in-
duced current density. So, T-odd variables appear in electronic functionals
as well.

In general, the role of T-odd variables in dynamics of finite many-body
systems is still rather vague. This fundamental problem devotes deep and
comprehensive study.

5. Choice of initial operators

It is easy to see that, after choosing the initial operators Q̂k(�r), all other
SRPA values can be straightforwardly determined following the steps

Q̂k ⇒ < |[Q̂k, Ĵα]| > ⇒ Ŷk, η−1
kk′ ⇒ P̂k ⇒ < |[P̂k, Ĵα]| > ⇒ X̂k, κ−1

kk′ .

As was mentioned above, the proper choice of initial operators Q̂k(�r) is
crucial to achieve good convergence of the separable expansion (1) with a
minimal number of separable operators.
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SRPA itself does not give a recipe to determine Q̂k(�r). But choice of
these operators can be inspired by physical and computational arguments.
The operators should be simple and universal in the sense that they can
be applied equally well to all modes and excitation channels. The main
idea is that the initial operators should result in exploration of different
spatial regions of the system, the surface and interior. This suggests that
the leading scaling operator should have the form of the applied external
field in the long-wave approximation, for example,

Q̂λµ
k=1(�r) = rλ(Yλµ(Ω) + h.c.). (74)

Such a choice results in the separable operators (11), (12) and (65) most
sensitive to the surface of the system. This is evident in (65) where δρ(�r) ∝
��ρ̄(�r) is peaked at the surface. Many collective oscillations manifest them-
selves as predominantly surface modes. As a result, already one separable
term generating by (74) usually delivers a quite good description of col-
lective excitations like plasmons in atomic clusters and giant resonances
in atomic nuclei. The detailed distributions depends on a subtle interplay
of surface and volume vibrations. This can be resolved by taking into ac-
count the nuclear interior. For this aim, the radial parts with larger powers
rλ+nkYλµ and spherical Bessel functions can be used, much similar as in the
local RPA [24]. This results in the shift of the maxima of the operators (11),
(12) and (65) to the interior. Exploring different conceivable combinations,
one may found a most efficient set of the initial operators.

For description of the dipole plasmon in atomic clusters, the set of her-
mitian operators

Qλkµ
k (�r) = rλk+nk(Yλkµ(Ω) + Y †

λkµ(Ω)) (75)

with λknk = 10, 12, 14 and µ = 0, 1 is usually enough [8,17]. As is seen from
Fig. 1, we successfully reproduce gross structure of the dipole plasmon in
light axially-deformed sodium clusters (some discrepancies for the lightest
cluster Na+

11 arise because of the roughness of the ionic jellium approxima-
tion for smallest samples). Already one initial operator is usually enough
to reproduce the energy of the dipole plasmon and its branches but in this
case the plasmon acquires some artificial strength in its right flank and
thus the overestimated width [7]. This problem can be solved by adding
two more initial operators. The calculations for a variety of spherical alkali
metal clusters [16] as well as for deformed clusters of a medium size [17]
show that SRPA correcly describes not only gross structure of the dipole
plasmon but also its Landau damping and width.

For the description of giant resonances in atomic nuclei, we used the set
of initial operators [10]

Q̂k(�r) = Rk(r)(Yλµ(Ω) + h.c.) (76)
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Figure 1. Photoabsorption cross section for the dipole plasmon in axially deformed
sodium clusters, normalized to the number of valence electrons Ne. The parameters of
quadrupole and hexadecapole deformations are given in boxes. The experimental data [39]
(triangles) are compared with SRPA results given as bars for RPA states and as the
strength function (49) smoothed by the Lorentz weight with ∆ = 0.25 eV. Contributions
to the strength function from µ =0 and 1 dipole modes (the latter has twice larger
strength) are exhibited by dashed curves. The bars are given in eV Å2.

with

Rk(r) =

{
rλ, k=1
jλ(qk

λr), k=2, 3, 4
(77)

qk
λ = ak

zλ

Rdiff
, a2 =0.6 , a3 =0.9 , a4 =1.2

where Rdiff is the diffraction radius of the actual nucleus and zλ is the first
root in of the spherical Bessel function jλ(zλ) = 0. The separable term
with k = 1 is mainly localized at the nuclear surface while the next terms
are localized more and more in the interior. This simple set seems to be a
best compromise for the description of nuclear giant resonances in light and
heavy nuclei. Fig. 2 demonstrates that already one separable term (k=1)
can be enough to get a reasonable agreement with the exact results. For
k=1, the calculations are especially simple and results are easily analyzed.

The sets (75)-(77) are optimal for description of electric collective modes
(Eλ plasmons in clusters and giant resonances in nuclei). For description of
magnetic modes, the initial operator should resemble the T-odd magnetic
external field. So, in this case we should start from the initial operators
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Figure 2. Isoscalar E2 and isovector E1 giant resonances in 40Ca calculated with SkM*
forces. The results are exhibited for full (exact) RPA (solid curve) and SRPA with k = 1
(dotted curve).

P̂k in the form of the magnetic multipole transition operator in the long-
wave approximation. The T-even operators Q̂k are then obtained from the
connection Q̂k = i[Ĥ, P̂k].

6. Summary

We presented fully self-consistent separable random-phase-approximation
(SRPA) method for description of linear dynamics of different finite Fermi-
systems. The method is very general, physically transparent, convenient
for the analysis and treatment of the results. SRPA drastically simplifies
the calculations. It allows to get a high numerical accuracy with a minimal
computational effort. The method is especially effective for systems with
a number of particles 10 − 103, where quantum-shell effects in the spec-
tra and responses are significant. In such systems, the familiar macroscopic
methods are too rough while the full-scale microscopic methods are too
expensive. SRPA seems to be here the best compromise between quality of
the results and the computational effort. As the most involved methods,
SRPA describes the Landau damping, one of the most important charac-
teristics of the collective motion. SRPA results can be obtained in terms
of both separate RPA states and the strength function (linear response to
external fields).

The particular SRPA versions for electronic Kohn-Sham and nuclear
Skyrme functional were considered and examples of the calculations for the
dipole plasmon in atomic clusters and giant resonances in atomic nuclei
were presented. SRPA was compared with alternative methods, in particu-
lar with EOM-CC. It would be interesting to combine advantages of SRPA
and couled-cluster approach in one powerful method.
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Appendix A: Densities and currents for Skyrme functional

In Skyrme forces, the complete set of the densities involves the ordinary
density, kinetic-energy density, spin-orbital density, current density, spin
density and vector kinetic-energy density:

ρs(�r, t) =
occ∑

hεs

ϕ∗
h(�r, t)ϕh(�r, t), T̂ ρT̂−1 = ρ

τs(�r, t) =
occ∑

hεs

�∇ϕ∗
h(�r, t)·�∇ϕh(�r, t), T̂ τ T̂−1 = τ

��s(�r, t) = −i
occ∑

hεs

ϕ∗
h(�r, t)(�∇× �̂σ)ϕh(�r, t), T̂ ��T̂−1 = ��

�js(�r, t) = − i

2

occ∑

hεs

[
ϕ∗

h(�r, t)�∇ϕh(�r, t)− �∇ϕ∗
h(�r, t)ϕh(�r, t)

]
, T̂�jT̂−1 = −�j

�σs(�r) =
occ∑

hεs

ϕ∗
h(�r, t)�̂σϕh(�r, t), T̂�σT̂−1 = −�σ

�Ts(�r) =
occ∑

hεs

�∇ϕ∗
h(�r, t)�̂σ · �∇ϕh(�r, t), T̂�σT̂−1 = −�σ

where the sum runs over the occupied (hole) single-particle states h. The
associated operators are

ρ̂s(�r) =
Ns∑

i=1

δ(�ri − �r),

τ̂s(�r) =
Ns∑

i=1

←−∇δ(�ri − �r)�∇,

�̂�s(�r) =
Ns∑

i=1

δ(�ri − �r)�∇×�̂σ,

�̂js(�r) =
1
2

Ns∑

i=1

{
�∇, δ(�ri − �r)

}
,

�̂σs(�r) =
Ns∑

i=1

δ(�ri − �r)�̂σ,

�̂T s(�r) =
Ns∑

i=1

←−∇δ(�ri − �r)�∇�̂σ,

where �̂σ is the Pauli matrix, Ns is number of protons or neutrons in the
nucleus.



PRACTICABLE FACTORIZED TDLDA 149

Appendix B: Presentation of responses and strength matrices
through the matrix elements

Responses < 0|[P̂k, Ĵα′ ]|0 > and < 0|[Q̂k, Ĵα′ ]|0 > in (11)-(12) and inverse
strength matrices in (18)-(19) read as the averaged commutators

< 0|[Â, B̂]|0 > with TÂT−1 = −TB̂T−1. (78)

Calculation of these values can be greatly simplified if to express them
through the 1ph matrix elements of the operators Â and B̂.

In the case of the strength matrices, the matrix elements are real for
T-even operators and image for T-odd operators and thus we easily get

κ−1
k′k = −i < 0|[P̂k′ , X̂k]|0 >= 4i

Kp,Kh>0∑

ph

< ph|P̂k′ |0 >< ph|X̂k]|0 >, (79)

η−1
k′k = −i < 0|[Q̂k′ , Ŷk]|0 >= −4i

Kp,Kh>0∑

ph

< ph|Q̂k′ |0 >< ph|Ŷk]|0 > (80)

where Kp and Kh are projections of the momentum of particle and hole
states onto quantization axis of the system.

The case of responses is more involved in the sense that matrix elements
of the second operator in the commutator are transition densities which are
generally complex. However, the first operator in the commutator still has
real (for T-even Â) or image (for T-odd Â) matrix elements and so the
averages can be finally reduced to

< 0|[Q̂k, Ĵα]|0 > = 4i

Kp,Kh>0∑

ph

< ph|Q̂k|0 > �< ph|Ĵα|0 >, (81)

< 0|[P̂k, Ĵα]|0 > = −4
Kp,Kh>0∑

ph

< ph|P̂k|0 > �< ph|Ĵα|0 >, (82)

where � and � result in image and real parts of the transition densities.
The matrix elements for operator P̂k read

< ph|P̂k|0 >= i2εph < ph|Q̂k|0 > − < ph|Ŷk|0 > . (83)
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Abstract. The elements of the second-order reduced density matrix are
pointed out to be written exactly as scalar products of specially defined
vectors. Our considerations work in an arbitrarily large, but finite orthonor-
mal basis, and the underlying wave function is a full-CI type wave function.
Using basic rules of vector operations, inequalities are formulated without
the use of wave function, including only elements of density matrix.

1. Introduction

The question, what conditions are to be fulfilled by a density matrix to
be the image of a wave function, that is, to describe a real physical sys-
tem is opened till today. The contracted Schrödinger-equations derived for
different order reduced density matrices by H. Nakatsui [1] give opportu-
nity to determine density matrices by a non-variational way. The equations
contain density matrices of different order, and the relationships needed
for the exact solutions are not yet known in spite of the intensive research
activity [2, 3]. Recently perturbation theory corrections were published for
correcting the error of the energy obtained by minimizing the density ma-
trix directly applying the known conditions of N-representability [4], and
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variational calculations were performed for density matrices of bosonic sys-
tems including harmonic interactions showing that two-positivity may be
exact for them [5].

In this paper a class of inequalities are derived for the elements of
second-order reduced density matrices of fermion systems.

2. The second-order reduced density matrix in geminal basis

Let be BM = {ϕi(1)}i=1...M an M-dimensional one-electron function basis.
Slater-determinants constructed over BM span an orthonormal, µ =

(M
N

)

dimensional subspace of the N-electron Hilbert space. The projection of
the exact wave function in this subspace ( Ψ ) can be given as a linear
combination of Slater-determinants ( Φ ) :

Ψ =
µ∑

α=1

cαΦα, µ =

(
M

N

)
. (1)

This is the well-known full-CI scheme. The two-electron density matrix
(Γ(2)) is defined by the formula

Γ(2)(1, 2; 1
′
, 2

′
) =

∫
Ψ(1, 2, 3, . . . , N)Ψ∗(1

′
, 2

′
, 3, . . . , N) d3 . . . dN. (2)

Inserting the linear combination (1) into (2), after the Laplace-expansion
of the determinants the two-matrix has the form:

Γ(2)(1, 2; 1
′
, 2

′
) =

M∑

i<j,k<l

gi,j(1, 2) Θi,j;k,l g∗k,l(1
′
, 2

′
), (3)

where gi,j(1, 2) = ψi(1)ψj(2) − ψi(2)ψj(1), i < j is an anti-symmetrized
two-electron function (geminal), and

Θi,j;k,l =
1

N !

µ∑

α,β=1

cαc∗β

∫
αg+

i,j(3, . . . , N) βg+∗
k,l (3, . . . , N) d3 . . . dN. (4)

The αg+
i,j(3, . . . , N) denotes the adjoint geminal of gi,j(1, 2) in Slater-determ-

inant Φα. One can introduce the so-called structure matrix with elements

V i,j;k,l
α,β =

1
(N − 2)!

∫
αg+

i,j(3, . . . , N) βg+∗
k,l (3, . . . , N) d3 . . . dN. (5)

The density matrix can be written as:

Θi,j;k,l =
(N − 2)!

N !

µ∑

α,β=1

cαc∗β V i,j;k,l
α,β (6)
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The second-order reduced density matrix in geminal basis is expressed
by the parameters of the wave function [6–9]. The second-order reduced
density matrix (3) is the kernel of the second-order reduced density opera-
tor. Quantities Θ are matrix elements of the second-order reduced density
operator in the basis of geminals. In spite of this, the expression ”element
of density matrix” is usual. In this sense, in the followings Θ is called as
element of second-order reduced density matrix.

3. Density matrix elements as scalar products

We return to the expression (4), and rearrange it by changing the position
of coefficients cα and cβ :

Θi,j;k,l =
1

N !

µ∑

α,β=1

∫
cα

αg+
i,j(3, . . . , N) c∗β

βg+∗
k,l (3, . . . , N) d3 . . . dN.. (7)

In this expression the products cα
αg+

i,j(3, . . . , N) and c∗β
βg+∗

k,l (3, . . . , N) sug-
gests the suspicion that elements Θ can be considered as scalar products of
vectors being element of the vector space spanned by adjoint geminals. We
will rewrite the formula (7) so it will contain summation over adjoint gem-
inals (N-2 electron functions) instead of Slater-determinants (N-electron
functions). To demonstrate it, first we have to briefly summarize properties
of the index-sets of determinants, geminals and adjoint geminals.

While determinants Φα are N-electron functions, we can identify them
by an index-set Iα containing ordered indices of one-electron functions from
which the determinant is built up. In the set Iα there are N piece of integers
between 1 and M, Iα = {α1, α2 . . . αN}. Similarly, the adjoint geminals can
be identified with index sets Iλ containing N-2 piece of integers sequentially.
Really, the denomination ”adjoint geminal” is for the relationship with the
N-electron Slater determinant, but one can handle adjoint geminals as N-2-
electron functions. We number adjoint geminals, and in the followings they
will be noted as {g+

λ }λ=1...( M
N−2)

. Eventually, geminal gi,j can be considered

as a ”mini-determinant” (2 by 2 determinant) identified by the index-set
Iκ = {i, j} so we will write gκ instead of gi,j .

If one starts with the determinant Φα , then select a geminal gκ from
it, and the adjoint geminal is g+

λ , then

Iα \ Iκ = Iλ (8)

is true. Two of α, κ and λ determines the third one. In other words if
we know the Slater-determinant, and the geminal selected from it, we can
tell the adjoint geminal too, or if the geminal and the adjoint geminal is
known, one can tell the Slater-determinant. This relationship let be denoted
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by α(κ, λ). Of course this is defined only if Iκ ∩ Iλ is empty set, that is
the geminal and its adjoint must be constructed from different one-electron
functions because of mathematical properties of determinants. For the sake
of consistency let be α(κ, λ) = 0 if Iκ ∩ Iλ is not empty, and the vector of
configuration coefficients (c) augmented by an element c0 = 0.

The adjoint geminals have a sign depending on that which rows and
columns they contain from the original determinant. This sign can be de-
termined from the index-sets Iκ and Iλ, because the union of this two gives
Iα, and so we can determine the ordinal number of the rows and columns
of the geminal and the adjoint geminal in the original Slater-determinant.
Signs are substantially important, because they determines the sign of the
integral, and the coefficients c are multiplied with them in a large summa-
tion. The notation αg+

i,j(3, . . . , N) carries the sign, because it refers both the
determinant from which it is derived, and the geminal. Although g+

λ (3 . . . N)
may note the same N-2-electron function, but without the sign! Of course,
signs are defined while N-2 electron functions (adjoint geminals) are consid-
ered in connection with a certain Slater-determinant and a certain geminal.
In other words index sets Iκ and Iλ determines not only the set Iα and the
Slater determinant, but the sign of g+

λ in Φα too. In the followings signs of
adjoint determinants are denoted as: ω(κ, λ). For mathematical consistency
: ω(κ, λ) = 0 if Iκ ∩ Iλ is not the empty set .

Now we return to formula (7), and rewrite it using {i, j} = κ and
{k, l} = κ′ notations:

Θκ,κ′ =
1

N !

µ∑

α,β=1

∫
cα

αg+
κ (3, . . . , N) c∗β

βg+∗
κ′ (3, . . . , N) d3 . . . dN.. (9)

At this point applying the rules of indices described above, we can write
ω(κ, λ)g+

λ (3 . . . N) instead of αg+
κ (3, . . . , N), where Iλ = Iα \ Iκ, and cκ,λ

can be written instead of cα (where Iλ = Iα \ Iκ again). The number of N-2
electron functions is ν =

( M
N−2

)
. At this point we can convert the summation

indices and write (9) as follows:

Θκ,κ′ =
1

N !

ν∑

λ,λ′=1

∫
cα(κ,λ) ω(κ, λ)
︸ ︷︷ ︸

Dκ
λ

g+
λ (3, . . . , N)·

· cβ(κ′,λ′) ω(κ′λ′)
︸ ︷︷ ︸

Dκ′
λ′

g+
λ′(3, . . . , N) d3 . . . dN. (10)

The following notations are introduced:

Dκ
λ = cα(κ,λ) ω(κ, λ) (11)
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Dκ′
λ′ = cα(κ′,λ′) ω(κ′, λ′) (12)

With these notations we can rearrange the formula (10) of Θ:

Θκ,κ′ =
1

N !

ν∑

λ,λ′=1

Dκ
λDκ′

λ′

∫
g+
λ (3, . . . , N)g+

λ′(3, . . . , N)d3 . . . dN
︸ ︷︷ ︸

δλ,λ′ · (N−2)!

(13)

Because of the orthogonality of N-2 electron functions (N-2 by N-2 deter-
minant functions constructed over an orthonormal one-electron basis set)
the summation indices λ and λ′ can be set to be equal:

Θκ,κ′ =
(N − 2)!

N !

∑

λ

Dκ
λDκ′

λ . (14)

Eventually, quantities Dκ
λ can be considered as the λth element of vector

�Dκ, so we can write the element of two-electron density matrix Θ as a scalar
product of two vectors:

Θκ,κ′ =
(N − 2)!

N !
�Dκ · �Dκ′

. (15)

The components of vectors { �Dκ}κ=1...ν are completely defined by the pa-
rameters of the underlying full-CI type wave function, and the index sets
of Slater-determinants and their subdeterminants according to (13). The
number of vectors �Dκ is

(M
2

)
, and this is of course equal to the number of

geminals gκ constructed over the M-dimensional one-particle basis BM .
We can word the results up to this point: for an N-particle fermion

system, using M-dimensional one-particle function basis, the elements of the
second-order reduced density matrix in geminal basis are scalar products
of
(M

2

)
piece of

( M
N−2

)
dimensional vectors.

4. Inequalities fulfilled by the density matrix elements

The most interesting corollary of the results of the previous chapter is,
that using basic vector operations and features of vectors, inequalities re-
lating the elements of density matrix can be formulated. Vectors �Dκ are
completely determined by the configurational coefficients of the underly-
ing full-CI type wave function, but we do not need the knowledge of these
coefficients when deriving the inequalities.

From the basic property of the scalar product

| �Dκ|| �Dκ′ | ≥ �Dκ · �Dκ′
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we get
ΘκκΘκ′κ′ ≥ (Θκκ′)2 ∀κ, κ′. (16)

Writing the sum of two vectors (cosine theorem), and employing that
the norm of a vector is non-negative, that is ( �Dκ + �Dκ′

)2 = | �Dκ|2 + | �Dκ′ |2 +
2 �Dκ · �Dκ′ ≥ 0 we obtain

1
2
(Θκκ + Θκ′κ′) ≥ Θκκ′ ∀κ, κ′. (17)

This inequality can be easily generalized, while the non-negativity of the
norm is valid for an arbitrary vector, for example:

( �Dκ + �Dκ′
+ �Dκ”)2 ≥ 0,

and in general:

(
k∑

i=1

�Dκi)2 ≥ 0. (18)

Here κi is an element of an index set containing k integer of possible values
of geminal indices κ.

{κ1, κ2 . . . κk} ⊆ {1, 2 . . .

(
M

2

)
} (19)

Evaluating the square of the sum of k piece of vectors for all possible value
of k, a hierarchy of inequalities can be formulated:

1
2

k∑

i=1

Θκiκi ≥
k∑

i,j=1,i<j

|Θκiκj | ∀k and ∀{κ1, κ2 . . . κk}. (20)

For the formula (20) contains several inequality, it can be interesting to
study the number of them. The values of k can be 2, 3 . . .

(M
2

)
, remember,

that
(M

2

)
is the number of vectors �Dκ. For a certain value of k there is

((M
2 )
k

)

possibility to pick out κi indices from the set of numbers {1, 2 . . .
(M

2

)
}.

Taking into account all possible selections, the number of inequalities (20)
can be calculated as:

((M
2

)

2

)
+

((M
2

)

3

)
+ . . . +

((M
2

)
(M

2

)

)
=

(M
2 )∑

k=2

((M
2

)

k

)
. (21)
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5. Conclusions

Elements of second order reduced density matrix of a fermion system are
written in geminal basis. Matrix elements are pointed out to be scalar prod-
uct of special vectors. Based on elementary vector operations inequalities
are formulated relating the density matrix elements. While the inequalities
are based only on the features of scalar product, not the full information
is exploited carried by the vectors �Dκ. Recently there are two object of
research. The first is theoretical investigation of inequalities, reducibility
of the large system of them. Further work may have the chance for reach-
ing deeper insight of the so-called N-representability problem. The second
object is a practical one: examine the possibility of computational applica-
tions, associate conditions above with known methods and conditions for
calculating density matrices.
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1. Introduction

Because the total energy E(N) of an N -electron system is not much infor-
mative, intuitive concepts have been introduced in chemistry to allow the
properties of a molecule (or an aggregate) to be rationalized in terms of
properties of the constitutive fragments. Some of these, such as electroneg-
ativity (χ) [1] and chemical hardness (η) [2], have been strictly defined
in the frame of density functional theory (DFT): both electronegativity
and its first derivative are key concepts in making this theory chemically
descriptive [3, 4]. The derivative of electronegativity with respect to the
charge of a system is related to their dipole polarizability [5, 6]. Similarly
the electronegativity helps to understand various molecular properties: elec-
tron distribution [7], charge transfer, dipole moments, bond energies, force
constants, as well as NMR and XAS / XPS chemical shifts [8] or the work
function in metals. According to Pearson (Ref. [9], p. 34), in the making
of a molecule from constitutive fragments, “the difference in electronega-
tivity drives the process while the sum of hardness parameters acts as a
resistance”.

In previous papers [10, 11] we have formulated a procedure for split-
ting the ground-state energy of a multifermionic system into an averaged,
structure-less part, Ẽ, and a residual, shell-structure part, δE. The latter
originates from quantum interference effects of the one-particle motion in
the confining potential [12] and has the form of a shell-correction expansion:
δE =

∑
i δiE. It was also shown [11] that the first-order corrective term,

δ1E, not only governs the oscillating behavior of the residual part, δE,
but also is a good quantitative estimate for both neutral atoms and pos-
itive ions. This first-order shell-correction term, δ1E, is the weighted sum
of ground-state one-particle energies, ε0

i , with the occupation probabilities
δni.

The variation of δE and δ1E as a function of the atomic number Z
manifests the saw-tooth pattern, well-known in atomic nuclei and metal
clusters [13]- [15], having sharp minima at atoms with filled or half-filled
shells in accordance with the shell-filling process.

The splitting of the energy was achieved using the so-called Strutinsky
averaging procedure (SAP) [16]- [18], based on the concept that the oscillat-
ing part of the total energy originates from irregularities in the one-particle
energy-level distribution. It introduces new occupation numbers that are
not necessarily integer and positive while preserving the total number of
particles. In practice the occupancies of only few orbitals are involved in the
“redistribution process” taking place in the SAP. The SAP automatically
leads to a consistent core-valence division in both the energy and coordi-
nate spaces [19]. This procedure distinguishes a “core” region, where the
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ground-state occupancy is preserved, and a “valence” region, where outer
(sub)shell orbitals are involved.

In the next section we shall recall the definitions of the chemical concepts
relevant to this paper in the framework of DFT. In Section 3 we briefly re-
view Strutinsky’s averaging procedure and its formulation in the extended
Kohn-Sham (EKS) scheme. The following section is devoted to the presen-
tation and discussion of our results for the residual, shell-structure part
of the ionization potential, electron affinity, electronegativity, and chemical
hardness for the series of atoms from B to Ca. The last section will present
some conclusions.

2. Electronegativity and chemical hardness in EKS-DFT

For a fixed external potential v(�r), the ground-state electron density ρ0

satisfies the variational equation:

δ {Ev[ρ]− µN [ρ]}
δρ(�r)

∣∣∣∣∣
ρ=ρ0

= 0, (1)

where Ev[ρ] is the energy density functional and the chemical potential µ
appears as a Lagrange multiplier enforcing the fulfillment of the normal-
ization condition:

N [ρ] =
∫

ρ(�r)d�r = n.

Enlarging the domain of definition of Eqn (1) to all positive n, one
could assume the minimum of the density functional Ev[ρ], i.e. the ground-
state energy E0(n) for a given external potential v(�r), to be a continuous
and even a differentiable function of the number of electrons n. From the
Lagrange multiplier theory, it would further follow that

µ =
(

∂E0

∂n

)

v
, (2)

thus linking with the standard understanding of chemical potential µ as
a sensitivity of the ground-state energy E0 to a change in the number of
electrons n or alternatively as an escaping tendency of electrons from an
equilibrium system [3].

Indeed, there is such an approach to DFT that gives a physical justi-
fication to the above assumption of continuity with the only complication
involved being the non-differentiability of E0(n) at an integer number of
electrons n = N , a phenomenon known as ‘DFT derivative discontinuity’.
The approach is based on an extension of the original Hohenberg-Kohn
theorem [20] to the grand canonical ensemble first given by Mermin [21]. It
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describes an open system at a temperature T with a chemical potential µ.
The number of electrons of such a system can fluctuate around a generally
speaking non-integer average value n. Perdew et al. [22, 23] reformulated
Mermin’s theory in the T → 0 limit following the “constrained search”
method of Levy [24]. The zero-temperature ensemble reduces to a simple
statistical mixture of an N -electron pure state, ΨN , and an (N +1)-electron
pure state, ΨN+1, with the respective weights (1− f) and f , thus giving a
concrete physical realization to the fractional electron number n = N + f
(0 ≤ f ≤ 1). The universal density functional is defined as:

Fn[ρ] = min
(1−f)ΨN+fΨN+1→ρ

{
(1− f)〈ΨN |ĤN |ΨN 〉+ f〈ΨN+1|ĤN+1|ΨN+1〉

}

(3)
and if degeneracies are present this definition could be further extended
by replacing the pure-states ΨN , ΨN+1 with the density matrices D̂N =∑

i ci|ΨN,i〉〈ΨN,i|, D̂N+1 =
∑

i ci|ΨN+1,i〉〈ΨN+1,i| and the energy compo-
nents with TrN (ĤND̂N ), TrN+1(ĤN+1D̂N+1). There is a Kohn-Sham ver-
sion of the above zero-temperature DFT (see [22, 23, 25] for details).

In fact, there is another approach to DFT that allows fractional elec-
tron numbers, namely the extended Kohn-Sham (EKS) scheme [23,26,27].
It allows the use of fractional occupation numbers fi : {0 ≤ fi ≤ 1} , hence

the energy functional E[{φ(
f)
i }; {fi}] depends on �f ≡ {fi} and in addition

to the orbitals {φ(
f)
i }. The density is given by ρ(�r) =

∑
i fi|φi(�r)|2. Assum-

ing a stationary point of the functional exists for any given set {fi}, one
can consider the energy as a function of fi’s and whose partial derivatives
with respect to the occupation numbers give the respective Kohn-Sham
eigenvalues

∂

∂fi
E(f1, f2, . . .) = εi, (4)

the so-called Janak’s theorem [28]. The very definition of the derivative ∂E
∂fi

implies that the function E(f1, f2, . . .) can be varied freely in the neigh-
borhood of fi’s without conserving the total number of particles

∑
i fi (see

the Appendix of [11] where the validity of Janak’s theorem is discussed).
That is why, making use of Eqn (4), one should precise the condition of its
application.

The two approaches described above, namely the zero-temperature DFT
and EKS, are generally speaking non-equivalent, the main difference being
in the valid range of occupation numbers below that of the highest oc-
cupied orbital (HOMO). On the one hand the more physically grounded
zero-temperature DFT approach completely fills in all the states below
HOMO of the ground state according to the Fermi statistics, i.e. fi =
1 (i = 1, . . . , N − 1), assuming non-degeneracy. On the other hand the
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EKS approach, based on the more formal Janak’s type of argumentation,
doesn’t put these restrictions on the ground-state occupation numbers be-
low HOMO. In what follows in this chapter we will use the fractional oc-
cupation of HOMO only, in which case both approaches agree. Using Eqn
(4) for HOMO energy εN with respect to (N − 1 + f) electrons, and for
HOMO energy εN+1 with respect to (N + f) electrons, one can express I
and A in the following form:

I(N) = E(N − 1)− E(N) = −
∫ 1

0
εN (N − 1 + f)df, (5)

A(N) = I(N + 1) = E(N)− E(N + 1) = −
∫ 1

0
εN+1(N + f)df. (6)

The analysis of the asymptotic density profile of HOMO’s in Kohn-Sham
theory [29] allows one to make the identification [30]:

εN = −I, (7)

εN+1(N + f) = −A, (8)

where
I = E(N − 1)− E(N) ≡ Ecation − Eatom (9)

is the ionization potential (I) and

A = E(N)− E(N + 1) ≡ Eatom − Eanion (10)

is the electron affinity (A) of an N -electron system. The above gives a
clear physical interpretation of the highest occupied (or partially occupied)
orbital. Expressing the values of I and A through orbital energies, Eqs (5-
8), give a possibility to avoid their determination as differences of two large
numbers.

A differential analog of Eqs (5-6) could be obtained based on Eq. (3),
Eq. (1) and Eq. (2) (see [22, 23]):

µ(N+) =
(

∂E

∂n

)+

v,n=N
= −A(N), (11)

µ(N−) =
(

∂E

∂n

)−

v,n=N
= −I(N), (12)

where the superscripts (±) denote if the derivative is taken from the left
or from the right, i.e. n → N ± 0. Equations (11) and (12) show that
in ensemble theory the chemical potential µ is a step function for each
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integer number of electrons. The functional derivative discontinuity has
two components:

(
∂E

∂N

)+

v
−
(

∂E

∂N

)−

v
= (εN (N)− εN+1(N)) + ∆xc, (13)

a Kohn-Sham’s component (εN (N)−εN+1(N)) involving HOMO and LUMO
energies and an exchange-correlation component [23, 31]:

∆xc =
(

δExc

δρ(�r)

)

n=N+

−
(

δExc

δρ(�r)

)

n=N−
≡ v+

xc(�r)− v−xc(�r). (14)

In a recent paper [25] ∆xc = 0 was claimed, meaning that the overall
derivative discontinuity is entirely due to its Kohn-Sham component but
this issue is still under intense debate.

As for the value of the chemical potential at the mere point of n = N
there are at least four if not more existing definitions in the literature
(see [25] for more details on this).

The first [32]- [34] identifies the chemical potential with the mean total
electronic energy

µ(N) =
E0(N)

N
. (15)

The second [35], with the highest occupied Kohn-Sham orbital energy
εN (N) and is identified to be the negative of the first ionization potential

µ(N) = εN (N) = −I. (16)

The third [36, 37], with the negative of Mulliken’s electronegativity

µ(N) = −χ = −I + A

2
. (17)

The fourth [3, 38], with a value that could lie between two limits

−I ≤ µ(N) ≤ −A. (18)

We will not be concerned with the subtleties of chemical potential ex-
pressions in this work but simply use Eqn (17) as a definition of electroneg-
ativity [1].

The next property of substantial importance is chemical hardness [2]:

η =
1
2

(
∂2E

∂N2

)

v

=
1
2

(
∂µ

∂N

)

v
. (19)



STRUTINSKY’S METHOD IN THE EKS-DFT SCHEME FOR ATOMS 165

Its inverse S = 1
2η is naturally called chemical softness.

The approximate expression

η ≈ I −A

2
=

Ecation − 2Eatom + Eanion

2
(20)

can be interpreted as a three-point approximation to Eq. (2) based on Eqs
(9) and (10) in the last equation. Note that if Eqs (11) and (12) were
used instead in the case that there was no derivative discontinuity, i.e. if
the energy dependence on the electron number was smooth, the second
equation in Eq. (20) would be zero.

The above quantities are very useful tools in the theoretical analysis of
chemical reactivity by means of the following three guiding principles.

The crudest one is Sanderson’s electronegativity equalization principle
[39, 40] according to which “atoms-in-molecule” make electron transfers
from lower to higher electronegative parts thus achieving equilibrium in
electronegativity.

A more refined but still debated in the literature notion is Pearson’s
Hard and Soft Acids and Bases (HSAB) principle [9, 41], which quantifies
energy changes to second order according to which hard (soft) acids (elec-
tron pair acceptors) prefer to interact with hard (soft) bases (electron pair
donors). “Soft likes soft” relates to covalent bonds being facilitated by high
polarizabilities, while “hard likes hard” relates to a creation of predomi-
nantly electrostatic interactions.

The Maximum Hardness principle [41] further extends HSAB princi-
ple by stating that “molecules try to arrange themselves to be as hard as
possible”.

A theoretical account from the point of view of DFT could be found in [1,
42,43]. For a good review of chemical applications of the above principles as
described by quantum chemical methods in general and density functional
methods in particular see the papers of Geerlings and De Proft [4, 44, 45].

3. Strutinsky’s shell-correction method

In what follows we briefly recall the essentials of Strutinsky’s shell-correction
method and its formulation in the EKS DFT frame, referring to Refs [10,11]
for details.

The Strutinsky method is a receipt for exact splitting of the total energy
of a fermionic system into a smooth part and small shell corrections. It is
based on the assumption that the irregular (oscillating) term in all energetic
properties is due to the non-uniformities in the shell structure of the one-
particle energy level distribution. Then, the smoothing of the one-particle
energy spectrum yields the smoothing of the energy.
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This smoothing of the level density, g(E) =
∑
i

δ(E−εi), can be obtained

through the convolution of g(E) with an appropriate smoothing (averaging)
function f(x):

g̃(E) =
1
γ

+∞∫

−∞

g(E′)f
(

E − E′

γ

)
dE′ =

1
γ

∑

i

f

(
E − εi

γ

)
, (21)

where γ is the width of the averaging function. The choice of this function is
a widely discussed in the literature problem (see for example Refs [17,18]),
the most used form being the modified Gaussian of order M :

fM (x) =
1√
π

M∑

n=0

(−1)n

22nn!
d2n

dx2n
e−x2

, x =
(

E − E′

γ

)
. (22)

This expression includes the so-called curvature corrections to the Gaussian
function which ensures that the smooth density g̃(E) does not change after
its own averaging through the same procedure.

Imposing the particle conservation condition, which introduces a new
Fermi level λ̃, we can define the so-called generalized occupation numbers
ñi:

N ≡
λ̃∫

−∞

g̃(E)dE =
∑

i

λ̃∫

−∞

g̃i(E)dE ≡
∑

i

ñi. (23)

Combining Eqs (21) and (23), one obtains the explicit form of these occu-
pation numbers:

ñi =
ti∫

−∞

f(x)dx, ti =
λ̃− εi

γ
. (24)

By analogy with the expression for the total energy Σ in a shell model
frames:

Σ =
∑

i

εini =
λ∫

−∞

E g(E)dE, (25)

one can define the smooth energy Σ̃, substituting in Eqn (25) the one-
particle energy distribution g(E) with the smooth density g̃(E) and the
Fermi level λ with λ̃. The result is:

Σ̃ =
λ̃∫

−∞

E g̃(E) dE =
∑

i

(εi ñi + γ si) =
∑

i

εi ñi + γ S, (26)
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where the functions si have the form:

si =
ti∫

−∞

x f(x) dx = s(ti),

and their sum S =
∑

i si ensures the satisfaction of the so-called plateau
condition [18]:

dΣ̃
dγ

∣∣∣∣∣
γ=γ0

= S = 0. (27)

This condition should be fulfilled, at least approximately, for a given range
of the smearing width γ = {γ0} and a given order M of the correction
polynomial, in order to obtain an independent of the averaging procedure
and of the formal parameter γ smooth energy.

The elimination of the other parameter, M , can be done imposing a
saturation condition with respect to M calculating the root γ0, i.e.:

Σ̃(γ0, M) = Σ̃(γ0, M + 1). (28)

In that way the averaging procedure is closed which allows us to de-
termine the generalized occupation numbers ñi and δni connected with
standard occupation numbers ni through the relation:

ni = ñi + δni. (29)

These numbers allows the splitting of the density ρ(�r) into a smooth ρ̃(�r)
and irregular δρ(�r) part yielding in that way the splitting of all energetic
properties.

This procedure leads directly to the determination of the first-order
shell correction:

δ1E =
∑

i

εiδni, (30)

according to the so-called Strutinsky’s energy theorem, proven within the
Hartree-Fock scheme:

E[ρ] = E[ρ̃] +
∑

i

εiδni + ϑ[(δρ)2]. (31)

In Refs [10, 11] we have shown that Eqn (30) is an expression for the
first-order shell correction term in the EKS-DFT frame. As we pointed it
out, the extended version [26, 27] of the Kohn-Sham scheme [46] is appro-
priate because it allows fractional occupation numbers, thus permitting the
treatment of unequally weighted states.
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According to this scheme, the ground-state energy E0 of the system is
the minimum of the energy functional:

E [{φi}; {ni}] =
∞∑

i=1

ni

∫
φ∗

i (�r)ĥ(�r)φi(�r) d�r

+
1
2

∫
V (�r, �r ′)ρ(�r)ρ(�r ′) d�rd�r ′ + Exc[ρ], (32)

and hence is:

E0 =
∞∑

i=1

n0
i ε

0
i − 1

2

∫
V (�r, �r ′)ρ0(�r)ρ0(�r ′) d�rd�r ′

+ Exc[ρ0]−
∫

Vxc([ρ0];�r)ρ0(�r) d�r. (33)

Let us denote with Ē({ni}) the stationary value of the functional (32)
with respect to arbitrary occupation numbers {ni} ≡ (n1, n2, ...) ≡ �n for
the orbitals {φi}, satisfying the particle conservation condition, i.e.:

Ē({ni}) = E [{φ(
n)
i }; {ni}],

∑

i

ni = N. (34)

Such occupation numbers can be the ñi’s obtained within the smooth-
ing procedure described above. Since these numbers are very close to the
ground-state occupation numbers n0

i , i.e the increments δni = n0
i − ñi are

very small, we can expand Eqn (34) in a Taylor series with respect to the
δni’s. The result is:

Ē(�̃n) = Ē(�n0 − δ�n) = Ē(�n1)−
∑

i

δni
∂Ē

∂ni

∣∣∣∣∣

n0

+
1
2!

∑

i,j

δniδnj
∂2Ē

∂ni∂nj

∣∣∣∣∣

n0

− 1
3!

∑

i,j,k

δniδnjδnk
∂3Ē

∂ni∂nj∂nk

∣∣∣∣∣

n0

+ ... . (35)

The first term in this expansion is the ground-state energy: E0 ≡ Ē(�n0).
For the second term we use Janak’s theorem, Eqn (4):

∂Ē(n1, n2, ...)
∂ni

∣∣∣∣∣

n

= ε
(
n)
i , i = 1, 2, ... (36)

Thus we obtain for the second term in Eqn (35) the shell-model form of
the shell correction, Eqn (30):

∑

i

δni
∂Ē

∂ni

∣∣∣∣∣

n0

=
∑

i

δniε
(
n0)
i . (37)
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The ground-state energy can then be written in the form:

E0 = Ẽ + δ1E + δ2E + δ3E + ..., (38)

where
Ẽ = Ē(ñ1, ñ2, ...) and δ1E =

∑

i

δniε
0
i (39)

are the leading (uniform) and first-order shell-correction terms, other δiE
terms contributing higher-order shell effects.

The first derivatives in a Taylor expansion, similar to Eqn (28), of
the energy E with respect to the occupation numbers ni provide the KS-
eigenvalues, as stated by Janak’s theorem, and the second derivatives:

∂2E

∂ni∂nj
= ηij (40)

give the hardness matrix, as defined by Liu and Parr [47].
Since the KS-eigenvalues are defined through Janak’s theorem as first

derivatives of the total DF-energy, the ij-th element of the hardness matrix
can be obtained as the first derivative of εi with respect to nj :

ηij =
∂εi

∂nj
(41)

and be approximated numerically using the finite difference formula:

ηij =
εi(nj −∆nj)− εi(nj)

∆nj
. (42)

The expression (42) takes into account the response of the i-th orbital to the
change of occupation number of the j-th orbital, i.e., the variation of energy
of the i-th orbital due to the variation of the j-th occupation number [48].

The use of the extended DFT in these reactivity indices has two ad-
vantages: 1) the functional can be expanded over non-integer occupation
numbers, and 2) in the calculation of hardness matrix elements one can use
first derivatives only, cf. Eqn (41), thus reducing numerical errors.

The Strutinsky average energy component Ẽ(N) is considered to be
varying smoothly with the electron number N (see [16] for many concrete
examples and [49] for a more general account on this).

SAP produces a set of virtual excitations from the fully occupied to
the unoccupied Kohn-Sham orbitals thus producing a fictitious statisti-
cal ensemble. A thermodynamic interpretation of SAP is presented in [50]
(see [51, 52] as well), where two main observations are given. First, “the
redistribution of single particle states in the smoothing procedure leads to
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the creation of entropy”. Second, “the corresponding change in energy is
very small and the statistical temperature defined by T−1 = ∂S/∂E is very
low.” Nevertheless the fictitious temperature is low, it should be enough in
order to smooth out the derivative discontinuities of the energy at an in-
teger N according to the general thermodynamic argument of Gyftopoulos
and Hatsopoulos [36] often used in the context of DFT [22,23,25].

4. Results and Discussion

The interpretation of the Kohn-Sham one-orbital energies as orbital elec-
tronegativities [47], following from Janak’s expression of the εi’s as first
derivatives with respect to the occupation numbers (Eqn (4)), shows that a
definition of δA through δ1A is physically relevant. That is why an improve-
ment in the results for δA could be achieved only by using some approxi-
mation for the exchange-correlation potential more precise than GGA. On
the contrary, the neglect of the off-diagonal elements of the hardness tensor
(see below Eqs (40) and (41)) and thus of the corresponding second-order
correction term in the hardness expression, leads to a disregard of the re-
sponse of the i-th orbital to a change in the occupation number of the j-th
orbital. In Refs [48, 53] there is given a finite-difference method for calcu-
lating the second derivatives of the energy with respect to the occupation
numbers, i.e., the elements of the hardness tensor.

In refs [10, 11] we have proposed a procedure for splitting the ground-
state energy of a multifermionic system into averaged and shell-correction
parts in the framework of the EKS scheme. We have also shown that the
first-order term of the shell-correction series yields practically identical re-
sults to that obtained through the self-consistent application of the proce-
dure. That is why in the present paper we deal only with the first-order
shell-correction term of the energy, Eqn (30), obtained through the appli-
cation of Strutinsky’s averaging procedure, recalled in Section 3, on the
single-particle KS spectrum.

The calculation of the atomic and ionic spectra were performed through
the spin-dependent KS-DFT code deMon [54], using for the exchange-
correlation functional the form proposed by Perdew and Yue (PW GGA-
I) [55] and for basis orbitals the standard DZVP basis set. The solution
of the stationary condition (27) was fulfilled by minimizing the function
δE(γ, M) expressed by Eqs (30), (24) and (22) while maintaining the par-
ticle conservation constraint (23) determining the new Fermi level. The
resulting system was solved using the package Mathematica [56].

In Fig. 1 there is presented the first-order shell correction of the total
binding energy of atoms, cations, and anions from beryllium to calcium. As
expected, the oscillating part of the energy displays minima for the atoms
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Figure 1. The first-order shell correction δ1E of the total binding energy of atoms
(squares), cations (circles) and anions (triangles) from beryllium to calcium, as a function
of the atomic number Z.

with closed shells, Ne and Ar, as well as for the corresponding isoelectronic
ions, Na+ and K+, and F− and Cl−. It is also seen that the oscillations for
the cations are amplified with respect to those for the atoms. This is due
to the decreased screening and hence increased bonding of the electrons
in cations compared to that in the isoelectronic atoms, shell effects being
stronger for strongly bound systems. This latter finding is confirmed from
the results for anions, for which the shell corrections are, on the opposite,
smaller than for the isoelectronic atoms.

Making the difference between the results for cations and atoms and for
atoms and anions we can obtain the shell-correction part of the ionization
potential and electron affinity, respectively (see Eqs (9) and (10)). These
results are presented in Figs 2 and 3 together with experimental data taken
from [57] and [58], respectively. It is seen on Fig. 2 that the behavior of the
oscillating component of the ionization potential, δI ≈ δ1I(N), as a discrete
function of N , closely follows the experimental variation, I(N), reproduc-
ing local maxima at atoms with filled and half-filled shells. Furthermore,
these singularities are enhanced in the variations of the oscillating part,
confirming that the properties of these systems are determined by the va-
lence electrons, since the SAP deals mostly with valence electrons. All this
shows that the SAP applied within the KS-DFT scheme using GGA for vxc

allows to be extracted a component of I which contains practically all shell
effects for that property.
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Figure 2. The shell-correction part of the ionization potential δ1I (squares), as a function
of the atomic number Z, and experimental data for the total ionization potential Iexp

(circles), taken from Ref. [57].
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Figure 3. The shell-correction part of the electron affinity δ1A (squares), as a function of
the atomic number Z, and experimental data for the total electron affinity Aexp (circles),
taken from Ref. [58].

The same holds for the electron affinity, depicted in Fig. 3, where the
slopes in the graphic for δA ≈ δ A have the same sign as those in the1
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experimental one, A(N), with a single exception between Na and Mg. But
since the GGA’s fail to reproduce the correct long-range behavior of vxc(�r),
one could not expect a more precise estimate of the oscillating part of the
electron affinities.

In Figs 4 and 5 there are given the oscillating components of the elec-
tronegativity, δχ ≈ δ1χ, and chemical hardness, δη ≈ δ1η, respectively. We
observe the same trends as for the previously discussed quantities: the os-
cillating parts closely follow the experimental results (where available) with
an amplified sensitivity to all peculiarities. The only opposite trends occur
in the P-S interval for electronegativity, and O-F for chemical hardness.
These imperfections in the description of shell effects in chemical hardness
and electronegativity are due to their reduced occurrence in the results for
electron affinity as well as to the neglect of the second-order corrections
especially for chemical hardness.
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Figure 4. The shell-correction part of the chemical hardness δ1η (squares), as a function
of the atomic number Z, and experimental data for the total chemical hardness ηexp

(circles), taken from Ref. [58].

5. Conclusion

Summarizing the results obtained for neutral atoms and positive and neg-
ative ions we can conclude that Strutinsky’s shell-correction procedure in
the EKS-DFT scheme is a helpful tool for investigating such important
properties for the chemistry of atomic systems as the ionization potential,
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Figure 5. The shell-correction part of the electronegativity δ1χ (squares), as a function of
the atomic number Z, and experimental data for the total electronegativity χexp (circles),
taken from Ref. [58].

electron affinity, electronegativity and chemical hardness. Separated from
the smooth part, the shell correction, in fact, contains all peculiarities of a
given energetic property, the variations of that property being significantly
amplified. Thus, the first-order shell-correction term appears to be very sen-
sitive such variations and can serve as a “microscope” in the investigation
of the properties.

Being formally a strict approach, the SAP, based on the idea that the
smearing of the orbital energy spectrum of a finite system, allows to sep-
arate the effects in the energetic properties due to the shell structure of
the energy level distribution. The realization of this concept leads to a con-
sistent core-valence division of the spectrum and, in this way, of all ener-
getic properties. Performing the presented calculations, using PW-GGA-I
for exchange-correlation KS potential, we obtain that such a continuous
approximation (which does not reproduce derivative discontinuity) gives a
satisfactory description of δI but modest one of δA. Nevertheless, it al-
lows to obtain an, in general, correct extraction of the shell effects in the
electronegativity and chemical hardness.

DFT schemes, which allow to calculate the electron affinities of atoms
are based on the exact [59, 60] and generalized (local) [61, 62] exchange
self-interaction-corrected (SIC) density functionals, treating the correlation
separately in some approximation. Having better asymptotic behavior than
GGA’s, like in the improved SIC-LSD methods, one should obtain more
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precise results than the reported in this work. Nevertheless, these methods
are considerably harder to be implemented in the Strutinsky scheme.
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Abstract. The generalized electronic diabatic (GED) approach is used to study 

a cis-trans isomerization process. At variance with standard Born-Oppenheimer 

approach, where a unique adiabatic potential energy function depending of a 

dihedral angle connects both isomers, a configuration interaction model permits 

describing isomerization process with four diabatic electronic states. These 

GED states form a minimal CI space; each state conserves local symmetry pro-

perties along a properly defined reaction coordinate. The diabatic states diagon-

alize the Coulomb Hamiltonian. The state mixing obtains via kinematic coup-

lings, electron-phonon and spin-orbit operators. The process is mapped to a full 

quantum mechanical linear superposition of diabatic states. 

1. Introduction 

Ethylene electronic isomerism is introduced as a new concept and examined 

from the perspective of the generalized electronic diabatic (GED) scheme. In 

chemistry isomerism is related to distributions in space of atomic nucleus in one 

and the same adiabatic potential energy surface. Therefore, in this case cis and 

trans isomers would be indistinguishable when the four hydrogen atoms are 

identical. Nevertheless, in this paper we show that isomerism is an electronic 
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chattel, where cis and trans are different diabatic electronic base states clearly 

distinguishable via nodal plane properties. 
 To accomplish the action, it is necessary to use an approach going 
beyond the standard Born-Oppenheimer (BO) model [1,2]. This one is the GED 
scheme that is capable to yield a rigorous mapping between the algorithmic 
approach in mixed real/Hilbert space and exact molecular quantum mechanics 
in full Hilbert space. This model has been constructed and reported in previous 
publications [3-9]. The key to it stands on a careful separation from the exact 
quantum mech-anical electro-nuclear description of the electronic Hilbert space 
and a model of a mass-less positive charge background in real space that is 
mapped to the nuc-lear charges. While quantum state wavefunctions of the 
global system are not separable, molecular base states can be separable, each 
base state being direct products of diabatic electronic and nuclear base states. 
These base functions are used to represent quantum states as linear 
superpositions. These aspects are ex-amined in sections 2 and 3 where a 
summary of the fundamental ideas and new ideas on the formalism is presented. 
 Real space algorithms (section 4) allow for mappings between present 
day computer programs and strict molecular quantum mechanics [10,11]. It is 
the separability of base molecular states that permits characterizing molecular 
states in electronic Hilbert space and molecular species in real space. This fea-
ture eliminates one of the shortcomings of the standard BO scheme [6,7,12]. 
Confining and asymptotic GED states are introduced. In section 5 the concept 
of conformation states in electronic Hilbert space is qualitatively presented. 
 Isomerization in ethylene is used to illustrate the ideas. This example is 
not a theoretical toy. In fact, it helps understanding the reactivity correlated to 
the electronic quantum mechanical cis-trans isomerization. The varied chem-
istry and physical chemistry of diene fragments is highlighted in a new quantum 
mechanical perspective. It is shown that isomerism (conformational change) can 
be seen as a pure electronic process. Inclusion of the massless positive back-
ground leads to diabatic potential energy hypersurfaces and localization. The 
attractor in real space leads to the chemical concept of rigid molecular structure; 
reintroducing atomic masses a standard vibration analysis can be implemented. 
 In section 6, chemical reactivity of ethylene-like species is discussed. A 
post-BO scheme recently proposed by us [11] is presented and used to examine 
the conformational change process. A check to the general properties discussed 
here is presented in section 7. In section 8 connections to the standard diabatic 
and adiabatic methods are examined. Section 9 presents a general discussion. 

2. Basic state quantum mechanics 

The concept of quantum states is the basic element of quantum mechanics; the 

set of quantum states {| >} and the field of complex numbers, C, define a Hil-

bert space as being a linear vector space; the mapping < | > introduces the 

dual conjugate space (bra-space) to the ket-space; the number C( )=< | > is a 
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anics; C( )=1 [13]. The infinite variety of quantum states is elicited with a com-

plete set of denumerable orthonormal quantum states {|jk>}, j and k being inte-

gers. The complex number amplitudes <jk| > = Cjk( ) are “direction cosines” 

of the quantum state in the complete base set.

          Special relativity space-time inertial frames are used. A real arbitrary 

space vector x relates to base states |x> in a rigged Hilbert space [14]; this is 

invariant to an origin displacement of the inertial frame, i.e. Ta |x> = |x+a>, the 

operator Ta is unitary. Using the reciprocal space k, one gets Ta = exp(-ik a) and 

<x+a|x+a> = < x |Ta
† Ta |x> = <x|x>; the symbol † stands for transpose complex 

conjugation. The projection in configuration space is | > ↔  dx |x><x| >.

The symbol ↔  is used to emphasize the difference in nature of the selected spa-

ces. The direction cosine along the axis |x> is the wave function <x| > (x),

i.e. a mathematical function with a domain covering all the configuration space x

referred to a fixed (inertial) I-frame; the I-frame belongs to real space. Compar-

isons between I-frames permit a natural introduction of classical physics con-

cepts when appropriate. A reference to a particle model is not done here. Using 

now the denumerable base set, the quantum state is given by: 

              | > <—>  dx |x> jk jk(x)Cjk( )= dx |x> <x| >.                             (1) 

From eq. (1), eq. (2) trivially follows:

   <x| > (x) = jk jk(x)Cjk( )= (C10( )…Cjk( )…) [ 10(x)… jk(x)…]  (2) 

          The column vector is indicated by square brackets, a row vector by round 

brackets. The quantum numbers may be determined by the complete set of her-

mitian operators commuting with the generator of time evolution. Invariance of 

the quantum state to frame rotation, origin displacement, parity and other sym-

metry operations determine quantum numbers for the corresponding irreducible 

representations. Frame related symmetry operations translate into unitary oper-

ator acting on Hilbert space (rigged), e.g. Ta.
 Once the base states are found for a given material system (to be defined 
later on), it is the quantum state that is susceptible of (laboratory) preparation, 
manipulation and/or measurement. 

From eq. (1) follows that picking up the wave function only at one point 

does not make sense; it has to be defined in a neighborhood to such a point; it is 

by adding the products of the measure dx and (x) that produce a “portrait” of 

the corresponding quantum state. Given a set {Cjk( )}, this fully determines the 

quantum state | > in the corresponding basis set. Contemporary computing 

techniques can be adapted to take advantage of this property and generate more 

or less definite portraits of specific quantum states. 

functional of the quantum state; in the projective space used in quantum mech-
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 Because the base states are time independent, any change of the physical 

state of the system in time | ,t> is elicited by variation of amplitudes Cjk from, 

say, (C10( ,to)…Cjk( ,to)…) to a new set (C10( ,t)…Cjk( ,t)…).
 An eigenstate corresponds to a row vector with zero amplitude every-
where except at the base state function that is the case. It is then defined in Hil-
bert space and does not stand for an individual “molecular” state. The corres-
ponding base state cannot be a dynamically unstable state as it is time indepen-
dent. This is an important difference with standard approaches [15]. 

Time evolution in Hilbert space is done by a unitary operator U(t,to). The 

corresponding generator of the unitary transformation is a total Hamiltonian H.

Henceforward, h/2 =1; h is Planck’s constant. The operator U(t,to) fulfils the 

differential equation: –i U(t,to)/ t = HU(t,to) [16]. A quantum state prepared at 

time to, say |to>, is propagated in time as usual: U(t,to)|to> = |t>. 
 The time-dependent Schrödinger (3), relates Hamiltonian and quantum 
states in a unique manner:

                         i < x| ,t>/ t = H(x) <x | ,t>                                                   (3) 

Observe that eq. (3) engenders a true change so long H(x)  is the generator of 

time translations; i.e. a change in the direction cosines can be experimentally 

detectable as for instance in a pump-probe experiment or in electron photo-

detachments measurements. 

For an isolated system, H(x) is time independent, eq. (3) is separated as 
usual leading to the time independent equation: H(x) < x| > = E < x >. The 
structure of H is not known in detail. So far, it is just a symbol, but if this is a 
hermitian and self-adjoint operator, there exists a complete denumerable set of 
eigenfunctions.
 Let us focus on molecular systems for which we know molecular Hamil-

tonian models, H(q,Q). Electronic and nuclear configuration coordinates are 

designated with the vectors q and Q, respectively; x = (q,Q) = (q1,…, qn, Q1,…,

Qm. For an n-electron system, q has dimension 3n; Q has dimension 3m for an 

m-nuclei system. The wave function is the projection in configuration space of a 

particular abstract quantum state, namely (x) (q,Q), and base state func-

tions jk(q,Q) with two quantum labels, nothing more. This implies a first-level 

separability when the first label refers to an electronic state and the second to 

nuclear base function subsidiary to the electronic one. This statement represents 

the crux of the ansatz proposed by Born and Oppenheimer; the nuclear para-

metric dependence of the electronic base function is a second-level separability 

hierarchy.

 In rigorous quantum mechanics, something like an electronic base func-

tion parametrically dependent on nuclear configuration space cannot be. Such 

dependence would imply that the electronic quantum number of the base func-

tion depends upon the particular selected region of nuclear configuration space. 
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The proof comes with the scrutiny of the exact electro-nuclear base function 

jk(q,Q). We assume the existence of eq. (4) exists because H(q,Q) is self-

adjoint:

   H(q,Q) jk(q,Q) = Ejk jk(q,Q)           (4) 

          The equation is defined in an I-frame and no rotation and translation base 

states are present yet; these latter appear after translating the origin to an I-frame 

in uniform motion with (classical) velocity v, a v-frame. This aspect is not exam-

ined in this paper; but observe that global angular momentum of the system is 

described with the invariances to rotation of the v-frame and will apply to all 

internal electronuclear state of the I-frame [10]. 

 The important result is that an electronic quantum number doesn’t depend 

at all on the domain of Q that we might have selected to look at; equation (4) is 

valid for all Q-values; the quantum number results from boundary conditions 

and general frame-invariance. 

3. Molecular quantum mechanics 

Consider the extreme case where H is diagonal in the base set { jk(q,Q)}. Ac-

cordingly, in absence of external fields, no time evolution is to be expected ex-

cept for changes in time-phases. But, by hypothesis, we took H to be the gener-

ator of time displacement in Hilbert space. Such a situation is not useful in mol-

ecular physics because one search after a Hamiltonian that is able to generate the 

time evolution. This suggests the idea that the time generator H of interest con-

tains two classes of operators: H = Ho + V. The Hamiltonian Ho is assumed to 

generate a complete set of molecular base states. The operator V would couple 

the base states of Ho. It is the intermediate base set that has a meaning in inter-

preting the base states as molecular base states. 

          The Ho operator is mapped on to the well-known molecular Hamiltonian 

H(q,Q) because this one can be rigorously diagonalized in a particular separable 

base state set [7,12], cf. eq. (4). We briefly review this point. Now, we write:

H (q,Q) = H o(q,Q) + V(q,Q) = H(q,Q) + V(q,Q)                               (5) 

The symbol V(q,Q) stands for a kinematic operator  containing spin-orbit terms, 

electron-phonon couplings and, eventually, a coupling to external fields. The 

molecular Hamiltonian is given by: 

             H(q,Q)= KN(Q) + HC(q,Q) = KN(Q) + Ke(q) + VC(q,Q)                     (6) 



O. TAPIA, V. POLO AND J. ANDRES 182

KN(Q) and Ke(q) are the kinetic energy operators for m-nuclei and n-electrons. 

The operator VC(q,Q) represents the total Coulomb interaction: electron-electron 

(Vee), electron-nuclei (VeN) and nuclei-nuclei (VNN).

          In principle, the time evolution of a particular linear superposition on the 

molecular base states will reflect a chemical process via the changes shown by 

the amplitudes. This represents a complete quantum mechanical representation 

of the chemical processes in Hilbert space. The problem is that the separability 

cannot be achieved in a complete and exact manner. One way to introduce a 

model that is able to keep as much as possible of the linear superposition prin-

ciple is to use generalized electronic diabatic base functions. 

Separability between electronic and nuclear states is fundamental to get a 
description in terms of a hierarchy of electronic and subsidiary nuclear quantum 

numbers. Physical quantum states, i.e. wavefunctions (q,Q), are non-separable. 

On the contrary, there is a special base set of functions { jk(q,Q)} that can be 

separable in a well defined mode, and used to represent quantum states as linear 

superpositions over the base of separable molecular states. For the electronic 

part, the symmetric group offers a way to assign quantum numbers in terms of 

irreducible representations [17]. Space base functions can hence be either sym-

metric or anti-symmetric to odd label permutations. The spin part can be treated 

in a similar fashion [17]. The concept of molecular species can be introduced; 

this is done at a later stage [10]. Molecular states and molecular species are not 

the same things. The latter belong to classical chemistry, the former are base 

function in molecular Hilbert space.

 For the electro-nuclear model, it is the charge the only homogeneous ele-

ment between electron and nuclear states. The electronic part corresponds to 

fermion states, each one represented by a 2-spinor and a space part. Thus, it has 

always been natural to use the Coulomb Hamiltonian HC(q,Q) as an entity to 

work with. The operator includes the electronic kinetic energy (Ke) and all elec-

trostatic interaction operators (Vee + VeN + VNN). In fact this is a key operator for 

describing molecular physics events [1-3]. Let us consider the electronic space 

problem first; exact solutions exist for this problem; the wavefunctions are def-

ined as (q); do not mix up these functions with the previous electro-nuclear 

wavefunctions. At this level, HC and S (total electronic spin operator) commute; 

the spin operator appears in the kinematic operator V and H commute with the 

total angular momentum J=L+S in the I-frame; L is the total orbital angular mo-

mentum, the system is referred to a unique origin. 

 Define the functional U(Q;[ ])=< (q)|HC(q,Q)| (q)>q; integration over 

the electronic configuration space is indicated as a sub-index. The variational 

principle applied [6] to the (spin-free) function space (q) leads to the Euler-

Lagrange equation:

                               HC(q,Q) (q)= E(Q) (q)                                           (7) 



ETHYLENE “ISOMERISM” 183

Observe that eq. (7) is fundamentally different from eq. (4). Albeit, for a self-

adjoint HC(q,Q), Kato’s theorem ensures existence of a complete set of base 

functions, { j(q)} [18]. Thus, Ei(Q)  U(Q;[ j]). The number and type of nodal 

planes, permutation properties, parity and general topologic properties charac-

terize the diabatic base functions. The wavefunctions here are not defined as in 

the standard BO approach; they are independent from the nuclear configuration 

space. It is the energy E(Q) that depends upon such coordinates. Note that such 
an equation is not an eigenvalue equation it only has the form. Given a nuclear 

configuration domain, the energy ordering Ei(Q) may differ from one point to 

another; nevertheless, the nature of the electronic base function is an invariant. 

This is a key point to understand the role of GED functions would play in elec-

tronic structure studies. Longuet-Higgins and Herzberg-Teller proposed an ap-

proach based on one fixed Qo point [19,20]. They did not hint at the complete-

ness of the base shown by us. We retain, however, this one-point hypothesis and 

consequently the complete electronic spectrum is determined from one and only 

one fixed electronic Hamiltonian. The algorithm now consider any excited state 

Ei(Q
o) and calculate the nearest stationary point by following the steepest des-

cent path in Q-space; if there is one, we name it as Ei(Q
j). In principle, this pro-

cedure must be carry on for all energies Ek(Q
o).

The problem still is to finding a complete set of solutions to the molecular 

Hamiltonian H that contains nuclear kinetic energy operators:

                H(q,Q) (q,Q) = (HC(q,Q) + KN(Q)) (q,Q)= E (q,Q)                (8) 

Constructing a linearly independent set of factored functions solves the problem 

in the sense that eq. (8) is diagonal. The diabatic potential is used to define equa-

tions for the nuclear wavefunctions leading to a product set { k(q) km(Q)} by 

solving for each electronic diabatic potential the corresponding equation (9):

                                {KN + U(Q;[ k])- Ekm } km(Q) = 0                                     (9)

The problem with these equations is that they correspond to infinite different 

Hamiltonians so that the solutions for different electronic quantum numbers are 

incommensurate. To do away with these objections, use instead the complete set 

of functions rendering the kinetic energy operator KN diagonal. The set, within 

normalization factors, is {fk(Q)  exp(ik•Q)}; k is a vector in nuclear reciprocal 

space. Including the system in a box of volume V, the reciprocal vectors are dis-

crete, ki, and the functions fi(Q) = (1/ V) exp(iki•Q) form an orthonormal set 

with the completeness relation (Q-Q’) = i fi(Q) fi(Q’). The direct product set 

{ j(q)fki(Q)} is complete. The matrix elements of eq. (8) reads: 

  < j(q)fk’(Q)|(HC(q,Q)+KN(Q))| g(q)fk(Q)>=

                                                    <fk’(Q)|(KN+U(Q;[ j])|fk(Q)> jg (10)
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Eq. (10) is block diagonalized as a function of an electronic quantum number, jg

(Kronecker symbol) factor. Equations (9) and (10) are related. These equations 

for each electronic subspace differ only by a local linear transformation, then, 

one may write: 

jm(Q) = k’ Ak’( jm) fk’(Q)                                              (11) 

The coefficients Ak’( jm) are fixed for each jm-index. And, as it is implied by eq. 

(10), the connection between different electronic states is absent.
The { j(q) jm (Q)} is a set of linearly independent functions; the jm(Q)

functions are not orthogonal in Q-space for arbitrary electronic states; the over-

lap integrals d3m
Q jm(Q) j’m’(Q) are the well known Franck-Condon factors. 

The hypothesis is that an arbitrary quantum molecular state is given by the linear 

superposition jus as in the general case: 

(q,Q,t) = jm Cjm( ,t) j(q) jm (Q)                              (12) 

The caveat is that integration over electronic configuration space is performed 

first. Any physical base quantum state with respect to the Coulomb Hamiltonian 

is a robust species. Observe that no structural features are implied yet. Thus, 

separability via electronic quantum numbers is achieved although the general 

quantum states { (q,Q,t)} are not separable. 

As a consequence of eq. (10), the molecular Hamiltonian H cannot by 

itself be a generator of time evolution in Hilbert space, for this reason it was 

assigned to Ho in eq. (5). 

 Consider now the equality Hoj’m’,jm=< j’m’(Q)|(KN+U(Q;[ j])| jm(Q)> j’j.

Thus, in this model, preparing the system in the ground state of the Coulomb 

Hamiltonian, no time evolution can be expected if we do not switch on the kin-

ematic couplings. We take a simple case where the electron-phonon coupling is 

on. The matrix elements of H in this base set look like:

    { dQ  j’m’(Q) {(KN+ U(Q;[ j])) jk’+ < j’|Ve ph(q,Q)| j>q} km(Q)}=

Ho j’m’,jm jj’ mm’+ Ve ph j’m’,jm                                       (13)

The time evolution operator propagates an arbitrary quantum state thanks to the 

non-zero matrix elements (Ve ph)j’m’,jm. The set { j(q) jm(Q)} has all electronic 

base states corresponding to all possible chemical species in the sense discussed 

above only because the generalized electronic diabatic set is complete.

 The amplitudes integrated in time and general V reinstated read: 

   Cjk( ,t) = j'k' Cj'k'( ,to) j', j k', k – i j'k' to
t dt' Cj'k'( ,to)Vj'k', jk(t') +

                      i2
j'k' j''k'' t’

t dt' to
t' dt'' Cj'k'( ,to) Vj'k', j''k''(t')V j''k'', jk(t'') - …          (14)
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The amplitude Cjk( ,t) is the one multiplying the fixed base state j(q) jk(Q).

The relative simplicity of this type of equation is due to the fact that the base set 
ordering is maintained fixed and all changes are performed on the space of am-

plitudes; it is the quantum state that is changing. The energy spectra appears ex-

plicitly because the operators in the interaction representation are given by V(t) 

= exp(iHot)Vexp(-iHot) in atomic units. Furthermore, contributions to the Cjk( ,t)

amplitude can only originate from those base states found in the initial quantum 

state with amplitudes different from zero if no measurement is effected on the 

system in the time gap t-to. In this case, measuring the complete set {Cjk( ,t)} at 

time t would provide a determination of the initial state, {Cj'k'( ,to)}. An ampli-

tude different from zero at time to opens a possibility for the model sys-tem to 

respond under the perturbing source reflected by the operator V. Note that pos-

sibility has nothing to do with probability. The kinematic operator V effects the 

linear superposition of molecular quantum states. 

The difficulty eq. (14) may put to a chemist is that the amplitude’s time 

dependence is given in a closed form; integration over the whole electronic and 

nuclear configuration space must be carried out [10-12]. 

Albeit a number of conclusions can be gained from parity considerations, 

chemistry is described in terms of real space variables and particle ideology. Re-

action coordinate, molecular species, molecular structure and properties are to be 

related to the present approach. This cannot be made rigorously because quan-

tum mechanics is about quantum states and not objects in real space. This confu-

sion has been fatal to a correct understanding of molecular phenomena in spite 

of the effort made by Primas [15]. 

A manner to do away with the problem is to introduce appropriate algor-

ithms in the sense that mappings from real space to Hilbert space can be defined. 

The generalized electronic diabatic, GED approach fulfils this constraint while 

the BO scheme as given by Meyer [2] does not due to an early introduction of 

center-of-mass coordinates and rotating frame. The standard BO takes a typical 

molecule as an object description. Similarly, the wave function is taken to des-

cribe the electrons and nuclei. Thus, the adiabatic picture follows. The electrons 

instantaneously follow the position of the nuclei. This picture requires the sys-

tem to be always in the ground state. 

We summarize below the GED approach. The reader may sense the dif-

ference.

4. Real-space algorithms 

The diabatic potential-energy hypersurfaces U(Q;[ j]) are of use to examine the 

energy reshuffling in neighborhoods of a crossing point Q#, where U(Q#;[ j]) = 

U(Q#;[ j’]). This may look like a conic intersection but it should not be confused 

with that; the domain where this condition holds can be named a seam as it is 

common practice in the adiabatic scheme, see vol.127 of Faraday Discussions 
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[21]; the crux of the matter is the degeneracy involved at crossings. The contrib-

utions to Hj’m’,jm would then be determined by such neighborhoods. For a quan-

tum state having Cj’m’(to) 0 and Cjm(to)=0, equation (14) tells that Cjm(t) will be-

come different from zero if some matrix element Vj’m’,jm is different from zero. 

The integral responsible for the process will be peaked in the region around the 

intersection as defined here. We see the mapping U(Q;[ j]) may induce structu-

ral-like features onto the nuclear configuration space. 

 The construction of pictures leading to structural appearance requires a 

mapping assigning some physical meaning to the nuclear configuration space. 

Up till now, this space sustains the nuclear electronic wave function only; some 

hints concerning structural features have been elicited via the diabatic potential 

energy hypersurface and asymptotic Hamiltonians. The point is the calculation 

of the positive source (nuclear) dynamics using numerical methods in real space. 

 Confining and asymptotic GED states: A hint at molecular structure. The 

change from a configuration space where the nuclear wave function is defined to 

a special role as the positive source (nuclear) configuration space Q in eq. (7), is 

achieved by an isometry mapping; the distances are invariant but the ideology is 

changed.

 The isometry mapping helps describing classes of diabatic base functions 

with diabatic potential energy hypersurface U(Q;[ j]). The properties of confi-

nement and asymptotic states induce a picture of nuclear charges as if they could 

be seen in real 3D space, each one of them. A diabatic electronic state may em-

body an attractor towards the positive charge background. This attractor in real 

space would permit defining one fixed point at which the gradient of U(Q;[ j]) is 

zero along any direction. This is the nearest one can get to the structure concept 

without lose a rigorous QM basis. 

 To emphasize the nature of the algorithm, and avoid misunderstandings, 

the vector Q is replaced by the symbol =( 1, 2,…, m) representing a set of po-

sitive charges in real space. The methodology can hence be applied to nanosys-

tems, and all sorts man-made devices such as molecular meccanos. 

 The model corresponds to a quantum electronic system interacting with a 

PCB, represented by a charge vector Z = (z1,…zm), mass M = (M1,…Mm) and 

nuclear spin I=(I1,…Im).

 The gradient can hence be calculated: U( ;[ j])/ . For a given confining 

diabatic electronic state, there is a PCB for which the gradient is zero along any 

direction in real space; this point is identified as 
j. The second order tensor Gkk’

= 2U( ;[ j])/ k k’ at j is the Hessian having all the eigenvalues positive with 

some of them possibly being zero (I-frame). 

 An attractor does not necessarily correspond to a confined state. By taking 

the limit where the external potential tends to zero, with zero kinetic energy, 

equation (6) with Q replaced by has the limit of an interacting n free-electron 

state system. The system does not dissociate into fragments by manipulations of 

the PCB. The limit is one of the free electron quantum states. This is a positive 
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number located above the limit of full ionization. For this reason, an attractor 

state has as an upper energy bound the fully ionized state; all electron states be-

long to the continuum. 

 For confined systems one can solve the quadratic approximation to eq. (9) 

in -space. All non-harmonic terms are operators acting in -space. The concept 

of molecular structure can hence be introduced at this level. The configuration j

would stand as a rigid model to the confined system referred to the inertial frame 

used from the beginning. A change of origin can hence be performed, a center-

of-mass defined for each confined electronic state. The inertial character of the 

frame remains; this makes a big difference with the BO scheme. The concept of 

topologic graph can also be used with much of its chemical flavor [6].
Once the electronic diabatic base set is obtained, the quantum state is a 

linear superposition where the PCB configuration enters parametrically as Ck( )
amplitudes:

    (q; ) = k Ck( ) k(q)          (15) 

This is a post Born-Oppenheimer scheme. It retains the essential idea of separ-
ability but the electronic base functions are diabatic functions. These functions 
are obtained from one Hamiltonian operator, namely the electronic operator de-
fined in eq. (5).
 The analyses given for the set of equations (8) to (13) are valid once the 
isometric change of Q by  is completed. Once approximate solutions have been 
worked out with the algorithms (BO or GED), only the GED scheme can be re-
verted to an exact quantum mechanical description in terms of quantum states. 

5. Ethylene conformational “isomerism” 

All diabatic electronic states are described in one and the same inertial frame. 

Irrespectively from the point in nuclear configuration space chosen, the elec-

tronic base function for the cis “conformer” must differ from the trans “confor-

mer” in their relative phase; this is related to the characteristic nodal planes 

(NPs) that define what we use to call -orbitals. Thus, selecting cis-NP perpen-

dicular to x-axis and trans-NP perpendicular to z-axis, the angle between the 

corresponding normal vectors is /2 coinciding with standard group character 

tables, i.e. C2v and C2h, respectively [22]. By symmetry argument, the overlap 

between them yields zero. In Figure 1, a schematic representation is shown to 

help visualizing the state of affairs. 

Moreover, there are two diradical states of symmetry Cs constructed on 

the basis of 1-electron base states. To help visualizing the analysis we use the 

planes associated to the CH2 groups. At /4 the planes defining each CH2 sigma 

base states at opposite sites have normal vectors making a /2 angle. The local 

-axis serve to identify new 1-e-base states: 1+ 2 and 1- 2. The + state has two 

local NPs; the minus (–) state increases the number of nodes by one unit. The 
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dis-rotatory displacements of hydrogen-related positive charges cannot break 

such symmetry in the electronic space. 

 Put together in one frame, the “reaction coordinate” is a dis-rotatory dis-

placement of “local” -base functions ( -like orbitals). These topologic proper-

ties are independent of  for this matter. 

X

Y

Z

X

Y

Z

+Θ-Θ

Cis

Trans

C s with +Θ = π/4

+Θ =π/2

+Θ=0

pz

px

Figure 1. Schematic indication of nodal planes for cis and trans conformers in ethylene. 

          The key to get a diabatic electronic state is a strict constraint: i.e. keep 

local symmetry elements  invariant. For ethylene, let us start from the cis con-

former case. The nuclear geometry of the attractor must be on the (y,z)-plane 

according to Fig.1. The reaction coordinate must be the dis-rotatory displace-

ment. Due to the nature of the LCAO-MO model in quantum computing chem-

istry, the closed shell filling of the HOMO must change into a closed shell of 

the LUMO beyond = /4. The symmetry of the diabatic wave function is hence 

respected. Mutatis mutandis, the trans conformer wave function before /4 cor-

responds to a double filling of the LUMO; beyond the /4 point on fills the HO-

MO twice. At /4 there is the diradical singlet and triplet base wavefunctions.
 Quasi-diabatic electronic calculations can be performed with any atomic 
basis set by controlling the symmetry elements of the wavefunction. In this work 
calculations were performed with Gaussian 98 [23] at the HF level, using the cc-
pvtz Dunning basis set, and by means of density functional theory (DFT), under 
the popular B3LYP approximation for the exchange-correlation, together with 
three basis sets of different quality: STO-3G, 6-31++G, and the cc-pvtz. At each 
point geometries were optimized, for the AA-state (0- /2) and BB-state ( /2- ).
Upper energy curves were calculated with controlled occupancy and not self-
consistently. Closed shell calculations (AA and BB curves) were carried out 
using the restricted formalism while open shell systems (curves AB and Triplet) 
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one significant result because the symmetry made the difference, not the quality 
of the basis set. 

Figure 2. To the left, quasi-diabatic potential energy surfaces in the B3LYP/cc-pvtz 
Dunning’s basis set. AA represents a cis state (solid line); BB a trans state (solid line); 
AB is the excited diradical state spin singlet (dashed line); Triplet is the diradical state 
S=1 (dotted line). To the right, extrapolated diabatic potential energy surfaces for the 
same states. The angle used to plot energy entries is  = 2 | |. All calculations were 
done with Gaussian 98 [23]. 

The cis, trans and singlet diradical cross at = 90•. The nature of the tech-
nology used makes a change on the slope. This is why we name these curves as 
quasi-diabatic. The triplet and the singlet diradical states have an attractor char-
acter at = /2. The triplet potential energy cross the ground state cis and trans 
states at lower energy than the diradical singlet. This trend is the same for all 
basis functions used. 

To take into account confinement, diabatic potential energy hypersurfa-

ces are extrapolated with a curve-fitting program using a polynomial function of 

third order; all curves present a r2 better than 0.999 (in AA (BB) curve the point 

=  /2 has not been considered in the fitting). Now, the system looks like the 

Marcus approach to electron transfer reactions. The reorganization energy is the 

energy difference between the ground state attractor geometry and the energy 

extrapolated from the second ground state attractor geometry. 

6. Isomerism and quantum reactivity  

The electronic structure analysis given so far can be used to examine chemical 
reactivity features of this important subsystem. In real space, eqs. (7) and (13) 
can be adapted to study the change in amplitudes for the electronic states by 
diagonalizing the matrix equation over a finite number of diabatic states [11]:

j{< j’|(HC(q, )+ V(q, ) ) | j>q– E( ) j’j}Cj’j( ) = 0  for j’=1 to 4    (16) 

were calculated with the unrestricted methodology. We report in Figure 2 only 
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The row vector (C1( ) C2( ) C3( ) C4( )) corresponds to labels 1=AA, 2=Triplet, 

3=AB and 4=BB in Fig.2. The local quantum state is given by the linear super-

positions:

k(q; ) = Ck1( ) 1(q) +Ck2( ) 2(q)+ 3(q)Ck3( )+ 4(q)Ck4( )           (17) 

The index k identifies the roots of the secular equation (16). 
 In a neighborhood of the cis-attractor, the energy gaps between cis and 
other states is the largest for the diabatic case; the amplitude C11(

1) is maximal; 
C14(

1) being negligible. For the trans attractor, the amplitude C14(
4) is maxim-

al; C11(
4) being negligible; the energy state values change place. 

Observe that the matrix element V14 is zero by parity. This implies that 

V12, V13, V42 and V43 will produce non-zero amplitudes as the energy gaps de-

crease; these matrix elements being independent from the reaction coordinate. 

Only the energy gaps as a function of control the relative amplitudes. That is, 

when the reaction coordinate is in a neighborhood of the crossing point the mix-

ing with the triplet becomes sizable as the system approaches the crossing point
and the energy gaps decrease. V(q, ) will mix the states of different spin before 

coming to = /2. Here, a linear superposition of singlet and triplet states repre-
sents a stationary quantum state. The quantum state is not an eigenstate of S2.

Amplitudes different from zero are interpreted in terms of possibilities 

(propensities) the system will show whenever external interactions probing the 

spectral response related to the base states are switched on. The maximal mix-

ing of states takes place in a neighborhood of = /2. Any external constraint 

forcing the system to this crossing zone will enhance the response of the triplet-

state. In this context, changes of amplitudes are meaningful; the potential ener-

gy functions are auxiliary devices and the concept of avoided crossing does not 

make sense. 

 The access to different -regions is controlled by the vibration spectra. In 

particular, it is the anti-symmetric vibration mode that may shift the geometry 

towards the point of maximal mixing. The other way round, freezing this mode 

will trap the quantum system at the initial state, cis or trans as the case may be. 

Now, a vibration excitation along this anti-symmetric mode will be prompting 

the electronic activity of the system. For example, a perpendicular symmetric 

attack of carbene can only proceed if non-zero amplitude develops at the diradi-

cal states. This concept includes the elementary orbital considerations and over-

come them. 

 The electron-phonon operator is a tensor product between the electronic 

dipole and the nuclear dipole operators. A mixing between the AA and BB via 

the singlet-spin diradical AB state is possible now. A linear superposition of 

identical vibration states in AA and BB is performed by the excited state diradi-

cal AB. If the system started at cis state, after coupling may decohere by emis-

sion of a vibration photon in the trans state; furthermore, relaxation to the trans 
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conformer would follow by the emission of another photon until getting to the 

ground vibration state. Decoherence appears to be a mechanism in Hilbert space 

to accomplish conformational change measured as a radical change in the amp-

litude pattern. We are far from wanderings on potential energy hypersurfaces. 

Still, the concept may be useful as a communication tool. 

7. Nodal planes and the ELF function 

The question remains whether the nodal planes, essential for the qualitative ana-

lysis, remain in the more advanced calculations of wavefunctions. To test this 

point, the electronic localization function (ELF) as implemented by B. Silvi and 

A. Savin [24] is used. In Figure 3 we summarize the results. 

 The nodal planes used qualitatively to discuss cis/trans isomerization 

clearly appear in the ELF profiles. For AA and BB at the crossing point, the 

picture reveals the numerical artifact of the adiabatic calculations. At the res-

pective attractors, AA and BB show the expected nodal plane distribution. The 

method is not capable to distinguish between singlet and triplet spin-state ELF. 

This issue was discussed during the meeting. The reader may find appropriate 

discussions in this volume. 

0 90 180

Triplet

AB

BB

AA

Figure 3. ELF isocontours (0.78) for the four states: AA, BB, AB and Triplet at points in 

the quasi-diabatic curves = 0, /2 and . ELF basins involving hydrogen atoms are not 

displayed for clarity. 

Not shown to the quasi-diabatic potential energy surfaces in Fig. (3) there is a 

adiabatic potential energy surface. This is distinguished by the maximum at the 

crossing point /2. The system has a saddle-point structure. In the regions about 

the cis and trans attractors there is no difference between them. Between 2 /3
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and 2 -2 /3 the curves start differ in curvature. The LCAO model mixes the 

states AA and BB for the ground doubly occupied states. The BO scheme does 

not respect symmetry properties because doubly occupancy wipes out the basic 

differences. At the crossing point there is no correct electronic solution to the 

BO scheme. This is translated into the saddle-point nature of the PES at the 

crossing point.

The import of diabatic electronic states for dynamical treatments of con-

ical intersecting BO potential energy surfaces is well acknowledged. This inter-

section is characterized by the non-existence of symmetry element determining 

its location in nuclear space [25]. This problem is absent in the GED approach. 

Because the symmetries of the cis and trans conformer are irreducible to each 

other, a regularization method without a correct reaction coordinate does not 

make sense. The slope at the (conic) intersection is well defined in the GED 

scheme. Observe, however, that for closed shell structures, the direct coupling 

of both states is zero. A configuration interaction is necessary to obtain an ap-

propriate description; in other words, correlation states such as diradical ones 

and the full “excited” BB state in the AA local minimum cannot be left out the 

scheme.
The method discussed so far originates from an analysis of n-electrons 

quantum states based on general mathematical theorems such as Kato’s [18]. 
The particle model is not an element of the theory. In this sense, no direct rela-
tion to orbital methods including diabatic ones can be found at the present level 
of development. The diabaticity is related to a global conservation of the nodal 
planes. And the calculations reported here have been monitored to keep up to 
this level. 

The problem of electronic correlation is akin to particle representations. 
The present approach can be mapped to some of the practical ways to treat cor-
relation. A thorough discussion of this matter will be done elsewhere. 

8.  Comparison with other schemes 

An important question concerns the relation of the present method with the one 

using diabatic orbitals. Such methods are implemented in standard ab initio pac-

kages such as MOLPRO [27] with emphasis in multiconfiguration-reference CI 
and related methods. These methods are based on the particle model. 

The GED approach is a general procedure based on the exact solutions to 

the n-electron system. Only one Hamiltonian is required at variance with the in-

finite Hamiltonian approach (defined on the parametric -space) characteristic 

of the BO scheme. All the base functions are expanded from a unique origin of 

the I-frame. The characteristics of the n-electrons diabatic base functions are in-

dependent from the positions taken by the sources of the external potential. 

The concept of correlation enters via the inclusion of asymptotic base 

states. Translated into the particle model, one type of asymptotic state is given 

by a doubly occupancy of an anti-bonding state; the fragments show a repulsive 
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potential energy function with zero gradient along specific directions in -space

at infinite distance from the origin. The crossing between this anti-bonding state 

with the confining state locate the domain in -space where the amplitudes in 

eq. (15) will change. Diabatic base electronic states are intrinsic properties of 

the system that, in principle, do not derive from adiabatic models via diabatiza-

tion procedures. 

Once the diabatic potential energy surfaces relevant to describing a pro-

cess, the integration of the sources of external potential (nuclear dynamics) can 

be done in real space using numerical integration methods. 

No one of the equations introduced here are defined as in the standard 

Born-Oppenheimer approach. The reason is that electronic base functions that 

depend parametrically on the geometry of the sources of external potential are 

not used. The concept of a quantum state with parametric dependence is differ-

ent. This latter is a linear superposition; the other are objects gathered in column 

vectors.

Still, one can use standard packages for attractor states by actually find-

ing a stationary geometry. The problem is that the standard theory does not con-

ceive of confined states. This element is new. It qualitatively simplifies the ana-

lyses. But it is not a practical tool yet. However, confinement underlies a severe 

limitation of the LCAO bonding orbitals as they dissociate in a manner incon-

sistent with the general confinement property. Barrier less profiles for radical 

association process can be traced back to a numerical artifact. 

If one had a complete basis set then, for the stationary geometry, the cor-

responding electronic wavefunctions obtained by actual calculation would be 

models for the diabatic base functions. The latter statement has to be understood 

in the sense that the set of nodal planes so obtained must be kept fixed. This was 

the procedure used to extract diabatic base states for cis and trans ethylene. 

Finally, the rules of angular momentum construction can be made as if 

the system had spherical symmetry. The reason is that the invariance to rotation 

of the I-frame leads to angular momentum conservation. Once all base states 

have been constructed, the dynamics is reflected on the quantum state that is a 

linear superposition on that base. As the amplitudes change in time, motion of 

different kinds result. 

For reactivity studies where intersystem crossings are important, it is the 

total angular momentum of the electronic system J that is conserved: J=L+S

and the coupling operator L.
S permits mixing. The linear superposition includes 

electronic states that are space symmetric with spin anti-symmetric and vice 

versa. For ethylene, vibration activation would bring the system at the domain 

where the energy gaps are small enough between singlet and triplet. Amplitudes 

different from zero appear before the crossing point as the matrix elements of 

L
.
S are different from zero in the “product” channel. Propagation to the trans 

singlet will achieve an internal fluctuation with variation of the electronic struc-

ture. There is no wandering on potential energy surfaces. These latter are useful 

devices to visualize things. 
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9. Discussion 

A rigorous electro-nuclear separability scheme has been examined. Therein, an 

equivalent positive charge background replaces the nuclear configuration space; 

the coordinates of which form, in real space, the -space. Diabatic potential en-

ergy hypersurfaces for isomers of ethylene in  -space were calculated by adap-

ting standard quantum chemical packages. 
 The model defined by eqs.(15)-(17) looks similar to the BO scheme. This 
is true but similarity is not equality. The parametric dependence is induced by 
the kinematic operator V(q, ). As pointed out by Prof. Berrondo (personal com-
munication) it is the -space, used in parametric form that eliminates the dyna-
mical Coulomb interactions of nuclear with electronic subspaces; this is the rea-
son justifying inclusion of an electron-phonon term. This operator mixes states 
in a neighborhood of energy degeneracy. The transition integrals between two 
vibration states with different electronic label connect states of different parity. 
These two factors can be mapped on to a real space representation by using the 
diabatic potential surfaces introduced here. Yet, the description retains its quan-
tum mechanical flavor; at each point all the amplitudes involved can be calcul-
ated. The process is not to be described as a population of any of the base states 
used for. Present trends in chemical dynamics calculations go in the direction of 
non-BO trajectories calculations [26]. Still, propagation is done only on one el-
ectronic state at a time; this is a classical mechanical paradigm. In our case, two 
attitudes are possible. One consists in the full quantum mechanical calculation 
once the significant regions in real space have been determined. The other con-
sists in using the collections of amplitudes to determine the behavior of the sys-
tem with wave packets propagation; constraints imposed by external sources 
(e.g. active sites) can easily be represented [8]; model correlation functions can 
be obtained that can be directly related to experimental data. 

The principle of conservation of local symmetries is an important result. 

This permit patching asymptotic fragments to bonded supermolecules. The for-

mer states are prepared in real space; they do not belong to the electronic Hil-

bert space yet. It is clear that incorporation in the appropriate Hilbert space re-

quires the presence of a nodal plane between the fragment centers. This simply 

translates into a potential energy hypersurface where the associated LUMO is to 

be double filled. The potential is repulsive. This is a logical result. The impro-

per use of molecular orbital technology fill the bonding orbital thereby leading 

to a barrierless process; that is, from the present standpoint, a numerical artifact. 
 Real space systems calculations are algorithmic schemes in nature; GED 
and BO are two of them. The former can be mapped to rigorous quantum mech-
anics the latter does not. This is the fundamental difference between them. 
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Abstract. BERTHA is a 4-component relativistic molecular structure pro-
gram based on relativistic Gaussian (G-spinor) basis sets which is intended
to make affordable studies of atomic and molecular electronic structure, par-
ticularly of systems containing high-Z elements. This paper reviews some of
the novel technical features embodied in the code, and assesses its current
status, its potential and its prospects.

1. Introduction

The need for reliable methods to study the electronic structure of atoms,
molecules and condensed matter using relativistic quantum theory has been
evident in the number of presentations at this Workshop which have noted
the importance of relativistic effects. These ranged from astrochemistry,
involving mainly molecules containing only light elements, to complicated
systems containing transition metals or high-Z elements. Whilst most stud-
ies to date have been performed with approximate relativistic Hamiltonians
or effective core potentials, these schemes make approximations whose er-
rors are usually unquantifiable. Our objective is to design a well-constructed
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tool for physicists and chemists based on clearly understood relativistic
quantum mechanical principles which will have the potential to make fully
relativistic studies which are both accurate and affordable.

This paper outlines the current status of the BERTHA program. This
has been named (with her approval) after Lady Jefferies (1902-1999) (née
Bertha Swirles), a colleague of D.R. Hartree at Cambridge University and
a distinguished applied mathematician who, amongst other achievements,
wrote the earliest paper on “relativistic self-consistent fields” for atoms [1].

2. The BERTHA program

At the time of writing, the program has the following capabilities:

− Dirac-Hartree-Fock-Breit (DHFB) calculations of atoms and molecules
across the Periodic Table.

− Relativistic charge-current densities expressed in terms of G-spinor
basis sets for stable and economical numerical calculations [2].

− Relativistic generalization for G-spinor basis functions of the well-
known McMurchie-Davidson algorithm [3] for direct evaluation of in-
teraction integrals.

− Calculation of electromagnetic properties within the formalism of rel-
ativistic quantum electrodynamics (QED).

− Relativistic density functional theory (RDFT), including relativistic
exchange-correlation functionals [4, Chapter 4].

− Reformulation of electronic structure theory in terms of interaction
between internal electric and magnetic fields [5].

− Representation of orbital spinors of symmetric molecules in terms of
relativistic double groups [6].

− Correlation corrections using standard many-body theory.

3. Elements of the theory

A full account of the theory of relativistic molecular structure based on
standard QED in the Furry picture will be found in a number of publi-
cations such as [7, Chapter 22], [8, Chapter 3]. These accounts use a rel-
ativistic second quantized formalism. For present purposes, it is sufficient
to present the structure of BERTHA in terms of the unquantized effective
Dirac-Coulomb-Breit (DCB) N -electron Hamiltonian:

HDCB =
N∑

i=1

hi +
N∑

i>j=1

gij (1)
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(Hartree atomic units will be used throughout.) Here hi is a Dirac Hamil-
tonian for the i-th electron in the frame of K fixed nuclei

hi = c αi·pi + βic
2 +

∑

K

ViK . (2)

where c is the speed of light (c = α−1 ≈ 137, where α is the fine structure
constant) and p is the particle momentum. The symbols α and β denote
4× 4 Dirac matrices with the standard representation

α =
(

0 σ
σ 0

)
, β =

(
I 0
0 I

)

in terms of the usual 2 × 2 Pauli matrices σ = (σx, σy, σz) and the iden-
tity matrix I. We shall sometimes write σ0 = I when convenient. ViK

is the electron-nucleus interaction; we shall use finite size nuclear model
charge distributions which support the G-spinor boundary conditions near
the origin so that ViK(r) = −ZK(riK)/riK . The form of ZK(riK) ensures
that ViK is Coulombic outside the K-th nucleus, where ZK(riK) → ZK ,
and is roughly parabolic inside. The symbol gij denotes the Coulomb-Breit
effective interaction

gij =
1
rij

+
1
2

(
αi·αj

rij
+

(αi·rij)(αj·rij)
r3
ij

)
. (3)

The two parts of this formula are derived from the same QED Feynman
diagram for interaction of two electrons in the Coulomb gauge. The first
term is the Coulomb potential and the second part, the Breit interaction,
represents the mutual energy of the electron currents on the assumption
that the virtual photon responsible for the interaction has a wavelength
long compared with system dimensions. The DCB hamiltonian reduces to
the complete standard Breit-Pauli Hamiltonian [9, §21.1], including all the
relativistic and spin-dependent correction terms, when the electrons move
nonrelativistically.

4. Electromagnetic interactions in QED

Using Einstein’s summation convention, the formula for the interaction of a
charge-current distribution jν(x) at a space-time point x = (x0, x1, x2, x3) ≡
(ct,x) with the local electromagnetic four-potential Aν(x),

1
c

∫
jν(x)Aν(x) dx

is central to QED. It is therefore necessary to find a way to represent the
charge-current four-vector

jν(x) = (cρ(x), j(x)), (4)
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where ρ(x) is the electric charge density and j(x) is the current density
vector in electronic structure theory. If ψ(x) is a Dirac spinor, with adjoint
ψ̃(x) = ψ†(x)γ0, then the electron charge-current four-vector is

jν(x) = −ec ψ̃(x) γν ψ(x) (5)

so that

ρ(x) = j0(x)/c = −e ψ†(x)ψ(x), j(x) = −ec ψ†(x)αψ(x) (6)

where γ0 = β, and α = γ0γ with components α = (α1, α2, α3). In the
quantized theory, ψ(x) is an operator with components from all parts of
the one-body Dirac spectrum, including electron bound and continuum
states (described loosely as “positive energy”) and positron states (“nega-
tive energy”). Both “positive energy” and “negative energy” states appear
in our numerical calculation, although the latter normally play a passive
role. For chemical purposes, they can usually be regarded as “deep core”
states, which can only be accessed in processes requiring energies greater
than 2mc2, enough to create a real electron-positron pair, and it is usually
safe to ignore them in correlation calculations (the no virtual-pair (NVP)
approximation). On the other hand, some electromagnetic interaction oper-
ators, for example those involved in NMR shielding, introduce interactions
with negative energy virtual states that dominate the calculation in the
relativistic theory. Nor can negative energy contributions to vacuum polar-
ization and the self-energy of the electron (Lamb shift) be ignored. There
are clear advantages to a formulation in which the negative energy states
are easily accessed when necessary.

5. G-spinor expansion of Dirac amplitudes

The stationary states of a one-body Dirac operator h, (2), in the presence
of a central-field potential have the spatial form

ψ(x) =
(

P (r) χκ,m(θ, φ)
iQ(r)χ−κ,m(θ, φ)

)
(7)

where P (r), Q(r) are radial amplitudes and

χκ,m(θ, φ) =
∑

σ=±1/2

〈l, m− σ, 1/2, σ | j, m〉Yl,m−σ(θ, φ)ϕσ (8)

is an eigenfunction of j2, l2, s2 and jz, where j = l + s. Yl,m−σ(θ, φ) is a
normalized spherical harmonic [10, Appendix IV], [11, §2.2] with the stan-
dard Condon-Shortley choice of phase factors [12] and 〈l, m−σ, 1/2, σ | j, m〉
is a Clebsch-Gordon coefficient [10, Appendix I], [11, §2.8]. The index κ,
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defined by κ = (j+1/2)η with η = ±1 and l = j+η/2, covers both possible
couplings. Thus if ϕ t

1/2 = (1, 0) and ϕ t
−1/2 = (0, 1) (where the superscript t

denotes column-row transposition), we have the 2-spinor

χκ,m(θ, φ) =
(

〈l, m− 1/2, 1/2, 1/2 | j, m〉Yl,m−1/2(θ, φ)
〈l, m + 1/2, 1/2,−1/2 | j, m〉Yl,m+1/2(θ, φ)

)
. (9)

We define a spherical Gaussian function (SGTF) centred at the origin
by

S[a, r; n] = r2n+l e−ar2
Yl,m(θ, φ) ≡ r2nY l,m(r) e−ar2

(10)

where a > 0 and n denotes the integer triplet (n, l, m). As usual, l ≥ 0,
−l ≤ m ≤ l, and we only need the values n = 0, 1. The solid harmonic
Y l,m(r) can be regarded as a homogeneous polynomial in the Cartesian
coordinates x, y, z of order l. We shall expand ψ(x) in terms of G-spinors
M [β, µ; r] defined by

M(β, µ; rµ) :=

Nβ
µ





−(βηµ)C−(βηµ)
lµmµ

{
tβµ S[aµ, rµ; (0, lµ, m−

µ )]
−(1− β)aµS[aµ, rµ; (1, lµ, m+

µ )]
}

C(βηµ)
lµmµ

{
tβµ S[aµ, rµ; (0, lµ, m−

µ )]
−(1− β)aµS[aµ, rµ; (1, lµ, m+

µ )]
}




(11)

so that

ψ(x) =
N∑

µ=1

[
cµ

+1 M(+1, µ, x)
icµ

−1 M(−1, µ, x)

]
(12)

where the index β of (11) takes the value β = +1 for the upper pair of
components and β = −1 for the lower pair. (For brevity we shall often
label parameters using only the sign of β.) The upper pair reduce to a
Schrödinger-Pauli spin-orbital in the nonrelativistic limit c→∞ whilst the
lower pair vanish like 1/c. The upper and lower pair are often called “large”
(L) and “small” (S) components respectively, but it is important to realize
that this description applies only to electron states; the roles reverse for
positron states.

Four-spinor angular momentum labels: κµ, jµ, lµ, etc. are those of the
upper components. Basis set elements are indexed by µ = 1, . . . , N . The
primary G-spinor parameters are

− aµ: Gaussian exponent.
− Aµ: nuclear centre position vector.
− The position vector of an electron relative to the origin is denoted by

r: its relative position vector is rµ = r −Aµ.
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− jµ, mµ : total angular momentum quantum number and projection on
the axis of quantization.

− m±
µ = mµ ± 1/2

Other G-spinor parameters depend on the component index β. Thus
− lµ = jµ + βηµ/2.
− t+µ = 1; t−µ = (2lµ + 1)(1 + ηµ)/2

The remaining symbols in (11) are the normalization constants

Nβ
µ =

(
2(2aµ)lµ+1+β/2

Γ(lµ + 2− β/2)

)1/2

(13)

and the spin-orbit coupling coefficients

Cη
lµmµ

= slµmµ

(
lµ + 1/2 + ηmµ

2lµ + 1

)1/2

(14)

in which we have combined specific Clebsch-Gordon coefficients from (9)
with the spherical harmonic normalization and phase factors

slµmµ := (−1)(mµ+|mµ|)/2

[
2lµ + 1

4π

(lµ − |mµ|)!
(lµ + |mµ|)!

]1/2

(15)

The appearance of the general expression (11) is at first sight far from ob-
vious, although its construction can be described quite transparently [7,
§22.6]; see also [8, §3]. Here we just highlight key elements. For the upper
2-spinor, β = +1, the term with the factor (1− β) vanishes; what remains
is equivalent to a radial function r

2n+lµ
µ exp(−aµr2

µ) multiplied by a single
spin-orbital (9), giving the corresponding Schrödinger-Pauli SGTF basis
function in the nonrelativistic limit. The main issue is the choice of expo-
nents aµ, for which any of the methods used in nonrelativistic electronic
structure can be used. It is usually possible to adapt exponent sets from
related nonrelativistic calculations which will provide a good description of
the electron distribution for much of the radial range. One or two additional
large exponents may be needed to improve the radial density distribution in
the region near the nuclei where the relativistic effects originate. This is es-
pecially important for the description of nuclear spin-dependent effects [13].

The lower 2-spinor components, β = −1, are related to the upper com-
ponents by the kinetic matching relation.

M(−1, µ; rA) = const. σ · p M(+1, µ; rA). (16)

When ηµ < 0, so that the upper component has lµ = jµ − 1/2, the factor
t−µ vanishes, leaving one SGTF in each component with the same radial
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factor and the orbital index lµ = lµ +1. When ηµ > 0, there are two SGTF
in each component and the orbital index is lµ = lµ − 1. The use of (16) is
vital for computational economy and ensures that the Gram matrices for
both upper and lower basis sets have almost the same condition number.
The kinetic balance prescription adopted in other codes, advocated first
by Lee and McLean [14], notes that the lower components have a different
radial dependence from the upper components, and suggests introducing
additional basis functions in order to “balance the set kinetically”. Unfor-
tunately the additional functions make the lower component Gram matrix
more singular because of practical linear dependence. Basis sets which are
kinetically balanced in the sense of Lee and McLean [14] are therefore best
avoided; the algebraic system generated with kinetic balance is numerically
much less stable than with our kinetic matching procedure and generates
spurious eigenvalues and eigenstates with no physical meaning.

6. Overlap densities and the McMurchie-Davidson algorithm

The evaluation of relativistic Fock matrix elements depends on an efficient
way to evaluate interaction integrals following the McMurchie-Davidson
scheme [3]. The key step is the recognition that the product of two Gaussian
functions on different nuclear centres Aµ, Aν is proportional to a third
Gaussian on some intermediate centre Aµν . It is thus easy to see that the
product of two SGTF (10) can be put in the form

S[aµ, rµ; n] S[aν , rν ; n′] = Kµν

∑

γ∈TΛ

E[n; n′; γ] H(aµν , rAµν ; γ) (17)

where n = (n, l, m), n′ = (n′, l′, m′), rAµν = r −Aµν ,

aµν = aµ + aν ,

Aµν =
aµAµ + aνAν

aµ + aν
,

Kµν = exp {− aµaν

aµ + aν
(Aµ −Aν)2},

and
H(a, rA; γ) = Dρ

xDσ
y Dτ

z exp[−a r2
A] (18)

where Di := ∂/∂Ai, i == x, y, z and γ = (ρ, σ, τ) is an Hermite Gaussian
type function (HGTF), a product of a Gaussian with a homogeneous poly-
nomial of degree Λ = ρ + σ + τ in the Cartesian components of rA. The
numerical coefficients E[n; n′; γ] result from the expansion of the poly-
nomial parts of the two SGTF about the centre Aµν and therefore carry
information about the geometry. The symbol TΛ represents the exponent
set

TΛ := {γ := (ρ, σ, τ) | 0 ≤ ρ + σ + τ ≤ Λ} . (19)
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The G-spinor representation (12), when substituted into (5), results in
a time-dependent charge-current density

jν(x) =
∑

µµ′

∑

ββ ′

cβ ∗
µ cβ ′

µ′
[
jν
µµ′(x)

]ββ ′
e−itEµµ′ (20)

with overlap charge densities (ν = 0 component)

ρµµ′(x) = −e
∑

β=±1

M †(β, µ,x) M(β, µ′, x) (21)

and the overlap current densities (ν = 1, 2, 3)

j+−
µµ′ (x) =

[
j−+

µ′µ(x)
]∗

= −iecM †(+1, µ,x) σ M(−1, µ′, x) (22)

which are linear combinations of SGTF products of the type of (17). It
follows that the G-spinor overlaps in (21) and (22) can be expressed in a
similar form

M †[β, µ; rµ] σq M [β′, ν; rν ] = Kµν

∑

γ∈TΛ

Eβ,β′
q [µ, ν; γ] H(aµν , rAµν ; γ)

(23)
where the expansion coefficients Eβ,β′

q [µ, ν; γ] are simple linear combina-
tions of the nonrelativistic E[n; n′; γ] coefficients, incorporating both geo-
metrical and spinor properties. Thus for charge densities and overlap ma-
trices we require only

E++
0 [µ, ν; γ] = N+

µ N+
ν

(24)

×
{
ηµηνC−ηµ

lµmµ
C−ην

lνmν
(−1)m−

µ E[0, lµ,−m−
µ ; 0, lν , m

−
ν ; γ]

+ Cηµ

lµmµ
Cην

lνmν
(−1)m+

µ E[0, lµ,−m+
µ ; 0, lν , m

+
ν ; γ]

}

E−−
0 [µ, ν; γ] = N−

µ N−
ν

{
ηµηνCηµ

lµmµ
Cην

lνmν
(−1)m−

µ (25)

×
[
t−µ t−ν E[0, lµ,−m−

µ ; 0, lν , m
−
ν ; γ]− 2t−µ aν E[0, lµ,−m−

µ ; 1, lν , m
−
ν ; γ]

− 2t−ν aµ E[1, lµ,−m−
µ ; 0, lν , m

−
ν ; γ] + 4aµaν E[1, lµ,−m−

µ ; 1, lν , m
−
ν ; γ]

]

+ C−ηµ

lµmµ
C−ην

lνmν
(−1)m+

µ

×
[
t−µ t−ν E[0, lµ,−m+

µ ; 0, lν , m
+
ν ; γ]− 2t−µ aν E[0, lµ,−m+

µ ; 1, lν , m
+
ν ; γ]

− 2t−ν aµ E[1, lµ,−m+
µ ; 0, lν , m

+
ν ; γ] + 4aµaν E[1, lµ,−m+

µ ; 1, lν , m
+
ν ; γ]

]}
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The current density components are overlap products
[
j+−

µν

]
x

= −i ec
{
M †[+1, µ+] M [−1, ν−] + M †[+1, µ−] M [−1, ν+]

}

[
j+−

µν

]
y

= −ec
{

M †[+1, µ+] M [−1, ν−]−M †[+1, µ−] M [−1, ν+]
}

(26)
[
j+−

µν

]
z

= −i ec
{
M †[+1, µ−] M [−1, ν−]−M †[+1, µ+] M [−1, ν+]

}

where µ± denotes the upper/lower element of the two-spinor. The full ex-
pressions can be constructed using

M †[−1, ν+] M [+1, µ−] = N−
µ N+

ν (−ην)C−ηµ

lµmµ
C−ην

lνmν
Kµν(−1)m+

µ

×
∑

TΛ

{
tµE[0, lµ,−m+

µ ; 0, lν , m
−
ν ; γ]− 2aµE[1, lµ,−m+

µ ; 0, lν , m
−
ν ; γ]

}

×H(aµν , rAµν ; γ) (27)

where lµ = jµ +ηµ/2, lµ = jµ−ηµ/2 and exploiting the symmetries of (22).
The construction of relativistic and nonrelativistic E-coefficients is there-

fore at the centre of an efficient electronic structure program; a paper de-
scribing how to organize this on modern multi-node computers is nearly
finished [15]. Relativistic symmetry relations can be exploited to reduce
the number of independent coefficients which need to be calculated.

7. G-spinor representation of operators

The application of G-spinor basis sets can be illustrated most conveniently
by constructing the matrix operators needed for DCB calculations. The
DCB equations can be derived from a variational principle along familiar
nonrelativistic lines [7], [8, Chapter 3]. It has usually been assumed that
the absence of a global lower bound to the Dirac spectrum invalidates
this procedure; it has now been established [16] that the upper spectrum
has a lower bound when the trial functions lie in an appropriate domain.
This theorem covers the variational derivation of G-spinor matrix DCB
equations. Sucher’s repeated assertions [17] that the DCB Hamiltonian is
fatally diseased and that the operators must be surrounded with energy
projection operators can be safely forgotten.

7.1. THE DCB FOCK MATRIX

The Fock equations take the familiar form

F c = ε S c (28)

where S is the Gram (overlap) matrix for the 2N -dimensional G-spinor
basis set, and the 2N × 2N -dimensional Fock matrix is

F := h + J −K + B (29)
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The Dirac Hamiltonian matrix h can be written in terms of N × N sub-
matrices

h =
[

V ++
nuc h+−

h−+ V −−
nuc − 2mc2S−−

]
(30)

Since the nuclear potential is a multiplicative function, the nuclear potential
matrix elements are defined by

[V nuc]ββ′
µν = δββ′

∫
ρββ

µν (x)Vnuc(x) dx (31)

The Gram matrix S is also block diagonal, and

Sββ′
µν = δββ′

(
π

aµν

)3/2

Eββ
0 [µ, ν;0]. (32)

Finally, the kinetic matrices hβ,−β, which are matrix representations of the
operator σ · p, are simply proportional to elements of S−−:

h−+
µν =

[
h+−

νµ

]∗ = S−−
µν · N

−
ν

N+
ν

(33)

This elegant result has the consequence that the operator equivalence p2 =
(σ · p)2 is reproduced exactly in the matrix form [18], [19, Equation (28)]

h+−[S−−]−1h−+ = [p2]++, (34)

ensuring that the correct nonrelativistic Schrödinger equation in the upper
basis set results in the limit c→∞.

The matrices J , K and B are direct, exchange and Breit interaction
matrices, of which only the first is block diagonal. Their matrix elements
are linear combinations of interaction integrals over G-spinors.

7.2. TWO-BODY INTERACTIONS WITH G-SPINORS

Coulomb interaction integrals over molecular orbitals can be written as a
sum of similar interaction integrals with G-spinor overlap densities ρββ

µν and
ρβ′β′

στ :

(AB|CD) =
∑

µνστ

∑

ββ′

c β∗
µA c β

νB c β∗ ′

ρC c β ′

σD (µβ, νβ|σβ′, τβ′), (35)

where

(µβ, νβ|σβ′, τβ′) =
∫∫

ρββ
µν (x)ρβ ′β ′

στ (y)
|x− y| (36)

=
∑

γ,γ ′

Eββ
0 [µ, ν; γ] Eβ′β′

0 [σ, τ ; γ′] (aµν , rAµν ; γ|aστ , rAστ ;γ ′)
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The auxiliary integrals over HGTF,

(aµν , rAµν ; γ|aστ , rAστ ; γ ′) =
∫∫

H(aµν , rAµν ; γ)H(aστ , rAστ ; γ ′)
|x− y| , (37)

are well-known from nonrelativistic calculations and there are efficient al-
gorithms for their construction.

The Jββ
µν matrix elements represent the classical interaction energy of the

overlap density ρββ
µν with the electron distribution. Following Almlöf [20],

we can write this in the form

Jββ ′
µν = δββ ′

∑

k

Eββ
0 [µν; γ] U{µ},{ν}(γ) (38)

where

U{µ},{ν}(γ) =
∑

γ ′

∑

{σ}{τ}
(aµν , rAµν ; γ|aστ , r|στ

; γ ′)D{σ}{τ}(γ
′) (39)

with

D{σ}{τ}(γ) =
∑

{σ}{τ}

∑

γ

∑

β

Eββ
0 [στ ; γ] Dββ

στ , Dββ ′
στ =

∑

A

c β ∗
σA c β ′

τA ,

where {µ} = {µ(1), . . . , µ(nµ)} denotes the set of all basis functions

µ(i) = (Aµ, aµ, κ(i)
µ , m(i)

µ )

on the same centre Aµ with the same exponent aµ. The cost of this con-
struction is comparable with that of the electron-nucleus interaction matrix.
However, no such simplification is available for the exchange matrices Kββ′

:

Kββ ′
µν =

∑

γ
Eββ

0 [µν; γ]
∑

γ ′

∑

στ

(aµν , rAµν ; γ|aστ , rAστ ; γ ′) . Eβ ′β ′

0 [στ ; γ ′]Dβ ′β
στ

(40)
and the Breit matrices Bββ′

are still more complicated [8, §5.4].

8. Energy of the internal electromagnetic fields

We have recently shown that considerable economies can result from noting
the well-known equivalence of the energy of a system of interacting charges
and currents with the energy of the electric and magnetic fields that they
generate [5]. In the case of the G-spinor Coulomb interaction integral (36),
we showed that

(µβ, νβ|σβ′, τβ′) = ε0
∑

ββ ′

∫
dx Eββ

µν (x) ·Eβ ′β ′
στ (x) (41)
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where Eββ
µν (x) is the electric field at the point x generated by the overlap

charge distribution ρββ
µν (x). The equivalence of (36) and (41) requires a

standard result of electrostatics used, for example, by Slater [21, Appendix
19] to prove the positivity of exhange integrals. Thus, writing Gββ ′

µν = Jββ ′
µν −

Kββ ′
µν , we have

Gββ ′
µν = ε0

∫
dx

{
δββ ′ E(x) ·Eββ

µν (x)−
∑

στ

Eββ
µτ (x) ·Eβ ′β ′

σν (x)Dβ ′β
στ

}
(42)

where
E(x) =

∑

στ

∑

β

Eββ
στ (x)Dββ

στ (43)

is the E-field due to the whole electronic charge distribution. The structure
of the first (direct) term is reminiscent of the Almlöf J -matrix scheme and
the second part is the exchange field contribution. Note that the interaction
of ρββ

µν (x) with itself contained in the direct term cancels exactly with a
corresponding term in the exchange sum. The E-fields are constructed from
the same components as the interaction integrals: the r-th component (r =
1, 2, 3) is
[
Eββ ′

µν (x)
]

r
=

e

4πε0
δββ ′

∑

γ
Eββ

0 (µ, ν; γ) (aµν , Aµν ; γ + er|xAµν ) (44)

where er = (δr1, δr2, δr3) and

(aµν , Aµν ; γ|xAµν ) =
∫

H(aµν , yAµν
; γ)

|x− y| (45)

is a special case of (37). The electron nuclear interaction matrix elements
are given by

V ββ
nuc = ε0

∫
dx Enuc(x) ·Eββ

µν (x) (46)

where Enuc(x) is the classical electric field due to the nuclei.
The Breit interaction matrix can be treated in a similar way. The off-

diagonal blocks can be written in terms of the magnetic fields using

Bβ,−β
µν =

1
µ0

∫
dx

{
B(x) ·Bβ,−β

µν (x)−
∑

στ

Bβ,−β
µτ (x) ·Bβ,−β

σν (x)Dβ,−β
στ

}

(47)
where the total B-field is

B(x) =
∑

σν

∑

β

Dβ,−β
στ Bβ,−β

σν
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and the diagonal blocks have elements

Bβ,β
µν = − 1

µ0

∫
dx
∑

στ

Bβ,−β
µτ (x) ·B−β,β

σν (x)D−β,−β
στ . (48)

The magnetic field Cartesian components can be expressed in a form anal-
ogous to (44)

[
Bβ,−β

µν (x)
]

r
= +i εrst

ecµ0

4π

∑

γ

{
Eβ,−β

s (µ, ν; γ) (aµν , Aµν ; γ + et|xAµν )

−Eβ,−β
t (µ, ν; γ) (aµν , Aµν ; γ + es|xAµν )

}
(49)

where the Levi-Civita density εrst takes the value +1 if rst is an even
permutation of 123, −1 if it is an odd permutation of 123, and vanishes
otherwise.

The usefulness of this reformulation rests upon the fact that it re-
quires O(3N2) field components to be evaluated at, say M , integration
points xi distributed over the region occupied by the molecule rather than
O(N4) interaction integrals, a substantial saving when N is large. We have
adapted [5] the Becke cell integration scheme [22] from density functional
theory for this purpose; clearly there is considerable scope for exploiting
the independence of the calculation at different points xi on modern vector
and parallel machines. Integrands close to the nuclei can be evaluated using
radial-angular decomposition, whilst multipole expansions can be used for
large radii.

9. Applications

Relativistic DCB atomic structure calculations using the present formalism
but with S-spinors (based on exponential rather than Gaussian functions)
have been performed since 1987 [23–25], starting with He-like ions up to
U90+. Argon-like atoms were studied in [26] along with some experiments
including negative energy intermediate states in second order MBPT for
He-like ions, which were extended to Ar in [27] and to Hg in [28].

The experience gained in these studies has been invaluable for the de-
velopment of the BERTHA molecular code; much of the material of the
present article was first presented in [29] and [30], together with appli-
cations to the study of magnetic and hyperfine interactions in atoms and
small molecules, NMR shielding constants for H2O and NH3, and P-odd
interactions in chiral molecules such as CHBrClF. A detailed study of the
water molecule [31] examined the convergence of the DHF and DHFB cal-
culations with a series of uncontracted correlation consistent basis sets due
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to Dunning [32], augmented by a triple-zeta quality basis set developed
to represent the spinor amplitudes better near the nucleus. The paper also
threw light on the mechanism of pair correlation in relativistic MBPT2 cal-
culations, and presented values of NMR shielding constants which compare
well with those calculated by completely different methods. The notewor-
thy element of the 17O shielding calculation is the dominant contribution of
intermediate virtual states of negative energy to the final figure [31, Table
1]. The calculations for NH3 in [29] show the same effect.

The water calculations showed an unsuspected relativistic geometry cor-
rection to the ground state potential energy surface and led to further col-
laborative work in which the potential energy surface was determined as
a function of geometry at over 300 points [34]. The calculations combined
corections including the two-electron Darwin term of the Coulomb-Pauli
Hamiltonian at the cc-pVQZ CCSD(T) level of theory, Gaunt and Breit cor-
rections calculated perturbationally, together with DHF calculations using
two different basis sets. Finally a fitted correction surface was used together
with a high-accuracy ab initio Born-Oppenheimer PE hypersurface to cal-
culate vibrational band origins and rotational term values for H2

16O. The
calculations suggested that the previously neglected two-electron relativis-
tic corrections have a substantial influence on the rotation-vibrational levels
of water, and gave a detailed analysis. Similar results were later obtained
for H2

32S [35].
Whilst this demonstrates that calculations using the methods of this

paper may prove very useful in studies of molecules containing only low-
Z atoms, a major objective has been to study systems containing heavier
atoms. So far, only a limited number of molecular calculations have been
carried out with BERTHA at the DHF level, mainly in connection with
studies of hyperfine and PT-odd effects in heavy polar molecules such as
YbF [33] and TlF [13]. The reader is referred to the literature for an as-
sessment of these calculations and for technical details on the construction
of basis sets which must not only describe molecular bonding properly but
also give a good representation of spinors close to the heavy nuclei to handle
the short-range electron-nuclear electroweak interactions.

Finally the BERTHA technology has been applied to relativistic den-
sity functional theory by Quiney and Belanzoni [36]. This showed that the
method works well for closed shell atoms as compared with benchmark cal-
culations using finite difference methods, and there have been promising
parallelization studies [37] which should in future greatly extend the range
of application of the code.

10. Conclusion and outlook

Although the framework of many-electron atomic physics was settled in
the 1930s, widespread ab initio implementations only became feasible some
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thirty years later as the first electronic computers were introduced at na-
tional anduniversity laboratories.Many current developments in non-relativ-
istic quantum chemistry implement ideas that were first proposed decades
ago but had to await the widespread diffusion of affordable computing
power. The desirability of a fully relativistic formulation of quantum chem-
istry to extend traditional quantum chemistry to the lower rows of the
Periodic Table and to interpret high precision experimental data has been
recognized for at least twenty years. Our project, building upon both the
extensive experience of using relativistic methods in atomic physics and
recent technical progress in computational molecular sciences, is another
step in the same direction.

BERTHA, whose methods were outlined in [29,30], is the first quantum
chemistry package in which the spinor character of the G-spinor basis set
has played a central role, although a related approach has been adopted
by Yanai et al. [38–40]. This paper has tried to show that our formalism
simplifies the equations and makes their physical interpretation easier. The
approach used in most other four component quantum chemistry packages
such as MOLFDIR [41] or DIRAC [42] utilizes standard nonrelativistic in-
tegral packages. This forces one to treat the “large” and “small” basis func-
tions as if each component were a scalar Cartesian Gaussian spin-orbital.
Fægri and Dyall [43, pp. 259–290] have recently outlined practical solutions
to the problems that arise as a result of the decision to use integral codes
for scalar functions. We have avoided these difficulties at the expense of
devising our own efficient integral evaluation package [15].

Our approach retains as much as possible of the physics of relativis-
tic interactions and dynamics while minimizing the computational cost. In
practice this cost depends both on the choice of algorithms and on the way
they are implemented on the available computers. As in other codes, we
employ symmetry and screening methods [29, §6.4] to reduce the labour of
calculating interaction integrals, and we have also looked for savings from
a reformulation, §8, based on standard electromagnetic theory. We can also
take advantage of the way in which interaction integrals simplify when all
wavefunctions are centred on the same nucleus. Since the largest relativistic
effects are due to one-centre integrals, this makes it possible to do direct
DHF calculations for atomic cores and to optimize basis sets directly for
each atom of interest. One-centre algorithms can also be exploited in poly-
atomic systems to reduce the computational burden. It is then straightfor-
ward to build up more complex systems cheaply from converged atomic or
molecular fragments [29, §6.4]. The technology is applicable to DFT models
as well as DHF and can be extended straightforwardly to permit correlation
calculations along familiar lines.

Many-body effects play a leading role in the description of chemical
phenomena, and there is little point advancing detailed relativistic theo-
ries which cannot treat the electron correlation problem. A major advan-
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tage of our approach is that almost all of the computational technology
of many-electron quantum chemistry may be interfaced to BERTHA with
little change. Current trends towards the O(N) evaluation of the Coulomb
interaction within complex extended systems, the use of density functional
or high-order response theories to describe the interaction with external
fields may all be generalized with little effort within the relativistic formula-
tion. The similarity of nonrelativistic and relativistic theories of correlation
becomes more transparent when the interactions are written in terms of the
charge-current densities. This can suggest surprising economies. Examples
are the strong localization of direct relativistic effects to the neighbourhood
of nuclei, the equivalence of expressions for the electron-electron interaction
energy, either represented in terms of conventional interaction integrals or
as the energy associated with the corresponding internal electromagnetic
fields, and the relativistic generalization of the Hohenberg-Kohn theorem.

We believe that our relativistic methods should be seen as part of main-
stream quantum chemistry, and not as some exotic offshoot. We have de-
scribed a relativistic molecular structure scheme that is built on the analyti-
cal evaluation of some standard integrals, the solution of generalized matrix
eigenvalue equations, numerical quadratures and cubatures, and repeated
linear transformations using standard computational methods. While our
physical point of view is, perhaps, unfamiliar to some of our readers, we
wish to emphasize that its implementation is very much a case of “business
as usual”. We hope that wider understanding of its advantages will encour-
age more quantum chemists to consider if BERTHA and similar programs
can be used to advantage in their research.
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NON-STANDARD REPRESENTATIONS
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Abstract. An application of the Rayleigh-Ritz variational method to solv-
ing the Dirac-Coulomb equation, although resulted in many successful im-
plementations, is far from being trivial and there are still many unresolved
questions. Usually, the variational principle is applied to this equation in
the standard, Dirac-Pauli, representation. All observables derived from the
Dirac equation are invariant with respect to the choice of the representation
(i.e. to a similarity transformation in the four-dimensional spinor space).
However, in order to control the behavior of the variational energy, the trial
functions are subjected to several conditions, as for example the kinetic bal-
ance condition. These conditions are usually representation-dependent. The
aim of this work is an analysis of some consequences of this dependence.

Apart of historical reasons, there are several features of the Dirac-Pauli
representation which make its choice rather natural. In particular, it is the
only representation in which, in a spherically-symmetric case, large and
small components of the wavefunction are eigenfunctions of the orbital an-
gular momentum operator. However, this advantage of the Dirac-Pauli rep-
resentation is irrelevant if we study non-spherical systems. It appears that
the representation of Weyl has several very interesting properties which
make attractive its use in variational calculations. Also several other rep-
resentations seem to be worth of attention. Usefulness of these ideas is
illustrated by an example.

217

, 217–228. 
© 2006 Springer. Printed in the Netherlands.

J.-P. Julien et al. (eds.), 

Recent Advances in the Theory of Chemical and Physical Syst sem



218 MONIKA STANKE AND JACEK KARWOWSKI

1. Introduction

The Dirac equation for an electron in the field of a stationary potential V
reads [

c (α · p) + (β − I)µc2 + V
]
Ψ = EΨ, (1)

where Ψ is the four-component Dirac spinor, α, β and I are 4 × 4 Dirac
matrices, c is the velocity of light and E is the energy relative to µc2.
Usually the variational principle is applied to Eq. (1) in the Dirac-Pauli
representation

(
V − E, c(σ · p)
c(σ · p), V − E − 2µc2

)(
ΨL

ΨS

)
= 0, (2)

where σ are 2× 2 Pauli matrices, and ΨL, ΨS are two-component spinors,
respectively large and small components of the Dirac wavefunction. In the
variational procedure ΨL and ΨS are expanded in predefined basis sets
{φL

m}NL
m=1 and {φS

m}NS
m=1, respectively. Thus,

ΨL =
NL∑

m=1

CL
mφL

m, ΨS =
NS∑

m=1

CS
mφS

m, (3)

where {CL
m}NL

m=1 and {CS
m}NS

m=1 are variational parameters. The basis func-
tions are usually taken in the form φ ∼ rg e−αrq

, where g and α may
be treated as non-linear variational parameters, and q = 1, 2 depending
on whether a Slater-type or a Gauss-type basis sets are used. The basis
functions are usually centered on the nuclei and, in some cases, on other
properly selected points, as e.g. on the geometric center of the molecule or
the middle of a bond. The pattern of convergence of the variational energies
Ej , j = 1, 2, . . . , NL, derived from the resulting algebraic Dirac equation

(
HLL − ESLL, HLS

HSL, HSS − ESSS

)(
CL

CS

)
= 0, (4)

where
HLL

mn = 〈φL
m|V|φL

n〉, HSS
mn = 〈φS

m|V − 2µc2|φS
n〉,

HLS
mn = c 〈φL

m|(σ · p)|φS
n〉,

Saa
mn = 〈φa

m|φa
n〉, a = L, S,

to the corresponding exact eigenvalues Ej of the Dirac Hamiltonian has
been studied by many authors (see e.g. [1–3] and references therein). It has
been demonstrated that the relations between spaces HL and HS spanned
by the basis functions {φL

m}NL
m=1 and {φS

m}NS
m=1 respectively, are crucial for

the correct behavior of the variational solutions of Eq. (4). In particular,
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the solutions of Eq. (4) converge to their non-relativistic counterparts while
c→∞ if

HS = (σ · p) HL. (5)

Besides, condition (5) is necessary for E to be an upper bound to the cor-
responding eigenvalue E. The question how to control the behavior of the
variational energy by using rather weakly constrained variational trial func-
tions, motivated the formulation of a number of minimax principles [4–6].
A detailed discussion and classification of these approaches has been given
in ref. [7]. In most general terms, they are based on the following condition:

E = min
{L}

[
max
{S}

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

]
, (6)

where E is the ground state of a Dirac electron and {L}, {S} refer, respec-
tively, to the spaces in which large and small components of the Dirac-Pauli
wavefunction are represented.

It is easy to see that Eq. (1) is invariant with respect to a similarity
transformation in the four-dimensional spinor space. If Ψ and E are solu-
tions of Eq. (1) then

[
c (α̃ · p) + (β̃ − I)µc2 + V

]
Ψ̃ = EΨ̃, (7)

where α̃ = AαA−1, β̃ = AβA−1, Ψ̃ = AΨ, and A is a non-singular 4 × 4
matrix. However, conditions (5) and (6) are not invariant with respect to
such a transformation. Therefore, the performance of a variational proce-
dure applied to the Dirac equation depends on the selected representation.
The aim of the present work is to study this dependence.

Hartree atomic units are used in this paper, however in some places the
mass µ of the electron is written explicitly in order to make the presentation
more clear.

2. The Dirac-Pauli representation

The Dirac-Pauli representation is most commonly used in all applications of
the Dirac theory to studies on electronic structure of atoms and molecules.
Apart of historical reasons, there are several features of this representation
which make its choice quite natural. Probably the most important is a
well defined symmetry of ΨL and ΨS in the case of spherically-symmetric
potentials V. The Dirac Hamiltonian

H = c (α · p) + (β − I)µc2 + V (8)

does not commute with the orbital angular momentum operators L2 and
Lz, however it does commute with the total angular momentum

J = L + 1
2Σ, (9)
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where, in the Dirac-Pauli representation,

Σ =
(

σ, 0
0, σ

)
. (10)

Also, both H and J commute with an operator K defined as

K = β (Σ · L + I) , (11)

where I is a 2× 2 unit matrix. Explicitly K is given by

K =
(

k, 0
0, −k

)
, (12)

where k = (σ · L) + I acts in the two-dimensional spinor space. Thus, a
four-component eigenfunction of H may be chosen to be a simultaneous
eigenfunction of J2, Jz and K. The corresponding eigenvalues are j(j + 1),
mj and k = ±(j + 1/2). Then, for a spherically-symmetric potential V, we
can write Ψ = Ψnkmj , where n is the quantum number associated with the
radial variable. Eq. (12) implies

[(σ · L) + I] ΨL
nkmj

= k ΨL
nkmj

,

[(σ · L) + I] ΨS
nkmj

= −k ΨS
nkmj

(13)

Since L2 = J2 − (σ · L)− 3/4, we can rewrite Eqs. (13) as

L2ΨL
nkmj

= k(k − 1)ΨL
nkmj

= lL(lL + 1)ΨL
nkmj

,

L2ΨS
nkmj

= k(k + 1)ΨS
nkmj

= lS(lS + 1)ΨS
nkmj

.
(14)

The orbital angular momentum quantum numbers, lL ≡ l and lS , corre-
sponding, respectively, to the large and to the small components of the
Dirac spinor are equal to

l = lL =
{

k − 1 = j − 1/2, if k > 0,
−k = j + 1/2, if k < 0,

and

lS =
{

k = j + 1/2, if k > 0,
−k − 1 = j − 1/2, if k < 0.

(15)

Hence, lS = l + 1 if k > 0 and lS = l − 1 if k < 0. Consequently, in
the Dirac-Pauli representation ΨL and ΨS have definite parity, (−1)lL and
(−1)lS respectively. It is customary in atomic physics to assign the orbital
angular momentum label l to the state Ψnkmj . Then, we have states 1s1/2,
2s1/2, 2p1/2, 2p3/2, . . ., if the large component orbital angular momentum
quantum numbers are, respectively, 0, 0, 1, 1, . . . while the corresponding
small components are eigenfunctions of L2 to the eigenvalues 1, 1, 0, 2, . . ..
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According to Eqs. (2) and (13) the Hamiltonian eigenfunction in the
Dirac-Pauli representation may be written as

Ψnkmj =




ΨL

nkmj

ΨS
nkmj



 =
1
r

(
ΘkmjR

L
nk

iΘ−kmjR
S
nk

)
, (16)

where Θkmj , Θ−kmj are the spin-angular functions and RL
nk, RS

nk are radial
amplitudes. As one can easily check (see e.g [8]),

(σ · p)ΨL
nkmj

= iΘ−kmj

1
r

(
d

dr
− k

r

)
RL

nk

(σ · p)ΨS
nkmj

= Θkmj

1
r

(
− d

dr
− k

r

)
RS

nk (17)

Consequently, the angular dependence may be removed from Eq. (2) re-
ducing the Dirac equation to

(
V − E, c (−d/dr − k/r)

c (d/dr − k/r) , V − E − 2µc2

)(
RL

nk

RS
nk

)
= 0. (18)

Changing the representation, i.e. taking

Ψ̃ =

(
Ψ̃u

Ψ̃l,

)
=

(
aLLΨL + aLSΨS

aSLΨL + aSSΨS

)
,

where

A =
(

aLL, aLS

aSL, aSS

)
,

and aLL, aLS , aSL, aSS are 2×2 matrices, destroys the symmetry relations
between the components of the Dirac spinor. If we restrict our considera-
tions to the case of aLSaSL �= 0, then the Dirac-Pauli representation is the
only one in which, for spherically-symmetric potentials, the components of
the Dirac spinor are eigenfunctions of L2.

Another important feature of the Dirac-Pauli representation is its nat-
ural adaptation to the non-relativistic limit. If |V−E| << µc2, then Eq. (2)
transforms directly to its non-relativistic counterpart known as the Lévy-
Leblond equation:

(
V − E, (σ · p)
(σ · p), 2µ

)(
ΨL

c ΨS

)
= 0.

From here, after the elimination of ΨS , one obtains the Schrödinger equa-
tion [

(σ · p)2

2µ
+ V − E

]
ΨL = 0
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with ΨL transformed to the Schrödinger wavefunction.
The elimination of ΨS from Eq. (2) results in

{
V − E + (σ · p)

[
2µ− (V − E)/c2

]−1
(σ · p)

}
ΨL = 0. (19)

From here, expanding the operator acting on ΨL in terms of powers of
c−2, one obtains the familiar Pauli approximation as well as numerous two-
component quasi-relativistic approximations.

3. The Weyl representation

The Weyl representation corresponds to the transformation matrix

Aw =
1√
2

(
I I
I −I

)
= A−1

w .

In this representation Eq. (1) reads
(

V − E + c(σ · p)− µc2, µc2

µc2, V − E − c(σ · p)− µc2

)(
Ψu

Ψl

)
= 0, (20)

and Ψu = (ΨL + ΨS)/
√

2, Ψl = (ΨL − ΨS)/
√

2. Equation (20) may be
rewritten as a pair of Dirac-Weyl equations

[
V − E + c(σ · p)− µc2

]
Ψu = −µc2Ψl, (21)

[
V − E − c(σ · p)− µc2

]
Ψl = −µc2Ψu. (22)

As it is seen, the equations are decoupled if µ = 0. As a consequence we ob-
tain the two-component model of mass-less neutrino with Ψu corresponding
to the right and Ψl – to the left neutrino [8].

If µ �= 0 Eqs. (21) and (22) are coupled, but the relations between
components of the wavefunction are much simpler than in the standard
Dirac-Pauli representation. By the elimination of Ψu and Ψl, respectively
from Eq. (21) and from Eq. (22), we get two decoupled second-order equa-
tions for Ψu and Ψl:

[
(σ · p)2

2µ
+ V − E +

(V − E)2

2µc2
+

σ(pV)
2µc

]
Ψu = 0, (23)

[
(σ · p)2

2µ
+ V − E +

(V − E)2

2µc2
− σ(pV)

2µc

]
Ψl = 0. (24)

The spin-independent part of these equations is identical to the Klein-
Gordon equation. If the singularity of V is not stronger than 1/r then,
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contrary to the Pauli corrections derived from Eq. (19), no irregular terms
appear. However, the components of the Dirac-Weyl spinor, Ψu and Ψl, do
not have any definite parity and a procedure of the elimination of the angu-
lar dependence from the Dirac-Weyl equation, similar to the one described
in Eqs. (16) - (18) cannot be performed.

The solutions of the second-order equations should fulfill the normaliza-
tion condition 〈Ψ|Ψ〉 = 1. Since in Eqs. (23) and (24) the components of Ψ
are determined independently, in order to secure the correct normalization
one can use the following procedure
− Determine Ψu from the second-order equation
− Find Ψl = −

(
µc2

)−1 [
V − E + c(σ · p)− µc2

]
Ψu

− Determine the normalization constant as
(
〈Ψu|Ψu〉+ 〈Ψl|Ψl〉

)−1/2
.

The Dirac-Weyl equations (21), (22) are known since the early days of
quantum mechanics (see e.g. [9]) but, to our knowledge, were never used in
numerical calculations for many-electron systems. Contrary to the standard
representation, where ΨL and ΨS are eigenfunctions of L2, here neither Ψu

nor Ψl corresponds to a specific value of l. The space inversion applied to Ψu

gives Ψl and vice versa. As a consequence, in the case of spherical symmetry,
the two-component functions cannot be represented as products of a radial
part and a spin-angular part. This disadvantage makes applications of the
Weyl representation in atomic calculations rather inconvenient. However, in
the case of molecules, it may offer an interesting alternative to the standard
approach. Equation (23) may be solved using basis-set expansion methods
developed for the Schrödinger equation with spin-dependent terms. For
example, the spin-dependent formalism within symmetric group approach
[10] is ideally suited for computer implementations of this equation.

4. Spherical symmetry and the representation of Biedenharn

Let us assume that V = V(r). Then Eq. (23) may be rewritten as
(

Hr −
1

2µr2
Ω

)
Ψnjmj = EnjΨnjmj , (25)

where
Hr = −�r

2µ
+ V +

1
2µc2

(V − E)2 (26)

is the energy-dependent radial part of the Hamiltonian,

Ω = L2 − r2

c

dV

dr
π (27)

and
π = i

(σ · r)
r

, π2 = −1 (28)
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is the spin and angular part of the total Hamilton operator and we used the
total angular momentum quantum number j instead of k. Let us try to sep-
arate the radial part of Ψ, i.e. to express the two-component wavefunction
as

Ψ(r, ϑ, ϕ)njmj = χjmj (ϑ, ϕ)Rnj(r)/r (29)

If the wavefunction (29) is to fulfill Eq. (25), then χjmj (ϑ, ϕ) has to be an
eigenfunction of Ω, i.e.

Ω χjmj (ϑ, ϕ) = λχjmj (ϑ, ϕ). (30)

Since the space of two-component eigenfunctions of J, Jz and k correspond-
ing to a given set {j, mj} is spanned by Θkmj and Θ−kmj , we have

χjmj = a Θkmj + b Θ−kmj , (31)

where a and b are numerical coefficients. Due to Eq. (14) and relations

π Θkmj = −Θ−kmj , π Θ−kmj = Θkmj ,

Eq. (30) results in
∣∣∣∣

k(k − 1)− λ, −c−1 r2 dV/dr
c−1 r2 dV/dr, k(k + 1)− λ

∣∣∣∣ = 0. (32)

Then
λ± = k2 ±

√
k2 − (c−1 r2 dV/dr)2.

The coefficients a and b are r-independent only if r2 dV/dr = Z = const,
i.e if V = −Z/r is the Coulomb potential. In such a case

λ± = k2 ± |s|, s = k
√

1− Z2/(kc)2. (33)

Now, after the elimination of the spin and angular part from Eq. (25)
and substitution of the explicit form of the potential we get the following
second-order radial equation

[
− d2

dr2
+

s(s− 1)
r2

− 2ZΛ
r

]
Rnk(r) = Enj(1 + Λ)Rnk(r), (34)

where, Λ = 1 + Enj/c2 and we set µ = 1. By substitution ρ = Λr and

enj =
1 + Λ
2Λ2

Enj (35)

we get [
− d2

dρ2
+

s(s− 1)
ρ2

− 2Z

ρ

]
Rnk(ρ) = 2enjRnk(ρ). (36)
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The last equation is formally identical to the radial Schrödinger equation
with a non-integer value of the angular momentum quantum number. Its
spectrum is bounded from below and the discrete eigenvalues are given by

enj = − Z2

2ñ2
, (37)

where ñ = n − |k| + |s|. By combining Eqs. (35) and (37) one can readily
get the Sommerfeld formula for Enj . Eq. (36) is known as the Biedenharn
equation [11]. Among other applications, it was used to the construction of
quasi-relativistic methods [12] and to deriving formulas for matrix elements
between hydrogenic Dirac wavefunctions [13].

Eq. (36) may also be expressed as a system of two first-order equations,
i.e. as the radial Dirac equation in the representation of Biedenharn. Let
us rewrite the radial Dirac-Pauli equation (18) with V = −Z/r in the form

[
d

dr

(
1 0
0 1

)
+

1
r

( −k −Z/c
Z/c k

)
+
(

0 −t+
t− 0

)](
RL

nk

RS
nk

)
= 0, (38)

where t± = c(Λ± 1). A similarity transformation defined by the matrix

A b =
(

q+, q−
q−, q+

)
, A−1

b =
(

q+, −q−
−q−, q+

)
(39)

where q± =
√

(k ± s)/2s, diagonalizes the matrix of coefficients of 1/r in
Eq. (38) and, consequently, yields





−c

(
kΛ
s
− 1

)
, − d

dr
− s

r
+

Z

s
Λ

d

dr
− s

r
+

Z

s
Λ, −c

(
kΛ
s

+ 1
)








RA

RB



 = 0, (40)

where RA = q+RL + q−RS and RB = q−RL + q+RS . Eqs. (40) may be
easily decoupled giving as the result Eq. (34) with RA, RB = Rnk.

Transformation (39) applied to the case of a non-Coulomb spherically-
symmetric potential results in an equation in which residual terms propor-
tional to W = V + Z/r would appear. Its algebraic representation reads:

(
HAA − ESAA, HAB − ESAB

HBA − ESBA, HBB − ESBB

)(
CA

CB

)
= 0, (41)

where
HAA

mn = −〈φA
m|k W + kc2 − sc|φA

n 〉/(sc),

HBB
mn = −〈φB

m|k W + kc2 + sc|φB
n 〉/(sc),



226 MONIKA STANKE AND JACEK KARWOWSKI

85 86 87 88 89 90 91 92 93 94 95
85

86

87

88

89

90

91

92

93

94

95

0.72 0.73 0.74 0.75 0.76 0.77 0.78
0.72

0.73

0.74

0.75

0.76

0.77

0.78

Figure 1. Variational ground state energy E of a Z = 90 hydrogen-like atom ob-
tained from the Dirac-Pauli equation as a function of α (abscissa) and β (ordinate) while
a = b = s (left figure) and as a function of a (abscissa) and b while α = β = Z (right
figure). The arrows are proportional to the gradient of E . The saddle points correspond
to the exact eigenvalues of the Dirac Hamiltonian.

HAB
mn = −

〈
φA

m

∣∣∣∣
d

dr
+

s

r
− ZW

sc2

∣∣∣∣φ
B
n

〉
,

Saa
mn = k〈φa

m|φa
n〉/(sc), Sab

mn = −Z〈φa
m|φa

n〉/(sc2), a = A, B, b = A, B,

and φA
m, (m = 1, 2, . . . , NA), φB

n , (n = 1, 2, . . . , NB) are, respectively, the
basis function RA and RB are expanded in.

5. Minimax principle and structure of the energy surfaces

Relativistic variational principles are usually formulated as prescriptions
for reaching a saddle point on the energy hypersurface in the space of vari-
ational parameters. The results of the variational calculations depend upon
the orientation of the saddle in the space of the nonlinear parameters. The
structure of the energy hypersurface may be very complicated and reach-
ing the correct saddle point may be difficult [14, 15]. If each component of
the wavefunction is associated with an independent set of nonlinear para-
meters, then changing the representation of the Dirac equation results in a
transformation of the energy hypersurface. As a consequence, the numerical
stability of the variational procedure depends on the chosen representation.

As an example we apply the variational principle to the evaluation of
the ground state energy of a hydrogen-like atom using a minimum basis set
of two-component radial functions:

RA(r) ∼ φA(r) = rae−α r, RB(r) ∼ φB(r) = rbe−β r.

The exact wavefunction corresponds to a = b = s and α = β = Z. The vari-
ational ground state energy of Z = 90 hydrogen-like ion in the Dirac-Pauli
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Figure 2. The same as in Fig. 1 but the variational energies are derived from the
algebraic Dirac equation in the Biedenharn representation (41). The bottoms of the
valleys at β = 90 (left figures) and at b = 0.754 (right figures) correspond to the exact
eigenvalues of the Dirac Hamiltonian. The lower figures show the same function as the
upper ones, but over a wider range of parameters.

representation, i.e. derived from the algebraic representation of Eq. (18), as
a function of {α, β} while a = b = s (the left-hand-side diagram), and as a
function of {a, b} while α = β = Z (the right-hand-side diagram), is plotted
in Fig. 1. Analogous diagrams, but in the Biedenharn representation, i.e.
derived from Eq. (41), are presented in Fig. 2. As one can see, the structure
of the energy surfaces changes dramatically with the change of the repre-
sentation. Typical saddles of the Dirac-Pauli representation transform to
valleys, bounded from below by the exact ground state energy, when the
representation is changed to the Biedenharn one. The bottom of the valley
corresponds to the exact energy regardless of the values of the nonlinear
parameters characterizing RB. Consequently, the variational energy reaches
its minimum equal to the exact ground state energy for all values of b and
β as long as a = s and α = Z.

As we can see, the choice of the representation is relevant for the perfor-
mance of the variational principle. However, in order to draw some general
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conclusions concerning usefulness of this or another representation, further
studies on this subject are necessary.

6. Final remarks

We demonstrated that by the selection of a representation of the Dirac
Hamiltonian in the spinor space one may strongly influence the perfor-
mance of the variational principle. In a vast majority of implementations
the standard Pauli representation has been used. Consequently, computa-
tional algorithms developed in relativistic theory of many-electron systems
have been constructed so that they are applicable in this representation
only. The conditions, under which the results of these implementations are
reliable, are very well understood and efficient numerical codes are avail-
able for both atomic and molecular calculations (see e.g. [16]). However,
the representation of Weyl, if the external potential is non-spherical, or the
representation of Biedenharn, in spherically-symmetric cases, seem to be
attractive and, so far, hardly explored options.
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Abstract. The Generalized Relativistic Effective Core Potential (GRECP)
method is described, which allows to simulate Breit interaction and finite
nuclear models by an economic way with high accuracy. The corresponding
GRECPs for the uranium, plutonium, eka-mercury (E112), eka-thallium
(E113) and eka-lead (E114) atoms are generated. The accuracy of these
GRECPs and of the RECPs of other groups is estimated in atomic numer-
ical SCF calculations with Coulomb two-electron interactions and point
nucleus as compared to the corresponding all-electron Hartree-Fock-Dirac-
Breit calculations with the Fermi nuclear charge distribution. Different nu-
clear models and contributions of the Breit interaction between different
shells are studied employing all-electron four-component methods.

1. Introduction

Investigation of physical and chemical properties of recently synthesized,
relatively long-living isotopes of superheavy elements (SHEs) with nuclear
charges Z=105 to 116 [1, 2, 3, 4] and their compounds is of fundamental
importance. Their measured lifetimes may reach several hours and the nu-
clei near the top of the “island of stability” are predicted to exist for many
years. The experimental study of the SHE properties is very difficult be-
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cause of their extremely small quantities: only single atoms are available for
research. Accurate calculations for SHEs and their compounds are needed
in order to better understand their physical and chemical properties, that
often differ from those of the lighter homologs in the chemical groups, due
to very strong relativistic effects in their electronic shells. Besides, for el-
ements decaying by spontaneous fission, the chemical identification is the
only way to prove their Z number.

Experimental investigations of spectroscopic and other physical-chemical
properties of actinides are severely hampered by their radioactive decay
and radiation which lead to chemical modifications of the systems under
study. The diversity of properties of lanthanide and actinide compounds is
unique due to the multitude of their valency forms (which can vary over a
wide range) and because of the particular importance of relativistic effects.
They are, therefore, of great interest, both for fundamental research and for
the development of new technologies and materials. The most important
practical problems involve storage and processing of radioactive waste and
nuclear fuel, as well as pollution of the environment by radioactive waste,
where most of the decayed elements are actinides.

From a formal point of view, four-component correlation calculations [5,
6] based on the Dirac-Coulomb-Breit (DCB) Hamiltonian (see [7, 8, 9, 10,
11] and references therein) can provide with very high accuracy the physical
and chemical properties of molecules containing heavy atoms. However,
such calculations were not widely used for such systems during last decade
because of the following theoretical and technical complications [12]:

- too many electrons are treated explicitly in heavy-atom systems and
too large number of Gaussians is required for accurate description of
the large number of oscillations, which valence spinors have in heavy
atoms;

- the necessity to work with four-component Dirac spinors leads to se-
rious complication of calculations as compared to the nonrelativistic
case:

(a) the number of kinetically-balanced two-component (“2c”) uncon-
tracted Gaussian basis spinors for the Small components, N2c

S , can
be estimated as 2N2c

L , where N2c
L is the number of basis spinors for

Large components; so the total number of uncontracted Gaussian
basis spinors in the relativistic four-component (“4c”) calcula-
tions N4c

bas ∼ 3N2c
L and the number of two-electron integrals as

[12]
N4c

2eInt ∼ (1+2·22+24)N2c
2eInt ≡ 25·N2c

2eInt ;

Note, however, that the situation is seriously improved here dur-
ing last years, see [13, 14, 5, 6].
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(b) the number of basis 2c-spinors, N2c
bas, is twice more than the num-

ber of nonrelativistic basis one-component (“1c”) orbitals, N1c
bas,

therefore
N2c

2eInt ∼ 24/2·N1c
2eInt ≡ 8·N1c

2eInt ,

The minimal number of two-electron integrals in the spin-orbit
basis set, which are required to be saved coincides, obviously,
with N1c

2eInt.

The Relativistic Effective Core Potential (RECP) method is most widely
used in calculations on molecules containing heavy atoms [15, 16] because
it reduces drastically the computational cost at the integral generation,
SCF and integral transformation stages. In our papers [17, 18, 19], the
conventional radially-local (semi-local) form of the RECP operator (used
by many groups up to now but suggested and first applied about 40 years
ago [20, 21, 22]) was shown to be limited by accuracy and some nonlocal
corrections to the RECP operator were suggested [17, 23, 19, 24], which
have already allowed us to improve significantly the RECP accuracy [18,
19, 25, 26].

It is known that the Breit interaction can give contributions in excess of
one thousand wave numbers even to energies of transitions between lowest-
lying states of very heavy elements (see, e.g., tables 7 and 8). It is also clear
that the point nuclear model becomes less appropriate when the nuclear
charge is increased. Therefore, the RECPs designed for accurate calcula-
tions of actinide and SHE compounds should allow one to take into account
the Breit interaction and the finite size of nuclei. The most economic way
is to incorporate the corresponding contributions into the RECP operator.

2. Generalized RECP method

In a series of papers (see [17, 18, 19, 24, 27] and references), we introduced
and developed the Generalized RECP (GRECP) method. Its main features
are:

− The inner core (IC), outer core (OC) and valence (V) electrons are
first treated employing different approximations for each (including
relaxation of the IC shells which are explicitly excluded from GRECP
calculations).

− GRECP involves both radially-local, separable and Huzinaga-type po-
tentials as its components and particular cases.

− The GRECP operator includes terms of other types for economical
treatment of transition metals, lanthanides and actinides (see sections
2.1–2.2).
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− Quantum electrodynamics effects (see [29] and section 2.3), arbitrary
nuclear models, and correlation with IC shells [30] can be efficiently

The GRECP method is described in detail in the above papers and we only
add here that it allows one to avoid the complications of the four-component
calculations described in the introduction (see also [30]) and to attain very
high accuracy, limited in practice by possibilities of the correlation methods,
while requiring moderate computational efforts when the IC, OC and V
subspaces are appropriately chosen.

The contributions of different nuclear models which are described by
local potentials can be easily taken into account in the framework of the
(G)RECP method. The situation is more complicated in the case of the
Breit interaction because it is represented by a two-electron operator. Gen-
eral justification of the possibility to simulate the Breit effects by means of
an one-electron (G)RECP operator with good accuracy and the scheme of
such GRECP generation are presented in [29] (see also section 2.3). This
scheme is applied in the present work to generate GRECPs for the uranium,
plutonium, eka-mercury (E112), eka-thallium (E113) and eka-lead (E114)
atoms. The 32, 34, 20, 21 and 22 electrons are explicitly treated in cal-
culations with these GRECPs, correspondingly. Moreover, the 52 electron
GRECP (52e-GRECP) version for E112 was also generated. The conven-
tional Coulomb operator for two-electron interactions and the point nuclear
model should be used in these GRECP calculations. However, they will ac-
count for the Fermi nuclear charge model that is close to the experimental
distribution. Moreover, the Breit interactions of the electrons from the state
used for the GRECP generation with the electrons explicitly treated in the
subsequent calculations are simulated by the GRECP (in some sense, the
Breit interaction is “frozen” here).

2.1. SELF-CONSISTENT GRECP VERSION FOR D- AND F -ELEMENTS

The Self-Consistent (SfC) (G)RECP version [23, 19, 24, 27] allows one to
minimize errors for energies of transitions with the change of the occupation
numbers for the OuterMost Core (OMC) shells without extension of space
of explicitly treated electrons. It allows one to take account of relaxation
of those core shells, which are explicitly excluded from the GRECP cal-
culations, thus going beyond the frozen core approximation. This method
is most optimal for studying compounds of transition metals, lanthanides,
and actinides. Features of constructing the self-consistent GRECP are:

− The outer core pseudospinors (nodeless) together withvalencepseudospin-

treated within GRECPs.

ors (nodal) are used for constructing the GRECP components [28].
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1. The all-electron HFDB calculations of two generator states with dif-
ferent occupation numbers N
carried out for an d- or f -element.

2. The GRECP versions with separable correction UN1 and UN2 are
constructed for these generator states employing the standard scheme
[17, 18, 19, 24]. The GRECP operator with the separable correction
has the form

UNi = ENi
core + UNi

nvLJ(r)

+
L∑

l=0

l+1/2∑

j=|l−1/2|

{[
UNi

nvlj(r)− UNi
nvLJ(r)

]
Plj

+
∑

nc

[
UNi

nclj(r)− UNi
nvlj(r)

]
P̃Ni

nclj

+
∑

nc

P̃Ni
nclj

[
UNi

nclj(r)− UNi
nvlj(r)

]
(2.1)

−
∑

nc,nc′

P̃Ni
nclj

[UNi
nclj(r) + UNi

nc′ lj
(r)

2
− UNi

nvlj(r)
]
P̃Ni

nc′ lj

}
,

where

Plj =
j∑

m=−j

∣∣ljm
〉〈

ljm
∣∣,

P̃Ni
nclj =

j∑

m=−j

∣∣(ñcljm)Ni
〉〈

(ñcljm)Ni
∣∣,

∣∣ljm
〉〈

ljm
∣∣ is the projector on the two-component spin-angular func-

tion χljm,
∣∣(ñcljm)Ni

〉〈
(ñcljm)Ni

∣∣ is the projector on the outer core
pseudospinor ϕ̃Ni

ncljχljm, UNi
nvlj and UNi

nclj are the radial components of
the GRECP derived for valence ϕ̃Ni

nvlj and outer core ϕ̃Ni
nclj pseudospinors

for the OMC d or f shell occupation number Ni (i=1, 2), ENi
core is the

core energy, L is one more than the highest orbital angular momentum
of the inner core spinors and J = L + 1/2. The separable terms (lines
3–5 in Eq. (2.1)) are added to the conventional radially-local RECP
operator. These terms take into account the difference between the po-
tentials acting on the outer core and valence electrons with the same l
and j.
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3. The self-consistent GRECP, USfC, with the quadratic correction writes
as

USfC =
UN1+UN2

2
+

UN1−UN2

N1 −N2

(
Nomc −

N1+N2

2

)

+ B

(
Nomc −

N1+N2

2

)2

, (2.2)

where B is some adjustable parameter, Nomc=〈Ψ̃|Nomc|Ψ̃〉, Ψ̃ is the
many-electron wavefunction for the calculated state, and Nomc is the
occupation number operator of the considered d (f) shell that is writ-
ten as

Nomc =
l+1/2∑

j=|l−1/2|

j∑

m=−j

ã†
nomclomcjm

ãnomclomcjm , (2.3)

ã†
nomclomcjm

(ãnomclomcjm) is the creation (annihilation) operator for the

electron in the pseudostate | ˜nomclomcjm〉 corresponding the original
one-electron state |nomclomcjm〉, nomc and lomc are the principal and
orbital quantum numbers of the OMC shell.

4. The P̃Ni
nclj projectors in UNi from Eq. (2.2) are replaced by the pro-

jectors

P̃av
nclj =

j∑

m=−j

∣∣(ñcljm)av
〉〈

(ñcljm)av
∣∣

for simplicity, where
∣∣(ñcljm)av

〉〈
(ñcljm)av

∣∣ is the projector on the
outer core pseudospinor ϕ̃av

ncljχljm,

ϕ̃av
nclj(r) = Cnorm

[
ϕ̃N1

nclj(r) + ϕ̃N2
nclj(r)

]
, (2.4)

and Cnorm is the normalizing factor.
The comparison of self-consistent and conventional GRECP versions by
accuracy in calculations on the uranium and plutonium atoms can be found
in paper [29].

2.2. TERM-SPLITTING CORRECTION FOR D,F -ELEMENTS

The self-consistent (G)RECP correction gives no improvement in descrip-
tion of splittings to terms, e.g., of the configuration 5f3

5/26d1
3/27s2

1/2 of ura-
nium as compared to the parent (G)RECPs [19, 24]. Analysis of the cor-
responding errors shows that the main contribution (about 90 %) is due
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to smoothing the original OMC spinors in the core region. The simplest
way to minimize these errors is to use such (G)RECPs, in which the 5f
shell is described by nodal pseudospinors, whereas the 4f pseudospinors
are nodeless. To reduce computational efforts, the 4f shell can be treated
as “frozen” using the level-shift technique [19, 31].

If the small magnitude of the OMC shell (5f here) relaxation is taken
into account, there is another way out that can be optimal for the low-lying
states. It was suggested in [19] to add the Term-Splitting (TS) correction
(see also [24]) to the (G)RECP operator

UTS =
∑

x1,x2,x3,x4

λx1x2,x3x4

∣̃∣x1

〉∣̃∣x3

〉〈̃
x2

∣∣〈̃x4

∣∣

− 2
∑

w

∑

x1,x2,x3

(λx1x2,x3x3 − λx1x3,x3x2)δwx3

∣̃∣x1

〉〈̃
x2

∣∣ , (2.5)

where λx1x2,x3x4 is the difference between the two-electron integrals cal-
culated with original spinors and pseudospinors for the generator state,
the indices w ≡ (noccloccjoccmocc) correspond to the occupied spinors for
the calculated state, the indices x ≡ (nomclomcjm) run over all possible
j = |lomc ± 1/2| and m = −j,−j + 1, . . . j for the given OMC shell. These
terms correct the one- and two-electron integrals containing only the 5f
pseudospinors of uranium in the considered case.

2.3. ACCOUNTING FOR THE BREIT INTERACTION BETWEEN
DIFFERENT SHELLS

Let us analyze contributions of the Breit interaction between electrons from
different shells to the energy of a heavy atom [27]. We will use the estimate
(e.g., see [32])

〈P, P ′|(�αi·�αi′)|P, P ′〉 ∼ 1
c2
〈(�vP ·�vP ′)〉 ;

for an uncoupled one-electron state P : 〈P |�α|P 〉∼ 〈
v〉P
c , |〈
v〉P |

c ∼αZ∗
P , where �αi

are 4×4 Dirac matrices for the i-th electron, c and �v are velocities of light
and electron, α≈ 1

137 is the fine structure constant. In the above expression
a “pseudocharge”, Z∗

P , is introduced which can be most naturally defined
in our consideration as [29]

Z∗
P = 〈P |1

r
|P 〉 , (2.6)

that coincides with the nuclear charges only for nonrelativistic electrons
occupying the ground states in hydrogen-like ions. Besides, 〈 1

r12
〉 can be

estimated as 〈1r 〉 for the outermost of the one-electron states P, P ′ [27]:
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〈P, P ′| 1
r12
|P, P ′〉 ∼ min

[
〈P |1

r
|P 〉, 〈P ′|1

r
|P ′〉

]
= min [Z∗

P , Z∗
P ′ ] .

As a result, the Breit interaction between the one-electron states P and P ′

can be estimated as

BPP ′ ≈ α2Z∗
P Z∗

P ′ ·min [Z∗
P , Z∗

P ′ ] · F

where the correcting factor F ∼ [0.1÷ 1] is introduced, which depends on
∆l=|lP−lP ′ |, ∆j=|jP−jP ′ |, etc.

Applying Eq. (2.6) for inner core (P≡f), outer core (P≡c) and valence
(P≡v) electrons one has Z∗

f∼100, Z∗
c∼3, Z∗

v∼1 by the order of magnitude
(Z∗

P differs from an “effective charge” of the core with respect to the electron
in the P -th state, ZEf

P =Z−NP
c , that is usually used in RECP calculations,

where Z is the nuclear charge, NP
c is the number of core electrons with

respect to the P -th state). Therefore, BPP ′≡F−1BPP ′ is as

Bff ′ ∼ 10 000 000 cm−1 , Bfc ∼ 9 000 cm−1 , Bfv ∼ 1000 cm−1 ,
Bcf ∼ 9 000 cm−1 , Bcc′ ∼ 270 cm−1 , Bcv ∼ 30 cm−1 ,
Bvf ∼ 1000 cm−1 , Bvc ∼ 30 cm−1 , Bvv′ ∼ 10 cm−1 .

Let us consider approximations in accounting for the Breit interaction,
that we made when outer core and valence electrons are included in GRECP
calculations with Coulomb two-electron interactions, but inner core elec-
trons are absorbed into the GRECP. When both electrons belong to the
inner core shells, the Breit effect is of the same order as the Coulomb in-
teraction between them. Though Bff ′ does not contribute to “differential”
(valence) properties directly, it can lead to essential relaxation of both core
and valence shells. This relaxation is taken into account when the Breit
interaction is treated by self-consistent way in the framework of the HFDB
method [33, 34].

The inner core electrons occupy closed shells. The only exchange part
of the two-electron Breit interaction between the valence, outer core and
inner core electrons, Bfv and Bfc, gives non-zero contribution. The contri-
butions from Bfv and Bfc, are quite essential for calculation at the level
of “chemical accuracy” (about 1 kcal/mol or 350 cm−1 for transition ener-
gies). This accuracy level is, in general, determined by the possibilities of
modern correlation methods and computers already for compounds of light
elements. Note, that the contribution from the exchange interaction is not
smaller than that from the Coulomb part [29]. The inner core electrons can
be considered as “frozen” in most physical-chemical processes of interest.
Therefore, the effective operators for Bfv and Bfc acting on the valence and
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TABLE 1. Transition energies (TE) between states averaged over the relativistic
configurations of E112 derived from HFDB calculations with Fermi nuclear model
and the corresponding absolute errors of other all-electron calculations (in cm−1).

Method HFDB HFDB HFDB HFDB HFD+B HFD

Nuclear model Fermi Ball Fermi Point Fermi Fermi

A= 296 296 285 296 296

(a) (b) (a) (c) (d) (e)

Configuration TE Absolute errors

6d4
3/26d6

5/27s2
1/2 →

6d4
3/26d6

5/27s1
1/27p1

1/2 46406 -3 22 1768 1 -27

6d4
3/26d6

5/27s1
1/27p1

3/2 64559 -4 25 1964 -1 239

6d4
3/26d6

5/27s1
1/28s1

1/2 72571 -3 22 1760 -1 257

6d4
3/26d6

5/27s1
1/27d1

3/2 81845 -4 23 1879 -1 277

6d4
3/26d5

5/27s2
1/27p1

1/2 28701 1 -8 -644 2 -576

6d4
3/26d5

5/27s2
1/27p1

3/2 52595 1 -6 -464 0 -267

6d4
3/26d5

5/27s2
1/28s1

1/2 62635 2 -10 -776 0 -252

6d4
3/26d5

5/27s2
1/27d1

3/2 72443 1 -9 -666 0 -234

6d4
3/26d5

5/27s2
1/2 84449 1 -9 -672 0 -234

6d3
3/26d6

5/27s2
1/27p1

1/2 53581 2 -10 -765 2 -281

6d3
3/26d6

5/27s2
1/27p1

3/2 75273 1 -8 -600 0 7

6d3
3/26d6

5/27s2
1/28s1

1/2 85677 2 -12 -915 -1 25

6d3
3/26d6

5/27s2
1/27d1

3/2 95546 2 -10 -805 -1 43

(a,c) All-electron Hartree-Fock-Dirac-Breit (HFDB) calculations with Fermi and point
nuclear charge distributions, accordingly.

(b) All-electron HFDB calculation with the uniform nuclear charge distribution within a
sphere.

(d) All-electron HFD calculation with accounting for the Breit interaction within PT-1
(HFD+B) and with Fermi nuclear model.

(e) All-electron HFD calculation without accounting for the Breit interaction (HFD) and
with Fermi nuclear model.

outercore shells, BEf
fv and BEf

fc , are of the same kind as the exchange f−v
and f−c contributions of the SCF field in the Huzinaga-type potential, i.e.
these terms can be well approximated by the spin-dependent potential of
the form:

BEf
fv + BEf

fc =
∑

lj

V Br
lj (r)Plj +

∑

nclj

[
V Br

nclj(r)− V Br
lj (r)

]
P̃nclj ,

which has basically the same spin-angular structure as the GRECP has.
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TABLE 2. Transition energies (TE) between states averaged over the relativistic config-
urations of E112 derived from HFDB calculations with Fermi nuclear model for A=296
and the corresponding absolute errors of (G)RECP calculations (in cm−1).

HFDB 52e- 20e- Ionic 20e-RECP 20e-PP

Fermi GRECP GRECP 20e- of Nash of Seth

296 RECP et al. et al.

(a) (f) (f) (g) (h) (i)

Configuration TE Absolute errors

6d4
3/26d6

5/27s2
1/2 →

6d4
3/26d6

5/27s1
1/27p1

1/2 46406 1 -17 588 3198 153

6d4
3/26d6

5/27s1
1/27p1

3/2 64559 4 -29 820 5480 27

6d4
3/26d6

5/27s1
1/28s1

1/2 72571 6 -25 719 5085 105

6d4
3/26d6

5/27s1
1/27d1

3/2 81845 6 -18 809 5465 99

6d4
3/26d5

5/27s2
1/27p1

1/2 28701 31 305 -422 -3723 380

6d4
3/26d5

5/27s2
1/27p1

3/2 52595 37 277 -181 -1254 189

6d4
3/26d5

5/27s2
1/28s1

1/2 62635 43 314 -315 -1879 326

6d4
3/26d5

5/27s2
1/27d1

3/2 72443 43 322 -220 -1514 314

6d4
3/26d5

5/27s2
1/2 84449 43 322 -224 -1531 308

6d3
3/26d6

5/27s2
1/27p1

1/2 53581 45 387 -376 -3903 22

6d3
3/26d6

5/27s2
1/27p1

3/2 75273 52 437 -84 -1515 -126

6d3
3/26d6

5/27s2
1/28s1

1/2 85677 60 477 -213 -2126 22

6d3
3/26d6

5/27s2
1/27d1

3/2 95546 60 484 -119 -1760 7

(a) All-electron Hartree-Fock-Dirac-Breit (HFDB) calculations with Fermi nuclear charge
distribution.

(f) GRECP generated in the present work from HFDB calculation with Fermi nuclear
model.

(g) Semi-local RECP generated here from HFDB calculation with Fermi nuclear model
on the ionic closed-shell generator-state.

(h) RECP from [37] generated from HFD calculation.
(i) PP from M. Seth et al. to be published (P. Schwerdtfeger, private communication,
2003) generated from HFD+B calculation.

Thus, it can be taken into account directly when the HFDB (not HFD)
calculation [8] is performed to generate outer core and valence bispinors
but in the inversion procedure of the HF equations for generating the com-
ponents of GRECP, the conventional interelectronic Coulomb interaction
should be used instead of the Coulomb-Breit one. Then, in the GRECP
calculations one should consider only the Coulomb interaction between the
explicitly treated electrons.
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TABLE 3. Transition Energies (TE) between states averaged over the relativistic con-
figurations of E113 (in cm−1). See Table 1.

Method HFDB HFDB HFDB HFDB HFD+B HFD

Nuclear model Fermi Ball Fermi Point Fermi Fermi

A= 297 297 284 297 297

Configuration TE Absolute errors

6d4
3/26d6

5/27s2
1/27p1

1/2 →
6d4

3/26d6
5/27s2

1/27p1
3/2 25106 0 3 221 -2 339

6d4
3/26d6

5/27s2
1/28s1

1/2 34981 0 -2 -128 -3 354

6d4
3/26d6

5/27s2
1/27d1

3/2 45172 0 0 -4 -3 374

6d4
3/26d6

5/27s2
1/26f1

5/2 50338 0 0 -10 -3 374

6d4
3/26d6

5/27s2
1/25g1

7/2 52811 0 0 -10 -3 374

6d4
3/26d6

5/27s2
1/2 57201 0 0 -10 -3 374

6d4
3/26d6

5/27s1
1/27p2

1/2 61500 -4 32 2220 2 -60

6d4
3/26d6

5/27s1
1/27p1

1/27p1
3/2 83184 -5 36 2485 -1 241

6d4
3/26d6

5/27s1
1/27p2

3/2 112678 -6 41 2843 -3 612

6d4
3/26d6

5/27s1
1/27p1

1/2 115758 -5 34 2344 -1 250

6d4
3/26d6

5/27s1
1/27p1

3/2 149550 -5 40 2739 -3 654

6d4
3/26d6

5/27s1
1/2 234435 -5 37 2583 -4 747

6d4
3/26d5

5/27s2
1/27p2

1/2 47371 2 -13 -864 3 -739

6d4
3/26d5

5/27s2
1/27p1

1/27p1
3/2 74898 1 -9 -606 1 -391

6d4
3/26d5

5/27s2
1/27p2

3/2 110406 1 -4 -244 -2 22

6d4
3/26d5

5/27s2
1/27p1

1/2 110120 2 -13 -882 0 -388

6d4
3/26d5

5/27s2
1/27p1

3/2 150102 1 -7 -477 -2 59

6d4
3/26d5

5/27s2
1/2 239523 2 -12 -807 -2 144

6d3
3/26d6

5/27s2
1/27p2

1/2 78821 2 -15 -983 2 -375

6d3
3/26d6

5/27s2
1/27p1

1/27p1
3/2 104059 1 -11 -742 0 -49

6d3
3/26d6

5/27s2
1/27p2

3/2 137048 1 -6 -403 -2 341

6d3
3/26d6

5/27s2
1/27p1

1/2 139819 2 -15 -1021 0 -42

6d3
3/26d6

5/27s2
1/27p1

3/2 177137 1 -9 -638 -3 381

terest, these shells can be also considered as “frozen” when analyzing the
Breit contributions and the Bcc′ and Bcv terms can be taken into account
similarly to the Bfc and Bfv ones. The error of this approximation will
be additionally suppressed by relative weakness of the Breit interaction
with the outer core electrons as compared to the inner core ones. We note
here, that the estimates for Z∗

c , Z∗
v and, therefore, for Bcc′ , Bcv and Bvv′

Due to small relaxation of outer core shells in most processes of in-
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TABLE 4. Transition Energies (TE) between states averaged over the relativistic con-
figurations of E113 (in cm−1). See Table 2.

HFDB 21e- Ionic 21e-RECP 21e-PP

Fermi GRECP 21e-RECP of Nash of Seth

297 et al. et al.

Configuration TE Absolute errors

6d4
3/26d6

5/27s2
1/27p1

1/2 →
6d4

3/26d6
5/27s2

1/27p1
3/2 25106 -21 233 275 -349

6d4
3/26d6

5/27s2
1/28s1

1/2 34981 5 112 -205 -307

6d4
3/26d6

5/27s2
1/27d1

3/2 45172 9 200 140 -275

6d4
3/26d6

5/27s2
1/26f1

5/2 50338 9 196 127 -276

6d4
3/26d6

5/27s2
1/25g1

7/2 52811 9 196 127 -276

6d4
3/26d6

5/27s2
1/2 57201 9 196 127 -276

6d4
3/26d6

5/27s1
1/27p2

1/2 61500 28 610 4830 148

6d4
3/26d6

5/27s1
1/27p1

1/27p1
3/2 83184 -6 833 5170 -172

6d4
3/26d6

5/27s1
1/27p2

3/2 112678 -10 1171 5717 -504

6d4
3/26d6

5/27s1
1/27p1

1/2 115758 -3 784 5143 -105

6d4
3/26d6

5/27s1
1/27p1

3/2 149550 -9 1163 5784 -454

6d4
3/26d6

5/27s1
1/2 234435 -2 1221 6102 -336

6d4
3/26d5

5/27s2
1/27p2

1/2 47371 404 -597 -2349 322

6d4
3/26d5

5/27s2
1/27p1

1/27p1
3/2 74898 344 -378 -2055 -44

6d4
3/26d5

5/27s2
1/27p2

3/2 110406 310 -47 -1528 -407

6d4
3/26d5

5/27s2
1/27p1

1/2 110120 386 -451 -2298 41

6d4
3/26d5

5/27s2
1/27p1

3/2 150102 344 -82 -1667 -339

6d4
3/26d5

5/27s2
1/2 239523 416 -39 -1617 -188

6d3
3/26d6

5/27s2
1/27p2

1/2 78821 380 -649 -2230 -270

6d3
3/26d6

5/27s2
1/27p1

1/27p1
3/2 104059 412 -364 -1931 -544

6d3
3/26d6

5/27s2
1/27p2

3/2 137048 481 38 -1402 -804

6d3
3/26d6

5/27s2
1/27p1

1/2 139819 447 -439 -2161 -466

6d3
3/26d6

5/27s2
1/27p1

3/2 177137 516 9 -1523 -736

given above are rather the upper limits. For heavy atoms these Breit con-
tributions are smaller approximately by one–two orders of magnitude. This
decrease is due to enlarged radii of the valence and outer core shells and
other effects in heavy atoms [29]. For example, for uranium (Z = 92) one
has Z∗

1s[nonrel. SCF]∼92.4, Z∗
1s[DHFB]∼122.4 (starting from Z ∼ 30, Z∗

1s

grows faster than Z due to relativistic effects, whereas Z∗
nl is essentially
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TABLE 5. Transition Energies (TE) between states averaged over the relativistic con-
figurations of E114 (in cm−1). See Table 1.

Method HFDB HFDB HFDB HFDB HFD+B HFD

Nuclear model Fermi Ball Fermi Point Fermi Fermi

A= 298 298 289 298 298

Configuration TE Absolute errors

6d4
3/26d6

5/27s2
1/27p2

1/2 →
6d4

3/26d6
5/27s2

1/27p1
1/27p1

3/2 29093 -1 3 314 -2 380

6d4
3/26d6

5/27s2
1/27p1

1/28s1
1/2 41211 0 -1 -135 -3 370

6d4
3/26d6

5/27s2
1/27p1

1/28p1
1/2 48149 0 0 -5 -3 360

6d4
3/26d6

5/27s2
1/27p1

1/27d1
3/2 52230 0 0 16 -3 387

6d4
3/26d6

5/27s2
1/27p1

1/26f1
5/2 57618 0 0 7 -3 384

6d4
3/26d6

5/27s2
1/27p1

1/25g1
7/2 60094 0 0 7 -3 384

6d4
3/26d6

5/27s2
1/27p1

1/2 64483 0 0 7 -3 384

6d4
3/26d6

5/27s2
1/27p2

3/2 66669 -2 6 755 -5 833

6d4
3/26d6

5/27s2
1/27p1

3/28s1
1/2 81879 -1 3 277 -5 850

6d4
3/26d6

5/27s2
1/27p1

3/2 106776 -1 4 497 -5 872

6d4
3/26d6

5/27s2
1/28s2

1/2 108893 1 -3 -361 -6 883

6d4
3/26d6

5/27s2
1/28s1

1/2 136567 0 -1 -207 -6 907

6d4
3/26d6

5/27s2
1/2 197486 0 1 128 -6 961

6d4
3/26d6

5/27s1
1/27p2

1/27p1
3/2 102896 -6 24 3110 0 256

6d4
3/26d6

5/27s1
1/27p2

1/28s1
1/2 115405 -5 21 2745 -1 224

6d4
3/26d6

5/27s1
1/27p2

1/2 138842 -6 23 2905 -1 233

6d4
3/26d5

5/27s2
1/27p2

1/27p1
3/2 97736 2 -6 -771 1 -506

6d4
3/26d5

5/27s2
1/27p2

1/28s1
1/2 112486 3 -10 -1277 1 -543

6d4
3/26d5

5/27s2
1/27p2

1/2 136356 2 -9 -1129 1 -534

6d3
3/26d6

5/27s2
1/27p2

1/27p1
3/2 133837 2 -7 -904 0 -91

6d3
3/26d6

5/27s2
1/27p2

1/28s1
1/2 149162 3 -11 -1415 0 -126

6d3
3/26d6

5/27s2
1/27p2

1/2 173108 3 -10 -1265 0 -117

smaller than the corresponding effective charge ZEf
nl for all other nl), Z∗

5f∼1,
Z∗

6s∼1, Z∗
6p∼0.7, Z∗

6d∼0.4, Z∗
7s∼0.3. Thus, Bcc′ , Bcv, and Bvv′ contributions

are negligible for the “chemical accuracy” of calculation. Therefore, the
above made estimates provide us a good background for approximating the
Breit interaction by a one-electron GRECP operator that should work well
both for actinides and for superheavy elements. The numerical tests of the
GRECPs accounting for the Breit effects are discussed in the next section.
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TABLE 6. Transition Energies (TE) between states averaged over the relativistic con-
figurations of E114 (in cm−1). See Table 2.

HFDB 22e- Ionic 22e-RECP 22e-PP

Fermi GRECP 22e-RECP of Nash of Seth

298 et al. et al.

Configuration TE Absolute errors

6d4
3/26d6

5/27s2
1/27p2

1/2 →
6d4

3/26d6
5/27s2

1/27p1
1/27p1

3/2 29093 -46 211 449 -457

6d4
3/26d6

5/27s2
1/27p1

1/28s1
1/2 41211 -51 53 -333 -348

6d4
3/26d6

5/27s2
1/27p1

1/28p1
1/2 48149 -44 114 11 -318

6d4
3/26d6

5/27s2
1/27p1

1/27d1
3/2 52230 -44 149 115 -320

6d4
3/26d6

5/27s2
1/27p1

1/26f1
5/2 57618 -43 143 86 -318

6d4
3/26d6

5/27s2
1/27p1

1/25g1
7/2 60094 -43 143 86 -317

6d4
3/26d6

5/27s2
1/27p1

1/2 64483 -43 143 86 -317

6d4
3/26d6

5/27s2
1/27p2

3/2 66669 -52 535 1209 -926

6d4
3/26d6

5/27s2
1/27p1

3/28s1
1/2 81879 -64 377 374 -834

6d4
3/26d6

5/27s2
1/27p1

3/2 106776 -53 503 969 -808

6d4
3/26d6

5/27s2
1/28s2

1/2 108893 -82 174 -725 -718

6d4
3/26d6

5/27s2
1/28s1

1/2 136567 -72 285 -241 -680

6d4
3/26d6

5/27s2
1/2 197486 -45 547 853 -584

6d4
3/26d6

5/27s1
1/27p2

1/27p1
3/2 102896 96 929 6650 -327

6d4
3/26d6

5/27s1
1/27p2

1/28s1
1/2 115405 59 754 5987 -243

6d4
3/26d6

5/27s1
1/27p2

1/2 138842 73 848 6439 -206

6d4
3/26d5

5/27s2
1/27p2

1/27p1
3/2 97736 472 -631 -3156 -28

6d4
3/26d5

5/27s2
1/27p2

1/28s1
1/2 112486 473 -830 -4091 83

6d4
3/26d5

5/27s2
1/27p2

1/2 136356 487 -732 -3647 122

6d3
3/26d6

5/27s2
1/27p2

1/27p1
3/2 133837 391 -746 -2821 -675

6d3
3/26d6

5/27s2
1/27p2

1/28s1
1/2 149162 380 -952 -3758 -579

6d3
3/26d6

5/27s2
1/27p2

1/2 173108 391 -855 -3309 -541

3. Results and Discussion

For all-electron calculations, we used the atomic HFDB code [35, 36] which
allows one to account for the Breit interactions both in the framework of
the first-order perturbation theory (PT-1) and by the self-consistent way
as well as to account for different models of nuclear charge distribution.
For test calculations with (G)RECPs, the atomic Hartree-Fock code in
the jj-coupling scheme (hfj) [17] was used (that was quite sufficient for
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TABLE 7. Transition Energies (TE) between states averaged over the nonrelativistic
configurations of uranium (in cm−1). See footnotes in Tables 1 and 2.

HFDB HFDB HFD+B HFD

Fermi Point Fermi Fermi 32e-GRECP

238 238 238

Transition TE Absolute errors

5f37s26d1 → 5f37s27p1 7516 -40 0 -93 5

5f37s2 36289 -68 0 -62 9

5f37s16d2 13124 97 0 78 -7

5f37s16d17p1 17200 75 0 14 -1

5f37s16d1 42328 63 0 44 0

5f36d2 54576 177 0 138 -6

5f37s26d1 → 5f47s2 15780 76 2 627 -363

5f47s2 → 5f47s16d1 15010 78 0 43 3

5f47s17p1 14932 62 0 21 -3

5f47s1 38813 50 -1 50 -3

5f46d2 33792 147 1 82 6

5f46d17p1 32115 146 0 79 2

5f46d1 53379 148 0 108 1

5f37s26d1 → 5f27s26d2 4640 -85 -1 -779 362

5f27s26d2 → 5f27s26d17p1 12809 -44 0 -118 11

5f27s26d1 42793 -71 0 -83 15

5f27s16d3 10480 113 0 104 -12

5f27s16d27p1 19217 87 0 15 -1

5f27s16d2 45352 75 0 50 0

5f26d3 54611 204 0 168 -12

5f37s26d1 → 5f17s26d3 31450 -176 -2 -1673 680

5f17s26d3 → 5f17s26d27p1 18326 -48 0 -137 11

5f17s26d2 49329 -75 0 -96 16

5f17s16d4 7331 127 0 124 -15

5f17s16d37p1 21038 98 0 18 -1

5f17s16d3 48001 87 0 57 0

5f16d4 53806 230 0 196 -15

5f37s26d1 → 5f5 99459 252 4 1126 -671
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TABLE 8. Transition Energies (TE) between states averaged over the nonrelativistic
configurations of plutonium (in cm−1). See footnotes in Tables 1 and 2.

HFDB HFDB HFD+B HFD

Fermi Point Fermi Fermi 34e-GRECP

244 244 244

Transition TE Absolute errors

5f67s2 → 5f67s16d1 17164 96 0 53 -2

5f67s17p1 15678 76 0 19 -1

5f67s1 39853 61 0 47 -1

5f66d1 56794 183 0 114 -2

5f67p1 66677 172 -1 71 1

5f67s2 → 5f77s1 43691 159 4 504 -377

5f77s1 → 5f76d1 19877 67 0 54 -1

5f77p1 14816 68 -1 62 -6

5f7 34957 70 -1 96 -9

5f67s2 → 5f57s26d1 -3099 -103 -2 -704 414

5f57s26d1 → 5f57s27p1 6743 -50 0 -93 10

5f57s16d2 15044 120 0 82 -10

5f57s16d17p1 18246 94 0 17 0

5f57s2 35910 -84 0 -61 14

5f57s16d1 43764 80 0 48 1

5f67s2 → 5f47s26d2 17425 -213 -2 -1545 807

5f47s26d2 → 5f47s26d17p1 12434 -55 0 -116 16

5f47s16d3 12221 141 0 105 -16

5f47s16d27p1 20405 109 0 18 -1

5f47s26d1 42841 -88 0 -77 19

5f47s16d2 46949 95 0 55 0

5f67s2 → 5f37s26d3 62648 -328 -3 -2496 1136

5f37s26d3 → 5f37s16d4 8926 159 0 124 -20

5f37s26d27p1 18247 -59 0 -133 18

5f37s16d37p1 22323 123 0 21 -1

5f36d5 24140 295 0 231 -36

5f37s26d2 49677 -92 0 -89 22

5f37s16d3 49694 109 0 63 0
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TABLE 9. Transition Energies (TE) between terms of E112 (in cm−1). See footnotes
in Tables 1 and 2.

20e- 20e-

HFDB HFD+B HFD 52e- 20e- Ionic RECP PP

Fermi Fermi Fermi GRECP GRECP 20e- of of

296 296 296 RECP Nash Seth

et al. et al.

Term TE Absolute errors

6d4
3/26d6

5/27s1
1/27p1

1/2 J=0 →
J=1 9468 0 54 9 42 59 288 27

6d4
3/26d5

5/27s2
1/27p1

1/2 J=2 →
J=3 1958 0 25 6 16 43 165 11

6d3
3/26d6

5/27s2
1/27p1

1/2 J=1 →
J=2 -8145 1 -92 3 172 40 -558 100

6d4
3/26d5

5/27s2
1/27p1

3/2 J=1 →
J=2 -1919 0 -24 -5 34 14 -42 16

J=3 39 0 -17 0 74 56 4 78

J=4 -3166 0 -27 -6 9 -13 -69 -23

studying errors of the one-electron (G)RECP operators). Both the codes
are numerical that allows us to exclude the errors due to the incompleteness
of basis sets when estimating accuracy of different RECPs and GRECPs.

The transition energies between states averaged over the low-lying con-
figurations of SHEs 112, 113, 114 and actinides U, Pu are presented in
tables 1, 3, 5 and 7, 8, respectively. One can see that the errors due to
the point nuclear model reach a few thousand wave numbers for the SHEs
and several hundred wave numbers for the actinides. The considered small
variations in the nuclear charge distribution (including the nuclear size) in
the framework of finite-size nuclei lead to change of the transition energies
for the studied SHEs less than on 60 cm−1. The differences between the
results with the PT-1 and self-consistent ways of accounting for the Breit
interaction are within 7 cm−1 for SHEs and actinides whereas neglecting
the Breit effects leads to the errors up to a few thousand wave numbers for
the studied actinides and several hundred wave numbers for the SHEs.

The GRECP errors in reproducing the results of the all-electron HFDB
calculations with the Fermi nuclear model are collected into two groups.
First, the GRECP errors for transitions without change in the occupation
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TABLE 10. Transition Energies (TE) between terms of uranium (in cm−1). See
footnotes in Tables 1 and 2.

HFDB HFD+B HFD 32e- 32e- 24e-SfC 24e-SfC

Fermi Fermi Fermi GRECP GRECP GRECP GRECP

238 238 238 TS-corr. TS-corr.

(j) (k) (j,k)

Term TE Absolute errors

5f3
5/26d1

3/27s2
1/2 J=0 →

J=1 18576 0 74 137 -15 67 -102

J=2 9710 0 22 140 -12 117 -53

J=3 7749 0 66 -57 -9 -103 -49

J=4 6691 0 69 -77 -5 -121 -40

J=5 -8005 0 83 -439 8 -470 31

J=6 -10767 0 69 -416 31 -431 69

5f3
5/25f1

7/27s2
1/2 J=1 →

J=2 4399 0 -5 159 -35 165 -51

J=3 2840 0 4 109 -23 113 -33

J=4 3468 0 11 134 -29 139 -42

J=5 2785 0 22 117 -24 121 -36

J=6 4606 1 29 181 -42 188 -62

J=7 -6030 1 78 -176 12 -186 26

J=8 -5542 1 90 -149 6 -158 17

5f2
5/26d2

3/27s2
1/2 J=0 →

J=1 -19109 0 23 -432 -61 -426 -8

J=2 -15310 0 1 -304 -45 -288 5

J=3 -23656 0 41 -598 -77 -593 -8

J=4 -26013 0 21 -638 -69 -618 23

J=5 -32544 0 36 -754 -86 -732 21

J=6 -39562 0 -2 -724 -57 -671 82

(j) Term-Splitting (TS) correction generated in the present work from HFDB calculation
with Fermi nuclear charge distribution.

(k) Self-Consistent Generalized Relativistic Effective Core Potential (SfC GRECP)
generated in [29] from HFDB calculation with Fermi nuclear charge distribution.

number of the 6d shell for the SHEs (tables 2, 4 and 6) and the 5f shell for
the actinides (tables 7 and 8) are relatively small whereas the corresponding
errors of the other tested RECPs for the SHEs are significantly higher. The
same number of electrons is explicitly treated in calculations with different
(G)RECP versions for a given atom. Here and further, we do not discuss the
particular case of the 52e-GRECP for E112 if the opposite is not explicitly
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TABLE 11. Matrix Elements (ME) of < r2 > for some spinors from states averaged
over the relativistic configurations of E112 (in a.u.). See footnotes in Tables 1 and 2.

20e-

HFDB HFD 52e- 20e- Ionic RECP 20e-PP

Fermi Fermi GRECP GRECP 20e- of Nash of Seth

296 296 RECP et al. et al.

Conf., spinor ME Absolute errors

6d4
3/26d6

5/27s2
1/2

6d3/2 3.150 -0.005 0.001 0.024 0.030 0.066 0.072

6d5/2 3.781 0.002 0.001 0.024 0.032 0.074 0.057

7s1/2 7.157 -0.023 0.000 0.005 -0.099 -0.425 0.024

6d4
3/26d6

5/27s1
1/27p1

1/2

6d3/2 3.144 -0.004 0.001 0.023 0.028 0.064 0.071

6d5/2 3.648 0.002 0.001 0.024 0.031 0.069 0.057

7s1/2 6.898 -0.020 0.000 0.002 -0.097 -0.394 0.022

7p1/2 13.023 -0.116 -0.001 0.005 -0.131 -0.841 0.055

6d4
3/26d5

5/27s2
1/27p1

1/2

6d3/2 3.057 -0.004 0.001 0.023 0.030 0.071 0.071

6d5/2 3.522 0.002 0.001 0.025 0.035 0.080 0.059

7s1/2 6.739 -0.019 0.000 0.001 -0.092 -0.361 0.025

7p1/2 11.259 -0.087 -0.002 -0.001 -0.105 -0.597 0.049

stated. The RECPs of other groups for uranium were tested in paper [19]. It
should be noted that they do not take into account the large contribution
from the Breit interaction. The Breit effects were also not considered at
the generation stage of the RECP of Nash et al. [37]. However, it can not
explain the large errors for this RECP in tables 2, 4 and 6. It is not clear
from paper [37] which nuclear model was used there. The Breit interaction
was taken into account only in the PT-1 approximation at the generation
stage of the PseudoPotential (PP) of Seth et al. However, the corresponding
changes in the transition energies are negligible in comparison with the PP
errors.

Second, the GRECP errors for transitions with excitation of one 6d elec-
tron for the SHEs or one 5f electron for the actinides are about 400 cm−1.
These errors have a systematic nature (unlike the corresponding errors for
the tested RECPs of other groups) and are connected with the fact that
the OMC 6d shell for the SHEs and the OMC 5f shell for the actinides
in the present GRECP versions are described with the help of nodeless
pseudospinors. Obviously, these errors can be reduced significantly if one
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TABLE 12. Radial integrals 2
∫∞

Rn
| fnvlj(r)[fnvlj(r) − ϕ̃nvlj(r)] | dr for valence

spinors from states averaged over the relativistic configurations of E112 (in a.u.)
where fnvlj is the large component of the Dirac spinor from HFDB calculation
with the Fermi nuclear charge distribution for A = 296, ϕ̃nvlj is the radial part
of the corresponding pseudospinor (or the large component of the Dirac spinor),
Rn is the radius of the last node for the spinor. See footnotes in Tables 1 and 2.

HFD 52e- 20e- Ionic 20e-RECP 20e-PP

Fermi GRECP GRECP 20e- of Nash of Seth

296 RECP et al. et al.

Conf., spinor Integrals

6d4
3/26d6

5/27s2
1/2

7s1/2 0.0037 0.0000 0.0006 0.0131 0.0590 0.0024

6d4
3/26d6

5/27s1
1/27p1

1/2

7s1/2 0.0036 0.0001 0.0002 0.0137 0.0581 0.0022

7p1/2 0.0087 0.0001 0.0004 0.0091 0.0610 0.0047

6d4
3/26d5

5/27s2
1/27p1

1/2

7s1/2 0.0034 0.0001 0.0003 0.0134 0.0546 0.0026

7p1/2 0.0079 0.0002 0.0002 0.0088 0.0514 0.0050

includes the 5d, 5f electrons for the SHEs and the 4f electrons for the
actinides explicitly in the GRECP calculations (see the 52e-GRECP re-
sults for E112 in table 2). The corresponding pseudospinors can be then
“frozen” in these GRECP calculations with the help of the level-shift tech-
nique [19, 31] to reduce the computational efforts. Alternatively, the self-
consistent GRECP method described in section 2.1 can be used.

The energies of splittings between terms are considered in table 9 for
E112 and table 10 for U. The errors of the RECP and GRECP approx-
imations and the errors caused by neglecting the Breit effects are within
200 cm−1 for E112 (except for the RECP of Nash et al.). The Breit contri-
butions to the term-splitting energies for U are within 100 cm−1 whereas
the GRECP errors are up to 750 cm−1. The latter can be reduced dras-
tically by applying the term-splitting correction (see section 2.2 and table
10). The results show that addition of the term-splitting correction allows
one to reduce the most serious errors up to 10 times for the splittings
into terms, thus reducing the errors for the energies of transition between
terms to the same order of magnitude as the errors for transitions between
the states averaged over the configurations (when only the self-consistent
GRECP is applied). Obviously, any transition between two different terms
having different occupation numbers of the OMC shell, N1

omc and N2
omc,
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TABLE 13. One-electron energies, ε, for some spinors from states averaged over the
relativistic configurations of E112 (in a.u.). See footnotes in Tables 1 and 2.

20e-

HFDB HFD 52e- 20e- Ionic RECP 20e-PP

Fermi Fermi GRECP GRECP 20e- of Nash of Seth

296 296 RECP et al. et al.

Conf., spinor ε Absolute errors

6d4
3/26d6

5/27s2
1/2

6d3/2 0.5624 0.0003 0.0000 0.0001 -0.0026 -0.0112 -0.0037

6d5/2 0.4432 -0.0011 0.0000 -0.0001 -0.0026 -0.0095 -0.0009

7s1/2 0.4497 0.0014 0.0000 -0.0003 0.0042 0.0272 0.0001

6d4
3/26d6

5/27s1
1/27p1

1/2

6d3/2 0.6148 -0.0001 0.0000 -0.0001 -0.0025 -0.0118 -0.0039

6d5/2 0.4870 -0.0017 0.0000 0.0000 -0.0024 -0.0108 -0.0009

7s1/2 0.5217 0.0011 0.0000 0.0000 0.0048 0.0278 0.0004

7p1/2 0.2248 0.0015 0.0000 -0.0001 0.0012 0.0114 -0.0004

6d4
3/26d5

5/27s2
1/27p1

1/2

6d3/2 0.6663 -0.0002 0.0000 -0.0002 -0.0042 -0.0173 -0.0043

6d5/2 0.5314 -0.0018 0.0000 -0.0001 -0.0040 -0.0159 -0.0014

7s1/2 0.5253 0.0010 0.0000 0.0000 0.0044 0.0258 0.0001

7p1/2 0.2653 0.0017 0.0000 0.0000 0.0011 0.0110 -0.0005

can be presented as a combination of three consequent transitions: transi-
ton from the first term to the average over the configuration with the same
N1

omc, transition between averages over configurations with N1
omc and N2

omc

and transition from the latter to the second term with N2
omc. Therefore,

applying of both the self-consistent and term-spitting GRECP corrections
to treatment of transitions between any terms allows one to reduce dramat-
ically the (G)RECP approximation errors without increasing the number
of explicitly treated core electrons of a considered d, f -element.

In tables 11 and 12, the matrix elements of < r2 > and radial integrals
2
∫∞
Rn
| fnvlj(r)[fnvlj(r)−ϕ̃nvlj(r)] | dr (where fnvlj is the large component of

the Dirac spinor, ϕ̃nvlj is the radial part of the corresponding pseudospinor
and Rn is the radius of the last spinor node) are considered for the cases
of spinors from different configurations of E112. The errors in these matrix
elements and integrals characterize the quality of reproducing the electronic
density in outer core and valence regions of the atom. One can see that the
GRECP allows one to reproduce the electronic density in the valence region
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(the 7s1/2 and 7p1/2 spinors) with very high accuracy. The one-electron
energies for spinors from different configurations of E112 are presented in
table 13. Similar conclusion can be made in the latter case.

4. Conclusions

Different nuclear models and contributions of the Breit interaction between
valence, inner and outer core shells of uranium, plutonium and superheavy
elements E112, E113, and E114 are considered in the framework of all-
electron four-component and (G)RECP methods. It is concluded on the
basis of the performed calculations and theoretical analysis that the Breit
contributions with inner core shells must be taken into account in calcu-
lations of actinide and SHE compounds with “chemical accuracy” whereas
those between valence and outer core shells can be omitted.

The differences in the atomic energies between the cases of the PT-1
and self-consistent ways of treating the Breit interaction as well as small
variations in the nuclear charge distribution in the framework of finite-size
nuclei are not essential for the considered accuracy of calculations. However,
the difference between the point and finite nuclear models is important for
the valence (transition) energies. The effects of accounting for the Breit
interaction and finite nuclear model can be simulated by GRECPs with
very good accuracy when only Coulomb interaction between the explicitly
treated electrons is taken into account. Thus, the GRECP method allows
one to carry out reliable calculations of actinides, SHEs and their com-
pounds at the level of “chemical accuracy”.
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Abstract. Investigation of P,T-parity nonconservation (PNC) phenomena
is of fundamental importance for physics. Experiments to search for PNC
effects have been performed on TlF and YbF molecules and are in progress
for PbO and PbF molecules. For interpretation of molecular PNC experi-
ments it is necessary to calculate those needed molecular properties which
cannot be measured. In particular, electronic densities in heavy-atom cores
are required for interpretation of the measured data in terms of the P,T-odd
properties of elementary particles or P,T-odd interactions between them.
Reliable calculations of the core properties (PNC effect, hyperfine structure
etc., which are described by the operators heavily concentrated in atomic
cores or on nuclei) usually require accurate accounting for both relativistic
and correlation effects in heavy-atom systems. In this paper, some basic as-
pects of the experimental search for PNC effects in heavy-atom molecules
and the computational methods used in their electronic structure calcu-
lations are discussed. The latter include the generalized relativistic effec-
tive core potential (GRECP) approach and the methods of nonvariational
and variational one-center restoration of correct shapes of four-component
spinors in atomic cores after a two-component GRECP calculation of a
molecule. Their efficiency is illustrated with calculations of parameters of
the effective P,T-odd spin-rotational Hamiltonians in the molecules PbF,
HgF, YbF, BaF, TlF, and PbO.
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1. Introduction

It is well recognized that polar diatomics containing heavy elements are
very promising objects for the search of a break of inversion symmetry (P)
and time-reversal invariance (T). Although the search for P,T-parity non-
conservation (PNC) effects in heavy atoms (and molecules) has produced no
results so far, there are serious reasons to search for them with the presently
accessible (or expected) level of experimental sensitivity. The observation
of non-zero P,T-odd effects at this level would indicate the presence of so-
called “new physics”[1] beyond the Standard Model (SM) of electroweak
and strong interactions [2, 3, 4, 5] that is certainly of fundamental im-
portance. Despite well known drawbacks and unresolved problems of the
Standard Model (radiative corrections to the Higgs mass are quadratically
divergent; rather artifiial Higgs mechanism of symmetry breaking is not yet
verified in experiment; the problem of CP-violation is not well understood,
where “C” is charge conjugation symmetry etc.) there are no experimental
data available which would be in direct contradiction with this theory (see
section 3 and papers [6, 1] for more details and references). In turn, some
popular extensions of the Standard Model, which allow one to overcome its
disadvantages, are not confirmed experimentally.

A crucial feature of PNC experiments in atoms, molecules, liquids or
solids is that for interpretation of measured data in terms of fundamental
constants of the P,T-odd interactions, one must calculate those properties
of the systems, which establish a connection between the measured data
and studied fundamental constants (see section 4). These properties are
described by operators heavily concentrated near or on heavy nuclei; they
cannot be measured and their theoretical study is not a trivial task. During
the last several years the significance of (and requirement for) ab initio
calculation of electronic structure providing a high level of reliability and
accuracy in accounting for both relativistic and correlation effects has only
increased (see sections 3 and 10).

The main goal of the paper is to discuss the present status of relativistic
calculations of P,T-odd properties in heavy-atom molecules, the two-step
methodology used in these calculations, and the accuracy of this method.
The historical background of the PNC study in atoms and molecules, its
current status and some general remarks on the PNC experiments are pre-
sented in sections 2, 3 and 4, correspondingly. The ab initio relativistic
methods and the two-step techniques of calculation designed for studying
PNC properties in heavy-atom molecules are discussed in sections 5 and
6. The calculations of PNC properties and hyperfine structure in mole-
cules PbF, HgF, YbF, BaF, TlF and PbO are presented in sections 7–10.
Concluding remarks are outlined in section 11.
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2. Study of P- and T-parity nonconservation effects in heavy-
atom molecules: Historical background

After discovery of the combined charge and space parity violation, or CP-
violation, in K0

L-meson decay [7], the search for the electric dipole mo-
ments (EDMs) of elementary particles has become one of the most fun-
damental problems in physics [6, 8, 9, 10, 1]. A permanent EDM is in-
duced by the weak interaction that breaks both the space symmetry in-
version and time-reversal invariance [11]. Considerable experimental ef-
fort has been invested in probing for atomic EDMs induced by EDMs of
the proton, neutron and electron, and by P,T-odd interactions between
them. The best available restriction for the electron EDM, de, was ob-
tained in the atomic Tl experiment [12], which established an upper limit
of |de| < 1.6×10−27 e·cm, where e is the charge of the electron. The bench-
mark upper limit on a nuclear EDM is obtained in atomic experiment on
199Hg [13], |dHg| < 2.1 × 10−28 e·cm, from which the best restriction on
the proton EDM, |dp| < 5.4 × 10−24 e·cm, was also recently obtained by
Dmitriev & Sen’kov [14] (the previous upper limit on the proton EDM was
obtained in the TlF experiment, see below).

Since 1967, when Sandars suggested the use of polar heavy-atom mole-
cules in the experimental search for the proton EDM [15], molecules have
been considered the most promising objects for such experiments. Sandars
also noticed earlier [16] that the P- and P,T-parity nonconservation ef-
fects are strongly enhanced in heavy atoms due to relativistic and other
effects. For example, in paramagnetic atoms the enhancement factor for
an electron EDM, datom/de, is roughly proportional to α2Z3αD, where
α ≈ 1/137 is the fine structure constant, Z is the nuclear charge and αD

is the atomic polarisability. It can be of order 100 or greater for highly
polarizable heavy atoms (Z ≥ 50). Furthermore, the effective intramole-
cular electric field acting on electrons in polar molecules can be five or
more orders of magnitude higher than the maximal field accessible in a
laboratory. The first molecular EDM experiment was performed on TlF
by Sandars et al. [17] (Oxford, UK); it was interpreted as a search for the
proton EDM and other nuclear P,T-odd effects. In 1991, in the last series
of the 205TlF experiments by Hinds et al. [18] (Yale, USA), the restriction
dp = (−4± 6)×10−23 e·cm was obtained (this was recalculated in 2002 by
Petrov et al. [19] as dp = (−1.7± 2.8)×10−23 e·cm).

In 1978 the experimental investigation of the electron EDM and other
PNC effects was further stimulated by Labzowsky et al. [20, 21] and Sushkov
& Flambaum [22] who clarified the possibilities of additional enhancement
of these effects in diatomic radicals like BiS and PbF due to the close-
ness of levels of opposite parity in Ω-doublets having a 2Π1/2 ground state.
Then Sushkov et al. [23] and Flambaum & Khriplovich [24] suggested the
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use of Ω-doubling in diatomic radicals with a 2Σ1/2 ground state for such
experiments and the HgF, HgH and BaF molecules were first studied semi-
empirically by Kozlov [25]. At the same time, the first two-step ab initio
calculation of PNC effects in PbF initiated by Labzowsky was finished by
Titov et al. [26, 27]. A few years later, Hinds started an experimental search
for the electron EDM in the YbF molecule, on which the first result was ob-
tained by his group in 2002 (Sussex, UK) [28], de=(−0.2±3.2)×10−26e·cm.
Though that restriction is worse than the best current de datum (from
the Tl experiment, see above), nevertheless, it is limited by only counting
statistics, as Hinds et al. pointed out in [28].

A new series of electron EDM experiments on YbF by Hinds’ group
(Imperial College, UK) are in progress and a new generation of electron
EDM experiments using a vapor cell, on the metastable a(1) state of PbO, is
being prepared by the group of DeMille (Yale, USA). The unique suitability
of PbO for searching for the elusive de is demonstrated by the very high
projected statistical sensitivity of the Yale experiment to the electron EDM.
In prospect, it allows one to detect de of order of 10−29 ÷ 10−31 e·cm [29],
two–four orders of magnitude lower than the current limit quoted above.
Some other candidates for the EDM experiments, in particular, HgH, HgF,
TeO∗, and HI+ are being discussed and an experiment on PbF is planned
(Oklahoma Univ., USA).

3. Present status of the electron EDM search

As is mentioned in the introduction, the observation of a non-zero EDM
would point out the presence of so called “new physics” (see [30, 1] and
references) beyond the Standard Model [2, 3, 4, 5, 31] or CP violation in the
QCD sector of SM, SU(3)C . The discovery of a lepton EDM (electron EDM
in our case) would have an advantage as compared to the cases of neutron or
proton EDMs because the latter are not considered as elementary particles
within the SM and its extensions.

In Table 1 some estimates for the electron EDM predicted by different
theoretical models are given (e.g., see [6] for more details). One can see
from the table that the most conservative estimate is given by the Stan-
dard Model. This is explained by severe cancellations and suppressions of
the contributions producing the electron EDM within the SM. In turn, the
“new physics” (extensions of the Standard Model: supersymmetry (SUSY)
[32, 33, 1] multi-Higgs [34, 35, 36], left-right symmetry [37, 35, 33], lepton
flavor-changing [38, 39] etc.) is very sensitive to the EDMs of elementary
particles. This is especially true for the minimal (“naive”) SUSY model,
which predicts an electron EDM already at the level of 10−25e·cm. How-
ever, the best experimental estimate on the electron EDM, 1.6×10−27e·cm,
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TABLE 1. Prediction for the electron EDM, |de|,
in popular theoretical models

Model |de| (in e·cm)

Standard Model < 10−38

Left-right symmetric 10−28 − 10−26

Lepton flavor-changing 10−29 − 10−26

Multi-Higgs 10−28 − 10−27

Supersymmetric ≤ 10−25

Experimental limit[12] < 1.6×10−27

obtained in the experiment on the Tl atom [12], is almost two orders of
magnitude smaller. More sophisticated SUSY models (which are extremely
popular among theorists because they allow one to overcome serious theo-
retical drawbacks of SM, explain the “gauge hierarchy problem”, solve the
problem of dark matter in astrophysics etc.) still predict the electron EDM
at the level of 10−27e·cm or somewhat smaller. Since the Tl experiment
is finished now, an intriguing expectation is connected with the ongoing
experiment on the a(1) state of the PbO molecule, which is expected to
be sensitive to the electron EDM at least two orders of magnitude smaller.
Thus, the most popular extensions of SM can be severely examined by
this experiment, i.e. even the result compatible with zero will dramatically
influence their status.

4. General remarks on experimental search for EDMs in atoms
and molecules

The experiments to search for EDMs in atoms and molecules are carried
out using different approaches [40, 6]. The experimental technique depends
on the properties of the atoms and molecules used in such an experiment.
These properties influence the atomic and molecular sources, resonance re-
gion and detector. For example, for diatomic radicals like YbF or PbF the



258 A. V. TITOV ET AL.

experiments on molecular beams are most reasonable, while for molecules
with closed electronic shells in the ground state like PbO the EDM mea-
surements can be carried out in optical cells.

Nevertheless, the statistical sensitivity of the experiments to the electron
or proton EDM usually depends on some parameters common for all such
EDM experiments. The easiest way to see this is to apply the Heisenberg
uncertainty principle to evaluate the sensitivity of the EDM measurement.
Suppose that the EDM of a molecule is measured in some electric field, �E.
(Do not confuse the EDM of a polar molecule with the large conventional
dipole moment of the molecule, which averages to zero in the absence of
external electric field in the laboratory coordinate system. In contrast to
the latter, the (vanishingly small) molecular EDM can exist only due to
P,T-odd interactions; it is permanent and its direction depends on the sign
of the projection of the total electronic momentum on the molecular axis.
See [6] for more details.) Thus the energy of interaction of the molecular
EDM, �d = d�σ (where �σ is a unit vector along the total angular momentum
of the molecule), with the electric field is �d · �E (linear Stark effect) and the
energy difference between the levels with opposite directions of the total
angular momentum (leading to the contributions of different signs) is 2�d· �E.
If a measurement is carried out by detecting the energy shift during a time
T , the uncertainty in the d determination is δd = �/(2T �E · �σ). For such
measurement on N uncorrelated molecules one, obviously, has

δd = �/(2T
√

N �E · �σ) = �/(2TEσ

√
τdN/dt) ,

where dN/dt is the counting rate, Eσ = �E · �σ, and τ is the total measure-
ment time (usually τ � T and T is limited by the coherence time of the
considered system). Up to now we deal with the molecular EDM �d. Let
us write d = Gde, where de is the value of the electron EDM (the same is
valid, of course, for the proton EDM) and G is the proportionality coef-
ficient (usually called the enhancement factor). Thus, the final expression
for δde is

δde =
�

2TGEσ

√
τdN/dt

=
�

2TW
√

τdN/dt
, (4.1)

where the value W = GEσ is the effective electric field in the molecule,
which can be interpreted as the field that should be applied along the
EDM of a free electron to give the energy shift 2Wde ≡ 2Eσd .

From expression (4.1), the basic conditions which should be met in any
prospective EDM experiment can be derived:

1. The counting rate (dN/dt) should be made as high as possible. From
this point of view the experiments on vapor cells, like that planned
for PbO, have a clear advantage as compared to beam experiments
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because molecular vapor density can be usually made much higher
than molecular beam density. Thus, in the experiment on the PbO cell
the counting rate is estimated to be of order 1011–1015 Hz [29], while
in the experiment on the YbF molecular beam the counting rate was
of order 103—104 Hz [28].

2. It is crucial to attain high coherence time T . In the beam experiments
that time is just the time of flight through the region with the electric
field. For a gas-dynamic molecular source the typical time of flight is
1−10 ms. On the other hand, for the PbO experiment in vapor cell T is
close to the lifetime of the excited (metastable) state a(1), T ≈ 0.1 ms.
So, the beam experiments have advantage in the coherence time.

3. It is also critical to have a high value of the effective electric field W ,
acting on the electron. The only way to know that parameter is to per-
form relativistic calculations. It is notable that the first semiempirical
estimates of this kind were performed by Sandars in [16, 15] for Cs and
TlF, correspondingly. In these papers the importance of accounting for
relativistic effects and using heavy atoms and heavy-atom molecules
in EDM experiments was first understood.

The expected energy difference, 2�d · �E is extremely small even for com-
pletely polarized heavy-atom molecules. Thus, in practice, the EDM experi-
ment is usually carried out in parallel and antiparallel electric and magnetic
( �B) fields. Interaction energy of the molecular magnetic moment, �µ, with
the magnetic field is much higher than that of the EDM with the electric
field and the energy differences are

2�µ · �B + 2�d · �E

and
2�µ · �B − 2�d · �E

for parallel and antiparallel fields, respectively (in practice, the atomic or
molecular spin precession is usually studied instead of direct measurement
of the energy shift, see [40]). When the electric field is reversed, the energy
shift, 4�d · �E = 4deW , points to the existence of the permanent molecular
EDM. The same measurement technique is applicable to studying other
P,T-odd interactions in atoms and molecules.

The electronic structure parameters describing the P,T-odd interactions
of electrons (sections 7, 8, and 10) and nucleons (section 9) including the in-
teractions with their EDMs should be reliably calculated for interpretation
of the experimental data. Moreover, ab initio calculations of some mole-
cular properties are usually required even for the stage of preparation of
the experimental setup. Thus, electronic structure calculations suppose a
high level of accounting for both correlations and relativistic effects (see be-
low). Modern methods of relativistic ab initio calculations (including very
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recently developed approaches) allow one to achieve the required high ac-
curacy. These approaches will be outlined and discussed in the following
sections.

5. Heavy-atom molecules: Computational strategies

The most straightforward method for electronic structure calculation of
heavy-atom molecules is solution of the eigenvalue problem using the Dirac-
Coulomb (DC) or Dirac-Coulomb-Breit (DCB) Hamiltonians [41, 42, 43]
when some approximation for the four-component wave function is chosen.

However, even applying the four-component single configuration (SCF)
approximation, Dirac-Fock (DF) or Dirac-Fock-Breit (DFB), to calculation
of heavy-atom molecules (followed by transformation of two-electron inte-
grals to the basis of molecular spinors is not always an easy task) because
a very large set of primitive atomic basis functions can be required for such
all-electron four-component SCF calculations (see [44]). Starting from the
Pauli approximation and Foldy–Wouthuysen transformation, many differ-
ent two-component approaches were developed in which only large com-
ponents are treated explicitly (e.g., see [45, 46, 47, 48] and references). In
addition, the approaches with perturbative treatment of relativistic effects
[49] have been developed in which a nonrelativistic wavefunction is used
as reference. During the last few years, good progress was also attained
in four-component techniques [50, 51, 52, 41] which allowed one to reduce
efforts in calculation and transformation of two-electron matrix elements
with small components of four-component molecular spinors. These devel-
opments are applied, in particular, in the dirac [53] and bertha [54, 55]
molecular programs. Thus, accurate DC(B) calculations of relatively simple
heavy-atom molecules can be performed on modern computers now.

The greatest computational savings are achieved when the two-compo-
nent relativistic effective core potential (RECP) approximation suggested
originally by Lee et al. [56] is used (e.g., see reviews [57, 58, 59]). There are
several reasons for using RECPs (including model potentials and pseudopo-
tentials) in calculations of complicated heavy-atom molecules, clusters and
solids. The RECP approaches allow one to exclude the large number of
chemically inactive electrons from molecular calculations and to treat ex-
plicitly only valence and outermost core electrons from the beginning. Then,
the oscillations of the valence spinors are usually smoothed in heavy-atom
cores simultaneously with excluding small components from the explicit
treatment. As a result the number of primitive basis functions can be re-
duced dramatically; this is especially important for calculation and trans-
formation of two-electron integrals when studying many-atomic systems
and compounds of very heavy elements including actinides and superheav-
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ies. The RECP method is based on a well-developed nonrelativistic tech-
nique of calculations; however, an effective spin-orbit interaction and other
scalar-relativistic effects are taken into account usually by means of radially-
local [57, 58, 59, 60], separable [61, 62, 63] or Huzinaga-type [64, 65, 66]
operators.

Correlation molecular calculations with RECPs are naturally performed
in the basis of spin-orbitals (and not of spinors as is in all-electron four-
component calculations) even for the cases when quantum electrodynam-
ics (two-electron Breit etc.) effects are taken into account [67, 44]. Note,
however, that the DCB technique with the separated spin-free and spin-
dependent terms also has been developed [68], but it can be efficiently
applied only in the cases when spin-dependent effects can be neglected
both for valence and for core shells. In the RECP method, the interac-
tions with the excluded inner core shells (spinors!) are described by spin-
dependent potentials whereas the explicitly treated valence and outer core
shells are usually described by spin-orbitals in molecular calculations. It
means that some “soft” way of accounting for the core-valence orthogonal-
ity constraints is applied in the latter case [69] (note, meantime, that the
strict core-valence orthogonality can be retrieved after the RECP calcula-
tion by using the restoration procedures described below). Another merit of
the RECP method is in its natural ability to account for correlations with
the explicitly excluded inner core electrons [70] (this direction is actively
developed during last years). The use of the molecular spin-orbitals and
the “correlated” RECPs allows one to reduce dramatically the expenses
at the stage of correlation calculation of heavy-atom molecules. These are
important advantages when a very high level of accounting for correlations
is required even in studying diatomics (e.g., see calculations of PbO de-
scribed in section 10). Thus, many complications of the DC(B) molecular
calculations are avoided when employing RECPs.

The “shape-consistent” (or “norm-conserving”) RECP approaches are
most widely employed in calculations of heavy-atom molecules though “ener-
gy-adjusted/consistent” pseudopotentials [58] by Stuttgart team are also
actively used as well as the Huzinaga-type “ab initio model potentials”
[66]. In plane wave calculations of many-atom systems and in molecular
dynamics, the separable pseudopotentials [61, 62, 63] are more popular
now because they provide linear scaling of computational effort with the
basis set size in contrast to the radially-local RECPs. The nonrelativistic
shape-consistent effective core potential was first proposed by Durand &
Barthelat [71] and then a modified scheme of the pseudoorbital construc-
tion was suggested by Christiansen et al. [72] and by Hamann et al. [73].

In a series of papers (see [69, 74, 75, 67, 70] and references) a generalized
RECP approach was developed that involves both radially-local, separable
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and Huzinaga-type potentials as its components in particular cases. It al-
lows one to attain very high accuracy of calculation of valence properties
and electronic densities in the valence region when treating outermost core
shells in calculations explicitly (see section 6 for more details).

Nevertheless, calculation of such properties as spin-dependent electronic
densities near nuclei, hyperfine constants, P,T-parity nonconservation ef-
fects, chemical shifts etc. with the help of the two-component pseudospinors
smoothed in cores is impossible. We should notice, however, that the above
core properties (and the majority of other properties of practical interest
which are described by the operators heavily concentrated within inner
cores or on nuclei) are mainly determined by electronic densities of the va-
lence and outer core shells near to, or on, nuclei. The valence shells can be
open or easily perturbed by external fields, chemical bonding etc., whereas
outer core shells are noticeably polarized (relaxed) in contrast to the inner
core shells. Therefore, accurate calculation of electronic structure in the
valence and outer core region is of primary interest for such properties.

For evaluation of the matrix elements of the operators concentrated on
(or close to) nuclei, proper shapes of the valence molecular four-component
spinors must be restored in atomic core regions after performing the RECP
calculation of that molecule. In 1959, a nonrelativistic procedure of restora-
tion of the orbitals from smoothed Phillips–Kleinman pseudoorbitals was
proposed [76] based on the orthogonalization of the latter to the original
atomic core orbitals. In 1985, Pacios & Christiansen [77] suggested a modi-
fied orthogonalization scheme in the case of shape-consistent pseudospinors.
At the same time, a simple procedure of “nonvariational” one-center restora-
tion (NOCR, see below) employing the idea of generation of equivalent
basis sets in four-component Dirac-Fock and two-component RECP/SCF
calculations was proposed and first applied in [26] to evaluation of the P,T-
odd spin-rotational Hamiltonian parameters in the PbF molecule. In 1994,
a similar procedure was used by Blöchl inside the augmentation regions
[78] in solids to construct the transformation operator between pseudoor-
bitals (“PS”) and original orbitals (“AE”) in his projector augmented-wave
method.

All the above restoration schemes are called “nonvariational” as com-
pared to the “variational” one-center restoration (VOCR, see below) proce-
dure proposed in [79, 80]. Proper behavior of the molecular orbitals (four-
component spinors) in atomic cores of molecules can be restored in the scope
of a variational procedure if the molecular pseudoorbitals (two-component
pseudospinors) match correctly the original orbitals (large components of
bispinors) in the valence region after the molecular RECP calculation. As
is demonstrated in [69, 44], this condition is rather correct when the shape-
consistent RECP is involved to the molecular calculation with explicitly
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treated outermost core orbitals and, especially, when the generalized RECP
operator is used since the above matching condition is implemented at their
generation.

At the restoration stage, a one-center expansion in the spherical har-
monics with numerical radial parts is most appropriate both for orbitals
(spinors) and for the description of “external” interactions with respect to
the core regions of a considered molecule. In the scope of the discussed two-
step methods for the electronic structure calculation of a molecule, finite
nucleus models and quantum electrodynamic terms including, in particular,
two-electron Breit interaction may be taken into account without problems
[67].

One-center expansion was first applied to whole molecules by Desclaux
& Pyykkö in relativistic and nonrelativistic Hartree-Fock calculations for
the series CH4 to PbH4 [81] and then in the Dirac-Fock calculations of
CuH, AgH and AuH [82] and other molecules [83]. A large bond length
contraction due to the relativistic effects was estimated. However, the ac-
curacy of such calculations is limited in practice because the orbitals of the
hydrogen atom are reexpanded on a heavy nucleus in the entire coordinate
space. It is notable that the RECP and one-center expansion approaches
were considered earlier as alternatives to each other [84, 85].

The applicability of the discussed two-step algorithms for calculation
of wavefunctions of molecules with heavy atoms is a consequence of the
fact that the valence and core electrons may be considered as two subsys-
tems, interaction between which is described mainly by some integrated
properties of these subsystems. The methods for consequent calculation of
the valence and core parts of electronic structure of molecules give us a
way to combine the relative simplicity and accessibility both of molecular
RECP calculations in gaussian basis set, and of relativistic finite-difference
one-center calculations inside a sphere with the atomic core radius.

The first two-step calculations of the P,T-odd spin-rotational Hamil-
tonian parameters were performed for the PbF radical about 20 years ago
[26, 27], with a semiempirical accounting for the spin-orbit interaction. Be-
fore, only nonrelativistic SCF calculation of the TlF molecule using the
relativistic scaling was carried out [86, 87]; here the P,T-odd values were
underestimated by almost a factor of three as compared to the later rel-
ativistic Dirac-Fock calculations. The latter were first performed only in
1997 by Laerdahl et al. [88] and by Parpia [89]. The next two-step calcula-
tion, for PbF and HgF molecules [90], was carried out with the spin-orbit
RECP part taken into account using the method suggested in [91].

Later we performed correlation GRECP/NOCR calculations of the core
properties in YbF [92], BaF [93], again in YbF [94] and in TlF [19]. In 1998,
first all-electron Dirac-Fock calculations of the YbF molecule were also
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performed by Quiney et al. [95] and by Parpia [96]. Recently we finished
extensive two-step calculations of the P,T-odd properties and hyperfine
structure of the excited states of the PbO molecule [97, 98]. One more two-
step calculation of the electron EDM enhancement effect was performed
very recently for the molecular ion HI+ [99].

We would like to emphasize here that the all-electron Dirac-Fock cal-
culations on TlF and YbF are, in particular, important for checking the
quality of the approximations made in the two-step method. The compari-
son of appropriate results, Dirac-Fock vs. RECP/SCF/NOCR, is, therefore,
performed in papers [94, 19] and discussed in the present paper.

In this paper, the main features of the two-step method are presented
and PNC calculations are discussed, both those without accounting for
correlation effects (PbF and HgF) and those in which electron correlations
are taken into account by a combined method of the second-order per-
turbation theory (PT2) and configuration interaction (CI), or “PT2/CI”
[100] (for BaF and YbF), by the relativistic coupled cluster (RCC) method
[101, 102] (for TlF, PbO, and HI+), and by the spin-orbit direct-CI method
[103, 104, 105] (for PbO). In the ab initio calculations discussed here, the
best accuracy of any current method has been attained for the hyper-
fine constants and P,T-odd parameters regarding the molecules containing
heavy atoms.

6. Two-step method of calculation of core properties

The two-step method consists of a two-component molecular RECP calcu-
lation at the first step, followed by restoration of the proper four-component
wave function in atomic cores at the second step. Though the method was
developed originally for studying core properties in heavy-atom molecules,
it can be efficiently applied to studying the properties described by the
operators heavily concentrated in cores or on nuclei of light atoms in other
computationally difficult cases, e.g., in many-atom molecules and solids.
The details of these steps are described below.

Generalized RECP When core electrons of a heavy-atom molecule do not
play an active role, the effective Hamiltonian with RECP can be presented
in the form

HEf =
∑

iv

[hSchr(iv) + UEf(iv)] +
∑

iv>jv

1
rivjv

. (6.1)

This Hamiltonian is written only for a valence subspace of electrons which
are treated explicitly and denoted by indices iv and jv. In practice, this sub-
space is often extended by inclusion of some outermost core shells for better
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accuracy but we will consider them as the valence shells below if these outer-
most core and valence shells are not treated using different approximations.
In Eq. (6.1), hSchr is the one-electron Schrödinger Hamiltonian

hSchr = −1
2

�∇2 − Zic

r
, (6.2)

where Zic is the charge of the nucleus decreased by the number of in-
ner core electrons. UEf in (6.1) is an RECP (relativistic pseudopoten-
tial) operator that is usually written in the radially-local (semi-local) [57]
or separable (e.g., see [63] and references) approximations when the va-
lence pseudospinors are smoothed in the heavy-atom cores. Contrary to the
four-component wave function used in Dirac-Coulomb(-Breit) calculations,
the pseudo-wave function in the RECP case can be both two- and one-
component. The use of the effective Hamiltonian (6.1) instead of all-electron
four-component Hamiltonians leads to the question about its accuracy. It
was shown both theoretically and in many calculations (see [69, 75] and
references) that the typical accuracy of the radially-local RECPs is within
1000–3000 cm−1 for transition energies between low-lying states though
otherwise is sometime stated (see [106, 107]).

In our two-step calculations the generalized RECP operator [69, 74] is
used that includes the operators of radially-local shape-consistent RECP,
separable pseudopotential and Huzinaga-type model potential as its compo-
nents. Additionally, the GRECP operator can include terms of other types,
known as “self-consistent” and two-electron “term-splitting” corrections
[108, 69, 74], which are important particularly for economical (but precise!)
treatment of transition metals, lanthanides and actinides. With these terms,
the accuracy provided by GRECPs can be even higher than the accuracy
of the frozen core approximation (employing the same number of explic-
itly treated electrons) because they can account for relaxation of explicitly
excluded (inner core) electrons [69, 75]. The theoretical background of the
GRECP concept is developed in a series of papers [69, 74, 75, 67, 44, 70]. In
contrast to other RECP methods, GRECP employs the idea of separating
the space around a heavy atom into three regions: inner core, outer core
and valence, which are first treated employing different approximations for
each. It allows one to attain practically any desired accuracy, while requir-
ing moderate computational efforts since the overall accuracy is limited in
practice by possibilities of correlation methods.

When innermost core shells must be treated explicitly, the four-compo-
nent versions of the GRECP operator can be used, in principle, together
with the all-electron relativistic Hamiltonians. The GRECP can describe
here some quantum electrodynamics effects (self-energy, vacuum polariza-
tion etc.) thus avoiding their direct treatment. One more remark is that the
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two-component GRECP operator can be applied even to very light atoms
when smoothing the large components of the four-component spinors only
in the vicinity of the nucleus just to account for relativistic effects (the
GRECP for hydrogen provides accuracy of treatment of very small rela-
tivistic contributions within 5%).

Nonvariational one-center restoration. The electronic densities evaluated
from the two-component pseudo-wave function very accurately reproduce
the corresponding all-electron four-component densities in the valence and
outer core regions not only for the state used in the GRECP generation but
also for other states which differ by excitations of valence electrons. This
is illustrated in figure 1 (see also tables 8 and 9 in [44]), where the radial
parts of the large components of the thallium bispinor and the correspond-
ing pseudospinor are compared for the state averaged over the relativistic
6s2

1/26p1
1/2 configuration, whereas the 21-electron GRECP is generated for

the state averaged over the nonrelativistic 6s16p16d1 configuration. That is
true also for the electronic densities obtained in the corresponding Dirac-
Coulomb(-Breit) and GRECP calculations accounting for correlation.

In the inner core region, the pseudospinors are smoothed, so that the
electronic density with the pseudo-wave function is not correct. When op-
erators describing properties of interest are heavily concentrated near or
on nuclei, their mean values are strongly affected by the wave function in
the inner region. The four-component molecular spinors must, therefore, be
restored in the heavy-atom cores.

All molecular spinors φp can be restored as one-center expansions in
the cores using the nonvariational one-center restoration (NOCR) scheme
[26, 27, 90, 92, 93, 94, 19, 97, 98] that consists of the following steps:

− Generation of equivalent basis sets of one-center four-component spinors(
fnlj(r)χljm

gnlj(r)χ2j−l,jm

)
and smoothed two-component pseudospinors

f̃nlj(r)χljm in finite-difference all-electron Dirac-Fock(-Breit) and
GRECP/SCF calculations of the same configurations of a considered
atom and its ions. The nucleus is usually modeled by a uniform charge
distribution within a sphere. The all-electron four-component hfdb
[109, 110, 111] and two-component grecp/hfj [112, 113] codes are
employed to generate two equivalent numerical basis sets used at the
restoration. These sets, describing mainly the atomic core region, are
generated independently of the basis set used for the molecular GRECP
calculations.

− The molecular pseudospinorbitals are then expanded in the basis set of
one-center two-component atomic pseudospinors (for r≤Rnocr, where
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Rnocr is the radius of restoration that should be sufficiently large for
calculating core properties with required accuracy),

φ̃p(x) ≈
Lmax∑

l=0

j=|l+1/2|∑

j=|l−1/2|

∑

n,m

cp
nljmf̃nlj(r)χljm , (6.3)

where x denotes spatial and spin variables. Note that for linear mole-
cules only one value of m survives in the sum for each φp.

− Finally, the atomic two-component pseudospinors in the molecular ba-
sis are replaced by equivalent four-component spinors and the expan-
sion coefficients from Eq. (6.3) are preserved:

φp(x) ≈
Lmax∑

l=0

j=|l+1/2|∑

j=|l−1/2|

∑

n,m

cp
nljm

(
fnlj(r)χljm

gnlj(r)χ2j−l,jm

)
. (6.4)

The molecular four-component spinors constructed this way are orthog-
onal to the inner core spinors of the atom, because the atomic basis func-
tions used in Eq. (6.4) are generated with the inner core shells treated as
frozen.

Variational one-center restoration. In the variational technique of one-
center restoration (VOCR) [79, 80], the proper behavior of the four-com-
ponent molecular spinors in the core regions of heavy atoms can be restored
as an expansion in spherical harmonics inside the sphere with a restoration
radius, Rvocr, that should not be smaller than the matching radius, Rc,
used at the RECP generation. The outer parts of spinors are treated as
frozen after the RECP calculation of a considered molecule. This method
enables one to combine the advantages of two well-developed approaches,
molecular RECP calculation in a gaussian basis set and atomic-type one-
center calculation in numerical basis functions, in the most optimal way.
This technique is considered theoretically in [80] and some results concern-
ing the efficiency of the one-center reexpansion of orbitals on another atom
can be found in [75].

The VOCR scheme can be used for constructing the core parts of the
molecular spinors (orbitals) instead of using equivalent basis sets as in the
NOCR technique. A disadvantage of the NOCR scheme is that molecu-
lar pseudoorbitals are usually computed in a spin-averaged GRECP/SCF
molecular calculation (i.e. without accounting for the effective spin-orbit
interaction) and the reexpansion of molecular pseudospinorbitals on one-
center atomic pseudospinors can be restricted in accuracy, as was noticed in
the GRECP/RCC/NOCR calculations [19] of the TlF molecule (see below).
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Figure 1. The radial parts of the large component of the 6p1/2 bispinor and the corre-
sponding pseudospinor obtained in equivalent Dirac-Fock and 21-electron GRECP/SCF
calculations for the state averaged over the relativistic 6s2

1/26p1
1/2 configuration of thal-

lium. Their difference is multiplied by 1000. The GRECP is generated for the state
averaged over the nonrelativistic 6s16p16d1 configuration.

With the restored molecular bispinors, the two-electron integrals on them
can be easily calculated. Thus, the four-component transfomation from the
atomic basis that is a time-consuming stage of four-component calculations
of heavy-atom molecules can be avoided. Besides, the VOCR technique de-
veloped in [92] for molecular pseudospinors can be reformulated for the case
of molecular pseudospinorbitals to reduce the complexity of the molecular
GRECP calculation as is discussed in section 5.

However, the most interesting direction in the development of the two-
step method is the possibility to “split” the correlation structure calcula-
tion of a molecule into two sequential correlation calculations: first, in the
valence region, where the outer core and valence electrons are explicitly
involved in the GRECP calculation; and then, in the core region, when
the outer and inner core space regions are only treated at the restora-
tion stage. Correlation effects in the valence and outer core regions (not
only valence parts of molecular orbitals but also configuration coefficients)
can be calculated, for example, by a combination of RCC and CI meth-
ods (see section 10) with very high accuracy. Then correlation effects in
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the inner and outer core regions (including the dipole-type relaxation of
atomic inner core shells in a molecule) can be taken into account using the
Dirac-Coulomb(-Breit) Hamiltonian and the one-center expansion. By in-
creasing the one-center restoration radius Rvocr , one can take into account
correlation effects in the intermediate region (outer core in our case) with
the required accuracy. Roughly speaking, the computational efforts for the
correlation structure calculations in the core and valence regions are added
when using the two-step approach, whereas in the conventional one-step
scheme, they have multiplicative nature.

Two-step calculation of molecular properties. To evaluate one-electron
core properties (hyperfine structure, P,T-odd effects etc.) employing the
above restoraton schemes it is sufficient to obtain the one-particle den-
sity matrix, {D̃pq}, after the molecular RECP calculation in the basis of
pseudospinors {φ̃p}. At the same time, the matrix elements {Wpq} of a
property operator W(x) should be calculated in the basis of equivalent
four-component spinors {φp}. The mean value for this operator can be
then evaluated as

〈W〉 =
∑

pq

D̃pqWpq . (6.5)

Only the explicitly treated valence shells are used for evaluating a core prop-
erty when applying Eq. (6.5) since the atomic frozen core (closed) shells
do not usually contibute to the properties of practical interest. However,
correlations with the core electrons explicitly excluded from the RECP cal-
culation can be also taken into account if the effective operator technique
[114] is applied to calculate the property matrix elements {WEf

pq } in the
basis set of bispinors {φp}. Then, in expression (6.5) one should only re-
place {Wpq} by {WEf

pq }. Alternatively, the correlations with the inner core
electrons can be, in principle, considered within the variational restoration
scheme for electronic structure in the heavy atom cores. Strictly speaking,
the use of the effective operators is correct when the molecular calculation
is carried out with the “correlated” GRECP (see [70]), in which the same
correlations with the excluded core electrons are taken into account at the
GRECP generation as they are in constructing {WEf

pq }. Nevertheless, the
use of the (G)RECP that does not account for the core correlations at the
molecular calculation stage can be justified if these correlations do not influ-
ence dramatically the electronic structure in the valence region. The latter
approximation was applied in the calculations of YbF and BaF molecules
described in the following section.

When contributions to 〈W〉 are important both in the core and valence
regions, the scheme for evaluating the mean value of W(x) can be as follows:
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− calculation of matrix elements with the molecular pseudospinorbitals
(which are usually linear combinations of atomic gaussians) over the
entire space region using conventional codes for molecular RECP cal-
culations (although the operator W can be presented in different forms
in calculations with the RECP and Dirac-Coulomb(-Breit) Hamiltoni-
ans),

〈̃W〉 =
∑

pq

D̃pq

∫

r<∞

φ̃p(x) W(x) φ̃q(x) dx ; (6.6)

− calculation of the inner part of the matrix element of the operator with
the same molecular pseudospinorbitals using the one-center expansion
for {φ̃p} (Rocr stands for Rnocr or Rvocr below, Rocr ≥ Rc):

〈̃W〉
<

=
∑

pq

D̃pq

∫

r<Rocr

φ̃p(x) W(x) φ̃q(x) dx ; (6.7)

− calculation of the inner part of the matrix element of the operator with
the restored molecular four-component spinors using the one-center
expansion for {φp}:

〈W〉< =
∑

pq

D̃pq

∫

r<Rocr

φ<
p (x) W(x) φ<

q (x) dx . (6.8)

The matrix element 〈W〉 of the W(x) operator is evaluated as

〈W〉 = 〈̃W〉 − 〈̃W〉
<

+ 〈W〉< . (6.9)

Obviously, the one-center basis functions can be numerical (finite-difference)
for better flexibility.

The mean values of the majority of operators for the valence properties
can be calculated with good accuracy without accounting for the inner parts
of the matrix elements (6.7) and (6.8). As discussed above, for calculating
the mean values of the operators heavily concentrated on or near nuclei it
is sufficient to account only for the inner parts (6.8) of the matrix elements
of W(x) on the restored functions φ<

p (x), whereas the other contributions,
(6.6) and (6.7), can be neglected.

Calculation of properties using the finite-field method [115, 116] and
Eq. (6.5) within the coupled-cluster approach is described in section 9.

7. Calculation of PbF and HgF

The ground states of the diatomic radicals PbF and HgF are 2Π1/2 and
2Σ1/2, respectively. Here the superscript denotes spin multiplicity, Π and
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Σ are the projections of the electron orbital angular momentum on the
molecular axis and the subscript is the projection of the total electron
angular momentum on the molecular axis directed from the heavy atom
to fluorine. It is convenient to describe the spin-rotational spectrum of the
ground electronic state in terms of the effective spin-rotational Hamiltonian
Hsr

eff , following [90, 117]:

Hsr
eff = B �J2 + ∆�S

′ · �J + �S
′ ·A · �I

+ µ0
�S

′ ·G · �B −D�λ · �E

+ WAkA
�λ×�S

′ ·�I + (Wdde + WSkS)�S
′ ·�λ

(7.1)

The first line in this expression describes the rotational structure with ω-
or spin-doubling and the hyperfine interaction of the effective electron spin
�S

′
with the nuclear spin �I. B is the rotational constant, �J is the electron-

rotational angular momentum, ∆ is the ω-doubling constant. The second
line describes the interaction of the molecule with the external fields �B
and �E, (�λ is the unit vector directed from the heavy nucleus to the light
one). The last line corresponds to the P-odd electromagnetic interaction
of the electrons with the anapole moment of the nucleus described by the
constant kA [40], P,T-odd interaction of the electron EDM de with the
interamolecular field, and P,T-odd scalar interactions of the electrons with
the heavy nucleus [90].

The parameter ∆, tensors A and G, molecular dipole moment D and
the constants Wi are expressed in terms of one-electron matrix elements;
concrete expressions for the above parameters can be found in [90], and
for Wd and A‖ they are also given in the next sections. The results of the
calculations are presented in Table 2.

In [90] the conclusion was made, that the accuracy in calculations of
the parameters of the effective spin-rotational Hamiltonian is close to 20%.
However, further ab initio calculations showed the situation is more com-
plicated.

As was understood in calculations of YbF [92], a fortuitous cancellation
of effects of different types took place in the above calculations. Accounting
for the polarization of the 5s, 5p-shells leads to an enhancement of the
contributions of the valence shells to the A‖, A⊥ and PNC constants on
the level of 50% of magnitude. A contribution of comparable magnitude but
of opposite sign takes place when the relaxation-correlation effects of the 5d-
shell are taken into account. This was confirmed in [120] when accounting
for electron correlation both in the valence and core regions of HgF as
compared to the YbF case.
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TABLE 2. Parameters of the spin-rotational Hamiltonian for the ground

states of 199HgF and 207PbF (�I=1/2); (a) experimental data [118]; (b)
semiempirical results from [25]; (c) ab initio calculations [90]; (d),(e) ab ini-
tio calculations [27] with semiempirical accounting for the “minimal” and
“maximal” spin-orbit mixing models, respectively, and ∆/2B from [119]
(the Wi values in [27] have wrong sign).

A‖ A⊥ G‖ G⊥ WS Wd

(MHz) (MHz) (kHz) (1025 Hz
e cm)

HgF (a) 22621 21880 1.993 1.961

(b) −191 −4.8

(c) 24150 23310 1.996 1.960 −185 −4.8

PbF (d) 8690 -7460 0.034 −0.269 51 1.0

(e) 9550 -8240 0.114 −0.438 99 1.8

(c) 10990 -8990 0.040 −0.326 55 1.4

8. Calculation of YbF and BaF

The results of two-step calculations for the YbF molecule (1996,1998) [92,
94] and for the BaF molecule (1997) [93] are presented in Table 3, where
they are compared with other semiempirical and four-component results.
For the isotropic hyperfine constant A = (A‖+2A⊥)/3, the accuracy of our
calculation is about 3%, as determined by comparison to the experimental
datum. The dipole constant Ad = (A‖ − A⊥)/3 (which is much smaller in
magnitude), though better than in all previous calculations known from
the literature, is still underestimated by almost 23%. After a semiemprical
correction for a perturbation of 4f -shell in the core of Yb due to the bond
making, this error is reduced to 8%. Our value for the effective electric field
on the unpaired electron is W = Wd|�S

′ ·�λ| = 4.9 a.u.= 2.5 × 1010 V cm−1

(see section 4 and Eq. (7.1)).
In Table 3 the values of the Wd constant

Wdde = 2Wde = 2〈2Σ1/2|
∑

i

Hd(i)|2Σ1/2〉, (8.1)

where Hd describes interaction of the electron EDM de with the internal
molecular electric field Emol:

Hd = 2de

(
0 0
0 σ

)
·Emol,
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from various calculations are tabulated. These include the unrestricted
Dirac-Fock calculation of Parpia (1998) [96], four-component calculations
of Quiney et al. (1998) [95] accounting for correlation, the most recent semi-
empirical calculation of Kozlov (1997) [121] and our latest GRECP/RAS-
SCF/EO calculation (EO stands for the effective operator technique in the
framework of the second-order perturbation theory; see section 6 and pa-
per [100] for more details). All results are in very close agreement now. It
should be noted that the valence electron contribution to Wd in [96] dif-
fers by only 7.4% from the corresponding RECP-based calculation of Titov
et al. (1996) [92].

A similar increase in the values for the hyperfine constants and pa-
rameters of the P,T-odd interactions when the correlations with the core
shells (primarily, 5s, 5p) are taken into account is also observed for the BaF
molecule [93], as one can see in Table 3. Of course, the corrections from the
4f -electron excitations are not required for this molecule. The enhancement
factor for the P,T-odd effects in BaF is three times smaller than in YbF
mainly because of the smaller nuclear charge of Ba.

9. Calculation of the 205TlF molecule

Effective Hamiltonian. Here we consider the P,T-odd interaction of the
205Tl nucleus (which has one unpaired proton) with the electromagnetic
field of the electrons in the 205TlF molecule [19]. This molecule is one of the
best objects for measurements of the proton EDM. The effective interaction
with the EDM of the Tl nucleus in TlF is written in the form

Heff = (dV + dM )�I/I · �λ , (9.1)

where �I is the Tl nuclear spin operator; �λ is the unit vector along z (from
Tl to F); dV and dM are the volume and magnetic constants [126]:

dV = 6SX = (−dpR + Q)X , (9.2)

where S is the nuclear Schiff moment; dp is the proton EDM; R and Q are
the factors determined by the nuclear structure of 205Tl (see [19]);

X =
2π

3

[
∂

∂z
ρψ(�r)

]

x,y,z=0

; (9.3)

ρψ(�r) is the electronic density calculated from the electronic wavefunc-
tion ψ,

dM = 2
√

2(dp + dN )
(

µ

Z
+

1
2mc

)
M , (9.4)
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TABLE 3. The hyperfine structure constants A = (A‖ +2A⊥)/3 (isotropic) and
Ad = (A‖ −A⊥)/3 (dipole) and PNC parameters Wi (i.e. Wd, WA, and WS) described

in Eqs. (7.1) and (8.1) for the 171YbF and 137BaF molecules.

A Ad Wd WA WS

(MHz) (MHz) (1025 Hz
e cm) (Hz) (kHz)

The 171YbF molecule

Experiment [122] 7617 102

Semiempirical [121] −1.5 730 −48

Semiempirical [123] (with 4f -correction) −1.26 −43

GRECP/SCF/NOCR [92] 4932 59 −0.91 484 −33

GRECP/RASSCF/NOCR [92] 4854 60 −0.91 486 −33

Restricted DF (Quiney, 1998) [95]1 5918 35 −0.62 326 −22

Rescaled1,2 restricted DF −1.24 652 −44

Restricted DF + core polarization1 7865 60 −1.20 620 −42

Unrestricted DF (Parpia, 1998) [96]

(unpaired valence electron) −0.962

Unrestricted DF [96] −1.203 −441

GRECP/RASSCF/NOCR/EO [94] 7842 79 −1.206 634

GRECP/RASSCF/NOCR/EO [94]

(with 4f -correction) 7839 94 −1.206 634

The 137BaF molecule

Experiment [124]3 2326 25

Semiempirical [25] −0.41 240 −13

Experiment [125]4 2418 17

Semiempirical [25] −0.35 210 −11

GRECP/SCF/NOCR [93] 1457 11 −0.230 111 −6.1

GRECP/RASSCF/NOCR [93] 1466 11 −0.224 107 −5.9

GRECP/SCF/NOCR/EO [93] 2212 26 −0.375 181

GRECP/RASSCF/NOCR/EO [93] 2224 24 −0.364 175

1 The results of Quiney et al. and Parpia have been adjusted by a factor of two to be
consistent with the definition of Wi used here, see Eqs. (7.1) and (8.1).

2 The Wi values are rescaled from the “restricted DF” results employing the calculated

and experimental A and Ad values by the factor
√

(Aexpt·Aexpt
d )/(Acalc·Acalc

d ), which are

in good agreement with the “restricted DF + core polarization” values.
3 The hyperfine constants are measured in an inert gas matrix [124] and the semiempirical
Wi values [25] are based on these data.

4 The hyperfine constants are measured in a molecular beam [125].
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where dN is the nuclear EDM arising due to P,T-odd forces between the
nucleons; µ, m and Z are the magnetic moment, mass and charge of the Tl
nucleus; c is the velocity of light;

M =
1√
2
〈ψ|
∑

i

(
�αi ×�li

r3
i

)

z

|ψ〉 ; (9.5)

�li is the orbital momentum of i-th electron; �αi are its Dirac matrices. Ac-
counting for Heff leads to a difference in the hyperfine splitting of TlF
in parallel and antiparallel electric and magnetic fields. The level shift
hν = 4(dV + dM )〈�I·�λ〉/I is measured experimentally (for the latest results
see [18]).

The parameters X of Eq. (9.3) and M of Eq. (9.5) are determined by
the electronic structure of the molecule. They were calculated in 1997 for
the ground 0+ state of TlF by Parpia [89] and by Laerdahl, Saue, Faegri Jr.,
and Quiney [88] using the Dirac–Fock method with gaussian basis sets of
large sizes (see Table 4). Below we refer to paper [127] with the calculations
presented in details and not to the brief communication [88] of the same
authors. There was also a preliminary calculation of electronic structure in
TlF performed by Wilson et al. in [128]. In paper [19] the first calculation
of 205TlF that accounts for correlation effects was performed (see also [129]
where the limit on the Schiff moment of 205Tl was recalculated).

Results. Calculations were carried out at two internuclear separations, the
equilibrium Re = 2.0844 Å as in Ref. [89], and 2.1 Å, for comparison with
Ref. [127]. The relativistic coupled cluster (RCC) method [130, 131] with
only single (RCC-S) or with single and double (RCC-SD) cluster amplitudes
is used (for review of different coupled cluster approaches see also [132, 133]
and references). The RCC-S calculations with the spin-dependent GRECP
operator take into account effects of the spin-orbit interaction at the level
of the one-configurational SCF-type method. The RCC-SD calculations in-
clude, in addition, the most important electron correlation effects.

The results obtained with the one-center expansion of the molecular
spinors in the Tl core in either s; p, s; p; d or s; p; d; f partial waves are
collected in Table 4. The first point to notice is the difference between
spin-averaged SCF values and RCC-S values; the latter include spin-orbit
interaction effects. These effects increase X by 9% and decrease M by 21%.
The RCC-S function can be written as a single determinant, and results may
therefore be compared with DF values, even though the RCC-S function
is not variational. The GRECP/RCC-S values of M indeed differ only by
1–3% from the corresponding DF values [89, 127] (see Table 4).
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TABLE 4. Calculated X (9.3) and M (9.5) parameters (in a.u.) for the 205TlF ground
state, compared with DF values [89, 127]. GRECP/RCC-S results include spin-orbit
interaction, and GRECP/RCC-SD values also account for electron correlation.

Re = 2.0844 Å R = 2.1 Å

Expansion s, p s, p, d s, p, d, f s, p s, p s, p, d, f s, p

M X M X

SCF(spin-averaged) 19.67 17.56 17.51 8967 19.52 17.43 8897

GRECP/RCC-S 16.12 13.84 9813 16.02 13.82 9726

DF [89] 15.61 7743

DF [127] 13.641 8747

GRECP/RCC-SD 11.50 7635

1 M is calculated in Ref. [127] using two-center molecular spinors, corresponding to infinite
Lmax in Eq. (6.4).

Much larger differences occur for the X parameter. There are also large
differences between the two DF calculations for X, which cannot be ex-
plained by the small change in internuclear separation. The value of X
may be expected to be less stable than M [127]. The conclusion in [19]
is that the RCC-S value for X, which is higher than that of [89, 127], is
more correct. The electron correlation effects are calculated by the RCC-
SD method at the molecular equilibrium internuclear distance Re. A major
correlation contribution is observed, decreasing M by 17% and X by 22%.

The hyperfine structure constants of Tl 6p1
1/2 and Tl2+ 6s1, which (like

X and M) depend on operators concentrated near the Tl nucleus, were
also calculated. The errors in the DF values are 10–15% with respect to
experiment and the RCC-SD results are within 1–4% of experiment. The
improvement in X and M upon inclusion of correlation is expected to be
similar.

10. Calculation of the 207PbO molecule

As is noted in section 2, experiments on the excited a(1) [29] or B(1) [134]
states of PbO having nonzero projection of total electronic momentum on
the internuclear axis can be, in principle, sensitive enough to detect de

two or even four orders of magnitude lower than the current limit. Knowl-
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edge of the effective electric field, W , is required for extracting de from
the measurements (see section 4). In papers [97, 98], W for the a(1) (3Σ+

σ2
1σ

2
2σ

2
3π

3
1π

1
2) and B(1) (3Π1 σ2

1σ
2
2σ

1
3π

4
1π

1
2) states of the PbO molecule was

calculated by the RCC-SD [101, 102] and configuration interaction (CI)
[135, 103, 104, 105] methods. To provide an accuracy check for the calcula-
tion of the electronic structure near the Pb nucleus the hyperfine constant,
A‖, was also calculated.

Results. CI calculations [98] were performed at two internuclear distances:
R = 3.8 a.u. (as in RCC calculations), and R = 4.0 a.u. (which is close to the
equilibrium distances of the a(1) and B(1) states). In the RCC calculations
[97] the internuclear distance R = 3.8 a.u. was used because of problems
with convergence at larger distances. The calculated values with the one-
center expansion of the molecular spinors in the Pb core in either s; p or
s; p; d partial waves are collected in Table 5.

Let us consider the 5s, 5p, 5d orbitals of lead and 1s orbital of oxygen as
the outercore and the σ1, σ2, σ3, π1, π2 orbitals of PbO (consisting mainly
of 6s, 6p orbitals of Pb and 2s, 2p orbitals of O) as valence. Although in the
CI calculations we take into account only the correlation between valence
electrons, the accuracy attained in the CI calculation of A‖ is much better
than in the RCC-SD calculation. The main problem with the RCC calcula-
tion was that the Fock-space RCC-SD version used there was not optimal
in accounting for nondynamic correlations (see [136] for details of RCC-SD
and CI calculations of the Pb atom). Nevertheless, the potential of the RCC
approach for electronic structure calculations is very high, especially in the
framework of the intermediate Hamiltonian formulation [102, 131].

Next we estimate the contribution from correlations of valence electrons
with outercore ones (which also account for correlations between outercore
electrons) as the difference between the results of the corresponding 10- and
30-electron GRECP/RCC calculations (see also [136] where this correction
is applied to the Pb atom). We designate such correlations in Table 5 as
“outercore correlations”. When taking into account outercore contributions
at the point R = 4.0 a.u. we used the results of the RCC calculation at
the point R = 3.8 a.u. Since these contributions are relatively small and
because the correlations with the outercore electrons are more stable than
correlations in the valence region when the internuclear distance is changed,
this approximation seems reasonable. Finally, we have linearly extrapolated
the results of the calculations to the experimental equilibrium distances,
Re = 4.06 a.u. for a(1) [137] and Re = 3.91 a.u. for B(1) [119]. The final
results are: A‖ = −3826 MHz, W = −6.1·1024Hz/(e · cm) for a(1) and
A‖ = 4887 MHz, W = −8.0·1024Hz/(e · cm) for B(1). The estimated error
for the final W value is 20% for the B(1) state. For a(1) the estimated error
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TABLE 5. Calculated parameters A‖ (in MHz) and W (in 1024Hz/(e · cm), see section

4 and Eq. (8.1)) for the a(1) and B(1) states of 207PbO at the internuclear distances 3.8
and 4.0 a.u. The experimental value of A‖ in a(1) is −4113 MHz [138]. The preliminary
experimental value of A‖ for B(1) is 5000 ± 200 MHz [139].

State a(1) σ2
1σ2

2σ2
3π3

1π1
2

3Σ1 B(1) σ2
1σ2

2σ1
3π4

1π1
2

3Π1

Parameters A‖ W A‖ W

Expansion s,p,d s,p s,p,d s,p,d s,p s,p,d

Internuclear distance R = 3.8 a.u.

10e-RCC-SD [97] -2635 -2.93 -3.05 3878 -11.10 -10.10

30e-RCC-SD [97] -2698 -4.10 4081 -9.10 -9.70

outercore:

(30e-10e)-RCC-SD -63 -1.05 203 0.40

10e-CI [98] -3446 -4.13 4582 -10.64

FINAL [98]

(10e-CI + outercore) -3509 -5.18 4785 -10.24

Internuclear distance R = 4.0 a.u.

10e-CI [98] -3689 -4.81 4762 -7.18

FINAL [98]

(10e-CI + outercore)1 -3752 -5.86 4965 -6.78

1 It is assumed that the outercore contribution at the internuclear distance R=4.0 a.u. is
approximately the same as is at R=3.8 a.u.

bounds put the actual W value between 90% and 130% of our final value
(for details see [98]).

11. Conclusions

The P,T-parity nonconservation parameters and hyperfine constants have
been calculated for the particular heavy-atom molecules which are of pri-
mary interest for modern experiments to search for PNC effects. It is found
that a high level of accounting for electron correlations is necessary for
reliable calculation of these properties with the required accuracy. The ap-
plied two-step (GRECP/NOCR) scheme of calculation of the properties
described by the operators heavily concentrated in atomic cores and on
nuclei has proved to be a very efficient way to take account of these corre-
lations with moderate efforts. The results of the two-step calculations for
hyperfine constants differ by less than 10% from the corresponding exper-
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imental data. A comparable level of accuracy is expected for the P,T-odd
spin-rotational Hamiltonian parameters, which can not be obtained exper-
imentally.

The precision of the discussed calculations is limited by the current pos-
sibilities of the correlation methods and codes and not by the GRECP and
NOCR approximations, despite the fact that the GRECP/NOCR method
allows one to reduce seriously the computational expenses of the correlation
treatment as compared to conventional Dirac-Coulomb(-Breit) approaches
when (1) using molecular spin-orbitals instead of spinors in (G)RECP cal-
culation; (2) employing “correlated” GRECP versions [70] to account for
correlations with the core electrons explicitly excluded from (G)RECP cal-
culations; (3) combining gaussian basis functions at the molecular (G)RECP
calculation with numerical functions at the one-center restoration; and (4)
splitting the correlation treatment of a molecule into two sequential steps,
first in valence and then in core regions.

In turn, the accuracy attained in the calculations presented above is
sufficient for a reliable interpretation of the measurements in PNC experi-
ments on these molecules.
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Abstract.  A highly accurate, ab-initio approach to the relativistic calculation of 

spectra of multi-electron, super-heavy ions, accounting for correlation, nuclear, 

radiative, and relativistic effects is developed. The method is based on quantum 

electrodynamics (QED) perturbation theory (PT). Zeroth approximation is gene-

rated by an effective ab-initio model functional constructed on the basis of the 

comprehensive gauge-invariant procedure. The wave-function zeroth-order 

basis set is found from the Dirac equation with a potential including the core ab-

initio potential and the electric and polarization potentials of the nucleus (a 

Gaussian form is used for the charge distribution in the nucleus). The magnetic 
2

of the Lamb shift), is accounted for within the Ivanov-Ivanova non-perturbative 

procedure. Results of the calculations are presented for the energy levels, 

corrections for 1s2n l j- states of Li-like ions. 

1. Introduction

During the last few years the study of spectra of heavy and superheavy 

elements (atoms and ions) has been of great interest for further development in 

atomic and nuclear theories [1-12]. Theoretical methods used to calculate the 

spectroscopic characteristics of heavy and superheavy ions may be divided into 

285
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interelectronic interaction is included in the lowest ( )  term, and the Lamb 

shift polarization effect, in the Uehling-Serber  approximation (self-energy part 

dielectronic satellite wavelengths, hyperfine structure constants, and QED 
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three main groups. a) The multi-configuration Hartree-Fock method, in which 

relativistic effects are taken into account in the Pauli approximation, gives a ra-

ther rough approximation, which makes it possible to get only a qualitative idea 

of the spectra of heavy ions. b) The multi-configuration Dirac-Fock (MCDF) 

reliable method for calculations on multi-electronic systems with large nuclear 

charge; in these calculations one- and two-particle relativistic effects are taken 

into account rather precisely. Desclaux’ program takes proper account of the 

finiteness of the nucleus; however, a detailed investigation of the role of the 

error in the MCDF approximation is related mainly to the incomplete inclusion 

of correlation and exchange effects, which are only weakly dependent on Z. c) 

of the parameters 1/Z and Z (  being the fine structure constant) turns out to 

be quite useful. It allows an evaluation of the relative contributions of the 

various expansion terms, non-relativistic, relativistic, QED, as functions of Z. 

have led to developing new, highly accurate methods accounting for QED 

effects, particularly the Lamb shift (LS), the self-energy part (SE), vacuum 

polarization (VP), and corrections for nuclear finite size [1-10]. 

In the present paper, a new ab initio approach to the calculation of spectra 

of multi-electron, super-heavy ions, accounting for relativistic, correlation, nuc-

lear, and radiative effects, is developed. This method is based on quantum elec-

trodynamics (QED) perturbation theory (PT). Zeroth approximation is 

generated by an effective ab initio model functional constructed on the basis of 

zeroth-order basis set is found from the Dirac equation with a potential that 

includes the core ab-initio potential and the electric and polarization potentials 

of the nucleus (a Gaussian form is used for the charge distribution in the 

nucleus) [11, 12]. The correlation corrections of higher orders are taken into 

account using the Green functions method with the Feynman diagrams 

technique. There are taken into account all correlation corrections of the second 

order and dominant classes of higher-order diagrams (electrons screening, 

interelectronic interaction is included in the lowest ( 2) term, and the Lamb 

of the Lamb shift), is accounted for within the Ivanov-Ivanova non-perturbative 

procedure [11]. We have performed calculations of the spectra of nlj (n = 2, 3, 

4) states of Li-like ions with nuclear charge Z=20-100.

We have made a detailed analysis of the relation between the various cor-

rections and shown the important role of radiative corrections for ions with high 

Z. The wavelengths of the Li-like bielectronic satellite lines to the 1s21S0-

1s3p1P1 line of radiation in K plasma are also calculated. The values calculated 
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approximation (e.g., Desclaux’ program) has been, many years, the most 

nucleus size is lacking. In the region of small nuclear charge Z the calculation 

In the study of lower states for ions with  Z 40, an expansion in a double series 

Nevertheless, serious problems in the calculation of spectra of heavy  elements 

the comprehensive gauge-invariant procedure [12, 13].  The wave-function 

particle-hole interaction, mass-operator iterations). The magnetic 

shift polarization effect, in the Uehling-Serber  approximation (self-energy part 
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for the hyperfine (electric quadruple and magnetic dipole) constants for a few 

Li-like ions are presented. 

2. QED perturbation theory for the calculation of heavy and superheavy 

ions

Let us describe the key moments of the new, ab initio approach to relativistic 

calculation of the spectra for multi-electron superheavy ions with an account of 

relativistic, correlation, nuclear, radiative effects. 

2.1. Definition of the basis for the relativistic orbitals 

One-particle wave-functions in a central field are obtained as solutions of 

the relativistic Dirac equation, which can be written in the two-component form:  

   01 Gvm
r

F

r

F
,

01 Fvm
r

G

r

G
.    

(1)

Here we put the fine structure constant =1. The moment number writes as:  

1,1

1,11

j

j
        

(2)

At large  the radial functions F and G vary rapidly at the origin of 

coordinates:

222

1,

z

rrGrF
                                         (3) 

This involves difficulties in the numerical integration of the equations in 

the region r 0. To prevent the integration step from becoming too small it is 

convenient to turn to some new functions isolating the main power dependence: 

11
, GrgFrf . The Dirac equation for the F and G components is 

transformed into:  
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fZEZVfrgg

gZZEZVgrff

n

n

'

2

               (4) 

Here the Coulomb units (C.u.) are used: 1 C.u. of length = 1 a.u. Z; 1 C.u. 

of energy = 1 a.u. Z2. In Coulomb units, atomic characteristics vary weakly with 

Z. E n  is the one-electron energy without the rest energy. 

The system of equations (4) has two fundamental solutions. We are inter-

ested in the solution regular at r 0. Boundary values of the correct solution 

are found from the first terms of the expansion into a Taylor series:  

1;120 fZrEVg n  at 0

1;20 22 gZZEVf n  at 0                  (5) 

The condition 0, gf  at r determines the quantified energies of 

the state E n . At a correctly determined energy E n  the asymptotic f and g at 

r  are:

                                                 f ,g ~ nrexp                                          (6) 

where nEn 21  is the effective main quantum number. Equations (4) 

were solved using the Runge-Kutta method. The initial integration point (where 

R is the nucleus radius), 
6

0 10Rr , and the end of the integration interval is 

determined as nrk 30 .

2.2. The nuclear potential

Earlier we calculated some characteristics of hydrogen-like ions with the 

nucleus in the form of a uniformly charged sphere; analogous calculations using 

an improved model were also made: here a smooth Gaussian function is used 

for the charge distribution in the nucleus. Using a smooth distribution function 

(ins-tead of a discontinuous one) permits a flexible simulation of the real 

distribution of the charge in the nucleus and simplifies the calculation process. 

As in ref. [12] we represent the charge distribution in the nucleus by the 

normalized Gaussian function:  

223 exp4 rRr                               (7) 
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RRrdrrRrdrr

0

3

0

2 ;1

where ,4 2R R being the effective nuclear radius. The following simple 

dependence of R on Z is assumed:  

cmzR 31131060.1                                   (8) 

Such a definition of R is rather conventional: we assume it as some zeroth-order 

approximation. Further, the derivatives of various characteristics with respect to 

R are calculated. They describe the interaction of the nucleus with the outer 

elec-tron and this permits the recalculation of results when R varies within 

reasonable limits. The Coulomb potential for the spherically symmetric density 

Rr  is:

r

r

nucl RrrdrRrrdrrRrV '''

0

'2''1          (9) 

It is determined by the following system of differential equations:  

RryrRrrdrrRrnuclV
r

,1,1, 2

0

'2''2'

RrrRry ,,' 2
                                        (10) 

Rr
r

r
RrrrrRr ,

8
,2exp8,'

2

225

with the boundary conditions:  

rRVnucl 4,0

0,0 Ry ,

323 324,0 RR                             (11) 
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Consider the Dirac-Fock equations for a three-electron system nljs21 .

Formally they fall into one-electron Dirac equations for the orbitals s1 and nlj

with the potential:

RrVrVnljrVsrVrV ex12                        (12) 

RrV  includes the electrical and the polarization potentials of the nucleus; the 

components of the Hartree potential:  

rrirrd
Z

irV /
1

                                  (13) 

Here ir  is the distribution of the electron density in the state | i >, exV  is 

the exchange interelectron interaction. The main exchange effect will be taken 

into account if, in the equation for the s1 orbital, we assume  

nljrVsrVrV 1                                     (14) 

and, in the equation for the nlj orbital,

srVrV 12                                            (15) 

The rest of the exchange and correlation effects will be taken into account to the 

first two orders of PT by the total interelectron interaction [13-19]. The electron 

density is determined by an iteration algorithm [11, 14]. In the first iteration we 

assume  

01 nljr

2221 1;2exp1 ZrBrNsr       (16) 

2

0
1 2exp1;2 rBrdrNEB s

Respectively:  

01 nljrV                                           (17) 
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r

r

rBrdrrBrdr
rZ

N
srV

0

1221 ''2exp'''exp'
1

1

The expression (16) of sr1  coincides with the precise one for a one-

electron relativistic atom with a point nucleus. The finiteness of the nucleus and 

the presence of the second 1s electron are included effectively into the energy 

sE1 . Actually, for the determination of the properties of the outer nlj electron, 

one iteration is sufficient. Refinements resulting from the second iteration do 

not exceed the correlation corrections of higher orders omitted in the present 

scrVV2 1
, has correct 

appropriate potential constructed on the basis of the non-relativistic hydrogen-

like functions. Details of the calculation are given in the refs. [11-19]. 

2.4. Vacuum polarization   

This effect is usually taken into account to first order in PT by means of 

the Uehling potential. This potential is usually written as follows [1, 11]:  

1
2

2
2 ,

3

21
2112exp

3

2
gC

rt

t
tZrtdt

r
rU        (18) 

where
Z

r
g . In the present section we shall show that the Uehling potential 

determined as a quadrature (18) may be approximated with high precision by a 

simple analytical function. For its derivation, the same as in [11, 14], we deter-

mine the asymptote of the function C(g) in two limiting cases:  

0

037845.1410548.12ln
~
1

g

gggCgC

g

gggCgC 23
2 exp8800.1

~

    (19) 

In Eq. (19) a matching of the two limiting expressions for C(g) was made as 

follows [11]:  
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asymptotic behaviour  at zero and at infinity; at 0  it changes to an 



A.-V. GLUSHKOV ET AL. 

gCgCgCgCgC 2121
~~

/
~~~

     (20) 

Here, for more precise approximation of the Uehling potential, we make a 

complete numerical calculation of the function C(g) in Eq. (18). This procedure 

is described in detail in refs [11, 17]. Using the precise values obtained for C(g)

we perform the matching of gC1

~
 with the function gC2

~
, which is 

corrected by multiplying it with a polynomial f(g). The coefficients of this 

polynomial are determined in such a way that the result of the matching gives 

matching is:  

gCgCgCgCgC 2121

~~~
/

~~~~~
          (21) 

gfgCgC 22
~~~

                                        (22) 

8028.03362.11022.1 gggf       (23) 

The use of the new approximation for the Uehling potential permits to decrease 

the computation errors for this term down to 0.5– 1%. Besides, using such a 

simple analytical expression for approximating the Uehling potential allows its 

easy inclusion into the general system of differential equations. This system in-

cludes also the Dirac equation and the equations for the matrix elements. 

2.5. Calculation of the self-energy part of the Lamb shift 

     Our method of calculation is based on an idea by Ivanov-Ivanova [11]. In an 

atomic system, the radiative shift and the relativistic part of the energy are, in 

principle, determined by one and the same physical field. It may be assumed 

that there exists some universal function that connects the self-energy correction 

and the relativistic energy. The self-energy correction for the states of a hydro-

gen-like ion was presented by Mohr [1] as:  

nljZHF
n

Z
nljZHESE ,027148.0,

3

4

                 (24) 

The values of F are given at .2,2,2,1,11010 2321 ppssnljZ  These re-

sults are here modified for the 1s2 nlj states of Li-like ions. It is assumed that for 

any ion with an nlj electron over the core of closed shells the searched value 

may be presented in the form:  
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1

3

4

,027148.0, cmnljf
n

nljZESE                 (25) 

The parameter RR EE ,41  is the relativistic part of the binding energy of 

the outer electron; and the universal function nljf ,  does not depend on the 

composition of the closed shells or on the actual potential of the nucleus. The 

procedure of generalization for Li-like ions with finite nucleus consists in the 

following steps [11]:  

1) Calculation of the values RE  and  for the states nlj of H-like ions with a 

point nucleus (in accordance with the Zommerfeld formula);  

2) Construction of an approximating function nljf ,  by the determined 

reference Z and the appropriate nljZHF ,  [1, 11];  

3) Calculation of RE  and  for the states nlj of Li-like ions with a finite nu-

cleus;

4) Calculation of SEE  for the searched states by Eq. (25). The approximating 

function is determined as:

3
3

2
210, XXXXnljf               (26) 

The parameters 3210 ,,, XXXX  are determined by four especially 

chosen reference points. The energies of the states of Li-like ions were 

calculated twice: with the real value of the fine structure constant 1371

and with the smaller value .1000~  The results of these latter calculations 

were considered as non-relativistic. This helped the isolation of RE  and . A 

detailed evaluation of their accuracy may be made only after a complete 

calculation of nljZLiE n
SE

, . It may be stated that the above extrapolation 

method is more justified than using expansions on the parameter .Z

2.6. Calculation of the hyperfine structure parameters 

The energies of the electric quadrupole (Wq) and magnetic dipole (W )

interactions, which determine the hyperfine structure, are calculated as follows 

[11, 20]:  

Wq=[ +C(C+1)]B,   W =0,5 AC, 

=-(4/3)(4 -1)(I+1)/[i(I-1)(2I-1)], 

                 C=F(F+1)-J(J+1)-I(I+1).                                  (27) 
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Here I is a nuclear spin, F is the full momentum of the system, and J is the full 

electron momentum. The hyperfine splitting constants are expressed through the 

standard radial integrals:

A={[(4,32587)10-4Z2 gI]/(4 2-1)}(RA)-2,

                                                                                                                       (28) 

B={7.2878 10-7 Z3Q/[(4 2-1)I(I-1)} (RA)-3,

Here gI is the Landé factor and Q, the quadruple momentum of the nucleus, and 

the radial integrals are defined as follows:

(RA)-2,=

0

22 ),,/1()()( RrUrGrFdrr

                             (RA)-3,=

0

2222 ),,/1()()([ RrUrGrFdrr                 (29) 

and calculated in Coulomb units (3.57 1020 Z2 m-2; 6.174 1030 Z3 m-3 for variables 

of the corresponding dimension). The radial parts F and G of the components of 

the Dirac function for the electron, which moves in the potential V(r,R)+U(r,R),

are determined by the solution of the Dirac equation [see above, system (1)]. 

For the calculation of the hyperfine interaction potentials U(1/rn,R) we solve the 

fol-lowing differential equations:

U(1/rn,R)=-ny(r,R)/rn+1.

These are analogous to Eqs (9) and (10). The functions dU(1/rn,R)/dR are

presented in refs [11, 14, 17, 18]. 

3.  Results and Conclusion

Now we shall present the results of some of our computations. In Table 1 

there are given the different energy contributions to the energy of the 2s1/2-

2p1/2  transition in the spectrun of U89+ calculated within different theoretical 

model in the Dirac-Fock “0” approximation (Ivanov et al., B); relativistic 

multiparticle PT with zeroth-order Hartree-Fock-Slater potential (Persson-

Lindgren-Salomonson, ); multiparticle PT in the Dirac-Fock “0” 

approximation  (Blundell, D) [4-8, 11, 14]. Alhough the overall agreement 

between all theoretical and experimental data is quite good, more exact results 

are obtained in the columns ( ) and (F). In Table 2 there are given the results of 
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calculated using an analogous procedure. The details of the calculations are 

schemes: our approach (column F);  MCDF (Cheng-Kim-Desclaux, ); PT 
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our calculations for the contributions to the energy due to the VP and SE parts 

of the Lamb shift in Li-like ions (account from core 1s2 energy). 

Values  A B C D F 

Relativistic PT 324.10 319.67 322.31 322.41 322.33 

SE -56.08 -52.09 -54.34 -54.24 -54.16 

VP 14.61 13.08 12.56 12.56 12.35 

RC --- --- 0.1 0.1 0.1 

HOPT --- --- --- 0.01 --- 

Full energy 282.63 280.66 280.63 280.83 280.62 

Experiment   280.59(9)   

VP: vacuum polarization; SE: self-energy part of the Lamb shift; LS = VP + SE :

Lamb shift; RC: nucleus recoil correction, polarization; Relativistic PT: accounts for the 

main relativistic and correlation effects; HOPT: higher-order PT contributions. Data are 

from refs [1-10]. 

2s1/2  2p1/2 2s3/2
Z

-VP SE -VP SE -VP SE 

20 108 1567 0.7 32 0.2 31 

30 553  6940 11 -134 1.4 269 

41 2154 21032 65 -215 13 1164 

59 11022 77078 695 1380 77 7034 

69 24085 142470 2103 6264 173 14710 

79 50191 243595 6115 18178 425 27087 

92 122837 497245 23230 60425 1035 55063 

Detailed analysis of the VP and SE energy contributions shows that for 

ions with small Z the QED contribution is not significant, but with growth of Z 

(Z > 40) the QED contribution becomes very important. Moreover, for heavy 

and superheavy ions its role is of main importance. Now let us consider the role 

of the nuclear finite-size effect. As calculations show, for multicharged ions 

with Z < 20 its contribution is very small, but for ions with Z > 70 it can equal 

like ions. Our calculations also show that a variation of the nuclear radius by a 

295

TABLE 1. Different contributions (in eV) to the energy of the 2s1/2-2p1/2 transition in the 

spectrum of the Li-like ion of uranium U89+.

TABLE 2. QED corrections (in m–1) to the energy of Li-like ions in 1s2n l j- states. 

the vacuum polarization contribution.  In Table 3 there are displayed the results 

of calculations for the nuclear correction to the energy  of low transitions for Li-
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few per cent may lead to a change in the transition energy by tens of thousands 

of cm-1 !

Z 2
21S - 2

21p 2
21s  - 2

23p R

20 - 15.1 - 15.5 3.26

30 - 117.5 - 118.0 3.73

41 - 659.0 - 670.0 4.14

59 - 6 610.0 - 6 845.0 4.68

69 - 20 690.0 - 21 712.0 4.93

79 - 62 315.0 - 66 931.0 5.15

92 - 267 325.0 - 288 312.0 5.42

Further we present the results of our calculations of the Li-like K-plasma 

satellite lines on the basis of QED PT with ab initio zeroth-order approximation 

for three-quasiparticle systems, together with the optimized Dirac-Fock results 

and experimental data for comparison. In Table 4 there are displayed the exper-

imental value: (A) for wavelength (in Å) of the Li-like lines dielectron satellites 

to the 1s21S0-1s3p1P1  line of radiation in the K plasma, and the corresponding 

theoretical results: ( ) PT on 1/Z; ( ) QED PT (our data); (D) calculation by 

the AUTOJOLS method, and ( ) MCDF [12, 21]. 

Transitions Wavelength 

          D

Wl

2/3
2

2/1
22 32121 DppsPps

2/5
2

2/3
22 32121 DppsPps

2/3
4

2/1
22 32121 DdssPps

2/3
4

2/3
22 32121s PppsPp

2/5
4

2/3
22 32121 PppsPps

3.0613   3.0608   3.0607   3.0610 

3.0613   3.0614   3.0615   3.0616 

3.0608   3.0611   3.0612   3.0614 

  -----     3.0623     ------    3.0625 

  ------    3.0626     ------    3.0629 

3.0608

0.0019
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TABLE 3. Nuclear finite-size correction to the energy (in m–1) for the low transitions of Li-like 

ions, and values of the effective nuclear radius (in 10–13 cm). 

TABLE 4. The wavelength (in Å) of the Li-like lines dielectronic satellites to the 1s21S0-1s3p1P1

line of radiation in the K plasma (see text). 
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We have also performed the calculation of hyperfine coupling constants: 

the electric quadrupole constant B and magnetic dipole constant A, with inclu-

sion of nuclear finiteness and the Uehling potential for Li-like ions. Analogous 

calculations of the constant A for ns states of hydrogen-, lithium- and sodium-

like ions were made in refs [11, 22]. In those papers other bases were used for 

the relativistic orbitals, another model was adopted for the charge distribution in 

the nuclei, and another method of numerical calculation was used for the Ueh-

ling potential. 

In Tables 5 and 6 there are displayed the results for the hyperfine coup-

ling constants in the lowest excited states of Li-like ions. In Table 5 we compare 

the results of our calculations with those from papers [11, 22] for magnetic di-

pole coupling constants in the ground state 1s22s of a few lithium-like ions. 

Z A (present) A [11] A  [22] 

25 988–03 1002–02 9872–03 

28 1031–02 1034–02 1020–02 

34 1094–02 1099–02 1087–02 

37 1131–02 1135–02 1123–02 

43 1210–02 1214–02 1203–02 

53 1379–02 1381–02 1370–02 

nlj Z 20 69 79 92 

2s A 93–03 176–02 215–02 314–02 

3s A 26–03 51–03 63–03 90–03 

4s A 15–03 19–03 24–03 36–03 

2p1/2 A 25–03 56–03 71–03 105–02 

3p1/2 A 81–04 16–03 20–03 31–03 
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TABLE 5. Theoretical results for the magnetic dipole coupling constant. For the nuclear magnetic 

dipole, bulk distribution (present paper and [11]) and surface distribution [22]. 

TABLE 6. Constants of the hyperfine electron-nuclear interaction: A=Z3gI A cm-1,

B= B
II

QZ

)12(

3

 cm-1.
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4p1/2 A 32–04 72–04 91–04 11–03 

2p3/2 A 50–04 67–04 71–04 72–04 

B 9–04 13–04 15–04 17–04 

3p3/2 A 13–04 19–04 21–04 22–04 

B 31–05 51–05 55–05 62–05 

4p3/2 A 62–05 89–05 92–05 8–04 

B 10–05 20–05 22–05 26–05 

3d3/2 A 88–05 10–04 11–04 12–04 

B 51–06  9–05 10–05 11–05 

4d3/2 A 35–05 51–05 55–05 58–05 

B 12–06 44–06 50–06 56–06 

3d5/2 A 36–05 48–05 50–05 52–05 

B 21–06 38–06 39–06 40–06 

4d5/2 A 15–05 19–05 20–05 21–05 

B 59–07 15–06 16–06 17–06 

The main difference between the quoted papers lies in the modeling of 

the magnetic moment distribution in the nucleus: a bulk distribution is assumed 

in the present paper and in paper [11] and a surface distribution is adopted in 

ref. [22]. A systematic ~1% difference is observed, which cannot be explained 

by the uncertainty in the nuclear radius. However, it is known that variations of 

the nuclear size within reasonable limits can lead to variations in the value of A

of several orders of magnitude [11, 14]. This question will be analysed in a 

separ-ate paper. 
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Abstract. There is presented a consistent energy approach to the quantum elec-

trodynamics (QED) theory of the discharge of a nucleus with emission of a 

radiation and further muon conversion, which initiates this discharge. A numer-

ical calculation is carried out for nucleus 
49
21

Sc28.

1. Introduction

A negative muon  capture by a metastable nucleus may accelerate the discharge 

of the latter by many orders of magnitude [1-3]. Principal possibility of storage 

of significant quantities of metastable nuclei in processes of nuclear technology 

and their concentrating by chemical and laser methods lead to questions regard-

ing methods of governing the velocity of their decay. It has been studied [1] a 

possibility of action on processes of decay of nuclei with a participation of the 

electrons of atomic shells (K-capture and internal conversion) by means of their 

ionization [1]. It has been considered a possibility of accelerating the discharge 

of a metastable nucleus by means of the angular momentum part of the electron 

shells of atoms [3]. A comprehensive QED theory of cooperative laser-electron-

nucleus processes is developed in refs. [4-6]. Electron shell effect is quite small, 

as the parameter rn/ra is small (rn being the radius of the nucleus and ra that of the 

atom). In this respect, a meso-atomic system differs advantageously of a usual 

atom, as the ratio rn/ra may vary in wide limits depending on the nuclear charge. 

For a certain ratio between the energy range of the nuclear and muonic levels the 
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discharge may be followed by the ejection of a muon, which may then particip-

ate in the discharge of other nuclei. 

In this paper we present a consistent energy approach to the QED theory 

of the discharge of a nucleus with emission of   radiation and further muon con-

version, which initiates this discharge. Traditional processes of muon capture are 

studied in fundamental papers [7-9, 10-13] and are not considered here. Within 

the QED energy approach [4-6, 14-19], a decay probability is presented as the 

imaginary part of the energy shift.  In our situation the probability of the corres-

ponding process (decay) is linked to the imaginary part of the "nucleus core + 

proton + muon" system. For radiative decays it is manifested as an effect of the 

retardation in interaction and self-action. 

2.  Model and channels of decay for meso-atomic system: Energy approach

We consider a simple one-particle system of nucleus. It is supposed that 

the system consists of a twice-magic core. A single proton and single muon 

moves in the core field. The proton and muon interact through the Coulomb 

potential. This interaction will be accounted for in the first order of the atomic 

perturbation theory (PT) or second order of the QED PT. Surely a majority of 

known excited nuclear states have the multi-particle character and it is hardly 

possible to describe their structure within one-particle model. Nevertheless, the 

studied effects of muon-proton interaction are not connected with one-particle 

character of the model. In principle it is possible to consider also a dynamical 

interaction of two particles through the core. It accounts for the mass finiteness 

of the core. However, this interaction may decrease the multipolity of nuclear 

transitions only by unit. Indeed, an interest attracts strongly forbidden transitions 

of high multipolity. We will calculate probabilities of decay to different chan-

nels of the system, which consists of a proton (in an excited state
11JN ) and a 

muon (in the ground state 1s).

Three channels should be taken into account [3]: i) a radiative, purely nuc-

lear 2j-pole transition (probability P1); ii) a non-radiative decay, when the proton 

transits to the ground state and the muon leaves the nucleus with the following 

energy: i
µ

p
JN 11

; here p
JN 11

 is the energy of the nuclear transition and 

i
µ is the bond energy of the muon in the 1s state (P2); iii) a transition of the 

proton to the ground state with muon excitation and emission of radiation with 

energy 
nl

p
JN

h
11

 (P3). Corresponding Feynman diagrams are given in 

Figure 1. 
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Figure 1.  Feynman diagrams corresponding to different channels of decay of the meso-

atom (see text).

The diagram A (Fig.1) corresponds to the first channel, diagram B, to the 

second channel, and diagrams C1 and C2, to the third channel. The thin line on 

the diagrams corresponds to the muon state and the bold line, to the proton state. 

The indexes on the lines correspond to the initial and final states of the proton 

and the muon. The dashed line with index j represents the Coulomb interaction 

between muon and proton with the exchange of 2j-pole quanta. The waved line 

corresponds to the operator of radiative dipole transition. This effect is due to 

muon-proton interaction. Diagram A is of zero order in the muon-proton inter-

action, while other diagrams are of first order. 

A probability of purely radiative nuclear 2j-pole transition is defined as 

follows (rn=5 10-13 cm):  

   122

2

20
1 )

40

][
()

3

3
(

]!)!12[(

1
102 jMeVE

jjj

j
P     (1) 

The diagrams C1 and C2 account for the effects of the interaction of the particles 

in the initial state. Surely there are other versions of these diagrams, but their 

contributions to the probabilities of the studied processes is significantly less 

important than the contributions of the diagrams C1 and C2 [3].

Within QED PT [5-7], a full probability is divided into a sum of partial 

contributions connected with decays to definite final states. These contributions 

are equal to the corresponding transition probabilities (Pi). For example, under 

the condition 
p

JN 11
> i

µ  a probability definition reduces the QED calculation 

of the probability of autoionization decay of the two-particle system. The imagi-

nary part of the energy of the excited state of the system at the lowest QED PT 

order can be written in the standard form [14-18]:  
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}|))()((|),(

|))()((|),(|))()((|

),({limImIm

212211
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IpvpvItptpIcvcvI

tctc
tt

xjxjrrD

xjxjrrDxjxj

rrDexdxdieE

(2)

Here D(r1t1,r2t2) is the photon propagator; jcv, jpv, j v are the four-dimensional 

components of the operator of current for the considered particles: core, proton, 

muon;  = (r , r , r , t) includes the space coordinates of the three particles plus 

time (equal for all particles); and  is the adiabatic parameter. For the photon 

propagator, it is possible to use the exact electrodynamical expression. Below we 

are limited by the lowest order of QED PT, i.e., the next QED corrections to Im

 will not be considered. After some algebraic manipulation we arrive at the 

following expression for the imaginary part of the excited state energy as a sum 

of contributions:

},1{/)exp()2,1(

),2()1()2,1(

)2()1(4/Im

,ImImImIm

211212

**
2112121

2

aaIFa

IFa

FIppc
F

ca

rrwT

T

drdrdrdrdrdrZEa

EEpEcE

(3)

in which || 2112 aaaa rrr ; c, , e are the secondly quantified operators 

of the fields of the core particles, proton and muon. The sum on F designates a 

summation on the final states of the system. To the second QED PT order, the 

full width of a level is divided into a sum of partial contributions connected with 

the effective radiation decays of the states of system. The contributions are pro-

portional to the probabilities of the corresponding transitions. 

Let us consider a case where the energy of excitation of the nucleus is lar-

ger than the energy of ionization of the meso-atomic system, i
µ . It is obvious 

that P3 << P2 as P3 has an additional small parameter in the interaction with the 

electromagnetic field [3]. Calculation of the probability P2 can lead to the calcul-

ation of the probability of autoionization decay for the state of the two-particle 

system, i.e., P2=2ImE/ , where ImE is defined by Eq. (2). We have carried out a 

precise numerical calculation of different decay probabilities for effective states 

of the nucleus 49
21

Sc28 with the model nuclear potential. 
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3. Calculation for the nucleus 
49
21
Sc28

The nucleus of 
49

21 Sc28 contains one proton above the twice magic core of 

49

20 Ca28. A scheme of the energy levels for this nucleus is presented in Figure 2. 

The level p1/2 is connected with the ground level f7/2 by an E4 transition and with 

the low-lying level p3/2 by an E2 transition. The levels p3/2 and f7/2 are connected 

by the E2 transition. One could also consider the magnetic transitions between 

these levels. The life-time for the isolated nucleus in the excited states is of the 

order of 10-11. Following papers [3, 20], let us assume that a proton moves in an 

effective field of the core:

       rVjlfV /),(25         (4) 

Figure 2.  Schemes of energy levels for proton (left part of the figure) and muon (right) 

in 
49
21

Sc28 . Transitions of proton and muon in 1 and 2 stages are denoted by  solid  and 

dotted lines.

We adopt for the self-nuclear part of the interaction V the following form 

(displayed in Figure 3):  

2

221
2

21
34

0

.......................................................................,.........0

],.....2/3/)(4/[

Rr

RrRRrRRrraV

              (5) 

As it was shown in ref. [3], this potential is more suitable in the numerical com-

putation because it does not lead to divergence (under r 0) of the spin-orbit 

interaction -25f(l,j)V'/ri. In this respect, it differs advantageously from the well-

known Woods-Saxon potential. 
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Figure 3.  Nuclear potential V(r) (Eq. 5).

The electric core potential was taken as the potential of a charged sphere 

(the upper sign is for the proton and the lower sign, for the muon):  

....................,........./1

,...2/2/3
)(

32

2

Rrr

RrRrR
eZrU                            (6) 

Parameters are defined from the fitting condition for calculated and theoretical 

energies of the ground and first excited states. With V0 = -47.6, R1=2, R2=7.65,

R=4.75, it was obtained for the proton states: E(f7/2)=-9.62, E(p3/2)=-6.53,

E(p1/2)=-5.24; and for the muon states: E(1s)=-1.05, E(2s) =-0.27, and E(2p) =-

0.281 (units of energy: 1 MeV, and of length: 10-13 cm). To calculate the cor-

responding integrals in Eq. (2), we use the effective Ivanov-Ivanova technique 

[16-19]. The probabilities of the meso-atomic decay (in s-1) for different nuclear 

transitions are as follows:

P2(p1/2-p3/2)=3.93 1015, P2(p1/2-f7/2)=3.15 1012, P2(p3/2--f7/2)= 8.83 1014.

Let us note that these values are significantly higher that the correspond-

ing non-relativistic estimates [3], e.g.: P2(p1/2-p3/2)=3.30 1015. For the above in-

dicated transitions, the nucleus must give a momentum J no less than 2.4 and 2, 

according to the momentum and parity rules. If a meso-atomic system is in the 

initial state p1/2 then the cascade discharge occurs with ejection of the muon in 

the first stage and the  quantum emission in the second stage. 

To consider a case where the second channel is closed and the third one is 

opened, let us assume that Ep(p1/2)-E
p(p3/2) = 0.92 MeV (Fig. 2). The energy of 

the nuclear transition is not sufficient for a transition of the muon to the continu-

um. However, it is sufficient for an excitation to the 2p state. It is important to 

note that this energy is not lying in the resonant range. The diagram C1 (Fig. 1) 

describes the proton transition p1/2-p3/2 with a virtual excitation of the muon to 

states of the series nd with a  quantum emission of energy:  
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h =Ep(p1/2)+E (1s)-Ep(p3/2)- E (2p).

Furthermore the dipole transition 2p-1s can occur. The calculated value 

for the probability of this transition is P3=1.9 1013 s-1. This value is significantly 

higher than the corresponding non-relativistic value [3]. It is important to note 

that the value P3 is larger than the probability of the radiation transition p1/2-p3/2

and that of the non-radiative transition p1/2 – f7/2. The next transition p3/2 – f7/2

occurs without radiation during the time 10-15s, with ejection of the muon. 
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Abstract. One area in atomic and molecular physics that computer mod-
elling and its applications are extensively used is in ion-atom collisions.
In this paper we consider computer simulations for various theoretical
continuum-distorted-wave eikonal-initial-state (CDW-EIS) models used in
the study of single ionization of neutral target atoms by fast highly charged
ions. In our first study we examine ultra-low energy electrons for 3.6 MeV
amu−1 Au53+ on helium, neon and argon. Doubly differential cross sections
as a function of the longitudinal electron velocity for various transverse
velocity cuts are obtained using the CDW-EIS model. A sharp asymmet-
ric peak centred at a longitudinal velocity of zero is observed to emerge
at ultra-low energies in all of the collisions studied. The shape of this tar-
get cusp which is very sensitive to the details of the two-centre potential,
is shown to be in excellent accord with the experimental measurements.
In our second study we explore fully differential cross sections for 3.6 MeV
amu−1 Au24+,53+ + He collisions. Different versions of the CDW-EIS model
are used and compared with recent experimental data for fully differential
cross sections involving the collisions 3.6 MeV amu−1 Au24+,53+ on he-
lium. One CDW-EIS model in this study is seen to give better agreement
with experiment at high projectile charges, low electron energy and high

309

, 309–333. 

© 2006 Springer. Printed in the Netherlands.

J.-P. Julien et al. (eds.), 

Recent Advances in the Theory of Chemical and Physical Syst sem



FRANCESCA O’ROURKE ET AL.

momentum transfer than other models. This approximation is based on
a model potential with physically appropriate short-range and long-range
behaviour.

1. Introduction

The subject of single ionization of neutral target atoms by charged particle
impact has been the focus of intense interest for decades by both theoretical
and experimental physicists due to its practical applications in various fields
such as fusion research and astrophysics. In recent years advances in exper-
imental techniques have made it possible to make measurements of a large
variety of processes, in different energy regimes, for different targets and
projectile charge states. For example ejected electron spectroscopy has been
very successful at reproducing measurements of double differential cross sec-
tions as a function of ionized electron energy and angle.1 More recently the
advent of reaction microscopy enables measurements to be made simulta-
neously the momenta of the emitted electrons and the recoiling residual
target ion which gives direct evidence of the momentum transferred in the
collision. For fast heavy ions Moshammer et al2 measured the momentum
vectors of the ejected electron and recoil ion and obtained the scattered
projectile momentum from the momentum consevation law. However in
the analysis of this and subsequent experiments Schmitt et al 3 focused on
differential and recoil ion momentum distributions. More recently Schulz
et al and Fischer et al4,5 have used reaction microscopy to examine triply
and fully differential cross sections respectively for fast ion-atom collisions
at large perturbations.

On the theoretical side ionization of multielectron targets has been studied
using a wide variety of distorted wave models. The simplest model for the
ionization process involves a three-particle system interacting through long
range Coulomb potentials. From a theoretical perspective the main problem
is the representation of the final electronic state, where the ionized electron
travels under the influence of the Coulomb potential due to both the pro-
jectile and target nuclei. Due to the long range behaviour of the Coulomb
interaction this cannot be represented by a plane wave. An exact analytical
solution of the three-body problem is not possible although its asymptotic
form may be found.6–10 One useful perturbative method which accounts
for long range Coulomb potentials at intermediate and high energies is
continuum distorted wave theory (CDW). It was originally introduced by
Cheshire11 to model the process of charge transfer during the collision of
an atom/ion with an ion and later applied to single ionization for ion-atom
collisions by Belkić.12 However one major defect of the CDW ionization
theory developed by Belkić12 was that it led to spurious results due to
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the fact that the initial state was not normalized. This flaw was corrected
by the continuum distorted wave theory first introduced by Crothers and
McCann.6 They first both presented and applied it to the ionization of a
hydrogen atom by H+, He2+, Li3+, Be4+ and C6+. The CDW-EIS model
differs from the original continuum distorted wave (CDW) ionization the-
ory of Belkić12 in that it describes the distortion in the initial state by an
eikonal phase factor rather than by a full continuum wave. The phase fac-
tor originates from the asymptotic expansion of the CDW. Since it is not
possible to solve the Schrödinger equation for three mutually interacting
particles in closed analytic form a comprehensive description of the entire
collision necessitates a numerical approach.

TheoreticalCDW-EIS models and computer simulations developed during
the last decade have been very successful in reproducing experimental data
of doubly differential cross sections as a function of ejected electron energy
and angle.7,8, 13–17 These studies have enabled us to understand the main
characteristics of electron emission spectra and the nature of two centre
effects which may be observed in the double differential cross section spec-
trum.

It was also found that the CDW-EIS theory was successful in describing
the experimental results for longitudinal momentum distributions of fast
highly charged projectile ions by neutral target atoms produced with reac-
tion microscopy technique.9,10, 18–20

The main aim of this paper is to review the CDW-EIS model used com-
monly in the decription of heavy particle collisions. A theoretical description
of the CDW-EIS model is presented in section 2. In section 3 we discuss
the suitablity of the CDW-EIS model to study the characteristics of ultra-
low and low energy electrons ejected from fast heavy-ion helium, neon and
argon atom collisions. There are some distinct characteristics based on two-
centre electron emission that may be identified in this spectrum. This study
also allows us to examine the dependence of the cross sections on the initial
state wave function of multi-electron targets and as such is important in
aiding our understanding of the ionization process.

Recently Schulz et al and Fischer et al4,5 have had some difficulty in ap-
plying the CDW-EIS theory successfully for fully differential cross sections
in fast ion-atom collisions at large perturbations. These ionization cross
sections are expected to be sensitive to the quality of the target wave func-
tion and therefore accurate wave functions are needed to calculate these
cross sections. Thus one purpose of this paper is to address this problem
theoretically by re-examining the CDW-EIS model and the assumptions on
which it is based. We will explore this by employing different potentials to
represent the interaction between the ionized electron, projectile ion and
residual target ion. For other recent work carried out on fully differential
cross sections see21–23 and references therein. This discussion is presented
in section 4.
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Finally we summarize our results in section 5. Atomic units are used through-
out unless otherwise stated.

2. Continuum Distorted Wave Eikonal Initial State Method

2.1. PERTURBATION THEORY

In the present section we present a theoretical description for the continuum-
distorted-wave eikonal-initial-state (CDW-EIS) model. This model is one
of the most advanced and complete perturbative theories of heavy particle
collisions which has been formulated to date. The reasons for the success
of this model particularly in describing ionization at high energies in the
MeV/amu range are that:
a) the ionized electron sees the Coulomb field from both the target and
projectile ion
b) the wave function satisfies the correct asymptotic boundary conditions
c) the initial and final wave states are normalised at all times and all impact
parameters.

In this paper we restrict our discussion to the processes of single ioniza-
tion by charged particle impact for the neutral target atoms helium, neon
and argon. In our work we adopt the independent electron model to treat
the neutral target atom. Our analysis is within the semiclassical rectilin-
ear impact parameter (ρ), time-dependent (t) formalism. We consider the
problem of three charged particles where an ion of nuclear charge ZP and
mass MP impinges with a collision velocity v on a neutral target atom with
nuclear charge ZT and mass MT . As MT,P � 1, the motion of the nuclei
can be uncoupled from that of the electron. The trajectory of the heavy
particle is then characterized by two parameters ρ and the impact velocity
v such that ρ.v = 0.

The internuclear coordinate is defined by

(1)

and

2)

where rT, rP and r are the position vectors of the electron relative to
the target nucleus, projectile nucleus and their midpoint respectively. The
impact parameter picture of the collision is equivalent to the full quantal
or wave treatment when the eikonal criterion for small angle scattering is
satisfied.24 It has become standard to work in a generalised nonorthogonal
coordinate system in which the vectors rT(rP) from the target (projectile)
to the electron are treated, along with R, as independent variables.25 Work-
ing in the frame centred on the target nucleus and using atomic units, the
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transition amplitude, in post form, may be given by:

ãif (ρ) = −i

∫ ∞

−∞
dt
〈
χ̃+

i

∣∣∣
(

H̃e − i
∂

∂tr

) ∣∣∣χ−
k

〉
. (3)

where

He = −1

2
∇2

r − ZT

rT
− ZP

rP
. (4)

The superscripts plus and minus refer to outgoing and incoming Coulomb
boundary conditions respectively. Of course χ+

i and χ−
k are not exact solu-

tions of the three-body Schrödinger equation, but in fact are the asymptotic
forms of the wave functions. It should be noted that since the potentials
appearing in equation 4 are pure Coulomb potentials, they continue to af-
fect the relevant wave functions even at infinity. We adopt an independent
electron model to approximate the neutral target atom, therefore as in any
independent electron model, no explicit electron correlation in the initial
state is considered. As such, the electronic Hamiltonian for the projec-
tile/neutral target atom collision system is modified from that of the origi-
nal monoelectronic CDW-EIS approximation,6 in that the electron residual
target interaction −ZT

rT
is replaced by a Coulombic potential with an effec-

tive charge −Z̃T to account for passive electron screening. The influence
of the passive electrons is to add a short range potential to the long range
Coulomb potential given by the electron-residual ion interaction. We follow
the approach of Belkić et al26 to describe how the effective charge should
be chosen. Thus we make the assumption that the emitted electron, ion-
ized from an orbital of Roothan-Hartree-Fock (RHF) energy εi, moves in a
residual target potential of the form

VT (rT ) = − Z̃T

rT
. (5)

The effective target charge is given by

Z̃T =
√
−2n2εi, (6)

where εi is the binding energy of the neutral target atom, and n is the
principal quantum number. The initial and final CDW-EIS wave functions
may be expressed explicitly as

|χ+
i 〉 = ϕi(rT ) exp(−1

2
iv.r − 1

8
iv2t − iεit)

exp(−iν ln(vrP + v.rP)) (7)

|χ−
k 〉 = (2π)−3/2N∗(ε)N∗(ζ) exp(ik.rT − 1

2
iv.r − 1

8
iv2t − iEkt)

1F1(−iε; 1;−ikrT − ik.rT)1F1(−iζ; 1;−iprP − ip · rP). (8)
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Here,

(9)

is the electron energy in the final continuum state. The momentum p of
the ejected electron relative to the projectile is given by

p = k− v (10)

where k is the momentum of the ejected electron with respect to a reference
frame fixed on the target nucleus. We note that the polar axis for reference
is taken along the incident beam direction so that

dk = k2dk sin θdθdφ. (11)

The spherical coordinates of the ejected electron momentum k are k, θ, and
φ, where θ = cos−1(k̂.v̂). Because the impact velocity lies along the Z axis,
then v=v Ẑ. The three Sommerfeld parameters are defined by

(12)

(13)

(14)

and

(15)

represents the Coulomb density of states factor. Equations 7 and 8 model
the electron moving within the continuum of both the projectile and tar-
get. In the CDW-EIS approximation the residual post-interaction is the
nonorthogonal kinetic energy term,

(
He − i

∂

∂tr

)
|χ−

k 〉 = [−∇rT
ln 1F1(−iε; 1;−ikrT − ik · rT)

· ∇rP
ln 1F1(−iζ; 1;−iprP − ip · rP)] |χ−

k 〉. (16)

The active electron bound state ϕi(rT) satisfies the Schrödinger equation
(

1

2
∇2

rT
+

ZT

rT
+ εi

)
|ϕi(rT)〉 = 0 (17)

The ground state ϕi(rT) of the neutral target atom is represented by a
Roothan-Hartree-Fock wavefunction that may be expanded in terms of
Slater orbitals.27 Denoting the triply differential cross section by

d3σ

dk
= α(k) =

∫
dρ|aif (ρ)|2 (18)
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with

(19)

we obtain for the CDW-EIS model

(20)

where ∆ε = Ek − εi. Instead of ãif (ρ) it is easier to calculate its two
dimensional Fourier transform Rif (η) as a function of the transverse heavy-
particle relative momentum transfer η; thus the scattering amplitude is

Rif (η) =
1

2π

∫
dρ exp(iη.ρ)ã∗

if (ρ) (21)

where η.v=0.
Closed analytical expressions for the squares of the moduli of the scat-

tering amplitudes |Rif (η)|2 are given in the next section for neutral target
atoms ranging from hydrogen up to and including argon. From the scat-
tering amplitude Rif (η) as a function of the transverse momentum η we
may obtain the probability that for a certain fixed value of η, the electron
initially in a bound state of the target will be emitted to a continuum state
with momentum k. The integration over φ gives the double differential cross
section as a function of the ejected electron energy Ek and angle θ:

d2σ

dEkd(cos θ)
= k

∫ 2π

0

α(k)dφ. (22)

2.2. CDW AND CDW-EIS SCATTERING AMPLITUDES

In this section we consider a generalization of the original CDW-EIS model,
which was orginally designed to calculate the single ionization from a 1s
orbital for the monoelectronic case of hydrogen to consider single ioniza-
tion of any ground-state multielectron atom ranging from helium up to
and including argon by charged particle impact. The scattering amplitudes
considered here are obtained in closed analytical form. The advantage of
our analytical method is that the extension to multielectron targets in the
frozen core approximation is straightforward, and computation of the var-
ious cross sections is very fast. Numerical models of the CDW-EIS theory,
requiring greater computational effort than the analytical model, have been
considered by Gulyas et al (1995)8 using Hartree Fock Slater target poten-
tials and more recently by Gulyas et al (2000)28 using target potentials
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obtained from the optimized potential method Engel et al.29 The drawback
of the numerical approach is that no closed forms are possible for the wave-
functions or the transition amplitudes. On the otherhand it is possible using
the numerical approach to get initial and final states that are completely
orthogonal.

The validity of our analytical model for the multielectron targets lies in
the description of the bound and continuum states of the target atom.
The analytical form of the scattering amplitudes is derived by represent-
ing the initial-target bound state by a linear combination of Slater-type
orbitals. The coefficients of these expansions are obtained using the tables
of Clementi and Roetti.27 The continuum states of the target atom are
represented by a hydrogenic wavefunction with an effective charge chosen
from the energy of the initial bound state in accord with equation (6). This
of course means that the initial and the final states correspond to different
potentials and hence are not orthogonal. Let us first consider the single
ionization of the argon atom by ion impact. The electronic configuration
of argon is 1s2 2s2 2p6 3s2 3p6. Thus to provide a description of the tar-
get wavefunctions for all the atoms ranging from the monoelectronic case
of hydrogen to the multielectronic atoms from helium to argon, we first
require the post form of the CDW-EIS scattering amplitudes for the 1s,
2s and 3s orbitals in the K, L, and M shells (corresponding to the values
n = 1, 2, and 3 of the principal quantum number, respectively). Secondly,
we require post forms of the CDW-EIS scattering amplitudes for the 2p and
3p orbitals in the L and M shells (corresponding to the principal quantum
numbers n = 2 and 3, respectively). The post form of the square of the
CDW-EIS scattering amplitudes for the 1s, 2s, and 3s orbitals is given by

where SAI and SAII have different values depending on the atom se-
lected. For the case of atoms from sodium through to Argon

316



COMPUTER SIMULATIONS IN HEAVY PARTICLE COLLISIONS

where

(26)

and

(27)

Physical quantities related to the final continuum target state are:

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

The coefficients Zλ and bλ in the above expressions come from the descrip-
tion of the Roothan-Hartree-Fock wave functions of the particular atom
which may range from hydrogen to argon inclusively.27 The values of A,
Ωλ and τ are common to both the p shell and the s shell in all atoms yet
have specific values for the two theories. For the CDW-EIS model we have

(39)

(40)
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τ = 1 − αδ

βγ
. (41)

Expressions for sAI and sAII for ionization from the 1s and 2s states of
target atoms ranging from lithium to neon are given by

sAI =
2∑

λ=1

bλZ
3/2

λ GλBλ +
6∑

λ=3

1√
3
bλZ

5/2

λ Gλ(AλBλ − ik̂.q), (42)

sAII =
2∑

λ=1

bλZ
3/2

λ GλBλΩλ +
6∑

λ=3

1√
3
bλZ

5/2

λ Gλ(AλBλΩλ − iΩλq.k̂), (43)

and

Aλ =
(1 − iε)Zλ

αλ
+

(1 + iε)(Zλ − ik)

αλ + βλ
. (44)

For ionization from the 1s states of helium the value of sAI and sAII are
given by

sAI =
5∑

λ=1

bλZ
3/2

λ GλBλ, (45)

and

sAII =
5∑

λ=1

bλZ
3/2

λ GλBλΩλ. (46)

The values of sAI and sAII for hydrogen can be found from this by taking
the value of Zλ = Z̃T = 1 = ZT and bλ = 1. Since our theoretical treatment
is based on the independent electron model we can also easily obtain an
analytical expression for the molecular hydrogen wave function. This may
be derived by simplifying the H2 target to an effective one-electron hydro-
genic target with charge Z̃T = 1.064, where 1

2
Z̃2

T is the single ionization
energy of H2. This approximation is valid for intermediate-to-high energy
collisions where the cross sections for the H2 target are essentially similar
to twice the atomic-hydrogen cross sections.

Next turning to the 2p and 3p Roothan-Hartree-Fock orbitals, the post
form of the square of the CDW-EIS scattering amplitudes may be given as

|Rif (η)|2 =
|N(ε)N(ζ)N(ν)|2

2π2v2α2γ2
ZP

2Z̃2
T A (47)

×|pAI 2F1(iν; iζ; 1; τ) − iν pAII 2F1(iν + 1; iζ + 1; 2; τ)|2.

Again as in the s shells pAI and pAII have different values depending on
the atom selected. Thus to calculate the various ionization cross sections
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the contributions from the 2p and 3p spectra depend on the values of pAI

and pAII which are given by

pAI =
∑

λ=1

bλZ
3/2

λ Gλ[An̂
λ Bλ − Zλn̂.q]

+
8∑

λ=2

bλZ
3/2

λ√
105

[(− d3

dµ3
(Gλ)|µ=0)Bλ + 3(

d2

dµ2
(Gλ)|µ=0)Zλn̂.q],(48)

pAII =
∑

λ=1

bλZ
3/2

λ Gλ[An̂
λ BλΩλ − Zλn̂.qΩλ]

+
8∑

λ=2

bλZ
3/2

λ√
105

[(− d3

dµ3
(Gλ)|µ=0)BλΩλ + 3(

d2

dµ2
(Gλ)|µ=0)Zλn̂.qΩλ],

(49)

where

An̂
λ =

(1 − iε)

αλ
Zλn̂.(q + k) +

(1 + iε)

(αλ + βλ)
Zλn̂.q, (50)

with

n̂ =






i for 2px state,
j for 2py state,
k for 2pz state.

(51)

Here

d2

dµ2
(Gλ)|µ=0 = αiε−1

λ (αλ + βλ)−1−iε

[
(1 − iε)(2 − iε)

α2
λ

(n̂.q + n̂.k)2Z2
λ +

(iε − 1)Z2
λ

αλ

+
2(1 − iε)(1 + iε)Z2

λ(n̂.q + n̂.k)n̂.q

αλ(αλ + βλ)

+
(1 + iε)(−Z2

λ)

(αλ + βλ)
+

(1 + iε)(2 + iε)Z2
λ(n̂.q)2

(αλ + βλ)2
], (52)

and

d3

dµ3
(Gλ)|µ=0 = αiε−1

λ (αλ + βλ)−1−iεZ3
λ[

1

α3
λ

(n̂.q + n̂.k)3(1 − iε)(2 − iε)(3 − iε)

+
1

(αλ + βλ)3
(n̂.q)3(1 + iε)(2 + iε)(3 + iε)

+
1

α2
λ

(n̂.q + n̂.k)(−3(1 − iε)(2 − iε))
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+
1

(αλ + βλ)2
(n̂.q)(−3(1 + iε)(2 + iε))

+
1

α2
λ(αλ + βλ)

(n̂.q + n̂.k)2(n̂.q)(3(1 − iε)(2 − iε)(1 + iε))

+
1

αλ(αλ + βλ)
(n̂.q)(−3(1 − iε)(1 + iε))

+
1

αλ(αλ + βλ)
(n̂.q + n̂.k)(−3(1 − iε)(1 + iε))

+
1

α λ(α λ+ β λ)2
(n̂.q + n̂.k)(n̂.q)2(3(1 − iε)(1 + iε)(2 + iε))].

(53)

Partial contributions to the cross sections for atoms from boron to neon
from the outer L shell depend on the values of pAI and pAII which are
given by

pAI =
4∑

λ=1

bλZ
3/2

λ Gλ[An̂
λ Bλ − Zλn̂.q], (54)

and

pAII =
4∑

λ=1

bλZ
3/2

λ Gλ[An̂
λ BλΩλ − Zλn̂.qΩλ], (55)

where An̂
λ and n̂ are defined as above in equation (50) and (51) respectively.

3. Longitudinal electron velocity distributions

In this section we apply the theory developed in the preceding sections to a
series of experiments carried out by Schmitt et al3 using the so-called reac-
tion microscope for ultra-low energy electrons emitted from neutral target
atoms. This state of the art experimental technique has enabled experimen-
talists to measure simultaneously the momenta of the emitted electrons and
the recoiling residual-target ion and many new striking features have been
found.

Details of the emission of ultra-low and low energy electrons can be seen
in the cross sections doubly differential in the longitudinal and transverse
momenta. The formula for the double differential cross section as a func-
tion of the longitudinal electron velocity ve|| for various transverse electron
velocity ve⊥ cuts can be obtained from equation (57) by noting that

Ek =
1

2
(p2

e|| + p2
e⊥) (56)

where pe⊥ is the transverse momentum of the ejected electron. Hence

1

2πve⊥

d2σ

dve||dve⊥
=

1

2π

∫ 2π

0

α(k)dφ. (57)
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The doubly differential cross sections are defined in this manner in or-
der to correct for the increasing volume element with increasing ve⊥. We
have adopted cylindrical coordinates in velocity space with the axis along
the beam propagation direction. This choice of coordinate system is well
adapted to the azimuthal symmetry of the electron emission if no scattering
plane is defined. Thus the cross sections will have the shape and dimen-
sion of the triply differential cross sections assuming azimuthal symmetry.
The experimental single ionization data have been normalised to the total
CDW-EIS cross sections for each target considered. In figure 1 the doubly
differential cross section is shown as a function of the longitudinal electron
velocity for various transverse velocity cuts in singly ionizing 3.6 MeV/u
Au53+ on helium collisions.
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Figure 1. Double differential cross sections (ddcs = 1

2πv
e⊥

d
2
σ

dv
e||dv

e⊥
) as a function of

the longitudinal electron velocity for various transverse velocity cuts in singly ionizing
collisions of 3.6 MeV/u Au53+ ions on He. CDW-EIS results (solid lines: Schulz et al3) are
shown along with the experimental data from Schmitt et al.3 Cross sections at different
ve⊥ are multiplied by factors of 10 respectively.

There is excellent agreement between the CDW-EIS theory and measure-
ment. This is observed in both shape and in absolute magnitude. A strong
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Figure 2. Double differential cross sections (ddcs = 1

2πv
e⊥

d
2
σ

dv
e||dv

e⊥
) as a function of

the longitudinal electron velocity for various transverse velocity cuts in singly ionizing
collisions of 3.6 MeV/u Au53+ ions on Ne. CDW-EIS results (solid lines: McSherry et
al30) are shown along with the experimental data from Moshammer et al.20 Cross sections
at different ve⊥ are multiplied by factors of 10 respectively.

forward-backward asymmetry is found. All the longitudinal velocity distri-
butions for different transverse velocities including their maxima are shifted
towards positive velocities. These asymmetrical distributions are attributed
to the two-centre effects i.e. the post collision interaction effect. The CDW-
EIS model predicts these features since it is adapted to take account of
the long-range Coulomb interaction of the projectile and target field. The
emerging long-range potential of the Au53+ projectile ion provides a large
perturbation strength of Zp/vp (where Zp and vp are the charge and veloc-
ity of the projectile). This attracts the emitted electron pulling it into the
forward direction. With increasing ve⊥ the electron distributions are shifted
to higher values of ve|| while the electrons with very small ve⊥ =0.05 a.u.
show a maximum close to ve|| = 0 a.u..
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Figure 3. Double differential cross sections (ddcs = 1

2πv
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) as a function of

the longitudinal electron velocity for various transverse velocity cuts in singly ionizing
collisions of 3.6 MeV/u Au53+ ions on Ar. CDW-EIS results (solid lines: McSherry et
al30) are shown along with the experimental data from Moshammer et al.20 Cross sections
at different ve⊥ are multiplied by factors of 10 respectively.

In figures 2, 3 and 4 the experimental longitudinal electron velocity
distributions for different transverse electron velocities are shown for singly
ionizing 3.6 MeV/u Au53+ on neon and argon respectively. As in the case
of helium the theoretical CDW-EIS and experimental distributions show
the characteristic features of single target ionization by fast heavy ions and
most of these features have been discussed above. In particular both neon
and argon show the sharp maximum at ve|| = 0 as was shown in figure 1
for helium. This feature is closely analogous to the one observed for ve =
vp for electron capture to the continuum mechanism or to electron loss to
the continuum which is often referred to as the cusp. The electrons with ve

= vT = 0 in the low lying continuum states of the target ion also form a
sharp peak known as the ’target cusp’.

Beyond these well established characteristic features however the total
width of the electron distributions is much narrower for the argon target
than for neon or helium. These patterns are due to the signatures of the
initial state wave function. In figure 3, a systematic discrepancy between ex-
periment and theory appears at higher electron energies. This discrepancy
occurs due to one of the basic postulates of the CDW-EIS model, namely
that it is based on the independent electron model which considers there
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to be only one active electron. Within this model it is assumed that the
entire impact parameter range contributes only to single ionization. How-
ever, particularly at low impact parameters, single ionization competes with
double and multiple ionization. By plotting the summation of differential
cross sections irrespective of the degree of ionization as measured by con-
ventional spectroscopy, this extra contribution can be included. Figure 4
shows that this considerably improves the accord between the CDW-EIS
theory and experimental data for the complete range of energies considered.
This demonstrates that reliable ionization data can be obtained only when
the charge state of the remaining target ion is known in the experiment.
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Figure 4. Double differential cross sections (ddcs = 1

2πv
e⊥

d
2
σ

dv
e||dv

e⊥
) for electron emission

due to single, double or triple ionization of Ar by 3.6 MeV/u Au53+ ions. The DDCS for
the specified recoil-ion charge states are added according to their relative contribution to
the total cross section. CDW-EIS results (solid lines: McSherry et al30) are shown along
with the experimental data from Moshammer et al.20 The experimental data are divided
by 1.4. Cross sections at different ve⊥ are multiplied by factors of 10 respectively.

Similar theoretical calculations using the CDW-EIS approximation for
neon and argon have been carried out by Moshammer et al.20 Their cal-
culations are based on using a generalised version of the CDW-EIS model
which differs from our model by solving the stationary Schrödinger equa-
tion with Hartree-Fock-Slater model potentials for the target atoms. In the
case of argon their theoretical CDW-EIS results showed a shoulder effect at
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lower transverse velocity cuts which they attributed to the nodal structure
of the initial argon 3p0 orbital whose contribution dominates in this region.
This effect does not appear in our model as shown in figures 3 and 4. This
shoulder effect has also been analysed recently by Gulyás et al28 using the
CDW-EIS model approximation with a target potential obtained from the
optimized potential method. They concluded that the shoulder effect was
an artefact caused by a deficiency of the Hartree-Fock-Slater model. Both
our work and the recent work of Gulyás et al28 suggest that it is better to
avoid using the Hartree-Fock-Slater model20 in calculations for ion-atom
collisions since it can produce artificial structures in the low energy con-
tinuum wave functions especially for the heavier targets such as argon.
However all three studies20,28, 30 confirm that the target wave function is
sensitive to the initial state.

4. Fully Differential cross sections for highly charged ions

The calculations in the previous section show that CDW-EIS is valid if the
parameter ZP

v2
P

is small compared with 1 a.u.. The CDW-EIS model is thus

generally viewed as the state of the art approximation for heavy ion impact.
Given the success of the CDW-EIS model in describing the electron spec-
tra for highly charged ions in collision with neutral target atoms it was a
suprise to discover that the CDW-EIS model had difficulty in reproducing
the experimental results of Schulz et al4 involving fully differential cross
sections for 3.6 MeV amu−1 Au24+,53+ on helium. Thus in this section we
seek to examine the possible causes of the discrepancies between theory
and experiment.

Inparticular itwas considered initially4 that the above discrepancywasdue
to the lack of orthogonality between the EIS and the CDW state wavefunc-
tions. However, Bubelev and Madison31 reported that orthogonality was not
required as the interaction potential was already included in the wavefunc-
tions. Therefore, it was concluded that the missing projectile-target inter-
nuclear potential might account for the lack of the recoil peak. Ciappina et
al38 have pointed out that when dealing with multielectronic targets, initial
and final states become a source of concern, as exact wavefunctions are not
available in these cases. Slater orbital expansions of Roothan-Hartree-Fock
wavefunctions are usually employed for the initial bound state.27 In order
to circumvent this problem in the final continuum, the system is reduced to
that of one active electron in a model potential. In that scheme the remain-
ing target electrons provide a partial screening of the nuclear charge. The
simplest approach is to represent the continuum by hydrogenic wavefunc-
tions with an effective nuclear charge accounting for the screening effects.
This allows us to obtain an analytical expression for both the wavefunctions
and the transition amplitude. Although Gulyas et al8 have extended the
CDW-EIS model to include both initial and final numerically calculated
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wavefunctions, we feel it is still desirable to study further improvements
to the simple and successful CDW-EIS approximation which still allows us
to obtain an analytical expression for the transition amplitude to calculate
the fully differential cross sections.

Recently in the literature a number of authors36–38 have examined the
ionization and excitation of targets by ion impact using different potentials
within theoretical models very similiar to the CDW-EIS model. In particu-
lar Bhattacharya et al37 studied the ionization of argon by proton impact in
the energy range 10-300 keV. In their study they used the Born initial-state
wave function and the final state was described using the product of two
continuum distorted waves involving distinct electron nucleus interaction.
Charge screening was also included in their model via a model potential
which included both short and long range effects. In our present work we
adopt this model with the exception that we employ an eikonal phase in the
initial channel. This model we will refer to as ”CDW-EIS Bhattacharya”.37

Olivera et al36 studied the electronic excitation of dielectronic targets by
ion impact. Their model used an independent-electron approximation where
one electron, the passive one remains frozen during the collision. The in-
teraction in Olivera’s model36 between the projectile and passive electron
along with the internuclear potential is accounted for by a static potential.
Distorted initial and final wave functions are described in Olivera’s model
by the symmetrical eikonal model. In our present work we also adopt Oliv-
era’s model with the exception that the distortion in our initial wavefunc-
tion is accounted for by an eikonal phase and the distortion in the final
wave function is accounted for by a continuum-distorted-wave. This model
we will refer to as ”CDW-EIS Olivera”.

This section brings all of that work together and compares with our own
versions of the CDW-EIS model used here to see if any particular version
of the CDW-EIS model is more effective than the others so far as the pa-
rameters considered are concerned. In particular our present model focuses
on discussing the effect which including the internuclear potential has on
the results of fully differential cross sections for highly charged ions. Fur-
thermore we consider the effect of eliminating the RHF wavefunction. This
latter is considered as we feel that care ought to be taken when considering
RHF wavefunctions, which can lead to unphysical components.32

The case of ionization of the projectile may be neglected due to its large
charge which means that the electrons will be tightly bound and therefore
very unlikely to be ionized.
The fully differential cross section (FDCS) is given by

d5σ

d3kd2η
=
∣∣∣Rif (η)

∣∣∣
2
, (58)

where k is the ejected-electron wave number, η is the transverse compo-
nent of the change in the relative momentum of the nuclei and Rif is the
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Figure 5. FDCS for electrons emitted into the scattering plane for a fixed electron energy,
Ek = 4 eV , and fixed magnitude of the momentum transfer (see eqn (6)) q = 0.65
a.u., as a function of the polar electron emission angle for 3.6 MeV amu−1 Au24++
He collisions. The following notation is used: * experimental data of Fischer et al,5 —
theoretical results. The six diagrams above represent the following models: (a) FBA, (b)
CDW-EIS, (c) CDW-EIS+nn, (d) CDW-EIS+RHF, (e) CDW-EIS Olivera, (f) CDW-EIS
Bhattacharya. The polar radius of figures (a) to (f) is 10a.u. .

scattering amplitude.6 The scattering amplitude may be given by:

R̃if (η) =
1

2π

∫
dρ exp(iη.ρ)ãif (ρ), (59)

where ρ is the impact parameter and v is the impact velocity, with η ·v = 0
and ρ · v = 0. ãif (ρ) is the transition amplitude without the internuclear
potential and the tilde so indicates.

From McCann,33 the transition amplitude including the internuclear
potential is given by:

aif (ρ) = (ρv)
2iZT ZP

v ãif (ρ), (60)

where ZT and ZP are the target and projectile-nucleus charges respectively.
This means that the scattering amplitude including the internuclear

potential is given by:

Rif (η) =

∫ ∞

0

ρdρJ0(ηρ)(ρv)2iγ
∫ ∞

0

R̃if (η′)J0(η
′ρ)η′dη′, (61)
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Figure 6. Same as figure 4.1 but for singly ionizing collisions of 3.6 MeV amu−1 Au53++
He collisions with electron energy, Ek = 17.5 eV , and momentum transfer q = 1.5 a.u.

and except for * which now represents the experimental data of Schulz et al.4 The polar
radius of figures (a) to (f) is 2E-5 a.u. .

where γ = ZT ZP

v , as in McSherry et al.34 The authors call CDW-EIS in-
cluding this term CDW-EIS+nn.

The ground state wavefunction, ϕi(rT), for the outer electron orbital
of the neutral target was obtained from Crothers,35 with He+(1s) taken as
the inner-electron orbital and with

ϕ(rT, z0) = z
3/2
0 π−1/2 exp(−z0rT ) (62)

where the value of z0 is (1.8072)1/2 . This is essentially an open shell Shull-
Löwdin wavefunction, suitably normalized and symmetrized.

Figures 5, 6 and 7 represent various computer simulations pertaining to
the FDCS for electrons emitted into the scattering plane in 3.6 MeV amu−1

Au24+,53++ He collisions. The experimental results are absolute with the
theoretical data normalized to them. The results are shown in the form of
polar plots with the FDCS plotted as polar radial functions of the scattering
(polar) angle. The figures contain six different models, each of which has
been labelled for discussion. The top left (a) is FBA, top middle (b) is
CDW-EIS, without internuclear potential, top right (c) CDW-EIS+nn. The
bottom left (d) is CDW-EIS with RHF wavefunctions (CDW-EIS+RHF),
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bottom middle (e) is CDW-EIS with the internuclear potential given by36

(CDW-EIS Olivera) as described earlier in this section. This model is shown
bottom right (f) is CDW-EIS with the model potential of 37 (CDW-EIS
Bhattacharya) as described earlier in this section. All the models except
for (d) CDW-EIS+RHF, have used the modified wavefunction of (62); also
the internuclear potential has been included in all models except for (a) the
FBA and (b) the CDW-EIS models.

Figure 5 shows the FDCS for electrons emitted into the scattering plane
in 3.6 MeV amu−1 Au24++ He collisions at momentum transfer of q = 0.65
a.u. and electron energy Ek = 4 eV , where the momentum transfer q is
defined by

q2 = η2 + (∆ε/v)2 (63)

given ∆ε is the resonance defect. The perturbation parameter is quite large
at 2.0. The experimental data are from.5 The theoretical data for (a) is
scaled down by 909, while the theoretical data for (b) to (f) have been
scaled up by factors of 1.2, 3.8, 4.1, 3.9 and 8.2 respectively. The FBA
gives a poor approximation as expected, due to the large perturbation but
has been included for reference. The models indicate that the best method
for producing qualitative results is CDW-EIS (b) in this case. All the sim-
ulations reproduce the upper lobe about 60◦ but do not reproduce the lobe
in the forward direction. All the CDW-EIS variations give a ‘bottom’ lobe,
currently thought to be the recoil peak.5 It is a concern that the magnitude
of the different theoretical models varies widely with the FBA overestimat-
ing the experimental data while the others underestimate it. The PCI ought
to be more effective for a stronger perturbation.

To see this consider 3.6 MeV amu−1 Au 53++ He collisions at the mo-
mentum transfer of q = 1.5 a.u. and electron energy Ek = 17.5 eV . In
this regime the perturbation is 4.4, which is considered to be a large per-
turbation. Figure 6 shows the FDCS for this collision, with experimental
data from Schulz et al.4 The theoretical data for figures (a) to (f) have been
scaled down by factors of 2.3E7, 2.0E5, 1.8E4, 1.6E4, 1.8E4 and 185 respec-
tively. The PCI is seen to influence the models including the internuclear
potential and leads to slightly better results for them. However, the model
that gives the best qualitative agreement is the CDW-EIS Bhattacharya
simulation. In this model the FDCS is starting to peak in the forward di-
rection and is closer to the two results nearest 0◦ than any other model.
It gives good agreement for FDCS between 270◦ and 360◦, which is not
achieved in any of the other models. In this case all models overestimate
the experimental data, with (f) being closest.

In figure 7 the FDCS for 3.6 MeV amu−1 Au53++ He collisions with
electron energy Ek = 4.0 eV , and momentum transfer q = 1.0 a.u. have
been presented with experimental data from Fischer et al.5 This is a high-
perturbation regime as in figure 6. The theoretical data for (a) and (b) was
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Figure 7. Same as figure 4.1 but for the singly ionization collisions of 3.6 MeV amu−1

Au53++ He collisions with electron energy, Ek = 4.0 eV , and momentum transfer q = 1.0
a.u. and except for * which represents the experimental data of Fischer et al.5 The polar
radius of figures (a) to (f) is 8 a.u. .

scaled down by factors of 5.3E3 and 1.9, while the theoretical data for (c)
to (f) was scaled up by factors of 4.6, 5.0, 4.6 and 146 respectively. Models
(b) to (e) all appear to reproduce the upper lobe about 60◦, and the recoil
peak to a lesser extent, but fail to reproduce the peak in the forward direc-
tion. Conversely, the CDW-EIS Bhattacharya simulation provides the best
agreement with the peak in the forward direction but does not appear to
have picked up the upper lobe about 60◦.

If we take the same parameters as in figure 7 namely q = 1.0 a.u., but
for the Au24++ case, no pattern emerges.
Using a different target wavefunction instead of RHF wavefunctions has
made very little difference in this case. In a recent paper by Ciappina
et al,38 results are presented to illustrate post-prior discrepancies in the
CDW-EIS simulation for ion-helium ionization. It suggests that using the
prior version gives better results than the post version due to the prior
version being less sensitive to the choice of the final state. This would be
of benefit as the final state, CDW, cannot be computed exactly due to the
3-body problem and normally it is modelled with a hydrogenic continuum
state for the electron-residual target state. Using the prior version may lead
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Figure 8. Same as figure 6(f), except, for clarity, linear plot instead of polar plot, and
theoretical FDCS for q = 1.5± 0.3 a.u. contrasted with the theoretical FDCS for q = 1.5
a.u. of figure 6(f).

to better agreement between theory and experiment. The discord may be
due to omitting the out of collision plane events caused by rotational cou-
pling.39,40 In reference4 the electron energies and the momentum transfer
have a degree of uncertainity which strongly influences results of theoretical
calculations. For example, when considering 3.6 MeV amu−1 Au53++ He
collisions, with Ek = 17.5 eV and q = 1.5 a.u the degree of error associ-
ated with q is 0.3. This degree of error changes the shape of the theoretical
data for model (f), CDW-EIS Bhattacharya, depending heavily on the ac-
tual value of q, see figure 8. This degree of error may be expected in the
experimental results5 accordingly.

For our study on fully differential cross sections for highly charged ions us-
ing different variations of the CDW-EIS model, it has been concluded that,
for the single ionization of 3.6 MeV amu−1 Au24++ He collisions, the stan-
dard CDW-EIS model, (b), provides a slightly better approximation than
the other variations considered in this paper. It is apparent from this study
for 3.6 MeV amu−1 Au53++ He collisions, that the model which yields the
best qualitative results is CDW-EIS with the model potential from Bhat-
tacharya et al,37 (f). A ‘bulge’ in the forward direction is starting to appear
for Ek = 17.5 eV but for Ek = 4 eV only the peak in the forward direc-
tion appears. It may indicate that the standard CDW-EIS model is more
appropriate at lower projectile charges and lower perturbations and that
the CDW-EIS Bhattacharya is best suited to higher projectile charges and
stronger perturbations. Clearly these processes require further theoretical
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5. Summary

To conclude we have examined the applicability of the continuum-distorted-
wave theory to experiments carried out using the reaction microscopy tech-
nique for both doubly differential cross sections for longitudinal electron
velocities and fully differential cross sections applied to the single ionization
of 3.6 MeV amu−1 Au24+,53+ on neutral target atoms. For the case of the
longitudinal electron velocity distributions discussed in section 3 we found
that overall good agreement was obtained between theory and experiment.
In particular it was noted that a strong forward-backward asymmetry was
found for the ultra-low and low energy electron emission. It was also found
that the DDCS are extremely sensitive to the initial state target wave func-
tion.

In our second study of fully differential cross sections applied to the single
ionization of 3.6 MeV amu−1 Au24+,53+ on helium in section 4 we used
different versions of the CDW-EIS model and compared with the experi-
mental data of Schulz et al4 and Fischer et al5 for fully differential cross
sections. The model that overall gave the best agreement with experiment
at high projectile charges, low electron velocity and high momentum trans-
fer is the CDW-EIS model which employs the potential from Bhattacharya
et al. This particular version of the CDW-EIS approximation is based on
a model potential which has physically appropriate short and long range
behaviour. It is hoped that further calculations using the CDW-EIS model
to simulate fully differential cross sections, both qualitatively and quanti-
tatively may lead to a fuller understanding of single ionization by highly
charged ion impact.

Acknowledgements

One of the authors (R.T. Pedlow) wishes to thank the Department of Em-
ployment and Learning, Northern Ireland, for financial support.

References

1. N. Stolterfoht, R.D. DuBois, R.D. Rivarola Electron Emission in Heavy-Ion Atom
Collsions, Vol 20, Toennies, ed., Springer-Verlag, Berlin, 1997.

2. R. Moshammer, J. Ullrich, M. Unverzagt, W. Schmidt, P. Jardin, R. E. Olson, R.
Mann, R. Dörner, V. Mergel, U. Buck, H. Schmidt-Böcking Phys. Rev. Lett. 73,
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Abstract. The separation of the total energy into one- and two-body terms for 
interacting molecules at the HF-SCF level has already been proved to provide 
useful information. Several energy contributions for the linear water dimer mol-
ecule and for some hexamer water clusters were calculated using various basis 
sets in the present work. The results suggest that some partitioned energy terms 
derived separately for each contributing monomer (using the method of Separ-
ated Molecular Orbitals) show significant differences for the proton donor and 
the proton acceptor molecules in the linear structured water dimer. The sum of 
these terms per each subunit corresponds to a (partitioned) total energy quantity 
for the given subsystem. This energy contribution allows characterizing the pro-
ton donor /acceptor ability of the monomers. In this way the identification of the 
monomers by their proton donor / acceptor nature in some water hexamers was 
also investigated. 

1. Introduction 

The independent particle model is a well-defined basic strategy for quantum 
chemistry. In cases of closed shell systems the electronic structure can be well 
described by using a single determinant built from one-particle functions. Ap-
plying the variation procedure, the ab initio method provides the Hartree-Fock-
Roothaan equations, and solving them the canonical molecular orbitals can be 
obtained. The advantage of the HF method is its conceptual simplicity: now-
adays molecular systems with many hundreds of electrons can be treated by this 
procedure. As the HF model describes the static status of electrons, certain ef-
fects (related to dynamical electron correlation) cannot be investigated by this 
method alone. More sophisticated models are needed for analyzing dispersion 
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forces, e.g. in weakly interacting molecular structures [1]. The HF method gives 
quite acceptable values for one-electron quantities. This holds also for some en-
ergetic terms, like the kinetic energy. 
 The hydrogen bond is often regarded as a special case of interaction. The H-
bond in the linear water dimer structure may also be called donor-acceptor inter-
action [2]. Due to its importance in life, a tremendous number of investigations, 
both experimental and theoretical, refer to the water dimer and larger clusters 
[3-9]. Several solvation approaches have been elaborated, including some consi-
dering explicitly the solvent molecules [10, and refs. therein]. The possibility of 
using localized orbitals in these alternative methods has also been investigated 
[11-15]. 
 It is known that the conformation of a given molecular structure is one of its 
main characteristics. The geometrical parameters of the molecules can in a large 
number of cases be calculated, to a good approximation, by using the HF meth-
od. The local minima on the potential energy surface can be assessed by using 
the virial theorem. The analysis of isolated molecules indicates that the virial 
theorem holds at equilibrium geometries: the ratio of the total (E) and kinetic 
(T) energies with opposite signs (-E/T) is (nearly) one. The ratio of the potential 
(V) and kinetic (T) energies with opposite signs (-V/T) is also often taken as a 
characteristic feature of the system, and equals nearly two at equilibrium. Such 
terms are useful for checking the quality of the basis set actually used. 

2. The SMO method 

The Separated Molecular Orbitals (SMO) method has been described earlier in 
details in refs. [16, 17]. At the Hartree-Fock SCF level the closed shell total en-
ergy has the following form:  

j,i

ijij
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iinucHF KJ2VT2EE

where
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Using SMO’s this expression can be separated into one- and two-body terms by 
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A and B label the monomers, O-s are sets of occupied orbitals counted to mono-
mer A or B, respectively, and 
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The partitioned energy terms can thus be derived separately for each contribu-
ting monomer (M). The sum of these terms per each subunit corresponds to a 
(partitioned) total energy quantity for the given subsystem (EM). 
 Various energy terms calculated for the linear water dimer molecule and for 
some hexamer water clusters at the HF level in both the canonical and the “sep-
arated” representations, using various basis sets are given in the present work. 
This study is twofold. First, the differences between the proton donor and pro-
ton acceptor molecules have been assessed in the linear water dimer. The EM 
energy contributions (obtained in the separated representation) are expected to 
characterize the proton donor / acceptor ability of the monomers. Secondly, a 
possibility of identification of a proton donor or acceptor character of the mono-
mers in some water hexamers was tested. 
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3. Results obtained for a linear water dimer structure 

Let us first discuss the results obtained in canonical representation. The energy 
quantities calculated by using eight different basis sets for a water monomer are 
given in Table I. 
 Certain regularities in basis set dependence could be found as comparing the 
values obtained for the energy quantities. The extension of the 6-31G and 6-
311G basis sets, e.g., lead to similar changes in the kinetic energy and the two-
electron energy. It does not hold the same, however, for the potential energy 
terms. As to the more extended basis sets, the VDZ and VTZ (and their aug-
mented sets, too) show remarkable similarities regarding the one-electron pot-
ential, the kinetic and the two-electron energy contributions. 
 It is worthwhile analyzing whether the same conclusion holds when the 
water dimer structure is considered. A series of calculations have been perfor-
med for a linear structured water dimer, the values are listed in Table II. 

Energies (given in hartree) 
Basis sets 

Total
One-electron

potential Kinetic
Two-

electron

-V/T

6-31G -75.9839 -198.9791 75.9839 37.8015 1.9998 
6-31G/d -76.0105 -198.8796 75.8229 37.8503 2.0025 
6-311G -76.0093 -199.1120 76.0858 37.8205 1.9990 
6-311G/d -76.0315 -199.1859 76.0856 37.8723 1.9993 
VDZ -76.0268 -199.1421 75.9897 37.9303 2.0005 
Aug VDZ -76.0414 -198.9072 75.9282 37.7412 2.0015 
VTZ -76.0572 -199.1280 76.0067 37.8678 2.0007 
Aug VTZ -76.0606 -199.0141 75.9599 37.7972 2.0013 

Energies (given in hartree) 

Basis sets 

Total
One-electron

potential Kinetic 
Two-

electron

-V/T

6-31G -151.9798 - 434.5822 152.0020 93.9209 1.9990 
6-31G/d -152.0300 - 434.3686 151.6528 94.0064 2.0025 
6-311G -152.0309 - 434.8239 152.1702 93.9434 1.9991 
6-311G/d -152.0735 - 434.9622 152.1718 94.0376 1.9994 
VDZ -152.0628 - 434.8696 151.9850 94.1425 2.0005 
Aug VDZ -152.0889 - 434.4469 151.8873 93.7915 2.0013 
VTZ -152.1213 - 434.8466 152.0233 94.0226 2.0006 
Aug VTZ -152.1269 - 434.6558 151.9475 93.9019 2.0012 
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 The quantities in Table II unambiguously show that for the water dimer the 
terms follow similar regulations as found for the water monomer. The problem, 
however, is that the analysis of the water dimer does not provide information on 
the monomers behavior: donor or acceptor, when using the canonical represent-
tation. Let us consider smaller or larger basis sets; the results do not provide any 
characteristic feature on the monomers although (due to a sub-symmetric rela-
tionship of the monomers in the dimer) the electron structures of the monomers 
are different. 
 A question arises, whether the various energy quantities derived by the SMO 
method could yield useful information on the monomer’s role (proton donor or 
acceptor) in the weakly interacting water dimer system. 
 The energy values obtained for the proton donor and acceptor subsystems in 
a linear water dimmer, calculated in the separated representation, are given in 
Table III. 
 The basis sets are selected from those presented in the previous Tables. First 
it can be stated that using the SMO method the kinetic energy / partitioned total 
energy ratios calculated according to the monomers are close to -1. It is found 
by using other basis sets, too [18, 19]. The results presented here also support 
that the separator of the SMO method works adequately. 

  Basis sets Energies (given in hartree) 

    

Partitioned
total

One-electron
potential Kinetic 

Two-
electron

  6-31G/d -76.0013 -198.9298 75.8340 37.8980 

Proton 6-311G -75.9998 -199.1431 76.0790 37.8679 

donor 6-311G/d -76.0224 -199.1843 76.0527 37.9128 

VTZ -76.0432 -199.1546 75.9907 37.9014 

  6-31G/d -75.9873 -198.8732 75.8369 37.8525 

Proton 6-311G -75.9863 -199.1016 76.0910 37.8276 

acceptor 6-311G/d -76.0095 -199.1414 76.0622 37.8733 
VTZ -76.0296 -199.1222 76.0013 37.8665 

    Let us now compare the partitioned total energy (EM) for the different mono-
mers (acceptor and donor). The results show that the separation conserves the 
relative difference for this energy term vs. the variation of the basis set when 
comparing them to the non-interacting monomers values (Table I). This holds 
both for proton donor and acceptor-type monomers. It is also remarkable that 
the EM’s are regularly higher for the proton acceptor subsystems than for the 
proton donor ones. In other words, the electron structure of the proton donor 
subsystem is significantly more compact for any of the basis sets used. Going to 
the partitioned one-electron potential energy terms, a similar conclusion can be 
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found: the values are systematically different for the proton donor and acceptor 
monomers. This holds for the two-electron energy as well. These results suggest 
that the proton donor / acceptor behavior can be definitively (and in a simple 
way) characterized by certain energy terms decomposed using the separation 
procedure. The values presented in the Tables show that basis sets of rather dif-
ferent size and quality produce similar results in characterizing a donor or ac-
ceptor molecule in a standard H-bond. Comparing the partitioned kinetic energy 
quantities calculated for the proton donor and acceptor molecules, however, the 
values are rather close to each other. This result suggests that the kinetic energy 
quantities play some special role in interacting systems consisting of similar 
monomers such as water aggregates. 

Following the analysis of the characteristic features determined for the proton 
donor and acceptor molecules in a linear water dimer, we performed the same 
study for some water hexamer clusters. The structures considered are represent-
ative of those published in a previous paper [18]. 

4. Study of the energetic contributions in water hexamer molecules 

    Five different structures were investigated in separated representation, using 
two basis sets. The results are given in Table IV. 

  Boat Chair Prism W6t W6q 

-75.9821 -75.9814 -75.9880 -75.9845 -75.9842 

-75.9837 -75.9814 -75.9817 -75.9853 -75.9850 

-75.9816 -75.9814 -75.9932 -75.9676 -75.9692 

-75.9802 -75.9814 -76.0034 -75.9684 -75.9701 

-75.9797 -75.9814 -75.9875 -75.9927 -75.9914 

Basis set 
6-31G/d

-75.9735 -75.9814 -75.9798 -75.9811 -75.9807 

-76.0179 -76.0171 -76.0252 -76.0237 -76.0229 

-76.0186 -76.0171 -76.0183 -76.0241 -76.0234 

-76.0174 -76.0171 -76.0367 -76.0189 -76.0195 

-76.0165 -76.0171 -76.0451 -76.0197 -76.0208 

-76.0164 -76.0171 -76.0260 -76.0433 -76.0419 

Basis set 
VTZ

-76.0158 -76.0171 -76.0164 -76.0228 -76.0196 

 The selected structures are the followings: the boat and chair denote well-
known configurations (structural parameters and figures can be found in ref. 
18), the prism refers to the structure producing the lowest total energy. The w6t 
and w6q (as proposed by one of the authors [E. K.] of ref. 18) correspond to 
two cage structures. In this study these five water hexamer structures could be 
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considered as “sample” configurations. The EM total energy was determined for 
each contributing monomer in the given hexamer structure. This (partitioned) 
total energy is important at the HF level and proves useful for characterizing the 
water molecules in the separated representation (see previous section). 
    The results can be summarized as follows. First, where the symmetry allows, 
the monomers EM quantities are quite different. Taking the reference values 
from the chair structure (ch/EM), it can be noticed that the EM values resulting 
for the boat structures are nearby the same: three are slightly above and three 
below. It is remarkable, however, that in the prism structure there are two EM 
values rather low, namely those obtained for monomers 3 and 4. The partitioned 
total energy values calculated for monomers 1 to 6 in the boat, chair and prism 
hexamer structures using basis set 6-31G/d are depicted on Figure I. Looking at 
the (partitioned) total energies obtained for the other two hexamers, it can be 
noticed that the EM value calculated for monomer 5 is relatively low in both the 
w6t and w6q structures. This can be seen on Figure II, where the EM values cal-
culated for the monomers in the w6t and w6q systems are presented. The results 
suggest that in the prism, w6t and w6q structures there are some monomers in 
certain specific positions. The EM results predict extra proton donor or proton 
acceptor ability in these structures. It should be emphasized, that the results are 
in good agreement with those presented in our earlier work [18]. 

1
2

3
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5
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Boat

Chair

Prism

-76

-75,99

-75,98

-75,97

-75,96

1
2

3
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5
6
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Prism
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Figure . Partitioned total energy values (in hartree) calculated for three different water hexamer 
using basis set 6-31G/d. 
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5. Conclusion and suggestion 

    The results presented in this work show that in the linear structured water di-
mer the partitioned energy terms calculated for the proton donor and acceptor 
molecules are significantly different (except the kinetic energy). The electron 
structure of the proton donor molecule was found more compact than that of the 
acceptor subsystem, when compared their (partitioned) total energy EM values. 
This result is in an excellent agreement with our pre-vious results obtained on 
the separated molecular orbital energies [17].
     In this work the separated representation was used to determine the energetic 
quantities for each contributing monomer in some water hexamer systems, too. 
On one hand, the results obtained for the monomers in these structures did not 
suggest to identify the same proton donor or acceptor nature as it was found for 
the linear water dimer. On the other hand, in three of the water hexamer struc-
tures that were investigated, some monomers showed a specific nature. These 
results confirm previous results [18] that there are extra interaction abilities in 
these hexamer structures (prism, w6t and w6q). 
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APPLICATION TO COMPLEXES OF BROMINE MOLECULE
WITH HELIUM ATOMS

ÁLVARO VALDÉS, RITA PROSMITI, PABLO VILLARREAL AND
GERARDO DELGADO-BARRIO
Instituto de Matemáticas y F́ısica Fundamental, C.S.I.C.,
Serrano 123, 28006 Madrid, Spain

Abstract. The additivity of the two and three-body potential energy sur-
faces (PES) is studied for the van der Waals (vdW) complex formed by
Br2 and two Helium atoms. First, the three-dimensional interaction po-
tential for HeBr2 molecule is calculated using a coupled-cluster (CCSD(T))
method. This surface shows a double-minimum topology in agreement with
the available experimental data. In turn, an intermolecular potential en-
ergy surface for He2Br2 complex in the ground state is calculated at the
levels of fourth-order (MP4) Møller-Plesset and coupled-cluster [CCSD(T)]
approximations. It is found that results obtained by summing the above
[CCSD(T)] three-body parameterized HeBr2 interactions and the He–He
interaction are in very good accord with the corresponding MP4/CSSD(T)
configuration energies. Variational calculations using the above potential
form are performed to calculate the bound states of the vdW complex and
these results are compared with available experimental data.

1. Introduction

Until recently, most models of vdW interactions were based on additive
atom-atom forces. However, during recent years ab initio methods have pro-
gressed sufficiently and interaction potentials between rare-gas atoms and
dihalogen molecule have been computed with high accuracy,1,2 predicting
the existence of two minima on the potential energy surface at linear and
T-shaped configurations. A linear structure is not consistent with an addi-
tive pair potential form used for describing the intermolecular forces and, it
became clear that even in the well region of a vdW bond such models do not
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work.1,2 Linear species have been determined by microwave spectroscopy
for several interhalogen complexes (Ar–ClF,3 Kr–ClF,4 He–ClF,1 Ar–ICl5)
and for Ar–Cl2,6 Ar–I2.7 Further, recent experimental studies by Loomis
and coworkers in the B ← X spectrum have shown that spectral features
are associated with transitions of the linear complexes of He–ICl,8 Ne–ICl9

and He–Br2.10 Also, recent ab initio calculations confirm the existence of
two isomers for Rg–F2,11 Rg–Cl2,12 Rg–Br213 and Ar–I214 in accord with
available experimental data.

Van der Waals (vdW) complexes of dihalogen molecule surrounded by
several rare gas atoms have been intensely studied over the past decades
by high resolution spectroscopy techniques. Such experimental investiga-
tions have covered a large number of vdW complexes including HenIn
(n=1-3),15 NenI2 (n=1-6),16,17 NenBr2,18 Rg2Cl2 (Rg=He,Ne,Ar)19–21 and
ArnHX (X=Cl or F and n=1-3 or 4).22–24 The objective of these studies
has been to elucidate the structure, spectroscopy and dynamics of vdW
complexes and thus providing direct information on intermolecular forces.

An interesting example is the experimental studies by Janda and co-
workers19–21 on Rg2Cl2 clusters. In their attempt19 to characterize the
structure of the He2Cl2 complex they failed in fitting the rotationally re-
solved excitation spectrum using a rigid rotor tetrahedral structural model,
which results from pairwise additive potentials. Such structure has been
successful in the cases of Ne2Cl2 and Ar2Cl2. Several similar rigid rotor
geometries have also failed to fit their observed data. This led them to con-
clude that He2Cl2 is an extremely floppy, liquidlike cluster without any aver-
age structure and the dynamics of HenCl2 complexes will be quite different
from their RgnCl2 analogs. In situations like these, theoretical calculations
on energetics and dynamics of such systems become indispensable for the
quantitative modeling and interpretation of the experimental spectra.25–30

Several theoretical studies based on a sum of atom-atom pairwise interac-
tions and using quantum Monte Carlo29 or variational30 calculations have
been carried out. Both results, in agreement with the experimental analysis,
suggest the floppiness of the ground vdW state of HenCl2 (n=2,3) and em-
phasize the importance of performing exact calculations for such liquid-like
systems.

Studies of larger species are more complex and the difficulty in the eval-
uation of their potential surfaces increases with their size. Up to now accu-
rate potentials have been obtained by inversion of spectroscopic data31,32

or through high level ab initio calculations33–40 for several triatomic vdW
systems. Thus, the interactions for such clusters are available with satisfac-
tory accuracy, which permits the testing of various models of nonadditivity
for their ability to reproduce a number of experimental observations. These
facts made complexes composed of two rare-gas atoms and a dihalogen
molecule especially attractive targets for the study of nonadditive forces.
The first attempt to extract information on nonadditive interactions from
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spectroscopic data has been undertaken by Hutson et al.41 in similar vdW
systems. They have used the microwave spectroscopic data of Klots et al.42

to calculate a number of spectroscopic constants of Ar2HCl cluster, con-
cluding that the data from the microwave spectra was not sufficient to
reconstruct the three-body potential uniquely and more extensive regions
of the potential surface should be measured. Ab initio studies have been
also carried out43,44 and the three-body effects in the Ar2HF and Ar2HCl
clusters have been studied using Møller-Plesset pertubation theory, where
the nonadditivite interactions have been found to be large and repulsive
around the equilibrium geometries for both systems. Later, Hutson and co-
workers have presented nonadditive potentials for Ar2HF45 and Ar2HCl46

incorporating different contributions to the three-body forces arising from
the interaction between the permanent multipoles of the HF molecule and
the exchange quadrupole caused by distortion of the two Ar atoms as they
overlap.

The aim of the present study is to investigate the validity of the pair-
wise additivity of two-body and three-body potentials for He2Br2. These
results are compared with ab initio calculations47 and a simple model of
the three-body potential is proposed to determine well depths and equi-
librium structures for different isomeric configurations of the complex, as
well as the minimum energy pathways through them. Additionally, varia-
tional methods are used to calculate the vibrational states of He2Br2. The
wavefunctions of the lower states are analyzed in terms of probability dis-
tributions of the internal coordinates and the zero-point energy of the vdW
cluster is evaluated.

The paper is organized as follows. In the next section we present first
results of a CCSD(T) PES for the HeBr2 complex, together with bound
states calculations. The purpose of this study is to construct a reliable
three-dimensional surface reproducing available experimental data for the
ground state of HeBr2. In turn, in order to analyze the additivity of the van
der Waals potentials ab initio calculations are performed for the tetraatomic
cluster He2Br2 and compared with results obtained using an additive model
of two-body and three-body HeBr2 potentials. Bound state calculations
using the above model surface are then reported and discussed in terms of
available experimental data for similar systems. Conclusions constitute the
closing section.

2. Methods and results

2.1. TRIATOMIC COMPLEX

2.1.1. Ab initio calculations
All computations are carried out at the CCSD(T) level of theory. Ab initio
calculations are performed using the Gaussian 98 program.48 For bromine
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atoms, the Stuttgart group (SDD) effective core potential49 (ECP) is em-
ployed. The valence electrons are described using the SDD basis set aug-
mented with (sp) diffusion and (3df) polarization functions, denoted as
SDD+G(3df). The exponents of diffusion and polarization functions used
for bromine, associated with the SDD ECP were those specified in the liter-
ature.50–52 Such ECPs basis sets tend to be computationally more effective
than their all-electron counterparts and have been used50,51,53 in calcula-
tions of halogen-containing molecules. In particular, CCSD(T) calculations
for the Br2 molecule using the SDD+G(3df) basis set52 are in very good
agreement with experimental data and with recent CCSD(T) ab initio cal-
culations using the extended SDB-cc-pVQZ basis set.54

For the He atom we use augmented correlation consistent aug-cc-pV5Z
basis sets incorporated in the Gaussian 98 programs. For a better descrip-
tion of the long range interactions an additional set (3s3p2d2f1g) of mid-
bond functions55 is employed, improving the interactions energies by 5%
in such dispersion-bound complexes.56–58 We denote the above basis set
as aug-cc-pV5Z+(3s3p2d2f1g) and we use in all calculations 6d and 10f
Cartesian functions.

The potential energy surface for HeBr2 complex is examined using the
supermolecular approach. In a supermolecular calculation, the interaction
energy between a pair of atoms or molecules, is given by

∆E = EHeBr2 − EBSSE − EHe − EBr2 , (1)

where EHeBr2 is the energy of the complex and the EHe, EBr2 are the en-
ergies of the monomers. Basis-set superposition error (EBSSE) is corrected
by using the standard counterpoise method.59

We use Jacobi coordinates (r, R, θ) to describe the PES of HeBr2 com-
plex, where R is the intermolecular distance of He atom from the center of
mass of Br2, r is the bond length of Br2, and θ is the angle between the R
and r vectors. Intermolecular energies are calculated for several R distances
ranging from R=3 to 9 Å, while the angle θ is set to 0◦,30◦,45◦,60◦,75◦,
and 90◦, considering five different Br2 bond-lengths of r =2.1, 2.19, 2.28,
2.37, and 2.46 Å. The r values are chosen around the equilibrium distance
re = 2.28 Å in a range that is enough to describe some of the first few
excited vibrational levels, v, of Br2(X). We should mention that changes of
r influence the overall energy of the complex much more than the changes
of the intermolecular distance R. The results of the interaction energies
for the different Br–Br bond-lengths are qualitatively similar. For all the
r values the linear configuration is found to be lower in energy than the
T-shaped one. The supermolecular interaction energies of the T-shaped
structures are found to be more sensitive to small changes of the Br–Br
bond length than the ones for the linear configuration. In Figure 1 we plot
the dependence of the interaction energies around their minimum values
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for θ=0 and 90◦, as r value changes. As can be seen the interaction for
the T-shaped configurations is predicted to become less attractive as r in-
creases, while the interaction at linear configurations is much less affected.
This produces an increasing in the energy difference between the linear and
T-shaped configurations, when the Br–Br bond is lengthened.

3.5 4 4.5 5
R / Å

-50

-40

-30

-20

∆E
 / 

cm
-1

Figure 1. Dependence of the interaction energies for the linear and T-shaped configura-
tions as r bond increases. Dot-dashed, solid, dotted, long-dashed type of lines correspond
to r= 2.19, 2.28, 2.37 and 2.46 Å, respectively

2.1.2. Potential Energy Surface Representation
In order to represent the PES for the HeBr2 complex we used an analytical
functional form to fit the CCSD(T) ab initio points. We used an expan-
sion in Legendre polynomials, Pλ(cos θ), to describe the two-dimensional
He...Br2 interaction potential,

V (R, θ; rk) =
∑

λ

Vkλ(R)Pλ(cos θ), k = 1− 5 (2)

with λ = 0, 2, 4, 6, 8, 10, due to the symmetry of the system with respect
to θ = 90◦. The Vkλ(R) coefficients are obtained by a collocation method
applying the following procedure. For each of the six values of angle θ, we
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fitted the CCSD(T) data to a Morse-vdW function,

V (R; θi; rk) = αik
0 (exp(−2αik

1 (R−αik
2 ))−2 exp(−αik

1 (R−αik
2 )))−αik

3

R6
−αik

4

R8
,

(3)
with parameters αik

0 , αik
1 , αik

2 , αik
3 and αik

4 , where i = 1− 6 and k = 1− 5.
These parameters are fitted to the ab initio points using a nonlinear least
square technique. Finally, for a 3D representation of the potential a one
dimensional cubic spline interpolation is employed for the r coordinate.
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Figure 2. Minimum energy path, Vm in cm−1, as a function of θ for r=2.28 Å together
with the n=0,1 (collinear) and n=2 (T-shaped) angular probability distributions for
J = 0 vdW levels of HeBr2.

The HeBr2 potential energy surface exhibits two minima. In the r range
studied, the global minimum with an energy of -48.70 cm−1 at R = 4.42
Å and r=2.28 Å corresponds to a linear (θ = 0◦) configuration. The sec-
ond minimum, with energy of -44.92 cm−1, is at R = 3.55 Å and r=2.1
Å corresponding to a T-shaped (θ = 90◦) configuration of the complex.
This latter result compares very well with the corresponding experimental
distance of 3.7±0.2 Å.60 The isomerization barrier between the two wells
is found at an energy of -19.16 cm−1 (29.54 cm−1 above the global linear
minimum), with R ∼ 4.5 Å and θ ∼ 51◦. These potential minima and the
corresponding barrier are displayed in Figure 2, where the minimum en-
ergy path, Vm, of the minimum energy for r=2.1 and 2.28 Å are plotted
as a function of the angle θ. These results are in agreement with previous
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ab initio calculations,13,61 although the present calculations give lower in-
teraction energies by 5.7 cm−1 for linear isomer and by 5.9 cm−1 for the
T-shaped one than in the MP4 study,61 whereas a lower interaction en-
ergy by 4.6 cm−1 is obtained for the T-shaped structure than the previous
two-dimensional CCSD(T) one13 (see Table 1). As it has been mentioned
above, the T-shaped minimum is displaced to r ∼ 2.1 Å, while the linear
one is remaining close to r=re=2.28 Å in the 3D surface. Furthermore,
the present calculations predict a smaller (by 3.8 cm−1) difference between
the energies of the two structures than the two-dimensional CCSD(T) re-
sults.13 In Table 1 we also present results on the De and Re values given by
a IDIM PT1 semiempirical model.63 This model also predicts double mini-
mum topology for the ground He–Br2 state with almost similar energies for
the two isomers; 38.0 cm−1 for the linear and 37.9 cm−1 for the T-shaped.

2.1.3. Bound state calculations
The rovibrational Hamiltonian in the Jacobi coordinate system has the
form

Ĥ = − h̄2

2µ1

∂2

∂R2
+

ĵ2

2µ2r2
+

l̂2

2µ1R2
+ V (R, θ, r) + ĤBr2 , (4)

where ĤBr2 = − h̄2

2µ2

∂2

∂r2 + VBr2(r) is the vibrational Hamiltonian for a
free Br2 molecule. µ1 = mHe2mBr

mHe+2mBr
and µ2 = mBr

2 are the reduced masses,
mHe=4.00260 and mBr=78.9183361 amu are the atomic masses of 4He and
79Br Isotopes, l̂ and ĵ are the angular momentum operators associated
with the vectors R and r, respectively, leading to a total angular momen-
tum Ĵ = l̂ + ĵ. Here all calculations are performed for J=0. Starting from
the V (R, θ; rk) potential of (Eq. 2), 1D cubic-spline interpolation is used to
compute the value of V (R, θ, r) at 21 Gauss-Legendre points in the inter-
val of 2.1 < r < 2.46 Å. VBr2(r) is the one-dimensional Br2 ground state
potential function and a cubic-spline interpolation to CCSD(T) ab initio
data (see Table 2 of Ref.52) is used to reproduce the VBr2 potential at
any r point. The eigenvalues and eigenfunctions of diatomic ĤBr2 Hamil-
tonian are denoted as EBr2(v) and χv(r), respectively, and are evaluated by
solving the 1D Schrdinger equation using a combined Truhlar-Numerov al-
gorithm.65 The vdW levels and corresponding wave functions are calculated
variationally by diagonalizing the vibrationally averaged Hamiltonian

Hv =< χv|H|χv >= − h̄2

2µ1

∂2

∂R2
+

l̂2

2µ1R2
+Vv,v(R, θ)+EBr2(v)+

Bv ĵ
2

h̄2 , (5)

where, Vv,v(R, θ) =< χv|V (R, θ, r)|χv > is the intermolecular vdW poten-
tial of HeBr2 averaged over the Br2 v = 0 vibrational eigenfunction and
Bv is the Br2 rotational constant averaged over the v = 0 eigenstate. The
Hamiltonian is represented on a finite three-dimensional basis set. The Vv,v
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T
A

B
L
E

1
.
E

x
p
er

im
en

ta
l
a
n
d

th
eo

re
ti

ca
l
b
in

d
in

g
en

er
g
ie

s
(D

e
a
n
d

D
0

in
cm

−
1
),

eq
u
il
ib

ri
u
m

d
is

ta
n
ce

s
(R

e
a
n
d

R
0

in
Å
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Figure 3. Analytical potential curves V (R, θ, re) for HeBr2 complex with θ = 0◦

(squares) and θ = 90◦ (circles). The eigenvalues and radial probability distributions
corresponding to the J = 0 lowest vibrational vdW level at each configuration, n = 0
(dotted line) and n = 2 (dashed line) respectively, are also included.

potential matrix elements are calculated using Gaussian quadrature in the
r coordinate, while for the angular coordinate we used orthonormalized
Legendre polynomials {Pj(cos θ)} as basis functions, with up to 40 values
(even and odd) of the diatomic rotation j. For the radial R coordinate, a
discrete variable representation (DVR) basis set is used based on the par-
ticle in a box eigenfunctions.66 A basis set of 100 DVR functions over the
range from R = 1.75 to 15 Å are used. In this way, a convergence of 0.0001
cm−1 is achieved in bound state calculations.

The results of the bound state calculations for the HeBr2(X) potential
show that the lowest three vdW vibrational levels (n = 0, 1, 2) are at ener-
gies of -16.0167, -16.0159 and -14.9030 cm−1. The angular and radial prob-
ability distributions of the associated wave functions are shown in Figures 2
and 3. As can be seen the first two states correspond to linear configura-
tions and the last one to T-shaped ones. The next four bound vibrational
states are found at energies of -7.9204, -6.9803, -4.9400 and -2.7761 cm−1

and are spreading all over θ values. All calculated vdW vibrational levels
are located above the potential isomerization barrier (-19.16 cm−1). The
small energy difference between n = 0 and n = 2 states (only 1.1 cm−1)
provides indications for coexistence of the two isomers even at low temper-
atures. Vibrationally averaged structures with RL

0 =4.88 Å and RT
0 =4.14 Å

are obtained for the linear and T-shaped isomers, respectively.
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The experimental value for binding energy of the X state of HeBr2 has
been determined to be in the range between 15.5 and 18.5 cm−162,64 for a
T-shaped structure. The corresponding values obtained here are 16.02 and
14.90 cm−1 for the linear and T-shaped isomers, and are very closed to the
ones predicted experimentally. Further, recent LIF experimental studies10

have determined the binding energy (D0) for both isomers (linear and T-
shaped) to be 17.6(2) and 16.9(2) cm−1, respectively. These findings are in
excellent agreement with the present calculations, confirming our theoreti-
cal predictions.

We should mention that the binding energies obtained from the 2D
CCSD(T) and semiempirical surfaces contrary to the 3D CCSD(T) results
predict that a T-shaped structure is slightly more stable than the linear one.
This finding can be partially attributed in the lack of the r dependence.
However, we have found that this is the case for the linear configurations,
while for the T-shaped ones the difference obtained in the D0 value is
mainly due to the inadequate description of the 2D CCSD(T) potential in
the region of the T-shaped well. It was found that more angular points are
necessary to describe its anharmonicity. Note that, as it was expected for
r = re, the properties (D0 and R0) of the linear well, and the the well-
depths (De) and equilibrium distances (Re) for both linear and T-shaped
configurations are not affected (see Table 1).

2.2. TETRA-ATOMIC COMPLEX

2.2.1. Ab initio calculations
The ab initio calculations are performed also using the Gaussian 98 pack-
age.48 Computations are carried out at the MP4 and CCSD(T) levels of
theory. The He2–Br2 system is described using the (r, R1, R2, θ1, θ2, γ) co-
ordinate system. r is the bond length of Br2; R1, R2 are the intermolecular
distances of each He atom from the center of mass of Br–Br, θ1 is the angle
between the R1 and r vectors, while θ2 is the one between R2 and r, and
γ is the angle between the R1 and R2 vectors.

For the present calculation we used for Br atoms the Stuttgart-Dresden-
Bonn (SDB) large-core energy-consistent pseudopotential49 in conjunction
with the augmented correlation consistent triple zeta (SDB-aug-cc-pVTZ)
valence basis set.54 This basis set is of cc-pVTZ quality and has been opti-
mized for use with the SDB pseudopotential. For the He atoms we employed
different basis sets such as the aug-cc-pV5Z and d-aug-cc-pV5Z from EMSL
library.67 Some convergence problems arised from the use of the double
augmented basis sets imposing the use of the single augmented ones. In
addition, the role of using bond functions, such as the (3s3p2d2f1g) ones55

is investigated. Test runs are carried out for a few specific configurations,
e.g. for the tetrahedral structure, where a set of the (3s3p2d2f1g) bond
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functions are located in the middle of the intermolecular distance R, which
connects the center of masses of He2 and Br2 molecules. Similar differences
are obtained in the interaction energies at both levels of theory. It was
found that their efficiency to saturate the dispersion energy, accounts for
an improvement of about 10%, around the equilibrium geometry. The effect
of the use of bond functions has been found to be ≈ 5% in other studies
on triatomic dispersion-bound complexes.56,57 Although, as the effect of
their location for other configurations is still ambiguous, we choose to use
for the He atoms the augmented correlation consistent (aug-cc-pV5Z) basis
sets without the additional set of bond functions. In all calculations here
6d and 10f Cartesian functions are used.

The supermolecular approach is used for the determination of the in-
termolecular energies, ∆E:

∆E = EHe2Br2 − EBSSE − EHe2 − EBr2 , (6)

where EHe2Br2 , EHe2 , and EBr2 are the energies of He2–Br2, He2 and Br2,
respectively. The correction, (EBSSE), for the basis-set superposition error
is calculated using the standard counterpoise method.59

We performed MP4/CCSD(T) calculations for several configurations
fixing the Br2 bondlength at its equilibrium value re=2.281 Å. The linear
configuration has the lowest energy -90.39/-89.18 cm−1 at MP4/CCSD(T)
levels with R1 = R2 =4.44 Å. The next two equlibrium structures are found
at energies of -81.23/-80.78 cm−1 and -74.40/-74.02 cm−1, respectively, and
correspond to a ‘police-nightstick’ (R1=4.44 and R2 =3.58 Å) and tetra-
hedral (R =3.33 Å) configurations (see Figure 4). We should note that the
equilibrium distances of the above structures are very close to the ones
obtained by CCSD(T) calculations for the optimized linear and T-shaped
geometries for the triatomic HeBr2 complex.40

In order to extract information on nonadditive interactions in He2Br2
we examine the above equilibrium structures based on the ab initio calcu-
lations and partitioning the interaction energy into components, as given
in Ref.44 Therefore, we show in Table 2 the summary of supermolecular
calculations of the entire nonadditivity in the three He2Br2 equilibrium
structures using the results of the MPPT (Møller-Plesset Perturbation the-
ory) up to fourth order along with the ones of the CCSD(T) method. As
can be seen in Table 2 the total three-body interaction for the three dif-
ferent equilibrium geometries computed through the MP3 amounts -77.76,
-70.06 and -62.88 cm−1, respectively. These energies neglect completely the
effects of intramonomer correlation on three-body dispersion. The major
effect of the intrasystem correlation on dispersion appears in MP4 level
and is especially sensitive to the presence of triple excitations. For all
configurations studied the MP4(SDQ) level reduce this effect to -71.29,
-65.35 and -59.09 cm−1, respectively, while the inclusion of triples enhances
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Figure 4. Optimal MP4/CCSD(T) structures for He2Br2. Coordinates are defined in
the text, and ρe is the He-He distance.

both MP4(SDQ) and CCSD interaction energies (see MP4(SDTQ) and
CCSD(T) values in Table 2). The MP4(SDQ) results seem to be well con-
verged with respect to the CCSD calculations, For a consistent treatment
of two and three-body correlation effects, the three-body potentials should
be summed to a level one order higher than the corresponding two-body
ones. The MP4(SDTQ) reproduces quantitatively the dominant contribu-
tions to the two-body interaction energy, while to achieve a similar level
of correlation for the three-body terms one needs to advance to next order
of theory, practically more accurate to turn to the CCSD(T) theory. Our
calculations indicate that the total nonadditive effect in He2Br2 originating
from supermolecular CCSD(T) calculations amounts to -88.49, -80.44 and
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TABLE 1. Summary of the supermolecular calculations of the nonadditive effects
around 2 2 structures. Energy is in cm−1 and distances in Å.

Linear structure

R1,2/Method HF MP2 MP3 MP4(SDQ) MP4(SDTQ) CCSD CCSD(T)

4.3 125.57 -75.57 -69.09 -61.26 -83.14 -59.87 -81.67

4.4 84.41 -83.42 -77.76 -71.29 -89.77 -70.23 -88.49

4.5 56.45 -83.91 -78.88 -73.50 -89.15 -72.69 -88.01

Police-nightstick structure

R1,2/Method HF MP2 MP3 MP4(SDQ) MP4(SDTQ) CCSD CCSD(T)

4.3 97.10 -70.21 -65.76 -60.38 -77.67 -59.41 -77.06

4.4 76.49 -74.12 -70.06 -65.36 -80.94 -64.57 -80.44

4.5 62.53 -74.34 -70.58 -66.48 -80.59 -65.80 -80.20

Tetrahedral structure

R/Method HF MP2 MP3 MP4(SDQ) MP4(SDTQ) CCSD CCSD(T)

3.0 154.18 -42.58 -39.53 -35.31 -53.14 -34.26 -53.57

3.25 70.80 -65.71 -62.88 -59.94 -72.87 -59.43 -73.24

3.5 31.87 -63.58 -61.06 -58.10 -68.41 -58.69 -68.59

-73.24 cm−1 for configurations nearby its equilibrium structures. We should
mention that the same behaviour were observed in the results of the MPPT
energies for the HeBr2 complex40 around its linear and T-shaped equilib-
rium configurations. This finding indicates a similar nature of binding in
triatomic and tetratomic complexes of such type, and thus information on
intermolecular interactions available for triatomic species might serve to
study larger systems.

2.2.2. Potential Energy Surface Representation
Two functional forms are checked for the He2–Br2 potential energy func-
tion. One is based on the pairwise atom-atom interaction, which has been
widely used in all previous calculations on triatomic and tetratomic, Rgn–
X2 with n=1,2, complexes.29,30,63,68,69 The parameters for the two-body
He–He interactions are taken from Ref.70 The second one is given by sum-
ming up three-body HeBr2 interactions and the He–He one,

V (re, R1, R2, θ1, θ2, γ) =
∑

i

VHeiBr2(re, Ri, θi) + VHeHe(R1, R2, γ) (7)

where the corresponding VHeiBr2(re, Ri, θi) terms with i = 1 and 2, are the
CCSD(T) parameterized potential of the HeBr2 complex40 and VHeHe(R1,
R2, γ) term is the potential function for He2 given in Ref.71

Configuration energies are determined by optimizing different structures
with respect to atomic positions using the above mentioned functional ex-
pressions. In Fig.5 we compare the two different potential functional forms
with the MP4 ab initio results. Solid lines are for the sum of the three-body

the three equilibrium He Br
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Figure 5. Comparison of two different potential energy curves for tetrahedron (a),
linear (b) and police-nightstick (c,d) orientations of He2Br2. Solid lines are for the sum of
three-body CCSD(T) interaction potential, while dotted lines correspond to the pairwise
atom-atom form. The MP4 ab initio values are also indicated by filled circles, whereas
potential values obtained using the sum of three-body MP4 interaction HeBr2 potential
are shown by open circles.

CCSD(T) HeBr2 interaction potential, dashed lines correspond to the pair-
wise atom-atom form, while filled circles indicate the MP4 ab initio values.
Open circles are for the potential values obtained using the sum of the
three-body MP4 potential for HeBr2, at the specific geometries with the
same basis set as in the He2Br2 calculations. Fig.5a represents the potential
energy curves as a function of the distance R between the center of masses
of Br2 and He2 in the tetrahedron structure. As can be seen both forms
represent well the ab initio data at this configuration. In Fig. 5b an one-

ÁLVARO VALDÉS ET AL.360



AB INITIO VAN DER WAALS POTENTIAL-ENERGY SURFACES 361

dimensional plot for the linear geometry is shown, while in Fig. 5c and 5d
representations of the potential energy are given for the ‘police-nightstick’
structure as a function of R1 and R2 distances, respectively. The additive
atom-atom interactions form predicts the overall minimum of the well for a
distorted tetrahedron, while the sum of the three-body HeBr2 interactions
evaluates a linear structure as the global minimum, and two other ones,
‘police-nightstick’ and tetrahedral, as local minima of the He2Br2 surface.
As can be seen results obtained using the sum of the three-body HeBr2
interactions are in very good accord with the corresponding ab initio val-
ues. In contrast, large deviations of the ab initio results from the values
predicted by the pairwise atom-atom interactions form, particularly for lin-
ear configurations are found. Thus, we choose the sum of the three-body
CCSD(T) HeBr2 interactions henceforth to represent the potential surface
of He2Br2 and to check further its validity in comparison with ab initio
data.

The potential has three wells at energies of -97.39, -88.88 and -80.38
cm−1, with the collinear well to be the deeper than the ’police-nightstick’
and tetrahedral ones. The equilibrium distances and angles are at Re

1 =
Re

2 = 4.41 Å for the linear well, Re
1=4.41, Re

2=3.58 Å for the ’police-
nightstick’ one and Re=3.27 Å for the tetrahedral well. The isomerization
barrier between the collinear↔ police-nightstick wells is found at energy of
-68.15 cm−1 and an angle of 127◦. One-dimensional representations of the
potential are shown in Figure 6, where minimum energy paths are plotted as
a function of the angle γ=θ1− θ2 for planar (see Figure 6a) and non-planar
with θ1 = θ2 = 90◦ and γ = φ1 − φ2 (see Figure 6b) configurations.

In Table 3 we present for the indicated geometries, selected along to a
minimum energy path (HeBr2 molecule is fixed at linear configuration, θ1 =
180, while the R1 and R2 distances are optimized for each θ2 value), the ab
initio MP4 and CCSD(T) values and compare them with the corresponding
V (re, R1, R2, θ1, θ2, γ) ones, given by the Eq. (7). For sake of comparison
the potential values using the two-body potential form are also listed in
the last column. As can be seen, the differences obtained in the CCSD(T)
results are fully justified due to the different basis sets used, including or not
bond functions, in the ab initio calculations of the triatomic and tetratomic
complexes, respectively. We should note that CCSD(T) results are within
the difference of 10% in the interaction energies attributed from the test
runs to the use of bond functions.

2.2.3. Bound state calculations
The Hamiltonian operator has the form

Ĥ = − h̄2

2µ1
(

∂2

∂R2
1

+
2

R1

∂

∂R1
)− h̄2

2µ2
(

∂2

∂R2
2

+
2

R2

∂

∂R2
) (8)
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0 30 60 90 120 150 180
θ1−θ2 / deg

-100

-80

-60

-40

-20

0

20

40

V
H

e·
··H

eB
r 2 / 

cm
-1

0 60 120 180 240 300 360
φ1−φ2 / deg

-100

-80

-60

-40

-20

0

V
H

e·
··H

eB
r 2 / 

cm
-1

(a)

(b)

Figure 6. Minimum energy path, Vm in cm−1 as a function of angle γ, for planar
γ=(θ1 − θ2) (a) and no-planar with θ1 = θ2 = 90◦, γ=(φ1 − φ2) with θ1 = θ2 = 90◦

(b) configurations. The probability
∫
|Ψ|2 sin γdR distributions for n=0(collinear),

n=1(police-nightstick) and n=2(tetrahedral) vdW levels of He2Br2 are also depicted.

+
ĵ2

2µ3r2
e

+
l̂1

2

2µ1R2
1

+
l̂2

2

2µ2R2
2

− h̄2

2mBr
∇1 · ∇2 + V (r,R1,R2)

where µ1 = µ2 = mHe2mBr
mHe+2mBr

and µ3 = mBr
2 are the reduced masses, l̂1, l̂2

and ĵ are the angular momenta associated with the vectors R1 R2 and r,
respectively, leading to a total angular momentum Ĵ = l̂1 + l̂2 + ĵ = L̂ + ĵ.
r is fixed at the equilibrium Br–Br bond length (re), and the potential for
He2Br2 complex is given by the expansion in Eq. (7).

For a total angular momentum J , the Hamiltonian of Eq. (8) is rep-
resented in a set of basis functions consisting of linear combinations of
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TABLE 2. MP4 and CCSD(T) interaction energies, ∆E [Eq. (6)], and potential values
obtained from Eq. (7) using three-body (3B) MP4, CCSD(T) and CCSD(T)+bf HeBr2
interaction potentials for the He2–Br2 complex at the indicated (θ2, R1, R2) points. The
potential values based on the two-body (2B) sum are also listed. Energies in cm−1,
angles in degrees and distances in Å.

(θ2, R1, R2) MP4 CCSD(T) V3B
MP4 V3B

CCSD(T ) V3B
CCSD(T )+bf V2B

(0,4.41,4.41) -90.01 -88.80 -90.03 -88.71 -97.39 22.11

(15,4.41,4.52) -78.95 -77.87 -78.95 -77.80 -85.67 1.45

(30,4.41,4.65) -67.36 -66.48 -67.33 -66.41 -73.32 -10.10

(45,4.41,4.60) -63.06 -62.29 -63.03 -62.26 -68.69 -11.23

(60,4.41,4.34) -63.01 -62.62 -62.99 -62.57 -68.97 -13.83

(75,4.41,3.92) -69.99 -69.40 -69.95 -69.35 -76.38 -21.81

(90,4.41,3.58) -81.03 -80.59 -80.96 -80.46 -88.88 -27.95

(105,4.41,3.92) -69.99 -69.51 -69.95 -69.35 -76.38 -21.82

(120,4.41,4.33) -63.19 -62.57 -63.21 -62.53 -68.96 -13.99

(135,4.41,4.57) -64.04 -62.29 -62.90 -62.16 -68.65 -11.49

(150,4.40,5.48) -56.54 -55.77 -56.34 -55.68 -60.54 1.72

(165,4.40,6.92) -47.82 -47.03 -47.49 -46.92 -52.94 11.39

(180,4.41,7.34) -47.01 -46.33 -46.79 -46.11 -50.43 10.08

products of bidimensional radial functions by angular functions, which in-
corporate the whole symmetry of the system.30 For the R1 and R2 coor-
dinates numerical {ξn(Ri)}, with i = 1, 2 and n = 1, ..., NR functions are
used. We evaluate them as follows: First, the two-dimensional Schrdinger
equation is solved in (R, θ, re) variables for a triatomic He–Br2 system at
total angular momentum zero. The employed PES was the CCSD(T) ab
initio surface given in Ref.,40 and a discrete variable representation (DVR)
basis seti66 is used. It consists of functions given by

fl(R) = 2√
L(N+1)

∑N
k=1 sin kπ(R−Rmin)

L sin kπl
N+1

where N is the total number of DVR points, L is Rmax
i −Rmin

i , and the DVR
points in the R coordinate are Rl = lL

N+1 + Rmin for l = 1, ..., N . Second,
consindering a set of the NR lowest eigenstates, their corresponding radial
distributions are orthonormalized through a Gram-Schmidt procedure, and
constitute the radial basis set, {ξn(Ri)}, for the tetraatomic calculations.
For the angular basis functions, we consider the following linear combina-
tions, which are eigenfunctions of the parity of total nuclear coordinates
inversion p,

F (JMp)
l1l2L|Ω| =

√
1

2(1 + δ|Ω|0)
[W(JM)

l1l2LΩ + p(−1)J+l1+l2+LW(JM)
l1l2L−Ω] (9)
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with

W(JM)
l1l2LΩ =

√
2J + 1

4π
DJ∗

MΩ(φr, θr, 0)YLΩ
l1l2(R1,R2) (10)

M is the projection of J on the space-fixed z-axis, Ω its projection on
the body-fixed z-axis, which is chosen here along the r vector. The DJ

MΩ
are Wigner matrices72 and YLΩ

l1l2
are angular functions73 in the coupled BF

representation.
In turn, taking into account that in case of He2Br2 the Hamiltonian

is also invariant under R1 ↔ R2 inversion, then a well-defined parity,p12,
basis set is built up as follows:

ΦJMpp12

l1l2L|Ω|nm =

√
1

2(1 + δnmδl1l2)
[ΦJMp

l1l2L|Ω|nm + p12(−1)l1+l2+LΦJMp
l1l2L|Ω|mn],

(11)
where ΦJMp

l1l2L|Ω|nm = φnmF (JMp)
l1l2L|Ω| and φnm(R1, R2) = ξn(R1)ξm(R2)/R1R2.

For the evaluation of the Hamiltonian matrix elements, the numerical
set of the radial basis functions {ξn(Ri)} mentioned above, are represented
as linear combinations of the fl DVR functions, ξn(Ri) =

∑N
l=1 < ξn|fl >

fl(Ri) =
∑

ξn(Rl
i)fl(Ri), i = 1, 2 and n = 1, ..., NR. The matrix elements

of the Hamiltonian are given in Ref.30

Inour calculationsatJ= 0, NR =7radial numerical functions, represented
at 50 DVR points over the range of 2.5 to 8 Å, for each R1 and R2 coordinate
are used. In turn, values of L = j = 0−12 (even) with lmax

1 = lmax
2 = 12 for

even (p12 = (−1)l1+l2+L = +1) and p = (−1)J+L+l1+l2 parity symmetries,
were enough to achieve convergence in the variational calculation.

The three lowest vibrational states of He2Br2 are found at energies of
-32.240, -31.437 and -30.930 cm−1 (see Fig. 6 and 7). In Figure 6, together
with the minimum energy path, we plot the angular probability density of
the angle γ for the n = 0 (solid line), n = 1 (dotted line) (see Fig. 6a)
and n = 2 (dashed line) (see Fig. 6b) eigenfunctions, while in Fig. 7 the
radial Ri=1,2 and angular θi=1,2 distributions for these states are shown.
As can be seen, the n = 0 state is localized in the linear well and its
distribution is peaked at θ1,2 = 0, 180◦, R1,2=4.722 Å and γ=180◦. The n =
1 state corresponds to ’police-nightstick’ configurations, with two maxima
at θ1,2 = 90 and 0/180◦, and at R1,2=3.98 and 4.631 Å, and only one
peak at γ = 90◦ (see Fig. 6a), while the n = 2 state exhibits a tetrahedral
structure with a maximum value at θ1,2 = 90◦ and R1,2=3.940 Å and a
broad distribution in γ, except a small peak at γ ≈60◦, where the He–
He attractive interaction is maximum. There is a forbidden area around
γ=0 where the two atoms are collided (see Fig.5b). The radial expectation
values for each of the above structures, R0

i , are obtained by averaging Ri

over the corresponding distributions. To our knowledge, for first time such
results on the vibrationally averaged structures of He2Br2 are presented.
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Figure 7. Radial (a) and angular (b) probability densities for the indicated vdW levels
of He2Br2 for J = 0 calculated using the V (re, R1, R2, θ1, θ2, γ) PES.

In contrast with previous studies19,29,30 on He2Cl2 cluster, in the present
work localized structures are determined for the lower He2Br2 vdW states.
Traditional models based on a He2Cl2 tetrahedron frozen stucture have
failed to reproduce the experimental absorption spectrum, suggesting a
quite delocalized structure for its vibrationally ground state.19 Here, based
on ab initio calculations we propose different structural models, like linear
or ’police-nightstick’, in order to fit the rotationally resolved excitation
spectrum of He2Cl2 or similar species.

We should note that the energy difference between the above mentioned
isomers is small, and the lack of the r dependence in the potential form
might influence their relative stability. For the triatomic vdW complexes
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of He atom with homopolar/heteropolar halogens has been found2,11,12,40

that the energy difference between the linear and T-shaped wells increases
when the r bond is lengthened, and a similar behaviour should be expected
for the tetratomic complexes. However, in order to justify our assertions
for such tetratomic species, comparison with experimental measurements
is needed, which would finally contribute to evaluate the present CCSD(T)
potential.

3. Conclusions

A three-dimensional potential energy surface is calculated for the HeBr2(X)
complex at the CCSD(T) level of theory. As in other studies on such com-
plexes, the existence of two minima for both linear and T-shaped configu-
rations is established. The dependence of the binding energy on the Br–Br
bond length, r, is examined for distances in the range between 2.19 and
2.46 Å. The elongation of the Br–Br bond makes the interaction for both
linear and T-shaped structures weaker, with that in the linear structure
showing a smaller sensitivity to the r changes. For linear structures, the
energies of the well-depths vary from 47.5 to 48.7 cm−1, while for T-shaped
structures the well depth changes from 37.0 to 44.9 cm−1 for the range of
the r values studied.

Bound state calculations with J = 0 are carried out for the above
CCSD(T) surface. The linear He–Br–Br structure is found to be the most
stable isomer with a binding energy of D0=16.02 cm−1, while the T-shaped
isomer is predicted to lie only 1.1 cm−1 above, indicates the coexistence
of them even at low temperatures. The vibrationally averaged structures
for these isomers are determined to be (R=4.88 Å, θ= 0◦) and (R=4.14 Å,
θ=90◦), respectively. The above values are in good accordance with earlier
experimental observations62,64 and in excellent agreement with recent LIF
experimental data available.10

In order to study larger clusters we investigate the additivity of the po-
tential energy surface in the He2Br2. In general, such model surfaces are use-
ful for studying the relaxation dynamics of impurities embedded in He nan-
odroplets.74 Therefore, analytical representations based on a sum of pair-
wise atom-atom interactions and a sum of three-body HeBr2 CCSD(T) po-
tentials and He–He interaction are checked incomparisonwiththe tetratomic
MP4/CCSD(T) ab initio results for He2Br2. The sum of the three-body in-
teractions form is found to accurately represent the ab initio data. For
first time an analytical expression in accord with high level ab initio stud-
ies is proposed for describing the intermolecular interactions for such two
atoms rare gas–dihalogen complexes. The existence of three (linear, ’police-
nightstick’ and tetrahedral) minima is established for the He2Br2 ground
PES. This finding may permit the fitting of the rotationally resolved excita-
tion spectrum of He2Cl2 or similar species, where the traditional tetrahedral
structural models, based on pairwise additive potentials, have failed.
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Variational bound state calculation is carried out for the above surface
and vdW energy levels and eigenfunctions for J = 0 are evaluated for
He2Br2. Radial and angular distributions are calculated for the three lower
vdW states. All of them are well localized in configuration space, with an
exception of the broad distribution of the angle γ for the n = 2 state, due to
the weak He-He interaction. The ground state corresponds to a linear isomer
and the next two excited vdW levels are assigned to ’police-nightstick’
and tetrahedral ones. The binding energies and the average structures for
these species are determined to be D0=32.240 cm−1 with R0

1,2=4.867 Å,
D0=31.437 cm−1 with R0

1,2=4.491 Å, and D0=30.930 cm−1 with R0
1,2=4.171

Å, respectively.
Whether the properties of the weak bonding in such systems can be pre-

dicted by the sum of atom-diatom interactions deserve further investigation.
Such model should be applicable to a broad class of Rg2XY, with Rg=rare-
gas and X,Y=halogen atoms, vdW clusters. It is particularly interesting to
investigate the intermolecular interactions and structural properties of sim-
ilar clusters consist of heteropolar halogens, evaluating the importance of
additional effects (e.g. introducing electric dipole moment, changing the
reduced mass of the complex, etc..) Work in this line is in progress.
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Abstract. We present a quantum-classical determination of stable isomers of 
Na*Arn clusters with an electronically excited sodium atom in 3p2P states. The 
excited states of Na perturbed by the argon atoms are obtained as the eigenfunc-
tions of a single-electron operator describing the electron in the field of a Na+

Arn core, the Na+ and Ar atoms being substituted by pseudo-potentials. These 
pseudo-potentials include core-polarization operators to account for polarization 
and correlation of the inert part with the excited electron (1, 2) . The geometry op-
timization of the excited states is carried out via the basin-hopping method of 
Wales et al. (2, 3). The present study confirms the trend for small Na*Arn clusters 
in 3p states to form planar structures, as proposed earlier by Tutein and Mayne 
(4) within the framework of a first order perturbation theory on a "Diatomics in 
Molecules" type model. 

1. Introduction 

The spectroscopy of elementary systems such as atoms / molecules trapped in 
the volume or at the surface of small rare-gas clusters is a subject of continuous 
investigation (2, 5-9). This is due to the fact that they may be considered as proto-
types for the description of chromophores interacting with molecular clusters or 
inert solvents. From a theoretical point of view, the ab-initio determination of 
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the excited states and electronic spectroscopic properties of such systems still 
remains a challenge, due to the number of electrons carried by the inert atoms, 
even when only valence electrons are considered. Experimental studies of such 
clusters have increased in the past decade with the development of formation 
and characterization techniques. An appealing application is that inert clusters 
can be used as trapping media to study the reactivity of isolated species (10). In 
many studies, spectroscopy is an especially convenient tool to get information 
on the electronic structure, geometrical properties and even dynamical motion. 
Absorption spectra may, in particular, provide information on the structure of 
the first solvation shell (2).

There have been a number of theoretical investigations of the structure 
and dynamics of heterogeneous clusters in which a single atom or molecule in-
teracts with a rare-gas cluster (11-14). Pair potentials are often a good candidate 
for providing a simplified treatment for the ground state of extended systems 
such as small van der Waals clusters like NaArn

 (2, 15, 16), HgArn
 (17) or Li+Arn

 (9),
or impurities in rare-gas liquids (18) or rare-gas matrices (19). Whenever excited 
states are involved, for instance in the np states of alkali atoms or ns-np states of 
alkaline earth atoms (10, 17, 20), pair potentials must be generalized in order to take 
into account the anisotropic perturbation mixing of initially degenerate states. 
Such extensions, parameterized on the excited states of the diatomic constitu-
ents, can be viewed as a particular case of the more general Diatomics in Mol-
ecules (DIM) picture (21). They provide simple matrix schemes widely used for 
atoms solvated / trapped in inert clusters / matrices. The DIM picture relies on 
the assumption that the excited states of a polyatomic system can be spanned by 
combinations of wavefunctions localized on atomic or diatomic fragments. 

Though such expansions are exact in principle, their practical application 
requires their truncation to a limited subspace, usually spanned by the minimal 
relevant fragment-states qualitatively involved in the description of the global 
system wavefunction. While extremely appealing for its simplicity and efficien-
cy, the relevance of the DIM picture, namely the transferability of the diatomic 
interactions, remains to be confirmed, because truncation limits the inclusion of 
many-body effects. This may turn out to be critical whenever the excited states 
are diffuse and, therefore, not necessarily localizable on the atomic or diatomic 
fragments. Actually, first order perturbative schemes do no take into account the 
wavefunction relaxation, which would require higher configurations to be inclu-
ded. In a recent study of Na(3p)Arn cluster geometries, Tutein and Mayne (4)

used a perturbation approach involving combinations of  and  type NaAr po-
tentials to model the clusters. Due to the fact that the 3p orbitals are directional 
and favor anisotropic interactions, Tutein and Mayne obtained minimal energy 
isomers for the lowest 3p excited state very different from those known for the 
ground state. Indeed, because of the size and isotropic character of the 3s orbital 
the sodium atom in the ground state sits at the surface of the argon clusters (2).

For clusters in the range n =3-8 with 3p excited states, Tutein and Mayne 
actually observed a predominance of planar or quasi-planar structures. This was 
interpreted, in terms of diatomic interactions, as due to the strongest binding of 
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the potential (De=565 cm-1, Re=5.73 bohr) with respect to the  one (De=32
cm-1, Re=12.95 bohr), favoring an arrangement of the inert atoms in a plane per-
pendicular to the 3p orbital. This stimulated us to undertake a study of the elec-
tronically excited clusters Na(3p)Arn with a hybrid Hamiltonian, not relying on 
the DIM approximation for the excited electron and based on a pseudo-potential 
description of the rare-gas atoms closer to the ab initio approaches. This work 
extends our previous investigation (2) of the ground-state Na(3s)-Arn geometries 
and absorption spectroscopy to that of stable isomers on the Na(3p)Arn poten-
tial energy surface. Following photon absorption, the 3p states are expected to 
relax into configurations possibly responsible for fluorescence. Although fluor-
escence has not yet been observed in these clusters, it has been investigated in 
Na /Ar matrices (22, 23), yielding valuable information about isolation sites. 

In Section 2 we briefly present the theoretical framework and schemes of 
the hybrid method used to compute the electronic states of clusters and the algo-
rithm used for structure optimizations. Section 3 is devoted to the presentation 
and discussion of our results and a comparison with the DIM computations of 
Tutein and Mayne (4). The emission lines originating from Na(3p)Arn excited 
states are also calculated and discussed. 

2. Potential-energy surface calculations and optimization methods  

A - Pseudo-potential calculation

The pseudo-potentials used here are of the l-dependent semi-local type, 
according to the expression of Barthelat and Durand (24). The single valence 
electron pseudo-potential for the [Na+] core has been widely used in accurate 
standard valence calculations (25, 26). The argon atoms are represented via [Ar] 
atomic pseudo-potentials operators already used in the investigation of the ab-
sorption spectroscopy of atoms or molecules interacting with argon clusters or 
matrices (1, 2, 27, 28). The pseudo-potentials also incorporate core polarization ope-
rators using a stepwise cut-off adaptation by Foucrault and coworkers (29) of the 
formulation proposed by Müller and Meyer (30). These operators account for the 
polarization of the alkali ionic core as well as of the argon atoms considered as 
a core entities. The core-polarization operator reads

pol ff=W
2

1

The sum in W pol runs over all polarizable cores ( =Na+, Ar);  is the dipole 

polarizability of core  namely 0.9947 a0
3 and 11.08 a0

3 for sodium and argon 

respectively; f  is the electrostatic field at center , produced by the ion [Na+]

and the single valence electron at relative distance r  of core  . The electronic 

field is truncated by a stepwise cut-off function F in order to avoid integral di-
vergencies:
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Na

'Na

'Na

R

R
)(rF

r

r
=f

33

The electronic part of the Hamiltonian is thus given by the single-electron oper-
ator

Ar

ArNa

Na

W+W+
r

=h
1

2

1

in which WNa and WAr include both the averaged and core polarization operators. 
The total Hamiltonian also includes classical pair contributions VNaAr

+ between 
the sodium core and the argon atoms, taken from the work of Ahmadi et al (31),
and pair potentials between argon atoms VArAr, taken from the multiproperty fit 
of Aziz et al (32). This hybrid Hamiltonian has been shown to yield an accuracy 
comparable to (or even better than) that of existing all-electron calculations for 
free diatomics: LiAr, NaAr and KAr (1), where comparison with high resolution 
spectroscopic data is available. Using such pseudo-potential techniques, we re-
strict the number of active electrons to a single one for the whole system. The 
ground and excited states are readily obtained through simple diagonalization 
within a Gaussian-type orbital basis set (6s5p3d on sodium, 5s4p on each argon 
atom). The computational cost is strongly reduced and it becomes possible to 
implement the electronic calculation with global optimization techniques for ex-
ploring the potential energy surface (PES) and find the geometry of the lowest 
energy isomers of Na(3p)Arn.

B - Global optimization 

Several optimization methods can be employed to find cluster isomers. 
Here we use the powerful global optimization method of Wales and Doye (3),
called basin-hopping. This algorithm has proven to be especially efficient (33, 34)

to locate global minima (GM) as well other low-lying minima even in patho-
logic situations. This algorithm essentially converts the potential energy surface 
into a series of terraces by quenching the structures generated in the Monte-
Carlo moves, using gradient minimization. The energy at any point in the con-
figuration space is associated with that of the closest local minimum found by 
local optimization started at that point. The transformed energy is given by  

E
'
X min

l
E X

where X is the vector representing a point in the nuclear configuration space 
and minl indicates that local energy minimization has been completed starting 
form X. A Monte-Carlo sampling is actually carried out “on the fly” on the 
transformed potential energy surface. The removal of the potential energy bar-
riers accelerates the dynamics and broadens the transition temperature regions. 
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This increases the probability of sampling the global minimum at a temperature 
where the free energy barriers between the funnel leading to the global minima 
and other funnels may be crossed. 

3. Results and Discussion 

A - Structure of Na(3p)Arn

As shown in previous publications relative to absorption spectroscopy 
and ground-state equilibrium geometries, the sodium atom in a 3s state prefers 
to bind on the “surface” of a rare-gas cluster. This stems from the fact that the 
NaAr diatomics have a smaller bonding energy at a longer internuclear distance 
than ArAr, in concordance with the rather large size of the isotropic 3s orbital. 

The 3p manifold of sodium generates three potential energy surfaces for 
the cluster. These may undergo adiabatically avoided crossings or possibly meet 
degeneracy situations such as Jahn-Teller or Renner-Teller configurations, the 
former being frequently associated with conical intersections at points of high 
symmetry. The optimization procedure was carried out individually for the three 
adiabatic surfaces a, b and c (alphabetic labeling according to increasing ener-
gy), generating isomers associated with these surfaces (and correspondingly la-
beled a, b and c). 

n clusters, obtained on the lowest 3p PES. 
Isomers labeled (a) are global minima, isomers (a’) have higher energies. 
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n

We start with the minima obtained on the lowest 3p PES (labeled a). The 
global minimum (GM) energy geometries of Na*Arn clusters with n=2-8 are il-
lustrated in Fig. 1, with a few other energetically nearby isomers. For n=2-8, the 
calculated GM equilibrium structures on the lowest 3p PES are in good agree-
ment with the results of Tutein and Mayne (4). One advantage of the present mo-
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del is that it actually provides a true orbital density for the excited electron. The 
contour plots of the 3p orbitals for the lowest isomers are given in Fig. 2. These 

plots clearly confirm, for all global minima, the role of oriented interactions 
to stabilize planar shapes, favoring the ring arrangement of the nearest neighbor 
argon atoms in the nodal plane of the 3p orbital. The number of possible nearest 
neighbors around the sodium atom saturates at n=5, since the argon atoms tend 
to form bonds with geometry as close as possible to the equilibrium distance of 
the ArAr diatomics (Re = 7.11 bohr). As first stated by Tutein and Mayne, the 
5-atom ring in NaAr5 clusters is particularly stable and occurs to be a structural 
seed: the growth mechanism for larger sizes indeed consists of bonding extra 
argon atoms (n = 6, 7 and 8) to the ring. The positions of the added atoms depart 
from the plane so as to maximize their bonding energy with the central sodium, 
achieving in this intermediate bent position a more favorable balance between 

 and interactions along the NaAr axes: NaAr bond lengths are in the range 
9.5-10.5 bohr, and the angle with the plane in the range 20-28 degree. For n=7 
and 8 the added argon atoms mutually rearrange in neighboring locations (sym-
metrically with respect to the ring plane for n=7), in order to form ArAr bonds 
bringing extra stabilization. 

Table 1 lists the atomization energies of the Na(3p)Arn clusters. The ato-
mization energies found in the present work and those obtained by Tutein and 
Mayne are in very good agreement within 200 cm-1, whatever the cluster size. 
The size dependence of stabilities observed by Tutein and Mayne is confirmed. 

Up to the saturation of the 5-atom ring, the energy gained by each argon 

atom addition corresponds to the addition of a new like interaction with sod-
ium, plus the formation of an extra weak ArAr dispersion bond (two in NaAr5). 
Beyond this size, the addition of argon atoms mainly involves the formation of 
ArAr bonds, and the stabilization is found to be weaker. In this respect, the sta-
bility of Na(3p)Ar5 is enhanced with respect to its immediate size neighbors and 
this cluster can be considered as an excited magic size cluster. 

Isomers different from the global minima on the lowest PES have also 
been found. Some of them are reported in Fig. 1. Up to n=5, the isomers consist 
of structures characterized by a number of argon atoms in the ring which is not 
maximal and the extra argon atom weakly binds to the others ones in the ring 
and to the central sodium atom. Their structural excitation energy essentially 

corresponds to the removal of one  type interaction. Beyond n=6 the lowest 
structurally excited isomers are still based on 5-atom rings but they exhibit less 
favorable arrangements of the argon atoms weakly attached to the ring. These 
arrangements do not maximize the number of ArAr nearest-neighbor bonds and 
therefore lie a few 100 cm-1 only above the global minimum. Interestingly, Tu-
tein and Mayne have achieved optimization for larger clusters in the range n=9-
12 and for n=17 within the DIM approximation. They observed that the stable 
structures are obtained mainly via the growth of a segregated, purely rare-gas 
sub-cluster based on tetrahedral units, and sharing argon atoms with the 5-atom 
ring of the NaAr5 unit. 
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Cluster Isomer Sym. ea (cm-1) abs (cm-1) em(cm-1) Ak0(106 s-1)

Na 16969 16969 61.49 

3s C�v  16916, 16916, 17175   NaAr 

ab 3p C�v 565 (563*) 15943  49.48 

c 3p C�v 32 16940 62.61 

3s C2v  16874, 16961, 17315   

a 3p C2v 1184 (1227)  14981 41.13 

b 3p C1 704 15943 49.50 

NaAr2

c 3p Cs 126 16946 62.82 

3s C3v  16922, 16922, 17450   

a 3p C2v 1790 (1900)  13840 32.77 

b 3p C1 1141 14779 41.45 

NaAr3

c 3p C3v 401  16941 64.71 

3s C3v  16917, 16917, 17450   

a 3p C2v 2414 (2604)   12390 24.63 

a’ 3p C1 2018  13794 32.09 

NaAr4

c 3p C3v 660  16939 66.57 

3s C4v  16960, 16960, 17557   

a 3p D5h 3048 (3189)  11792 20.99 

a’ 3p C2v 2045  12329 24.01 

b 3p C2v 925  14204 33.71 

NaAr5

c 3p Cs 788  16935 59.08 

3s C2v 16863, 17053, 17553    

a 3p Cs 3276 (3402)   11770 20.56 

b 3p Cs 1292  11701 21.69 

NaAr6

c 3p Cs 788  16931 60.27 

3s Cs  16882, 16908, 17526   

a 3p C2v 3578 (3714)  11739 20.18 

a’ 3p C2 3262  11759 20.43 

NaAr7

b 3p C2v 1771  9617 19.15 

NaAr8 3s C1 16851, 17304, 17856   

 a 3p C1 3774 (4027)  11767 20.29 

378

TABLE 1  Symmetry, atomization energies (ea) with respect to Na(3p) + nAr, transition

energies corresponding to absorption ( abs) and emission ( em ), and emission line 
intensities (A) of Na(3p)Arn clusters. The atomization energies of Tutein and Mayne (4)

are given in parentheses. The labeling a, b, c of the states corresponds to the increasing 
energy ordering of the three adiabatic 3p PES. The primed structures (a’) are higher 
energy isomers on the lowest energy surface.
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For n = 17, this growth results in an icosaedral argon sub-cluster attached 
to the ring. However, from the results obtained here this building pattern could 
come in competition with another architecture, completing the formation of two 
external argon rings respectively above and below the 5-atom central ring plane. 
This would result in a second shell completion at n = 15. Such a pattern was not 
discussed by Tutein and Mayne. 
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n clusters obtained on the  second (b)  and 
third (c) 3p potential energy surfaces.
Figure 3.  Low-energy isomers of Na(3p)Ar
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We have also achieved optimization for the second and third excited PES
originating from the 3p configuration. It is not quite obvious that, depending on 
the excitation mechanism, a cluster may stabilize with a significant lifetime on
those PES due to the proximity of the others and the various possibilities of sur-
face hopping induced by non-adiabatic couplings. Such transition may combine 
with intra-cluster vibrational relaxation, as investigated by Gerber et al. (20) on 
BaArn clusters. Nevertheless, some representative structures were systematically
studied and are reported here. Starting from the second excited PES, we obtain a 
few non-planar isomers of size n = 5. For instance, the NaAr5 (b) isomer is built
from a distorted square 4-argon atom basis with the sodium atom in the middle 
capped by an extra argon atom. The basis is not exactly planar, the sodium atom
being pushed off the plane. This structure is also a seed for the isomers of larger
clusters such as NaAr6 (b) and NaAr7 (b), where extra atoms complete the first
solvation shell (Fig.3). 

Starting from the third PES (c), we found another series of clusters that 
can easily be identified as consisting of a sodium atom weakly attached to a sta-
ble argon cluster keeping its isolated geometry, closer to ground-state 3s-type 
structures where the alkali atom remains on the surface (2). The bonding energy
is weak and the bond length slightly shorter than the equilibrium distance in the 

 state of NaAr diatomics (about 11.5 bohr instead of Re=12.95 bohr), meaning 

that the bond is dominated by a  type interaction with a small admixture of 
component. These clusters should be considered as pure van der Waals clusters

in an excited state. At smaller atom-cluster distance, the  interaction becomes 
strongly repulsive. 

B - Emission lines 

Whereas absorption spectra can be obtained at a given temperature via
Monte-Carlo type simulations, the reach of equilibrium in an excited state of an 
isolated cluster is less obvious, and even less is the definition of a relevant tem-
perature. In any case, the final state may be strongly dependent on the excitation
process. Here we will ignore the vibrations of the Na(3p)Arn cluster. We assume 
a Franck-Condon type approximation and that emission takes place from relax-
ed equilibrium geometry structures on the Na(3p)Arn excited PES. The Einstein 

coefficients of the lines of emission towards the ground state at energy E are
given by  

2

0

0

2

34

3

0
43

4
|r|

e

c

E
=A kk

They are listed in Table 1 for the various electronically excited stable isomers

. 

The transition dipole moments from these electronic excited states k at equilib-
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rium geometry towards the cluster ground state 0 at the same geometry are ex-
plicitly computed using the cluster wavefunctions provided by the single elect-
ron model. They take into account the orbital deformation and relaxation in the 
upper and ground states, whereas first-order perturbation theory would assume 
frozen atomic wavefunctions and therefore only describe their mixing within 
the 3p manifold. For the sake of comparison, we also provide the transition en-
ergies corresponding to absorption from the Na(3s)Arn clusters in the ground-
state equilibrium geometries towards the 3p states. 

In clusters, the 3p states are split into two or three components depending 

on symmetry. The resonance transition energy of the free sodium atom is 
cm-1. In the case of ring planar or quasi-planar clusters (a), the emission transi-
tion is systematically red-shifted, due to the fact that the upper state is stabilized 
whereas the ground state is conversely destabilized. Since the minimum of the 

 interaction in the NaAr molecule occurs with a binding energy of 565 cm-1,
whereas at this internuclear distance the ground state is accordingly repulsive by 
580 cm-1, one can roughly estimate that up to n = 5 each addition of a extra ar-
gon atom increases the red shift by 1150 cm-1. This is clearly observed in Table 
1. From 15943 in NaAr, the emission transition energy decreases successively 
down to 14981 cm-1 in NaAr2, 13840 cm-1 in NaAr3, 12390 cm-1 in NaAr4, and 
down to 11792 cm-1 in NaAr5. Afterwards, the addition of second neighbor ar-
gon atoms does not alter the situation, and the lines for NaAr6 (a), NaAr7 (a,b), 
and NaAr8 (a) also lie close to 11700 cm-1. This means it will be almost impos-
sible to discriminate emission spectra of isomers based on the same 5-ring pat-
tern like NaAr7 (a, b), and differing only by the positions of the external argon 
atoms. 

The incomplete NaAr2 (b), NaAr3 (b), NaAr4 (b) and NaAr5 (b) isomers 
follow the same logic, namely their emission line is larger by roughly 1150 cm-1

than that of the ring isomers discussed above. Some modulations with respect to 
this rule naturally occur due to distance relaxation: in NaAr5 (b), the axial NaAr 
distances are smaller than those in NaAr5 (a).

The emission in compact clusters such as NaAr5 (c), NaAr6 (b) and NaAr7

(c) are calculated to be 14204 cm-1, 11700 cm-1 and 9617 cm-1, respectively (see 
Table 1). The increase of the red-shift and its particularly large value in NaAr7

(c) is mostly attributable to an increase of the repulsive character of the ground 
state for more and more compact geometries. 

Obviously, the clusters NaAr2 (c), NaAr3 (c), NaAr4 (c), NaAr5 (d), and 
NaAr6 (c), which correspond to the simple van der Waals long distance addition 
of a excited sodium atom to an argon cluster, are characterized by 3p states and 
3s states only weakly shifted with respect to the isolated atom limit. Their emis-
sion lines are therefore very close to the atomic line. 

4. Conclusion 

We have investigated the minimal energy isomers of excited Na(3p)Arn  clusters 
using a hybrid pseudo-potential model where a single electron quantum descrip-
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tion is combined with classical argon-argon and Na+-argon pair potentials. The 
global minima obtained via the basin-hopping algorithm are in agreement with 
those obtained via DIM type first-order perturbation calculations by Tutein and 
Mayne, evidencing the importance of ring-type planar geometries induced by 

the more favorable NaAr - type interaction. Geometrical and energetic size 
effects have been discussed, together with possible construction patterns for lar-
ger clusters. The atomization energies are also in very close agreement with the 
DIM values. Since the DIM and pseudo-potential schemes are completely inde-
pendent methods, this agreement gives credit to both of them. It seems to con-
firm the relevance of the DIM model to address the lowest excited configura-
tions of alkali rare-gas clusters. It also validates the present pseudo-potential 
formulation, which may be used in future studies to address higher (Rydberg) 
excited states. Emission lines and oscillator strengths are shown to exhibit size 
effects. Obviously experimental data on clusters are needed. Excited state dyna-
mics could also be investigated with the present model. Experimental results on 
similar systems do exist but mass-selected experiments have not yet been achie-
ved on the species investigated here. Time-resolved pump-probe techniques are 
now available. They allow for real-time investigation of excited-state dynamics 
(following the pump laser pulse) and size selection through ionization (probe 
laser pulse). We hope that the present theoretical results will motivate further 
research in this direction. 
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UNDERSTANDING  CHEMICAL  REACTIONS  INVOLVING  NON-ADIABATIC
TRANSITIONS:  PREDISSOCIATION  OF  THE  ELECTRONICALLY  EXCITED
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CRISTINA SANZ, OCTAVIO RONCERO
Unidad Asociada UAM-CSIC, Instituto de Matemáticas y F´sica
Fundamental, C.S.I.C., Serrano 123, 28006 Madrid, Spain.

Abstract. The electronic predissociation from several excited electronic states
of LiHF is studied using a time dependent Golden rule treatment, in an adiabatic
representation. The potential energy surfaces used are those developed recently [J.
Chem. Phys. 119 (2003) 10088] to simulate the experimental spectrum. The non-
adiabatic couplings are calculated using highly correlated electronic functions and
a finite difference method. It is found that the electronic predissociation process
towards the ground electronic state yields to the formation of LiF products, with
a large probability, > 90%. Also, the lifetimes associated to the A states are much
shorter than for the B state. It is inferred that the electronic predissociation from
the B and B’ electronic states should take place through the A electronic state,
which acts as a doorway. Such process is explained by important Σ − Π vibronic
couplings appearing between the A, B and B’s.

1. Introduction

In chemical reactions there is an electronic reordering in which some bonds are
broken to form new ones. A full description of a chemical process thus requires the
understanding of the electronic change involved since it will determine the main
forces appearing along the process. Using the electronic states of reactants and
products as a “diabatic” basis set representation, the reactions take place when
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those states cross. The main features of the resulting adiabatic states, and their
potential energy surfaces (PES’s), are determined by these crossings and the na-
ture of the diabatic states involved, as for example the reaction barriers appearing
in the transition state region. If the resulting adiabatic PES’s are well separated
at the crossing, the reaction dynamics can be reasonably well described in the
Born-Oppenheimer approach in a single adiabatic state. In general, however, it is
important to study the role of non-adiabatic effects to understand the electronic
reordering.

One textbook example of such situation is provided by the harpoon-like mech-
anism[1], where “covalent” diabatic states, correlating to reactants, cross with
“ionic” diabatic states of products. The crossings take place at precise nuclear
configurations, where an electron “jumps” forming the products, giving rise in
general to reaction barriers. Typical model systems of this situation is provided by
metal atoms (M) with hydrogen halides (HX): the electron jumps from M form-
ing HX− transient, which is unstable and dissociates rapidly, leaving the M+X−
ionic products. This is the so-called Direct Interaction with Product Repulsion
(DIPR) mechanism, recently reviewed[2]. The collision reaction dynamics in the
ground as well as in the excited electronic states has been widely studied in these
systems[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and permits the study of non-adiabatic
effects occurring in the electronic transitions.

Moreover, these systems present van der Waals wells from which the system
can be promoted to electronic states correlating to excited metal atoms [14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. After the excitation, the system
evolves towards products in several electronic states, thus involving one or several
electronic transitions and providing very valuable information of the electronic
correlations.

Reactions involving alkali metal atoms are particularly interesting because
their relative simplicity: the cations are closed shell leading to a single final M+X−
ionic electronic state in the energy interval of interest, and this state cross, in the
entrance channel, with the covalent states correlating to the excited metal atom
M(2P ). The photon excitation from the van der Waals well in the ground elec-
tronic state reaches this manifold of states, thus allowing the monitoring of the
excited states reaction dynamics.

Among them, Li+HF can be considered a benchmark model system[29, 30]
because its low number of electrons makes possible to calculate accurate PES’s.
Its electronic spectrum has been meassured by Polanyi and coworkers[22], and
has been recently very nicely reproduced using purely adiabatic PES’s [31]. In
the simulation of the spectrum[31], the transition lines were artificially “dressed”
by lorentzians which widths were fitted to better reproduce the experimental en-
velop. The physical origin of such widths is the decay of the quasibound states of
the excited electronic states through electronic predissociation (EP) towards the
ground electronic state. This EP process is the result of the non-adiabatic cou-
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Figure 1. Lower panel: Minimum energy path of the four lower adiabatic states, correlating to
Li(2S)+HF(1Σ+) and Li(2P )+HF(1Σ+). Also, the ionic diabatic state has been qualitatively shown.
Upper panel: non-adiabatic couplings between the ground and first excited electronic states along
the minimum energy path, as a function the internal Jacobi coordinates describing the Li+HF en-
trance channel.

plings among the excited and the ground electronic states, which becomes very
important in the transition state region because of the crossing of the “diabatic”
states, as it is shown in Fig.1. The wells in the excited electronic states are close
to the transition state region of the ground electronic state, and therefore the EP
of their associated quasibound states can be used as a trace of the “diabatic” curve
crossing.

The purpose of this work is to study the electronic predissociation from the
bound states of the excited A and B adiabatic electronic states, using a time de-
pendent Golden rule (TDGR) method, as previously used to study vibrational pre-
dissociation[32, 33] as well as electronic predissociation[34, 35]. The only dif-
ference with previous treatments[34, 35] is the use of an adiabatic representation,
what requires the calculation of non-adiabatic couplings. The method used is de-
scribed in section II, while the corresponding results are discussed in section III.
Finally, some conclusions are extracted in section IV.
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2. Time-dependent Golden-rule treatment for Electronic predissociation

Let’s consider an initial quasibound state Ψα,k(r,R)ξα, corresponding to a rovi-
brational level k in an excited electronic state α, which decays on dissociative
states in the electronic state β, Ψβ,v,j,Eα,k(r,R)ξβ , where v, j labels the quantum
states of the fragments obtained at the energy of the initial state, Eα,k. The r,R
Jacobi vectors are defined below. This electronic predissociation process is gov-
erned by the coupling between different electronic states. The total Hamiltonian
operator factorized as

Ĥ = T̂N + Ĥe, (1)

where T̂N is the kinetic energy operator associated to the nuclei while Ĥe is the
electronic Hamiltonian. When this Hamiltonian is represented in the electronic
subspace formed by the initial and final electronic states, the resulting Hamilto-
nian matrix becomes

He =

(
He

α,α He
α,β

He
β,α He

β,β

)
(2)

with He
α,β = 〈ξα|Ĥe|ξβ〉. If the coupling between different electronic states is

weak enough, the decay of the initial state is slow, following an exponential law
characterized by a lifetime τ , or equivalently a width Γα,k = h̄/2τ . Thus, using
a first-order perturbation treatment, the width can be calculated using the well
known Golden rule approach as[36]

Γα,k = π
∑
v,j

∣∣∣〈Ψα,k|He
α,β |Ψβ,v,j,Eα,k

〉∣∣∣2 . (3)

The reaction dynamics in the final electronic state ξβ will be described within
a time dependent approach. To transform Eq.(3) to its time dependent analog, the
integral representation of the δ(Eα,k − E′) function is introduced in Eq.(3), thus
obtaining[32]

Γα,k =
1
2h̄

∑
v,j

∫
dE′

∫
dt ei(Eα,k−E′)t/h̄

∣∣∣〈Ψβ,v,j,E′ |He
α,β|Ψα,k

〉∣∣∣2 . (4)

Using e−iE′t/h̄ Ψβ,v,j,E′ ≡ e−iHβ,βt/h̄ Ψβ,v,j,E′
, considering the closure rela-

tionship in the subspace of the β electronic state,

1β,β =
∑
v,j

∫
dE

∣∣∣Ψβ,v,j,E
〉 〈

Ψβ,v,j,E
∣∣∣ +

∑
k

∣∣∣Ψβ,k
〉 〈

Ψβ,k
∣∣∣ , (5)
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(where Ψβ,k are rovibrational bound states on the isolated β electronic state) and
rearranging terms, we arrive to the time dependent version of the Golden Rule
expression[32, 33, 34],

Γα,k(E) =
1
2h̄

∫ ∞

−∞
dt eiEt/h̄

〈
Φα,k(r,R, t = 0)|Φα,k(r,R, t)

〉
(6)

similar to the most commonly used for photodissociation[37, 38]. Here, however,
the only energy of interest is E = Eα,k. Also,

〈
Φα,k(r,R, t = 0)|Φα,k(r,R,−t)

〉
=

〈
Φα,k(r,R, t = 0)|Φα,k(r,R, t)

〉∗
.

In Eq.(6), the initial wavepackets are defined as

Φα,k(r,R, t = 0) = Hβ,αΨα,k(r,R) (7)

and its evolution in time as

Φα,k(r,R, t) = e−iHβ,βt/h̄ Φα,k(r,R, t = 0) (8)

where the contributions of the bound states of the β electronic states has been
neglected.

The initial states are bound eigensolutions in the isolated α electronic sub-
space, and Φα,k(r,R, t) is propagated in the β electronic state. Thus the calcu-
lations involved are similar to the usual calculations in the Born-Oppenheimer
approach, and will be briefly described below.

The non-adiabatic character of the process under study is included in the
present approach in the evaluation of the initial wavepacket in Eq.(7). In an elec-
tronic diabatic representation, the electronic wavefunctions are considered to do
not depend on the nuclear coordinates, so that the coupling between different
states is only given by the electronic Hamiltonian, being of potential-type charac-
ter.

In an electronic adiabatic representation, however, the electronic Hamiltonian
becomes diagonal,i.e. 〈ξα|He|ξβ〉 = δα,β Vα, where the adiabatic Vα potentials
for initial (A,B,B’) and final (X) electronic states were described in Ref.[31]. The
couplings between different electronic states arises from the matrix elements of
the nuclear kinetic operator T̂N , giving rise to the so-called non-adiabatic cou-
pling matrix elements (NACME) and are due to the dependence of the electronic
functions on the nuclear coordinates. The actual form of these matrix elements
depends on the choice of the coordinates.

In this work we use an adiabatic electronic representation, and Jacobi nuclear
coordinates are chosen: r, the HF internuclear vector, and R, the vector joining
the HF center-of-mass to the Li atom, in a body-fixed frame in which the three
atoms lie on the x − z body-fixed plane, with R being parallel to the body-fixed
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z-axis. Thus the coordinates are separated in internal, r,R, γ (with cos γ = r ·R),
specifying the relative position of the nuclei, and external, φ, θ, χ, the three Euler
angles specifying the orientation of the body-fixed axis. The potential term Vα

only depends on the internal coordinates, while the nuclear kinetic operator takes
the form

T̂N = − h̄2

2µ

(
2
R

∂

∂R
+

∂2

∂R2

)
+

J2 + j2 − 2J · j
2µR2

− h̄2

2m

(
2
r

∂

∂r
+

∂2

∂r2

)
+

j2

2mr2
(9)

where

j2 = −h̄2

{
cot γ

∂

∂γ
+

∂2

∂γ2
+

1
sin2 γ

∂2

∂χ2

}
(10)

J2 = −h̄2

{
∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

(
∂2

∂φ2
+

∂2

∂χ2
− 2 cos θ

∂2

∂χ∂φ

)}

J · j = −h̄2

{
(1 − cot γ cot θ cos χ)

∂2

∂χ2
− cot θ sin χ

∂2

∂χ∂γ
+ cos χ

∂2

∂θ∂γ

+
cot γ cos χ

sin θ

∂2

∂φ∂χ
+

sin χ

sin θ

∂2

∂φ∂γ
− cot γ sinχ

∂2

∂θ∂χ

}
.

The initial bound states are eigensolutions of the Hamiltonian in the α elec-
tronic subspace, and are expanded as

Ψα,k(r,R) ξα =
∑

Ω,j,v,n

Cα,k
Ω,j,v,n

ϕv(r)Hn(R)
rR

YjΩ(γ, 0) W JMε
Ω (φ, θ, χ) ξα (11)

where YjΩ(γ, 0) are normalized associated Legendre functions and

W JMε
Ω (φ, θ, χ) =

√
2J + 1

16π2(1 + δΩ,0)

[
DJ∗

MΩ(φ, θ, χ) (12)

+ εσ(−1)J+ΩDJ∗
M−Ω(φ, θ, χ)

]

where DJ∗
MΩ(φ, θ, χ) are Wigner rotation matrices[39], corresponding to a well

defined total angular momentum J , with projections M and Ω on the space-fixed
and body-fixed z-axes, respectively. These functions are eigenfunctions of the to-
tal inversion of spatial coordinates, with eigenvalue ε.
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The projection of the electronic orbital angular momentum is neglected in this
adiabatic representation, and the parity of the electronic function under reflection
through the x − z body-fixed plane, σ̂xz , is given by

σ̂xzξα = σξα (13)

being in this case σ = +1 for the X, A and B 2A′ states, while it is −1 for the B’
2A′′ state. Since the total Hamiltonian is symmetric, it does not couple the B’ and
X state. Therefore, the states belonging to B’ do not predissociate. The description
of nuclear and electronic motions should be improved, taking into account the
correlation among electronic and nuclear angular momenta: in a coupled diabatic
representation of the 3 excited electronic states, A,B and B’, the bound states
would present amplitude on the three electronic states and, therefore, the coupling
amplitude with the ground electronic state will be shared. In the present treatment,
the predissociation from the A and B states will be studied to get an idea of the
dynamics and rates involved.

The radial functions in Eq.(11) are numerical solutions of monodimensional
Schrödinger equations, in which the potential corresponds to the three-dimensional
one in which all degrees of freedom are frozen at their equilibrium values except
that radial coordinate under consideration[40, 31].

The Hα,α Hamiltonian is represented in the basis set described, and the result-
ing matrix is diagonalized using standard diagonalization techniques, obtaining
the Eα,k eigenvalues and the Cα,k

Ω,j,v,n coefficients. The number of basis set func-
tions is increased until a desired accuracy is reached.

The wavepackets, in Eq.(7), are analogously expanded as

Φα,k(r,R, t) ξβ =
∑
Ω

Φα,k
Ω (r,R, γ, t)

rR
W JMε

Ω (φ, θ, χ) ξβ, (14)

so that using Eq.(7.a), and considering that the electronic Hamiltonian is diagonal
in this representation, the Φα,k

Ω (r,R, γ, t) coefficients at time zero becomes

Φα,k
Ω′ (r,R, γ, t = 0) =

〈
W JM∗

Ω′ ξβ |TN |Ψα,k ξα

〉
(15)

=
∑
Ω

∑
j,v,n

Cα,k
Ω,j,v,n

{
− h̄2

2µ

(
Gβ,α

R + 2F β,α
R

∂

∂R

)
δΩ,Ω′

− h̄2

2m

(
Gβ,α

r + 2F β,α
r

∂

∂r

)
δΩ,Ω′

− h̄2

2

(
1

µR2
+

1
mr2

) (
Gβ,α

γ + F β,α
γ

[
cot γ + 2

∂

∂γ

])
δΩ,Ω′

− h̄2

2

(
1

µR2
+

1
mr2

)
1

sin2 γ

(
Gβ,α

χ − 2ΩF β,α
χ

)
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+
〈

W JM∗
Ω′ ξβ

∣∣∣∣ J · j
µR2

∣∣∣∣ W JM∗
Ω ξα

〉}
YjΩ(γ, 0) ϕv(r) Hn(R)

where the non-adiabatic couplings are, as usual:

F β,α
X =

〈
ξβ

∣∣∣∣ ∂

∂X

∣∣∣∣ ξα

〉
(16)

Gβ,α
X =

〈
ξβ

∣∣∣∣∣ ∂2

∂X2

∣∣∣∣∣ ξα

〉

with X = r,R, γ or χ. In this respect, the Coriolis coupling between different
Ω values arises from the dependence of the electronic state on the χ angle, i.e.
it requires to consider the electronic Coriolis coupling. If such dependence is ne-
glected the two last terms in the rhs of Eq.(15) disappear, and the sum over Ω
restrict to a single value Ω = Ω′. In addition, the electronic functions depends
relatively weakly on r,R and γ, and the terms involving second order derivatives
are very small, i.e., Gβ,α

X ≈ 0. With all this approximations, the coefficients of
the initial wavepacket become

Φα,k
Ω′ (r,R, γ, t = 0) =

∑
j,v,n

Cα,k
Ω′,j,v,n

{
− h̄2

µ
F β,α

R

∂

∂R
− h̄2

m
F β,α

r

∂

∂r
(17)

− h̄2

2

(
1

µR2
+

1
mr2

)
F β,α

γ

[
cot γ + 2

∂

∂γ

]}
YjΩ′(γ, 0) ϕv(r) Hn(R).

The F β,α
X non-adiabatic couplings have been calculated for α = A and B and

β =X as a function of the Jacobi internal coordinates using a second order finite
difference method[41], with the MOLPRO suite of programs[42]. Multi refer-
ence configuration interaction (MRCI) electronic wavefunctions were calculated
using this program, with the electronic basis set and procedures described previ-
ously[31]. About 60 points have been calculated in the region of the wells of the
excited electronic states. This is so because within the Golden Rule approach, the
whole non-adiabatic dynamics is determined by the initial wavepacket and it will
be zero for the nuclear configurations where the initial Ψα,k is zero, irrespective
of the value of the non-adiabatic coupling. Finally, the matrix elements are well
approximated in this region by monodimensional fits to an analytical function of
the type:

F β,α
X (x) = a0 +

2∑
i=1

ai exp
{
−bi(x − xi)2

}
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where X = r,R or γ. For the γ angle it is sometimes convenient to fit the NACME
calculated with respect to X = cos γ, in order to take into account the correct be-
havior at γ = π, and transform to γ with the relation F β,α

γ (γ) = − sin γF β,α
cos γ(γ).

The action of the derivatives appearing in Eq.(17) is performed independently
on each monodimensional basis function used to build the rovibrational states in
the excited state, Ψα,k. Radial derivatives are performed on numerical functions
using Fourier Transforms[43]. The angular derivatives have been done analyti-
cally using

F β,α
γ

[
cot γ + 2

∂

∂γ

]
YjΩ(γ, 0) ≡ −F β,α

cos γ

[
cos γ + 2 sin γ

∂

∂γ

]
YjΩ(γ, 0) (18)

=−F β,α
cos γ

√
2j + 1
2j + 3

[√
(j + 1)2 − Ω2Yj+1,Ω(γ, 0) −

√
j2 − Ω2Yj−1,Ω(γ, 0)

]

Once the initial wavepacket is constructed, it is propagated in time. The details
of the calculations have been described elsewhere[44, 45, 40] and only few de-
tails are discussed here. The integration of the time-dependent Schrödinger equa-
tion was performed in the β = X ground electronic state using a Tchebychev
propagator[46, 47], modified by including absorbing boundary conditions in the
polynomial expansion[48]. The time step used is 0.25fs, necessary to follow the
rapid decay of the wavepacket in the lower electronic state. It must be noted that
this propagation time is not directly related to the EP lifetime. This last quantity is
obtained from the Fourier transform of the autocorrelation function, as expressed
in Eq.(6). The integration was performed until the autocorrelation function is neg-
ligible, typically of the order of 500 fs.

The Φα,k
Ω′ (r,R, γ, t) coefficients are represented in grids for the three internal

coordinates: r and R are described by 384×384 equidistant points, in the intervals
0.25≤ r ≤11.5Å and 0.5≤ R ≤12Å, respectively, while the angle γ is described
by 30 Gauss-Legendre quadrature points. It is necessary to use damping functions,
as mention above, which in this case are e−α(x−xabs)

2
gaussian functions, with α=

0.03 and 0.08 Å−2 and xabs= 4 and 8Å, for r and R, respectively.
The flux towards LiF products is calculated far from the absorbing region, at

rf =3Å, as explained elsewhere [49, 50, 51, 52, 53, 40]. Also, the energy distri-
bution of the HF(v.j) vibrotational states is obtained using the method of Balint-
Kurti et al[54, 55, 40].

3. Results and Discussion

The electronic predissociation from different rovibrational levels of the A and B
electronic states has been evaluated, to study the effect of the initial excitation on
the process. The bounds states chosen are k=1,2,3 and 6 for A, and k=1,2,3,6 and
12 for B, which correspond to the bending progression of states appearing in the
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Figure 2. Contour plots of the bound state amplitude for the a) A and b) B electronic states as a
function of x=Rcos γ and y= Rsin γ, in Å, for the HF distance frozen at its equilibrium value.
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Figure 3. Contour plots of the NACMES’s (with keys in a.u.) for A-X couplings (left panels) and
B-X couplings (right panels) as a function of x=Rcos γ and y= Rsin γ, in Å, for the HF distance
frozen at its equilibrium value. Top panels corresponds to F α,β

R , middle panels to F α,β
r , and lower

panels to F α,β
cos γ .

spectrum for A and B electronic states, as discussed in Ref.[31]. The contour plots
of the amplitude density associated to these states are shown in Fig.2.

The calculated NACMES’s between the excited and the ground electronic
states are shown in Figs.3. All of them are of the same order in the region of
the wells, but in order to determine their effect it should be taken into account the
reduced mass associated to each of them. Thus, since µ/m > 5, the effect of Fα,β

r

is more important than that of Fα,β
R . The Fα,β

cos γ angular NACME’s contain both
dividing mass factors, but multiplied by r2 and R2, respectively. The bound states
are placed at relatively long R values, of ≈ 2Å, so that again the term depending
on mr2, is going to be the dominant because the r ≈ 1Å.

The NACME’s are multiplied by the corresponding derivatives acting on the
initial bound rovibrational states. These derivatives are larger as the excitation
of the vibration associated to each coordinate increases. In the excited electronic
states, the HF frequency is much larger that those associated to the other two
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Figure 4. Contour plots of the wavepackets at t=0, built according to Eq.(17), for the ground
vibrational states, k=0, of the A (left panels) and B (right panels) electronic states. Several angles
are shown, the equilibrium value for the B state (top panels), the equilibrium value for the A state
(middle panels) and that of the saddle point appearing in the ground X electronic state (bottom
panel). The contour plots associated to the LiHF(X) PES are shown for E= eV.

vibrations. As a consequence most of the bound states reached in the electronic
spectrum correspond to the ground HF vibration. The bending frequency, how-
ever, is much lower and it is the most relevant internal excitation in the spectrum
since most of the structures appearing in the spectrum[22] were attributed to bend-
ing progressions in the A, B and B’ electronic states. The EP dynamic of different
bending excitations is then important not only to simulate the spectrum but also
to understand the effect of angular versus radial non-adiabatic couplings.

The initial wavepackets are built combining the rovibrational bound states
with these NACMES’s and derivative terms, as expressed in Eq.(17). In Fig.4
the contour plots associated to the initial wavepackets for the EP of the ground vi-
brational levels of A and B electronic states are shown. The most relevant features
is the node appearing along r, the HF vibration. This is the reaction coordinate at

396



ELECTRONIC PREDISSOCIATION OF LI-HF

Figure 5. Same as Fig.4 but for t=7.75 fs.

the saddle point of the ground electronic state, as shown in Fig.4, and has very im-
portant relevance on the reaction dynamics. As an example, it has been found[45]
that the reaction cross section for Li+HF(v=1) collisions is 10-50 times larger
than for Li+HF(v=0): this was explained by the presence of the late barrier in PES
of LiHF(X) along the HF distance. Also, the infrared spectrum from the van der
Waals well in LiHF(X) has been simulated[56, 40], reaching to a nearly 90% of
reaction probabilities because the excitation mainly correspond to the HF mode,
the one which the dipole moment depend on. This last finding was later corrob-
orated by different kind of calculations on different PES’s[57], thus showing the
robustness of the model.

In order to show the main features of the reaction dynamics after EP, it is rele-
vant to follow the wavepacket evolution in time, and in Figs.5 and 6 two different
snapshots are shown for t= 7.75 and 15.25 fs. The dynamics leads rapidly to LiF
products at short times because of the node present in the r coordinate. At longer
times, however, there is a relative small proportion of the wavepacket that remains
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Figure 6. Same as Fig.4 but for t=15.25.

in the region of the well of the Li+HF(X) entrance channel, yielding to Li+HF re-
actants probably because at lower energies the barrier towards products can not
be overpassed.

It is therefore relevant to resolve the reaction probability as a function of the
energy, as shown in Fig.7 for different vibrational and electronic states, as a func-
tion of the kinetic energy with respect to the Li+HF(X,v=0,j=0) asymptote. The
energy interval shown is the relevant for the process under study. In fact, in each
calculation the only energy with physical interest is that of the initial energy, as
written in Eq.(6), which are given in the corresponding figure caption. It is found
that, as expected, the reaction probability is very large, being always about 90%
or larger. There is always an oscillating structure, probably as a consequence of
vibrations of the wavepacket in the transition state region.

Similar results have been found[58] in recent semiclassical simulations even
when some variation was obtained depending on the particular method and on the
electronic representation, either diabatic or adiabatic. The electronic representa-
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Figure 7. Reaction probabilities for forming LiF products as a function the kinetic energy, referred
to the Li+HF(v=0,j=0) asymptote of the ground electronic states. The results are shown for different
bending excitations in the A (left panel) and B (right panel) electronic states. The energies of the
initial bound states in this energy scale are those given in Fig.2 plus ≈ 13000 cm−1.

tion was built by fitting accurate ab initio points on the two lower adiabatic PES
to a coupled quasidiabatic potential model, built by a 2×2 matrix[59]. In the adia-
batic representation used by Jasper et al[58], the non-adiabatic couplings obtained
are not directly calculated, while in the present treatment such non-adiabatic cou-
plings are based on direct ab initio calculations. Another difference, is the nature
of the dynamical method used to study dynamics: here an approximated quantum
method is used, while that of Jasper et al[58] is semiclassical. Based on the im-
portant difference between the methods used, and the similarity of the results, we
may conclude that the high reaction efficiency is a rather robust feature of the EP
dynamics from the excited electronic states.

It is found that as bending excitation of the initial wavepacket increases the
reaction probability decreases, but only slightly. To understand this fact, it should
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Figure 8. Autocorrelation functions C(t) =〈Φα,k(t = 0)|Φα,k(t)〉/〈Φα,k(t = 0)|Φα,k(t = 0)〉,
for k=1 and α = A and B.

be taken into account that as bending excitation increases, the initial wavepacket
shifts towards larger angles γ. The saddle point for the reaction in the ground state
is at γ ≈ 69o, and the barrier height increases rapidly when increasing γ. Also,
the reaction probabilities are slightly larger in general for the A than for the B
electronic state, as shown in Fig.7. Again, this can be understood by the structure
of the initial wavepackets: the well in the A electronic states is at larger r and
shorter R than for B, and are closer to the ground electronic state saddle point.

The first relevant quantity required to obtain the rates is the autocorrelation
function which are shown in Fig.8 for the ground vibrational level of the two ex-
cited electronic states. The two cases present a very similar behavior. Simply, for
the A case its decay seems much faster. What is notorious is the large difference
between the EP halfwidths as a function of the energy for the two electronic states,
of approximately 2-3 orders of magnitude, as shown in Fig.9. This is explain by
the norm of the initial wavepackets, which is much smaller for the B state, because
its well is at larger R and shorter r, where the non-adiabatic couplings are much
smaller.

The widths and lifetimes obtained are summarized in Fig.10 for different ini-
tial states (k=1,2,3,6 and 12). The large difference between the lifetimes between
A and B electronic states persists. Also, the lifetimes obtained for A state here
are of ≈ 1-10 ps, while the semiclassical estimates obtained previously[58] are of
0.01-0.1 ps. This difference can be attributed to the difference on the dynamical
method used and to the fact that the non-adiabatic couplings were not directly
calculated in this last work[59].
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Figure 9. Halfwidths as a function of final energy relative kinetic energy for k=1 and α=A and B,
calculated according to Eq.(6). The relevant value is E = Eα,k and is marked with an arrow.

In fact, in the simulation of the spectrum performed recently[31], the absorp-
tion lines were dressed with lorentzian functions which width were fitted to re-
produced the experimental spectrum[22], finding that they could be of the order
of 1-10cm−1, more or less in agreement with the results obtained here for the A
state, but differing significantly with the widths obtained for B state here.

These are not the only non-adiabatic effects in the spectrum. In the simu-
lation[31] was found that the absorption intensity was too low for intermediate
wavelengths, corresponding to energies between the A and B,B’ bands. Such dis-
agreement with the experimental spectrum was attributed to non adiabatic tran-
sitions among the excited A,B and B’ states, the last two being degenerate at
collinear geometry. Such conclusion, was based on a simple reduced dimension-
ality diabatic model, in which the two radial Jacobi coordinates were fixed at their
equilibrium value, including all the rotational degrees of freedom while the di-
abatic electronic states were obtained with the method of the CI vector overlap
when varying the angle between the two Jacobi vectors.
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Figure 10. EP halfwidths (top panels) and lifetimes (top panel) of the different vibrational levels
of the A (left panels) and B (right panels) electronic states.

is the only one responsible of the EP process, acting as the doorway state. How-
ever, because there are important Σ − Π vibronic couplings among the A,B and
B’ states, the rovibrational states are mixed, thus sharing the absorption intensity
and also the EP lifetimes.

4. Conclusions

In this work the electronic predissociation from the A,B and B’ states has been
studied using a time dependent Golden rule approach in an adiabatic representa-
tion. The PES’s previously reported[31] to simulate the experimental spectrum[22]
were used. Non-adiabatic couplings between A-X and B-X were computed using
highly correlated electronic wavefunctions using a finite difference method, with
the MOLPRO package[42].

It is found that the products obtained after electronic predissociation are mainly
LiF products. The reason is that the non-adiabatic couplings excites the HF vibra-
tion, which is the reaction coordinate in the ground electronic state.
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Also, it is found that the widths associated to A state are much wider than
those of B, by 2-3 orders of magnitude, while those of B’ are zero by symmetry.
In the experimental spectrum, however, such situation was not present.

However, in a previous work[31] it was found that the simulated intensity
between the bands associated to A and B,B’ bands was too low, as compared
with the experimental one[22]. Using a simple model in which the two radial
coordinates were frozen, it was concluded that one reason for such disagreement
would be the effect of non-adiabatic couplings among the A, B and B’ electronic
states, which would share the intensity among all bands.

One way to conciliate the two findings is to assume that in the predissociation,
the B and B’ states will predissociate by their couplings to the A state, which acts
as a doorway state. Such finding support the hypothesis suggested previously by
Topaler et al[60] in their studies of NaFH, justifying the use of a two-state diabatic
model, X and A, to study the electronic predissociation of LiFH and NaFH[58,
59]. In addition, the couplings among the A,B and B’ states would also be the
responsible to the spreading of the absorption intensity in the region between the
A and B,B’ bands. For simulating such situation, a diabatic model should be built,
considering either 3×3 diabatic states corresponding to the A,B and B’ states, and
then their coupling to the ground electronic states, or a 4×4 model, in which all
states are coupled. Such models are now being built along all the reaction path,
which presents a great difficulty.
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304, 127 (1999).
29. G.G. Balint-Kurti and R.N. Yardley, Faraday Discuss. Chem. Soc. 62, 77 (1977).
30. M.M.L. Chen and H.F. Schaefer III, J. Chem. Phys. 72, 4376 (1980).
31. A.Aguado, M. Paniagua, C. Sanz and O. Roncero, J. Chem. Phys. 119, 10088 (2003).
32. P. Villarreal, S. Miret-Artés, O. Roncero, G. Delgado-Barrio, J.A. Beswick, N. Halberstadt

and R.D. Coalson, J. Chem. Phys. 94, 4230 (1991).
33. D.H. Zhang, J.Z.H. Zhang and Z. Bacić, J. Chem. Phys. 97, 3149 (1992).
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Abstract. We study structural and chemisorption properties of pure and
doped noble metal clusters by means of first-principles density functional
calculations, based on norm-conserving pseudo-potentials and numerical
atomic basis sets. First, we show that, together with relativistic effects,
the level of theory, that is, the use of GGA or LDA exchange-correlation
functionals, is of paramount importance to determine the onset of three
dimensional structures in Au clusters, whereas for Ag or Cu clusters it is
not so critical. Second, within the GGA framework, we find cage-like stable
structures for neutral Au18, Au20, Au32, Au50, and Au162. However, after
addition or substraction of an electron only Au−

20 and Au+
32 remain cage-

like. On the other hand, only Au20 results cage-like within LDA, whereas
Ag20 and Cu20 clusters adopt compact amorphous-like Cs structures within
both, LDA and GGA frameworks. Third, we investigate the element- and
size-dependent electron stability of gold clusters cation doped with a tran-
sition metal impurity, AunTM+ (TM = Sc, Ti, V, Cr, Mn, Fe; n ≤ 9),
and we obtain a clear explanation of the cluster abundance peaks observed
recently in photo-fragmentation experiments. Fourth, we study the size
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dependent adsorption of m O2 molecules on small Ag−n (1≤n≤7; m=1,2)
and Au−

n (n≤7; m=1) anion clusters, as well as the adsorption of O2 and
CO molecules on neutral Aun (5≤n≤10) clusters. The adsorption energy
of O2 molecules show marked odd even effects in all the cases. For Ag−n
anions with odd (even) n, the adsorption energy of a second O2 molecule
increases (decreases) with respect to the adsorption energy of the first O2,
in agreement with experiments and previous calculations for n≤5, which are
extended here up to n≤7. Configurations of AunO−

2 clusters with two dis-
sociated oxygen atoms are more tightly bound than those with an adsorbed
O2 molecule, but the barrier for dissociative adsorption is not determined
in this work. However, dissociative adsorption of O2 on neutral gold clusters
Aun occurs without any barrier for n=5, 6, 7, 9, and it is the lowest energy
state for n=6, 7. In the dissociative O2 adsorption (with and without bar-
rier), a linear O-Au-O unit is formed by rearranging the coordination of the
involved Au in the cluster substrate. In molecular adsorption the cluster
substrate is not modified substantially, and the O2 binds preferably on top
of Au atoms, except for Au5, where a bridge site is favorable. Adsorption of
CO molecules on Au clusters is non-dissociative, with the C atom bonded
on top of a low coordinated Au atom, except for Au5 and Au7, where a
bridge site is favorable. The structure of the free Aun cluster is not modi-
fied substantially after CO adsorption, except for Au7CO, where the gold
substrate looks like the free Au−

7 anion instead of the neutral Au7 cluster.

1. Introduction

The properties of small metal clusters have been studied experimentally
and theoretically for more than two decades1. By studying the properties
of clusters as a function of size, one hopes to learn how they evolve to-
wards bulk properties, and to find unique properties for specific cluster
sizes that differ largely from their bulk counterparts. Moreover, for these
small clusters, every additional atom can drastically change the electronic
and geometric structures. Interaction of oxygen with metals also changes
significantly with the increasing number of atoms in a particle in this size
regime. These facts mark the enormous potential of cluster studies for a
wide range of applications. Specifically, for noble metal clusters, we can
mention their application to construct new nanodevices for electronics2

and novel nanocatalysis systems3,4. A comprehensive review of theoretical
chemistry and physics of gold systems, both pure and mixed with other
elements, has been recently published5.

The coinage metals, Cu, Ag, Au, with atomic structures nd10(n + 1)s1,
can be viewed as a bridge between the simple s-only alkali metals and the
more complicated transition metals. There exist a considerable number of
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experimental and theoretical studies using a diversity of approaches and
computational tools, for references see a recent work by two of us6, and
the reviews of Pyykkö.5 For classical molecular dynamics simulations see
the work of Bastung and coworkers7. Striking differences among Auν

n (ν =
0,±1) and Agν

n or Cuν
n clusters are the following:

− Gold clusters adopt planar structures with larger numbers of atoms
than silver and copper clusters, as demonstrated by combined experi-
mental and theoretical studies8–10.

− Photo-electron spectra experiments for clusters with 55 atoms11 indi-
cate that Agn and Cun adopt some symmetry, preferably icosahedral,
whereas the pattern for Aun clusters corresponds to amorphous struc-
tures.

− It has been shown experimentally12 and theoretically6,12,13 that Au20

adopts a tetrahedral Td structure, but Ag20 and Cu20 have a compact
Cs structure.

− A fullerene type structure has been found to be very stable for Au32
14,15

but not for silver and copper16.

A commonly invoked cause of these structural differences is that rela-
tivistic effects are more important for gold than for silver or copper clus-
ters17. However, although Au7 is planar, Pt7 is three-dimensional (3D)18,
like Ag7 or Cu7, although Pt shows strong relativistic effects5. It has been
shown that the competition between planar and 3D structures of Pt clusters
is not affected by relativistic effects19. On the other hand, recent relativistic
calculations of gold cluster structures,20 but using the local density approx-
imation (LDA) for exchange and correlation effects, lead to 3D gold clusters
in the range of sizes where the generalized gradient approximation (GGA)
predicts planar forms. Aun clusters with planar form were optimized for
n≤20 within a scalar relativistic LDA method by Zhao and coworkers21.
Relativistic effects within both LDA and GGA approaches were studied22

for given structures of Aun clusters with 2≤n≤10. The spin-orbit coupling
does not alter the relative stability of Aun clusters with n≤20 but increase
the binding energy of the cluster by about 0.08 eV/atom23.The spin-orbit
coupling is smaller than the Jahn-Teller effect for Cu3, but it is significant
for Au3 and quenches the Jahn-Teller distortion24. Comparison of DFT
calculations at several levels of theory for Au6 and Au8 with second-order
perturbation theory (MP2), and coupled cluster methods (CCSD(T)), in-
dicate that DFT predict planar structures for both Au6 and Au8, but both
MP2 and CCSD(T) predict the lowest Au8 isomers to be non-planar25. In
a recent paper, Grömbeck and Broqvist26 study the different contributions
to the bonding in Au8 and Cu8 clusters, concluding that the preference of
planar configurations for Au8 isomers is due to a sizeable d-d overlap and
d-electron delocalization.
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In subsection 3.1, we will present GGA and LDA calculations for Aun

clusters with 6≤n≤9 using the first principles method outlined in section
2, which employs the same scalar-relativistic pseudo-potential for LDA and
GGA (see Fig 1). These calculations show the crucial relevance of the level
of density functional theory (DFT), namely the quality of the exchange-
correlation functional, to predict the correct structures of Au clusters. An-
other, even more critical, example is presented in subsection 3.2, where we
show that both approaches, LDA and GGA, predict the “cage-like” tetra-
hedral structure of Au20

6,12,13 as having lower energy than “amorphous-
like” isomers, whereas for other Au clusters, namely Au18,16 Au32,14–16

Au50,16 and Au160,16 the GGA leads to “cage-like” structures preferen-
tially to “amorphous-like” ones, but the contrary happens by using LDA.
Magic numbered Aun clusters protected by glutathione monolayers were
experimentally isolated and spectroscopically characterized for n=18 and
n=32, among others27. The observation in solution of Au20 coordinated
with eight PPh3 (Ph = phenyl) ligands was reported also recently28.

Another interesting topic that we address in this work is the adsorp-
tion of a transition metal (TM) atom on cationic Au+

n clusters, which
is important, for example, in gold nanocontacts29. By means of photo -
fragmentation experiments, Neukermans and coworkers30 have investigated
the stability of cationic gold clusters doped with a 3d TM atom, AunTM+,
resulting special stability (magic numbers) for Au6Sc+, Au5Ti+, and clus-
ters with n=5,7, and TM = V, Cr, Mn, Fe, Co, among other TM elements
and larger n values. A qualitative explanation of these magic numbers was
given30 in terms of a phenomenological shell-model approach, which leads
to magic numbers for electronic shell closing with 2, 8,... electrons. Thus,
in addition to 1 delocalized 6s electron for each Au atom, one needs to
assume two 4s delocalized electrons for all the TM elements from Sc to Co,
plus one (Sc), two (Ti), or zero (V to Co) 3d delocalized electrons. In a re-
cent work31 we have provided an ab-initio explanation of the experimental
magic numbers from first principles calculations. An outline of these results
is given in section 4.

Interaction of oxygen with metals changes significantly with increasing
number of atoms in the small cluster size regime32–38. Consequently, un-
usual chemical activities can be observed for nanoclusters, which are not
observed on their bulk counterparts3,32–40. For example, even-numbered
Au clusters anions smaller than Au−

21 generally react with O2, whereas the
odd numbered clusters are inert34–38. This even-odd alternation of the O2

chemisorption reactivity can also be found for Ag cluster anions. The dif-
ference between Ag and Au is that O2 chemisorption on Agn anions can
be detected up to Ag−40, whereas Au cluster anions larger than Au−

21 do not
react with O2

36,37. Using vibrationally resolved ultraviolet photoelectron
spectroscopy (UPS), has been found that O2 adsorbed molecularly on the
even-numbered Ag and Au cluster anions, and it has been suggested that
the activated dioxygen species are important reactions intermediates in var-
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In section 5 we report our results for oxygen adsorption on Ag−n (sub-
section 5.1) and on Au−

n (subsection 5.2) cluster anions. In section 6 we
present preliminary results for the molecular chemisorption of O2 (subsec-
tion 6.1) and CO (subsection 6.2) on Aun neutral clusters. In section 7 we
present the conclusions.

2. Computational method

We use the first-principles code Siesta46 (Spanish Initiative for Electronic
Simulations of Thousands of Atoms), to solve fully self-consistently the
standard Kohn-Sham equations47 of density-functional theory within two
levels of spin-polarized exchange-correlation functionals: the generalized-
gradients spin functionals (GGA) as parameterized by Perdew, Burke and
Ernzerhof48, and the local spin density approximation (LDA) as parame-
terized by Perdew and Zunger49. We use norm conserving scalar relativis-
tic pseudopotentials50 in their fully nonlocal form51, generated from the
atomic valence configurations nd10(n + 1)s1(n + 1)p0, with n=3,4,5 for Cu,
Ag and Au, respectively. For the “3d” TM elements Sc, Ti, V, Cr, Mn, and
Fe, we use the valence configuration 4s23p63dq, with q=1, 2, 3, 4, 5, and
6, respectively. For C and O we use 2s22p2 and 2s22p4 respectively. The
corresponding core radii have been tested and reported in previous publi-
cations6,31,52. We have included the valence among the semicore electrons
4d and 5d in Ag and Au, respectively, and 3p in TM elements. Specifically,
for 4s, 3p, 3d orbitals of TM elements we use the core radii, in a. u., 2.57,
1.08, 1.38 (Sc, Ti, V), 2.36, 1.09, 1.09 (Cr), 2.47, 1.29, 1.29 (Mn), and 2.47,
1.00, 1.00 (Fe). For Cu, Ag and Au the core radii of (s,p,d) orbitals are
(2.05, 2.30, 1.98), (2.49, 2.59, 2.20) and (2.47, 2.98, 2.00), respectively. For
O and C, the core radii are (1.14, 1.14) and (1.25, 1.25) for (s,p) orbitals
respectively. Non-linear partial-core corrections are not considered31,52.

Flexible linear combinations of numerical (pseudo) atomic orbitals are
used as the basis set, allowing for multiple-ζ and polarization orbitals. In
order to limit the range of the basis pseudoatomic orbitals (PAO), they are
slightly excited by a common “energy shift”, Eshift, and truncated at the

ious catalytic reactions, such as low-temperature CO oxidation and partial
oxidation of propylene36,37. These results are quite different from those for
Ag and Au bulk crystals, on which oxygen dissociatively chemisorbs (Ag)
or does not adsorb at all (Au)41,42. Recent experiments indicate, however,
that mixed Au-Ag bimetallic nanoparticles as large as ∼ 30 nm, exhibit
extraordinarily high activity with respect to CO oxidation43, and here the
size effect is no longer a critical factor. With respect to extended systems,
the formation of O-Ag-O linear units in the adsorption of oxygen on metal-
lic different vicinal Ag surfaces has been reported44,45. The linear O-Au-
O unit, appears also recurrently in our calculations for the adsorption of
atomic oxygen on anionic gold clusters.
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resulting radial node. The basis functions and the electron density are pro-
jected onto a uniform real space grid in order to calculate the Hartree and
exchange-correlation potentials and matrix elements. The grid fineness is
controlled by the “energy cutoff” of the plane waves that can be represented
in it without alliasing. For the AunTM+ calculations we used, in the present
work, Eshift = 0.0037 Ry, Ecutoff=100 Ry, and double-ζ 3p, 4s, 3d-basis
plus single 4p polarization orbital for TM elements and double-ζ 6s, 5d-
basis plus single 6p polarization orbital for Au, resulting maximum cutoff
radii, in a.u, 9.07 (Sc), 8.66 (Ti), 8.49 (V), 8.35 (Cr), 8.01 (Mn), 7.90 (Fe),
and 7.62 (Au). For the pure noble metal cluster calculations we use Eshift

= 0.01 Ry, Ecutoff=120 Ry, and double-ζ s, d-basis plus single p polariza-
tion orbital, resulting maximum cutoff radius at 7.08, 7.39, and 6.72, for
Cu, Ag, and Au, respectively. For the adsorption of Om and CO on Ag
and Au clusters, we used Eshift = 0.001 Ry, Ecutoff=120 Ry, and double-ζ
s, d-basis plus single p polarization orbital for Ag and Au, and double-ζ
2s, 2p-basis and a single d polarization orbital for C and O elements, re-
sulting maximum cutoff radius (in a.u.) at 9.49, 8.63, 7.45, and 5.73 for
Ag, Au, C, and O, respectively. Convergence tests with respect to size and
cutoff radii of basis sets, and with respect to LDA or GGA xc-functionals,
were presented in previous works6,31,52. For O2, CO, and CO2 we obtain,
in this paper, bond distance (in Å) and binding energy per atom (in eV)
(1.24, 6.55), (1.16, 11.16), and (1.19, 17.36), respectively, to be compared
with experimental values53 (1.21, 5.23), (1.13, 11.23), and (1.16, 17.08),
respectively.

To obtain the equilibrium geometries, an uncostrained conjugate-gradient
structural relaxation using the DFT forces54 was performed for several ini-
tial cluster structures (typically more than ten), inspired in isomeric geome-
tries for Aun, Au−

n , and Au+
n clusters obtained previously6. The calculation

of density gradients is performed numerically54 (with the five points La-
grange interpolation method) for the discrete set of grid points consistent
with the discretized form used in Siesta. Convergence in the geometry
optimization is achieved for 0.04 eV/Å for pure noble metal and doped
AunTM+ clusters, and 0.01 eV/Å for the adsorption of O2 and CO calcu-
lations.

3. Structure of neutral and charged noble metal clusters

3.1. ONSET OF THREE-DIMENSIONAL STRUCTURES

Recent GGA first principles pseudopotential calculations6,17 conclude that
Aun clusters adopt planar structures up to larger sizes than silver and cop-
per, particularly the anionic species, due to relativistic effects. Specifically,
Fernández and coworkers6 obtain planar structures for the ground state of
anionic (ν=1), neutral (ν=0), and cationic (ν=+1) species of Auν

n clusters
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IV V VI

IIII II

Figure 1. Equilibrium geometries of the two lowest energy isomers, Xν
7 and ∗Xν

7 , of
anionic, neutral, and cationic noble metal clusters. The roman numerals identify each
clusters in Table 1.

with up to 12,11, and 7 atoms respectively. In contrast, the maximum size
of planar clusters with ν=-1,0,+1 are n=(5, 6, 5) for Ag, and (5, 6, 4) for Cu
clusters. Nevertheless, a recent LDA calculation of gold cluster structures20

using the same relativistic pseudo-potential and first principles code as in
the GGA calculation of Fernández and coworkers6, obtained the onset of
three dimensional structures for Aun clusters at n=7.

TABLE 1. Results of GGA calculations for
the binding energy per atom (eV) of the two
lowest energy isomers, Xν

7 and ∗Xν
7 , of noble

metal clusters with ν=0,±1 (labels as in Fig.
1). Only geometries I, II, and III, are planar.

Au Ag Cu

X−
7 II 2.72 V 2.45 V 3.18

∗X−
7 V 2.63 IV 2.44 IV 3.16

X7 I 2.52 IV 2.28 IV 2.83
∗X7 IV 2.49 VI 2.26 V 2.78

X+
7 III 2.92 IV 2.57 IV 3.10

∗X+
7 VI 2.92 V 2.53 VI 3.00

In Fig 1 are given the geometries of the first two isomers, Xν
7 and ∗Xν

7 ,
of anionic, neutral, and cationic noble metal clusters, and in Table 1 is tab-
ulated the corresponding cohesive energy. We see that the energy for the
transition from planar to 3D structures of Au heptamers increases when
the number of electrons increases, showing the tendency of anionic Au ag-
gregates to be planar. For Agν

7 and ∗Agν
7 we obtain the same 3D geometries

as for Cu heptamers, with the only exception being ∗Cu7, which adopts the
structure V instead of the VI one. Solov’yov and coworkers55 found for Na7
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and Na+
7 the same pentagonal bypiramid IV that we obtain for Ag and Cu

neutral and cationic heptamers.
By analyzing the density matrix composition of planar and 3D struc-

tures of seven atom clusters (II and IV of Fig 1), calculated using scalar rel-
ativistic pseudo-potential at the GGA theory level, Fernández and cowork-
ers6 conclude that the planarity of Au clusters is driven by the hybridization
of the half-filled 6s orbital with the fully occupied 5dz2 orbital, which is fa-
vored by relativistic effects. Thus, the three valence electrons in the orbitals
6s and 5dz2 , form a “sticky-waist cylinder“, where the cylinder is due to
the almost filled s + dz2 hybrid, and the ”sticky-waist“ is due to the nearly
half-filled s− dz2 hybrid orbital.

Au6 Au7 Au8
Au9

Au6
* Au7

* Au8
* Au9

*

Figure 2. Left: equilibrium geometries of the two lowest energy isomeric states of Aun

clusters obtained using LDA or GGA scalar relativistic pseudo-potentials. The ground
state is Aun for GGA and Au∗

n for LDA (except for n=6, which LDA structure is also
Au6). Right: difference in the binding energy per atom of the planar and 3D structures
given in the left panel for neutral gold clusters with 6≤n≤9 atoms. Positive values indicate
that planar structures are energetically favorable. Crosses corresponds to GGA (dotted
line) and circles to LDA (continuous line) calculations.

TABLE 2. Average bond length, in Å, of structures in Fig 2 optimized
within LDA and GGA xc-functionals.

Au6 Au7 Au8 Au9

LDA GGA LDA GGA LDA GGA LDA GGA

Aun 2.64 2.70 2.65 2.71 2.62 2.69 2.66 2.72

Au∗
n 2.68 2.75 2.76 2.82 2.75 2.78 2.75 2.81

In this work we recalculate the structures of Aun clusters with 6≤n≤9
using both, LDA49 and GGA48 theory, with LDA and GGA scalar rela-
tivistic Troullier-Martins pseudo-potentials50, respectively, and within the
siesta code46. In Fig 2 we present our results for the structures and rela-
tive binding energies. We see that GGA leads to planar structures whereas
LDA favors 3D structures for n≥7 clusters. Thus, in addition to relativistic
effects, the observed planarity of Au clusters8–10 is accounted for using only
the GGA level of theory.
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3.2. GOLDEN FULLERENES

Cage-like structures of gold clusters have been predicted recently within
GGA for Au20

6,12,13 and Au32
14,15. In fact, instead of a cage-like structure,

Au20 can be considered as a small piece of bulk fcc gold, with four (111) sur-
face faces forming a tetrahedron. Cage-like structures can be obtained from
the Platonic solids (tetrahedron, octahedron, and icosahedron) with trian-
gular faces. By decorating the triangles with fcc planes and adding a central
atom to each new triangle, we obtain structures with a number of atoms
2+6(n+1)2 (Td symmetry), 2+12(n+1)2 (Oh symmetry, and 2+30(n+1)2

(Ih symmetry), where n=0,1,2,. . .. In order to obtain a ”magic“ cage-like
structure with a nearly spherical surface, we choose, among the selected
sets of numbers above, those which complete electronic shells having well
defined angular momentum L. On the other hand, as we look for an empty-
cage ”spherical surface“, the radial nodes are excluded and the only allowed
electronic shells are the 1L ones (1s,1p,1d,1f,. . .). This leads to a number
of electrons 2(L+1)2, which is known as the spherical aromaticity rule56.
Assuming that each atom in the Au clusters contributes with 1 valence elec-
tron to the bonding, the expected magic gold clusters contain n = 8, 18,
32, 50, 98, 162, 578,. . . electrons, and double anionic gold clusters should
appear at n=6, 198,. . ., among others.

Au18

Au18
*

Au20 Au32 Au50
Au162

Au50
*Au32

*Au20
*

Figure 3. GGA and LDA equilibrium structures of cage-like (Aun) and amorphous-like
(Au∗

n) type for several Au clusters with magic numbers fulfilling the spherical aromaticity
rule n=2(L+1)2, where L is an integer number (see text).

In Fig 3 we represent the equilibrium geometries of several cage-like
and compact Au clusters (including Au20), optimized (with forces ≤ 0.01
eV/Å) at the GGA and LDA levels using the corresponding GGA and
LDA scalar relativistic pseudo-potentials and the siesta code. The cage-
like equilibrium structures were proven to be stable after performing an
ab-initio molecular dynamics run starting with a temperature of 700 K. We
performed calculations for several initial cage-like and compact geometries,
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TABLE 3. Binding energy per particle, Eb, and average bond distance, dav,
for the optimized cage-like and compact structures of Fig 4 above, obtained
at the GGA and LDA levels of theory. For Au162 we have only the results for
optimized cage-like structures, given a binding energy 3.36 (4.44) eV/atom
and average bond distance 2.78 (2.71) Å for GGA (LDA) calculation.

Au18 Au20 Au32 Au50

GGA LDA GGA LDA GGA LDA GGA LDA

Eb(Aun) 3.05 3.8 3.17 3.95 3.31 4.09 3.37 4.20

dav(Aun) 2.81 2.74 2.86 2.78 2.80 2.75 2.80 2.72

Eb(Au∗
n) 3.04 3.87 3.14 3.94 3.30 4.15 3.36 4.34

dav(Au∗
n) 2.86 2.77 2.87 2.80 2.86 2.81 2.82 2.80

GGA
LDA
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18
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20
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Figure 4. Left: Density of states (DOS) of cage-like and amorphous structures of Au
clusters with 18 and 20 atoms, calculated at the LDA and GGA levels of theory. Right:
Total energy difference between cage-like and compact equilibrium structures of cationic,
neutral, and anionic clusters with 18 (starts), 20 (crosses), and 32 (circles) atoms.

but in Fig 3 we report only the lowest energy equilibrium isomer found for
each case. The binding energies are tabulated in Table 3. We see that Au20

is the lowest energy state with both, LDA and GGA calculations. However,
the compact Au∗

n clusters with n=18, 32, 50 are more (less) tightly bound
than cage-like ones within LDA (GGA).

In the left panel of Fig 4 we compare the density of states (DOS) for
the cage-like structures, Aun (n=18,20), with the corresponding DOS for
the amorphous Au∗

n structures. We see, as in previous works for Au55
11 and

Au32
15,16, that the more ordered geometries show a more structured DOS,

with well defined peaks, which is due to a higher geometrical symmetry.
This fact is independent of the GGA or LDA. The LDA profile tends to
be shifted to lower energies with respect to the GGA one, and the HOMO-
LUMO gap is smaller for LDA than for GGA. On the other hand the
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HOMO-LUMO gap is considerably larger for Au20 than for Au18, indicating
that the former is much more stable than the later.

As a further test of the relative stability of cage-like structures, we repre-
sent in the right panel of Fig 4 the total energy difference between cage-like
and compact equilibrium structures of cationic, neutral, and anionic clus-
ters of Aun with n=18, 20, 32 atoms. We see that Au20 is the only one
conserving a cage-like structure after accepting an extra electron. Interest-
ingly, the lowest energy cationic and anionic Au18 species are not cage-like,
contrary to the neutral cluster. The calculated adiabatic (vertical) ioniza-
tion potential and electron affinity of neutral Au18 are 5.89 (6.08) eV and
1.75 (1.47) eV, respectively.

4. Doped Au clusters

In the left panel of Fig 5 we represent the calculated equilibrium geome-
tries of the lowest energy isomer of cationic AunTM+ clusters with 2≤n≤9
and TM=Au,Sc,Ti, V,Cr,Mn,Fe. Up to n=6 all the geometries are planar,
except Au6Cr+ with a 3D geometry (6-III, not shown) which is degenerate
with the 6-II one. The right panel of Fig 5 shows the binding energy per
atom, Eb = (nEAu + ETM+ -En)/(n+1), for clusters with 3≤n≤8. Eb(n) for
doped clusters is always smaller than for pure Au+

n+1 clusters, except for
AunSc+ and a few other exceptions. More detailed data will be published
elsewhere31.
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Figure 5. Left panel: lowest energy equilibrium structures of AunTM+ clusters with
2≤n≤9 and TM=Sc,Ti,V,Cr,Mn and Fe. The roman numerals identify each geometry in
the Figure below. Structure 8-I corresponds to the pure Au9 cluster. Right panel: binding
energy per atom of AunTM+ clusters with 3≤n≤8. The labels identify the structure as
given in the left panel.

In Fig 6 we represent the second difference of total energy, ∆2En =
En+1+En−1−2En = Eev(n)−Eev(n+1), where Eev(n) = En−1+EAu−En is
the monomer evaporation energy needed for the process in which AunTM+

losses Au atoms, with energy EAu, one by one. ∆2En is proportional to
the logarithm of cluster abundance ratio, ln(In/In+1), obtained in photo-
fragmentation experiments30. Positive values of ∆2En corresponds to abun-
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Figure 6. Second total energy difference (upper panel) and HOMO-LUMO gap (lower
panel) for the lowest energy equilibrium structures of AunTM+ clusters

dances In > In+1, and indicate that AunTM+ is more stable to a monomer
Au evaporation than the neighbor Aun+1TM+ cluster. The enhanced peaks
in the ∆2En of Fig 5 correspond to the magic numbers observed at n=6
(Sc), n=5 (Ti), and n=5,7 for the other TM impurities considered in this
work. Similar peaks are obtained in the calculated HOMO-LUMO gap,
which is represented in the lower panel of Fig 6.

In the context of the spherical shell model for nearly-free electrons1, as-
suming that Au, Sc, and Ti contribute with 1,3,5 delocalized valence elec-
trons, respectively, it appears that Au6Sc+ and Au5Ti+ are magic clusters
with 8 valence electrons. However, for the other TM impurities, delocaliza-
tion of valence charge is restricted to the 4s electrons if this model is forced
to explain the observed drops of intensity, In, at n=5 and 7. We obtain the
experimental magic numbers30 of AunTM+ clusters without resorting to
the empirical shell-model of delocalized electrons.

An analysis of the correlation between the magnetic and geometrical
structures of AunTM+ clusters, and a detailed study of the local magnetic
moment of the TM impurity will be published elsewhere31.

5. Adsorption of O2 on Ag−
n and Au−

n anionic clusters

5.1. ADSORPTION OF OM , M=2,4, ON ANIONIC SILVER CLUSTERS

Recent experimental and theoretical work36,57–59 shows pronounced size
and structure selective activity of anionic silver clusters towards molecular
oxygen due to cooperative effects: odd n Ag−n anions, with even valence
electron number, exhibit about an order of magnitude smaller reaction rates
than even n Ag−n anions for the adsorption of a O2 molecule, but they
are able to activate the oxygen molecular bond to adsorb a second O2

molecule. In this subsection we study the trends in the binding energies
of O2 on Ag−n anions with 1≤ n ≤7, confirming and extending previous
calculations for 1≤ n ≤558. The adsorption of the second O2 on AgnO−

2
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changes substantially the substrate Ag−n geometry for n=3,6,7. The O-O
distance in AgnO−

2 with odd n becomes elongated ∼ 1.30 Å, and thus
activated for further oxidation reactions such as CO combustion.
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Figure 7. Upper panel: Lowest energy equilibrium geometries and calculated adsorp-
tion energies of O2 and O4 on Ag−

n clusters. Isomeric structures for n=4 and 6 are also
depicted. Minimum distance O-Ag (middle panel) and O-O (lower panel) in the equilib-
rium structures of AgnO−

2 (circles) and AgnO−
4 (squares) clusters. The crosses indicate

the distance Ag-O and O-O for the next nearest O2 adsorbed molecule in AgnO−
4 an-

ions. The triangles at n=4,6 correspond to the near degenerate structures depicted in the
upper panel.

In the upper panel of Fig 7 we represent the calculated lowest energy
equilibrium structure and the binding energy, Em

b = E(AgnO−
m)-E(AgnO−

m−2)-
E(O2), for the adsorption of O2 (m=2) and O4 (m=4) on Ag−n clusters with
1≤n≤7. For Ag4O−

m and Ag6O−
m oxides, isomeric structures (within ≤ 0.03

eV difference in Em
b ) are also depicted. Similar odd-even alternations in

Em
b were calculated58 in the size range n≤5. These trends are in agreement

with experimental rate constants58 for the adsorption of the first (m=2)
and second (m=4) oxygen molecules on Ag−n clusters. Adsorption of two
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oxygen atoms leading to (O-Agn-O)−1 clusters is not studied in this work,
except for the linear molecule (O-Ag-O)−1. That molecule is more tightly
bound by 0.11 eV than the equilibrium configuration AgO−

2 (with the an-
gle O-O-Ag being 121.2◦). In general, dissociated O2 configurations can be
energetically favorable but kinetically hindered, that is, require consider-
able activation energy not available under the experimental conditions58,59.
Further details will be given in a forthcoming publication.

The angle O-O-Ag in the AgnO−
m clusters with m=2 is in the range

∼(119◦-121◦) for n odd, and ∼(112◦-115◦) for n even, whereas for m=4 we
found no clear odd-even difference. The calculated O-O-Ag angle in the
free AgO−

2 molecule is 121.2◦, and for the neutral AgO2 was determined60

as ∼ 118.0◦, by means of a mixed experimental-computational approach.
The linear O-Ag-O molecule, which appears to be more tightly bound than
AgO2,60 was found as a recurrent motif in the oxidation of silver vicinal
surfaces44,45. As already commented, AgnO−

m clusters with dissociated O2

seems to be kinetically hindered during molecular adsorption, and we have
not investigated that process in this paper. On the other hand, the linear O-
Au-O motif appearing in the oxidation of anionic gold clusters is discussed
in a section below. In the middle and lower ponnels of Fig 7 are represented
the minimum distance O-Ag (middle panel) and O-O (lower panel) in the
equilibrium structures of AgnO−

2 (circles) and AgnO−
4 (squares) clusters

with 2≤n≤7. The crosses correspond to AgnO−
4 anions and indicate the

distance Ag-O or O-O of the next nearest adsorbed O2 molecule. For Ag5O−
4

that O-O distance in the next nearest O2 molecule is very large. Notice
that both O2 molecules bind on different top Ag atoms except for Ag5O−

4 ,
where an O2 binds in a bridge position between two Ag atoms. The triangles
correspond to the near degenerate structures of AgnO−

2 for n=4,6 depicted
in Fig 7. For n=4, the two isotopes have the same Ag-O distance (within
a 0.005 Å interval), but for n=6 the Ag-O distance of the second isotope
is exceedingly large. However, the O-O distance in the second isomer of
AgnO−

2 with n=4,6 is only slightly lower than in the first isomer. Notice
that our calculation for the O-O distance in the free O2 molecule is 1.24 Å.

The mechanism for the activation of molecular oxygen and the coop-
erative binding of two oxygen molecules on Ag−n anions in which the first
adsorbed O2 serves as an activator has been proposed by Hagen and cowork-
ers58. That mechanism involves the electron transfer from the metal clusters
anions with even number of electrons into the π∗-MO of O2. The binding of
the first O2 molecule changes the electronic structure of the cluster and in-
duces a stronger cooperative binding with the second O2. In the case of Ag−5
(and also Ag−3 in the work of Hagen and coworkers58) this results in a new
oxide species with double bond, superoxo-like O2 subunit, that is, the O2

molecule binds on a “bridge” site of the metal cluster instead of the “top”
site. The cooperative effect is reflected in larger binding energies as shown
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in Figure 7. The binding of the second O2 molecule is stronger for clusters
with an odd number of atoms and weaker for the ones with an even num-
ber of atoms. The later ones with one unpaired electron bind strongly only
one oxigen molecule since the electron transfer leaves them with a closed
shell electronic structure. The analysis of bond distances substantiates the
arguments above.

5.2. ADSORPTION OF OXYGEN ON GOLD CLUSTER ANIONS

In early experiments38,61, a definite pattern of oxygen adsorption to nega-
tively charged small gold clusters was detected. Only anionic clusters with
an even number of atoms showed a significant O2 uptake, whereas odd-
numbered clusters did not exhibit any propensity for reaction with oxygen61

or showed very weak reactivity38. That finding has been confirmed by other
groups35,62. Neutral clusters and positively charged ones were found to be
inert toward oxygen uptake, with the only exception being Au+

10.
Calculations of the electronic structure of AuO2 and Au2O−

2 was re-
ported by Okamura and coworkers63 and Häkkinen and Landmann64, re-
spectively. They found that in the lowest configuration the O2 molecule
attaches to the gold atoms in an end-bonded, bent configuration. They
reported a binding energy of 8.13 kcal/mol, for AuO2

63, and 1.39 eV for
Au2O−

2
64. Mills et al65 have investigated the adsorption of O2 molecules on

neutral and charged Aun clusters with n=1-5, and found that the binding
energy for the charged cluster is larger if the number of electrons in the
cluster is odd.

More recently, Yoon and coworkers66 have reported calculations, based
on density functional theory, for the adsorption of O2 on neutral and
charged (negatively and positively) Au clusters containing up to eight Au
atoms. That work predicts that: i) molecular O2 adsorption is preferred
to dissociative adsorption for anionic and neutral clusters with n≥4; ii)
the binding energy of O2 to anionic clusters, exhibit odd-even oscillations,
being ∼ 0.5-1.0 eV higher for even-n than for odd-n clusters; iii) the bind-
ing energy of O2 to neutral clusters is about 0.5 eV smaller than for the
corresponding anions.

Franceschetti et al67 have reported calculations about AunOν
2 neutral (ν

= 0) and anionic (ν = -1) clusters, with 3≤n≤6. These authors found that:
i) O2 molecules chemiadsorb on Auν

n clusters with typical binding energies
in the range 0.5-1.5 eV, being larger for anionic than for neutral clusters;
ii) in the lowest energy configuration the oxygen molecule dissociates into
two atoms, forming a nearly linear O-Au-O chain which bonds to the re-
manent (deformed) cluster with the oxygen atoms in bridge positions; the
exceptions are the neutral Au3O2 and Au5O2 clusters, which prefer molec-
ular adsorption; iii) the binding energy of O2 to anionic Au clusters shows
odd-even oscillations, being larger for even-n clusters.
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1 2 3 4 5 6 7 8
n

0

0.5

1

1.5

2

E
  (

eV
)

b

2a

3c

4a

5a

6a

7a

2b
3a

4b

4c

5b
5c

5d

6b

6c

7b

3b

2 3 4 5 6 7
2.1

2.15

2.2

2.25

2.3

d(
A

u-
O

) 
(A

ng
st

ro
m

s)

2 3 4 5 6 7
n

1.28

1.3

1.32

1.34

d(
O

-O
) 

(A
ng

st
ro

m
s)

2a

3c

4b

5b
6b 7b

2a

3c

4b

5b

6b

7b

Figure 8. Structure (upper panel), binding energy (middle panel), and bond distances
O-Au and O-O (lower panel), for a few lowest energy isomers of AunO−

2 clusters. Except
for n=2, the O2 dissociation is energetically favorable but kinetically hindered.
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In this subsection we investigate the lowest energy equilibrium struc-
tures of AunO−

2 clusters starting with several initial positions for the O2

molecules and for a considerable amount of configurations (relaxed or not)
of Au−

n anions. In subsection 6.1 we will investigate the adsorption of O2

molecules on neutral relaxed Aun clusters starting with several initial posi-
tions for the O2 molecules relative to the cluster substrate. The structural
and energetic details of the few lowest energy anionic complexes AunO−

2

with 2≤n≤7 are represented in Fig 8, and these results are compared to
previous calculations66,67 in Table 4.

For each cluster size, the few lowest energy equilibrium isomers with
molecular adsorption (MA) and two atoms adsorption (TAA) complexes
are represented in Fig 8. Most of these structures are planar or near planar.
For 4c, 5b, and 5d, only an O atom is not in the plane. Two atom adsorption
leads to major structural changes in the gold cluster, particularly for n≥5.
For example, in the structures 5a, 6a, and 7a, a gold atom breaks the
bonds to other Au atoms to form a highly stable linear O-Au-O unit which
bind each O atom to one of the remaining Au atoms. On the other hand,
molecular adsorption induces only a modest relaxation in the host cluster,
and the O2 molecule is attached on top of a Au atom preferably to the
bridge position between two Au atoms.

The relative stability of the different MA and TAA AunO−
2 complexes

is compared by means of the energy to bind a O2 molecule to the Au−
n

anion, defined as Eb(O2) = E(Au−
n ) + E(O2) - E(AunO−

2 ). This energy is
given in Table 4, and presented in the middle panel of Fig 8 for several MA
(open circles) and TAA (black circles) structures as a function of cluster
size. We have not determined the energy barrier (transition state energy) to
evolve from the MA to the TAA complexes. The difference between Eb(O2)
and Eb(2O) = E(Au−

n ) + 2E(O) - E(AunO−
2 ) is just the binding energy

of O2. We see large odd-even alternations in the Eb(O2) of both MA and
TAA structures. The MA species show a maximum value Eb(O2) for n=2,
and for n=4,6 show relative maxima at Eb ∼ 1 eV, whereas for n=3,5,7
MA show relative minima Eb(O2) ∼ 0.3-0.5 eV. The TAA structures are
energetically favorable for n≥3, with the maximum Eb at n=6. In general,
Eb(O2) increases (decreases) for TAA (MA) structures when the cluster size
increases in the range studied here.

Yoon and coworkers66 found that MA configurations are more tightly
bound than TAA structures for n=2,3, whereas we find MA is favorable only
for n=2. In this respect, our results coincide with those of Franceschetti and
coworkers67. A difference with these autors is that we obtain the “top” MA
isomer 5b in addition to (and practically degenerate with) the “bridge”
5c isomer found by Franceschetti and coworkers67. Our Eb(O2) values for
MA are in very good agreement with those of Yoon and coworkers66, in-
cluding the isomeric structures (except 4c, for which we find a non planar
structure, and 7b, which we comment below), but for TAA our Eb(O2) are
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TABLE 4. Different properties of the AunO−
2 clusters represented in

Fig 8, identified by the label under the first column (Geo). In columns
2 and 3 are given details of the equilibrium geometry: α1 is the an-
gle O-O-Au for the MA complex with O2 on a top site, and α2 is the
angle between planes O-O-Au and the Au−

n planar substrate: 2D in-
dicate a planar complex (α2=0), and 3D a tridimensional substrate.
The asterisk in geometries 2c and 3d indicate that the bond Au-O
distance is exceedingly large in these isomers. In column 4 is given
the integrated electronic charge difference of majority and minority
spin densities, Mz, in atomic units (h̄). In column 5 is given the com-
puted binding energy, in eV, of the O2 molecule to the Au−

n anion:
Eb=E(Au−

n )+E(O2)-E(AunO−
2 ). In columns 6 and 7 are given, for com-

parison, the binding energies computed in previous works: (a) Yoon et
al66, (b) Francescheti et al67. In columns 8 and 9 are given in Å the
distance between oxygen atoms computed in this work and by Yoon et
al66, respectively.

Geo α1 α2 Mz Eb E
(a)
b E

(b)
b dO−O da

O−O

2a 118.6◦ 2D 1 1.35 1.39 1.33 1.34

2b dissoc 2D 1 0.88 3.86

2c ∗105.7◦ 2D 3 0.46 1.28

2d dissoc 2D 3 0.42 0.79 3.82

3a dissoc 2D 2 0.70 0.99 3.86

3b dissoc 2D 2 0.55 3.82

3c 121.3◦ 2D 2 0.46 0.46 0.36 1.29 1.30

3d ∗111.1◦ 2D 2 0.18 1.26

3e dissoc 3D 0 -0.23 0.14 3.95

4a dissoc 2D 1 1.27 1.79 1.69 3.99

4b 114.0◦ 2D 1 1.01 1.01 1.16 1.32 1.33

4c 116.8 67.3◦ 1 0.78 0.94 1.32 1.34

5a dissoc 2D 2 0.98 1.33 1.14 3.97

5b 119.0 49.2◦ 2 0.57 0.61 1.30 1.32

5c bridge near 0 0.55 0.48 0.54 1.41 1.49

5d 116.6◦ 59.8◦ 2 0.48 1.30

6a dissoc 2D 1 1.79 2.11 2.00 3.99

6b 111.8◦ 2D 1 1.05 1.06 1.15 1.33 1.36

6c 105.0◦ 2D 1 1.02 1.34 1.36

6d bridge near 1 0.46 1.33

6e 115.6◦ 3D 1 0.19 1.34

6f 114.2◦ 3D 1 0.12 1.32

7a dissoc 2D 2 0.87 1.30 3.99

7b 115.5◦ 2D 0 0.29 0.53 1.30 1.32

7c 119.5◦ 3D 2 -0.20 1.29

systematically smaller. The agreement is only qualitative with the results of
Franceschetti and coworkers67. For example, the MA structure 5b, with the
O2 molecule adsorbed on top of a Au atom, is not obtained67, but instead,
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these authors find the bridge O2 adsorbed structure 5c. We find a difference
of 0.23 eV in the Eb(O2) of 4a and 4b structures, which is very similar to
the one found by Kim and coworkers59 (0.28 eV), but much smaller than
the difference found by Yoon and coworkers66 (0.78 eV).

The linear O-Au-O chain that appears systematically in TAA complexes
(see the progression of that linear unit in the structures 2b → 3a → 4a
→ 5a → 6a → 7a), was identified experimentally as a stable free neutral
molecule60, formed probably by adding atomic oxygen to the AuO diatomic
molecule. We find that the free linear (O-Au-O)− anion is more stable than
the MA AuO−

2 anion by ∼ 0.23 eV/atom. The angle Au-O-O in the free
MA anion is ∼ 121.5, to be compared with the angle α1 given in Table 4
for MA complexes.

The integrated difference of majority and minority spin electronic charges,
denoted by Mz, is given in column 3 of Table 4. The spectroscopic multi-
plicity of the complex is Mz+1. We see that for MA complexes AunO−

2

with even (odd) n, that is, with odd (even) number of electrons, the mini-
mum energy isomer is a doublet (triplet). These Mz+1 values coincide with
the ones found by Yoon and coworkers66, except for 4c and 7b structures,
where these authors obtained Mz=3 and Mz=2, respectively. Note that
these two cases are the only MA complexes with significant different Eb

values compared to our results.
There are significant correlations between the Au-O and O-O bond

lengths, dAu−O and dO−O, respectively, with the binding energy Eb(O2),
as shown in the middle and lower panels of Figure 8. Complexes with an
even number of Au atoms, whose binding energies are higher than for odd
n clusters, have smaller dAu−O and larger dO−O distances.

The reactivity of AunO−
2 clusters to oxygen as a function of n was mea-

sured by Salisbury and coworkers35 using time of flight mass spectroscopy.
It was found that odd-n (even-n) clusters have negligible (significant) re-
activity, which is explained by the fact that the O2 molecule, acting as a
one-electron aceptor, binds to anionic gold clusters, which have an unpaired
electron.

6. Adsorption of O2 and CO on neutral Aun clusters

Gold is one of the least reactive metals in bulk form. However, in recent
years a considerable amount of theoretical and experimental works have
studied the reactivity of small neutral and charged Au clusters towards
different molecules, like H2, O2, CO, and organic radicals61,67–69,71–73. The
reactivity depends on the size and charge state of the cluster. In the previous
section we have studied the reactivity towards oxygen adsorption of anionic
silver and gold clusters. In this section we study the reactivity of neutral
gold clusters towards molecular O2 (subsection 6.1) and CO (subsection
6.2).
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6.1. ADSORPTION OF O2 ON NEUTRAL GOLD CLUSTERS

In this subsection we investigate the adsorption of O2 molecules on neutral
Aun clusters with 5≤n≤10 atoms. We optimize several initial positions of
the O2 molecule relative to the cluster substrate, which is chosen among the
equilibrium structures of pure Au clusters obtained in a previous work6. We
do not consider initial configurations with two separated O atoms. Thus, O2

dissociative adsorption is obtained only when that process occurs without
any barrier.

As commented in section 5.2, Yoon and coworkers66 found by means of
DFT calculations that molecular O2 adsorption is dissociative for neutral
and anionic Au clusters with more than 3 atoms, that the top position
is preferable in molecular adsorption, and that anions are more reactive
than neutral clusters. However, the structure of the AunO2 neutral sys-
tem was optimized starting from the structure of the anionic AunO−

2 one,
without a more general search of neutral structures. Instead, Franceschetti
and coworkers67 performed O2 adsorption calculations starting with in-
dependently optimized structures for anionic and neutral pure gold clus-
ters (3≤n≤6), reaching similar results to Yoon and coworkers66 except for
Au5O2, namely, that molecular adsorption is preferable to dissociative ad-
sorption. We will follow the same strategy as Franceschetti and coworkers67,
but extending the calculations to larger sizes (5≤n≤10).

5 6 7 8 9 10
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Figure 9. Lowest energy equilibrium geometries and calculated adsorption energies
(denoted by the symbol ◦) of O2 molecule on neutral Aun clusters with 5≤n≤10. Symbols
* and + represent the adsorption energy for isomers with dissociated and molecularly
adsorbed oxygen, respectively.
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In Fig 9 we represent the lowest energy equilibrium geometry and the
calculated adsorption energy of an O2 molecule on neutral Aun clusters
with 5≤n≤10. The adsorption energy is calculated as Eads(O2) = E(Aun)
+ E(O2) - E(AunO2). Dissociative adsorption without barrier is obtained
for n=6,7. For non dissociative adsorption the O2 molecule is adsorbed
preferably on the top position of an Au atom with low coordination, except
for n=5, where the bridge position between two Au atoms is favorable by
0.43 eV instead of the top position. The same effect was shown for Au−

5

anions in subsection 5.2 above. For all the sizes 5≤n≤10 of the relaxed
substrate, we considered several initial adsorption geometries with the O2

on top, bridge, and hollow sites, and after energy optimization the initial
hollow sites evolved toward top or bridge positions. For equilibrium top
positions, the O2 molecule binds out the plane formed by the Au cluster.
The molecular adsorption does not modify substantially the substrate clus-
ter geometry, whereas in the case of O2 dissociation the cluster geometry
changes radically, with the formation of a near lineal O-Au-O unit which
binds to the remaining planar gold atoms, with the linear O-Au-O unit
slightly out of the plane. The second isomer of Au8O2 binds O2 to the
same Au site than in our lowest energy state, and the second isomer of
Au10O2 binds the O2 molecule to an atom neighboring the one bonded in
our lowest energy state.

In Table 5 we characterize the geometries of Fig 9, and list the spin
multiplicity, the adsorption energy, and the O-O bond distance of AunO2

clusters. The angle α1 between O-O-Au atoms in Au(O2) free molecule is ∼
119◦, which is similar to the one found in adsorbed O2Aun and to the exper-
imental one60. The near linear unit O-Au-O found in our ground state and
isomeric structures of several AunO2 clusters, was found experimentally and
characterized theoretically as a free molecule60. The calculated adsorption
energy (E(Auν+2E(O)-E((O-Au-O)ν) for the neutral (ν=0) and anionic
(ν=-1) linear (O-Au-O)ν molecules, is 5.93 eV and 7.82 eV respectively,
with bond Au-O distance 1.94 Å and 1.90 Å respectively. The bond dis-
tance O-O in adsorbed O2 is larger than in the free O2 molecule (1.22 Å).
More details, including isomeric structures, Au-O distances, and vibrational
frequencies of adsorbed O2, will be published elsewhere70 .

6.2. CO ADSORPTION ON NEUTRAL GOLD CLUSTERS

Wu and coworkers71 studied CO adsorption on neutral and charged Au
clusters. They found that the charge state influences the geometrical and
electronic properties of the adsorption process. The top position is the
preferable site for neutral clusters with less than 6 atoms. More recently,
Phala and coworkers72 found that the top site is favored up to a 13 Au
atoms substrate, except for 5 atoms, competing with the bridge position.
The geometries considered by these authors for more than 6 atoms are ex-
tracted from bulk fcc gold motifs.
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TABLE 5. Geometry, spin multiplicity M=Mz+1, O-O and C-O bond distances
(in Å), and adsorption energy: EX

ads = E(Aun) + E(X) - E(AunX), X =O2, CO (in
eV), for the lowest energy isomeric states of AunX clusters depicted in Figs 9-10.
The geometry is specified by two angles: α1 is the angle O-O-Au (O-C-Au), and
α2 is the angle between planes O-O-Au (O-C-Au) and the Aun substrate. For the
second isomer of Au6CO and Au8CO, the Au atom which binds to CO is out of
the plane formed by the remaining Au atoms. This is indicate by the symbol ∗ at
the left of α2.

AunO2 AunCO

n α1 α2 M d0−0 E02
ads α1 α2 M dC−0 ECO

ads

5 bridge 2D 2 1.35 0.91 bridge 12.9◦ 2 1.20 1.26

5 dissoc near 2 0.52 173.1◦ 58.0◦ 2 1.17 1.12

6 dissoc near 3 0.21 164.2◦ 20.0◦ 1 1.17 0.96

6 115.3◦ 55.9◦ 3 1.26 0.15 175.6◦ ∗86.0◦ 1 1.17 0.64

7 dissoc 2D 2 0.56 bridge 8.8◦ 2 1.21 1.28

7 115.8◦ 24.3◦ 2 1.28 0.52 169.7◦ 14.0◦ 2 1.21 1.23

8 121.7◦ 86.3◦ 3 1.26 0.20 175.2◦ 72.1◦ 1 1.17 1.16

8 116.8◦ 7.4◦ 3 1.26 0.08 172.9◦ ∗39.1◦ 1 1.19 0.86

9 118.6◦ 54.2◦ 2 1.28 0.54 167.7◦ 3.6◦ 2 1.17 1.07

9 dissoc near 2 0.37 169.2◦ 35.2◦ 2 1.17 1.03

10 119.3◦ 89.1◦ 1 1.27 0.28 172.2◦ 28.0◦ 1 1.17 1.06

10 116.5◦ 3.7◦ 3 1.27 0.25 168.0◦ 17.2◦ 1 1.17 1.05

In this subsection we present preliminary results about the adsorption
of CO on neutral Aun clusters with 5≤n≤10. More details will be given
in a forthcoming publication. In Fig 10 we present the geometry and the
calculated adsorption energy for the lowest energy equilibrium structure.
In Table 5 we characterize these structures and isomeric states, and also
give the corresponding spin multiplicity, C-O bond distance, and adsorp-
tion energy. The structures are obtained, for each size n, by relaxing sev-
eral initial positions of the CO molecule attached to the ground state of
a pure Aun cluster obtained in a previous work6. In the relaxed equilib-
rium structures, CO binds to Aun always through the C atom, and on top
of a low coordinated Au atom, except for Au5 and Au7, which binds CO
in a bridge position. The planar geometry of the Au clusters is preserved
after adsorption with few modifications of Au-Au bond distances, except
for Au7. For Au7CO we obtain an isomer with only 0.05 eV smaller bind-
ing energy, which have the CO in top position and without distortion of
the Au7 ground state structure. For Au5CO the isomer with CO in top
position has 0.14 eV lower adsorption energy. In all the cases, the C atom
is in the same plane as the Au cluster. The CO bond distance increases
after adsorption with respect to the free radical, and is larger in the bridge
position. The largest adsorption energy Eads is obtained for Au5 and Au7,
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Figure 10. Lowest energy equilibrium geometries and calculated adsorption energies of
CO molecules on neutral Aun clusters with 5≤n≤10. Dark small spheres bonded to Au
(grey spheres) represent C atoms.

7. Conclusions

We have studied different properties of pure and doped noble metal clusters,
and the adsorption of O2 and CO on small anionic and neutral Ag and Au
clusters. Pure Au clusters behave differently than Ag and Cu noble metal
clusters and than alkali clusters due to relativistic effects leading to s-d
hibridation. The contribution of exchange and correlation energy to the
stabilization of planar structures is more critical in Au than in Cu clusters.
Thus, GGA favors planar and cage-like structures whereas LDA leads to
compact amorphous-like structures. Au20 is tetrahedral within GGA and
LDA, but Au32 is cage-like only within GGA. We calculate within GGA
novel cage-like equilibrium structures for Au18, Au50, and Au162.

With respect to AunTM+ cations, we have explained, from first princi-
ples calculations, the recently observed magic numbers30, without resorting
to the phenomenological shell model.

where CO binds in a bridge position, and with an odd number of valence
electrons. The minimum Eads occurs for Au6, which is a magic cluster for
planar configurations of delocalized electrons. No odd-even effects in Eads

are seen for n≥7. The second isomer reported in table 5 for n=6, 9, 10
clusters binds CO to the second less coordinated Au atom, although many
isomeric equilibrium geometries exist by changing the angle α2 reported for
the lowest energy isomer.
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The adsorption of O2 on Ag and Au clusters confirms and extends to
larger cluster sizes the main results obtained in previous publications58,66,67,
although significative differences are also found.

With respect to the adsorption of an O2 molecule on Ag−n clusters, odd-
n anions exhibit about an order of magnitude smaller reaction rates than
even-n anions, but they are able to activate the oxygen molecular bond
to adsorb a second O2 molecule. As proposed previously58, the mechanism
for the activation of molecular oxygen and the cooperative bonding of two
oxygen molecules on Ag−n anions involves electron transfer from the Ag−n
anions with even numbers of electrons into the π∗-MO of O2. Thus, the
binding of the first O2 molecule changes the electronic structure of the
cluster and induces a stronger cooperative binding with the second O2.

With respect to gold, dissociative O2 adsorption on Au−
n is energeti-

cally favorable (but kinetically hindered) to molecular adsorption for an-
ions with n≥3. Dissociative O2 adsorption without any barrier is preferable
for neutral Aun clusters with n=6, 7. The binding energy of O2 to anionic
clusters, exhibit odd-even oscillations, and is a little bit larger than for
the corresponding neutral clusters. We obtain qualitative and quantitative
agreement with previous results66,67, as well as some significant differences,
mainly for the dissociative adsorption trend. We find that the linear unit O-
Au-O appears as a structural motif in dissociative O2 adsorption on neutral
(spontaneous) and anionic (with barrier) Au clusters. That linear motif has
been identified recently in the oxidation of vicinal surfaces of noble metal
and transition metal systems44,45.

With respect to CO adsorption on neutral Aun clusters, our preliminary
results show differences with previous calculations72 using cluster geome-
tries extracted from the fcc gold crystal. The adsorption energy of CO is
minimum for the planar magic cluster Au6 and shows maxima for the odd
electron clusters Au5 and Au7, both with the CO absorbed on a bridge
position, but the even-odd effect is not obtained for sizes larger than n=7.

In summary, the noble metal cluster studies presented in this work,
provide a considerable amount of new electronic and structural data for
pure and doped clusters, and for the behavior of O2 and CO adsorption
against the charge state and size of the cluster. We hope that this work will
shed light on understanding the special physical and chemical properties of
noble metal clusters, and particularly gold clusters.
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2. N. Agräıt, A. L. Yeyati, and J. M. van Ruitenbeeck, Physics Reports 377, 81 (2003).
3. M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).
4. L. M. Molina and B. Hammer, Phys. Rev. Lett. 90, 206102 (2003); Phys. Rev. B

69, 155424 (2004).
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66. B. Yoon, H. Häkkinen, and U. Landman, J. Phys. Chem. A 107, 4066 (2003).
67. A. Franceschetti, S. J. Pennycook, and S. T. Pantelides, Chem. Phys. Lett. 374,

471 (2003).
68. D. H. Wells, Jr., et al, J. Chem. Phys. 117, 10597 (2002).
69. Z. P. Liu, P. Hu, and A. Alavi, J. Am. Chem. Soc. 124, 14770 (2002).
70. E. Fernández, P. Ordejón, and L. C. Balbás, Chem. Phys. Lett. 408, 252 (2003).
71. X. Wu, L. Senapati, S. K. Nayak, A. Selloni, and M. Hajaligol, J. Chem. Phys. 117,

4010 (2002).
72. N. S. Phala, G. Klatt, and E. V. Steen, Chem. Phys. Lett. 395, 33 (2004).
73. L. Jiang and Q. Xu, J. Phys. Chem. A 109, 1026 (2005).



THREE-GOLD CLUSTER AS PROTON ACCEPTOR IN
NONCONVENTIONAL HYDROGEN BONDS

E. S. KRYACHKO
Department of Chemistry, Bat. B6c, University of Liege,
Sart-Tilman, B-4000 Liege 1, Belgium and
Bogoliubov Institute for Theoretical Physics, Kiev, 03143 Ukraine
E-mail: eugene.kryachko@ulg.ac.be

AND

F. REMACLE
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Abstract. The present work extends the family of nonconventional pro-
ton acceptors to the coinage metal Au. Based on high level computations,
we demonstrate the ability of the triangle three-gold cluster to behave as
nonconventional proton acceptor and hence to form hydrogen bonds with
conventional hydrogen bond donors. Three molecules: formic acid, alanine,
and adenine, involving O-H and N-H groups as typical conventional hydro-
gen bond donors, are chosen for this purpose.

1. Introduction: The Concept of Conventional Hydrogen Bond

At the beginning of the 20th century, Huggins [1], Latimer and Rodebush
[2], and Pauling [3] introduced the concept of a classical or conventional
hydrogen bond A-H· · ·B1 as that formed between a (conventional) hydrogen

1The hydrogen bond was likely quoted for the first time in 1923 by Lewis [4].
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bond donor A-H and a (conventional) proton acceptor B containing lone-
pair electrons. Since then, it has been well accepted and widely used in
many areas of physics, chemistry, and biology [5-20].

Usually, A is sufficiently electronegative to induce a rather polar bond.
O-H and N-H groups (generally speaking, R′-X-H where X = O, N and
R′ is the rest of molecule) are typical conventional hydrogen bond donors.
Typical conventional hydrogen bond acceptors are the atoms F, N, O, C,
P, S, Cl, Se, Br, and I whose electronegativities are larger than the elec-
tronegativity of hydrogen and which have an unshared electron pair. When
a hydrogen atom H belonging to the A-H group of one molecule approaches
closer enough the electronegative atom B of the other , it interacts with B
and forms a bond, where the proton is shared between A and B. This shar-
ing, graphically indicated as · · ·, rearranges the electron density of the A-H
group and B, so that H partially loses its charge compared to the monomer
A-H (it was already not neutral there). H is treated as a bridging hydron
H+δ(0 ≤ δ �= 1) or, in the extreme case, as a bridging proton H+.

When B is an atom or ion, a hydrogen (H-) bond A-H· · ·B is geomet-
rically characterized by the two bond lengths, R(A-H) and r(H· · ·B), and
by the bond angle φH ≡ � AHB. When B has a more complex structure,
the hydrogen bond is (are) graphically pictured as A-H· · ·B-R, and another
bond angle(s), � RBH, is introduced. Sometimes, instead of φH , another
angle ψH ≡ π − φH is used. Within the hydrogen bond A-H· · ·B, the A,
H, and B do not severely deviate from a collinear arrangement. r(H· · ·B),
defined as the distance between the bridging proton (hydron) and the pro-
ton acceptor B, is often called the hydrogen bond separation. One can also
introduce the donor-acceptor distance R(A· · ·B). A formation of a hydro-
gen bond A-H· · ·B results in a new vibrational mode νσ that describes the
H-bond A· · ·B stretch.

It is usually assumed that a conventional hydrogen bond A-H· · ·B is
formed if the following structural and spectroscopic criteria are obeyed [5-
20]:

(i) There exists a firm evidence of the bond formation.
This might be, e. g., the appearance of the H-bond stretching mode νσ. One
can also rely on the energy criteria [8] requiring that the binding energy of
a formed complex is larger than the dipolar or London dispersion energies;

(ii) There exists a firm evidence that this bond specifically involves a
hydrogen atom which is bonded to B predominantly along the bond direc-
tion A-H.
This might be, e. g., indicated by changes (in comparison with the A-H
group) in two bending modes, out-of-plane γ(A-H· · ·B) and in-plane δ(A-
H· · ·B);
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(iii) The A-H bond elongates relative to that in the monomer;

(iv) A so called van der Waals cutoff: the hydrogen bond separation
r(H· · ·B) defined as the distance between the bridging proton and the pro-
ton acceptor, B, is shorter than the sum of van der Waals radii of H and
B, that is (see in particular Refs. [9, 10, 12] and Ref. [21] in [14]),

r(H · · ·B) < wH + wB (1)

where wX is the van der Waals radius of X. Note that the distance r(A-B)
between A and B is often referred to as the H-bond length. The necessary
but insufficient condition imposed on r(A-B) that indicates that the H-bond
is formed is the following:

r(A · · ·B) < wA + wB. (2)

In some cases, the van der Waals cutoff is a too strong constraint from the
experimental point of view and can be extended to the condition r(H· · ·B)
≤ 3.0 or even 3.2 Å [10, 11, 13, 16] (see also note [21] in Ref. [16]);

(v) The proton-stretching vibrational mode ν(A-H) undergoes a red shift
(a downshift to lower wavenumbers) with respect to that in the correspond-
ing monomer and its IR absorption increases.
This is the most unequivocal probe of the existence of a hydrogen bond;

(vi) Proton nuclear magnetic resonance (1H NMR) chemical shifts in
the A-H· · ·B hydrogen bond are shifted downfield compared to the monomer.

Actually, (i) - (vi) are those geometric and spectroscopic aspects of the
interaction upon which crystallographers, molecular spectroscopists, and
quantum chemists primarily rely and most widely employ, considering them
as evidence of an attractive interaction involving charge rearrangement.
Note that (iii) - (vi) may be also treated as an indirect confirmation of
(i) and (ii). There exist other features related with the H-bond formation.
They are, e. g., an increase of the polarity of the A-H bond; an increase of
the total dipole moment of the complex, that is larger than a vector sum
of the dipole moments of monomers. Steiner [16] has recently revised the
definition of a hydrogen bond and proposed the following one:

An A-H· · ·B interaction is called a “hydrogen bond” if (a) it constitutes a
local bond and if (b) A-H acts as proton donor to B.
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TABLE 1. Jeffrey’s classification of hydrogen bonds [11] (see also Refs. [16, 21]).

Strong Moderate Weak

(proton-shared) (conventional)

Type of strongly dominant electrostatic

interaction covalent electrostatic dispersion

r(H· · ·B), Å 1.2 - 1.5 1.5 - 2.2 ≥ 2.2

∆R(A-H), Å 0.08 - 0.25 0.02 - 0.08 ≤ 0.02

R(A-H)/r(H· · ·B) ≈ 1 < 1 � 1

R(A· · ·B), Å 2.2 - 2.5 (2.6) 2.5 (2.6) - 3.2 ≥ 3.2

directionality strong moderate weak
� AHB, o 170o − 180o 170o − 130o 130o − 90o

|EHB |, kcal/mol 15 - 40 (60 [21]) 4 - 15 ≤ 4

∆ν(A-H· · ·B)/ν(A-H), % 25 10 - 25 ≤ 10

| δσ(H)|, ppm 14 - 22 ≤ 14

Hydrogen bonds are classified as strong or proton-shared (ion-pair),
moderate, and normal or weak (conventional). See Table 1. Strong H-bonds
are two-center bonds with short separations R(A· · ·B) ∈ (2.2 Å, 2.60 Å) (for
very strong H-bonds R(A· · ·B)≤ 2.45 Å). Obviously, the symbolic notation
· · · for H· · ·B is no longer valid for strong H-bonds where the proton is
(almost) equally shared and thus roughly centered between A and B. They
are therefore depicted as A-H-B. Strong hydrogen bonds are almost linear
and characterized by the H-bond formation energies, |EHB |≥ 15 kcal/mol.

Weak or conventional H-bonds are characterized by longer R(A· · ·B)
> 3.20 Å distances, their A-H bonds are slightly elongated relative to the
R(A-H) in the monomers; and their r(H· · ·B) bond lengths are much longer
than a covalent H· · ·B distance. The strength of a conventional hydrogen
bond A-H· · ·B is typically estimated by the electrostatic attraction of the
bond dipole A-H with a negative charge on B [10]. Usually, this strength is
an order of magnitude weaker than a covalent bond.

Nowadays, the concept of a hydrogen bond is much broader than it
was expected nearly century ago [13, 15]. Many new bonds, similar to the
hydrogen ones, i. e., sharing similar features (i) - (vi), have been identi-
fied, both experimentally and theoretically. To distinguish them from the
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conventional hydrogen bonds, they are referred to as ‘nonconventional’. A
family of nonconventional hydrogen bonds are the A-H· · ·M ones, formed
between conventional hydrogen bond donors and electron-rich transition
metals M, such as Co, Ru, Rh, Os, Ir, and Pt functioning as weak proton
acceptors [22-24]. Rigorously speaking, those metals must be referred to
nonconventional proton acceptors.

The aim of the present work consists in extending the existing family of
nonconventional proton acceptors to the coinage metal Au. On the basis of
high-level calculations, we show that the triangle Au3 cluster can behave as
a proton acceptor and hence take part in hydrogen bonds with conventional
hydrogen bond donors. In the present study, the latter are restricted to
formic acid, alanine, and adenine, which contains O-H and N-H groups, the
typical conventional hydrogen bond donors.

The motivation of the present work has also more technologically ori-
ented aspects. One is connected to the “bottom-up” strategy in molecular
electronics and biosensor design which often use biological molecules, DNA
in particular, as templates [25]. The other is related to the recent studies of
DNA bases at gold electrodes [26]. Recent experiments have demonstrated
that the four DNA bases (adenine A, thymine T, guanine G, and cytosine
C) interact with Au surfaces in a complex and sequence-dependent manner
which is different for each base [27]. Their relative affinities to adsorb on
polycrystalline Au films obey the following order: A > C ≥ G > T [27c].
The energetics of the DNA base-gold interactions can be understood from
the heats ∆Hdes of desorption of the bases from Au thin films, ∆Hdes(T)
= 26.5 ± 0.5 kcal/mol, ∆Hdes(C) = 30.6 ± 1.0 kcal/mol, ∆Hdes(A) = 31.3
± 0.7 kcal/mol, and ∆Hdes(G) = 34.9 ± 0.5 kcal/mol [27a]. Structurally,
it has been suggested that adenine anchors gold either at the N6 exocyclic
amino group [27d] or the N7 atom [27e], although the precise geometry of
the bonded complex A·Au has not yet been determined [27c]. The third rea-
son stems out from quite recent experiments on the binding of amino acids
to gold nanoparticles [28]. In particular, one of these studies shows [28e]
that amino acids such as lysine and aspartic acid bind extremely strongly
to gold particles when unprotonated.

2. Computational Methodology

All computations reported in the present work were conducted with the
GAUSSIAN 03 package of quantum chemical programs [29]. The Kohn-
Sham self-consistent field formalism with the hybrid density functional
B3LYP potential was used together with relativistic effective core potential
RECP (gold) and the basis sets 6-31++G(d,p) (formic acid and alanine)
and 6-31+G(d) (adenine). Three different energy-consistent19-(5s25p65d106s)

NONCONVENTIONAL HYDROGEN BONDS
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valence electron RECPs for gold atoms were used: the one developed by
Ermler, Christiansen and co-workers (EC) with the primitive basis set
(5s5p4d) [30], by the Stuttgart group (S) with the basis set(8s7p6d)/[6s5p3d]
[31], and by Hay and Wadt (Los Alamos RECP or shortly HW-LA) [32]2.
The main features of the triangle Au3 cluster are gathered in note [35]. One
of the studied complexes, that of formic acid with Au3, was also investigated
at the MP2/HW-LA (gold) ∪ 6-31++G(d,p) (formic acid) computational
level (see also Ref. [36]).

All geometrical optimizations were performed with the keywords “tight”
and “Int=UltraFine”. The unscaled harmonic vibrational frequencies, zero-
point vibrational energies (ZPVE), and enthalpies were also calculated. The
ZPVE-corrected binding energies Eb are reported throughout the work.

3. Nonconventional Hydrogen Bond in Formic Acid·Au3

The most stable planar cyclic complex between a three-gold cluster and
formic acid (FA) is shown in Figure 1. Au3 builds with formic acid an an-
chor Au-O bond whose length varies within 2.240 - 2.280 Å (depending on
the RECP used). The anchoring of the Au3 cluster to the carbonyl oxygen is
accompanied by the formation of the O-H· · ·Au bond. We intend to prove
that this intramolecular bond satisfies all necessary and sufficient condi-
tions (i) - (vi) defining conventional H-bonds. The existence of the bond
(condition (i)) is confirmed by the appearance of the H-bond stretching
mode νσ(O2 · · ·Au5) in the complex FA·Au3, whose frequency falls within
the range of 133 - 142 cm−1 depending on the RECP used. This mode is
coupled to the stretching mode of the O3-Au4 anchor bond. We provide
below the energetic, structural and spectroscopic information that shows
that the conditions (iii) - (vi) are satisfied for the O2-H2 · · ·Au5 bond3:
Note: the binding energy Eb(FA·Au3) = 14.4 (EC), 13.2 (S), 12.0 (HW-LA)
kcal/mol and the enthalpy of formation -∆Hf = 14.3 (EC), 13.0 (S), 11.8
(HW-LA) kcal/mol. The total dipole moment dtot(FA·Au3) = 2.57 (EC),
2.57 (S), 2.49 (HW-LA) D. The bond angle in O2-H2 · · ·Au5 is close to π
(� O2H2Au5 = 173.4o − 173.8o, see Figure 1) so this bond is practically
linear.
(iii) ∆R(O2-H2) = 0.026 (EC), 0.022 (S), 0.023 (HW-LA) Å;
(iv) r(H2 · · ·Au5) = 2.493 (EC), 2.450 (S), 2.506 (HW-LA) Å < wH + wAu
= 2.86 Å;

2For a recent review on small gold clusters see Ref. [33] and Ref. [34] for the 2D-3D
coexistence in small neutral and charged gold clusters.

3The related properties of formic acid are collected in note [37].

Complex
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3.

The bond lengths are given in and bond angles in ˚ (reading from top to 

bottom: B3LYP/RECP = EC, S, HW-LA (gold)  6-31++G(d, p) (formic 

acid)).

Figure 1. The most stable plannar complex between formic acid and Au

Figure 2. One of the lowest-energy conformers of alanine. The bond 

lengths are given in and bond angles in˚.
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(v) -∆ν(O2-H2) = 520 (EC), 453 (S), 463 (HW-LA), 422 (MP2/HW-LA
(gold) ∪ 6-31++G(d,p) (formic acid)) cm−1

AIR
4(O2-H2 · · ·Au5)/AIR(O2-H2) = 14.7 (EC), 13.8 (S), 14.2 (HW-LA),

12.3 (MP2/HW-LA (gold) ∪ 6-31++G(d,p) (formic acid))
-∆ν(O2-D2) = 374 (EC), 325 (S), 337 (HW-LA) cm−1

AIR(O2-D2 · · ·Au5)/AIR(O2-D2) = 13.6 (EC), 12.1 (S), 12.4 (HW-LA);

(vi) δσiso(H2) = -4.1 (EC), -3.5 (S), -4.0 (HW-LA) ppm
δσiso(O2) = -41.3 (EC), -35.6 (S), -37.3 (HW-LA) ppm
δσan(H2) = 14.3 (EC), 13.3 (S), 14.4 (HW-LA) ppm
δσan(O2) = -82.2 (EC), -75.0 (S), -76.7 (HW-LA) ppm.
Note: the changes in the NMR chemical shift of the bridging proton H2

resulting from the formation of a hydrogen bonding-type interaction is a
well-known indicator of a hydrogen bond formation (vi) (see also Ref. [38]).
For the studied complex, δσiso(H2) is negative, as it should be if a hydrogen
bond is formed since its formation in FA·Au3 induces a deshielding of the
bridging proton. Note that it is also lower than the δσiso(H) = -2.8 ppm
of the bridging proton in water dimer [38c]. The range of the anisotropic
shifts δσan(H2) is much wider and larger than that of water dimer (= 11.2
ppm) but equal to those of water chains (H2O)4−5 [38c].

We conclude that the bond O2-H2 · · ·Au5 formed in the complex FA·Au3

is an example of a nonconventional hydrogen bond. The 5d orbital of the
gold atom Au5 in three-gold cluster exhibits a lone-pair character which
induces its proton acceptor ability.

4. Au3 as Nonconventional Proton Acceptor with Alanine

Alanine (Ala) is one of the simplest natural α-amino acids. As all amino
acids, alanine is a very floppy molecule and its potential energy surface
landscape exhibits a large number of low-energy conformers (see Ref. [39]
and references therein). Only one of them, shown in Figure 2, is used in the
present work to study the interaction of alanine with Au3. The most stable
planar, cyclic complex Ala·Au3 resulting from this interaction is shown in
Figure 3. As in the formic acid case discussed above, it is stablized by two
Ala - Au3 bonds. One of them is the anchor Au7-O3 bond whose length
falls within the interval of 2.225 - 2.263 Å and thus is shorter by ≈ 0.01 -
0.02 Å than the similar bond in FA·Au3. The other bond is O2-H2 · · ·Au8.
This intramolecular bond shares common features with the conventional
hydrogen bonds and obeys the necessary and sufficient conditions (i) - (vi).
A spectroscopic evidence of the existence of this bond is the appearance of

4AIR stands for IR activity.
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the H-bond stretching mode νσ(O2 · · ·Au8) in the complex Ala·Au3 ranging
within 118 - 125 cm−1 and coupled to the stretching mode of the anchor
bond O3-Au7. This bond is almost linear (� O2H2Au8 = 171.5o − 172

.1o,see Figure 3). The energetic, structural and spectroscopic details sho

wingthat the conditions (iii) - (vi) are satisfied for the O2-H2 · · ·Au8 bond

aregiven below:
Note: the binding energy Eb(Ala·Au3) = 14.1 (EC), 13.2 (S), 12.7 (HW-LA)
kcal/mol and the enthalpy of formation -∆Hf = 13.7 (EC), 12.8 (S),

11.7(HW-LA) kcal/mol. The total dipole moment dtot(Ala·Au3) = 4.67 (EC),
4.61 (S), 4.59 (HW-LA) D;
(iii) ∆R(O2-H2) = 0.022 (EC), 0.020 (S), 0.020 (HW-LA) Å;
(iv) r(H2 · · ·Au8) = 2.560 (EC), 2.592 (S), 2.559 (HW-LA) Å < wH + w

Au
= 2.86 Å.

NONCONVENTIONAL HYDROGEN BONDS

Note: The H-bond in Ala·Au3 undergoes a larger lengthening (by ≈ 0.05

-0.14 Å) than in FA·Au3;

(v) -∆ν(O2-H2) = 461 (EC), 410 (S), 423 (HW-LA) cm−1

AIR(O2-H2 · · ·Au8)/AIR(O2-H2) = 15.1 (EC), 13.6 (S), 13.9 (HW-LA)
-∆ν(O2-D2) = 331 (EC), 294 (S), 304 (HW-LA) cm−1

AIR(O2-H2 · · ·Au8)/AIR(O2-H2) = 13.1 (EC), 11.8 (S), 12.1 (HW-LA);

(vi) δσiso(H2) = -3.9 (EC), -3.4 (S), -3.6 (HW-LA) ppm
δσiso(O2) = -36.9 (EC), -32.9 (S), -34.4 (HW-LA) ppm
δσan(H2) = 13.3 (EC), 12.6 (S), 13.4 (HW-LA) ppm
δσan(O2) = -71.5 (EC), -66.4 (S), -68.6 (HW-LA) ppm.

in and bond angles in ̊ (reading from top to bottom: B3LYP/RECP = EC, S,
HW-LA (gold)  6-31++G(d, p) (alanine)). 

Figure 3.  The most stable complex Ala.Au3 .  The bond lengths are given 
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5. Nonconventional IntramolecularHydrogenBond inAdenine·Au3

Complexes

A single atom of gold binds adenine very weakly, at its nitrogen atoms
N1, N3, and N7 [40]. The Au-Ni anchor bond length varies therein from
2.343 Å (A·Au1(N1)) to 2.320 Å (A·Au1(N3)), and 2.305 Å (A·Au1(N7)).
The binding energies Eb of the resulting complexes are equal to 2.5, 2.5
and 2.2 kcal/mol, respectively. These nitrogen atoms of adenine remain the
favorable sites to anchor the triangle three-gold cluster. In Figure 4, we
show the three most stable and planar conformers of A·Au3 resulting from
these N anchoring sites. They are characterized by the following binding
energies: Eb = 22.6 kcal/mol (N1), 24.4 (N3), and 22.3 kcal/mol (N7)5. The
binding energy of adenine to Au3 raises by a factor of ca. 10 compared to
that of adenine to a single gold atom.

Two main reasons can be invoked to explain the significant strengthen-
ing of the bonding between Au3 and adenine compared to that in A·Au1.
The first and likely the dominant one is a strengthening of the anchor
bonds Au-Ni in the complexes A·Au3(Ni), as indicated by their consider-
able contraction by ≈ 0.19 Å compared to those in A·Au1(Ni)(i = 1, 3, 7).
As reported in Figure 4, r(Au10-N1) = 2.153 Å in A·Au3(N1)), r(Au10-N3)
= 2.138 Å in A·Au3(N3), and r(Au10-N7) = 2.130 Å in A·Au3(N7). How-
ever the binding energies of the complexes A·Au3(Ni)(i = 1, 3, 7) do not
fully correlate with their anchor bond lengths. For example, the most sta-
ble complex is formed with Au3 bonded at N3. Its anchor bond Au-N is
not the shortest one. The reason is that the binding of Au3 to adenine is
accompanied by the formation of a N-H· · ·Au bond. As in Sections 3 and 4,
we gather below the energetic, structural and spectroscopic characteristics

5A nonplanar and less stable (by 14.5 kcal/mol, compared to that formed at the N3

atom) complex is formed by anchoring at the N6 atom.
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showing that the bond N-H· · ·Au in the complexes A·Au3(Ni)(i = 1, 3, 7)
is a nonconventional hydrogen bond6.

5.1. COMPLEX A·AU3(N1)

Note:The N6-H6 · · ·Au11bond is almost linear (theH-bondangle � N6H6Au11=
175.2o). The very large polarity of this complex (dtot from
the fact that the Au12-Au10-N1 bond dipole is almost collinear to the dipole
moment of adenine;

(iii) ∆R(N6-H6) = 0.009 Å;

6The total dipole moment of adenine dtot = 2.50 D.

NONCONVENTIONAL HYDROGEN BONDS

= 8.28 D) results

Figure 4. Three different anchoring positions for a Au3 cluster on adenine. 

The most stable A. Au3  complexes are planner and cyclic. The bond 

lengths are given in and bond angles in ̊ .
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(iv) r(H6 · · ·Au11) = 2.836 Å < wH + wAu = 2.86 Å;
(v) -∆ν(N6-H6) = 153 cm−1

AIR(N6-H6 · · ·Au11)/AIR(N6-H6) = 5.6.
Note: Another N-H stretching mode ν(N6-H′

6) weakly coupled to ν(N6-H6)
becomes red-shifted by only 55 cm−1;
(vi) δσiso(H6) = -2.4 ppm
δσiso(N6) = -18.9 ppm
δσan(H6) = 10.3 ppm
δσan(N6) = -21.3 ppm.

5.2. COMPLEX A·AU3(N3)

Note: Its total dipole moment is equal to 5.66 D. For the present calcu-
lations, A·Au3(N3) is the most stable complexes among these three. The
H-bond angle � N9H9Au11 = 160.8o;
(iii) ∆R(N9-H9) = 0.014 Å;
(iv) r(H9 · · ·Au11) = 2.698 Å < wH + wAu = 2.86 Å;
(v) -∆ν(N9-H9) = 252 cm−1

AIR(N9-H9 · · ·Au11)/AIR(N9-H9) = 8.7.
Note: This is the largest red shift among all studied complexes between A
and a cluster of three gold atoms;
(vi) δσiso(H9) = -2.4 ppm
δσiso(N9) = -18.1 ppm
δσan(H9) = 13.0 ppm
δσan(N9) = 2.5 ppm.

5.3. COMPLEX A·AU3(N7)

Note: The total dipole moment dtot = 5.58 D. � N6H′
6Au11 = 165.1o;

(iii) ∆R(N6-H′
6) = 0.007 Å.

Note: This change in the N6-H′
6 bond is smaller than that of the elongation

of the N9-H9 bond in the complex A·Au3(N3) discussed in Subsection 5.3.
Therefore by the absolute value, the red shift of ν(N9-H9) is also larger than
that of ν(N6-H′

6). To explain this difference, let us recall that the deproto-
nation energy (enthaply) DPE(N9-H9) = 336.8 kcal/mol < DPE(N6-H′

6) =
355.2 kcal/mol (see, e. g., Ref. [41] and references therein), and therefore,
the N9-H9 bond is stronger perturbed by Au3 than N6-H′

6;
(iv) r(H′

6 · · ·Au11) = 2.816 Å < wH + wAu = 2.86 Å;
(v) -∆ν(N6-H′

6) = 116 cm−1

AIR(N6-H′
6 · · ·Au11)/AIR(N6-H′

6) = 9.0.
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Note: The other amino-group stretching mode ν(N6-H6) is almost decoupled
from ν(N6H′

6) and undergoes a smaller red shift by 54 cm−1;
(vi) δσiso(H′

6) = -2.2 ppm
δσiso(N6) = -18.4 ppm
δσan(H′

6) = 14.0 ppm
δσan(N6) = -17.1 ppm.

The details given above gather the features that the nonconventional N-
H· · ·Au bond formed between adenine and the triangle three-gold cluster
shares with the conventional ones. In these bonds, the nitrogen atom of
adenine is a H-bond donor and Au plays a role of a nonconventional H-
bond acceptor.

NONCONVENTIONAL HYDROGEN BONDS
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6.

In summary, we have characterized computationally the ability of a three-
gold cluster to act as a proton acceptor and to form nonconventional hydro-
gen bonds with the O-H and N-H groups of formic acid, alanine, and ade-
nine. It is important to emphasize that the formation of the donor-acceptor
coordinative (anchor) bond Au-O in these planar cyclic complexes between
the Au atom and an n-donor group is a prerequisite to the formation of the
hydrogen bonds, O-H· · ·Au or N-H· · ·Au. This is actually the anchor bond
that induces a charge through-bond transfer over the gold cluster and thus,
cooperatively, leads to a consistent flow of electron density from the proton
acceptor atom to the donor.

A common point of view on the hydrogen bond conditions (iii) - (vi)

Acceptor
Summary: Three-Gold Cluster as Nonconventional Proton

is that they provide an estimation of the strength of the hydrogen bond.
The latter is typically expressed in terms of the energy EHB of the H-bond
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formation. This is not possible in the present case because of the anchor
bond. The bonding between the gold cluster Au3, and formic acid, alanine,
or adenine is governed by the balance between the anchor and the noncon-
ventional hydrogen bonds where the former, which is stronger and partially
covalent, plays a leading role. Nevertheless, the strength of the hydrogen
bond in one of the studied complex, FA·Au3, can be estimated because
formic acid forms with Au3 another, less stable complex, FA·Autrans

3 , where
Au3 anchors at the same oxygen atom O3 as in FA·Au3, but is placed on
the C1-H1 side, so that it is not possible to form a hydrogen bond with
the O2-H2. The geometry of this complex is shown in Figure 5. The en-
ergy difference between FA·Au3 and FA·Autrans

3 is equal to 5.1 (EC), 4.4
(S), and 4.5 (HW-LA) kcal/mol, that is about 35 % of the total binding
energy. This energy difference is a reasonable estimation of the strength of
the hydrogen bond O-H· · ·Au in FA·Au3, provided that one neglects other
structural differences between FA·Au3 and FA·Autrans

3 .
So far, we have discussed the fact that the formation of the anchor

bonds, either of the Au-O or Au-N types, in the planar complexes FA·Au3,
Ala·Au3, and A·Au3, induces a through-bond charge transfer within the
three-gold cluster that allows one of its unanchored gold atom to act as a
proton acceptor. The lone-pair-like 5d orbital of this gold atom provides
electron density to the proton donor and the bridging proton. Another ex-
ample that support this mechanism is shown in Figure 6 where the complex
FA·Autrans

3 ·w, obtained at the B3LYP/HW-LA (gold) ∪ 6-31++G(d,p)
(formic acid, water) computational level is plotted. In this complex, the
water molecule, w, accepts one hydrogen bond C1-H1 · · ·O7 from formic
acid and donates another, O7-H7 · · ·Au5, to gold cluster. The former is
known to be very weak (see, e. g., Ref. [42]) and this is indicated by a small
lengthening of the C1-H1 bond by 0.002 Å and a small red-shift of the C1-
H1 stretch equal to 30 cm−1. The other H-bond is a weak nonconventional
hydrogen bond since, first, its O7-H7 bond elongates by 0.012 Å; second,
the ν(O7-H7) downshifts by 208 cm−1; and third, its IR activity increases
by a factor of almost 11. The binding energy of FA·Autrans

3 ·w taken with
respect to the infinitely separated FA·Autrans

3 and water molecule amounts
to 7.0 kcal/mol. This value also gives a reasonable estimate of the strength
of the nonconventional hydrogen bond O-H· · ·Au that FA·Autrans

3 complex
forms with a water molecule, even though some corrections due to the geo-
metrical relaxation of the monomer FA·Autrans

3 , mainly within a vicinity
of the anchor bond Au-O which itself is contracted by 0.041 Å should be
taken into account.

In conclusion, this work discusses the ability of the triangle three-gold

NONCONVENTIONAL HYDROGEN BONDS

cluster to behave as a nonconventional proton acceptor and form noncon-



448 E. S. KRYACHKO AND F. REMACLE

ventional hydrogen bonds with conventional proton donors. Such function-
ing of the triangle three-gold cluster might be interesting from the point
of view of recognition of molecular interactions on metal surfaces and thus
catalytic processes.
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Abstract. With use of cumulants of two-electron density matrices semi-
empirical and DFT methods are analyzed from a point of view of their
suitability to describe qualitative features of electronic correlation impor-
tant for molecular modelling of electronic structure of the transition metal
complexes (TMC). It is shown that traditional semiempirical methods rely-
ing upon the Hartree-Fock-Roothaan form of the trial wave function suffer
from a structural deficiency not allowing them to distinguish the energies of
the atomic multiplets of the TMCs’ d-shells. The same applies to the DFT
methodology. On the other hand, the effective Hamiltonian of the crystal
field (EHCF) previously proposed by the authors is shown to be suitable
for further parameterization. It has been applied for calculations of geome-
tries in a series of polyatomic spin-active TMCs and has shown remarkable
precision and an overall consistency. This allowed to solve in a sequen-
tial manner two long standing problems: extending molecular mechanics to
transition metals and developing semiempirical quantum mechanical (QM)
methods for transition metals.

Sicut omnes homines naturaliter scire desiderant veritatem, ita naturale
desiderium inest hominibus fugiendi errores, et eos cum facultas adfuerit
confutandi [1].

1. Introduction

Molecular modelling of transition metal complexes (TMC), reproducing
characteristic features of their stereochemistry and electronic structure, is in
high demand in relation with studies and development of various processes
of complex formation with an accent on ion extraction, ion exchange, iso-
tope separation, neutralization of nuclear waste, and also when studying
structure and reactivity of metal-containing enzymes. Solving these techno-
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logical problems requires modelling methods allowing massive simulations
of potential energy surfaces (PES) of TMCs in a wide range of molecular
geometries including (in the case of, say, complexation processes) internu-
clear separations corresponding to dissociation of coordination bonds be-
tween metal ions and ligands’ donor atoms. The tools generally available
for performing a required modelling range from fully empirical molecular
mechanics (MM) to quantum mechanical (QM) or quantum chemical (QC)
methods of different degree of refinement and sophistication.

From a bird view perspective all mentioned approaches seem to be
rather successful in a technical sense since normally it is possible to find
a suitable and inexpensive method for modelling at least certain classes of
molecules. However, when it goes about TMCs the methods of each fam-
ily may turn to be inconsistent with the problem at hand. The sources of
these seemingly unpredictable and nonsystematic failures of all mentioned
modelling methods will be one of the main topics of the present paper. In
the next Section we briefly review the existing methodologies as applied to
TMCs and provide explanations of their limitations in this context. Fur-
ther Sections present a formal point of view on constructing a QM (likely
ab initio, semiempirical, and DFT) description of TMCs and apply it to
analysis of the corresponding difficulties. The rest of the paper is devoted
to description of the effective Hamiltonian of crystal field (EHCF) method
and of its semiempirical implementation satisfying which can be used for
TMCs’ modelling and to its application to analysis of spin-active complexes
of iron (II). Finally discussion and conclusions are given.

2. Methods for evaluating TMCs’ PES and electronic structure

2.1. METHODS OF MOLECULAR MECHANICS

The elementary empirical tool for the molecular modelling of polyatomic
systems is the method of molecular mechanics (MM) [2, 3]. It explicitly
employs intuitively transparent features of molecular electronic structure
like localization of chemical bonds and groups. The basic assumption of the
MM is the possibility to directly parameterize molecular PES in the form
of a sum of contributions (force fields) relevant to bonds, their interactions,
and to interactions of non-bonded atoms:

E = Ebond + Ebend + Etors + Eimp + Enb + Erep (1)

The contributions related to bonding are the sum of bond stretching en-
ergies Ebond, that of energies of valence angles bending Ebend, and that of
torsion interactions Etors. In case of stretching and bending energies the
additional guess of the Hook-like law is accepted for the dependence of
these contributions on variations of the corresponding geometry parame-
ters: the deviations of the bond lengths and valence angles from their ideal
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values. Respective elasticity constants, the ideal bond lengths and valence
angles pertain to the MM parameter set. The sum of the Lennard-Jones
pair potentials Enb, the energy of improper plane deformations Eimp and
energy of electrostatic interaction of effective charges residing on atoms
Erep are listed among interactions of non-bonded atoms. The correct de-
scription of the dissociation limit under the infinite separation of metal and
ligands in term Ebond is achieved by employing the Morse potential for the
bond-stretch energies instead of the Hook law.

In the literature [4–10] various MM constructions are considered as ef-
fective methods for modelling PES of TMCs. It is noteworthy that in the
case of metal complexes in general and of TMCs in particular the very ba-
sic characteristics of electronic structure comprising the basis of MM may
be questioned. In fact when it goes about the metal ion in a complex it
is not possible to single out transferable two-center bonds involving the
metal. Also the number of bonds formed by a metal atom (the coordina-
tion number) may be variable and namely these variabilities may be the
main topic requiring the modelling as indicated in the Introduction. Also
the great variety of accessible coordination polyhedra makes it difficult to
set the preferential valence angles. In review [6] the extensive summary of
results of calculations on coordination compounds of a wide variety of met-
als by the MM methods (as of 1993) is given. During the following decade,
numerous subsequent works quoted in reviews [8,11,12] were performed, in
which PES of special classes of metal complexes in that or another manner
is parameterized by some MM-like force fields. As it can be seen from the
recent review [9] the situation did not change too much since then. The
conceptual problems mentioned above manifest themselves in extremely
cumbersome and awkward appearance of the set of force fields in case of
metal atoms as compared to traditional ’organic’ force field systems. For
example, it becomes necessary to introduce a double set of optimal valence
angles for octahedral (or plane squared) complexes to assure these impor-
tant molecular shapes are reproduced in the calculation as are the relative
energies of the cis- and trans-isomers [6, 8]. The number of other bonding
parameters also rapidly grows, and it is difficult either to assign any clear
physical sense to all these, or to restrict reasonable interval of parameter
values and thus to separate probable ones from improbable.

An alternative to the valence force field approach based on the concept
of preferable valence angles is to reload the responsibility for the descrip-
tion of the shapes of coordination polyhedra in TMCs to the non-bonding
interactions. Such approach exists in the literature in two versions. The
first is represented by the Kepert model, termed also as one of the ’points
on a sphere’ (POS) [13, 14] in which the terms responsible for the metal-
ligand bond stretching energy are taken into account by harmonic terms as
previously. Everything that concerns the dependence of the bending energy
of the valence angles at the metal atom, is replaced by the terms rep-
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resenting an effective interaction (van-der-Waals-like) either between the
donor atoms, or between effective repulsion centers placed somewhere on
the metal-donor atom bond [15,16]. The second version is called the electro-
static model [17,18]. It completely neglects any specific bonding interactions
in the nearest coordination sphere and substitutes the Coulomb interaction
between effective charges residing on atoms of the complex for the overall
interaction energy. The repulsive part of the metal-ligand van-der-Waals
potential acts to prevent collapse of the system. The basic weakness of this
approach is, certainly, lack of the reasonable method allowing independent
estimates for effective charges.

Despite the considerable progress achieved in MM modelling of TMCs
(for example, MM models of the complexes of cyclic polyamines with met-
als like Cu(II), Co(III), Ni(II) are reported [11,12,19,20]), many questions
including those of practical importance, remain unanswered. The first one
is the problem of consistent modelling of metal complexes with variable
number of the ligands. The need for such description arises in the context
of molecular-dynamic studies (see, for example, [21]) of metal ions soluted
in complexation solvents containing chelating ligands (crown-ethers, cyclic
polyamines etc.). In such systems one may expect formation of numer-
ous complexes with different number of ligands or degree of coordination
(the chelate number), which should be considered at one level of accuracy
to keep uniform energy scale. Obviously, the harmonic approximation for
stretching energy of metal-donor atom bond usually employed in MM, as,
for example, in [7], cannot describe such effects. A direct replacement of the
harmonic potential by another one, with more suitable asymptotic behavior
(for example, by the Morse potential), does not solve the problem, since
it neglects many other factors, that apparently matter (different mutual
influence effects just to give an example).

Another important point specific namely for TMCs is the presence of
the partially filled d-shell on the metal ion which produces a whole set of
electronic states of the complex of different total spin and spatial symmetry
in a narrow energy range close to the ground state energy. Geometry depen-
dence of these energies may be rather confusing which results in existence
of the areas in the nuclear coordinate space where the PESs belonging to
different electronic terms, closely approach each other and even intersect,
leading to experimentally observed spin transitions [22–25] or Jahn-Teller
distortions [26]. Thus, the very problem of including the transition metals
in the MM context implies certain contradiction: in the presence of several
close in energy (or even crossing) electronic terms there is no object for the
MM modelling in a strict sense, since there is no uniform (and single) PES
of the complex. This specificity of the electronic structure of TMCs can be
clearly observed in the results on blue copper proteins with approximately
trigonal-bipyramidal coordination of the copper ion as reviewed in [9]. The
Cu2+ cation is known to be a Jahn-Teller ion due to the spatial degen-
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eracy of its respective 2Eg and 2T2g ground state terms in the octahedral
and tetrahedral environments. The latter Jahn-Teller instability is inher-
ited also by the trigonal bipyramidal environment where the ground state is
2E due to the electron count in the d-shell of the Cu2+ cation. Clearly the
spatial degeneracy of the ground state is the limiting case of the closeness
of electronic terms on the energy scale. This degeneracy is lifted when the
molecular geometry deviates from the symmetrical arrangement and this
is the content of the Jahn-Teller theorem (see for details [26]; an original
and – what is important – concise proof is given in [27]). Technically the
Jahn-Teller instability manifests itself in the presence of multiple minima
on the PES, having a close total energy. It must be understood, however,
that these minima are a result of the sufficiently quantum behavior of the
d-shell of the Cu2+ cation which as it has been noticed previously in a
certain sense prevent the usage of the classical MM picture. Indeed, as it
is mentioned in [28,29], the physical pre-condition of successful use of MM
theories for common organic molecules is that their electronic excited states
are well separated from the respective ground states on the energy scale.
Only one quantum state of their electronic system is experimentally ob-
served in ‘organics’ at ambient conditions and the MM (a sort of classical)
description becomes valid. By contrast, the behavior of the metal valence
d-shell is sufficiently quantum: several electronic states may appear in a
narrow energy range close to its ground state and this quantum feature
requires a special care, not reducible to a simplistic adjustment of the form
and parameters of no matter how sophisticated force fields.

A plausible way out of this situation has been proposed by R. Deeth
(see [30] and references therein). In order to handle quantum behavior of
the d-shell the ligand filed stabilization energy (LFSE) term is added to the
MM energy expression Eq. (1). The LFSE is written as a sum of the or-
bital energies of the d-orbitals in its turn calculated in the angular overlap
approximation (see below) whose parameters are taken to be linearly de-
pendent on the internuclear separation between the metal and donor atoms.
Applying such a model solves many complications inherent to the MM of
TMCs, since the LFSE is a pure quantum contribution to the energy. For
example the Jahn-Teller in Cu2+ compounds must be perfectly covered
within such a setting. On the other hand the LFSE is by construction a
sum of one-electron energy contributions whereas the energy of the d-shell
is very much dependent of the two-electron contributions to the energy
particularly when it goes about relative energies of the states of different
total spins and spatial symmetries. Bringing the latter into the MM con-
text requires much more evolved and refined theory which will be explained
below.

Turning in this context to a main topic of our interest, namely to mod-
elling of the spin active TMCs we notice that the above considerations
apply to them in a large extent. The change of the spin state of a complex
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is possible if at least two different electronic states (differing by the value of
the total spin) have their respective minima at quite similar geometries of
the complex at hand so that their respective total energies become equal at
some intermediate geometry. As in the case of the Jahn-Teller Cu2+ cation
in that of the spin-active ions (e.g. d6 Fe2+) the unique PES of the complex
does not exist and at least two of them (the low-spin – LS – for S = 0
and the high-spin – HS – for S = 2) must be considered. Previously the
MM force fields using different parameter sets for different spin states of
the central atom were in use [31], but due to no predictive force they are
considered to be obsolete by now. However, the basic principles of their
construction do not differ from those which explicitly use different parame-
ter sets for say axial and equatorial ligands in the Cu2+ complexes [8] since
the latter are as well designed to imitate by means of a classical potential
sufficiently quantum characteristics of the TMC’s electronic structure. On
this way one can expect pretty different sets of parameters say for four-
coordinate complexes of the Ni2+ ion which must be tetrahedral in their
triplet states and square planar in the singlet states. In this respect the
recent paper [32] is very remarkable. The authors try to construct the MM
potential capable to describe transformation between the square pyramidal
and two trigonal bipyramidal forms of the pentacoordinate [Ni(acac)2py]
complex (acac stands for acetylacetone, py – for pyridine ligands). To do so
these authors propose to employ a specially designed force field dependent
on L–Ni–L′ angle possessing two minima at 90◦ and 120◦ separated by a
barrier of the height larger than 5 eV (500 kJ/mole). This clearly indicates
some problems which can be clearly revealed by a simple analysis: The
trigonal bipyramidal forms of the complex are obviously [33] triplet (two
d-levels degenerate in the trigonal field filled by two electrons) whereas the
square pyramidal from may well be singlet. This spin switch has to take
place somewhere along the rearrangement reaction coordinate but is by no
means reflected in the MM picture. There remains a question whether the
approach employing the LFSE is capable to describe such a low-symmetric
and potentially correlation dependent situation.

2.2. METHODS OF QUANTUM CHEMISTRY

We see that in the case of TMC any description of PES by the MM methods
may be as well rather successful and rather poor. The borderline between
potentially successful and unsuccessful cases looks out rather peculiar from
the point of view of standard chemical nomenclature. Why Ni(II) is some-
times successful, and sometimes not, Cu(II), Fe(II), and Co(II) are very
difficult, whereas Co(III) brings no special problem? A general conclusion
is that a more detailed description of the electronic structure of TMCs than
one implicitly put in the base of the entire MM picture is necessary. It must
take into account all the important features of the former. Physically it is
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rather clearly formulated in terms of experimental accessibility of low-lying
excited states, whose spectrum is responsible for the observed i.e. quantum,
behavior of the TMCs.

Quite naturally a quantum description is given by methods of quantum
chemistry (QC). The latter further subdivides into ab initio, DFT, and
semiempirical domains. Although the semiempirical methods are nowadays
frequently treated as obsolete, taking into account the number of atoms in
TMCs and thus incurred computational costs (see [10] and below) which
may become prohibitive despite considerable progress of the computational
hardware they still deserve attention as a pragmatic tool for the massive
PES simulations. On the other hand the DFT based methods which are
almost unanimously considered to be the method of choice for TMCs [34]
will be shown to suffer of basically the same structural deficiency as do the
semiempirical ones. We shall analyze briefly these extended classes of QC
methods used for evaluation of PESs and of other properties of TMCs from
a common point of view allowing to further consider specific difficulties
pertinent to each of these classes of methods when applied to numerical
modelling of TMCs. The main problem referenced in the literature in re-
lation to QC description of TMCs is that of electron correlation [35]. It
is a general belief that the correlations are possibly reproduced only by
high-quality ab initio methods, but also can be adequately modelled by the
DFT based methods. On the other hand the common opinion is that the
semi-empirical methods are not suitable for modelling correlation effects
at all. We shall show that two latter opinions are largely an exaggeration
and that the potential of the DFT when applied to TMCs is considerably
oversold whereas broadly understood semi-empirical methods by contrast
still may be useful.

2.3. ELECTRONIC STRUCTURE IN TERMS OF DENSITY MATRICES
AND THEIR CUMULANTS

The relevant formal treatment starts from the notion that all the quantities
related to electronic structure of molecules can be calculated with use of
only one- and two-electron density matrices for the relevant electronic state
of the system under study [36]. Taking the energy for the sake of definiteness
we get:

E(CQΓS|ω) = min
ξ

[
Spρ(1)h(1) + Spρ(2)h(2)

]
=

= 〈T̂e〉+ 〈V̂ne(Q)〉+ 〈V̂ee〉+ Vnn(Q)
Spρ(1)h(1) =

∫
ρ

(1)
CQΓS(ξω | x, x′)h(1)(CQω | x′, x)dxdx′

Spρ(2)h(2) =
∫

ρ
(2)
CQΓS(ξω | x1x2, x

′
1x

′
2)×

× h(2)(CQω | x′
1x

′
2, x1x2)dx1dx2dx′

1dx′
2

(2)
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The meaning of the notations introduced is the following. We assume that
the electronic energy of a chemical species of composition C is calcu-
lated at the nuclear configuration Q for its ground electronic state hav-
ing the spatial symmetry Γ and the total spin S. Considering the ground
states of different total spin or symmetry allows for description of the elec-
tronic spectra (the low-energy excited states) of the species to some extent.
Symbols ω refer to the set of parameters of the QC method: Slater or
gaussian exponents, constant contraction coefficients, semiempirical para-
meters of the Hamiltonians (Fockians). Symbols ξ refer to variables of
the (electronic) problem: MO LCAO expansion coefficients, CI configu-
rations’ or coupled clusters’ amplitudes, etc. The matrix elements of the
one- and two-electron parts of the Hamiltonian: h(1)(CQω | x′, x) and
h(2)(CQω | x′

1x
′
2, x1x2), respectively, depend on the system composition,

nuclear configuration (defining the ”external” Coulomb field acting upon
electrons) and also on the parameters ω adopted in the method. The one-
electron state indices x = (r, s), x′, x1, x2, x

′
1, x

′
2 can be understood either

as continuous spatial coordinates of electrons or as discrete set of quantum
numbers characterizing the states in the adopted restricted basis set. In the
latter case the integration must be understood as summation over discrete
values of x’s giving the necessary traces of the matrix products.

In the coordinate representation the above averages acquire familiar
forms:

〈
T̂e

〉
= −(1/2)

∑
σ

∫

r=r′

∆′ρ(1)(rσ, r′σ)dr

〈
V̂ne(Q)

〉
= e2

∑

i

Zi
∑
σ

∫
ρ(1)(rσ, rσ)dr
|Ri − r|

〈
V̂ee

〉
=

e2

2
∑
σσ′

∫
ρ(2)(rσ, rσ; r′σ′, r′σ′)

|r− r′| drdr′

Vnn(Q) =
e2

2

∑

i�=j

ZiZj

|Ri −Rj |
; where

∆′ = ∂2

∂x′2 + ∂2

∂y′2 + ∂2

∂z′2

(3)

where the density matrices and the left parts of the above equations are as-
sumed to be specific for a given composition, geometry and electronic state;
and the first row is the kinetic energy of electrons, second row is the energy
of Coulomb attraction of electrons to nuclei, the third row is the energy of
interelectronic repulsion; the last one is the energy of Coulomb repulsion
nuclei. The sum of the first two rows yields the average of the one-electron
part of the Hamiltonian h(1)(CQ) and the energy of the electron-electron
repulsion is the average of the two-electron part h(2)(CQ). In the above
expressions the nuclear radius-vectors Ri have to be understood as func-
tions of configuration variables Q: Ri = Ri(Q), whereas the composition
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C is a designation for the set of nuclear charges present in the system:
C = {Zi|i = 1, ...}.

The density matrices are by definition partial integrals of the corre-
sponding trial wave functions ΨCQΓS(ξω | x1, x2, . . . , xN ) obtained for the
given composition C and nuclear configuration Q so that they have the
specified total spin S and spatial symmetry Γ:

ρ
(1)
CQΓS(ξω | x, x′) = N

∫
Ψ∗

CQΓS(ξω | x, x2, . . . xN )×
× ΨCQΓS(ξω | x′, x2, . . . , xN )dx2 . . . dxN

ρ
(2)
CQΓS(ξω | x1x2, x

′
1x

′
2) = N(N−1)

2

∫
Ψ∗

CQΓS(ξω | x1, x2, x3, . . . xN )×
× ΨCQΓS(ξω | x′

1, x
′
2, x3, . . . , xN )dx3 . . . dxN

(4)
The expressions Eqs. (2) ,(4) are completely general. To address the

aspects important for the TMCs’ modelling, i.e. the energies of the corre-
sponding electronic states, we notice that the statement that the motion of
electrons is correlated can be given an exact sense only with use of the two-
electron density matrix Eq. (4). Generally, it looks like [35] (with subscripts
and variables’ notations ξω omitted for brevity):

ρ(2)(x1, x2; x′
1, x

′
2) =

∣∣∣∣∣
ρ(1)(x1, x

′
1) ρ(1)(x2, x

′
1)

ρ(1)(x1, x
′
2) ρ(1)(x2, x

′
2)

∣∣∣∣∣− χ(x1, x2; x′
1, x

′
2), (5)

where the first term corresponds to the model where electrons are indepen-
dent i.e. noncorrelated. The second term in Eq. (5) – the cumulant of the
two-particle density matrix [37] – is responsible for deviation of electrons
behavior from the model of independent fermions, i.e. for their correla-
tions. The correspondence of the above picture with the standard language
of quantum chemistry based on the many-electron wave functions rather
than on the density matrices can be reestablished by noticing that the trial
wave function Ψ taken in the form of a single Slater determinant formed
by molecular orbitals (MO), where the variation parameters ξ are the ex-
pansion coefficients of MOs taken as linear combinations of atomic orbitals
(LCAO) (Hartree-Fock-Roothaan – HFR – approach) automatically results
in the two-electron density matrix of the determinantal form [38]. So, in
the HFR framework the two-electron density matrix is not an independent
quantity any more and the properties of the system are ultimately expressed
through its one-electron density matrix.

In the following Sections we analyse the previously listed classes of QC
methods of electronic structure modelling in terms of the density matrices.

2.3.1. Ab initio methods
The modelling by ab initio QC methods bases on complete description of
electronic structure for which it is necessary to consider a set of one-electron
states (basis functions), number of electrons in the system and nuclear
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charges. All consequent modelling is the computer work which involves
calculating the matrix components h(1), h(2) of the electronic Hamiltonian,
for the set of selected basis functions (whose parameters are above denoted
as ω).

In ab initio methods the HFR approximation is used for build-up of
initial estimate for ρ(1) and ρ(2) which have to be further improved by
methods of configurational interaction in the complete active space (CAS)
[39], or by Møller-Plesset perturbation theory (MPn) of order n, or by the
coupled clusters’ [40,41] methods. In fact, any reasonable result within the
ab initio QC requires at least minimal involvement of electron correlation.
All the technical tricks invented to go beyond the HFR calculation scheme
in terms of different forms of the trial wave function or various perturbative
procedures represent in fact attempts to estimate somehow the second term
of Eq. (5) – the cumulant χ of the two-particle density matrix.

In application of non-empirical methods to TMCs there exist specific
difficulties caused by the correlation strength. This can be formulated as
essential deviation of ρ(2) from the HFR approximate form which makes it
necessary to take it into account at the initial stage of calculation. Mean-
while, the listed (systematic) methods of taking the correlation into account
are based on the assumption that the correlations appear as a smaller cor-
rections to the mainly HFR approximate wave function at least when it
goes about the ground state. This is an assumption leading to the whole
variety of the single-reference (SR) perturbative and coupled cluster meth-
ods, where by the SR state to be improved is assumed to be a single Slater
determinant. The actual physics of TMC’s is sometimes much more com-
plex. Even obtaining of the approximate solutions of the electronic problem
within the HFR approximation although they are required only as starting
points (reference states) for further improvements in case of TMCs may
represent a serious problem. It is known that for TMCs the HFR methods
in many cases yield the electronic structure breaking the Aufbauprinzip,
according to which MOs are filled by electrons beginning from the lowest
energy levels. However, any variational function of the HFR approximation
giving the minimum of energy with respect to relevant variational parame-
ters must satisfy this requirement.

Another problem, well known to practical workers in the field, is the slow
convergency of the HFR iterations or non-rare cases of being trapped into
oscillatory regime. These problems are numerical manifestations of electron
correlation. In this situation the HFR solution even if it is obtained may
lay too far from the correct ground state of the TMC. The latter cannot be
derived from this approximation by those homeopathic medication which
is provided by the perturbation or coupled cluster theories. The problem
is that for example the formally ’excited’ configuration may have the same
energy as the ’ground state’ one thus preventing proper treatment by ei-
ther MP or CC methods. From the general point of view the situation is
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completely clear – one has to use configuration interaction (CI – multiref-
erence – MR) or CAS methods. Pragmatically, however, there remains the
question: what amount and which configurations have to be included. In
any case the poor initial approximation requires for curing a large number
of configurations.

The ab initio calculations on TMCs date back to late sixties when the
first examples of such calculations in the HFR approximation as applied
to simple NiF4−

6 ion had been published [42–44]. In those early times the
optimistic belief [45] was that ‘It is mostly computational limitations which
have in the past more or less prevented a wide application of the ab initio
techniques to the chemistry of transition metal compounds ... with technical
developments which may be forecast for the next few years, this type of cal-
culations will probably become much more common’. It, however, happened
that within ten years a collection of papers edited by one of the previous
authors came out where the description of TMCs has been recognized as a
’challenge’ [46]. The above analysis shows the reason. Nevertheless, within
two subsequent decades the hardware improved significantly so that the
TMCs of modest size became available for direct more or less complete
numerical ab inito study. Examples of such approach are numerous in the
literature. Their range is extremely wide: from studies of structure and
properties of ’helide’ molecules HeM2+, where M is the doubly charged
cation of the first transition row metal [47] by various ab initio methods
(including those with relativistic corrections). Of course, this is not the
topic of our main interest.

On the other hand, the wide use of the ab initio methods as a molecu-
lar modelling tool for TMCs is still prevented by enormous computational
costs. In ab initio HFR MO LCAO methods used as zero-approximation
calculations of correlation corrections required to make the result somehow
acceptable are so complex that the dependence of time and other necessary
computing resources on the size of the molecular system (N as number of
AOs) scales up as N5 ÷ N7. Therefore, at larger sizes of systems under
study calculations of TMCs electronic structure become very expensive.
This prompted an approach which hardly can be called methodologically
sound, but which is widely represented in the literature: considering at a
(currently acquired) ab initio level only a smaller part of the molecule of
interest ignoring the rest of the system as it is demonstrated in the repre-
sentative collection of reviews [48]. It is clear that the ab initio methods
do not provide any tool for adjusting the presumably “exact” result ob-
tained for a nonexisting model to the needs of analysis of an experimental
situation. Nevertheless, when cautiously applied this model approach can
be useful. In most studies on TMCs of say biological or industrial interest
only a model small compound of it is actually considered. The following
provides representative examples.
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zyme glutathion-transferase having structures with five and six coordinated
ions Mn2+ and Fe2+ are explored. In both cases it is assumed, that the re-
spective metal ion is in its HS state. It essentially facilitates calculation since
such a ground state can be reasonably modelled by a single-configuration
(HFR) wave function. Structural studies of the Jahn-Teller effect in TMCs
by the ab initio CC methods are performed in [50,51].

An attractive test-bed for testing various QC methods as applied to
TMCs is provided by metal-porphyrins being rather interesting from vari-
ous practical points of view but simultaneously polyatomic enough to raise
the efficiency issues and also well studied experimentally. The early at-
tempts to apply ab initio QC methods are reviewed in Ref. [52]. With use
of models of various extent of realism (including those with exact number
of atoms and electrons) it was shown that HFR MO LCAO turns out to be
good in the extremal cases of Co(II) and Mn(II) whose ground state spin
were reproduced correctly to be 1/2 and 5/2, respectively, and fails in the
practically most important case of Fe(II) porphyrin which was known to
be of intermediate total spin S = 1 in its ground state. Despite 20 years of
development this result quite well established experimentally many times
escaped from ab initio workers. Even the most recent results [53, 54] do
not allow to make a definitive conclusion on the capacity of the ab initio
methods.

Unfortunately the ab initio workers are not always cautious enough as is
exemplified by Ref. [55]. In it a wide set of experimental data on catalytic
reactions taking place in the presence of Pd complexes with substituted
phosphine ligands PR3 is modelled by ab initio methods applied to models
where the whole variety of the ligands is represented by the unsubstituted
phosphine PH3 molecule. The main problem with such an approach is that
the sensitivity of the processes under study to the number and nature of
organic substituents at the phosphorous atom is well known in the litera-
ture.

The above mentioned computational costs lead to a necessity to find a
fragile compromise between the requirements of precision and feasibility of
a calculation. That of course raises interest to applying the hybrid QM/MM
methods to TMCs. The more traditional version of this approach consists
in taking rather large portion of the TMC (including the metal atom) to
the QM subsystem and in treating the distant groups on a lower level of
the theory. Approaches of that type are quite frequently applied to the
TMCs and the recent review of it is given in [56]. The general problem
of this approach is the nonsystematic character of the treatment of the
inter-subsystem border (junction) accepted in most standard packages. The
detailed discussion of these problems is given in our recent review [57]. More
specific argument can be borrowed from the metal porphyrin problem as
well. In the literature there are reliable experimental data concerning the
influence of the peripheral substituents on the electronic structure of the

In paper [49] various models of the active site of metal-containing en-
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central ion in the case of tetraphenyl porphyrinates of iron (III) additionally
substituted in the phenyl rings (see [58] and references therein). This type
of effect cannot be attributed to any steric hindrance or whatever of that
sort and must be ascribed to the influence of the substituent upon the
electronic structure of the transition metal atom. In the standard setting
employing the QM/MM technique is precluded for such a problem and
a total QC calculation is required. The latter is, however, very difficult
since although chemically tetraphenyl porphyrins do not seem to be very
different from the unsubstituted ones the total number of basis functions is
approximately as twice as large for the substituted species thus increasing
the required computational resources by factors 25 to 27.

2.3.2. HFR-based semiempirical treatments of TMCs
In the previous Section we briefly described the problems arising when the
ab initio QC methods are applied to the modelling of TMCs. These prob-
lems may be considered largely as technical ones: if the computer power
is sufficient the required solution of the many electron problem can be
obtained by brute force even if the initial guess for the wave function is
poor. Pragmatically, however, the resource requirements may become pro-
hibitively high for using the ab initio QC techniques as a tool for mas-
sive PES modelling. In this situation the semi-empirical methods can again
come into play as 40 years after the pioneer works [59–61] where the CNDO
and INDO parameterizations by Pople and Beveridge [62] were extended
to transition metal compounds. Now there is an extensive sector of semi-
empirical methods differing by expedients of parameterizations of the HFR
approximation in the valence basis. In many of them the parameterization
at least is formally extended to the transition metal atoms, for example, in
methods ZINDO/1, SAM1, PM3(tm), PM3∗ etc. [63–69], although, princi-
ples of parameterization may differ as stipulated by the need to reproduce
different experimental characteristics.

The attempts to construct an acceptable parameterization for TMCs
are almost exclusively undertaken within the framework of the HFR MO
LCAO paradigm. It is easy to understand that the nature of failures which
accompany this direction of research as long as it exists lays precisely in the
inadequate treatment of the cumulant of the two-electron density matrix
by the HFR MO LCAO.

The procedure of developing a semi-empirical parameterization can be
generally formalized in terms of Eq. (2) as follows. A set of experimen-
tal energies E(CQΓS) corresponding to different chemical compositions C,
molecular geometries Q, and electronic states with specific values of S
and Γ is given. In the case when a response to an external field is to be
reproduced the latter can be included into the coordinate set Q. Devel-
oping a parameterization means to find certain (sub)set of parameters ω
which minimizes the norm of the deviation vector δEω with the components
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E(CQΓS)− E(CQΓS|ω) numbered by the tuples CQΓS:

min
ω

(δEω |M | δEω) (6)

which is calculated with some positively (semi)definite metric matrix M .
Quite a number of endeavors of this sort were very successful leading to the
whole family of semi-empirical procedures useful largely for describing the
ground state of “organic” molecules [70]. In the case of TMCs the success
is known to be much more modest and even the ground state multiplicities
and spatial symmetries escape from being correctly reproduced. We shall
show that the reason is the HFR approximation built in the computation
scheme of semiempirical methods.

Indeed, the calculated energies E(CQΓS|ω) are the linear functionals
of the density matrices Eq.(4). When the cumulants of the two-electron
density come into play the energies E(CQΓS|ω) and the deviations δEω

become quadratic functionals of the one-electron density matrices and re-
main the linear functionals of the cumulant (just the same as the previous
linear functional of the two-electron density matrix). The HFR approx-
imation is nothing but restricting the corresponding functionals to their
quadratic parts in the one-electron density matrix and dropping the cu-
mulant dependent contribution completely. By this two states having the
wave functions yielding the same one-electron density matrices but different
two-electron density matrices are deemed to have the same energy. This is
precisely the situation one can face while treating the electronic structure
of the TMC’s the most important characteristic of which is the sophisti-
cated structure of the low energy spectrum of their partially filled d-shell.
It can be easily understood that namely the cumulant of the two-particle
density matrix serves to distinguish the different many-electron states in
the d-shell.

Let us consider e.g. a two-orbital two-electron model system with the
orbitals a and b which can be understood as notation for one-dimensional
irreducible representations of the point group of a TMC. In this case it is
easy to see that the corresponding singlet and triplet states 1B and 3B
(Γ = B, S = 0, 1) are given correspondingly by:

ΨB0(x1, x2) = 1
2 (α(s1)β(s2)− β(s1)α(s2)) (a(r1)b(r2) + b(r1)a(r2))

ΨB1(x1, x2) = 1
2 (α(s1)β(s2) + β(s1)α(s2)) (a(r1)b(r2)− b(r1)a(r2))

(7)

irrespective to the values of subscripts CQ introduced after Eq. (2) and
the actual values of either parameters ξ and ω. Performing the integration
according to Eq. (4) we immediately get that irrespective to the total spin
of these states the exact one-electron density matrices become:

ρ
(1)
BS(x, x′) =

1
2
(
α∗(s)α(s′) + β∗(s)β(s′)

) (
a∗(r)a(r′) + b∗(r)b(r′)

)
(8)



MOLECULAR MODELLING OF METAL COMPLEXES 465

and do not depend on the total spin. This result is well known for decades
and appears even in textbooks [71]. Obviously, the HFR approximate two-
electron density matrices coming from the one-electron densities Eq. (8)
give a wrong result since the exact two electron density matrices calculated
according to their definition Eq. (4) from the wave functions Eq. (7) are
different:

ρ
(2)

B(0
1)

(x1x2, x
′
1x

′
2) =

1
4 (α∗(s1)β∗(s2)∓ β∗(s1)α∗(s2)) (α(s′1)β(s′2)∓ β(s′1)α(s′2))×
(a∗(r1)b∗(r2)± b∗(r1)a∗(r2)) (a(r′1)b(r

′
2)± b(r′1)a(r′2))

with the upper sign corresponding to S = 0 and the lower one to S = 1,
irrespective to the values of the subscripts CQ and parameters ξω. The
physical consequences of this difference are well known: namely it is re-
sponsible for the validity of the first Hund’s rule stating that in an atom
the term of a higher spin has a lower energy (under other equal conditions).

A capacity of a theoretical method to reproduce such characteristics is
intimately related to the (grammatically) correct treatment of the cumulant
of the two-electron density matrix. Let us assume that we want to fit some
experimental data to the model

f(x, y) = ax + by
y = x2 + z
f(x, z) = ax + bx2 + bz

(9)

Quantitatively a simplified model

f0(x) = ax + bx2 (10)

may be even not that bad: if z is small. But qualitatively the approximate
model Eq. (10) cannot distinguish experimental points which have the same
value of x and differ by the value of z only. This situation clearly is one we
face in TMCs when the data related to a set of states of the different spin
with the same number of d-electrons are to be reproduced in different ligand
environments. The HFR theory in its simplest form (see below) does not
provide any quantity to which this difference can be anyhow ascribed. The
problem is not in that or another type of the Coulomb exchange integrals
whether appearing or not in the parameterization scheme, but in their
density matrix cumulant counterpart. Even in the case when the HFR part
of the two-electron density matrix provides a multiplier to be combined
with that or another exchange integral ultimately responsible for the energy
difference between the states of the different total spin, in the absence of
the component of the two-electron cumulant dual to this exchange integral
this difference remains zero any way.
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In a more complex situation than that of two electrons occupying each
its orbital one can expect much more sophisticated interconnections be-
tween the total spin and two-electron densities than those demonstrated
above. The general statement follows from the theorem given in [72] which
states that no one-electron density can depend on the permutation sym-
metry properties and thus on the total spin of the wave function. For that
reason the difference between states of different total spin is concentrated
in the cumulant. If there is no cumulant there is no chance to describe
this difference. This explains to some extent the failure of almost 40 years
of attempts to squeeze the TMCs into the semiempirical HFR theory by
extending the variety of the two-electron integrals included in the parame-
terization.

We do not intend to further elaborate on characteristics of the semiem-
pirical methods. It it enough to say, that all of them which are restricted to
the HFR approximation suffer from the shortcoming described above and,
hence, one has not to have too much hope to reach a consistent description
of TMCs within the HFR framework. The recent semiempirical attempt
to parameterize the TMCs in the PM3(tm) method [73] is very instruc-
tive in this respect. The calculations carried out in Ref. [74] show that the
method is not capable to reproduce even very simple characteristics in a
series of TMCs having similar structure, though other authors [68,75] state
that in some cases reasonable estimates of geometrical characteristics may
be received, nevertheless. This situation can be understood by thorough
consideration of the sets of objects chosen for analysis in different works.
In [74] authors study a uniform set of about 30 Ni2+ complexes with the lig-
ands bound by nitrogen donor atoms. The analysis of this series performed
there clearly shows that the PM3(tm) method fails for these Ni2+ com-
plexes for the now understandable reason. However, in [68,75] the authors
try to explore a comparable number of complexes but much more dispersed
over the range of classes, which includes compounds of the first and second
transition row atom, HS and LS ones, those having “ionic” and “covalent”
bonds etc. For that reason in the test sets [68,75] the problematic classes
are represented by a couple of examples each, which look out as completely
isolated exceptions. This can serve as an example of how trying to test
the method on a wide and apparently ”random” selection of objects may
lead to a smeared picture due to absence of clear criteria of any adequate
classification of the chosen set.

That said above does not mean that a semiempirical parameterization
based on the HFR MO LCAO scheme and valid for a certain narrow class
of compounds or even for a specific purpose cannot be built. It is done for
example in [69] for iron(II) porphyrins. But in a more general case there is
no way to arrive to any definite conclusion [76] about the validity of a semi-
empirical parameterization in the HFR context. On the other hand we have
to mention that the semiempirical method ZINDO/1 [77] which allows for
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some true correlation by taking into account the configuration interaction
may be considered as a prospective setting for further parameterization,
provided the HFR solution required by this method as a zero approximation
can be obtained. This will be discussed in a more detail below.

2.3.3. Density functional theory methods. Why not DFT?
Methods of density functional theory (DFT) originate from the Xα method
originally proposed by Slater [78] on the base of statistical description of
atomic electron structure within the Thomas-Fermi theory [79]. From the
point of view of Eq. (3), fundamental idea of the DFT based methods consist
first of all in approximate treatment of the electron-electron interaction
energy which is represented as:

〈Vee〉 = EH + Exc;
Exc = Ex + Ec.

The “classical” part of the interaction energy – the Hartree energy:

EH =
e2

2

∑

σσ′

∫
ρ(1)(rσ, rσ)ρ(1)(r′σ′, r′σ′)

|r− r′| drdr′ (11)

is taken exactly, whereas the exchange and correlation parts:

Ex = −e2

2

∑

σ

∫
ρ(1)(rσ, r′σ)ρ(1)(r′σ, rσ)

|r− r′| drdr′ (12)

Ec = −e2

2

∑

σσ′

∫
χ(rσ, rσ; r′σ′, r′σ′)

|r− r′| drdr′ (13)

whose precise definitions Eqs. (12), (13) consistent with the theoretical
setting given by Eqs. (2),(5), are assumed to be functionals of the one-
electron density only (diagonal of the one-electron density matrix in the
coordinate representation).

The main goal of the DFT paradigm is to reduce the whole electronic
structure theory to a single quantity: one-electron density — the diagonal
part of the one-electron density matrix. If it had been possible it would
considerably simplify the theory. Pragmatic methods pertaining to the DFT
realm are based on use of the Hohenberg-Kohn “existence theorems” [80,81]
which state, first, an existence of a universal one-to-one correspondence
between one-electron external potential and the one-electron density in that
sense that not only the one-electron potential acting upon a given number
of electrons uniquely defines the ground state of such a system i.e. its wave
function and thus the one-electron density – which is trivial, – but also
that for each given density integrating to a given number of electrons a
one-electron potential yielding that given density is uniquely defined (v-
representability).
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Further pragmatic moves are described in details in numerous books and
reviews of which we cite the most concise and recent Ref. [82]. Two further
hypotheses are an important complement to the above cited theorems. One
is the locality hypothesis, another is the Kohn-Sham representation of the
single determinant reference state in terms of orbitals. The locality has
been seriously questioned by Nesbet in recent papers [83, 84], however, it
remains the only practically implemented solution for the DFT. The single
determinant form of the reference state in its turn guarantees that all the
averages of the electron-electron interaction appearing in this context are
in fact calculated with the two-electron density given by the determinant
term in Eq. (5) with no cumulant.

During last decades the DFT based methods have received a wide cir-
culation in calculations on TMCs’ electronic structure [34, 85–88]. It is,
first of all, due to widespread use of extended basis sets, allowing to im-
prove the quality of the calculated electronic density, and, second, due to
development of successful (so called – hybrid) parameterizations for the
exchange-correlation functionals (vide infra for discussion). It is generally
believed, that the DFT-based methods give in case of TMCs more reliable
results, than the HFR non-empirical methods and that their accuracy is
comparable to that which can be achieved after taking into account per-
turbation theory corrections to the HFR at the MP2 or some limited CI
level [88–90].

As in all axiomatic theories relying upon existence theorems particu-
lar attention has to be paid to the consequences of these theorems which
sometimes can be rather peculiar. Although the general validity of the
Hohenberg-Kohn theorems cannot be questioned the example Eq. (7) obvi-
ously presents two different wave functions with different energies yielding
the same one-electron density matrix and thus of course the density itself.
For that reason the qualitative effects of electron correlation which are cru-
cially important for correct TMC modelling and for which the term χ in
Eq. (5) takes care, cannot be reproduced by the DFT based methods at
all since these do not contain the necessary elements of the theory for it
(although MP2 and even limited CI do). Whatever attempt to do that will
have a restricted character due to absence of the cumulant. In that respect
the situation is analogous to that in the HFR-based semi-empirical meth-
ods. In terms of the “data-fit” model Eq. (6) the DFT methods can be
understood as ones with the fitting model of the form:

f̃0(x) = ax + g(x)

using may be a very sophisticated function g(x) instead of bx2 in order to
mimic the independent variable y. Whatever refined is g(x) the resulting
model will not be able to distinguish the data which differ only by the
value of the independent variable z (see above) and have the same values



MOLECULAR MODELLING OF METAL COMPLEXES 469

of x. However, namely the relative energies of the states differing by the
cumulant of the two-electron density matrix must be correctly reproduced
in order to obtain a satisfactory description of the spectra (relative energies
of the states) of the TMCs’ d-shells. In this context it is possible to say, that
the DFT-based methods take into account electron correlations in the same
sense, as all (even the elementary) semiempirical QC methods do. If these
latter are parameterized to reproduce some experimental characteristics of
molecules the parameters of these methods implicitly take into account cor-
relation. By this it may be possible to achieve quantitative agreement with
a narrow segment of experimental data, but not with those which require
reproducing qualitative effects of correlations. The latter can be simulated
neither by semiempirical methods nor by the DFT-based methods. There-
fore advantages of the DFT-based methods are primarily observed for trivial
TMCs where the correlations in the open d-shell representing a problem for
single determinant methods actually absent (as in d0- or d10-complexes or
in the complexes of the second and third transition row or in carbonyls or
other organometallic compounds cited in abundance in [34]).

Remarkably enough that the counter-example Eq. (7) is well known
in the DFT context, and it brought the author [34, 91] to the conclusion
that the theory employing the local spin density approximation for the
exchange energy is valid only for the single determinant wave function.
That is precisely what other people meant saying that the DFT (at least
in its original form) does not apply to TMCs at all which also may be an
exaggeration.

The recipe proposed in Ref. [91] to cure this problem is to apply the
Slater sum rules. These represent a special case of the Roothaan prescrip-
tions for the open shells [92]. They are valid only in those cases when the
energy of a multiplet state can be represented as a weighted sum of determi-
nant energies i.e. of the diagonal matrix elements of the Hamiltonian in the
one-determinant basis. This can be only possible if the multiplet states are
uniquely obtained by applying operators projecting to the specific rows of
the irreducible representations to the basis Slater determinants. Obviously
it is not possible when the symmetry is not high enough: in this case the
number of different symmetry labels simply does not suffice to distinguish
all the Slater determinants. In the case of the p-shell the recipe [92] worked
well.

It turned out, however, that for the d-shells the recipe [92] of construct-
ing the two-electron density matrix does not work for a major part of the
atomic electronic terms of the transition metal ions [93]. Further studies
revealed that constructs similar to [92] are, nevertheless, possible also for
some other terms for which the name of the non-Roothaan terms [94, 95]
was coined not very conveniently (the point is that the Roothaan and
non-Roothaan terms together do not exhaust the entire set of terms). The
Roothaan and non-Roothaan terms together are those where it is possible



470 A. L. TCHOUGRÉEFF AND M. B. DARKHOVSKII

to get the precise CI amplitudes from the one-electron occupation numbers
for the d-orbitals on purely symmetry grounds. However, even in free ions
the extra terms (as compared to the Roothaan and non-Roothaan together)
namely the multiple terms of the same spin and orbital momentum – which
are correlated by nature do exist. Their energies cannot be expressed lin-
early through the say Racah or Slater-Condon parameters. In the free ions
these energies require maximum 2×2-diagonalization [96] and thus their
analytical expressions contain square roots (for a handy reference see [97]).
This moment is crucial – it is not possible to get rid out of the irrationality
(square root) in the expression for the energy by linearly combining the pa-
rameters of the Hamiltonian. The example of such possibility given in [87]
applies only to the case explicitly considered in that paper: that of the d2

configuration, for which as one can see from [96,97] the energies of all terms
can be linearly expressed through the Racah parameters.

The situation clearly becomes less favorable in lower symmetries where
the terms of the same spin and symmetry span the subspaces of dimension-
alities higher than two. For example, in the octahedral environment the
LS states of d4- (d6-) configuration span up to seven-dimensional spaces of
many-electronic states [98]. Clearly that at an arbitrarily low symmetry the
problem of linearly expressing the exact energy of many-electronic terms
through the Racah parameters cannot be solved and obviously the energy
of any of such multiple terms cannot be expressed as a linear combination
of only diagonal matrix elements of the Hamiltonian.

In a more general setting the recipe [91] can be considered as an im-
plementation of another suggestion by Gunnarsson and Lundqvist [99] and
von Barth [100] known also at a pretty early stage of the development of
the DFT technique of employing different functionals to describe different
spin or symmetry states. In other words the simplified model for the data
fit Eq.(10) changes to:

f̃ΓS
0 (x) = ax + gΓS(x)

where gΓS(x) represent exchange-correlation functionals specific for each
ΓS. As the model f0(x) the model f̃ΓS

0 (x) cannot distinguish experimental
points with equal values of x differing by the values of z if they belong to
the same spin and symmetry, but the difference in z which distinguishes
one set ΓS from another one is implicitly built into the functional.

This all explains the nature of failures of the DFT based methods in
those cases, when correlations substantially come into play as in e.g. d6-
iron (II) ferrocene molecule. Here the errors even of advanced DFT methods
become catastrophic. For example, in Ref. [86] the calculated enthalpies of
dissociation of ferrocene to the free Fe2+ ion and two Cp− anions (Cp =
C5H5 – cyclopentadienyl) depending on the functional used appear to be
by 3-4 eV smaller than the experimental value. The reason is transparent
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enough in the context of the above consideration. It is the insufficiency of
whatever DFT for the description of the switching between the electronic
terms: from the LS d6 Fe2+ in ferrocene to the HS one in the free ion, along
the dissociation pathway.

Authors of work [101] have faced the same problem, when addressed the
spin isomers of the iron(II) complex with the hexadentate ligand tetrakis(2-
pyridylmethyl)-ethylenediamine. The DFT (B3LYP/3-21G/6-311G(d)) me-
thod they used could properly reproduce neither the ground state spin
nor the structural parameters of the isomers. This result is not an iso-
lated failure. An analogous picture appears in [102–104] despite the use
of the B3LYP/6-311G∗ functional/basis the results are somewhat mixed:
The relative energies of the HS and the LS states of the nitrogen bound
[Fe(tpa)(NCS)2] complex appear to be in a correct order on the energy
scale, whereas the Fe–N bond lengths come out with a considerable and
nonsystematic error between −0.06 and +0.05 Å which is pretty much
as compared to the magnitude of the effect itself: the spin transitions in
iron(II) complexes are accompanied by the average displacement of nitrogen
atoms by 0.15 Å [23,105]. On the other hand the calculations performed on
the charged complex ions with tris(pyrazolyl) ligands in [104] manifest sig-
nificant dependence of the result obtained on the functional/basis set used
for calculation. Their B3LYP/6-311G∗ combination while being successful
in the previous case turned out to yield the qualitatively wrong order on the
energy scale of the LS and HS forms of the tris(pyrazolyl) complexes. Other
combinations possible for the BLYP and PW91 functionals and LANL2DZ
basis set performed not too much better. The most recent review of this
activity [106] does not indicate serious improvement either in terms of the
geometry reproduction or that of the energy gaps between the HS and LS
states.

In the remarkable series of papers [107–109] the authors attempted to
reproduce the relative energies of the LS and HS terms in a series of pseudo-
octahedral Fe(II) complexes with ligands bound to the metal atom through
sulfur and nitrogen donor atoms. It was achieved only by the cost of ad-
justment of the weight of the Hartree-Fock exchange energy in the hy-
brid B3LYP functional leading to development of the B3LYP∗ functional
(see below). These authors conclude, that the hybrid functionals (B3LYP)
in the DFT based methods favor mainly the HS states. As one can see
namely the Fock exact exchange is responsible for the Hund’s rule con-
formity. Indeed the HFR estimates of the LS-HS splitting given in all the
cited papers amount several eV with the wrong sign (HS state below the
LS state). The reason is transparent: unbalanced account of correlations
and exchange in the DFT schemes. The Hartree-Fock exchange strongly
stabilizes the HS state of the open d-shell even if the single-determinant
wave function is used, whereas the correlations which can potentially sta-
bilize (in fact multi-determinant) LS states are absent. The LSDA estimate
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of exchange gap taken together with some contribution of correlation by
contrast strongly underestimates the latter and by this favors the LS states
to become lower on the energy scale. This discrepancy has been tried to re-
move by developing hybrid functionals which reduce the unbalance between
different contributions to the exchange and correlation terms by taking dif-
ferent estimates of the latter and ascribing them different weights fit to
reproduce some data (in our days taken largely from a numerical experi-
ment performed on an ab initio level, but for sure whatever experimental
data could be used). For the specific example of the B3LYP functional –
the most popular one:

EB3LYP
xc = ELSDA

x + c1E
B88
x + c2E

LYP
c +(1− c2)EVWN

c + c3[Eex.ex.−ELSDA
x ],

where ELSDA
x is the Slater exchange, Eex.ex. is the exact (Hartree-Fock) ex-

change energy computed by Eq. (12) from the one-electron density matrix
obtained from the Kohn-Sham orbitals; ELYP

c and EVWN
c are the Lee-Yang-

Parr (LYP) Ref. [110], and the Vosko-Wilk-Nusair (VWN) Ref. [111] corre-
lation functionals which have too complex analytical expressions to be given
here. The parameters in common use are c1 = 0.72, c2 = 0.81, c3 = 0.20.
From the point of view of our general consideration the B3LYP proce-
dure is one of semi-empirical parameterization schemes whose parameters
(ci; i = 1÷ 3) take certain amount of correlation upon themselves. The ac-
tual amount taken is determined ultimately by the set of the objects used for
parameterization. When the B3LYP parametric functional is applied to the
spin-active compounds of iron(II) it turns out that it still underestimates
the relative role of correlation vs. exchange in the d-shell of the metal atom.
The B3LYP∗ functional cures this overestimate of the exchange energy by
taking a smaller fraction of the Hartree-Fock one in the overall energy es-
timate. Purely empirically the value of its relative weight c3(= 0.15) has
been found to be acceptable to reproduce the energy difference between the
minima of the HS and LS forms of the Fe(II) complexes with the ligands
with the sulphur donor atoms.

In order to reach an agreement with similar data on iron(II) complexes
with ligands containing nitrogen donor atoms [107] the value of c3 = 0.12
had had to be introduced. Similar measures are necessary even for very
simple cations like Cu2+. In [112] it was found that the most commonly
used DFT functionals give a too covalent ground state of D4h [CuCl4]2−.
A novel hybrid functional with 38% HF exchange (c3 = 0.38) can give
the good agreement between the calculated and experimental ligand field
and ligand-to-metal charge transfer excited state energies. Of course, there
is neither explanation for these values nor any hope that they are anyhow
stable. Incidentally, the EHCF theory (see below) gives as much as accurate
results on the d-d transitions as all the standard DFT procedures whereas
the much better agreement in [112] is achieved by the cost of unusually high
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weight of the HF exchange, which basically has no other substantiation.
The entire situation thus looks out to be rather comic: after 40 years of
claims of existence of the unique density functional and after 30 years of
similar claims of an extraordinary power of the DFT-based theories in the
realm of TMCs it turns out that namely for TMCs no single functional
could be found so far. Whatever implementation reasonable from a practical
point of view requires specific non-universal functionals dependent on spin,
symmetry and chemical nature not only of the metal, but also of the donor
atoms in the ligands.

We see from the above discussion that staying within the DFT it is not
possible to describe the multiplet structure of the d-shell (incidentally all
the success stories reported so far are limited to the p-shells [82,113] whereas
in the d-shells only average energies of several multiplet states would be
reproduced [114]). In this context it seems to be necessary to analyze the
attempts to achieve it which are available in the literature (see [87, 115]).
These attempts, however, have a nature absolutely different from the DFT
itself so they will be described in an appropriate place below.

2.3.4. TDDFT: the same but not the same
Currently the time dependent DFT methods are becoming popular among
the workers in the area of molecular modelling of TMCs. A comprehensive
review of this area is recently given by renown workers in this field [116].
From this review one can clearly see [117] that the equations used for the
density evolution in time are formally equivalent to those known in the time
dependent Hartree-Fock (TDHF) theory [118–120] or in its equivalent – the
random phase approximation (RPA) both well known for more than three
quarters of a century (more recent references can be found in [36,121,122]).
This allows to use the analysis performed for one of these equivalent theories
to understand the features of others.

According to analysis of Ref. [117] the excitation energies evaluated by
TDDFT correspond to taking into account interactions between configura-
tions obtained from the original single-determinant ground state by single
electron excitations (CIS). This is obviously equivalent to the so called
Tamm-Dankoff approximation in the energy domain [121]. For the latter it
is known that in certain situations when the HOMO-LUMO gap becomes
small as compared to the Coulomb interaction matrix elements or in other
words in a vicinity of the stability loss by the corresponding HFR solution
the excitation energies thus obtained may become negative thus indicat-
ing some serious problems. The reason is quite transparent: the electron
correlation (interaction of the configurations) is taken into account in an
unbalanced manner; it is accounted in the singly excited manyfold but is
completely neglected for the ground state. If the bare gap (orbital energy
difference) is not too small (otherwise the problem becomes evident) the
unbalanced correlation account manifests itself in that the excitation en-
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ergies estimated in the Tamm-Dankoff approximation are somewhat lower
than necessary.

That is precisely which is reported say in [123] on example of Pd com-
plexes (and for other systems in Ref. [124]): the TDDFT excitation ener-
gies are systematically lower than the experimental ones. In this context
it becomes clear that the TDDFT may be quite useful for obtaining the
excitation energies in those cases when the ground state is well separated
from the lower excited states and can be reasonably represented by a single
determinant wave function may be for somehow renormalized quasiparticles
interacting according to some effective law, but shall definitely fail when
such a (basically the Fermi-liquid) picture is not valid.

In a way this is what the other prominent authors in the field of the
TDDFT recognize as inherent drawbacks of this approach [124, 125]. Ac-
cording to these authors nothing can be done if the one-electron states used
have wrong one-electron energies or if the ground state is not a single de-
terminant built of the Kohn-Sham orbitals. But these are the situations
we must be ready for when addressing the TMCs.

This brief analysis allows to conclude that the fact that “the superiority
of the TDDFT method . . . has not been unequivocally established ... in
particular for d → d transitions” [116] is not an unfortunate accident but a
logical consequence of deeply rooted deficiencies inherent to the underlying
single-determinant nature of the TDDFT method and the announced proof
of superiority will hardly whenever take place.

3. Basic principles of the description of TMC electronic structure

3.1. PHYSICAL PICTURE OF TMC ELECTRONIC STRUCTURE

The above review of the methods of molecular modelling (both QC – in-
cluding DFT – and MM), given above, has shown that none of them is
completely suitable for molecular modelling of TMCs. The MM methods
do not allow to consider multiple PES corresponding to several energet-
ically close electronic states of TMCs. Ab initio QC methods appear to
be too demanding to computational resources when employed to model
chemically interesting TMCs with bulky organic ligands; HFR-based semi-
empirical methods and even the DFT-based methods suffer from the same
deficiencies as MM methods, since within their respective frameworks it is
not possible to reproduce relative energies of electronic states of different
spin multiplicity without serious ad hoc assumptions.

We shall note, that the difficulties arise precisely when modelling is to be
applied to molecules involving transition metal atoms mainly of the second
half of the first transition row. Moreover, even among the TMCs formed
by these atoms the problems are not uniformly distributed: the normal
chemical nomenclature does not provide here an adequate classification.
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When it goes about metal carbonyls or about metals of the second or even
third transition row, the DFT methods seem to be able to do the job quite
decently. However, turning to compounds of the first transition row metals
with open d-shells raises many problems. Intuitively distinction in behavior
of two types of the metal compounds is clear to any chemist. In a row of
isoelectronic species Ni(CO)4, Co(CO)−4 , Ni(CN)2−4 , Fe(CO)2−4 they readily
recognize the “not a family member”, but probably fail to give a reason.

In the traditional theory of chemical bonding the classification is rather
vaguely formulated in terms of covalent, polar covalent, ionic, metallic,
coordination, donor-acceptor and other types of chemical bonds. Clearly
enough such a classification is not relevant in the case of interest. Remark-
able alternative systematic of types of chemical bonds is given in [97]. We
reproduce it in Table 1 partially abridging. Although this classification also
is not particularly satisfying it can be used as a starting point for fur-
ther discussion. The classification of Table 1 relies upon the MO LCAO,
i.e. ultimately the HFR, picture of molecular electronic structure. As it
is discussed above, the HFR is not very much reliable when it goes about
TMCs. Nevertheless we can observe that the lack of regularity both in bond
lengths, and in oscillatory frequencies of bonds in complexes is associated,
according to [97], with a three-dimensional delocalization of one-electronic
states involved. As an example though, the metal-ligand bonds in TMCs
are given and the optical spectra and magnetic moment distinguishing them
from all other compounds are given as specific characteristics. However, the
”non-characteristicity” of the bond lengths and valence angles leading to
flexibility of shapes of coordination polyhedra and the coordination num-
bers themselves are equally common for the complexes of non-transition
metals (for example, alkaline or alkali earths). This shows a necessity to
turn to somewhat more formal description of molecular electronic struc-
ture than it can be provided by the traditional theory of chemical bonding,
but still more qualitative than it appears from the numerical experiments
arranged in the framework of no-matter-how-precise QC methods.

The qualitative description of the electronic structure can be given in
terms of even older concept of “chromophores”. According to the IUPAC
definition the chromophore is an atom or group of atoms in the molecule
that gives color to the molecule. This definition unites two aspects — one
related to the system’s response to an external perturbation: the spectrum.
By this the concept of chromophore is related to experimental behavior
of molecular systems. Another aspect relates to the structure understood
as a localization of the excited states controlling the tentative response to
that perturbation. The examples of chromophores are well known from the
textbooks. On the part of the modern theory of electronic structure the
concept of chromophore formalizes in the McWeeny’s theory of electron
groups. (The analogy between chromophore concept and McWeeny’s theory
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for the special case of TMCs has been early noticed also in a remarkable
work [126]). Within this theory the zero approximation to the system’s
electronic wave function is taken as an antisymmetrized product of rather
local group multipliers referring to relatively isolated elements of molecu-
lar electronic structure. These elements – electron groups – are physically
identified as two-electron two-center bonds, conjugated π-systems etc. Of
course, these groups are not totally isolated and ascribing excitations to
only one of them is an idealization. Nevertheless, the effective Hamiltonian
technique is available to reduce manifestations of the intergroup interac-
tions to renormalizations of the effective group Hamiltonians which allows
to interpret the response of the system to any external perturbation in
terms of excitations localized in the groups.

Further analysis is based on the idea that the characteristic experimental
behavior of different classes of compounds and the suitability of those or
other models used to describe this behavior is ultimately related to the
extent to which the chromophores or electron groups physically present in
the molecular system are reflected in these models. It is easy to notice,
that the MM methods work well in case of molecules with local bonds
designated in Table 1 as valence bonds; the QC methods apply both to
the valence bonded systems, and for the systems with delocalized bonds
(referred as “orbital bonds” in Table 1). The TMCs of interest, however,
not covered either by MM or by standard QC techniques can be physically
characterized as those bearing the d-shell chromophore. The magnetic and
optical properties characteristic for TMCs are related to d- or f -states
of metal ions. The basic features in the electronic structure of TMCs of
interest, distinguishing these compounds from others are the following:

1. Molecule contains strongly correlated electrons in the partially filled
valence d-shell of the transition metal central atom;

2. The overall charge transfer (electron density) between the d-shell of
transition metal atom and its ligand environment is small;

3. The low-energy spectrum is spanned by excited states of the partially
filled d-shell (d-d-spectrum) and it is rather dense.

These properties of the d-shell chromophore (group) prove the necessity of
the localized description of d-electrons of transition metal atom in TMCs
with explicit account for effects of electron correlations in it. Incidentally,
during the time of QC development (more than three quarters of century)
there was a period when two directions based on two different approximate
descriptions of electronic structure of molecular systems coexisted. This
reproduced division of chemistry itself to organic and inorganic and took
into account specificity of the molecules related to these classical fields. The
organic QC was then limited by the Hückel method, the elementary version
of the HFR MO LCAO method. The description of inorganic compounds —
mainly TMCs,— within the QC of that time was based on the crystal field
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theory (CFT) [127,128]. The latter allowed qualitatively correct description
of electronic structure, magnetism and optical absorption spectra of TMCs
by explicitly addressing the d-shell chromophore. Let us consider the CFT
in more detail.

3.2. CRYSTAL FIELD THEORY

Basics of the CFT were introduced in the classical work by Bethe [127]
devoted to the description of splitting of atomic terms in crystal environ-
ments of various symmetry. The splitting pattern itself is established by
considering the change of symmetry properties of atomic wave functions
while spatial symmetry goes down from the spherical (in the case of a free
atom) to that of a point group of the crystal environment. The energies of
the d-d-excitations in this model are obtained by diagonalizing the matrix
of the Hamiltonian constructed in the basis of nd-electronic wave functions
(nd is the number of d-electrons). Matrix elements of the Hamiltonian are
expressed through the parameters describing the crystal field and those of
the Coulomb repulsion of d-electrons, that is Slater-Condon parameters F k,
k = 0, 2, 4, or the Racah parameters A, B, and C. In the simplest version
of the CFT these quantities are considered as empirical parameters and de-
termined by fitting the calculated excitation energies to the experimental
ones. This approach is devoid of any predictive force (except for the split-
ting pattern itself) due to presence of empirical parameters in the theory,
which are specific for each compound.

The CFT gives a description to the characteristic properties of TMCs
at the phenomenological level. The important features of their electronic
structure are fixed by this theory and the perpetual problem remains ob-
taining consistent estimates of its parameters (strength of the crystal field).
All further development of the CFT was concentrated on this [129]. Within
the standard CFT this problem, however, has no solution due to oversim-
plified picture of the transition metal ion environment (ligands). Indeed
the CFT theory uses the ionic model of the environment and calculates the
splitting of the initial term of the free metal ion as if it were a pure electro-
static effect. The symmetry dependent features of the splitting are correctly
reproduced even in this simplistic model, whereas all the chemical specifics
of this environment gets lost. For this reason it is not surprising that the
heaviest strike upon the CFT from the (semi)quantitative side was given
by TMC spectroscopy yet in 30-ties. Spectroscopic experiments allowed to
range the strengths of the crystal fields exerted by different ligands to the
so called spectrochemical series [97,128,130]:

F− < OH− < Cl− < Br− <
1
2
Ox2− < H2O < SCN− < NH3, py <

<
1
2
En < CN− < CO
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It turned out that the fields are systematically weaker for charged species
than for the uncharged ones with the utter example of the CO molecule ex-
erting the strongest crystal field, but bearing neither charge nor noticeable
dipole moment. Other relative strengths observed in the experiment also
cannot be explained within the CFT by means of the ionic model of the
environment. These observations clearly indicate that purely electrostatic
effects may be only of minor significance in determining the strength of the
crystal field.

Early attempts to get the required estimates led to the ligand field the-
ory (LFT) [128,131]. In it the environment is considered more realistically:
the one electron states of the surrounding atoms are explicitly considered.
However, within such a setting also only qualitative explanations could
be obtained. They had been formalized within the angular overlap model
(AOM) [129, 132] with an additional observation that different ligands (or
more precisely – donor atoms) contribute to the effective crystal ligand field
almost independently and that each ligand when coming in interaction with
a given transition metal ion can be characterized by a small number of para-
meters (AOM parameters) describing its contribution to the total effective
field felt by the d-shell. The AOM parameters remained as much empirical
quantities, both ligand and metal dependent, as were the 10Dq’s in the
original CFT.

The problem of estimating crystal field parameters can be solved by
considering the CFT/LFT as a special case of the effective Hamiltonian
theory for one group of electrons of the whole N -electronic system in the
presence of other groups of electrons. The standard CFT ignores all elec-
trons outside the d-shell and takes into account only the symmetry of the
external field and the electron-electron interaction inside the d-shell. The
sequential deduction of the effective Hamiltonian for the d-shell, carried
out in the work [133] is based on representation of the wave function of
TMC as an antisymmetrized product of group functions of d-electrons and
other (valence) electrons of a complex. This allows to express the CFT’s
(LFT’s or AOM’s) parameters through characteristics of electronic struc-
ture of the environment of the metal ion. Further we shall characterize the
effective Hamiltonian of crystal field (EHCF) method and its numerical
results.

3.3. EFFECTIVE HAMILTONIAN FOR THE CRYSTAL FIELD (EHCF)

The TMCs’ electronic wave function formalizing the CFT ionic model is
one with a fixed number of electrons in the d-shell. In the EHCF method it
is used as a zero approximation. The interactions responsible for electron
transfers between the d-shell and the ligands are treated as perturbations.
Following the standards semiempirical setting we restrict the AO basis for
all atoms of the TMC by the valence orbitals. All the AOs of the TMC are
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then separated into two subsets from which one (the d-system) contains 3d-
orbitals of the transition metal atom, and another (the “ligand subsystem”,
or the l-system) contains the 4s- and 4p-orbitals of the transition metal
atom and the valence AOs of all ligand atoms. Within the present theory
we shall try to cover only the complexes, where excitation energies in the
l-system are by far larger than the excitation energies in the d-shell of the
metal atom. This singles out a subset: the Werner-type TMCs which from
the point of view of chemical nomenclature can be characterized as ones
with the closed electronic shell ligands, such as F−, Cl−, Br−, I−, saturated
organic molecules with donor atoms etc.

Formally the theory evolves in a following way. The low-energy d-d-
spectrum of the TMC can be obtained if the Hamiltonian is rewritten in
the form:

H = Hd + Hl + Hc + Hr (14)

where Hd is the Hamiltonian for the d-shell, Hl is the Hamiltonian for the
ligand system, Hc is the Coulomb interaction, Hr is the resonance one.
The electronic wave function for the n-th state of the complex is written
as antisymmetrized product of the wave functions of the electron groups
introduced above:

Ψn = Φ(n)
d ∧ Φl, (15)

where Φ(n)
d is assumed to be a full CI function for nd electrons in the d-shell,

Φl is a HFR single determinant ground state for the l-system, and ∧ stands
for the antisymmetrized product. This reflects the main feature of electronic
structure of the TMC, that is the presence of the strongly correlated d-shell
with low energy excitations localized in it and of relatively inert ligands.
Under these assumptions the spectrum of the low-energy excitations is that
of the effective Hamiltonian for the d-shell only:

Heff
d =

∑

µνσ

U eff
µν d+

µσdνσ +
1
2

∑

µνρη

∑

στ

(µν | ρη)d+
µσd+

ρτdητdνσ (16)

where the d-electron Coulomb interaction term is inherited from the free
ion and the effective core parameters U eff

µν contain contributions from the
Coulomb and the resonance interaction between the d- and l-systems:

U eff
µν = δµνUdd + W atom

µν + W field
µν + W cov

µν , (17)

where
W atom

µν = δµν(
∑

α∈s,p

gµαPαα) (18)

is the repulsion of electrons in the d-shell from those in the 4s- and 4p-AO’s
of the metal;

W field
µν =

∑

L

QLV L
µν (19)
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is the Coulomb interaction of d-electrons with the net charges on the ligand
atoms, having the standard CFT form [130]; and the covalence part:

W cov
µν = −

∑

i

βµiβνi(
1− ni

∆Edi
− ni

∆Eid
) (20)

ultimately comes from the resonance interaction between the d- and l-
systems.

Within the EHCF method [133] the single Slater determinant Φl has to
be obtained from semiempirical HFR procedure. Solving the HFR problem
for the l-system yields the one-electron density matrix Pαβ , orbital energies
εi, and the MO-LCAO coefficients ciα. These quantities completely define
the electronic structure of the l-system and are used to calculate the effec-
tive Hamiltonian Eq. (16) by Eqs. (18)-(20), where QL =

∑
α∈L Pαα − ZL

is the effective charge of the ligand atom L; ZL is the core charge of the
ligand atom L; V L

µν is the matrix element of the potential energy operator
describing the interaction between a d-electron and a unit charge placed on
the ligand atom L; ni is the occupation number of the i-th l-MO (ni = 0
or 1); ∆Edi (∆Eid) is the energy necessary to transfer an electron from the
d-shell (from the i-th l-MO) to the i-th l-MO (to the d-shell):

∆Edi = −Ai + Id

∆Eid = Ii −Ad,
(21)

where Ii and Ai are the ionization potential and the electron affinity of the i-
th l-MO within the HFR scheme equal to −εi — the corresponding orbital
energy with the opposite sign, Id and Ad are respectively, the effective
ionization potential and the electron affinity of the d-shell. The resonance
integrals βµi in Eq. (20) are given by:

βµi =
∑

α

βµαciα

where ciα is the MO-LCAO coefficient, and βµα is the resonance integral
between the α-th l-AO and the µ-th d-AO.

3.4. SEMIEMPIRICAL IMPLEMENTATIONS OF THE EHCF CONSTRUCT

In the context of the EHCF construct described in the previous Section,
the problem of semiempirical modelling of TMCs’ electronic structure is
seen in a perspective somewhat different from that of the standard HFR
MO LCAO-based setting. The EHCF provides a framework which implic-
itly contains the crucial element of the theory: the block of the two-electron
density matrix cumulant related to the d-shell. Instead of hardly systematic
attempts to extend a parameterization to the transition metals it is now
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possible to check in a systematic way the value of different parameteriza-
tion schemes already developed in the “organic” context for the purpose of
estimating the quantities necessary to calculate the crystal field according
to prescriptions Eqs. (18) - (20) of the EHCF theory. Solving the eigen-
value problem with the effective Hamiltonian for the d-subsystem (Heff

d )
with the matrix elements which are estimated with use of any “organic”
semiempirical scheme with the CI wave function constructed in the basis
of the d-system, one obtains the complete description of the many-electron
states of the d-shell of the metal ion in the complex. In such a formulation
the EHCF method was parameterized for calculations of various complexes
of metals of the first transition row, with mono- and polyatomic ligands. In
papers [133–136] the parameters for the compounds with donor atoms C,
N, O, F, Cl and for doubly and triply charged ions of V, Cr, Mn, Fe, Co, Ni
and Cu are fitted. These parameters do not depend on details of chemical
structure of the ligands, rather they are characteristic for each pair metal-
donor atom. The dependence of the exerted effective field on the details
of geometry and chemical composition of the ligands is to be reproduced
in a frame of a standard HFR-based semiempirical procedure applied to
the latter. The further evaluations [137, 138] have shown applicability of
the fitted system of parameters for calculations of electronic structure and
spectra of numerous complexes of divalent cations with use of merely the
CNDO parameterization for the l-system. In [139, 140] the EHCF method
is also extended for calculations of the ligands by the INDO and MINDO/3
parameterizations. In all calculations the experimental multiplicity (spin)
and spatial symmetry of the corresponding ground states was reproduced
correctly. The summit of this approach had been reached in Ref. [141] by
calculations on the cis-[Fe(NCS)2(bipy)2]2+ complex. Its molecular geom-
etry is known both for the HS and LS isomers of the said compound. The
calculation for the both reproduces the respective ground state spins and
the spectra of low lying d-d-excitations in a remarkable agreement with
experimental data.

Another good example is the treatment of metal porphyrins with use
of the EHCF method. As it is already said above, for the decades the ab
initio methods fail to reproduce the experimental ground state of Fe(II) por-
phyrin. It is really a complex case since it is an intermediate spin (S = 1—
i.e. neither HS nor LS) and spatially degenerate state (3E). Applying even
very sophisticated methods (including CASPT2 which is considered to be
a method of choice for TMCs in the ab initio area) has not yet led to the
desired success. According to [54] the HS forms are ground states and the
hope to get a correct result is rather meagre since the gap amounts up to 1
eV in favor of the HS state (although the interpretation given in Ref. [54]
is quite different). Meanwhile the EHCF method in its simplest setting
(CNDO type of parameterization employed for the l-system) yields the ex-
perimental ground state 3E without any further adjustment of parameters.
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3.5. EHCF VS. LFT AND AOM

The success of the EHCF method in reproducing the crystal field from
geometry data and ligand electronic structure as described by semiempiri-
cal QC procedure poses a question on possible relation between the EHCF
method and the successful parameterization scheme for the LFT, the al-
ready mentioned AOM. As it is shown below, a local version of the EHCF
method EHCF(L) derived and tested in our papers [28, 29] represents an
effective tool allowing to estimate the AOM parameters with a good preci-
sion. The derivation consists of two unitary transformations. The first one is
from the basis of canonical MOs (CMOs) of the l-system used in Eq. (20) to
the basis of localized one-electron states representing characteristic features
of the ligand electronic structure — like presence of lone pairs on the donor
atoms. These are obtained by the max Ψ4 localization procedure [142]. This
leads to the approximate formula for the covalent contribution Eq. (20) to
the effective crystal field:

W cov
µν =

∑

Λ

∑

L∈Λ

βµLβνLGadv
LL (Ad) (22)

where Λ enumerates the ligands, the subscripts L enumerate the one-
electron local states (e.g. lone pairs – LP’s) residing on the donor atoms,
and βµL is the resonance integral between the µ-th AO of the d-shell and
the L-th local state. The advanced Green’s function Gadv

LL (ε) for the local
state L in Eq. (22) is given by

Gadv
LL (ε) = −∑

i

nic
2
iL

ε− (gdi − εi)
(23)

where ciL is the coefficient of the LP’s expansion over CMO’s, gdi is the
interaction energy between d-electron and electron on the i-th MO, and εi

is the energy of the i-th CMO of the l-system in the TMC.
The second transformation is that of the d-orbitals from the global (lab-

oratory) coordinate frame (GCF) to the diatomic coordinate frame (DCF)
related to the ligand Λ, defined so that its z-axis is the straight line con-
necting the metal atom with the ligand donor atom, so that the resonance
integrals βµL in Eq. (22) can be expressed through the tL vector of the
resonance integrals between the metal d-AO’s and the L-th LMO in the
DCF:

βµL =
∑

λ

RΛ
λµtLλ . (24)
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The coefficients RΛ
λµ form a unitary matrix RΛ transforming d-orbitals from

the GCF to the DCF. Then, introducing the quantities:

eΛ
λλ′ =

∑

L∈Λ

tLλGadv
LL (Ad)tL+

λ′ , (25)

we obtain
W cov

µν =
∑

Λλλ′
RΛ

µλeΛ
λλ′RΛ

νλ′ (26)

where the matrix elements eΛ
λλ′ of the eΛ matrix in the DCF are labelloed by

the indices λλ′ taking values σ, πx, πy, δxy, δx2−y2 according to the symmetry
of the metal d-orbitals with respect to the z-axis of the DCF. Eq. (26)
precisely coincides with the definition of the synonymic AOM parameters.
On the other hand the expression Eq. (25) defines the eΛ

λλ′ parameters
in terms of the quantities which can be calculated within the EHCF(L)
method. Thus Eq. (25) can be accepted as their definition in the EHCF
context. Their relation with the standard AOM [129,132,143] is described
in details in Ref. [28]. These equations have been used to calculate the
values of the eσ and eπ parameters for a series of octahedral complexes
with nitrogen containing ligands. The results were in a good agreement with
experimental 10Dq values (within 10% accuracy). By this it was shown that
the splitting parameter 10Dq can be estimated with the error not exceeding
0.1 eV which compares to that of the EHCF method itself.

3.6. HYBRID EHCF/MM METHOD

The EHCF methodology allowed to perform systematic calculations of the
crystal field for various ligand environments. The results of these calcula-
tions are in fair agreement with the experimental data, particularly with
respect to the spin multiplicity of the ground states of the complexes. In
the respective simple versions the EHCF/X methods treat the electronic
structure of the ligands within a semiempirical approximation X. These
methods are not, however, well suitable to conduct the systematic studies
on PESs of TMCs. Further application of the EHCF methodology would
be to develop a method for the calculation of PESs of TMCs. To do so
we notice that the CNDO or INDO parameterizations for the ligands are
probably enough accurate when it goes about the charge distribution in the
ligands and the orbital energies at fixed experimental geometries, although,
they do not suit for geometry optimizations (or more generally for searching
PESs) of TMCs. Nevertheless, the EHCF method can be adapted for the
PES search in a more general framework of the hybrid QM/MM method-
ology (standard reference here is [144]; for recent review see [57]). This
finally allows to “incorporate” quantum and correlated behavior of TMC
into the “classical” methodology of MM and to provide necessary flexibility
for quantum/classical interface (see below).
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This is done as follows. According to [36] the total electronic energy of
the n-th state of a system with the wave function Eq. (15) is

En = Eeff
d (n) + El (27)

where Eeff
d (n) is the energy of n-th state of the effective Hamiltonian for

the d-shell in the crystal field. For estimating the total energy En for the
complex in n-th state, in work [28] we proposed to replace the energy of
ligands EL by its EMM estimate calculated in certain MM approximation.
Then the expression for the PES of the state n becomes:

En = Eeff
d (n) + EMM (28)

This represents a natural way of combining MM and EHCF [28], allowing
to calculate energies of low-level electronic states of the d-shell Eeff

d (n)
and the ligand energy EMM for different nuclear configurations of TMC. In
variance with the LFSE-based method proposed by Deeth [30] the energy
of the d-shell is calculated by a procedure taking into account qualitative
manifestations of electronic correlation rather than using a one-electron
estimates of the energy. By this it becomes possible to obtain approximate
PES for various spin states of the d-shell of TMC.

Appropriate test objects for this approach are provided by the spin iso-
mers of TMCs already addressed in the context of the attempts to apply
the DFT-based methods to them. As during spin transition (ST) variation
of the Fe–N bond lengths makes up more than 10% of the bond length
itself in the LS complex, the harmonic approximation does not suffice for
the MM part of the energy. Thus, for Fe–N bond stretching potentials the
Morse potential was used. By Eq. (28) terms of the singlet, triplet and
quintet lowest states of the considered complex were constructed. Parame-
ters of MM-potentials at metal atom (angle bending and bond stretching)
are fitted so that positions of minima on terms of singlet and quintet as
much as possible coincide with experimental distances Fe–N in HS- and
LS-structures. The calculation has been carried out in our work [28].

The general scheme Eq. (28) of energy evaluation using the EHCF
method for Eeff

d (n) requires an HFR semiempirical calculation of the l-
system for each geometry of a complex. To clear this, the local version of
the EHCF method which allows to calculate the crystal field at each geom-
etry without repeating HFR calculations can be employed. The problem is
how to calculate the covalent contribution to the splitting without recalcu-
lating the one-electron states of the l-system at each geometry. In Section
3.5 we reviewed the EHCF(L) theory which allows to estimate the crystal
field in terms of local electronic structure parameters (ESP) of the ligands.
By this method it can be done for arbitrary geometry of the complex, which
is necessary for developing a hybrid QM/MM method.
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The proposed approach in certain respects is resemblant to the general
QM/MM techniques which are invented with the general purpose to treat
different parts of polyatomic systems at different levels of theory. The gen-
eral setting of this theory is discussed in detail in [57]. The main difference
between the setting of the standard QM/MM technique and the present
one is that the majority of authors working in the area of QM/MM see as
a desirable feature a possibility to extend the subsystem to be treated on a
quantum level as much as possible. This is seen as a medicine against the
uncontrollable errors introduced by non-cautious cutting the entire elec-
tronic system in parts treated by the QM and MM techniques respectively.
The hybrid EHCF/MM technique uses somewhat opposite approach: it
tries not to extend but to reduce the QM subsystem as much as possible
and to treat the inter-subsystem frontier in such a way that the interac-
tions between the quantically and classically treated parts are sequentially
taken into account. Since physically the true quantum effects — the low-
energy excited states in TMCs, — are located in the d-shell we restrict
the true quantum description to these latter. This is related to the very
understanding of the notion “quantum” relevant to the present problem
which we have already mentioned at the beginning: in organic chemistry
one normally deals with the ground state only which on the energy scale
is well separated from the lowest excited state. This is the physical reason
why the classical (MM) description is possible for organics. The TMCs dif-
fer from that picture obviously due to low-energy excitations in the d-shell
accessible in experiment, thus it must be treated on a quantum level.

The technical problem was to develop an adequate form of the inter-
subsystem junction for the case when the quantum subsystem reduces to
the d-shell. The problem here is to keep clear advantage of the LFT taking
into account the ligands’ electronic structure over the CFT reproducing it
economically in the otherwise MM calculation.

Since in the EHCF(L) the effective crystal field is given in terms of the l-
system Green’s function, the natural way to go further with this technique is
to apply the perturbation theory to obtain estimates of the l-system Green’s
function entering Eqs. (22) and/or (25). It was assumed and reasoned in [29]
that the bare Green’s function for the l-system has a block-diagonal form:

Gl
00 =

⊕

Λ

GΛ
0 , (29)

where ⊕ stands for the direct summation over ligands. The non-vanishing
block GΛ

0 corresponds to a separate ligand Λ containing the unperturbed
diagonal Green’s function matrix elements (GΛ

0 (ε))adv
LL corresponding to the

LP L located on the ligand Λ:

(GΛ
0 (ε))adv

LL = lim
δ→0+

∑

i∈Λ

(cΛ
iL)2ni

ε− ε
(0)
Λi + iδ

(30)
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where cΛ
iL is the same expansion coefficient as in eq.(23) but for the LP of the

separate ligand Λ, and ε
(0)
Λi is the i-th MO energy of that same free ligand.

Then Eq. (22) contains the Green’s function (GΛ
0 (ε))adv

LL of the free ligand
and the summations in Eq. (22) is performed over the separate ligands Λ
and their LPs indexed by L.

The Coulomb interaction between the ligands themselves and between
each of them and the metal ion when turned on does not break the block
diagonal structure of the bare Green’s function Gl

00. Then the approximate
Green’s function for the l-system conserves the form Eq. (29) but with the
poles corresponding to the orbital energies of the ligand molecules in the
Coulomb field induced by the central ion and by other ligands (Λ′ �= Λ)
rather than to those of the free ligands.

The simplest picture of the effect of the central ion on the surrounding
ligands reduces to that of the Coulomb field affecting the positions of the
poles of the Green’s function (orbital energies) of the free ligand. The form
of the CMO’s of each ligand is left unchanged which corresponds to the rigid
ligands’ MO’s (RLMO) picture Ref. [29]. According to [145], the effect of
the Coulomb field upon the orbital energies is represented by:

(GΛ)−1 = (GΛ
0 )−1 − Σ(f) (31)

where GΛ
0 is the Green’s function for the free ligand and the self-energy

term Σ(f) is due to the external Coulomb field. The perturbed Green’s
function GΛ within the first order has the same form as GΛ

0 but its poles
are shifted by the self-energy parts Σ(f)

ii :

εi = ε
(0)
i + Σ(f)

ii , (32)

Σ(f)
ii ≈

∑

N∈Λ

ρiNδhN ,

where ρiN is the partial electron density of the i-th CMO of the ligand Λ
on the N -th atom of the ligand:

ρiN =
∑

α∈N

c2
iα, (33)

where ciα are the i-th MO LCAO coefficients of the free ligand, and the
core Hamiltonian perturbation δhN is:

δhN = −e2




(ZM − nd)

RN
+

∑

Λ′ �=Λ
N ′∈Λ′

QN ′

RNN ′



 (34)

The atomic quantities δhN are equal to the perturbations δhαα of the cor-
responding core Hamiltonian matrix elements in the ligand AO basis. This
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is like that since within the CNDO approximation [62] accepted in [29],the
quantities δhαα are the same for all α ∈ N .

This model can be improved by taking into account polarization effects
in the ligand sphere. For this end the metal ion is considered as a point
charge equal to its oxidation degree or formal charge, which is the ”sparkle”
model [146].

Within models of the sparkle family the effect of the external Coulomb
field does not reduce to the renormalization of the orbital energies as it is
within the RLMO model (see above). By contrast, the electron distribution
also changes when the ligand molecules are put into the field. We model
this by classical polarizability. Accordingly the difference between effective
charge on atom A in the complex (polarized) and that in the free ligand
(non-polarized) is:

δQA=QA −Q0
A =

∑
B

ΠABδhB=

=
∑
B

ΠAB(δh0
B +

∑
C �=B

ΓACδQC) (35)

where ΠAB is the atomic mutual polarizability and δh0
A taken from Eq.

(34). Going to the vector notation this can be rewritten as:

δQ = Q−Q0 = Π(δh0 + ΓδQ)
δQ = (1−ΠΓ)−1Πδh0

δQ = Πδh0 +
∞∑

n=1
(ΠΓ)nΠδh0 =

∞∑
n=1

δQ(n).
(36)

Though procedures of that sort are admitted in modern MM schemes
directed to the systems with significant charge redistribution [147] we con-
sider such a procedure to be too resource consuming and restrict ourselves
by several lower orders with respect to Π in the expansion Eq. (36). The
details on calculating mutual polarizabilities relevant to the EHCF/MM
context can be found in Ref. [148]. The charges thus obtained are used
for calculation of the Σ(f)

ii term according to Eq. (32). This model can be
termed as PS model (PS stands for Perturbative Sparkle). Specifically, PSn
approximation level of the PS model stands for the charge corrections em-
ploying the series Eq. (36) up to the n-th order, while PS itself stands for
the exact expression with the inverse matrix in the second row of the same
equation.

The local version of EHCF method was implemented and used for the
analysis of the molecular geometries of complexes of iron (II) in works [29,
148,149]. The satisfactory agreement in the description of complexes geom-
etry with different total spins is achieved when the effect of electrostatic
field of the metal ion on the ligands is taken into account through the elec-
trostatic polarization of the ligands. Satisfactory estimates of parameters
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of the crystal field for series of complexes of iron (II) and cobalt (II) (both
LS and HS ground states) are achieved. Totally 35 six-coordinated iron
complexes with mono– and polydentate ligands, containing both aliphatic,
and aromatic donor nitrogen atoms (mixed complexes with different types
of donor nitrogen atoms and different spin isomers of one complex are in-
cluded to this number) and ten cobalt complexes also with different types
of donor nitrogen atoms and coordination numbers ranging from four to six
have been considered. Deviations of calculated bond lengths Fe–N and Co–
N from the experimental values are well enough described by the normal
distribution. Parameters of that distributions were the following: the mean
value (average deviation over the data set, µ = −0.037 Å and σ=0.054 Å
in the case of Fe(II) complexes, and µ=0.017 Å and σ=0.044 Å in the case
of Co(II) complexes. The above values are quite acceptable for the entire
set of data but it turned out that they mask an inherent bias of the pro-
posed approach. In the iron(II) complexes the Fe–N bond lengths of the
HS complexes are systematically underestimated whereas those in the LS
come out slightly overestimated. In fact the parameters of the fit of the
empirical distribution function of deviations restricted to the LS complexes
are µ=0.011Å and σ=0.034Å and those restricted to the HS complexes are
µ = −0.023Å and σ=0.054Å. The reason seemed to be in the “stiffness”
of the Morse potential. In order to avoid this, we tested another MM bond
stretching potential for the metal-ligand bonds in Fe(II) complexes:

ENR(r) =
A

r
+

B

r5
+

C

r9
(37)

originally proposed by Nı́ketič and Rasmussen (NR) [150] in their version
of the CFF force field. The NR potential can be characterized as a softer
potential than the Morse one in the following sense. The two potentials
are both three-parametric so that a one-to-one correspondence can be es-
tablished between the both by defining the potentials of two forms to be
equivalent if the well depth, minimum position, and elasticity constants
KNR and KM (the second derivative in the minimum) expressed through
the A, B, C parameters of the NR potential Eq. (37) or the r0, D0, and
α parameters of the Morse potential, respectively, coincide. The necessary
estimates can be easily obtained:

r4
0 =

−5B −
√

25B2 − 36AC

2A

D0 =
A

r0
+

B

r5
0

+
C

r9
0

(38)

KNR =
A

r3
0

+
15B

r7
0

+
45C

r11
0

KM = D0α
2.
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Figure 1. Comparison of the Morse (dashed line) and Nı́ketič–Rasmussen (solid line)
potentials. The abscissa axis is the bond length in Å and the ordinate is the energy in
kcal/mol.

TABLE 2. Fitted parameters of
the NR potential for Fe–N bonds in
the EHCF/MM method. Correspond-
ing parameters of the Morse potential
calculated by Eq. (38) are also given.

Parameter Bond

Fe–NA Fe–N3

A, kcal/mol·Å -189.3 -161.3

B, kcal/mol·Å5 -1084.4 -1940.9

C, kcal/mol·Å9 10817.4 19803.2

D0 110.0 102.9

α 1.49 1.59

r0 1.88 1.96

Fig. 1 presents the curves of the equivalent Morse and NR potentials. One
can see that the NR potential increases much slower in the asymptotic
region than the Morse one. The parameters of the NR potential equivalent
to the Morse potential fitted in our paper [148] are given in Table 2. The
value of the A parameter can be identified with the interaction of some
Coulomb charges. Extracting these effective values in Fe(II) complexes with
nitrogen-containing complexes we get QFe=1.757 e and QN = −0.293 e; the
latter is close to the CNDO charges on the donor nitrogen atoms obtained
in the EHCF calculations for hexamine Fe(II) complex [137].
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Figure 2. EDF for the difference between the experimental and the EHCF/MM calcu-
lated bond lengths (Å) over the entire test set of Fe(II) complexes. The NR potential is
used for the Fe–N bond.

the set of Fe(II) HS and LS molecules described in the paper [148]. The
corresponding empirical distribution functions (EDFs) for the Fe–N dis-
tances’ deviations for the overall data set and for the HS and LS subsets
separately, are given in Figs. 2–4 We get the following characteristics of
the normal distribution of the deviations for the EHCF/MM calculations
with NR potential on the overall data set: µ = −0.031 Å, σ=0.052Å. The
both parameters are smaller than those obtained for the Morse potential
thus indicating some improvement both in terms of systematic errors and
the scattering of data. It is clearly seen from the EDF plots however that
the systematic error remains; on the other hand, it is also seen that the
mentioned difference in descriptions of the LS and HS complexes is now
removed so the structures of both types of complexes are now reproduced
accordingly with almost the same systematic error.

As it is known, the minima of the HS and LS terms lie on the right and
on the left positions relative to the cross-section point of the pure electronic
quintet and singlet terms of the d-shell in Fe(II) complexes. Systematic
error may be due to some shift of that point from its true position. We
obtained a negative value of the mean error which is an indication that the
cross-section point is shifted towards shorter bond lengths. Thus, moving

Then the NR potential with the parameters of Table 2 is tested on
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Figure 3. EDF for the difference between the experimental and the EHCF/MM calcu-
lated bond lengths (Å) over the HS Fe(II) complexes. The NR potential is used for the
Fe–N bond.

the cross-section point to larger Fe–N distances, it is possible to remove
the systematic error. To get rid of the systematic error its possible source
has to be identified. As discussed in our paper [29], the position of the
cross-section point in the EHCF/MM method depends on the the Racah
parameters B and C, which we have previously accepted as those for the
free ion. The intersection point shift can be achieved by slightly reducing
of the Racah parameters as compared to the free ion values, to the values
B=850 cm−1 and C=3400 cm−1. The set of MM parameters should be
also changed in this case. We have done it first for the NR potential. The
parameters for the Morse potential are also calibrated independently for
the scaled Racah parameters. For the new values see Table 3.

The corresponding EDFs for both potentials calculated for the same
test set of the Fe(II) complexes are plotted in Figs. 5, 8. The systematic
errors in all cases are close to zero, as can be seen from the parameters of
the EDFs: for the EHCF/MM with the Morse potential — µ = −0.005,
σ=0.056; with the NR potential — µ =0.002, σ=0.052. However, although
somewhat improved the stiffness of the Morse potential again manifests
itself: the systematic errors for the separate LS and HS sets do exist and
only approximately cancel each other in the total set, whereas for the NR
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Figure 4. EDF for the difference between the experimental and the EHCF/MM calcu-
lated bond lengths (Å) over the LS Fe(II) complexes. The NR potential is used for the
Fe–N bond.

TABLE 3. Fitted parameters of the NR
and Morse potentials for Fe–N bonds
in the EHCF/MM method. The Racah
parameters are B=850 cm−1, C=3400
cm−1.

Parameter Bond

Fe–NA Fe–N3

A, kcal/mol·Å -149.0 -136.0

B, kcal/mol·Å5 -1385.0 -1660.0

C, kcal/mol·Å9 13650.0 18000.0

D0 73.0 65.0

α 1.69 1.73

r0 1.94 1.97

potential errors distributions for HS and LS complexes are consistent both
having small and close systematic errors due to its “softness”, as opposed
to the Morse potential.
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Figure 5. EDF for the difference between the experimental and the EHCF/MM calcu-
lated bond lengths (Å) over the entire test set of Fe(II) complexes. The Morse potential is
used for the Fe–N bond. The scaled Racah parameters are used for the EHCF calculations
(see text).

Among the applications of the EHCF methodology one can also mention
a recent one to analysis of the Mössbauer spectra of spin-active compounds.
This experimental method received a great attention as one capable to mon-
itor the spin transition due to strong difference between the parameters of
the Mössbauer spectra of the LS and HS forms of the iron(II) complexes. In
our paper [151] we addressed this topic and it has been shown that, first the
EHCF method yields more than acceptable description of the quadrupole
splitting in the spin active complexes of iron(II) where the complex geome-
try was known. In those cases, however, when the geometry was not known
from the experiment the EHCF/MM derived geometry has been used to
estimate the Mössbauer parameters. It turned out that the agreement with
experiment even in the case of the calculation based on the EHCF/MM
optimized geometry is very good. Particularly in the more difficult case
of LS complexes the results in all cases practically coincided with exper-
imental ones although the magnitude of the quadrupole splitting itself is
rather small (in the range 0.1 ÷ 0.2 mm s−1). By contrast applying the
DFT (hybrid) procedure to estimating the Mössbauer parameters in [104]
in the case of the LS complexes gave rather poor results: the experimental
splittings for the series of complexes in that paper were in the range 0.30
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Figure 6. EDF for the difference between the experimental and the EHCF/MM calcu-
lated bond lengths (Å) over the HS Fe(II) complexes. T he Morse potential is used for
the Fe–N bond. The scaled Racah parameters are used for the EHCF calculations (see
text).

÷ 0.43 mm s−1, whereas the DFT estimates were in the range 0.01÷ 0.12
mm s−1 which is obviously too low. Meanwhile for the HS complexes even
the temperature dependence of the quadrupole splitting is quite decently
reproduced [151] within the EHCF method.

Thus, a set of semiempirical methods based on EHCF approach allows
with good precision to calculate geometrical (structure) and spectral (split-
ting, electronic and Mössbauer spectra) characteristics of Fe(II) and Co(II)
complexes, which is hardly accessible by existent QC methods or can be
done only by enormous computational cost.

4. Discussion

In the present paper we tried to demonstrate that the problems faced by
most empirical and by (actual and so called) ab initio techniques when
applied to modelling TMCs have deep roots in the specific features of the
electronic structure of the latter and in approximations which tacitly drop
the necessary elements of the theory required to reproduce these features.
Of course, the EHCF approach whose success story is described here in
details is not completely isolated from other methods. In general picture,
the various CAS techniques must be mentioned in relation to it. The char-
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Figure 7. EDF for the difference between the experimental and the EHCF/MM calcu-
lated bond lengths (Å) over the LS Fe(II) complexes. The Morse potential is used for the
Fe–N bond. The scaled Racah parameters are used for the EHCF calculations (see text).

acteristic feature uniting these two otherwise very different approaches is
the selection of a small subset of one electron states followed by performing
adequately complete correlation calculation restricted to this smaller sub-
set. The general problem with such approaches is that usually it is taken
for granted that the HRF MO LCAO is a good source for obtaining the
states to be used in the correlated calculation. Two pitfalls can be ex-
pected and actually occur on this route. The first is that in the TMCs the
HFR MO LCAOs can be difficult to obtain or those obtained are of a poor
quality. The second is that even if the MO LCAOs are obtained correctly,
they provide too much delocalized picture of electron distribution. In terms
first proposed by J.-P. Malrieu and then extensively used by P. Fulde it is
equivalent to saying that in the HFR solution for the TMC the number of
electrons in the d-shell too much fluctuates around may be correct average
(integer) value. In both cases the limited CI (CAS) techniques are applied
to improve a very poor zero approximation. Taking only five MOs of appro-
priate symmetry to model the d-shell may be too näıve since the number of
states to be included in the CI formation to reduce the excessive fluctuations
must be much larger. Going to the one-electron states obtained from the
canonical MO LCAOs by some localization technique, may be useful, but
numerically expensive. The EHCF here advantageously uses the fact that
the exact wave function of the TMCs most probably corresponds to very
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Figure 8. EDF for the difference between the experimental and the EHCF/MM calcu-
lated bond lengths (Å) over the entire test set of Fe(II) complexes. The NR potential is
used for the Fe–N bond. The scaled Racah parameters are used for the EHCF calculations
(see text).

high localization of electrons in the d-shell which enables taking their delo-
calization into account as a perturbation. Among other approaches based
on a similar vision of the situation in TMCs ones of Refs. [152, 153] must
be mentioned.

When it comes to the analysis of similar approaches stemming from
the DFT the numerous attempts to cope with the multiplet states must
be mentioned [113, 154]. In these papers attempts are made to construct
symmetry dependent functionals capable to distinguish different multiplet
states in a general direction proposed by [99, 100]. It turns out, however,
that the result [113] is demonstrated for the lower multiplets of the C atom
which are all Roothaan terms. It is not clear whether this methodology is
going to work when applied to the d-shell multiplets which may be either
non-Roothaan ones or even nontrivially correlated multiple terms.

Another group of approaches can be qualified as an attempt of using
DFT based methods in order to evaluate the parameters of the CFT/LFT
theory. In this respect the papers [87,115] must be mentioned. The latter, in
a sense, follows the same line as the old semiempirical implementation [77]
where the MOs for the TMC molecule are first obtained by an approximate
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dr(Fe-N)
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Figure 9. EDF for the difference between the experimental and the EHCF/MM calcu-
lated bond lengths (Å) over the HS Fe(II) complexes. The NR potential is used for the
Fe–N bond. The scaled Racah parameters are used for the EHCF calculations (see text).

SCF-like procedure and then a CI is done in some restricted subspace of
the latter. In some sense, this approach is similar to the EHCF model too
with the general difference that the one-electron states used to construct
the complete CFT/LFT manifold are taken ”as is” from the KS calculation.
In this case one can expect some difficulties while selecting the MOs into
the set of those to be used in constructing the CI (it is not obvious whether
simple energy/symmetry criteria allow to select the necessary manifold of
the KS orbitals to reproduce the states in the dand what shall be done when
the symmetry is low?). Also the degree of delocalization of the KS orbitals
may interfere in evaluation of the CFT/LFT parameters from the results
of the DFT calculation. It looks like that it happened in [115] where the
values of the Racah parameters turned out to be strongly underestimated as
compared to the values known to fit the experiment within the CFT/LFT
model by this indicating the excess of delocalization of the KS orbitals as
compared to that necessary to reproduce the experimental data.

Generally one can notice that almost whatever review on computational
chemistry of TMCs starts from a sort of ”triple denial” of the old CFT/LFT
approaches as being pertinent to something which was happening ”once
upon a time”. Our point of view on the CFT/LFT picture is absolutely
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dr(Fe-N)
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Figure 10. EDF for the difference between the experimental and the EHCF/MM cal-
culated bond lengths (Å) over the LS Fe(II) complexes. The NR potential is used for the
Fe–N bond. The scaled Racah parameters are used for the EHCF calculations (see text).

different. It more or less corresponds to that given in the brilliant intro-
duction to the paper [87]. The clear-cut conclusion to be derived from
there is that the CFT/LFT picture keeps track of very physical picture of
the low-energy spectrum of the TMCs. Whatever discrepancy between the
results obtained by no matter how refined QC methods and those appear-
ing from the CFT/LFT must be considered as failures of the QC rather
than “age effects” of the CFT/LFT. It is the purpose for a QC study to
reproduce results obtained within the CFT/LFT paradigm and it is not
easily reachable and in many cases has not been reached yet. This idea
was the leading one in our studies on TMCs from very beginning and its
adequate formal representation in terms of the group functions and the
Löwdin partition technique provided a crucial step forward which allowed
the numerical implementation of the EHCF method [133]. It immediately
solved the problem of constructing semi-empirical description of the TMCs
which otherwise remained unaccessible for 30 years. The cost of this was
rejecting the HFR from of the wave function of the TMC which in the
present context cannot be considered as a big loss. Further development
of this approach and realizing its deeper relation to the general QM/MM
setting helped in evolving the corresponding EHCF/MM hybrid scheme.
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The latter is in relation with those proposed by Deeth [30] and Berne [155].
Both involve the d-shell energy as an additional contribution to that of
the MM scheme and use the AOM model with interpolated parameters to
estimate the latter. In the case of the approach [30] there are two main
problems. First is that the AOM parameters involved are assumed to de-
pend only on the separation between the metal and donor atoms. This is
obviously an oversimplification since from the formulae Eq. (25) it is clear
that the lone pair orientation is of crucial importance. This is taken into
account in the EHCF/MM method. Second important flaw is the absence
of any correlation in describing the d-shell in the model [30]. This precludes
correct description of the switch between different spin states of the open
d-shell, although in some situations different spin states can be described
uniformly.

5. Conclusion

In the present paper we demonstrated the feasibility of a semiempirical
description of electronic structure and properties of the Werner TMCs on
a series of examples. The main feature of the proposed approach was the
careful following to the structural aspects of the theory in order to preclude
the loss of its elements responsible for description of qualitative physical
behavior of the objects under study, in our case of TMCs. If it is done
the subsequent parameterization becomes sensible and successful solutions
of two long lasting problems: semi-empirical parameterization of transition
metals complexes and of extending the MM description to these objects
can be suggested.
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5. A. K. Rappé, K. S. Colwell, C. J. Casewit. Inorg.Chem., 1993, 32:3438–3450.
6. B.P. Hay. Coord. Chem. Rev., 1993, 126:177–236.
7. B. P. Hay, L. Yang, J.-H. Lii, N. L. Allinger. J. Mol. Struct. (THEOCHEM), 1998,

428:203–219.
8. P. Comba, T. Hambley. Molecular modeling of inorganic compounds. VCH, 1995.
9. P. Comba, R. Remenyi. Coord. Chem. Rev., 2003, 238-239:9–20.

10. H. Erras-Hanauer, T. Clark, R. Van Eldik. Coord. Chem. Rev., 2003, 238-239:233–
253.

11. P. Comba. Coord. Chem. Rev., 1999, 182:343–371.
12. M. Zimmer. Coord. Chem. Rev., 2003, 212:133–163.
13. R. D. Hancock. Prog. Inorg. Chem, 1989, 37:187.
14. D. L. Kepert. Inorganic Stereochemistry. Springer, Berlin, 1982.
15. I. V. Pletnev, V. L. Melnikov. Koord. Khim., 1997, 23:205. [in Russian].
16. M. G. Razumov, V. L. Melnikov, I. V. Pletnev. J. Comp. Chem., 2001, 22:38.
17. J. Sabolović. Polyhedron, 1993, 12:1107–1113.
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Topics in Theoretical Chemical Physics, volume 12 of Progress in Theoretical
Chemistry and Physics, pages 207–246. Kluwer, Dordrecht, 2003.

58. G. E. Toney, A. Gold, J. Savrin, L. W. TerHaar, R. Sangaiah, W. E. Hatfield.
Inorg. Chem., 1984, 23:4350–4352.

59. D.W. Clack, N.S. Hush, S.R. Yandle. J. Chem. Phys., 1972, 57:3503–3510.
60. D. W. Clack. Mol.Phys., 1974, 27:1513–1519.
61. D. W. Clack, W. Smith. J. Chem. Soc. Dalton Trans., 1974, page 2015.
62. J. A. Pople, D. L. Beveridge. Approximate Molecular Orbital Theory. McGraw-Hill

Book, New York, 1970.
63. A. D. Bacon, M. C. Zerner. Theor. Chim. Acta, 1979, 53:21–54.
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COMPLEX SYSTEMS



AB-INITIO GUTZWILLER METHOD: FIRST APPLICATION
TO PLUTONIUM
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AND

J. BOUCHET
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Abstract. Using a density matrix approach to Gutzwiller method, we
present a formalism to treat ab-initio multiband Tight-Binding Hamilto-
nians including local Coulomb interaction in a solid, like, for e.g., the de-
generate Hubbard model. We first derive the main results of our method:
starting from the density matrix of the non-interacting state, we build a
multi-configurational variational wave function. The probabilities of atomic
configurations are the variational parameters of the method. The kinetic
energy contributions are renormalized whereas the interaction contribu-
tions are exactly calculated. A renormalization of effective on-site levels,
in contrast to the usual one-band Gutzwiller approach, is derived. After
minimization with respect to the variational parameters, the approximate
ground state is obtained, providing the equilibrium properties of a material.
Academic models will illustrate the key points of our approach. Finally, as
this method is not restricted to parametrized Tight-Binding Hamiltonians,
it can be performed from first principles level by the use of the so-called
”Linearized Muffin Tin Orbitals” technique. To avoid double counting of the
repulsion, one subtracts the average interaction, already taken into account
in this density functional theory within local density approximation (DFT-
LDA) based band structures method and one adds an interaction part ”a la
Hubbard”. Our method can be seen as an improvement of the more popular
LDA+U method as the density-density correlations are treated beyond a
standard mean field approach. First application to Plutonium will be pre-
sented with peculiar attention to the equilibrium volume, and investigations
for other densities will be discussed.
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1. Introduction

Except for small molecules, it is impossible to solve many electrons systems
without imposing severe approximations. If the configuration interaction
approaches (CI) or Coupled Clusters techniques [1] are applicable for mole-
cules, their generalization for solids is difficult. For materials with a kinetic
energy greater than the Coulomb interaction, calculations based on the
density functional theory (DFT), associated with the local density approx-
imation (LDA) [2, 3] give satisfying qualitative and quantitative results to
describe ground state properties. These solids have weakly correlated elec-
trons presenting extended states, like sp materials or covalent solids. The
application of this approximation to systems where the wave functions are
more localized (d or f -states) as transition metals oxides, heavy fermions,
rare earths or actinides is more questionable and can even lead to unphys-
ical results : for example, insulating FeO and CoO are predicted to be
metalic by the DFT-LDA. On another hand, theoretical ”many body” ap-
proaches like diagrammatic developments [4], slave bosons [5], decoupling
of the equations of motion of Green functions by projection techniques [6],
and more recently dynamical mean field theory (DMFT) in infinite dimen-
sion [7], treat in a much better way correlation effects than the DFT-LDA
does. However the price to be paid is an oversimplification of the system,
generally reducing the number of involved orbitals and using parameterized
Hamiltonians (like Hubbard model) where the ab-initio aspect of the DFT-
LDA is lost. Finally, these methods, contrary to the DFT-LDA, are scarcely
variational. Recently several attemps have been proposed to couple these
two points of view as in the LDA+U [8], or LDA+DMFT [9,10] approaches.
In the same spirit, the approach we describe below, tries to keep advantages
on both sides: it is a variational method which is multi-configurational,
contrary to the DFT-LDA, but without loosing the ”adjustable parameters
free” advantages of the ab-initio side. The next section is devoted to the
derivation of our formalism. It is then applied to known academic cases
to prove the reliability of our approach. The insertion of this approach at
the ab-initio level is presented in section 2.5. The nature of the electronic
structure of Plutonium being still under discussion, the application of our
method, in the last section, is in accordance with previous works and also
gives some new insights for this material.

2. Method

2.1. GUTZWILLER APPROACH FOR THE ONE-BAND HUBBARD MODEL

Among numerous theoretical approaches, the Gutzwiller method [11, 12]
provides a transparent physical interpretation in term of atomic configu-
rations of a given site. Originally it was applied to the one-band Hubbard
model Hamiltonian [13]:
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H = Hkin + Hint (1)

with

Hkin =
∑

i�=j,σ

tijc
†
iσcjσ (2)

and

Hint = U
∑

i

ni↑ni↓ (3)

which contains a kinetic part Hkin with a hopping integral tij from site
j to site i, and an interaction part with a local Coulomb repulsion U for
electrons on the same site. c†iσ (respectively ciσ) is the creation (respectively
destruction) operator of an electron at site i with up or down spin σ. niσ =
c†iσciσ measures the number (0 or 1) of electron at site i with spin σ. This
Hamiltonian contains the key ingredients for correlated up and down spin
electrons on a lattice: the competition between delocalization of electrons by
hoppings and their localization by the interaction. It is one of the most used
models to study electronic correlations in solids (for a review see Ref. [14]).

In the absence of the interaction U , the ground state is that of uncor-
related electrons |Ψ0〉 and has the form of a Slater determinant. As U is
turned on, the weight of doubly occupied sites must be reduced because
they cost an additional energy U per site. Accordingly, the trial Gutzwiller
wave function (GWF) |ΨG〉 is built from the Hartree-like uncorraleted wave
function (HWF) |Ψ0〉,

|ΨG〉 = gD|Ψ0〉 (4)

The role of gD is to reduce the weight of configurations (i.e. a way of
spreading N electrons over the lattice) with doubly occupied sites, where
D =

∑
i ni↑ni↓ measures the number of double occupations and g (< 1) is a

variational parameter. In fact, this method corrects the mean field (Hartree)
approach for which up and down spin electrons are independent, and, some
how, overestimates configurations with double occupied sites. Using the
Rayleigh-Ritz principle, this parameter is determined by minimization of
the energy in the Gutzwiller state |ΨG〉, giving an upper bound to the true
unknown ground state energy of H. Note that to enable this calculation to
be tractable, it is necessary to use the Gutzwiller’s approximation which
assumes that all configurations in the HWF have the same weight. Details
of the derivation can be found in the article of Vollhardt [15].

Nozières [16] proposed an alternative way, showing that the Gutzwiller
approach is equivalent to renormalize the density matrix in the GWF which
can be reformulated as:
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ρG = T †ρ0T (5)

The density matrices ρG = |ψG〉〈ψG| and ρ0 = |ψ0〉〈ψ0| are projectors
on the GWF and HWF respectively. T is an operator, diagonal in the
configuration basis, T =

∏
i Ti and Ti is a diagonal operator acting on site

i

Ti|Li, L
′〉 =

√
p(Li)
p0(Li)

|Li, L
′〉 (6)

Li is an atomic configuration of the site i, with probability p(Li) in the
GWF and p0(Li) in the HWF respectively, whereas L′ is a configuration
of the remaining sites of the lattice. Note that this prescription does not
change the phase of the wave function as the eigenvalues of the operators
Ti are real. The correlations are local, and the configuration probabilities
for different sites are independent.
The expectation value of Hamiltonian (1) is given by

〈H〉G = Tr(ρGH) (7)

The mean value of one-site operators (interaction U) is exactly calculated
with the double occupancy probability di = 〈ni↑ni↓〉G. di is the new vari-
ational parameter replacing g. From expressions (5) and (6), the two-sites
operators contributions of the kinetic energy can be written as

〈c†iσcjσ〉G = Tr(ρGc†iσcjσ) = 〈c†iσcjσ〉0
∑

L−σ

√
p(L′

σ, L−σ)
p0(L′

σ)

√
p(Lσ, L−σ)

p0(Lσ)
(8)

where L′
σ and Lσ are the only two configurations of spin σ at sites i and

j that give non-zero matrix element to the operator in the brackets as
illustrated on Fig.1. The summation is performed over the configurations of
opposite spin L−σ. Their corresponding probabilities are pictured on Table
1 for an homogeneous state (for any site i, 〈niσ〉 = n and 〈ni↑ni↓〉 = d).
The probabilities p0 in the HWF depend only on the number of electrons,
whereas the p in the GWF also depend on di.

After some elementary algebra, one can show that the Gutzwiller mean
value can be factorised:

〈c†iσcjσ〉G =
√

qiσ〈c†iσcjσ〉0
√

qjσ (9)

where these renormalization factors qiσ are local and can be expressed as:

√
qiσ =

(√
1− niσ − ni−σ + di +

√
di

)√
ni−σ − di

√
niσ(1− niσ)

(10)
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i ji j

initial

initial

final

final

Figure 1. Initial and final configurations contributing to the mean value 〈c†iσcjσ〉G.

Li p0(Li) p(Li)

∅ (1 − n)2 1 − 2n + d

↑ n(1 − n) n − d

↓ n(1 − n) n − d

↑↓ n2 d

TABLE 1. Different possi-
ble configurations of one site
and the corresponding proba-
bilities in the HWF (p0) and
GWF (p).

where niσ is a shorthand for 〈niσ〉, the average number of electron on the
considered ”orbital-spin” in the HWF, which could be site and/or spin
independent if the state is homogeneous and/or paramagnetic (it is the case
we consider here for pedagogy, dropping indices iσ). The kinetic energy ε0kin
of the non-interacting electrons state is renormalized by a factor q which
is smaller than one in the correlated state, and equal to one in the HWF.
Then, we minimize the variational energy
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E(d) = 〈H〉G = qε0
kin + Ud (11)

with respect to d. In the case of half filling (n = 1/2), if the repulsion U
exceeds a critical value Uc = 8ε0kin, q is equal to zero, leading to an infinite
quasiparticle mass with a Mott-Hubbard Metal-Insulator transition which
is, in this context, often referred to as ”the Brinkmann-Rice transition” [17],
as these authors first applied the Gutzwiller approximation to the Metal-
Insulator transition. Application of this ”one orbital per site” formalism for
inhomogeneous states is possible because all involved quantities are local.
An example can be found in [18] for model CuO2 planes, in connection
with the electronic structure of High TC superconductors.

2.2. INEQUIVALENT SITES: RENORMALIZATION OF LEVELS

When sites are inequivalent, or if orbitals belong to different symmetries as
in a multiorbital spdf basis case of further sections, it is necessary to add
to the Hamiltonian an on-site energy term

Hon−site =
∑

iσ

ε0iσniσ (12)

Hence this enlarged Hubbard Hamiltonian can be written as

H =
∑

i�=j,σ

tijc
†
iσcjσ +

∑

iσ

ε0iσniσ + U
∑

i

ni↑ni↓ (13)

In that case, the starting HWF, directly obtained from the non-interacting
part of the Hamiltonian, is not automatically the best choice, giving the
optimal GWF, i.e. having the lowest energy. For example, if we look for the
ground state of Hamiltonian (13) in the Hartree-Fock (HF) self-consistent
field formalism, it is necessary to vary the orbital occupations. Practically, it
can be achieved by replacing this Hamiltonian, by an effective Hamiltonian
Heff of independent particles with renormalized on-site energies εiσ:

Heff =
∑

i�=j,σ

tijc
†
iσcjσ +

∑

iσ

εiσniσ(+C) (14)

The HWF we are looking for, is an approximate ground state of the
true many-body Hamiltonian (13) and is the exact ground state of effective
Hamiltonian (14). The additive constant C accounts for double counting
energy reference, so that the ground state energies are the same for both
Hamiltonians:

〈Heff 〉 = 〈H〉 (15)

The effective Hamiltonian depends on pararemeters εiσ. The optimal choice
can be obtained by minimizing the ground state energy of Heff with respect
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to these parameters. With the help of Hellmann-Feyman theorem, one can
easily see that the derivative of the kinetic energy is

∂〈Hkin〉
∂εiσ

= −
∑

j �=i,σ

εjσ
∂〈njσ〉
∂εiσ

(16)

On another hand, differentiation of equality (15) associated with expression
(16) and the mean field approximation 〈ni↑ni↓〉 ≈ 〈ni↑〉〈ni↓〉 enables to
retrieve the well-known formula for the on-site energies

εiσ = ε0iσ + U〈ni−σ〉 (17)

and the constant C is simply −U
∑

i〈ni↑〉〈ni↓〉.
In the Gutwiller approach, the same argument about the variation of

orbital occupation, i.e. flexibility on the HWF |Ψ0〉, is true. It is necessary
to find a way to vary this Slater determinant from which the GWF |ΨG〉 is
generated, so that the Gutzwiller ground-state energy is minimum. Clearly
one has to find an equivalent of formula (17) in the Gutzwiller context,
which has never been established, to our knowledge. The average value of
Hamiltonian (13) on a GWF is given by:

〈ΨG|H|ΨG〉 =
∑

ijσ

tij
√

qiσ〈c†iσcjσ〉0
√

qjσ + U
∑

i

di +
∑

iασ

ε0iσ〈niσ〉0 (18)

Following the same footing of previous HF self-consistent field approach,
one has to find an effective Hamiltonian Heff of independent particles hav-
ing |Ψ0〉 as exact ground state. This state |Ψ0〉 generates the GWF |ΨG〉
which is an approximate ground state of the true interacting Hamiltonian
(13). In analogy with (15), the condition

〈Ψ0|Heff |Ψ0〉 = 〈ΨG|H|ΨG〉 (19)

leads to the expression for the searched Heff :

Heff =
∑

i�=j,σ

t̃ijc
†
iσcjσ +

∑

iσ

εiσniσ + C ′ (20)

with effective but fixed renormalized hoppings t̃ij =
√

qiσtij
√

qjσ and having
effective on-site energies εiσ which have still to be determined. Hellmann-
Feynman theorem applied to Heff provides again an expression similar to
(16), but with effective hoppings. Taking into account the dependence of
the qiσ’s through niσ in differentiating (18) and (19) with respect to the pa-
rameters εiσ, after some calculations, one obtains the equivalent expression
of (17) in the Gutzwiller context:
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εiσ = ε0iσ + 2eiσ
∂ln(

√
qiσ)

∂niσ
(21)

Here eiσ is the partial kinetic energy of orbital-spin iσ, it is given by

eiσ =
∑

jσ

t̃ij〈c†iσcjσ〉0 =
∫ EF

−∞
EÑiσ(E)dE − εiσ〈niσ〉0 (22)

with Ñiσ the iσ-projected density of states (DOS) for Hamiltonian Heff .
The remaining constant C ′ that ensures (19) explicitly reads

C ′ = U
∑

i

di −
∑

iσ

2eiσ
∂ln(

√
qiσ)

∂niσ
(23)

To solve the full problem of finding an approximate ground state to
Hamiltonian (13), one is faced to a self-consistent loop which can be pro-
ceeded in two steps. First one can get the occupations 〈niσ〉0 from a HWF,
and a set of ’bare’ ε0iσ levels. Then one obtains a set of configuration para-
meters, the probabilities of double occupation, di by minimizing (18) with
respect to these probabilities. Afterwards the on-site levels are renormal-
ized according to (21) and the next loop starts again for the new effective
Hamiltonian Heff till convergence is achieved.

As illustration of the importance of the renormalization of levels, we
studied the case of an alternate Hubbard chain (often called Ionic Hubbard
model). This model contains two kinds of alternating atoms A and B on
an infinite chain, having on-site energies ε0A and ε0B respectively, coupled
by a hopping integral t. The same local Coulomb repulsion U acts on each
site. For a given total number of electrons, one can fix a repartition of
electrons among sites A and B, and compute the energy of the ground
state: first within the HF mean field approximation, and secondly, within
the Gutzwiller approach. Browsing the electronic occupation of A-site, by
adjunction of Lagrange multiplier to fix it to a given value, one looks for the
lowest energy state. The corresponding ground state energies as function of

could be more efficiently directly found, after some self-consistent loops,via
the on-site renormalization of levels of equation (17) in the HF context,

obvious state.
It is necessary to browse among different A-fillings to find the bestGutzwiller
ground state. If this browsing procedure is still tractable for simple models,
as we did in Ref. [18], its generalization to multiorbitals cases would be
practically impossible. It is the main advantage of formula (21) to avoid this
cumbersome search for optimized levels and to provide a systematic way of
finding them, similar to (17), leading to the best (i.e. lowest) Gutzwiller
ground state.

as explained of the curve, it is also

stateHartreethe A-filling are presented on Fig. 2. First of all, the lowest

By inspectionin the paragraph above.
that this Hartree state does not generate the lowest Gutzwiller



AB-INITIO GUTZWILLER METHOD... 517

0.2 0.3 0.4 0.5
A−subband filling

−2

−1.5

−1

−0.5

0

0.5

1

E
ne

rg
y

Gutzwiller Energy
Hartree−Fock Energy

Figure 2. Total energy of the alternate chain versus A-subband filling. Upper curve:
Hartree-Fock result, Lower curve: Gutzwiller result. The 2 minima are clearly different.

2.3. GENERALIZATION TO THE DEGENERATE HUBBARD
HAMILTONIAN

Now we generalize this density matrix formalism [19,20] for the degenerate
Hubbard Hamiltonian which, with usual notations, reads:

H =
∑

i�=jαβσ

tiα,jβc†iασcjβσ + Hint (24)

with the model interaction

Hint =
1
2

∑

i,ασ �=βσ′
Uασβσ′niασniβσ′ (25)

where α, β and σ, σ′ are orbitals and spins index respectively, necessary
to account for orbital degeneracy. The case ασ = βσ′ is excluded from the
interaction because of Pauli principle. We neglect any spin flip term in the
interaction for simplicity. They could be in principle taken into account in
our approach, as it is done in a different work by Bünemann et al [21].
However this procedure would involve a diagonalization of atomic part of
Hamiltonian, that complicates the presentation of our approach without
bringing any new physical ingredients.
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As in the one-band case, we define a Gutzwiller renormalized density
matrix with the operator T given by eqs (5) and (6). The main difference
being the greater number of atomic configurations, equal to 22N , with N the
orbital degeneracy. For a given site we have now probabilities for double,
triple, etc... multiple occupancy, which are the new variational parameters
generalizing the role of d. Of course, the number of independent variational
probabilities is smaller than the number of configurations, as different con-
figurations could have the same probabilities for symmetries reasons. For
example, in a paramagnetic case, a configuration and its spin reverse are
equivalent leading to the same probability. Moreover, the probabilities are
not independent of each other as the sum over all probabilities have to be
equal to 1, and we have also to conserve the average electronic occupa-
tion of given orbital-spin 〈niασ〉. These constraints could be either directly
included in the expressions of empty and single occupied configurations
probabilities, or treated by adjunction of Lagrange multipliers as in the
slaves bosons approach [5]. This last formulation has the advantage of giv-
ing more symmetric expressions. Using the expression (6) of Ti operators,
we can directly obtained the factorized form of the kinetic energy terms:

〈c†iασcjβσ〉G =
√

qiασ〈c†iασcjβσ〉0
√

qjβσ (26)

where the q-factors reduce the kinetic energy and are expressed as functions
of the variational parameters and the number of electrons according to:

√
qiασ =

1√
niασ(1− niασ)

∑

L′
i

√
p(iασ : unocc, L′

i)p(iασ : occ, L′
i) (27)

Here p(iασ : occ, L′
i) (respectively p(iασ : unocc, L′

i)) represents the proba-
bility of the atomic configuration of site i, where the orbital α with spin σ is
occupied (resp. unoccupied) and where L′

i is a configuration of the remain-
ing orbitals of this site. This result is similar to the expression obtained
by Bünemann et al. [22], but it is obtained more directly by the density
matrix renormalization (5). To obtain the expression of the qiασ factors, an
additional approximation to the density matrix of the uncorrelated state
was necessary. This approximation can be viewed as the multiband gener-
alization of the Gutzwiller approximation, exact in infinite dimension [23]

〈LL′′|ρ0|L′L′′〉 ≈ p0(L′′)
∑

L′′
〈LL′′|ρ0|L′L′′〉 (28)

Where we have replaced an off-diagonal element of the density by its aver-
age value over the configurations L′′. L and L′ are configurations of one or
two sites, involved in the calculation of interaction or kinetic term and L′′

is the configuration of remaining sites. This approximation allows to per-
form calculations, and however preserves sum rules of the density matrix.
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Similarly, the interaction between an electron at site i on orbital α with
spin σ and an electron on orbital β with spin σ′ involves a term

〈niασniβσ′〉 =
∑

L′
i

p(iασ : occ, iβσ′ : occ, L′
i) (29)

where L′
i is a configuration of the remaining spin-orbitals of this site, other

than ασ and βσ′.
As illustration, we studied the academic case of paramagnetic state for

doubly degenerate bands like, for instance, eg-symmetry d-orbitals in cubic
or octahedral environment. Hybridization among these degenerate orbitals
is supposed to produce a kinetic energy ε0kin in the uncorrelated state. We
take a model interaction where the general expression (25) reduces to:

Hint = U
∑

iασ niασniα−σ + U ′∑
iα�=βσ niασniβ−σ

+(U ′ − J)
∑

iα�=βσ niασniβσ (30)

with two independent parameters U and U ′ as the relation U −U ′ = 2J
stands [24]. The interaction between electrons of same spin is reduced by
the exchange integral J , which is essential to reproduce first Hund’s law of
maximum spin. The application of the above prescription directly leads to
the variational energy:

EG = 2qε0
kin + 2Ud0 + 2U ′d1 + 2(U ′− J)d2 + 2(U + 2U ′− J)(2t + f) (31)

f and t are the quadruple and triple occupancy respectively, whereas there
are three possibilities of double occupancies : d0 (same orbital, different
spin), d1 (different orbital, different spin)and d2 (different orbital, same
spin). Some of the corresponding configurations with multiple occupancy
are pictured on Table 2, followed by their probability and their interac-
tion energy. This expression is identical to the result obtained by different
authors using Gutzwiller-type wave function [25, 26], or multiband slave-
boson approach [27] which is a multiorbital generalization of Ref. [5]. It is
to be stressed the very physical ”transparent” approach with the density
matrix formalism, leading to simple expressions. Also, there is no approxi-
mation about less favorable configurations, discarded from the beginning as
in Ref. [28]. For a given electronic filling, we use a Newton-Raphson proce-
dure to minimize EG with respect to d0, d1, d2, t and f . We again choose a
half filled case, and we scale all contributions in term of the kinetic energy.

On Fig. 3 we plot the probabilities of different configurations versus the
direct Coulomb interaction U . It can be seen that the system undergoes a
metal-insulator transition for a sufficiently high value of U , close to 9. It is
easy to perform the same kind of calculation in the case of triply degenerate
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↑↓ d0 U

↑ ↓ d1 U ′

↑ ↑ d2 U ′ − J

↑↓ ↓ t U + 2U ′ − J

↑↓ ↑↓ f 2U + 2(2U ′ − J)

TABLE 2.

0 5 10
U
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d0

d2

n=0.48

Figure 3. For the half filling case all the probabilities are equal for U = 0. For Uc ∼ 9
we have a transition from the metallic to the insulator state which is of first order at half
filling and second order for other concentration as seen for n = 0.48.

orbitals relevant for d-orbitals with the symmetry t2g, (for instance Ti t2g

in LaTiO3), f -orbitals with the symmetry T1 or T2 in cubic or octahedral
environment (rare-earth element or actinides) or p-orbitals like in fullerene
C60.
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2.4. DIFFERENT ORBITAL SYMMETRIES: FULLY HYBRIDIZED
HAMILTONIAN

As our aim is to describe realistic materials from the ab-initio level, it is
necessary to have a full set of spd and possibly f (for actinides or rare
earths) basis. The system can be described by the following Hamiltonian
which is the sum of a kinetic term, local Coulomb repulsions and an on-site
contribution accounting of difference of site (and/or symmetries)

H =
∑

i�=jαβσ tiα,jβc†iασcjβσ

+1
2

∑
i,ασ �=βσ′ Uασβσ′niασniβσ′

+
∑

iασ ε0iασniασ (32)

The kinetic term is responsible of the hybridization of orbitals with
different -symmetries on neignboring sites among each others. Moreover,we
assume that the interaction part of the Hamiltonian Hint only concerns
one subset of correlated orbitals (say f). All atomic configurations Γ of
this subset on each site i will be considered. Note that H can be seen as
a multiband hybrid between the Hubbard Hamiltonian and the periodic
Anderson Hamiltonian. It contains hybridization of localized interacting f
orbitals among each others (Hubbard) but also with extended spd states
(Anderson). Using the results of previous sections, the variational energy
in the Gutzwiller state reads

EG =
∑

i�=jαβσ
√

qiασtiα,jβ〈c†iασcjβσ〉0
√

qjβσ

+
∑

i,Γ UΓpi(Γ) +
∑

iασ ε0iασ〈niασ〉0 (33)

In this expression the q-factors of site i are functions, through (27), of the
probabilities pi(Γ) of the atomic configurations Γ of f -orbitals at the same
site. They are equal to 1 if orbital α or β does not belong to this subset,
i.e. for extended states. UΓ is a proper combination of Coulomb direct and
exchange contributions Uασβσ′ , accounting for the interaction energy which
arises as prefactors of expressions (29), and which can be seen for e.g. on
simplified case of (31). As in our previous simpler models, the probabilities
pi(Γ) are the variational parameters and one has to minimize EG with
respect to each of them (and at each inequivalent site) according to

0 =
∂EG

∂pi(Γ)
=
∑

αjβσ

∂
√

qiασ

∂pi(Γ)
tiα,jβ〈c†iασcjβσ〉0

√
qjβσ

+
∑

jβσ

√
qjβσtjβ,iα〈c†jβσciασ〉0

∂
√

qiασ

∂pi(Γ)
+ UΓ (34)



522 J.-P. JULIEN AND J. BOUCHET

To avoid the cumbersome calculations of all 〈c†iασcjβσ〉0 cross-terms which
are present in a fully hybridized case, we propose a recursive procedure for
the minimization of EG, i.e. the search for the optimal set of probabilities. In
spirit close to the impurity model of the DMFT approach, we first consider
that there is only one correlated site, say i = 0. This site is supposed
to be embedded in a reference fixed medium where all q’s other than the
considered site ’0’, are equal to 1 at beginning or to their previous values in
the self-consistent process that has to be performed afterwards. Then the
set of

∂EG

∂p0(Γ)
=
∑

ασ

2ei=0ασ
∂ln(

√
q0ασ)

∂p0(Γ)
+ UΓ (35)

The partial kinetic energies ei=0ασ of orbital ασ at site i = 0, gener-
alizing (22), are obtained from partial projected DOS, available from any
electronic structure code, and computed with site i = 0 embedded in the
reference medium. To ensure numerical stability when solving system of
eqs. (35) and according to the spirit of Landau theory of Fermi liquids,
the interactions are progressively switched on from zero to their final val-
ues starting from the probabilities of uncorrelated case. After solution, the
probabilities p0(Γ) are used to compute the local q-factors of site 0. If all
sites are equivalent, one would get the same results on other sites. Accord-
ingly, the q-factors of other sites are all set equal to the ’0’-th ones (one
would have to repeat this impurity-like calculation if there are inequivalent
sites, i.e. crystal structures with more than one atom per cell or disordered
systems). Changing the q-factors affects the partial kinetic energies ei=0ασ

and also the occupation of orbitals, as the reference medium now has new
effective hoppings. Process must be iterated till convergence. The advan-
tage of this way of solving iteratively eqs. (34) is that the only required
ingredients to get the solutions are partial (local) kinetic energies and oc-
cupations of orbitals at site 0 directly obtained from partial DOS’s. The
price to be paid is a greater number of electronic structure paths. It can be
easily implemented in existing codes, without searching to get cross-terms,
reducing the numerical effort to adapt our method in these codes.

Finally, as in the one-band case, it is necessary to find the best Slater
determinant leading to optimized effective levels. One can easily show that
expression (21) can be generalized for orbital degeneracy:

εiασ = ε0iασ + 2eiασ
∂ln(

√
qiασ)

∂niασ
(36)

Again, as in the one-band case, it is necessary to perform self-consistent
calculations (for a given previously converged {p0(Γ)} set) till the overall
convergence is reached i.e. the on-site effective levels as well as the hoppings
are converged. Once achieved, the effective Hamiltonian Heff can be used

equations (34) for all configurations Γ of site 0 can be rewritten as
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to a quasiparticles description of the system as proposed by Vollhardt [15].
In fact, he has shown that the Gutzwiller method is a natural frame to
obtain the parameters of the phenomenological Landau theory of Fermi
liquids. One can also expect finite temperature extension of our method in
analogy with [47] and references therein.

2.5. AB-INITIO APPROACH: ALTERNATIVE TO THE LDA+U METHOD

We present now how to implement such an approach in an ab-initio calcula-
tion of solids. The linearized muffin-tin orbital in the atomic sphere approx-
imation (LMTO-ASA) is widely used and peculiarly suited for our purpose
as the basis set has a local representation. Other ab-initio approaches could
be used, and if they have not this local property, one could transform the
basis into a Wannier representation. The LMTO method is well described
elsewhere [29, 30] and we would like to remind here only the main results
which are usefull for this paper. In the frame of DFT-LDA band structure
calculations, the LMTO method is based on some approximations. The
space is divided in atomic spheres where the potential is spherically sym-
metric and interstitial region where it is flat (”Muffin Tin” potential). In
the Atomic Sphere Approximation (A.S.A.), the spheres radii are chosen so
that the total volume of the spheres equals that of the solid. One makes a
further approximation by supposing that the kinetic energy in the intersti-
tial region is zero (without this non-essential assumption, Laplace equation,
as used below, should be replaced by Helmoltz equation). In this region,
the Schrödinger equation reduces to Laplace equation having regular and
irregular solutions: YL(r̂)r�and YL(r̂)r−�−1 respectively. Here L = (, m)
represents the angular momentum index and YL(r̂) the spherical harmon-
ics in direction r̂ = (θ, φ). For the sphere centered at site R and in the
momentum index  ( = 0, 1, 2, 3), one finds the solution ϕR�ν of the radial
Schroedinger equation for a given energy Eν , usually taken at the center of
gravity of the occupied part of the -band and the energy derivative of ϕR�ν

noted ϕ̇R�ν . It can be shown that the corresponding orbitals ϕR�ν and ϕ̇R�ν

are orthogonal to each other and nearly orthogonal to the core levels. It is
thus possible to build a basis set of orbitals χRL centered at sphere of site
R in the following way. Outside the sphere, in the interstitial region χRL is
proportional to the irregular solution YL(r̂)r−�−1 of Laplace equation and
it is augmented (i.e. substituted according to Slater terminology) in its own
sphere by a linear combination of ϕR�ν and ϕ̇R�ν having logarithmic deriv-
ative −− 1 at the radius sR of the sphere so that the orbital is continuous
and derivable at the sphere boundary. In any other sphere R′, the irregular
solution of Laplace equation can be expanded in term of regular solutions
in that sphere:
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YL(r̂R)(
rR

a
)−�−1 = −

∑

L′

1
2(2′ + 1)

S0
R′L′,RLYL′(r̂R′)(

rR′

a
)�′ (37)

and the orbital χRL should be augmented in sphere R′ with the same
expansion of linear combination of ϕR′�′ν and ϕ̇R′�′ν having the logarithmic
derivative ′ at the radius sR′ of sphere R′. In (37), a is a scale factor and
S0

R′L′,RL are the so-called ”structure constants” which depend only on the
crystallographic structure of the material. In this basis set of the orbitals
χRL both Hamiltonian and Overlap matrices can be expressed in terms of
S0

R′L′,RL, and the potential parameters ϕR�ν(sR), ϕ̇R�ν(sR) and their loga-
rithmic derivatives DR�ν and ḊR�ν at sphere boundary. Since the structure
constants S0

R′L′,RL , decreasing as r−�−�′−1 with distance, are very long
ranged for s and p orbitals, it can be more convenient to change the basis
set so that the Hamiltonian can have the Tight-Binding (TB) form or any
desired properties (like the orthogonality of overlap). It can be achieved by
adding to the regular solution of Laplace equation an amount of the irreg-
ular solution for a given angular momentum. It is possible to choose this
amount Q̄� so that the transformed structure constants S can be screened
with a short-range dependence with the distance or so that the orbitals of
the transformed basis set are orthogonal (the so-called TB or most local-
ized and orthogonal representations, respectively). With appropriate choice
for Q̄�, the transformed structure constant matrix obeys to the following
equation:

S = S0(1− Q̄�S
0)−1 (38)

Matrix elements fo the Hamiltonian can be written as:

HRL,R′L′ = CRLδRL,R′L′ + ∆1/2
RLSRL,R′L′∆1/2

R′L′ (39)

which is limited to first order in (E−Eν) in the TB representation, whereas
it is valid up to second order in the orthogonal representation (and it is even
possible to add third order correction). CRL determines the middle of the
band ”RL” and ∆RL its width and the strength of hybridization. These
parameters are expressed in terms of the 4 potential parameters: ϕR�ν(sR),
ϕ̇R�ν(sR), DR�ν and ḊR�ν . It should be stressed that hybridization between
bands of different angular moments is due to the matrix elements SRL,R′L′

which couples RL-states to R′L′ ones. When these matrix elements are set
equal to zero for  �= ′, one obtains bands having pure  character. This
approximation was suggested in the standard (unscreened) representation
and the resulting bands were called ”canonical” bands. In that case it would
be quite easy to apply single band Gutzwiller method (one equation per 
symmetry) without the need of the previous fully hybridized generalization.
However, as we want to treat realistic bands, we do not use the canonical
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bands in this paper. We use a scalar relativistic LMTO-ASA code neglect-
ing spin-orbit coupling, with the so-called ”combined corrections” which
correct the ASA. The density functional formalism, before the Gutzwiller
correction explained below, was treated within the LDA with the exchange
and correlation potential of von Barth and Hedin [31].

The Hamiltonian of valence electrons (39), in the so-called orthogonal
representation (or in the most localized representation, neglecting orbital
overlap) can be mapped on a tight-binding form Hamiltonian

HLMTO =
∑

i�=jαβσ

tiα,jβc†iασcjβσ +
∑

iασ

εiασniασ (40)

The hoppings and on-site energies are directly outputs of the ab-initio cal-
culation, as explained in Ref. [30] and by identification of expression (40)
with (39), making the correspondance: R → i, L → α. This opens the
possibility of treating our approach from first principle level, without any
adjustable parameters, except the interactions U . They could be however
also computed from constrained LDA calculations but in the following we
rather treat them as free parameters. As in (32), (40) describes a full spd
(and possibly f as in application of this method to Plutonium, see next
section) basis. The terms εiασ account for different on-site energies for or-
bitals with different angular momentum or lying on inequivalent sites with
possible crystal field splitting between orbitals of same angular momen-
tum, but belonging to different irreducible group representations: it is due
to the on-site contribution of SRL,RL that arises in the TB or in the nearly
orthogonal representation.

In the spirit of the Anderson model, we separate electrons into two
subsystems: delocalized electrons for which the LDA is assumed to give
reasonable results and localized electrons for which it is well known that
the LDA can lead to unphysical results. To treat these states in a better
way, and to avoid double counting, we exclude the interaction between
localized electrons (f or d) already taken into account in an average way
in the LDA-on-site energy

ε0iασ = εLDA
iασ − U(nf −

1
2
) (41)

where U is a proper combination of direct and exchange Coulomb integral
giving a true one-electron Hamiltonian H0. nf is the average number of f
(or d) electrons given by the LDA calculation. We then re-add an inter-
action part Hint ” a la Hubbard” for the localized electrons and the full
Hamiltonian H ′ = H0 + Hint is treated within the previously described
multiband Gutzwiller approach. In fact this starting Hamiltonian H ′ is the
same one used in the so-called ”LDA+U” method [8], the difference being in
the way the interaction part is treated. In the LDA+U method, it is treated
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in a mean field Hartree-Fock like approach, which can be questionable in
case of strong correlations. It is however a suitable way of introducing an
orbital-dependent potential which is absent in DFT formalism. In our ap-
proach the correlation is treated exactly, within the approximation of the

potential through the renormalization of levels (36). A detailed study of

rewriting this formula:

εiασ = ε0iασ −
2eiασ

niασ(1− niασ)
(
1
2
− niασ)

+
∂

∂niασ
ln
∑

L′
i

√
′
i

′
i (42)

Similarly to what happens in the LDA+U method, one sees the tendency
of lowering for levels with occupation greater than one half, and a rising
upwards for the less than half filled ones (the partial kinetic energy eiασ

is always negative, it would be zero for a filled band). The difference with
LDA+U method is the partial kinetic energy prefactor (instead of U) and
other terms that come from the derivative of the empty and single occupied
configurations.

The starting Hamiltonian H ′ has been also used to make a link be-
tween ab-initio LMTO band structure calculation and a DMFT treatment
of correlations for the studies of LaTiO3 [9] and Plutonium [10]. This last
approach, assuming infinite dimension, goes beyond our approach. We only
expect to be able to describe the coherent part of the spectrum, whereas
the incoherent part leading to lower and upper Hubbard subbands are not
accessible in our model, however as already stressed, variationally based.

The practical scheme we proposed to perform our ab-initio Gutzwiller
approach is the following one. First, we perform a LDA ab-initio LMTO-
ASA calculation of the solid in a given crystal structure. This calculation
provides the core and the valence (band) electrons contribution total energy,
as well as occupations and partial kinetic energies for valence orbitals. From
these ingredients, and for a given model interaction Hamiltonian, it is possi-
ble to evaluate the variational Gutzwiller energy, which will be minimized,
providing an optimized set of variational configurational probabilities. Then
the on-site levels are varied according to the prescription renormalization
of levels (36) as well as the adjunction of q-factors (27) which modified
hoppings. New partial kinetic energies and occupations are recalculated
from the modified Hamiltonian H ′, until self-consistency is achieved. At
the end of procedure, the total energy, sum of the core and band energies,
is calculated, leading to the properties of the ground state. One can then
change, for example, the volume and redo the whole loop to obtained the

the involved derivative indeed reveals an orbital filling dependence when

p(iασ : unocc, L )p(iασ : occ, L )

Gutzwiller ansatz. Note that our method also contains orbital-dependent
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equilibrium properties and the most favorable atomic configurations in the
solid. Close to the Fermi level we can also obtain an approximate ab-initio
description of quasiparticles spectrum which enables comparison with spec-
troscopy experiments for moderately correlated electron systems. That way,
one has an ab-initio method which is multi-configurational and variational.

In this first application, we made a slight simplification, with respect
to the general process described in last paragraph, for the band calcula-
tion part: starting from converged LMTO potential parameters, we build
up a first order Hamiltonian in TB representation with neglect of overlap
matrix (i.e. equal to unity) as explained in [32] and references therein. As
our scheme only reorganizes valence (band) electrons, we make a frequently
used frozen core approximation assuming that the core energy remains un-
affected by this reorganization and we will now concentrate on the band
energies. It is well-known that this first order Hamiltonian is accurate close
to Eν , i.e. close to the center of gravity of the occupied part of the bands.
Far from it, it has the effect of a slight reduction of the bandwidth, but
we have verified that it has a negligible effect on integrated quantities: for
example, before the Gutzwiller process is switched on, we have checked that
the band energies calculated from the third order Hamiltonian and from the
first order one with the recursion process described below, are in excellent
agreement. We used a full spdf basis set with hoppings up to second near-
est neighbors. For all 7 inequivalent orbitals, in cubic environment from the
overall 16 orbitals, we performed a real space recursion procedure [33] to
get the partial projected densities of states (DOS) from which all needed
quantities, like occupancies or band energies, can be calculated. These par-
tial DOS are obtained from the imaginary part of diagonal elements of a
Green function, which are developed in a continued fraction expansion up
to a given level. This level is chosen so that a convergence criterium is
reached, i.e. adding one more level does not affect the result. Practically we
took 40 steps of recursion. Various terminators (the well-known square root
terminator, or more elaborated ones in presence of gaps [34]) are then used
to close the continued fraction expansion. A full self-consistent approach
within the Gutzwiller loop, using third order Hamiltonians and including
spin-orbit coupling, is still in preparation, and some intermediary results
will be given in next section.

3. Application to Plutonium

We now give a simple application of the present method to Plutonium
which is a good test case. Pu lies between light actinides with itinerant
5f electrons and heavy actinides with localized 5f electrons. The compe-
tition between these two electronic regimes in Pu is responsible for a lot
of unusual properties as large values of the linear term in the specific heat
coefficient and of the electrical resistivity or a very complex phase diagram.
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The ground state α phase (monoclinic with 16 atoms by cell) is known
to be well described by ab-initio DFT-LDA calculations, whereas for the
high temperature δ phase (fcc), the calculated equilibrium volume is of the
order of 30 percent smaller than the experimental one. It is very important
to reproduce the properties of Pu to take into account the delicate bal-
ance between the itinerancy of the f electrons and the large intra atomic
Coulomb interaction. This requires a much more complicated theory for the
electrons than the LDA which is like a mean-field treatment of the correla-
tions [35]. Recently several attempts to go beyond LDA have given a new
understanding of the α-δ transition. In the LDA+U method [36] an orbital-
dependent correction, treated in the mean-field approximation is added to
the LDA functional. These calculations have showed how the equilibrium
volume is improved in comparison to previous results using LDA, and how
an augmentation of the orbital moment is observed following Hund’s rules,
reducing the total magnetic moment in agreement with experiments. Going
a step beyond the LDA+U , Savrasov et al [37] have used an implementa-
tion of DMFT. The LDA+U can be viewed as the static approximation of
the DMFT. With this dynamical treatment of the f -electrons they have
recovered the experimental equilibrium volume of δ-Pu, the photoemission
peak at the Fermi level and given an understanding picture of the transi-
tion between α and δ phases. Different approaches, using the spin-polarized
generalized gradient approximation (GGA) and antiferromagnetic configu-
rations [38–40] have well reproduced the ground state properties of δ-Pu.
All these works show how a spin/orbital polarization is crucial to describe
the δ-phase. In the Gutzwiller method, the correlations, via the q-factors,
are supposed to reduce the hoppings, and so to weaken the covalency char-
acter of the bonding, and consequently the attraction between atoms. Thus
we expect to increase the interatomic distance, leading to a greater equi-
librium volume. Of course, the same approach has to be performed for α
and δ phase.

An extra difficulty arises from the Atomic Sphere Approximation (ASA)
of the LMTO method: the atomic potential, inside an atomic ”muffin-tin”
sphere, is spherized, or equivalently, the true ”full” potential is approxi-
mated by its first  = 0 component. This approximation greatly simplifies
the calculation, as the wave function basis in a sphere, used to build the
LMTO set, can be factorized in a product of a radial wave function and a
spherical harmonics as explained above. It presents however the shortcom-
ings that, it is not a ”full potential” approach and forbids to change the
symmetry when making comparison between structures. We overcome this
difficulty here by performing the calculation in a fcc structure browsing dif-
ferent volume: it is correct for the δ phase, but the α phase will be replaced
by a ”pseudo”-α phase, in a fcc structure, having however the same density
than the experimental one.
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6d, 5f of Pu with 16 fully hybridized orbitals per site, the remaining orbitals
being treated as core states. In this first approach, as we concentrate more
on the correlation effects, we neglect, however important for this heavy
element, the spin-orbit coupling. The crystal field splitting on f orbitals
(and other ones), is directly accounted by the LMTO method, lifting the
f degeneracy in the 6-fold (including spin) T1, the 6-fold T2 and 2-fold A2

symmetries. Finally, the interaction Hint, added to H0, is simply given by
the same local term between electrons on different f -orbitals

Hint =
U

2

∑

i,ασ �=βσ′
niασniβσ′ (43)

neglecting any exchange term as done in [36,37]. In this simplified paramag-
netic version, the number of inequivalent atomic configurations, necessary
to perform the Gutzwiller part, reduces to 14 because all atomic configu-
rations having the same electronic occupancy are equivalent in this model.
Similarly, we took an average occupation per f orbital in the expression of
q-factors, leading to a single q for all f orbitals, regardless to crystal field
splitting. It was, however, included for the on-site levels renormalization,
since the partial kinetic energy and occupations are not exactly equal for
different symmetries. We have nevertheless checked this assumption by per-
forming a much heavy calculation, including 3 different q’s, one per crystal
symmetry with 7x7x3 = 147 variational parameters: the final result was
not sensitive to this detail. It reflects the small f -crystal field splitting in
Plutonium, producing very similar occupations and partial kinetic energies.

The Coulomb interaction U could be also provided by constrained LDA
calculations. In that sense, it would not be an adjustable parameter. How-
ever, we did not recalculate its value and took it from literature, close to
0.3Ry, as in the LDA+DMFT calculation of Savrasov et al. [10], or as in the
LDA+U calculation of Bouchet et al. [36]. An improved version of calcula-
tion, including exchange interaction, as in the degenerate Hubbard model,
with one q-factor per symmetry, will be used in a forthcoming paper, in
which we will investigate also ferromagnetic and antiferromagnetic ground
states. In this work we just want to appreciate the effect of our method and
of the Gutzwiller approximation on a simple case,where there exists known
results with other methods.

The total energy versus volume for fcc-Pu and different values of the
interaction U is presented in Fig. 4. The curve U = 0 corresponds to a
LDA calculation. As previously found in several works the minimum of this
curve is very low (∼ 7.70 ua ) compared to the experimental value of the
δ phase (8.60 ua) and closer to the α phase value (8.0 ua). In fact there is
no sign of the correlated δ phase in the U = 0 calculation. As we turn on
the correlations, a new feature appears in the curves, almost instantly. We
observe a new energy minimum close to the experimental volume of the δ

The valence states taken into account in the LMTO part were the 7s, 6p,
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phase. Moreover the first minimum increases to approach the value of the
experimental α volume, showing that correlations are already important to
reproduce the properties of this phase. For a value of U close to 0.3 Ry, the
two minimums correspond to the experimental values of α and δ-Pu. This
double-well feature of the total energy curve of Pu was previously discovered
by Savrasov et al [10], using a DMFT approach. In our calculations the
first minimum is the lower one, since the α phase is the ground state for
Pu, and we haven’t added any temperature effect in our calculations. As
U increases we see a tendency of the two minimums to be closer. In fact
the energies of the two phases are very similar and a small perturbation,
for example the temperature, can be sufficient for the phase transition. Of
course the model studied in this work is still very simple and we don’t want
to conclude too far but we think that it already contains the key ingredients
(competition between localization and delocalization, atom-like or bands-
like descriptions) to reproduce the main characteristics of Plutonium phase
diagram. Due to the roughness of our first approach, the (rather) good
agreement for the equilibrium properties, may be incidental or due to some
compensation effect, and the disagreement with other aspects (like bulk
modulus, see below) is not surprising. Indeed, it is well known the the spin-
orbit coupling is a key ingredient for this element: the splitting between 5/2
and 7/2 states could give significant differences in occupation and kinetic
energies. One may expect then a difference between q5/2 and q7/2, and
obtain localized and less localized behaviors as suggested by Pénicaud [41]
who proposed to split f states between localized and more delocalized ones
to explain the properties of Plutonium. The freezing of f -states to similar
occupation in our present calculation could be responsible for the high value
of the bulk modulus (637 GPa) we get, in contrast with the experimental
value of 30 GPa [42]. Primary result with an improved version involving
third order LMTO Hamiltonian full self-consistent computation, neglecting
yet spin-orbit coupling, reduces this value to 196 GPa, which is slightly
better than the LDA result of 214 GPa [43].

This ab-initio Gutzwiller approach is able to handle correctly the cor-
relation aspects without loosing the ab-initio adjustable parameters free
aspect of the more familiar DFT-LDA, and that way, corrects the defi-
ciency of this method. It gives similar results to the methods that account
for many-body effects like the LDA+DMFT of Ref. [10] from the ab-initio
levels or that can have an orbital dependent potential like in the LDA+U
calculation of Ref. [36], which is impossible to DFT-LDA approach. On
another hand, we stress again that our approach is clearly variational, and
is able to provide an approximate ground state in contrast with those of
Refs. [10] and [36].

The effective optimized Hamiltonian H ′, was used to compute quasipar-
ticles density of states, in the vicinity of Fermi energy. The result, shown
on Fig. 5, is restricted to an energy window of 2eV on both sides of Fermi
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Figure 4. Total energy of fcc-Pu versus volume for different values of the interaction U .
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Figure 5. Quasiparticles density of states obtained from Gutzwiller method for Pluto-
nium in δ phase.

level: further, the spectrum would be in the region of the Hubbard sub-
bands, which are beyond the scope of our approach (it should be necessary
to include fluctuations to get the incoherent part of the spectrum). It is
to be stressed that our result compares well, in the presented region, with
the more elaborated LDA+DMFT result of Ref. [10]. Both results are also
in good agreement with the photoemission experiments of Arko et al. [44].
The peak at the Fermi level, which results mainly from the reduction of
hoppings due to q-factors, associated with a small shift of Fermi level due
to the renormalization of levels (36), has the consequence of a significant
improvement of the electronic specific heat contribution, multiplied by a
factor of 2 with respect to the LDA value. Our result, of the order of 13
mJ K−2 mol−1is however yet far from the experimental value of 64 mJ K−2



532 J.-P. JULIEN AND J. BOUCHET

mol−1 found by Lashley et al [45]. The q-factor, responsible for this increase
of the DOS at the Fermi level, is of the order of 0.8 in the equilibrium δ
phase. This moderate renormalization is due to hybridization of the f states
with the low lying p-states which lead to a significant partial f kinetic en-
ergy, greater than what it would be considering only the narrow group of
predominant f -character states. With a naive single f -band argument, if
we had used for example canonical (i.e. unhybridized) bands, one obtains a
much reduced q-factor close to .3 [46]. It can be shown that the q-factor is
the spectral weight of the quasiparticles. A moderate value, as obtained by
our realistic calculation (i.e. fully hybridized bands), means a rather high
weight: for independent particles it would be equal to one. It validates a
quasiparticles picture description, allowing a posteriori comparison we did
with spectroscopy experiments. At the volume of the ”pseudo” α phase,
this q factor reduces to .9, indicating that the electrons are less correlated
in this phase, which can explain the relative success of its description by
LDA calculation.

4. Conclusion

To conclude, we have generalized the density matrix approach to Gutzwiller
method for the degenerate Hubbard Hamiltonian. We have shown that
we can express the total energy in the Gutzwiller state in terms of the
different probabilities of configurations. Moreover to apply the method to
cases of physical interest we have developed this method for inequivalent
sites and for different orbital symmetries. In this way we have given the
expression of the different q factors which renormalize the hopping terms
and an expression to renormalize the on-site energies in the Gutzwiller
context. This method is limited to ground state properties but can extend
to finite temperature and low-frequency excitations in analogy with the
work of Gebhard [47]. Of course, as a quasiparticle approach, this method
is limited to cases where the Fermi-liquid theory is valid, i.e. close to Fermi
energy. Thereafter we have have described a simple implementation of our
method in a ab-initio calculation as the LMTO method. To give an example,
we have applied this technique to the particular case of Pu in fcc structure.
In despite of the simplicity of our model, we were able to extract interesting
results such as the double-well feature in the energy-volume curve and more
generally improve the LDA results. Our results compare well with previous
works.
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Abstract. We compute the velocity correlation function of electronic states
close to the Fermi energy, in approximants of quasicrystals. As we show
the long time value of this correlation function is small. This means a
small Fermi velocity, in agreement with previous band structure studies.
Furthermore the correlation function is negative on a large time interval
which means a phenomenon of backscattering. As shown in previous studies
the backscattering can explain unusual conduction properties, observed in
these alloys, such as for example the increase of conductivity with disorder.

1. Introduction

In 1984, Schechtman, Blech, Gratias, and Cahn [1] presented a new meta-
stable phase of an Al–Mn binary alloy. The diffraction pattern was formed
by intense Bragg peaks organized according to the icosahedral symmetry
strictly forbidden from conventional crystallography. The underlying order
was claimed to be described by the mathematical concept of quasiperiod-
icity [2, 3]. The confirmation of a new state of matter has been an intense
subject of controversy. In particular, Pauling proposed an alternative de-
scription of five-fold diffraction patterns based on icosahedral glasses formed
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by twins [4]. However, the situation changed after the discovery of stable
phases (icosahedral AlCuFe, AlPdMn, AlCuCo...) by Tsai et al. [5], and
the existence of quasiperiodic crystals (quasicrystals) is now well accepted.
Furthermore, these materials have revealed a lot of unexpected physical
properties [6].

Among many fascinating properties, quasicrystals with high structural
quality, such as the icosahedral AlCuFe and AlPdMn alloys, have uncon-
ventional conduction properties when compared with standard intermetallic
alloys. Their conductivities can be as low as 150–200 (Ω cm)−1 [7]. Further-
more the conductivity increases with disorder and with temperature, a be-
haviour just at the opposite of that of standard metal. In a sense the most
striking property is the so-called “inverse Mathiessen rule” [8] according
to which the increases of conductivity due to different sources of disorder
seems to be additive. This is just the opposite that happens with normal
metals where the increases of resistivity due to several sources of scattering
are additive. Finally the Drude peak which is a signature of a normal metal
is also absent in the optical conductivity of these quasicrystals.

An important result is also that many approximants of these quasicrys-
talline phases have similar conduction properties. For example the crys-
talline α-AlMnSi phase with a unit cell size of about 12 Å and 138 atoms
in the unit cell has a conductivity of about 300 (Ω cm)−1 at low tempera-
ture [7, 9]. The conductivity has the same defect and temperature depen-
dence as that of the AlCuFe and AlPdMn icosahedral phase. There is, to
our knowledge, no experimental result on the optical conductivity of this
α-AlMnSi phase, but it is very likely that it is similar to that of AlCuFe
and AlPdMn icosahedral phase.

The interpretation of these unconventional conduction properties is still
a challenge for condensed matter physicists. Several models have been pro-
posed including thermally activated hopping [10] band structure effects
due to small density of states and narrow pseudo-gap [11,12] or anomalous
quantum diffusion [13, 14]. Yet all these models are difficult to compare in
a quantitative way with experiments.

In this paper we present preliminary results of an ab-initio study of
quantum diffusion in the crystalline α-AlMnSi phase. The number of atoms
in the unit cell (138) is sufficiently small to permit computation with the
ab-initio Linearized Muffin Tin Orbitals (LMTO) method and provides us a
good starting model. Within the Density Functional Theory (DFT) [15,16],
this approach has still limitations due to the Local Density Approximation
(LDA) for the exchange-correlation potential treatment of electron corre-
lations and due to the approximation in the solution of the Schrödinger
equation as explained in next section. However, we believe that this start-
ing point is much better than simplified parametrized tight-binding like
s-band models.
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The central quantities are the velocity correlation function of states of
energy E at time t: C(E, t), and the average square spreading of states of
energy E at time t along the x direction: ∆X2(E, t). The velocity correla-
tion function is defined by:

C(E, t) =
〈
Vx(t)Vx(0) + Vx(0)Vx(t)

〉

E
= 2 Re

〈
Vx(t)Vx(0)

〉

E
, (1)

and the average square spreading:

∆X2(E, t) =
〈
[X(t)−X(0)]2

〉

E
(2)

where 〈A〉E is the average of the operator A on states of energy E of
Hamiltonian H, explicitly given by the traces fraction:

〈A〉E =
Tr[δ(E −H)A]
Tr[δ(E −H)]

(3)

In (1), ReB is the real part of B and Vx(t) is the Heisenberg representation
of the velocity operator along x direction at time t. C(E, t) is related to
quantum diffusion by:

d
dt

(
∆X2(E, t)

)
=
∫ t

0
C(E, t′)dt′. (4)

Once the bandstructure is computed in a self-consistent way the velocity
correlation function can be computed exactly in the basis of Bloch states.
Relation (4) shows that an anomalous behaviour of C(E, t) also implies
an anomalous behavior of the quantum diffusion which is the basis for the
model [13,14] of optical conductivity of quasicrystals. In the long time limit
one knows that the propagation is ballistic, this means that ∆X2(E, t) is
given by v2

Ft2 at large time. From (4) one deduces that C(E, t) is of the order
of 2v2

F at large time. But at intermediate times (see below) the behaviour
of C(E, t) is more specific of the crystal and we show that the α-AlMnSi
phase is different compared to other good metals such as Al (f.c.c.), cubic
Al12Mn . . .

In particular we find that there is on the average a phenomenon of
backscattering in α-AlMnSi phase. This means that the velocity correlation
function is often negative. This negative value has been shown previously
[14] a sufficient condition to explain the unusual conduction properties of
these alloys.

2. Ab-initio electronic structure

2.1. LMTO METHOD

Electronic structure determinations have been performed using the self-
consistent LMTO method in the Atomic Sphere Approximation (ASA).
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The LMTO method is well described elsewhere [17, 18] and we would like
to remind here only the principal results which are usefull for this paper.
In the frame of DFT-LDA band structure calculations, the LMTO method
is based on some approximations. The space is divided in atomic spheres
where the potential is spherically symmetric and interstitial region where
it is flat (“Muffin Tin” potential). In the Atomic Sphere Approximation
(ASA), the spheres radii are chosen so that the total volume of the spheres
equals that of the solid. One makes a further approximation by supposing
that the kinetic energy in the interstitial region is zero (without this non-
essential assumption, Laplace equation, as used below, should be replaced
by Helmoltz equation). In this intersticial region, the Schrödinger equation
reduces to Laplace equation having regular and irregular solutions: YL(r̂)r�

and YL(r̂)r−�−1 respectively. Here L = (, m) represents the angular mo-
mentum index and YL(r̂) the spherical harmonics in direction r̂ = (θ, φ). For
the sphere centered at site R and in the momentum index  ( = 0, 1, 2 . . .),
one finds the solution ϕR�ν of the radial Schrödinger equation for a given so-
called linearization energy Eν , usually taken at the center of gravity of the
occupied part of the -band and the energy derivative of ϕR�ν noted ϕ̇R�ν

(Note that for the velocity correlation function, we need a great accuracy
close to the Fermi level. Consequently, after self-consistency, we perform
one iteration choosing Eν = EF). It can be shown that the corresponding
orbitals ϕR�ν and ϕ̇R�ν are orthogonal to each other and nearly orthogonal
to the core levels. It is thus possible to build a basis set of orbitals χRL

centered at sphere of site R in the following way. Outside the sphere, in the
interstitial region χRL is proportional to the irregular solution YL(r̂)r−�−1

of Laplace equation and it is augmented (i.e. substituted according to Slater
terminology) in its own sphere by a linear combination of ϕR�ν and ϕ̇R�ν

having logarithmic derivative −− 1 at the radius sR of the sphere so that
the orbital is continuous and derivable at the sphere boundary. In any other
sphere R′, the irregular solution of Laplace equation can be expanded in
term of regular solutions in that sphere:

YL(r̂R)(
rR

a
)−�−1 = −

∑

L′

1
2(2′ + 1)

S0
R′L′,RLYL′(r̂R′)(

rR′

a
)�′ (5)

and the orbital χRL should be augmented in sphere R′ with the same ex-
pansion of linear combination of ϕR′�′ν and ϕ̇R′�′ν having the logarithmic
derivative ′ at the radius sR′ of sphere R′. In (5), a is a scale factor and
S0

R′L′,RL are the so-called “structure constants” which depend only on the
crystallographic structure of the material. In this basis set of the orbitals
χRL both Hamiltonian and Overlap matrices can be expressed in terms of
S0

R′L′,RL, and the potential parameters ϕR�ν(sR), ϕ̇R�ν(sR) and the logarith-
mic derivative DR�ν and ḊR�ν of these functions at sphere boundary. Since
the structure constants S0

R′L′,RL, decreasing as r−�−�′−1 with distance, are
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very long ranged for s and p orbitals, it can be more convenient to change
the basis set so that the Hamiltonian can have the Tight-Binding (TB) form
or any desired properties (like the orthogonality i.e. overlap matrix equals
unit matrix). It can be achieved by adding to the regular solution of the
Laplace equation an amount of the irregular solution for a given angular
momentum. It is possible to choose this amount Q̄� so that the transformed
structure constants S can be screened with a short-range dependence with
the distance or so that the orbitals of the transformed basis set are orthog-
onal (the so-called TB or most localized and orthogonal representations,
respectively). With appropriate choice for Q̄�, the transformed structure
constant matrix obeys to the following equation:

S = S0(1− Q̄�S
0)−1 (6)

The Hamiltonian can be written as:

HRL,R′L′ = CRLδRL,R′L′ + ∆1/2
RLSRL,R′L′∆1/2

R′L′ (7)

which is limited to first order in (E−Eν) in the TB representation, whereas
it is valid up to second order in the orthogonal representation. CRL deter-
mines the middle of the band “RL” and ∆RL its width and the strength
of hybridization. These parameters are expressed in terms of the 4 poten-
tial parameters:ϕR�ν(sR), ϕ̇R�ν(sR), DR�ν and ḊR�ν . It should be stressed
that hybridization between bands of different angular moments is due to
the matrix elements SRL,R′L′ which couples RL-states to R′L′ ones. Due
to the periodicity of the approximant phases, one can apply Bloch theo-
rem. Thus, once the potential parameters are known for each site and each
-component, with an appropriate choice of screening constants, structure
constants (6) and Hamiltonian (7) are transformed to k-space. Diagonal-
ization provides energies with their respective eigenstates for each k-point−→
k of the first Brillouin zone. These eigenstates are expressed on the basis
of the

χ
tL(�k) =
1√
N

∑


T

ei
k·
T χ(
T+
t)L (8)

which are the Bloch states obtained from the real space orbital χ(
T+
t)L,

located at site �t of the unit cell �T : any general atomic site �R can be de-
composed as �R = �T + �t. (N is the total number of cells, introduced here
for normalization).

2.2. RESULTS: DENSITY OF STATES

For our practical applications, the LMTO basis includes all angular mo-
ments up to  = 2 and the valence states are Al (3s, 3p, 3d), Mn (4s, 4p,
3d).
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Figure 1. LMTO DOS of cubic Al12Mn (13 atoms / unit cell) and cubic α-Al114Mn24

unit cell) [22].

The LMTO density of states (DOS) of an α-AlMn idealized approxi-
mant (structural model of Elser-Henley [19]) has been first calculated by
T. Fujiwara [12, 20]. This original work shows the presence of a Hume-
Rothery pseudo-gap near the Fermi energy, EF, in agreement with exper-
imental results [7, 11]. E.S. Zijlstra and S.K. Bose [24] gave a detailed ab
initio electronic structure study of the α-phase. They show the difference
between the DOS of the idealized 1/1 approximant and the experimental
atomic structure [26]. The pseudogap is present in both cases. But one
of the main difference is the spikiness of the DOS which is reduced for
the experimental structure with respect to the idealized structure. DOSs
of α-Al114Mn24 with experimental atomic positions [26] (Si atoms are re-
placed by Al atoms) is presented Fig. 1. The role of the transition metal
(TM) element in the pseudo-gap formation has also been shown from ab-
initio calculations [21, 22] and experiments. Indeed the formation of the
pseudo-gap results from a strong sp–d coupling associated to an ordered
sub-lattice of TM atoms. Just as for Hume-Rothery phases a description of

approximant (experimental atomic structure of α-AlMnSi [26] with Si = Al, 138 atoms/
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the band energy can be made in terms of pair interactions. We have shown
that a medium-range Mn–Mn interaction mediated by the sp(Al)–d(Mn)
hybridization plays a determinant role in the occurrence of the pseudo-
gap [22,23]. It is thus essential to take into account the chemical nature of
the elements to analyze the electronic properties of approximants. It has
been shown [24] that Si atoms are in substitution with some Al atoms.
The main effect of Si is to shift EF in the pseudo-gap in agreement with
Hume-Rothery mechanism to minimize band energy.

The electronic structures of simpler crystals such as orthorhombic Al6Mn,
cubic Al12Mn, present also a pseudo-gap near EF but it is less pronounced
than for complex approximants phases [22].

3. Velocity correlation function

3.1. COMPUTATIONAL DETAILS

Starting from the self-consistent LMTO eigenstate Ψn with energy En, the
velocity correlation function is [13]:

C(E, t) = 2

〈
Re
{
eiEnt

h̄ 〈Ψn|Vx e−iHt
h̄ Vx|Ψn〉

}〉

En=E

(9)

By using the closure properties of the eigenstates one obtains easily:

C(E, t) = 2

〈
∑

p

cos
(
(En − Ep)

t

h̄

) ∣∣∣〈Ψn|Vx|Ψp〉
∣∣∣
2
〉

En=E

. (10)

where the sum is over all the eigenstates Ψp with the same vector �k than
Ψn. In (10) the terms n = p are the Boltzmann contribution to the velocity
correlation function:

CB(E, t) = 2

〈
∑

n

∣∣∣〈Ψn|Vx|Ψn〉
∣∣∣
2
〉

En=E

= 2v2
B (11)

which does not depend on the time t.
The products 〈Ψn|Vx|Ψp〉 are calculated from LMTO eigenstates by

using a numerical derivation of the hamiltonian in the reciprocal space:
as explained in last section, diagonalization provides the components of
eigentstates on the basis set χtL(−→k ). In this basis the velocity operator,
Vx = 1

ih̄ [X, H], has the following matrix elements:

〈χtL(−→k )|Vx|χt′L′(−→k )〉 =
1
h̄

∂

∂kx
〈χtL(−→k )|H|χt′L′(−→k )〉 (12)

kx is the component of k-point �k in the x direction. Because of Bloch
theorem, different k-points are not coupled in the Hamiltonian nor in the
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Figure 2. Velocity correlation function C(EF, t) (m2 s−2) versus time t (s), for (a) Al
(f.c.c), (b) cubic Al12Mn, and (c) cubic approximant α-Al114Mn24. The dashed lines are
the Boltzmann velocity correlation function CB(EF, t) = 2v2

F [27].

velocity operator. Having performed the numerical derivation of (12), it
is just a matrix multiplication to get expression (10). Formula (12) is an
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approximation as one can show that there are additional terms on its right
hand side. However these terms are of the order of (En − Eν)2 and thus
vanish for the energies of interest close to Eν chosen at EF. Finally equation
(10) is integrated according to equation (4), to obtain the average square
spreading ∆X2(E, t).

3.2. RESULTS: EVIDENCE OF BACKSCATTERING IN AN
APPROXIMANT OF QUASICRYSTALS

We compute C(E, t) for crystals (complex approximants and simple crys-
tals). In equations (10)–(11), the average on states of energy E is obtained
by taking the eigenstates of each �k vector with an energy En such as:

E − 1
2
∆E < En < E +

1
2
∆E. (13)

∆E is a kind of energy resolution of the calculation. The calculated C(E, t)
is rather sensible to the small number Nk of �k vectors in the first Brillouin
zone. Therefore Nk is increases until C(E, t) does not depend significantly
on Nk.

C(EF, t) for Al (f.c.c), cubic Al12Mn [25], and the cubic approximant
α-Al114Mn24 (with the experimental atomic structure [26]) are shown in
figure 2. EF is the Fermi energy calculated by the self-consistent L.M.T.O.
procedure. The energy resolution is ∆E = 1.36 eV. The number of �k points
in the first Brillouin zone is Nk = 803, 403 and 103 for Al, Al12Mn, and
α-Al114Mn24, respectively.

For large t,

lim
t→+∞

C(EF, t) ! CB(EF, t) = 2v2
F , (14)

where vF is the Boltzmann velocity (intra-band velocity) at the Fermi
energy: vF = 9.6 107, 3.4 107, and 6.2 106 cm s−1, for Al, Al12Mn and α-
Al114Mn24, respectively. This last result is very similar to the original work
of T. Fujiwara et al. [12] for the α-Al114Mn24 (with the atomic structure
model of Elser-Henley). The strong reduction of vF in the approximant
phase with respect to simple crystal phases shows the importance of a qua-
siperiodic medium-range order (up to distances equal to 12–20 Å). This
leads to a very small Boltzmann conductivity for the approximant [12].

When t is finite (figure 2), C(EF, t) and CB(EF, t) differ, and there
is a new difference between approximant and simple crystal. In the case
of Al (f.c.c.) phase, C(EF, t) is always positive, and the Boltzmann value
is reached rapidly when t increases. But for some t values the velocity
correlation function C(EF, t) is negative for Al12Mn and α-Al114Mn24. That
means that at these times the phenomenon of backscattering occurs.

Roughly speaking, the transports properties depends on the values of
C(EF, t) over all times t from 0 to the scattering time τ [13, 14] (see for
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Figure 3. Velocity correlation function C(EF, t) (m2 s−2) versus large time t (see fig-
ure 2). The dashed lines are the corresponding Boltzmann velocity correlation function
CB(EF, t) = 2v2

F.

instance equation (4)). A realistic value of τ has been estimated to about
10−14 s [8]. For the simple crystals Al12Mn, C(EF, t) is meanly positive
when t > 2 10−15 s. But for the complex approximant α-Al114Mn24, a lot of t
values correspond to C(EF, t) < 0, even when t is close to τ or larger (figure
3). Therefore, in the case of Al12Mn, the backscattering (negative range
of C(EF, t)) should have a negligible effect on the transport properties,
whereas this effect must be determinant for the approximant.

The phenomenon of backscattering leads to unusual quantum diffusion.
It is illustrated on the plot of the average spreading of states ∆X2 (equation
(2)) versus time t (figure 4). It shows that ∆X2 results in two term: a
Boltzmann term and a non-Boltzmann term. The Boltzmann term has the
usual t2 behavior: ∆X2

B = v2
Bt2. The new non-Boltzmann contribution,

which comes from the non-diagonal matrix element in (10), has an atypical
constant asymptotic behavior. In a normal crystal this last term is negligible
with respect to the Boltzmann term. On the contrary, in approximant both
terms have the same order of magnitude for realistic times, typically t less
than fews 10−14 s.

4. Conclusion

We present ab-initio calculations of the velocity correlation function of the
electronic states close to the Fermi energy, in a complex approximant and
simple crystals. These calculations are the first numerical proof of the exis-
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Figure 4. Average spreading of states ∆X2(E, t) for energy E = EF(LMTO), in
α-Al–Mn. ∆X2(E, t) can be decomposed in a Boltzmann term and a non-Boltzmann
term.

tence of the phenomenon of backscattering in an approximant of quasicrys-
tals. This shows that a Boltzmann approach is not enough to understand
the unusual transport properties of quasicrystals. It will be shown else-
where [28] that these results on the quantum diffusion explain fairly well
the experimental conduction properties of the α-AlMnSi phase and of the
related QC phases.
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1. Introduction

The ultimate goal of this research field is to develop, simulate and predict
new arrays of nanoclusters and nanotubes with desired, pre-selected, uni-
form and specific properties. The development of nanoclusters, nano-tubes
and nanocrystals into nanostructured materials can be expressed in form
of miniaturization of these new materials towards nanoscaled electronic de-
vices. Possible application fields for instance are in medicine and materials
science. During the last decade many researchers focused their intention
on a systematical search for new materials mainly consisting of pure or
mixed boron, carbon, nitrogen, boron-hydrogen and metal-boron types of
chemical systems. Those systems show a large variety of possible struc-
tures supposing that yet there are a lot of additional structures waiting
to be discovered, like nano- structured crystals, quasi-crystals, nanotubes,
nanowires, and their related compounds. In order to achieve this, there are
several numerical structural optimisation methods based on a variety of
concepts, ranging from the most accurate ab initio type of methods suited
for small or medium sized systems to semi-empirical methods for very large
systems.

Therefore, it became clear that those methods are reliable tools to de-
tect, to analyze and to optimize all sorts of materials, and in many cases
they already turn out to be some sort of cheap, fast and reliable alternative
to standard experimental methods in materials science. But still, a lot of
work is needed to be done in gaining a more profound experience in what
could be called ‘materials engineering’, which means systematical under-
standing and development of new nanoscaled materials with definite prop-
erties, and in looking for the mechanism of the so called “self-assembling”
of boron- and carbon-based materials to propose, predict and create nano-
devices towards manufacturing of useful solids [1].

Our first contribution in the field of nanostructured materials was novel
structural formations of boron clusters proposed by Boustani for the first
time. In 1994 he predicted the quasiplanarity for boron clusters [2] and in
1997 nanostructures in tubular forms [3, 4]. Further contributions followed
in a series of theoretical and experimental studies exploring the evidence
of the new formations. On one side, the quasiplanarity was confirmed by
A. Ricca et al. [5], F. L. Gu et al. [6], J. E. Fowler et al. [7], P. L. Cao et
al. [8], A. A. Shvartsburg et al. [9] and J. Aihara [10], theoretically, and by
D. E. Bergeron et al. [11] and H. J. Zhai et al. [12] experimentally. The first
application of the quasiplanarity was carried out as B12 cluster embedded
in graphitic fragments by N. H. March et al. [13].

One the other side, the nanostructures were issued similarly. Theoret-
ically, they were confirmed by Lipscomb et al. [14], experimentally, by D.
Ciuparu et al. [15] in form of boron single-wall nanotubes, by L. M. Cao
et al. [16] C. J. Otten et al. [17], S. Iijima et al. [18], J. Z. Wu et al. [19]
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and X. M. Meng et al. [20], in form of nanowires, by Z.Wang et al. [21]
in form of nanobelts and by T. T. Xu et al. [22] in form of nanoribbons.
All these groups succeeded to synthesize crystalline as well as amorphous
boron nanostructures. In the current paper we determined the total energy
of B96 species at the B3LYP version of the density functional theory and
the band structure in form of density of states. The stability of the ob-
served α-boron, and of proposed boron nanotubes with different diameters
are calculated and compared. These boron nanotubes are generated from
the topological structures [3] and with the help of the ”Aufbau Principle”
proposed for boron clusters [23].

2. Computational Methods

The theoretical basis for the current work are the standard ab initio ap-
proaches for solving the many-electron problems in atoms, clusters, and
solids, the Hartree-Fock (HF) self-consistent-field (SCF) and the density
functional theory (DFT) [24]. These important concepts are the kernels of
a variety of program packages that we use for our simulations, depending on
the size of the system to be examined. For small to large sized clusters (up
to 100 atoms), we use quantum chemical methods like multi-configurational
HF as well as different kinds of DFT methods, ranging from the local spin-
polarized DFT-approaches (LSD) to the non-local (computationally more
demanding) spin-polarized DFT methods (NSD). Due to the fact that the
size of the investigated systems is relatively large, it was advisable to use the
standard minimal STO3G basis set and to consider symmetry constraints
in form of point group symmetry, in order to simplify the Hamiltonian
through the direct product of the irreducible representations. Also due to
the large number of basis functions (five per atom) we did not consider
structural optimisations. The first step of calculations was carried out at
the restricted HF level using the STO3G basis set. Regarding the large
number of the valence electrons (480 electrons) within the investigated sys-
tem, we were not able to determine the electron correlation contribution at
the HF level of theory, which only treats the exchange energy. Therefore,
keeping the HF-SCF electron density matrix as starting density, we applied
the DFT considering the nonlocal corrections to exchange and correlation
B3LYP, given by Becke and Lee-Yang and Parr [25], respectively, using
GAMESS-UK version 6.3 including the DFT [26].

In order to calculate the band structure and the density of states (DOS)
of periodic unit cells of a-rhombohedral boron (Fig. 1a) and of boron nan-
otubes (Fig. 3a), we applied the VASP package [27], an ab initio density
functional code, using plane-waves basis sets and ultrasoft pseudopoten-
tials. The electron-electron interaction was treated within the local density
approximation (LDA) with the Ceperley-Alder exchange-correlation func-
tional [28]. The kinetic-energy cutoff used for the plane-wave expansion of
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Figure 1. The a-rhombohedral unit cell of boron crystal (Fig. 1a) and the corresponding
density of states DOS (Fig. 1b).
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electronic wave functions was 321.4 eV for boron. The Brilloun zone was
sampled on grids of (6x6x6) k points in the case of α-boron, and (5x5x5) k
points in the case of boron nanotubes [29].

3. Results, Discussion and Conclusions

The investigated systems are the rhombohedral unit cell of α-boron crystals
and boron nanotubes with different diameters. The α-boron B96 (Fig. 1a)
is composed of eight connected icosahedra, centered at each vertex of the
rhombohedral unit cell, representing crystalline boron, as a real system
well known in nature. These almost compact and regular icosahedra form a
network characterized by three-center and multi-center bonds. The unit cell
of the α-boron has a space group R3m, a cell constant of 5.057 Angstrom a
characteristic angle of 58.23 degrees, and a related dihedral angle of 52.93
degrees. As can be seen in (Fig. 1a) each icosahedron is bonded to six
neighbouring icosahedra by direct B-B bonds along the threefold axis, and
each of those almost perfectly coincides with an edge of the rhombohedral
cell running through fivefold axes of the icosahedra. The average bond
length lies between 1.67 and 2.10 . The DOS, given in (Fig. 1b), shows a
band gap at the Fermi level of 1.57 eV.

Generally, nanotubes can be labelled by two indices (n,m), which in-
dicate the way in which the graphene sheet is rolled onto a cylinder. The
pair of integers (n,m) defines the Bravais lattice vectors, which determined
the tube diameter. The combination (n,n) and (n,0) are for so called arm-
chair and zig zag nanotubes, respectively. We generated (n,n) armchair
nanotubes for n=24, 16, 12 and 8. These finite nanotubes are consisting of
two 48-, three 32-, four 24-, and six 16-rings, respectively, as shown in (Fig.
2a to 2d). The corresponding diameters are 2.352, 1.557, 1.321 and 0.822
nanometers, respectively. The average bond length lies between 1.65 and
1.95 . They are characterized by three-center and multi-center bonds.

We would like to remind that all tubular structures are composed of
96 boron atoms, the same number of atoms in the elemental α-boron unit
cell of boron crystals. The purpose is simply having clusters of the same
size, in order to be energetically comparable. On one hand, α-boron is
a real component existing in nature, and on the other hand, single-wall
nanotubes so far have been predicted and also synthesized [15]. In this
case we calculated the total B3LYP energies and determined the structure
stability as follows: Eb = (nE1 - En ) / n = E1 - En / n, where Eb is the
binding energy per atom, E1 the atomic energy, En the cluster energy, and
n the cluster size. In our case, the cluster size n is 96. Beside the energy
of the atomic boron, all obtained B3LYP energies and the corresponding
binding energy per atom for each cluster are given in Table 1.

As can be seen in Table 1, the energy difference ∆E of all nanotubes
relative to α-boron lies between 2 and 31 eV. By examining the B3LYP
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Figure 2. From the left: B96 cluster segments in form of two 48-rings (Fig. 2a), three
32-rings (Fig. 2b), four 24-rings (Fig. 2c) and six 16-rings (Fig. 2d) with the structures
of (24, 24), (16,16), (12,12) and (8,8) armchair nanotubes, respectively.
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energies of boron nanotubes, it is easy to find out that the total energies
are decreasing by increasing the diameter of the boron rings, and that the
stability increases with increasing the diameters. The high stability of boron
nanotubes can mainly be explained by the large number of directed sp2-
hybridized s-bonds within the bent surfaces of the tubes, and by p-orbitals
covering the inner and outer faces of the tubes, stabilizing the system even
more.

Therefore, one can summarize two important statements from Table 1.
The first one says that the stability of boron nanotubes is similar or higher
than the stability of the real α-boron crystals. This statement confirms the
same sequence of stability determined at the HF-SCF level of theory [30].
This phenomenon can only be explained by additional theoretical and ex-
perimental investigations. The second statement says that the larger the
diameters the higher the stability. Finally, one of the most important prop-
erties is the electron density of states DOS of boron nanotubes. Figure 3b
shows the DOS of (18,18) armchair, illustrated as puckered boron 36-ring.
The DOS of (18,18) armchair dramatically changes in comparison to the
DOS of α-boron, already shown in Fig. 1b. Boron nanotubes show a strongly
conducting character, opposite to the semiconducting α-boron crystals.

One can conclude, that the predicted boron nanstructures were con-
firmed experimentally, namely in form of a single-wall [15], nanowires [16],
nanobelts, [21], and nanoribbons [22]. However, much work remains to be
done in the field of the boron nanotube chemistry and its possible potential
applications as a hydrogen storage, electro-optics, semiconductors, super-
coductivity and nanotechnology. The determination of the vibrational fre-
quencies of boron nanotubes is of great interest for the infrared and raman
spectroscopy. Finally, and according to our calculations the predicted boron
nanotubes seem to be more stable than the real α-boron crystal. Neverthe-
less, further theoretical contributions are desirable for more insight into this
phenomenon.
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Figure 3. A Top view of puckered 36-ring (Fig. 3a) of (18,18) armchair with the corre-
sponding density of states (Fig. 3b).
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Summary. We recently developed an all-atom free energy force field (PFF01) for
protein structure prediction with stochastic optimization methods. We demonstrated
that PFF01 correctly predicts the native conformation of several proteins as the
global optimum of the free energy surface. Here we review recent folding studies,
which permitted the reproducible all-atom folding of the 20 amino-acid trp-cage
protein, the 40-amino acid three-helix HIV accessory protein and the sixty amino
acid bacterial ribosomal protein L20 with a variety of stochastic optimization meth-
ods. These results demonstrate that all-atom protein folding can be achieved with
present day computational resources for proteins of moderate size.

1 Introduction

Ab-initio protein tertiary structure prediction (PSP) and the elucidation of
the mechanism of the folding process are among the most important out-
standing problems of biophysical chemistry [1, 2]. The many complementary
proposals for PSP span a wide range of representations of the protein confor-
mation, ranging from coarse grained models to atomic resolution. The choice
of representation often correlates with the methodology employed in structure
prediction, ranging from empirical potentials for coarse grained models [3, 4] to
complex atom-based potentials that directly approximate the physical inter-
actions in the system. The latter offer insights into the mechanism of protein
structure formation and promise better transferability, but their use incurs
large computational costs that has confined all-atom protein structure predic-
tion to all but the smallest peptides [5, 6].

It has been one of the central paradigms of protein folding that proteins

environment [7]. Exploiting this characteristic the structure of the protein
can be predicted by locating the global minimum of its free energy surface
without recourse to the folding dynamics, a process which is potentially much
more efficient than the direct simulation of the folding process. PSP based on
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global optimization of the free energy may offer a viable alternative approach,
provided that suitable parameterization of the free energy of the protein in its
environment exists and that global optimum of this free energy surface can
be found with sufficient accuracy [8].

2 Force field

We have recently demonstrated a feasible strategy for all-atom protein struc-
ture prediction [9, 10, 11] in a minimal thermodynamic approach. We devel-
oped an all-atom free-energy force field for proteins (PFF01), which is pri-
marily based on physical interactions with important empirical, though se-
quence independent, corrections [11]. We already demonstrated the repro-
ducible and predictive folding of four proteins, the 20 amino acid trp-cage
protein (1L2Y) [9, 12], the structurally conserved headpiece of the 40 amino
acid HIV accessory protein (1F4I) [10, 13] and the sixty amino acid bacterial
ribosomal protein L20 [14]. In addition we showed that PFF01 stabilizes the
native conformations of other proteins, e.g. the 52 amino-acid protein A [5, 15],
and the engrailed homeodomain (1ENH) from Drosophilia melangaster [16].

We have recently developed an all-atom (with the exception of apolar CHn

groups) free-energy protein force field (PFF01) that models the low-energy
conformations of proteins with minimal computational demand [17, 10, 11].
In the folding process at physiological conditions the degrees of freedom of a
peptide are confined to rotations about single bonds. The force field is para-
meterized with the following non-bonded interactions:

V ({ri}) =
∑

ij

Vij

[(
Rij

rij

)12

−
(

2Rij

rij

)6
]

(1)

+
∑

ij

qiqj

εg(i)g(j)rij
+
∑

i

σiAi +
∑

hbonds

Vhb.

Here rij denotes the distance between atoms i and j and g(i) the type of the
amino acid i. The Lennard-Jones parameters (Vij , Rij for potential depths
and equilibrium distance) depend on the type of the atom pair and were
adjusted to satisfy constraints derived from as a set of 138 proteins of the PDB
database [18, 17, 19]. The non-trivial electrostatic interactions in proteins are
represented via group-specific dielectric constants (εg(i),g(j) depending on the
amino-acid to which atom i belongs). The partial charges qi and the dielectric
constants were derived in a potential-of-mean-force approach [20]. Interactions
with the solvent were first fit in a minimal solvent accessible surface model [21]
parameterized by free energies per unit area σi to reproduce the enthalpies
of solvation of the Gly-X-Gly family of peptides [22]. Ai corresponds to the
area of atom i that is in contact with a ficticious solvent. Hydrogen bonds
are described via dipole-dipole interactions included in the electrostatic terms
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and an additional short range term for backbone-backbone hydrogen bonding
(CO to NH) which depends on the OH distance, the angle between N,H and
O along the bond and the angle between the CO and NH axis [11].

3 Optimization Methods

The low-energy free energy landscape of proteins is extremely rugged due to
the comparatively close packing of the atoms in the native structure. Suitable
optimization methods must therefore be able speed the simulation by avoid-
ing high energy transition states, adapt large scale move or accept unphys-
ical intermediates. Here we report on four different optimization methods,
the stochastic tunneling method [23], the basin hopping technique [24, 25],
the parallel tempering method [26, 27] and a recently employed evolutionary
technique. The stochastic tunneling method and the basin hopping approach
are an inherently sequential algorithms, which evolve a single configuration
according to a given stochastic process. In contrast, parallel tempering and
evolutionary techniques are inherently parallel optimization strategies that
are well suited to presently available multiprocessor architectures with low
bandwidth connections. Since all-atom protein structure prediction remains
a computationally challenging problem it is important to search for suitable
optimization methods that are capable to exploit such architectures, i.e. a
high degree of parallelism with very little and optimally asynchronous com-
munication is desirable.

3.1 Stochastic Tunneling Method

The stochastic tunneling technique (STUN) [23] was proposed as a generic
global optimization method for complex rugged potential energy surfaces
(PES). For a number of problems, including the prediction of receptor-ligand
complexes for drug development [28, 29], this technique proved superior to
competing stochastic optimization methods. The idea behind the method is
to flatten the potential energy surface in all regions that lie significantly above
the best estimate for the minimal energy (E0). In STUN the dynamical process
explores not the original, but a transformed PES,

ESTUN = ln
(
x +

√
x2 + 1

)
(2)

which dynamically adapts and simplifies during the simulation. Here x =
γ(E − E0), where E is the energy, E0 the best energy found so far. The
problem-dependent transformation parameter [23] γ controls the steepness
of the transformation (we used γ = 0.5(kcal/mol)−1). The transformation
in equation (2) ameliorates the difficulties associated with the original trans-
formation [23], because ESTUN ∝ ln(E/kT ) continues to grow slowly for large
energies. The ficticious temperature of STUN must be dynamically adjusted in
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order to accelerate convergence. STUN works best if its dynamical process al-
ternates between low-temperature “local-search” and high-temperature “tun-
neling” phases. At at finite temperature the dynamics of the system then
becomes diffusive at energies E � E0 independent of the relative energy
differences of the high-energy conformations involved. On the untransformed
PES, STUN thus permits the simulation to “tunnel” through energy barriers
of arbitrary height.

3.2 Parallel Tempering

The parallel (or simulated) tempering technique [26, 27] was introduced to
overcome difficulties in the evaluation of thermodynamic observables for mod-
els with very rugged potential energy surfaces and applied previously in several
protein folding studies [30, 31, 32]. Low-temperature simulations on rugged
potential energy surfaces are trapped for long times in similar metastable con-
formations because the energy barriers to structurally potentially competing
different conformations are very high. The idea of PT is to perform several
concurrent simulations of different replicas of the same system at different
temperatures and to exchange replicas (or temperatures) between the simu-
lations i and j with probability:

p = min(1, exp (−(βj − βi)(Ei −Ej))), (3)

where βi = 1/kBTi and Ei are the inverse temperatures and energies of the
conformations respectively. The temperature scale for the highest and lowest
temperatures is determined by the requirement to efficiently explore the con-
formational space and to accurately resolve local minima, respectively. For
proteins the temperatures must thus fall in a bracket between approximately
2-600 K. As described elsewhere [12] we have used an adaptive temperature
control for the simulations: Starting with an initial, ordered set of geometri-
cally distributed temperatures we monitored the exchange rate between adja-
cent temperatures. If the exchange rate between temperature i and i+1 was
below 0.5%, then all temperatures above ti were lowered by 10% of ti+1−ti. If
the exchange rate was above 2%, then all temperatures above ti were increased
by the same difference.

To further improve the computational efficiency of PT we also use a repli-
cation step, in which the best conformation replaces the conformation at the
highest temperature every 250,000 simulation steps. This mechanism results
in a rapid, large scale exploration of the folding funnel around the best con-
formation found near the presently best conformation. The parallel temper-
ing method was implemented in our program using the MPI communication
library, which is available on most present-day parallel computational archi-
tectures with distributed memory. Since the communication effort is low (only
the temperatures and energies need to be exchanged) and communication oc-
curs only every few thousand steps, when replica exchange is attempted, this
implementation scales very well with the number of processors.
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3.3 Basin Hopping Method

An alternate approach to effectively eliminate high energy transition states
of the PES is used in the basin hopping technique [24] (BHT), also known as
Monte-Carlo with minimization. This method simplifies the original potential
energy surface by replacing the energy of each conformation with the energy
of a nearby local minimum. This replacement eliminates high energy barri-
ers in the stochastic search that are responsible for the freezing problem in
simulated annealing. In many cases the additional minimization effort to find
an associated local minimum is more than compensated by the increase of
efficiency of the stochastic search on the simplified potential energy surface.

For the protein simulations we replace a single minimization step with
a simulated annealing run [33]. Within each SA simulation, new configura-
tions are accepted according to the Metropolis criterion. The temperature is
decreased geometrically from its starting to the final value, which must be
chosen to be small compared to typical energy differences between competing
metastable conformations, to ensure convergence to a local minimum (typi-
cally 2-5 K). Depending on the choice of the starting temperature, the SA
search can deviate more or less significantly from its starting conformation.
The individual relaxation step is thus parameterized completely by the start-
ing (TS), the a final temperature and the number of steps. We investigate
various choices for the numerical parameters of the method, but have always
used a geometric cooling schedule.

At the end of one annealing step the new conformation was accepted if
its energy difference to the current configuration was no higher than a given
threshold energy εT , an approach recently proven optimal for certain opti-
mization problems [34]. Throughout this study we use a threshold acceptance
criterion of 1 kcal/mol.

3.4 Evolutionary Strategies

While basin hopping and STUN are essentially sequential algorithms, PT
provides some degree of inherent parallelism, which suits present day dis-
tributed architectures. In order to use even larger numbers of processors, we
implemented an evolutionary strategy, in which the computational work is
performed by many of independent client-computers that request tasks from
a master-computer. The master maintains a list of open tasks comprising
the active conformations of the population. Each client performs an increas-
ingly extensive energy minimization on the conformation it is given. When the
client returns a new conformation after completing its task, it may replace an
existing conformation following a scheme that balances the diversity of the
population and the continued energetic improvement of its members. Specifi-
cally the client performs either a Monte-Carlo (MC) or a simulated annealing
(SA) [33] simulation of specified length on the conformation. Conformations
are drawn randomly from the active population. When the client returns a
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tein [35], the HIV accessory protein [13] and the bacterial ribosomal protein L20 [14].

new conformation after completing its task, the result is stored. Addition-
ally the new conformation replaces the energetically worst conformation in
the active population, provided its energy is lower than the highest energy of
the population and that it differs by at least 3Å backbone root mean square
deviation (RMSB) from all members of the active population. If new confor-
mation has an RMSB of less than 3Å to some conformation of the population,
it replaces this conformation if its lower in energy.

This approach builds on the strength of the basin hopping technique, which
is used for the individual step. Since stochastic optimization methods never lo-
cate the global optimum with certainty, several independent simulations must
be undertaken to obtain a relative degree of confidence in the convergence of
the methods. In the evolutionary approach the progress a single simulation has
made towards the optimum is exploited, because the resulting conformation
will become a member of the active population. As such it may replace less
optimized conformations and speed the convergence of the overall population
in comparison to a population of uncorrelated replicas.

4 Results

4.1 The trp-cage protein

Using the PFF01 force field we simulated 20 independent replicas of the 20
amino acid trp-cage protein [36, 6] (pdb code 1L2Y) with a modified versions
of the stochastic tunneling method [23, 9]. Six of 25 simulations reached an
energy within 1 kcal/mol of the best energy, all of which correctly predicted
the native experimental structure of the protein(see Fig 1 (left)). We find a
strong correlation between energy and RMSD deviation to the native structure
for all simulations. The conformation with the lowest energy had a backbone
root mean square deviation of 2.83 Å.

We also folded this protein with the parallel tempering method [12]. We
found that the standard approach, which preserves the thermodynamic equi-
librium of the simulated populations, did not reach very low energies even for

Figure 1 . Overlay of the native(red) and folded (blue) structures of trp-cage pro-
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Energies (upper panel) and temperatures (lower panel) of the 30 replica
modified parallel tempering simulation of the trp-cage protein reported in the text.
The dotted line in the upper panel corresponds to the estimate of the global op-
timum of the free energy (obtained independently). The lower panel demonstrates
a rapid equilibration of the temperatures during the simulation. The upper panel
demonstrates the convergence of the energy and the rapid exchange of information
between the different replicas as discussed in the text.

the low-temperature replicas. We believe that the reason for this convergence
failure was the insufficient exchange probability between replicas at differ-
ent temperatures. We therefore introduced the adaptive temperature control
described in the methods section. Figure (2) shows the energies and corre-
sponding temperatures for a simulation using thirty replicas. The temperature
adjustment scheme results in a temperature distribution that permits frequent
exchange of replicas and significantly speeds convergence. The best final struc-
ture associated with the lowest temperature in the simulation with 30 replicas
had a RMSB deviation of 2.01 Å. We found convergence of the method using
eight to thirty replicas. However, a minimal number of at least eight repli-
cas appears to be required to fold the protein, for lower replica numbers it
appears that even the adaptive temperature scheme fails to generate rapid
replica exchange while spanning both high and low temperatures required for
the speedy exploration of the free energy surface and the refinement of local
minima respectively.

Finally we have folded the trp-cage protein with the basin hopping tech-
nique. In comparison with the stochastic tunneling method we noted that
care must be taken with the parameterization of the basin hopping technique.
First of all, very high starting temperatures above 600 K are required to per-
mit a sufficient exploration of the free energy surface. This was also observed
in the parallel tempering simulations (see Figure (2) bottom panel). As in
PT, the lowest temperature had to be chosen in the range of 2-6 K to ensure

Figure 2.
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Energy vs. RMSB plot for the final energies of the twenty basin hopping
simulations described in the text (diamonds). For comparison we also indicate the
best energy result for the STUN method (circle) and for the thirty processor PT
simulation (square).

that local minima are resolved well. In the stochastic tunneling method, the
nonlinear transformation of the energy permits large scale relaxations through
thermodynamically forbidden regions, in basin hopping this effect can only be
achieved by raising the temperature to unphysical values. We cannot rule out
the possibility that basin hopping simulations with low starting temperatures
would converge eventually, however, it appears that such an approach would
not be computationally competitive. Furthermore, we noted that the conver-
gence of the basin hopping method is improved dramatically when the length
of the relaxation run is moderately increased with the number of the basin
hopping cycle. When we compared simulations comprised of basin hopping
steps of constant length to simulations where the length increased with the
square root of the cycle number, we found much lower energies for the latter
after investing the same total number of function evaluations in each run.

Using the basin hopping method with a starting temperature of Ts = 800K
and a final temperature of Tf = 3K the lowest six of 20 simulations converged
to the native structure. A total of 12 of these simulations approached the na-
tive conformation as its estimate of the optimum. The energies and RMSB
deviations of all simulations are shown in Figure (3). The plot indicates the
existence of a set of structures with 2-3 Å RMSB deviation, which may corre-
spond to the folding funnel, and a competing metastable conformation with
about 5 Å RMSB. While all methods correctly identify the folding funnel, the
basin hopping approach results in the lowest energies. Note that the second
best simulation has an RMSB of only 1.8Å to the native conformation and
loses in energy with less the 0.5 kcal/mol.

Figure 3.
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Name RMSB Energy Secondary Structure Content

N 0.00 ccHHHHHHHHHclcbHHHHHHHHHHclcccHHHHHHHHHc

D01 2.34 -119.54 cHHHHHHHHHHHlcbcHHHHHHHHHHHHbHHHHHHHHHHc

D02 2.41 -117.52 cHHHHHHHHHHHlcbHHHHHHHHHHHHHbHHHHHHHHHHc

D03 2.76 -116.25 cHHHHHHHHHHHlcbHHHHHHHHHHHHHbHHHHHHHHHHc

D04 2.40 -115.85 cHHHHHHHHHHHlbbHHHHHHHHHHHHHbHHHHHHHHHHc

D05 2.43 -114.67 cHHHHHHHHHHHlcbHHHHHHHHHHHcbHHHHHHHHHHHc

D06 6.48 -114.06 cHHHHHHHHHHHcccbHHHHHHHHHHHHbHHHHHHHHHHc

D07 2.57 -113.65 cHHHHHHHHHHHlbbcHHHHHHHHHHHHbHHHHHHHHHHc

D08 4.61 -107.72 cHHHHHHHHHcclccHHHHHHHHHHHHHlclHHHHHHHHc

D09 4.14 -106.29 cHHHHHHHHHHHcbcbHHHHHHHHHbblcHHHHHHHHHHc

D10 5.92 -103.88 cHHHHHHHHHHHlcHHHHHHHHHbcbcclbHHHHHHHHHc

Table 1. Energies (in kcal/mol) of the 10 lowest energy decoys obtained in the basin
hopping simulations of the HIV accessory protein. The table shows the backbone
RMS deviation to the NMR structure and secondary structure content. The first
row designates the secondary structure content of the NMR structure.

4.2 The HIV accessory protein

Encouraged by this result, we applied a the modified basin hopping or Monte-
Carlo with minimization (MCM) strategy [8, 25] to fold the structurally con-
served 40-amino acid headpiece of the HIV accessory protein [10]. We per-
formed twenty independent simulations and found the lowest five to converge
to the native structure (see tbldecoyhiv) [14]. The first non-native decoy ap-
pears in position six, with an energy deviation of 5 kcal/mol and a significant
RMSB deviation. The table demonstrates that all low-energy structures have
essentially the same secondary structure, i.e. position and length of the helices
are always correctly predicted, even if the protein did not fold correctly.

The good agreement between the folded and the experimental structure
is also evident from Figure (1)(center), which shows the secondary struc-
ture alignment of the native and the folded conformations. The good physical
alignment of the helices illustrates the importance of hydrophobic contacts to
correctly fold this protein. An independent measure to assess the quality of
these contacts is to compare the Cβ-Cβ distances (which correspond to the
NOE constraints of the NMR experiments that determine tertiary structure)
in the folded structure to those of the native structure. We found that 66 %
(80 %) of the Cβ-Cβ distance distances agree to within one (1.5) standard
deviations of the experimental resolution.

We also performed a simulation of the HIV accessory protein using the
adapted parallel tempering method [13]. We used 20 processors of an INTEL
XEON PC cluster and ran the simulation for a total of 30× 106 energy eval-
uations for each configuration, which corresponds to approximately 500 CPU
hours on an 2.4 GHz INTEL XEON processor. All simulations were started
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with random conformations at high temperatures to allow for rapid, unbi-
ased relaxation of the structures and the temperature distribution. The final
conformation with the lowest energy/temperature had converged to within
1.23 / 2.46 Å backbone root mean square (RMSB) deviation to the best
known decoy / NMR structure of the HIV accessory protein. The overlay of
the experimental and the converged structure (see Figure (1)) demonstrates
the good agreement between the conformations, the difference in NOE con-
straints demonstrates that not only short range, but also long range distances
are correctly predicted. Considering the ensemble of final conformations, we
find many structures closely resembling the native conformation. The RMSB
deviations of the next four lowest conformations (all within 1.5 kcal/mol of
the minimal energy of XXX) have RMSB deviations of 3.14/2.23/3.78/3.00 Å
respectively to the native decoy.

4.3 The bacterial ribosomal protein L20

In the course of the simulations on the HIV accessory protein we explored
methods to share information between the independent basin hopping sim-
ulations in order to improve the overall convergence. For the 60 amino acid
bacterial ribosomal protein L20 (pdb-code 1GYZ) we thus experimented with
the evolutionary technique described in the methods section. Starting from
a seed population of random structures we performed the folding simulation
in three phases: (1) generation of starting structures of the population, (2)
evolutionary improvement of the population and (3) refinement of the best
resulting structures to ensure convergence.

In phase (1) we performed high-temperature (500K) Monte Carlo simula-
tions of 50,000 steps each. In these runs we reduced the strength of the solvent
interactions (VS) by 20% to facilitate the rapid formation of secondary struc-
ture. It has been argued that hydrophobic collapse competes with secondary
structure formation in protein folding. In the collapsed conformational ensem-
ble large scale conformational changes, such as those required for secondary
structure formation, occur only rarely. The goal of this simulation phase was
the generation of a wide variety of competitive starting conformations for
further refinement.

At the end of this simulation we had gathered in excess of 17000 distinct
decoys that were ranked according to their total energy as well as according
to the individual energy terms of the force field (VS ,VLJ ,VHB ,VC(sidechain)
and VC(backbone)). For each criterion we selected the best 50 conformations
and eliminated duplicates to arrive at a population of 266 starting structures
for the phase (2) of the procedure. This population was relaxed in 14000
SA simulations as described in the methods section. At the end of this step
we selected the 50 conformations best in total energy for further refinement.
In phase (3) we performed 5500 SA simulations on this subpopulation. The
length of the individual relaxation simulations was gradually increased from
105 steps per simulation to 2.3× 106.
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Name Energy RMSB 3-state secondary structure

1GYZ 0.01 ccHHHHHHHcccccccHHHHHHHHHHcccccccccHHHHHHcHHHHHHHHHHHHHHcccc

D01 -167.87 4.64 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

D02 -166.15 8.25 ccHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

D03 -165.91 4.41 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccccHHHcHHHHHHHHHHHHHHHHcc

D04 -164.11 5.54 ccHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

D05 -163.99 3.79 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

D06 -163.93 4.04 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccccccccHHHHHHHHHHHHHHHHcc

D07 -163.45 8.52 ccccHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

D08 -163.20 4.37 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHHcHHHHHHHHHHHHHHHHcc

D09 -162.67 5.55 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccHHHHccHHHHHHHHHHHHHHHHcc

D10 -162.52 3.78 cHHHHHHHHHHHcccHHHHHHHHHHHccccccccccccccccHHHHHHHHHHHHHHHccc

Table 2. Energies (in kcal/mol) of the 10 lowest energy decoys of the final popu-
lation with backbone RMS deviation to the NMR structure and secondary struc-
ture content. The first row designates the secondary structure content of the NMR
structure.. The letters H and c indicate amino acids in Helix and coil structure
respectively. Green letters indicate correct, red incorrect secondary structure.

The energies and structural details of the best ten resulting conformations
are summarized in Table (2). Again the best conformation had approached
the native conformation to about 4.6 Å RMSB deviation. In total six of the
lowest ten conformations approach the native structure, while four others
misfolded. Note that the selection criterion for the active population (see
methods section) precludes the occurrence of the same configuration to within
3 Å RMSB, this dominance of near native conformations of the total ensemble
is particularly encouraging.

In order to quantify the overall improvement of native content during
the simulation, we defined the native content of the simulated ensemble as a
weighted average of the deviations of the population and the native conforma-
tion: For a population of size N we add 100(N-R+1)/N for each near-native
decoy (RMSB less than 4Å) ranked at position R by energy to the total native
score of this population. A score of 100 thus corresponds to a native decoy
placed at the top position, while a near native decoy at the very bottom
contributes just unity. Non-native conformations contribute nothing. Using
this measure the final population contains in excess of 20% of near native
conformations, its native score exceeds 800, increasing sixty-fold during the
simulation phases (2) and (3).

5 Conclusion

Since the native structure dominates the low-energy conformations arising
in all of these simulation, our results demonstrate the feasibility of all-atom
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protein tertiary structure prediction for three different proteins ranging from
20-60 amino acids in length with a variety of different optimization methods.
The free energy approach thus emerges as viable trade-off between predic-
tivity and computational feasibility. While sacrificing the folding dynamics, a
reliable prediction of its terminus, the native conformation — which is central
to most biological questions — can be achieved.

The computational advantage of the optimization approach stems from
the possibility to visit unphysical intermediate conformations with high en-
ergy during the search. This goal is realized with different mechanism in all
of the employed stochastic optimization methods. In the stochastic tunnel-
ing method the nonlinear transformation of the PES permits the dynamical
process to traverse arbitrarily high energy barriers at low temperatures, in
basin hopping and parallel tempering, simulation phases at very high temper-
atures accomplish the same objective.

Our results indicate that the simple basin hopping method is very effi-
cient in the determination of the global optimum of the free energy surface
of realistic all-atom protein models. It is encouraging that the same structure
was also found for the trp-cage protein using the parallel tempering and the
stochastic tunneling method and also for the HIV accessory protein using the
parallel tempering method. This finding indicates that the result of the folding
approach is not an artefact of the optimization strategy. In direct comparison,
however, we find that the basin hopping technique gave the lowest energies.
Since it is virtually parameter free and very simple to implement it emerges
as a natural work-horse for our approach.

Its one important disadvantage is the fact that different basin hopping sim-
ulations are completely independent of one another. Because the underlying
optimization problem in all-atom protein folding is very difficult and the free
energy surface is very rugged, several simulations must be undertaken to ob-
tain a relative degree of confidence in the convergence of the approach. From
this perspective it is desirable to design an optimization method in which dif-
ferent members of the simulated population can learn from one another. In
the evolutionary approach we have explored here is one particularly simple
scheme to ensure that the total computational effort is concentrated on the
best conformations that arise at intermediate stages of the simulations. So far
it lead to the folding of the largest protein at all-atom resolution, but much
work remains to be done to optimize this approach.

6 Discussion

This review indicates that all-atom protein structure prediction with stochas-
tic optimization methods becomes feasible with present-day computational
resources. The fact that three proteins were reproducibly folded with differ-
ent optimization methods to near-native conformation increases the confi-
dence in the parameterization of our all-atom protein force field PFF01. The
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presently available evidence indicates that the comparatively straightforward
basin hopping routine is a good work horse to evolve individual conforma-
tions. The resolution of several independent basin hopping simulations may
be enhanced by the use of evolutionary algorithms such as the one used for
the bacterial ribosomal protein L20 . We note that the master-client model
for this strategy is asynchronous and can be implemented outside the simu-
lation program using the standard TCP/IP, FTP or HTTP protocols. Using
generic libraries, such as MPI, it can also be easily implemented on MPP
architectures. Since the amount of information that needs to be exchanged is
very small, while the effort in a single basin hopping cycle is substantial, there
is virtually no loss in an asynchronous parallel implementation. This makes
the evolutionary approach investigated here suitable for present day GRID
architectures. While the present results demonstrate proof of principle, much
work, remains to be done to arrive at an optimal strategy.

Protein structure prediction with stochastic optimization methods requires
two separate key ingredients: an accurate force field and efficient optimization
techniques. One cannot overemphasize the importance of the interplay of op-
timization methods and force field validation.Rational force field development
mandates the ability to generate decoys that fully explore competing low-
energy conformations to the native state. The success of different optimization
strategies depends strongly on the structure of the potential energy surface.
As a result the development of efficient optimization techniques for all-atom
protein structure prediction depends on the availability of a force field that sta-
bilizes native conformations of proteins with appreciable hydrophobic cores.
For helical proteins the bottleneck in ab-initio all-atom structure prediction
now lies in the development of optimization strategies that significantly in-
crease the system size and increase the reliability of the predictions. Based
on the results reviewed here it is sensible investigate improvements of the
evolutionary techniques based on the basin hopping method for this purpose.

The application of this methodology to a wide range of proteins will gener-
ate large decoy sets of metastable conformations that compete with the native
structure of the protein. These decoy sets may in turn be used to improve the
parameterization of the force field. By its very nature, the approximation of
the free energy of the system mandates the use of implicit solvent models. This
implies that interactions with the solvent and intramolecular electrostatic in-
teractions must be parameterized in accurate, yet efficient effective models.
Since both effects are highly nontrivial, the free-energy approach can only ap-
proximate, but not duplicate the results of all-atom explicit water simulations.
The present evidence indicates that the native conformation is reproduced to
3-4 Å resolution with PFF01, but the results of the free energy approach could
be refined in all-atom simulations that start from a set of low-energy decoys.
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Hartree-Fock-Roothaan (HFR), 460,
461, 465

based semi-empirical methods,

hybrid QM/MM methods, 462

molecular modelling tool, 461

Møller-Plesset perturbation theory

of solids, 523

backscattering, 509–534

quasicrystals, 534–546

velocity correlation function, 509

semi-empirical procedures, 464

single-reference (SR) perturbative
methods, 460

ab initio electronic structure, 537–541

structure constants, 538

ab initio Gutzwiller approach, 530

plutonium, 509–534

ab initio LMTO band structure, 526

absorption spectra

Na(3p2P)Arn clusters, 372

ACPQ method, 26

active orbitals occupied, 69

active space, complete. See complete
active space

adiabatic local density approximation
(ALDA), 144

Ag-n and Au-n anionic clusters

adsorption of O2, 418–421

all-atom protein structure prediction,
557. See also protein folding

anchor bonds, 442, 447

Anderson Hamiltonian, 521

anionic silver clusters, 418

annihilation operator, 50

asymmetric energy formula, 25

atomic sphere approximation (ASA),
523, 537

Au-Ni anchor bond, 442

B96 nanotubes, 547
B96 species

B3LYP version, 549
bacterial ribosomal protein L20, 547

folding simulation, 566
SA simulations, 566

bare Green’s function, 487
base electronic states, diabatic, 193
base state, 179, 180
basic linear algebra subroutines

(BLAS), 8. See also literate
program technique

levels, 8
NAG library, 8

basic tensor algebra subroutine library,
3. See also literate
programming techniques

basin hopping technique (BHT), 561,
562, 564, 566, 568, 569. See also
evolutionary algorithms

Monte-Carlo with minimization, 561
sequential algorithms, 559, 561
trp-cage protein, 563

basis sets, extended
VDZ, 340
VTZ, 340

basis tensor algebra subroutines
(BTAS), 9

classification, 9
basis-set superposition error, 350
benchmark model system

Li-HF complex, 386
BERTHA program, 199–201, 213, 214

Dirac amplitudes
G-spinor expansion of, 202–205

Dirac-Coulomb-Breit, 200
Dirac-Hartree-Fock-Breit, 200
four-spinor angular momentum, 203
G-spinor basis functions, 200,

207–209
Hermite Gaussian type function

(HGTF), 205
internal electromagnetic fields,

209–211

573

ab initio methods, 462

quantum diffusion, 534–546

463, 466, 474

(MPPT), 357, 460

QC methods, 462, 474
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McMurchie-Davidson algorithm,
205–207

overlap densities, 205–207
quantum electrodynamics (QED),

200
electromagnetic interactions in,

201–202
relativistic density functional theory

(RDFT), 200
spherical Gaussian function, 203

Biedenharn equation, 225
representation of, 223–226

binding energies, 354
from 2D CCSD(T), 356
from 3D CCSD(T), 356
from semi-empirical surfaces, 356

Bloch states, 539
bond formation, 434
Born-Oppenheimer (BO) model, 178,

389
boron clusters

quasiplanarity, 548
rhombohedral unit cell, 551

boron nanostructures, 547, 549. See
also Aufbau principle; HF-SCF
theory

computations, 549–551
Hartree-Fock self-consistent-field,

549
nanotubes, 549, 551, 554

electron density of states, 554
nanostructured, 546–555

bra-space, 178, 179
Bravais lattice vectors

nanotubes, 551
Breit interaction matrix, 208, 209, 210
Breit-Pauli Hamiltonian, 201
Brillouin-Wigner (BW), 35

MR CC approaches, 23

calculated using coupled-cluster
(CCSD(T)), 45, 46, 47, 347,
353, 359, 361, 366

ground-state, 47
HeBr2 interaction potential, 360
interaction energies, 363
potential energy surface (PES), 349
2R-RMR, 31

canonical energy components
in water dimer, 340
in water monomer, 340

canonical MOs, 483

CAS. See complete active space
CC theory, ground-state, 51
CC/EOMCC

bra state, 53, 54, 94
generalized moments of, 64
ket state, 53, 54, 94
MMCC corrections to, 100
similarity-transformed Hamiltonian

of, 51
CC3 approach, 72, 84
C-conditions, 20, 22
CCSD. See coupled cluster singles and

doubles approach
CCSD/EOMCCSD equations

for deexcitation amplitudes, 55
triply excited moments, 67

CFT. See crystal field theory
CFT/LFT theory, 497
chemical hardness, 164
chemical reactions

Coriolis coupling, 392
non-adiabatic couplings, 396
non-adiabatic effects, 386, 389, 392
non-adiabatic transitions, 385

chemical softness, 165
CI. See configuration interaction
CI-corrected MMCC approaches, 69, 73

double excitations, 73
MMCC(2,3) methods, 66–78

MMCC(2,3)/CI, 68, 77
MMCC(2,3)/PT, 77

non-iterative corrections, 68
CI singles, doubles, and triples

(CISDT), 67
CISDt method, 67, 69

cis-attractor, 190
CISD

2R-CISD
SGDC, 31

intruders, 34
CISDt-corrected MMCC(2,3)

approach. See MMCC(2,3)/CI
approximation

cis-trans isomerization process
generalized electronic diabatic

(GED), 177
Clebsch-Gordon coefficient, 202, 204
closed-shells

calculations, 337
AA curves, 188
BB curves, 188
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molecules

CCSD(T) method, 47

restricted Hartree-Fock, 15

total energy

Hartree-Fock SCF level, 338

cluster operator, 50, 56, 57

different, 16

single, 16

code documentation, 5. See also
literate program technique

coherence time, 258

collaborative virtual environment, 3,
10. See also literate program
technique

complete active space, 25, 33

CAS CI, 33

complete model space (CMS), 17

completely renormalized, 14, 48

complex A·AU3, 443, 444

complex systems, 507–572

Gutzwiller method, 509–534

nanostructured materials

boron nanotubes, 547–556

protein folding

stochastic optimization methods
for, 557–572

quantum diffusion

in quasicrystals, 535–546

complexes and clusters, 335–505

DFT studies

of noble metal clusters, 407–432

electronic predissociation of excited
Li-HF complex

non-adiabatic transitions, 385–405

interaction abilities

partitioning scheme, 337–345

molecular modelling

with open d-shell, 451–505

Na(3p2P)Arn clusters

excited isomers and emission
spectra, 371–383

non-conventional hydrogen bonds

three-gold cluster as proton
acceptor in, 433–450

van der Waals potential energy
surfaces

bromine molecule with helium
atoms, 347–369

component index, 204

computer code

literate programming techniques,
3–12

and devolved collaboration, 9–10
and libraries, 8–9

basic linear algebra subroutines
(BLAS), 8

basis tensor algebra subroutines
(BTAS), 3, 9

collaborative virtual environment,
3, 10

documentation of code, 5–6

LATEX, 7
practicalities of, 7–8

publication, 6–7
WEB file, 7

Condon-Shortley, 202
configuration interaction, 13

continuum distorted wave eikonal
initial state-continuum
distorted wave (CDW-EIS),
309, 311, 312, 325

Bhattacharya simulation, 311, 324,
326, 329, 330, 331

continuum distorted wave eikonal
initial state method, 309

perturbation theory, 312–315

scattering amplitudes, 315–320
continuum distorted wave theory,

310, 311

doubly differential cross sections,
332

fully differential cross sections, 332
Olivera, 326, 329

continuum distorted wave theory
(CDW)

doubly differential cross sections for
longitudinal electron, 332

fully differential cross sections, 332
conventional hydrogen bond

concept, 433
donors, 436

Coriolis coupling, 392
correlation correction, 110

correlation function
velocity, 509

Coulomb Hamiltonian, 177
Coulomb potential, 313

coupled cluster (CC) theory, 13, 14, 24
CCSD method, 50

completely renormalized (CR)
CCSD(T) method, 14
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Davidson-type corrections, 13
excited electronic states, 46

equation-of motion CC
(EOMCC), 46

linear-response CC theory, 46
symmetry-adapted cluster

configuration interaction
(SAC-CI), 46

externally corrected methods, 13
ground electronic states, 46
non-degeneracy, 14
non-iterative corrections, 57–63
renormalized (R) CCSD(T)

methods, 14
SR CCSD method

CCSD(T), 14
SU CC formalism, 17

full CI (FCI), 17
MR SU CC formalism, 26
SU CC Ansatz, 17
SU CCSD formalism, 17

coupled cluster singles and doubles
approach, 45

intruders, 34
coupling coefficient, 20
CP violation, 255
CR. See completely renormalized
CR-CCSD(T), 78
creation operator, 50
CR-EOMCC methods. See also

externally corrected MMCC
methods

CR-EOMCCSD(T) approach, 48, 49,
62, 64–100

and CC3 approach, 84
and CR-EOMCCSD(T)L, 99
CCSD/EOMCCSD, 87, 101
EOMCCSD, 86
MMCC(2,3)/CI approximation, 86
performance of, 84
restricted open-shell Hartree-Fock

(ROHF) orbitals, 80
triples corrections of, 79

CR-EOMCCSD(T) code, 83
CR-EOMCCSD(T) energies, 81
CR-EOMCCSD(T)L approach, 70,

93–100
crystal field method, 474, 478

effective Hamiltonian of, 475
Morse potential, 489
splitting pattern, 478

cubic-spline interpolation, 353
curvature corrections, 166

Davidson-type corrections (DCs), 31.
See also SR CI

decay probabilities
nucleus 49

21Sc28, 305–307
deexcitation operators, 56
degenerate Hubbard Hamiltonian,

517–521
density functional theory (DFT)

methods, 160, 188, 410, 411,
467, 468, 510, 536, 549. See also
Thomas-Fermi theory

axiomatic theories, 468
basis Slater determinants, 469
DFT paradigm, 467
Hartree-Fock exchange, 471
Kohn-Sham orbitals, 472
local spinpolarized, 549
non-local spinpolarized, 549
non-Roothaan terms, 469
Racah parameters, 470
semi-empirical QC methods, 469
within local density approximation

density matrices, 152, 457–474
ab initio methods, 464

as scalar products, 153–155
single Slater determinant, 459

density metal studies, 410. See also
density functional theory

computational methods, 411–412
doped Au clusters, 417–418
nobel metal clusters, 407
shell-model approach, 410

density of states, 539, 549
Hume-Rothery phases, 540

DHFB. See Dirac-Hartree-Fock-Breit
diabatic base electronic states, 193
diatomic coordinate frame (DCF), 483
diatomics in molecules (DIM), 372
DIPR. See direct interaction with

product repulsion
Dirac amplitudes

G-spinor expansion of, 202–205
Dirac Hamiltonian matrix, 201, 208
Dirac theory

Biedenharn equation, 225
representation of, 223–226

Dirac-Pauli representation, 219–222

matrix elements

(DFT-LDA), 509
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energy surfaces

structure of, 226–228

minimax principle, 226–228

spherical symmetry, 223–226

Weyl representation, 222–223

Dirac-Coulomb (DC) Hamiltonians,
260

Dirac-Coulomb equation, 217

four-component Dirac spinor, 218

Dirac-Coulomb-Breit (DCB), 207, 230

Hamiltonians, 260

four-component wave function, 265

Dirac-Fock (DF), 260

Dirac-Fock (DF) calculations

on TIF, 264

on YbF, 264

Dirac-Fock-Breit (DFB), 260

Becke cell integration scheme, 211

extended Kohn-Sham (EKS), 162

zero-temperature, 162

Dirac-Hartree-Fock-Breit, 200

Dirac-Pauli representation

Hamiltonian eigenfunction, 221

direct interaction with product
repulsion, 386

discrete variable representation (DVR),
355

donor-acceptor interaction. See
hydrogen bond

doped Au clusters, 417–418

DOS. See density of states

double-zeta plus polarization (DZP), 27

doubly differential cross sections, 321

d-shell chromophore, 477

dynamical correlations

coupled cluster (CC) methods, 14

dynamical mean field theory (DMFT),
510

DZP H4 model

quasidegeneracy, 13

ec. See externally corrected

EDFs. See empirical distribution
functions

EDM. See electric dipole moments

effective core potential (ECP), 350

effective crystal field

bare Green’s function, 486

effective Hamiltonian formalism, 18–19.
See also quasidegeneracy

of crystal field method (EHCF)
approach, 20, 273, 451, 452,
479, 481, 482, 495, 498

d-d transitions, 472
EHCF/MM hybrid scheme, 499
EHCF/X methods, 484, 486
hybrid QM/MM methodology, 484
Löwdin partition technique, 499
Mössbauer spectra, 494
parameterization, 482
vs. LFT, 483
Werner-type TMCs, 480

MR CC formalisms, 17
C-conditions, 17

projection operator, 18
eigenstates, 56
EKS. See extended Kohn-Sham
electric dipole moments, 255

electron, 256
enhancement factor, 255
for paramagnetic atoms, 255
in atoms and molecules, 257–260
non-zero, 256
YbF, 256

electric quadrupole
and magnetic dipole, 293

electron affinity
shell-correction part of, 172

electron EDM, 256–258
prediction for, 257

electron shell effect, 301
electron velocity distributions,

longitudinal, 320–325
for transverse velocities, 322\

electronic localization function
nodal planes, 191

electronic predissociation process, 385,
386, 387, 388

Born-Oppenheimer approach, 389
first-order perturbation treatment,

388
non-adiabatic couplings, 386
rovibrational levels, 393
time-dependent Golden rule

treatment, 376, 387
electronic predissociation, 386
electronic structure, 485

Bloch states, 539
density matrices, 457–474

ab initio methods, 464
single Slater determinant, 459
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evaluation, 451

LMTO method, 537

plutonium, 510

TMC, 456, 474

electronically excited isomers

and emission spectra, 371

electronically excited Na(3p2P)Arn
clusters

hybrid Hamiltonian, 373

electronically excited states

Hartree-Fock theory, 107

electron-phonon operator, 190

elucidative programming, 7. See also
literate program technique

emission spectra, 371–383

empirical distribution functions, 491

energy density functional, 161

energy partitioning scheme

in water clusters, 337–345

enhancement factor, 258

EOMCC singles, doubles, and triples,
46

EOMCC method, 73

EOMCCSD, 48, 61, 94

vertical excitation energy, 72, 80,
87

singles, doubles, and triples
(EOMCCSDT), 46

singles, doubles, triples, and
quadruples (EOMCCSDTQ),
46, 87

EP. See electronic predissociation

EPV. See exclusion principle violating

equation-of-motion (EOM)

coupled-cluster methods, 50

non-iterative corrections, 57–63

non-iterative coupled-cluster, 45

ESP. See electronic structure
parameters

ethylene conformational, 187–189

ethylene electronic isomerism, 177

evolutionary strategy, 561. See also
protein folding

exact MMCC theory, 57

excitation operator, 57, 64

doubly excited contribution, 67

external, 20

reference contribution, 67

singly excited contribution, 67

excited electronic states

method of moments of
coupled-cluster, 49

excited isomers, 371–383

excited states, 109

algebraic approximation for, 116–117

configuration interaction, 109

CR-EOMCCSD(T), 48

CR-EOMCCSD, 48

double excitations, 48

EOMCCSDT approach, 47

even-tempered basis sets, 116,
120–124

Hartree-Fock equations for, 110–116

matrix Hartree-Fock, 117–120

MMCC, 48

CR-EOMCCSD(T) methods, 48

MRMBPT, 49

single-reference CC/EOMCC
theory, 49

multi-configurational self-consistent
field method, 109

multi-reference coupled cluster
expansions, 109

multi-reference perturbation theory,
109

exclusion principle violating, 26

extended basis sets

VDZ, 340

VTZ, 340

extended DFT, 169

extended Kohn-Sham, 161

EKS-DFT

electronegativity and chemical
hardness in, 161–165

Strutinsky’s shell-correction
method, 165–170

external excitation operators, 20

externally corrected (ec) CC

at MR level, 35

external corrections, 35

higher-than-pair clusters, 35

intruder, 35

at SR level, 35

externally corrected (ec) CCSD

amplitude correcting, 25

GMS SU method, 36

SR approaches

RMR CCSD, 31

externally corrected (ec) energy
correcting approaches
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and method of moments CC theory,
25

asymmetric energy formula, 25
externally corrected MMCC methods,

78
MMCC(2,3)/CI methods, 101
MMCC(2,3)/PT methods, 101

externally corrected MMCC(2,3)
schemes, 64–100

FBA, 329
FCC

CI and CC approach, 24
FDCS. See fully differential cross

section
Fermi systems, 127
Fermion lines, 53
Feynman diagrams, 286, 302
first-order shell corrections, 159
Fock operator, 51
Fock space MR CC method. See

valence universal
folding process

elucidation, 557
force field

all-atom free-energy force field, 558
Lennard-Jones parameters, 558

four-component
Dirac spinor, 218
molecular spinors, 266
single configuration, 260
spinors, 267

Fourier transform, 393
Franck-Condon type approximation,

380
full CI, 28, 152

CCSD, 31
CI and CC approach, 24
CISD, 31

fully differential cross section, 326, 329
CDW-EIS model, 331, 332
for highly charged ions, 325

fully hybridized Hamiltonian, 521–523
functional derivative discontinuity

exchange-correlation component, 164
Kohn-Sham’s component, 164

Gaussian 98 package
tetra-atomic complex, 356

Gauss-Legendre points, 353
GCF. See global (laboratory)

coordinate frame

GED. See generalized electronic
diabatic

general model space, 17
generalized electronic diabatic, 177

Born-Oppenheimer (BO) model, 178
confining and asymptotic, 186
ELF function, 191–192
ethylene electronic isomerism, 177
minimal CI space, 177
molecular quantum mechanics,

181–185
nodal planes, 191–192
real-space algorithms, 185–187
state quantum mechanics, 178–181

generalized gradient approximation
(GGA), 409

generalized occupation numbers, 166
generalized relativistic effective core

potential (GRECP), 229, 231,
253, 264, 265, 279

eka-lead (E114), 229
eka-mercury (E112), 229
eka-thallium (E113), 229
plutonium, 229
self-consistent

for D- and F-elements, 232–234
uranium, 229

global (laboratory) coordinate frame,
483

global minima (GM), 374
global optimization method, 374, 375.

See also electron
pseudo-potential;
potential-energy surface
calculations

global minima, 374
GMS. See general model space
Gogny forces, 143
gold clusters

adsorption, 407

adsorption of oxygen, 421–425

Golden fullerenes
spherical aromaticity rule, 415

Golden rule approach, 376, 388
adiabatic representation, 402
non-adiabatic dynamics, 392
rovibrational bound states, 389

gradients spin functionals, 411

Gram matrix, 205, 207, 208

anionic, 411, 420

structures, 409, 413

generalized
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GRECP. See generalized relativistic
effective core potential

Green’s function, bare, 487
ground-state CC theory, 51
ground-state CCSD(T) approach, 47
ground-state molecular properties

single-reference coupled cluster, 45
G-spinors

basis sets
DCB Fock matrix, 207–208

Coulomb interaction integral, 209
overlap densities, 205–207
two-body interactions with, 208–209

Gutzwiller approach, 509–534. See also
one-band Hubbard model

Fermi-liquid theory
quasiparticle approach, 532

generalized gradient approximation,
528

Gutzwiller wave function, 511
Hamiltonian, 511
Slater determinant, 515
spinorbit coupling, 530
to plutonium, 526

degenerate Hubbard Hamiltonian,
532

Gutzwiller ground state, 516
Gutzwiller loop, 527
Gutzwiller state, 511
Gutzwiller wave function (GWF), 511,

519

Hamiltonian, 181
Anderson, 521
Breit-Pauli, 201
Coulomb Hamiltonian, 177
degenerate Hubbard, 517–521, 532
Dirac matrix, 201, 208
Dirac-Coulomb (DC), 260
Dirac-Coulomb-Breit (DCB), 260
effective, 18–19, 273

of crystal field method (EHCF)
approach, 451, 452, 479, 481,
482, 495, 498

eigenfunction, 221
eigenvalue, 74
fully hybridized, 521–523
hybrid, 373
operator, 361, 388
similarity-transformed, 51
technique, 477
with RECP, 264

hard and soft acids and bases, 165
Hartree-Fock determinant, 50, 74
Hartree-Fock equations, 110–116. See

also excited states
for excited states

Be atom, 119
He atom, 117, 119
Li atom, 119

for ground states, 117
single determinantal wave functions,

110–115
variational derivation of, 115

Hartree-Fock self-consistent field
(HFSCF), 514, 547, 549

Hartree-Fock theory, 107, 286
Hartree-Fock-Roothaan (HFR), 337,

451
based semi-empirical methods, 466,

474
approximation, 460, 465
MO LCAO, 461

Hartree-like uncorrelated wave function
(HWF), 511

heavy-atom molecules
collisions

CDW-EIS model, 311
continuum distorted wave eikonal

initial state method
(CDW-EIS), 312–320

computational strategies, 260–264
Dirac-Fock, 260
Dirac-Fock-Breit, 260
eigenvalue problem

Dirac-Coulomb (DC)
Hamiltonians, 260

Dirac-Coulomb-Breit (DCB)
Hamiltonians, 260

four-component single configuration,
260

inversion symmetry, 254
P,T-parity, 254
P,T-parity non-conservation

historical background, 255–256
time-reversal invariance, 254

HeBr2
non-additive interactions, 357

Hermite Gaussian type function
(HGTF), 205

HgF, 270
higher-than-pair clusters, 17

CC theory, 26



INDEX 581

CI theory, 26
highest occupied orbital (HOMO), 162

DFT, 162
EKS, 162
Kohn-Sham theory, 163

high-spin open-shell
restricted open-shell, 15
unrestricted open-shell (UOHF), 15

Hilbert space, 178, 180
Hilbert space method. See state

universal
HIV accessory protein

simulation, 565
Hohenberg-Kohn theorem, 161
hopping technique, basin, 561, 562,

564, 566, 568, 569. See also
evolutionary algorithms

Monte-Carlo with minimization, 561
sequential algorithms, 559, 561
trp-cage protein, 563

HSAB. See hard and soft acids and
bases

Hubbard Hamiltonian, 514, 517, 521
Huzinaga-type potentials, 231, 262
hybrid Hamiltonian, 374, 521–523. See

also all-electron calculations
hydrogen bond, 338, 436

acceptors, 434
adenine·Au3 complexes, 442–445
complex A·AU3(N7), 444
conventional, 433, 434

concept, 433
donors, 436

formic acid·Au3, 407
separation, 434

hyperfine coupling constants, 297

impact velocity, 312
incomplete model spaces (IMSs), 17
inequivalent sites

level renormalization, 514–517
interaction matrix

Breit, 208, 209, 210
intermediate normalization, 17, 19

C-normalization, 20
intermolecular vdW potential, 353
internal cluster amplitudes, 20
internal excitation operators, 20
internal triples, 67
internuclear coordinate, 312
intramolecular hydrogen bond

adenine·Au3 complexes, 442–445

complex A·AU3(N3), 444
complex A·AU3(N7), 444

intruder state
GMS, 36

inversion symmetry, 254
ionization potential

first-order shell corrections, 159
shell-correction part of, 172

isomerism, 189–191
ethylene electronic, 177

isospin index, 142

Jacobi coordinate
rovibrational Hamiltonian, 353

EKS approach, 163

ket space, 178, 179
ket states, 54
kinematic operator, 181
Kohn-Sham equations, 547
Kohn-Sham functional

for atomic clusters, 139–141
Kronecker delta, 54
KS spectrum, single-particle, 170

Lagrange multipliers, 518
Lamb shift, 286

polarization effect, 285
Landau theory

Fermi liquids, 523
Laplace equation, 538
lattice vectors

Bravais, 551
LCAO bonding orbitals, 193
LDA ab initio LMTOASA calculation,

526
LDA+U method, 523
Legendre functions, 390
Lennard-Jones parameters, 558
lepton EDM. See electron EDM
level renormalization

Hellmann-Feyman theorem, 515
Levi-Civita density, 211
ligand field stabilization energy

(LFSE), 455
Li-HF complex. See also Golden rule

treatment
electronic predissociation, 385
electronically excited, 385

linear structured water dimer
partitioned energy terms, 344

Janak’s theorem, 162
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linear water dimer, 342
linearized Mun Tin orbitals (LMTO),

523, 536, 538
atomic sphere approximation, 537
band structure, 526
density of states, 540

linear-response CC methods
CC3, 47
CCSDR(3), 47

literate programming techniques, 3–12
and devolved collaboration, 9–10
and libraries, 8–9

basic linear algebra subroutines
(BLAS), 8

basis tensor algebra subroutines
(BTAS), 3, 9

collaborative virtual environment, 3,
10

documentation of code, 5–6
failure in, 5, 6

LATEX, 7
practicalities of, 7–8
publication, 6–7

elucidative programming, 7
WEB file, 7

tangle, 7
weave, 7

local density approximation (LDA),
409, 411, 510, 536, 549

adiabatic, 144
longitudinal electron velocity

distributions, 320–325
for transverse velocities, 322

Lorentz weight, 138
low energy electrons, 320
Löwdin partition technique, 499
LS. See Lamb shift

magnetic dipole
and electric quadrupole, 293

(MBPT), 14, 47. See also
coupled cluster (CC) methods

many-electron correlation problem
perturbative approaches, 13
variational approaches, 13

matrix elements (ME), 247
matrix Hartree-Fock, 117
maximum hardness principle, 165
MBS. See minimum basis set

MCDF. See multi-configuration
Dirac-Fock

MCM. See Monte-Carlo with
minimization

McMurchie-Davidson algorithm

G-spinor basis functions, 205–207

McWeeny’s theory of electron groups,
475

mechanical modelling

Jahn-Teller ion, 454, 455

ligand field stabilization energy, 455

mesoatom decay

Feynman diagrams, 303

meso-atomic system, 304

metal complexes, 451–505

open d-shell, 451–505

method of moments of CC equations
(MMCC), 45, 48, 59

CR-EOMCCSD(T) methods, 48

excited electronic states, 49

MRMBPT, 49

single-reference CC/EOMCC theory,
49

millihartrees (mH), 29

minimum basis set, 27

minimum energy path, 362

MMCC approaches

CR-EOMCC methods, 101

CR-EOMCCSD(T), 101

externally corrected MMCC, 101

for excited states, 49, 63

CC/EOMCC approximation, 59,
63

CR-EOMCCSD(T)L

approximation, 63

MMCC(mA,mB) schemes, 63

ground state, 49

similarity-transformed Hamiltonian,
101

left eigenstates of, 93–100

MMCC(2,3) approximation, 62

CI-corrected (MMCC(2,3)/CI
approximation), 66–78

active-space CISDt calculations,
66

CR-EOMCCSD(T) approach, 78

MRMBPT-corrected, 66–78

PT-corrected (MMCC(2,3)/PT
approximation), 70, 73, 75, 76,
77, 78

LSP. See local spin-polarized

many-body perturbation theory
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with externally corrected
approaches, 65

MMCC(2,3)/CI approximation, 67, 70,
72, 73, 76, 78

CH+ ion, 69
iterative CISDt, 78
triples, 69

MMCC(2,3)/PT approximation, 70,
73, 75, 76, 77, 78

CI vertical excitation energies, 77
MRMBPT, 74

MMCC(mA,mB) schemes, 64, 93
MMCC(2,3) approximation, 62

CI-corrected, 66–78
CR-EOMCCSD(T) approach, 78
MRMBPT-corrected, 66–78
PT-corrected, 70, 73, 75, 76, 77, 78
with externally corrected

approaches, 65
MMCC(2,3)L approximation, 97

modelling PES, 453
molecular excited states, 78
molecular mechanics (MM) modelling,

454
methods, 452–456

electronic structure, 454
density matrices, 457–474

Jahn-Teller distortions, 454
metal complexes, 451–505
polyatomic systems, 452
time dependent DFT methods, 473
TMC’s electronic structure, 456
transition metal complexes, 451

Møller-Plesset approximation, 347
Møller-Plesset perturbation theory

(MPPT), 357, 460, 463
MOLPRO, 192
Monte-Carlo with minimization, 565

Morse potential, 491
Racah parameters, 492

Mott-Hubbard metal-insulator
transition, 514

MP4, 363
MR CC theories, 26
MR CISD, 31

CC-based corrections, 34
correcting CCSD approaches, 27
Davidson-type corrections, 27
intruder state, 27

MRCI. See multi-reference
configuration interaction

Mulliken’s electronegativity, 164
multi-configuration Dirac-Fock, 286
multi-reference (MR), 14

coupled cluster expansions, 109
CISD calculations, 74
configuration interaction, 392
intruder state, 27
levels, 13
perturbation theory, 109

multi-reference MBPT (MRMBPT),
49, 74

MMCC(2,3) approaches, 66–78
MMCC(2,3)/CI, 66–78
MMCC(2,3)/PT, 70, 73, 75, 76,

77, 78
muon, 304

capture, 302

Na(3p)Arn cluster
emission lines, 380, 381
GM equilibrium structures, 376
hybrid pseudo-potential model, 381
structure, 375, 376, 377, 378, 379,

380
optimization procedure, 375

Na(3p2P)Arn clusters, 371. See also
diatomics in molecules

diatomics in molecules, 372
perturbation approach, 372

NAG library, 8
nanoscaled materials, 548. See also

boron clusters
boron nanotubes, 546–555
computational methods, 549–551
materials engineering, 548

nanostructures, boron, 547, 549. See
also Aufbau principle; HF-SCF
theory

computations, 549–551
Hartree-Fock self-consistent-field,

549
nanotubes, 549, 551, 554

electron density of states, 554
nanostructured, 546–555

negative muon, 301
neutral and charged metal clusters,

412, 413, 414. See also
three-dimensional structure

Golden fullerenes, 415, 416, 417
structure, 412–417

basin hopping technique, 561

molecular modelling, 451, 461, 473
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three-dimensional structure
onset of, 412, 413, 414

neutral Aun clusters
adsorption of O2 and CO, 425–429

neutral gold clusters
CO adsorption, 427, 428, 429
molecular adsorption, 427
O2 adsorption, 426, 427

no virtual-pair, 202
nobel metal clusters, 430

adsorption, 407, 408
anionic clusters, 418–421
density metal studies, 407
doped Au clusters, 417–418
generalized gradient approximation,

409
gold cluster anions

adsorption of oxygen, 421–425
Jahn-Teller distortion, 409
local density approximation, 409
neutral and charged, 412–417
neutral Aun clusters

adsorption of O2 and CO, 425–429
norm-conserving pseudo-potentials,

407
O2 chemisorption, 410

NOCR. See non-variational one-center
restoration

nodal planes (NP), 187
non-adiabatic couplings, 380
non-adiabatic transitions, 385
non-conventional hydrogen bond,

432–450
complex FA·Au3, 439
computational methodology, 407
computations, 436
formic acid·Au3, 407
methodology

computational, 407
non-conventional intramolecular

hydrogen bond
adenine·Au3 complexes, 442–445
complex A·AU3(N1), 443
complex A·AU3(N3), 444

non-conventional proton acceptor, 433,
436

Au3, 383–405
with alanine, 383–405

non-iterative CCSD[T], 45
non-iterative coupled-cluster, 45
non-iterative MMCC approaches

CC/EOMCC similarity transformed
Hamiltonian

left eigenstates of, 49
CC/EOMCC theory, 57

non-parallelism error (NPE), 29
non-variational one-center restoration,

262, 266, 267, 279
non-zero EDM, 256. See also EDM
N-reference (NR), 18
NSD. See non-local spinpolarized
nuclear spin, 294
numerical atomic basis sets, 407
NVP. See no virtual-pair

OMC. See outermost core
one-band Hubbard model Hamiltonian,

510–514
Gutzwiller approach, 510–514

one-electron core properties, 269
on-site energy term

Hamiltonian, 514
open shell systems

curve AB, 188
triplet, 188

open-shell implementation, 80
optimization methods

basin hopping method, 568
evolutionary strategies, 568
parallel tempering, 565
stochastic tunneling method, 559,

562–565
orbital symmetries, 521–523
orthoprojector, 115
outermost core, 232
overlap densities, 205–207
overlap matrix, 207

P,T-odd interaction
EDM, 255, 259
effective Hamiltonian, 273

P,T-odd spin-rotational Hamiltonian,
263

P,T-parity non-conservation effects,
253, 254, 262, 278

non-variational one-center
restoration, 262

P,T-odd effects, 254
standard model (SM), 254

PAO. See pseudoatomic orbitals
parallel optimization strategies, 559
parallel tempering, 560, 568. See also

adaptive temperature control;



INDEX 585

concurrent simulations; trp-cage
protein

partitioned energy terms
proton acceptor molecules, 344
proton donor molecules, 344

partitioned total energy values, 341,
343

PbF, 270
perturbation theory, 285, 302, 312–315

coupled cluster (CC) methods, 14
SR CCSD method, 14

many body perturbation theory
(MBPT), 14

multi-reference, 14
Rayleigh-Schrödinger, 14
single ionization, 312
single-reference, 14

perturbative sparkle model, 488
perturbed many-body wave function,

133
phenomenological shell model, 429
photon propagator, 304
plutonium

Gutzwiller method, 509–534
PNC. See P,T-parity non-conservation
post Born-Oppenheimer scheme, 187
potential energy curves (PEC), 14
potential energy function

He2–Br2, 359
potential energy surface modelling, 463
potential energy surface (PES), 14,

347, 373, 374, 375, 386, 452,
559. See also electronically
excited isomers

bromine and helium, 347
coupled-cluster [CCSD(T)], 347
evaluation, 451
for HeBr2 complex, 351
Jacobi coordinates, 350
Møller-Plesset approximation, 347
Monte-Carlo sampling, 374
perturbation approach, 14
pseudo-potential calculations, 373,

374
size-consistency, 22
size-extensivity, 22
supermolecular approach, 350
variational approach, 14

configuration interaction (CI), 14
PP. See pseudopotential
projection operator, 18, 79

protein folding
bacterial ribosomal protein L20, 547
basin hopping method, 568
force field, 558–559
HIV accessory protein, 547, 565
non-trivial electrostatic interactions,

558
optimization methods, 558, 559

basin hopping technique, 559
evolutionary technique, 559
parallel tempering method, 559,

565
potential energy surfaces, 559
replication step, 560
simulated annealing, 561
stochastic optimization, 556–570
stochastic tunneling method,

562–565
trp-cage protein, 568

protein simulations, 561. See also
protein folding

protein structure prediction
stochastic optimization methods, 569

protein tertiary structure prediction
(PSP), 557. See also stochastic
optimization methods

span, 557
proton donor molecule, 344
proton EDM, 258
PS. See Perturbative Sparkle
pseudoatomic orbitals, 411
pseudopotential calculation, 247, 373,

374. See also optimization
methods

sodium and argon, 373
pseudospinorbitals, 266, 268
pseudospinors, 266, 268
PT. See perturbation theory

QC. See quantum chemical
QM. See quantum mechanical
Q-space determinants, 74
quantum chemical methods, 1–196,

456–457
density matrix elements

inequalities relating, 151–157
DFT based methods, 457
ethylene “isomerism”

generalized diabatic study of,
177–196

even-tempered primitive Gaussian
basis sets
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excited state self-consistent field
theory using, 107–126

extended Kohn-Sham scheme

Strutinsky’s shell-correction
method in, 159–176

methods of, 456–457

molecular structure

theory and computation in, 3–12

non-iterative coupled-cluster
methods

for excited electronic states,
45–106

practicable factorized TDLDA

for arbitrary density- and
current-dependent functionals,
127–150

quasidegeneracy

configuration-interaction
approaches to, 13–43

coupled-cluster approaches to,
13–43

quantum diffusion, 534–546. See also
ab initio methods

backscattering, 509–534

quasicrystals, 534–546

velocity correlation function, 509

quantum electrodynamics (QED), 200,
285

consistent energy approach to, 302

decay for meso-atomic system,
302–304

decay probability, 302

discharge of nucleus

muon conversion, 301

electromagnetic four-potential, 201

for calculation of heavy and
superheavy, 287

basis for relativistic orbitals,
287–288

nuclear potential, 288–290

hyperfine structure parameters,
293–294

Lamb shift, 286

self-energy part of, 292–293

vacuum polarization, 286, 291–298

quantum reactivity, 189–191

quantum states, 178

quasicrystals, 534–546. See also inverse
Mathiessen rule

backscattering, 509–535

Boltzmann approach, 545
quasidegeneracy

asymmetric energy formula, 25
CCSD(T), 14

(CR) CCSD(T), 14
(R) CCSD(T), 14

CCSD, 15
CC-type approaches, 31–35
CI-type approaches, 29
complete model space (CMS), 17
DZP H4 model, 28

FCI, 28
RHF, 28
UHF, 28

effective Hamiltonian formalism,
18–19

externally-corrected and
state-specific methods, 24–26

full CI (FCI), 17
general model space (GMS), 17
GMS SU CCSD formalism, 19–21
incomplete model spaces (IMSs), 17
intermediate normalization, 17
intruder states, 16
MBPT, 15
restricted Hartree-Fock (RHF), 15
restricted open-shell (ROHF), 15
single-reference (SR) methods, 24

cluster amplitudes, 24
MR CISD, 24
RMR CCSD method, 24
SR CCSD, 24

size-consistency, 15, 21–23
size-extensivity, 21–23
state universal (SU), 16
SU CC Ansatz, 17
unitary group approach (UGA), 15
unrestricted open-shell (UOHF), 15

188
quasidiabatic potential model, 399
quasiperiodic crystals, 536

Racah parameters, 470
radial Jacobi coordinates, 401

473
excited one-phonon states, 135

Rayleigh-Ritz principle, 511
Rayleigh-Ritz variational method, 217

γ-radiation, 301

quasidiabatic electronic calculations,

random phase approximation, 127, 128,

valence universal (VU), 16
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Rayleigh-Schrödinger perturbation
theory, 14

RCC. See relativistic coupled cluster
RCC-S

spin-dependent GRECP, 275
RDC. See renormalized DC
reaction microscope

for ultra-low energy electrons, 320
real space recursion procedure, 527
reduced excitation level, 90
reference determinant. See

Hartree-Fock determinant
REL. See reduced excitation level
relativistic and heavy-element systems,

197–333
BERTHA, 199–215
Dirac equation, non-standard

representations of
and variational method, 217–228

generalized RECP accounting for
Breit effects

plutonium, 229–251
superheavy elements, 229–251
uranium, 229–251

heavy particle collisions
computer simulations in, 309–333

muon-nuclear processes
quantum calculation of

cooperative, 301–307
P,T-parity violation effects

in polar heavy-atom molecules,
253–283

QED calculation
of heavy multi-charged ions,

285–299
relativistic coupled cluster, 264, 275,

277
RCC-S, 275
RCC-SD, 275

relativistic density functional theory
(RDFT), 200

relativistic effective core potential
(RECP), 231, 260, 261, 267

generalized, 231–242
relativistic energy

self-energy correction, 292
renormalization

of levels, 514
renormalized DC, 31
restoration schemes

NOCR, 262

VOCR, 262
restricted Hartree-Fock (RHF), 15, 28,

69, 313
restricted open-shell, 15
restricted open-shell Hartree-Fock

(ROHF), 15, 80
rhombohedral unit cell, 551
ribosomal protein L20, bacterial. See

bacterial ribosomal protein L20
RMR CCSD, 25

and MR CCSD, 31
Roothan-Hartree-Fock, 313, 317, 318

Slater orbitals, 314, 325
rovibrational bound states, 389
RPA. See random-phase approximation

SAC-Cl. See symmetry-adapted cluster
configuration interaction

SAP. See Strutinsky averaging
procedure

scalar generalized DC, 31
scalar quasidegenerate DC, 31
scalar relativistic pseudo-potential, 414
scaled Racah parameters, 496
scattering amplitudes, 316
SCF. See four-component single

configuration
Schmidt-Ruedenberg sets, 121
SDB. See Stuttgart-Dresden-Bonn
SDD ECP, 350
SDD. See Stuttgart group
second-order reduced density matrix

density matrix elements, 153–155
in geminal basis, 152–153
inequalities fulfilled by, 155

self-assembling, 548
self-consistent (SfC), 232
self-consistent (G)RECP correction

Breit interaction
between different shells, 235–242

term-splitting correction
for D,F-elements, 234–235

self-consistent field energies, 118, 120
self-energy part (SE), 286
self-interaction-corrected, 174
semi-empirical implementations

EHCF, 479, 482
semi-empirical parameterization

TMCs, 500
semi-internal triples, 67
separable RPA, 127–150. See also

coupled-cluster method
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Kohn-Sham functional, 127, 129,
139–141

Skyrme functional, 127, 129, 141–142
strength function, 138–139

separable RPA, 128
separated molecular orbitals, 338

one-body terms, 339
partitioned energy, 339
two-body terms, 339

SGDC. See scalar generalized DC
SGTF. See spherical Gaussian function
SHE. See superheavy elements
SIC. See self-interaction-corrected
silver clusters

adsorption, 407

similarity-transformed Hamiltonian, 51,
52

eigenstates
bra, 53
ket, 53

left eigenstates of, 101
single determinantal wave functions

orthogonality constraints for,
110–115

single electron excitations, 473
single ionization, 312
single Slater determinant, 459
single-particle KS spectrum, 170
single-reference, 13, 14, 460

CC/EOMCC theory, 49
CCSD, 24

RMR, 24
cluster amplitudes, 24
coupled cluster, 45
MR CISD, 24
perturbative methods, 460

single-reference coupled cluster, 45, 61
CCSD(T), 45
coupled cluster singles and doubles

approach (CCSD), 45
for ground-state wave function, 50

cluster operator, 50
reference determinant, 50

non-iterative CCSD[T], 45
single-reference MMCC formalism, 49
size-consistency, 15

SR CCSD, 23
size-extensivity

CC approaches, 22, 24

Ansatz, 24

limited CISD (MR CISD) methods,
24, 25

MBPT, 22, 24
MR-type methods, 22

Skyrme functional
densities and currents for, 148
for atomic nuclei, 141–142

Slater determinants, 133, 152, 153, 459
Slater orbitals, 314
SMO. See separated molecular orbitals
Sommerfeld parameters, 314
space parity violation, 255
spectra

emission lines, 380, 381
spherical Gaussian function, 203
spherical harmonic normalization

Clebsch-Gordon coefficients, 204
spin functionals, gradients, 411
spinor space, 220
spin-orbitals

active (occupied), 66
core, 66
virtual, 66

spin-rotational Hamiltonian, 272
SPRA

1ph space, 133–135
initial operators, 144–147
normalization condition, 135
scaling perturbation, 131–133
strength matrices, 149
T-even density, 140
time-dependent Hamiltonian,

130–131
T-odd currents, 143–144
T-odd densities, 140

SQDC. See scalar quasidegenerate DC
SR CCSD, 25, 31

and SR CISD, 31
CCSDT, 15
CCSDTQ, 15
FCI, 31

SR CI, 29
SR CISD, 31

Davidson type corrections, 26
SR formalism, 17, 26. See also MR

formalism
SR. See single-reference
SRPA. See separable RPA
SS approach

MR SU CC formalism, 26

anionic, 418, 425
of oxygen, 418-420adsorption
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standard model, 256
supersymmetry, 256

standard QM/MM technique, 486
state selective, 25
state universal (ST), 16. See also

valence universal
stochastic optimization methods,

556–570. See also non-linear
transformation; protein folding

all-atom protein structure
prediction, 568

structure matrix, 152
Strutinsky average energy component,

169
Strutinsky averaging procedure, 160

Kohn-Sham orbitals, 169
stochastic tunneling technique, 559. See

also sequential algorithms
Stuttgart group, 350

SDD+G(3df) basis set, 350
Stuttgart-Dresden-Bonn, 356
SU CC Ansatz, 19
SU CC formalism, 17

full CI (FCI), 17
MR SU CC formalism, 26
SU CC Ansatz, 17
SU CCSD formalism, 17

superheavy elements, 229, 230
supermolecular approach, 357

of non-additive effects, 359
supermolecular interaction energies

T-shaped structure, 350
superposition error, basis-set, 350

TAA. See two atoms adsorption
Tamm-Danko approximation, 473
target cusp, 323
TDDFT method, 474
tensor algebra subroutines, basis, 9

classification, 9
term-splitting (TS) correction, 235
tetra-atomic complex, 356–366

ab initio calculations, 356–359
bound state calculations, 361
potential energy surface

representation
He2–Br2, 359–361

T-even operators, 149
Thouless theorem, 133
three-dimensional potential energy

surface
HeBr2(X) complex

at CCSD(T) level, 366

vdW energy levels, 366

formic acid, 437

hydrogen bonds, 432–450

proton acceptor, 432–450

time-dependent Golden rule
treatment

(TDGR)
, 376, 387

time-dependent Hartree-Fock (TDHF)
theory, 473

time-dependent
local-density-approximation

theory(TDLDA) , 128

SRPA, 137

time-reversal invariance, 254

T-odd densities and currents, 143

Kohn-Sham functionals, 144

Skyrme forces, 143, 144

T-odd operators, 149

trans attractor, 190

transition energies (TE), 237, 238, 239,
240, 241, 242, 243, 246

transition metal complexes (TMC)
electronic structure

crystal field theory, 474

EHCF vs. LFT, 483

features, 477

hybrid EHCF/MM method, 432–450

ligand electronic structure, 483

physical picture, 474

principles, 474–495

semi-empirical implementations, 479

transition metal complexes, 451

evaluation, 451

semi-empirical parameterization, 500

triangle three-gold cluster, 433, 442

non-conventional proton acceptor,
448

triatomic complex, 349–356

ab initio calculations, 349–351

potential energy surface
representation, 351–353

bound state calculations, 353–356

triple excitations, 48

CCSD/EOMCCSD calculations

MMCC(2,3)/CI method, 101

MMCC(2,3)/PT method, 101

triply differential cross section, 314

triply excited determinants, 75

triply excited moments, 67, 69, 75

S-spinors, 211

three-gold cluster, 433
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trp-cage protein, 563. See also adaptive
temperature control

parallel tempering simulation, 563
two atoms adsorption, 423
two-component GRECP, 266
two-component molecular RECP

calculation
two-step method, 264

two-electron density matrix, 152
two-orbital two-electron model system,

464

Uehling potential, 291, 292
Uehling-Serber approximation, 285, 286
UHF Fock operators, 116
ultra-low energy electrons, 320
ultraviolet photoelectron spectroscopy

(UPS), 410
unitary group approach (UGA), 15
unitary operator, 180
unrestricted Hartree-Fock, 28, 90

restricted high-spin open-shell
functions, 114

unrestricted open-shell (UOHF), 15

vacuum polarization (VP), 286
valence universal (VU), 16. See also

state universal
cluster operator, 17

van der Waals complexes (vdW), 347
HeBr2, 349
of dihalogen molecule, 348
pairwise additivity of two-body and

three-body potentials for, 349
potential energy surfaces, 347

variational approach
configuration interaction (CI), 14

limited CISD, 24
MR-CISD, 14, 24
SR-CISD, 14

variational one-centre restoration
(VOCR), 262, 267

VDZ, 340
velocity correlation function

ab initio calculation, 544
vertical excitation energies, 55, 70, 72,

84
vibrational Hamiltonian, 353
virial theorem, 338
virtual environment, 10
virtual environment, collaborative. See

collaborative virtual
environment

VTZ, 340

water cluster
linear water dimer structure,

340–344
basis sets, 340

SMO method, 338–339
water hexamer molecules

energetic contributions in, 342–344
water dimer structure

hydrogen bond, 338
water hexamer molecules

energetic contributions in
6-31G/d, 342
Boat Chair Prism, 342
VTZ, 342

Weyl representation
Dirac-Weyl spinor, 223
Klein-Gordon equation, 222
transformation matrix, 222

Woods-Saxon potential, 305

YbF, 272

zeroth approximation, 286

(SU),

Wigner matrices, 364

438
zero-point vibrational energy (ZPVE),
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