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PREFACE

The book presents important tools and techniques for treating problems in mod-
ern multivariate statistics in a systematic way. The ambition is to indicate new
directions as well as to present the classical part of multivariate statistical analysis
in this framework. The book has been written for graduate students and statisti-
cians who are not afraid of matrix formalism. The goal is to provide them with
a powerful toolkit for their research and to give necessary background and deeper
knowledge for further studies in different areas of multivariate statistics. It can
also be useful for researchers in applied mathematics and for people working on
data analysis and data mining who can find useful methods and ideas for solving
their problems.
It has been designed as a textbook for a two semester graduate course on multivari-
ate statistics. Such a course has been held at the Swedish Agricultural University
in 2001/02. On the other hand, it can be used as material for series of shorter
courses. In fact, Chapters 1 and 2 have been used for a graduate course ”Matrices
in Statistics” at University of Tartu for the last few years, and Chapters 2 and 3
formed the material for the graduate course ”Multivariate Asymptotic Statistics”
in spring 2002. An advanced course ”Multivariate Linear Models” may be based
on Chapter 4.
A lot of literature is available on multivariate statistical analysis written for differ-
ent purposes and for people with different interests, background and knowledge.
However, the authors feel that there is still space for a treatment like the one
presented in this volume. Matrix algebra and theory of linear spaces are continu-
ously developing fields, and it is interesting to observe how statistical applications
benefit from algebraic achievements. Our main aim is to present tools and tech-
niques whereas development of specific multivariate methods has been somewhat
less important. Often alternative approaches are presented and we do not avoid
complicated derivations.
Besides a systematic presentation of basic notions, throughout the book there are
several topics which have not been touched or have only been briefly considered
in other books on multivariate analysis. The internal logic and development of
the material in this book is the following. In Chapter 1 necessary results on ma-
trix algebra and linear spaces are presented. In particular, lattice theory is used.
There are three closely related notions of matrix algebra which play a key role in
the presentation of multivariate statistics: Kronecker product, vec-operator and
the concept of matrix derivative. In Chapter 2 the presentation of distributions
is heavily based on matrix algebra, what makes it possible to present complicated
expressions of multivariate moments and cumulants in an elegant and compact
way. The very basic classes of multivariate and matrix distributions, such as nor-
mal, elliptical and Wishart distributions, are studied and several relations and
characteristics are presented of which some are new. The choice of the material
in Chapter 2 has been made having in mind multivariate asymptotic distribu-



xii Preface

tions and multivariate expansions in Chapter 3. This Chapter presents general
formal density expansions which are applied in normal and Wishart approxima-
tions. Finally, in Chapter 4 the results from multivariate distribution theory and
approximations are used in presentation of general linear models with a special
emphasis on the Growth Curve model.
The authors are thankful to the Royal Swedish Academy of Sciences and to the
Swedish Institute for their financial support. Our sincere gratitude belongs also
to the University of Tartu, Uppsala University and the Swedish Agricultural Uni-
versity for their support. Dietrich von Rosen gratefully acknowledges the support
from the Swedish Natural Sciences Research Council, while Tõnu Kollo is in-
debted to the Estonian Science Foundation. Grateful thanks to Professors Heinz
Neudecker, Kenneth Nordström and Muni Srivastava. Some results in the book
stem from our earlier cooperation. Also discussions with Professors Kai-Tai Fang
and Björn Holmquist have been useful for presentation of certain topics. Many
thanks to our colleagues for support and stimulating atmosphere. Last but not
least we are grateful to all students who helped improve the presentation of the
material during the courses held on the material.

Uppsala
November 2004
Tõnu Kollo
Dietrich von Rosen



INTRODUCTION

In 1958 the first edition of An Introduction to Multivariate Statistical Analysis by
T. W. Anderson appeared and a year before S. N. Roy had published Some Aspects
of Multivariate Analysis. Some years later, in 1965, Linear Statistical Inference
and Its Applications by C. R. Rao came out. During the following years several
books on multivariate analysis appeared: Dempster (1969), Morrison (1967), Press
(1972), Kshirsagar (1972). The topic became very popular in the end of 1970s and
the beginning of 1980s. During a short time several monographs were published:
Giri (1977), Srivastava & Khatri (1979), Mardia, Kent & Bibby (1979), Muir-
head (1982), Takeuchi, Yanai & Mukherjee (1982), Eaton (1983), Farrell (1985)
and Siotani, Hayakawa, & Fujikoshi (1985). All these books made considerable
contributions to the area though many of them focused on certain topics. In the
last 20 years new results in multivariate analysis have been so numerous that
it seems impossible to cover all the existing material in one book. One has to
make a choice and different authors have made it in different directions. The
first class of books presents introductory texts of first courses on undergraduate
level (Srivastava & Carter, 1983; Flury, 1997; Srivastava, 2002) or are written for
non-statisticians who have some data they want to analyze (Krzanowski, 1990,
for example). In some books the presentation is computer oriented (Johnson,
1998; Rencher, 2002), for example). There are many books which present a thor-
ough treatment on specific multivariate methods (Greenacre, 1984; Jolliffe, 1986;
McLachlan, 1992; Lauritzen, 1996; Kshirsagar & Smith, 1995, for example) but
very few are presenting foundations of the topic in the light of newer matrix alge-
bra. We can refer to Fang & Zhang (1990) and Bilodeau & Brenner (1999), but
there still seems to be space for a development. There exists a rapidly growing
area of linear algebra related to mathematical statistics which has not been used
in full range for a systematic presentation of multivariate statistics. The present
book tries to fill this gap to some extent. Matrix theory, which is a cornerstone
of multivariate analysis starting from T. W. Anderson, has been enriched during
the last few years by several new volumes: Bhatia (1997), Harville (1997), Schott
(1997b), Rao & Rao (1998), Zhang (1999). These books form a new basis for
presentation of multivariate analysis.
The Kronecker product and vec-operator have been used systematically in Fang
& Zhang (1990), but these authors do not tie the presentation to the concept of
the matrix derivative which has become a powerful tool in multivariate analysis.
Magnus & Neudecker (1999) has become a common reference book on matrix
differentiation. In Chapter 2, as well as Chapter 3, we derive most of the results
using matrix derivatives. When writing the book, our main aim was to answer
the questions ”Why?” and ”In which way?”, so typically the results are presented
with proofs or sketches of proofs. However, in many situations the reader can also
find an answer to the question ”How?”.
Before starting with the main text we shall give some general comments and
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remarks about the notation and abbreviations.
Throughout the book we use boldface transcription for matrices and vectors. Ma-
trices will be denoted by capital letters and vectors by ordinary small letters of
Latin or Greek alphabets. Random variables will be denoted by capital letters
from the end of the Latin alphabet. Notion appearing in the text for the first time
is printed in italics. The end of proofs, definitions and examples is marked by
To shorten proofs we use the following abbreviation

=
(1.3.2)

which should be red as ”the equality is obtained by applying formula (1.3.2)”. We
have found it both easily understandable and space preserving. In numeration of
Definitions, Theorems, Propositions and Lemmas we use a three position system.
Theorem 1.2.10 is the tenth theorem of Chapter 1, Section 2. For Corollaries four
integers are used: Corollary 1.2.3.1 is the first Corollary of Theorem 1.2.3. In a
few cases when we have Corollaries of Lemmas, the capital L has been added to
the last number, so Corollary 1.2.3.1L is the first corollary of Lemma 1.2.3. We
end the Introduction with the List of Notation, where the page number indicates
the first appearance or definition.

LIST OF NOTATION

◦ – elementwise or Hadamard product, p. 3
⊗ – Kronecker or direct product, tensor product, p. 81, 41
⊕ – direct sum, p. 27
��+ – orthogonal sum, p. 27
A – matrix, p. 2
a – vector, p. 2
c – scalar, p. 3
A′ – transposed matrix, p. 4
Ip – identity matrix, p. 4
Ad – diagonalized matrix A, p. 6
ad – diagonal matrix, a as diagonal, p. 6
diagA – vector of diagonal elements of A, p. 6
|A| – determinant of A, p. 7
r(A) – rank of A, p. 9
p.d. – positive definite, p. 12
A− – generalized inverse, g-inverse, p. 15
A+ – Moore-Penrose inverse, p. 17
A(K) – patterned matrix (pattern K), p. 97
Kp,q – commutation matrix, p. 79
vec – vec-operator, p. 89
A⊗k – k-th Kroneckerian power, p. 84
V k(A) – vectorization operator, p. 115
Rk(A) – product vectorization operator, p. 115
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dY
dX

– matrix derivative, p. 127
m.i.v. – mathematically independent and variable, p. 126
J(Y → X) – Jacobian matrix, p. 156
|J(Y → X)|+ – Jacobian, p. 156
A⊥ – orthocomplement, p. 27
B⊥A – perpendicular subspace, p. 27
B|A – commutative subspace, p. 31
R(A) – range space, p. 34
N (A) – null space, p. 35
C(C) – column space, p. 48
X – random matrix, p. 171
x – random vector, p. 171
X – random variable, p. 171
fx(x) – density function, p. 174
Fx(x) – distribution function, p. 174
ϕx(t) – characteristic function, p. 174
E[x] – expectation, p. 172
D[x] – dispersion matrix, p. 173
ck[x] – k−th cumulant, p. 181
mk[x] – k−th moment, p. 175
mk[x] – k−th central moment, p. 175
mck[x] – k−th minimal cumulant, p. 185
mmk[x] – k−th minimal moment, p. 185
mmk[x] – k−th minimal central moment, p. 185
S – sample dispersion matrix, p. 284
R – sample correlation matrix, p. 289
Ω – theoretical correlation matrix, p. 289
Np(µ,Σ) – multivariate normal distribution, p. 192
Np,n(µ,Σ,Ψ) – matrix normal distribution, p. 192
Ep(µ,V) – elliptical distribution, p. 224
Wp(Σ, n) – central Wishart distribution, p. 237
Wp(Σ, n,∆) – noncentral Wishart distribution, p. 237
MβI(p,m, n) – multivariate beta distribution, type I, p. 249
MβII(p,m, n) – multivariate beta distribution, type II, p. 250
D−→ – convergence in distribution, week convergence, p. 277
P−→ – convergence in probability, p. 278

OP (·) – p. 278
oP (·) – p. 278
(X)()′ – (X)(X)′, p. 355



CHAPTER I

Basic Matrix Theory and Linear
Algebra

Matrix theory gives us a language for presenting multivariate statistics in a nice
and compact way. Although matrix algebra has been available for a long time,
a systematic treatment of multivariate analysis through this approach has been
developed during the last three decades mainly. Differences in presentation are
visible if one compares the classical book by Wilks (1962) with the book by Fang
& Zhang (1990), for example. The relation between matrix algebra and multivari-
ate analysis is mutual. Many approaches in multivariate analysis rest on algebraic
methods and in particular on matrices. On the other hand, in many cases multi-
variate statistics has been a starting point for the development of several topics
in matrix algebra, e.g. properties of the commutation and duplication matrices,
the star-product, matrix derivatives, etc. In this chapter the style of presentation
varies in different sections. In the first section we shall introduce basic notation
and notions of matrix calculus. As a rule, we shall present the material with-
out proofs, having in mind that there are many books available where the full
presentation can be easily found. From the classical books on matrix theory let
us list here Bellmann (1970) on basic level, and Gantmacher (1959) for advanced
presentation. From recent books at a higher level Horn & Johnson (1990, 1994)
and Bhatia (1997) could be recommended. Several books on matrix algebra have
statistical orientation: Graybill (1983) and Searle (1982) at an introductory level,
Harville (1997), Schott (1997b), Rao & Rao (1998) and Zhang (1999) at a more ad-
vanced level. Sometimes the most relevant work may be found in certain chapters
of various books on multivariate analysis, such as Anderson (2003), Rao (1973a),
Srivastava & Khatri (1979), Muirhead (1982) or Siotani, Hayakawa & Fujikoshi
(1985), for example. In fact, the first section on matrices here is more for nota-
tion and a refreshment of the readers’ memory than to acquaint them with novel
material. Still, in some cases it seems that the results are generally not used and
well-known, and therefore we shall add the proofs also. Above all, this concerns
generalized inverses.

In the second section we give a short overview of some basic linear algebra ac-
centuating lattice theory. This material is not so widely used by statisticians.
Therefore more attention has been paid to the proofs of statements. At the end
of this section important topics for the following chapters are considered, includ-
ing column vector spaces and representations of linear operators in vector spaces.
The third section is devoted to partitioned matrices. Here we have omitted proofs
only in those few cases, e.g. properties of the direct product and the vec-operator,
where we can give references to the full presentation of the material somewhere



2 Chapter I

else. In the last section, we examine matrix derivatives and their properties. Our
treatment of the topic differs somewhat from a standard approach and therefore
the material is presented with full proofs, except the part which gives an overview
of the Fréchet derivative.

1.1 MATRIX ALGEBRA

1.1.1 Operations and notation
The matrix A of size m × n is a rectangular table of elements aij (i = 1, . . . , m;
j = 1, . . . , n):

A =

⎛⎝ a11 . . . a1n
...

. . .
...

am1 . . . amn

⎞⎠ ,

where the element aij is in the i−th row and j−th column of the table. For
indicating the element aij in the matrix A, the notation (A)ij will also be used. A
matrix A is presented through its elements as A = (aij). Elements of matrices can
be of different nature: real numbers, complex numbers, functions, etc. At the same
time we shall assume in the following that the used operations are defined for the
elements of A and we will not point out the necessary restrictions for the elements
of the matrices every time. If the elements of A, of size m×n, are real numbers we
say that A is a real matrix and use the notation A ∈ Rm×n. Furthermore, if not
otherwise stated, the elements of the matrices are supposed to be real. However,
many of the definitions and results given below also apply to complex matrices.
To shorten the text, the following phrases are used synonymously:

- matrix A of size m × n;
- m × n−matrix A;
- A : m × n.

An m×n−matrix A is called square, if m = n. When A is m× 1−matrix, we call
it a vector :

A =

⎛⎝ a11
...

am1

⎞⎠ .

If we omit the second index 1 in the last equality we denote the obtained m−vector
by a:

a =

⎛⎝ a1
...

am

⎞⎠ .

Two matrices A = (aij) and B = (bij) are equal,

A = B,

if A and B are of the same order and all the corresponding elements are equal:
aij = bij . The matrix with all elements equal to 1 will be denoted by 1 and, if
necessary, the order will be indicated by an index, i.e. 1m×n. A vector of m ones
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will be written 1m. Analogously, 0 will denote a matrix where all elements are
zeros.
The product of A : m×n by a scalar c is an m×n−matrix cA, where the elements
of A are multiplied by c:

cA = (caij).

Under the scalar c we understand the element of the same nature as the elements
of A. So for real numbers aij the scalar c is a real number, for aij−functions of
complex variables the scalar c is also a function from the same class.
The sum of two matrices is given by

A + B = (aij + bij), i = 1, . . . , m, j = 1, . . . , n.

These two fundamental operations, i.e. the sum and multiplication by a scalar,
satisfy the following main properties:

A + B = B + A;
(A + B) + C = A + (B + C);
A + (−1)A = 0;
(c1 + c2)A = c1A + c2A;
c(A + B) = cA + cB;

c1(c2A) = (c1c2)A.

Multiplication of matrices is possible if the number of columns in the first matrix
equals the number of rows in the second matrix. Let A : m×n and B : n×r, then
the product C = AB of the matrices A = (aij) and B = (bkl) is the m×r−matrix
C = (cij) , where

cij =
n∑

k=1

aikbkj .

Multiplication of matrices is not commutative in general, but the following prop-
erties hold, provided that the sizes of the matrices are of proper order:

A(BC) = (AB)C;
A(B + C) = AB + AC;
(A + B)C = AC + BC.

Similarly to the summation of matrices, we have the operation of elementwise
multiplication, which is defined for matrices of the same order. The elementwise
product A ◦ B of m × n−matrices A = (aij) and B = (bij) is the m × n−matrix

A ◦ B = (aijbij), i = 1, . . . , m, j = 1, . . . , n. (1.1.1)

This product is also called Hadamard or Schur product. The main properties of
this elementwise product are the following:

A ◦ B = B ◦ A;
A ◦ (B ◦ C) = (A ◦ B) ◦ C;
A ◦ (B + C) = A ◦ B + A ◦ C.
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The transposed matrix of the m × n−matrix A = (aij) is defined as an n ×
m−matrix A′, where the element aij of A is in the i−th column and j−th row
(i = 1, . . . , m; j = 1, . . . , n). The transposing operation satisfies the following
basic relations:

(A′)′ = A;
(A + B)′ = A′ + B′;

(AB)′ = B′A′;
(A ◦ B)′ = A′ ◦ B′.

Any matrix A : m × n can be written as the sum:

A =
m∑

i=1

n∑
j=1

aijeid′
j , (1.1.2)

where ei is the m−vector with 1 in the i−th position and 0 in other positions,
and dj is the n−vector with 1 in the j−th position and 0 elsewhere. The vectors
ei and dj are so-called canonical basis vectors. When proving results for matrix
derivatives, for example, the way of writing A as in (1.1.2) will be of utmost im-
portance. Moreover, when not otherwise stated, ei will always denote a canonical
basis vector. Sometimes we have to use superscripts on the basis vectors, i.e. e1

i ,
e2

j , d1
k and so on.

The role of the unity among matrices is played by the identity matrix Im;

Im =

⎛⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎠ = (δij), (i, j = 1, . . . , m), (1.1.3)

where δij is Kronecker’s delta, i.e.

δij =
{

1, i = j,

0, i 	= j.

If not necessary, the index m in Im is dropped. The identity matrix satisfies the
trivial equalities

ImA = AIn = A,

for A : m × n. Furthermore, the canonical basis vectors ei, dj used in (1.1.2) are
identical to the i−th column of Im and the j−th column of In, respectively. Thus,
Im = (e1, . . . , em) is another way of representing the identity matrix.
There exist some classes of matrices, which are of special importance in applica-
tions. A square matrix A is symmetric, if

A = A′.
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A square matrix A is skew-symmetric, if

A = −A′.

A real square matrix A is orthogonal, if

A′A = I.

Then also AA′ = I. A matrix A ∈ Rm×n is semiorthogonal if

A′A = In or AA′ = Im.

The two m-vectors a and b are orthogonal if

a′b = 0.

Obviously then also b′a = 0. The orthogonal m×m−matrix A defines a rotation
or reflection in Rm. If we denote

y = Ax,

then it follows from the orthogonality of A that the vectors x and y are of the
same length, i.e.

x′x = y′y.

A square matrix A is idempotent if

A2 = A.

A square matrix A is normal if

AA′ = A′A.

Note that symmetric, skew-symmetric and orthogonal matrices are all normal
matrices.
A square matrix A : m × m is a Toeplitz matrix, if aij = αi−j for any i, j =
1, . . . , m. It means that in a Toeplitz matrix A the elements satisfy aij = akl

when i − j = k − l. Different subclasses of Toeplitz matrices are examined in
Basilevsky (1983), for example.
An m×m−matrix A is an upper triangular matrix if all elements of A below the
main diagonal are zeros:

A =

⎛⎜⎜⎝
a11 a12 . . . a1m

0 a22 . . . a2m
...

...
. . .

...
0 0 . . . amm

⎞⎟⎟⎠ .
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If all the elements of A above its main diagonal are zeros, then A is a lower
triangular matrix. Clearly, if A is an upper triangular matrix , then A′ is a lower
triangular matrix.

The diagonalization of a square matrix A is the operation which replaces all the
elements outside the main diagonal of A by zeros. A diagonalized matrix will be
denoted by Ad, i.e.

Ad =

⎛⎜⎜⎝
a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . amm

⎞⎟⎟⎠ . (1.1.4)

Similarly, ad denotes the diagonal matrix obtained from the vector
a = (a1, a2, . . . , am)′:

ad =

⎛⎜⎜⎝
a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . am

⎞⎟⎟⎠ .

An extension of this notion will also be used. From square matrices A1, A2, . . . ,
Am a block diagonal matrix A[d] is created similarly to ad:

A[d] =

⎛⎜⎜⎝
A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Am

⎞⎟⎟⎠ .

Furthermore, we need a notation for the vector consisting of the elements of the
main diagonal of a square matrix A : m × m:

diagA = (a11, a22, . . . , amm)′.

In few cases when we consider complex matrices, we need the following notions. If
A = (aij) ∈ Cm×n, then the matrix A : m×n denotes the conjugate matrix of A,
where (A)ij = aij is the complex conjugate of aij . The matrix A∗ : n × m is said
to be the conjugate transpose of A, if A∗ = (A)′. A matrix A : n × n is unitary,
if AA∗ = In. In this case A∗A = In also holds.
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1.1.2 Determinant, Inverse
An important characteristic of a square m × m−matrix A is its determinant |A|,
which is defined by the equality

|A| =
∑

(j1,...,jm)

(−1)N(j1,...,jm)
m∏

i=1

aiji
, (1.1.5)

where summation is taken over all different permutations (j1, . . . , jm) of the set
of integers {1, 2, . . . , m}, and N(j1, . . . , jm) is the number of inversions of the
permutation (j1, . . . , jm). The inversion of a permutation (j1, . . . , jm) consists of
interchanging two indices so that the larger index comes after the smaller one. For
example, if m = 5 and

(j1, . . . , j5) = (2, 1, 5, 4, 3),

then

N(2, 1, 5, 4, 3) = 1 + N(1, 2, 5, 4, 3) = 3 + N(1, 2, 4, 3, 5) = 4 + N(1, 2, 3, 4, 5) = 4,

since N(1, 2, 3, 4, 5) = 0. Calculating the number of inversions is a complicated
problem when m is large. To simplify the calculations, a technique of finding
determinants has been developed which is based on minors. The minor of an
element aij is the determinant of the (m − 1) × (m − 1)−submatrix A(ij) of a
square matrix A : m×m which is obtained by crossing out the i−th row and j−th
column from A. Through minors the expression of the determinant in (1.1.5) can
be presented as

|A| =
m∑

j=1

aij(−1)i+j |A(ij)| for any i, (1.1.6)

or

|A| =
m∑

i=1

aij(−1)i+j |A(ij)| for any j. (1.1.7)

The expression (−1)i+j |A(ij)| is called cofactor of aij . Any element of A is a
minor of order 1. Fixing r rows, e.g. (i1, . . . , ir), and r columns, e.g. (j1, . . . , jr),
of a matrix A gives us a square submatrix of order r. The determinant of this
matrix is called a minor of order r. If (i1, . . . , ir) = (j1, . . . , jr), we have a principal
submatrix of a square matrix A and the determinant of a principal submatrix is
called a principal minor of order r of A. The sum of the principal minors of order r
of A is denoted trrA and known as the r−th trace of A. By convention tr0A = 1.
The most fundamental properties of the determinant are summarized in

Proposition 1.1.1.
(i) For A : m × m

|A| = |A′|.
(ii) If |A| and |B| are non-zero,

|AB| = |A||B|.
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(iii) For A : m × n and B : n × m

|Im + AB| = |In + BA|.

When |A| 	= 0, the m × m−matrix A is called non-singular and then a unique
inverse of A exists. Otherwise, when |A| = 0, the matrix A : m × m is singular.
The inverse is denoted A−1 and it is defined by the equation

AA−1 = Im = A−1A.

Explicitly we can express a general element of the inverse matrix in the following
way

(A−1)ij =
(−1)i+j |A(ji)|

|A| . (1.1.8)

For the inverse the main properties are given in

Proposition 1.1.2. Suppose that all the inverses given below exist. Then

(AB)−1 =B−1A−1;(i)

(A−1)′ =(A′)−1;(ii)

|A|−1 =|A−1|.(iii)

1.1.3 Rank, Trace
The vectors x1, . . . ,xr are said to be linearly independent, if

r∑
i=1

cixi = 0

implies that ci = 0, i = 1, 2, . . . , r. When z is an m-vector and the m×m−matrix
A is non-singular (|A| 	= 0), then the only solution to the equation

Az = 0, (1.1.9)

is the trivial solution z = 0. This means that the rows (columns) of A are linearly
independent. If |A| = 0, then exists at least one non-trivial solution z 	= 0 to
equation (1.1.9) and the rows (columns) are dependent. The rank of a matrix is
closely related to the linear dependence or independence of its row and column
vectors.
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Definition 1.1.1. A matrix A : m × n is of rank r, if the maximum number of
linear independent columns of A equals r.

The rank of a matrix A is denoted by r(A) and it can be characterized in many
different ways. Let us present the most important properties in the next proposi-
tion. In some statements given below we will use the notation Ao for a matrix such
that Ao′

A = 0 and r(Ao) = m−r(A) if A : m×n. Also the notation (A : B) will
be used for a partitioned matrix consisting of two blocks A and B. Partitioned
matrices are discussed in detail in Section 1.3. However, if ai, i = 1, 2, . . . , p, are
the p columns of a matrix A we sometimes write A = (a1,a2, . . . ,ap) instead of
A = (a1 : a2 : . . . : ap).

Proposition 1.1.3.
(i) The rank of a matrix equals the maximum number of linearly independent

rows of A, i.e.
r(A) = r(A′).

(ii) For A : m × n

r(A) ≤ min(m,n).

(iii) The rank of a A equals the order of its largest nonzero minor.
(iv) For arbitrary matrices A and B of proper sizes

r(AB) ≤ min(r(A), r(B)).

(v) For arbitrary matrices A and B of proper sizes

r(A + B) ≤ r(A) + r(B).

(vi) Let A, B and C be of proper sizes and let A and C be non-singular.
Then

r(ABC) = r(B).

(vii) Let A: m × n and B satisfy AB = 0. Then

r(B) ≤ n − r(A).

(viii) Let A and B be of proper sizes. Then

r(A : B) = r(A′Bo) + r(B).

(ix) Let A and B be of proper sizes. Then

r(A : B) = r(A) + r(B) − r((Ao : Bo)o).
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(x) Let A: n × m and B: m × n. Then

r(A − ABA) = r(A) + r(Im − BA) − m = r(A) + r(In − AB) − n.

Definition 1.1.1 is very seldom used when finding the rank of a matrix. Instead the
matrix is transformed by elementary operations to a canonical form, so that we
can obtain the rank immediately. The following actions are known as elementary
operations:
1) interchanging two rows (or columns) of A;
2) multiplying all elements of a row (or column) of A by some nonzero scalar;
3) adding to any row (or column) of A any other row (or column) of A multiplied

by a nonzero scalar.
The elementary operations can be achieved by pre- and postmultiplying A by
appropriate non-singular matrices. Moreover, at the same time it can be shown
that after repeated usage of elementary operations any m × n−matrix A can be
transformed to a matrix with Ir in the upper left corner and all the other elements
equal to zero. Combining this knowledge with Proposition 1.1.3 (vi) we can state
the following.

Theorem 1.1.1. For every matrix A there exist non-singular matrices P and Q
such that

PAQ =
(

Ir 0
0 0

)
,

where r = r(A) and P,Q can be presented as products of matrices of elementary
operations.

Later in Proposition 1.1.6 and §1.2.10 we will give somewhat more general results
of the same character.
The sum of the diagonal elements of a square matrix is called trace and denoted
trA, i.e. trA =

∑
i aii. Note that trA = tr1A. Properties of the trace function

will be used repeatedly in the subsequent.

Proposition 1.1.4.
(i) For A and B of proper sizes

tr(AB) = tr(BA).

(ii) For A and B of proper sizes and B non-singular

trA = tr(B−1AB).

(iii) For A and C of proper sizes and C orthogonal

trA = tr(C′AC).

(iv) For A and B of proper sizes and constants a, b ∈ R

tr(aA + bB) = atrA + btrB.
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(v) If A satisfies A2 = nA, n ∈ N, then

trA = nr(A).

If A is idempotent, then
trA = r(A).

(vi) For any A
tr(A′A) = 0

if and only if A = 0.
(vii) For any A

tr(A′) = trA.

(viii) For any A

tr(AA′) = tr(A′A) =
m∑

i=1

n∑
j=1

a2
ij .

(ix) For symmetric A and B

tr{(AB)2} ≤ tr(A2B2).

(x) For A and x of proper sizes

x′Ax = tr(Axx′).

(xi) For any symmetric A such that A 	= 0

r(A) ≥ (trA)2

tr(A2)
.

There are several integral representations available for the determinant and here
we present one, which ties together the notion of the trace function, inverse matrix
and determinant. Sometimes the relation in the next theorem is called Aitken’s
integral (Searle, 1982).

Theorem 1.1.2. Let A ∈ Rm×m be non-singular, then

|A|−1 =
1

(2π)m/2

∫
Rm

e−1/2tr(AA′yy′)dy, (1.1.10)

where
∫

Rm denotes the multiple integral

∫
R

· · ·
∫

R︸ ︷︷ ︸
m times

and dy is the Lebesque measure:

dy =
∏m

i=1 dyi.

Remark: In (1.1.10) the multivariate normal density function is used which will
be discussed in Section 2.2.
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1.1.4 Positive definite matrices

Definition 1.1.2. A symmetric m × m−matrix A is positive (negative) definite
if x′Ax > 0 (< 0) for any vector x 	= 0.

When A is positive (negative) definite, we denote this by A > 0 (< 0), and
sometimes the abbreviation p.d. (n.d.) is used. A symmetric matrix A is positive
semidefinite (p.s.d.), if x′Ax ≥ 0 for any x and x′Ax = 0 for at least one x 	= 0.
A matrix A is called negative semidefinite (n.s.d.), if x′Ax ≤ 0 for any x and there
exists at least one x 	= 0 for which x′Ax = 0. To denote p.s.d. (n.s.d.) we use
A ≥ 0 (A ≤ 0). The notion non-negative definite (n.n.d.) is used for the matrix A
if A ≥ 0 or A > 0, and analogously the matrix A is non-positive definite (n.p.d.)
if A ≤ 0 or A < 0.
The basic properties of the different types of matrices mentioned above are very
similar. As an example we shall present the basic properties of positive definite
matrices.

Proposition 1.1.5.
(i) A matrix A ∈ Rm×m is positive definite if and only if |Ai| > 0 for

i = 1, . . . , m, where Ai is i× i−matrix consisting of the elements of the
first i rows and columns of A.

(ii) If A > 0, then A−1 > 0.
(iii) A symmetric matrix is positive definite if and only if all its eigenvalues

are > 0.
(iv) For any A, the matrix AA′ is n.n.d.
(v) If A is n.n.d., then A is non-singular if and only if A > 0.
(vi) If A : m×m is positive definite and B : n×m is of rank r, n ≤ m, then

BAB′ > 0 if and only if r = n. BAB′ ≥ 0 if r < n.
(vii) If A > 0, B > 0, A − B > 0, then B−1 − A−1 > 0 and |A| > |B|.
(viii) If A > 0 and B > 0, then |A + B| ≥ |A| + |B|.
There exist many related results. Rao (1973a) is a suitable reference.

1.1.5 Factorizations
A basic property which also may serve as a definition of a positive definite matrix
is given in

Theorem 1.1.3.
(i) The matrix A is positive definite if and only if A = XX′ for some non-singular

X.
(ii) The matrix A is non-negative definite if and only if A = XX′ for some X.

The next theorem is a key result for obtaining several complicated distribution
results.

Theorem 1.1.4. (Cholesky decomposition) Let W : n × n be positive definite.
Then there exists a unique lower triangular matrix T with positive diagonal ele-
ments such that W = TT′.

Proof: We are going to prove this theorem with the help of an induction argu-
ment. If n = 1, the theorem is obviously true. Since W is p.d. we can always find
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an X such that W = XX′. For n = 2 it follows that

X =
(

x11 x12

x21 x22

)
and then

XX′ =
(

x2
11 + x2

12 x11x21 + x12x22

x21x11 + x22x12 x2
21 + x2

22

)
.

Since W > 0, X is of full rank; r(X) = 2. Moreover, for a lower triangular matrix
T

TT′ =
(

t211 t11t21
t21t11 t221 + t222

)
.

Hence, if

t11 =(x2
11 + x2

12)
1/2,

t21 =(x2
11 + x2

12)
−1/2(x21x11 + x22x12),

t22 =(x2
21 + x2

22 − (x2
11 + x2

12)
−1(x21x11 + x22x12)2)1/2,

W = TT′, where T has positive diagonal elements. Since r(X) = r(T) = 2,
W is p.d. . There exist no alternative expressions for T such that XX′ = TT′

with positive diagonal elements of T. Now let us suppose that we can find the
unique lower triangular matrix T for any p.d. matrix of size (n− 1)× (n− 1). For
W ∈ Rn×n,

W = XX′ =
(

x2
11 + x12x′

12 x11x′
21 + x12X′

22

x21x11 + X22x′
12 x21x′

21 + X22X′
22

)
,

where

X =
(

x11 x12

x21 X22

)
is of full rank. For the lower triangular matrix

T =
(

t11 0
t21 T22

)
we have

TT′ =
(

t211 t11t′21
t21t11 t21t′21 + T22T′

22

)
.

Hence,

t11 =(x2
11 + x12x′

12)
1/2;

t21 =(x2
11 + x12x′

12)
−1/2(x21x11 + X22x′

12).

Below it will be shown that the matrix

x21x′
21 +X22X′

22− (x21x11 +X22x′
12)(x

2
11 +x12x′

12)
−1(x11x12 +x12X′

22) (1.1.11)
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is positive definite. Then, by assumption, we can always choose a unique lower
triangular matrix T22 such that (1.1.11) equals T22T′

22. Therefore, with the above
given choices of elements

T =
(

t11 0
t21 T22

)
is lower triangular and W = TT′. Now we have only to show that (1.1.11) is p.d.
This follows, since (1.1.11) is equal to the product

(x21 : X22)P(x21 : X22)′, (1.1.12)

where
P = I − (x11 : x12)′((x11 : x12)(x11 : x12)′)−1(x11 : x12)

is idempotent and symmetric. Furthermore, we have to show that (1.1.12) is of
full rank, i.e. n−1. Later, in Proposition 1.2.1, it will be noted that for symmetric
idempotent matrices Po = I − P. Thus, using Proposition 1.1.3 (viii) we obtain

r((x21 : X22)P(x21 : X22)′) = r(P(x21 : X22)′)

= r

(
x11 x′

21

x′
12 X′

22

)
− r

(
x11

x′
12

)
= n − 1.

Hence, the expression in (1.1.12) is p.d. and the theorem is established.

Two types of rank factorizations, which are very useful and of principal interest,
are presented in

Proposition 1.1.6.
(i) Let A ∈ Rm×n of rank r. Then there exist two non-singular matrices G ∈

Rm×m and H ∈ Rn×n such that

A = G−1

(
Ir 0
0 0

)
H−1

and

A = KL,

where K ∈ Rm×r, L ∈ Rr×n, K consists of the first r columns of G−1 and L
of the first r rows of H−1.

(ii) Let A ∈ Rm×n of rank r. Then there exist a triangular matrix T ∈ Rm×m

and an orthogonal matrix H ∈ Rn×n such that

A = T
(

Ir 0
0 0

)
H

and

A = KL,
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where K ∈ Rm×r, L ∈ Rr×n, K consists of the first r columns of T and L of
the first r rows of H.

For normal matrices, in particular, other useful factorizations are available which
are based on eigenvalues and eigenvectors. These, as well as the Jordan factoriza-
tion, are presented in §1.2.10. It concerns especially Theorem 1.2.39 and Theorem
1.2.41 – Theorem 1.2.44.

1.1.6 Generalized inverse
The notion of the generalized inverse of a matrix (shortly g-inverse) is not usually
included into a basic course on linear algebra, and therefore we will pay more
attention to it here. Classical reference books on generalized inverses are Rao &
Mitra (1971), Pringle & Rayner (1971), Campbell & Meyer (1991) and Ben-Israel
& Greville (2003). When A is a non-singular n × n−matrix, the linear equation
in x,

Ax = b,

can be solved easily by inverting the matrix A, i.e.

x = A−1b.

Behind the above equation there is a system of linear equations in n variables.
Every equation can be considered as a condition on the n variables. However, in
many statistical problems it is not so common that the number of variables equals
the number of conditions which have to be satisfied. Still, we are interested in
solving an equation which now can be stated as

Ax = b, (1.1.13)

where A ∈ Rm×n or A ∈ Rm×m is singular, i.e. |A| = 0, which means that some
rows (columns) are linearly dependent on others. Generalized inverses have been
introduced in order to solve the system of linear equations in the general case, i.e.
to solve (1.1.13).
We say that the equation Ax = b is consistent, if there exists at least one x0 such
that Ax0 = b.

Definition 1.1.3. Let A be an m × n−matrix. An n × m−matrix A− is called
generalized inverse matrix of the matrix A, if

x = A−b

is a solution to all consistent equations Ax = b in x.

There is a fairly nice geometrical interpretation of g-inverses (e.g. see Kruskal,
1973). Let us map x ∈ Rn with the help of a matrix A to Rm, m ≤ n, i.e.
Ax = y. The problem is, how to find an inverse map from y to x. Obviously
there must exist such a linear map. We will call a certain inverse map for a g-
inverse A−. If m < n, the map cannot be unique. However, it is necessary that
AA−y = Ax = y, i.e. A−y will always be mapped on y. The following theorem
gives a necessary and sufficient condition for a matrix to be a generalized inverse.



16 Chapter I

Theorem 1.1.5. An n×m−matrix A− is a generalized inverse matrix of A : m×n
if and only if

AA−A = A. (1.1.14)

Proof: Let us first prove that if A− is a generalized inverse, then (1.1.14) holds.
For every z there exists a b such that Az = b. Thus, a consistent equation has
been constructed and according to the definition of a g-inverse, for every z,

z = A−b = A−Az.

Hence, Az = AA−Az and since z is arbitrary, (1.1.14) holds.
Let us now prove sufficiency. Suppose that (1.1.14) is valid and that the equation
(1.1.13) has a solution for a specific b. Therefore, a vector w exists which satisfies

Aw = b.

Because A = AA−A, it follows that

b = Aw = AA−Aw = AA−b,

which means that A−b is a solution to (1.1.13).

Corollary 1.1.5.1. All g-inverses A− of A are generated by

A− = A−
0 + Z − A−

0 AZAA−
0 ,

where Z is an arbitrary matrix and A−
0 is a specific g-inverse.

Proof: By Theorem 1.1.5, A− is a g-inverse since AA−A = A. Moreover, if A−
0

is a specific g-inverse, choose Z = A− − A−
0 . Then

A−
0 + Z − A−

0 A0ZA0A−
0 = A−.

The necessary and sufficient condition (1.1.14) in Theorem 1.1.5 can also be used
as a definition of a generalized inverse of a matrix. This way of defining a g-inverse
has been used in matrix theory quite often. Unfortunately a generalized inverse
matrix is not uniquely defined. Another disadvantage is that the operation of a
generalized inverse is not transitive: when A− is a generalized inverse of A, A
may not be a generalized inverse of A−. This disadvantage can be overcome by
defining a reflexive generalized inverse.
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Definition 1.1.4. A generalized inverse matrix A− is a reflexive generalized in-
verse matrix, if

A− = A−AA−. (1.1.15)

Theorem 1.1.6. A g-inverse A− : n × m is a reflexive g-inverse if and only if

r(A−) = r(A).

Proof: By definition of a reflexive g-inverse, r(A−) = r(A−A) as well as r(A) =
r(AA−). From Proposition 1.1.4 (v) follows that

r(AA−) = tr(AA−) = tr(A−A) = r(A−A)

and thus reflexivity implies r(A) = r(A−).
For proving sufficiency, let us take A ∈ Rm×n and utilize Proposition 1.1.3 (x).
Then

r(A− − A−AA−) = r(A−) + r(Im − AA−) − m = r(A−) − r(AA−)
= r(A−) − r(A) = 0

which establishes the theorem.
Note that for a general g-inverse r(A) ≤ r(A−), whereas reflexivity implies equal-
ity of the ranks. To obtain a uniquely defined generalized inverse matrix we have
to add two more conditions to (1.1.14) and (1.1.15).

Definition 1.1.5. An n×m−matrix A+ is called the Moore-Penrose generalized
inverse matrix, if the following equalities are satisfied:

AA+A = A, (1.1.16)
A+AA+ = A+, (1.1.17)
(AA+)′ = AA+, (1.1.18)
(A+A)′ = A+A. (1.1.19)

Uniqueness of the Moore-Penrose inverse is proved in the next theorem.

Theorem 1.1.7. For A : m× n the Moore-Penrose inverse matrix A+ : n×m is
uniquely defined.

Proof: Let us assume on the contrary, that there exist B and C, both satisfying
(1.1.16) – (1.1.19), with B 	= C. We will show that this assumption leads to a
contradiction. Namely, by using (1.1.16) – (1.1.19) to both matrices B and C
repeatedly, the following sequence of equalities emerges:

B = BAB = B(AB)′ = BB′A′ = BB′(ACA)′ = BB′A′(AC)′ = BABAC

= BAC = (BA)′CAC = A′B′(CA)′C = A′C′C = (CA)′C = C.
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The definition of a generalized inverse matrix and, in particular, the definition
of the Moore-Penrose inverse are not constructive. They do not tell us how to
find these matrices. Here we present one way to obtain them. Let A be an
m × n−matrix of rank r. By interchanging rows and columns of A we can reach
the situation when the r×r submatrix in the upper left corner of A is non-singular.
Therefore, without loss of generality, it can be assumed that

A =
(

B C
D E

)
,

where B : r × r is non-singular and (D : E)′ is linearly dependent on (B : C)′, i.e
(D : E)′ = (B : C)′Q for some matrix Q. Thus, D′ = B′Q and E′ = C′Q. Then
it is possible to show, by utilizing elementary rules for multiplying partitioned
matrices, that

A− =
(

B−1 0
0 0

)
.

In the literature many properties of generalized inverse matrices can be found.
Here is a short list of properties for the Moore-Penrose inverse.

Proposition 1.1.7.
(i) Let A be non-singular. Then

A+ = A−1.

(ii) (A+)+ = A.

(iii) (A′)+ = (A+)′.

(iv) Let A be symmetric and idempotent. Then

A+ = A.

(v) The matrices AA+ and A+A are idempotent.
(vi) The matrices A,A+,AA+ and A+A have the same rank.
(vii) A′AA+ = A′ = A+AA′.

(viii) A′(A+)′A+ = A+ = A+(A+)′A′.

(ix) (A′A)+ = A+(A+)′.

(x) AA+ = A(A′A)−A′.

(xi) A+ = A′(AA′)−1, if A has full row rank.

(xii) A+ = (A′A)−1A′, if A has full column rank.

(xiii) A = 0 if and only if A+ = 0.
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(xiv) AB = 0 if and only if B+A+ = 0.

1.1.7 Problems
1. Under which conditions is multiplication of matrices commutative?
2. The sum and the elementwise product of matrices have many properties which

can be obtained by changing the operation ”+” to ”◦” in the formulas. Find
two examples when this is not true.

3. Show that A−1A = I when AA−1 = I.
4. Prove formula (1.1.8).
5. Prove statements (v) and (xi) of Proposition 1.1.4.
6. Prove statements (iv), (vii) and (viii) of Proposition 1.1.5.
7. Let A be a square matrix of order n. Show that

|A + λIn| =
n∑

i=0

λitrn−iA.

8. Let

A =
(

0 1 2
1 2 1

)
.

Find A−.
9. When is the following true: A+ = (A′A)−A′?

10. Give an example of a g-inverse which is not a reflexive generalized inverse.
11. Find the Moore-Penrose inverse of A in Problem 8.
12. For A in Problem 8 find a reflexive inverse which is not the Moore-Penrose

inverse.
13. Is A+ symmetric if A is symmetric?
14. Let Γ be an orthogonal matrix. Show that Γ ◦ Γ is doubly stochastic, i.e. the

sum of the elements of each row and column equals 1.
15. (Hadamard inequality) For non-singular B = (bij) : n × n show that

|B|2 ≤
n∏

i=1

n∑
j=1

b2
ij .
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1.2 ALGEBRA OF SUBSPACES

1.2.1 Introduction
In statistics and, particularly, multivariate statistical analysis there is a wide range
of applications of vector (linear) spaces. When working with linear models or
linearizations, it is often natural to utilize vector space theory. Depending on
the level of abstraction a statistician needs certain tools. They may vary from
column vector spaces associated with matrices to abstract coordinate free vector
space relations. A fairly universal set of relations between subspaces in a finite-
dimensional vector space is provided by lattice theory. In order to introduce the
reader to this topic we recall the definition of a vector (linear) space V:
Let x, y, z, . . . belong to V, where the operations ” + ” (sum of vectors) and ” · ”
(multiplication by scalar) are defined so that x + y ∈ V, αx = α · x ∈ V, where α
belongs to some field K and

x + y = y + x,

(x + y) + z = x + (y + z),
there exists a unique null vector 0 in the space so that, for all x ∈ V, x + 0 = x,

for every x ∈ V there exists a unique −x ∈ V so that x + (−x) = 0,
1 · x = x,

α(βx) = (αβ)x, α, β ∈ K,

(α + β)x = αx + βx,

α(x + y) = αx + αy.

If these conditions are satisfied we say that we have a vector space V over the field
K.
However, the starting point of this paragraph is the observation that the totality
of subspaces of V forms a modular lattice with respect to set inclusion (see the
next paragraph for a definition) which is sometimes called the Dedekind lattice.
The modular lattice structure implies some very fundamental algebraic rules. It is
interesting to see that these rules generate new results which are useful for appli-
cations as well as for getting better insight of the problems under consideration.
In particular, we are going to deal with decompositions of subspaces.
Usually, in multivariate analysis inner product spaces are used, and then it is possi-
ble to apply a specific part of the lattice theory, namely the theory of orthomodular
lattices. From the definition of an orthomodular lattice several fundamental vector
space decompositions follow, and under the inner product assumptions one really
appreciates the elegance and power of the theory. Furthermore, in order to treat
multivariate problems, we extend some of the results to tensor products of linear
spaces. In this section it is supposed that the reader is familiar with a basic course
of linear algebra. The proofs given here will be somewhat more condensed than
in other parts of this book. Finally, we mention that at the end of this section
we will apply some of the vector space results when considering eigenvalues and
eigenvectors. In particular, invariant spaces and normal operators (matrices) will
be considered.
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1.2.2 Lattices and algebra of subspaces
This paragraph contains certain fundamental laws as well as principles of the alge-
bra of subspaces when treating subspaces as elements of the lattice of subspaces.
We also fix some basic terminology as well as useful definitions. The reader, who
is interested in getting deeper insight into lattice theory, is referred to the classical
book by Birkhoff (1967) or one at a more advanced level by Grätzer (1998).
There are many examples of sets A where some ordering ≤ is defined and where
the following three properties hold for all a, b, c ∈ A:

(i) a ≤ a;
(ii) if a ≤ b and b ≤ a then a = b;
(iii) if a ≤ b and b ≤ c then a ≤ c.

The relations (i) – (iii) are called partial order relations. A set A equipped with
relations (i) – (iii) is called a partially ordered set and is denoted by < A,≤>. The
notation a ≥ b (meaning b ≤ a) can also be regarded as a definition of a partial
order relation. The relation ≥ satisfies also (i) – (iii), if ≤ does, and so < A,≥> is
a partially ordered set. Then < A,≥> is called the dual of < A,≤>. Let ϕ be a
statement about < A,≤>. If in ϕ we change all occurrences of ≤ by ≥ we get the
dual of ϕ. The importance of duals follows from the Duality Principle which we
formulate following Grätzer (1998). The Principle is often used in lattice theory
to shorten proofs.

Duality Principle. If a statement is true in all partially ordered sets, then its
dual is also true in all partially ordered sets.

Let < A,≤> form a partially ordered set and H ⊆ A, a ∈ A. Then a is an upper
bound of H, if and only if h ≤ a, for all h ∈ H. An upper bound is the least upper
bound (l.u.b.) of H, or supremum of H, if and only if, for any upper bound b of
H, we have a ≤ b. We shall then write a = sup H. The concepts of lower bound
and greatest lower bound (g.l.b.), or infimum, are similarly defined. The latter is
denoted by inf H. Let ∅ be the empty set. Observe that inf ∅ exists, if and only
if A has a largest element. At the same time sup ∅ exists, if and only if A has a
smallest element.

Definition 1.2.1. A partially ordered set < A,≤> is a lattice if inf{a, b} and
sup{a, b} exist, for all a, b ∈ A.

In the rest of this paragraph we are going to work with subsets of vector spaces.
When considering vector spaces some authors use a coordinate free approach,
whereas others prefer to work with methods which depend on the choice of basis.
Since the theory of lattices will be employed, the main results of this section are
given in a spirit of a coordinate free approach. More precisely, we consider the
elements of the space together with the axioms which build up the space. It is noted
that later when working explicitly with matrix derivatives and approximations, we
switch over to an approach based on coordinates.
We consider a finite-dimensional vector space V, and denote its subspaces by A,
B, C, . . . (possibly indexed). Moreover, Λ stands for the totality of subspaces of
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V. The following presentation was initiated by Nordström & von Rosen (1987). It
is obvious that Λ is partially ordered with respect to set-inclusion ⊆, which means
that the following lemma is true.

Lemma 1.2.1. Let A, B and C be arbitrary elements in Λ. Then

A ⊆ A; reflexivity(i)

if A ⊆ B and B ⊆ A then A = B; antisymmetry(ii)

if A ⊆ B and B ⊆ C then A ⊆ C. transitivity(iii)

For given subspaces A and B, an upper bound is an element in Λ which includes
every element in {A, B}. As noted before, the least upper bound (l.u.b.) is an upper
bound which is included in every upper bound. From Lemma 1.2.1 it follows that
the l.u.b. is unique. Analogously, we have a lower bound and a unique greatest
lower bound (g.l.b.). For arbitrary subspaces A and B, the intersection A ∩ B =
{x : x ∈ A,x ∈ B} and the sum A + B = {y + z : y ∈ A, z ∈ B} act as g.l.b.
and l.u.b. of {A, B}, respectively (Jacobson, 1953, p. 26). For instance, A ∩ B is
included in A and B, and any space included in A and B is also included in A∩B.
Since Λ is partially ordered and a l.u.b. as well as a g.l.b. exist, Λ, or strictly
speaking, the ordered pair (∩,⊆), forms a lattice of subspaces (e.g. see Birkhoff,
1967, p. 6). This implies that it is possible to use lattice theory when studying
intersections and sums of subspaces. Moreover, if {Ai} is any sequence of subsets
of Λ, the subspaces ∩iAi and

∑
i Ai act as g.l.b. and l.u.b. for {Ai}, respectively

(e.g. see Birkhoff, 1967, p. 6).
From Lemma 1.2.1 it follows that if the relation of set-inclusion is reversed, Λ
is again partially ordered. Thus, interchanging the compositions ∩ and + we
get the dual lattice of Λ. Hence, to any statement concerning elements of Λ, a
dual statement is obtained replacing compositions and relations with their duals.
Consequently, only one statement in the dual pair of statements needs to be proved.
In the following theorem we have brought together some of the most basic algebraic
laws for sums and intersections of subspaces.

Theorem 1.2.1. Let A, B and C be arbitrary elements of the subspace lattice
Λ. Then the following laws hold:

A ∩ A = A, A + A = A; idempotent laws(i)

A ∩ B = B ∩ A, A + B = B + A; commutative laws(ii)

A ∩ (B ∩ C) = (A ∩ B) ∩ C, associative laws(iii)

A + (B + C) = (A + B) + C;

A ∩ (A + B) = A + (A ∩ B) = A; absorptive laws(iv)

A ⊆ B ⇔ A ∩ B = A ⇔ A + B = B; consistency laws(v)



Basic Matrix Theory and Linear Algebra 23

A ⊆ B ⇒ (A ∩ C) ⊆ B ∩ C; isotonicity of compositions(vi)

A ∩ (B + C) ⊇ (A ∩ B) + (A ∩ C), distributive inequalities(vii)

A + (B ∩ C) ⊆ (A + B) ∩ (A + C);

C ⊆ A ⇒ A ∩ (B + C) = (A ∩ B) + C, modular laws(viii)

A ⊆ C ⇒ A + (B ∩ C) = (A + B) ∩ C.

Proof: The statements in (i) – (vii) hold in any lattice and the proofs of (i) – (vi)
are fairly straightforward. We are only going to prove the first statements of (vii)
and (viii) since the second parts can be obtained by dualization. Now, concerning
(vii) we have

(A ∩ B) + (A ∩ C) ⊆ A ∩ (B + C) + A ∩ (B + C)

and the proof follows from (i).
For the proof of (viii) we note that, by assumption and (vii),

(A ∩ B) + C ⊆ A ∩ (B + C).

For the opposite relation let x ∈ A ∩ (B + C). Thus, x = y + z for some y ∈ B

and z ∈ C. According to the assumption C ⊆ A. Using the definition of a vector
space y = x − z ∈ A implies y ∈ A ∩ B. Hence x ∈ (A ∩ B) + C.
The set Λ forms a modular lattice of subspaces since the properties (viii) of the
theorem above are satisfied. In particular, we note that strict inequalities may
hold in (vii). Thus, Λ is not a distributive lattice of subspaces, which is somewhat
unfortunate as distributivity is by far a more powerful property than modularity.
In the subsequent we have collected some useful identities in a series of corollaries.

Corollary 1.2.1.1. Let A, B and C be arbitrary elements of the subspace lattice
Λ. Then

(A ∩ (B + C)) + B = ((A + B) ∩ C) + B,(i)

(A + (B ∩ C)) ∩ B = ((A ∩ B) + C) ∩ B;

(A ∩ (B + C)) + (B ∩ C) = (A + (B ∩ C)) ∩ (B + C),(ii)

((A ∩ B) + C) ∩ (A + B) = ((A + B) ∩ C) + (A ∩ B);

A ∩ (B + (A ∩ C)) = (A ∩ B) + (A ∩ C), modular identities(iii)

A + (B ∩ (A + C)) = (A + B) ∩ (A + C);

A ∩ (B + C) = A ∩ ((B ∩ (A + C)) + C), shearing identities(iv)

A + (B ∩ C) = A + ((B + (A ∩ C)) ∩ C).
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Proof: To prove the first part of (i), apply Theorem 1.2.1 (viii) to the left and
right hand side, which shows that both sides equal to (A + B) ∩ (B + C). The
second part of (i) is a dual relation. Since B ∩ C ⊆ B + C, the first part of (ii)
follows by applying Theorem 1.2.1 (viii) once more, and the latter part of (ii) then
follows by virtue of symmetry. Moreover, (iii) implies (iv), and (iii) is obtained
from Theorem 1.2.1 (viii) by noting that A ∩ C ⊆ A.

Note that the modular identities as well as the shearing identities imply the mod-
ular laws in Theorem 1.2.1. Thus these relations give equivalent conditions for Λ
to be a modular lattice. For example, if C ⊆ A, Corollary 1.2.1.1 (iii) reduces to
Theorem 1.2.1 (viii).

Corollary 1.2.1.2. Let A, B and C be arbitrary elements of the subspace lattice
Λ. Then

(A ∩ B) + (A ∩ C) + (B ∩ C) = (A + (B ∩ C)) ∩ (B + (A ∩ C))(i)

= {A ∩ (B + C) + (B ∩ C)} ∩ {(B ∩ (A + C)) + (A ∩ C)},
(A + B) ∩ (A + C) ∩ (B + C) = (A ∩ (B + C)) + (B ∩ (A + C))

= {(A + (B ∩ C) ∩ (B + C)} + {(B + (A ∩ C)) ∩ (A + C)};
{(A ∩ B) + (A ∩ C)} ∩ {(A ∩ B) + (B ∩ C)} = A ∩ B,(ii)

{(A + B) ∩ (A + C)} + {(A + B) ∩ (B + C)} = A + B.

Proof: By virtue of Theorem 1.2.1 (viii)

(A ∩ B) + (A ∩ C) + (B ∩ C) = A ∩ (B + (A ∩ C)) + (B ∩ C)
= (A + (B ∩ C)) ∩ (B + (A ∩ C)).

Applying Corollary 1.2.1.1 (ii) we also have

(A ∩ (B + C) + (B ∩ C)) ∩ (B ∩ (A + C) + (A ∩ C))
= (A + (B ∩ C)) ∩ (B + C) ∩ (B + (A ∩ C)) ∩ (A + C)
= (A + (B ∩ C)) ∩ (B + (A ∩ C))

establishing the first part of (i). The latter part of (i) is a dual statement. Applying
Corollary 1.2.1.1 (iii) yields

((A ∩ B)+(A ∩ C)) ∩ ((A ∩ B) + (B ∩ C))
= A ∩ (B + (A ∩ C)) ∩ B ∩ (A + (B ∩ C)) = A ∩ B

which establishes the first part of (ii). The second part is again dual.

A different kind of consequence of the modularity of Λ is the following.
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Corollary 1.2.1.3. Equality in Theorem 1.2.1 (vii) holds if and only if

(A ∩ B) + (B ∩ C) + (C ∩ A) = (A + B) ∩ (B + C) ∩ (C + A). median law

Proof: Distributivity implies that both sides in the median law equal to

A ∩ (B + C) + (B ∩ C).

Conversely, if the median law holds,

(A ∩ B) + (A ∩ C) = A ∩ (B + A ∩ C) = A ∩ (B + A ∩ B + B ∩ C + A ∩ C)
= A ∩ (B + (A + B) ∩ (B + C) ∩ (C + A))
= A ∩ (B + (B + C) ∩ (C + A)) = A ∩ (B + C).

Corollary 1.2.1.4. Let B and C be comparable elements of Λ, i.e. subspaces such
that B ⊆ C or C ⊆ B holds, and let A be an arbitrary subspace. Then

A+B = A + C, A ∩ B = A ∩ C ⇒ B = C. cancellation law

Proof: Suppose, for example, that B ⊆ C holds. Applying (iv) and (viii) of
Theorem 1.2.1 we have

B = (A ∩ B) + B = (A ∩ C) + B = (A + B) ∩ C = (A + C) ∩ C = C.

Theorem 1.2.1 as well as its corollaries were mainly dealing with so-called subspace
polynomials, expressions involving ∩ and +, and formed from three elements of
Λ. Considering subspace polynomials formed from a finite set of subspaces, the
situation is, in general, much more complicated.

1.2.3 Disjointness, orthogonality and commutativity
This paragraph is devoted to the concepts of disjointness (independency), orthog-
onality and commutativity of subspaces. It means that we have picked out those
subspaces of the lattice which satisfy certain relations and for disjointness and
orthogonality we have additionally assumed the existence of an inner product.
Since the basic properties of disjoint subspaces are quite well-known and since
orthogonality and commutativity have much broader impact on statistics we are
concentrated on these two concepts.
Among the different definitions in the literature, the following given by Jacobson
(1953, p. 28) appears rather intuitive.

Definition 1.2.2. Let {Ai}, i = 1, . . . , n, be a finite set of subspaces of Λ. The
subspaces {Ai} are said to be disjoint if and only if Ai ∩ (

∑
j �=i Aj) = {0}, for all

values of i.

Although Definition 1.2.2 seems to be natural there are many situations where
equivalent formulations suit better. We give two interesting examples of the re-
formulations in the next lemma. Other equivalent conditions can be found in
Jacobson (1953, pp. 28–30), for example.
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Lemma 1.2.2. The subspaces {Ai}, i = 1, . . . , n, are disjoint if and only if any
one of the following equivalent conditions hold:

(i) (
∑

i Ai) ∩ (
∑

j Aj) = {0}, i ∈ I, j ∈ J , for all disjoint subsets I and J of the
finite index set;

(ii) Ai ∩ (
∑

j Aj) = {0}, for all i > j.

Proof: Obviously (i) is sufficient. To prove necessity we use an induction ar-
gument. Observe that if I consists of a single element, (i) follows by virtue of
Theorem 1.2.1 (vi). Now assume that Bi� =

∑
i �=i� Ai, i ∈ I satisfies (i), where i�

is a fixed element in I. Then, for i, i� ∈ I and j ∈ J

(
∑

i

Ai) ∩ (
∑

j

Aj) = (Ai� + Bi�) ∩ (
∑

j

Aj)

= (Ai� + (Bi� ∩ (Ai� +
∑

j

Aj))) ∩ (
∑

j

Aj) = Ai� ∩ (
∑

j

Aj) = {0},

where the shearing identity (Corollary 1.2.1.1 (iv)), the assumption on Bi� and
the disjointness of {Ai} have been used. Hence, necessity of (i) is established.
Condition (ii) is obviously necessary. To prove sufficiency, assume that (ii) holds.
Applying the equality

A ∩ (B + C) = A ∩ (B + (C ∩ D)),

for any D such that A+B ⊆ D ⊆ V, and remembering that V represents the whole
space, we obtain

Ai ∩ (
∑
j �=i

Aj) = Ai ∩ (An +
∑

j �=i,n

Aj)

= Ai ∩ ((An ∩ (
∑
j �=n

Aj)) +
∑

j �=i,n

Aj) = Ai ∩ (
∑

j �=i,n

Aj).

Similarly,

Ai ∩ (
∑
j �=i

Aj) = Ai ∩ (Ai+1 +
∑
j<i

Aj)

= Ai ∩ ((Ai+1 ∩ (
∑
j �=i

Aj)) +
∑
j≤i

Aj) = Ai ∩ (
∑
j<i

Aj) = {0}.

Since the argument holds for arbitrary i > 1, sufficiency of (ii) is established.

It is interesting to note that the ”sequential disjointness” of {Ai}, given in Lemma
1.2.2 (ii) above, is sufficient for disjointness of {Ai}. This possibility of defining
the disjointness of {Ai} in terms of fewer relations expressed by Lemma 1.2.2 (ii)
heavily depends on the modularity of Λ, as can be seen from the proof.
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Definition 1.2.3. If {Ai} are disjoint and A =
∑

i Ai, we say that A is the direct
sum (internal) of the subspaces {Ai}, and write A = ⊕iAi.

An important result for disjoint subspaces is the implication of the cancellation
law (Corollary 1.2.1.4), which is useful when comparing various vector space de-
compositions. The required results are often immediately obtained by the next
theorem. Note that if the subspaces are not comparable the theorem may fail.

Theorem 1.2.2. Let B and C be comparable subspaces of Λ, and A an arbitrary
subspace. Then

A ⊕ B = A ⊕ C ⇒ B = C.

Now we start to discuss orthogonality and suppose that the finite-dimensional
vector space V over an arbitrary field K of characteristic 0 is equipped with a
non-degenerate inner product, i.e. a symmetric positive bilinear functional on the
field K. Here we treat arbitrary finite-dimensional spaces and suppose only that
there exists an inner product. Later we consider real or complex spaces and in
the proofs the defining properties of the inner products are utilized. Let P (V)
denote the power set (collection of all subsets) of V. Then, to every set A in
P (V) corresponds a unique perpendicular subspace (relative to the inner product)
⊥ (A). The map ⊥: P (V) → Λ is obviously onto, but not one-to-one. However,
restricting the domain of ⊥ to Λ, we obtain the bijective orthocomplementation
map ⊥ |Λ : Λ → Λ, ⊥ |Λ(A) = A⊥.

Definition 1.2.4. The subspace A⊥ is called the orthocomplement of A.

It is interesting to compare the definition with Lemma 1.2.2 (ii) and it follows that
orthogonality is a much stronger property than disjointness. For {Ai} we give the
following definition.

Definition 1.2.5. Let {Ai} be a finite set of subspaces of V.

(i) The subspaces {Ai} are said to be orthogonal, if and only if Ai ⊆ A⊥
j holds,

for all i 	= j, and this will be denoted Ai ⊥ Aj .

(ii) If A =
∑

i Ai and the subspaces {Ai} are orthogonal, we say that A is the
orthogonal sum of the subspaces {Ai} and write A = ��+ i Ai.

For the orthocomplements we have the following well-known facts.

Theorem 1.2.3. Let A and B be arbitrary elements of Λ. Then

A ∩ A⊥ = {0}, A ��+ A⊥ = V, (A⊥)⊥ = A; projection theorem(i)

(A ∩ B)⊥ = A⊥ + B⊥, (A + B)⊥ = A⊥ ∩ B⊥; de Morgan’s laws(ii)

(A ⊆ B) ⇒ B⊥ ⊆ A⊥. antitonicity of orthocomplementation(iii)

By virtue of Theorem 1.2.3 (i) the orthocomplement of A is the perpendicular
direct complement of A. Hence, Λ is self-dual (with orthocomplementation as
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dual automorphism) which is an evident but important observation since dual
statements for orthocomplements in the lemmas and theorems given below may
be formulated.
Theorem 1.2.3 (i) and (ii) imply that inner product spaces satisfy the conditions
for a lattice to be an ortholattice of subspaces. However, Λ is modular and thus
belongs to the class of modular ortholattices. Moreover, it can be shown that Λ
also is an orthomodular lattice of subspaces, i.e. the elements of Λ satisfy the next
lemma.

Lemma 1.2.3. Let A and B be arbitrary elements of Λ. The following two
conditions always hold:

A ⊆ B ⇒ B = A ��+ (A⊥ ∩ B); orthomodular law(i)

A = (A ∩ B) ��+ (A ∩ B⊥) symmetricity of commutativity(ii)
if and only if

B = (A ∩ B) ��+ (A⊥ ∩ B).

Note that in general the two conditions of the lemma are equivalent for any or-
tholattice. The concept of commutativity is defined later in this paragraph. Of
course, Lemma 1.2.3 can be obtained in an elementary way without any reference
to lattices. The point is to observe that Λ constitutes an orthomodular lattice,
since it places concepts and results of the theory of orthomodular lattices at our
disposal. For a collection of results and references, the books by Kalmbach (1983)
and Beran (1985) are recommended. Two useful results, similar to Theorem 1.2.2,
are presented in the next theorem.

Theorem 1.2.4. Let A, B and C be arbitrary subspaces of Λ. Then

A ��+ B = A ��+ C ⇔ B = C;(i)

A ��+ B ⊆ A ��+ C ⇔ B ⊆ C.
(ii)

Proof: Since A ⊆ B⊥ and A ⊆ C⊥ we get from Lemma 1.2.3 (i)

B⊥ = A ��+ (A⊥ ∩ B⊥) = A) ��+ (A⊥ ∩ C⊥) = C⊥,

where in the second equality de Morgan’s law, i.e Theorem 1.2.3 (ii), has been
applied to A ��+ B = A ��+ C. Thus (i) is proved, and (ii) follows analogously.

Note that we do not have to assume B and C to be comparable. It is orthogonality
between A and C, and B and C, that makes them comparable. Another important
property of orthogonal subspaces not shared by disjoint subspaces may also be
worth observing.
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Theorem 1.2.5. Let B and {Ai} be arbitrary subspaces of Λ such that B ⊥ Ai

for all i. Then B ⊥∑i Ai.

This fact about orthogonal subspaces does not hold for disjoint subspaces, i.e.
B ∩ Ai = {0}, for all i, does not imply B ∩ (

∑
i Ai) = {0}. Basically, this stems

from the non-distributive character of Λ exhibited in Theorem 1.2.1.
One of the main results in this section will be given in the following theorem. The
decompositions of vector spaces belong to those constructions which are commonly
applied in statistics. We are going to use these results in the following paragraphs.
There are many other decompositions available but the reader who grasps the
course of derivation can easily find alternative results.

Theorem 1.2.6. Let A, B and C be arbitrary elements of Λ. Then

A = (A ∩ B) ��+ A ∩ (A⊥ + B⊥);(i)

A + B = A ��+ (A + B) ∩ A⊥;(ii)

A⊥ = (A + B)⊥ ��+ (A + B) ∩ A⊥;(iii)

V = ((A + B) ∩ A⊥ ⊕ (A + B) ∩ B⊥) ��+ (A + B)⊥ ��+ (A ∩ B);(iv)

V = A ∩ (B + C)⊥ ��+ A ∩ B⊥ ∩ (A⊥ + B + C) ��+ A ∩ (A⊥ + B) ��+ A⊥.(v)

Proof: All statements, more or less trivially, follow from Lemma 1.2.3 (i). For
example, the lemma immediately establishes (iii), which in turn together with
Theorem 1.2.3 (i) verifies (iv).
When obtaining the statements of Theorem 1.2.6, it is easy to understand that
results for orthomodular lattices are valuable tools. An example of a more tra-
ditional approach goes as follows: firstly show that the subspaces are disjoint
and thereafter check the dimension which leads to a more lengthy and technical
treatment.
The next theorem indicates that orthogonality puts a strong structure on the
subspaces. Relation (i) in it explains why it is easy to apply geometrical arguments
when orthogonal subspaces are considered, and (ii) shows a certain distributive
property.

Theorem 1.2.7. Let A, B and C be arbitrary subspaces of Λ.

(i) If B ⊥ C and A ⊥ C, then A ∩ (B ��+ C) = A ∩ B.

(ii) A ∩ (A⊥ + B + C) = A ∩ (A⊥ + B) + A ∩ (A⊥ + C).

Proof: By virtue of Theorem 1.2.1 (v) and the modular equality (Corollary
1.2.1.1 (iii)),

A ∩ (B + C) = A ∩ C⊥ ∩ ((B ∩ C⊥) ��+ C) = A ∩ B ∩ C⊥ = A ∩ B

establishes (i). The relation in (ii) is verified by using the median law (Corollary
1.2.1.3), Theorem 1.2.6 (i) and some calculations.
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Corollary 1.2.7.1. Let A, B and C be arbitrary subspaces of Λ. If B ⊥ C, A ⊥ C

and A ⊆ (B ��+ C), then A ⊆ B.

Let V1 and V2 be two disjoint subspaces. Then every vector z ∈ V1 ⊕ V2 can be
written in a unique way as a sum z = x1 + x2, where x1 ∈ V1 and x2 ∈ V2. To
see this, suppose that

z =x1 + x2, x1 ∈ V1, x2 ∈ V2;
z =x3 + x4, x3 ∈ V1, x4 ∈ V2.

Then
0 = x1 − x3 + x2 − x4

which means that x1 − x3 = x4 − x2. However, since x1 − x3 ∈ V1, x4 − x2 ∈ V2,
V1 and V2 are disjoint, this is only possible if x1 = x3 and x2 = x4.

Definition 1.2.6. Let V1 and V2 be disjoint and z = x1 +x2, where x1 ∈ V1 and
x2 ∈ V2. The mapping Pz = x1 is called a projection of z on V1 along V2, and
P is a projector. If V1 and V2 are orthogonal we say that we have an orthogonal
projector.

In the next proposition the notions range space and null space appear. These will
be defined in §1.2.4.

Proposition 1.2.1. Let P be a projector on V1 along V2. Then

(i) P is a linear transformation;

(ii) PP = P , i.e. P is idempotent;

(iii) I − P is a projector on V2 along V1 where I is the identity mapping defined
by Iz = z;

(iv) the range space R(P ) is identical to V1, the null space N (P ) equals R(I−P );

(v) if P is idempotent, then P is a projector;

(vi) P is unique.

Proof: (i): P (az1 + bz2) = aP (z1) + bP (z2).
(ii): For any z = x1 + x2 such that x1 ∈ V1 and x2 ∈ V2 we have

P 2z = P (Pz) = Px1 = x1.

It is worth observing that statement (ii) can be used as a definition of projector.
The proof of statements (iii) – (vi) is left to a reader as an exercise.

The rest of this paragraph is devoted to the concept of commutativity. Although it
is often not explicitly treated in statistics, it is one of the most important concepts
in linear models theory. It will be shown that under commutativity a linear space
can be decomposed into orthogonal subspaces. Each of these subspaces has a
corresponding linear model, as in analysis of variance, for example.
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Definition 1.2.7. The subspaces {Ai} are said to be commutative, which will be
denoted Ai|Aj , if for ∀i, j,

Ai = (Ai ∩ Aj) ��+ (Ai ∩ A⊥
j ).

Note that Ai = Ai ∩ V = Ai ∩ (A⊥
j ��+ Aj), where V stands for the whole space.

According to Definition 1.2.7 a distributive property holds under commutativity,
which leads us to easily interpretable decompositions.
Now we present some alternative characterizations of commutativity.

Theorem 1.2.8. The subspaces {Ai} are commutative if and only if any of the
following equivalent conditions hold:

Ai ∩ (Ai ∩ Aj)⊥ = Ai ∩ A⊥
j , ∀i, j;(i)

Ai ∩ (Ai ∩ Aj)⊥ ⊥ Aj ∩ (Ai ∩ Aj)⊥, ∀i, j;(ii)

Ai ∩ (Ai ∩ Aj)⊥ ⊆ A⊥
j , ∀i, j.

(iii)

Proof: First it is proved that {Ai} are commutative if and only if (i) holds,
thereafter the equivalence between (i) and (ii) is proved, and finally (iii) is shown
to be equivalent to (i).
From Lemma 1.2.3 (i) it follows that we always have

Ai = (Ai ∩ Aj) ��+ (Ai ∩ Aj)⊥ ∩ Ai.

Thus, by definition of commutativity and Theorem 1.2.4, commutativity implies
(i). For the opposite relation note that (i) via Lemma 1.2.3 (i) implies commu-
tativity. Turning to the equivalence between (i) and (ii), let us for notational
convenience put

A = Ai ∩ (Ai ∩ Aj)⊥, B = A⊥
j ��+ (Ai ∩ Aj), C = Ai ∩ A⊥

j .

We are going to show that A = C. If (ii) is true, A ⊆ B. Therefore, Lemma 1.2.3
(i) implies B = A ��+ A⊥ ∩ B, and we always have that B = C ��+ C⊥ ∩ B. However,
C⊥ ∩ B = (A⊥ + B⊥) ∩ B = A⊥ ∩ B, giving us A = C. Thus (ii) implies (i). The
converse is trivial. Turning to the equivalence between (i) and (iii), it follows from
Theorem 1.2.1 (v) that if (iii) holds,

Ai ∩ (Ai ∩ Aj)⊥ = Ai ∩ (Ai ∩ Aj)⊥ ∩ A⊥
j = Ai ∩ A⊥

j .

The converse is obvious.
The statement in Theorem 1.2.8 (ii) expresses orthogonality of Ai and Aj mod-
ulo Ai ∩ Aj . If Ai and Aj are subspaces corresponding to factors i and j in an
analysis of variance model, then Theorem 1.2.8 (ii) gives us the usual condition
for orthogonality of i and j (e.g. see Tjur, 1984). We may also note that a pair of



32 Chapter I

subspaces Ai and Aj satisfying Theorem 1.2.8 (ii) is referred to in the literature as
”orthogonally incident” (Afriat, 1957) or ”geometrically orthogonal” (Tjur, 1984).
Furthermore, there is a close connection between orthogonal projectors and com-
mutativity. It is interesting to note that the orthomodular lattice structure of
Λ is carried over in a natural way to the set of idempotent and self-adjoint (see
Definition 1.2.6) linear operators defined on V. An idempotent linear operator is
a projector according to Proposition 1.2.1, and a self-adjoint projector is called
an orthogonal projector since (I − P ) is orthogonal to P and projects on the
orthogonal complement to the space which P projects on.

Theorem 1.2.9. Let Pi and Pij denote the orthogonal projectors on Ai and
Ai ∩ Aj , respectively. The subspaces {Ai} are commutative if and only if any of
the following two equivalent conditions hold:

PiPj = PjPi, ∀i, j;(i)

PiPj = Pij , ∀i, j.
(ii)

Proof: Suppose that Ai and Aj commute. Since

Ai = (Ai ∩ Aj) ��+ (Ai ∩ A⊥
j )

we have
Pi = Pij + Q,

where Q is an orthogonal projector on Ai ∩ A⊥
j . Thus, PjQ = 0, PjPij = Pij

and we obtain that PjPi = Pij . Similarly, we may show via Lemma 1.2.3 (ii) that
PiPj = Pij . Hence, commutativity implies both (i) and (ii) of the theorem.
Moreover, since Pi, Pj and Pij are orthogonal (self-adjoint),

PiPj = Pij = PjPi.

Hence, (ii) leads to (i). Finally we show that (ii) implies commutativity. From
Theorem 1.2.6 (i) it follows that

Ai = Ai ∩ Aj ��+ Ai ∩ (Ai ∩ Aj)⊥

and for projectors we have
Pi = Pij + Q,

where Q is an orthogonal projector on Ai ∩ (Ai ∩ Aj)⊥. Thus,

PjPi = Pij + PjQ

and if (ii) holds, PjQ = 0 and therefore Theorem 1.2.8 (iii) implies commutativity.

There are many other possible characterizations of commutativity beside those
presented in Theorem 1.2.8 and Theorem 1.2.9. A summary of the topic with sta-
tistical applications has been given by Baksalary (1987). In particular, Baksalary
presented 46 alternative characterizations including those mentioned in this para-
graph. Another useful theorem can easily be established by employing Theorem
1.2.9 (i).



Basic Matrix Theory and Linear Algebra 33

Theorem 1.2.10. Let A and B be subspaces of V. Then

A ⊆ B ⇒ A|B;(i)

A ⊥ B ⇒ A|B;(ii)

A|B ⇒ A|B⊥;(iii)

A|B ⇒ B|A.
(iv)

Note that inclusion as well as orthogonality implies commutativity, and that (iv) is
identical to Lemma 1.2.3 (ii). Moreover, to clarify the implication of commutativity
we make use of the following version of a general result.

Theorem 1.2.11. Let {Ai} be a finite set of subspaces of V, and B a subspace
of V that commutes with each of the subspaces Ai. Then

(i) B|∑i Ai and B ∩ (
∑

i Ai) =
∑

i(B ∩ Ai);

(ii) B| ∩i Ai and B + (∩iAi) = ∩i(B + Ai).

Proof: Setting A =
∑

i Ai the first part of (i) is proved if we are able to show
that A = (A ∩ B) ��+ (A ∩ B⊥). To this end it is obviously sufficient to prove that

A ⊆ (A ∩ B) ��+ (A ∩ B⊥).

By virtue of the assumed commutativity we have

Ai = (Ai ∩ B) ��+ (Ai ∩ B⊥)

for all i implying
A = (

∑
i

(Ai ∩ B)) ��+ (
∑

i

(Ai ∩ B⊥)). (1.2.1)

Applying Theorem 1.2.1 (vii) yields∑
i

(Ai ∩ B) ⊆ A ∩ B and
∑

i

(Ai ∩ B⊥) ⊆ A ∩ B⊥. (1.2.2)

Combining (1.2.1) and (1.2.2) gives us the first part of (i). To prove the second
part of (i) note that (1.2.2) gives

A ∩ B ⊆ (
∑

i

(Ai ∩ B) ��+ (A ∩ B⊥))

and Theorem 1.2.5 implies that A ∩ B is orthogonal to
∑

i(Ai ∩ B⊥). Thus, from
Corollary 1.2.7.1 it follows that A∩B ⊆∑i(Ai ∩B), and then utilizing (1.2.2) the
second part of (i) can be verified. Writing ∩iAi as (

∑
i A⊥

i )⊥ and using Theorem
1.2.10 (iii) together with the first part of (i) proves that B| ∩i Ai. The second part
of (ii) follows similarly.
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Corollary 1.2.11.1. Let {Ai} and {Bj} be finite sets of subspaces of V such that
Ai|Bj , for all i, j. Then

(
∑

i

Ai) ∩ (
∑

j

Bj) =
∑
ij

(Ai ∩ Bj);(i)

(
⋂
i

Ai) + (
⋂
j

Bj) =
⋂
ij

(Ai + Bj).(ii)

Corollary 1.2.11.2. Let {Ai}, i = 1, . . . , n, be a finite set of subspaces of V, and
B a subspace of V. The following conditions are equivalent

B|Ai, ∀i;(i)

B = ��+
i≤n

(B ∩ Ai) ��+
⋂
i≤n

A⊥
i ∩ B;(ii)

V = ��+
i≤n

(B ∩ Ai) ��+ (
⋂
i≤n

A⊥
i ∩ B) ��+ ��+

i≤n
(B⊥ ∩ Ai) ��+ (

⋂
i≤n

A⊥
i ∩ B⊥).(iii)

proof: We just prove that (ii) implies (i).

B ∩ A⊥
j = (��+

i
(B ∩ Ai) ��+

⋂
i

A⊥
i ∩ B) ∩ A⊥

j

= ��+
i �=j

(B ∩ Ai) ��+ (B ∩ Aj ��+
⋂
i

A⊥
i ∩ B) ∩ A⊥

j

= ��+
i �=j

(B ∩ Ai) ��+
⋂
i

A⊥
i ∩ B.

By adding B ∩ Aj to this expression, by assumption we obtain B again. Hence,

B = B ∩ Aj ��+ B ∩ A⊥
j .

These two corollaries clearly spell out the implications of commutativity of sub-
spaces. From Corollary 1.2.11.1 we see explicitly that distributivity holds under
commutativity whereas Corollary 1.2.11.2 exhibits simple orthogonal decomposi-
tions of a vector space that are valid under commutativity. In fact, Corollary
1.2.11.2 shows that when decomposing V into orthogonal subspaces, commutativ-
ity is a necessary and sufficient condition.

1.2.4 Range spaces
In this paragraph we will discuss linear transformations from a vector space V to
another space W. The range space of a linear transformation A : V → W will be
denoted R(A) and is defined by

R(A) = {x : x = Ay,y ∈ V},
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whereas the null space N (A) of A is defined by

N (A) = {y : Ay = {0},y ∈ V}.

It is supposed that the spaces are defined over the real or complex fields and are
equipped with an inner product. Although several of the lemmas and theorems
given below hold for transformations on finite-dimensional vector spaces defined
over arbitrary fields, some of the theorems rest on the fact that if A : V → W,
the adjoint transformation A′ is a map from W to V. All transformations in
this paragraph can be identified via corresponding matrices, relative to a given
basis. Thus the results of this paragraph hold for spaces generated by columns of
matrices, i.e. we consider column vector spaces without any particular reference to
a fixed basis, and therefore so-called column vector spaces can be identified with
their corresponding range space.

Definition 1.2.8. An inner product (•, •) in a complex or real space is a scalar
valued function of the ordered pairs of vectors x and y, such that

(x,y) =(y,x); hermitian (symmetric)
(ax1 + bx2,y) =a(x1,y) + b(x2,y); bilinear

(x,x) ≥0, (x,x) = 0 if and only if x = 0, positive

where denotes complex conjugate.

Definition 1.2.9. For a space (complex or real) with an inner product the adjoint
transformation A′ : W → V of the linear transformation A : V → W is defined
by (Ax,y)W = (x, A′y)V, where indices show to which spaces the inner products
belong.

Note that the adjoint transformation is unique. Furthermore, since two different
inner products, (x,y)1 and (x,y)2, on the same space induce different orthogonal
bases and since a basis can always be mapped to another basis by the aid of
a unique non-singular linear transformation A we have (x,y)1 = (Ax, Ay)2 for
some transformation A. If B = A′A, we obtain (x,y)1 = (Bx,y)1 and B is
positive definite, i.e. B is self-adjoint and (Bx,x) > 0, if x 	= 0. A transformation
A : V → V is self-adjoint if A = A′. Thus, if we fix some inner product we
can always express every other inner product in relation to the fixed one, when
going over to coordinates. For example, if (x,y) = x′y, which is referred to
as the standard inner product, then any other inner product for some positive
definite transformation B is defined by x′By. The results of this paragraph will
be given without a particular reference to any special inner product but from the
discussion above it follows that it is possible to obtain explicit expressions for any
inner product. Finally we note that any positive definite transformation B can be
written B = A′A, for some A (see also Theorem 1.1.3).
In the subsequent, if not necessary, we do not indicate those spaces on which and
from which the linear transformations act. It may be interesting to observe that
if the space is equipped with a standard inner product and if we are talking in
terms of complex matrices and column vector spaces, the adjoint operation can
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be replaced by the conjugate transposing which in the real case is identical to
the transposing operator. Our first lemma of this paragraph presents a somewhat
trivial but useful result, and the proof of the lemma follows from the definition of
a range space.

Lemma 1.2.4. Let A, B and C be any linear transformations such that AB and
AC are defined. Then

R(AB) = R(AC) if R(B) = R(C);(i)

R(AB) ⊆ R(AC) if R(B) ⊆ R(C).(ii)

The next two lemmas comprise standard results which are very useful. In the
proofs we accustom the reader with the technique of using inner products and
adjoint transformations.

Lemma 1.2.5. Let A be an arbitrary linear transformation. Then

N (A′) = R(A)⊥

Proof: Suppose y ∈ R(A)⊥. By definition of R(A) for any z we have a vector
x = Az ∈ R(A). Hence,

0 = (x,y) = (Az,y) = (z, A′y) ⇒ A′y = 0.

Implication holds also in opposite direction and thus the lemma is proved.

Lemma 1.2.6. Let A be an arbitrary linear transformation. Then

R(AA′) = R(A).

Proof: From Lemma 1.2.4 (ii) it follows that it is sufficient to show that R(A) ⊆
R(AA′). For any y ∈ R(AA′)⊥ = N (AA′) we obtain

0 = (AA′y,y) = (A′y, A′y).

Thus, A′y = 0 leads us to y ∈ N (A′) = R(A)⊥. Hence R(AA′)⊥ ⊆ R(A)⊥ which
is equivalent to R(A) ⊆ R(AA′).

In the subsequent, for an arbitrary transformation A, the transformation Ao de-
notes any transformation such that R(A)⊥ = R(Ao) (compare with Ao in Propo-
sition 1.1.3). Note that Ao depends on the inner product. Moreover, in the next
theorem the expression A′Bo appears and for an intuitive geometrical understand-
ing it may be convenient to interpret A′Bo as a transformation A′ from (restricted
to) the null space of B′.
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Theorem 1.2.12. For any transformations A, B assume that A′Bo is well defined.
Then the following statements are equivalent:

R(A′) ⊆ R(A′Bo);(i)

R(A′) = R(A′Bo);(ii)

R(A) ∩R(B) = {0}.(iii)

Proof: First note that if R(A) ⊆ R(B) or R(B) ⊆ R(A) hold, the theorem is
trivially true. The equivalence between (i) and (ii) is obvious. Now suppose that
R(A) ∩R(B) = {0} holds. Then, for y ∈ R(A′Bo)⊥ and arbitrary x

0 = (x, Bo′
Ay) = (Box, Ay).

Hence, within R(A′Bo)⊥ we have that R(A) and R(Bo) are orthogonal. Thus,
R(A) ⊆ R(B) within R(A′Bo)⊥ contradicts the assumption, unless Ay = 0 for
all y ∈ R(A′Bo)⊥. Hence R(A′) ⊆ R(A′Bo).
For the converse, suppose that there exists a vector x ∈ R(A) ∩ R(B) implying
the existence of vectors z1 and z2 such that x = Az1 and x = Bz2. For all y, of
course, (x, Boy) = 0. Hence,

0 = (Az1, B
oy) = (z1, A

′Boy)

implies z1 ∈ R(A′Bo)⊥ = R(A′)⊥. Therefore we obtain Az1 = 0, and thus x = 0.

An interesting consequence of the equivalence between (ii) and (iii) is given in the
next corollary. Let us remind the reader that AA′ is always a non-negative definite
transformation and that any non-negative definite transformation can be written
AA′ for some A.

Corollary 1.2.12.1. In the notation of Theorem 1.2.12

R(AA′Bo) ∩R(B) = {0}.

Fairly often it is meaningful to utilize results concerning the dimensionality of
the range space when establishing theorems. The dimensionality is given by the
number of linearly independent elements (basis vectors) which via linear operations
generate all other elements of that particular space. In the next lemma we give
some fundamental results which will be used later. The dimensionality of a space
V is denoted by dimV.

Lemma 1.2.7. Let A and B be arbitrary linear transformations such that the
relations are well defined. Then

dim(R(A)) = dim(R(A′));(i)
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dim(R(A) + R(B)) = dim(R(A)) + dim(R(B)) − dim(R(A) ∩R(B));(ii)

dim(R(A) + R(B)) = dim(R(A′Bo)) + dim(R(B));(iii)

R(A) ⊆ R(B) if and only if dim(R(A) + R(B)) = dim(R(B)).(iv)

Theorem 1.2.13. Let A, B and C be arbitrary linear transformations such that
the products of the transformations are well defined. Then

R(AA′B) = R(AA′C) ⇔ R(A′B) = R(A′C);(i)

R(AA′B) ⊆ R(AA′C) ⇔ R(A′B) ⊆ R(A′C).(ii)

Proof: We will just prove (ii) since (i) can be verified by copying the given proof.
Suppose that R(AA′B) ⊆ R(AA′C) holds, and let H be a transformation such
that R(H) = R(B)+R(C). Then, applying Lemma 1.2.7 (i) and (iv) and Lemma
1.2.6 we obtain that

dim(R(A′C)) = dim(R(C ′A)) = dim(R(C ′AA′)) = dim(R(AA′C))
= dim(R(AA′C) + R(AA′B)) = dim(R(H ′AA′))
= dim(R(H ′A)) = dim(R(A′H)) = dim(R(A′C) + R(A′B)).

The converse follows by starting with dim(R(AA′C)) and then copying the above
given procedure.

Theorem 1.2.14. Let A, B and C be linear transformations such that the spaces
of the theorem are well defined. If

R(A′) ⊕R(B) ⊆ R(C) and R(A) ⊕R(B) = R(C),

then

R(A′) ⊕R(B) = R(C).

Proof: Lemma 1.2.7 (i) implies that

dim(R(A′) ⊕R(B)) = dim(R(A) ⊕R(B)) = dim(R(C)).

The next theorem is also fairly useful.

Theorem 1.2.15. Let A and B be arbitrary linear transformations such that the
products of the transformations are well defined. Then

R(A(A′Bo)o) = R(A) ∩R(B).

Proof: Since R(A)⊥ and R(B)⊥ are orthogonal to R(A(A′Bo)o), it follows from
Theorem 1.2.5 that the sum is also orthogonal to R(A(A′Bo)o). Thus,
R(A(A′Bo)o) ⊆ R(A) ∩ R(B). Therefore, applying Lemma 1.2.7 (iii) confirms
that the spaces must be identical.
Many decompositions of vector spaces are given in forms which use range spaces
and projectors. Therefore the next theorem due to Shinozaki & Sibya (1974) is
important, since it clearly spells out the relation between the range space of the
projection and the intersections of certain subspaces.
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Theorem 1.2.16. Let P be an arbitrary projector and A a linear transformation
such that PA is defined. Then

R(PA) = R(P ) ∩ (N (P ) + R(A)).

Proof: Suppose that N (P ) + R(A) = N (P ) + R(PA) holds. In that case the
result follows immediately from Theorem 1.2.1 (viii), since R(PA) ⊆ R(P ). The
assumption is true since

R(A) = R((I − P )A + PA) ⊆ R((I − P )A) + R(PA) ⊆ N (P ) + R(PA)

and R(PA) = R(A − (I − P )A) ⊆ R(A) + N (P ).

As already noted above in Theorem 1.2.9, if P = P ′, then P is said to be an
orthogonal projector. In this case N (P ) = R(P )⊥ leads to the equality R(PA) =
R(P ) ∩ (R(P )⊥ + R(A)) which is a more commonly applied relation.

Corollary 1.2.16.1. Let P be an arbitrary projector and A a linear transforma-
tion such that PA is defined with N (P ) ⊆ R(A). Then

R(PA) = R(P ) ∩R(A).

The rest of this paragraph is devoted to two important decompositions of vector
spaces. Our next theorem was brought forward by Stein (1972, p. 114) and Rao
(1974).

Theorem 1.2.17. Let A and B be arbitrary transformations such that A′Bo is
defined. Then

R(A) + R(B) = R(AA′Bo) ⊕R(B).

Proof: Corollary 1.2.12.1 states that R(AA′Bo) and R(B) are disjoint. Thus it
is obvious that

R(AA′Bo) ⊕R(B) ⊆ R(A) + R(B). (1.2.3)

For any y ∈ (R(AA′Bo) ⊕ R(B))⊥ we have y = Boz1 for some z1, since y ∈
R(B)⊥. Hence, for all z2,

0 = (AA′Boz2,y) = (AA′Boz2, B
oz1) = (Bo′

AA′Boz2, z1)

implies that, for all z3,

0 = (Bo′
Az3, z1) = (Az3, B

oz1) = (Az3,y).

Therefore, R(A) ⊆ R(AA′Bo) ⊕ R(B) and the opposite inclusion to (1.2.3) is
established.
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Corollary 1.2.17.1. If R(B) ⊆ R(A), then

R(A) = R(AA′Bo) ⊕R(B).

With the help of Theorem 1.2.16 and Theorem 1.2.6 (ii) we can establish equality
in (1.2.3) in an alternative way. Choose Bo to be an orthogonal projector on
R(B)⊥. Then it follows that

R((AA′Bo)′) ��+ R(B) = R(A) + R(B).

Therefore, Theorem 1.2.14 implies that equality holds in (1.2.3). This shows an
interesting application of how to prove a statement by the aid of an adjoint trans-
formation.
Baksalary & Kala (1978), as well as several other authors, use a decomposition
which is presented in the next theorem.

Theorem 1.2.18. Let A, B and C be arbitrary transformations such that the
spaces are well defined, and let P be an orthogonal projector on R(C). Then

V = B1 ��+ B2 ��+ R(PA) ��+ R(P )⊥,

where

B1 =R(P ) ∩ (R(PA) + R(PB))⊥,

B2 =(R(PA) + R(PB)) ∩R(PA)⊥.

Proof: Using Theorem 1.2.16 and Corollary 1.2.1.1 (iii) we get more information
about the spaces:

B1 = R(C) ∩ (R(C) ∩ (R(C)⊥ + R(A) + R(B)))⊥

= R(C) ∩ (R(C) ∩ (R(C)⊥ + (R(C) ∩ (R(A) + R(B))⊥))
= R(C) ∩ (R(A) + R(B))⊥,

B2 = R(C) ∩ (R(C)⊥ + R(A) + R(B)) ∩ (R(C) ∩ (R(C)⊥ + R(A)))⊥

= R(C) ∩ (R(C)⊥ + R(A) + R(B)) ∩ (R(C)⊥ + (R(C) ∩R(A)⊥))
= R(C) ∩R(A)⊥ ∩ (R(C)⊥ + R(A) + R(B)).

By virtue of these relations the statement of the theorem can be written as

V = R(C) ∩ (R(A) + R(B))⊥ ��+ R(C) ∩R(A)⊥ ∩ (R(C)⊥ + R(A)
+ R(B)) ��+ R(C) ∩ (R(C)⊥ + R(A)) ��+ R(C)⊥

which is identical to Theorem 1.2.6 (v).

1.2.5 Tensor spaces
In the present paragraph we will give a brief introduction to tensor spaces. The
purpose is to present some basic results and indicate the relationship with the
Kronecker product. For a more extensive presentation we refer to Greub (1978).
We are going to use the notion of a bilinear map. Briefly speaking, ρ(x,y) is a
bilinear map if it is linear in each argument. The underlying field is supposed to
have characteristic 0.
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Definition 1.2.10. Let ρ : V×W → V⊗W be a bilinear map from the Cartesian
product of the vector spaces V and W to a vector space V ⊗ W, satisfying the
following two conditions:

(i) if dimV = n and dimW = m, then dim(V ⊗ W) = mn;

(ii) the set of all vectors ρ(x,y), where x ∈ V, y ∈ W, generates V ⊗ W.

Then the space V ⊗ W is called the tensor product of V and W.

The space V ⊗ W is uniquely determined up to an isomorphism. It can be shown
(Greub, 1978, p. 9) that there always exists a bilinear map satisfying the conditions
given in Definition 1.2.10. Furthermore, let A ⊆ V, B ⊆ W and let ρ1 be the
restriction of ρ to A × B. Then ρ1 generates a vector space (tensor product)
A ⊗ B ⊆ V ⊗ W and for any x ∈ A and y ∈ B, ρ1(x,y) = ρ(x,y) (Greub 1978, p.
13).
In the next theorem we give the most fundamental relations for subspaces A ⊗ B

of V ⊗ W. Let Λ1 and Λ2 be the lattices of subspaces of V and W, respectively.

Theorem 1.2.19. Let A, Ai ∈ Λ1, i=1,2, and let B, Bi ∈ Λ2, i=1,2,. Then
(i) A ⊗ B = {0} if and only if A = {0} or B = {0};
(ii) A1 ⊗ B1 ⊆ A2 ⊗ B2 if and only if A1 ⊆ A2 and B1 ⊆ B2,

under the condition that A2 	= {0}, B2 	= {0};
(iii) (A1 + A2) ⊗ (B1 + B2) = (A1 ⊗ B1) + (A1 ⊗ B2) + (A2 ⊗ B1) + (A2 ⊗ B2);
(iv) (A1 ⊗ B1) ∩ (A2 ⊗ B2) = (A1 ∩ A2) ⊗ (B1 ∩ B2);
(v) (A1⊗B1)∩ (A2⊗B2) = {0} if and only if (A1∩A2) = {0} or (B1∩B2) = {0}.
Proof: Since by Definition 1.2.10 (i) dim(A ⊗ B) = dim(A) × dim(B), (i) is
established. The statement in (ii) follows, because if ρ is generating A2 ⊗ B2, a
restriction ρ1 to ρ generates A1 ⊗ B1. The relation in (iii) immediately follows
from bilinearity and (v) is established with the help of (i) and (iv). Thus the proof
of the theorem is completed if (iv) is verified.
Note that (iv) holds if any of the subspaces are equal to zero, and in the subsequent
this case will be excluded. First the elements in V×W are ordered in such a manner
that A1 × B1 ⊆ A2 × B2 if and only if A1 ⊆ A2 and B1 ⊆ B2. The reason for
doing this is that from (ii) it follows that the proposed ordering implies that any
bilinear map ρ : V × W → V ⊗ W is isoton. According to Birkhoff (1967, p. 8) a
consequence of this ordering of subspaces in V×W is that the totality of subspaces
in V×W forms a direct product lattice, and that the g.l.b. of {A1 ×B1, A2 ×B2}
is given by A1 ∩ A2 × B1 ∩ B2. This fact is of utmost importance.
Now, since trivially

(A1 ∩ A2) ⊗ (B1 ∩ B2) ⊆ (A1 ⊗ B1) ∩ (A2 ⊗ B2)

we obtain that (A1 ∩ A2) ⊗ (B1 ∩ B2) is a lower bound. Moreover, there exists a
bilinear map

ρ : (A1 ∩ A2) × (B1 ∩ B2) → (A1 ∩ A2) ⊗ (B1 ∩ B2).
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Therefore, since (A1 ∩ A2) × (B1 ∩ B2) and (A1 ⊗ A2) ∩ (B1 ⊗ B2) are g.l.b., it
follows from the isotonicity of bilinear maps that (iv) is verified if we are able to
show that the following inclusion

(A1 ∩ A2) ⊗ (B1 ∩ B2) ⊆
∑

i

Ci ⊗ Di ⊆ (A1 ⊗ B1) ∩ (A2 ⊗ B2). (1.2.4)

is impossible for any choices of Ci and Di in (1.2.4). We must consider this, since
subspaces of A ⊗ B may not equal C ⊗ D for some C and D, i.e.

∑
i Ci ⊗ Di may

not equal C ⊗ D. However, if (1.2.4) holds, Ci ⊗ Di is included in A1 ⊗ B1 and
A2 ⊗ B2, implying that Ci ⊆ A1, Di ⊆ B1, Ci ⊆ A2 and Di ⊆ B2, which in turn
leads to Ci ⊆ A1 ∩ A2 and Di ⊆ B1 ∩ B2. Thus,∑

i

Ci ⊗ Di ⊆ (A1 ∩ A2) ⊗ (B1 ∩ B2)

and therefore equality must hold in (1.2.4), which establishes (iv).
The above theorem can easily be extended to multilinear forms, i.e. vector spaces,
generated by multilinear mappings (see e.g. Greub, 1978, p. 26, or Marcus, 1973).
Furthermore, there are several other ways of proving the theorem (e.g. see Greub,
1978; Chapter I). These proofs usually do not use lattice theory. In particular,
product lattices are not considered.
In the subsequent suppose that V and W are inner product spaces. Next an inner
product on the tensor space V ⊗ W is defined. The definition is the one which is
usually applied and it is needed because the orthogonal complement to a tensor
product is going to be considered.

Definition 1.2.11. Let ρ : V×W → V⊗W and (•, •)V, (•, •)W be inner products
on V and W, respectively. The inner product on V × W is defined by

(ρ(x1,y1), ρ(x2,y2)V⊗W = (x1,x2)V(y1,y2)W.

The next theorem gives us two well-known relations for tensor products as well as
extends some of the statements in Theorem 1.2.6. Other statements of Theorem
1.2.6 can be extended analogously.

Theorem 1.2.20. Let A, Ai ∈ Λ1 and let B, Bi ∈ Λ2.

(i) Suppose that A1 ⊗ B1 	= {0} and A2 ⊗ B2 	= {0}. Then

A1 ⊗ B1 ⊥ A2 ⊗ B2 if and only if A1 ⊥ A2 or B1 ⊥ B2;

(A ⊗ B)⊥ = (A⊥ ⊗ B) ��+ (A ⊗ B⊥) ��+ (A⊥ ⊗ B⊥)(ii)
= (A⊥ ⊗ W) ��+ (A ⊗ B⊥)
= (A⊥ ⊗ B) ��+ (V ⊗ B⊥);

(A1 ⊗ B1) = (A1 ∩ A2 ⊗ B1 ∩ B2) ��+ (A1 ∩ (A⊥
1 + A⊥

2 ) ⊗ B1 ∩ B2)(iii)
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��+ (A1 ∩ A2 ⊗ B1 ∩ (B⊥
1 + B⊥

2 ))

��+ (A1 ∩ (A⊥
1 + A⊥

2 ) ⊗ B1 ∩ (B⊥
1 + B⊥

2 ));

((A1 ⊗ B1) + (A2 ⊗ B2))⊥(iv)

=A⊥
1 ∩ (A1 + A2) ⊗ B⊥

2 ∩ (B1 + B2) + (A1 + A2)⊥ ⊗ B⊥
2 ∩ (B1 + B2)

+ (A1 + A2)⊥ ⊗ B1 ∩ B2 + A⊥
2 ∩ (A1 + A2) ⊗ B⊥

1 ∩ (B1 + B2)

+ (A1 + A2)⊥ ⊗ B⊥
1 ∩ (B1 + B2) + A⊥

1 ∩ (A1 + A2) ⊗ (B1 + B2)⊥

+ A1 ∩ A2 ⊗ (B1 + B2)⊥ + A⊥
1 ∩ (A1 + A2) ⊗ (B1 + B2)⊥

+ (A1 + A2)⊥ ⊗ (B1 + B2)⊥

= A⊥
2 ∩ (A1 + A2) ⊗ B⊥

1 + A1 ∩ A2 ⊗ (B1 + B2)⊥

+ A⊥
1 ∩ (A1 + A2) ⊗ B⊥

2 + (A1 + A2)⊥ ⊗ W

= A⊥
1 ⊗ B⊥

2 ∩ (B1 + B2) + (A1 + A2)⊥ ⊗ B1 ∩ B2

+ A⊥
2 ⊗ B⊥

1 ∩ (B1 + B2) + V ⊗ (B1 + B2)⊥.

Proof: The statement in (i) follows from the definition of the inner product given
in Definition 1.2.11, and statement (ii) from utilizing (i) and the relation

V ⊗ W = (A ��+ A⊥) ⊗ (B ��+ B⊥)
= (A ⊗ B) ��+ (A ⊗ B⊥) ��+ (A⊥ ⊗ B) ��+ (A⊥ ⊗ B⊥),

which is verified by Theorem 1.2.19 (iii). To prove (iii) and (iv) we use Theorem
1.2.19 together with Theorem 1.2.6.
The next theorem is important when considering so-called growth curve models
in Chapter 4.

Theorem 1.2.21. Let A1, i = 1, 2, . . . , s, be arbitrary elements of Λ1 such that
As ⊆ As−1 ⊆ · · · ⊆ A1, and let Bi, i = 1, 2, . . . , s, be arbitrary elements of Λ2.
Denote Cj =

∑
1≤i≤j Bi. Then

(
∑

i

Ai ⊗ Bi)⊥ = (As ⊗ C⊥
s ) ��+

1≤j≤s−1
(Aj ∩ A⊥

j+1 ⊗ C⊥
j ) ��+ (A⊥

1 ⊗ W);(i)

(
∑

i

Ai ⊗ Bi)⊥ = (V ⊗ C⊥
s ) ��+

2≤j≤s
(Aj ⊥ ⊗Cj ∩ C⊥

j−1) ��+ (A⊥
1 B1).(ii)

Proof: Since inclusion of subspaces implies commutativity of subspaces, we ob-
tain

Ai = As ��+
i≤j≤s−1

Aj ∩ A⊥
j+1, i = 1, 2, . . . , s − 1,
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and thus ∑
i

Ai ⊗ Bi =As ⊗ Cs ��+
∑

i≤s−1

��+
i≤j≤s−1

Aj ∩ A⊥
j+1 ⊗ Bi

=As ⊗ Cs

∑
1≤j≤s−1

Aj ∩ A⊥
j+1 ⊗ Cj , (1.2.5)

which is obviously orthogonal to the left hand side in (i). Moreover, summing the
left hand side in (i) with (1.2.5) gives the whole space which establishes (i). The
statement in (ii) is verified in a similar fashion by noting that C⊥

j−1 = C⊥
j ��+ Cj ∩

C⊥
j−1.

Theorem 1.2.22. Let Ai ∈ Λ1 and Bi ∈ Λ2 such that (A1⊗B1)∩(A2⊗B2) 	= {0}.
Then

A1 ⊗ B1|A2 ⊗ B2 if and only if A1|A2 and B1|B2.

Proof: In order to characterize commutativity Theorem 1.2.8 (i) is used. Sup-
pose that A1|A2 and B1|B2 hold. Commutativity follows if

(A1 ⊗ B1)⊥ + (A1 ⊗ B1) ∩ (A2 ⊗ B2) = (A1 ⊗ B1)⊥ + (A2 ⊗ B2). (1.2.6)

Applying Theorem 1.2.6 (i) and Theorem 1.2.19 (iii) yields

A2 ⊗ B2 =(A1 ∩ A2 ⊗ B1 ∩ B2) ��+ (A2 ∩ (A1 ∩ A2)⊥ ⊗ B2)
��+ (A1 ∩ A2 ⊗ B2 ∩ (B1 ∩ B2)⊥). (1.2.7)

If A1|A2 and B1|B2, Theorem 1.2.8 (i) and Theorem 1.2.20 (ii) imply

(A2∩(A1 ∩ A2)⊥ ⊗ B2) ��+ (A1 ∩ A2 ⊗ (B2 ∩ (B1 ∩ B2)⊥)
⊆(A1 ⊗ B1)⊥ = A⊥

1 ⊗ W ��+ A1 ⊗ B⊥
1 ,

where W represents the whole space. Hence (1.2.6) holds. For the converse, let
(1.2.6) be true. Using the decomposition given in (1.2.7) we get from Theorem
1.2.1 (v) and Theorem 1.2.20 (ii) that (V and W represent the whole spaces)

A1 ∩ A2 ⊗ (B2 ∩ (B1 ∩ B2)⊥) ⊆(A1 ⊗ B1)⊥ = A⊥
1 ⊗ W ��+ A1 ⊗ B⊥

1 ;
A2 ∩ (A1 ∩ A2)⊥ ⊗ B1 ∩ B2 ⊆(A1 ⊗ B1)⊥ = A⊥

1 ⊗ B1 ��+ V ⊗ B⊥
1 .

Thus, from Corollary 1.2.7.1, Theorem 1.2.19 (ii) and Theorem 1.2.8 (i) it follows
that the converse also is verified.
Note that by virtue of Theorem 1.2.19 (v) and Theorem 1.2.20 (i) it follows that
A1⊗B1 and A2⊗B2 are disjoint (orthogonal) if and only if A1 and A2 are disjoint
(orthogonal) or B1 and B2 are disjoint (orthogonal), whereas Theorem 1.2.22 states
that A1 ⊗ B1 and A2 ⊗ B2 commute if and only if A1 and B1 commute, and A2

and B2 commute.
Finally we present some results for tensor products of linear transformations.
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Definition 1.2.12. Let A : V1 → W1, B : V2 → W2 be linear maps, and let
ρ1 : V1 × V2 → V1 ⊗ V2 and ρ2 : W1 × W2 → W1 ⊗ W2 be bilinear maps. The
tensor product A ⊗ B : V1 ⊗ V2 → W1 ⊗ W2 is a linear map determined by

A ⊗ Bρ1(x,y) = ρ2(Ax, By), ∀x ∈ V1,∀y ∈ V2.

Note that by definition

R(A ⊗ B) = R(A) ⊗R(B),

which means that the range space of the tensor product of linear mappings equals
the tensor product of the two range spaces. From this observation we can see that
Theorem 1.2.19 and Theorem 1.2.20 can be utilized in this context. For example,
from Theorem 1.2.19 (ii) it follows that

R(A1 ⊗ B1) ⊆ R(A2 ⊗ B2)

if and only if R(A1) ⊆ R(A2) and R(B1) ⊆ R(B2). Moreover, Theorem 1.2.20
(ii) yields

R(A ⊗ B)⊥ = (R(A)⊥ ⊗R(B)) ��+ (R(A) ⊗R(B)⊥) ��+ (R(A)⊥ ⊗R(B)⊥).

Other statements in Theorem 1.2.20 could also easily be converted to hold for
range spaces, but we leave it to the reader to find out the details.

1.2.6 Matrix representation of linear operators in vector spaces
Let V and W be finite-dimensional vector spaces with basis vectors ei, i ∈ I and
dj , j ∈ J , where I consists of n and J of m elements. Every vector x ∈ V and
y ∈ W can be presented through the basis vectors:

x =
∑
i∈I

xiei, y =
∑
j∈J

yjdj .

The coefficients xi and yj are called the coordinates of x and y, respectively. Let
A : V → W be a linear operator (transformation) where the coordinates of Aei

will be denoted aji, j ∈ J , i ∈ I. Then∑
j∈J

yjdj = y = Ax =
∑
i∈I

xiAei =
∑
i∈I

xi

∑
j∈J

ajidj =
∑
j∈J

(
∑
i∈I

ajixi)dj ,

i.e. the coordinates yj of Ax are determined by the coordinates of the images Aei,
i ∈ I, and x. This implies that to every linear operator, say A, there exists a
matrix A formed by the coordinates of the images of the basis vectors. However,
the matrix can be constructed in different ways, since the construction depends
on the chosen basis as well as on the order of the basis vectors.
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If we have Euclidean spaces Rn and Rm, i.e. ordered n and m tuples, then the
most natural way is to use the original bases, i.e. ei = (δik)k, i, k ∈ I; dj = (δjl)l,
j, l ∈ J , where δrs is the Kronecker delta, i.e. it equals 1 if r = s and 0 otherwise.
In order to construct a matrix corresponding to an operator A, we have to choose
a way of storing the coordinates of Aei. The two simplest possibilities would be
to take the i−th row or the i−th column of a matrix and usually the i−th column
is chosen. In this case the matrix which represents the operator A : Rn → Rm

is a matrix A = (aji) ∈ Rm×n, where aji = (Aei)j , j = 1, . . . , m; i = 1, . . . , n.
For calculating the coordinates of Ax we can utilize the usual product of a matrix
and a vector. On the other hand, if the matrix representation of A is built up in
such a way that the coordinates of Aei form the i−th row of the matrix, we get
an n×m−matrix, and we find the coordinates of Ax as a product of a row vector
and a matrix.
We are interested in the case where the vector spaces V and W are spaces of p×q−
and r× s−arrays (matrices) in Rp×q and Rr×s, respectively. The basis vectors are
denoted ei and dj so that

i ∈ I = {(1, 1), (1, 2), . . . , (p, q)},

j ∈ J = {(1, 1), (1, 2), . . . (r, s)}.
In this case it is convenient to use two indices for the basis, i.e. instead of ei and
dj , the notation evw and dtu will be used:

ei −→ evw,

dj −→ dtu,

where
evw = (δvk, δwl), v, k = 1, . . . , p; w, l = 1, . . . , q;

dtu = (δtm, δun), t, m = 1, . . . , r; u, n = 1, . . . , s.

Let A be a linear map: A : Rp×q −→ Rr×s. The coordinate ytu of the image AX
is found by the equality

ytu =
p∑

k=1

q∑
l=1

atuklxkl. (1.2.8)

In order to find the matrix corresponding to the linear transformation A we have
to know again the coordinates of the images of the basis vectors. The way of
ordering the coordinates into a matrix is a matter of taste. In the next theorem
we present the two most frequently used orderings. The proof of the theorem can
be found in Parring (1992).

Theorem 1.2.23. Let A : U → V, U ∈ Rp×q, V ∈ Rr×s be a linear transforma-
tion.
(i) If the tu−th coordinates of the basis vectors evw form a p × q−block Atu:

Atu = (atuvw), v = 1, . . . , p; w = 1, . . . , q, (1.2.9)
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the representation of the transformation A is a partitioned matrix which equals

A =

⎛⎝A11 . . . A1s
...

. . .
...

Ar1 . . . Ars

⎞⎠ .

Then the coordinates of the image Y = AX are given by

ytu = tr(A′
tuX). (1.2.10)

(ii) If the representation of the transformation A is a partitioned matrix which
equals

A =

⎛⎜⎝A11 . . . A1q

...
. . .

...
Ap1 . . . Apq

⎞⎟⎠ ,

where Akl : r × s consists of all coordinates of the basis vector ekl

Akl = (atukl), t = 1, . . . , r; u = 1, . . . , s, (1.2.11)

the coordinates of Y = AX are given by

ytu =

(
p∑

k=1

q∑
l=1

xklAkl

)
tu

. (1.2.12)

Remark: In (1.2.12) the coordinate ytu can be considered as an element of the
star-product X � A of the matrices X and A which was introduced by MacRae
(1974).
In the next theorem we briefly consider bilinear maps and tensor products.

Theorem 1.2.24. Let A : V1 → W1, V1 ∈ Rn, W1 ∈ Rr, B : V2 → W2,
V2 ∈ Rq and W2 ∈ Rs. Then in Definition 1.2.10 A⊗B and vecAvec′B are both
representations of the linear map A⊗B, where ⊗ in A⊗B denotes the Kronecker
product which is defined in §1.3.3, and vec is the vec-operator defined in §1.3.4.

Proof: Let ρ1 : V1 × V2 → V1 ⊗ V2 and ρ2 : W1 × W2 → W1 ⊗ W2 be bilinear
maps. Then, by Definition 1.2.10 and bilinearity,

A⊗Bρ1(x1,x2) = ρ2(Ax1, Bx2) =
∑

j1∈J1

∑
j2∈J2

∑
i1∈I1

∑
i2∈I2

aj1i1bj2i2x
1
i1x

2
i2ρ2(d1

j1 , d
2
j2),

where
Ax1 =

∑
i1∈I1

aj1i1x
1
i1d

1
j1

and
Bx2 =

∑
i2∈I2

bj2i2x
2
i2d

2
j2 .
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If we order the elements {ai1j1bi2j2} as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11b11 · · · a11b1s · · · a1rb11 · · · a1rb1s
...

. . .
...

. . .
...

. . .
...

a11bq1 · · · a11bqs · · · a1rbq1 · · · a1rbqs

...
. . .

...
. . .

...
. . .

...
ap1b11 · · · ap1b1s · · · aprb11 · · · aprb1s

...
. . .

...
. . .

...
. . .

...
ap1bq1 · · · ap1bqs · · · aprbq1 · · · aprbqs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
the representation can, with the help of the Kronecker product in §1.3.3, be written
as A ⊗ B. Moreover, if the elements {ai1j1bi2j2} are ordered as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11b11 · · · a11bq1 a11b12 · · · a11bq2 · · · a11bqs

...
. . .

...
...

. . .
...

. . .
...

ap1b11 · · · ap1bq1 ap1b12 · · · ap1bq2 · · · ap1bqs

a12b11 · · · a12bq1 a12b12 · · · a12bq2 · · · a12bqs

...
. . .

...
...

. . .
...

. . .
...

ap2b11 · · · ap2bq1 ap2b12 · · · ap2bq2 · · · ap2bqs

...
. . .

...
...

. . .
...

. . .
...

aprb11 · · · aprbq1 aprb12 · · · aprbq2 · · · aprbqs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
we have, according to §1.3.4, the matrix which equals vecAvec′B.
Remark: If in (1.2.9) atuvw = atubvw, it follows that

A =

⎛⎝A11 . . . A1s
...

. . .
...

Ar1 . . . Ars

⎞⎠ = A ⊗ B.

When comparing A : V → W in Theorem 1.2.23 with the tensor map A ⊗ B :
V1 ⊗ V2 → W1 ⊗ W2, where dimV = dim(V1 ⊗ V2) and dimW = dim(W1 ⊗ W2),
some insight in the consequences of using bilinear maps instead of linear maps is
obtained.

1.2.7 Column vector spaces
The vector space generated by the columns of an arbitrary matrix A : p × q is
denoted C (A):

C (A) = {a : a = Az, z ∈ Rq}.
Furthermore, the orthogonal complement to C (A) is denoted C (A)⊥, and a
matrix which columns generate the orthogonal complement to C (A) is denoted
Ao, i.e. C (Ao) = C (A)⊥. The matrix Ao shares the property with A− of
not being unique. For example, we can choose Ao = I − (A′)−A′ or Ao =
I − A(A′A)−A′ as well as in some other way.
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From the definition of a column vector space and the definition of a range space
given in §1.2.4, i.e. R(A) = {x : x = Ay,y ∈ V}, it follows that any column vector
space can be identified by a corresponding range space. Hence, all results in §1.2.4
that hold for range spaces will also hold for column vector spaces. Some of the
results in this subsection will be restatements of results given in §1.2.4, and now
and then we will refer to that paragraph.
The first proposition presents basic relations for column vector spaces.

Proposition 1.2.2. For column vector spaces the following relations hold.

(i) C (A) ⊆ C (B) if and only if A = BQ, for some matrix Q.

(ii) If C (A+BE) ⊆ C (B), for some matrix E of proper size, then C (A) ⊆
C (B).
If C (A) ⊆ C (B), then C (A+BE) ⊆ C (B), for any matrix E of proper
size.

(iii) C (A′B1) ⊆ C (A′B2) if C (B1) ⊆ C (B2);
C (A′B1) = C (A′B2) if C (B1) = C (B2).

(iv) C (A′B) = C (A′) if C (A) ⊆ C (B).

(v) C (A) ∩C (B) = C ((Ao : Bo)o).

(vi) For any A−

CA−A = C

if and only if C (C′) ⊆ C (A′).

(vii) C (A′) = C (A′B) if and only if r(A′B) = r(A′).

(viii) Let A ∈ Rp×q, S > 0 and r(H) = p. Then C (A′) = C (A′H) =
C (A′SA).

(ix) Let A ∈ Rp×q and S > 0. Then
C(A′SA)−A′SA = C if and only if C (C′) ⊆ C (A′);
A(A′SA)−A′SB = B if and only if C (B) ⊆ C (A);
CAB(CAB)−C = C if r(CAB) = r(C).

(x) CA−B is invariant under choice of g-inverse if and only if

C (C′) ⊆ C (A′) and C (B) ⊆ C (A).
(xi) Let S > 0, then C1(A′SA)−C2 is invariant under any choice of (A′SA)−

if and only if C (C′
1) ⊆ C (A′) and C (C2) ⊆ C (A′).

(xii) If C (C′) ⊆ C (A′) and S > 0, then

C (C) = C (C(A′SA)−) = C (C(A′SA)−A′S).

(xiii) C (AB) ⊆ C (ABo) if and only if C (A) = C (ABo).

In the next theorem we present one of the most fundamental relations for the
treatment of linear models with linear restrictions on the parameter space. We
will apply this result in Chapter 4.
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Theorem 1.2.25. Let S be p.d., A and B be arbitrary matrices of proper sizes,
and C any matrix such that C (C) = C (A′) ∩C (B). Then

A(A′SA)−A′ − ABo(Bo′
A′SABo)−Bo′

A′

=A(A′SA)−C(C′(A′SA)−C)−C′(A′SA)−A′.

Proof: We will prove the theorem when S = I. The general case follows imme-
diately by changing A to S1/2A. Now, if S = I we see that the statement involves
three orthogonal projectors (symmetric idempotent matrices):

A(A′A)−A′,

ABo(Bo′
A′ABo)−Bo′

A′

and
A(A′A)−C(C′(A′A)−C)−C′(A′A)−A′.

Let P = A(A′A)−A′ and then

C (A) ∩C (ABo)⊥ = C (P) ∩C (ABo)⊥.

By virtue of Theorem 1.2.15,

C (P(PABo)o) = C (P(ABo)o) = C (A(A′A)−C).

Since C (ABo) ⊆ C (A), it follows from Theorem 1.2.6 (ii) that,

C (A) = C (ABo) ��+ C (A) ∩C (ABo)⊥ = C (ABo) ��+ C (A(A′A)−C)

and the given projections are projections on the subspaces C (A), C (ABo) and
C (A(A′A)−C).

Corollary 1.2.25.1. For S > 0 and an arbitrary matrix B of proper size

S−1 − Bo(Bo′
SBo)−Bo′

= S−1B(B′S−1B)−B′S−1.

The matrix AA′(AA′ + BB′)−BB′ is called parallel sum of AA′ and BB′. Two
basic properties of the parallel sum are given in

Lemma 1.2.8. Let all the matrix operations be well defined. Then

(i) AA′(AA′ + BB′)−BB′ = BB′(AA′ + BB′)−AA′;

(ii) (AA′(AA′ + BB′)−BB′)− = (AA′)− + (BB′)−.

Proof: Since C (B) = C (BB′) ⊆ C (A : B) = C (AA′ + BB′) we have

BB′ = (AA′ + BB′)(AA′ + BB′)−BB′ = BB′(AA′ + BB′)−(AA′ + BB′),
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where in the second equality it has been used that C (B) ⊆ C (AA′ +BB′). This
implies (i).
For (ii) we utilize (i) and observe that

AA′(AA′ + BB′)−BB′{(AA′)− + (BB′)−}AA′(AA′ + BB′)−BB′

=BB′(AA′ + BB′)−AA′(AA′ + BB′)−BB′

+ AA′(AA′ + BB′)−BB′(AA′ + BB′)−AA′

=BB′(AA′ + BB′)−AA′(AA′ + BB′)−(AA′ + BB′)
=BB′(AA′ + BB′)−AA′.

In the next theorem some useful results for the intersection of column subspaces
are collected.

Theorem 1.2.26. Let A and B be matrices of proper sizes. Then

(i) C (A) ∩C (B) = C (Ao : Bo)⊥;

(ii) C (A) ∩C (B) = C (A(A′Bo)o);

(iii) C (A)∩C (B) = C (AA′(AA′+BB′)−BB′) = C (BB′(AA′+BB′)−AA′).

Proof: The results (i) and (ii) have already been given by Theorem 1.2.3 (ii)
and Theorem 1.2.15. For proving (iii) we use Lemma 1.2.8. Clearly, by (i) of the
lemma

C (BB′(AA′ + BB′)−AA′) ⊆ C (A) ∩C (B).
Since

AA′(AA′ + BB′)−BB′{(AA′)− + (BB′)−}A(A′Bo)o

= AA′(AA′ + BB′)−B(B′Ao)o + BB′(AA′ + BB′)−A(A′Bo)o

= (AA′ + BB′)(AA′ + BB′)−A(A′Bo)o = A(A′Bo)o,

it follows that

C (A) ∩C (B) ⊆ C (AA′(AA′ + BB′)−BB′),

and (iii) is established.
For further results on parallel sums of matrices as well as on parallel differences,
we refer to Rao & Mitra (1971).

1.2.8 Eigenvalues and eigenvectors
Let A be an m × m−matrix. We are interested in vectors x 	= 0 ∈ Rm, whose
direction does not change when multiplied with A, i.e.

Ax = λx. (1.2.13)

This means that the matrix (A−λI) must be singular and the equation in x given
in (1.2.13) has a nontrivial solution, if

|A − λI| = 0. (1.2.14)

The equation in (1.2.14) is called characteristic equation of the matrix A. The
left hand side of (1.2.14) is a polynomial in λ of m−th degree (see also Problem
7 in §1.1.7) with m roots, of which some are possibly complex and some may be
identical to each other.
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Definition 1.2.13. The values λi, which satisfy (1.2.14), are called eigenvalues or
latent roots of the matrix A. The vector xi, which corresponds to the eigenvalue
λi in (1.2.13), is called eigenvector or latent vector of A which corresponds to
λi.

Eigenvectors are not uniquely defined. If xi is an eigenvector, then cxi, c ∈ R,
is also an eigenvector. We call an eigenvector standardized if it is of unit-length.
Eigenvalues and eigenvectors have many useful properties. In the following we list
those which are the most important and which we are going to use later. Observe
that many of the properties below follow immediately from elementary properties
of the determinant. Some of the statements will be proven later.

Proposition 1.2.3.

(i) If B = CAC−1, where A,B,C are m×m−matrices, then A and B have
the same eigenvalues.

(ii) If A is a real symmetric matrix, then all its eigenvalues are real.

(iii) The matrices A and A′ have the same eigenvalues.

(iv) The eigenvectors of A and A + cI are the same for all constants c.

(v) Let A and B be m × m−matrices with A being non-singular. Then the
matrices AB and BA have the same eigenvalues.

(vi) If λ1, . . . , λm are the eigenvalues of a non-singular matrix A, then
λ−1

1 , . . . , λ−1
m are the eigenvalues of A−1.

(vii) If A is an orthogonal matrix, then the modulus of each eigenvalue of A
equals one.

(viii) All eigenvalues of a symmetric idempotent matrix A equal one or zero.

(ix) If A is a triangular matrix (upper or lower), then its eigenvalues are
identical to the diagonal elements.

(x) The trace of A : m × m equals the sum of the eigenvalues λi of A, i.e.

trA =
m∑

i=1

λi. (1.2.15)

(xi) The determinant of A : m × m equals the product of the eigenvalues λi

of A, i.e.

|A| =
m∏

i=1

λi.

(xii) If A is an m × m−matrix, then

tr(Ak) =
m∑

i=1

λk
i ,
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where λ1, . . . , λm are the eigenvalues of A.

(xiii) If A is a symmetric m × m−matrix with the eigenvalues λi, then

m∑
i=1

λ2
i =

m∑
i=1

m∑
j=1

a2
ij .

(xiv) If all eigenvalues of m×m−matrix A are real and k of them are non-zero,
then

(trA)2 ≤ ktr(A2).

(xv) Let A : m × m have rank r and let the number of non-zero eigenvalues
of A be k. Then r ≥ k.

(xvi) Let λ1 ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of A > 0, and let B: m × k
be of rank k such that diag(B′B) = (g1, . . . , gk)′. Then

max
B

|B′AB| =
k∏

i=1

λigi.

(xvii) Let λ1 ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of A > 0, and let B: m × k
be of rank k such that B′B is diagonal with diagonal elements g1, . . . , gk.
Then

min
B

|B′AB| =
k∏

i=1

λm+1−igi.

(xviii) Let λ1 ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of a symmetric matrix A :
m×m, and let µ1 ≥ µ2 ≥ · · · ≥ µm be the eigenvalues of B > 0 : m×m.
Then

m∑
i=1

λi

µi
≤ tr(AB−1) ≤

m∑
i=1

λi

µm−i+1
.

(xix) Let λ1 ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of a symmetric matrix A :
m × m. Then, for any symmetric idempotent matrix B : m × m of rank
r,

r∑
i=1

λm−i+1 ≤ tr(AB) ≤
r∑

i=1

λi.

Proof: The properties (xvi) and (xvii) are based on the Poincare separation
theorem (see Rao, 1973a, pp. 65–66). The proof of (xviii) and (xix) are given in
Srivastava & Khatri (1979, Theorem 1.10.2).
In the next theorem we will show that eigenvectors corresponding to different
eigenvalues are linearly independent. Hence eigenvectors can be used as a basis.
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Theorem 1.2.27. Let λ1, λ2, . . . , λm, λi 	= λj , i 	= j, be eigenvalues of a matrix
A and xi, i = 1, 2, . . . , m, be the corresponding eigenvectors. Then the vectors
{xi} are linearly independent.

Proof: Suppose that
m∑

i=1

cixi = 0.

Multiplying this equality with the product

m∏
k=1
k �=j

(A − λkI)

we get cj = 0, since

cj(λj − λm)(λj − λm−1) × · · · × (λj − λj+1)(λj − λj−1) × · · · × (λj − λ1)xj = 0.

Thus,
m∑

i=1
i�=j

cixi = 0.

By repeating the same procedure for j = 1, · · · , m, we obtain that the coefficients
satisfy cm = cm−1 = . . . = c1 = 0.

If A is symmetric we can strengthen the result.

Theorem 1.2.28. Let λ1, λ2, . . . , λm, λi 	= λj , i 	= j, be eigenvalues of a sym-
metric matrix A and xi, i = 1, 2, . . . , m, be the corresponding eigenvectors. Then,
the vectors {xi} are orthogonal.

Proof: Let λ and µ be two different eigenvalues and consider

Ax =λx

Ay =µy.

Then y′Ax = λy′x and x′Ay = µx′y which imply

0 = y′Ax − x′Ay = (λ − µ)y′x

and thus those eigenvectors which correspond to different eigenvalues are orthog-
onal.

Next we are going to present a result which is connected to the well-known Cayley-
Hamilton theorem. One elegant way of proving the theorem is given by Rao
(1973a, p. 44). Here we will show an alternative way of proving a related result
which gives information about eigenvalues and eigenvectors of square matrices in
an elementary fashion.
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Theorem 1.2.29. Let the matrix A be of size m × m and r(A) = r. Then

Ar+1 =
r∑

i=1

ci−1Ai,

for some known constants ci.

Proof: Let D : r × r be a diagonal matrix with diagonal elements di such that
di 	= dj if i 	= j and di 	= 0, i, j = 1, . . . , r. If we can find a solution to⎛⎜⎜⎝

dr
1

dr
2
...

dr
r

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 d1 d2

1 . . . dr−1
1

1 d2 d2
2 . . . dr−1

2
...

...
...

. . .
...

1 dr d2
r . . . dr−1

r

⎞⎟⎟⎠
⎛⎜⎜⎝

c0

c1
...

cr−1

⎞⎟⎟⎠ (1.2.16)

we may write

Dr =
r−1∑
i=0

ciDi.

However, the Vandermonde determinant∣∣∣∣∣∣∣∣
1 d1 d2

1 . . . dr−1
1

1 d2 d2
2 . . . dr−1

2
...

...
...

. . .
...

1 dr d2
r . . . dr−1

r

∣∣∣∣∣∣∣∣ =
∏
i<j

(dj − di), (1.2.17)

differs from 0, since by assumption di 	= dj . Thus, (1.2.16) has a unique solution.
By definition of eigenvalues and eigenvectors,

AZ = ZΛ, (1.2.18)

where Z : m × r consists of r linearly independent eigenvectors and the diagonal
matrix Λ: r × r of different non-zero eigenvalues. From (1.2.18) and Definition
1.1.3 it follows that

A = ZΛZ−

and since ΛZ−Z = Λ, which holds because C (Λ) = C (Z′),

Ar = ZΛrZ−.

Thus, since Λ is a diagonal matrix, Λr =
∑r−1

i=0 ciΛi. Then,

Ar = ZΛrZ− = c0ZZ− +
r−1∑
i=1

ciZΛiZ− = c0ZZ− +
r−1∑
i=1

ciAi.

Postmultiplying the obtained equality by A = ZΛZ− yields

Ar+1 = c0A +
r−1∑
i=1

ciAi+1,

which establishes the theorem.
Remark: In the above proof we have supposed that all eigenvalues are distinct.
However, since we can always use Λr =

∑r−1
i=0 ciΛi, this is not a significant restric-

tion.
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Corollary 1.2.29.1. If A : m × m is non-singular, then

Am =
m−1∑
i=0

ciAi

and

c0A−1 = Am−1 +
m−1∑
i=1

ciAi−1.

Let λ be an eigenvalue, of multiplicity r, of a symmetric matrix A. Then there
exist r orthogonal eigenvectors corresponding to λ. This fact will be explained in
more detail in §1.2.9 and §1.2.10. The linear space of all linear combinations of
the eigenvectors is called the eigenspace, which corresponds to λ, and is denoted
by V(λ). The dimension of V(λ) equals the multiplicity of λ. If λ and µ are
two different eigenvalues of a symmetric A, then V(λ) and V(µ) are orthogonal
subspaces in Rm (see Theorem 1.2.28). If λ1, . . . , λk are all different eigenvalues
of A with multiplicities m1, . . . , mk, then the space Rm can be presented as an
orthogonal sum of subspaces V(λi):

Rm =
k��+

i=1
V(λi)

and therefore any vector x ∈ Rm can be presented, in a unique way, as a sum

x =
k∑

i=1

xi, (1.2.19)

where xi ∈ V(λi).
The eigenprojector Pλi

of the matrix A which corresponds to λi is an m ×
m−matrix, which transforms the space Rm onto the space V(λi). An arbitrary
vector x ∈ Rm may be transformed by the projector Pλi to the vector xi via

Pλi
x = xi,

where xi is the i−th term in the sum (1.2.19). If V is a subset of the set of all
different eigenvalues of A, e.g.

V = {λ1, . . . , λn},
then the eigenprojector PV , which corresponds to the eigenvalues λi ∈ V , is of
the form

PV =
∑

λi∈V

Pλi .

The eigenprojector Pλi of a symmetric matrix A can be presented through the
standardized eigenvectors yi, i.e.

Pλi =
mi∑
j=1

yjy′
j .
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Basic properties of eigenprojectors of symmetric matrices are given by the following
equalities:

Pλi
Pλi

= Pλi
;

PλiPλj = 0, i 	= j;
k∑

i=1

Pλi = I.

These relations rely on the fact that y′
jyj = 1 and y′

iyj = 0, i 	= j. The eigen-
projectors Pλi enable us to present a symmetric matrix A through its spectral
decomposition:

A =
k∑

i=1

λiPλi
.

In the next theorem we shall construct the Moore-Penrose inverse for a symmetric
matrix with the help of eigenprojectors.

Theorem 1.2.30. Let A be a symmetric n × n−matrix. Then

A = PΛP′;
A+ = PΛ+P′,

where Λ+ is the diagonal matrix with elements

(Λ+)ii =
{

λ−1
i , if λi 	= 0;

0, if λi = 0,

P is the orthogonal matrix which consists of standardized orthogonal eigenvectors
of A, and λi is an eigenvalue of A with the corresponding eigenvectors Pλi .

Proof: The first statement is a reformulation of the spectral decomposition. To
prove the theorem we have to show that the relations (1.1.16) - (1.1.19) are fulfilled.
For (1.1.16) we get

AA+A = PΛP′PΛ+P′PΛP′ = PΛP′ = A.

The remaining three equalities follow in a similar way:

A+AA+ =PΛ+P′PΛP′PΛ+P′ = A+;
(AA+)′ =(PΛP′PΛ+P′)′ = PΛ+P′PΛP′ = PΛ+ΛP′ = PΛΛ+P′ = AA+;
(A+A)′ =(PΛ+P′PΛP′)′ = PΛ+P′PΛP′ = A+A.

Therefore, for a symmetric matrix there is a simple way of constructing the Moore-
Penrose inverse of A, i.e. the solution is obtained after solving an eigenvalue prob-
lem.

1.2.9. Eigenstructure of normal matrices
There exist two closely connected notions: eigenvectors and invariant linear sub-
spaces. We have chosen to present the results in this paragraph using matrices
and column vector spaces but the results could also have been stated via linear
transformations.
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Definition 1.2.14. A subspace C (M) is A-invariant, if

C (AM) ⊆ C (M).

It follows from Theorem 1.2.12 that equality in Definition 1.2.14 holds if and only
if C (A′)∩C (M)⊥ = {0}. Moreover, note that Definition 1.2.14 implicitly implies
that A is a square matrix. For results concerning invariant subspaces we refer to
the book by Gohberg, Lancaster & Rodman (1986).

Theorem 1.2.31. The space C (M) is A-invariant if and only if C (M)⊥ is A′-
invariant.

Proof: Suppose that C (AM) ⊆ C (M). Then, Mo′
AM = 0 = M′A′Mo which

implies that C (A′Mo) ⊆ C (Mo). The converse follows immediately.
The next theorem will connect invariant subspaces and eigenvectors.

Theorem 1.2.32. Let C (A′)∩C (M)⊥ = {0} and dimC (M) = s. Then C (M)
is A-invariant if and only if there exist s linearly independent eigenvectors
x1,x2, . . . ,xs of A such that

C (M) = C (x1) ⊕C (x2) ⊕ · · · ⊕C (xs).

Proof: If C (M) is generated by eigenvectors of A then it is clear that C (M)
is A-invariant. Suppose that C (M) is A-invariant and let P be a projector on
C (M), then C (P) = C (M). By assumptions and Theorem 1.2.12

C (PAP) = C (PAM) = C (AM) = C (M) (1.2.20)

which implies that the eigenvectors of PAP span C (M), as well as that PAP =
AP. However, for any eigenvector x of PAP with the corresponding eigenvalue
λ,

(A − λI)x = (A − λI)Px = (AP − λI)Px=(PAP − λI)x = 0

and hence all eigenvectors of PAP are also eigenvectors of A. This means that
there exist s eigenvectors of A which generate C (M).
Remark: Observe that x may be complex and therefore we have to assume an
underlying complex field, i.e. M =

∑
i cixi, where ci as well as xi may be complex.

Furthermore, it follows from the proof that if C (M) is A-invariant, any eigenvector
of A is included in C (M).
If C (A′) ∩C (M)⊥ = {0} does not hold, it follows from the modular equality in
Corollary 1.2.1.1 (iii) that

C (M) = C (AM) ��+ C (M) ∩C (AM)⊥. (1.2.21)

Let P be a projector on C (M), as in the proof of Theorem 1.2.32. Since
C (PAP) = C (AM), we note that

C (AM) = C (x1) ⊕C (x2) ⊕ · · · ⊕C (xr),
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where xi, i = 1, 2, . . . , r, are eigenvectors of A. Since in most statistical applica-
tions A will be symmetric, we are going to explore (1.2.21) under this assumption.
It follows from Theorem 1.2.15 that

C (M) ∩C (AM)⊥ = C (M(M′AM)o) (1.2.22)

and then once again, applying Theorem 1.2.15,

C (AM(M′AM)o) = C (AM) ∩C (M)⊥ ⊆ C (M) ∩C (M)⊥ = {0},

which implies that C (M(M′AM)o) ⊆ C (A)⊥. Choose Ao to be an orthogonal
projector on C (A)⊥, i.e. Ao = I − A(AA)−A. Then, by Theorem 1.2.16 and
Theorem 1.2.1 (viii),

C (AoM(M′AM)o)
= C (A)⊥ ∩ (C (A) + C (M(M′AM)o)) = C (A)⊥ ∩C (M(M′AM)o)

=
(1.2.22)

C (M) ∩C (AM)⊥ ∩C (A)⊥ ⊆ C (M) ∩C (AM)⊥.

Therefore C (M) ∩ C (AM)⊥ is Ao-invariant and is included in C (Ao). Hence
we have established the following theorem.

Theorem 1.2.33. Suppose that A is a symmetric matrix. Let C (M) be A-
invariant, dimC (M) = s, x1, . . . ,xt linearly independent eigenvectors of A, and
y1, . . . ,yu eigenvectors of I − A(AA)−A. Then

C (M) = C (x1) ��+ C (x2) ��+ · · · ��+ C (xv) ��+ C (y1) ��+ C (y2) ��+ · · · ��+ C (yw),

where v ≤ t, w ≤ u and v + w = s.

Suppose that A is a square matrix. Next we will consider the smallest A-invariant
subspace with one generator which is sometimes called Krylov subspace or cyclic
invariant subspace. The space is given by

C (x,Ax,A2x, . . . ,Aa−1x), a ≤ p, x ∈ Rp.

In particular, a proof is given that this space is A-invariant. We are going to study
this space by generating a specific basis. In statistics we are interested in the basis
which is generated by a partial least squares algorithm (PLS). For details about
the algorithm and PLS we refer to Helland (1988, 1990). Let

Ga = (g1,g2, . . . ,ga),

where gi, i = 1, 2, . . . , p, are recursively defined vectors:

g1 =x;
ga+1 =(I − Aa−1ga(g′

aAa−1ga)−g′
a)ga; (1.2.23)

Aa =Aa−1 − Aa−1ga(g′
aAa−1ga)−g′

aAa−1, A0 = A. (1.2.24)
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In (1.2.23) and (1.2.24) as well in the applications it will be supposed that
g′

aAa−1ga 	= 0 when Aa−1ga 	= 0. In statistics A is usually positive definite and
therefore this assumption holds. First of all it will be shown that the vectors gi

form a basis. Note that the matrix

Aa−1ga(g′
aAa−1ga)−g′

a

is idempotent, and by Theorem 1.2.16 it follows that

C (ga+1) =C (ga)⊥ ∩ {C (Aa−1ga) + C (ga)}
=C (ga)⊥ ∩ {C (ga−1)⊥ ∩ (C (Aa−2ga−1) + C (Aa−2ga))

+ C (ga−1)⊥ ∩ (C (Aa−2ga−1) + C (ga−1))}.

Moreover, using the distributive inequalities in Theorem 1.2.1 (vii) we obtain

C (ga+1) ⊆C (ga)⊥ ∩C (ga−1)⊥ ∩ {C (Aa−2(ga : ga−1)) + C (ga−1)}
⊆ . . . ⊆ C (Ga)⊥ ∩ {C (AGa) + C (g1)}.

Thus, C (ga+1) ⊆ C (Ga)⊥, which means that Ga defines an orthogonal basis and
dimGa = a. Now we are going to show that

C (Ga) = C (g1,Ag1, . . . ,Aa−1g1). (1.2.25)

For a = 1 equality (1.2.25) is obviously true as well as for a = 2, since C (g1) ⊆
C (Ag1) + C (g1) implies (modular laws) that

C (g2,g1) = C (g1)⊥ ∩ {C (Ag1) + C (g1)} + C (g1) = C (Ag1,g1).

In order to verify (1.2.25) we will use induction. Suppose that

C (Ga−1) = C (g1,Ag1, . . . ,Aa−2g1)

holds, and then

C (Ga) =C (ga) + C (Ga−1)
=C (ga−1)⊥ ∩ {C (Aa−2ga−1) + C (ga−1)} + C (Ga−1)}
⊆ . . . ⊆ C (Ga−1)⊥ ∩ {C (AGa−1) + C (g1)} + C (Ga−1)
=C (Ga−1)⊥ ∩ {C (Ga−1) + C (Aa−1g1)} + C (Ga−1)
=C (g1,Ag1, . . . ,Aa−1g1).

However, since dimC (Ga) = a and dimC (g1,Ag1, . . . ,Aa−1g1) ≤ a, we may
conclude that

C (Ga) = C (g1,Ag1, . . . ,Aa−1g1)

and that the vectors g1,Ag1, . . . ,Aa−1g1 are linearly independent.
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Let us consider the case when C (g1,Ag1, . . . ,Aa−1g1) is A-invariant. Suppose
that Aa−1ga = 0, which, by (1.2.23), implies ga+1 = ga and Aa = Aa−1. Observe
that

C (A′
a−1) =C (ga−1)⊥ ∩ {C (A′

a−2ga) + C (A′
a−2)}

=C (ga)⊥ ∩C (A′
a−2) = · · · = C (Ga−1)⊥ ∩C (A′).

Since Aa−1ga = 0 yields

C (ga) ⊆ C (Ga−1) + C (A′)⊥

it follows that

C (Aga) ⊆ C (AGa−1) = (Ag1, . . . ,Aa−1g1).

Thus, C (g1,Ag1, . . . ,Aa−1g1) is A-invariant, i.e. Ga is A-invariant. Further-
more, if ga+1 = 0, then

C (AGa) ⊆ C (Ga+1) = C (Ga),

since C (Ga) = C (g1,Ag1, . . . ,Aa−1g1), which means that Ga is A-invariant.
On the other hand, if C (AGa) ⊆ C (Ga) and Aa−1ga 	= 0, then C (ga+1) ⊆
C (Ga)⊥ ∩C (Ga) = {0}. Hence we have proved the following theorem.

Theorem 1.2.34. Let gi be a p−vector and Ai−1 : p×p, i = 1, 2, . . . , a+1, a ≤ p,
be given by (1.2.23) and (1.2.24), respectively. Suppose that g′

aAa−1ga 	= 0 when
Aa−1ga 	= 0.

(i) If Aa−1ga = 0 for some a ≤ p, then C (g1,Ag1, . . . ,Aa−1g1) is A-invariant.

(ii) If Aa−1ga 	= 0, the vectors gj = 0, for j = a + 1, a + 2, . . ., if and only if

C (g1,Ag1, . . . ,Aa−1g1) is A-invariant.

Corollary 1.2.34.1. If g1 ∈ Rp, then gp+1 = 0 and C (g1,Ag1, . . . ,Ap−1g1) is
A-invariant.

To prove Corollary 1.2.34.1 we may alternatively use Theorem 1.2.29 where it was
shown that there exist constants ci, i = 1, 2, . . . n ≤ p, such that

n∑
i=1

ciAi = 0.

Thus, Ang1 is a linear function of g1,Ag1, . . . ,An−1g1.
An important special case when considering eigenspaces is given in the next state-
ment.
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Theorem 1.2.35. If g1 ∈ Rp, C (g1) ⊆ C (A), A : p× p and C (A) is generated
by a ≤ p eigenvectors of A, then

C (g1,Ag1, . . . ,Aa−1g1) = C (A).

Proof: Obviously C (g1,Ag1, . . . ,Aa−1g1) ⊆ C (A). According to the Remark
after Theorem 1.2.32 and Corollary 1.2.34.1 any eigenvector of A belongs to
C (g1,Ag1, . . . ,Aa−1g1). Thus, C (A) ⊆ C (g1,Ag1, . . . ,Aa−1g1).
Up to now we have not examined complex matrices. In Theorem 1.2.32 – Theorem
1.2.35 we have presented the results for real matrices. However, all the results
are valid for complex matrices if we interpret transposed matrices as conjugate
transposed matrices. In the following we shall consider complex eigenvalues and
eigenvectors. Necessary notation was given at the end of §1.1.1. Our intention
is to utilize the field of complex numbers at a minimum level. Therefore, several
results given below can be extended but we leave this to an interested reader.
The class of normal matrices will be studied in some detail. Remember that
according to the definition a normal matrix A satisfies the equality

AA′ = A′A. (1.2.26)

Let x be an eigenvector of A ∈ Rp×p and λ the corresponding eigenvalue. Then,
by (1.2.13)

Ax = λx

holds. Here x and λ may very well be complex. As noted before, the possible
values of λ are determined via the characteristic equation (1.2.14). If (1.2.13)
holds, then

AA′x = A′Ax = λA′x

and thus A′x is also an eigenvector. Furthermore, in the same way we may show
that (A′)2x, (A′)3x, etc. are eigenvectors, and finally we can get a finite sequence
of eigenvectors,

x,A′x, (A′)2x, . . . , (A′)p−1x, (1.2.27)

which corresponds to λ. From Corollary 1.2.34.1 it follows that the vectors in
(1.2.27) span an A′-invariant subspace. Let

z ∈ C (x,A′x, (A′)2x, . . . , (A′)p−1x),

where x is an eigenvector of A. Then, z =
∑p−1

i=0 ci(A′)ix for some ci and

Az =
p−1∑
i=0

ciA(A′)ix =
p−1∑
i=0

ci(A′)iAx = λz,

which means that any vector in the space C (x,A′x, (A′)2x, . . . , (A′)p−1x) is an
eigenvector of A. In particular, since C (x,A′x, (A′)2x, . . . , (A′)p−1x) is A′-
invariant, there must, according to Theorem 1.2.32, be at least one eigenvector
of A′ which belongs to

C (x,A′x, (A′)2x, . . . , (A′)p−1x),
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which then also is an eigenvector of A. Denote the joint eigenvector by y1 and
study C (y1)⊥. By Theorem 1.2.31 it follows that C (y1)⊥ is A-invariant as well
as A′-invariant. Thus we may choose an eigenvector of A, say x1, which belongs
to C (y1)⊥. Therefore, by repeating the above procedure, we can state that the
space C (x1,A′x1, (A′)2x1, . . . , (A′)p−1x1) is A′-invariant as well as belongs to
C (y1)⊥, and we may find a common eigenvector, say y2, of A and A′ which is
orthogonal to the common eigenvector y1. In the next step we start with the space

C (y1,y2)⊥

which is A-invariant as well as A′-invariant, and by further proceeding in this way
the next theorem can be established.

Theorem 1.2.36. If A is normal, then there exists a set of orthogonal eigenvec-
tors of A and A′ which spans the whole space C (A) = C (A′).

Suppose that we have a system of orthogonal eigenvectors of a matrix A : p × p,
where the eigenvectors xi span the whole space and are collected into an eigen-
vector matrix X = (x1, . . . ,xp). Let the eigenvectors xi, corresponding to the
eigenvalues λi, be ordered in such a way that

AX = XΛ, X = (X1 : X2), X�
1X1 = D, X�

1X2 = 0, Λ =
(

Λ1 0
0 0

)
,

where the partition of Λ corresponds to the partition of X, X is non-singular
(in fact, unitary), D and Λ1 are both non-singular diagonal matrices with the
difference that D is real whereas Λ1 may be complex. Remember that A� denotes
the conjugate transpose. Since

X�A′X = Λ�X�X = Λ�
1D = DΛ�

1 = X�XΛ�

and because X is non-singular it follows that

A′X = XΛ�.

Thus

AA′X =AXΛ� = XΛΛ�

and

A′AX =A′XΛ = XΛ�Λ = XΛΛ� = AXΛ� = AA′X

which implies AA′ = A′A and the next theorem has been established.

Theorem 1.2.37. If there exists a system of orthogonal eigenvectors of A which
spans C (A), then A is normal.

An implication of Theorem 1.2.36 and Theorem 1.2.37 is that a matrix A is normal
if and only if there exists a system of orthogonal eigenvectors of A which spans
C (A). Furthermore, by using the ideas of the proof of Theorem 1.2.37 the next
result follows.
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Theorem 1.2.38. If A and A′ have a common eigenvector x and λ is the corre-
sponding eigenvalue of A, then λ is the eigenvalue of A′.

Proof: By assumption

Ax = λx,

A′x = µx

and then x�Ax = λx�x implies

µx�x = x�A′x = (x�Ax)� = λx�x.

Corollary 1.2.38.1. The eigenvalues and eigenvectors of a symmetric matrix are
real.

Corollary 1.2.38.2. If the eigenvalues of a normal matrix A are all real then A
is symmetric.

1.2.10 Eigenvalue-based factorizations
Let A be a real n× n−matrix where the non-zero eigenvalues are denoted λj and
the corresponding unit length eigenvectors xj , j = 1, . . . , n1. Since A is real, it
follows that xj is real if and only if λj is real. Furthermore, it is possible to show
that if xj is a complex eigenvector, xj is also an eigenvector. Let x2j−1 = uj +ivj ,
x2j = uj − ivj , j = 1, 2, . . . , q, be the complex eigenvectors corresponding to
the complex eigenvalues λ2j−1 = µj + iδj , λ2j = µj − iδj , j = 1, 2, . . . , q, and
xj , j = 2q + 1, . . . , n1, be real eigenvectors corresponding to the real non-zero
eigenvalues λj . Moreover, let λn1+1, . . . , λn be all zero eigenvalues. Let

E =
{(

µ1 δ1

−δ1 µ1

)
,

(
µ2 δ2

−δ2 µ2

)
, . . . ,

(
µq δq

−δq µq

)
, λ2q+1, . . . , λn1 ,0n−n1

}
[d]

(1.2.28)
and

Q1 = (u1,v1,u2,v2, . . . ,x2q+1, . . . ,xn1), (1.2.29)

where it is supposed that the eigenvectors are of unit length. Next a theorem is
proven which gives us an eigenvalue-based factorization of a normal matrix.

Theorem 1.2.39. Any normal matrix A : n × n can be presented as a product

A = QEQ′,

where E is given by (1.2.28) and Q is an orthogonal matrix.

Proof: Suppose that A : n × n is normal and r(A) = n1. Then one can always
find a system of eigenvectors xi of A corresponding to the non-zero eigenvalues
λi, i = 1, . . . , n1, in such a way that

AX = XΛ, X = (X1 : X2), X�
1X1 = In1 , X�

1X2 = 0,



Basic Matrix Theory and Linear Algebra 65

where Λ = (Λ1,0n−n1)[d], with Λ1 = (λ1, . . . , λn1)d and X = (x1, . . . ,xn1 : X2).
Here X1 is of size n × n1, X2 is of size n × (n − n1) and X is non-singular. Put
Q = (Q1 : Q2), where Q′

2Q1 = 0, Q′
2Q2 = I, Q1 is defined by (1.2.29), and Q is

non-singular. Let the eigenvectors be standardized, i.e.

I = X�
1X1 = Q′

1Q1.

Therefore, the equation AX = XΛ is identical to

AQ = QE,

which means that A = QEQ−1. However, since Q is of full rank, Q′ = Q−1, and
thus QQ′ = Q′Q = I, i.e. Q is orthogonal.

From the theorem two important corollaries follow, of which the first one already
has been presented in Theorem 1.2.30.

Corollary 1.2.39.1. Let A : n×n be a real symmetric matrix. Then there exists
an orthogonal matrix Q such that

Q′AQ = Λ

and

A = QΛQ′,

where

Λ = (λ1, . . . , λn1 , 0, . . . , 0)d.

Proof: If A is symmetric, E in (1.2.28) must also be symmetric, and therefore
all the eigenvalues λi have to be real.

Corollary 1.2.39.2. Let A : n×n be a real skew-symmetric matrix. Then there
exists an orthogonal matrix Q such that

Q′AQ = Λ

and

QΛQ′ = A,

where

Λ =
{(

0 δ1

−δ1 0

)
,

(
0 δ2

−δ2 0

)
, . . . ,

(
0 δq

−δq 0

)
,0n−2q

}
[d]

.

Proof: If A is skew-symmetric, E in (1.2.28) must also be skew-symmetric.
Hence, for the complex eigenvalues µj = 0, j = 1, 2, . . . , 2q, and all real eigen-
values have to be equal to zero.



66 Chapter I

Corollary 1.2.39.3. If A is normal and x is an eigenvector of A, then x is also
an eigenvector of A′.

Proof: From the theorem it follows that A = QEQ′. Then Ax = λx implies
that

EQ′x = λQ′x

and thus Q′x is an eigenvector of E. Furthermore, by the structure in E any
eigenvector of E is also an eigenvector of E′. Therefore, according to Theorem
1.2.36, E′Q′x = λQ′x, which gives us

A′x = QE′Q′x = λx.

In the following we will perform a brief study of normal matrices which commute,
i.e. AB = BA.

Lemma 1.2.9. If for normal matrices A and B the equality AB = BA holds,
then

A′B = BA′

and
AB′ = B′A.

Proof: Let
V = A′B − BA′

and consider VV′:

VV′ = A′BB′A − BA′B′A − A′BAB′ + BA′AB′

which by assumption is identical to

VV′ = A′BB′A − BB′A′A − A′ABB′ + BA′AB′

= A′BB′A − BB′AA′ − A′AB′B + BA′AB′.

Thus
tr(VV′) = 0,

which by Proposition 1.1.4 (vi) implies that V = 0.

Lemma 1.2.10. If for normal matrices A and B the equality AB = BA holds,
then C (AB) = C (A) ∩C (B).

Proof: It is obvious that C (AB) ⊆ C (A)∩C (B). Then, by Theorem 1.2.6 (i),

C (A) ∩C (B) = C (AB) ��+ C (A) ∩C (B) ∩C (AB)⊥. (1.2.30)

We are going to show that if AB = BA, then

C (A) ∩C (B) ∩C (AB)⊥ = {0}.
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Theorem 1.2.15 implies that

C (A) ∩C (B) ∩C (AB)⊥ = C (A(A′Bo)o((A′Bo)o′
A′AB)o). (1.2.31)

Moreover, using Theorem 1.2.15 again with the assumption of the lemma, it follows
that

C ((A′Bo)o′
A′AB) =C ((A′Bo)o′

BA′A) = C ((A′Bo)o′
BA′)

=C ((A′Bo)o′
A′B).

Thus the right hand side of (1.2.31) equals

C (A) ∩C (B) ∩C (B)⊥ = {0},

which via (1.2.30) establishes the lemma.

Lemma 1.2.11. If for normal matrices A and B the equality AB = BA holds,
then C (A)|C (B), i.e. the spaces C (A) and C (B) commute.

Proof: From Theorem 1.2.8 (iii) it follows that we have to show that

C (A) ∩C (A ∩ B)⊥ ⊆ C (B)⊥,

which by Lemma 1.2.10 is equivalent to

B′A(A′AB)o = 0.

By Lemma 1.2.9 this is true since

C (A′AB) = C (BA′A) = C (BA′) = C (A′B).

Theorem 1.2.40. Let A ∈ Rp×p and B ∈ Rp×p be normal matrices such that
AB = BA. Then there exists a set of orthogonal eigenvectors of AB which also
are eigenvectors of A and B which generate C (AB).

Proof: Let y1 be an eigenvector of AB, i.e. ABy1 = λy1. Then y1,A′y1, . . . ,
(A′)a−1y1, for some a ≤ p, are eigenvectors of AB. The set is A-invariant and
thus there is an eigenvector of A′ and, because of normality, also of A which
belongs to

C (y1,A′y1, . . . , (A′)a−1y1).

Denote this vector by x1. Thus,

x1 =
a∑

i=1

ci(A′)i−1y1

for some constants ci. This implies that ABx1 = λx1, which means that x1 is
an eigenvector of AB as well as to A. Furthermore, x1,B′x1, . . . , (B′)bx1, for
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some b ≤ p, are all eigenvectors of AB. The space generated by this sequence is
B′-invariant and, because of normality, there is an eigenvector, say z1, to B which
belongs to

C (x1,B′x1, . . . , (B′)b−1x1).

Hence,

z1 =
b∑

j=1

dj(B′)j−1x1 =
b∑

j=1

a∑
i=1

djci(B′)j−1(A′)i−1y1

for some constants dj . It follows immediately that z1 is an eigenvector of AB,
A and B. Now, as in the proof of Theorem 1.2.36, study C (z1)⊥ which among
others is (AB)′-invariant and AB-invariant. Thus there exists an eigenvector of
AB, say y2, which belongs to C (z1)⊥. Thus,

C (y2,A′y2, . . . , (A′)a−1y2)

is A′-invariant and orthogonal to C (z1). Now we can continue as before and end
up with

z2 =
b∑

j=1

a∑
i=1

djci(B′)j−1(A′)i−1y2,

which is an eigenvector of AB, A and B. Clearly, z′1z2 = 0 since y1 is an
eigenvector of B and A. We may continue by considering C (z1, z2)⊥.
Now, if A and B commute, we have by Definition 1.2.5 that

C (A) = C (A) ∩C (B) ��+ C (A) ∩C (B)⊥,

C (B) = C (A) ∩C (B) ��+ C (A)⊥ ∩C (B).

Furthermore, applying Lemma 1.2.9 gives that AB is normal and thus there exists
a system of orthogonal eigenvectors x1,x2, . . . ,xr(AB) which spans C (A)∩C (B).
By Theorem 1.2.40 these vectors are also eigenvectors of C (A) and C (B). Since
A is normal, orthogonal eigenvectors ur(AB)+1,ur(AB)+2, . . . ,ur(A) which are or-
thogonal to x1,x2, . . . ,xr(AB) can additionally be found, and both sets of these
eigenvectors span C (A). Let us denote one of these eigenvectors by y. Thus,
since y is also an eigenvector of A′,

A′y =λy, (1.2.32)
A′B′y =0 (1.2.33)

for some λ. However, (1.2.32) and (1.2.33) imply that

0 = A′B′y = B′A′y = λB′y.

Hence y is orthogonal to B and we have found that ur(AB)+1,ur(AB)+2, . . . ,ur(A)

generate
C (A) ∩C (B)⊥.
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Indeed, this result is also established by applying Theorem 1.2.4 (i). Furthermore,
in the same way we can find orthogonal eigenvectors
vr(AB)+1,vr(AB)+2, . . . ,vr(B) of B, which generate

C (B) ∩C (A)⊥.

Thus, if we put the eigenvectors together and suppose that they are standardized,
we get a matrix

X1 = (x1,x2, . . . ,xr(AB),ur(AB)+1,ur(AB)+2,

. . . ,ur(A),vr(AB)+1,vr(AB)+2, . . . ,vr(B)),

where X�
1X1 = I. Consider the matrix X = (X1,X2) where X2 is such that

X�
2X1 = 0, X�

2X2 = I. We obtain that if X is of full rank, it is also orthogonal
and satisfies

AX =X∆1, ∆1 =
(

Λ1 0
0 0

)
,

BX =X∆2, ∆2 =
(

Λ2 0
0 0

)
,

where Λ1 and Λ2 are diagonal matrices consisting of the eigenvalues of A and
B, respectively. From the proof of Theorem 1.2.39 it follows that we have an
orthogonal matrix Q and

E1 =
{(

µ1 δ1

−δ1 µ1

)
, . . . ,

(
µq δq

−δq µq

)
, λ2q+1, . . . , λn1

}
[d]

,

E2 =
{(

µ′
1 δ′1

−δ′1 µ′
1

)
, . . . ,

(
µ′

q δ′q
−δ′q µ′

q

)
, λ′

2q+1, . . . , λ
′
n1

}
[d]

such that

A = QE1Q′

B = QE2Q′.

The procedure above can immediately be extended to an arbitrary sequence of nor-
mal matrices Ai, i = 1, 2, . . ., which commute pairwise, and we get an important
factorization theorem.

Theorem 1.2.41. Let {Ai} be a sequence of normal matrices which commute
pairwise, i.e. AiAj = AjAi, i 	= j, i, j = 1, 2, . . .. Then there exists an orthogonal
matrix Q such that

Ai = Q
{(

µ1
(i) δ

(i)
1

−δ
(i)
1 µ

(i)
1

)
, . . . ,

(
µ

(i)
q δ

(i)
q

−δ
(i)
q µ

(i)
q

)
, λ

(i)
2q+1, . . . , λ

(i)
n1

,0n−n1

}
[d]

Q′,

where λ
(i)
k and µ

(i)
k ± iδ

(i)
k stand for non-zero eigenvalues of Ai.

Remark: For some i some of the blocks(
µj

(i) δ
(i)
j

−δ
(i)
j µ

(i)
j

)
or λ

(i)
j may be zero.
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Theorem 1.2.42. Let A > 0 and B symmetric. Then, there exist a non-singular
matrix T and diagonal matrix Λ = (λ1, . . . , λm)d such that

A = TT′, B = TΛT′,

where λi, i = 1, 2, . . . m, are eigenvalues of A−1B.

Proof: Let A = XX′ and consider the matrix X−1B(X′)−1. Since, X−1B(X′)−1

is symmetric, it follows by Corollary 1.2.39.1 that there exists an orthogonal matrix
Q such that

X−1B(X′)−1 = QΛQ′.

Thus A = XQQ′X′ and B = XQΛQ′X′. If we put T = XQ, the theorem is
established.

Corollary 1.2.42.1. Let A > 0 and B p.s.d. Then there exist a non-singular
matrix T and diagonal matrix Λ = (λ1, . . . , λm)d such that

A = TT′, B = TΛT′,

where λi ≥ 0, i = 1, 2, . . . m, are eigenvalues of A−1B.

It follows from the proof of Theorem 1.2.42 that we can change the theorem and
establish

Theorem 1.2.43. Let A > 0 and B be normal. Then there exists a matrix T > 0
and an orthogonal matrix Q such that A = QTQ′ and B = QEQ′, where

E =
{(

µ1 δ1

−δ1 µ1

)
,

(
µ2 δ2

−δ2 µ2

)
, . . . ,

(
µq δq

−δq µq

)
,0
}

[d]

.

Corollary 1.2.43.1. Let A > 0 and B be skew-symmetric. Then there is a
matrix T > 0 and an orthogonal matrix Q such that A = QTQ′ and B = QΛQ′,
where

Λ =
{(

0 δ1

−δ1 0

)
,

(
0 δ2

−δ2 0

)
, . . . ,

(
0 δq

−δq 0

)
,0
}

[d]

.

Another type of factorizations are given by the Schur and Jordan factorizations
which are also called Schur and Jordan decompositions.

Theorem 1.2.44. (Schur factorization) For A ∈ Rm×m there exists a unitary
matrix U such that

U∗AU = H,

where H is an upper triangular matrix with eigenvalues of A as its main diagonal
elements.

Proof: Details of the proof of the theorem can be found in Bellmann (1970, pp
202-203).
In the special case, when A is symmetric, the statement of Theorem 1.2.44 co-
incides with Corollary 1.2.39.1. The last theorem of this section is connected to
so-called Jordan normal forms (see Gantmacher, 1959).
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Theorem 1.2.45. (Jordan factorization) Let A ∈ Rm×m and Jk(λ) : k × k
denotes the upper triangular matrix of the form

Jki
(λ) =

⎛⎜⎜⎜⎜⎝
λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . λi

⎞⎟⎟⎟⎟⎠ .

Then there exists a non-singular matrix H : m × m such that

A = HJH−1,

where
J = (Jk1 ,Jk2 , . . . ,Jkr

)[d]

with k1 +k2 + · · ·+kr = m. The values λi are eigenvalues of A which do not have
to be distinct.

1.2.11 Problems
1. Show that C (A′) = C (A+).
2. Verify (iii) – (vi) in Proposition 1.2.1.
3. Show that an orthogonal projector is self-adjoint.
4. Prove (v), (xi) and (xiii) in Proposition 1.2.2.
5. Verify relation (1.2.17). Determine the following two determinants∣∣∣∣∣∣∣

1 + d1 + d2
1 + d3

1 d1 + d2
1 + d3

1 d2
1 + d3

1 d3
1

1 + d2 + d2
2 + d3

2 d2 + d2
2 + d3

2 d2
2 + d3

2 d3
2

1 + d3 + d2
3 + d3

3 d3 + d2
3 + d3

3 d2
3 + d3

3 d3
3

1 + d4 + d2
4 + d3

4 d4 + d2
4 + d3

4 d2
4 + d3

4 d3
4

∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣
2 d1 d2

1 d3
1

1 d2 d2
2 d3

2

1 d3 d2
3 d3

3

1 d4 d2
4 d3

4

∣∣∣∣∣∣∣ .
6. Show that Gram-Schmidt orthogonalization means that we are using the fol-

lowing decomposition:

C (x1 : x2 : . . . : xm)
= C (x1) + C (x1)⊥ ∩C (x1 : x2) + C (x1 : x2)⊥ ∩C (x1 : x2 : x3) + · · ·
· · · + C (x1 : x2 : . . . : xm−1)⊥ ∩C (x1 : x2 : . . . : xm),

where xi ∈ Rp

7. Prove Theorem 1.2.21 (i) when it is assumed that instead of As ⊆ As−1 ⊆
. . . ⊆ A1 the subspaces commute.

8. Take 3 × 3 matrices A and B which satisfy the assumptions of Theorem
1.2.42–Theorem 1.2.45 and construct all four factorizations.

9. What happens in Theorem 1.2.35 if g1 is supposed to be complex? Study it
with the help of eigenvectors and eigenvalues of the normal matrix(

1 1
−1 1

)
.

10. Prove Theorem 1.2.44.
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1.3 PARTITIONED MATRICES

1.3.1 Basic notation and relations
Statistical data is often obtained as measurements from some repeated procedure.
For example, we have often independent, identically distributed observation vec-
tors on several experimental units or we may have different types of information
available about our data, like within individuals and between individuals infor-
mation in repeated measurements. In both cases we will present the information
(data and design) in form of matrices which have certain pattern structure or
consist of certain blocks because of the underlying procedure. Moreover, certain
useful statistical quantities lead us to matrices of specific structures. An obvious
example is the dispersion matrix which is defined as a symmetric characteristic of
dependency. In Section 1.1 we listed several structures of matrices like symmet-
ric, skew-symmetric, diagonal, triangular displaying structure in an explicit way,
or normal, positive definite, idempotent, orthogonal matrices which have certain
implicit structure in them. In this section we give a general overview of techniques
for handling structures in matrices.

Definition 1.3.1. A matrix A : p × q is called partitioned matrix (or block-
matrix) if it consists of uv submatrices Aij : pi × qj (blocks) so that

A =

⎛⎝A11 A12 · · · A1v
...

...
. . .

...
Au1 Au2 · · · Auv

⎞⎠ ,

u∑
i=1

pi = p;
v∑

j=1

qj = q.

A partitioned matrix will often be denoted

A = [Aij ] i = 1, . . . , u; j = 1, . . . , v.

If it is necessary, dots are used to separate blocks in a partitioned matrix.
Following Anderson (2003) we shall use double indices for indicating rows and
columns of a partitioned matrix. A row of the partitioned matrix A is denoted by
an index (k, l), if this is the (

∑k−1
i=1 pi + l)−th row of A, i.e. this is the l−th row

of the k−th block-row (Ak1 : . . . : Akv).
A column of A is denoted by an index (g, h), if this column is the (

∑g−1
i=1 qi+h)−th

column of the matrix A, i.e. it is the h−th column in the g−th column of the blocks⎛⎜⎝A1g

...
Aug

⎞⎟⎠ .

The element of the partitioned matrix A in the (k, l)−th row and (g, h)−th column
is denoted by a(k,l)(g,h) or (A)(k,l)(g,h).
Using standard numeration of rows and columns of a matrix we get the relation

a(k,l) (g,h) = a∑k−1

i=1
pi+l,

∑g−1

j=1
qj+h

. (1.3.1)
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In a special case, when u = 1, the p×q−matrix A is a partitioned matrix of column
blocks which is divided into submatrices Aj : p × qj so that qj > 0,

∑v
j=1 qj = q :

A = (A1 : A2 : . . . : Av).

We denote this matrix
A = [A1j ], j = 1, . . . , v.

For indicating the h−th column of a submatrix Ag we use the index (g, h), and
the element of A in the k−th row and the (g, h)−th column is denoted by ak(g,h).
If A : p× q is divided into submatrices Ai so that Ai is a pi × q submatrix, where
pi > 0,

∑u
i=1 pi = p, we have a partitioned matrix of row blocks

A =

⎛⎝A1
...

Au

⎞⎠ ,

which is denoted by
A = [Ai1] i = 1, . . . , u.

The index of the l−th row of the submatrix Ak is denoted by (k, l), and the
element in the (k, l)−th row and the g−th column is denoted by a(k,l)g.
A partitioned matrix A = [Aij ], i = 1, . . . , u, j = 1, . . . , v is called block-diagonal
if Aij = 0, i 	= j. The partitioned matrix, obtained from A = [Aij ], i = 1, . . . , u,
j = 1, . . . , v, by block-diagonalization, i.e. by putting Aij = 0, i 	= j, has been
denoted by A[d] in §1.1.1. The same notation A[d] is used when a block-diagonal
matrix is constructed from u blocks of matrices.
So, whenever a block-structure appears in matrices, it introduces double indices
into notation. Now we shall list some basic properties of partitioned matrices.

Proposition 1.3.1. For partitioned matrices A and B the following basic prop-
erties hold:
(i)

cA = [cAij ], i = 1, . . . , u; j = 1, . . . , v,

where A = [Aij ] and c is a constant.
(ii) If A and B are partitioned matrices with blocks of the same dimensions, then

A + B = [Aij + Bij ], i = 1, . . . , u; j = 1, . . . , v,

i.e.
[(A + B)ij ] = [Aij ] + [Bij ].

(iii) If A = [Aij ] is an p × q−partitioned matrix with blocks

Aij : pi × qj , (
u∑

i=1

pi = p;
v∑

j=1

qj = q)
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and B = [Bjl] : q × r−partitioned matrix, where

Bjl : qj × rl, (
w∑

l=1

rl = r),

then the p×r−partitioned matrix AB = [Cil] consists of pi×rl−submatrices

Cil =
v∑

j=1

AijBjl, i = 1, . . . , u; l = 1, . . . , w.

In many applications a block-structure is given by

A =
(

A11 A12

A21 A22

)
. (1.3.2)

In this case there exist useful formulas for the inverse as well as the determinant
of the matrix.

Proposition 1.3.2. Let a partitioned non-singular matrix A be given by (1.3.2).
If A22 is non-singular, then

|A| = |A22||A11 − A12A−1
22 A21|;

if A11 is non-singular, then

|A| = |A11||A22 − A21A−1
11 A12|.

Proof: It follows by definition of a determinant (see §1.1.2) that∣∣∣∣T11 T12

0 T22

∣∣∣∣ = |T11||T22|

and then the results follow by noting that

|A22||A11 − A12A−1
22 A21| =

∣∣∣∣ I −A12A−1
22

0 I

∣∣∣∣ ∣∣∣∣A11 A12

A21 A22

∣∣∣∣ ∣∣∣∣ I 0
−A−1

22 A21 I

∣∣∣∣ .
Proposition 1.3.3. Let a non-singular A be partitioned according to (1.3.2).
Then, when all below given inverses exist,

A−1 =
(

C−1
22 −A−1

11 A12C−1
11

−A−1
22 A21C−1

22 C−1
11

)
,

where

C11 =A22 − A21A−1
11 A12,

C22 =A11 − A12A−1
22 A21.

The matrices C11 and C22 in Proposition 1.3.3 are called Schur complements of
A11 and A22, respectively. There exist a wide range of applications for Schur
complements in statistics (see Ouellette, 1981).
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Proposition 1.3.4. Let

A =
(

A11 A12

A21 A22

)
and A−1 =

(
A11 A12

A21 A22

)
so that the dimensions of A11, A12, A21, A22 correspond to the dimensions of
A11, A12, A21, A22, respectively. Then

(i) (A11)−1A12 = −A12A−1
22 ;

(ii) C (A12) ⊆ C (A11 − A12A−1
22 A21);

(iii) if A > 0, then C (A12) ⊆ C (A11).

Proposition 1.3.5. If the Schur complements Cii (i = 1, 2) in Proposition 1.3.3
are non-singular, then

C−1
11 = A−1

22 + A−1
22 A21(A11 − A12A−1

22 A21)−1A12A−1
22 ,

C−1
22 = A−1

11 + A−1
11 A12(A22 − A21A−1

11 A12)−1A21A−1
11 ;

(i)

(B′
1 : B′

2)
(

A11 A12

A21 A22

)−1(
B1

B2

)
= (B1 − A12A−1

22 B2)′(A11 − A12A−1
22 A21)−1(B1 − A12A−1

22 B2)

(ii)

+ B′
2A

−1
22 B2,

where B1 and B2 are matrices of proper sizes.

Related to Proposition 1.3.5 is the so-called Inverse binomial theorem.

Proposition 1.3.6 (Inverse binomial theorem). Suppose that all included in-
verses exist. Then

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1.

Proof: Premultiplication by A + BCD gives

(A + BCD)(A−1 − A−1B(DA−1B + C−1)−1DA−1)
= I − B(DA−1B + C−1)−1DA−1 + BCDA−1

− BCDA−1B(DA−1B + C−1)−1DA−1

= I − B(CDA−1B + I)(DA−1B + C−1)−1DA−1 + BCDA−1

= I − BCDA−1 + BCDA−1 = I.

Propositions 1.3.3 and 1.3.6 can be extended to situations when the inverses do
not exist. In such case some additional subspace conditions have to be imposed.
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Proposition 1.3.7.
(i) Let C (B) ⊆ C (A), C (D′) ⊆ C (A′) and C be non-singular. Then

(A + BCD)− = A− − A−B(DA−B + C−1)−DA−.

(ii) Let C (B) ⊆ C (A), C (C′) ⊆ C (A′). Then

(
A B
C D

)−
=
(

A− 0
0 0

)
+
(−A−B

I

)
(D − CA−B)−(−CA− : I).

The next two results concern with the g-inverse of (A : B).

Proposition 1.3.8. One choice of g-inverse of the partitioned matrix (A : B) is
given by

(A : B)− =
(

A+ − A+BR+

R+

)
,

where

R = (I − AA+)B.

Proof: First it is noted that

(A : B)(A : B)− = AA+ − AA+BR+ + BR+ = AA+ + (I − AA+)BR+

= AA+ + RR+

and by (1.1.18)

RR+A = 0, RR+B = RR+R = R, AA+B + RR+B = B.

Thus,
(A : B)(A : B)−(A : B) = (A : B).

Observe that the g-inverse in Proposition 1.3.8 is reflexive since R+A = 0 implies

(A : B)−(A : B)(A : B)− =
(

A+ − A+BR+

R+

)
(AA+ + RR+)

=
(

A+ − A+BR+

R+

)
= (A : B)−.

However, it is easy to show that the g-inverse is not a Moore-Penrose inverse.
Therefore, in order to obtain a Moore-Penrose inverse, the proposition has to be
modified somewhat (Cline, 1964).
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Proposition 1.3.9. The Moore-Penrose inverse of the partitioned matrix (A : B)
equals

(A : B)+ =
(

A+ − A+BH
H

)
,

where

H =R+ + (I − R+R)ZB′A+′
A+(I − BR+),

R =(I − AA+)B,

Z ={I + (I − R+R)B′A+′
A+B(I − R+R)}−1.

Some simple block structures have nice mathematical properties. For example,
consider (

A B
−B A

)
(1.3.3)

and multiply two matrices of the same structure:(
A1 B1

−B1 A1

)(
A2 B2

−B2 A2

)
=
(

A1A2 − B1B2 A1B2 + B1A2

−B1A2 − A1B2 A1A2 − B1B2.

)
. (1.3.4)

The interesting fact is that the matrix on the right hand side of (1.3.4) is of the
same type as the matrix in (1.3.3). Hence, a class of matrices can be defined
which is closed under multiplication, and the matrices (1.3.3) may form a group
under some assumptions on A and B. Furthermore, consider the complex matrices
A1 + iB1 and A2 + iB2, where i is the imaginary unit, and multiply them. Then

(A1 + iB1)(A2 + iB2) = A1A2 − B1B2 + i(A1B2 + B1A2) (1.3.5)

and we see that multiplication in (1.3.5) is equivalent to multiplication in (1.3.4).
Indeed, we have obtained a generalized version of the fact that the space of complex
p−vectors is isomorphic to a 2p−dimensional real-valued space. Now the above
given ideas will be extended somewhat, and the sum

A + iB + jC + kD (1.3.6)

will be considered, where i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i
and ki = −ik = j. Hence, we have introduced an algebraic structure which is
usually called quaternions structure and its elements quaternions. For a general
and easily accessible discussion of hypercomplex number, of which quaternions and
the complex numbers are special cases, we refer to Kantor & Solodovnikov (1989).
The reason why quaternions are discussed here is that multiplication of elements
of the form (1.3.6) is equivalent to multiplication of matrices with a structure given
in the next block matrix: ⎛⎜⎝

A B C D
−B A −D C
−C D A −B
−D −C B A

⎞⎟⎠ .
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Now we briefly consider some more general structures than complex numbers and
quaternions. The reason is that there exist many statistical applications of these
structures. In particular, this is the case when we consider variance components
models or covariance structures in multivariate normal distributions (e.g. see An-
dersson, 1975).
Suppose that we have a linear space L of matrices, i.e. for any A,B ∈ L we have
αA + βB ∈ L. Furthermore, suppose that the identity I ∈ L. First we are going
to prove an interesting theorem which characterizes squares of matrices in linear
spaces via a Jordan product ab + ba (usually the product is defined as 1

2 (ab + ba)
where a and b belong to a vector space).

Theorem 1.3.1. For all A,B ∈ L

AB + BA ∈ L,

if and only if C2 ∈ L, for any C ∈ L .

Proof: If A2,B2 ∈ L we have, since A + B ∈ L,

AB + BA = (A + B)2 − A2 − B2 ∈ L.

For the converse, since I + A ∈ L, it is noted that

2A + 2A2 = A(I + A) + (I + A)A ∈ L

and by linearity it follows that also A2 ∈ L.

Let G1 be the set of all invertable matrices in L, and G2 the set of all inverses of
the invertable matrices, i.e.

G1 ={Σ : |Σ| 	= 0,Σ ∈ L}, (1.3.7)
G2 ={Σ−1 : Σ ∈ G1}. (1.3.8)

Theorem 1.3.2. Let the sets G1 and G2 be given by (1.3.7) and (1.3.8), respec-
tively. Then G1 = G2, if and only if

AB + BA ∈ L, ∀A,B ∈ L, (1.3.9)

or

A2 ∈ L, ∀A ∈ L. (1.3.10)

Proof: The equivalence between (1.3.9) and (1.3.10) was shown in Theorem 1.3.1.
Consider the sets G1 and G2, given by (1.3.7) and (1.3.8), respectively. Suppose
that G2 ⊆ L, i.e. every matrix in G2 belongs to L. Then G1 = G2. Furthermore,
if G2 ⊆ L, for any A ∈ G1,

A2 = A − ((A + I)−1 − A−1)−1 ∈ G1 = G2.
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Now suppose that A2 ∈ L when A ∈ G1. Then, by Theorem 1.3.1,

A2(A + I) + (A + I)A2 ∈ L,

since I + A ∈ L. Thus A3 ∈ L. By induction it follows that Ai ∈ L, i = 0, 1, . . ..
From Corollary 1.2.29 (ii) we obtain that if A : n × n, then there exist constants
ci such that

c0A−1 = An−1 −
n−1∑
i=1

ciAi−1 ∈ L,

i.e. G2 ⊆ L and the theorem is established.
The results in Theorem 1.3.1 and Theorem 1.3.2 have interesting statistical im-
plications. Under so-called Jordan algebra factorizations, Tolver Jensen (1988)
showed how to use similar results in a statistical context.

1.3.2 The commutation matrix
The notion of interest in this section was probably first introduced by Murnaghan
(1938) as permutation matrix. Commonly the notion appears under this name in
the literature. On the other hand, in recent publications on mathematical statistics
more often the word ”commutation” matrix has been used and we are also going
to follow this tradition. However, as noted by some authors, it would be more
appropriate to call the matrix a transposition matrix.

Definition 1.3.2. The partitioned matrix Kp,q : pq×pq consisting of q×p−blocks
is called commutation matrix, if

(Kp,q)(i,j)(g,h) =

{
1; g = j, h = i, i, h = 1, . . . , p; j, g = 1, . . . , q,

0; otherwise.
(1.3.11)

From the definition it follows that one element in each column and row of Kp,q

equals one and the other elements are zeros. As an example we shall write out the
matrix K2,3.

Example 1.3.1.

K2,3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
... 0 0

... 0 0

0 0
... 1 0

... 0 0

0 0
... 0 0

... 1 0
. . . . . . . . . . . . . . . . . . . . .

0 1
... 0 0

... 0 0

0 0
... 0 1

... 0 0

0 0
... 0 0

... 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The commutation matrix can also be described in the following way: in the
(i, j)−th block of Kp,q the (j, i)−th element equals one, while all other elements in
that block are zeros. The commutation matrix is studied in the paper by Magnus
& Neudecker (1979), and also in their book (Magnus & Neudecker, 1999). Here
we shall give the main properties of the commutation matrix.
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Proposition 1.3.10. Let Kp,q be the commutation matrix. Then
(i) Kp,q = K′

q,p;
(ii) Kp,qKq,p = Ipq;
(iii) Kp,1 = K1,p = Ip;
(iv) |Kp,q| = ±1.

According to (i) and (ii) of the proposition, it follows that Kp,q is an orthogonal
matrix. In the proof of the next proposition and other places it is convenient to
use the indicator function 1{a=b}, i.e.

1{a=b} =

{
1 a = b,

0 otherwise.

Proposition 1.3.11.
(i) Let a partitioned matrix A : m × n consist of r × s−blocks:

A = [Aij ] i = 1, . . . , p; j = 1, . . . , q.

Then the partitioned matrix AKs,q consists of r×q−blocks and the (g, h)−th
column of the product is the (h, g)−th column of A.

(ii) Let a m × n−partitioned matrix A consist of r × s−blocks

A = [Aij ] i = 1, . . . , p; j = 1, . . . , q.

Then the partitioned matrix Kp,rA consists of p×s−blocks and the (i, j)−th
row of the product matrix is the (j, i)−th row of A.

Proof: To prove (i) we have to show that

(AKs,q)(i,j)(g,h) = (A)(i,j)(h,g)

for any i = 1, . . . , p; j = 1, . . . , r; g = 1, . . . , q, h = 1, . . . , s. By Proposition 1.3.1
(iii) we have

(AKs,q)(i,j)(g,h) =
q∑

k=1

s∑
l=1

(A)(i,j)(k,l)(K)(k,l)(g,h)

=
(1.3.11)

q∑
k=1

s∑
l=1

(A)(i,j)(k,l)1{g=l}1{h=k} = (A)(i,j)(h,g).

Thus, statement (i) is proved. The proof of (ii) is similar and is left as an exercise
to the reader.
Some important properties of the commutation matrix, in connection with the
direct product (Kronecker product) and the vec-operator, will appear in the fol-
lowing paragraphs

1.3.3 Direct product
The direct product is one of the key tools in matrix theory which is applied to
multivariate statistical analysis. The notion is used under different names. The
classical books on matrix theory use the name ”direct product” more often (Searle,
1982; Graybill, 1983, for example) while in the statistical literature and in recent
issues the term ”Kronecker product” is more common (Schott, 1997b; Magnus &
Neudecker, 1999; and others). We shall use them synonymously throughout the
text.
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Definition 1.3.3. Let A = (aij) be a p×q−matrix and B = (bij) an r×s−matrix.
Then the pr× qs−matrix A⊗B is called a direct product (Kronecker product) of
the matrices A and B, if

A ⊗ B = [aijB], i = 1, . . . , p; j = 1, . . . , q, (1.3.12)

where

aijB =

⎛⎜⎝ aijb11 . . . aijb1s

...
. . .

...
aijbr1 . . . aijbrs

⎞⎟⎠ .

This definition somewhat overrules a principle of symmetry. We could also define
A⊗B as consisting of blocks [Abkl], k = 1, . . . , r; l = 1, . . . , s (Graybill, 1983, for
example). Sometimes one distinguishes between the two versions, i.e. by defining
the right and left Kronecker product. It is easy to see that in both cases we
have notions with similar properties which are equally useful in applications. By
tradition it has happened that definition (1.3.12) is used more often. Moreover,
the so-called half Kronecker products (Holmquist, 1985b) are also related to this
notion.
Here a list of basic properties of the direct product will be given where we shall not
indicate the sizes of the matrices if these coincide with those given in Definition
1.3.3.

Proposition 1.3.12.

(i) (A ⊗ B)r(k−1)+l,s(g−1)+h = (A ⊗ B)(k,l)(g,h).

(ii) (A ⊗ B)(k,l)(g,h) = akgblh. (1.3.13)

(iii) (A ⊗ B)′ = A′ ⊗ B′.

(iv) Let A,B : p × q and C,D : r × s. Then

(A + B) ⊗ (C + D) = A ⊗ C + A ⊗ D + B ⊗ C + B ⊗ D.

(v) Let A : p × q, B : r × s and C : t × u. Then

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

(vi) Let A : p × q and B : q × w and C : r × s, D : s × t. Then

(A ⊗ C)(B ⊗ D) = (AB) ⊗ (CD). (1.3.14)

(vii) Let A : p × p and B : q × q be non-singular matrices. Then

(A ⊗ B)−1 = A−1 ⊗ B−1.
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In the singular case one choice of a g-inverse is given by

(A ⊗ B)− = A− ⊗ B−.

(viii) Let A : p × q and B : r × s. Then

A ⊗ B = Kp,r(B ⊗ A)Ks,q. (1.3.15)

(ix) If A is p × p−matrix and B is q × q−matrix, then

|A ⊗ B| = |A|q|B|p.

(x) r(A ⊗ B) = r(A)r(B).
(xi) A ⊗ B = 0 if and only if A = 0 or B = 0.
(xii) If a is a p−vector and b is a q−vector, then the outer product

ab′ = a ⊗ b′ = b′ ⊗ a. (1.3.16)

(xiii) Any eigenvalue of A ⊗ B equals the product of an eigenvalue of A with
an eigenvalue of B.

The direct product gives us another possibility to present the commutation matrix
of the previous paragraph. The alternative form via basis vectors often gives us
easy proofs for relations where the commutation matrix is involved. It is also
convenient to use a similar representation of the direct product of matrices.

Proposition 1.3.13.
(i) Let ei be the i−th column vector of Ip and dj the j−th column vector of Iq.

Then

Kp,q =
p∑

i=1

q∑
j=1

(eid′
j) ⊗ (dje′i). (1.3.17)

(ii) Let ei1 , ei2 be the i1−th and i2−th column vectors of Ip and Ir, respectively,
and dj1 , dj2 the j1−th and j2−th column vectors of Iq and Is, respectively.
Then for A : p × q and B : r × s

A ⊗ B =
∑

1≤i1≤p,
1≤j1≤q

∑
1≤i2≤r,
1≤j2≤s

ai1j1bi2j2(ei1d
′
j1) ⊗ (ei2d

′
j2).

Proof: (i): It will be shown that the corresponding elements of the matrix given
on the right hand side of (1.3.17) and the commutation matrix Kp,q are identical:⎛⎝ p∑

i=1

q∑
j=1

(eid′
j) ⊗ (dje′i)

⎞⎠
(k,l)(g,h)

=
(1.3.13)

p∑
i=1

q∑
j=1

(eid′
j)kg(dje′i)lh

=
p∑

i=1

q∑
j=1

(ekd′
g)kg(dle′h)lh =

(1.3.11)
(Kp,q)(k,l)(g,h) .
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(ii): For the matrices A and B, via (1.1.2), the following representations through
basis vectors are obtained:

A =
p∑

i1=1

q∑
j1=1

ai1j1(ei1d
′
j1), B =

r∑
i2=1

s∑
j2=1

bi2j2(ei2d
′
j2).

Then
A ⊗ B =

∑
1≤i1≤p,
1≤j1≤q

∑
1≤i2≤r,
1≤j2≤s

ai1j1bi2j2(ei1d
′
j1) ⊗ (ei2d

′
j2).

To acquaint the reader with different techniques, the statement (1.3.15) is now
verified in two ways: using basis vectors and using double indexation of elements.
Proposition 1.3.13 gives

Kp,r(B ⊗ A)Ks,q

=
∑

1≤i1≤p,
1≤j1≤q

∑
1≤i2≤r,
1≤j2≤s

(ei1e
′
i2 ⊗ ei2e

′
i1)(B ⊗ A)(dj2d

′
j1 ⊗ dj1d

′
j2)

=
∑

1≤i1≤p,
1≤j1≤q

∑
1≤i2≤r,
1≤j2≤s

bi2j2ai1j1(ei1e
′
i2 ⊗ ei2e

′
i1)(ei2d

′
j2 ⊗ ei1d

′
j1)(dj2d

′
j1 ⊗ dj1d

′
j2)

=
∑

1≤i1≤p,
1≤j1≤q

∑
1≤i2≤r,
1≤j2≤s

bi2j2ai1j1ei1d
′
j1 ⊗ ej1d

′
j2 = A ⊗ B.

The same result is obtained by using Proposition 1.3.12 in the following way:

(Kp,r(B ⊗ A)Ks,q)(ij)(gh) =
∑
k,l

(Kp,r)(ij)(kl) ((B ⊗ A)Ks,q)(kl)(gh)

=
∑
m,n

(B ⊗ A)(ji)(mn)(Ks,q)(mn)(gh) = (B ⊗ A)(ji)(hg) =
(1.3.13)

bjhaig

=
(1.3.13)

(A ⊗ B)(ij)(gh).

In §1.2.5 it was noted that the range space of the tensor product of two mappings
equals the tensor product of the range spaces of respective mapping. Let us now
consider the column vector space of the Kronecker product of the matrices A and
B, i.e. C (A ⊗ B). From Definition 1.2.8 of a tensor product (see also Takemura,
1983) it follows that a tensor product of C (A) and C (B) is given by

C (A)⊗C (B) = C (a1 ⊗ b1 : . . . : a1 ⊗ bs : a2 ⊗ b1 : . . . : a1 ⊗ bs : . . . : ar ⊗ bs),

where A = (a1 : . . . : ar) and B = (b1 : . . . : bs). This means that the tensor
product of C (A) and C (B) includes all combinations of the direct products of
the columns of A with the columns of B. However,

C ((A1 : A2) ⊗ (B1 : B2)) = C ((A1 ⊗ (B1 : B2)) : (A2 ⊗ (B1 : B2)))
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and since by definition of the Kronecker product the columns of Ai ⊗ (B1 : B2),
i = 1, 2, are identical to those of (Ai ⊗ B1) : (Ai ⊗ B2), although differently
arranged, we have established that

C ((A1 : A2)⊗ (B1 : B2)) = C ((A1 ⊗B1) : (A2 ⊗B1) : (A1 ⊗B2) : (A2 ⊗B2)).

Thus, according to the definition of a tensor product of linear spaces, the column
vector space of a Kronecker product of matrices is a tensor product, and we may
write

C (A) ⊗C (B) = C (A ⊗ B).

Moreover, when later in §1.3.5 considering column spaces of tensor products, the
results of §1.2.5 are at our disposal which is of utmost importance.
Now, the direct product will be considered in a special case, namely when a vector
is multiplied by itself several times.

Definition 1.3.4. We call a pk−vector a⊗k, the k−th power of the p−vector a,
if a⊗0 = 1 and

a⊗k = a ⊗ · · · ⊗ a︸ ︷︷ ︸
k times

.

In general, for any matrix A the Kroneckerian power is given by

A⊗k = A ⊗ · · · ⊗ A︸ ︷︷ ︸
k times

.

Furthermore, Proposition 1.3.12 (v) implies that A⊗kB⊗k = (AB)⊗k. In partic-
ular, it is noted that

a⊗k ⊗ a⊗j = a⊗(k+j), k, j ∈ N. (1.3.18)

The following statement makes it possible to identify where in a long vector of the
Kroneckerian power a certain element of the product is situated.

Lemma 1.3.1. Let a = (a1 . . . , ap)′ be a p−vector. Then for any i1, . . . , ik ∈
{1, . . . , p} the following equality holds:

ai1ai2 . . . aik
= (a⊗k)j , (1.3.19)

where

j = (i1 − 1)pk−1 + (i2 − 1)pk−2 + . . . + (ik−1 − 1)p + ik. (1.3.20)

Proof: We are going to use induction. For k = 1 the equality holds trivially, and
for k = 2 it follows immediately from Proposition 1.3.12 (i). Let us assume, that
the statements (1.3.19) and (1.3.20) are valid for k = n − 1 :

ai1 . . . ain−1 = (a⊗(n−1))i, (1.3.21)
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where

i = (i1 − 1)pn−2 + (i2 − 1)pn−3 + . . . + (ik−2 − 1)p + in−1 (1.3.22)

with i ∈ {1, . . . , pn−1}; i1, . . . , in−1 ∈ {1, . . . , p}. It will be shown that (1.3.19)
and (1.3.20) also take place for k = n. From (1.3.18)

a⊗n = a⊗(n−1) ⊗ a.

For these two vectors Proposition 1.3.12 (xii) yields

(a⊗n)j = (a⊗(n−1))iain , (1.3.23)
j = (i − 1)p + in, (1.3.24)

with j ∈ {1, . . . , pn}; i ∈ {1, . . . , pn−1}; in ∈ {1, . . . , p}. Replacing the vector
a⊗(n−1) in (1.3.23) by the expression (1.3.21), and in (1.3.24) the index i by formula
(1.3.22) we get the desired result.

From Lemma 1.3.1 it follows that some coordinates of a⊗k are always equal. If all
the indices ij are different (j = 1, . . . , k), then at least k! coordinates of a⊗k are
equal, for example. This means that there exist permutations of the coordinates
of a⊗k which do not change the vector. These permutations can be presented
through the commutation matrix Kp,p.
Example 1.3.2. By changing the order of multipliers a in the product

a⊗2 = a ⊗ a,

it follows via Proposition 1.3.12 (viii) that for a : p × 1

a⊗2 = Kp,pa⊗2.

For the powers of higher order many more equivalent permutations do exist. In
the case of the third power we have the following relations

a⊗3 = Kp2,pa⊗3;
a⊗3 = Kp,p2a⊗3;
a⊗3 = (Ip ⊗ Kp,p)a⊗3;
a⊗3 = (Kp,p ⊗ Ip)Kp2,pa⊗3;
a⊗3 = (Kp,p ⊗ Ip)a⊗3.

Observe that the relations above are permutations of basis vectors (permutations
acting on tensor products). This follows from the equality

a⊗3 =
∑

i1i2i3

ai1ai2ai3(ei1 ⊗ ei2 ⊗ ei3).
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Thus

Kp2,pa⊗3 corresponds to the permutation ei2 ⊗ ei3 ⊗ ei1 ,

Kp,p2a⊗3 corresponds to the permutation ei3 ⊗ ei1 ⊗ ei2 ,

(Ip ⊗ Kp,p)a⊗3 corresponds to the permutation ei1 ⊗ ei3 ⊗ ei2 ,

(Kp,p ⊗ Ip)Kp2,pa⊗3 corresponds to the permutation ei2 ⊗ ei1 ⊗ ei3 ,

(Kp,p ⊗ Ip)a⊗3 corresponds to the permutation ei3 ⊗ ei2 ⊗ ei1 ,

and together with the identity permutation Ip3 all 3! possible permutations are
given. Hence, as noted above, if i1 	= i2 	= i3, the product ai1ai2ai3 appears in 3!
different places in a⊗3. All representations of a⊗3 follow from the basic properties
of the direct product. The last one is obtained, for example, from the following
chain of equalities:

a⊗3 =
(1.3.15)

Kp,p(a ⊗ a) ⊗ a = Kp,p(a ⊗ a) ⊗ (Ipa) =
(1.3.14)

(Kp,p ⊗ Ip)a⊗3,

or by noting that

(Kp,p ⊗ Ip)(ei1 ⊗ ei2 ⊗ ei3) = ei2 ⊗ ei1 ⊗ ei3 .

Below an expression for (A + B)⊗k will be found. For small k this is a trivial
problem but for arbitrary k complicated expressions are involved. In the next
theorem

∏k
j=0 Aj stands for the matrix product A0A1 · · ·Ak.

Theorem 1.3.3. Let A : p × n and B : p × n. Denote ij = (i1, . . . , ij),

Ls(j, k, ij) =
j∏

r=1

(Isr−1 ⊗ Ksir−r,s ⊗ Isk−ir ), Ls(0, k, i0) = Isk

and

Jj,k = {ij ; j ≤ ij ≤ k, j − 1 ≤ ij−1 ≤ ij − 1, . . . , 1 ≤ i1 ≤ i2 − 1}.

Let
∑

J0,k
Q = Q for any matrix Q. Then

(A + B)⊗k =
k∑

j=0

∑
ij∈Jj,k

Lp(j, k, ij)(A⊗j ⊗ B⊗k−j)Ln(j, k, ij)′.

Proof: An induction argument will be used. The theorem holds for k = 1, 2, 3.
Suppose that the statement is true for (A + B)⊗k−1. We are going to apply that

Lp(j, k − 1, ij)(A⊗j ⊗ B⊗k−1−j)Ln(j, k − 1, ij)′ ⊗ B

= (Lp(j, k − 1, ij) ⊗ Ip)(A⊗j ⊗ B⊗k−1−j ⊗ B)(Ln(j, k − 1, ij)′ ⊗ In)
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and

Lp(j, k − 1, ij)(A⊗j ⊗ B⊗k−1−j)Ln(j, k − 1, ij)′ ⊗ A

= (Lp(j, k − 1, ij) ⊗ Ip)(A⊗j ⊗ B⊗k−1−j ⊗ A)(Ln(j, k − 1, ij)′ ⊗ In)
= (Lp(j, k − 1, ij) ⊗ Ip)(Ipj ⊗ Kpk−1−j ,p)(A

⊗j ⊗ A ⊗ B⊗k−1−j)
× (Inj ⊗ Kn,nk−1−j )(Ln(j, k − 1, ij)′ ⊗ In).

By assumption

(A + B)⊗k = {(A + B)⊗k−1} ⊗ (A + B)

=
{ k−2∑

j=1

∑
Jj,k−1

Lp(j, k − 1, ij)(A⊗j ⊗ B⊗k−1−j)Ln(j, k − 1, ij)′

+ A⊗k−1 + B⊗k−j
}⊗ (A + B)

= S1 + S2 + A⊗k−1 ⊗ B + Kpk−1,p(A ⊗ B⊗k−1)Kn,nk−1 + A⊗k + B⊗k, (1.3.25)

where

S1 =
k−2∑
j=1

∑
Jj,k−1

(Lp(j, k − 1, ij) ⊗ Ip)(Ipj ⊗ Kpk−1−j ,p)(A
⊗j+1 ⊗ B⊗k−1−j)

× (Inj ⊗ Kn,nk−1−j )(Ln(j, k − 1, ij)′ ⊗ In)

and

S2 =
k−2∑
j=1

∑
Jj,k−1

(Lp(j, k − 1, ij) ⊗ Ip)(A⊗j ⊗ B⊗k−j)(Ln(j, k − 1, ij)′ ⊗ In).

If the indices in S1 are altered, i.e. j + 1 → j, then

S1 =
k−1∑
j=2

∑
Jj−1,k−1

(Lp(j − 1, k − 1, ij−1) ⊗ Ip)(Ipj−1 ⊗ Kpk−j ,p)(A
⊗j ⊗ B⊗k−j)

× (Inj−1 ⊗ Kn,nk−j )(Ln(j − 1, k − 1, ij−1)′ ⊗ In).

Let ij = k, which implies that we may replace (Isj−1⊗Ksk−j ,s) by (Isj−1⊗Ksij−j ,s)
and obtain

(Ls(j − 1, k − 1, ij−1) ⊗ Is)(Isj−1 ⊗ Ksk−j ,s) = Ls(j, k, ij).

Hence,

S1 =
k−1∑
j=2

k∑
ij=k

∑
Jj−1,k−1

Lp(j, k, ij)(A⊗j ⊗ B⊗k−j)Ln(j, k, ij)′.
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Furthermore,
Ls(j, k − 1, ij) ⊗ Is = Ls(j, k, ij)

and

S2 =
k−2∑
j=1

∑
Jj,k−1

Lp(j, k, ij)(A⊗j ⊗ B⊗k−j)Ln(j, k, ij)′.

From the expressions of the index sets Jj−1,k−1 and Jj,k it follows that

S1 + S2 =
k−2∑
j=2

∑
Jj,k

Lp(j, k, ij)(A⊗j ⊗ B⊗k−j)Ln(j, k, ij)′ + S3 + S4, (1.3.26)

where

S3 =
k−1∑

j=k−1

k∑
ij=k

∑
Jj−1,k−1

Lp(j, k, ij)(A⊗j ⊗ B⊗k−j)Ln(j, k, ij)′

and

S4 =
1∑

j=1

∑
Jj,k−1

Lp(j, k, ij)(A⊗j ⊗ B⊗k−j)Ln(j, k, ij)′.

However,

S3 + A⊗k−1 ⊗ B =
k−1∑

j=k−1

∑
Jj,k

Lp(j, k, ij)(A⊗k−1 ⊗ B)Ln(j, k, ij)′ (1.3.27)

and

S4 + Kpk−1,p(A
⊗k−1 ⊗ B)Kn,nk−1 =

1∑
j=1

∑
Jj,k

Lp(j, k, ij)(A ⊗ Bk−j)Ln(j, k, ij)′.

(1.3.28)
Hence, by summing the expressions in (1.3.26), (1.3.27) and (1.3.28), it follows
from (1.3.25) that the theorem is established.
The matrix Ls(j, k, ij) in the theorem is a permutation operator acting on (A⊗j)⊗
(B⊗k−j). For each j the number of permutations acting on

(A⊗j) ⊗ (B⊗k−j)

equals
(
k
j

)
. Moreover, A⊗k and B⊗k are the special cases, when j = k and j = 0,

respectively. Instead of the expression presented in the lemma, we may write

(A + B)⊗k =
k∑

j=0

∑
σ∈Sp,n

k,j

σ(A⊗j ⊗ B⊗k−j),

where Sp,n
k,j is a certain set of permutations. An analogue of Theorem 1.3.3 for the

more general relation (
∑

i Ai)⊗k has been derived by Holmquist (1985a).

1.3.4 vec-operator
Besides the direct product, the vec-operator is the second basic tool from ”newer”
matrix algebra in multivariate statistical analysis.
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Definition 1.3.5. Let A = (a1, . . . ,aq) be p × q−matrix, where ai, i = 1, . . . , q,
is the i−th column vector. The vectorization operator vec(·) is an operator from
Rp×q to Rpq, with

vecA =

⎛⎝a1
...
aq

⎞⎠ .

As for the commutation matrix (Definition 1.3.2 and Proposition 1.3.13), there
exist possibilities for alternative equivalent definitions of the vec-operator, for in-
stance:

vec : Rp×q → Rpq, vec(ab′) = b ⊗ a ∀a ∈ Rp,∀b ∈ Rq. (1.3.28)

According to (1.3.28) we can write, through unit basis vectors di and ej ,

vecA =
∑
ij

aijej ⊗ di, ej ∈ Rq, di ∈ Rp, (1.3.29)

since A =
∑

ij aijdie′j . Many results can be proved by combining (1.3.29) and
Proposition 1.3.12. Moreover, the vec-operator is linear, and there exists a unique
inverse operator vec−1 such that for any vectors e,d

vec−1(e ⊗ d) = de′.

There exist direct generalizations which act on general Kroneckerian powers of
vectors. We refer to Holmquist (1985b), where both generalized commutation
matrices and generalized vec-operators are handled.
The idea of representing a matrix as a long vector consisting of its columns ap-
pears the first time in Sylvester (1884). The notation ”vec” was introduced by
Koopmans, Rubin & Leipnik (1950). Its regular use in statistical publications
started in the late 1960s. In the following we give basic properties of the vec-
operator. Several proofs of the statements can be found in the book by Magnus &
Neudecker (1999), and the rest are straightforward consequences of the definitions
of the vec-operator and the commutation matrix.

Proposition 1.3.14.
(i) Let A : p × q. Then

Kp,qvecA = vecA′. (1.3.30)

(ii) Let A : p × q, B : q × r and C : r × s. Then

vec(ABC) = (C′ ⊗ A)vecB. (1.3.31)

(iii) Let A : p × q, B : q × r, C : r × s and D : s × p. Then

tr(AB) =vec′A′vecB, r = p; (1.3.32)
tr(ABCD) =vec′A(B ⊗ D′)vecC′ = vec′Avec(D′C′B′);
tr(ABCD) =(vec′(C′) ⊗ vec′A)(Ir ⊗ Ks,q ⊗ Ip)(vecB ⊗ vecD′);
tr(ABCD) =(vec′B ⊗ vec′D)Kr,pqs(vecA ⊗ vecC).
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(iv) Let A : p × q and B : r × s. Then

vec(A ⊗ B) = (Iq ⊗ Ks,p ⊗ Ir)(vecA ⊗ vecB); (1.3.33)
(Iq ⊗ Kp,s ⊗ Ir)vec(A ⊗ B) = (vecA ⊗ vecB);

Kr,qps(vecA ⊗ vecB) = vec(Kp,s(B′ ⊗ A));
(Ir ⊗ Kp,q ⊗ Is)Kr,qps(vecA ⊗ vecB) = vec(Kq,s(B′ ⊗ A′)).

(v) Let A : p × q, B : r × s and set

G1 =(Iq ⊗ Ks,p ⊗ Ir)Kpq,rs,

G2 =(Ip ⊗ Kq,r ⊗ Is)Kpr,qs,

G3 =(Iq ⊗ Ks,r ⊗ Ip)Kqr,sp.

Then

G−1
i = G′

i i = 1, 2, 3;
G1(vecB ⊗ vecA) = vec(A ⊗ B);
G2vec(A ⊗ B) = vecA′ ⊗ vecB′;
G3vec(Kq,r(B ⊗ A′)) = vec(Kr,p(A ⊗ B)).

(vi) Let Ai : p× q, Bi : r× s, Ci : q× s, Di : p× r, Ei : p× s and Fi : q× r. Then
the equation∑

i

(Ai ⊗ Bi) =
∑

i

vecD′
ivec′(C′

i) + Kp,r(F′
i ⊗ Ei)

is equivalent to∑
i

vecAivec′Bi =
∑

i

Ci ⊗ Di + Kq,p(E′
i ⊗ Fi).

The relation in (i) is often used as a definition of the commutation matrix. Further-
more, note that the first equality of (v) means that Gi, i = 1, 2, 3, are orthogonal
matrices, and that from (vi) it follows that the equation

A ⊗ B = vecD′vec′(C′) + Kp,r(F′ ⊗ E)

is equivalent to
vecAvec′B = C ⊗ D + Kq,p(E′ ⊗ F).

The next property enables us to present the direct product of matrices through
the vec-representation of those matrices.
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Proposition 1.3.15. Let A : r × s, B : s × t, C : m × n and D : n × p. Then

AB ⊗ CD = (Irm ⊗ vec′D′)(Ir ⊗ vecC′vec′B′ ⊗ Ip)(vecA′ ⊗ Ipt).

1.3.5 Linear equations
Matrix equations play an important role in many fields. We will give a fairly simple
approach to solve linear equations which is based on some results about vector
space decompositions of tensor spaces given in §1.2.5. In (1.1.13) we considered
Ax = b as an equation in x. First it is noted that Ax = b has a solution, i.e.
it is consistent, if and only if b ∈ C (A). Furthermore, any solution of a linear
equation system Ax = b consists of two parts, namely, a particular solution x0

and the general solution of the homogenous equation Ax = 0. By Definition 1.1.3
of a g-inverse we observe that if the equation is consistent, x = A−b is a particular
solution. Moreover, x = (I − A−A)z, where z is arbitrary, is a general solution
of Ax = 0. To see this, note that by Theorem 1.1.5, (I − A−A)z is a solution of
Ax = 0. For the opposite, suppose that x is a solution of Ax = 0. This implies
that x = (I − A−A)x and thus we have found a z such that x = (I − A−A)z.
Hence, it can be stated that the general solution of

Ax = b

equals
x = A−b + (I − A−A)z,

which is a well-known and a commonly applied solution. However, z is of the same
size as x, which is unnatural since all the solutions to Ax = 0 can be generated by
a smaller number of arbitrary elements than the size of x. Keeping this in mind, it
is observed that Ax = 0 means that x ∈ C (A′)⊥. Hence, all solutions to Ax = 0
are given by the orthogonal complement to C (A′), which leads us to the relation

x = (A′)oz,

where z is arbitrary. By a proper choice of (A′)o it is possible to generate all
solutions with a minimum number of free elements in z.
Now we are going to consider matrix extensions of the above equation:

AXB = C,

and
AiXBi = Ci, i = 1, 2.

Furthermore, the solutions of these equations will be utilized when the equation

A1X1B1 + A2X2B2 = 0

is solved. It is interesting to compare our approach with the one given by Rao &
Mitra (1971, Section 2.3) where some related results are also presented.
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Theorem 1.3.4. A representation of the general solution of the consistent equa-
tion in X:

AXB = C

is given by any of the following three formulas:

X = X0 + (A′)oZ1B′ + A′Z2Bo′
+ (A′)oZ3Bo′

;

X = X0 + (A′)oZ1 + A′Z2Bo′
;

X = X0 + Z1Bo′
+ (A′)oZ2B′,

where X0 is a particular solution and Zi, i = 1, 2, 3, stand for arbitrary matrices
of proper sizes.

Proof: Since AXB = 0 is equivalent to (B′ ⊗ A)vecX = 0, we are going to
consider C (B ⊗ A′)⊥. A direct application of Theorem 1.2.20 (ii) yields

C (B ⊗ A′)⊥ =C (Bo ⊗ A′) ��+ C (B ⊗ (A′)o) ��+ C (Bo ⊗ (A′)o)
=C (Bo ⊗ I) ��+ C (B ⊗ (A′)o)
=C (Bo ⊗ A′) ��+ C (I ⊗ (A′)o).

Hence

vecX = (Bo ⊗ A′)vecZ1 + (B ⊗ (A′)o)vecZ2 + (Bo ⊗ (A′)o)vecZ3

or
vecX = (Bo ⊗ A′)vecZ1 + (I ⊗ (A′)o)vecZ2

or
vecX = (Bo ⊗ I)vecZ1 + (B ⊗ (A′)o)vecZ2,

which are equivalent to the statements of the theorem.

Theorem 1.3.5. The equation AXB = C is consistent if and only if C (C) ⊆
C (A) and C (C′) ⊆ C (B′). A particular solution of the equation is given by

X0 = A−CB−.

Proof: By Proposition 1.2.2 (i), C (C) ⊆ C (A) and C (C′) ⊆ C (B′) hold if
AXB = C and so the conditions are necessary. To prove sufficiency assume that
C (C) ⊆ C (A) and C (C′) ⊆ C (B′) are true. Then AXB = C is consistent
since a particular solution is given by X0 of the theorem.

The next equation has been considered in many papers, among others by Mitra
(1973, 1990), Shinozaki & Sibuya (1974) and Baksalary & Kala (1980).
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Theorem 1.3.6. A representation of the general solution of the consistent equa-
tions in X: {

A1XB1 =C1

A2XB2 =C2

is given by

X =X0 + T3Z1S′
1 + T4Z2S′

1 + T4Z3S′
2 + T1Z4S′

3 + T4Z5S′
3

+T1Z6S′
4 + T2Z7S′

4 + T3Z8S′
4 + T4Z9S′

4

or

X =X0 + (A′
2)

oZ1S′
1 + (A′

1 : A′
2)

0Z2S′
2 + (A′

1)
oZ3S′

3 + Z4S′
4

or

X =X0 + T1Z1Bo′
2 + T2Z2(B1 : B2)o′

+ T3Z3Bo′
1 + T4Z4,

where X0 is a particular solution, Zi, i = 1, . . . , 9, are arbitrary matrices of proper
sizes and Si, Ti, i = 1, . . . , 4, are any matrices satisfying the conditions

C (S1) = C (B1 : B2) ∩C (B1)⊥, C (T1) = C (A′
1 : A′

2) ∩C (A′
1)

⊥,

C (S2) = C (B1) ∩C (B2), C (T2) = C (A′
1) ∩C (A′

2),
C (S3) = C (B1 : B2) ∩C (B2)⊥, C (T3) = C (A′

1 : A′
2) ∩C (A′

2)
⊥,

C (S4) = C (B1 : B2)⊥, C (T4) = C (A′
1 : A′

2)
⊥.

Proof: The proof follows immediately from Theorem 1.2.20 (iv) and similar con-
siderations to those given in the proof of Theorem 1.3.4.

Corollary 1.3.6.1. If C (B1) ⊆ C (B2) and C (A′
2) ⊆ C (A′

1) hold, then

X = X0 + (A′
2 : (A′

1)
o)oZ1Bo′

1 + A′
2Z2Bo′

2 + (A′
1)

oZ3.

Corollary 1.3.6.2. If A1 = I and B2 = I hold, then

X = X0 + (A′
2)

oZ1B0′
1 .

The next theorem is due to Mitra (1973) (see also Shinozaki & Sibuya, 1974).

Theorem 1.3.7. The equation system{
A1XB1 =C1

A2XB2 =C2

(1.3.34)

is consistent if and only if A1XB1 = C1 and A2XB2 = C2 are consistent and

A′
1A1(A′

1A1 + A′
2A2)−A′

2C2B′
2(B1B′

1 + B2B′
2)

−B1B′
1

= A′
2A2(A′

2A2 + A′
1A1)−A′

1C1B′
1(B2B′

2 + B1B′
1)

−B2B′
2. (1.3.35)
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A particular solution is given by

X0 = (A′
2A2 + A′

1A1)−A′
1C1B′

1(B2B′
2 + B1B′

1)
−

+ (A′
2A2 + A′

1A1)−A′
2C2B′

2(B2B′
2 + B1B′

1)
−

+ (A′
1A1)−A′

2A2(A′
2A2 + A′

1A1)−A′
1C1B′

1(B2B′
2 + B1B′

1)
−

+ (A′
2A2)−A′

1A1(A′
2A2 + A′

1A1)−A′
2C2B′

2(B2B′
2 + B1B′

1)
−. (1.3.36)

Proof: First of all it is noted that the equations given by (1.3.34) are equivalent
to

A′
1A1XB1B′

1 =A′
1C1B′

1, (1.3.37)
A′

2A2XB2B′
2 =A′

2C2B′
2. (1.3.38)

After pre- and post-multiplication we obtain the following equations
A′

2A2(A′
2A2 + A′

1A1)−A′
1A1XB1B′

1(B2B′
2 + B1B′

1)
−B2B′

2

= A′
2A2(A′

2A2 + A′
1A1)−A′

1C1B′
1(B2B′

2 + B1B′
1)

−B2B′
2

and
A′

1A1(A′
2A2 + A′

1A1)−A′
2A2XB2B′

2(B2B′
2 + B1B′

1)
−B1B′

1

= A′
1A1(A′

2A2 + A′
1A1)−A′

2C2B′
2(B2B′

2 + B1B′
1)

−B1B′
1.

Since, by Lemma 1.2.8
A′

1A1(A′
2A2 + A′

1A1)−A′
2A2 = A′

2A2(A′
2A2 + A′

1A1)−A′
1A1

and
B2B′

2(B2B′
2 + B1B′

1)
−B1B′

1 = B1B′
1(B2B′

2 + B1B′
1)

−B2B′
2

the condition in (1.3.35) must hold. The choice of g-inverse in the parallel sum is
immaterial.
In the next it is observed that from Theorem 1.3.5 it follows that if (1.3.35) holds
then

(A′
2A2)−A′

1A1(A′
2A2 + A′

1A1)−A′
2C2B′

2(B2B′
2 + B1B′

1)
−B1B′

1

= (A′
2A2 + A′

1A1)−A′
1C1B′

1(B2B′
2 + B1B′

1)
−B2B′

2

and
(A′

1A1)−A′
2A2(A′

2A2 + A′
1A1)−A′

1C1B′
1(B2B′

2 + B1B′
1)

−B2B′
2

= (A′
2A2 + A′

1A1)−A′
2C2B′

2(B2B′
2 + B1B′

1)
−B1B′

1.

Under these conditions it follows immediately that X0 given by (1.3.36) is a solu-
tion. Let us show that A′

1A1X0B1B′
1 = A′

1C1B′
1:

A′
1A1X0B1B′

1

= A′
1A1(A′

2A2 + A′
1A1)−A′

1C1B′
1(B2B′

2 + B1B′
1)

−B1B′
1

+ A′
2A2(A′

2A2 + A′
1A1)−A′

1C1B′
1(B2B′

2 + B1B′
1)

−B2B′
2

+ A′
1A1(A′

1A1)−A′
2A2(A′

2A2 + A′
1A1)−A′

1C1B′
1(B2B′

2 + B1B′
1)

−B1B′
1

+ A′
1A1(A′

2A2 + A′
1A1)−A′

2C2B′
2(B2B′

2 + B1B′
1)

−B2B′
2

= A′
1C1B′

1(B2B′
2 + B1B′

1)
−B1B′

1 + A′
1C1B′

1(B2B′
2 + B1B′

1)
−B2B′

2

= A′
1C1B′

1.
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Theorem 1.3.8. A representation of the general solution of

A1X1B1 + A2X2B2 = 0

is given by

X1 = − A−
1 A2(A′

2A
o
1 : (A′

2)
o)oZ3(B2(B′

1)
o)o′

B2B−
1 + (A′

1)
oZ1 + A′

1Z2Bo′
1 ,

X2 = (A′
2A

o
1 : (A′

2)
o)oZ3(B2(B′

1)
o)o′

+ A′
2A

o
1Z4Bo′

2 + (A′
2)

oZ5

or

X1 = − A−
1 A2(A′

2A
o
1)

o(A′
2A

o
1)

o′
A′

2Z6(B2(B′
1)

o)o′
B2B−

1 + (A′
1)

oZ1 + A′
1Z2Bo′

1 ,

X2 = (A′
2A

o
1)

o′
((A′

2A
o
1)

o′
A′

2)
oZ5 + (A′

2A
o
1)

o(A′
2A

o
1)

o′
A′

2Z6(B2(B′
1)

o)o′

+ A′
2A

o
1Z4Bo′

2 ,

where Zi, i = 1, . . . , 6, are arbitrary matrices.

Proof: From Theorem 1.3.5 it follows that there exists a solution if and only if

C (A2X2B2) ⊆ C (A1), C (B′
2X

′
2A

′
2) ⊆ C (B′

1).

These relations are equivalent to

Ao′
1 A2X2B2 = 0, (1.3.39)

A2X2B2(B′
1)

o = 0 (1.3.40)

and from Theorem 1.3.4 and Theorem 1.3.5 it follows that

X1 = −A−
1 A2X2B2B−

1 + (A′
1)

oZ1 + A′
1Z2Bo′

1 . (1.3.41)

Equations (1.3.39) and (1.3.40) do not depend on X1, and since the assumptions
of Corollary 1.3.6.1 are fulfilled, a general solution for X2 is obtained, which is
then inserted into (1.3.41).
The alternative representation is established by applying Theorem 1.3.4 twice.
When solving (1.3.39),

X2 = (A′
2A

o
1)

oZ3 + A′
2A

o
1Z4Bo′

2 (1.3.42)

is obtained, and inserting (1.3.39) into (1.3.40) yields

A2(A′
2A

o
1)

oZ3B2(B′
1)

o = 0.

Hence,
Z3 = ((A′

2A
o
1)

o′
A′

2)
oZ5 + (A′

2A
o
1)

o′
A′

2Z6(B2(B′
1)

o)o′
,

which in turn is inserted into (1.3.42). The solution for X1 follows once again from
(1.3.41).
Next we present the solution of a general system of matrix equations, when a
nested subspace condition holds.
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Theorem 1.3.9. Let Hi = (A′
1 : A′

2 : . . . : A′
i). A representation of the solution

of
AiXBi = 0, i = 1, 2, . . . , s,

when the nested subspace condition C (Bs) ⊆ C (Bs−1) ⊆ · · · ⊆ C (B1) holds, is
given by

X = Ho
sZ1B′

s +
s−1∑
i=1

Ho
i Zi+1(Bo

i : Bi+1)o′
+ Zs+1Bo′

1

or

X = Ho
sZ1 +

s∑
i=2

(Hi−1 : Ho
i )

oZiBo′
i + Zs+1Bo′

1 ,

where Zi are arbitrary matrices.

Proof: By vectorizing the linear equations the proof follows immediately from
Theorem 1.2.21.
Finally the general solution of a linear equation is given in a form which sometimes
is convenient to use.

Theorem 1.3.10. A representation of the general solution of the consistent equa-
tion in x:

Ax = b

is given by
x = A−b,

where A− is an arbitrary g-inverse.

Proof: From Theorem 1.3.5 and Theorem 1.3.6 it follows that a general solution
is given by

x = A−
0 b + (I − A−

0 A0)q, (1.3.43)

where A−
0 is a particular g-inverse and q is an arbitrary vector. Furthermore,

since AA−A = A, all g-inverses to A can be represented via

A− = A−
0 + Z − A−

0 AZAA−
0 , (1.3.44)

where Z is an arbitrary matrix. Now choose Z = q(b′b)−1b′. Then

A−b = A−
0 b+Zb−A−

0 AZAA−
0 b = A−

0 b+(I−A−
0 A)Zb = A−

0 b+(I−A−
0 A)q.

Thus, by a suitable choice of Z in (1.3.44), all solutions in (1.3.43) are of the form
A−b.
Observe the difference between this result and previous theorems where it was
utilized that there always exists a particular choice of g-inverse. In Theorem
1.3.10 it is crucial that A− represents all g-inverses.
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1.3.6 Patterned matrices
The notion patterned matrix has been used differently. Graybill (1983) explains
it as: ”... by recognizing a particular structure, or pattern, in certain matrices...
we call such matrices patterned matrices.” Nel (1980) uses the notion in a more
restricted meaning: ”The matrix is said to be patterned, if a certain number of its
elements are constants or repeated by the absolute value of the elements.”
Furthermore, there are problems when we need only some part of a matrix and
it is of no importance what kind of relation this part has with the rest of the
matrix. For example, when examining the asymptotic distribution of the multiple
correlation coefficients, so-called amputated matrices were introduced by Parring
(1980) in order to cut away certain rows and columns of the original matrix. In
this case we only need to identify certain parts of the matrix.
We are going to consider patterned matrices as subsets of matrix elements without
tieing the notion of a patterned matrix to any specific relation among the elements
of the matrix. We talk about a patterned matrix A(K) if any element or certain
part of the original matrix, defined by an index-set K, has been selected from A,
i.e. a certain pattern has been ”cut out” from the original matrix. If the selected
part consists of constants and repeated by the absolute value of the elements we get
Nel’s (1980) version of a patterned matrix. In fact, the major part of applications
of patterned matrices concern symmetric, skew-symmetric, diagonal, triangular
etc. matrices which are all patterned matrices in the sense of Nel (1980).

Definition 1.3.6. Let A be a p × q−matrix and K a set of pairs of indices:

K = {(i, j) : i ∈ IK , j ∈ JK ; IK ⊂ {1, . . . , p}; JK ⊂ {1, . . . , q}}. (1.3.45)

We call A(K) a patterned matrix and the set K a pattern of the p× q−matrix A,
if A(K) consists of elements aij of A where (i, j) ∈ K.

Note that A(K) is not a matrix in a strict sense since it is not a rectangle of
elements. One should just regard A(K) as a convenient notion for a specific
collection of elements. When the elements of A(K) are collected into one column
by columns of A in a natural order, we get a vector of dimensionality r, where
r is the number of pairs in K. Let us denote this vector by vecA(K). Clearly,
there exists always a matrix which transforms vecA into vecA(K). Let us denote
a r × pq−matrix by T(K) if it satisfies the equality

vecA(K) = T(K)vecA, (1.3.46)

for A : p × q and pattern K defined by (1.3.45). Nel (1980) called T(K) the
transformation matrix. If some elements of A are equal by modulus then the
transformation matrix T(K) is not uniquely defined by (1.3.46). Consider a simple
example.
Example 1.3.3. Let S be a 3 × 3 symmetric matrix:

S =

⎛⎝ s11 s12 0
s12 s22 s23

0 s23 s33

⎞⎠ .
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If we define a pattern K for the lower triangular part:

K = {(i, j) : i, j = 1, 2, 3; i ≥ j},

then the matrix

T1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
... 0 0 0

... 0 0 0

0 1 0
... 0 0 0

... 0 0 0

0 0 0
... 0 0 0

... 0 0 0

0 0 0
... 0 1 0

... 0 0 0

0 0 0
... 0 0 1

... 0 0 0

0 0 0
... 0 0 0

... 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a transformation matrix because it satisfies (1.3.46). However, the matrix

T2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
... 0 0 0

... 0 0 0

0 1
2 0

... 1
2 0 0

... 0 0 0

0 0 1
2

... 0 0 0
... 1

2 0 0

0 0 0
... 0 1 0

... 0 0 0

0 0 0
... 0 0 1

2

... 0 1
2 0

0 0 0
... 0 0 0

... 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.3.47)

also satisfies (1.3.46). Moreover, in (1.3.47) we can replace the third row by zeros
and still the matrix will satisfy (1.3.46).
If one looks for the transformation that just picks out ”proper” elements from A,
the simplest way is to use a matrix which consists of ones and zeros like T1. If
the information about the matrices A and A(K) is given by an index-set K, we
can find a transformation matrix

T(K) : vecA → vecA(K)

solely via a 0-1 construction. Formally, the transformation matrix T(K) is an r×
pq−partitioned matrix of columns consisting of r×p−blocks, and if (vecA(K))f =
aij , where f ∈ {1, . . . , r}, i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, the general element of the
matrix is given by

(T(K))f(g,h) =

{
1 i = h, j = g, g = 1, . . . , p; h = 1, . . . , q;
0 elsewhere,

(1.3.48)

where the numeration of the elements follows (1.3.1). As an example, let us write
out the transformation matrix for the upper triangle of an n×n−matrix A which
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will be denoted by Gn. From (1.3.48) we get the following block-diagonal parti-
tioned 1

2n(n + 1) × n2−matrix Gn:

Gn = ([G11], . . . , [Gnn])[d], (1.3.49)

Gii = (e1, . . . , ei)′ i = 1, . . . , n, (1.3.50)

where, as previously, ei is the i−th unit vector, i.e. ei is the ith column of In.
Besides the general notion of a patterned matrix we need to apply it also in the case
when there are some relationships among the elements in the matrix. We would like
to use the patterned matrix to describe the relationships. Let us start assuming
that we have some additional information about the relationships between the
elements of our matrix. Probably the most detailed analysis of the subject has
been given by Magnus (1983) who introduced linear and affine structures for this
purpose. In his terminology (Magnus, 1983) a matrix A is L-structured, if there
exist some, say (pq − r), linear relationships between the elements of A. We are
interested in the possibility to ”restore” vecA from vecA(K). Therefore we need
to know what kind of structure we have so that we can utilize this additional
information. Before going into details we present some general statements which
are valid for all matrices with some linear relationship among the elements.
Suppose that we have a class of p × q−matrices, say Mp,q, where some arbitrary
linear structure between the elements exists. Typical classes of matrices are sym-
metric, skew-symmetric, diagonal, triangular, symmetric off-diagonal. etc. For all
α, β ∈ R and arbitrary A, D ∈ Mp,q

αA + βD ∈ Mp,q,

and it follows that Mp,q constitutes a linear space. Consider the vectorized form
of the matrices A ∈ Mp,q, i.e. vecA. Because of the assumed linear structure, the
vectors vecA belong to a certain subspace in Rpq, say r-dimensional space and
r < pq. The case r = pq means that there is no linear structure in the matrix of
interest.
Since the space Mp,q is a linear space, we can to the space where vecA belongs,
always choose a matrix B : pq × r which consists of r independent basis vectors
such that B′B = Ir. Furthermore, r < pq rows of B are linearly independent. Let
these r linearly independent rows of B form a matrix B : r × r of rank r and thus
B is invertable. We intend to find matrices (transformations) T and C such that

TB = B, CB = B. (1.3.51)

This means that T selects a unique set of row vectors from B, whereas C creates
the original matrix from B. Since B′B = Ir, it follows immediately that one
solution is given by

T = BB′, C = BB−1.

Furthermore, from (1.3.51) it follows that TC = I, which implies

TCT = T, CTC = C,
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and since CT = BB′ is symmetric, C is the Moore-Penrose inverse of T, i.e.
C = T+.
For any matrix A ∈ Mp,q we can always express vecA = Bq for some vector
q. In the following we shall find the matrix B such that T satisfies (1.3.46).
Thus T is a transformation matrix while T+ realizes the inverse transformation.
Furthermore, T+T = BB′ will always act as an orthogonal projector which later
in special cases will be studied in more detail. If we would not have required the
basis vectors to satisfy B′B = Ir, we could also have obtained T and C matrices,
but then BB′ would not have been an orthogonal projector. In order to consider
the inverse transformation which enables us to ”restore” vecA from vecA(K) we
need additional information. The information is given in the form of a pattern
identifier induced by the linear structure. Therefore, from now on we will just be
focusing on certain patterned matrices that we call linearly structured matrices.

Definition 1.3.7. A matrix A is linearly structured if the only linear structure
between the elements is given by |aij | = |akl| 	= 0 and there exists at least one
(i, j) 	= (k, l) so that |aij | = |akl| 	= 0.
For a linearly structured matrix A : p × q, with r different by absolute value
non-zero elements, a pattern identifier k(i, j) is a function

k(·, ·) : I × J −→ H,

I = {1, . . . , p}, J = {1, . . . , q}, H = {1, . . . , r}
such that for aij 	= 0, agh 	= 0,

k(i, j) = k(g, h) ⇐⇒ |aij | = |agh|.

In Definition 1.3.7 we have not mentioned k(i, j) when aij = 0. However, from
the sequel it follows that it is completely immaterial which value k(i, j) takes if
aij = 0. For simplicity we may put k(i, j) = 0, if aij = 0. It follows also from
the definition that all possible patterned matrices A(K) consisting of different
non-zero elements of A have the same pattern identifier k(i, j). In the following
we will again use the indicator function 1{a=b}, i.e.

1{a=b} =

{
1, a = b, a 	= 0,

0, otherwise.

The next lemma gives a realization of the basis matrix B.

Lemma 1.3.2. Let A : p × q be a linearly structured matrix with r different by
absolute value non-zero elements and pattern identifier k(i, j). The basis matrix
B generates vecA, i.e. vecA = Bq for some q, if

B =
p∑

i=1

q∑
j=1

(dj ⊗ ei)f ′k(i,j)

sgn(aij)√
m(i, j)

, (1.3.52)
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where

m(i, j) =
p∑

r=1

q∑
s=1

1{|aij |=|ars|} (1.3.53)

and the unit basis vectors dj : q × 1, ei : p × 1 and fk(i,j) : r × 1.

Proof: The statement follows, since

vecA =
∑
i,j

aij(dj ⊗ ei)

=
∑
i,j

∑
g,h

(dj ⊗ ei)f ′k(i,j)fk(g,h)
aij

|aij | |agh| 1√
m(i, j)

1√
m(g, h)

=B
∑
g,h

fk(g,h)|agh| 1√
m(g, h)

.

Lemma 1.3.3. Let B be given by (1.3.52). Then, in the notation of Lemma 1.3.2,

(i) the column vectors of B are orthonormal, i.e. B′B = Ir;

(ii) BB′ =
∑
i,j

∑
k,l

(dj ⊗ ei)(dl ⊗ ek)′1{|aij |=|akl|}
1

m(i, j)
. (1.3.54)

Proof: Since fk(i,j) = fk(g,h) if 1{|aij |=|agh|} = 1, straightforward calculations
show that

B′B =
∑
i,j

fk(i,j)f ′k(i,j)

1
m(i, j)

= Ir

and thus (i) is verified. Statement (ii) follows in a similar manner.
Note that for linearly structured matrices the product BB′ is independent of the
pattern identifier k(i, j).

Lemma 1.3.4. For a linearly structured matrix A : p × q, with the pattern
identifier k(i, j), the matrix B in (1.3.51) is given by

B =
p∑

i=1

q∑
j=1

r∑
s=1

fsf ′s1{k(i,j)=s}m(i, j)−3/2, (1.3.55)

where fk(i,j) and m(i, j) are defined in Lemma 1.3.2.

Remark: Note that B is diagonal and thus

B−1 =
p∑

i=1

q∑
j=1

r∑
s=1

fsf ′s1{k(i,j)=s}m(i, j)−1/2. (1.3.56)

From Lemma 1.3.2 and Lemma 1.3.4 it follows that T and C = T+ can easily be
established for any linearly structured matrix.
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Theorem 1.3.11. Let T = BB′ and T+ = BB−1 where B and B are given by
(1.3.52) and (1.3.55), respectively. Then

T =
r∑

s=1

∑
i,j

fs(dj ⊗ ei)′1{k(i,j)=s}m(i, j)−1sgn(aij), (1.3.57)

T+ =
r∑

s=1

∑
i,j

(dj ⊗ ei)f ′s1{k(i,j)=s}sgn(aij), (1.3.58)

where m(i, j) is defined by (1.3.53) and the basis vectors ei, dj , fk(i,j) are defined
in Lemma 1.3.2.

Proof: From (1.3.52) and (1.3.55) we get

T = BB′

=
∑
i1,j1

r∑
s=1

fsf ′s1{k(i1,j1)=s}m(i1, j1)−3/2
∑
i,j

fk(i,j)(dj ⊗ ei)′
sgn(aij)√

m(i, j)

=
∑
i1,j1

∑
i,j

r∑
s=1

fs(dj ⊗ ei)′1{k(i1,j1)=s}1{k(i,j)=s}

× m(i1, j1)−3/2m(i, j)−1/2sgn(aij)

=
∑
i,j

r∑
s=1

fs(dj ⊗ ei)′1{k(i,j)=s}m(i, j)−1sgn(aij),

since ∑
i1,j1

1{k(i1,j1)=s} = m(i1, j1)

and k(i1, j1) = k(i, j) implies that m(i1, j1) = m(i, j). Thus, the first statement is
proved. The second statement follows in the same way from (1.3.52) and (1.3.56):

T+ = BB−1

=
∑
i,j

(dj ⊗ ei)f ′k(i,j)

sgn(aij)√
m(i, j)

∑
i1,j1

r∑
s=1

fsf ′s1{k(i1,j1)=s}m(i1, j1)−1/2

=
∑
i1,j1

∑
i,j

r∑
s=1

(dj ⊗ ei)f ′s1{k(i1,j1)=s}1{k(i,j)=s}

× m(i1, j1)−1/2m(i, j)−1/2sgn(aij)

=
∑
i,j

r∑
s=1

(dj ⊗ ei)f ′s1{k(i,j)=s}sgn(aij).

The following situation has emerged. For a linearly structured matrix A the struc-
ture is described by the pattern identifier k(i, j) with several possible patterns K.
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The information provided by the k(i, j) can be used to eliminate repeated ele-
ments from the matrix A in order to get a patterned matrix A(K). We know that
vecA = Bq for some vector q, where B is defined in Lemma 1.3.2. Furthermore,
for the same q we may state that vecA(K) = Bq. The next results are important
consequences of the theorem.

Corollary 1.3.11.1. Let A be a linearly structured matrix and B a basis which
generates vecA. Let B given in Lemma 1.3.4 generate vecA(K). Then the trans-
formation matrix T, given by (1.3.57), satisfies the relation

vecA(K) = TvecA (1.3.59,)

and its Moore-Penrose inverse T+, given by (1.3.58), defines the inverse transfor-
mation

vecA = T+vecA(K) (1.3.60)

for any pattern K which corresponds to the pattern identifier k(i, j) used in T.

Proof: Straightforward calculations yield that for some q

TvecA = TBq = Bq = vecA(K).

Furthermore,
T+vecA(K) = T+Bq = Bq = vecA.

As noted before, the transformation matrix T which satisfies (1.3.59) and (1.3.60)
was called transition matrix by Nel (1980). The next two corollaries of Theorem
1.3.11 give us expressions for any element of T and T+, respectively. If we need to
point out that the transition matrix T is applied to a certain matrix A from the
considered class of matrices M, we shall write A as an argument of T, i.e. T(A),
and sometimes we also indicate which class A belongs to.

Corollary 1.3.11.2. Suppose A is a p × q linearly structured matrix with the
pattern identifier k(i, j), and A(K) denotes a patterned matrix where K is one
possible pattern which corresponds to k(i, j), and T(A) is defined by (1.3.57).
Then the elements of T(A) are given by

(T(A))s(j,i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

ms
, if aij = (vecA(K))s,

− 1
ms

, if aij = −(vecA(K))s,

0, otherwise,

(1.3.61)

where s = 1, . . . , r, i = 1, . . . , p, j = 1, . . . , q, vecA(K) : r × 1 is as in Corollary
1.3.11.1, the numeration of the elements follows (1.3.1) and

ms =
p∑

i=1

q∑
j=1

1{|(vecA(K))s|=|aij |}
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Corollary 1.3.11.3. Suppose A : p × q is a linearly structured matrix with the
pattern identifier k(i, j), and A(K) denotes a patterned matrix where K is one
possible pattern which corresponds to k(i, j), and T is defined by (1.3.57). Then
the elements of T+ are given by

(T+)(j,i)s =

⎧⎪⎨⎪⎩
1 if aij = (vec A(K))s,

−1 if aij = −(vec A(K))s,

0 otherwise,

(1.3.62)

where s = 1, . . . , r, i = 1, . . . , p, j = 1, . . . , q, vecA(K) : r × 1 is as in Corollary
1.3.11.1 and the numeration of the elements follows (1.3.1).

Example 1.3.4 Let us see what the transition and inverse transition matrices
look like in Example 1.3.3. Indeed, we can easily check that T2 in (1.3.47) is the
transition matrix. Direct calculation yields the inverse transition matrix:

T+
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
− − − − − −
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
− − − − − −
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For applications the most important special case is the symmetric matrix and its
transition matrix. There are many possibilities of picking out 1

2n(n + 1) different

elements from a symmetric n×n−matrix (2
n(n−1)

2 , in fact). Two most common of
them being the lower and the upper triangles. The point of using the transition
matrix is that for any choice of elements, the transition matrix will always be the
same and is described by the so-called duplication matrix which has been carefully
examined by Magnus & Neudecker (1999), as well as by others. In our treatment we
shall use somewhat different notation. Let A be a symmetric n×n−matrix and let
the patterned matrix consisting of the elements of its lower triangle be represented
by A�. Denote the corresponding transition matrix by Dn : 1

2n(n + 1) × n2:

DnvecA = vecA�. (1.3.63)

Then
D+

n vecA� = vecA. (1.3.64)

The matrix D+
n is called duplication matrix and its basic properties have been

collected in the next proposition (for proofs, see Magnus & Neudecker, 1999).
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Proposition 1.3.16. Let the duplication matrix D+
n be defined by (1.3.64) and

the corresponding transition matrix Dn by (1.3.63). Then

(i) Kn,nD+
n = D+

n ;

(ii) D+
n Dn =

1
2
(In2 + Kn,n);

(iii) for any n−vector b and A : n × n

D+
n Dn(b ⊗ A) =

1
2
(b ⊗ A + A ⊗ b);

(iv) for A : n × n

D+
n Dn(A ⊗ A)D+

n = (A ⊗ A)D+
n ;

(v) for A : n × n

D+
n Dn(A ⊗ A)D′

n = (A ⊗ A)D′
n;

(vi) for non-singular A : n × n

(Dn(A ⊗ A)D+
n )−1 = Dn(A−1 ⊗ A−1)D+

n ;

(vii) for non-singular A : n × n

(D+
n
′(A ⊗ A)D+

n )−1 = Dn(A−1 ⊗ A−1)D′
n.

As we saw in Theorem 1.3.11, it was possible to characterize transition matrices
mathematically. Unfortunately, in general, not many interesting and easily inter-
pretable properties can be found for these matrices. One reason for this is that T
is a function of the pattern identifier, which means that results depend on fk(i,j).
However, Nel (1980) brought forward the notion of pattern matrix which shares
some basic properties with T+. For example, both generate the same subspace.
We shall call it pattern projection matrix.

Definition 1.3.8. Let T be the transition matrix for a linearly structured matrix
A : p× q with the pattern identifier k(i, j). Then the matrix M : pq × pq, defined
by

M = T+T (1.3.65)

is called the pattern projection matrix of A.

Observe that M is an orthogonal projector and from a geometrical point of view
this is an interesting definition. Some basic properties of the pattern matrix M
are collected in the following proposition. The statements all follow in elementary
way from Definition 1.3.8 and from the fact that M is a projector.
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Proposition 1.3.17. Let M be given by (1.3.65). Then

(i) M is symmetric;

(ii) M is idempotent;

(iii) if A is p × q−matrix with the transition matrix T, then

MvecA = vecA; (1.3.66)

(iv) T is invariant under right multiplication and T+ is invariant under left
multiplication by M, respectively.

Now some widely used classes of linearly structured n× n square matrices will be
studied. We shall use the following notation:

– s (sn) for symmetric matrices (sn if we want to stress the dimensions of the
matrix);

– ss (ssn) – skew-symmetric matrices;

– d (dn) – diagonal matrices;

– c (cn) – correlation type matrices or symmetric off-diagonal matrices;

– u (un) – upper triangular matrices;

– l (ln) – lower triangular matrices;

– t (tn) – Toeplitz matrices.

For instance, M(s) and T(s) will be the notation for M and T for a symmetric A.
In the following propositions the pattern identifier k(i, j) and matrices B, T, T+

and M are presented for the listed classes of matrices. Observe that it is supposed
that there exist no other relations between the elements than the basic ones which
define the class. For example, all diagonal elements in the symmetric class and
diagonal class differ. In all these propositions ei and fk(i,j) stand for the n− and
r−dimensional basis vectors, respectively, where r depends on the structure. Let
us start with the class of symmetric matrices.

Proposition 1.3.18. For the class of symmetric n×n−matrices A the following
equalities hold:

k(i, j) =n(min(i, j) − 1) − 1
2 min(i, j)(min(i, j) − 1) + max(i, j),

B(sn) =
1√
2

n∑
i,j=1
i �=j

(ej ⊗ ei)f ′k(i,j)sgn(aij) +
n∑

i=1

(ei ⊗ ei)f ′k(i,i)sgn(aii),
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T(sn) =
1
2

n∑
i,j=1
i<j

r∑
s=1

fs(ej ⊗ ei + ei ⊗ ej)′1{k(i,j)=s}sgn(aij)

+
n∑

i=1

r∑
s=1

fs(ei ⊗ ei)′1{k(i,i)=s}sgn(aii), r =
1
2
n(n + 1),

T+(s) =
n∑

i,j=1
i<j

r∑
s=1

(ej ⊗ ei + ei ⊗ ej)f ′s1{k(i,j)=s}sgn(aij)

+
n∑

i=1

r∑
s=1

(ei ⊗ ei)f ′s1{k(i,i)=s}sgn(aii),

M(s) =
1
2
(I + Kn,n).

Proof: If we count the different elements row by row we have n elements in the
first row, n − 1 different elements in the second row, n − 2 elements in the third
row, etc. Thus, for aij , i ≤ j, we are in the i−th row where the j−th element
should be considered. It follows that aij is the element with number

n + n − 1 + n − 2 + · · · + n − i + 1 + j − i

which equals

n(i − 1) − 1
2
i(i − 1) + j = k(i, j).

If we have an element aij , i > j, it follows by symmetry that the expression
for k(i, j) is true and we have verified that k(i, j) holds. Moreover, B(s) follows
immediately from (1.3.52). For T(s) and T+(s) we apply Theorem 1.3.11.

Proposition 1.3.19. For the class of skew-symmetric matrices A : n×n we have

k(i, j) =n(min(i, j) − 1) − 1
2 min(i, j)(min(i, j) − 1) + max(i, j) − min(i, j), i 	= j,

k(i, i) =0,

B(ssn) =
1√
2

n∑
i,j=1
i �=j

(ej ⊗ ei)f ′k(i,j)sgn(aij),

T(ssn) =
1
2

n∑
i,j=1
i<j

r∑
s=1

fs(ej ⊗ ei − ei ⊗ ej)′1{k(i,j)=s}sgn(aij), r =
1
2
n(n − 1),

T+(ss) =
n∑

i,j=1
i<j

r∑
s=1

(ej ⊗ ei − ei ⊗ ej)f ′s1{k(i,j)=s}sgn(aij),

M(ss) =
1
2
(I − Kn,n).



108 Chapter I

Proof: Calculations similar to those in Proposition 1.3.18 show that the relation
for k(i, j) holds. The relations for B(ss), T(ss) and T+(ss) are also obtained in
the same way as in the previous proposition. For deriving the last statement we
use the fact that sgn(aij)sgn(aij) = 1:

M(ss) = B(ss)B′(ss) =
1√
2

n∑
i,j=1

(ej ⊗ ei)(ej ⊗ ei − ei ⊗ ej) =
1
2
(I − Kn,n).

Proposition 1.3.20. For diagonal matrices A : n × n with different diagonal
elements we obtain

k(i, i) =i, k(i, j) = 0, i 	= j,

B(dn) =
n∑

i=1

(ei ⊗ ei)e′i,

T(dn) =
n∑

i=1

ei(ei ⊗ ei)′,

T+(dn) =
n∑

i=1

(ei ⊗ ei)e′i,

M(dn) =
n∑

i=1

(ei ⊗ ei)(ei ⊗ ei)′ = (Kn,n)d.

Proof: In Lemma 1.3.2 and Theorem 1.3.11 we can choose fk(i,j) = ei which
imply the first four statements. The last statement follows from straightforward
calculations, which yield

M(d) = B(d)B′(d) =
n∑

i=1

(ei ⊗ ei)(ei ⊗ ei)′ = (Kn,n)d.

Observe that we do not have to include sgn(aij) in the given relation in Proposition
1.3.20.

Proposition 1.3.21. For any A : n × n belonging to the class of symmetric
off-diagonal matrices it follows that

k(i, j) =n(min(i, j) − 1) − 1
2 min(i, j)(min(i, j) − 1) + max(i, j) − min(i, j), i 	= j,

k(i, i) =0,

B(cn) =
1√
2

n∑
i,j=1
i �=j

(ej ⊗ ei)f ′k(i,j)sgn(aij),
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T(cn) =
1
2

n∑
i,j=1
i<j

r∑
s=1

fs(ej ⊗ e′i + ei ⊗ ej)′1{k(i,j)=s}sgn(aij), r =
1
2
n(n − 1),

T+(cn) =
n∑

i,j=1
i<j

n∑
i=1

(ej ⊗ ei + ei ⊗ ej)f ′s1{k(i,j)=s}sgn(aij),

M(cn) =
1
2
(I + Kn,n) − (Kn,n)d.

Proof: The same elements as in the skew-symmetric case are involved. Therefore,
the expression for k(i, j) follows from Proposition 1.3.19. We just prove the last
statement since the others follow from Lemma 1.3.2 and Theorem 1.3.11. By
definition of B(c)

M(c) =B(c)B′(c) =
n∑

i,j=1
i �=j

n∑
k,l=1
k �=l

1
2
(ej ⊗ ei)f ′

k(i,j)fk(k,l)(el ⊗ ek)′sgn(aij)sgn(akl)

=
1
2

n∑
i,j=1
i �=j

(ej ⊗ ei)(ej ⊗ ei + ei ⊗ ej)′ =
1
2
(I + Kn,n) − (Kn,n)d.

Proposition 1.3.22. For any A : n×n from the class of upper triangular matrices

k(i, j) =n(i − 1) − 1
2 i(i − 1) + j, i ≤ j,

k(i, j) =0, i > j,

B(un) =
n∑

i,j=1
i≤j

(ej ⊗ ei)f ′k(i,j)sgn(aij),

T(un) =
n∑

i,j=1
i≤j

r∑
s=1

fs(ej ⊗ ei)′1{k(i,j)=s}sgn(aij), r =
1
2
n(n + 1),

T+(un) =
n∑

i,j=1
i≤j

r∑
s=1

(ej ⊗ ei)f ′s1{k(i,j)=s}sgn(aij),

M(un) =
n∑

i,j=1
i≤j

(ej ⊗ ei)(ej ⊗ ei)′.

Proof: Here the same elements as in the symmetric case are regarded. The
expression for k(i, j) is thus a consequence of Proposition 1.3.18. Other statements
could be obtained by copying the proof of Proposition 1.3.21, for example.
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Observe the similarity between T(un) in Proposition 1.3.22 and Gn given by
(1.3.49) and (1.3.50). By symmetry it follows that we may state a proposition for
lower triangular matrices. Moreover, note the similarity between T(ln) and Dn

given by (1.3.63) and (1.3.64).

Proposition 1.3.23. For any A : n×n from the class of lower triangular matrices

k(i, j) =n(j − 1) − 1
2j(j − 1) + i, j ≤ i,

k(i, j) =0, i < j,

B(ln) =
n∑

i,j=1
i≥j

(ei ⊗ ej)f ′k(i,j)sgn(aij),

T(ln) =
n∑

i,j=1
i≥j

r∑
s=1

fs(ei ⊗ ej)′1{k(i,j)=s}sgn(aij), r =
1
2
n(n + 1),

T+(ln) =
n∑

i,j=1
i≥j

r∑
s=1

(ei ⊗ ej)f ′s1{k(i,j)=s}sgn(aij),

M(ln) =
n∑

i,j=1
i≥j

(ei ⊗ ej)(ei ⊗ ej)′.

Proposition 1.3.24. For any Toeplitz matrix A : n × n,

k(i, j) =n + j − i,

B(tn) =
n∑

i,j=1

(ej ⊗ ei)f ′k(i,j)

1√
n − |j − i| sgn(aij),

T(tn) =
n∑

i,j=1

r∑
s=1

fs(ej ⊗ ei)′1{k(i,j)}
1

n − |j − i| sgn(aij), r = 2n − 1,

T+(tn) =
n∑

i,j=1

r∑
s=1

(ej ⊗ ei)f ′s1{k(i,j)}sgn(aij),

M(tn) =
n∑

i,j,k,l=1
j−i=l−k

(ej ⊗ ei)(el ⊗ ek)′
1

n − |j − i| .

Proof: Since by definition of a Toeplitz matrix (see §1.1.1) aij = ai−j we have
2n − 1 different elements in A. Because j − i ranges through

−(n − 1),−(n − 2), . . . , (n − 1),

the equality for k(i, j) is true. If j − i = t we have j = t + i. Since 1 ≤ j ≤ n, we
have for t ≥ 0 the restriction 1 ≤ i ≤ n− t. If t ≤ 0 then 1 ≤ i ≤ n + t. Therefore,
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for fixed t, we have n − |t| elements. Hence, B(t) follows from Lemma 1.3.2. The
other statements are obtained by using Theorem 1.3.11 and (1.3.65).
We will now study the pattern projection matrices M(·) in more detail and examine
their action on tensor spaces. For symmetric matrices it was shown that M(s) =
1
2 (In2 +Kn,n). From a tensor space point of view any vectorized symmetric matrix
A : n × n can be written as

vecA =
n∑

i,j=1

aij(ej ⊗ ei) =
n∑

i,j=1

aij
1
2
((ej ⊗ ei) + (ei ⊗ ej)). (1.3.67)

Moreover,

1
2
(In2 + Kn,n)

1
2
((ej ⊗ ei) + (ei ⊗ ej)) =

1
2
((ej ⊗ ei) + (ei ⊗ ej)), (1.3.68)

1
2
(In2 + Kn,n)(ej ⊗ ei) =

1
2
[(ej ⊗ ei) + (ei ⊗ ej)] (1.3.69)

and for arbitrary H : n × n

1
2
(In2 + Kn,n)vecH =

1
2
vec(H + H′), (1.3.70)

which means that H has been symmetrized. Indeed, (1.3.67) – (1.3.70) all show,
in different ways, how the projector 1

2 (In2 + Kn,n) acts. Direct multiplication of
terms shows that

1
2
(In2 + Kn,n)

1
2
(In2 − Kn,n) = 0

and since 1
2 (In2−Kn,n) is the pattern matrix and a projector on the space of skew-

symmetric matrices, it follows that vectorized symmetric and skew-symmetric ma-
trices are orthogonal. Furthermore, vectorized skew-symmetric matrices span the
orthogonal complement to the space generated by the vectorized symmetric ma-
trices since

In2 =
1
2
(In2 + Kn,n) +

1
2
(In2 − Kn,n).

Similarly to (1.3.67) for symmetric matrices, we have representations of vectorized
skew-symmetric matrices

vecA =
n∑

i,j=1

aij(ej ⊗ ei) =
n∑

i,j=1

aij
1
2
((ej ⊗ ei) − (ei ⊗ ej)).

Moreover,

1
2
(In2 − Kn,n)

1
2
((ej ⊗ ei) − (ei ⊗ ej)) =

1
2
((ej ⊗ ei) − (ei ⊗ ej)),

1
2
(In2 − Kn,n)(ej ⊗ ei) =

1
2
((ej ⊗ ei) − (ei ⊗ ej))
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and for arbitrary H : n × n

1
2
(In2 − Kn,n)vecH =

1
2
vec(H − H′),

where H−H′ is obviously skew-symmetric. Furthermore, the whole space can be
generated by (ej ⊗ ei) which can also be represented another way:

(ej ⊗ ei) =
1
2
((ej ⊗ ei) + (ei ⊗ ej)) +

1
2
((ej ⊗ ei) − (ei ⊗ ej)).

Next we are going to decompose the space generated by vectorized symmetric
matrices into two orthogonal spaces, namely the spaces generated by vectorized
diagonal matrices and vectorized symmetric off-diagonal matrices. Everything
follows from the relations:

1
2
(In2+Kn,n) =

1
2
(In2 + Kn,n) − (Kn,n)d + (Kn,n)d;

(
1
2
(In2 + Kn,n) − (Kn,n)d)(Kn,n)d = 0.

Thus, according to Proposition 1.3.20 and Proposition 1.3.21, any matrix can be
written as a sum of a symmetric off-diagonal matrix, a diagonal matrix and a
skew-symmetric matrix.
One advantage of working with projectors is that it is easy to work with any
structure generated by linearly structured matrices as well as to combine these
structures.
Moreover, we have seen that the class of skew-symmetric matrices is orthogonal
to the class of symmetric matrices. It is fairly easy to generalize this result to
arbitrary classes of linearly structured matrices. Consider the basis matrix B
given by (1.3.52). Let

q =
p∑

i=1

q∑
j=1

qij(dj ⊗ ei),

and suppose that q′B = 0, i.e.

0 = q′B =
p∑

i=1

q∑
j=1

qijf ′k(i,j)

sgn(aij)√
m(i, j)

, (1.3.71)

where m(i, j) is defined by (1.3.53). Since k(i, j) ∈ {1, 2, . . . , r}, it follows that
(1.3.71) is equivalent to

p∑
i=1

q∑
j=1

k(i,j)=s

qij
sgn(aij)√

m(i, j)
= 0, s = 1, 2, . . . , r. (1.3.72)

This is a linear equation in qij which can always be solved. If m(i, j) = m, we
will obtain m − 1 different solutions. In particular, if m = 1 for (i, j) such that
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k(i, j) = s, the corresponding qij = 0. If sgn(aij) = 1 and m = 2 for, say (i1, j1)
and (i2, j2), we have

qi1,j1 + qi2,j2 = 0

and therefore qi1,j1 = −qi2,j2 . Thus, from (1.3.72) we can determine all vectors
which are orthogonal to B and find the orthogonal complement to B.

Let us consider Toeplitz matrices in more detail. Another way to express the
basis matrix B(t) in Proposition 1.3.24 is

B(t) =
2n−1∑
k=1

n∑
i=1

i−|n−k|≥1

1√
n − |n − k| (ek+i−n ⊗ ei)f ′ksgn(aik+i−n).

An advantage of this representation is that we can see how the linear space, which
corresponds to a Toeplitz matrix, is built up. The representation above decom-
poses the space into (2n − 1) orthogonal spaces of dimension 1. Moreover, since
M(t) = B(t)B(t)′,

M(t) =
2n−1∑
k=1

n∑
i=1

i−|n−k|≥1

n∑
j=1

j−|n−k|≥1

1
n − |n − k| (ek+i−n ⊗ ei)(ek+j−n ⊗ ej)′.

We are going to determine the class of matrices which is orthogonal to the class
of Toeplitz matrices.

Theorem 1.3.12. A basis matrix B(t)o of the class which is orthogonal to all
vectorized n × n Toeplitz matrices is given by

Bo(t) =
2n−1∑
k=2

n−2−|n−k|∑
r=1

n∑
i=1

i−|n−k|≥1

(ek+i−n ⊗ ei)(gr
k)′mk,r,i,

where ei : n × 1, gr
k : (n − 1)2 × 1, the j−th element of gr

k equals

(gr
k)j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if j =
1
2
(k − 1)(k − 2) + r, 2 ≤ k ≤ n, 1 ≤ r ≤ k − 1,

1, if j = (n − 1)2 − 1
2
(2n − k − 1)(2n − k − 2) − r + 1,

n < k ≤ 2n − 2, 1 ≤ r ≤ 2n − k − 1,

0, otherwise

and

mk,r,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− n − |n − k| − r√
(n − |n − k| − r)2 + n − |n − k| − r

, i = 1 + |n − k|,

1√
(n − |n − k| − r)2 + n − |n − k| − r

,

i = 2 + |n − k|, 3 + |n − k|, . . . , n − r + 1,

0, otherwise.
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Proof: First we note that B(t) is of size n2 × (2n − 1) and Bo(t) is built up
so that for each k we have n − 1 − |n − k| columns in Bo(t) which are specified
with the help of the index r. However, by definition of mk,r,i, these columns are
orthogonal to each other and thus r(Bo(t)) = n2 − (2n− 1) = (n− 1)2. Therefore
it remains to show that Bo′

(t)B(t) = 0 holds. It is enough to do this for a fixed
k. Now,

n−1−|n−k|∑
r=1

n∑
i,i1=1

i,i1≥1+|n−k|

gr
k(ek+i−n ⊗ ei)′(ek+i1−n ⊗ ei1)f

′
kmk,r,isgn(ai1k+i1−n)

=
n−1−|n−k|∑

r=1

n∑
i=1

i−|n−k|≥1

gr
kf

′
kmk,r,isgn(ai1k+i1−n).

Since by definition of a Toeplitz matrix sgn(aik+i−n) = sgn(an−k) is independent
of i and

n∑
i=1

i−|n−k|≥1

mk,r,i = 0,

we have that Bo′
(t)B(t) = 0.

1.3.7 Vectorization operators
In this paragraph we are going to introduce notions which have been designed par-
ticularly for symmetric matrices and other matrices which comprise linear struc-
tures. These notions enable us to select all nonrepeated elements from the set of
all possible moments of a certain order, or all partial derivatives of a given order,
for example. The presentation of the material is based on the paper by Kollo &
von Rosen (1995b). Let (i, j) stand for the number of combinations given by

(i, j) =
(

i − 1 + j − 1
i − 1

)
, i, j = 1, 2, . . . , (1.3.73)

and
(0, j) = (i, 0) = 0.

Then (i, j) has the following properties which will be used later:

(i) (i, j) = (j, i);
(ii) (i, j) = (i, j − 1) + (i − 1, j);

(iii) (i + 1, j) =
j∑

k=1

(i, k). (1.3.74)

In particular,

(1, j) = 1, (2, j) = j, (3, j) = j(j + 1)/2, (4, j) =
j∑

k=1

k(k + 1)/2.



Basic Matrix Theory and Linear Algebra 115

Moreover, using (ii) it is easy to construct the following table for small values of
i and j, which is just a reformulation of Pascal’s triangle. One advantage of this
table is that (iii) follows immediately.

Table 1.3.1. The combinations (i, j) for i, j ≤ 7.

i
j

1
2
3
4
5
6
7

1

1
1
1
1
1
1
1

2

1
2
3
4
5
6
7

3

1
3
6

10
15
21
28

4

1
4

10
20
35
56
84

5

1
5

15
35
70

126
210

6

1
6

21
56

126
252
462

7

1
7

28
84

210
462
924

In the following a new operator is defined which is called vectorization operator
and which is fundamental to all results of this section.

Definition 1.3.9. For any matrix A : (j, n) × n, j = 1, 2, . . . the vectorization
operator is given by

V j(A) = (a11, a12, . . . , a(j,2)2, a13, . . . , a(j,3)3, . . . , a1n, . . . , a(j,n)n)′, (1.3.75)

where (i,j) is defined by (1.3.73).

The vector V j(A) consists of (j + 1, n) elements. In particular, for j = 1, 2, 3, we
have

V 1(A) =(a11, a12, . . . , a1n)′,
V 2(A) =(a11, a12, a22, a13, a23, a33, . . . , a1n, a2n, . . . , ann)′,
V 3(A) =(a11, a12, a22, a32, a13, a23, a33, a43, a53, a63, . . . , an(n+1)

2 n
)′.

In Definition 1.3.9 the index j is connected to the size of the matrix A. In principle
we could have omitted this restriction, and V j(A) could have been defined as a
selection operator, e.g. V 1(A) could have been an operator which picks out the
first row of any matrix A and thereafter transposes it.
Now an operator Rj will be defined which makes it possible to collect, in a suitable
way, all monomials obtained from a certain patterned matrix. With monomials of
a matrix A = (aij) we mean products of the elements aij , for example, a11a22a33

and a21a32a41 are monomials of order 3.

Definition 1.3.10. For a patterned matrix A : p × q, the product vectorization
operator Rj(A) is given by

Rj(A) = V j(Rj−1(A)vec′A(K)), j = 1, 2, . . . , (1.3.76)
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where R0(A) = 1 and A(K) is given in §1.3.6.

In particular, for a symmetric A, the operator Rj(A) equals

Rj(A) = V j(Rj−1(A)V 2(A)′), j = 1, 2, . . . (1.3.77)

From Definition 1.3.10 it follows that Rj(vecA(K)) = Rj(A) = Rj(A(K)). More-
over, let us see how Rj(•) transforms a p−vector x = (x1, . . . , xp)′. From Defini-
tion 1.3.10 it follows that

R1(x) = x, R2(x) = V 2(xx′).

Thus, R2(x) is a vectorized upper triangle of the matrix xx′.

R3(x) = V 3(R2(x)x′) = V 3(V 2(xx′)x′),

which forms a (4, p)−vector of all different monomials xixjxk, i, j, k = 1, 2, . . .. In
order to establish the fact that Rj(A) represents all different monomials of order
j, with respect to the elements akl, a set Gj of monomials of order j is introduced:

Gj =

⎧⎨⎩∏
k,l

akl
ij(k,l) : ij(k, l) ∈ {0, 1, . . . , j},

∑
k,l

ij(k, l) = j

⎫⎬⎭ .

To illustrate the set Gj let us look at the following example.
Example 1.3.5 Let

X =
(

x 2x
ex −2

)
.

Then i2(k, l) ∈ {0, 1, 2}, ∑
k,l i2(k, l) = 2 and

G2 =
{

x2, 4x2, e2x, 4, 2x2, xex, −2x, 2xex, −4x, −2ex

}
.

Theorem 1.3.13. Rj(A) consists of all elements in Gj and each element appears
only once.

Proof: We shall present the framework of the proof and shall not go into details.
The theorem is obviously true for j = 1 and j = 2. Suppose that the theorem holds
for j − 1, i.e. Rj−1(A) consist of elements from Gj−1 in a unique way. Denote the
first (j, k) elements in Rj−1(A) by Rj−1

k . In the rest of the proof suppose that A
is symmetric. For a symmetric A : n × n

Rj−1
(3,n−1)+n = Rj−1(A),

and by assumption Rj−1
k (A), k = 1, 2, . . . , (3, n−1)+n, consist of unique elements.

Now,

Rj(A) = vec((Rj−1
1 )′a11, (R

j−1
2 )′a12, . . . , (R

j−1
(3,n−1)+n−1)

′an−1n, (Rj−1
(3,n−1)+n)′ann)
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and since Rj−1
(3,n−1)+n−1 does not include ann, Rj−1

(3,n−1)+n−2 does not include

ann, an−1n, Rj−1
(3,n−1)+n−3 does not include ann, an−1n, an−2n, etc., all elements

appear only once in Rj(A).
The operator Rj(A) will be illustrated by a simple example.
Example 1.3.6 Let

A =
(

a11 a12

a12 a22

)
be a symmetric matrix. Then vec′(A(K)) = (a11, a12, a22) and

R1(A) =vec(A(K)),
R2(A) =V 2(R1(A)vec′(A(K)))

=V 2

⎛⎝ a2
11 a11a12 a11a22

a12a11 a2
12 a12a22

a22a11 a22a12 a2
22

⎞⎠ = (a2
11, a11a12, a

2
12, a11a22, a12a22, a

2
22)

′,

R3(A) =V 3(R2(A)vec′(A(K)))

=V 3

⎛⎜⎜⎜⎜⎜⎝
a3
11 a2

11a12 a2
11a22

a2
11a12 a11a

2
12 a11a12a22

a11a
2
12 a3

12 a2
12a22

a2
11a22 a11a12a22 a11a

2
22

a11a12a22 a2
12a22 a12a

2
22

a11a
2
22 a12a

2
22 a3

22

⎞⎟⎟⎟⎟⎟⎠
=(a3

11, a
2
11a12, a11a

2
12, a

3
12, a

2
11a22, a11a12a22, a

2
12a22, a11a

2
22, a12a

2
22, a

3
22)

′.
(1.3.78)

Moreover,

R2
1 = a2

11, R2
2 = (a2

11, a11a12, a
2
12)

′, R2
3 = R2(A), R3

1 = a3
11,

R3
2 = (a3

11, a
2
11a12, a11a

2
12, a

3
12)

′ and R3
3 = R3(A).

We also see that

R3(A) = vec((R2
1)

′a11, (R2
2)

′a12, (R2
3)

′a33).

Let, as before, em denote the m−th unit vector, i.e. the m−th coordinate of
em equals 1 and other coordinates equal zero. The next theorem follows from
Definition 1.3.9.

Theorem 1.3.14. Let A : (s, n) × n and em : (s + 1, n) − vector. Then

V s(A) =
∑

i

∑
j

aije(s+1,j−1)+i, 1 ≤ i ≤ (s, j), 1 ≤ j ≤ n.

By using Definition 1.3.10 and Theorem 1.3.14 repeatedly, the next theorem can
be established.
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Theorem 1.3.15. For a patterned matrix A, let vecA(K) = c = (ci), i =
1, 2, . . . , n. Then

Rj(A) =
∑
Ij

(
j∏

r=1

cir
)euj

,

where

Ij = {(i1, i2, . . . , ij) : ig = 1, 2, . . . , n; 1 ≤ uk−1 ≤ (k, ik), k = 1, 2, . . . , j}

and

us = 1 +
s+1∑
r=2

(r, ir−1 − 1), u0 = 1.

Proof: The theorem obviously holds for j = 1. Furthermore,

cc′ =
∑
i1,i2

ci1ci2ei1e
′
i2

and since by Theorem 1.3.14

V 2(eu1e
′
i2) = eu2 ,

the theorem is true for j = 2. Now suppose that the theorem is true for j − 1. For
j we have

Rj(A) = V j(Rj−1(A)c′)

and since
V j(euj−1e

′
j) = euj

the theorem is established.
If we want to express Rj(A) through the elements of A, instead of coordinates of
vecA(K), we have to know how vecA(K) has been constructed. The index set Ij

and ci are then transformed to the index set K and akl, respectively. If A has
some known structure we can give more details, i.e. we can present Rj(A) through
the elements of A instead of using vecA(K). In particular, if A is symmetric, we
obtain

Theorem 1.3.16. For symmetric A : n × n

Rj(A) =
∑
Ij

(
j∏

r=1

ai2r−1i2r )euj

where

Ij ={(i1, i2, . . . , ij) : ig = 1, 2, . . . , n; i2k−1 ≤ i2k;
1 ≤ uk ≤ (k + 1, (3, i2k+2 − 1) + i2k+1), k = 0, . . . , j − 1}
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and

uj =1 +
j+1∑
k=2

(k, (3, i2k−2 − 1) + i2k−3 − 1), u0 = 1.

For a better understanding of Theorem 1.3.15 and Theorem 1.3.16 we suggest the
reader to study Example 1.3.6.

1.3.8 Problems
1. Let V be positive definite and set S = V + BKB′, where the matrix K is

such that C (S) = C (V : B). Show that

S = VBo(Bo′
VBo)−Bo′

V + B(B′SB)−B′.

2. Extend Theorem 1.3.8 and give necessary and sufficient conditions for

A1X1B1 + A2X2B2 = C

to have a solution. Find the solution (Baksalary & Kala, 1980).
3. Verify Corollary 1.3.6.1.
4. If (A : B) has full column rank, show that the Moore-Penrose inverse of

(A : B) equals

(A : B)+ =
(

(A′QBA)−1A′QB

(B′B)−1B′(I − A(A′QBA)−1A′QB)

)
=
(

(A′A)−1A′(I − B(B′QAB)−1B′QA)
(B′QAB)−1B′QA

)
,

where

QA =I − A(A′A)−1A′,
QB =I − B(B′B)−1B′.

5. Prove Proposition 1.3.12 (x) – (xiii).
6. Present the sample dispersion matrix

S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)′

without using the summation operator.
7. Prove that

a⊗3 = (Kp,p ⊗ Ip)Kp2,pa⊗3.

8. Prove Proposition 1.3.14 (ii), (iii) and (vi).
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9. For any A: p × n from the class of semiorthogonal matrices, i.e. AA′ = Ip,
which will be denoted sopn, there exist r = np − 1

2p(p + 1) ”free” elements.
Show that

T+(sopn) =
n∑

i<j=1
1≤i≤p

r∑
s=1

(ej ⊗ di)f ′s1{k(i,j)=s}sgn(aij), r = np − 1
2
p(p + 1),

where k(i, j) = n(i− 1)− 1
2 i(i + 1) + j, j > i and k(i, j) = 0, i ≥ j. Find also

B(sopn), T(sopn) and M(sopn).
10. Prove Proposition 1.3.11 (ii).
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1.4 MATRIX DERIVATIVES

1.4.1 Introduction
The matrix derivative is one of the key notions in matrix theory for multivariate
analysis. Solving extreme value problems, finding maximum likelihood estimators,
deriving parameters of multivariate limit distributions and expanding statistics
into asymptotic series may all serve as examples where matrix derivatives play
an important role. Generally speaking, in all these problems one has to find a
derivative of one matrix, say Y, by another matrix X, which is the main issue of
this section. Matrix derivative is a comparatively new notion among the tools for
multivariate analysis. At the same time the notion has been available for more
than 70 years, at least. Probably the first papers on the topic were written by

Turnbull (1927, 1930, 1931) who examined a differential operator
∂

∂X
of the form

of a p× q−matrix. Turnbull applied it to Taylor’s theorem and for differentiating
characteristic functions. Today one can refer to two main types of matrix deriva-
tives which are mathematically equivalent representations of the Fréchet derivative
as we will see in the next paragraph. The real starting point for a modern pre-
sentation of the topic is the paper by Dwyer & MacPhail (1948). Their ideas
were further developed in one direction by Bargmann (1964) and the theory ob-
tained its present form in the paper of MacRae (1974). This work has later on
been continued in many other papers. The basic idea behind these papers is to

order all partial derivatives
∂ykl

∂xij
by using the Kronecker product while preserving

the original matrix structure of Y and X. Therefore, these methods are called
Kronecker arrangement methods. Another group of matrix derivatives is based on
vectorized matrices and therefore it is called vector arrangement methods. Origin
of this direction goes back to 1969 when two papers appeared: Neudecker (1969)
and Tracy & Dwyer (1969). Since then many contributions have been made by
several authors, among others McDonald & Swaminathan (1973) and Bentler &
Lee (1975). Because of a simple chain rule for differentiating composite functions,
this direction has become somewhat more popular than the Kroneckerian arrange-
ment and it is used in most of the books on this topic. The first monograph was
written by Rogers (1980). From later books we refer to Graham (1981), Magnus
& Neudecker (1999) and Kollo (1991). Nowadays the monograph by Magnus &
Neudecker has become the main reference in this area.
In this section most of the results will be given with proofs, since this part of the
matrix theory is the newest and has not been systematically used in multivariate
analysis. Additionally, it seems that the material is not so widely accepted among
statisticians.
Mathematically the notion of a matrix derivative is a realization of the Fréchet
derivative known from functional analysis. The problems of existence and repre-
sentation of the matrix derivative follow from general properties of the Fréchet
derivative. That is why we are first going to give a short overview of Fréchet
derivatives. We refer to §1.2.6 for basic facts about matrix representations of lin-
ear operators. However, in §1.4.1 we will slightly change the notation and adopt
the terminology from functional analysis. In §1.2.4 we considered linear transfor-
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mations from one vector space to another, i.e. A : V → W. In this section we will
consider a linear map f : V → W instead, which is precisely the same if V and W

are vector spaces.

1.4.2 Fréchet derivative and its matrix representation
Relations between the Fréchet derivative and its matrix representations have not
been widely considered. We can refer here to Wrobleski (1963) and Parring (1992),
who have discussed relations between matrix derivatives, Fréchet derivatives and
Gâteaux derivatives when considering existence problems. As the existence of the
matrix derivative follows from the existence of the Fréchet derivative, we are going
to present the basic framework of the notion in the following. Let f be a mapping
from a normed linear space V to a normed linear space W, i.e.

f : V −→ W.

The mapping f is Fréchet differentiable at x if the following representation of f
takes place:

f(x + h) = f(x) + Dxh + ε(x,h), (1.4.1)

where Dx is a linear continuous operator, and uniformly for each h

‖ ε(x,h) ‖
‖ h ‖ −→ 0,

if ‖ h ‖−→ 0, where ‖ • ‖ denotes the norm in V. The linear continuous operator

Dx : V −→ W

is called the Fréchet derivative (or strong derivative) of the mapping f at x. The
operator Dx is usually denoted by f ′(x) or Df(x). The term Dxh in (1.4.1) is
called the Fréchet differential of f at x. The mapping f is differentiable in the set
A if f is differentiable for every x ∈ A. The above defined derivative comprises the
most important properties of the classical derivative of real valued functions (see
Kolmogorov & Fomin, 1970, pp. 470–471; Spivak, 1965, pp. 19–22, for example).
Here are some of them stated.

Proposition 1.4.1.
(i) If f(x) = const., then f ′(x) = 0.
(ii) The Fréchet derivative of a linear continuous mapping is the mapping itself.
(iii) If f and g are differentiable at x, then (f +g) and (cf), where c is a constant,

are differentiable at x and

(f + g)′(x) = f ′(x) + g′(x),

(cf)′(x) = cf ′(x).

(iv) Let V, W and U be normed spaces and mappings

f : V −→ W; g : W −→ U
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such that f is differentiable at x and g is differentiable at y = f(x). Then the
composition h = g � f ; h : V −→ U is differentiable at x and

h′(x) = g′(y) � f ′(x).

It is important to have a derivative where property (iv) holds. This enables us
to differentiate composite functions. Another well-known variant, the Gâteaux
derivative (or weak derivative) does not have this property, for instance.
From §1.2.6 it follows that being a linear operator, the Fréchet derivative can
be represented in a matrix form in the case of finite-dimensional vector spaces.
Denote the basis of W by {dj}. Then the mapping f : V −→ W can be presented,
at any point x of V, by

f(x) =
∑
j∈J

fj(x)dj .

Here J is connected to the set of vectors x ∈ V, for which f is differentiable.

If there exists a derivative f ′(x), then the partial derivatives
∂fj(x)

∂xi
, i ∈ I, j ∈ J

exist and the matrix representing the Fréchet derivative is given by a matrix of
partial derivatives (see Spivak, 1965, for example). The opposite is not true,
i.e. in general from the existence of partial derivatives the existence of a Fréchet
derivative does not follow. Sufficient and necessary conditions for the existence of
f ′(x) are not easy to use (Spivak, 1965, pp. 20–21): f ′(x) exists if and only if every
coordinate function fk is differentiable at x. Fortunately there exist comparatively
simple sufficient conditions for the existence of Fréchet derivatives (Spivak, 1965,
p. 31).

Theorem 1.4.1. Let f : V −→ W be a mapping such that all partial derivatives
∂fj(x)

∂xi
, i ∈ I, j ∈ J , exist in an open set which includes the point x0, and are

continuous at x0. Then f is Fréchet differentiable at x0.

As we saw in §1.2.6, the form of the matrix which represents the Fréchet derivative
as a linear operator has to be fixed by convention. If we have Rp×q and Rr×s as
V and W, respectively, then two natural realizations of the Fréchet derivative are
given by the relations (1.2.9) and (1.2.11). In both cases the Fréchet differential
is given by the same equality

Df(x)h =
∑
j∈J

(Dfj(x)h)dj .

Let us examine, what kind of matrix representations of the Fréchet derivative we
get when starting from the different orderings (1.2.9) and (1.2.11), respectively.
In (1.2.9) the matrix of the linear operator consists of p × q−blocks, where the
(tu)−th block includes all (tu)−th coordinates of the basis vectors in Rp×q. For the
Fréchet derivative it means that in the (tu)−th block we have partial derivatives of
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ytu with respect to the elements of X. It is convenient to present all the elements

jointly in a representation matrix
dY
dX

in the following way (MacRae, 1974):

dY
dX

= Y ⊗ ∂

∂X
, (1.4.2)

where the partial differentiation operator
∂

∂X
is of the form

∂

∂X
=

⎛⎜⎜⎜⎜⎝
∂

∂x11
. . .

∂

∂x1q

...
. . .

...
∂

∂xp1
. . .

∂

∂xpq

⎞⎟⎟⎟⎟⎠ .

The Kronecker product Y ⊗ ∂

∂X
means that the operator of partial differentiation

is applied to the elements of the matrix Y by the rule of the Kronecker product:

the tu−th block of
dY
dX

is of the form

[
dY
dX

]
tu

=

⎛⎜⎜⎜⎜⎝
∂ytu

∂x11
. . .

∂ytu

∂x1q

...
. . .

...
∂ytu

∂xp1
. . .

∂ytu

∂xpq

⎞⎟⎟⎟⎟⎠ , t = 1, . . . , r; u = 1, . . . , s.

Another way of representing (1.4.2) is given by

dY
dX

=
∑

i,j,k,l

∂yij

∂xkl
ris′j ⊗ fkg′

l,

where ri, sj , fk and gl are unit basis vectors, as in (1.1.2), with dimensionalities
r, s, p and q, respectively.
If the elements of our linear operator are ordered into a matrix by (1.2.11), then
the (uv)−th r × s−block consists of the coordinates of the (uv)−th basis vector.
The matrix which represents the Fréchet derivative consists of r× s−blocks where
in the (uv)−th block we have the partial derivatives of the elements of Y by xuv.
The set of all partial derivatives is now easy to present as

dY
dX

=
∂

∂X
⊗ Y, (1.4.3)

where the operator
∂

∂X
is given as before. The product in (1.4.3) means that the

(ij)−th block of the matrix derivative equals

[
dY
dX

]
ij

=

⎛⎜⎜⎜⎜⎝
∂y11

∂xij
. . .

∂y1s

∂xij

...
...

...
∂yr1

∂xij
. . .

∂yrs

∂xij

⎞⎟⎟⎟⎟⎠ , i = 1, . . . , p; j = 1, . . . , q.



Basic Matrix Theory and Linear Algebra 125

Here
dY
dX

=
∑

i,j,k,l

∂yij

∂xkl
fkg′

l ⊗ ris′j ,

where the basis vectors are defined as before.
Before proceeding we note that the Fréchet derivative is a linear map of an element
x in a linear space. By Proposition 1.4.1 (iii) it follows that if we write f ′(x) =
(f ′,x),

(c1f
′
1 + c2f

′
2,x) = c1(f ′

1,x) + c2(f ′
2,x),

by linearity of f ′ and by linearity in the argument

(f ′, c1x1 + c2x2) = c1(f ′,x1) + c2(f ′,x2),

where c1 and c2 are constants. Hence, using Definition 1.2.10 (ii) and assuming
that (i) of the definition holds, which can be shown to be the case, it follows
that f ′(x) generates a tensor space. This explains, via Theorem 1.2.24, in a more
abstract way why, for example, (1.4.2) is a representation of the Fréchet derivative.
The next two popular representations of the Fréchet derivative arise from the
following argument. Let us define the norm in Rp×q as

‖ X ‖=
√

tr(X′X) =
√

vec′XvecX,

where X ∈ Rp×q. Then the spaces Rp×q and Rpq are isometric, which means that
a study of

f : Rp×q −→ Rr×s

can be replaced by a study of

f : Rpq −→ Rrs.

Using the vectorized representation of a matrix, we get with the help of the vec-
operator a matrix representation of the Fréchet derivative as in Euclidian spaces:
coordinates of the i−th basis vector are kept as i−th row or i−th column of the
representation matrix. If we keep the coordinates of the image of the vector ei ∈ V

in the i−th row, the matrix
dY
dX

is given by the equality

dY
dX

=
∂

∂vecX
vec′Y = vec′Y ⊗ ∂

∂vecX
, (1.4.4)

where

∂

∂vecX
=
(

∂

∂x11
, . . . ,

∂

∂xp1
,

∂

∂x12
, . . . ,

∂

∂xp2
, . . . ,

∂

∂x1q
, . . . ,

∂

∂xpq

)′

and the direct product in (1.4.4) defines the element in vecY which is differentiated

by the operator
∂

∂vecX
. Through the basis vectors the derivative in (1.4.4) may

be presented in the following way:

dY
dX

=
∑

i,j,k,l

∂yij

∂xkl
(gl ⊗ fk)(sj ⊗ ri)′ =

∑
i,j,k,l

∂yij

∂xkl
(gls′j) ⊗ (fks′i), (1.4.5)
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where fk, gl, ri, sj are the basis vectors of sizes p, q, r and s, respectively. If
the coordinates of the image of ei ∈ V form the i−th column of the representation
matrix of the Fréchet derivative, the matrix is given by the equality (Neudecker,
1969)

dY
dX

=
(

∂

∂vecX

)′
⊗ vecY (1.4.6)

which is identical to

dY
dX

=
∑

i,j,k,l

∂yij

∂xkl
(sj ⊗ ri)(gl ⊗ fk)′ =

∑
i,j,k,l

∂yij

∂xkl
(sjg′

l) ⊗ (rif ′k),

where the basis vectors are defined as in (1.4.5). The equalities (1.4.2), (1.4.3),
(1.4.4) and (1.4.6) represent different forms of matrix derivatives found in the
literature. Mathematically it is evident that they all have equal rights to be used
in practical calculations but it is worth observing that they all have their pros
and cons. The main reason why we prefer the vec-arrangement, instead of the
Kroneckerian arrangement of partial derivatives, is the simplicity of differentiating
composite functions. In the Kroneckerian approach, i.e. (1.4.2) and (1.4.3), an
additional operation of matrix calculus, namely the star product (MacRae, 1974),
has to be introduced while in the case of vec-arrangement we get a chain rule
for differentiating composite functions which is analogous to the univariate chain
rule. Full analogy with the classical chain rule will be obtained when using the
derivative in (1.4.6). This variant of the matrix derivative is used in the books
by Magnus & Neudecker (1999) and Kollo (1991). Unfortunately, when we are
going to differentiate characteristic functions by using (1.4.6), we shall get an
undesirable result: the first order moment equals the transposed expectation of a
random vector. It appears that the only relation from the four different variants
mentioned above, which gives the first two moments of a random vector in the
form of a vector and a square matrix and at the same time supplies us with the
chain rule, is given by (1.4.4). This is the main reason why we prefer this way
of ordering the coordinates of the images of the basis vectors, and in the next
paragraph that derivative will be exploited.

1.4.3 Matrix derivatives, properties
As we have already mentioned in the beginning of this chapter, generally a matrix
derivative is a derivative of one matrix Y by another matrix X. Many authors fol-
low McDonald & Swaminathan (1973) and assume that the matrix X by which we
differentiate is mathematically independent and variable. This will be abbreviated
m.i.v. It means the following:

a) the elements of X are non-constant;
b) no two or more elements are functionally dependent.

The restrictiveness of this assumption is obvious because it excludes important
classes of matrices, such as symmetric matrices, diagonal matrices, triangular
matrices, etc. for X. At the same time the Fréchet derivative, which serves as
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mathematical basis of matrix derivatives, can be found if we include two natural
assumptions.

a) If xij = const., then
∂y

∂xij
= 0 for any y.

b) If xij = xkl for some pairs of indices (i, j) 	= (k, l), then
∂y

∂xij
=

∂y

∂xkl
for any

y which is differentiable by xij .

Alternatively we could have developed a theory for matrix derivatives where we
would have taken into account that matrices with linear relationships among the
elements could have been presented via defining a specific basis.

Definition 1.4.1. Let the elements of Y ∈ Rr×s be functions of X ∈ Rp×q. The

matrix
dY
dX

∈ Rpq×rs is called matrix derivative of Y by X in a set A, if the partial

derivatives
∂ykl

∂xij
exist, are continuous in A, and

dY
dX

=
∂

∂vecX
vec′Y, (1.4.7)

where

∂

∂vecX
=
(

∂

∂x11
, . . . ,

∂

∂xp1
,

∂

∂x12
, . . . ,

∂

∂xp2
, . . . ,

∂

∂x1q
, . . . ,

∂

∂xpq

)′
. (1.4.8)

It means that (1.4.4) is used for defining the matrix derivative. At the same time
we observe that the matrix derivative (1.4.7) remains the same if we change X
and Y to vecX and vecY, respectively. So we have the identity

dY
dX

≡ dvec′Y
dvecX

.

The derivative used in the book by Magnus & Neudecker (1999) is the transposed
version of (1.4.7), i.e. (1.4.6).
We are going to use several properties of the matrix derivative repeatedly. Since
there is no good reference volume where all the properties can be found, we have
decided to present them with proofs. Moreover, in §1.4.9 we have collected most of
them into Table 1.4.2. If not otherwise stated, the matrices in the propositions will
have the same sizes as in Definition 1.4.1. To avoid zero columns in the derivatives
we assume that xij 	= const., i = 1, . . . , p, j = 1, . . . , q.

Proposition 1.4.2. Let X ∈ Rp×q and the elements of X m.i.v.

(i) Then
dX
dX

= Ipq. (1.4.9)

(ii) Let c be a constant. Then

d(cX)
dX

= cIpq. (1.4.10)
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(iii) Let A be a matrix of proper size with constant elements. Then

dA′X
dX

= Iq ⊗ A. (1.4.11)

(iv) Let A be a matrix of proper size with constant elements. Then

d(A′vecX)
dX

= A. (1.4.12)

(v) Let Z and Y be of the same size. Then

d(Y + Z)
dX

=
dY
dX

+
dZ
dX

. (1.4.13)

Proof: The statements (ii) and (v) follow straightforwardly from the definition
in (1.4.7). To show (i), (1.4.5) is used:

dX
dX

=
∑
ijkl

∂xij

∂xkl
(el ⊗ dk)(ej ⊗ di)′ =

∑
ij

(ej ⊗ di)(ej ⊗ di)′

=
∑
ij

(eje′j) ⊗ (did′
i) = Ip ⊗ Iq = Ipq,

which completes the proof of (i).
Statement (iii) follows from the next chain of equalities:

dA′X
dX

=
dX
dX

(I ⊗ A) = I ⊗ A.

It remains to prove (iv):

dA′vecX
dX

=
dvec′XA

dX
=

dX
dX

A = A.

Proposition 1.4.3. (chain rule) Let Z : t × u be a function of Y and Y be a
function of X. Then

dZ
dX

=
dY
dX

dZ
dY

. (1.4.14)

Proof: It is well known from mathematical analysis that

∂zij

∂xkl
=
∑
mn

∂zij

∂ymn

∂ymn

∂xkl
.
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Thus, using (1.4.5) with d1
i , e1

j , d2
k, e2

l , and d3
m, e3

n being basis vectors of size
p, q, t, u and r, s, respectively, we have

dZ
dX

=
∑
ijkl

∂zij

∂xkl
(e1

l ⊗ d1
k)(e2

j ⊗ d2
i )

′

=
∑

ijklmn

∂zij

∂ymn

∂ymn

∂xkl
(e1

l ⊗ d1
k)(e3

n ⊗ d3
m)′(e3

n ⊗ d3
m)(e2

j ⊗ d2
i )

′

=
∑

ijklmnop

∂zij

∂ymn

∂yop

∂xkl
(e1

l ⊗ d1
k)(e3

p ⊗ d3
o)

′(e3
n ⊗ d3

m)(e2
j ⊗ d2

i )
′

=
∑
klop

∂yop

∂xkl
(e1

l ⊗ d1
k)(e3

p ⊗ d3
o)

′ ∑
ijmn

∂zij

∂ymn
(e3

n ⊗ d3
m)(e2

j ⊗ d2
i )

′ =
dY
dX

dZ
dY

.

Proposition 1.4.4. Let A and B be constant matrices of proper sizes. Then

(i) d(AXB)
dX

= B ⊗ A′; (1.4.15)

(ii) d(AYB)
dX

=
dY
dX

(B ⊗ A′). (1.4.16)

Proof: To prove (i) we start from definition (1.4.7) and get the following row of
equalities:

d(AXB)
dX

=
d

dvecX
⊗vec′(AXB) =

d[vec′X(B ⊗ A′)]
dX

=
dX
dX

(B⊗A′) = (B⊗A′).

For statement (ii) it follows by using the chain rule and (1.4.15) that

d(AYB)
dX

=
dY
dX

dAYB
dY

=
dY
dX

(B ⊗ A′).

Proposition 1.4.5. Let the elements of X be m.i.v. Then

dX′

dX
= Kq,p,

dX
dX′ = Kp,q. (1.4.17)

Proof: Observe that

dX′

dX
=

dvecX′

dvecX
=

(1.3.30)

d(Kp,qvecX)
dvecX

= K′
p,q = Kq,p,

where the last equality is obtained by Proposition 1.3.10 (i). The second equality
in (1.4.17) is proved similarly.
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Proposition 1.4.6. Let W be a function of Y ∈ Rr×s and Z ∈ Rs×n, which
both are functions of X. Then

(i) dW
dX

=
dY
dX

dW
dY

∣∣∣∣
Z=const.

+
dZ
dX

dW
dZ

∣∣∣∣
Y=const.

; (1.4.18)

(ii) d(YZ)
dX

=
dY
dX

(Z ⊗ Ir) +
dZ
dX

(In ⊗ Y′); (1.4.19)

(iii) if z = z(X) is a real function,

d(Yz)
dX

=
dY
dX

z +
dz

dX
vec′Y.

Proof: (i): By virtue of the formula for partial derivatives of composite functions
in analysis we have

∂wij

∂xgh
=
∑
mn

∂ymn

∂xgh

∂wij

∂ymn

∣∣∣∣
Z=const.

+
∑
mn

∂zmn

∂xgh

∂wij

∂zmn

∣∣∣∣
Y=const.

.

Thus, since
dW
dX

=
∑
ijkl

∂wij

∂xkl
(e1

l ⊗ d1
k)(e2

j ⊗ d2
i )

′,

we may copy the proof of the chain rule given in Proposition 1.4.3, which imme-
diately establishes the statement.
(ii): From (1.4.18) it follows that

d(YZ)
dX

=
dY
dX

d(YZ)
dY

∣∣∣∣
Z=const.

+
dZ
dX

d(YZ)
dZ

∣∣∣∣
Y=const.

.

Thus, (1.4.16) yields

d(YZ)
dX

=
dY
dX

(Z ⊗ Ir) +
dZ
dX

(In ⊗ Y′).

When proving (iii) similar calculations are used.

Proposition 1.4.7.

(i) Let Y ∈ Rr×r and Y0 = Ir, n ≥ 1. Then

dYn

dX
=

dY
dX

⎛⎜⎜⎝ ∑
i+j=n−1;

i,j≥0

Yi ⊗ (Y′)j

⎞⎟⎟⎠ . (1.4.20)
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(ii) Let X be non-singular and the elements of X m.i.v. Then

dX−1

dX
= −X−1 ⊗ (X′)−1. (1.4.21)

(iii) Let Y be non-singular. Then

dY−n

dX
=

dY−1

dX

⎛⎜⎜⎝ ∑
i+j=n−1;

i,j≥0

Y−i ⊗ (Y′)−j

⎞⎟⎟⎠

= −dY
dX

⎛⎜⎜⎝ ∑
i+j=n−1;

i,j≥0

Y−i−1 ⊗ (Y′)−j−1

⎞⎟⎟⎠ . (1.4.22)

Proof: (i): To prove the statement we shall use induction. For n = 1

dY
dX

=
dY
dX

(Ir ⊗ Ir)

and for n = 2
dY2

dX
=

dY
dX

(Y ⊗ Ir) +
dY
dX

(Ir ⊗ Y).

Let us assume that the statement is valid for n = k. Then for n = k + 1

dYk+1

dX
=

d(YYk)
dX

=
dYk

dX
(I ⊗ Y′) +

dY
dX

(Yk ⊗ I)

=
dY
dX

⎛⎜⎜⎝ ∑
i+j=k−1;

i,j≥0

Yi ⊗ (Y′)j

⎞⎟⎟⎠ (I ⊗ Y′) +
dY
dX

(Yk ⊗ I)

=
dY
dX

∑
i+j=k−1;

i,j≥0

(
Yi ⊗ (Y′)j+1 + Yk ⊗ I

)
=

dY
dX

⎛⎜⎜⎝ ∑
m+l=k;
m,l≥0

Ym ⊗ (Y′)l

⎞⎟⎟⎠ .

(ii): Differentiate the identity
XX−1 = Ip.

After using (1.4.19) we get

dX
dX

(X−1 ⊗ I) +
dX−1

dX
(I ⊗ X′) = 0

and therefore

dX−1

dX
= −(X−1 ⊗ I)(I ⊗ X′)−1 = −X−1 ⊗ (X′)−1.
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(iii): Put Y−1 = Z. Then, by (1.4.20),

dY−n

dX
=

dZn

dX
=

dZ
dX

⎛⎜⎜⎝ ∑
i+j=n−1;

i,j≥0

Zi ⊗ (Z′)j

⎞⎟⎟⎠

=
dY−1

dX

⎛⎜⎜⎝ ∑
i+j=n−1;

i,j≥0

(Y−1)i ⊗ (Y′)−j

⎞⎟⎟⎠ .

Hence, the first equality of statement (iii) follows from the fact that

(Y−1)′ = (Y′)−1.

The second equality follows from the chain rule, (1.4.14) and (1.4.21), which give

dY−1

dX
=

dY
dX

dY−1

dY
= −dY

dX

(
Y−1 ⊗ (Y′)−1

)
.

Thus,

dY−n

dX
= −dY

dX

(
Y−1 ⊗ (Y′)−1

)⎛⎜⎜⎝ ∑
i+j=n−1;

i,j≥0

Y−i ⊗ (Y′)−j

⎞⎟⎟⎠
and after applying property (1.3.14) for the Kronecker product we obtain the
necessary equality.

Proposition 1.4.8.
(i) Let Z ∈ Rm×n and Y ∈ Rr×s. Then

d(Y ⊗ Z)
dX

=
(

dY
dX

⊗ vec′Z + vec′Y ⊗ dZ
dX

)
(Is ⊗ Kr,n ⊗ Im). (1.4.23)

(ii) Let A be a matrix with constant elements. Then

d(Y ⊗ A)
dX

= (
dY
dX

⊗ vec′A)(Is ⊗ Kr,n ⊗ Im), Y ∈ Rr×s,A ∈ Rm×n; (1.4.24)

d(A ⊗ Y)
dX

= (
dY
dX

⊗ vec′A)Krs,mn(In ⊗ Km,s ⊗ Ir), Y ∈ Rr×s,A ∈ Rm×n.

(1.4.25)

Proof: (i): By virtue of equality (1.3.33) it follows that

d(Y ⊗ Z)
dX

=
d

dvecX
(vecY ⊗ vecZ)′(Is ⊗ Kr,n ⊗ Im).
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The properties (1.4.16) and (1.4.18) establish

d(Y ⊗ Z)
dX

=
{

d

dvecX
(vec′Y ⊗ vec′Z)

∣∣∣∣
Z=const.

+
d

dvecX
(vec′Y ⊗ vec′Z)

∣∣∣∣
Y=const.

}
(Is ⊗ Kr,n ⊗ Im)

=
[
dY
dX

(Irs ⊗ vec′Z) +
dZ
dX

(vec′Y ⊗ Imn)
]

(Is ⊗ Kr,n ⊗ Im). (1.4.26)

For the two statements in (ii) we note that
dA
dX

= 0. If in (1.4.26) Z = A is

chosen, then (1.4.24) is directly obtained. To prove (1.4.25) we first remark that
(1.4.26) reduces to

d(A ⊗ Y)
dX

= (vec′A ⊗ dY
dX

)(In ⊗ Km,s ⊗ Ir),

and then the commutation property of the Kronecker product (1.3.15) gives the
statement.

Proposition 1.4.9. Let all matrices be of proper sizes and the elements of X
m.i.v. Then

(i) dtrY
dX

=
dY
dX

vecI; (1.4.27)

(ii) dtr(A′X)
dX

= vecA; (1.4.28)

(iii) dtr(AXBX′)
dX

= vec(A′XB′) + vec(AXB). (1.4.29)

Proof: (i): The first statement follows, since

dtrY
dX

=
dY
dX

dvec′IvecY
dY

=
(1.4.12)

dY
dX

vecI.

(ii): The second statement holds because

dtr(A′X)
dX

=
dA′X
dX

vecI =
(1.4.11)

(I ⊗ A)vecI = vecA.

(iii): For the third statement we have to perform more calculations:

dtr(AXBX′)
dX

=
d(AXBX′)

dX
dtr(AXBX′)
d(AXBX′)

=
(1.4.19)

(
dAX
dX

(BX′ ⊗ I) +
dBX′

dX
(I ⊗ X′A′)

)
vecI

=
(1.4.11)
(1.4.17)

{(I ⊗ A′)(BX′ ⊗ I) + Kq,p(I ⊗ B′)(I ⊗ X′A′)}vecI

= {(BX′ ⊗ A′) + (B′X′ ⊗ A′)}vecI = vec(A′XB′) + vec(AXB).
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Proposition 1.4.10. Let X be non-singular and the elements of X m.i.v. Then

d|X|
dX

=|X|vec(X−1)′ (1.4.30)

and

d|X|r
dX

=r|X|rvec(X−1)′. (1.4.31)

Proof: The statement (1.4.30) will be proven in two different ways. At first we
use the approach which usually can be found in the literature, whereas the second
proof follows from the proof of (1.4.31) and demonstrates the connection between
the determinant and trace function.
For (1.4.30) we shall use the representation of the determinant given by (1.1.6),
which equals

|X| =
∑

j

xij(−1)i+j |X(ij)|.

Note that a general element of the inverse matrix is given by (1.1.8), i.e.

(X−1)ij =
(−1)i+j |X(ji)|

|X| ,

where |X(ij)| is the minor of xij . Then

∂|X|
∂xij

= (−1)i+j |X(ij)| = (X−1)ji|X|.

Since the obtained equality holds for all values of the indices i, j = 1, . . . , p, we get
the desired result by definition of the matrix derivative:

d|X|
dX

= vec(X−1)′|X|.

For (1.4.31) we are going to utilize the integral representation of the determinant
given in Theorem 1.1.2. This means that at first the derivative

d|X|−1

dX

is considered and thereafter it is utilized that

d|X|r
dX

=
d|X−1|−r

dX
= −r|X−1|−r−1 d|X−1|

dX
. (1.4.32)

Then

d|X−1|
dX

=
d|X′X|−1/2

dX
=

d

dX
1

(2π)p/2

∫
Rp

e−
1
2 tr(X′Xyy′)dy

= − 1
2

1
(2π)p/2

∫
Rp

dtr(X′Xyy′)
dX

e−
1
2 tr(X′Xyy′)dy.
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Differentiation under the integral is allowed as we are integrating the normal den-
sity function. Using (1.4.28), we obtain that the right hand side equals

−1
2

1
(2π)p/2

∫
Rp

2vec(Xyy′)e−
1
2 tr(X′Xyy′)dy

= −|X′X|−1/2vec(X(X′X)−1) = −|X|−1vec((X′)−1),

and therefore, from (1.4.32), it follows that

d|X|r
dX

= r|X|rvec((X′)−1).

In particular, this relation holds for r = 1, i.e. (1.4.30) is valid.

1.4.4 Derivatives of patterned matrices
In Definition 1.4.1 we included the possibility to differentiate the matrix Y by X,
when some elements in X can be repeated or are constants. In many situations
we are interested in differentiating by nonrepeated and non-constant elements, for
example when finding Jacobians. When X is a partitioned matrix, we may want
to find a derivative by a certain block or section of the matrix. In general, we need
a matrix derivative of one patterned matrix by another patterned matrix. The
notion of patterned matrix was considered in §1.3.6. In this case we consider the
matrix derivative as a collection of partial derivatives and not as a representation
of a linear map.

Definition 1.4.2. Let X ∈ Rp×q, Y ∈ Rr×s, and let X(K1) and Y(K2) be two
patterned matrices with patterns K1 and K2, respectively. The matrix derivative
dY(K2)
dX(K1)

is defined by the equality

dY(K2)
dX(K1)

=
d

dvecX(K1)
vec′Y(K2), (1.4.33)

with patterns

K1 = {(i, j) : i ∈ IK1 , j ∈ JK1 ; IK1 ⊂ {1, . . . , p}, JK1 ⊂ {1, . . . , q}} ,

K2 = {(i, j) : i ∈ IK2 , j ∈ JK2 ; IK2 ⊂ {1, . . . , r}, JK2 ⊂ {1, . . . , s}} .

Note that from Definition 1.4.2 the obvious result

dX(K)
dX(K)

= I

follows.
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Theorem 1.4.2. Let X ∈ Rp×q, Y ∈ Rr×s, and X(K1), Y(K2) be patterned
matrices with the corresponding transformation matrices T(K1) and T(K2), given
by (1.3.46). Then

dY(K2)
dX(K1)

= T(K1)
dY
dX

(T(K2))′. (1.4.34)

Proof: Combining Definition 1.4.2 with (1.3.44) gives that

dY(K2)
dX(K1)

=
∂

∂(T(K1)vecX)
(T(K2)vecY)′ =

(
T(K1)

∂

∂vecX

)
(T(K2)vecY)′

= T(K1)
dY
dX

(T(K2))′.

The idea above is fairly simple. The approach just means that by the transforma-
tion matrices we cut out a proper part from the whole matrix of partial derivatives.
However, things become more interesting and useful when we consider patterned
matrices. In this case we have full information about repeatedness of elements in
matrices X and Y, i.e. the pattern is completely known. We can use the transition
matrices T(X) and T(Y), defined by (1.3.61).

Theorem 1.4.3. Let X ∈ Rp×q, Y ∈ Rr×s, and X(K1), Y(K2) be patterned
matrices, and let T(X) and T(Y) be the corresponding transition matrices. Then

dY(K2)
dX(K1)

= T(X)
dY
dX

(T(Y))′ (1.4.35)

and
dY
dX

= T+(X)
dY(K2)
dX(K1)

(T+(Y))′, (1.4.36)

where T(·) and T+(·) are given by Corollaries 1.3.11.2 and 1.3.11.3, respectively.

Proof: The statement in (1.4.35) repeats the previous theorem, whereas (1.4.36)
follows directly from Definition 1.4.1 and the basic property of T+(·).
Theorem 1.4.3 shows the correspondence between Definitions 1.4.1 and 1.4.2. In
the case when the patterns consist of all different elements of the matrices X and
Y, the derivatives can be obtained from each other via the transition matrices.
From all possible patterns the most important applications are related to diag-
onal, symmetric, skew-symmetric and correlation type matrices. The last one is
understood to be a symmetric matrix with constants on the main diagonal. Theo-
rem 1.4.3 gives us also a possibility to find derivatives in the cases when a specific
pattern is given for only one of the matrices Y and X . In the next corollary a
derivative by a symmetric matrix is given, which will be used frequently later.

Corollary 1.4.3.1. Let X be a symmetric p×p−matrix and X� denote its upper
triangle. Then

dX
dX� = GpHp,
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where Gp is the transformation matrix of the upper triangle defined by (1.3.49)
and (1.3.50), and Hp = Ip2 + Kp,p − (Kp,p)d.

In the following Proposition 1.4.11 we present the derivatives of matrices with some
basic dependence structures. The formulae are closely related to the corresponding
pattern matrices as can be seen from the expressions in Proposition 1.4.11 and
Propositions 1.3.18 – 1.3.21.

Proposition 1.4.11. Let X ∈ Rp×p. Then

(i) for the diagonal matrix Xd

dXd

dX
= (Kp,p)d; (1.4.37)

(ii) for the symmetric matrix X

dX
dX

= Ip2 + Kp,p − (Kp,p)d; (1.4.38)

(iii) for the skew-symmetric matrix X

dX
dX

= Ip2 − Kp,p; (1.4.39)

(iv) for the correlation type matrix X

dX
dX

= Ip2 + Kp,p − 2(Kp,p)d. (1.4.40)

1.4.5 Higher order derivatives
Higher order derivatives are needed later in series expansions. A natural way
of extending the concept of matrix derivative to higher order derivatives is by a
recursive definition.

Definition 1.4.3. The matrix derivative of order k of Y by X is defined as the
matrix derivative of the matrix derivative of order (k − 1) of Y by X:

dkY
dXk

=
d

dX

(
dk−1Y
dXk−1

)
, (1.4.41)

where
dY
dX

is defined by (1.4.7).

The following property shows how the k−th order derivative can be presented
non-recursively through the differential operator in (1.4.7). Moreover, in §1.4.3 we
considered Fréchet derivatives and noted their relation to tensor products. Remark
that one can generalize this result to higher order derivatives and observe that a
multilinear mapping with a corresponding higher order tensor product (Kroneck-
erian power in matrix language) will be obtained.
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Theorem 1.4.4. The k−th derivative
dkY
dXk

can be written as

dkY
dXk

=
∂

∂vecX
vec′Y ⊗ ∂

∂vec′X
⊗ · · · ⊗ ∂

∂vec′X︸ ︷︷ ︸
k−1 times

. (1.4.42)

Proof: The statement is proved with the help of induction. For k = 1, the
relation (1.4.42) is valid due to the definition of the derivative in (1.4.7). Suppose
that (1.4.42) is true for k = n − 1:

dn−1Y
dXn−1

=
∂

∂vecX
vec′Y ⊗ ∂

∂vec′X
⊗ · · · ⊗ ∂

∂vec′X︸ ︷︷ ︸
(n−2) times

.

Let us show that the statement then also holds for k = n:
dkY
dXk

=
∂

∂vecX
vec′

dn−1Y
dXn−1

=
∂

∂vecX
vec′
( ∂

∂vecX
vec′Y ⊗ ∂

∂vec′X
⊗ · · · ⊗ ∂

∂vec′X︸ ︷︷ ︸
(n−2) times

)

=
∂

∂vecX
vec′Y ⊗ ∂

∂vec′X
⊗ · · · ⊗ ∂

∂vec′X︸ ︷︷ ︸
n−1 times

.

Another important property concerns the representation of the k−th order deriva-
tive of another derivative of lower order.

Theorem 1.4.5. The k−th order matrix derivative of the l−th order matrix

derivative
dlY
dXl

is the (k + l)−th order derivative of Y by X:

dk

dXk

(
dlY
dXl

)
=

dk+lY
dXk+l

.

Proof: By virtue of Definition 1.4.3 and Theorem 1.4.4
dk

dXk

(
dlY
dXl

)
=

dk

dXk

( ∂

∂vecX
vec′Y ⊗ ∂

∂vec′X
⊗ · · · ⊗ ∂

∂vec′X︸ ︷︷ ︸
l−1 times

)

=
∂

∂vecX
vec′Y ⊗ ∂

∂vec′X
⊗ · · · ⊗ ∂

∂vec′X︸ ︷︷ ︸
l times

⊗ ∂

∂vec′X
⊗ ∂

∂vec′X
⊗ · · · ⊗ ∂

∂vec′X︸ ︷︷ ︸
k−1 times

=
dk+lY
dXk+l

.

1.4.6 Higher order derivatives and patterned matrices
A natural generalization of higher order derivatives to patterned matrices is given
below.
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Definition 1.4.4. Let X(K1) and Y(K2) be patterned matrices with the patterns
K1 and K2, respectively. The k−th order matrix derivative of Y(K2) by X(K1)
is defined by the equality

dkY(K2)
dX(K1)k

=
d

dX(K1)

(
dk−1Y(K2)
dX(K1)k−1

)
, k ≥ 2, (1.4.43)

where
dY(K2)
dX(K1)

is defined by (1.4.33) and the patterns K1 and K2 are presented

in Definition 1.4.2.

In the next theorem we shall give the relation between higher order derivatives of
patterned matrices and higher order derivatives with all repeated elements in it.

Theorem 1.4.6. Let X(K1) and Y(K2) be patterned matrices with transition
matrices T(X) and T(Y), defined by (1.3.61). Then, for k ≥ 2,

dkY(K2)
dX(K1)k

= T(X)
dkY
dXk

(
T(X)⊗(k−1) ⊗ T(Y)

)′
, (1.4.44)

dkY
dXk

= T+(X)
dkY(K2)
dX(K1)k

(
T+(X)⊗(k−1) ⊗ T+(Y)

)′
. (1.4.45)

Proof: To prove the statements, once again an induction argument will be ap-
plied. Because of the same structure of statements, the proofs of (1.4.44) and
(1.4.45) are similar and we shall only prove (1.4.45). For k = 1, since T(X)⊗0 = 1
and T+(X)⊗0 = 1, it is easy to see that we get our statements in (1.4.44) and
(1.4.45) from (1.4.35) and (1.4.36), respectively. For k = 2, by Definition 1.4.2
and (1.4.36) it follows that

d2Y
dX2

=
d

dX

(
dY
dX

)
=

d

dX

(
T+(X)

dY(K2)
dX(K1)

T+(Y)′
)

.

Definition 1.4.1 and assumptions about the transition matrices give

d2Y
dX2

=
d

dvecX
vec′

(
T+(X)

dY(K2)
dX(K1)

T+(Y)′
)

= T+(X)
d

dvecX(K1)
vec′

dY(K2)
dX(K1)

(T+(Y) ⊗ T+(X))′.

Using property (1.3.14) of the Kronecker product we get the desired equality:

d2Y
dX2

= (T+(X) ⊗ vec
dY(K2)
dX(K1)

)(
d

dvec′X(K1)
⊗ (T+(X) ⊗ T+(Y))′)

= T+(X)
d2Y(K2)
dX(K1)2

(T+(X) ⊗ T+(Y))′.
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Assume that statement (1.4.45) holds for k = n − 1:

dn−1Y
dXn−1

= T+(X)
dn−1Y(K2)
dX(K1)n−1

(
T+(X)⊗(n−2) ⊗ T+(Y)

)′
.

Let us show that then (1.4.45) is also valid for k = n. Repeating the same argu-
mentation as in the case k = 2, we get the following chain of equalities

dnY
dXn

=
d

dX

(
dn−1Y
dXn−1

)
=T+(X)

d

dvecX(K1)
vec′{T+(X)

dn−1Y
dXn−1

(T+(X)⊗(n−2) ⊗ T+(Y))′}

=T+(X)
d

dvecX(K1)
vec′

dn−1Y
dXn−1

(T+(X)⊗(n−1) ⊗ T+(Y))′

=T+(X)
dnY
dXn

(T+(X)⊗(n−1) ⊗ T+(Y))′.

In the case of symmetric matrices we shall reformulate the statement (1.4.45) as
a corollary of the theorem.

Corollary 1.4.6.1. Let X ∈ Rp×p, Y ∈ Rr×r be symmetric matrices and Y�,
X� the lower triangles of these matrices. Then

dkY
dXk

= D+
p

dkY�
dXk

�

(
(D+

p )⊗(k−1) ⊗ D+
r

)′
, (1.4.46)

where D+
p is defined by (1.3.64).

1.4.7 Differentiating symmetric matrices using an alternative derivative
In this paragraph we shall consider another variant of the matrix derivative,
namely, the derivative given by (1.4.2). To avoid misunderstandings, we shall

denote the derivative (1.4.2) by
d̃Y

d̃X
instead of

dY
dX

which is used for the matrix

derivative defined by (1.4.7). The paragraph is intended for those who want to go
deeper into the applications of matrix derivatives. Our main purpose is to present
some ideas about differentiating symmetric matrices. Here we will consider the
matrix derivative as a matrix representation of a certain operator. The results
can not be directly applied to minimization or maximization problems, but the
derivative is useful when obtaining moments for symmetric matrices, which will
be illustrated later in §2.4.5.
As noted before, the derivative (1.4.2) can be presented as

d̃Y

d̃X
=
∑
ijkl

∂yij

∂xkl
((ris′j) ⊗ (fkg′

l)), (1.4.47)
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where ri, sj , fk, gl are the basis vectors of sizes r, s, p and q, respectively. Assume
that X consists of mathematically independent and variable (m.i.v.) elements.
However, when X : n × n is symmetric and the elements of the lower triangle of
X are m.i.v., we define, inspired by Srivastava & Khatri (1979, p. 37),

d̃Y

d̃X
=
∑
ijkl

∂yij

∂xkl
((ris′j) ⊗ (εklfkf ′l )), εkl =

{
1, k = l,
1
2 , k 	= l.

(1.4.48)

In §1.4.4 the idea was to cut out a certain unique part from a matrix. In this para-
graph we consider all elements with a weight which depends on the repeatedness
of the element in the matrix, i.e. whether the element is a diagonal element or an
off-diagonal element. Note that (1.4.48) is identical to

d̃Y

d̃X
=

1
2

∑
ij

k<l

∂yij

∂xkl
((ris′j) ⊗ (fkf ′l + flf ′k)) +

∑
ijk

∂yij

∂xkk
((ris′j) ⊗ fkf ′k).

A general basic derivative would be

∑
ijkl

∂yij

∂xkl
eij ⊗ dkl,

where {eij} is a basis for the space which Y belongs to, and {dkl} is a basis for
the space which X belongs to. In the symmetric case, i.e. when X is symmetric,
we can use the following set of matrices as basis dkl:

1
2
(fkf ′l + flf ′k), k < l, fkf ′k, k, l = 1, . . . , p.

This means that from here we get the derivative (1.4.48). Furthermore, there is
a clear connection with §1.3.6. For example, if the basis matrices 1

2 (fkf ′l + flf ′k),
k < l, and fkf ′k are vectorized, i.e. consider

1
2
(fl ⊗ fk + fk ⊗ fl), k < l, fk ⊗ fk,

then we obtain the columns of the pattern projection matrix M(s) in Proposition
1.3.18.
Below we give several properties of the derivative defined by (1.4.47) and (1.4.48),
which will be proved rigorously only for the symmetric case.

Proposition 1.4.12. Let the derivatives below be given by either (1.4.47) or
(1.4.48). Then

(i) d̃(ZY)

d̃X
=

d̃Z

d̃X
(Y ⊗ I) + (Z ⊗ I)

d̃Y

d̃X
;
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(ii) for a scalar function y = y(X) and matrix Z

d̃(Zy)

d̃X
=

d̃Z

d̃X
y + Z ⊗ d̃y

d̃X
;

(iii) for constant matrices A and B and X ∈ Rp×n

d̃(AYB)

d̃X
= (A ⊗ Ip)

d̃Y

d̃X
(B ⊗ In);

(iv) for Y ∈ Rq×r, Z ∈ Rs×t, being functions of X ∈ Rp×n,

d̃(Y ⊗ Z)

d̃X
= Y ⊗ d̃Z

d̃X
+ (Kq,s ⊗ Ip)(Z ⊗ d̃Z

d̃X
)(Kt,r ⊗ In);

(v) if Y ∈ Rq×q is a function of X ∈ Rp×n, then

d̃(trY)

d̃X
=

q∑
m=1

(e′m ⊗ Ip)
d̃Y

d̃X
(em ⊗ In),

where em is the m−th column of Iq;
(vi) if Y ∈ Rq×q is non-singular and a function of X ∈ Rp×n, then

d̃Y−1

d̃X
= −(Y−1 ⊗ Ip)

d̃Y

d̃X
(Y−1 ⊗ In);

(vii) if X ∈ Rp×n, then

d̃X

d̃X
=
{

vecIpvec′In if X is m.i.v.,
1
2{vecIpvec′Ip + Kp,p} if X : p × p is symmetric;

(viii) if X ∈ Rp×n, then

d̃X′

d̃X
=
{

Kn,p if X is m.i.v.,
1
2{vecIpvec′Ip + Kp,p} if X : p × p is symmetric;

(ix) for a constant matrix A

d̃tr(A′X)

d̃X
=
{

A if X is m.i.v.,
1
2 (A + A′) if X is symmetric;

(x) for constant matrices A and B

d̃tr(XAX′B)

d̃X
=

⎧⎪⎨⎪⎩
BXA + B′XA′ if X is m.i.v.,
1
2 (BXA + B′XA′ + A′XB′ + AXB)

if X is symmetric;
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(xi) if AXB is non-singular with A and B being matrices of constants, then

d̃tr((AXB)−1)

d̃X
=

⎧⎪⎨⎪⎩
−A′(B′X′A′)−1(B′X′A′)−1B′ if X is m.i.v.,

− 1
2{A′(B′XA′)−1(B′XA′)−1B′

+B(AXB)−1(AXB)−1A} if X is symmetric;

(xii) for a non-singular X and any real r

d̃|X|r
d̃X

= r(X′)−1|X|r.

Proof: (i): Suppose that X is symmetric. Straightforward calculations yield

d̃(ZY)

d̃X
=
∑
ijkl

∂
∑

m zimymj

∂xkl
(ris′j) ⊗ (εklfkf ′l )

=
∑
ijkl

∑
m

(
∂zim

∂xkl
ymj + zim

∂ymj

∂xkl

)
(ris′j) ⊗ (εklfkf ′l )

=
∑
ijkl

∑
m

∑
n

(
∂zim

∂xkl
ynj + zim

∂ynj

∂xkl

)
(ris1′

ms1
ns′j) ⊗ (εklfkf ′l )

=
d̃Z

d̃X
(Y ⊗ I) + (Z ⊗ I)

d̃Y

d̃X
,

since

(ris1′
ms1

ns′j) ⊗ (εklfkf ′l ) = (ris1′
m ⊗ εklfkf ′l )(s

1
ns′j ⊗ In)

= (ris′m ⊗ Ip)(s1
ns′j ⊗ εklfkf ′l ).

(ii): Similarly, for a symmetric X,

d̃(Zy)

d̃X
=
∑
ijkl

∂zijy

∂xkl
(ris′j) ⊗ (εklfkf ′l )

=
∑
ijkl

y
∂zij

∂xkl
(ris′j) ⊗ (εklfkf ′l ) +

∑
ijkl

zij(ris′j ⊗
∂y

∂xkl
εklfkf ′l )

=
d̃Z

d̃X
y + Z ⊗ d̃Y

d̃X
.

(iii): From (i) it follows that

d̃(AYB)

d̃X
= (A ⊗ Ip)

d̃YB

d̃X
= (A ⊗ Ip)

d̃Y

d̃X
(B ⊗ In).
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(iv): By using (i) and Proposition 1.3.12 we get

d̃(Y ⊗ Z)

d̃X
=

d̃((Iq ⊗ Z)(Y ⊗ It))

d̃X

=
d̃(Iq ⊗ Z)

d̃X
(Y ⊗ It ⊗ In) + (Iq ⊗ Z ⊗ Ip)

d̃(Y ⊗ It)

d̃X
. (1.4.49)

Now

d̃(Iq ⊗ Z)

d̃X
(Y ⊗ It ⊗ In) = (Iq ⊗ d̃Z

d̃X
)(Y ⊗ It ⊗ In) = Y ⊗ d̃Z

d̃X
(1.4.50)

and

(Iq ⊗ Z ⊗ Ip)
d̃(Y ⊗ It)

d̃X
=(Iq ⊗ Z ⊗ Ip)

d̃(Kq,t(It ⊗ Y)Kt,r)

d̃X

=(Iq ⊗ Z ⊗ Ip)(Kq,t ⊗ Ip)
d̃(It ⊗ Y)

d̃X
(Kt,r ⊗ In)

=(Kq,s ⊗ Ip)(Z ⊗ Iq ⊗ Ip)(It ⊗ d̃Y

d̃X
)(Kt,r ⊗ In)

=(Kq,s ⊗ Ip)(Z ⊗ d̃Y

d̃X
)(Kt,r ⊗ In). (1.4.51)

Thus, inserting (1.4.50) and (1.4.51) in the right-hand side of (1.4.49) verifies (iv).
(v): Since

∑
m sms′m = Iq, it follows that

trY = tr

(∑
m

sms′mY

)
=
∑
m

tr(sms′mY) =
∑
m

tr(s′mYsm) =
∑
m

s′mYsm

and then (iii) implies (v).
(vi): Observe that

0 =
d̃Y−1Y

d̃X
=

d̃Y−1

d̃X
(Y ⊗ I) + (Y−1 ⊗ I)

d̃Y

d̃X
.

(vii): Here it is noted that

d̃X

d̃X

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
ijkl

∂xij

∂xkl
((ris′j) ⊗ (rks′l)) =

∑
kl

((rks′l) ⊗ (rks′l)),

∑
ijkl

∂xij

∂xkl
((rir′j) ⊗ (εklrkr′l)) =

∑
kl

1
2
((rkr′l) ⊗ (rkr′l) + (rlr′k) ⊗ (rkr′l))

=
{

vecIpvec′In if X is m.i.v.,
1
2{vecIpvec′Ip + Kp,p} if X : p × p is symmetric.
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(viii): If X is m.i.v., then

d̃X′

d̃X
=
∑
ijkl

∂xij

∂xkl
((sjr′i) ⊗ (rks′l)) =

∑
kl

((slr′k) ⊗ (rks′l)) = Kn,p.

(ix): By virtue of (iii), (v) and (vii)

d̃tr(A′X)

d̃X
=
∑
m

(s′mA′ ⊗ Ip)
d̃X

d̃X
(sm ⊗ In)

=

⎧⎪⎨⎪⎩
∑

m vec(Asm)vec′(sm) =
∑

m Asms′m = A if X is m.i.v.,
1
2

∑
m{vec(Asm)vec′(sm) + K1,pvec(A′sm)vec′(sm)} = 1

2 (A + A′)
if X is symmetric.

(x): Similar calculations show that

d̃tr(XAX′B)

d̃X

=
{∑

m sms′mB′XA + Bsms′mXA′
1
2

∑
m sms′mB′XA′ + AXBsms′m + A′Xsms′mB′ + Bsms′mXA

=
{

BXA + B′XA′ if X is m.i.v.,
1
2 (BXA + B′XA′ + A′XB′ + AXB) if X is symmetric.

(xi): From (v), (vi), (vii) and (iii) it follows that

d̃tr((AXB)−1)

d̃X

=
∑
m

(s′m ⊗ I)(−((AXB)−1 ⊗ I))
d̃AXB

d̃X
((AXB)−1 ⊗ I)(em ⊗ I)

= −
∑
m

((s′m(AXB)−1A) ⊗ I)
d̃X

d̃X
((B(AXB)−1sm) ⊗ I)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−
∑
m

vec(A′(B′X′A′)−1sm)vec′(B(AXB)−1sm)

−
∑
m

1
2
{vec(A′(B′X′A′)−1sm)vec′(B(AXB)−1sm)

+((s′m(AXB)−1A) ⊗ I)Kp,p((B(AXB)−1sm) ⊗ I)}

=

⎧⎪⎨⎪⎩
−A′(B′X′A′)−1(B′X′A′)−1B′ if X is m.i.v.
− 1

2{A′(B′XA′)−1(B′XA′)−1B′ + B(AXB)−1(AXB)−1A}
if X is symmetric.

(xii): The statement holds for both the m.i.v. and the symmetric matrices and the
proof is almost identical to the one of Proposition 1.4.10.
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1.4.8 Minimal derivatives
Dealing with higher order derivatives, one practical problem is how to select the
different partial derivatives from all possible combinations of partial derivatives.
Matrix derivatives of any order which consist of all different partial derivatives,
where each partial derivative appears only once, will be referred to as minimal
derivatives. For the first derivatives one solution to the problem was given in §1.4.4
where derivatives by patterned matrices were considered. If one is interested in
higher order derivatives, a solution to the problem can be obtained by applying
differentiation of patterned matrices iteratively when using different patterns K
which depend on the order of the derivative. Parallel to this possibility another
approach can be used. In the papers by Kollo & von Rosen (1995a, 1995b) the
derivative is defined in a slightly different way from what is standard. The deriva-
tive which we are now going to examine is based on the vectorization operators
V (·) and R(·) described in §1.3.7.
Let X(K) be a patterned matrix which consists of all different elements and
vecX(K) the k−vector consisting of the elements of X(K). In the case of a
symmetric matrix X the vectorization operator V (·) can be used to perform the
selection of different elements of X in the form of the upper triangle of X.

Definition 1.4.5. Let X(K1) and Y(K2) be two patterned matrices, where the
elements of Y(K2) are functions of the elements of X(K1). The j−th order mini-
mal derivative is given by the equality

d̂jY(K2)

d̂X(K1)j
= V j

(
d

dvecX(K1)

(
d̂j−1Y(K2)

d̂X(K1)j−1

))
(1.4.52)

with
d̂Y(K2)

d̂X(K1)
= V 1

(
dY(K2)
dX(K1)

)
, (1.4.53)

where the derivative
dY(K2)
dX(K1)

is defined by (1.4.33) and the vectorization operator

V j by (1.3.75).

If X and Y are symmetric matrices and the elements of their upper triangular
parts are different, we may choose vecX(K1) and vecY(K2) to be identical to
V 2(X) and V 2(Y). Whenever in the text we refer to a symmetric matrix, we
always assume that this assumption is fulfilled. When taking the derivative of

a symmetric matrix by a symmetric matrix, we shall use the notation
d̂Y

d̂X
and

will omit the index sets after the matrices. So for symmetric matrices Y and X
Definition 1.4.5 takes the following form:

d̂jY

d̂Xj
= V j

(
d

d(V 2(X))

(
d̂j−1Y

d̂Xj−1

))
, (1.4.54)

with
d̂Y

d̂X
= V 1

(
d(V 2(Y))
d(V 2(X))

)
. (1.4.55)
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The next theorem shows that for symmetric matrices
d̂jY

d̂Xj
consists of all different

partial derivatives of j−th order. However, it is worth noting that the theorem is
true for matrices with arbitrary structure on the elements.

Theorem 1.4.7. Let X, Y be symmetric matrices with Y = Y(X). Then the

derivative, defined by (1.4.54), consists of all different partial derivatives
∂jygh

∂xj
kl

,

which appear only once.

Proof: To prove the theorem it will be shown that (1.4.54) is determined by the
same construction as the product vectorizing operator Rj(·) and the statement
follows then from the uniqueness of the elements of Rj(·). First let us define, on
the basis of V j(·), a composition operator Qj(·).
Definition 1.4.6. For symmetric A : n × n

Qj(A) = V j(Qj−1(A) � V 2(A)′), j = 1, 2, . . . , (1.4.56)

where Q0(A) = 1 and � is a composition operation which is specially defined for
different forms of Qj(A).

There are two important special cases of Qj(A), which will be referred to in the
proof of Theorem 1.4.7. From (1.3.77), which defines the product vectorization
operator Rj(·) for symmetric matrices, it follows that the operator Qj(·) turns into
Rj(·), if the composition operation is the usual matrix product operation. When
the composition is the differentiation procedure, the operator Qj(·) turns into the
j−th order matrix derivative given by (1.4.54). We have shown in Theorem 1.3.13
that Rj(A) consists of all different monomials of order j. Because of the same
structure of Qj(·) for different composition operators, we get the statement of the
theorem immediately.

1.4.9 Tables of derivatives
In this paragraph the derivatives given by (1.4.7), (1.4.47) and (1.4.48) are sum-
marized and their properties presented in two tables.
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Table 1.4.1. Properties of the matrix derivatives given by (1.4.47) and (1.4.48).
If X : p × n is m.i.v., then (1.4.47) is used, whereas if X is symmetric, (1.4.48) is
used. If dimensions are not given, the results hold for both derivatives.

Differentiated function Derivative

Z + Y
d̃Y

d̃X
+

d̃Z

d̃X

ZY
d̃Z

d̃X
(Y ⊗ I) + (Z ⊗ I)

d̃Y

d̃X

Zy
d̃Z

d̃X
y + Z ⊗ d̃y

d̃X

AYB (A ⊗ Ip)
d̃Y

d̃X
(B ⊗ In)

Y ⊗ Z, Y ∈ Rq×r,Z ∈ Rs×t Y ⊗ d̃Z

d̃X
+ (Kq,s ⊗ Ip)(Z ⊗ d̃Y

d̃X
)(Kt,r ⊗ In)

trY, Y ∈ Rq×q

q∑
m=1

(e′m ⊗ Ip)
d̃Y

d̃X
(em ⊗ In)

Y−1 −(Y−1 ⊗ Ip)
d̃Y

d̃X
(Y−1 ⊗ In)

X, X is m.i.v. vecIpvec′In

X, X is symmetric 1
2 (vecIpvec′Ip + Kp,p)

X′, X is m.i.v. Kn,p

tr(A′X), X is m.i.v. A

tr(A′X), X is symmetric 1
2 (A + A′)

tr(XAX′B), X is m.i.v. BXA + B′XA′

tr(XAX′B), X is symmetric 1
2 (BXA + B′XA′ + A′XB′ + AXB)

|X|r, r ∈ R r(X′)−1|X|r
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Table 1.4.2. Properties of the matrix derivative given by (1.4.7). In the table
X ∈ Rp×q and Y ∈ Rr×s.

Differentiated function Derivative
dY
dX

Formula

X Ipq (1.4.9)
cX cIpq (1.4.10)
A′vecX A (1.4.12)

Y + Z
dY
dX

+
dZ
dX

(1.4.13)

Z = Z(Y),Y = Y(X)
dZ
dX

=
dY
dX

dZ
dY

(1.4.14)

Y = AXB
dY
dX

= B ⊗ A′ (1.4.15)

Z = AYB
dZ
dX

=
dY
dX

(B ⊗ A′) (1.4.16)

X′ Kq,p (1.4.17)

W = W(Y(X),Z(X))
dW
dX

=
dY
dX

dW
dY

∣∣∣∣
Z=const.

+
dZ
dX

dW
dZ

∣∣∣∣
Y=const.

(1.4.18)

W = YZ, Z ∈ Rs×t dW
dX

=
dY
dX

(Z ⊗ Ir) +
dZ
dX

(It ⊗ Y′) (1.4.19)

Yn,Y0 = Ir n ≥ 1
dYn

dX
=

dY
dX

{ ∑
i+j=n−1;

i,j≥0

Yi ⊗ (Y′)j

}
(1.4.20)

X−1, X ∈ Rp×p −X−1 ⊗ (X′)−1, (1.4.21)

Y−n,Y0 = Ir, n ≥ 1
dY−n

dX
= −dY

dX

{ ∑
i+j=n−1;

i,j≥0

Y−i−1 ⊗ (Y′)−j−1

}
(1.4.22)

Y ⊗ Z, Z ∈ Rm×n

{
dY
dX

⊗ vec′Z + vec′Y ⊗ dZ
dX

}
(Is ⊗ Kr,n ⊗ Im) (1.4.23)

Y ⊗ A, A ∈ Rm×n (
dY
dX

⊗ vec′A)(Is ⊗ Kr,n ⊗ Im) (1.4.24)

A ⊗ Y, A ∈ Rm×n (
dY
dX

⊗ vec′A)Krs,mn(In ⊗ Km,s ⊗ Ir) (1.4.25)

tr(A′X) vecA (1.4.28)

|X|, X ∈ Rp×p |X|vec(X−1)′ (1.4.30)

Xd, X ∈ Rp×p (Kp,p)d (1.4.37)

X − symmetric
dX
dX

= Ip2 + Kp,p − (Kp,p)d, X ∈ Rp×p (1.4.38)

X − skew-symmetric
dX
dX

= Ip2 − Kp,p, X ∈ Rp×p (1.4.39)
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1.4.10 Taylor expansion
A basic tool for further studies in the following chapters is the Taylor series ex-
pansion. We will derive a general formula, which is valid for a matrix function
with a matrix argument:

f : Rp×q −→ Rr×s.

Because of the isometry between the vector spaces Rp×q and Rpq (see §1.4.2),
the study of a mapping f is equivalent to the study of a function defined on
the Euclidian space Rpq which maps on Rrs. In this paragraph we are going to
convert classical Taylor series expansions of multivariate functions into compact
matrix forms.
Let us remind of the one-dimensional case. When f is an ordinary univariate real
function, it can be expanded into a Taylor series in a neighborhood D of a point
x0 if f(x) is (n + 1) times differentiable at x0:

f(x) =
n∑

k=0

1
k!

dkf(x)
dxk

∣∣∣∣
x=x0

(x − x0)k + rn, (1.4.57)

where the error term

rn =
1

(n + 1)!
dn+1f(x)

dxn+1

∣∣∣∣
x=ξ

(x − x0)n+1, for some ξ ∈ D.

When f(x) is a function from Rp to Rq, every coordinate fi(x) of f(x) can be
expanded into a Taylor series in a neighborhood D of x0, if all partial derivatives
up to the order (n + 1) of f(x) exist and are continuous in D:

fi(x) = fi(x0)

+
p∑

i1=1

∂fi(x)
∂xi1

∣∣∣∣∣
x=x0

(x − x0)i1 +
1
2!

p∑
i1,i2=1

∂2fi(x)
∂xi1∂xi2

∣∣∣∣∣∣
x=x0

(x − x0)i1(x − x0)i2

+ · · · + 1
n!

p∑
i1,...,in=1

∂nfi(x)
∂xi1 . . . ∂xin

∣∣∣∣∣∣
x=x0

(x − x0)i1 × · · · × (x − x0)in + ri
n,

(1.4.58)

where the error term is

ri
n =

1
(n + 1)!

p∑
i1,...,in+1=1

∂n+1fi(x)
∂xi1 . . . ∂xin+1

∣∣∣∣∣∣
x=ξ

(x − x0)i1 × · · · × (x − x0)in+1 ,

for some ξ ∈ D.

In the following theorem we shall present the expansions of the coordinate functions
fi(x) in a compact matrix form.
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Theorem 1.4.8. If the function f(x) from Rp to Rq has continuous partial deriva-
tives up to the order (n + 1) in a neighborhood D of a point x0, then the function
f(x) can be expanded into the Taylor series at the point x0 in the following way:

f(x) = f(x0) +
n∑

k=1

1
k!

(
Iq ⊗ (x − x0)⊗(k−1)

)′ (dkf(x)
dxk

)′∣∣∣∣∣
x=x0

(x − x0) + rn,

(1.4.59)
where the error term is

rn =
1

(n + 1)!

(
(Iq ⊗ (x − x0)⊗(k−1)

)′ (dn+1f(x)
dxn+1

)′∣∣∣∣∣
x=ξ

(x − x0),

for some ξ ∈ D, (1.4.60)

and the derivative is given by (1.4.41).

Proof: The starting point of the proof will be (1.4.58), which holds for the co-
ordinate functions fi(x) of

f(x) =
q∑

i=1

fi(x)di = (f1(x), f2(x), . . . , fq(x))′.

From Theorem 1.4.4 it follows that

dkf(x)
dxk

∣∣∣∣
x=x0

=
q∑

i=1

p∑
i1,...,ik=1

∂kfi(x)
∂xi1 . . . ∂xik

∣∣∣∣
x=x0

eik
(di⊗ei1⊗· · ·⊗eik−1)

′, (1.4.61)

where ei• and di are unit basis vectors of size p and q, respectively. Premultiplying
(1.4.61) with (x − x0)′ and postmultiplying it with Iq ⊗ (x − x0)⊗k−1 yields

(x−x0)′
dkf(x)
dxk

∣∣∣∣
x−x0

(Iq ⊗ (x − x0)⊗k−1)

=
q∑

i=1

p∑
i1,...,ik=1

∂kfi(x)
∂xi1 . . . ∂xik

∣∣∣∣
x=x0

d′
i(x − x0)i1 × · · · × (x − x0)ik

. (1.4.62)

Since f(x) =
∑q

i=1 fi(x)di, it follows from (1.4.58) that by (1.4.62) we have the
term including the k−th derivative in the Taylor expansion for all coordinates (in
transposed form). To complete the proof we remark that for the error term we
can copy the calculations given above and thus the theorem is established.
Comparing expansion (1.4.59) with the univariate Taylor series (1.4.57), we note
that, unfortunately, a full analogy between the formulas has not been obtained.
However, the Taylor expansion in the multivariate case is only slightly more com-
plicated than in the univariate case. The difference is even smaller in the most
important case of applications, namely, when the function f(x) is a mapping on
the real line. We shall present it as a corollary of the theorem.



152 Chapter I

Corollary 1.4.8.1. Let the function f(x) from Rp to R have continuous partial
derivatives up to order (n + 1) in a neighborhood D of the point x0. Then the
function f(x) can be expanded into a Taylor series at the point x0 in the following
way:

f(x) = f(x0) +
n∑

k=1

1
k!

(x − x0)′
(

dkf(x)
dxk

)′∣∣∣∣∣
x=x0

(x − x0)⊗(k−1) + rn, (1.4.63)

where the error term is

rn =
1

(n + 1)!
(x − x0)′

(
dn+1f(x)

dxn+1

)′∣∣∣∣∣
x=ξ

(x − x0)⊗n, for some ξ ∈ D,

(1.4.64)
and the derivative is given by (1.4.41).

There is also another way of presenting (1.4.63) and (1.4.64), which sometimes is
preferable in applications.

Corollary 1.4.8.2. Let the function f(x) from Rp to R have continuous partial
derivatives up to order (n + 1) in a neighborhood D of the point x0. Then the
function f(x) can be expanded into a Taylor series at the point x0 in the following
way:

f(x) = f(x0) +
n∑

k=1

1
k!

((x − x0)′)
⊗k vec

(
dkf(x)

dxk

)′∣∣∣∣∣
x=x0

+ rn, (1.4.65)

where the error term is

rn =
1

(n + 1)!
((x − x0)′)

⊗(n+1) vec
(

dn+1f(x)
dxn+1

)′∣∣∣∣∣
x=ξ

, for some ξ ∈ D,

(1.4.66)
and the derivative is given by (1.4.41).

Proof: The statement follows from Corollary 1.4.8.1 after applying property
(1.3.31) of the vec-operator to (1.4.63) and (1.4.64).

1.4.11 Integration by parts and orthogonal polynomials
A multivariate analogue of the formula of integration by parts is going to be
presented. The expression will not look as nice as in the univariate case but later
it will be shown that the multivariate version is effective in various applications.
In the sequel some specific notation is needed. Let

∫
Ω

F(X)dX denote an ordinary
multiple integral, where F(X) ∈ Rp×t and integration is performed elementwise of
the matrix function F(X) with matrix argument X ∈ Rq×m. In the integral, dX
denotes the Lebesque measure

∏
k=1,...,q, l=1,...,m dxkl. Furthermore,

∫
Ω\xij

means
that we are integrating over all variables in X except xij and dX\xij

= dX/dxij ,
i.e. the Lebesque measure for all variables in X except xij . Finally, let ∂Ω denote
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the boundary of Ω. The set Ω may be complicated. For example, the cone over all
positive definite matrices is a space which is often utilized. On the other hand, it
can also be fairly simple, for instance, Ω = Rq×m. Before presenting the theorem,
let us recall the formula for univariate integration by parts :∫

Ω

df(x)
dx

g(x)dx = f(x)g(x)
∣∣∣∣
x∈∂Ω

−
∫

Ω

f(x)
dg(x)
dx

dx.

Theorem 1.4.9. Let F(X) ∈ Rp×t, G(X) ∈ Rt×n, X ∈ Rq×m and suppose that
all integrals given below exist. Then∫

Ω

dG(X)
dX

(In ⊗ F′(X))dX +
∫
Ω

dF(X)
dX

(G(X) ⊗ Ip)dX = Q,

where

Q =
∑

u,v∈I

(ev ⊗ du)

(∫
Ω\xuv

dF(X)G(X)
dxuv

dX\xuv

∣∣∣∣∣
xuv∈∂Ω

)
,

I = {u, v : u = 1, . . . , q, v = 1, . . . m} and the derivative is given by (1.4.7).

Proof: Note that
dF(X)

dX
∈ Rqm×pt and

dG(X)
dX

∈ Rqm×tn. We are going to
integrate the derivative

d(F(X)G(X))ij

dxuv
.

The first fundamental theorem in analysis states that∫
Ω

d(F(X)G(X))ij

dxuv
dxuvdX\xuv

=
∫
Ω\xuv

(F(X)G(X))ij

∣∣∣∣∣
xuv∈∂Ω

dX\xuv

which implies∫
Ω

dF(X)G(X)
dxuv

dxuvdX\xuv
=
∫
Ω\xuv

F(X)G(X)

∣∣∣∣∣
xuv∈∂Ω

dX\xuv
.

Thus, the theorem is verified since

Q =
∫
Ω

dF(X)G(X)
dX

dX

=
(1.4.16)

∫
Ω

dG(X)
dX

(I ⊗ F′(X))dX +
∫
Ω

dF(X)
dX

(G(X) ⊗ I)dX.

If F(X)G(X)|Xuv∈∂Ω = 0, u = 1, . . . , q, v = 1, . . . , m, then Q = 0. Suppose that
this holds, then a useful relation is presented in the next corollary based on this
fact.
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Corollary 1.4.9.1. If F(X)G(X)|xuv∈∂Ω = 0, u = 1, . . . , q, v = 1, . . . , m, then∫
Ω

dF(X)
dX

(G(X) ⊗ Ip)dX = −
∫
Ω

dG(X)
dX

(In ⊗ F′(X))dX,

and the derivative is given by (1.4.7).

In the following some general ideas of generating orthogonal polynomials will be
discussed. Suppose that f(X) ∈ R, X ∈ Rq×m is a function such that

dkf(X)
dXk

= Pk(X)f(X), (1.4.67)

where Pk(X) is a polynomial in X of order k, i.e.
∑k

i=0 civecX(vec′X)⊗i−1, where
ci are known constants. Furthermore, suppose that on ∂Ω

vecPk−r−1(X)vec′
drPl(X)

dXr
f(X)

∣∣∣∣
xuv∈∂Ω

= 0;

r = 0, . . . , l < k, u = 1, . . . , q, v = 1, . . . , m. (1.4.68)

Theorem 1.4.10. Suppose that (1.4.68) holds. Then, for k > l,∫
Ω

vecPk(X)vec′Pl(X)f(X)dX = 0.

Proof: First it is noted that for r = 0 the equality (1.4.68) implies that in
Theorem 1.4.9

Q =vec
∫
Ω

d

dX
{vecPk−1(X) ⊗ vecPl(X)f(X)}dX = 0.

Hence, from Corollary 1.4.9.1 it follows that

0 = vec
∫
Ω

Pk(X)(I ⊗ vec′Pl(X))f(X)dX

+ vec
∫
Ω

(vecPk−1(X) ⊗ dPl(X)
dX

)f(X)dX,

which is equivalent to

0 = H1
1

∫
Ω

vecPk(X) ⊗ vecPl(X)f(X)dX

− H2
1

∫
Ω

vecPk−1(X) ⊗ vec
dPl(X)

dX
f(X)dX

for some known non-singular matrices H1
1 and H2

1. Thus,

H1
1

∫
Ω

vecPk(X)⊗vecPl(X)f(X)dX = H2
1

∫
Ω

vecPk−1(X)⊗vec
dPl(X)

dX
f(X)dX.

(1.4.69)
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We are going to proceed in the same manner and note that

0 = vec
∫
Ω

d

dX
{vecPk−2(X) ⊗ vec

dPl(X)
dX

f(X)}dX

= H1
2

∫
Ω

{vecPk−1(X) ⊗ vec
dPl(X)

dX
f(X)}dX

− H2
2

∫
Ω

{vecPk−2(X) ⊗ vec
d2Pl(X)

dX2
f(X)}dX

for some non-singular matrices H1
2 and H2

2. Thus,∫
Ω

vecPk(X) ⊗ vecPl(X)f(X)dX

=(H1
1)

−1H2
1

∫
Ω

{vecPk−1(X) ⊗ vec
dPl(X)

dX
f(X)}dX

=(H1
1)

−1H2
1(H

1
2)

−1H2
2

∫
Ω

{vecPk−2(X) ⊗ vec
d2Pl(X)

dX2
f(X)}dX = · · ·

=(H1
1)

−1H2
1(H

1
2)

−1H2
2 · · · (H1

l )
−1H2

l

∫
Ω

{vecPk−l(X) ⊗ vec
dlPl(X)

dXl
f(X)}dX.

However, since Pl(X) is a polynomial of order l,
dlPl(X)

dXl
is a constant matrix

and since, by assumption given in (1.4.68),∫
Ω

Pk−l(X)f(X)dX =
∫
Ω

d

dX
Pk−l−1(X)f(X)dX = 0.

It has been shown that vecPk(X) and vecPl(X) are orthogonal with respect to
f(X).
Later in our applications, f(X) will be a density function and then the result of
the theorem can be rephrased as

E[vecPk(X) ⊗ vecPl(X)] = 0,

which is equivalent to
E[vecPk(X)vec′Pl(X)] = 0, (1.4.70)

where E[•] denotes expectation.

1.4.12 Jacobians
Jacobians |J(Y → X)|+ appear in multiple integrals when the original variables
are transformed, i.e. assuming that the multiple integral is well defined and that
the functions are integrable∫

F(Y)dY =
∫

F(G(X))|J(Y → X)|+dX,
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where Y = G(X), for some one-to-one matrix function G(•). In a statistical
context Jacobians are used when density functions are transformed. Observe the
well-known relation from calculus

|J(Y → X)|+ = |J(X → Y)|−1
+ .

The Jacobian matrix of the one-to-one transformation from Y = G(X) to X is
given by

J(Y → X) =
dvecY(K1)
dvecX(K2)

,

where K1 and K2 describe the patterns in Y and X, respectively. For notational

convenience we will often use
dk1Y
dk2X

instead of
dvecY(K1)
dvecX(K2)

in this paragraph.

The absolute value of the determinant of J(Y → X), i.e. |J(Y → X)|+, is called
the Jacobian of the transformation. Many useful results and references on Jaco-
bians can be found in the books by Srivastava & Khatri (1979), Muirhead (1982),
Magnus (1988) and Mathai (1997). In particular we would like to mention the
classical references Deemer & Olkin (1951) and Olkin & Sampson (1972). In this
paragraph we will present some of the most frequently used Jacobians. The pur-
pose, besides presenting these Jacobians, is to illustrate how to utilize the notions
of patterned matrices and matrix derivatives.

Theorem 1.4.11. Let Y = F(X) and X = G(Z). Then

J(Y → Z) = J(Y → X)J(X → Z).

Proof: The chain rule, given by Proposition 1.4.3, establishes the theorem.
The next theorem is taken from Srivastava & Khatri (1979, Theorem 1.11.2).
However, we shall give a different proof.

Theorem 1.4.12. Define the conditional transformation as

y1 =f1(x1, x2, . . . , xn),
yi =fi(y1, y2, . . . , yi−1, x1, x2, . . . , xn). i = 1, 2, . . . , n

Then

|J(y1, y2, . . . , yn → x1, x2, . . . , xn)|+ =
n∏

i=1

|J(yi → xi)|+.

Proof: We will once again apply the chain rule

dvec(y1, y2, . . . , yn)
dvec(x1, x2, . . . , xn)

=
dvec(y1, y2, . . . , yn−1, xn)

dvec(x1, x2, . . . , xn)
dvec(y1, y2, . . . , yn)

dvec(y1, y2, . . . , yn−1, xn)

=

⎛⎝ dvec(y1, y2, . . . , yn−1)
dvec(x1, x2, . . . , xn−1)

0

dvec(y1, y2, . . . , yn−1)
dxn

1

⎞⎠( I 0
dvec(y1, y2, . . . , yn−1)

dxn

dyn
dxn

)
.
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Thus, because of the triangular structure of the variables,

|J(y1, y2, . . . , yn → x1, x2, . . . , xn)|+ =
∣∣∣∣ dvec(y1, y2, . . . , yn−1)
dvec(x1, x2, . . . , xn−1)

∣∣∣∣
+

∣∣∣∣ dyn

dxn

∣∣∣∣
+

and then it follows that

|J(y1, y2, . . . , yn → x1, x2, . . . , xn)|+ =
n∏

i=1

|J(yi → xi)|+.

In the following certain linear transformations will be considered.

Theorem 1.4.13. Let A : n × n be non-singular, V symmetric and W skew-
symmetric.

(i) |J(AVA′ → V)|+ = |A|n+1
+ ,

(ii) |J(AWA′ → W)|+ = |A|n−1
+ .

Proof: Without loss of generality we suppose that the eigenvalues of A′A are
non-zero and distinct. Now∣∣∣∣dkAVA′

dkV

∣∣∣∣
+

=
∣∣∣∣ dV
dkV

(A′ ⊗ A′)T′(s)
∣∣∣∣
+

=
∣∣∣∣dkV
dkV

(T+(s))′(A′ ⊗ A′)T′(s)
∣∣∣∣
+

=
∣∣(T+(s))′(A′ ⊗ A′)T′(s)

∣∣
+

, (1.4.71)

where T(s) and T+(s) are given in Proposition 1.3.18 and the index k in the
derivative refers to the symmetric structure. By definition of T(s) the equality
(1.4.71) can be further explored:∣∣∣∣dkAVA′

dkV

∣∣∣∣
+

= |B(s)−1B′(s)(A′ ⊗ A′)B(s)B′|+ = |B′(s)(A′ ⊗ A′)B(s)|+
= |B′(s)(A′ ⊗ A′)B(s)B′(s)(A ⊗ A)B(s)|1/2 = |B′(s)(A′A ⊗ A′A)B(s)|1/2,

since B(s)B′(s) = 1
2 (I+Kn,n). According to Proposition 1.3.12 (xiii) all different

eigenvalues of A′A ⊗ A′A are given by λiλj , j ≥ i = 1, 2, . . . , n, where λk is an
eigenvalue of A′A. However, these eigenvalues are also eigenvalues of the product
B′(s)(A′A ⊗ A′A)B(s) since, if u is an eigenvector which corresponds to λiλj ,

(A′A ⊗ A′A)u = λiλju

implies that

B′(s)(A′A ⊗ A′A)B(s)B′(s)u = B′(s)B(s)B′(s)(A′A ⊗ A′A)u
=B′(s)(A′A ⊗ A′A)u = λiλjB′(s)u.
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Moreover, since

r(B′(s)(A′A ⊗ A′A)B(s)) = r(B(s)) = 1
2n(n + 1),

all eigenvalues of B′(s)(A′A⊗A′A)B(s) are given by λiλj . Thus, by Proposition
1.2.3 (xi)

|B′(s)(A′A ⊗ A′A)B(s)|1/2 =
n∏

i,j=1
i≤j

|λiλj |1/2 =
n∏

i=1

|λi|
1
2 (n+1)

= |A′A| 12 (n+1) = |A|n+1
+ .

Hence, (i) of the theorem is established.
For (ii) we utilize, as in the symmetric case, that∣∣∣∣dkAWA′

dkW

∣∣∣∣
+

=
∣∣(T+(ss))′(A′ ⊗ A′)T′(ss)

∣∣
+

= |B′(ss)(A′ ⊗ A′)B(ss)|+

=|B′(ss)(A′A ⊗ A′A)B(ss)|1/2,

where k now indicates the skew-symmetric structure. By definition of B(s) and
B(ss)

|A′A ⊗ A′A|+
= |(B(s)B′(s) + B(ss)B′(ss))(A′A ⊗ A′A)(B(s)B′(s) + B(ss)B′(ss))|+
= |B(s)B′(s)(A′A ⊗ A′A)B(s)B′(s) + B(ss)B′(ss)(A′A ⊗ A′A)B(ss)B′(ss)|+,

(1.4.72)

since B′(s)(A′A⊗A′A)B(ss)B′(ss) = B′(s)B(ss)B′(ss)(A′A⊗A′A) = 0. Fur-
thermore, (B(s) : B(ss)) : n × n is an orthogonal matrix and therefore (1.4.72) is
equivalent to

|A′A ⊗ A′A|+
=
∣∣∣∣(B(s) : B(ss))

(
B′(s)(A′A ⊗ A′A)B(ss) 0

0 B′(ss)(A′A ⊗ A′A)B(ss)

)
×
(

B′(s)
B′(ss)

)∣∣∣∣
+

= |B′(s)(A′A ⊗ A′A)B(s)|+|B′(ss)(A′A ⊗ A′A)B(ss)|+.

Thus, it follows from (i) that

|B′(ss)(A′A ⊗ A′A)B(ss)|1/2
+ = |A′A|n|A′A|− 1

2 (n+1) = |A|n−1
+ .
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Theorem 1.4.14. Let Y = AXB, where Y : p × n, X : p × n, A and B are
non-singular constant matrices. Then

|J(Y → X)|+ = |B|p+|A|n+.

Proof: The proof follows immediately since

vec′(AXB) = vec′X(B ⊗ A′)

and by Proposition 1.3.12 (ix) |B ⊗ A′| = |B|p|A|n.

Theorem 1.4.15. Let A, B and V be diagonal matrices, where A and B are
constant matrices, and W = AVB. Then

|J(W → V)|+ = |A|+|B|+.

Proof: The proof is a simplified version of Theorem 1.4.13:

|J(W → V)|+ =
∣∣∣∣dkAVB

dkV

∣∣∣∣
+

= |B′(d)(B ⊗ A)B(d)|+ = |A|+|B|+,

where Proposition 1.3.20 has been used and the subindex k indicates the diagonal
structure. An alternative proof is based on Theorem 1.4.11:

|J(AVB → V)|+ = |J(AVB → Z;Z = AV)|+|J(Z → V)|+.

Theorem 1.4.16. Let A, B and V be upper triangular matrices, and put W =
AVB. Then

|J(W → V)|+ =
n∏

i=1

|bii|i|aii|n−i−1.

Proof: Similarly to the proof of Theorem 1.4.15

|J(W → V)|+ = |B′(u)(B ⊗ A′)B(u)|+.

Now from Proposition 1.3.22 it follows that

H = B′(u)(B ⊗ A′)B(u) =
∑

i1≤j1,i2≤j2
j1≤j2,i2≤i1

bj1j2ai2i1fk(i1,j1)f
′
k(i2,j2)

=
(

H11 0
H21 H22

)
,

where

H11 =
∑

1=i1=i2≤j1≤j2

bj1j2a11ej1e
′
j2 ,

H21 =
∑

1=i2<i1≤j1≤j2

bj1j2a1i1 f̃k(i1,j1)e
′
j2 ,

f̃k(i1,j1) =(0 : Ir)fk(i1,j1), 0 : 1
2n(n + 1) × 1, r = 1

2n(n + 1) − 1,

H22 =
∑

2=i2≤i1≤j1≤j2

bj1j2ai2i1 f̃k(i1,j1)f̃
′
k(i2,j2)

.
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Since H11 is an upper triangular matrix, |H11| is the product of the diagonal
elements of H11. Moreover, H22 is of the same type as H and we can repeat the
above given arguments. Thus,

|H|+ = (
n∏

j=1

|bjja11|)(
n∏

j=2

|bjja22|) × · · · × |bnnann| =
n∏

i=1

|bii|i|aii|n−i+1.

Many more Jacobians for various linear transformations can be obtained. A rich
set of Jacobians of various transformations is given by Magnus (1988). Next we
consider Jacobians of some non-linear transformations.

Theorem 1.4.17. Let W = V−1 : n × n.

(i) If the elements of V are functionally independent, then

|J(W → V)|+ = |V|−2n
+ .

(ii) If V is symmetric, then

|J(W → V)|+ = |V|−(n+1)
+ .

(iii) If V is skew-symmetric, then

|J(W → V)|+ = |V|−(n−1)
+ .

Proof: Using Proposition 1.4.7 (ii)∣∣∣∣dV−1

dV

∣∣∣∣
+

= | − V−1 ⊗ (V−1)′|+ = |V|−2n.

Thus (i) is verified.
For (ii) we first note that

0 =
dV−1V

dkV
=

dV−1

dkV
(V ⊗ I) +

dV
dkV

(I ⊗ V−1)

=
dkV−1

dkV
(T+(s))′(V ⊗ I) + (T+(s))′(I ⊗ V−1),

where k refers to the symmetric structure. Thus,

dkV−1

dkV
= −(T+(s))′(V−1 ⊗ V−1)T(s)

and the Jacobian is similar to (1.4.71) which implies that (ii), as well as (iii) with
some modifications, follow from the proof of Theorem 1.4.13.
In the subsequent theorem we are going to express a symmetric matrix with the
help of a triangular matrix. Since the number of non-zero and functionally inde-
pendent elements is the same in both classes, the Jacobian in the next theorem is
well defined.
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Theorem 1.4.18. Let W = TT′ where T : n×n is a non-singular lower triangular
matrix with positive diagonal elements. Then

|J(W → T)|+ = 2n
n∏

j=1

tn−j+1
jj .

Proof: It is noted that

dk1TT′

dk2T
=

dT
dk2T

(T′ ⊗ I)T′(s) +
dT

dk2T
Kn,n(I ⊗ T′)T′(s)

=(T+(l))′(T′ ⊗ I)(I + Kn,n)T′(s),

where k1 and k2 refer to the symmetric and lower triangular patterns, respectively,
and T(s) and T(l) are defined in Proposition 1.3.18 and Proposition 1.3.23. Since
(I + Kn,n)T′(s) = 2T′(s), we consider the product

(T+(l))′(T′ ⊗ I)T′(s)

=
n∑

i,j=1
i≥j

n∑
i1,j1=1

fk2(i,j)(ej ⊗ ei)′(T′ ⊗ I)(ej1 ⊗ ei1)f
′
k1(i1,j1)

=
n∑

i,j,j1=1
i≥j

tj1jfk2(i,j)f
′
k1(i,j1)

=
n∑

i,j,j1=1
j≤j1≤i

tj1jfk2(i,j)f
′
k2(i,j1)

+
n∑

i,j,j1=1
j≤i<j1

tj1jfk2(i,j)f
′
k1(i,j1)

,

where the last equality follows because T is lower triangular and k2(i, j) = k1(i, j),
if i ≥ j. Moreover, k2(i, j) < k1(i, j1), if j ≤ i < j1 and therefore the product
(T+(l))′(T′ ⊗ I)T′(s) is an upper triangular matrix. Thus,

∣∣∣∣dk1TT′

dk2T

∣∣∣∣
+

= |2(T+(l))′(T′ ⊗ I)T′(s)|+ = 2n

∣∣∣∣∣∣
n∑

i≥j=1

tjjfk2(i,j)f
′
k2(i,j)

∣∣∣∣∣∣
+

= 2n
n∏

j=1

|tjj |n−j+1.

In the next theorem we will use the singular value decomposition. This means that
symmetric, orthogonal and diagonal matrices will be considered. Note that the
number of functionally independent elements in an orthogonal matrix is the same
as the number of functionally independent elements in a skew-symmetric matrix.

Theorem 1.4.19. Let W = HDH′, where H : n × n is an orthogonal matrix
and D : n × n is a diagonal matrix. Then

|J(W → (H,D))|+ =
n∏

i>j=1

|di − dj |
n∏

j=1

|H(j)|+,
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where

H(j) =

⎛⎜⎝ hjj . . . hjn

...
. . .

...
hnj . . . hnn

⎞⎟⎠ . (1.4.73)

Proof: By definition,

|J(W → (H,D))|+ =

∣∣∣∣∣∣∣
dk1HDH′

dk2H
dk1HDH′

dk3D

∣∣∣∣∣∣∣
+

, (1.4.74)

where k1, k2 and k3 refer to the symmetric, orthogonal and diagonal structures,
respectively. In particular, if in H the elements hij , i < j are chosen so that they
are functionally independent, then

k2(i, j) =n(i − 1) − 1
2 i(i − 1) + j − i, i < j,

k2(i, j) =0 i ≥ j.

Now

dk1HDH′

dk2H
=

dHDH′

dk2H
T′(s) = { dH

dk2H
(DH′ ⊗ I) +

dH′

dk2H
(I ⊗ DH′)}T′(s)

=
dH

dk2H
(I ⊗ H)(D ⊗ I)(H′ ⊗ H′)(I + Kn,n)T′(s). (1.4.75)

As in the previous theorem we observe that (I + Kn,n)T′(s) = 2T′(s). Moreover,
because

0 =
dHH′

dk2H
=

dH
dk2H

(H′ ⊗ I)(I + Kn,n), (1.4.76)

it follows that
dH

dk2H
(I ⊗ H) =

dH
dk2H

(I ⊗ H) 1
2 (I − Kn,n).

Thus (1.4.75) is equivalent to

dk1HDH′

dk2H
=

dH
dk2H

(I ⊗ H) 1
2 (I − Kn,n)(D ⊗ I)(H′ ⊗ H′)(I + Kn,n)T′(s)

=
dH

dk2H
(I ⊗ H) 1

2 (D ⊗ I − I ⊗ D)(H′ ⊗ H′)(I + Kn,n)T′(s)

=
dH

dk2H
(I ⊗ H)(D ⊗ I − I ⊗ D)(H′ ⊗ H′)T′(s).

For the second term of the Jacobian it follows that

dk1HDH′

dk3D
=

dD
dk3D

(H′ ⊗ H′)T′(s) = (T+(d))′(H′ ⊗ H′)T′(s),
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where T+(d) can be found in Proposition 1.3.20. Since T′(s) = B(s)B′(s), we are
going to study the product

|B(s)|

∣∣∣∣∣∣∣∣
⎛⎜⎝

dk1HDH′

dk2H
dk1HDH′

dk3D

⎞⎟⎠ (B′(s))−1(B(s))−1

⎛⎜⎝
dk1HDH′

dk2H
dk1HDH′

dk3D

⎞⎟⎠
′∣∣∣∣∣∣∣∣

1/2

= |B(s)|
∣∣∣∣K11 K12

K′
12 K22

∣∣∣∣1/2

, (1.4.77)

which equals the determinant given in (1.4.74) and where

K11 =
dH

dk2H
(I ⊗ H)(D ⊗ I − I ⊗ D)(H′ ⊗ H′)B(s)B′(s)(H ⊗ H)

× (D ⊗ I − I ⊗ D)(I ⊗ H′)
(

dH
dk2H

)′

=
dH

dk2H
(I ⊗ H)(D ⊗ I − I ⊗ D)2(I ⊗ H′)

(
dH

dk2H

)′
,

K22 =(T+(d))′(H′ ⊗ H′)B(s)B′(s)(H ⊗ H)T+(d)
=(T+(d))′B(s)B′(s)T+(d) = I,

K12 =
dH

dk2H
(I ⊗ H)(D ⊗ I − I ⊗ D)(H′ ⊗ H′)B(s)B′(s)(H ⊗ H)T+(d)

=
dH

dk2H
(I ⊗ H)(D ⊗ I − I ⊗ D)T+(d) = 0.

Thus, (1.4.77) is identical to

|B(s)|
∣∣∣∣∣ dH
dk2H

(I ⊗ H)(D ⊗ I − I ⊗ D)2(I ⊗ H′)
(

dH
dk2H

)′∣∣∣∣∣
1/2

. (1.4.78)

Since
dH

dk2H
(I ⊗ H)(I + Kn,n) = 0,

we may choose a matrix Q such that

dH
dk2H

= Q 1
2 (I − Kn,n)(I ⊗ H′)

holds and QB(ss) : 1
2n(n − 1) × 1

2n(n − 1) is of full rank. Then

dH
dk2H

(I ⊗ H) = QB(ss)B′(ss).
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Returning to (1.4.78) it follows that this expression is identical to

|B(s)||QB(ss)B′(ss)Q′|1/2|B′(ss)(D ⊗ I − I ⊗ D)2B(ss)|1/2

= |B(s)|
∣∣∣∣∣ dH
dk2H

(
dH

dk2H

)′∣∣∣∣∣
1/2

|B′(ss)(D ⊗ I − I ⊗ D)2B(ss)|1/2.(1.4.79)

Each determinant in (1.4.79) will be examined separately. First it is noticed that

(D ⊗ I − I ⊗ D)2 =
∑
i �=j

(di − dj)2eie′i ⊗ eje′j .

This implies that

B′(ss)(D ⊗ I − I ⊗ D)2B(ss) = 1
2

∑
i �=j

(di − dj)2fk4(i,j)f
′
k4(i,j)

=
∑
i>j

(di − dj)2fk4(i,j)f
′
k4(i,j)

, (1.4.80)

where k4(i, j) is given in Proposition 1.3.19. The matrix in (1.4.80) is diagonal
and hence

|B′(ss)(D ⊗ I − I ⊗ D)2B(ss)|1/2 = (
∏
i>j

(di − dj)2)1/2 =
∏
i>j

|di − dj |. (1.4.81)

Moreover, using the definition of B(s), given by (1.3.55),

|B(s)| =

∣∣∣∣∣∣
∑
i,j

fk1(i,j)f
′
k1(i,j)

1√
2

∣∣∣∣∣∣ = 2
1
4n(n−1). (1.4.82)

It remains to find ∣∣∣∣∣ dH
dk2H

(
dH

dk2H

)′∣∣∣∣∣
1/2

.

We may write
dH

dk2H
=

n∑
i,j=1

∑
k,l=1
k<l

∂hij

∂hkl
fk2(k,l)(ej ⊗ ei)′.

Furthermore, let su stand for the strict upper triangular matrix, i.e. all elements
on the diagonal and below it equal zero. Similarly to the basis matrices in §1.3.6
we may define

B(su) =
∑
i<j

(ej ⊗ ei)f ′k2(i,j)
.

If using B(l), which was given in Proposition 1.3.23, it follows that B′(l)B(su) = 0
and

(B(su) : B(l))(B(su) : B(l))′ = B(su)B′(su) + B(l)B′(l) = I.
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Now

dH
dk2H

B(su) =
∑
i,j

k<l,i<j

∑
i1<j1

∂hij

∂hkl
fk2(k,l)(ej ⊗ ei)′(ej1 ⊗ ei1)f

′
k2(i1,j1)

=
∑
i,j
k<l

∂hij

∂hkl
fk2(k,l)f ′k2(i,j)

=
∑
i<j

fk2(i,j)f
′
k2(i,j)

= I.

Thus, ∣∣∣∣∣ dH
dk2H

(
dH

dk2H

)′∣∣∣∣∣ =
∣∣∣∣∣ dH
dk2H

(B(su)B′(su) + B(l)B′(l))
(

dH
dk2H

)′∣∣∣∣∣
=

∣∣∣∣∣I +
dH

dk2H
B(l)B′(l)

(
dH

dk2H

)′∣∣∣∣∣ . (1.4.83)

We are going to manipulate
dH

dk2H
B(l) and from (1.4.76) it follows that

0 =
dH

dk2H
(I ⊗ H)B(s) =

dH
dk2H

(B(su)B′(su) + B(l)B′(l))(I ⊗ H)B(s)

=B′(su)(I ⊗ H)B(s) +
dH

dk2H
B(l)B′(l)(I ⊗ H)B(s),

which implies

dH
dk2H

B(l) = −B′(su)(I ⊗ H)B(s){B′(l)(I ⊗ H)B(s)}−1.

Therefore the right hand side of (1.4.83) can be simplified:

|I+B′(su)(I ⊗ H)B(s){B′(l)(I ⊗ H)B(s)}−1{B′(s)(I ⊗ H′)B(l)}−1

× B′(s)(I ⊗ H′)B(su)|
= |I + {B′(l)(I ⊗ H)B(s)}−1{B′(s)(I ⊗ H′)B(l)}−1B′(s)(I ⊗ H′)B(su)
× B′(su)(I ⊗ H)B(s)|

= |B′(l)(I ⊗ H)B(s)|−1,

where it has been utilized that B(su)B′(su) = I − B(l)B′(l). By definitions of
B(l) and B(s), in particular, k3(i, j) = n(j − 1) − 1

2j(j − 1) + i, i ≥ j and
k1(i, j) = n(min(i, j) − 1) − 1

2 min(i, j)(min(i, j) − 1) + max(i, j),

B′(l)(I ⊗ H)B(s)

=
∑
i≥j

fk3(i,j)(ej ⊗ ei)′(I ⊗ H){
∑
i1,j1
i1 �=j1

1√
2
(ej1 ⊗ ei1)f

′
k1(i1,j1)

+
∑
i1

(ei1 ⊗ ei1)f
′
k1(i1,i1)

}

=
∑
i≥j
i1 �=j

1√
2
hii1fk3(i,j)f

′
k1(i1,j) +

∑
i≥j

hijfk3(i,j)f
′
k1(i1,j). (1.4.84)
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Now we have to look closer at k3(i, j) and k1(i, j). Fix j = j0 and then, if
i1 ≥ j0, {k1(i1, j0)}i1≥j0 = {k3(i, j0)}i≥j0 and both k1(i, j0) and k2(i, j0) are
smaller than nj0 − 1

2j0(j0 − 1). This means that fk3(i,j0)f
′
k1(i1,j0)

, i1 ≥ j0, i1 ≥ j0
forms a square block. Furthermore, if i1 < j0, then fk1(i1,j0) is identical to fk1(i1,j)

for i1 = j < j0 = i. Therefore, fk3(i,j0)f
′
k1(i1,j0)

stands below the block given
by fk3(i,i1)f

′
k1(j0,i1)

. Thus, each j defines a block and the block is generated by
i ≥ j and i1 ≥ j. If i1 < j then we are ”below” the block structure. Thus the
determinant of (1.4.84) equals

|B′(l)(I ⊗ H)B(s)| = |
∑
i≥j
i1>j

1√
2
hii1fk3(i,j)f

′
k1(i1,j) +

∑
i≥j

hijfk3(i,j)f
′
k1(j,j)

|

=
n−1∏
j=1

∣∣∣∣∣∣∣
hjj

1√
2
hjj+1 . . . 1√

2
hjn

...
...

. . .
...

hnj
1√
2
hnj+1 . . . 1√

2
hnn

∣∣∣∣∣∣∣ |hnn| =
n−1∏
j=1

2−
1
2 (n−j)|H(j)||hnn|

=2−
1
4n(n−1)

n−1∏
j=1

|H(j)||hnn|, (1.4.85)

where H(j) is given by (1.4.73). By combining (1.4.80), (1.4.81) and (1.4.85) we
have proved the theorem.

Theorem 1.4.20. Let X : p×n, p ≤ n and X = TL, where T is a lower triangular
matrix with positive elements, and LL′ = Ip, i.e. L is semiorthogonal. Then

|J(X → T,L)|+ =
p∏

i=1

tn−i
ii

p∏
i=1

|Li|+,

where Li = (ljk) j, k = 1, 2, . . . , i and the functionally independent elements in L
are l12, l13, . . . , l1n, l23, . . . , l2n, . . . , lp1, . . . , lpn.

Proof: By definition of the Jacobian

|J|+ =

∣∣∣∣∣∣∣
dX
dT
dX
dL

∣∣∣∣∣∣∣
+

,

where

dX
dT

=(T+(l))′(L ⊗ Ip),

dX
dL

=(T+(so))′(In ⊗ T′),



Basic Matrix Theory and Linear Algebra 167

with T+(l) and T+(so) given in Proposition 1.3.23 and Problem 9 in §1.3.8, re-
spectively. Now we are going to study J in detail. Put

H1 =
p∑

i=1

i∑
j=1

n∑
k=i+1

ljkfs(ek ⊗ di)′,

H2 =
p∑

i=1

i∑
j=1

i∑
k=1

ljkfs(ek ⊗ di)′,

H3 =
p∑

i=1

n∑
j=i+1

tiifs(ej ⊗ di)′,

H4 =
p∑

i=1

n∑
j=i+1

p∑
m=i+1

tmifs(ej ⊗ dm)′,

where fs and fs follow from the definitions of T+(so) and T+(l), respectively.
Observe that using these definitions we get

J =
(

H1 + H2

H3 + H4

)
. (1.4.86)

The reason for using H1 +H2 and H3 +H4 is that only H2 and H3 contribute to
the determinant. This will be clear from the following.
J is a huge matrix and its determinant will be explored by a careful investigation
of ek ⊗di, ej ⊗di, fs and fs in Hr, r = 1, 2, 3, 4. First observe that l11 is the only
non-zero element in the column given by e1 ⊗ d1 in J. Let

J11 = J(j=i=k=1;fs,ek⊗di)
(j=i=1;ej⊗di)

denote the matrix J where the row and column in H1 and H2, which correspond
to i = j = k = 1, have been deleted. Note that the notation means the following:
The upper index indicates which rows and columns have been deleted from H1

and H2 whereas the subindex shows which rows and columns in H3 and H4 have
been deleted. Thus, by (1.1.6),

|J|+ = |l11||J11|+.

However, in all columns of J11 where t11 appears, there are no other elements
which differ from zero. Let

J12 = J(i=1,i<k≤n;ek⊗di)
11(i=1,i<j≤n;fs,ej⊗di)

denote the matrix J11 where the columns in H1 and H2 which correspond to i = 1
and the rows and columns which correspond to i = 1, i < j ≤ n in H3 and H4,
given in (1.4.86), have been omitted. Hence,

|J|+ = |l11|tn−1
11 |J12|+.
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We may proceed in the same manner and obtain

|J|+ = |l11|tn−1
11

∣∣∣∣ l11 l12
l21 l22

∣∣∣∣ |J21|+ = |l11|tn−1
11 |L2|tn−2

22 |J22|+

= . . . =
p∏

i=1

|Li|
p∏

i=1

tn−i
ii

for some sequence of matrices J21, J22, J31, J32, J41, . . . . For example,

J21 = J(i=2,j≤2,k≤2;fs,ek⊗di)
12(i=2,j≤2;ej⊗di)

and
J22 = J(i=2,i<k≤n;ek⊗di)

21(i=2,i<j≤n;fs,ej⊗di)
,

where we have used the same notation as when J11 and J12 were defined. The
choice of indices in these expressions follows from the construction of H2 and H3.

Sometimes it is useful to work with polar coordinates. Therefore, we will present
a way of obtaining the Jacobian, when a transformation from the rectangular co-
ordinates y1, y2, . . . , yn to the polar coordinates r, θn−1, θn−2, . . . , θ1 is performed.

Theorem 1.4.21. Let

y1 =r

n−1∏
i=1

sin θi, y2 = r cos θn−1

n−2∏
i=1

sin θi, y3 = r cos θn−2

n−3∏
i=1

sin θi, . . .

. . . , yn−1 = r cos θ2 sin θ1, yn = r cos θ1.

Then

|J(y → r, θ)| = rn−1
n−2∏
i=1

sinn−i−1 θi, θ = (θn−1, θn−2, . . . , θ1)′.

Proof: We are going to combine Theorem 1.4.11 and Theorem 1.4.12. First
we observe that the polar transformation can be obtained via an intermediate
transformation in the following way;

yk = yk−1x
−1
k , y1 = x1, k = 2, 3, . . . , n (1.4.87)

and

x2 = tan θn−1

xk = tan θn−k+1 cos θn−k+2, k = 3, 4, . . . , n.

Thus, by Theorem 1.4.11

J(y → r, θ) = J(y → x)J(x → r, θ).
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Furthermore, from (1.4.87) it follows that J(y → x) is based on a conditional
transformation and then Theorem 1.4.12 tells us that

J(y → r, θ) =
n∏

i=1

J(yi → xi)J(x → r, θ).

From (1.4.87) it follows immediately that∣∣∣∣∣
n∏

i=1

J(yi → xi)

∣∣∣∣∣
+

=
xn−1

1∏n
i=2 xn−i+2

i

.

This determinant |J(x → r, θ)|, equals, by Proposition 1.3.2,

|J(x2, x3, . . . , xn → θ)|+
n−1∏
i=1

sin θi.

However, J(x2, x3, . . . , xn → θ) is an upper triangular matrix and the Jacobian
equals

1
cos θ1

n−1∏
i=1

1
cos θi

.

Thus,

|J(y → r,θ)|+ =
xn−1

1∏n
i=2 xn−i+2

i

n−1∏
i=1

sin θi
1

cos θ1

n−1∏
i=1

1
cos θi

=
xn−1

1∏n
i=2 xn−i+1

i

n−1∏
i=1

1
cos θi

.

By inserting the expression for xi, i = 1, 2, . . . , n into the Jacobian we get

n∏
i=2

xn−i+1
i =

n−1∏
i=1

sini θi

n−1∏
i=1

1
cos θi

,

and the theorem is verified.

1.4.13 Problems

1. Find the derivative
d|YX2|

dX
, where Y = Y(X).

2. Prove that
dX
dX′ = Kp,q if X : p × q.

3. Find
d(A ◦ X)

dX
.

4. Find
d2(YX2)

dX2
.
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5. Differentiate |I + TΣ| using both derivatives given by (1.4.7) and (1.4.48)
where T and Σ are symmetric.

6. Derive the first three terms in a Taylor series expansion of eln|X|, at the point
X = Ip, where X : p × p is non-singular.

7. Find the Jacobian of the transformation W = A◦V where A is constant and
the size of all included matrices is p × p.

8. Verify that Σ−1x and Σ−1xx′Σ−1 −Σ−1 are orthogonal with respect to the
function

f(x) = e−
1
2x′Σ−1x.

9. Give a detailed proof of statement (iii) of Theorem 1.4.17.

10. Let T be a Toeplitz matrix. Examine
dT
dT

.



CHAPTER II

Multivariate Distributions

At first we are going to introduce the main tools for characterization of multivariate
distributions: moments and central moments, cumulants, characteristic function,
cumulant function, etc. Then attention is focused on the multivariate normal
distribution and the Wishart distribution as these are the two basic distributions
in multivariate analysis. Random variables will be denoted by capital letters from
the end of the Latin alphabet. For random vectors and matrices we shall keep
the boldface transcription with the same difference as in the non-random case;
small bold letters are used for vectors and capital bold letters for matrices. So
x = (X1, . . . , Xp)′ is used for a random p−vector, and X = (Xij) (i = 1, . . . , p; j =
1, . . . , q) will denote a random p × q−matrix X.
Nowadays the literature on multivariate distributions is growing rapidly. For a
collection of results on continuous and discrete multivariate distributions we re-
fer to Johnson, Kotz & Balakrishnan (1997) and Kotz, Balakrishnan & Johnson
(2000). Over the years many specialized topics have emerged, which are all con-
nected to multivariate distributions and their marginal distributions. For exam-
ple, the theory of copulas (see Nelsen, 1999), multivariate Laplace distributions
(Kotz, Kozubowski & Podgórski, 2001) and multivariate t−distributions (Kotz &
Nadarajah, 2004) can be mentioned.
The first section is devoted to basic definitions of multivariate moments and cumu-
lants. The main aim is to connect the moments and cumulants to the definition
of matrix derivatives via differentiation of the moment generating or cumulant
generating functions.
In the second section the multivariate normal distribution is presented. We focus
on the matrix normal distribution which is a straightforward extension of the clas-
sical multivariate normal distribution. While obtaining moments of higher order,
it is interesting to observe the connections between moments and permutations of
basis vectors in tensors (Kronecker products).
The third section is dealing with so-called elliptical distributions, in particular with
spherical distributions. The class of elliptical distributions is a natural extension
of the class of multivariate normal distributions. In Section 2.3 basic material on
elliptical distributions is given. The reason for including elliptical distributions
in this chapter is that many statistical procedures based on the normal distri-
bution also hold for the much wider class of elliptical distributions. Hotelling’s
T 2−statistic may serve as an example.
The fourth section presents material about the Wishart distribution. Here basic
results are given. However, several classical results are presented with new proofs.
For example, when deriving the Wishart density we are using the characteristic
function which is a straightforward way of derivation but usually is not utilized.
Moreover, we are dealing with quite complicated moment relations. In particular,
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moments for the inverse Wishart matrix have been included, as well as some basic
results on moments for multivariate beta distributed variables.

2.1 MOMENTS AND CUMULANTS

2.1.1 Introduction
There are many ways of introducing multivariate moments. In the univariate case
one usually defines moments via expectation, E[U ], E[U2], E[U3], etc., and if we
suppose, for example, that U has a density fU (u), the k−th moment mk[U ] is
given by the integral

mk[U ] = E[Uk] =
∫

R

ukfU (u)du.

Furthermore, the k−th order central moment mk[U ] is also given as an expectation:

mk[U ] = E[(U − E[U ])k].

In particular, for k = 2, we note that from the last expression we obtain the
variance of U :

D[U ] = E[(U − E[U ])2].

Let us denote the variance by D[U ], i.e. dispersion. In the multivariate case D[u]
denotes the dispersion matrix of a random vector u. An important tool for deriving
moments and cumulants is the characteristic function of a random variable. For a
random variable U we denote the characteristic function by ϕU (t) and define it as

ϕU (t) = E[ei tU ], (2.1.1)

where i is the imaginary unit. We will treat i as a constant. Furthermore, through-
out this chapter we suppose that in (2.1.1) we can change the order of differenti-
ation and taking expectation. Hence,

E[Uk] =
1
ik

dk

dtk
ϕU (t)

∣∣∣∣
t=0

. (2.1.2)

This relation will be generalized to cover random vectors as well as random matri-
ces. The problem of deriving multivariate moments is illustrated by an example.
Example 2.1.1 Consider the random vector x = (X1, X2)′. For the first order
moments, E[X1] and E[X2] are of interest and it is natural to define the first
moment as

E[x] = (E[X1], E[X2])′

or
E[x] = (E[X1], E[X2]).

Choosing between these two versions is a matter of taste. However, with the
representation of the second moments we immediately run into problems. Now
E[X1X2], E[X2

1 ] and E[X2
2 ] are of interest. Hence, we have more expectations than
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the size of the original vector. Furthermore, it is not obvious how to present the
three different moments. For example, a direct generalization of the univariate case
in the form E[x2] does not work, since x2 is not properly defined. One definition
which seems to work fairly well is E[x⊗2], where the Kroneckerian power of a
vector is given by Definition 1.3.4. Let us compare this possibility with E[xx′].
By definition of the Kronecker product it follows that

E[x⊗2] = E[(X2
1 , X1X2, X2X1, X

2
2 )′], (2.1.3)

whereas

E[xx′] = E

[(
X2

1 X1X2

X2X1 X2
2

)]
. (2.1.4)

A third choice could be

E[V 2(xx′)] = E[(X2
1 , X1X2, X

2
2 )′], (2.1.5)

where the operator V 2(·) was introduced in §1.3.7.

All these three definitions in Example 2.1.1 have their pros and cons. For example,
the Kroneckerian definition, given in (2.1.3), can be easily extended to moments
of arbitrary order, namely

E[x⊗k], k = 1, 2, . . .

One problem arising here is the recognition of the position of a certain mixed
moment. If we are only interested in the elements E[X2

1 ], E[X2
2 ] and E[X1X2] in

E[x⊗2], things are easy, but for higher order moments it is complicated to show
where the moments of interest are situated in the vector E[x⊗k]. Some authors
prefer to use so-called coordinate free approaches (Eaton, 1983; Holmquist, 1985;
Wong & Liu, 1994, 1995; Käärik & Tiit, 1995). For instance, moments can be
considered as elements of a vector space, or treated with the help of index sets.
From a mathematical point of view this is convenient but in applications we really
need explicit representations of moments. One fact, influencing our choice, is that
the shape of the second order central moment, i.e. the dispersion matrix D[x] of
a p−vector x, is defined as a p × p−matrix:

D[x] = E[(x − E[x])(x − E[x])′].

If one defines moments of a random vector it would be natural to have the second
order central moment in a form which gives us the dispersion matrix. We see that
if E[x] = 0 the definition given by (2.1.4) is identical to the dispersion matrix, i.e.
E[xx′] = D[x]. This is advantageous, since many statistical methods are based on
dispersion matrices. However, one drawback with the moment definitions given by
(2.1.3) and (2.1.4) is that they comprise too many elements, since in both E[X1X2]
appears twice. The definition in (2.1.5) is designed to present the smallest number
of all possible mixed moments.
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2.1.2 Basic statistical functions
In this paragraph we shall introduce notation and notions of the basic functions
to be used for random vectors and matrices. A density function of a p−vector x is
denoted by fx(x), where x ∈ Rp, and a density function of a random p×q−matrix
X is denoted by fX(X), where X ∈ Rp×q. Here we follow the classical notation
used by Muirhead (1982), Fang & Zhang (1990), Anderson (2003), for example,
which is somewhat confusing: the random matrix and the variable argument of the
density are denoted by the same letter, but this difference can be easily understood
from the context. Similarly, we denote by Fx(x) the distribution function of a
random p−vector x and by FX(X) the distribution function of a random matrix
X : p × q.
The characteristic function of a random p−vector x is defined by the equality

ϕx(t) = E
[
eit′x

]
, t ∈ Rp. (2.1.6)

The characteristic function of a random matrix X is given by

ϕX(T) = E[eitr(T′X)], (2.1.7)

where T is of the same size as X. From property (1.3.32) of the vec−operator we
get another representation of the characteristic function:

ϕX(T) = E[eivec′TvecX]. (2.1.8)

While putting t = vecT and x = vecX, we observe that the characteristic func-
tion of a matrix can be considered as the characteristic function of a vector, and
so (2.1.7) and (2.1.8) can be reduced to (2.1.6). Things become more compli-
cated for random matrices with repeated elements, such as symmetric matri-
ces. When dealing with symmetric matrices, as well as with other structures,
we have to first decide what is meant by the distribution of the matrix. In the
subsequent we will only consider sets of non-repeated elements of a matrix. For
example, consider the p × p symmetric matrix X = (Xij). Since Xij = Xji,
we can take the lower triangle or the upper triangle of X, i.e. the elements
X11, . . . , Xpp, X12, . . . , X1p, X23, . . . , X2p, . . . , X(p−1)p. We may use that in the no-
tation of §1.3.7, the vectorized upper triangle equals V 2(X). From this we define
the characteristic function of a symmetric p × p−matrix X by the equality

ϕX(T) = E[eiV 2′(T)V 2(X)]. (2.1.9)

A general treatment of matrices with repeated elements is covered by results about
patterned matrices (Definition 1.3.6). Let us assume that there are no repeated
elements in a random patterned matrix X(K). The characteristic function of a
patterned matrix X(K) is defined by

ϕX(K)(T(K)) = E
[
eivec′T(K)vecX(K)

]
, (2.1.10)
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where T(K) is a real patterned matrix with pattern K.
We call the logarithm of the characteristic function the cumulant function of a
p−vector x

ψx(t) = lnϕx(t). (2.1.11)

Analogously, the function
ψX(T) = lnϕX(T) (2.1.12)

is the cumulant function of a p × q−matrix X, and

ψX(K)(T(K)) = lnϕX(K)(T(K)) (2.1.13)

is the cumulant function of a patterned matrix X(K) with a pattern K.

2.1.3 Moments and central moments
It was indicated in (2.1.2) that univariate moments can be obtained by differentiat-
ing the characteristic function. This idea will now be extended to random vectors
and matrices. However, it is first noted that throughout the text E[X] = (E[Xij ])
for any matrix X.

Definition 2.1.1. Let the characteristic function ϕx(t) be k times differentiable.
Then the k−th moment of a p-vector x equals

mk[x] =
1
ik

dk

dtk
ϕx(t)

∣∣∣∣
t=0

, t ∈ Rp, (2.1.14)

where the k−th order matrix derivative is defined by (1.4.41).

Let us check, whether this definition gives us the second order moment of the form
(2.1.4). We have to find the second order derivative

d2ϕx(t)
dt2

= E[
d2

dt2
eit′x] =

(1.4.41)
E[

d

dt
(

d

dt
eit′x)] =

(1.4.14)
E[

d

dt
(ixeit′x)] =

(1.4.16)
E[−xeit′xx′]

and thus m2[x] = E[xx′], i.e. m2[x] is of the same form as the moment expression
given by (2.1.4). Central moments of a random vector are defined in a similar way.

Definition 2.1.2. The k−th central moment of a p−vector x is given by the
equality

mk[x] = mk[x − E[x]] =
1
ik

dk

dtk
ϕx−E[x](t)

∣∣∣∣
t=0

, t ∈ Rp, (2.1.15)

where the k−th order matrix derivative is defined by (1.4.41).

From this definition it follows directly that when k = 2 we obtain from (2.1.15) the
dispersion matrix D[x] of x. It is convenient to obtain moments via differentiation,
since we can derive them more or less mechanically. Approaches which do not
involve differentiation often rely on combinatorial arguments. Above, we have
extended a univariate approach to random vectors and now we will indicate how
to extend this to matrices. Let mk[X] denote the k−th moment of a random
matrix X.
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Definition 2.1.3. Let the characteristic function ϕX(T) be k times differentiable.
Then the k−th moment of a random p × q−matrix X equals

mk[X] =
1
ik

dk

dTk
ϕX(T)

∣∣∣∣
T=0

, T ∈ Rp×q, (2.1.16)

where the k−th order matrix derivative is defined by (1.4.41).

In a similar way we define central moments of a random matrix.

Definition 2.1.4. The k−th central moment mk[X] of a random matrix X equals

mk[X] = mk[X − E[X]] =
1
ik

dk

dTk
ϕX−E[X](T)

∣∣∣∣
T=0

, T ∈ Rp×q, (2.1.17)

where the k−th order matrix derivative is defined by (1.4.41).

One should observe that

ϕX−E[X](T) = ϕX(T)g(T), (2.1.18)

where
g(T) = e−itr(T′E[X]).

For a random vector x we have

g(t) = e−it′E[x].

Now we get the central moments of a random vector and a random matrix in the
following form

mk[x] =
1
ik

dk

dtk
{ϕx(t)e−it′E[x]}

∣∣∣∣
t=0

, (2.1.19)

mk[X] =
1
ik

dk

dTk
{ϕX(T)e−itr(T′E[X])}

∣∣∣∣
T=0

. (2.1.20)

It is not obvious how to define the dispersion matrix D[X] for a random matrix
X. Here we adopt the definition

D[X] = D[vecX], (2.1.21)

which is the most common one. In the next, a theorem is presented which gives
expressions for moments of a random vector as expectations, without the reference
to the characteristic function.
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Theorem 2.1.1. For an arbitrary random vector x

mk[x] = E[x(x′)⊗k−1], k = 1, 2, . . . ; (2.1.22)(i)

mk[x] = E[(x − E[x])((x − E[x])′)⊗k−1], k = 1, 2, . . . (2.1.23)(ii)

Proof: We are going to use the method of mathematical induction when differ-
entiating the characteristic function ϕx(t) in (2.1.6). For k = 1 we have

deit′x

dt
=

(1.4.14)

d{it′x}
dt

deit′x

d{it′x} =
(1.4.16)

ixeit′x (2.1.24)

and
dϕx(t)

dt

∣∣∣∣
t=0

= E[ieit′xx]
∣∣∣
t=0

= im1[x].

Let us suppose that for k = j − 1 the equality

dj−1ϕx(t)
dtj−1

= E[ij−1xeit′x(x′)⊗(j−2)]

holds, from where we get the statement of the theorem at t = 0. We are going to
prove that the statement is also valid for k = j.

djϕx(t)
dtj

=
(1.4.16)

ij−1E[
deit′x

dt
(x′)⊗(j−1)] =

(2.1.24)
E[ijxeit′x(x′)⊗(j−1)].

At the point t = 0 we obtain

djϕx(t)
dtj

∣∣∣∣
t=0

= ijE[x(x′)⊗(j−1)] = ijmj [x].

Thus (2.1.22) is established. To complete the proof it remains to show that (2.1.23)
is valid, but this follows immediately from the fact that the central moment of x
is identical to the moment of x − E[x].
When defining moments we assume that we can change the order of differentiation
and taking expectation when differentiating the characteristic function. From the
proof of the next theorem we get a characterization of that assumption.

Corollary 2.1.1.1. Let the vector x⊗k be absolutely integrable elementwise.
Then all the moments mj(x), j ≤ k exist.

Proof: By assumption all mixed absolute moments of order k are finite:
E[|Xi1

1 Xi2
2 × · · · × X

ip
p |] < ∞,

∑p
j=1 ij = k, ij ∈ {0, 1, . . . , k}. Let us examine the

modulus of the gh−th element of the expectation matrix

∣∣(E[
dkeit′x

dtk
]

)
gh

∣∣ = ∣∣ik (E[x(x′)⊗(k−1)eit′x]
)

gh

∣∣ ≤ E[|
(
x(x′)⊗(k−1)eit′x

)
gh

|]

= E[|
(
x(x′)⊗(k−1)

)
gh

|].
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By assumptions, we have the expectation from elements with finite modulus on
the right hand side of our chain of relations. From calculus we know that this
is a sufficient condition for changing the order of integration and differentiation.
So the assumption for existence of moments of the k−th order is satisfied. The
existence of all lower order moments follows from the existence of the k−th order
moments (Feller, 1971; p. 136).
Taking into account Definition 2.1.3, Definition 2.1.4 and (2.1.18), we also get from
Theorem 2.1.1 expressions for moments of random matrices.

Corollary 2.1.1.2. For an arbitrary random matrix X

mk[X] = E[vecX(vec′X)⊗k−1], k = 1, 2, . . . ; (2.1.25)(i)

mk[X] = E[vec(X − E[X])(vec′(X − E[X]))⊗k−1], k = 1, 2, . . . (2.1.26)(ii)

The following theorem gives us a way of presenting the characteristic function as
an expansion via moments. Let us first present the result for matrices.

Theorem 2.1.2. Let the characteristic function ϕX(T) be n times differentiable.
Then ϕX(T) can be presented as the following series expansion:

ϕX(T) = 1 +
n∑

k=1

ik

k!
(vec′T)⊗kvec(mk[X])′ + rn, (2.1.27)

where rn is the remainder term.

Proof: Corollary 1.4.8.2 gives us the Taylor expansion of the characteristic func-
tion at T = 0 in the following form:

ϕX(T) = 1 +
n∑

k=1

1
k!

(vec′T)⊗k vec
(

dkϕX(T)
dTk

)′∣∣∣∣∣
T=0

+ rn.

From Definition 2.1.3 we get

dkϕX(T)
dTk

∣∣∣∣
T=0

= ikmk[X].

Analogously we get a similar expansion for the characteristic function of a random
vector.

Corollary 2.1.2.1. Let the characteristic function ϕx(t) be n times differentiable.
Then ϕX(T) can be presented as the following series expansion:

ϕx(t) = 1 +
n∑

k=1

ik

k!
(t′)⊗kvec(mk[x])′ + rn, (2.1.28)
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where rn is the remainder term.

From the above approach it follows that we can define moments simultaneously
for several random variables, several random vectors or several random matrices,
since all definitions fit with the definition of moments of matrices. Now we shall
pay some attention to the covariance between two random matrices. Indeed, from
the definition of the dispersion matrix given in (2.1.21) it follows that it is natural
to define the covariance of two random matrices X and Y in the following way:

Definition 2.1.5. The covariance of two arbitrary matrices X and Y is given by

C[X,Y] = E[(vecX − E[vecX])(vecY − E[vecY])′], (2.1.29)

if the expectations exist.

Furthermore, note that

D[X : Y] =
(

D[X] C[X,Y]
C[Y,X] D[Y]

)
(2.1.30)

and we will prove the following theorem, which is useful when considering singular
covariance matrices.

Theorem 2.1.3. For any random matrices X and Y

C (C[X,Y]) ⊆ C (D[X]);(i)

C (C[Y,X]) ⊆ C (D[Y]).(ii)

Proof: Since D[X : Y] by (2.1.30) is positive semidefinite, we can write

D[X : Y] = ττ ′ =
(

τ1τ
′
1 τ1τ

′
2

τ2τ
′
1 τ2τ

′
2

)
for some τ = (τ ′

1 : τ ′
2)

′, where the partition of τ corresponds to the partition of
X and Y in (X : Y). Now, because

C (C[X,Y]) = C (τ1τ
′
2) ⊆ C (τ1) = C (τ1τ

′
1) = C (D[X])

and
C (C[Y,X]) = C (τ2τ

′
1) ⊆ C (τ2) = C (τ2τ

′
2) = C (D[Y])

the theorem is established.
If Σ = D[X] is singular, there are some restrictions on the random matrix X. Note
that then there must exist a matrix Σo which spans the orthogonal complement
C (Σ)⊥. Hence

D[Σo′
vecX] = Σo′

ΣΣo = 0

and therefore Σo′
vecX = E[Σo′

vecX] with probability 1.
Next we study the dispersion matrix of X which is partitioned as

X =
(

X11 X12

X21 X22

) (
r × s r × (n − s)

(p − r) × s (p − r) × (n − s)

)
, (2.1.31)

where the sizes of the blocks are given in the matrix on the right hand side.
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Theorem 2.1.4. For any random matrix X, which is partitioned according to
(2.1.31), the following statements hold:

(i) (
Kn,r 0
0 Kn,p−r

)
D[X′]

(
Kr,n 0
0 Kp−r,n

)

=

⎛⎜⎝
D[X11] C[X11,X12] C[X11,X21] C[X11,X22]

C[X12,X11] D[X12] C[X12,X21] C[X12,X22]
C[X21,X11] C[X21,X12] D[X21] C[X21,X22]
C[X22,X11] C[X22,X12] C[X22,X21] D[X22]

⎞⎟⎠ ;

(ii)(
Kn,r 0
0 Kn,p−r

)
Kp,nD[X]Kn,p

(
Kr,n 0
0 Kp−r,n

)

=

⎛⎜⎝
D[X11] C[X11,X12] C[X11,X21] C[X11,X22]

C[X12,X11] D[X12] C[X12,X21] C[X12,X22]
C[X21,X11] C[X21,X12] D[X21] C[X21,X22]
C[X22,X11] C[X22,X12] C[X22,X21] D[X22]

⎞⎟⎠ ;

(iii) Let X•1 = (X′
11 : X′

21)
′. Then

(Ips : 0)D[X](Ips : 0)′ = D[X•1].

(iv) Let X1• = (X11 : X12). Then

(In ⊗ (Ir : 0))D[X](In ⊗ (Ir : 0))′ = D[X1•].

(v)

(
Is ⊗ (Ir : 0) 0

0 In−s ⊗ (0 : Ip−r)

)
D[X]

(
Is ⊗ (Ir : 0)′ 0

0 In−s ⊗ (0 : Ip−r)′

)
= D[

(
vecX11

vecX22

)
].

Proof: All proofs of the statements are based mainly on the fundamental prop-
erty of the commutation matrix given by (1.3.30). For (i) we note that

(
Kn,r 0
0 Kn,p−r

)⎛⎜⎜⎝ vec
(

X′
11

X′
12

)
vec
(

X′
21

X′
22

)
⎞⎟⎟⎠

=
(

vec(X11 : X12)
vec(X21 : X22)

)
= (vec′X11 : vec′X12 : vec′X21 : vec′X22)′.
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For (ii) we use that Kp,nvecX = vecX′. Statement (iii) is established by the
definition of the dispersion matrix and the fact that

vecX =

⎛⎜⎜⎝ vec
(

X11

X21

)
vec
(

X12

X22

)
⎞⎟⎟⎠ .

In order to verify (iv) it is noted that

(In ⊗ (Ir : 0))vecX =
(1.3.31)

vec((Ir : 0)X) = vecX1•,

and in order to verify (v)

(
Is ⊗ (Ir : 0) 0

0 In−s ⊗ (0 : Ip−r)

)⎛⎜⎜⎝ vec
(

X11

X21

)
vec
(

X12

X22

)
⎞⎟⎟⎠ =

(
vecX11

vecX22

)
.

One may observe that since (Ipr : 0) = (Ir : 0) ⊗ Ip, the statements (iii) and (iv)
are more similar to each other than they seem at a first sight.

2.1.4 Cumulants
Most of what has been said about moments can be carried over to cumulants which
sometimes are also called semiinvariants. Now we have, instead of the character-
istic function, the cumulant function (2.1.11) of a random vector, or (2.1.12) in
the case of a random matrix. As noted already in the previous paragraph, there
are several ways to introduce moments and, additionally, there exist many natural
possibilities to present multivariate moments. For cumulants we believe that the
most natural way is to define them as derivatives of the cumulant function. As
it has been seen before, the definition of multivariate moments depends on the
definition of the matrix derivative. The same problem arises when representing
multivariate cumulants. However, there will always be a link between a certain
type of matrix derivative, a specific multivariate moment representation and a cer-
tain choice of multivariate cumulant. It is, as we have noted before, more or less
a matter of taste which representations are to be preferred, since there are some
advantages as well as some disadvantages with all of them.
Let ck[X], ck[x] and ck[X] denote the k−th cumulant of a random variable X, a
random vector x and a random matrix X, respectively.

Definition 2.1.6. Let the cumulant function ψx(t) be k times differentiable at
t = 0. Then the k−th cumulant of a random vector x is given by

ck[x] =
1
ik

dk

dtk
ψx(t)

∣∣∣∣
t=0

, k = 1, 2, . . . , (2.1.32)
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where the matrix derivative is given by (1.4.41) and the cumulant function is
defined by (2.1.11).

Definition 2.1.7. Let the cumulant function ψX(T) be k times differentiable at
T = 0. Then the k−th cumulant of a random matrix X is defined by the equality

ck[X] =
1
ik

dk

dTk
ψX(T)

∣∣∣∣
T=0

, k = 1, 2, . . . , (2.1.33)

where the matrix derivative is given by (1.4.41) and ψX(T) is defined by (2.1.12).

It was shown that moments could be obtained from the Taylor expansion of the
characteristic function. Similarly, cumulants appear in the Taylor expansion of
the cumulant function.

Theorem 2.1.5. Let the cumulant function ψX(T) be n times differentiable.
Then ψdX(T) can be presented as the following series expansion:

ψX(T) =
n∑

k=1

ik

k!
(vec′T)⊗kvec(ck[X])′ + rn, (2.1.34)

where rn is the remainder term.

Proof: The proof repeats the argumentation of establishing Theorem 2.1.2. From
Corollary 1.4.8.2 we get the Taylor expansion of the cumulant function at T = 0
in the following form:

ψX(T) =
n∑

k=1

1
k!

(vec′T)⊗k vec
(

dkψX(T)
dTk

)′∣∣∣∣∣
T=0

+ rn.

From Definition 2.1.7. we have
dkψX(T)

dTk

∣∣∣∣
T=0

= ikck[X].

If we consider a special case when X is a p×1−matrix, i.e. a p−vector, we get the
following statement.

Corollary 2.1.5.1. Let the cumulant function ψx(t) be n times differentiable.
Then the cumulant function can be presented as the following series expansion:

ψx(t) =
n∑

k=1

ik

k!
(t′)⊗kvec(ck[x])′ + rn, (2.1.35)

where rn is the remainder term.

2.1.5 Moments and cumulants of patterned matrices
In this paragraph we are going to introduce moments and cumulants of matrices
which have some linear restrictions among their elements. For example, symmet-
ric matrices, like the sample dispersion matrix or the sample correlation matrix,
belong to this class of matrices. In general, let X(K) be a patterned matrix with
a pattern K considered in §1.3.6.
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Definition 2.1.8. Let the characteristic function ϕX(K)(T(K)) be k times dif-
ferentiable at 0. Then the k−th moment of X(K) equals

mk[X(K)] =
1
ik

dk

dT(K)k
ϕX(K)(T(K))

∣∣∣∣
T(K)=0

, T ∈ Rp×q, (2.1.36)

and the k−th central moment of X(K) is given by

mk[X(K)] = mk[X(K) − E[X(K)]] =
1
ik

dk

dT(K)k
ϕX(K)−E[X(K)](T(K))

∣∣∣∣
T(K)=0

,

(2.1.37)

where the elements of T(K) are real and the matrix derivative is given by (1.4.43).

In complete analogy with Corollary 2.1.1.2 in §2.1.3 we can present moments and
central moments as expectations.

Theorem 2.1.6. For an arbitrary random patterned matrix X(K)

mk[X(K)] = E[vecX(K)(vec′X(K))⊗k−1], k = 1, 2, . . . , ; (2.1.38)(i)

mk[X(K)] = E[vec(X(K) − E[X(K)])(vec′(X(K) − E[X(K)]))⊗k−1],(ii)
k = 1, 2, . . . (2.1.39)

The proof is omitted as it repeats the proof of Theorem 2.1.1 step by step if we
change x to vecX(K) and use the characteristic function (2.1.10) instead of (2.1.6).
In the same way an analogue of Theorem 2.1.2 is also valid.

Theorem 2.1.7. Let the characteristic function ϕX(K)(T(K)) be n times differ-
entiable at 0. Then the characteristic function can be presented as the following
series expansion:

ϕX(K)(T(K)) = 1 +
n∑

k=1

ik

k!
(vec′T(K))⊗kvec(mk[X(K)])′ + rn, (2.1.40)

where rn is the remainder term.

The cumulants of a patterned matrix are also defined similarly to the cumulants
of an ordinary matrix.

Definition 2.1.9. Let the cumulant function ψX(K)(T(K)) be k times differen-
tiable at 0. Then the k−th cumulant of a random patterned matrix X(K) is
defined by

ck[X(K)] =
1
ik

dk

dT(K)k
ψX(K)(T(K))

∣∣∣∣
T(K)=0

, (2.1.41)

where the derivative is given by (1.4.43) and ψX(K)(T(K)) is given by (2.1.13).

The next theorem presents the cumulant function through the cumulants of X(K).
Again the proof copies straightforwardly the one of Theorem 2.1.5 and is therefore
omitted.
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Theorem 2.1.8. Let the cumulant function ψX(K)(T(K)) be n times differen-
tiable at 0. Then the cumulant function ψX(K)(T(K)) can be presented as the
following series expansion:

ψX(K)(T(K)) =
n∑

k=1

ik

k!
vec′T(K)⊗kvec(ck[X(K)])′ + rn, (2.1.42)

where rn is the remainder term.

The most important special case of patterned matrices is the class of symmetric
matrices. The characteristic function of a symmetric matrix is given by (2.1.9).
We shall immediately get the moments and cumulants of a symmetric matrix
by differentiating the characteristic function (2.1.9) by using formulas (2.1.36),
(2.1.37) and (2.1.41). In the following text symmetric matrices are differentiated
very often. Therefore we are not going to indicate the pattern set K all the time,
but write them as usual matrices, like X, Y, while keeping in mind that we are
differentiating symmetric matrices

dY
dX

≡ d(V 2(Y))
d(V 2(X))

, (2.1.43)

where V 2(•) is given by Definition 1.3.9.

2.1.6 Minimal moments and cumulants
The notions of minimal moments and cumulants are closely related to minimal
derivatives defined in §1.4.8. We are going to introduce so-called minimal mo-
ments on the basis of the general vectorization operator V j(•), given in Definition
1.3.9, and the product vectorization operator Rj(•), given in Definition 1.3.10,
which were examined in §1.3.7. Let us use an example to explain the idea. Let x
be a random p−vector and consider the fourth order moments of x, which are often
needed when multivariate distributions are approximated or when asymptotic dis-
tributions are to be found. As noted previously, there is one natural definition of
the moments in a coordinate free setting. In order to do some calculations explicit
moment expressions are needed. Unfortunately, as we have observed, the moments
can not be presented in a unique way. On the basis of the direct product any of
the expressions E[x⊗4] or E[(xx′)⊗2] or E[x⊗3x′], but also others, are possible.
However, since x is p−dimensional, all these expressions consist of p4 elements,
whereas the number of different mixed moments (expectations of monomials) of
fourth order equals

(
p+3
4

)
. The set which comprises one copy of all different mixed

moments is called minimal moment of the random vector x. Thus, for p = 2 we
have 5 different mixed moments among 16 elements in E[X⊗4], i.e. ≈ 31%; for
p = 4 the corresponding figures are 35 out of 256 (≈ 14%); for p = 10 it is 715
of 10000 (7%). For large p there will be approximately 4% of different elements.
Thus, in practice where, for example, p > 50 and we intend to use computers, it
is really of advantage to use only those elements which are necessary for the cal-
culations. Furthermore, the situation becomes much more drastic for higher order
moments. The following presentation is based on papers by Kollo & von Rosen
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(1995b, 1995c). We shall define minimal moments which collect expectations from
all different monomials, i.e. Xi1j1Xi2j2 × · · · ×Xipjp . In our notation we shall add
a letter ”m” (from minimal) to the usual notation of moments and cumulants. So
mmk[x] denotes the minimal k−th order central moment of x, and mck[X] is the
notation for the k−th minimal cumulant of X, for example.

Definition 2.1.10. The k−th minimal moment of a random p−vector x is given
by

mmk[x] =
1
ik

d̂k

d̂tk
ϕx(t)

∣∣∣∣∣
t=0

, (2.1.44)

and the k−th minimal central moment by

mmk[x] = mmk[x − E[x]] =
1
ik

d̂k

d̂tk
ϕx−E[x](t)

∣∣∣∣∣
t=0

, (2.1.45)

where ϕx(t)(t) is defined by (2.1.6) and the derivative is defined by (1.4.52) and
(1.4.53).

As the characteristic function of X : p × q is the same as that of the pq−vector
x = vecX, we can also write out formulas for moments of a random matrix:

mmk[X] =
1
ik

d̂k

d̂Tk
ϕX(T)

∣∣∣∣∣
T=0

(2.1.46)

and

mmk[X] = mmk[X − E[X]] =
1
ik

d̂k

d̂Tk
ϕX−E[X](T)

∣∣∣∣∣
T=0

. (2.1.47)

We define the minimal cumulants in the same way.

Definition 2.1.11. The k−th minimal cumulant of a random vector x is defined
by

mck[x] =
1
ik

d̂k

d̂tk
ψx(t)

∣∣∣∣∣
t=0

, (2.1.48)

where the cumulant function ψx(t) is defined by (2.1.11) and the derivative by
(1.4.52) and (1.4.53).

The k−th minimal cumulant of X : p × q is given by the equality

mck[X] =
1
ik

d̂k

d̂Tk
ψX(T)

∣∣∣∣∣
T=0

, (2.1.49)

where ψX(T) is defined by (2.1.12). Minimal moments can be expressed through
the product vectorization operator Rj(x).
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Theorem 2.1.9. For a random vector x

mmk[x] = E[Rk(x)];(i)

mmk[x] = E[Rk(x − E[x])],(ii)

where Rk(x) is given by Definition 1.3.10.

Proof: In the proof we are going to explore the similarity in the structure of

the k−th matrix derivative
d̂kY

d̂Xk
and the vectorization operator Rk(•). Note that

it is sufficient to prove statement (i). Statement (ii) follows immediately from
(i) because, according to Definition 2.1.10, the central moment mmk[x] is the
moment of the centered random vector x − E[x]. According to our definition
of minimal derivatives, the considered derivative consists of all different partial
derivatives of order k and each derivative appears only once. The derivatives
are ordered according to the rule defined by the composition operator Qk(•),
given in (1.4.56). The Rk(•) operator organizes elements in the same way as
the minimal differentiation operator because it is also a realization of the Qk(•)
operator. Therefore (i) holds.
In Theorem 2.1.9 we considered minimal moments and cumulants of a random
vector, but these notions are far more important for random matrices. As the char-
acteristic function and the cumulant function of a random matrix X are defined
via vectorized form vecX of the matrix, the results can be extended straightfor-
wardly to random matrices and patterned matrices. Let us present the statement
of Theorem 2.1.9 for matrices as a corollary.

Corollary 2.1.9.1. For a random matrix X

mmk[X] = E[Rk(X)];(i)

mmk[X] = E[Rk(X − E[X])],(ii)

where Rk(X) is given by Definition 1.3.10.

In the following we establish the connection between mmk[X] and E[X⊗k] through
formulas which show how mmk[X] can be obtained from E[X⊗k] and vice versa.
Of course, instead of E[X⊗k], we could also consider E[vecX(vec′X)⊗k−1].

Theorem 2.1.10. Let

T(i1, i2, . . . , ij) = evj (e
′
i1 ⊗ e′i2 ⊗ · · · ⊗ e′ij

),

where

vj = 1 +
j+1∑
r=2

(r, ir−1 − 1)

and (k, l) is defined by (1.3.73). Then

E[Rj(A)] =
∑
Ij

T(i1, i2, . . . , ij)vec(E[A⊗j ])
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and
vec(E[A⊗j ]) =

∑
Ĩj

T(i1, i2, . . . , ij)′E[Rj(A)],

where

Ij = {(i1, i2, . . . , ij) : ig = 1, 2, . . . , n; 1 ≤ uk−1 ≤ (k, ik), k = 1, 2, . . . , j},

with us given in Theorem 1.3.15 and

Ĩj = {(i1, i2, . . . , ij) : ig = 1, 2, . . . , n}.

Note that
∑

Ĩj
T(i1, i2, . . . , ij)′ is in fact a g−inverse of

∑
Ij

T(i1, i2, . . . , ij).

2.1.7 Relations between moments and cumulants
We are going to present some general moment relations for random matrices. As
we saw above, moments are obtained by differentiating the characteristic function,
and cumulants are obtained by differentiating the cumulant function. Since the
cumulant function is the logarithm of the characteristic function, there must be
a straight connection between moments and cumulants. In the next theorem we
write down the relations between moments and cumulants of low order. General
relations of moments and cumulants have been given by Holmquist (1985a).

Theorem 2.1.11. Let x be a random p−vector. Then

c1[x] = m1[x] = E[x];(i)

c2[x] = m2[x] = D[x]; (2.1.50)(ii)

c3[x] = m3[x], (2.1.51)(iii)

where

m3[x] = m3[x] − m2[x] ⊗ E[x]′ − E[x]′ ⊗ m2[x]

− E[x]vec′m2[x] + 2E[x]E[x]′⊗2; (2.1.52)

c4[x] = m4[x] − m2[x] ⊗ vec′m2[x](iv)

− (vec′m2[x] ⊗ m2[x])(I + Ip ⊗ Kp,p). (2.1.53)

Proof: Since ψx(t) = lnϕx(t) and ϕx(0) = 1, we obtain by Definition 2.1.1 and
Definition 2.1.6 that

i c1[x] =
dψx(t)

dt

∣∣∣∣
t=0

=
dϕx(t)

dt
1

ϕx(t)

∣∣∣∣
t=0

=
dϕx(t)

dt

∣∣∣∣
t=0

= im1[x]
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and thus (i) is verified.
For (ii) and (iii) we copy the ideas of proving (i), but now we have to use addi-
tionally some algebra presented in Section 1.3 as well as properties of the matrix
derivatives from Section 1.4. By the following calculations we get

−c2[x] =
d2ψx(t)

dt2

∣∣∣∣
t=0

=
d

dt

{dϕx(t)
dt

1
ϕx(t)

}∣∣∣∣
t=0

=
d2ϕx(t)

dt2

1
ϕx(t)

− dϕx(t)
dt

1
ϕx(t)2

(
dϕx(t)

dt

)′∣∣∣∣∣
t=0

= − m2[x] + m1[x]m1[x]′ = −m2[x]

and hence (ii) is established. Moreover,

−i c3[x] =
d

dt

{d2ϕx(t)
dt2

1
ϕx(t)

− dϕx(t)
dt

1
ϕx(t)2

(
dϕx(t)

dt

)′ }∣∣∣∣∣
t=0

=
d3ϕx(t)

dt3

1
ϕx(t)

− dϕx(t)
dt

1
ϕx(t)2

vec′(
d2ϕx(t)

dt2
)

− 1
ϕx(t)2

{(dϕx(t)
dt

)′ ⊗ d2ϕx(t)
dt2

+
d2ϕx(t)

dt2
⊗ (dϕx(t)

dt

)′}
+

2
ϕx(t)3

dϕx(t)
dt

((dϕx(t)
dt

)⊗2)′∣∣∣∣
t=0

= − im3[x] + im1[x]vec′(m2[x]) + im1[x]′ ⊗ m2[x] + im2[x] ⊗ m1[x]′

− 2im1[x](m1[x]′)⊗2.

The sum on the right hand side equals −im3[x]. This follows immediately from
(2.1.18) which gives the relation between the characteristic functions ϕx(t) and
ϕx−E[x](t), i.e.

ϕx(t) = ϕx−E[x](t)exp(it′E[x]). (2.1.54)

Thus,

ψx(t) = ψx−E[x](t) + i t′E[x].

From this we can draw the important conclusion that starting from k = 2 the
expressions presenting cumulants via moments also give the relations between cu-
mulants and central moments. The last ones have a simpler form because the
expectation of the centered random vector x − E[x] equals zero. Hence, the ex-
pression of −i c3[x] gives us directly (2.1.51), and the formula (2.1.52) has been
proved at the same time.
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It remains to show (2.1.53). Differentiating once more gives us

d

dt

{
d3ϕx(t)

dt3

1
ϕx(t)

− dϕx(t)
dt

1
ϕx(t)2

vec′(
d2ϕx(t)

dt2
)

− 1
ϕx(t)2

((dϕx(t)
dt

)′ ⊗ d2ϕx(t)
dt2

+
d2ϕx(t)

dt2
⊗ (dϕx(t)

dt

)′)
+

2
ϕx(t)3

dϕx(t)
dt

((dϕx(t)
dt

)⊗2)′}∣∣∣∣
t=0

=
{

d4ϕx(t)
dt4

1
ϕx(t)

− 1
ϕx(t)2

(
vec′

d2ϕx(t)
dt2

⊗ d2ϕx(t)
dt2

)
− 1

ϕx(t)2
(d2ϕx(t)

dt2
⊗ vec′

d2ϕx(t)
dt2

)
− 1

ϕx(t)2
(
vec′

d2ϕx(t)
dt2

⊗ d2ϕx(t)
dt2

)
(Ip ⊗ Kp,p)

}
+ R(t)

∣∣∣∣
t=0

,

where R(t) is the expression including functions of
dϕx(t)

dt
, such that R(0) = 0

when x is a centered vector. Thus, when evaluating this expression at t = 0 yields
statement (iv) of the theorem.
Similar statements to those in Theorem 2.1.11 will be given in the next corollary
for random matrices.

Corollary 2.1.11.1. Let X : p × q be a random matrix. Then

c1[X] = m1[X] = E[vecX];(i)

c2[X] = m2[X] = D[X]; (2.1.55)(ii)

c3[X] = m3[X], (2.1.56)(iii)

where

m3[X] = m3[X] − m2[X] ⊗ m1[X]′ − m1[X]′ ⊗ m2[X] − m1[X]vec′m2[X]

+ 2m1[X]m1[X]′⊗2; (2.1.57)

c4[X] = m4[X] − m2[X] ⊗ vec′m2[X](iv)

− (vec′m2[X] ⊗ m2[X])(I + Ipq ⊗ Kpq,pq), (2.1.58)

where the moments mk[X] are given by (2.1.25) and the central moments mk[X]
by (2.1.26)
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2.1.8 Problems
1. Show that ck[AXB] = (B′ ⊗A)ck[X](B⊗A′)⊗(k−1) for a random matrix X.
2. Find the expression of m4[x] through moments of x.
3. Suppose that we know C[Xi1j1 ,Xi2j2 ], i1, j1, i2, j2 = 1, 2. Express D[X] with

the help of these quantities.
4. In Definition 2.1.1 use the matrix derivative given by (1.4.47) instead of

dvec′X
dvecT

. Express c1[X] and c2[X] as functions of m1[X] and m2[X].

5. Let x1,x2, . . . ,xn be independent, with E[xi] = µ and D[xi] = Σ, and let

S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)′.

Determine E[S] and D[S].
6. Let x1,x2, . . . ,xn be independent with E[xi] = µ and D[xi] = Σ. Put

X = (x1,x2, . . . ,xn) and let S = X(I − C′(CC′)−C)X′, where C : k × n,
k < n. Determine E[S] and D[S].

7. Consider a 20−dimensional random vector. Find the number of non-repeated
mixed moments of 6th order.

8. Let z = (Z1, Z2, Z3)′ be a random vector. Write out mmk(z) using Theorem
2.1.9.

9. The asymmetric Laplace distribution is defined by the characteristic function
(Kotz, Kozubowski & Podgórski, 2001):

ϕ(t) =
1

1 + t′µ + 1
2t

′Σt
,

where µ : p × 1 and Σ > 0 : p × p are parameters. Find the mean and
dispersion matrix of the distribution.

10. Find the dispersion matrix of a mixture distribution with density

fz(x) = γfNp(0,Σ1)(x) + (1 − γ)fNp(0,Σ2)(x),

where γ ∈ (0, 1). Here Np(0,Σ) denotes the multivariate normal distribution
which is defined in the next section.
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2.2 THE NORMAL DISTRIBUTION

2.2.1 Introduction and definition
One of the most fundamental distributions in statistics is the normal distribution.
The univariate normal distribution has been known and used in statistics for about
two hundred years. The multivariate normal distribution has also been in use for
a long time. Usually, when it is referred to a multivariate normal distribution, it
is a distribution of a vector. However, among specialists in multivariate analysis,
a matrix version has been put forward which comprises the vector valued version.
This must be quite obvious, since any matrix A may be considered in the vector
form vecA. The way of ordering the elements can have no effect on the distribution.
It will be seen below that the results for the vector valued distribution can be
generalized to the matrix case in a nice and constructive manner. On one hand, the
matrix version is a ”bilinear” extension of the vector version, and the multivariate
structure is obtained from the covariance structure which will be presented as a
Kronecker product of two dispersion matrices. However, on the other hand, the
matrix normal distribution can always be obtained from the multivariate normal
distribution by choosing a particular covariance structure.
Over the years many ways of defining the normal distribution have been presented.
There are at least three different approaches for introducing the multivariate nor-
mal distribution. One is to utilize the density, provided that the density exists,
another is via the characteristic function, and the third is by applying some char-
acterization of the distribution. Our approach will rest on a characterization which
stresses the connection between the normal distribution and linear (multilinear)
transformations. Other characterizations can also be used.
To start the whole process of defining a matrix normal distribution, we begin with
the definition of the univariate standard normal distribution which is defined via
its density

fU (u) = (2π)−1/2e−
1
2u2

, −∞ < u < ∞ (2.2.1)

and denoted U ∼ N(0, 1). It follows that E[U ] = 0 and D[U ] = 1. To define a
univariate normal distribution with mean µ and variance σ2 > 0 we observe that
any variable X which has the same distribution as

µ + σU, σ > 0, −∞ < µ < ∞, (2.2.2)

where the density of U is defined by (2.2.1), has a density

fX(x) = (2πσ2)−1/2e−
1
2

(x−µ)2

σ2 , −∞ < µ, x < ∞, σ > 0.

We say that X ∼ N(µ, σ2), and it is clear that we can use (2.2.2) as a definition
for the normal distribution. One advantage of using (2.2.2) is illustrated in the
following text. Consider kX, where k is a constant. From (2.2.2) it follows that
kX has the same distribution as

kµ + kσU
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and thus kX ∼ N(kµ, (kσ)2). Furthermore, (2.2.2) also holds in the singular case
when σ = 0, because a random variable with zero variance equals its mean. From
(2.2.2) it follows that X has the same distribution as µ and we can write X = µ.
Now, let u = (U1, . . . , Up)′ be a vector which consists of p independent identically
distributed (i.i.d.) N(0, 1) elements. Due to independence, it follows from (2.2.1)
that the density of u equals

fu(u) = (2π)−
1
2pe−

1
2 tr(uu′), (2.2.3)

and we say that u ∼ Np(0, I). Note that tr(uu′) = u′u. The density in (2.2.3)
serves as a definition of the standard multivariate normal density function. To
obtain a general definition of a normal distribution for a vector valued variable we
follow the scheme of the univariate case. Thus, let x be a p-dimensional vector
with mean E[x] = µ and dispersion D[x] = Σ, where Σ is non-negative definite.
From Theorem 1.1.3 it follows that Σ = ττ ′ for some matrix τ , and if Σ > 0,
we can always choose τ to be of full rank, r(τ ) = p. Therefore, x is multivariate
normally distributed, if x has the same distribution as

µ + τu, (2.2.4)

where u ∼ Np(0, I) and the distribution of x is denoted x ∼ Np(µ,Σ). If Σ > 0,
it follows from (2.2.4) and Theorem 1.4.14 by a substitution of variables that the
density equals

fx(x) = (2π)−
1
2p|Σ|−1/2e−

1
2 tr{Σ−1(x−µ)(x−µ)′}. (2.2.5)

Now we turn to the main definition of this section, which introduces the matrix
normal distribution.

Definition 2.2.1. Let Σ = ττ ′ and Ψ = γγ′, where τ : p × r and γ : n × s. A
matrix X : p × n is said to be matrix normally distributed with parameters µ, Σ
and Ψ, if it has the same distribution as

µ + τUγ′, (2.2.6)

where µ : p × n is non-random and U : r × s consists of s i.i.d. Nr(0, I) vectors
Ui, i = 1, 2, . . . , s. If X : p×n is matrix normally distributed, this will be denoted
X ∼ Np,n(µ,Σ,Ψ).

If Σ and Ψ are positive definite, then τ and γ in (2.2.6) are both square and
non-singular. In the subsequent we exclude the trivial cases Σ = 0 Ψ = 0.
Since vecX and X have the same distribution, it follows, by applying the vec-
operator to (2.2.6), that X has the same distribution as

vecµ + (γ ⊗ τ )vecU.

Thus, from (2.2.4) it follows that X ∼ Np,n(µ,Σ,Ψ) means the same as vecX ∼
Npn(vecµ,Ψ⊗Σ). Furthermore, since the expectation of U in (2.2.6) equals zero,
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E[X] = µ, and since by definition of the dispersion matrix D[X] = D[vecX], we
obtain that D[X] = Ψ ⊗ Σ.
For the interpretation of D[X] = Ψ ⊗ Σ we note that Ψ describes the covariance
between the columns of X. These covariances will be the same for each row. On
the other hand, Σ describes the covariances between the rows of X which will be
the same for each column. Now, take into consideration the covariances between
columns as well as the covariances between rows. Then Ψ ⊗ Σ tells us that the
overall covariance consists of the products of these covariances, i.e.

Cov[xij , xkl] = σikψjl,

where X = (xij), Σ = (σik) and Ψ = (ψjl). Furthermore, let µi denote the ith
column of µ. Then, if Ψ = In, the columns of X are independently Np(µi,Σ)
distributed. Moreover, if in addition Σ = Ip, then all elements of X are mu-
tually independently distributed. If Ψ ⊗ Σ is positive definite, the density of
Np,n(µ,Σ,Ψ) is given by

fX(X) = (2π)−
1
2pn|Σ|−n/2|Ψ|−p/2e−

1
2 tr{Σ−1(X−µ)Ψ−1(X−µ)′}, (2.2.7)

which can be obtained from (2.2.5) by using vecX ∼ Npn(vecµ,Ψ⊗Σ) and noting
that

vec′X(Ψ ⊗ Σ)−1vecX= tr(Σ−1XΨ−1X′)

and
|Ψ ⊗ Σ|= |Ψ|p|Σ|n.

The first of these two equalities is obtained via Proposition 1.3.14 (iii) and the
second is valid due to Proposition 1.3.12 (ix).

2.2.2 Some properties of the matrix normal distribution
In this paragraph some basic facts for matrix normally distributed matrices will
be presented. From now on, in this paragraph, when partitioned matrices will be
considered, the following notation and sizes of matrices will be used:

X =
(

X11 X12

X21 X22

)
µ =

(
µ11 µ12

µ21 µ22

) (
r × s r × (n − s)

(p − r) × s (p − r) × (n − s)

)
,

(2.2.8)

X•1 =
(

X11

X21

)
X•2 =

(
X12

X22

)
X1• = (X11 : X12) X2• = (X21 : X22),

(2.2.9)

µ•1 =
(

µ11

µ21

)
µ•2 =

(
µ12

µ22

)
µ1• = (µ11 : µ12) µ2• = (µ21 : µ22),

(2.2.10)

Σ =
(

Σ11 Σ12

Σ21 Σ22

) (
r × r r × (p − r)

(p − r) × r (p − r) × (p − r)

)
, (2.2.11)

Ψ =
(

Ψ11 Ψ12

Ψ21 Ψ22

) (
s × s s × (n − s)

(n − s) × s (n − s) × (n − s)

)
. (2.2.12)
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The characteristic function and cumulant function for a matrix normal variable
are given in the following theorem. As noted before, the characteristic function is
fundamental in our approach when moments are derived. In the next paragraph
the characteristic function will be utilized. The characteristic function could also
have been used as a definition of the normal distribution. The function exists for
both singular and non-singular covariance matrix.

Theorem 2.2.1. Let X ∼ Np,n(µ,Σ,Ψ). Then

(i) the characteristic function ϕX(T) is given by

ϕX(T) = eitr(T′µ)− 1
2 tr(ΣTΨT′);

(ii) the cumulant function ψX(T) is given by

ψX(T) = itr(T′µ) − 1
2
tr(ΣTΨT′).

Proof: Let us again start with the univariate case. The characteristic function
of U ∼ N(0, 1) equals

ϕU (t) = e−
1
2 t2 .

Therefore, because of independence of the elements of U, given in Definition 2.2.1,
the characteristic function of U equals (apply Proposition 1.1.4 (viii))

ϕU(T) = e
− 1

2

∑
i,j

t2ij = e−
1
2 tr(TT′). (2.2.13)

By Definition 2.2.1, X has the same distribution as µ + τUγ′ and thus

ϕX(T) = E[eitr{T′(µ+τUγ′)}] = eitr(T′µ)E[eitr(γ′T′τU)]

=
(2.2.13)

eitr(T′µ)− 1
2 tr(τ ′Tγγ′T′τ ) = eitr(T′µ)− 1

2 tr(ΣTΨT′).

By definition of the cumulant function given in (2.1.12), statement (ii) follows if
we take the logarithm of the characteristic function in (i).
The next theorem states the well-known property that normality is preserved under
linear transformations. However, it also tells us that under bilinear transforma-
tions the property of being matrix normal is kept.

Theorem 2.2.2. Let X ∼ Np,n(µ,Σ,Ψ). For any A : q × p and B : m × n

AXB′ ∼ Nq,m(AµB′,AΣA′,BΨB′).

Proof: From Definition 2.2.1 it follows that the matrix X has the same distri-
bution as µ + τUγ′, where Σ = ττ ′ and Ψ = γγ′, and thus AXB′ has the same
distribution as AµB′+AτUγ′B′. Since Aττ ′A′ = AΣA′ and Bγγ′B′ = BΨB′,
the theorem is verified.
Marginal distributions of a multivariate normal distribution are also normal. Here
we present the results in terms of matrix normal variables.
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Corollary 2.2.2.1. Let X ∼ Np,n(µ,Σ,Ψ) and X, µ, Σ and Ψ are partitioned
according to (2.2.8) – (2.2.12). Then

X11 ∼Nr,s(µ11,Σ11,Ψ11), X12 ∼ Nr,n−s(µ12,Σ11,Ψ22);(i)

X21 ∼Np−r,s(µ21,Σ22,Ψ11), X22 ∼ Np−r,n−s(µ22,Σ22,Ψ22);(ii)

X•1 ∼Np,s(µ•1,Σ,Ψ11), X•2 ∼ Np,n−s(µ•2,Σ,Ψ22);(iii)
X1• ∼Nr,n(µ1•,Σ11,Ψ), X2• ∼ Np−r,n(µ2•,Σ22,Ψ).

Proof: In order to obtain the distribution for X11, we choose the matrices A =
(Ir : 0) and B = (Is : 0) in Theorem 2.2.2. Other expressions can be verified in
the same manner.

Corollary 2.2.2.2. Let X ∼ Np,n(0,Σ, I) and let Γ : n × n be an orthogonal
matrix which is independent of X. Then X and XΓ have the same distribution.

Theorem 2.2.3.

(i) Let Xj ∼ Npj ,n(µj ,Σj ,Ψ), j = 1, 2, . . . , k be mutually independently dis-
tributed. Let Aj , j = 1, 2, . . . , k be of size q × pj and B of size m × n.
Then

k∑
j=1

AjXjB′ ∼ Nq,m(
k∑

j=1

AjµjB′,
k∑

j=1

AjΣjA′
j ,BΨB′).

(ii) Let Xj ∼ Np,nj (µj ,Σ,Ψj), j = 1, 2, . . . , k be mutually independently dis-
tributed. Let Bj , j = 1, 2, . . . , k be of size m × nj and A of size q × p.
Then

k∑
j=1

AXjB′
j ∼ Nq,m(

k∑
j=1

AµjB′
j ,AΣA′,

k∑
j=1

BjΨjB′
j).

Proof: We will just prove (i), because the result in (ii) follows by duality, i.e. if
X ∼ Np,n(µ,Σ,Ψ) then X′ ∼ Nn,p(µ′,Ψ,Σ). Let Σj = τjτ

′
j , τj : pj × r, and

Ψ = γγ′, γ : n×s. Put A = (A1, . . . ,Ak), X = (X′
1, . . . ,X

′
k)′, µ = (µ′

1, . . . ,µ
′
k)′,

U = (U′
1, . . . ,U

′
k)′, Uj : pj×s. Since Xj has the same distribution as µj+τjUjγ

′,
it follows, because of independence, that X has the same distribution as

µ + (τ1, . . . , τk)[d]Uγ′

and thus AXB′ has the same distribution as

AµB′ + A(τ1, . . . , τk)[d]Uγ′B′.

Since

A(τ1, . . . , τk)[d](τ1, . . . , τk)′[d]A
′ =

k∑
j=1

AjΣjA′
j
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and Bγγ′B′ = BΨB′, (i) is verified.
If X1 ∼ Np,n(µ1,Σ1,Ψ1) and X2 ∼ Np,n(µ2,Σ2,Ψ2), it is interesting to note that
X1 +X2 is normally distributed but not matrix normally distributed. The reason
for this is that in general there are no matrices K and L such that (Ψ1 ⊗ Σ1 +
Ψ2 ⊗ Σ2) = K ⊗ L unless some restriction is put on Ψj ,Σj , j = 1, 2. Therefore,
one cannot combine (i) and (ii) in Theorem 2.2.3.
One of the most important properties of the normal distribution is that its disper-
sion matrix is connected to independence as well as to conditional independence.
This fact is exploited in the next two theorems and in particular in Corollary
2.2.4.2. Furthermore, linear combinations of a normal vector x, say a′x and b′x,
are independent if and only if a and b are orthogonal. This is exploited in a more
general case in the next theorem. Among others, this property is essential from a
geometric point of view.

Theorem 2.2.4. Let X ∼ Np,n(µ,Σ,Ψ), Y ∼ Np,n(0,Σ,Ψ) and A, B, C, D,
K and L are non-random matrices of proper sizes. Then

(i) AXK is independent of CXL for all constant matrices K and L if and only
if AΣC′ = 0;

(ii) KXB′ is independent of LXD′ for all constant matrices K and L if and only
if BΨD′ = 0;

(iii) YAY′ is independent of YBY′ if and only if

ΨAΨB′Ψ =0, ΨA′ΨBΨ = 0,

ΨAΨBΨ =0, ΨA′ΨB′Ψ = 0;

(iv) YAY′ is independent of YB if and only if

B′ΨA′Ψ =0,

B′ΨAΨ =0.

Proof: We just prove (i), (iii) and (iv), since the proof of the second statement is
identical to the proof of (i). Independence in (i) implies that C[AXK,CXL] = 0,
which in turn is equivalent to

(K′ ⊗ A)(Ψ ⊗ Σ)(L ⊗ C′) = 0.

Hence,
(K′ΨL) ⊗ (AΣC′) = 0

and from Proposition 1.3.12 (xi) this holds if and only if K′ΨL = 0 or AΣC′ = 0.
However, K and L are arbitrary and therefore AΣC′ = 0 must hold.
For the converse it is noted that(

A
C

)
X(K : L) ∼ N•,•{

(
A
C

)
µ(K : L),

(
A
C

)
Σ(A′ : C′),

(
K′

L′

)
Ψ(K : L)}.
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However, by assumption,(
A
C

)
Σ(A′ : C′) =

(
AΣA′ 0

0 CΣC′

)
=
(

Aτ 0
0 Cτ

)(
τ ′A′ 0
0 τ ′C′

)
,

where Σ = ττ ′. Thus (A′ : C′)′X(K : L) has the same distribution as(
A
C

)
µ(K : L) +

(
Aτ 0
0 Cτ

)
Uγ′(K : L), (2.2.14)

where Ψ = γγ′ and U ∼ N•,•(0, I, I). Let U = (U′
1 : U′

2)
′ and the partition

corresponds to the partition of the covariance matrix Σ. From (2.2.14) it follows
that AX(K : L) and CX(K : L) have the same distributions as

Aµ(K : L) + AτU1γ
′(K : L)

and
Cµ(K : L) + CτU2γ

′(K : L),

respectively. Since U1 and U2 are independently distributed, AX(K : L) and
CX(K : L) must also be independent. Hence, AXK and CXL are independent
and (i) is established.
The proof of (iii) is based on Corollary 2.2.7.4 (iii). If YAY′ is independent of
YBY′, it is also independent of YB′Y′. Furthermore, YA′Y′ is independent of
YBY′ and YB′Y′. We are going to show how independence between YAY′ and
YB′Y′ implies that ΨAΨBΨ = 0 as well as the other relations of the statement.
From Corollary 2.2.7.4 it follows that

E[Y⊗8](vecA)⊗2 ⊗ (vecB)⊗2 = E[(vecYAY′)⊗2 ⊗ (vecYBY′)⊗2]

=
8∑

i1=2

6∑
i2=2

4∑
i3=2

(Ip ⊗ Kpi1−2,p ⊗ Ip8−i1 )(Ip3 ⊗ Kpi2−2,p ⊗ Ip6−i2 )

× (Ip5 ⊗ Kpi3−2,p ⊗ Ip4−i3 )(vecΣ)⊗4(vec′Ψ)⊗4(In5 ⊗ Kn,ni3−2 ⊗ In4−i3 )

× (In3 ⊗ Kn,ni2−2 ⊗ In6−i2 )(In ⊗ Kn,ni1−2 ⊗ In8−i1 )(vecA)⊗2 ⊗ (vecB)⊗2.

(2.2.15)

Moreover, due to independence we should have

E[(vec(YAY′))⊗2 ⊗ (vec(YBY′))⊗2] = E[(vec(YAY′))⊗2] ⊗ E[(vec(YBY′))⊗2].

Since Σ is an arbitrary matrix, (2.2.15) and Corollary 2.2.7.4 (ii) imply that

(Ip ⊗ Kpi1−2,p ⊗ Ip8−i1 )(Ip3 ⊗ Kpi2−2,p ⊗ Ip6−i2 )(Ip5 ⊗ Kpi3−2,p ⊗ Ip4−i3 )
= (Ip ⊗ Kpi1−2,p ⊗ Ip4−i1 ⊗ Ip4)(Ip4 ⊗ Ip ⊗ Kpi3−2,p ⊗ Ip4−i3 )

must be satisfied and this relation holds if i2 = 2 and i1 ≤ 4. Thus, if i1 > 4 or
i2 	= 2, we have

(vec′Ψ)⊗4(In5⊗Kn,ni3−2 ⊗ In4−i3 )(In3 ⊗ Kn,ni2−2 ⊗ In6−i2 )

× (In ⊗ Kn,ni1−2 ⊗ In8−i1 )(vecA)⊗2 ⊗ (vecB)⊗2 = 0.
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In particular if i3 = 2, i2 = 3 and i1 = 7

(vec′Ψ)⊗4(In3 ⊗ Kn,n ⊗ In3)(In ⊗ Kn,n5 ⊗ In)(vecA)⊗2 ⊗ (vecB)⊗2

= tr(AΨBΨB′ΨA′Ψ) = 0.

The equality tr(AΨBΨB′ΨA′Ψ) = 0 is equivalent to ΨAΨBΨ = 0. Thus,
one of the conditions of (iii) has been obtained. Other conditions follow by con-
sidering E[Y⊗8]vecA ⊗ vecA′ ⊗ (vecB)⊗2, E[Y⊗8](vecA)⊗2 ⊗ vecB ⊗ vecB′ and
E[Y⊗8]vecA ⊗ vecA′ ⊗ vecB ⊗ vecB′.
On the other hand, YAY′ = YAΨΨ−Y′ = YΨ−ΨAY′, and if the conditions in
(iii) hold, according to (ii), YAΨ is independent of YBΨ and YB′Ψ, and YA′Ψ
is independent of YBΨ and YB′Ψ.
To prove (iv) we can use ideas similar to those in the proof of (iii). Suppose first
that YAY′ is independent of YB. Thus, YA′Y′ is also independent of YB. From
Corollary 2.2.7.4 it follows that

E[Y⊗6](vecA)⊗2 ⊗ B⊗2 = E[(vecYAY′)⊗2 ⊗ (YB)⊗2]

=
6∑

i1=2

4∑
i2=2

(Ip ⊗ Kpi1−2,p ⊗ Ip6−i1 )(Ip3 ⊗ Kpi2−2,p ⊗ Ip4−i2 )(vecΣ)⊗3(vec′Ψ)⊗3

× (In3 ⊗ Kn,ni2−2 ⊗ In4−i2 )(In ⊗ Kn,ni1−2 ⊗ In6−i1 )(vecA)⊗2 ⊗ B⊗2.

Independence implies that

(Ip ⊗ Kpi1−2,p ⊗ Ip6−i1 )(Ip3 ⊗ Kpi2−2,p ⊗ Ip4−i2 ) = (Ip ⊗ Kpi1−2,p ⊗ Ip4−i1 ⊗ Ip2)

must hold, which in turn gives that if i1 > 4,

(vec′Ψ)⊗3(Ip ⊗ Kpi1−2,p ⊗ Ip4−i1 ⊗ Ip2)(Ip4 ⊗ Ip ⊗ Kpi2−2,p ⊗ Ip4−i2 )

× (vecA)⊗2 ⊗ B⊗2 = 0.

In particular, if i1 = 6 and i2 = 3, we obtain that

vec(B′ΨA′ΨAΨB) = 0,

which is equivalent to
B′ΨA′Ψ = 0.

By symmetry it follows that B′ΨAΨ = 0 also is true. For the converse we rely on
(ii) and notice that B′ΨA′Ψ = 0 implies that YB and YA′Ψ are independent,
and B′ΨAΨ = 0 implies that YB and YAΨ are independent. Furthermore, note
that YAY′ = YΨ−ΨAΨΨ−Y′ = YAΨΨ−Y′ = YΨ−ΨAY′. Hence, YB and
YAY′ are also independent.
One may notice that, in particular, the proofs of (iii) and (iv) utilize the first mo-
ments and not the characteristic function, which is usually the case when showing
independence.
The proof of the theorem has induced the following corollaries.
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Corollary 2.2.4.1. Let X ∼ Np,n(µ,Σ,Ψ) and X, µ, Σ and Ψ be partitioned
according to (2.2.8) – (2.2.12). Then

(i) if Ψ−1
22 is non-singular, X•1 − X•2Ψ−1

22 Ψ21 and X•2 are independent and
normally distributed;

(ii) if Σ−1
22 is non-singular, X1• −Σ12Σ−1

22 X2• and X2• are independent and nor-
mally distributed.

Corollary 2.2.4.2. Let X ∼ Np,n(µ,Σ,Ψ) and X, µ, Σ and Ψ be partitioned
according to (2.2.8) – (2.2.12). Then

(i) X1• and X2• are independent if and only if Σ12 = 0;

(ii) X•1 and X•2 are independent if and only if Ψ12 = 0;

(iii) X11 and X12, X22, X12 are independent if and only if Σ12 = 0 and Ψ12 = 0.

Proof: For (i) choose A = (I : 0) and C = (0 : I) in Theorem 2.2.4 (i). For (ii)
choose B = (I : 0) and D = (0 : I) in Theorem 2.2.4 (ii). For (iii) we combine
(i) and (ii) of Theorem 2.2.4. In (i) we choose A = (I : 0), K = (I : 0)′ and
C = (0 : I) and in (ii) we choose B = (I : 0), K = (I : 0) and D = (0 : I).
Now some results on conditioning in the matrix normal distribution are presented.

Theorem 2.2.5. Let X ∼ Np,n(µ,Σ,Ψ) and X, µ, Σ and Ψ be partitioned
according to (2.2.8) – (2.2.12). Put Σ1·2 = Σ11 − Σ12Σ−1

22 Σ21 and Ψ1·2 = Ψ11 −
Ψ12Ψ−1

22 Ψ21.

(i) Suppose that Ψ−1
22 exists. Then

X•1|X•2 ∼Np,s(µ•1 + (X•2 − µ•2)Ψ−1
22 Ψ21,Σ,Ψ1·2).

(ii) Suppose that Σ−1
22 exists. Then

X1•|X2• ∼Nr,n(µ1• + Σ12Σ−1
22 (X2• − µ2•),Σ1·2,Ψ).

Proof: Let

H =
(

I −Ψ12Ψ−1
22

0 I

)
.

From Theorem 2.2.2 it follows that XH′ ∼ Np,n(µH′,Σ,HΨH′) and

XH′ =(X•1 − X•2Ψ−1
22 Ψ21 : X•2),

µH′ =(µ•1 − µ•2Ψ−1
22 Ψ21 : µ•2).

However, since

HΨH′ =
(

Ψ1·2 0
0 Ψ22

)
,

Corollary 2.2.4.1 (i) implies that X•1 − X•2Ψ−1
22 Ψ21 and X•2 are independently

distributed. Hence,

X•1 − X•2Ψ−1
22 Ψ21 ∼ Np,s(µ•1 − µ•2Ψ−1

22 Ψ21,Σ,Ψ1·2),
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and because of independence with X•2, the same expression when conditioning
with respect to X•2 holds. Thus (i) is established. The relation (ii) can immedi-
ately be obtained by noting that X′ ∼ Nn,p(µ′,Ψ,Σ).
It is straightforward to derive the conditional distribution of X•1|X12 or X•1|X22,
etc. by using results for the vector valued normal distributions. It turns out that
the conditional distributions are normal, of course, but they are not matrix normal
distributions. An extension of Theorem 2.2.5 is given in the following corollary.

Corollary 2.2.5.1. Let X ∼ Np,n(µ,Σ,Ψ) and A : q × p, B : m × n, C :
r × p and D : k × n. Moreover, let Σ1·2A = AΣA′ −AΣC′(CΣC′)−1CΣA′ and
Ψ1·2B = BΨB′ − BΨD′(DΨD′)−1DΨB′.
(i) If (CΣC′)−1 exists, then

AXB′|CXB′ ∼ Nq,m(AµB′ + AΣC′(CΣC′)−1(CXB′ − CµB′),Σ1·2A,BΨB′).

(ii) If (DΨ−1D′)−1 exists, then

AXB′|AXD′ ∼ Nq,m(AµB′+(AXD′−AµD′)(DΨD′)−1DΨB′,AΣA′,Ψ1·2B).

The next theorem gives us another generalization of Theorem 2.2.5. Here we do
not suppose any full rank conditions.

Theorem 2.2.6. Let X ∼ Np,n(µ,Σ,Ψ) and the matrices X, µ, Σ and Ψ be
partitioned according to (2.2.8) – (2.2.12). Put Σ1·2 = Σ11 − Σ12Σ−

22Σ21 and
Ψ1·2 = Ψ11 − Ψ12Ψ−

22Ψ21. Then

X•1|X•2 ∼Np,s(µ•1 + (X•2 − µ•2)Ψ−
22Ψ21,Σ,Ψ1·2);(i)

X1•|X2• ∼Nr,n(µ1• + Σ12Σ−
22(X2• − µ2•),Σ1·2,Ψ).(ii)

Proof: The proof of Theorem 2.2.5 may be copied. For example, for (i) let

H =
(

I −Ψ12Ψ−
22

0 I

)
and note that from Theorem 2.1.3 it follows that C (Ψ21) ⊆ C (Ψ22), which
implies Ψ12Ψ−

22Ψ22 = Ψ12.

Let Σo
22 and Ψo

22 span the orthogonal complements to C (Σ22) and C (Ψ22),
respectively. Then D[Σo′

22(X2• − µ2•)] = 0 and D[(X•2 − µ•2)Ψo′
22] = 0. Thus,

C ((X•2 − µ•2)′) ⊆ C (Ψ22) and C (X2• − µ2•) ⊆ C (Σ22), which imply that the
relations in (i) and (ii) of Theorem 2.2.6 are invariant with respect to the choice
of g-inverse, with probability 1.

2.2.3 Moments of the matrix normal distribution
Moments of the normal distribution are needed when approximating other dis-
tributions with the help of the normal distribution, for example. The order of
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moments needed in expansions depends on the number of used terms. Usually it
is enough to have expressions of the first six moments, and many practical prob-
lems can be handled with the first three or four moments. In principle, moments of
arbitrary order could be used but usually this will not improve the approximation.
When applying the results, the moments in approximation formulas have to be
estimated and therefore, when utilizing higher order moments, the performance of
the approximation can get even worse than using an approximation which is based
on the first three moments. Outliers, for example, can cause remarkable biases
in the estimates of higher order moments and cumulants. Nevertheless, we shall
briefly study moments of arbitrary order because sometimes the basic structure of
moments is also valuable.
The next Theorem 2.2.7 gives the moments of a matrix normal variable up to the
fourth order as well as moments of arbitrary order. The moments of arbitrary
order are given in a recursive way. We could also have stated the moments non-
recursively but these expressions are quite lengthy (e.g. see Holmquist, 1988; von
Rosen, 1988b). One, maybe the most important part of the theorem lies in the
proof of Lemma 2.2.1, given below. If we understand how the moments can be
obtained, we can easily apply the ideas in other situations. In the lemma we adopt
the convention that if k < 0,

k∑
i=0

Ai = 0

for arbitrary matrices Ai.

Lemma 2.2.1. Let X ∼ Np,n(µ,Σ,Ψ) and

ϕk
X(T) =

dkϕX(T)
dTk

,

where ϕ0
X(T) = ϕX(T), and ϕX(T) is given in Theorem 2.2.1. Put

A(T) = ivec′µ − vec′(T)(Ψ ⊗ Σ)

and A1(T) = dA(T)
dT = −Ψ ⊗ Σ. Then, if k > 1,

ϕk
X(T) = A(T) ⊗ ϕk−1

X (T) + A1(T) ⊗ vec′ϕk−2
X (T)

+
k−3∑
i=0

(vec′A1(T) ⊗ ϕk−2
X (T))(Ipn ⊗ Kpn,(pn)k−i−3 ⊗ I(pn)i).

Proof: Since A(T) is linear in T, higher order derivatives of A(T) vanish. By
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differentiating ϕX(T) four times, we obtain with the help of §1.4.9

ϕ1
X(T) =

(1.4.14)
(1.4.28)

A(T)′ϕX(T), (2.2.16)

ϕ2
X(T) =

(1.4.19)
A1(T)ϕX(T) + A(T) ⊗ ϕ1

X(T), (2.2.17)

ϕ3
X(T) =

(1.4.23)
vec′A1(T) ⊗ ϕ1

X(T) + A1(T) ⊗ vec′ϕ1
X(T)

+ A(T) ⊗ ϕ2
X(T), (2.2.18)

ϕ4
X(T) =

(1.4.23)
A(T) ⊗ ϕ3

X(T) + A1(T) ⊗ vec′ϕ2
X(T)

+ (vec′A1(T) ⊗ ϕ2
X(T))(Ipn ⊗ Kpn,pn) + vec′A1(T) ⊗ ϕ2

X(T). (2.2.19)

Now suppose that the lemma holds for k−1. We are going to differentiate ϕk−1
X (T)

and by assumption

ϕk
X(T) =

d

dT
ϕk−1

X (T) =
d

dT
{A(T) ⊗ ϕk−2

X (T)} +
d

dT
{A1(T) ⊗ vec′ϕk−3

X (T)}

+
d

dT
{

k−4∑
i=0

(vec′A1(T) ⊗ ϕk−3
X (T))(Ipn ⊗ Kpn,(pn)k−1−i−3 ⊗ I(pn)i)}. (2.2.20)

Straightforward calculations yield
d

dT
{A(T) ⊗ ϕk−2

X (T)} =
(1.4.23)

A(T) ⊗ ϕk−1
X (T) + A1(T) ⊗ vec′ϕk−2

X (T), (2.2.21)

d

dT
{A1(T) ⊗ vec′ϕk−3

X (T)} =
(1.4.23)

(vec′A1(T) ⊗ ϕk−2
X (T))(Ipn ⊗ Kpn,(pn)k−3)

(2.2.22)

and
d

dT
{(vec′A1(T) ⊗ ϕk−3

X (T))(Ipn ⊗ Kpn,(pn)k−i−1−3 ⊗ I(pn)i)}
=

(1.4.23)
(vec′A1(T) ⊗ ϕk−2

X (T))(Ipn ⊗ Kpn,(pn)k−i−1−3 ⊗ I(pn)i+1). (2.2.23)

Summing over i in (2.2.23) and thereafter adding (2.2.22) yields
k−4∑
i=0

(vec′A1(T) ⊗ ϕk−2
X (T))(Ipn ⊗ Kpn,(pn)k−i−1−3 ⊗ I(pn)i+1)

+(vec′A1(T) ⊗ ϕk−2
X (T))(Ipn ⊗ Kpn,(pn)k−3).

Reindexing, i.e. i → i − 1, implies that this expression is equivalent to
k−3∑
i=1

(vec′A1(T) ⊗ ϕk−2
X (T))(Ipn ⊗ Kpn,(pn)k−i−3 ⊗ I(pn)i)

+ (vec′A1(T) ⊗ ϕk−2
X (T))(Ipn ⊗ Kpn,(pn)k−3)

=
k−3∑
i=0

(vec′A1(T) ⊗ ϕk−2
X (T))(Ipn ⊗ Kpn,(pn)k−i−3 ⊗ I(pn)i). (2.2.24)
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Finally, summing the right hand side of (2.2.21) and (2.2.24), we obtain the state-
ment of the lemma from (2.2.20).

Theorem 2.2.7. Let X ∼ Np,n(µ,Σ,Ψ). Then

m2[X] = (Ψ ⊗ Σ) + vecµvec′µ;(i)

m3[X] = vecµ(vec′µ)⊗2 + vec′µ ⊗ Ψ ⊗ Σ + Ψ ⊗ Σ ⊗ vec′µ(ii)

+ vecµvec′(Ψ ⊗ Σ);

m4[X] = vecµ(vec′µ)⊗3 + (vec′µ)⊗2 ⊗ Ψ ⊗ Σ(iii)

+ vec′µ ⊗ Ψ ⊗ Σ ⊗ vec′µ + vecµvec′µ ⊗ vec′(Ψ ⊗ Σ)

+ Ψ ⊗ Σ ⊗ vec′(Ψ ⊗ Σ) + Ψ ⊗ Σ ⊗ (vec′µ)⊗2

+ {vecµvec′(Ψ ⊗ Σ) ⊗ vec′µ + vec′(Ψ ⊗ Σ) ⊗ Ψ ⊗ Σ}
× (I + Ipn ⊗ Kpn,pn);

mk[X] = vec′µ ⊗ mk−1[X] + Ψ ⊗ Σ ⊗ vec′(mk−2[X])(iv)

+
k−3∑
i=0

(vec′(Ψ ⊗ Σ) ⊗ mk−2[X])(Ipn ⊗ Kpn,(pn)k−i−3 ⊗ I(pn)i),

k > 1.

Proof: The relations in (i), (ii) and (iii) follow immediately from (2.2.16) –
(2.2.19) by setting T = 0, since

A(0) =ivec′µ,

A1(0) = − Ψ ⊗ Σ.

The general case (iv) is obtained from Lemma 2.2.1, if we note that (apply Defi-
nition 2.1.3)

ϕk
x(0) = ikmk[X],

A(0) ⊗ ϕk−1
x (0) = ikvec′µ ⊗ mk−1[X]

and
vec′A1(0) ⊗ ϕk−2

x (0) = ikvec′(Ψ ⊗ Σ) ⊗ mk−2[X],

where it has been utilized in the last equality that ik = −ik−2.

Corollary 2.2.7.1. Let Y ∼ Np,n(0,Σ,Ψ). Then mk[Y] = 0, if k is odd. When
k is even, then

m2[Y] = Ψ ⊗ Σ;(i)

m4[Y] = Ψ ⊗ Σ ⊗ vec′(Ψ ⊗ Σ)(ii)
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+ (vec′(Ψ ⊗ Σ) ⊗ Ψ ⊗ Σ)(I + Ipn ⊗ Kpn,pn);

mk[Y] = Ψ ⊗ Σ ⊗ vec′mk−2[Y](iii)

+
k−3∑
i=0

(vec′(Ψ ⊗ Σ) ⊗ mk−2[Y])(Ipn ⊗ Kpn,(pn)k−i−3 ⊗ I(pn)i),

m0[Y] = 1, k = 2, 4, 6, . . . ;

vec m4[Y] = (I + Ipn ⊗ K(pn)2,pn + Ipn ⊗ Kpn,pn ⊗ Ipn)(vec(Ψ ⊗ Σ))⊗2;(iv)

vec mk[Y] =
k−2∑
i=0

(Ipn ⊗ K(pn)k−i−2,pn ⊗ I(pn)i)(vec(Ψ ⊗ Σ) ⊗ vec mk−2[Y]),(v)

m0[Y] = 1, k = 2, 4, 6, . . .

Proof: Statements (i), (ii) and (iii) follow immediately from Theorem 2.2.7. By
applying Proposition 1.3.14 (iv), one can see that (ii) implies (iv). In order to
prove the last statement Proposition 1.3.14 (iv) is applied once again and after
some calculations it follows from (iii) that

vec mk[Y] = (Ipn ⊗ K(pn)k−2,pn)vec(Ψ ⊗ Σ) ⊗ vec mk−2[Y]

+
k−3∑
i=0

(Ipn ⊗ K(pn)k−i−3,pn ⊗ I(pn)i)vec(Ψ ⊗ Σ) ⊗ vec mk−2[Y]

=
k−2∑
i=0

(Ipn ⊗ K(pn)k−i−2,pn ⊗ I(pn)i)vec(Ψ ⊗ Σ) ⊗ vec mk−2[Y].

In the next two corollaries we shall present the expressions of moments and central
moments for a normally distributed random vector.

Corollary 2.2.7.2. Let x ∼ Np(µ,Σ). Then moments of the p-vector are of the
form:

m2[x] = Σ + µµ′;(i)

m3[x] = µ(µ′)⊗2 + µ′ ⊗ Σ + Σ ⊗ µ′ + µvec′Σ;(ii)

m4[x] = µ(µ′)⊗3 + (µ′)⊗2 ⊗ Σ + µ′ ⊗ Σ ⊗ µ′ + µµ′ ⊗ vec′Σ(iii)

+ Σ ⊗ vec′Σ + Σ ⊗ (µ′)⊗2

+ {µvec′Σ ⊗ µ′ + vec′Σ ⊗ Σ}(Ip3 + Ip ⊗ Kp,p);

mk[x] = µ′ ⊗ mk−1[x] + Σ ⊗ vec′(mk−2[x])(iv)

+
k−3∑
i=0

(vec′Σ ⊗ mk−2[x])(Ip ⊗ Kp,pk−i−3 ⊗ Ipi), k > 1.
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Proof: All the statements follow directly from Theorem 2.2.7 if we take Ψ = 1
and replace vecµ by the expectation µ.
The next results follow in the same way as those presented in Corollary 2.2.7.1.

Corollary 2.2.7.3. Let x ∼ Np(µ,Σ). Then odd central moments of x equal
zero and even central moments are given by the following equalities:

m2[x] = Σ;(i)

m4[x] = Σ ⊗ vec′Σ + (vec′Σ ⊗ Σ)(Ip3 + Ip ⊗ Kp,p);(ii)

mk[x] = Σ ⊗ vec′mk−2[x](iii)

+
k−3∑
i=0

(vec′Σ ⊗ mk−2[x])(Ip ⊗ Kp,pk−i−3 ⊗ Ipi), m0[x] = 1,

k = 2, 4, 6, . . . ;

vec m4[x] = (Ip4 + Ip ⊗ Kp2,p + Ip ⊗ Kp,p ⊗ Ip)(vecΣ)⊗2;(iv)

vec mk[x] =
k−2∑
i=0

(Ip ⊗ Kpk−i−2,p ⊗ Ipi)(vecΣ ⊗ vec mk−2[x]), m0[x] = 1,(v)

k = 2, 4, 6, . . .

Since Ipn⊗K(pn)k−i−2,pn⊗I(pn)i is a permutation operator, it is seen that the cen-
tral moments in Corollary 2.2.7.1 (v) are generated with the help of permutations
on tensors of the basis vectors of vec(Ψ ⊗ Σ)⊗k. Note that not all permutations
are used. However, one can show that all permutations Pi are used, which satisfy
the condition that Pivec(Ψ ⊗ Σ)⊗k differs from Pjvec(Ψ ⊗ Σ)⊗k, if Pi 	= Pj .
Example 2.2.1. Consider (vec(Ψ ⊗ Σ))⊗2, which can be written as a sum∑

ijkl

aijakle1
j ⊗ d1

i ⊗ e2
l ⊗ d2

k,

where vec(Ψ ⊗ Σ) =
∑

ij aije1
j ⊗ d1

i =
∑

kl akle2
l ⊗ d2

k and e1
j , e2

j , d1
j and d2

j are
unit bases vectors. All possible permutations of the basis vectors are given by

e1
j ⊗ d1

i ⊗ e2
l ⊗ d2

k

e1
j ⊗ d1

i ⊗ d2
k ⊗ e2

l

e1
j ⊗ e2

l ⊗ d2
k ⊗ d1

i

e1
j ⊗ e2

l ⊗ d1
i ⊗ d2

k

e1
j ⊗ d2

k ⊗ e2
l ⊗ d1

i

e1
j ⊗ d2

k ⊗ d1
i ⊗ e2

l

d1
i ⊗ e1

j ⊗ e2
l ⊗ d2

k

d1
i ⊗ e1

j ⊗ d2
k ⊗ e2

l

d1
i ⊗ e2

l ⊗ d2
k ⊗ e1

j

d1
i ⊗ e2

l ⊗ e1
j ⊗ d2

k

d1
i ⊗ d2

k ⊗ e2
l ⊗ e1

j

d1
i ⊗ d2

k ⊗ e1
j ⊗ e2

l

e2
l ⊗ d1

i ⊗ e1
j ⊗ d2

k

e2
l ⊗ d1

i ⊗ d2
k ⊗ e1

j

e2
l ⊗ e1

j ⊗ d2
k ⊗ d1

i

e2
l ⊗ e1

j ⊗ d1
i ⊗ d2

k

e2
l ⊗ d2

k ⊗ e1
j ⊗ d1

i

e2
l ⊗ d2

k ⊗ d1
i ⊗ e1

j

d2
k ⊗ e1

j ⊗ e2
l ⊗ d1

i

d2
k ⊗ e1

j ⊗ d1
i ⊗ e2

l

d2
k ⊗ e2

l ⊗ d1
i ⊗ e1

j

d2
k ⊗ e2

l ⊗ e1
j ⊗ d1

i

d2
k ⊗ d1

i ⊗ e2
l ⊗ e1

j

d2
k ⊗ d1

i ⊗ e1
j ⊗ e2

l

Since Ψ⊗Σ is symmetric, some of the permutations are equal and we may reduce
the number of them. For example, e1

j ⊗d1
i ⊗e2

l ⊗d2
k represents the same elements
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as d1
i ⊗ e1

j ⊗ e2
l ⊗ d2

k. Hence, the following permutations remain

e1
j ⊗ d1

i ⊗ e2
l ⊗ d2

k

e1
j ⊗ e2

l ⊗ d2
k ⊗ d1

i

e1
j ⊗ e2

l ⊗ d1
i ⊗ d2

k

e2
l ⊗ e1

j ⊗ d2
k ⊗ d1

i

e2
l ⊗ e1

j ⊗ d1
i ⊗ d2

k

e2
l ⊗ d2

k ⊗ e1
j ⊗ d1

i

.

However, e1
j ⊗ e2

l ⊗d2
k ⊗d1

i represents the same element as e2
l ⊗ e1

j ⊗d1
i ⊗d2

k and
the final set of elements can be chosen as

e1
j ⊗ d1

i ⊗ e2
l ⊗ d2

k

e1
j ⊗ e2

l ⊗ d2
k ⊗ d1

i

e1
j ⊗ e2

l ⊗ d1
i ⊗ d2

k

.

The three permutations which correspond to this set of basis vectors and act on
(vec(Ψ⊗Σ))⊗2 are given by I, Ipn ⊗K(pn)2,pn and Ipn ⊗Kpn,pn ⊗ Ipn. These are
the ones used in Corollary 2.2.7.1 (iv).

Sometimes it is useful to rearrange the moments. For example, when proving
Theorem 2.2.9, which is given below. In the next corollary the Kroneckerian
power is used.

Corollary 2.2.7.4. Let Y ∼ Np,n(0,Σ,Ψ). Then

E[Y⊗2] = vecΣvec′Ψ;(i)

E[Y⊗4] = (vecΣvec′Ψ)⊗2 + (Ip ⊗ Kp,p ⊗ Ip)(vecΣvec′Ψ)⊗2(In ⊗ Kn,n ⊗ In)(ii)

+ (Ip ⊗ Kp2,p)(vecΣvec′Ψ)⊗2(In ⊗ Kn,n2);

E[Y⊗k] =
k∑

i=2

(Ip ⊗ Kpi−2,p ⊗ Ipk−i)(vecΣvec′Ψ ⊗ E[Y⊗k−2])(iii)

× (In ⊗ Kn,ni−2 ⊗ Ink−i), k = 2, 4, 6, . . .

Proof: It can be obtained from Corollary 2.2.7.1 (i) that

E[vecY ⊗ vecY] = vec(Ψ ⊗ Σ).

Premultiplying this expression with In⊗Kn,p⊗Ip yields, according to Proposition
1.3.14 (iv),

vecE[Y ⊗ Y] = (In ⊗ Kn,p ⊗ Ip)vec(Ψ ⊗ Σ) = vecΨ ⊗ vecΣ = vec(vecΣvec′Ψ).

Concerning (ii), the same idea as in the above given proof is applied. Corollary
2.2.7.1 (v) implies that if

P = (In3 ⊗ Kn,p3 ⊗ Ip)(In2 ⊗ Kn,p2 ⊗ Ip ⊗ Ipn)(In ⊗ Kn,p ⊗ Ip ⊗ I(pn)2),
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then
vecE[Y⊗4] = PE[(vecY)⊗4] = Pvec m4[Y],

which is equivalent to (ii).
In order to prove (iii) one can copy the above lines and apply an induction argu-
ment. Alternatively to the proof of this statement, as well as when proving (i) and
(ii), one may apply the matrix derivative given by (1.4.2) instead of (1.4.4) when
differentiating the characteristic function.
Another way of obtaining the moments in Theorem 2.2.7 is to start with the
moments given in Corollary 2.2.7.1 and then utilize that

mk[X] = E[vec(Y + µ){vec′(Y + µ)}⊗k−1].

Now the idea is to expand {vec(Y + µ)}⊗k−1. Thereafter certain permutation
operators are applied to each term of the expansion so that the terms will take
the form

vec(Y + µ)((vec′Y)⊗j ⊗ (vec′µ)⊗k−j), j = 0, 1, . . . , k.

An interesting feature of the normal distribution is that all cumulants are almost
trivial to obtain. As the cumulant function in Theorem 2.2.1 consists of a linear
term and a quadratic term in T, the following theorem can be verified.

Theorem 2.2.8. Let X ∼ Np,n(µ,Σ,Ψ). Then

c1[X] =vecµ;(i)

c2[X] =Ψ ⊗ Σ;(ii)

ck[X] =0, k ≥ 3.(iii)

Quadratic forms play a key role in statistics. Now and then moments of quadratic
forms are needed. In the next theorem some quadratic forms in matrix normal
variables are considered. By studying the proof one understands how moments
can be obtained when X is not normally distributed.

Theorem 2.2.9. Let X ∼ Np,n(µ,Σ,Ψ). Then

E[XAX′] = tr(ΨA)Σ + µAµ′;(i)

E[XAX′ ⊗ XBX′] = tr(ΨA)tr(ΨB)Σ ⊗ Σ(ii)

+ tr(ΨAΨB′)vecΣvec′Σ + tr(ΨAΨB)Kp,p(Σ ⊗ Σ)

+ tr(ΨA)Σ ⊗ µBµ′ + vec(µBΨA′µ′)vec′Σ
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+ Kp,p{µBΨAµ′ ⊗ Σ + Σ ⊗ µAΨBµ′}

+ vecΣvec′(µB′ΨAµ′) + tr(ΨB)µAµ′ ⊗ Σ + µAµ′ ⊗ µBµ′;

D[XAX′] = tr(ΨAΨA′)Σ ⊗ Σ + tr(ΨAΨA)Kp,p(Σ ⊗ Σ)(iii)

+ Σ ⊗ µAΨA′µ′ + µAΨAµ′ ⊗ Σ

+ Kp,p{µAΨAµ′ ⊗ Σ + Σ ⊗ µA′ΨAµ′}.

Proof: In order to show (i) we are going to utilize Corollary 2.2.7.4. Observe
that X and Y + µ have the same distribution when Y ∼ Np,n(0,Σ,Ψ). The odd
moments of Y equal zero and

vecE[XAX′] = E[((Y + µ) ⊗ (Y + µ))vecA] = E[(Y ⊗ Y)vecA] + vec(µAµ′)
= vecΣvec′ΨvecA + vec(µAµ′) = tr(ΨA)vecΣ + vec(µAµ′),

which establishes (i).
For (ii) it is noted that

E[(XAX′)⊗(XBX′)]
=E[(YAY′) ⊗ (YBY′)] + E[(µAµ′) ⊗ (µBµ′)]

+ E[(YAµ′) ⊗ (YBµ′)] + E[(YAµ′) ⊗ (µBY′)]
+ E[(µAY′) ⊗ (YBµ′)] + E[(µAY′) ⊗ (µBY′)]
+ E[(µAµ′) ⊗ (YBY′)] + E[(YAY′) ⊗ (µBµ′)]. (2.2.25)

We are going to consider the expressions in the right-hand side of (2.2.25) term
by term. It follows by Proposition 1.3.14 (iii) and (iv) and Corollary 2.2.7.4 that

vec(E[(YAY′) ⊗ (YBY′)])
= (Ip ⊗ Kp,p ⊗ Ip)E[Y⊗4](vecA ⊗ vecB)
= tr(ΨA)tr(ΨB)vec(Σ ⊗ Σ) + tr(ΨAΨB′)vec(vecΣvec′Σ)

+ tr(ΨAΨB)vec(Kp,p(Σ ⊗ Σ)),

which implies that

E[(YAY′) ⊗ (YBY′)] = tr(ΨA)tr(ΨB)Σ ⊗ Σ

+ tr(ΨAΨB′)vecΣvec′Σ + tr(ΨAΨB)Kp,p(Σ ⊗ Σ). (2.2.26)

Some calculations give that

E[(YAµ′) ⊗ (YBµ′)] = E[Y⊗2](Aµ′ ⊗ Bµ′) = vecΣvec′(µB′ΨAµ′) (2.2.27)
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and

E[(µAY′) ⊗ (µBY′)] = (µA ⊗ µB)E[(Y′)⊗2] = vec(µBΨA′µ′)vec′Σ. (2.2.28)

Furthermore,
E[Y ⊗ Y′] = Kp,n(Ψ ⊗ Σ),

which implies that

E[(YAµ′) ⊗ (µBY′)] = (Ip ⊗ µB)E[Y ⊗ Y′](Aµ′ ⊗ Ip)
= (Ip ⊗ µB)Kp,n(Ψ ⊗ Σ)(Aµ′ ⊗ Ip) = Kp,p(µBΨAµ′ ⊗ Σ) (2.2.29)

and

E[(µAY′) ⊗ (YBµ′)] = E[(YA′µ′) ⊗ (µB′Y′)]′

= (µAΨBµ′ ⊗ Σ)Kp,p = Kp,p(Σ ⊗ µAΨBµ′). (2.2.30)

Now, by applying (i),

E[(µAµ′) ⊗ (YBY′)] = tr(ΨB)µAµ′ ⊗ Σ (2.2.31)

and
E[(YAY′) ⊗ (µBµ′)] = tr(ΨA)Σ ⊗ µBµ′. (2.2.32)

Hence, using (2.2.26) – (2.2.32) in (2.2.25) proves (ii).
Finally (iii) is going to be established. Since

D[XAX′] = E[vec(XAX′)vec′(XAX′)] − E[vec(XAX′)]E[vec′(XAX′)]

and since by (i) E[vec(XAX′)] is known, we only need an expression for
E[vec(XAX′)vec′(XAX′)]. From Proposition 1.3.14 (iv) it follows that

(Ip ⊗ Kp,p ⊗ Ip)vec(E[(XAX′) ⊗ (XAX′)]) = E[vec(XAX′) ⊗ vec(XAX′)]
= vec(E[vec(XAX′)vec′(XAX′)]).

Therefore, by utilizing (ii) we obtain

vec(E[vec(XAX′)vec′(XAX′)])
=(tr(ΨA))2vec(vecΣvec′Σ) + tr(ΨAΨA′)vec(Σ ⊗ Σ)

+ tr(ΨAΨA)vec(Kp,pΣ ⊗ Σ) + tr(ΨA)vec(vec(µAµ′)vec′Σ)
+ vec(Σ ⊗ µAΨA′µ′) + vec(Kp,p(µAΨAµ′ ⊗ Σ))
+ vec(Kp,p(Σ ⊗ µA′ΨA′µ′)) + vec(µA′ΨAµ′ ⊗ Σ)
+ tr(ΨA)vec(vecΣvec′(µAµ′)) + vec(vec(µAµ′)vec′(µAµ′)).
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Hence,

E[vec(XAX′)vec′(XAX′)]
=(tr(ΨA))2vecΣvec′Σ + tr(ΨAΨA′)Σ ⊗ Σ

+ tr(ΨA)tr(ΨA)Kp,p(Σ ⊗ Σ) + tr(ΨA)vec(µAµ′)vec′Σ
+ Σ ⊗ µAΨA′µ′ + Kp,p((µAΨAµ′) ⊗ Σ)
+ Kp,p(Σ ⊗ µA′ΨA′µ′) + µA′ΨAµ′ ⊗ Σ

+ tr(ΨA)vecΣvec′(µAµ′) + vec(µAµ′)vec′(µAµ′). (2.2.33)

Combining (2.2.33) with the expression for E[vec(XAX′)] in (i) establishes (iii).

For some results on arbitrary moments on quadratic forms see Kang & Kim (1996).

2.2.4 Hermite polynomials
If we intend to present a multivariate density or distribution function through a
multivariate normal distribution, there exist expansions where multivariate den-
sities or distribution functions, multivariate cumulants and multivariate Hermite
polynomials will appear in the formulas. Finding explicit expressions for the Her-
mite polynomials of low order will be the topic of this paragraph while in the next
chapter we are going to apply these results.
In the univariate case the class of orthogonal polynomials known as Hermite poly-
nomials can be defined in several ways. We shall use the definition which starts
from the normal density. The polynomial hk(x) is a Hermite polynomial of order
k if it satisfies the following equality:

dkfx(x)
dxk

= (−1)khk(x)fx(x), k = 0, 1, 2, . . . , (2.2.34)

where fx(x) is the density function of the standard normal distribution N(0, 1).
Direct calculations give the first Hermite polynomials:

h0(x) = 1,

h1(x) = x,

h2(x) = x2 − 1,

h3(x) = x3 − 3x.

In the multivariate case we are going to use a multivariate normal distribution
Np(µ,Σ) which gives us a possibility to define multivariate Hermite polynomials
depending on two parameters, namely the mean µ and the dispersion matrix
Σ. A general coordinate-free treatment of multivariate Hermite polynomials has
been given by Holmquist (1996), and in certain tensor notation they appear in
the books by McCullagh (1987) and Barndorff-Nielsen & Cox (1989). A matrix
representation was first given by Traat (1986) on the basis of the matrix derivative
of MacRae (1974). In our notation multivariate Hermite polynomials were given
by Kollo (1991), when µ = 0.
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Definition 2.2.2. The matrix Hk(x, µ,Σ) is called multivariate Hermite polyno-
mial of order k for the vector µ and the matrix Σ > 0, if it satisfies the equality:

dkfx(x)
dxk

= (−1)kHk(x, µ,Σ)fx(x), k = 0, 1, . . . , (2.2.35)

where
dk

dxk
is given by Definition 1.4.1 and Definition 1.4.3, and fx(x) is the density

function of the normal distribution Np(µ,Σ):

fx(x) = (2π)−
p
2 |Σ|− 1

2 exp(−1
2
(x − µ)′Σ−1(x − µ)).

Usually Hermite polynomials are defined for a centered normal distribution. In
the literature we find several generalizations of Hermite polynomials in different
directions. Viskov (1991) considers Hermite polynomials as derivatives of an expo-
nential function where the dispersion matrix Σ in the normal density in Definition
2.2.2 is replaced by an arbitrary non-singular square matrix. Chikuse (1992a,
1992b) develops a theory for Hermite polynomials with a symmetric (but not nec-
essarily positive definite) matrix argument. For our purposes we get the necessary
notion from Definition 2.2.2. The explicit formulas for the first three Hermite
polynomials will be given in the next theorem.

Theorem 2.2.10. Multivariate Hermite polynomials Hk(x,µ,Σ),
k = 0, 1, 2, 3, are of the form:

H0(x, µ,Σ) = 1;(i)

H1(x, µ,Σ) = Σ−1(x − µ); (2.2.36)(ii)

H2(x, µ,Σ) = Σ−1(x − µ)(x − µ)′Σ−1 − Σ−1; (2.2.37)(iii)

H3(x, µ,Σ) = Σ−1(x − µ)((x − µ)′Σ−1)⊗2 − Σ−1(x − µ)vec′Σ−1(iv)
− {(x − µ)′Σ−1} ⊗ Σ−1 − Σ−1 ⊗ {(x − µ)′Σ−1}. (2.2.38)

Proof: For k = 0, the relation in Definition 2.2.2 turns into a trivial identity and
we obtain that

H0(x,µ,Σ) = 1.
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For k = 1 the first order derivative equals

dfx(x)
dx

= (2π)−
p
2 |Σ|− 1

2
d exp(− 1

2 (x − µ)′Σ−1(x − µ))
dx

=
(1.4.14)

(2π)−
p
2 |Σ|− 1

2 exp(−1
2
(x − µ)′Σ−1(x − µ))

d(− 1
2 (x − µ)′Σ−1(x − µ))

dx

=
(1.4.19)

−1
2
fx(x){d(x − µ)′

dx
Σ−1(x − µ) +

d(x − µ)
dx

Σ−1(x − µ)}

=
(1.4.17)

−1
2
fx(x){Σ−1(x − µ) + Σ−1(x − µ)} = −fx(x)Σ−1(x − µ).

Thus, Definition 2.2.2 yields (ii). To prove (iii) we have to find the second order
derivative, i.e.

d2fx(x)
dx2

=
d

df

dx
dx

= −d(fx(x)Σ−1(x − µ))
dx

= −d(x − µ)′

dx
Σ−1fx(x) − dfx(x)

dx
(x − µ)′Σ−1

= −Σ−1fx(x) + Σ−1(x − µ)(x − µ)′Σ−1fx(x)
= fx(x)(Σ−1(x − µ)(x − µ)′Σ−1 − Σ−1).

Thus, (iii) is verified.
To prove (iv), the function fx(x) has to be differentiated once more and it follows
that

d3fx(x)
dx3

=
d
d2fx(x)

dx2

dx
=

d[fx(x)(Σ−1(x − µ)(x − µ)′Σ−1)]
dx

− d(fx(x)Σ−1)
dx

=
(1.3.31)

d{(Σ−1(x − µ) ⊗ Σ−1(x − µ))fx(x)}
dx

− dfx(x)vec′Σ−1

dx

=
(1.4.23)

fx(x)
d(Σ−1(x − µ) ⊗ Σ−1(x − µ))

dx

+
dfx(x)

dx
(x − µ)′Σ−1 ⊗ (x − µ)′Σ−1 − dfx(x)

dx
vec′Σ−1

=
(1.4.23)

fx(x){(x − µ)′Σ−1 ⊗ Σ−1 + Σ−1 ⊗ (x − µ)′Σ−1}

− Σ−1(x − µ)((x − µ)′Σ−1)⊗2 + Σ−1(x − µ)vec′Σ−1.

Hence, from Definition 2.2.2 the expression for H3(x, µ,Σ) is obtained.
In most applications the centered multivariate normal distribution Np(0,Σ) is
used. In this case Hermite polynomials have a slightly simpler form, and we denote
them by Hk(x,Σ). The first three Hermite polynomials Hk(x,Σ) are given by
the following corollary.
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Corollary 2.2.10.1. Multivariate Hermite polynomials Hk(x,Σ),
k = 0, 1, 2, 3, are of the form:

H0(x,Σ) = 1;(i)

H1(x,Σ) = Σ−1x; (2.2.39)(ii)

H2(x,Σ) = Σ−1xx′Σ−1 − Σ−1; (2.2.40)(iii)

H3(x,Σ) = Σ−1x(x′Σ−1)⊗2 − Σ−1xvec′Σ−1 − (x′Σ−1 ⊗ Σ−1)(iv)

− (Σ−1 ⊗ x′Σ−1). (2.2.41)

In the case µ = 0 and Σ = Ip the formulas, which follow from Theorem 2.2.10,
are multivariate versions of univariate Hermite polynomials.

Corollary 2.2.10.2. Multivariate Hermite polynomials Hk(x, Ip),
k = 0, 1, 2, 3, equal:

H0(x, Ip) = 1;(i)

H1(x, Ip) = x;(ii)

H2(x, Ip) = xx′ − Ip;(iii)

H3(x, Ip) = x(x′)⊗2 − xvec′Ip − (x′ ⊗ Ip) − (Ip ⊗ x′).(iv)

Up to now we have been thinking of Hermite polynomials as derivatives of the
normal density. However, when the mean is zero, the characteristic function of
the normal distribution has the same structure as that of the multivariate normal
density function. Hence, one can immediately imagine that the moments of a
multivariate normal distribution are connected to the Hermite polynomials, and
the next theorem is a consequence of this fact.

Theorem 2.2.11. Let x ∼ Np(0,Σ). Then

mk[x] =
1
ik

(−1)kHk(0,Σ−1), k = 2, 4, 6, . . .

Furthermore, since recursive relations are given for the derivatives of the char-
acteristic function in Lemma 2.2.1, we may follow up this result and present a
recursive relation for the Hermite polynomials Hk(x,Σ).
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Theorem 2.2.12. Let Hk(x,Σ) be given by Definition 2.2.2, when µ = 0. Then,
if k > 1,

Hk(x,Σ) = x′Σ−1Hk−1(x,Σ) − Σ−1 ⊗ vecHk−2(x,Σ)

− (vec′Σ−1 ⊗ Hk−2(x,Σ))
k−3∑
i=0

(Ip ⊗ Kp,pk−i−3 ⊗ Ipi).

An interesting fact about Hermite polynomials is that they are orthogonal, i.e.
E[vecHk(x,Σ)vec′Hl(x,Σ)] = 0.

Theorem 2.2.13. Let Hk(x,Σ) be given in Definition 2.2.2, where µ = 0. Then,
if k 	= l,

E[vecHk(x,Σ)vec′Hl(x,Σ)] = 0.

Proof: First, the correspondence between (2.2.35) and (1.4.67) is noted. There-
after it is recognized that (1.4.68) holds because the exponential function converges
to 0 faster than Hk(x,Σ) → ±∞, when any component in x → ±∞. Hence,
(1.4.70) establishes the theorem.
The Hermite polynomials, or equivalently the derivatives of the normal density
function, may be useful when obtaining error bounds of expansions. This happens
when derivatives of the normal density function appear in approximation formulas.
With the help of the next theorem error bounds, independent of the argument x
of the density function, can be found.

Theorem 2.2.14. Let Z ∼ Np,n(0,Σ, I), fZ(X) denote the corresponding density
and fk

Z(X) the k−th derivative of the density. Then, for any matrix A of proper
size,

|tr(A⊗2sf2s
Z (X))| ≤ tr(A⊗2sf2s

Z (0));(i)

|tr(A⊗2sH2s(vecX,Σ)fZ(X))| ≤ (2π)−pn/2|Σ|−n/2tr(A⊗2sH2s(vecX,Σ)).(ii)

Proof: The statement in (ii) follows from (i) and Definition 2.2.2. In order to
show (i) we make use of Corollary 3.2.1.L2, where the inverse Fourier transform is
given and the derivatives of a density function are represented using the charac-
teristic function.
Hence, from Corollary 3.2.1.L2 it follows that

|tr(A⊗2sf2s
Z (X))| = |vec′(A′⊗2s)vec(f2s

Z (X))|
= |(2π)−pn

∫
Rpn

ϕZ(T)vec′(A′⊗2s)(ivecT)⊗2se−itr(T′X)dT|

≤ (2π)−pn

∫
Rpn

ϕZ(T)|vec′(A′⊗2s)(ivecT)⊗2s|dT

= (2π)−pn

∫
Rpn

ϕZ(T)(tr(AT))2sdT

= (2π)−pn

∫
Rpn

ϕZ(T)vec′(A′⊗2s)(ivecT)⊗2sdT

= vec′(A′⊗2s)vec(f2s
Z (0)) = tr(A⊗2sf2s

Z (0)),
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which establishes the theorem.

2.2.5 Multilinear normal distribution
The matrix normal distribution can be regarded as a bilinear normal distribution.
A straightforward step further leads to the multilinear normal distribution. Since
algebra for treating the distribution is similar to the algebra applied in previous
parts of this section, we consider the extension of the ”bilinear” normal here.
First, it is observed that a matrix normally distributed X : p × n, i.e. X ∼
Np,n(µ,Σ,Ψ), can be written as

∑
ij

Xije1
i (e

2
j )

′ =
∑
ij

µije1
i (e

2
j )

′ +
∑
ik

∑
nl

∑
mj

τikγmjUnle1
i (e

1
k)′e1

n(e2
l )

′e2
m(e2

j )
′,

where Σ = ττ ′, Ψ = γγ′, e1
i : p × 1, e2

j : n × 1 are the unit basis vectors and
Unl ∼ N(0, 1). This expression equals

∑
ij

Xije1
i (e

2
j )

′ =
∑
ij

µije1
i (e

2
j )

′ +
∑
ij

∑
kl

τikγmjUkme1
i (e

2
j )

′.

If the products of basis vectors are rearranged, i.e. e1
i (e

2
j )

′ → e2
j ⊗ e1

i , the vec-
representation of the matrix normal distribution is obtained. The calculations and
ideas above motivate the following extension of the matrix normal distribution.

Definition 2.2.3. A matrix X is multilinear normal of order k,

X ∼ Np1,p2,...,pk
(µ,Σk,Σ1,Σ2, . . . ,Σk−1),

if ∑
i1,i2,...,ik

Xi1...ik
e1

i1 ⊗ e2
i2 ⊗ · · · ⊗ ek

ik
=

∑
i1,i2,...,ik

µi1...ik
e1

i1 ⊗ e2
i2 ⊗ · · · ⊗ ek

ik

+
p1∑
i1

p2∑
i2

· · ·
pk∑
ik

p1∑
j1

p2∑
j2

· · ·
pk∑
jk

τ1
i1j1τ

2
i2j2 · · · τk

ikjk
Uj1j2...jk

e1
i1 ⊗ e2

i2 ⊗ · · · ⊗ ek
ik

,

where Σi = τ i(τ i)′, er
ir

: pr × 1 and Uj1j2···jk
∼ N(0, 1).

From Definition 2.2.3 it follows immediately, that if omitting the basis vectors, we
have a multivariate normal distribution represented in a coordinate free language,
namely

Xi1...ik
= µi1...ik

+
∑

j1j2...jk

τ1
i1j1τ

2
i2j2 · · · τk

ikjk
Uj1j2...jk

.

The next theorem spells out the connection between the matrix normal and the
multilinear normal distributions.
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Theorem 2.2.15. Let X ∼ Np,n(µ,Σk,Ψ), where

Ψ = Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σk−1,

Σi : pi × pi, i = 1, 2, . . . , k − 1, and
∑k−1

i=1 pi = n. Then

X ∼ Np,p1,p2,...,pk−1(µ,Σk,Σ1,Σ2, . . . ,Σk−1).

Proof: First, it is noted that the set {ej}n
j=1, ej : n × 1, is identical to

{e1
i1 ⊗ e2

i2 ⊗ · · · ⊗ ek−1
ik−1

}pj

ij=1, j=1,2,...,k−1, (2.2.42)

where ej
ij

: pj × 1 and n =
∑k−1

j=1 pj . Now, by assumption

Ψ =
∑

i1,i2,...,ik−1

∑
j1,j2,...,jk−1

γ1
i1j1γ

2
i2j2 · · · γk−1

ik−1jk−1
e1

i1(e
1
j1)

′ ⊗ e2
i2(e

2
j2)

′

⊗ · · · ⊗ ek−1
ik−1

(ek−1
jk−1

)′

and vecX can be written as∑
ik,iv

Xikiveiv ⊗ek
ik

=
∑
ik,iv

µikiveiv ⊗ek
ik

+
∑
ik,iv

∑
jk,jv

τk
ikjk

γv
ivjv

Ujkjveiv ⊗ek
ik

, (2.2.43)

where eiv
: n× 1, ek

ik
: p× 1. From (2.2.42) it follows that eiv

may be replaced by
elements from {e1

i1
⊗ e2

i2
⊗ · · · ⊗ ek−1

ik−1
}, and since

Ψ = γγ′ = γ1γ
′
1⊗γ2γ

′
2⊗· · ·⊗γk−1γ

′
k−1 = (γ1⊗γ2⊗· · ·⊗γk−1)(γ1⊗γ2⊗· · ·⊗γk−1)′

we may replace γv
ivjv

by γv
ivjv

= γ1
i1j1

γ2
i2j2

· · · γk−1
ik−1jk−1

in (2.2.43). Thus, (2.2.43)
is equivalent to Definition 2.2.3.
In Definition 2.2.3 we have an arbitrary µ. However, it is much more interesting
to connect the mean structure with the dispersion structure Σ1 ⊗ · · · ⊗ Σk. For
example, consider vecµ = (F1⊗· · ·⊗Fk)δ. Next it is supposed that this structure
holds, and then it is said that X is multilinear normal with mean structure.

Definition 2.2.4. The matrix X is multilinear normal of order k with mean
structure if X ∼ Np1,...,pk

(µ,Σk,Σ1, . . . ,Σk−1) and vecµ = (F1 ⊗ · · · ⊗ Fk)δ,
where Fi : pi × qi. It will be denoted

X ∼ Np1...pk
(F1, . . . ,Fk; δ,Σk,Σ1, . . . ,Σk−1).

From Definition 2.2.4 it follows that vecX has the same distribution as

(F1 ⊗ · · · ⊗ Fk)δ + {(Σ1)1/2 ⊗ · · · ⊗ (Σk)1/2}u,
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where the elements of u are independent N(0, 1). For the results presented in
Theorem 2.2.2 and Theorem 2.2.6 there exist analogous results for the multilinear
normal distribution. Some of them are presented below. Let

X•rl• =
∑

i1...ir−1ir+1...ik

l∑
ir=1

Xi1...ik
e1

i1 ⊗ · · · ⊗ er−1
ir−1

⊗ erl
ir
⊗ er+1

ir+1
⊗ · · · ⊗ ek

ik
,

(2.2.44)

X•rl• =
∑

i1...ir−1ir+1...ik

pr∑
ir=l+1

Xi1...ik
e1

i1 ⊗ · · · ⊗ er−1
ir−1

⊗ erl

ir
⊗ er+1

ir+1
⊗ · · · ⊗ ek

ik

(2.2.45),

with erl
ir

: l × 1 and erl

ir
: (pr − l) × 1. The special cases r = k or r = 1 follow

immediately, although a proper notation when r = k would be X•rk
, and X•rk .

Furthermore, let

µ•rl• =
∑

i1...ir−1ir+1...ik

l∑
ir=1

µi1...ik
e1

i1 ⊗ · · · ⊗ er−1
ir−1

⊗ erl
ir
⊗ er+1

ir+1
⊗ · · · ⊗ ek

ik
,

(2.2.46)

µ•rl• =
∑

i1...ir−1ir+1...ik

pr∑
ir=l+1

µi1...ik
e1

i1 ⊗ · · · ⊗ er−1
ir−1

⊗ erl

ir
⊗ er+1

ir+1
⊗ · · · ⊗ ek

ik
,

(2.2.47)

Σr =
(

Σr
11 Σr

12

Σr
21 Σr

22

) (
l × l l × (pr − l)

(pr − l) × l (pr − l) × (pr − l)

)
and

Fr =
(

Fr
1

Fr
2

) (
l × 1

(pr − l) × 1

)
. (2.2.48)

It follows from (2.2.44) and (2.2.45) that(
X•rl•
X•rl•

)
=
(

Ip1+···+pr−1 ⊗ (I : 0) ⊗ Ipr+1+···+pk

Ip1+···+pr−1 ⊗ (0 : I) ⊗ Ipr+1+···+pk

)
vecX.

Similarly, (
µ•rl•
µ•rl•

)
=
(

Ip1+···+pr−1 ⊗ (I : 0) ⊗ Ipr+1+···+pk

Ip1+···+pr−1 ⊗ (0 : I) ⊗ Ipr+1+···+pk

)
vecµ,

and thus

µ•rl• =(F1 ⊗ · · · ⊗ Fr−1 ⊗ Fr
1 ⊗ Fr+1 ⊗ · · · ⊗ Fk)δ, (2.2.49)

µ•rl• =(F1 ⊗ · · · ⊗ Fr−1 ⊗ Fr
2 ⊗ Fr+1 ⊗ · · · ⊗ Fk)δ. (2.2.50)

Now we give some results which correspond to Theorem 2.2.2, Theorem 2.2.4,
Corollary 2.2.4.1, Theorem 2.2.5 and Theorem 2.2.6.
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Theorem 2.2.16. Let X ∼ Np1,...,pk
(F1, . . . ,Fk; δ,Σk,Σ1,Σ2, . . . ,Σk−1).

(i) Let Ai : qi × pi, i = 1, 2, . . . , k. Then

(A1 ⊗ A2 ⊗ · · · ⊗ Ak)vecX

∼ Nq1,...,qk

(
A1F1, . . . ,AkFk; δ,AkΣkA′

k,A1Σ1A′
1,A2Σ2A′

2, . . . ,

Ak−1Σk−1A′
k−1

)
.

(ii) (A1 ⊗A2 ⊗ · · · ⊗Ak)vecX is independent of (B1 ⊗B2 ⊗ · · · ⊗Bk)vecX if for
some i, i = 1, 2, . . . , k, AiΣiB′

i = 0.
(iii) X•rl• is independent of X•rl• if and only if Σr

12 = 0.
(iv) X•rl• is not independent of X•sm•, if s 	= r.
(v) Let µ•rl• and µ•rl• be given by (2.2.49) and (2.2.50), respectively, and

Σr
1•2 = Σr

11 − Σr
12(Σ

r
22)

−1Σ21.

Then X•rl•|X•rl• has the same distribution as

µ•rl• + (Ip1+···+pr−1 ⊗ Σr
12(Σ

r
22)

−1 ⊗ Ipr+1+···+pk
)(X•rl• − µ•rl•)

+ (Σ1 ⊗ · · · ⊗ Σr−1 ⊗ Σr
1•2 ⊗ Σr+1 ⊗ · · · ⊗ Σk)vecU,

where U ∼ Np1,...,pk
(0, I, I, . . . , I).

Proof: The statements in (i) and (ii) follow from Theorem 2.2.2 and Theorem
2.2.4, respectively. In the rest of the proof Proposition 1.3.12 will be frequently
used. From Theorem 2.2.4 it follows that two normally distributed variables are
independent if and only if they are uncorrelated. Therefore, we will study the
equation

0 = C[X•rl•,X•rl•]

= (Ip1+···+pr−1 ⊗ (I : 0) ⊗ Ipr+1+···+pk
)(Σ1 ⊗ · · · ⊗ Σk)

× (Ip1+···+pr−1 ⊗ (0 : I)′ ⊗ Ipr+1+···+pk
)

= Σ1 ⊗ · · · ⊗ Σr−1 ⊗ Σr
12 ⊗ Σr+1 ⊗ · · · ⊗ Σk. (2.2.51)

Since Σi, i = 1, 2, . . . k differ from zero, (2.2.51) holds if and only if Σr
12 = 0.

The statement in (iv) can be proved by giving a simple example. For instance, for
X ∼ Np1,p2,p3(0,Σ3,Σ1,Σ2)

C[(I ⊗ (I :0) ⊗ I)vecX, ((0 : I) ⊗ I ⊗ I)′vecX]
= (I ⊗ (I : 0) ⊗ I)(Σ1 ⊗ Σ2 ⊗ Σ3)((0 : I) ⊗ I ⊗ I)′

=
((

Σ1
12

Σ1
22

)
⊗ (Σ2

11 : Σ2
12) ⊗ Σ3

)
	= 0

without any further assumptions on the dispersion matrices.
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In order to show (v) we rely on Theorem 2.2.6. We know that the conditional
distribution must be normal. Thus it is sufficient to investigate the conditional
mean and the conditional dispersion matrix. For the mean we have

µ•rl•+(Ip1+···+pr−1 ⊗ (I : 0) ⊗ Ipr+1+···+pk
)(Σ1 ⊗ · · · ⊗ Σk)

× (Ip1+···+pr−1 ⊗ (0 : I)′ ⊗ Ipr+1+···+pk
)

×
{

(Ip1+···+pr−1 ⊗ (0 : I) ⊗ Ipr+1+···+pk
)(Σ1 ⊗ · · · ⊗ Σk)

× (Ip1+···+pr−1 ⊗ (0 : I)′ ⊗ Ipr+1+···+pk
)
}−1

(X•rl• − µ•rl•)

=µ•rl• + (Ip1+···+pr−1 ⊗ Σr
12(Σ

r
22)

−1 ⊗ Ipr+1+···+pk
)(X•rl• − µ•rl•)

and for the dispersion

(Ip1+···+pr−1 ⊗ (I : 0) ⊗ Ipr+1+···+pk
)(Σ1 ⊗ · · · ⊗ Σk)

× (Ip1+···+pr−1 ⊗ (I : 0)′ ⊗ Ipr+1+···+pk
)

− (Ip1+···+pr−1 ⊗ (I : 0) ⊗ Ipr+1+···+pk
)(Σ1 ⊗ · · · ⊗ Σk)

× (Ip1+···+pr−1 ⊗ (0 : I)′ ⊗ Ipr+1+···+pk
)

×
{

(Ip1+···+pr−1 ⊗ (0 : I) ⊗ Ipr+1+···+pk
)(Σ1 ⊗ · · · ⊗ Σk)

× (Ip1+···+pr−1 ⊗ (0 : I)′ ⊗ Ipr+1+···+pk
)
}−1

× (Ip1+···+pr−1 ⊗ (0 : I) ⊗ Ipr+1+···+pk
)(Σ1 ⊗ · · · ⊗ Σk)

× (Ip1+···+pr−1 ⊗ (I : 0)′ ⊗ Ipr+1+···+pk
)

= Σ1 ⊗ · · · ⊗ Σr−1 ⊗ Σr
1•2 ⊗ Σr+1 ⊗ · · · ⊗ Σk.

2.2.6 Problems
1. Let X have the same distribution as µ + τUγ′, where additionally it is sup-

posed that AUB = 0 for some matrices A and B. Under what conditions on
A and B the matrix X is still matrix normally distributed?

2. Let X1 ∼ Np,n(µ1,Σ1,Ψ1) and X2 ∼ Np,n(µ2,Σ2,Ψ2). Under what condi-
tions on Σi, Ψi, i = 1, 2, the matrix X1 +X2 is matrix normally distributed?

3. Prove statement (ii) of Theorem 2.2.4.
4. Find an alternative proof of Theorem 2.2.5 via a factorization of the normal

density function.
5. Let X1 ∼ Np,n(µ1,Σ1,Ψ1), X2 ∼ Np,n(µ2,Σ2,Ψ2) and Z have a mixture

distribution

fZ(X) = γfX1(X) + (1 − γ)fX2(X), 0 < γ < 1.

Express D[Z] with the help of Σi and Ψi.
6. Give conditions on the matrices A, B, C and D such that AXB′|CXD′ is

matrix normally distributed.
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7. Define Hermite polynomials for the matrix normal distribution.
8. Is it true that if x : p × 1 has a symmetric distribution and E[x] = 0,

ck[x] = mk[x] − m2[x] ⊗ vec′(mk−2[x])

+
k−3∑
i=0

(vec′(mk−2[x]) ⊗ m2[x])(Ip ⊗ Kp,pk−i−3 ⊗ Ipi)?

9. Derive E[Y ⊗ Y ⊗ Y′ ⊗ Y′] when Y ∼ Np,n(µ,Σ,Ψ).
10. Let the P−class of matrices be the class of orthogonal matrices P where

P1p = 1p. Let x ∼ Np(0,Σ) and Px have the same distribution for all
matrices P in the P−class. Determine the necessary structure of Σ.
Let P1: n1 ×n1, P2: n2 ×n2, . . . , Ps: ns ×ns be arbitrary P−class matrices
and let

(P1 ⊗ P2 ⊗ · · · ⊗ Ps)x

have the same distribution for all choices of Pi. What conditions do the size
p and Σ have to satisfy?
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2.3. ELLIPTICAL DISTRIBUTIONS

2.3.1 Introduction, spherical distributions
Classical multivariate analysis has been built up on the assumption of normal-
ity of the observations. Real data very seldom satisfy this assumption. One of
the main tasks in developing multivariate analysis has been to generalize the as-
sumption about normality of the model. Several robustness studies, asymptotic
results and enlargement of the class of population distributions can be considered
as developments in this direction. In particular, much attention has been paid to
the elliptical distributions or elliptically contoured distributions. We prefer the
shorter. These distributions have earned interest of many statisticians for several
reasons. One is that the class contains the normal distributions. Another reason
is that many results which are valid for the normal theory can be carried over to
the elliptical models very easily. Especially the results in asymptotic theory of
multivariate statistics will be similar to the case with the normal population, but
at the same time a much wider class of distributions is covered. Besides the de-
scription of populations, the elliptical distributions have become important tools
in robustness studies of multivariate analysis. As pointed out by Fang, Kotz &
Ng (1990), the topic can be traced back to Maxwell (1860), but the modern study
of the distributions starts from 1960s with the first description of the family by
Kelker (1970).
The first books on the topic were written by Kariya & Sinha (1989), Fang &
Zhang (1990) and Fang, Kotz & Ng (1990). Also in Muirhead (1982) an overview
of the topic is given, and in Anderson (2003) the multivariate analysis is applied
to elliptical distributions. Our presentation is mainly based on these references.
Several classical results on elliptical distributions are presented in the following
text without reproducing the proofs. The interested reader is referred to the
literature in these cases.
In the class of elliptical distributions a spherical distribution has the same role as
the standard multivariate normal distribution Np(0, I) in the family of multivariate
normal distributions Np(µ,Σ).

Definition 2.3.1. A p-vector x is said to have a spherical distribution if x and
Γ′x have the same distribution for all orthogonal p × p-matrices Γ.

If x is a continuous random vector with a spherical distribution, then due to the
equality Γ′Γ = I, its density function must depend on the argument x through
the value of x′x. Some examples will follow:
a) the normal distribution Np(0, σ2I) with the density

f(x) =
1

(2πσ2)
p
2
exp(− 1

2σ2
x′x);

b) the mixture of two normal distributions, Np(0, I) and Np(0, σ2I), i.e. the
ε-contaminated normal distribution, with the density function

f(x) = (1 − ε)
1

(2π)
p
2
exp(−1

2
x′x) + ε

1
(2πσ2)

p
2
exp(− 1

2σ2
x′x), (0 ≤ ε ≤ 1);

(2.3.1)
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c) the multivariate t-distribution with n degrees of freedom and density

f(x) =
Γ
(

1
2 (n + p)

)
Γ
(

1
2n
)
nπ

p
2

(
1 +

1
n
x′x
)−n+p

2

. (2.3.2)

In all these examples we see that the density remains the same if we replace x by
Γ′x. The next theorem gives a characterization of a spherical distribution through
its characteristic function.

Theorem 2.3.1. A p−vector x has a spherical distribution if and only if its char-
acteristic function ϕx(t) satisfies one of the following two equivalent conditions:

(i) ϕx(Γ′t) = ϕx(t) for any orthogonal matrix Γ : p × p;
(ii) there exists a function φ(·) of a scalar variable such that ϕx(t) = φ(t′t).

Proof: For a square matrix A the characteristic function of Ax equals ϕx(A′t).
Thus (i) is equivalent to Definition 2.3.1. The condition (ii) implies (i), since

ϕx(Γ′t) = φ((Γ′t)′(Γ′t)) = φ(t′ΓΓ′t) = φ(t′t) = ϕx(t).

Conversely, (i) implies that ϕx(t) is invariant with respect to multiplication from
left by an orthogonal matrix, but from the invariance properties of the orthogonal
group O(p) (see Fang, Kotz & Ng, 1990, Section 1.3, for example) it follows that
ϕx(t) must be a function of t′t.
In the theory of spherical distributions an important role is played by the random
p−vector u, which is uniformly distributed on the unit sphere in Rp. Fang & Zhang
(1990) have shown that u is distributed according to a spherical distribution.
When two random vectors x and y have the same distribution we shall use the
notation

x d= y.

Theorem 2.3.2. Assume that the p−vector x is spherically distributed. Then x
has the stochastic representation

x d= Ru, (2.3.3)

where u is uniformly distributed on the unit sphere, R ∼ F (x) is independent of
u, and F (x) is a distribution function over [0,∞).

The random variable R in (2.3.3) may be looked upon as a radius.
In the next theorem we shall give a characterization of the class of functions φ(·),
which appeared in Theorem 2.3.1. Denote

Φp = {φ(·) : φ(t′t) is a characteristic function}.

Theorem 2.3.3. A function φ(·) ∈ Φp if and only if

φ(x) =
∫ ∞

0

Ωp(xr2)dF (r),
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where F (·) is defined over [0,∞) and Ωp(y′y) is the characteristic function of u:

Ωp(y′y) =
1
Sp

∫
S:x′x=1

eiy′xdS,

where Sp is the area of the unit sphere surface in Rp.

When characterizing elliptical distributions the multivariate Dirichlet distribution
is useful. Therefore we will present a definition of the distribution. Consider
random variables with the Γ(α)-distribution with the density function

fΓ(x) = Γ(α)−1xα−1e−x, x > 0.

Definition 2.3.2. Let X1, . . . , Xp+1 be independent random variables, where
Xi ∼ Γ(αi) with αi > 0 and

Yj =
Xj∑p+1

i=1 Xi

, j = 1, 2, . . . , p.

Then the distribution of y = (Y1, Y2, . . . , Yp)′ is called the Dirichlet distribution
with parameters α1, . . . αp+1.

The density and basic properties of the Dirichlet distribution can be found in Fang,
Kotz & Ng (1990), §1.4, for example.
The following theorem represents three necessary and sufficient sets of conditions
for a spherical distribution (Fang, Kotz & Ng, 1990).

Theorem 2.3.4. Assume that x is a random p−vector. Then the following three
statements are equivalent.
(i) The characteristic function of x has the form φ(t′t).
(ii) x has the stochastic representation

x d= Ru,

where R is independent of the uniformly distributed u.

(iii) x d= Γ′x for every Γ ∈ O(p), where O(p) is the group of orthogonal p ×
p−matrices.

The statement (ii) is specified in the next corollary.

Corollary 2.3.4.1. Suppose x d= Ru, and P (x = 0) = 0. Then

||x|| d= R,
x

||x||
d= u

are independent, where ||x|| is the usual Euclidian norm ||x|| =
√∑p

i=1 x2
i .

In general, a random vector x with a spherical distribution does not necessarily
have a density. However, if the density fx(x) exists, then by using Lemma 3.2.1
we get from Theorem 2.3.1 that for some nonnegative function g(·) of a scalar
variable the density must be of the form g(x′x).
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2.3.2 Elliptical distributions: definition and basic relations
Now we shall give the main definition of the section.

Definition 2.3.3. A random p−vector x is said to have an elliptical distribution
with parameters µ : p × 1 and V : p × p if x has the same distribution as

µ + Ay,

where y has a spherical distribution and A : p×k, AA′ = V with rank r(V) = k.

We shall use the notation x ∼ Ep(µ,V) when the distribution of x : p× 1 belongs
to the elliptical family. The following theorem is valid.

Theorem 2.3.5. Let x ∼ Ep(µ,V) with r(V) = k. Then the characteristic
function ϕx(t) is of the form

ϕx(t) = exp(it′µ)φ(t′Vt) (2.3.4)

for some function φ. The cumulant function equals

ψx(t) = it′µ + lnφ(t′Vt).

Proof: By definition (2.1.6) of the characteristic function

ϕx(t) = E [exp(it′(µ + Ay))] = exp(it′µ)ϕAy(t) = exp(it′µ)ϕy(A′t),

where A is a p × k−matrix. From Theorem 2.3.1 we get

ϕx(t) = exp(it′µ)φ(t′AA′t) = exp(it′µ)φ(t′Vt)

for some function φ, which defines the characteristic function of the spherical
distribution. The expression of the cumulant function is directly obtained by
taking the logarithm in (2.3.4).
Let us again give some examples.
a) The multivariate normal distribution Np(µ,Σ) belongs to the class of elliptical

distributions, since if x ∼ Np(µ,Σ), the vector x can be represented as x =
µ + Ay, where y ∼ Np(0, I), and AA′ = Σ.

b) ε-contaminated distribution: When y is distributed according to (2.3.1), then
x = µ + Ay is elliptically distributed with AA′ = Σ.

c) Multivariate t-distribution: We obtain a multivariate t-distribution with pa-
rameters µ, Σ = AA′ with n degrees of freedom with the same transformation
x = µ+Ay, where y is spherically distributed with density (2.3.2). Then we
write x ∼ tp(n, µ,Σ).

It follows from Theorem 2.3.2 that all marginal distributions of an elliptical dis-
tribution are elliptical. For example, partitioning x, µ, and V as

x =
(

x1

x2

)
, µ =

(
µ1

µ2

)
, V =

(
V11 V12

V21 V22

)
,
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where x1 and µ1 are k × 1 and V11 is k × k, the characteristic function of x1 can
be obtained from (2.3.4) by putting t = (t′1 : 0′)′, where t1 is k × 1:

ϕx1(t1) = exp(it′1µ1)φ(t′1V11t1),

which is the characteristic function of a random vector with an elliptical distri-
bution Ek(µ1,V11). So the well-known property (see Corollary 2.2.2.1) of the
normal distribution that all the marginal distributions of a normal vector are nor-
mally distributed holds also in the case of elliptical distributions. At the same
time we get a characterization of the multivariate normal distribution in the class
of elliptical distributions.

Theorem 2.3.6. Let x ∼ Ep(µ,D), where D is diagonal. If X1, . . . , Xp in x are
independent, then x is normal.

Proof: Assume without loss of generality that µ = 0. Then the characteristic
function of x has the form

ϕx(t) = φ(t′Dt) = φ(
p∑

i=1

t2i dii)

for some function φ. Since X1, . . . , Xp are independent we get

φ(t′Dt) =
p∏

i=1

φ(t2i dii).

Putting ui = tid
1
2
ii gives

φ(
p∑

i=1

u2
i ) =

p∏
i=1

φ(u2
i ).

The last equation is known as Hamel’s equation and the only continuous solution
of it is

φ(z) = ekz

for some constant k (e.g. see Feller, 1968, pp. 459–460). Hence the characteristic
function has the form

ϕ(t) = ekt′Dt

and because it is a characteristic function, we must have k ≤ 0, which implies that
x is normally distributed.

The conditional distribution will be examined in the following theorem.

Theorem 2.3.7. If x ∼ Ep(µ,V) and x, µ and V are partitioned as

x =
(

x1

x2

)
, µ =

(
µ1

µ2

)
, V =

(
V11 V12

V21 V22

)
,
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where x1 and µ1 are k−vectors and V11 is k × k, then, provided E[x1|x2] and
D[x1|x2] exist,

E[x1|x2] =µ1 + V12V−1
22 (x2 − µ2), (2.3.5)

D[x1|x2] =h(x2)(V11 − V12V−1
22 V21) (2.3.6)

for some function h(•). Moreover, the conditional distribution of x1 given x2 is
k−variate elliptical.

For the proof we refer to Muirhead (1982). The next theorem points out that
the class of elliptical distributions is closed with respect to affine transformations
which follows immediately from Definition 2.3.2.

Theorem 2.3.8. Let x ∼ Ep(µ,V), B : m × p and ν a m−vector. Then

ν + Bx ∼ Em(ν + Bµ,BVB′). (2.3.7)

2.3.3 Moments and cumulants
Moments and cumulants of an elliptical distribution can be found by differentiating
the characteristic function and the cumulant function, respectively. It is simpler to
derive first the central moments and then go over to non-central moments than to
start with the non-central moments directly. When the derivatives φ′(t′Vt) and
φ′′(t′Vt) will appear later on, the derivatives are always taken by the univariate
argument t in φ(t).

Theorem 2.3.9. Let x ∼ Ep(µ,V) with the characteristic function (2.3.4).
Then, if φ(•) is as in (2.3.4), φ(•)′ and φ(•)′′ denote the first and second derivative,
respectively, and if m4[x] < ∞, we have

E[x] = µ;(i)

D[x] = −2φ′(0)V; (2.3.8)(ii)

m4[x] = 4φ′′(0)
[
(V ⊗ vec′V) + (vec′V ⊗ V)(Ip3 + Ip ⊗ Kp,p)

]
. (2.3.9)(iii)

All the odd central moments which exist equal zero.

Proof: We have to differentiate the characteristic function four times.
(i): The first derivative equals

dϕx(t)
dt

= iµφ(t′Vt)eit′µ + 2Vtφ′(t′Vt)eit′µ.

By Definition 2.1.1 we have, since φ(0) = 1,

E[x] =
1
i
iµ = µ.
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(ii): Observe that the central moments of x are the moments of y = x − µ with
the characteristic function

ϕy(t) = φ(t′Vt).

So we have to find
d2φ(t′Vt)

dt2
. From part (i) of the proof we have

dφ(t′Vt)
dt

= 2Vtφ′(t′Vt)

and then

d2φ(t′Vt)
dt2

=
d(2Vtφ′(t′Vt))

dt
= 2Vφ′(t′Vt) + 4Vtφ′′(t′Vt)t′V. (2.3.10)

By (2.1.19),
D[x] = −2φ′(0)V,

and the second statement of the theorem is proved.
(iii): We have to differentiate the right hand side of (2.3.10) twice:

d3φ(t′Vt)
dt3

=
d(2Vφ′(t′Vt))

dt
+

d(4Vtφ′′(t′Vt)t′V)
dt

= 4Vtφ′′(t′Vt)vec′V + 4
d(Vt)

dt
(φ′′(t′Vt)t′V ⊗ Ip)

+ 4
d(φ′′(t′Vt)t′V)

dt
(Ip ⊗ t′V)

= 4φ′′(t′Vt) {Vtvec′V + (t′V ⊗ V) + (V ⊗ t′V)} + 4
dφ′′(t′Vt)

dt
(t′V ⊗ t′V).

In the next step we are interested in terms which after differentiating do not include
t in positive power. Therefore, we can neglect the term outside the curly brackets
in the last expression, and consider

d {4φ′′(t′Vt) {Vtvec′V + (t′V ⊗ V) + (V ⊗ t′V)}}
dt

= 4
d(φ′′(t′Vt))

dt
⊗ vec′ {Vtvec′V + (t′V ⊗ V) + (V ⊗ t′V)}

+ 4φ′′(t′Vt)
{

dVtvec′V
dt

+
d(t′V ⊗ V)

dt
+

d(V ⊗ t′V)
dt

}
= 4

d(φ′′(t′Vt))
dt

⊗ vec′ {Vtvec′V + (t′V ⊗ V) + (V ⊗ t′V)}
+ 4φ′′(t′Vt)

{
(V ⊗ vec′V)Kp,p2 + (V ⊗ vec′V) + (vec′V ⊗ V)(Ip ⊗ Kp,p)

}
.

As the first term turns to zero at the point t = 0, we get the following expression.

m4[x] = 4φ′′(0)
{
(V ⊗ vec′V) + (vec′V ⊗ V)(Ip3 + Ip ⊗ Kp,p)

}
,
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which completes the proof.
If we compare (2.3.8) and (2.3.9) with the expressions of the second and the fourth
central moments of the normal distribution in Corollary 2.2.7.3, we remark that
the only difference in the formulae concerns the multipliers −2φ′(0) and 4φ′′(0).
As the expressions of the first moments of a normal vector are known already
(Corollary 2.2.7.2), it is possible to write out the expressions for first moments of
an elliptically distributed random vector.

Corollary 2.3.9.1. Let x ∼ Ep(µ,V), with the characteristic function (2.3.4).
Then

m2[x] = −2φ′(0)V + µµ′;(i)

m3[x] = µ(µ′)⊗2 − 2φ′(0)(µ′ ⊗ V + V ⊗ µ′ + µvec′V);(ii)

m4[x] = µ(µ′)⊗
3 − 2φ′(0)µ(vec′V ⊗ µ′)(Ip3 + Ip ⊗ Kp,p)(iii)

− 2φ′(0)
{

(µ′)⊗
2 ⊗ V + µ′ ⊗ V ⊗ µ′ + µµ′ ⊗ vec′V + V ⊗ (µ′)⊗2

}
+ 4φ′′(0)

{
V ⊗ vec′V + (vec′V ⊗ V)(Ip3 + Ip ⊗ Kp,p)

}
.

The next theorem gives us expressions of the first four cumulants of an elliptical
distribution.

Theorem 2.3.10. Let x ∼ Ep(µ,V), with the characteristic function (2.3.4).
Then, under the assumptions of Theorem 2.3.9,

c1[x] = µ;(i)

c2[x] = D[x] = −2φ′(0)V; (2.3.11)(ii)

c4[x] = 4(φ′′(0) − (φ′(0))2)
{
(V ⊗ vec′V)(iii)

+ (vec′V ⊗ V)(Ip3 + Ip ⊗ Kp,p)
}
. (2.3.12)

(iv) All the odd cumulants which exist equal zero.

Proof: To find the cumulants we have to differentiate the cumulant function

ψx(t) = lnϕx(t) = it′µ + lnφ(t′Vt).

(i): Observe that
dψx(t)

dt
= iµ + 2Vt

φ′(t′Vt)
φ(t′Vt)

,

from where, by (2.1.32), we get c1[x] = µ.
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(ii): We get the second cumulant similarly to the variance in the proof of the
previous theorem:

d2ψx(t)
dt2

=
d

dt

(
2Vt

φ′(t′Vt)
φ(t′Vt)

)
= 2V

φ′(t′Vt)
φ(t′Vt)

+ 4Vt
φ′′(t′Vt)φ(t′Vt) − (φ′(t′Vt))2

(φ(t′Vt))2
t′V,

and at the point t = 0 we obtain statement (ii).
(iii): Differentiating once again gives

d3ψx(t)
dt3

= 4Vt
φ′′(t′Vt)φ(t′Vt) − (φ′(t′Vt))2

(φ(t′Vt))2
vec′V

+
d

dt

[
4Vt

φ′′(t′Vt)φ(t′Vt) − (φ′(t′Vt))2

(φ(t′Vt))2
t′V
]

.

If we compare the expression on the right hand side of the last equality with the
expression of the third derivative in the proof of Theorem 2.3.9, we see that the only

difference is that φ′′(t′Vt) is changed to the ratio
φ′′(t′Vt)φ(t′Vt) − (φ′(t′Vt))2

(φ(t′Vt))2
.

Since φ(0) = 1, we get the final expression of the fourth cumulant when we put
t = 0.
The fact that the second and fourth order moments and cumulants of elliptical
and normal distributions differ only by a certain constant, which depends on the
function φ(·), is used in defining a kurtosis parameter κ. Following Muirhead
(1982), we introduce it as a parameter

κ =
φ′′(0) − (φ′(0))2

(φ′(0))2
. (2.3.13)

This means that any mixed fourth order cumulant for coordinates of an elliptically
distributed vector x = (X1, . . . , Xp)′ is determined by the covariances between the
random variables and the parameter κ:

c4[XiXjXkXl] = κ(σijσkl + σikσjl + σilσjk),

where σij = Cov(Xi, Xj).

2.3.4 Density
Although an elliptical distribution generally does not have a density, the most
important examples all come from the class of continuous multivariate distribu-
tions with a density function. An elliptical distribution is defined via a spherical
distribution which is invariant under orthogonal transformations. By the same ar-
gument as for the characteristic function we have that if the spherical distribution
has a density, it must depend on an argument x via the product x′x and be of
the form g(x′x) for some non-negative function g(·). The density of a spherical
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distribution has been carefully examined in Fang & Zhang (1990). It is shown
that g(x′x) is a density, if the following equality is satisfied:

1 =
∫

g(x′x)dx =
π

p
2

Γ(p
2 )

∫ ∞

0

y
p
2−1g(y)dy. (2.3.14)

The proof includes some results from function theory which we have not considered
in this book. An interested reader can find the proof in Fang & Zhang (1990, pp.
59–60). Hence, a function g(·) defines the density of a spherical distribution if and
only if ∫ ∞

0

y
p
2−1g(y)dy < ∞. (2.3.15)

By representation (2.3.3) a spherically distributed random vector can be presented
as a product of a random variable R and a random vector u which is distributed
uniformly on the unit sphere. The distribution of u is described by the Dirichlet
distribution given in Definition 2.3.2, and so the existence of the density of a
spherical distribution is determined by the existence of the density of the random
variable R.

Theorem 2.3.11. Let x d= Ru be spherically distributed. Then x has a density
g(·) if and only if R has a density h(·) and the two densities are related as follows:

h(r) =
2π

p
2

Γ(p
2 )

rp−1g(r2). (2.3.16)

Proof: Assume that x has a density g(x′x). Let f(·) be any nonnegative Borel
function. Then, using (2.3.14), we have

E[f(R)] =
∫

f({x′x} 1
2 )g(x′x)dx =

π
p
2

Γ(p
2 )

∫ ∞

0

f(y
1
2 )y

p
2−1g(y)dy.

Denote r = y
1
2 , then

E[f(R)] =
2π

p
2

Γ(p
2 )

∫ ∞

0

f(r)rp−1g(r2)dr.

The obtained equality shows that R has a density of the form (2.3.16). Conversely,
when (2.3.16) is true, the statement follows immediately.
Let us now consider an elliptically distributed vector x ∼ Ep(µ,V). A necessary
condition for existence of a density is that r(V) = p. From Definition 2.3.3 and
(2.3.3) we get the representation

x = µ + RAu,

where V = AA′ and A is non-singular. Let us denote y = A−1(x − µ). Then y
is spherically distributed and its characteristic function equals

φ(t′A−1V(A−1)′t) = φ(t′t).
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We saw above that the density of y is of the form g(y′y), where g(·) satisfies
(2.3.15). For x = µ + RAu the density fx(x) is of the form:

fx(x) = cp|V|−1/2g((x − µ)′V−1(x − µ)). (2.3.17)

Every function g(·), which satisfies (2.3.15), can be considered as a function which
defines a density of an elliptical distribution. The normalizing constant cp equals

cp =
Γ(p

2 )
2π

p
2
∫∞
0

rp−1g(r2)dr
.

So far we have only given few examples of representatives of the class of elliptical
distributions. In fact, this class includes a variety of distributions which will be
listed in Table 2.3.1. As all elliptical distributions are obtained as transformations
of spherical ones, it is natural to list the main classes of spherical distributions.
The next table, due to Jensen (1985), is given in Fang, Kotz & Ng (1990).

Table 2.3.1. Subclasses of p-dimensional spherical distributions (c denotes a nor-
malizing constant).

Distribution Density f(x) or ch.f. ϕ(t)
–

Kotz type f(x) = c (x′x)N−1exp(−r(x′x)s), r, s > 0, 2N + p > 2
multivariate normal f(x) = c exp(− 1

2x
′x)

Pearson type VII f(x) = c (1 + x′x
s )−N , N > p

2 , s > 0

multivariate t f(x) = c (1 + x′x
s )−

(p+m)
2 , m ∈ N

multivariate Cauchy f(x) = c (1 + x′x
s )−

(p+1)
2 , s > 0

Pearson type II f(x) = c (1 − x′x)m, m > 0
logistic f(x) = c exp(−x′x)/{1 + exp(−x′x)}2

multivariate Bessel f(x) = c
(

||x||
β

)a

Ka

(
||x||

β

)
, a > −p

2 , β > 0, Ka(·)
is a modified Bessel function of the 3rd kind

scale mixture f(x) = c
∫∞
0

t−
p
2 exp(−x′x

2t )dG(t)
stable laws ϕ(t) = exp{r(t′t) a

2 }, 0 < a ≤ 2, r < 0
multiuniform ϕ(t) = 0F1(p

2 ;− 1
4 ||t||2), 0F1(·) is a generalized

hypergeometric function

For a modified Bessel function of the 3rd kind we refer to Kotz, Kozubowski &
Podgórski (2001), and the definition of the generalized hypergeometric function
can be found in Muirhead (1982, p. 20), for example.

2.3.5 Elliptical matrix distributions
Multivariate spherical and elliptical distributions have been used as population
distributions as well as sample distributions. On matrix elliptical distributions
we refer to Gupta & Varga (1993) and the volume of papers edited by Fang &
Anderson (1990), but we shall follow a slightly different approach and notation in
our presentation. There are many different ways to introduce the class of spherical
matrix distributions in order to describe a random p×n−matrix X, where columns
can be considered as observations from a p−dimensional population.
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Definition 2.3.4. Let X be a random p×n−matrix. We call X matrix spherically
distributed, if vecX is spherically distributed.

Fang & Zhang (1990) say in this case that X is vector-spherically distributed. If
we reformulate Theorem 2.3.4 for matrices, we get the following statement.

Theorem 2.3.12. Assume that X is a random p× n-matrix. Then the following
three statements are equivalent.
(i) The characteristic function of vecX has the form

φ(vec′TvecT) = φ(tr(T′T)), where T ∈ Rp×n.
(ii) X has the stochastic representation

X d= RU,

where R ≥ 0 is independent of U and vecU is uniformly distributed on the
unit sphere in Rpn.

(iii) vecX d= Γ′vecX for every Γ ∈ O(pn), where O(pn) is the group of orthogonal
pn × pn−matrices.

If we consider continuous spherical distributions, all the results concerning ex-
istence and properties of the density of a spherical distribution can be directly
converted to the spherical matrix distributions. So the density of X has the form
g(tr(X′X)) for some nonnegative function g(·). By Theorem 2.3.11, X has a
density if and only if R has a density h(·), and these two density functions are
connected by the following equality:

h(r) =
2π

np
2

Γ(pn
2 )

rnp−1g(r2).

Definition 2.3.5. Let X be an r × s spherically distributed random matrix, and
V = ττ ′, W = γγ′ be non-negative definite p×p and n×n matrices, respectively,
where τ : p × r; γ : n × s. A matrix Y : p × n is said to be matrix elliptically
distributed with parameters µ, V, and W, Y ∼ Ep,n(µ,V,W), if

Y d= µ + τXγ′, (2.3.18)

where µ : p × n is a real matrix.

The next theorem gives us the general form of the characteristic function for an
elliptical distribution.

Theorem 2.3.13. Let Y ∼ Ep,n(µ,V,W), with µ : p × n, V = ττ ′, and W =
γγ′. Then the characteristic function of Y is given by

ϕY(T) = eivec′Tvecµφ(vec′T(W ⊗ V)vecT) = eitr(T′µ)φ(tr(T′VTW)). (2.3.19)

Proof: By definition (2.1.7) of the characteristic function

ϕY(T) = E[eitr(T′Y)] = E[eivec′TvecY].
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Definition 2.3.5 gives us

ϕY(T) = eivec′TvecµE[eitr(T′τXγ′)] = eivec′TvecµE[eitr(γ′T′τX)]

= eivec′TvecµϕX(τ ′Tγ).

By Theorem 2.3.12,

ϕY(T) = eivec′Tvecµφ(vec′(τ ′Tγ)vec(τ ′Tγ))

= eivec′Tvecµφ(vec′T(γ ⊗ τ )(γ′ ⊗ τ ′)vecT)

= eivec′Tvecµφ(vec′T(W ⊗ V)vecT),

and the first equality in (2.3.19) is proved. The second equality follows easily:

ϕY(T) = eitr(T′µ)φ(tr(γ′T′ττ ′Tγ)) = eitr(T′µ)φ(tr(T′VTW)).

By definition of the characteristic function of a random matrix the distributions
of Y and vecY are identical. Therefore

vecY = vecµ + (γ ⊗ τ )vecX

has the same distribution as Y. As E[vecX] = 0, we have

E[vecY] = vecµ.

The higher order moments will be derived in the next section.

Theorem 2.3.14. Let Y ∼ Ep,n(µ,V,W), with V = ττ ′and W = γγ′. Then
for any A : q × p and B : m × n,

AYB′ ∼ Eq,m(AµB′,AVA′,BWB′).

Proof: By Definition 2.3.5, Y d= µ+τXγ′, where ττ ′ = V and γγ′ = W. Then

AYB′ d= AµB′ + AτXγ′B′.

As Aττ ′A′ = AVA′ and Bγγ′B′ = BWB′, the statement is proved.
From §2.3.4 we know that an elliptical distribution does not necessarily have a den-
sity, but if the density exists we can find the general form of the density function.
As the matrix elliptical distribution at the same time is an elliptical distribution
of the pn−vector vecY, the results for vectors are also valid for matrices.
So, if X is matrix spherically distributed, its density function must be of the form

fX(X) = g(vec′XvecX) = g(tr(X′X)) = g(tr(XX′)),

where g(·) is some non-negative function.
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Note that V and W in Ep,n(µ,V,W) have to be positive definite, if the matrix
elliptical distribution should have a density. For example, assume that V = Γ′DΓ
is singular, where Γ is an orthogonal matrix and D is diagonal. Singularity implies
that at least one diagonal element is D equals 0. If Y has a density, then ΓY has
also a density but for from Theorem 2.3.14 it follows that at least one component
in ΓY is a constant which leads to a contradiction.
In the case of non-singular τ and γ, the equality (2.3.18) defines a one-to-one
transformation between X and Y and therefore

fY(Y) = fX(X = X(Y))|J(X → Y)|.

The Jacobian we get from the relation

X = τ−1(Y − µ)γ′−1

by differentiation (see also Theorem 1.4.14):

|J(X → Y)|+ =
∣∣γ−1 ⊗ τ−1

∣∣ = |γ|−n|τ |−p

= |γ|−n
2 |τ |− p

2 |γ′|−n
2 |τ ′|− p

2 = |V|−n
2 |W|− p

2 .

From here the expression for the density function follows:

fY(Y) = |V|−n
2 |W|− p

2 g(tr{τ−1(Y − µ)γ′−1
γ−1(Y − µ)′τ ′−1})

= |V|−n
2 |W|− p

2 g(tr{V−1(Y − µ)W−1(Y − µ)′}).

Thus the next theorem is established.

Theorem 2.3.15. Let Y ∼ Ep,n(µ,V,W), with non-singular matrices V = ττ ′,
W = γγ′, and let Y have a density. Then

fY(Y) = |V|−n
2 |W|− p

2 g(tr{V−1(Y − µ)W−1(Y − µ)′}),

where g(·) is some non-negative function.

2.3.6 Moments and cumulants of matrix elliptical distributions
In the previous paragraph we have shown that E[Y] = µ, if Y ∼ Ep,n(µ,V,W).
In principle, moments and cumulants of Y can be found by differentiation of the
characteristic function and the cumulant function, respectively, but it appears
that we can get the formulae for the first moments and cumulants of Y easily
from known results about elliptical and matrix normal distributions.

Theorem 2.3.16. Let Y ∼ Ep,n(µ,V,W). Then

m2[Y] = −2φ′(0)(W ⊗ V) + vecµvec′µ;(i)

m3[Y] = vecµ(vec′µ)⊗2(ii)
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− 2φ′(0)
{
W ⊗ V ⊗ vec′µ + vec′µ ⊗ W ⊗ V + vecµvec′(W ⊗ V)

}
;

m4[Y] = vecµ(vec′µ)⊗3 − 2φ′(0)
{
(vec′µ)⊗2 ⊗ W ⊗ V(iii)

+ vec′µ ⊗ W ⊗ V ⊗ vec′µ + vecµvec′µ ⊗ vec′(W ⊗ V)
+ W ⊗ V ⊗ (vec′µ)⊗2

+vecµvec′(W ⊗ V) ⊗ vec′µ(I(pn)3 + Ipn ⊗ Kpn,pn)
}

+ 4φ′′(0) {W ⊗ V ⊗ vec′(W ⊗ V)

+(vec′(W ⊗ V) ⊗ W ⊗ V)(I(pn)3 + Ipn ⊗ Kpn,pn)
}

.

Proof: If we compare the characteristic functions of a matrix elliptical distribu-
tion (2.3.19) and elliptical distribution (2.3.4), we see that the only difference is
that in (2.3.19) the vectors in (2.3.4) are replaced by vectorized matrices and the
matrix V by the matrix W ⊗ V. So the derivatives of ϕY(T) have exactly the
same structure as the derivatives of the characteristic function ϕy(t) of an ellip-
tically distributed vector y. At the same time, the matrix product in the trace
expression is the same in (2.3.19) and in the characteristic function of the matrix
normal distribution in Theorem 2.2.1. Therefore, we get the statement of our
theorem directly from Theorem 2.2.7 when combining it with Corollary 2.3.9.1.
The expressions of the first central moments of a matrix elliptical distribution we
get from the theorem above if we take µ = 0.

Corollary 2.3.16.1. Let Y ∼ Ep,n(µ,V,W). Then the first even central mo-
ments of Y are given by the following equalities, and all the odd central moments
equal zero:

m2[Y] = −2φ′(0)(W ⊗ V);(i)

m4[Y] = 4φ′′(0)
{
W ⊗ V ⊗ vec′(W ⊗ V)(ii)

+ (vec′(W ⊗ V) ⊗ W ⊗ V)(I(pn)3 + Ipn ⊗ Kpn,pn)
}
.

Cumulants of the matrix elliptical distribution can be found by differentiating the
cumulant function

ψY(T) = itr(T′µ) + ln(φ(tr{T′VTW})). (2.3.21)

Theorem 2.3.17. Let Y ∼ Ep,n(µ,V,W). Then the first even cumulants of Y
are given by the following equalities, and all the odd cumulants ck[Y], k = 3, 5, . . .,
equal zero.

c1[Y] = vecµ;(i)
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c2[Y] = −2φ′(0)(W ⊗ V);(ii)

c4[Y] = 4(φ′′(0) − (φ′(0))2)
{
W ⊗ V ⊗ vec′(W ⊗ V)(iii)

+ (vec′(W ⊗ V) ⊗ W ⊗ V)(I(pn)3 + Ipn ⊗ Kpn,pn)
}

.

Proof: Once again we shall make use of the similarity between the matrix normal
and matrix elliptical distributions. If we compare the cumulant functions of the
matrix elliptical distribution (2.3.21) and multivariate elliptical distribution in
Theorem 2.3.5, we see that they coincide, if we change the vectors to vectorized
matrices and the matrix V to W⊗V. So the derivatives of ψY(T) have the same
structure as the derivatives of ψy(t) where y is elliptically distributed. The trace
expression in formula (2.3.21) is exactly the same as in the case of the matrix
normal distribution in Theorem 2.2.1. Therefore, we get the statements of the
theorem by combining expressions from Theorem 2.3.10 and Theorem 2.2.8.

2.3.7 Problems
1. Let x1 ∼ Np(0, σ2

1I) and x2 ∼ Np(0, σ2
2I). Is the mixture z with density

fz(x) = γfx1(x) + (1 − γ)fx2(x)

spherically distributed?
2. Construct an elliptical distribution which has no density.

3. Show that ||X|| and
X

||X|| in Corollary 2.3.4.1 are independent.

4. Find the characteristic function of the Pearson II type distribution (see Table
2.3.1).

5. Find m2[x] of the Pearson II type distribution.
6. A matrix generalization of the multivariate t−distribution (see Table 2.3.1)

is called the matrix T−distribution. Derive the density of the matrix
T−distribution as well as its mean and dispersion matrix.

7. Consider the Kotz type elliptical distribution with N = 1 (Table 2.3.1). Derive
its characteristic function.

8. Find D[x] and c4(x) for the Kotz type distribution with N = 1.
9. Consider a density of the form

fx(x) = c(x − µ)′Σ−1(x − µ)fN(µ,Σ)(x),

where c is the normalizing constant and the normal density is defined by
(2.2.5). Determine the constant c and find E[x] and D[x].

10. The symmetric Laplace distribution is defined by the characteristic function

ϕ(t) =
1

1 + 1
2t

′Σt
,

where Σ > 0 : p× p is the parameter matrix. Find the kurtosis characteristic
κ for the distribution.
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2.4 THE WISHART DISTRIBUTION

2.4.1 Definition and basic properties
The matrix distribution, which is nowadays known as the Wishart distribution, was
first derived by Wishart (1928). It is usually regarded as a multivariate extension of
the chi-square distribution. An interesting extension of the Wishart distribution is
given by Hassairi & Lajmi (2001) who study the so-called Riesz exponential family
(see also Hassairi, Lajmi & Zine, 2004). There are many possibilities to define a
Wishart distribution. We will adopt the following approach.

Definition 2.4.1. The matrix W : p× p is said to be Wishart distributed if and
only if W = XX′ for some matrix X, where X ∼ Np,n(µ,Σ, I), Σ ≥ 0. If µ = 0,
we have a central Wishart distribution which will be denoted W ∼ Wp(Σ, n),
and if µ 	= 0 we have a non-central Wishart distribution which will be denoted
Wp(Σ, n,∆), where ∆ = µµ′.

The parameter Σ is usually supposed to be unknown, whereas the second pa-
rameter n, which stands for the degrees of freedom, is usually considered to be
known. The third parameter ∆, which is used in the non-central Wishart dis-
tribution, is called the non-centrality parameter. Generally speaking, one should
remember that if ∆ 	= 0, things start to be complicated. The Wishart distribution
belongs to the class of matrix distributions. However, it is somewhat misleading
to speak about a matrix distribution since among the p2 elements of W there are
just 1

2p(p + 1) non-repeated elements and often the distribution is given via these
elements. Let X = (x1, . . . ,xn), where xi ∼ Np(µi,Σ) and xi is independent of
xj , when i 	= j. From Definition 2.4.1 it follows that W =

∑n
i=1 xix′

i and that
clearly spells out that W is a sum of n independently distributed matrices. If
p = 1, µ = 0 and Σ = 1, the Wishart matrix is identical to a central χ2-variable
with n degrees of freedom (see also Corollary 2.4.2.2) and its density is given by

fχ2(x) = (2n/2Γ(n/2))−1xn/2−1e−x/2, x > 0,

where Γ(·) is the Gamma function. The distribution of a random variable, which
is central χ2-distributed with n degrees of freedom, will be denoted χ2(n). If
p = 1, Σ = 1 but µ 	= 0, we have a non-central χ2-distribution with n degrees
of freedom and non-centrality parameter δ = µ2. Its density can be written as
an infinite series (see Srivastava & Khatri, 1979, p. 60, for example) but this will
not be utilized in the subsequent. The distribution of a random variable, which is
non-central χ2-distributed with n degrees of freedom and non-centrality parameter
δ, will be denoted χ2(n, δ).
The first result of this paragraph is a direct consequence of Definition 2.4.1.

Theorem 2.4.1.
(i) Let W1 ∼ Wp(Σ, n,∆1) be independent of W2 ∼ Wp(Σ,m,∆2). Then

W1 + W2 ∼ Wp(Σ, n + m,∆1 + ∆2).
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(ii) Let X ∼ Np,n(µ,Σ,Ψ), where C (µ′) ⊆ C (Ψ). Put W = XΨ−X′. Then

W ∼ Wp(Σ, r(Ψ),∆),

where ∆ = µΨ−µ′.

Proof: By Definition 2.4.1, W1 = X1X′
1 for some X1 ∼ Np,n(µ1,Σ, I), where

∆1 = µ1µ
′
1, and W2 = X2X′

2 for some X2 ∼ Np,m(µ2,Σ, I), where ∆2 = µ2µ
′
2.

The result follows, since

X1 : X2 ∼ Np,n+m(µ1 : µ2,Σ, I)

and W1 + W2 = (X1 : X2)(X1 : X2)′.
For (ii) it is noted that by assumption C (X′) ⊆ C (Ψ) with probability 1. There-
fore W does not depend on the choice of g-inverse Ψ−. From Corollary 1.2.39.1 it
follows that we may let Ψ = Γ1DΓ′

1, where D is diagonal with positive elements
and Γ1 is semi-orthogonal. Then

XΓ1D
− 1

2 ∼ Np,r(Ψ)(µΓ1D
− 1

2 ,Σ, I)

and XΓ1D
− 1

2 D− 1
2 Γ′X′ = XΨ−X′.

One of the fundamental properties is given in the next theorem. It corresponds to
the fact that the normal distribution is closed under linear transformations.

Theorem 2.4.2. Let W ∼ Wp(Σ, n,∆) and A ∈ Rq×p. Then

AWA′ ∼ Wq(AΣA′, n,A∆A′).

Proof: The proof follows immediately, since according to Definition 2.4.1, there
exists an X such that W = XX′. By Theorem 2.2.2, AX ∼ Nq,n(Aµ,AΣA′, I),
and thus we have that AX(AX)′ is Wishart distributed.

Corollary 2.4.2.1. Let W ∼ Wp(I, n) and let Γ : p× p be an orthogonal matrix
which is independent of W. Then W and ΓWΓ′ have the same distribution:

W d= ΓWΓ′.

By looking closer at the proof of the theorem we may state another corollary.

Corollary 2.4.2.2. Let Wii, i = 1, 2, . . . , p, denote the diagonal elements of W ∼
Wp(kI, n,∆). Then

(i) 1
kWii ∼ χ2(n, δii), where ∆ = (δij) and Wii is independent of Wjj if i 	= j;

(ii) 1
k trW ∼ χ2(pn, tr∆).

Proof: According to Definition 2.4.1, there exists a matrix X ∼ Np,n(µ, I, I)
such that 1

kW = XX′ and ∆ = µµ′. Now
1
kWii = e′iXX′ei,

where ei is the i-th unit vector and

(ei : ej)′X ∼ N2,n((ei : ej)′µ, I2, I).

Since e′iµµ′ei = δii, this shows independence as well as that 1
kWii is χ2-distributed.

In (ii) we are just summing p independent χ2-variables.
The next theorem gives a multivariate version of a χ2-property.
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Theorem 2.4.3. Let X ∼ Np,n(µ,Σ, I) and Q : n × n be symmetric. Then
XQX′ is Wishart distributed if and only if Q is an idempotent matrix.

Proof: We will give a somewhat different proof from the usual one. For the
standard proof see Rao (1973a, p. 186) or Srivastava & Khatri (1979, pp. 63-64),
for example. For a generalization of the statement with a similar proof to the one
given below see Mathew & Nordström (1997). Let U ∼ Np,n(µ, I, I), and UQU′

will be studied. Thus we are going to study a special case when Σ = I. However,
the general case follows from Theorem 2.4.2, since if UQU′ is Wishart distributed,
Σ1/2UQU′Σ1/2 is also Wishart distributed, where Σ1/2 is a symmetric square
root. Definition 2.4.1 will be applied.
Suppose that Q is idempotent. Then from Corollary 1.2.39.1 and Proposition 1.2.3
(viii) the representation Q = ΓDΓ′ is obtained, where Γ is an orthogonal matrix
and D is a diagonal matrix where the elements on the diagonal equal either 1 or
0. Hence,

UQU′ = UΓDΓ′U′,

and since the covariance matrix of U equals the identity matrix, the matrix UΓ
is Np,n(µΓ, I, I) distributed. Without loss of generality, suppose that

D =
(

Ir(Q) 0
0 0

)
.

Let us partition UΓ as UΓ = (UΓ1 : UΓ2), (p × r(Q) : p × (n − r(Q)) and,
correspondingly, µΓ = (µΓ1 : µΓ2). Thus, UQU′ has the same distribution
as UΓ1Γ′

1U
′ which by Definition 2.4.1 is Wishart distributed, i.e. UΓ1Γ′

1U
′ ∼

Wp(I, r(Q),∆1), where ∆1 = µΓ1Γ′
1µ

′.
Now the converse will be shown, i.e. if UQU′ is Wishart distributed, then Q must
be idempotent. This is the tricky part. If UQU′ is Wishart distributed there must
exist a matrix Z ∼ Np,m(µ, I, I) such that the distribution of UQU′ is the same as
that of ZZ′. Once again the canonical decomposition Q = ΓDΓ′ is used where Γ
is orthogonal and D is diagonal. Note that m ≤ n, since otherwise there are more
random variables in Z than in U. If m ≤ n, we use the partition D = (D1,D2)[d],
where D1 : m × m. Similarly, partition U as (U1 : U2), (p × m : p × (n − m)).
Since U1 is independent of U2 and Z, with a proper choice of µ it has the same
distribution as U1, and we note that UQU′ has the same distribution as

ZD1Z′ + U2D2U′
2, (2.4.1)

which in turn, according to the assumption, should have the same distribution as
ZZ′. Unless D2 = 0 in (2.4.1), this is impossible. For example, if conditioning
in (2.4.1) with respect to Z some randomness due to U2 is still left, whereas
conditioning ZZ′ with respect to Z leads to a constant. Hence, it has been shown
that D2 must be zero. It remains to prove under which conditions ZD1Z′ has
the same distribution as ZZ′. Observe that if ZD1Z′ has the same distribution
as ZZ′, we must also have that (Z − µ)D1(Z − µ)′ has the same distribution as
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(Z − µ)(Z − µ)′. We are going to use the first two moments of these expressions
and obtain from Theorem 2.2.9

E[(Z − µ)D1(Z − µ)′] = tr(D1)Ip,

E[(Z − µ)(Z − µ)′] = mIp, (2.4.2)
D[(Z − µ)D1(Z − µ)′] = tr(D1D1)(Ip2 + Kp,p),

D[(Z − µ)(Z − µ)′] = m(Ip2 + Kp,p). (2.4.3)

From (2.4.2) and (2.4.3) it follows that if (Z−µ)D1(Z−µ)′ is Wishart distributed,
then the following equation system must hold:

trD1 =m,

tr(D1D1) =m,

which is equivalent to

tr(D1 − Im) =0, (2.4.4)
tr(D1D1 − Im) =0. (2.4.5)

However, (2.4.5) is equivalent to

0 = tr(D1D1 − I) = tr((D1 − I)(D1 − I)) + 2tr(D1 − I).

By (2.4.4), 2tr(D1 − I) = 0, and since tr((D1 − I)(D1 − I)) ≥ 0, equality in (2.4.5)
holds if and only if D1 = I. Thus, ZDZ′ has the same distribution as ZZ′, if and
only if D1 = I and D2 = 0. If D1 = I and D2 = 0, the matrix Q = Γ(D1,D2)[d]Γ′

is idempotent. Hence, it has been shown that Q must be idempotent, if UQU′ is
Wishart distributed.

Corollary 2.4.3.1. Let X ∼ Np,n(µ,Σ, I) and Q : n × n be symmetric and
idempotent, so that µQ = 0. Then XQX′ ∼ Wp(Σ, r(Q)).

A very useful result when considering properties of the Wishart matrix is the so-
called Bartlett decomposition. The first proof of this result was given by Bartlett
(1933).

Theorem 2.4.4. Let W ∼ Wp(I, n,∆), where p ≤ n, ∆ = µµ′ and µ : p × n.

(i) Then there exists a lower triangular matrix T with positive diagonal elements
and all elements independent, Tij ∼ N(0, 1), p ≥ i > j ≥ 1, T 2

ii ∼ χ2(n−i+1),
i = 1, 2, . . . , p, and a matrix U ∼ Np,n(0, I, I) such that

W = TT′ + µU′ + Uµ′ + ∆.

If µ = 0, then W = TT′ which is the classical Bartlett decomposition.

(ii) Let µ =
(
µ1
0

)
, where µ1 : 1×n. Then there exists a lower triangular matrix T

with positive diagonal elements, with all elements independently distributed,
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Tij ∼ N(0, 1), p ≥ i > j ≥ 1, T 2
11 ∼ χ2(n, δ) with δ = µ1µ

′
1 and T 2

ii ∼
χ2(n − i + 1), i = 2, 3, . . . , p, such that W = TT′.

Proof: Note that by definition W = XX′ for some X ∼ Np,n(µ, I, I). Then

W = UU′ + µU′ + Uµ′ + µµ′.

Hence, we need to show that UU′ has the same distribution as TT′. With prob-
ability 1, the rank r(UU′) = p and thus the matrix UU′ is p.d. with probability
1. From Theorem 1.1.4 and its proof it follows that there exists a unique lower
triangular matrix T such that UU′ = TT′, with elements

T11 =(U2
11 + u12u′

12)
1/2,

t21 =(U2
11 + u12u′

12)
−1/2(u21U11 + U22u′

12), (2.4.6)

where

U =
(

U11 u12

u21 U22

)
.

Furthermore,

T22T′
22 = u21u′

21 + U22U′
22

− (u21U11 + U22u′
12)(U

2
11 + u12u′

12)
−1(U11u′

21 + u12U′
22).(2.4.7)

By assumption, the elements of U are independent and normally distributed:
Uij ∼ N(0, 1), i = 1, 2, . . . , p, j = 1, 2, . . . , n. Since U11 and u12 are indepen-
dently distributed, T 2

11 ∼ χ2(n). Moreover, consider the conditional distribution
of t21|U11,u12 which by (2.4.6) and independence of the elements of U is normally
distributed:

t21|U11,u12 ∼ Np−1(0, I). (2.4.8)

However, by (2.4.8), t21 is independent of (U11,u12) and thus

t21 ∼ Np−1(0, I).

It remains to show that

T22T′
22 ∼ Wp−1(I, n − 1). (2.4.9)

We can restate the arguments above, but instead of n degrees of freedom we have
now (n − 1). From (2.4.7) it follows that

T22T′
22 = (u21 : U22)P(u21 : U22)′,

where
P = I − (U11 : u12)′(U2

11 + u12u′
12)

−1(U11 : u12).

Since P is idempotent and (u21 : U22) is independent of (U11 : u12), it follows
from Theorem 2.4.3 that

T22T′
22|U11 : u12 ∼ Wp−1(I, r(P)).



242 Chapter II

Now, with probability 1, r(P) = tr(P) = n − 1 (see Proposition 1.1.4 (v)). Thus
T22T′

22 does not depend of (U11 : u12) and (2.4.9) is established.
The proof of (ii) is almost identical to the one given for (i). Instead of U we just
have to consider X ∼ Np,n(µ, I, I). Thus,

T11 = (X2
11 + x12x′

12)
1/2,

t21 = (X2
11 + x12x′

12)
−1/2(x21X11 + X22x′

12),
T22T′

22 = x21x′
21 + X22X′

22

− (x21X11 + X22x′
12)(X

2
11 + x12x′

12)
−1(X11x′

21 + x12X′
22).

Then it follows that T 2
11 ∼ χ2(n, δ) and the distribution of t21|X11,x12 has to be

considered. However,
E[t21|X11,x12] = 0,

because x21, X22 are independent of X11, x21, E[x21] = 0 as well as E[X22] = 0.
Furthermore,

D[t21|X11,x12] = I.

Thus, t21 ∼ Np−1(0, I) and the rest of the proof follows from the proof of (i).

Corollary 2.4.4.1. Let W ∼ Wp(I, n), where p ≤ n. Then there exists a lower
triangular matrix T, where all elements are independent, and the diagonal elements
are positive, with Tij ∼ N(0, 1), p ≥ i > j ≥ 1, and T 2

ii ∼ χ2(n − i + 1) such that

W = TT′.

Corollary 2.4.4.2. Let W ∼ Wp(kI, n), p ≤ n. Then

V =
|W|

( 1
p trW)p

and trW are independently distributed.

Proof: First it is noted that V does not change if W is replaced by 1
kW. Thus,

we may assume that k = 1. From Corollary 2.4.4.1 it follows that

V =
∏p

i=1 T 2
ii

( 1
p

∑p
i≥j=1 T 2

ij)p

and trW =
∑p

i≥j=1 T 2
ij . It will be shown that the joint density of V and trW

is a product of the marginal densities of V and trW. Since T 2
ii ∼ χ2(n − i + 1),

T 2
ij ∼ χ2(1), i > j, and because of independence of the elements in T, it follows

that the joint density of {T 2
ij , i ≥ j} is given by

c

p∏
i=1

T
2(

n−i+1
2 −1)

ii

p−1∏
i>j=1

T
2(

1
2−1)

ij e
− 1

2

∑p

i≥j=1
T 2

ij , (2.4.10)
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where c is a normalizing constant. Make the following change of variables

Y = 1
p

p∑
i≥j=1

T 2
ij , Zij =

T 2
ij

Y
, i ≥ j.

Since
∑p

i≥j=1 Zij = p put

Zp,p−1 = p −
p∑

i=1

Zii −
p−2∑

i>j=1

Zij .

It will be shown that Y is independently distributed of {Zij}, which verifies the
corollary since

V =
p∏

i=1

Zii.

Utilizing (2.4.10) gives the joint density of Zii, i = 1, 2, . . . , p, Zij , i > j =
1, 2, . . . , p − 2, and Y :

c

p−1∏
i=1

Z
n−i+1

2 −1

ii

p−2∏
i>j=1

Z
− 1

2
ij (p −

p∑
i=1

Zii −
p−2∑

i>j=1

Zij)−
1
2 Y ae−

p
2 Y |J|+,

where

a =
p∑

i=1

(n−i+1
2 − 1) − 1

2p(p − 1) = 1
4 (2pn − 3p2 − p)

and the Jacobian is defined as

|J|+ = |J(T 2
11, T

2
21, . . . , T

2
p,p−1, T

2
pp,→ Y, Z11, Z21, . . . , Zp,p−2, Zpp)|+.

Thus, it remains to express the Jacobian. With the help of (1.1.6)

∣∣∣∣∣ d (T 2
11, T

2
21, . . . , T

2
p,p−1, T

2
pp)

d vec(Y, Z11, Z21, . . . , Zp,p−2, Zpp)

∣∣∣∣∣
+

=

∣∣∣∣∣∣∣∣∣∣∣∣

Z11 Z21 Z22 . . . Zp,p−1 Zpp

Y 0 0 . . . −Y 0
0 Y 0 . . . −Y 0
0 0 Y . . . −Y 0
...

...
...

. . .
...

...
0 0 0 . . . −Y Y

∣∣∣∣∣∣∣∣∣∣∣∣
+

= |
p∑

i≥j=1

Zij(−Y )Y
1
2p(p+1)−2|+ =

p∑
i≥j=1

ZijY
1
2p(p+1)−1 = pY

1
2p(p+1)−1,

which implies that the density of {Zij} and Y factors.
The statistic V in Corollary 2.4.4.2 looks artificial but it arises when testing Σ = kI
(sphericity test) in a normal sample (e.g. see Muirhead (1982), §8.3.1). Moreover,
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it is interesting to note that we can create other functions besides V , and these
are solely functions of {Zij} and thus independent of trW.

2.4.2 Characteristic and density functions
When considering the characteristic or density function of the Wishart matrix
W, we have to take into account that W is symmetric. There are many ways
of doing this and one of them is not to take into account that the matrix is
symmetric which, however, will not be applied here. Instead, when obtaining
the characteristic function and density function of W, we are going to obtain the
characteristic function and density function of the elements of the upper triangular
part of W, i.e. Wij , i ≤ j. For a general reference on the topic see Olkin (2002).

Theorem 2.4.5. Let W ∼ Wp(Σ, n). The characteristic function of {Wij , i ≤ j},
equals

ϕW(T) = |Ip − iM(T)Σ|−n
2 ,

where
M(T) =

∑
I

tij(eie′j + eje′i) = T + Td, (2.4.11)

ei is the i−th column of Ip and I = {i, j; 1 ≤ i ≤ j ≤ p}.
Proof: According to (2.1.9) we have to find ϕW(T) = E[eiV 2′ (W)V 2(T)]. First
note that

1
2 tr(M(T)W) = 1

2 tr{
∑
i≤j

tij(eje′i + eie′j)W} = 1
2

∑
i≤j

tij(e′iWej + e′jWei)

= 1
2

∑
i≤j

tij(Wij + Wji) =
∑
i≤j

tijWij = V 2′
(T)V 2(W).

Then, by Corollary 1.2.39.1, there exist an orthogonal matrix Γ and a diagonal
matrix D such that

Σ1/2M(T)Σ1/2 = ΓDΓ′,

where Σ1/2 denotes a symmetric square root. Let V ∼ Wp(I, n), which implies
that the distribution V is rotational invariant and thus,

ϕW(T) = E[e
i
2 tr(M(T)W)] = E[e

i
2 tr(ΓDΓ′V)] = E[e

i
2 tr(DV)] = E[e

i
2

∑
k

dkkVkk ].

Since, by Corollary 2.4.2.2, Vkk ∼ χ2(n), for k = 1, 2, . . . , p, and mutually inde-
pendent, we obtain that

ϕW(T) =
p∏

k=1

(1 − idkk)−n/2 = |I − iD|−n/2.

Hence, it remains to express the characteristic function through the original matrix
Σ:

|I − iD| = |I − iΓDΓ′| = |I − iΣ1/2M(T)Σ1/2|= |I − iM(T)Σ|,
where in the last equality Proposition 1.1.1 (iii) has been used.
Observe that in Theorem 2.4.5 the assumption n ≥ p is not required.
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Theorem 2.4.6. Let W ∼ Wp(Σ, n). If Σ > 0 and n ≥ p, then the matrix W
has the density function

fW(W) =

⎧⎪⎨⎪⎩
1

2
pn
2 Γp(n

2 )|Σ|n2
|W|

n−p−1
2 e−

1
2 tr(Σ−1W), W > 0,

0, otherwise,

(2.4.12)

where the multivariate gamma function Γp(n
2 ) is given by

Γp(n
2 ) = π

p(p−1)
4

p∏
i=1

Γ( 1
2 (n + 1 − i)). (2.4.13)

Proof: We are going to sketch an alternative proof to the standard one (e.g.
see Anderson, 2003, pp. 252-255; Srivastava & Khatri, 1979, pp. 74-76 or Muir-
head, 1982, pp. 85-86) where, however, all details for integrating complex vari-
ables will not be given. Relation (2.4.12) will be established for the special case
V ∼ Wp(I, n). The general case is immediately obtained from Theorem 2.4.2.
The idea is to use the Fourier transform which connects the characteristic and the
density functions. Results related to the Fourier transform will be presented later
in §3.2.2. From Theorem 2.4.5 and Corollary 3.2.1.L1 it follows that

fV(V) = (2π)−
1
2p(p+1)

∫
Rp(p+1)/2

|I − iM(T)|−n/2e−
i
2 tr(M(T)V)dT (2.4.14)

should be studied, where M(T) is given by (2.4.11) and dT =
∏

i≤j dtij . Put
Z = (V1/2)′(I− iM(T))V1/2. By Theorem 1.4.13 (i), the Jacobian for the trans-

formation from T to Z equals c|V1/2|−(p+1) = c|V|− 1
2 (p+1) for some constant c.

Thus, the right hand side of (2.4.14) can be written as

c

∫
|Z|−n/2e

1
2 tr(Z)dZ|V| 12 (n−p−1)e−

1
2 trV,

and therefore we know that the density equals

fV(V) = c(p, n)|V| 12 (n−p−1)e−
1
2 trV, (2.4.15)

where c(p, n) is a normalizing constant. Let us find c(p, n). From Theorem 1.4.18,
and by integrating the standard univariate normal density function, it follows that

1 =c(p, n)
∫

|V| 12 (n−p−1)e−
1
2 trVdV

=c(p, n)
∫

2p

p∏
i=1

tp−i+1
ii tn−p−1

ii e−
1
2 t2ii

p∏
i>j

e−
1
2 t2ij dT

=c(p, n)2p(2π)
1
4p(p−1)

p∏
i=1

∫
tn−i
ii e−

1
2 t2iidtii

=c(p, n)2p(2π)
1
4p(p−1)

p∏
i=1

2−1

∫
v

1
2 (n−i−1)

i e−
1
2vidvi

=c(p, n)(2π)
1
4p(p−1)

p∏
i=1

2
1
2 (n−i+1)Γ( 1

2 (n − i + 1)),
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where in the last equality the expression for the χ2-density has been used. Thus,

c(p, n)−1 = (π)
1
4p(p−1)2

1
2pn

p∏
i=1

Γ( 1
2 (n − i + 1)) (2.4.16)

and the theorem is established.
Another straightforward way of deriving the density would be to combine Corollary
2.4.4.1 and Theorem 1.4.18.
Instead of Definition 2.4.1 we could have used either Theorem 2.4.5 or Theorem
2.4.6 as a definition of a Wishart distribution. It is a matter of taste which one
to prefer. However, the various possibilities of defining the Wishart distribution
are not completely equivalent. For example, the density in Theorem 2.4.6 is valid
for all n ≥ p and not just for any positive integer n. Furthermore, from the
characteristic function we could also get degenerated Wishart distributions, for
example, when n = 0. A general discussion on the topic can be found in Faraut
& Korányi (1994) (see also Casalis & Letac, 1996). Instead of the characteristic
function we could have used the Laplace transform (see Herz, 1955; Muirhead,
1982, pp. 252-253).
From Theorem 2.4.6 a corollary is derived, where the density of W−1 is obtained
when W ∼ Wp(Σ, n). The distribution of W−1 is called inverted Wishart distri-
bution.

Corollary 2.4.6.1. Let W ∼ Wp(Σ, n), p ≤ n and Σ > 0. Then the density of
V = W−1 is given by

fW−1(V) = (2
1
2pnΓp(n

2 ))−1|Σ|−n/2|V|− 1
2 (n+p+1)e−

1
2 tr(Σ−1V−1), V > 0.

proof: Relation (2.4.12) and Theorem 1.4.17 (ii) establish the equality.
Another interesting consequence of the theorem is stated in the next corollary.

Corollary 2.4.6.2. Let L : p×n, p ≤ n be semi-orthogonal, i.e. LL′ = Ip, and let
the functionally independent elements of L = (lkl) be given by l12, l13, . . . , l1n, l23,
. . . , l2n, . . . , lp(p+1), . . . , lpn. Denote these elements L(K). Then

∫ p∏
i=1

|Li|+dL(K) = c(p, n)(2π)
1
2pn2p,

where Li = (lkl), k, l = 1, 2, . . . , i, and c(p, n)−1 = 2
1
2pnΓp(n

2 ).

Proof: Suppose that X ∼ Np,n(0, I, I). Let X = TL, where T is the lower
triangular matrix with positive diagonal elements and L is the semi-orthogonal
matrix mentioned above. According to Theorem 1.4.20, the joint density of T and
L is given by

(2π)−
1
2pne−

1
2 trTT′

p∏
i=1

Tn−i
ii

p∏
i=1

|Li|+.
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Put W = TT′, and from Theorem 1.4.18 it follows that the joint density of W
and L is given by

(2π)−
1
2pne−

1
2 trW2−p|W| 12 (n−p−1)

p∏
i=1

|Li|+.

Thus, Theorem 2.4.6 implies that

(2π)−
1
2pn2−p

∫ p∏
i=1

|Li|+dL(K) = c(p, n).

For the inverted Wishart distribution a result may be stated which is similar to
the Bartlett decomposition given in Theorem 2.4.4.

Theorem 2.4.7. Let W ∼ Wp(I, n). Then there exists a lower triangular matrix
T with positive diagonal elements such that for W−1 = TT′, T−1 = (T ij),
T ij ∼ N(0, 1), p ≥ i > j ≥ 1, (T ii)2 ∼ χ2(n − p + 1), i = 1, 2, . . . , p, and all
random variables T ij are independently distributed.

Proof: Using Corollary 2.4.6.1 and Theorem 1.4.18, the density of T is given by

c|TT′|− 1
2 (n+p+1)e−

1
2 tr(TT′)−1

p∏
i=1

T p−i+1
ii

= c

p∏
i=1

T
−(n+i)
ii e−

1
2 tr(TT′)−1

,

where c is the normalizing constant. Consider

(TT′)−1 =
(

(T−1
11 )2 + v′v −v′T−1

22

−(T′
22)

−1v (T′
22)

−1T−1
22

)
,

(
1 × 1 1 × (p − 1)

(p − 1) × 1 (p − 1) × (p − 1)

)
,

where

T =
(

T11 0
t21 T22

)
and

v = T−1
22 t21T

−1
11 .

Observe that

T−1 =
(

T−1
11 0
−v T−1

22

)
.

Now, Theorem 1.4.14 implies that

|J(T11, t21,T22 → T11,v,T22)|+ = T p−1
11 |T22|+
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and therefore the density equals

cT
−(n−p+2)
11 e−

1
2 (T−1

11 )2
p∏

i=2

T
−(n+i−1)
ii e−

1
2 tr{(T22T

′
22)

−1}e−
1
2v′v,

which means that T11, T22 and v are independent, (T 2
11)

−1 ∼ χ2(n−p+1) and the
other elements in T−1 are standard normal. Then we may restart with T22 and by
performing the same operations as above we see that T11 and T22 have the same
distribution. Continuing in the same manner we obtain that (T 2

ii)
−1 ∼ χ2(n−p+1).

Observe that the above theorem does not follow immediately from the Bartlett
decomposition since we have

W−1 = TT′

and
W = T̃T̃′,

where W ∼ Wp(I, n), T and T̃ are lower triangular matrices. However, T corre-
sponds to T̃′ which is an upper triangular matrix, i.e. T 	= T̃′.

2.4.3 Multivariate beta distributions
A random variable with univariate beta distribution has a density function which
equals

fβ(x) =

⎧⎪⎨⎪⎩
Γ( 1

2 (m + n))
Γ( 1

2m)Γ( 1
2n)

x
1
2m−1(1 − x)

1
2n−1 0 < x < 1, m, n ≥ 1,

0 elsewhere.

(2.4.17)

If a variable follows (2.4.17), it is denoted β(m, n).
In this paragraph a number of different generalizations of the distribution given
via (2.4.17) will be discussed. Two types of multivariate beta distributions will
be introduced, which are both closely connected to the normal distribution and
Wishart distribution. It is interesting to observe how the Jacobians of §1.4.12 will
be utilized in the subsequent derivations of the multivariate beta densities.

Theorem 2.4.8. Let W1 ∼ Wp(I, n), p ≤ n, and W2 ∼ Wp(I,m), p ≤ m, be
independently distributed. Then

F = (W1 + W2)−1/2W2(W1 + W2)−1/2

has a density function given by

fF(F) =

⎧⎨⎩
c(p, n)c(p,m)
c(p, n + m)

|F| 12 (m−p−1)|I − F| 12 (n−p−1) |I − F| > 0, |F| > 0,

0 otherwise,
(2.4.18)
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where

c(p, n) = (2
pn
2 Γp(n

2 ))−1

and (W1 + W2)−1/2 is a symmetric square root.

Proof: From Theorem 2.4.6 it follows that the joint density of W1 and W2 is
given by

c(p, n)c(p,m)|W1|
1
2 (n−p−1)|W2|

1
2 (m−p−1)e−

1
2 tr(W1+W2). (2.4.19)

Put W = W1 + W2 ∼ Wp(I, n + m). The Jacobian equals

|J(W1,W2 → W,W2)|+ = |J(W − W2,W2 → W,W2)|+ =
∣∣∣∣ I 0
−I I

∣∣∣∣
+

= 1

and thus the joint density of W and W2 can be written as

c(p, n)c(p,m)|W − W2|
1
2 (n−p−1)|W2|

1
2 (m−p−1)e−

1
2 trW.

Now we are going to obtain the joint density of F and W. The Jacobian is

|J(W,W2 → W,F)|+ =|J(W,W1/2FW1/2 → W,F)|+
=|J(W1/2FW1/2 → F)|+ = |W| 12 (p+1),

where Theorem 1.4.13 (i) has been applied to obtain the last equality. Therefore,
the joint density of F and W is given by

c(p, n)c(p,m)|W|
n−p−1

2 |I − F|
n−p−1

2 |F|
m−p−1

2 |W|
m−p−1

2 e−
1
2 trW|W| 12 (p+1)

=
c(p, n)c(p,m)
c(p, n + m)

|I − F|
n−p−1

2 |F|
m−p−1

2 c(p, n + m)|W|
n+m−p−1

2 e−
1
2 trW.

Integrating out W with the help of Theorem 2.4.6 establishes the theorem.

Remark: The assumption about a symmetric square root was used for notational
convenience. From the proof it follows that we could have studied W = TT′ and
F = T−1W2(T′)−1, where T is a lower triangular matrix with positive diagonal
elements.

Definition 2.4.2. A random matrix which has a density given by (2.4.18) is
said to have a multivariate beta distribution of type I. This will be denoted
MβI(p,m, n).

Observe that other authors sometimes denote this distribution MβI(p, n, m).
As a consequence of the proof of Theorem 2.4.8 the next corollary can be stated.
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Corollary 2.4.8.1. The random matrices W and F in Theorem 2.4.8 are inde-
pendently distributed.

Theorem 2.4.9. Let W1 ∼ Wp(I, n), p ≤ n and W2 ∼ Wp(I,m), p ≤ m, be
independently distributed. Then

Z = W−1/2
2 W1W

−1/2
2

has the density function

fZ(Z) =

⎧⎨⎩
c(p, n)c(p,m)
c(p, n + m)

|Z| 12 (n−p−1)|I + Z|− 1
2 (n+m) |Z| > 0,

0 otherwise,
(2.4.20)

where c(p, n) is defined as in Theorem 2.4.8 and W1/2
2 is a symmetric square root.

Proof: As noted in the proof of Theorem 2.4.8, the joint density of W1 and W2

is given by (2.4.19). From Theorem 1.4.13 (i) it follows that

|J(W2,W1 → W2,Z)|+ =|J(W2,W
1/2
2 ZW1/2

2 → W2,Z)|+
=|J(W1/2

2 ZW1/2
2 → Z)|+ = |W2|

1
2 (p+1).

Hence, the joint density of W2 and Z equals

c(p, n)c(p,m)|W2|
m−p−1

2 |Z|
n−p−1

2 |W2|
n−p−1

2 |W2|
1
2 (p+1)e−

1
2 tr(W2(I+Z))

=
c(p, n)c(p,m)
c(p, n + m)

|Z|
n−p−1

2 c(p, n + m)|W2|
n+m−p−1

2 e−
1
2 tr(W2(I+Z))

and integrating out W2, by utilizing Theorem 2.4.6, verifies the theorem.

Definition 2.4.3. A random matrix which has a density given by (2.4.20) is
said to have a multivariate beta distribution of type II. This will be denoted
MβII(p,m, n).

Sometimes the distribution in Definition 2.4.3 is denoted MβII(p, n, m). By
putting

F0 = (I + Z)−1

it is observed that the density (2.4.18) may be directly obtained from the density
(2.4.20). Just note that the Jacobian of the transformation Z → F0 equals

|J(Z → F0)|+ = |F0|−(p+1),

and then straightforward calculations yield the result. Furthermore, Z has the
same density as Z0 = W1/2

1 W−1
2 W1/2

1 and F has the same density as

F0 = (I + Z)−1 = W1/2
2 (W1 + W2)−1W1/2

2 .

Thus, for example, the moments for F may be obtained via the moments for F0,
which will be used later.



Multivariate Distributions 251

Theorem 2.4.10. Let W1 ∼ Wp(I, n), n ≥ p, and Y ∼ Np,m(0, I, I), m < p, be
independent random matrices. Then

G = Y′(W1 + YY′)−1Y

has the multivariate density function

fG(G) =

⎧⎨⎩
c(p, n)c(m, p)
c(p, n + m)

|G|
p−m−1

2 |I − G|
n−p−1

2 |I − G| > 0, |G| > 0,

0 otherwise,

where c(p, n) is defined in Theorem 2.4.8.

Proof: The joint density of Y and W1 is given by

c(p, n)(2π)−
1
2pm|W1|

n−p−1
2 e−

1
2 trW1e−

1
2 trYY′

.

Put W = W1 + YY′ and, since |J(W1,Y → W,Y)|+ = 1, the joint density of
W and Y is given by

c(p, n)(2π)−
1
2pm|W − YY′|

n−p−1
2 e−

1
2 trW

=c(p, n)(2π)−
1
2pm|W|

n−p−1
2 |I − Y′W−1Y|

n−p−1
2 e−

1
2 trW.

Let U = W−1/2Y and by Theorem 1.4.14 the joint density of U and W equals

c(p, n)(2π)−
1
2pm|I − U′U| 12 (n−p−1)|W| 12 (n+m−p−1)e−

1
2 trW.

Integrating out W yields

c(p, n)
c(p, n + m)

(2π)−
1
2pm|I − U′U| 12 (n−p−1).

Now, from Proposition 1.1.6 (ii) it follows that U′ = TL, where T : m × m is
a lower triangular matrix with positive diagonal elements and L : m × p is semi-
orthogonal. According to Theorem 1.4.20, the joint density of T and L equals

c(p, n)
c(p, n + m)

(2π)−
1
2pm|I − TT′| 12 (n−p−1)

m∏
i=1

tp−i
ii

m∏
i=1

|Li|+,

where Li = (lkl), k, l = 1, 2, . . . , i. Theorem 1.4.18 implies that the joint density
of G = TT′ and L can be written as

c(p, n)
c(p, n + m)

(2π)−
1
2pm2−m|I − G| 12 (n−p−1)|G| 12 (p−m−1)

m∏
i=1

|Li|+.

Finally the theorem is established by Corollary 2.4.6.2 and integration of L :

c(p, n)c(m, p)
c(p, n + m)

|I − G| 12 (n−p−1)|G| 12 (p−m−1).
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Corollary 2.4.10.1. The random matrices G and W in Theorem 2.4.10 are
independently distributed.

The MβI(p,m, n) shares some properties with the Wishart distribution. To some
extent, the similarities are remarkable. Here we give a result which corresponds
to the Bartlett decomposition, i.e. Theorem 2.4.4 (i).

Theorem 2.4.11. Let F ∼ MβI(p, m, n) and F = TT′ where T is a lower
triangular matrix with positive diagonal elements. Then T11, T22, . . . , Tpp are all
independent and

T 2
ii ∼ β(m + 1 − i, n + i − 1), i = 1, 2, . . . , p.

Proof: The density for F is given in Theorem 2.4.8 and combining this result
with Theorem 1.4.18 yields

c(p, n)c(p,m)
c(p, n + m)

|TT′|
m−p−1

2 |I − TT′|
n−p−1

2 2p

p∏
i=1

T p−i+1
ii

=2p c(p, n)c(p,m)
c(p, n + m)

p∏
i=1

Tm−i
ii |I − TT′|

n−p−1
2 .

First we will show that T 2
11 is beta distributed. Partition T as

T =
(

T11 0
t21 T22

)
.

Thus,
|I − TT′| = (1 − T 2

11)(1 − v′v)|I − T22T′
22|,

where
v = (I − T22T′

22)
−1/2t21(1 − T 2

11)
−1/2.

We are going to make a change of variables, i.e. T11, t21,T22 → T11,v,T22. The
corresponding Jacobian equals

|J(t21, T11,T22 → v, T11,T22)|+ = |J(t21 → v)|+ = (1 − T 2
11)

p−1
2 |I − T22T′

22|
1
2 ,

where the last equality was obtained by Theorem 1.4.14. Now the joint density of
T11, v and T22 can be written as

2p c(p, n)c(p,m)
c(p, n + m)

Tm−1
11 (1 − T 2

11)
n−p−1

2

p∏
i=2

Tm−i
ii

× |I − T22T′
22|

n−p−1
2 (1 − v′v)

n−p−1
2 (1 − T 2

11)
p−1
2 |I − T22T′

22|
1
2

= 2p c(p, n)c(p,m)
c(p, n + m)

(T 2
11)

m−1
2 (1 − T 2

11)
n
2 −1

×
p∏

i=2

Tm−i
ii |I − T22T′

22|
n−p

2 (1 − v′v)
n−p−1

2 .
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Hence, T11 is independent of both T22 and v, and therefore T 2
11 follows a β(m, n)

distribution. In order to obtain the distribution for T22, T33, . . . ,Tpp, it is noted
that T22 is independent of T11 and v and its density is proportional to

p∏
i=2

Tm−i
ii |I − T22T′

22|
n−p

2 .

Therefore, we have a density function which is of the same form as the one given
in the beginning of the proof, and by repeating the arguments it follows that T22 is
β(m−1, n+1) distributed. The remaining details of the proof are straightforward
to fill in.

2.4.4 Partitioned Wishart matrices
We are going to consider some results for partitioned Wishart matrices. Let

W =
(

W11 W12

W21 W22

) (
r × r r × (p − r)

(p − r) × r (p − r) × (p − r)

)
, (2.4.21)

where on the right-hand side the sizes of the matrices are indicated, and let

Σ =
(

Σ11 Σ12

Σ21 Σ22

) (
r × r r × (p − r)

(p − r) × r (p − r) × (p − r)

)
. (2.4.22)

Theorem 2.4.12. Let W ∼ Wp(Σ, n), and let the matrices W and Σ be parti-
tioned according to (2.4.21) and (2.4.22), respectively. Furthermore, put

W1·2 =W11 − W12W−1
22 W21

and

Σ1·2 =Σ11 − Σ12Σ−1
22 Σ21.

Then the following statements are valid:

W1·2 ∼ Wr(Σ1·2, n − p + r);(i)
(ii) W1·2 and (W12 : W22) are independently distributed;

(iii) for any square root W−1/2
22

W12W
−1/2
22 − Σ12Σ−1

22 W1/2
22 ∼ Nr,p−r(0,Σ1·2, I);

W12|W22 ∼ Nr,p−r(Σ12Σ−1
22 W22,Σ1·2,W22).(iv)

Proof: By Definition 2.4.1, there exists a matrix Z′ = (Z′
1 : Z′

2), (n × r : n ×
(p − r)), such that W = ZZ′, where Z ∼ Np,n(0,Σ, I). Then W1·2 has the same
distribution as

Z1PZ′
1, (2.4.23)
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where
P = I − Z′

2(Z2Z′
2)

−1Z2.

We are going to condition (2.4.23) with respect to Z2 and note that according to
Theorem 2.2.5 (ii),

Z1 − Σ12Σ−1
22 Z2|Z2 ∼ Nr,n(0,Σ1·2, I), (2.4.24)

which is independent of Z2. Conditionally on Z2, the matrix P is fixed and
idempotent. Furthermore, Σ12Σ−1

22 Z2P = 0. It follows that r(P) = n − r(Z2) =
n − p + r, with probability 1. Thus, from Corollary 2.4.3.1 we obtain that

W1·2|Z2 ∼ Wr(Σ1·2, n − p − r),

which is independent of Z2, and thus (i) is established. Observe that similar
arguments were used in the proof of Theorem 2.4.4.
For (ii) we note that since W1·2 is independent of Z2, it must also be independent
of W22 = Z2Z′

2. Furthermore, since Z2P = 0, we have by Theorem 2.2.4 that
given Z2, the matrices W12 = Z1Z′

2 and W1·2 are independently distributed. We
are going to see that W12 and W1·2 are also unconditionally independent, which
follows from the fact that W1·2 is independent of Z2:

fW12,W1·2(x1,x2) =
∫

fW12,W1·2,Z2(x1,x2,x3)dx3

=
∫

fW12,W1·2|Z2(x1,x2)fZ2(x3)dx3 =
∫

fW12|Z2(x1)fW1·2|Z2(x2)fZ2(x3)dx3

=
∫

fW12|Z2(x1)fW1·2(x2)fZ2(x3)dx3 =
∫

fW1·2(x2)fW12,Z2(x1,x3)dx3

= fW12(x1)fW1·2(x2).

Now, (iii) and (iv) will follow from the next relation. The statement in (2.4.24)
implies that

Z1Z′
2(Z2Z′

2)
−1/2 − Σ12Σ−1

22 (Z2Z′
2)

1/2|Z2 ∼ Nr,p−r(0,Σ1·2, I)

holds, since
(Z2Z′

2)
−1/2Z2Z′

2(Z2Z′
2)

−1/2 = I.

The expression is independent of Z2, as well as of W22, and has the same distri-
bution as

W12W
−1/2
22 − Σ12Σ−1

22 W1/2
22 ∼ Nr,p−r(0,Σ1·2, I).

Corollary 2.4.12.1. Let V ∼ Wp(I, n) and apply the same partition as in
(2.4.21). Then

V12V
−1/2
22 ∼ Nr,p−r(0, I, I)

is independent of V22.

There exist several interesting results connecting generalized inverse Gaussian dis-
tributions (GIG) and partitioned Wishart matrices. For example, W11|W12 is
matrix GIG distributed (see Butler, 1998).
The next theorem gives some further properties for the inverted Wishart distribu-
tion.
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Theorem 2.4.13. Let W ∼ Wp(Σ, n), Σ > 0, and A ∈ Rp×q. Then

(i) A(A′W−1A)−A′ ∼ Wp(A(A′Σ−1A)−A′, n − p + r(A));
(ii) A(A′W−1A)−A′ and W − A(A′W−1A)−A′ are independent;
(iii) A(A′W−1A)−A′ and I − A(A′W−1A)−A′W−1 are independent.

Proof: Since A(A′W−1A)−A′W−1 is a projection operator (idempotent ma-
trix), it follows, because of uniqueness of projection operators, that A can be
replaced by any A ∈ Rp×r(A), C (A) = C (A) such that

A(A′W−1A)−A′ = A(A′W−1A)−1A′.

It is often convenient to present a matrix in a canonical form. Applying Proposition
1.1.6 (ii) to A′Σ−1/2 we have

A′ = T(Ir(A) : 0)ΓΣ1/2 = TΓ1Σ1/2, (2.4.25)

where T is non-singular, Γ′ = (Γ′
1 : Γ′

2) is orthogonal and Σ1/2 is a sym-
metric square root of Σ. Furthermore, by Definition 2.4.1, W = ZZ′, where
Z ∼ Np,n(0,Σ, I). Put

V = ΓΣ−1/2WΣ−1/2Γ′ ∼ Wp(I, n).

Now,

A(A′W−1A)−A′ = Σ1/2Γ′
1((I : 0)V−1(I : 0)′)−1Γ1Σ1/2

= Σ1/2Γ′
1(V

11)−1Γ1Σ1/2,

where V has been partitioned as W in (2.4.21). However, by Proposition 1.3.3
(V11)−1 = V1·2, where V1·2 = V11 − V12V−1

22 V21, and thus, by Theorem 2.4.12
(i),

Σ1/2Γ′
1(V

11)−1Γ1Σ1/2 ∼ Wp(Σ1/2Γ′
1Γ1Σ1/2, n − p + r(A)).

When Σ1/2Γ′
1Γ1Σ1/2 is expressed through the original matrices, we get

Σ1/2Γ′
1Γ1Σ1/2 = A(A′Σ−1A)−1A′ = A(A′Σ−1A)−A′

and hence (i) is verified.
In order to show (ii) and (iii), the canonical representation given in (2.4.25) will be
used again. Furthermore, by Definition 2.4.1, V = UU′, where U ∼ Np,n(0, I, I).
Let us partition U in correspondence with the partition of V. Then

W − A(A′W−1A)−A′ = Σ1/2Γ′VΓΣ1/2 − Σ1/2Γ′(I : 0)′(V11)−1(I : 0)ΓΣ1/2

= Σ1/2Γ′
(

V12V−1
22 V21 V12

V21 V22

)
ΓΣ1/2

= Σ1/2Γ′
(

U1U′
2(U2U′

2)
−1U2U′

1 U1U′
2

U2U′
1 U2U′

2

)
ΓΣ1/2
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and

I − A(A′W−1A)−A′W−1 = I − Σ1/2Γ′
1(I : (V11)−1V12)ΓΣ−1/2

= I − Σ1/2Γ′
1Γ1Σ−1/2 + Σ1/2Γ′

1V12V−1
22 Γ2Σ−1/2

= I − Σ1/2Γ′
1Γ1Σ−1/2 + Σ1/2Γ′

1U1U′
2(U2U′

2)
−1Γ2Σ−1/2. (2.4.26)

In (2.4.26) we used the equality (V11)−1V12 = −V12(V22)−1 given in Proposition
1.3.4 (i). Now we are going to prove that

U2, U2U′
1, U1U′

2(U2U′
2)

−1U2U′
1, (U2U′

2)
−1U2U′

1 (2.4.27)

and
V1·2 = U1(I − U′

2(U2U′
2)

−1U2)U′
1 (2.4.28)

are independently distributed. However, from Theorem 2.2.4 it follows that, con-
ditionally on U2, the matrices (2.4.27) and (2.4.28) are independent and since V1·2
in (2.4.28) is independent of U2, (ii) and (iii) are verified. Similar ideas were used
in the proof of Theorem 2.4.12 (i).

Corollary 2.4.13.1. Let W ∼ Wp(Σ, n), A : p × q and r(A) = q. Then

(A′W−1A)−1 ∼ Wp((A′Σ−1A)−1, n − p + q).

Proof: The statement follows from (i) of the theorem above and Theorem 2.4.2,
since

(A′W−1A)−1 = (A′A)−1A′A(A′W−1A)−1A′A(A′A)−1.

2.4.5 Moments of the Wishart distribution
We are going to present some moment relations. They will be used in Sections 3.2
and 3.3 when we are going to approximate densities with the help of the Wishart
density. In addition to the mean and dispersion we will consider inverse moments
or, one can say, moments of the inverted Wishart distribution. The density of the
inverted Wishart distribution under a somewhat different parameterization was
introduced in Corollary 2.4.6.1. Often the formula

fW−1(W) =

⎧⎪⎨⎪⎩
1

2
n−p−1

2 Γp(n−p−1
2 )

|W|−n
2 |Σ|

n−p−1
2 e−

1
2 tr(ΣW−1) W > 0

0 otherwise,
(2.4.29)

is used as a representation of the density function for the inverted Wishart distribu-
tion. It follows from the Wishart density, if we use the transformation W → W−1.
The Jacobian of that transformation was given by Theorem 1.4.17 (ii), i.e.

|J(W → W−1)|+ = |W|(p+1).



Multivariate Distributions 257

The fact that a matrix W : p × p is distributed according to the density (2.4.29)
is usually denoted by W ∼ W−1

p (Σ, n). If W ∼ Wp(Σ, n), then it follows that
W−1 ∼ W−1

p (Σ−1, n + p + 1). It is a bit unfortunate that the second parameter
equals n for the Wishart distribution and n + p + 1 for the inverted Wishart
distribution. However, we are not going to use the density directly. Instead, we
shall use some properties of the Wishart density which lead to the moments of
the inverted Wishart distribution. We are also going to present some moment
relations which involve both W−1 and W.

Theorem 2.4.14. Let W ∼ Wp(Σ, n). Then

E[W] = nΣ;(i)

D[W] = n(Ip2 + Kp,p)(Σ ⊗ Σ);(ii)

E[W−1] = 1
n−p−1Σ

−1, n − p − 1 > 0;(iii)

E[W−1 ⊗ W−1] = n−p−2
(n−p)(n−p−1)(n−p−3)Σ

−1 ⊗ Σ−1(iv)

+ 1
(n−p)(n−p−1)(n−p−3) (vecΣ−1vec′Σ−1 + Kp,p(Σ−1 ⊗ Σ−1)),

n − p − 3 > 0;

E[vecW−1vec′W] = n
n−p−1vecΣ−1vec′Σ − 1

n−p−1 (I + Kp,p),(v)

n − p − 1 > 0;

E[W−1W−1] = 1
(n−p)(n−p−3)Σ

−1Σ−1 + 1
(n−p)(n−p−1)(n−p−3)Σ

−1trΣ−1,(vi)

n − p − 3 > 0;

E[tr(W−1)W] = 1
n−p−1 (nΣtrΣ−1 − 2I), n − p − 1 > 0;(vii)

E[tr(W−1)W−1] = 2
(n−p)(n−p−1)(n−p−3)Σ

−1Σ−1(viii)

+ n−p−2
(n−p)(n−p−1)(n−p−3)Σ

−1trΣ−1, n − p − 3 > 0.

Proof: The statements in (i) and (ii) immediately follow from Theorem 2.2.9 (i)
and (iii). Now we shall consider the inverse Wishart moments given by the state-
ments (iii) – (viii) of the theorem. The proof is based on the ideas similar to those
used when considering the multivariate integration by parts formula in §1.4.11.
However, in the proof we will modify our differentiation operator somewhat. Let
Y ∈ Rq×r and X ∈ Rp×n. Instead of using Definition 1.4.1 or the equivalent
formula

dY
dX

=
∑

I

∂yij

∂xkl
(fl ⊗ gk)(ej ⊗ di)′,

where I = {i, j, k, l; 1 ≤ i ≤ q, 1 ≤ j ≤ r, 1 ≤ k ≤ p, 1 ≤ l ≤ n}, and di, ej , gk and
fl are the i−th, j−th, k−th and l−th column of Iq, Ir, Ip and In, respectively, we
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will use a derivative analogous to (1.4.48):

dY
dX

=
∑

I

∂yij

∂xkl
(fl ⊗ gk)εkl(ej ⊗ di)′, εkl =

{
1 k = l,
1
2 k 	= l.

All rules for matrix derivatives, especially those in Table 1.4.2 in §1.4.9, hold except
dX
dX , which equals

dX
dX

=
1
2
(I + Kp,p) (2.4.30)

for symmetric X ∈ Rp×p. Let fW(W) denote the Wishart density given in Theo-
rem 2.4.6,

∫
W>0

means an ordinary multiple integral with integration performed
over the subset of R1/2p(p+1), where W is positive definite and dW denotes the
Lebesque measure

∏
k≤l dWkl in R1/2p(p+1). At first, let us verify that∫

W>0

dfW(W)
dW

dW = 0. (2.4.31)

The statement is true, if we can show that∫
W>0

dfW(W)
dWij

dW = 0, i, j = 1, 2, . . . , p, (2.4.32)

holds. The relation in (2.4.32) will be proven for the two special cases: (i, j) =
(p, p) and (i, j) = (p − 1, p). Then the general formula follows by symmetry.
We are going to integrate over a subset of R1/2p(p+1), where W > 0, and one
representation of this subset is given by the principal minors of W, i.e.

W11 > 0,

∣∣∣∣W11 W12

W21 W22

∣∣∣∣ > 0, . . . , |W| > 0. (2.4.33)

Observe that |W| > 0 is the only relation in (2.4.33) which leads to some restric-
tions on Wpp and Wp−1p. Furthermore, by using the definition of a determinant,
the condition |W| > 0 in (2.4.33) can be replaced by

0 ≤ ψ1(W11,W12, . . . , Wp−1p) < Wpp < ∞ (2.4.34)

or

ψ2(W11,W12, . . . , Wp−2p,Wpp) < Wp−1p < ψ3(W11,W12, . . . , Wp−2p,Wpp),
(2.4.35)

where ψ1(•), ψ2(•) and ψ3(•) are continuous functions. Hence, integration of Wpp

and Wp−1p in (2.4.32) can be performed over the intervals given by (2.4.34) and
(2.4.35), respectively. Note that if in these intervals Wpp → ψ1(•), Wp−1p → ψ2(•)
or Wp−1p → ψ3(•), then |W| → 0. Thus,∫
W>0

dfW(W)
dWpp

dW =
∫ ∫

. . .

∫ ∞

ψ1

dfW(W)
dWpp

dWpp . . . dW12dW11

=
∫ ∫

. . .

∫
lim

Wpp→∞
fW(W) − lim

Wpp→ψ1
fW(W) . . . dW12dW11 = 0,
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since limWpp→ψ1 fW(W) = 0 and limWpp→∞ fW(W) = 0. These two state-
ments hold since for the first limit limWpp→ψ1 |W| = 0 and for the second one
limWpp→∞ |W|exp(−1/2tr(Σ−1W)) = 0, which follows from the definition of a
determinant. Furthermore, when considering Wp−1p, another order of integration
yields∫
W>0

dfW(W)
dWp−1p

dW =
∫ ∫

. . .

∫ ψ3

ψ2

dfW(W)
dWp−1p

dWp−1p . . . dW12dW11

=
∫

. . .

∫
lim

Wp−1p→ψ3
fW(W) − lim

Wp−1p→ψ2
fW(W)dWp−2,p . . . dW12dW11 = 0,

since limWp−1p→ψ3 fW(W) = 0 and limWp−1p→ψ2 fW(W) = 0. Hence, (2.4.31) as
well as (2.4.32) are established. By definition of the Wishart density it follows
that (2.4.31) is equivalent to

c

∫
W>0

d

dW
{|W| 12 (n−p−1)|Σ−1| 12nexp(−1/2tr(Σ−1W))}dW = 0, (2.4.36)

where c is the normalization constant. However, after applying Proposition 1.4.10,
it follows that (2.4.36), in turn, is equivalent to∫

W>0

{ 1
2 (n − p − 1)vecW−1fW(W) − 1

2vecΣ−1fW(W)}dW = 0.

Thus, E[W−1] = 1
n−p−1Σ

−1.

For the verification of (iv) we need to establish that∫
W>0

d

dW
W−1fW(W)dW = 0. (2.4.37)

By copying the proof of (2.4.31), the relation in (2.4.37) follows if it can be shown
that

lim
Wpp→∞

W−1fW(W) =0, lim
Wpp→ψ1

W−1fW(W) = 0, (2.4.38)

lim
Wp−1p→ψ3

W−1fW(W) =0, lim
Wp−1p→ψ2

W−1fW(W) = 0. (2.4.39)

Now limWpp→∞ W−1fW(W) = 0, since limWpp→∞ fW(W) = 0 and the elements
of W−1 are finite, as Wpp → ∞. For other statements in (2.4.38) and (2.4.39) we
will apply that

W−1|W| = adj(W), (2.4.40)

where adj denotes the adjoint matrix of W, i.e. the elements of W are replaced
by their cofactors (see §1.1.2) and then transposed. The point is that the adjoint
matrix exists whether or not |W| = 0. Therefore, it follows that

lim
|W|→0

W−1fW(W) = c lim
|W|→0

W−1|W|1/2(n−p−1)|Σ−1|1/2nexp(−1/2tr(Σ−1W))

= c lim
|W|→0

adj(W)|W|1/2(n−p−3)|Σ−1|1/2nexp(−1/2tr(Σ−1W)) = 0 (2.4.41)
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holds. Thus, since Wpp → ψ1, Wp−1p → ψ3 and Wp−1p → ψ2 together imply that
|W| → 0, and from (2.4.41) it follows that (2.4.38) and (2.4.39) are true which
establishes (2.4.37).
Now (2.4.37) will be examined. From (2.4.30) and Table 1.4.1 it follows that

d

dW
W−1fW(W) = fW(W)

dW−1

dW
+ vec′W−1 dfW(W)

dW
= − 1

2 (I + Kp,p)(W−1 ⊗ W−1)fW(W)

+ vecW−1{ 1
2 (n − p − 1)vec′W−1 − 1

2vec′Σ−1}fW(W),

which, utilizing (iii), after integration gives

−E[W−1 ⊗ W−1] − Kp,pE[W−1 ⊗ W−1] + (n − p − 1)E[vecW−1vec′W−1]
= 1

n−p−1vecΣ−1vec′Σ−1. (2.4.42)

Let

T =(E[W−1 ⊗ W−1] : Kp,pE[W−1 ⊗ W−1] : E[vecW−1vec′W−1])′,
M =(vecΣ−1vec′Σ−1 : Kp,p(Σ−1 ⊗ Σ−1) : Σ−1 ⊗ Σ−1)′.

Applying Proposition 1.3.14 (vi) and premultiplying (2.4.42) by Kp,p yields the
following matrix equation:

QT = 1
n−p−1M, (2.4.43)

where

Q =

⎛⎝ −Ip2 −Ip2 (n − p − 1)Ip2

−Ip2 (n − p − 1)Ip2 −Ip2

(n − p − 1)Ip2 −Ip2 −Ip2

⎞⎠ .

Thus,
T = 1

n−p−1Q
−1M

and since

Q−1 =
1

(n − p)(n − p − 3)

⎛⎝ Ip2 Ip2 (n − p − 2)Ip2

Ip2 (n − p − 2)Ip2 Ip2

(n − p − 2)Ip2 Ip2 Ip2

⎞⎠ ,

the relation in (iv) can be obtained with the help of some calculations, i.e.

E[W−1 ⊗ W−1] =
1

(n − p)(n − p − 1)(n − p − 3)
(Ip2 : Ip2 : (n − p − 2)Ip2)M.

For (v) we differentiate both sides in (iii) with respect to Σ−1 and get

E[n vecW−1vec′Σ − vecW−1vec′W] = 1
n−p−1 (Ip2 + Kp,p).

The statement in (vi) is obtained from (iv), because

vecE[W−1W−1] = E[W−1 ⊗ W−1]vecI,
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Kp,p(Σ−1 ⊗ Σ−1)vecI = vec(Σ−1Σ−1)

and
vecΣ−1vec′Σ−1vecI = vecΣ−1trΣ−1.

To get (vii) we multiply (v) by vecI and obtain the statement.
For (viii) it will be utilized that

p∑
m=1

(e′m ⊗ I)W−1 ⊗ W−1(em ⊗ I) = tr(W−1)W−1.

Since
p∑

m=1

(e′m ⊗ I)Σ−1 ⊗ Σ−1(em ⊗ I) = tr(Σ−1)Σ−1,

p∑
m=1

(em ⊗ I)vecΣ−1vec′Σ−1(e′m ⊗ I) =
p∑

m=1

Σ−1eme′mΣ−1 = Σ−1Σ−1

and

p∑
m=1

(e′m ⊗ I)Kp,p(Σ−1 ⊗ Σ−1)(e′m ⊗ I) =
p∑

m=1

(I ⊗ e′m)(Σ−1 ⊗ Σ−1)(e′m ⊗ I)

=
p∑

m=1

Σ−1eme′mΣ−1 = Σ−1Σ−1,

(viii) is verified.
Note that from the proof of (iv) we could easily have obtained E[vecW−1vec′W−1]
which then would have given D[W−1], i.e.

D[W−1] = 2
(n−p)(n−p−1)2(n−p−3)vecΣ−1vec′Σ−1

+ 1
(n−p)(n−p−1)(n−p−3) (I + Kp,p)(Σ−1 ⊗ Σ−1), n − p − 3 > 0. (2.4.44)

Furthermore, by copying the above proof we can extend (2.4.37) and prove that∫
W>0

d

dW
vecW−1vec′(W−1)⊗r−1fW(W)dW = 0, n−p−1−2r > 0. (2.4.45)

Since
dfW(W)

dW
= 1

2 (n − p − 1)vecW−1fW(W) − 1
2vecΣ−1fW(W),

we obtain from (2.4.45) that

2E[
d

dW
vecW−1vec′(W−1)⊗r−1] + (n − p − 1)E[vecW−1vec′(W−1)⊗r]

= E[vecΣ−1vec′(W−1)⊗r], n − p − 1 − 2r > 0. (2.4.46)
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It follows from (2.4.46) that in order to obtain E[(W−1)⊗r+1] one has to use the
sum

2E[vec(
d

dW
(W−1)⊗r)] + (n − p − 1)E[vec((W−1)⊗r+1)].

Here one stacks algebraic problems when an explicit solution is of interest. On the
other hand the problem is straightforward, although complicated. For example, we
can mention difficulties which occurred when (2.4.46) was used in order to obtain
the moments of the third order (von Rosen, 1988a).
Let us consider the basic structure of the first two moments of symmetric matrices
which are rotationally invariant, i.e. ΓUΓ′ has the the same distribution as U for
every orthogonal matrix Γ. We are interested in E[U] and of course

E[vecU] = vecA

for some symmetric A. There are many ways to show that A = cI for some
constant c if U is rotationally invariant. For example, A = HDH′ where H is
orthogonal and D diagonal implies that E[vecU] = vecD and therefore ΓDΓ′ = D
for all Γ. By using different Γ we observe that D must be proportional to I. Thus

E[U] = cI

and c = E[U11].
When proceeding with the second order moments, we consider

vecE[U ⊗ U] = E[
∑
ijkl

UijUklej ⊗ el ⊗ ei ⊗ ek].

Because U is symmetric and obviously E[UijUkl] = E[UklUij ], the expectation
vecE[U⊗U] should be the same when interchanging the pairs of indices (i, j) and
(k, l) as well as when interchanging either i and j or k and l. Thus we may write
that for some elements aij and constants d1, d2 and d3,

vecE[U ⊗ U] =
∑
ijkl

(d1aijakl + d2aikajl + d2ailajk + d3)ej ⊗ el ⊗ ei ⊗ ek,

where amn = anm. Thus, for A = (aij),

vecE[U ⊗ U] = d1vec(A ⊗ A) + d2vecA ⊗ vecA + d2vec(Kp,p(A ⊗ A)) + d3vecI.

Now we will study the consequence of U being ”rotationally invariant”. Since
A = ΓDΓ′ for an orthogonal matrix Γ and a diagonal matrix D,

vecE[U ⊗ U] = (Γ ⊗ Γ ⊗ Γ ⊗ Γ)vecE[U ⊗ U]
= d1vec(D ⊗ D) + d2vecD ⊗ vecD + d2vec(Kp,p(D ⊗ D)) + d3vecI.

Furthermore, by premultiplying with properly chosen orthogonal matrices, we may
conclude that D = cI. Thus, if c1 = cd1 + d3 and c2 = cd2,

E[U ⊗ U] = c1I + c2vecIvec′I + c2Kp,p.

Moreover,

E[U11U22] =c1,

E[U2
12] =c2.

The results are summarized in the next lemma.
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Lemma 2.4.1. Let U : p × p be symmetric and rotationally invariant. Then

E[U] = cI, c = E[U11];(i)

E[U ⊗ U] = c1I + c2vecIvec′I + c2Kp,p, c1 = E[U11U22], c2 = E[U2
12];(ii)

D[U] = c2I + (c1 − c2)vecIvec′I + c2Kp,p.(iii)

Proof: The relations in (i) and (ii) were motivated before the lemma. The state-
ment in (iii) follows from (i) and (ii) when Proposition 1.3.14 (vi) is applied.
Observe that the first two moments of the Wishart and inverted Wishart distri-
bution follow the structure of the moments given in the lemma.
In §2.4.3 two versions of the multivariate beta distribution were introduced. Now,
the mean and the dispersion matrix for both are given.

Theorem 2.4.15. Let Z ∼ MβII(p,m, n) and F ∼ MβI(p,m, n). Then

E[Z] = n
m−p−1I, m − p − 1 > 0;(i)

D[Z] = 2n(m−p−2)+n2

(m−p)(m−p−1)(m−p−3) (I + Kp,p) + 2n(m−p−1)+2n2

(m−p)(m−p−1)2(m−p−3)vecIvec′I,(ii)

m − p − 3 > 0;

E[F] = m
n+mI;(iii)

D[F] =(c3 − m2

(n+m)2 )vecIvec′I + c4(I + Kp,p),(iv)
where

c4 = n−p−1
(n+m−1)(n+m+2){(n − p − 2 + 1

n+m )c2 − (1 + n−p−1
n+m )c1},

c3 =n−p−1
n+m ((n − p − 2)c2 − c1) − (n + m + 1)c4,

c1 = n2(m−p−2)+2n
(m−p)(m−p−1)(m−p−3) , c2 = n(m−p−2)+n2+n

(m−p)(m−p−1)(m−p−3) ,

m − p − 3 > 0.

Proof: By definition, Z = W−1/2
2 W1W

−1/2
2 , where W1 ∼ Wp(I, n) and W2 ∼

Wp(I,m) are independent. Hence, by Theorem 2.4.14,

E[Z] =E[W−1/2
2 W1W

−1/2
2 ] = E[W−1/2

2 E[W1]W
−1/2
2 ] = nE[W−1

2 ] = n
m−p−1I

and (i) is established. For (ii) we get

D[Z] =E[D[Z|W2]] + D[E[Z|W2]]
=E[n(I + Kp,p)(W−1

2 ⊗ W−1
2 )] + D[nW−1

2 ]

and then, by Theorem 2.4.14 (iv) and (2.4.44), the statement follows.
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In (iii) and (iv) it will be utilized that (I + Z)−1 has the same distribution as
F = (W1 + W2)−1/2W2(W1 + W2)−1/2. A technique similar to the one which
was used when moments for the inverted Wishart matrix were derived will be
applied. From (2.4.20) it follows that

0 =
∫

d

dZ
c|Z| 12 (n−p−1)|I + Z|− 1

2 (n+m)dZ,

where c is the normalizing constant and the derivative is the same as the one which
was used in the proof of Theorem 2.4.14. In particular, the projection in (2.4.30)
holds, i.e.

dZ
dZ

=
1
2
(I + Kp,p).

By differentiation we obtain

0 = 1
2 (n − p − 1)

dZ
dZ

E[vecZ−1] − 1
2 (n + m)

dZ
dZ

E[vec(I + Z)−1],

which is equivalent to

E[vec(I + Z)−1] = n−p−1
n+m E[vecZ−1].

However, by definition of Z,

E[Z−1] = E[W1/2
2 W−1

1 W1/2
2 ] = m

n−p−1I

and (iii) is established.
Turning to (iv), it is first observed that

0 =
∫

d

dZ
Z−1c|Z|12 (n−p−1)|I + Z|− 1

2 (n+m)dZ

= −dZ
dZ

E[Z−1 ⊗ Z−1] + 1
2 (n − p − 1)

dZ
dZ

E[vecZ−1vec′Z−1]

− 1
2 (n + m)

dZ
dZ

E[vec(I + Z)−1vec′Z−1].

Moreover, instead of considering E[ d
dZZ−1], we can study E[ d

dZ (I + Z)−1] and
obtain

dZ
dZ

E[(I + Z)−1 ⊗ (I + Z)−1] = 1
2 (n − p − 1)E[vecZ−1vec′(I + Z)−1]

− 1
2 (n + m)E[vec(I + Z)−1vec′(I + Z)−1].

By transposing this expression it follows, since

(I + Kp,p)E[Z−1 ⊗ Z−1] = E[Z−1 ⊗ Z−1](I + Kp,p),
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that
E[vec(I + Z)−1vec′Z−1] = E[vecZ−1vec′(I + Z)−1].

Thus, using the relations given above,

(I + Kp,p)E[(I + Z)−1 ⊗ (I + Z)−1] = −n−p−1
n+m (I + Kp,p)E[Z−1 ⊗ Z−1]

+ (n−p−1)2

n+m E[vecZ−1vecZ−1] − (n + m)E[vec(I + Z)−1vec′(I + Z)−1]. (2.4.47)

Now Proposition 1.3.14 (vi) implies that

E[vec(I+Z)−1vec′(I + Z)−1] + Kp,pE[(I + Z)−1 ⊗ (I + Z)−1]
= −n−p−1

n+m (E[vecZ−1vec′Z−1] + Kp,p)E[Z−1 ⊗ Z−1])

+ (n−p−1)2

n+m E[Z−1 ⊗ Z−1] − (n + m)E[vec(I + Z)−1vec′(I + Z)−1]

and by multiplying this equation by Kp,p we obtain a third set of equations. Put

E =
(
E[vec(I + Z)−1vec′(I + Z)−1], E[(I + Z)−1 ⊗ (I + Z)−1],

Kp,pE[(I + Z)−1 ⊗ (I + Z)−1]
)′

and

M =(E[vecZ−1vec′Z−1], E[Z−1 ⊗ Z−1],Kp,pE[Z−1 ⊗ Z−1])′.

Then, from the above relations it follows that⎛⎝ (n + m)Ip2 Ip2 Ip2

Ip2 (n + m)Ip2 Ip2

Ip2 Ip2 (n + m)Ip2

⎞⎠E

= −n − p − 1
n + m

⎛⎝ (n − p − 1)Ip2 −Ip2 −Ip2

−Ip2 (n − p − 1)Ip2 −Ip2

−Ip2 −Ip2 (n − p − 1)Ip2

⎞⎠M.

After E[Z−1 ⊗ Z−1] is obtained, M can be determined and then we have a linear
equation system in E with a unique solution. Some calculations yield

E[Z−1 ⊗ Z−1] = c1I + c2vecIvec′I + c2Kp,p,

where c1 and c2 are given in statement (iv). Via Proposition 1.3.14 (vi) M is
found. This approach is similar to the one used for obtaining moments of the
inverted Wishart distribution.
However, instead of following this route to the end, which consists of routine work,
we are going to utilize Lemma 2.4.1, which implies that for constants c3 and c4

E[(I + Z)−1 ⊗ (I + Z)−1] =c3I + c4vecIvec′I + c4Kp,p,

E[vec(I + Z)−1vec′(I + Z)−1] =c3vecIvec′I + c4(I + Kp,p).
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From (2.4.47) it follows that

(n + m)c4(I + Kp,p) + (n + m)c3vecIvec′I + (c3 + c4)(I + Kp,p) + 2c4vecIvec′I
= −n−p−1

n+m {(c1 + c2)(I + Kp,p) + 2c2vecIvec′I}
+ (n−p−1)2

n+m {c1vecIvec′I + c2(I + Kp,p)},

which is identical to

((n + m + 1)c4 + c3)(I + Kp,p) + ((n + m)c3 + 2c4)vecIvec′I

= { (n−p−1)2

n+m c2 − n−p−1
n+m (c1 + c2)}(I + Kp,p) + { (n−p−1)2

n+m c1 − n−p−1
n+m 2c2}vecIvec′I.

Vaguely speaking, I, Kp,p and vecIvec′I act in some sense as elements of a basis
and therefore the constants c4 and c3 are determined by the following equations:

(n + m + 1)c4 + c3 =n−p−1
n+m ((n − p − 2)c2 − c1),

(n + m)c3 + c4 =n−p−1
n+m ((n − p − 1)c1 − 2c2).

Thus,
E[vec(I + Z)−1vec′(I + Z)−1] = E[vecFvec′F]

is obtained and now, with the help of (iii), the dispersion in (iv) is verified.

2.4.6 Cumulants of the Wishart matrix
Later, when approximating with the help of the Wishart distribution, cumulants
of low order of W ∼ Wp(Σ, n) are needed. In §2.1.4 cumulants were defined as
derivatives of the cumulant function at the point zero. Since W is symmetric, we
apply Definition 2.1.9 to the Wishart matrix, which gives the following result.

Theorem 2.4.16. The first four cumulants of the Wishart matrix W ∼ Wp(Σ, n)
are given by the equalities

c1[W] = nGpvecΣ = nV 2(Σ),(i)
where V 2(•) is given by Definition 1.3.9;

c2[W] = nJp(Σ ⊗ Σ)G′
p;(ii)

c3[W] = nJp(Σ ⊗ Σ ⊗ vec′Σ)(Ip4 + Kp2,p2)(Ip ⊗ Kp,p ⊗ Ip)(G′
p ⊗ J′

p);(iii)

c4[W] = nJp(Σ ⊗ Σ ⊗ (vec′Σ)⊗2)(Ip3 ⊗ Kp,p2)(I + Kp,p ⊗ Ip2 ⊗ Kp,p)(iv)

× (I + Kp,p ⊗ Kp,p ⊗ Ip2)(G′
p ⊗ J′

p ⊗ J′
p)

+ nJp(Σ ⊗ Σ ⊗ vec′(Σ ⊗ Σ))(Kp2,p ⊗ I3
p)(I + Kp,p ⊗ Ip2 ⊗ Kp,p)

× (I + Kp,p ⊗ Kp,p ⊗ Ip2)(G′
p ⊗ J′

p ⊗ J′
p),
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where Gp is given by (1.3.49) and (1.3.50) (see also T(u) in Proposition 1.3.22
which is identical to Gp), and

Jp = Gp(I + Kp,p).

Proof: By using the definitions of Gp and Jp, (i) and (ii) follow immediately
from Theorem 2.1.11 and Theorem 2.4.14. In order to show (iii) we have to
perform some calculations. We start by differentiating the cumulant function
three times. Indeed, when deriving (iii), we will prove (i) and (ii) in another way.
The characteristic function was given in Theorem 2.4.5 and thus the cumulant
function equals

ψW(T) = −n

2
ln|Ip − iM(T)Σ|, (2.4.48)

where M(T) is given by (2.4.11). The matrix

Jp =
dM(T)
dV 2(T)

= Gp(Ip2 + Kp,p) (2.4.49)

will be used several times when establishing the statements. The last equality in
(2.4.49) follows, because (fk(k,l) and ei are the same as in §1.3.6)

dM(T)
dV 2(T)

=
∑
k≤l
i≤j

dtij
dtkl

fk(k,l)(ei ⊗ ej + ej ⊗ ei)′

=
∑
i≤j

fk(i,j)(ei ⊗ ej + ej ⊗ ei)′ = Gp

∑
i≤j

(ej ⊗ ei)(ei ⊗ ej + ej ⊗ ei)′

=Gp

∑
i,j

(ej ⊗ ei)(ei ⊗ ej + ej ⊗ ei)′ = Gp(Ip2 + Kp,p).

Now

dψW(T)
dV 2(T)

=
(1.4.14)

−n

2
d|Ip − iM(T)Σ|

dV 2(T)
d(ln|Ip − iM(T)Σ|)

d|Ip − iM(T)Σ|
=

(1.4.14)
−n

2
d(Ip − iM(T)Σ)

dV 2(T)
d|Ip − iM(T)Σ|
d(Ip − iM(T)Σ)

1
|Ip − iM(T)Σ|

= i
n

2
dM(T)
dV 2(T)

(Σ ⊗ Ip)vec{(Ip − iΣM(T))−1}.

Thus,

c1[W] = i−1 dψW(T)
dV 2(T)

∣∣∣∣
T=0

=
n

2
JpvecΣ = nGpvecΣ = nV 2(Σ).

Before going further with the proof of (ii), (iii) and (iv), we shall express the
matrix (Ip − iΣM(T))−1 with the help of the series expansion

(I − A)−1 = I + A + A2 + · · · =
∞∑

k=0

Ak
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and obtain

(Ip − iΣM(T))−1 =
∞∑

k=0

ik(ΣM(T))k.

For T close to zero, the series converges. Thus, the first derivative takes the form

dψW(T)
dV 2(T)

= i
n

2
Jp(Σ ⊗ Ip)vec{

∞∑
k=0

ik(ΣM(T))k}

= n

∞∑
k=0

ik+1V 2((ΣM(T))kΣ). (2.4.50)

Because M(T) is a linear function in T, it follows from (2.4.50) and the definition
of cumulants that

ck[W] = n
dk−1V 2((ΣM(T))k−1Σ)

dV 2(T)k−1
, k = 2, 3, . . . (2.4.51)

Now equality (2.4.51) is studied when k = 2. Straightforward calculations yield

c2[W] = n
dV 2(ΣM(T)Σ)

dV 2(T)
= n

dM(T)
dV 2(T)

(Σ ⊗ Σ)G′
p = nJp(Σ ⊗ Σ)G′

p.

Thus, the second order cumulant is obtained which could also have been presented
via Theorem 2.4.14 (ii).
For the third order cumulant the product in (2.4.51) has to be differentiated twice.
Hence,

c3[W] =n
d

dV 2(T)
dV 2(ΣM(T)ΣM(T)Σ)

dV 2(T)
= n

d

dV 2(T)
d(ΣM(T)ΣM(T)Σ)

dV 2(T)
G′

p

=n
d

dV 2(T)
dM(T)
dV 2(T)

{(ΣM(T)Σ ⊗ Σ) + (Σ ⊗ ΣM(T)Σ)}G′
p

=n
d

dV 2(T)
{Jp((ΣM(T)Σ ⊗ Σ) + (Σ ⊗ ΣM(T)Σ))G′

p}

=n(
d(ΣM(T)Σ ⊗ Σ)

dV 2(T)
+

d(Σ ⊗ ΣM(T)Σ)
dV 2(T)

)(G′
p ⊗ J′

p)

=n(
d(ΣM(T)Σ)

dV 2(T)
⊗ vec′Σ)(I + Kp2,p2)(Ip ⊗ Kp,p ⊗ Ip)(G′

p ⊗ J′
p)

=nJp(Σ ⊗ Σ ⊗ vec′Σ)(I + Kp2,p2)(Ip ⊗ Kp,p ⊗ Ip)(G′
p ⊗ J′

p). (2.4.52)
Finally, we consider the fourth order cumulants. The third order derivative of the
expression in (2.4.51) gives c4[W] and we note that

c4[W] = n
d3{V 2((ΣM(T))3Σ)}

dV 2(T)3
= n

d2

V 2(T)2

{
d{(ΣM(T))3Σ}

dV 2(T)
G′

p

}
=n

d2

V 2(T)

{
d{(ΣM(T))2Σ ⊗ Σ + (ΣM(T)Σ)⊗2 + Σ ⊗ (ΣM(T))2Σ}

dV 2(T)
G′

p

}
=n

d2

V 2(T)

{
d{(ΣM(T))2Σ ⊗ Σ}

dV 2(T)
(I + Kp,p ⊗ Kp,p)(G′

p ⊗ J′
p)
}

+ n
d2

V 2(T)

{
d{(ΣM(T)Σ)⊗2}

dV 2(T)
(G′

p ⊗ J′
p)
}

, (2.4.53)
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since

vec′(Σ ⊗ (ΣM(T))2Σ)(Kp,p ⊗ Kp,p) = vec′((ΣM(T))2Σ ⊗ Σ).

When proceeding with the calculations, we obtain

c4[W] = n
d

dV 2(T)

{
(
d((ΣM(T))2Σ)

dV 2(T)
⊗ vec′Σ)(I + Kp,p ⊗ Kp,p)(G′

p ⊗ J′
p)
}

+ n
d

dV 2(T)

{
(
d(ΣM(T)Σ)

dV 2(T)
⊗ vec′(ΣM(T)Σ))(I + Kp2,p2)

×(I ⊗ Kp,p ⊗ I)(G′
p ⊗ J′

p)
}

,

which is equivalent to

c4[W]

=n
d

dV 2(T)

{
(

dM(T)
d V 2(T)

(ΣM(T)Σ ⊗ Σ + Σ ⊗ ΣM(T)Σ) ⊗ vec′Σ)

× (I + Kp,p ⊗ Kp,p)(G′
p ⊗ J′

p)
}

+ n
d

dV 2(T)

{
(
dM(T)
dV 2(T)

(Σ ⊗ Σ) ⊗ vec′(ΣM(T)Σ))(I + Kp2,p2)

× (I ⊗ Kp,p ⊗ I)(G′
p ⊗ J′

p)
}

=n
d((ΣM(T)Σ ⊗ Σ + Σ ⊗ ΣM(T)Σ) ⊗ vec′Σ)

d V 2(T)
× {(I + Kp,p ⊗ Kp,p)(G′

p ⊗ J′
p) ⊗ J′

p}

+ n
dΣ ⊗ Σ ⊗ vec′(ΣM(T)Σ)

dV 2(T)
{(I + Kp2,p2)(I ⊗ Kp,p ⊗ I)(G′

p ⊗ J′
p) ⊗ J′

p}.
(2.4.54)

Now

vec′(ΣM(T)Σ ⊗ Σ ⊗ vec′Σ + Σ ⊗ ΣM(T)Σ ⊗ vec′Σ)
= vec′(ΣM(T)Σ ⊗ Σ ⊗ vec′Σ)(I + Kp,p ⊗ Ip2 ⊗ Kp,p) (2.4.55)

and

dΣM(T)Σ ⊗ Σ ⊗ vec′Σ
dV 2(T)

=Jp(Σ ⊗ Σ) ⊗ vec′(Σ ⊗ vec′Σ)

=Jp(Σ ⊗ Σ ⊗ (vec′Σ)⊗2(Ip3 ⊗ Kp,p2). (2.4.56)

Thus, from (2.4.55) and (2.4.56) it follows that the first term in (2.4.54) equals

nJp(Σ ⊗ Σ ⊗ (vec′Σ)⊗2)(Ip3 ⊗ Kp,p2)(I + Kp,p ⊗ Ip2 ⊗ Kp,p)
× (I + Kp,p ⊗ Kp,p ⊗ Ip2)(G′

p ⊗ J′
p ⊗ J′

p). (2.4.57)
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For the second term we get

d(Σ ⊗ Σ ⊗ vec′(ΣM(T)Σ))
d V 2(T)

=
(

d(ΣM(T)Σ)
d V 2(T)

⊗ Σ ⊗ Σ
)

(Kp2,p ⊗ I3
p)

=
d(ΣM(T)Σ ⊗ Σ ⊗ Σ)

d V 2(T)
(Kp2,p ⊗ I3

p)

=
(1.4.24)

Jp(Σ ⊗ Σ ⊗ vec′(Σ ⊗ Σ))(Kp2,p ⊗ I3
p).(2.4.58)

Hence, (2.4.58) gives an expression for the second term in (2.4.54), i.e.

nJp(Σ ⊗ Σ ⊗ vec′(Σ ⊗ Σ))(Kp2,p ⊗ I3
p)(I + Kp,p ⊗ Ip2 ⊗ Kp,p)

(I + Kp,p ⊗ Kp,p ⊗ Ip2)(G′
p ⊗ J′

p ⊗ J′
p). (2.4.59)

Summing the expressions (2.4.57) and (2.4.59) establishes c4[W].

2.4.7 Derivatives of the Wishart density
When approximating densities with the Wishart density we need, besides the first
cumulants, also the first derivatives of the Wishart density. In this paragraph we
will use our standard version of matrix derivative which differs somewhat from the
one which was used in §2.4.5. The reason is that now the derivative should be
used in a Fourier transform, while in the previous paragraph the derivative was
used as an artificial operator. Let fW(W) be the density function of the Wishart
matrix.

Theorem 2.4.17. Let W ∼ Wp(Σ, n). Then

dkfW(W)
dV 2(W)k

= (−1)kLk(W,Σ)fW(W), k = 0, 1, 2, . . . , (2.4.60)

where V 2(W) is defined in (1.3.75). For k = 0, 1, 2, 3 the matrices Lk(W,Σ) are
of the form

L0(W,Σ) = 1,

L1(W,Σ) = −1
2GpHpvec(sW−1 − Σ−1), (2.4.61)

L2(W,Σ) = −1
2GpHp{s(W−1 ⊗ W−1)

− 1
2vec(sW−1 − Σ−1)vec′(sW−1 − Σ−1)}HpG′

p, (2.4.62)

L3(W,Σ) = −1
2GpHp{

s(W−1 ⊗ W−1 ⊗ vec′W−1 + vec′W−1 ⊗ W−1 ⊗ W−1)(Ip ⊗ Kp,p ⊗ Ip)

− s
2 (W−1 ⊗ W−1){(Ip2 ⊗ vec′(sW−1 − Σ−1)) + (vec′(sW−1 − Σ−1) ⊗ Ip2)}

− s
2vec(sW−1 − Σ−1)vec′(W−1 ⊗ W−1)

+ 1
4vec(sW−1 − Σ−1)(vec′(sW−1 − Σ−1) ⊗ vec′(sW−1 − Σ−1))

}
(HpG′

p)
⊗2,

(2.4.63)
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where s = n − p − 1, Kp,p is the commutation matrix given by (1.3.11), Gp is
defined by (1.3.49) and (1.3.50), and Hp = I + Kp,p − (Kp,p)d.

Proof: Consider the Wishart density (2.4.12), which is of the form

fW(W) = c|W| s2 e−
1
2 tr(Σ−1W), W > 0,

where
c =

1

2
pn
2 Γp(n

2 )|Σ|n2
.

To obtain (2.4.61), (2.4.62) and (2.4.63) we must differentiate the Wishart density
three times. However, before carrying out these calculations it is noted that by
(1.4.30) and (1.4.28)

d|W|a
dV 2(W)

=aGpHpvecW−1|W|a,

deatr(WΣ−1)

dV 2(W)
=aGpHpvecΣ−1eatr(WΣ−1)

and therefore (2.4.60) must hold for some function Lk(W,Σ).
Observe that

d0fW(W)
dV 2(W)0

= fW(W) = (−1)0 × 1 × fW(W)

implies that
L0(W,Σ) = 1.

The vector L1(W,Σ) will be obtained from the first order derivative. It is observed
that

dfW(W)
dV 2(W)

=c
d|W| s2

dV 2(W)
e−

1
2 tr(Σ−1W) + c|W| s2 de−

1
2 tr(Σ−1W)

dV 2(W)
= s

2GpHpvecW−1fW(W) − 1
2GpHpvecΣ−1fW(W)

= 1
2GpHp(svecW−1 − vecΣ−1)fW(W).

Thus, L1(W,Σ) is given by (2.4.61).
In order to find L2(W,Σ), we have to take the second order derivative of the
Wishart density function and obtain

d2fW(W)
dV 2(W)2

=
d{−L1(W,Σ)fW(W)}

dV 2(W)

=
d(−L1(W,Σ))

dV 2(W)
fW(W) − dfW(W)

dV 2(W)
L′

1(W,Σ)

=
dW−1

dV 2(W)
HpG′

p
s
2fW(W) + L1(W,Σ)L′

1(W,Σ)fW(W), (2.4.64)
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which implies that L2(W,Σ) is given by (2.4.62).
For the third derivative we have the following chain of equalities:

d3fW(W)
d V 2(W)3

=
d

dV 2(W)
d2fW(W)
dV 2(W)2

=
(2.4.64)

−s

2
d(W−1 ⊗ W−1)

dV 2(W)
(HpG′

p ⊗ HpG′
p)fW(W)

− s

2
dfW(W)
dV 2(W)

vec′(W−1 ⊗ W−1)(HpG′
p ⊗ HpG′

p)

+
d{L1(W,Σ)fW(W)}

dV 2(W)
(Ip2 ⊗ L′

1(W,Σ))

+
dL1(W,Σ)
dV 2(W)

(L1(W,Σ) ⊗ Ip2)fW(W)

=
1
2
GpHp

{
s(W−1 ⊗ W−1 ⊗ vec′W−1 + vec′W−1 ⊗ W−1 ⊗ W−1)

× (Ip ⊗ Kp,p ⊗ Ip)

− 1
2
vec(sW−1 − Σ−1)vec′(W−1 ⊗ W−1)

}
(HpG′

p ⊗ HpG′
p)fW(W)

− s

4
GpHp(W−1 ⊗ W−1)(Ip2 ⊗ vec′(sW−1 − Σ−1))fW(W)

− 1
8
GpHpvec(sW−1 − Σ−1)(vec′(sW−1 − Σ−1) ⊗ vec′(sW−1 − Σ−1))

× (HpG′
p ⊗ HpG′

p)fW(W)

− s

4
GpHp(W−1 ⊗ W−1)(vec′(sW−1 − Σ−1) ⊗ Ip2)

× (HpG′
p ⊗ HpG′

p)fW(W),

which is identical to (2.4.63).

2.4.8 Centered Wishart distribution
Let W ∼ Wp(Σ, n). We are going to use the Wishart density as an approximating
density in Sections 3.2 and 3.3. One complication with the Wishart approximation
is that the derivatives of the density of a Wishart distributed matrix, or more pre-
cisely Lk(W,Σ) given by (2.4.60), increase with n. When considering Lk(W,Σ),
we first point out that W in Lk(W,Σ) can be any W which is positive definite.
On the other hand, from a theoretical point of view we must always have W of
the form: W =

∑n
i=1 xix′

i and then, under some conditions, it can be shown that
the Wishart density is O(n−p/2). The result follows by an application of Stirling’s
formula to Γp(n/2) in (2.4.12). Moreover, when n → ∞, 1/nW−Σ → 0 in prob-
ability. Hence, asymptotic properties indicate that the derivatives of the Wishart
density, although they depend on n, are fairly stable. So, from an asymptotic
point of view, the Wishart density can be used. However, when approximating
densities, we are often interested in tail probabilities and in many cases it will not
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be realistic to suppose, when approximating with the Wishart distribution, that
W−nΣ is small. Generally, we see that Lk(W,Σ) is an increasing function in n.
However, it seems wise to adjust the density so that the derivatives decrease with
n. Indeed, some authors have not observed this negative property of the Wishart
distribution. In order to overcome this problem we propose a translation of the
Wishart matrix, so that a centered version is used, i.e.

V = W − nΣ.

From Theorem 2.4.6 it follows that the matrix V has the density function

fV(V) =

⎧⎪⎨⎪⎩
1

2
pn
2 Γp(n

2 )|Σ|n2
|V + nΣ|

n−p−1
2 e−

1
2 tr(Σ−1(V+nΣ)), V + nΣ > 0,

0, otherwise.
(2.4.65)

If a symmetric matrix V has the density (2.4.65), we say that V follows a centered
Wishart distribution. It is important to observe that since we have performed a
translation with the mean, the first moment of V equals zero and the cumulants
of higher order are identical to the corresponding cumulants of the Wishart dis-
tribution.
In order to use the density of the centered Wishart distribution when approximat-
ing an unknown distribution, we need the first derivatives of the density functions.
The derivatives of fV(X) can be easily obtained by simple transformations of
Li(X,Σ), if we take into account the expressions of the densities (2.4.12) and
(2.4.65). Analogously to Theorem 2.4.17 we have

Lemma 2.4.2. Let V = W − nΣ, where W ∼ Wp(Σ, n), let Gp and Hp be as
in Theorem 2.4.17. Then

f
(k)
V (V) =

dkfV(V)
dV 2Vk

= (−1)kL�
k(V,Σ)fV(V), (2.4.66)

where

L�
k(V,Σ) = Lk(V + nΣ,Σ), k = 0, 1, 2, . . .

and Lk(W,Σ) are given in Theorem 2.4.17.
For n � p

L�
1(V,Σ) ≈ 1

2nGpHpvec(B1), (2.4.67)
L�

2(V,Σ) ≈− 1
2nGpHpB2HpG′

p − 1
4n2 GpHpvec(B1)vec′(B1)HpG′

p, (2.4.68)

where

B1 =Σ−1V
1
2 ( 1

nV
1
2 Σ−1V

1
2 + Ip)−1V

1
2 Σ−1,

B2 =(V/n + Σ)−1 ⊗ (V/n + Σ)−1.



274 Chapter II

For k = 3, 4, . . . the matrix L�
k(V,Σ) is of order n−(k−1).

Proof: The relation in (2.4.66) follows directly from (2.4.60) in Theorem 2.4.17
if we replace W with the expression V + nΣ, since W = V + nΣ. For L�

1(V,Σ)
we have

L�
1(V,Σ) = − 1

2
GpHpvec{(n − p − 1)(V + nΣ)−1 − Σ−1}

= − 1
2
GpHpvec{n−p−1

n (V/n + Σ)−1 − Σ−1}.

If n � p, we have

L�
1(V,Σ) ≈ −1

2
GpHpvec{(V/n + Σ)−1 − Σ−1},

and using Proposition 1.3.6 and that V is p.d., we get

L�
1(V,Σ) ≈ 1

2nGpHpvec{Σ−1V
1
2 (

1
n
V

1
2 Σ−1V

1
2 + Ip)−1V

1
2 Σ−1}.

Hence, (2.4.67) has been proved.
For k = 2 we obtain in a similar way (s = n − p − 1)

L�
2(V,Σ) = −1

2
GpHp

{
s(V + nΣ)−1 ⊗ (V + nΣ)−1

− 1
2
vec(s(V + nΣ)−1 − Σ−1)vec′(s(V + nΣ)−1 − Σ−1)

}
HpG′

p

≈ − 1
2n

GpHp(V/n + Σ)−1 ⊗ (V/n + Σ)−1HpGp

− 1
4n2

GpHp(vecB1vec′B1)HpG′
p.

Thus (2.4.68) is established.
To complete the proof we remark that from (2.4.63) we have, with the help of
(2.4.67) and (2.4.68), that L�

3(V,Σ) is of order n−2. From the recursive definition
of the matrix derivative the last statement of the lemma is established.
Previously we noted that the order of magnitude of fW(W) is O(n−1/2) when it is
supposed that W =

∑n
i=1 xix′

i. Since we have translated the Wishart distribution
with nΣ, it follows that the order of magnitude is also O(n−1/2).
Another property which will be used later is given in the next theorem.

Lemma 2.4.3. Let W ∼ Wp(Σ, n) and put V = W − nΣ, where

V =
(

V11 V12

V21 V22

) (
q × q q × (p − q)

(p − q) × q (p − q) × (p − q)

)
.

Partition Σ in the same way as V and let

W1·2 = V11 + nΣ11 − (V12 + nΣ12)(V22 + nΣ22)−1(V21 + nΣ21).
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Then

W1·2 ∼Wq(Σ1·2, n − p − q),
V12|V22 ∼Nq,p−q(Σ12Σ−1

22 V22,Σ1·2,V22 + nΣ22),
V22 + nΣ22 = W22 ∼Wp−q(Σ22, n)

and W1·2 is independent of V12,V22.

Proof: The proof follows from a non-centered version of this lemma which was
given as Theorem 2.4.12, since the Jacobian from W1·2,W12,W22 to W1·2,V12,
V22 equals one.

2.4.9 Problems
1. Let W ∼ Wp(Σ, n) and A: p × q. Prove that

E[A(A′WA)−A′W] = A(A′ΣA)−A′Σ

and
E[A(A′W−1A)−A′W−1] = A(A′Σ−1A)−A′Σ−1.

2. Let V ∼ Wp(I, n) and A: p × q. Show that, if n − p − 1 > 0,

E[V−1A(A′V−1A)−A′V−1] =
r(A)

(n − p − 1)(n − p + r(A) − 1)
I

+
1

n − p + r(A) − 1
A(A′A)−A′.

3. Let V ∼ Wp(I, n) and A: p × q. Prove that, if n − p + r(A) − 1 > 0,

E[V−1A(A′V−1A)−A′V−1V−1A(A′V−1A)−A′V−1]

=
n − 1

n − p + r(A) − 1
A(A′A)−A′.

4. Let W ∼ Wp(Σ, n). Show that E[Lk(W,Σ)] = 0.
5. Let W ∼ Wp(Σ, n). Show that the cumulant function

ψtrW(t) = −n
2 ln|(I − 2i tΣ)|.

6. Find ci[trW], i = 1, 2, 3, using the cumulant function in Problem 5.
7. Derive the Wishart density, under proper assumptions, by starting with Corol-

lary 2.4.4.1 and thereafter applying Theorem 1.4.18.
8. Differentiate the Wishart density with respect to Σ and obtain the first two

moments of the Wishart distribution by integration.
9. Derive the density of the eigenvalues of W ∼ Wp(I, n).

10. Derive the density of the eigenvalues of G in Theorem 2.4.10.
11. Calculate the mean and variance of V in Corollary 2.4.4.2.



CHAPTER III

Distribution Expansions

In statistical estimation theory one of the main problems is the approximation of
the distribution of a specific statistic. Even if it is assumed that the observations
follow a normal distribution the exact distributions of the statistics of interest are
seldom known or they are complicated to obtain and to use. The approximation
of the distributions of the eigenvalues and eigenvectors of the sample covariance
matrix may serve as an example. While for a normal population the distribution
of eigenvalues is known (James, 1960), the distribution of eigenvectors has not yet
been described in a convenient manner. Moreover, the distribution of eigenvalues
can only be used via approximations, because the density of the exact distribu-
tion is expressed as an infinite sum of terms, including expressions of complicated
polynomials. Furthermore, the treatment of data via an assumption of normality
of the population is too restrictive in many cases. Often the existence of the first
few moments is the only assumption which can be made. This implies that dis-
tribution free or asymptotic methods will be valuable. For example, approaches
based on the asymptotic normal distribution or approaches relying on the chi-
square distribution are both important. In this chapter we are going to examine
different approximations and expansions. All of them stem from Taylor expan-
sions of important functions in mathematical statistics, such as the characteristic
function and the cumulant function as well as some others. The first section treats
asymptotic distributions. Here we shall also analyze the Taylor expansion of a ran-
dom vector. Then we shall deal with multivariate normal approximations. This
leads us to the well-known Edgeworth expansions. In the third section we shall
give approximation formulas for the density of a random matrix via the density
of another random matrix of the same size, such as a matrix normally distributed
matrix. The final section, which is a direct extension of Section 3.3, presents an
approach to multivariate approximations of densities of random variables of dif-
ferent sizes. Throughout distribution expansions of several well-known statistics
from multivariate analysis will be considered as applications.

3.1 ASYMPTOTIC NORMALITY

3.1.1 Taylor series of a random vector
In the following we need the notions of convergence in distribution and in proba-
bility. In notation we follow Billingsley (1999). Let {xn} be a sequence of random
p-vectors. We shall denote convergence in distribution or weak convergence of
{xn}, when n → ∞, as

xn
D−→Px

or
xn

D−→x,
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depending on which notation is more convenient to use. The sequence {xn} con-
verges in distribution if and only if Fxn

(y) −→ Fx(y) at any point y, where
the limiting distribution function Fx(y) is continuous. The sequence of random
matrices {Xn} converges in distribution to X if

vecXn
D−→ vecX.

Convergence in probability of the sequence {xn}, when n → ∞, is denoted by

xn
P−→x.

This means, with n → ∞, that

P{ω : ρ(xn(ω),x(ω)) > ε} → 0

for any ε > 0, where ρ(·, ·) is the Euclidean distance in Rp. The convergence in
probability of random matrices is traced to random vectors:

Xn
P−→X,

when
vecXn

P−→ vecX.

Let {εi} be a sequence of positive numbers and {Xi} be a sequence of random
variables. Then, following Rao (1973a, pp. 151–152), we write Xi = oP (εi) if

Xi

εi

P−→ 0.

For a sequence of random vectors {xi} we use similar notation: xi = oP (εi), if

xi

εi

P−→0.

Let {Xi} be a sequence of random p × q-matrices. Then we write Xi = oP (εi), if

vecXi = oP (εi).

So, a sequence of matrices is considered via the corresponding notion for random
vectors. Similarly, we introduce the concept of OP (·) in the notation given above
(Rao, 1973a, pp. 151–152). We say Xi = OP (εi) or Xi

εi
is bounded in probability,

if for each δ there exist mδ and nδ such that P (Xi

εi
> mδ) < δ for i > nδ. We say

that a p-vector xn = OP (εn), if the coordinates (xn)i = OP (εn), i = 1, . . . , p. A
p × q-matrix Xn = OP (εn), if vecXn = OP (εn).
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Lemma 3.1.1. Let {Xn} and {Yn} be sequences of random matrices with

Xn
D−→X and Yn

P−→0. Then, provided the operations are well defined,

Xn ⊗ Yn
P−→0,

vecXnvec′Yn
P−→0,

Xn + Yn
D−→X.

Proof: The proof repeats the argument in Rao (1973a, pp. 122–123) for random
variables, if we change the expressions |x|, |x−y| to the Euclidean distances ρ(x,0)
and ρ(x,y), respectively.
Observe that Xn and Yn do not have to be independent. Thus, if for example
Xn

D−→X and g(Xn) P−→0, the asymptotic distribution of Xn +g(Xn) is also PX.
In applications the following corollary of Lemma 3.1.1 is useful.

Corollary 3.1.1.1L. Let {Xn}, {Yn} and {Zn} be sequences of random matrices,

with Xn
D−→X, Yn = oP (εn) and Zn = oP (εn), and {εn} be a sequence of positive

real numbers. Then

Xn ⊗ Yn = oP (εn),
vecXnvec′Yn = oP (εn),

Zn ⊗ Yn = oP (ε2
n).

If the sequence {εn} is bounded, then

Xn + Yn
D−→X.

Proof: By assumptions

vec
Yn

εn

P−→0

and

vec
Zn

εn

P−→0.

The first three statements of the corollary follow now directly from Lemma 3.1.1.
If {εn} is bounded, Yn

P−→0, and the last statement follows immediately from the
lemma.

Corollary 3.1.1.2L. If
√

n(Xn −A) D−→X and Xn −A = oP (εn) for some con-
stant matrix A, then

n
1
2 (k−1)(Xn − A)⊗k = oP (εn), k = 2, 3, . . . .

Proof: Write

n
1
2 (k−1)(Xn − A)⊗k =

(√
n(Xn − A)

)⊗k−1 ⊗ (Xn − A)
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and then Corollary 3.1.1.1L shows the result, since (
√

n(Xn − A))⊗k−1 converges
in distribution to X⊗(k−1).
Expansions of different multivariate functions of random vectors, which will be
applied in the subsequent, are often based on relations given below as Theorem
3.1.1, Theorem 3.1.2 and Theorem 3.1.3.

Theorem 3.1.1. Let {xn} and {εn} be sequences of random p−vectors and pos-
itive numbers, respectively, and let xn − a = oP (εn), where εn → 0 if n → ∞. If
the function g(x) from Rp to Rq can be expanded into the Taylor series (1.4.59)
at the point a:

g(x) = g(a) +
m∑

k=1

1
k!

((x − a)⊗k−1 ⊗ Iq)′
(

dkg(x)
dxk

)′∣∣∣∣∣
x=a

(x − a) + o(ρm(x,a)),

then

g(xn) − g(a) −
m∑

k=1

1
k!

((xn − a)⊗k−1 ⊗ Iq)′
(

dkg(xn)
dxk

n

)′∣∣∣∣∣
xn=a

(xn − a) = oP (εm
n ),

where the matrix derivative is given in (1.4.41).

Proof: Denote

rm(xn,a) = g(xn)−g(a)−
m∑

k=1

1
k!

((xn−a)⊗k−1⊗ Iq)′
(

dkg(xn)
dxk

n

)′∣∣∣∣∣
xn=a

(xn−a).

We have to show that, if n → ∞,

rm(xn,a)
εm

n

P−→0,

i.e.

P

{
ω :

ρ(rm(xn(ω),a),0)
εm

n

> η

}
−→ 0

for any η > 0. Now

P

{
ω :

ρ(rm(xn(ω),a),0)
εm

n

> η

}
= P

{
ω :

ρ(rm(xn(ω),a),0)
εm

n

> η,
ρ(xn(ω),a)

εn
> ν

}
+ P

{
ω :

ρ(rm(xn(ω),a),0)
εm

n

> η,
ρ(xn(ω),a)

εn
≤ ν

}
.

By assumption, when n → ∞,

xn − a
εn

P−→0,
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and therefore the first term tends to zero. Moreover,

P

{
ω :

ρ(rm(xn(ω),a),0)
εm

n

> η,
ρ(xn(ω),a)

εn
≤ ν

}
≤ P

{
ω :

ρ(rm(xn(ω),a),0)
ρm(xn(ω),a)

>
η

νm
,

ρ(xn(ω),a)
εn

≤ ν

}
.

By our assumptions, the Taylor expansion of order m is valid for g(x), and there-
fore it follows from the definition of o(ρm(x,a)) that

ρ(rm(xn(ω),a),0)
ρm(xn(ω),a)

−→ 0,

if xn(ω) → a. Now choose ν to be small and increase n so that

P

{
ω :

ρ(rm(xn),a)
εn

≤ ν

}
becomes small and then

P

{
ω :

ρ(rm(xn,a),0)
ρm(xn(ω),a)

>
η

νm
, ρ(xn(ω),a) ≤ εnν

}
−→ 0.

Corollary 3.1.1.1. Let {Xn(K)} and {εn} be sequences of random p×q pattern
matrices and positive numbers, respectively, and let Xn(K) − A(K) = oP (εn),
where εn → 0, if n → ∞. If the function G(X(K)) can be expanded into the
Taylor series (1.4.59) at the point G(A(K)), then

vec {G(Xn(K)) − G(A(K))} −
m∑

k=1

1
k!

(vec(Xn(K) − A(K))⊗k−1 ⊗ Il)′

×
(

dkG(Xn(K))
dXn(K)k

)′∣∣∣∣∣
Xn(K)=A(K)

vec(Xn(K) − A(K)) = oP (εm
n ),

where the matrix derivative is given in (1.4.43) and l equals the size of vecXn(K).

Theorem 3.1.2. Let {xn} and {εn} be sequences of random p−vectors and pos-

itive numbers, respectively. Let
xn − a

εn

D−→Z, for some Z, and xn − a P−→0. If

the function g(x) from Rp to Rq can be expanded into the Taylor series (1.4.59)
at the point a:

g(x) = g(a) +
m∑

k=1

1
k!

((x − a)⊗k−1 ⊗ Iq)′
(

dkg(x)
dxk

)′∣∣∣∣∣
x=a

(x − a) + rm(x,a),
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where

rm(x,a) =
1

(m + 1)!
((x − a)⊗m ⊗ Iq)′

(
dm+1g(x)

dxm+1

)′∣∣∣∣∣
x=θ

(x − a),

θ is some element in a neighborhood of a and the derivative in (1.4.41) is used,
then

g(xn) = g(a) +
m∑

k=1

1
k!

((xn − a)⊗k−1 ⊗ Iq)′
(

dkg(x)
dxk

)′∣∣∣∣∣
x=a

(xn − a) + oP (εm
n ).

Proof: From the assumption it follows that (xn − a)⊗2 = oP (εn). Moreover,
since xn

P−→a, it is enough to consider

P

{
ω :

rm(xn(ω,a)
εm

n

> η, ρ(xn(ω),a) ≤ ν

}
.

Since we assume differentiability in Taylor expansions, the derivative in rm(x,a) is

continuous and bounded when ρ(xn(ω),a) ≤ ν. Furthermore, since
xn − a

εn

D−→Z,

the error term
rm(xn,a)

εm
n

converges to Y(xn − a), for some random matrix Y,

which in turn, according to Corollary 3.1.1.1L, converges in probability to 0, since
xn

P−→a.

Corollary 3.1.2.1. Let {Xn(K)} and {εn} be sequences of random pattern p ×
q−matrices and positive numbers, respectively. Let Xn(K)−A(K)

εn

D−→Z(K) for

some Z(K) and constant matrix A : p×q, and suppose that Xn(K)−A(K) P−→0.
If the function G(X(K)) from Rp×q to Rr×s can be expanded into Taylor series
(1.4.59) at the point A(K),

vec {G(X(K)) − G(A(K))} −
m∑

k=1

1
k!

(vec(X(K) − A(K))⊗k−1 ⊗ Il)′

×
(

dkG(X(K))
dX(K)k

)′∣∣∣∣∣
X(K)=A(K)

vec(X(K) − A(K)) = rm(Xn(K),A(K)),

where the matrix derivative in (1.4.43) is used,

rm(X(K),A(K)) =
1

(m + 1)!
(vec(X(K) − A(K))⊗m ⊗ Il)′

×
(

dm+1G(X(K))
dX(K)m+1

)′∣∣∣∣∣
X(K)=θ

vec(X(K) − A(K)),

l is the size of vecXn(K) and θ is some element in a neighborhood of A(K), then
in the Taylor expansion of G(Xn(K))

rm(Xn(K),A(K)) = oP (εm
n ).
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3.1.2 Asymptotic normality of functions of random vectors
We are going to consider the simplest possible distribution approximations via
Taylor expansion and the normal distribution. Let X = (x1, . . . ,xn) be a sample
of size n and consider a statistic T = T(X). To point out the dependence of T(X)
on n, we write Tn or T(n) and obtain a sequence {Tn}, when n → ∞. Let

Tn
D−→ Np(·, ·)

mean that the statistic Tn is asymptotically normally distributed. Asymptotic
normality is one of the most fundamental properties of statistics, which gives
us a simple way of finding approximate interval estimates and a possibility of
testing hypotheses approximately for a wide class of underlying distributions. A
theoretical basis for these results is the classical central limit theorem which will
be considered here in one of its simplest forms:

1√
n

n∑
i=1

(xi − µ) D−→ Np(0,Σ),

when n → ∞, where {xi} is a sequence of i.i.d. random vectors with E[xi] = µ
and D[xi] = Σ. One of the most important results for applications states that
all smooth functions of an asymptotic normal vector are asymptotically normally
distributed. Following Anderson (2003, pp. 132–133), let us present this result as
a mathematical statement.

Theorem 3.1.3. Assume that for {xn}
√

n(xn − a) D−→ Np(0,Σ), (3.1.1)

and
xn

P−→a,

when n → ∞. Let the function g(x) : Rp −→ Rq have continuous partial deriva-
tives in a neighborhood of a. Then, if n → ∞,

√
n (g(xn) − g(a)) D−→ Nq(0, ξ′Σξ), (3.1.2)

where

ξ =
dg(x)

dx

∣∣∣∣
x=a

	= 0

is the matrix derivative given by Definition 1.4.1.

Proof: To prove the convergence (3.1.2) it is sufficient to show that the char-
acteristic function, ϕg(xn)(t), converges to the characteristic function of the limit
distribution, which should be continuous at t = 0. By assumptions we have

lim
n→∞ϕ√

n(xn−a)(t) = e−
1
2 t′Σt, t ∈ Rp.
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From Theorem 3.1.2

lim
n→∞ϕ√

n{g(xn)−g(a)}(t) = lim
n→∞ϕ{(

dg(x)
dx

∣∣
x=a

)′√
n(xn−a)+oP (n

− 1
2 )

}(t)

= lim
n→∞ϕ√

n(xn−a)

(
dg(x)
dx

∣∣∣∣
x=a

t
)

= exp

{
−1

2
t′
(

dg(x)
dx

∣∣∣∣
x=a

)′
Σ
(

dg(x)
dx

∣∣∣∣
x=a

)
t

}
= ϕN(0,ξ′Σξ)(t),

where ξ =
dg(x)
dx

∣∣∣∣
x=a

.

Corollary 3.1.3.1. Suppose that Theorem 3.1.3 holds for g(x) : Rp −→ Rq

and there exists a function g0(x) : Rp −→ Rq which satisfies the assumptions of
Theorem 3.1.3 such that

ξ =
dg0(x)

dx

∣∣∣∣
x=a

=
dg(x)

dx

∣∣∣∣
x=a

.

Then √
n (g0(xn) − g0(a)) D−→Nq(0, ξ′Σξ).

The implication of the corollary is important, since now, when deriving asymptotic
distributions, one can always change the original function g(x) to another g0(x) as
long as the difference between the functions is of order oP (n−1/2) and the partial
derivatives are continuous in a neighborhood of a. Thus we may replace g(x) by
g0(x) and it may simplify calculations.
The fact that the derivative ξ is not equal to zero is essential. When ξ = 0, the
term including the first derivative in the Taylor expansion of g(xn) in the proof
of Theorem 3.1.3 vanishes. Asymptotic behavior of the function is determined by
the first non-zero term of the expansion. Thus, in the case ξ = 0, the asymptotic
distribution is not normal.
Very often procedures of multivariate statistical analysis are based upon statistics
as functions of the sample mean

x =
1
n

n∑
i=1

xi

and the sample dispersion matrix

S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)′, (3.1.3)
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which are sufficient statistics under various distribution assumptions. As examples
of such functions we have the determinant |S| of S, which is called the generalized

variance, the sample correlation matrix R = S− 1
2

d SS− 1
2

d , Hotelling’s T 2-statistic
x′S−1x, eigenvalues and eigenvectors of S and R, etc.
The list can be made longer and this suggests the idea that we should prove
asymptotic normality for x(n) and S(n) because then, by Theorem 3.1.3, the
asymptotic normality will hold for all the above mentioned statistics.

Theorem 3.1.4. Let x1,x2, . . . ,xn be an i.i.d. sample of size n from a p−dimen-
sional population with E[xi] = µ, D[xi] = Σ, m4[xi] < ∞, and let S be given by
(3.1.3). Then, if n → ∞,

x P−→ µ;(i)

S P−→ Σ;(ii)
√

n(x − µ) D−→ Np(0,Σ);(iii)
√

nvec(S − Σ) D−→ Np2(0,Π), (3.1.4)(iv)

where Π : p2 × p2 consists of the fourth and second order central moments:

Π = D[(xi − µ)(xi − µ)′]
= E[(xi − µ) ⊗ (xi − µ)′ ⊗ (xi − µ) ⊗ (xi − µ)′] − vecΣvec′Σ; (3.1.5)

√
nV 2(S − Σ) D−→ Np(p+1)/2(0,GpΠG′

p), (3.1.6)(v)

where V 2(•) and Gp are given by Definition 1.3.9 and (1.3.49), respectively.

Proof: The convergence in (i) and (iii) follows directly from the law of large
numbers and the central limit theorem, respectively. For example, in (iii)

√
n(x − µ) =

√
n(

1
n

n∑
i=1

(xi − µ)) =
1√
n

n∑
i=1

(xi − µ) D−→ Np(0,Σ).

For (ii) E[S − Σ] = 0 and D[S] → 0 hold. Thus the statement is established.
When proving (3.1.4) we prove first the convergence

√
nvec(S∗ − Σ) D−→ Np2(0,Π),

where S∗ = n−1
n S. It follows that

√
nvec(S∗ − Σ) =

√
nvec(

1
n

n∑
i=1

xixi
′ − Σ − xx′)

=
√

nvec(
1
n

n∑
i=1

(xi − µ)(xi − µ)′ − Σ) −√
nvec((x − µ)(x − µ)′). (3.1.7)
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Now,
E[(xi − µ)(xi − µ)′] = Σ

and

D[(xi − µ)(xi − µ)′]
= E[vec ((xi − µ)(xi − µ)′) vec′ ((xi − µ)(xi − µ)′)]

− E[vec ((xi − µ)(xi − µ)′)]E[vec′ ((xi − µ)(xi − µ)′)]
=

(1.3.31)
(1.3.14)

E[((xi − µ) ⊗ (xi − µ)) ((xi − µ)′ ⊗ (xi − µ)′)] − vecΣvec′Σ

=
(1.3.14)
(1.3.16)

E[(xi − µ) ⊗ (xi − µ)′ ⊗ (xi − µ) ⊗ (xi − µ)′] − vecΣvec′Σ = Π.

Thus, by the central limit theorem,

√
nvec

(
1
n

n∑
i=1

(xi − µ)(xi − µ)′ − Σ

)
D−→ Np2(0,Π).

Finally it is observed that if n → ∞,

√
nvec((x − µ)(x − µ)′) P−→ 0,

since E[x] = µ and D[x] = 1
nΣ imply that n

1
4 (x − µ) P−→0. Hence,

√
nvec(S∗ − Σ) D−→ Np2(0,Π)

and the statement in (3.1.4) is obtained, since obviously S∗ P−→S. The relation in
(v) follows immediately from V 2(S) = Gpvec(S).
When {xi} is normally distributed, convergence (3.1.4) takes a simpler form.

Corollary 3.1.4.1. Let xi ∼ Np(µ,Σ). Then

√
nvec(S − Σ) D−→ Np2(0,ΠN ),(i)

where
ΠN = (Ip2 + Kp,p)(Σ ⊗ Σ);

√
nV 2(S − Σ) D−→ Np(p+1)/2(0,GpΠNG′

p).(ii)

Proof: Since (n − 1)S ∼ Wp(Σ, n − 1) holds, ΠN follows from Theorem 2.4.14
(ii).
The next corollary gives us the asymptotic distribution of S in the case of an
elliptically distributed population.
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Corollary 3.1.4.2. Let xi ∼ Ep(µ,Υ) and D[xi] = Σ. Then

√
nvec(S − Σ) D−→ Np2(0,ΠE),(i)

where
ΠE = (1 + κ)(Ip2 + Kp,p)(Σ ⊗ Σ) + κvecΣvec′Σ,

with κ being the kurtosis parameter defined by (2.3.13);

√
nV 2(S − Σ) D−→ Np(p+1)/2(0,GpΠEG′

p).(ii)

3.1.3 Asymptotic distribution of statistics with functionally dependent arguments
From the previous paragraph we know that asymptotic normality can be estab-
lished for smooth functions g(xn) of an asymptotically normal variable xn. The ex-
pression of the asymptotic variance matrix in (3.1.2) includes the matrix derivative
dg(x)

dx
at a certain fixed point a. How should one find the derivative, when some

elements of xn are functionally dependent (off-diagonal elements of the sample
dispersion S are symmetric, for example) or functionally dependent and constant
(off-diagonal elements of the sample correlation matrix R are symmetric, whereas
the diagonal ones are constant)? The problem can be solved using the notion of
patterned matrices of §1.3.6, where we consider non-repeated and non-constant
elements in the patterned matrix only. Let {Xn} be a sequence of p × q-matrices
converging in distribution when n → ∞:

√
nvec(Xn − A) D−→ Npq(0,ΣX), (3.1.8)

where A : p × q is a constant matrix. Furthermore, suppose that Xn
P−→A. If a

certain coordinate, say the i−th coordinate of vecXn is constant, then in ΣX in
(3.1.8), the i−th row and column consist of zeros. Let Xn(K) denote the patterned
matrix obtained from Xn by leaving out the constant and repeated elements. Then
obviously for Xn(K) the convergence in distribution also takes place:

√
nvec(Xn(K) − A(K)) D−→ N•(0,ΣX(K)), (3.1.9)

where • in the index stands for the number of elements in vec(Xn(K)). Let
G : r × s be a matrix where the elements are certain functions of the elements of
Xn. By Theorem 3.1.3

√
nvec{G(T+(K)vecXn(K)) − G(T+(K)vecA(K))} D−→ N•(0,ΣG),

where
ΣG = ξ′ΣX(K)ξ, (3.1.10)
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and

ξ =
dG(T+(K)vecXn(K))

dXn(K)

∣∣∣∣
Xn(K)=A(K)

=
dT+(K)vecX(K)

dX(K)
dG(Z)

dZ

∣∣∣∣
vecZ=T+(K)vecA(K)

= (T+(K))′
dG(Z)

dZ

∣∣∣∣
vecZ=T+(K)vecA(K)

,

where T+(K) is defined in (1.3.60). The expression in (3.1.10) of the asymptotic
dispersion matrix ΣG may be somewhat complicated to use. However, by §1.3.6
(see also Kollo, 1994), it follows that

ΣG =

(
dG(Z)

dZ

∣∣∣∣
vecZ=T+(K)vecA(K)

)′
T+(K)

× ΣX(K)(T+(K))′
dG(Z)

dZ

∣∣∣∣
vecZ=T+(K)vecA(K)

=

(
dG(Z)

dZ

∣∣∣∣
vecZ=T+(K)vecA(K)

)′
ΣX

dG(Z)
dZ

∣∣∣∣
vecZ=T+(K)vecA(K)

,

since
T+(K)ΣX(K)(T+(K))′ = ΣX.

Therefore the following theorem can be stated.

Theorem 3.1.5. Let {Xn} be a sequence of p × q−matrices such that

√
nvec(Xn − A) D−→ Npq(0,ΣX)

and
Xn

P−→ A,

where A : p×q is a constant matrix. Let Xn(K) be the patterned matrix obtained
from Xn by excluding the constant and repeated elements. Let G : r × s be a
matrix with the elements being functions of Xn. Then

√
nvec(G(Xn(K)) − G(A(K))) D−→ Nrs(0,ΣG),

with

ΣG =
(

dG(Z)
dZ

∣∣∣∣
Z=A

)′
ΣX

dG(Z)
dZ

∣∣∣∣
Z=A

, (3.1.11)

where in
dG(Z)

dZ
the matrix Z is regarded as unstructured.

Remark: In (3.1.9) vec(•) is the operation given in §1.3.6, whereas vec(•) in The-
orem 3.1.5 follows the standard definition given in §1.3.4, what can be understood
from the context.
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Note that Theorem 3.1.5 implies that when obtaining asymptotic distributions we
do not have to care about repetition of elements, since the result of the theorem
is in agreement with

√
nvec(G(Xn) − G(A)) D−→ Nrs

(
0,

(
dG(Z)

dZ

∣∣∣∣
Z=A

)′
ΣX

dG(Z)
dZ

∣∣∣∣
Z=A

)
.

3.1.4 Asymptotic distribution of the sample correlation matrix
The correlation matrix of a random p−vector x is defined through its dispersion
matrix Σ:

Ω = Σ− 1
2

d ΣΣ− 1
2

d , (3.1.12)

where the diagonal matrix Σd is defined by (1.1.4). The corresponding sample
correlation matrix R from a sample of size n is a function of the sample dispersion
matrix (3.1.3):

R = S− 1
2

d SS− 1
2

d .

In the case of a normal population the asymptotic normal distribution of a non-
diagonal element of

√
nvec(R−Ω) was derived by Girshik (1939). For the general

case when the existence of the fourth order moments is assumed, the asymptotic
normal distribution in matrix form can be found in Kollo (1984) or Neudecker &
Wesselman (1990); see also Magnus (1988, Chapter 10), Nel (1985).

Theorem 3.1.6. Let x1,x2, . . . ,xn be a sample of size n from a p−dimensional
population, with E[xi] = µ, D[xi] = Σ and m4[xi] < ∞. Then, if n → ∞,

√
nvec(R − Ω) D−→ Np2(0,ΨR),

where ΨR = Ξ′
RΠΞR, Π is given by (3.1.5) and the matrix derivative is

ΞR = Σ− 1
2

d ⊗ Σ− 1
2

d − 1
2 (Kp,p)d(Ip ⊗ Σ−1

d Ω + Σ−1
d Ω ⊗ Ip). (3.1.13)

Remark: The asymptotic dispersion matrix ΨR is singular with r(ΨR) = p(p−1)
2 .

Proof: The matrix R is a function of p(p + 1)/2 different elements in S. From
Theorem 3.1.5 it follows that we should find dR

dS . The idea of the proof is first
to approximate R and thereafter calculate the derivative of the approximated R.
Such a procedure simplifies the calculations. The correctness of the procedure
follows from Corollary 3.1.3.1.
Let us find the first terms of the Taylor expansion of R through the matrices S
and Σ. Observe that

R = (Σ + (S − Σ))−
1
2

d (Σ + (S − Σ))(Σ + (S − Σ))−
1
2

d . (3.1.14)

Since
(Σ + (S − Σ))d

− 1
2 = (Σd + (S − Σ)d)−

1
2



290 Chapter III

and Theorem 3.1.4 (i) and (iv) hold, it follows by the Taylor expansion given in
Theorem 3.1.2, that

(Σ + (S − Σ))−
1
2

d = Σ− 1
2

d − 1
2Σ

− 3
2

d (S − Σ)d + oP (n− 1
2 ).

Note that we can calculate the derivatives in the Taylor expansion of the diagonal
matrix elementwise. Equality (3.1.14) turns now into the relation

R = Ω + Σ− 1
2

d (S − Σ)Σ− 1
2

d − 1
2

(
ΩΣ−1

d (S − Σ)d + (S − Σ)dΣ−1
d Ω

)
+ oP (n− 1

2 ).

Thus, since according to Theorem 3.1.5 the matrix S could be treated as unstruc-
tured,

dR
dS

=
dS
dS

(Σ− 1
2

d ⊗ Σ− 1
2

d ) − 1
2

dSd

dS

(
I ⊗ Σ−1

d Ω + Σ−1
d Ω ⊗ I

)
+ oP (n− 1

2 )

= Σ− 1
2

d ⊗ Σ− 1
2

d − 1
2 (Kp,p)d(I ⊗ Σ−1

d Ω + Σ−1
d Ω ⊗ I) + oP (n− 1

2 ),

where
dSd

dS
is given by (1.4.37).

Corollary 3.1.6.1. Let xi ∼ Np(µ,Σ). If n → ∞, then

√
nvec(R − Ω) D−→ Np2(0,ΨN

R ),

where
ΨN

R = A1 − A2 − A′
2 + A3, (3.1.15)

with

A1 = (I + Kp,p)(Ω ⊗ Ω), (3.1.16)
A2 = (Ω ⊗ Ip + Ip ⊗ Ω)(Kp,p)d(Ω ⊗ Ω), (3.1.17)

A3 =
1
2
(Ω ⊗ Ip + Ip ⊗ Ω)(Kp,p)d(Ω ⊗ Ω)(Kp,p)d(Ω ⊗ Ip + Ip ⊗ Ω). (3.1.18)

Proof: From Theorem 3.1.6 and Corollary 3.1.4.1 we have

ΨN
R = Ξ′

R(I + Kp,p)(Σ ⊗ Σ)ΞR,

where ΞR is given in (3.1.13). Thus,

ΨN
R = {Σ− 1

2
d ⊗ Σ− 1

2
d − 1

2
(
ΩΣ−1

d ⊗ Ip + Ip ⊗ ΩΣ−1
d

)
(Kp,p)d}(I + Kp,p)

× (Σ ⊗ Σ){Σ− 1
2

d ⊗ Σ− 1
2

d − 1
2
(Kp,p)d

(
Σ−1

d Ω ⊗ Ip + Ip ⊗ Σ−1
d Ω

)}
= A1 − A2 − A′

2 + A3,
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where

A1 = (Σ− 1
2

d ⊗ Σ− 1
2

d )(I + Kp,p)(Σ ⊗ Σ)(Σ− 1
2

d ⊗ Σ− 1
2

d ),

A2 =
1
2
(ΩΣ−1

d ⊗ Ip + Ip ⊗ ΩΣ−1
d )(Kp,p)d(Σ ⊗ Σ)(I + Kp,p)(Σ

− 1
2

d ⊗ Σ− 1
2

d ),

A3 =
1
4
(ΩΣ−1

d ⊗ Ip + Ip ⊗ ΩΣ−1
d )(Kp,p)d(I + Kp,p)(Σ ⊗ Σ)(Kp,p)d

× (Σ−1
d Ω ⊗ Ip + Ip ⊗ Σ−1

d Ω).

Let us show that Ai, i = 1, 2, 3, are identical to (3.1.16), (3.1.17) and (3.1.18).
For A1 we get

A1 =
(1.3.15)

(I + Kp,p)(Σ
− 1

2
d ⊗ Σ− 1

2
d )(Σ ⊗ Σ)(Σ− 1

2
d ⊗ Σ− 1

2
d )

=
(1.3.14)
(3.1.12)

(I + Kp,p)(Ω ⊗ Ω).

To establish (3.1.17), it is observed that

A2 = (ΩΣ−1
d ⊗ Ip + Ip ⊗ ΩΣ−1

d )(Kp,p)d(Σ ⊗ Σ)(Σ− 1
2

d ⊗ Σ− 1
2

d )

= (Ω ⊗ Ip + Ip ⊗ Ω)(I ⊗ Σ−1
d )(Kp,p)d(Σ ⊗ Σ)(Σ− 1

2
d ⊗ Σ− 1

2
d )

= (Ω ⊗ Ip + Ip ⊗ Ω)(Kp,p)d(Ω ⊗ Ω),

since (Kp,p)d(I ⊗ Σ−1
d ) = (Kp,p)d(Σ−1

d ⊗ I) = (Σ− 1
2

d ⊗ Σ− 1
2

d )(Kp,p)d as well as
Kp,p(Kp,p)d = (Kp,p)d.
By similar calculations

A3 =
1
2

(Ω ⊗ Ip + Ip ⊗ Ω) (I ⊗ Σ−1
d )(Kp,p)d(Σ ⊗ Σ)(Kp,p)d

× (I ⊗ Σ−1
d ) (Ω ⊗ Ip + Ip ⊗ Ω)

=
1
2
(Ω ⊗ Ip + Ip ⊗ Ω)(Kp,p)d(Ω ⊗ Ω)(Kp,p)d(Ω ⊗ Ip + Ip ⊗ Ω).

In the case of elliptically distributed vectors the formula of the asymptotic dis-
persion matrix of R has a similar construction as in the normal population case,
and the proof directly repeats the steps of proving Corollary 3.1.6.1. Therefore we
shall present the result in the next corollary without a proof, which we leave to
the interested reader as an exercise.

Corollary 3.1.6.2. Let xi ∼ Ep(µ,V) and D[xi] = Σ. If n → ∞, then

√
nvec(R − Ω) D−→ Np(0, ΨE

R),

where
ΨE

R = B1 − B2 − B′
2 + B3 (3.1.19)
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and

B1 = (1 + κ)(I + Kp,p)(Ω ⊗ Ω) + κvecΩvec′Ω, (3.1.20)

B2 = (Ω ⊗ Ip + Ip ⊗ Ω)(Kp,p)d{(1 + κ)(Ω ⊗ Ω) +
κ

2
vecΩvec′Ω}, (3.1.21)

B3 =
1
2
(Ω ⊗ Ip + Ip ⊗ Ω)(Kp,p)d{(1 + κ)(Ω ⊗ Ω) +

κ

2
vecΩvec′Ω}

× (Kp,p)d(Ω ⊗ Ip + Ip ⊗ Ω), (3.1.22)

where the kurtosis parameter κ is defined by (2.3.13).

3.1.5 Asymptotics of eigenvalues and eigenvectors of a symmetric matrix
Dealing with eigenvectors of a matrix one has to keep in mind that there are two
possibilities for vector orientation in a linear space. If one wants to determine a
matrix of eigenvectors uniquely one has to fix the direction of the vectors. To do
so, the two most commonly used assumptions are:
(i) The diagonal elements of the matrix of eigenvectors are non-negative;
(ii) The first coordinate in each eigenvector is non-negative.
In the following we shall adopt assumption (i). There exist two different normal-
izations of eigenvectors of a symmetric matrix which are of interest in statistical
applications, namely, the unit-length eigenvectors forming an orthogonal matrix
and the eigenvalue normed eigenvectors. Historically the latter have been a basis
for principal component analysis, although nowadays the first are mainly used in
this kind of analysis. It seems that the length of a vector cannot be a reason
for a separate study of these eigenvectors, but it appears that for asymptotic dis-
tribution theory this difference is essential. While the asymptotic distribution of
the unit-length eigenvectors of S is singular, the eigenvalue-normed eigenvectors
of S have a non-singular asymptotic distribution. Therefore, we shall discuss both
normalizations in the sequel in some detail.
Consider a symmetric matrix Σ of order p with eigenvalues λ1 > λ2 > · · · > λp > 0
and associated eigenvectors γi of length

√
λi, with γii > 0, i = 1, . . . , p. Thus,

ΣΓ = ΓΛ, (3.1.23)
Γ′Γ = Λ, (3.1.24)

where Γ = (γ1, . . . ,γp) and Λ is a diagonal matrix consisting of p (distinct) eigen-
values of Σ. Observe that this means that Σ = ΓΓ′. In parallel we consider the
set of unit-length eigenvectors ψi, i = 1, . . . , p, corresponding to the eigenvalues
λi, where ψii > 0. Then

ΣΨ = ΨΛ, (3.1.25)
Ψ′Ψ = Ip, (3.1.26)

where Ψ = (ψ1, . . . ,ψp).
Now, consider a symmetric random matrix V(n) (n again denotes the sample
size) with eigenvalues d(n)i, these are the estimators of the aforementioned Σ and
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λi, respectively. Let H(n) consist of the associated eigenvalue-normed orthogonal
eigenvectors h(n)i. We shall omit n in the subsequent development whenever that
is convenient. Hence,

VH = HD, (3.1.27)
H′H = D. (3.1.28)

Similarly, P(n) consists of unit-length eigenvectors pi(n) and we have

VP = PD, (3.1.29)
P′P = Ip. (3.1.30)

In the next lemma, let the matrix derivative be defined by

dA
d•B

=
d vec′A
d V 2(B)

, (3.1.31)

where B is supposed to be symmetric. Moreover, by using patterned matrices in
§1.3.6 we may obtain derivatives for certain structures of A and B from d vecA,
for instance when A is a diagonal matrix.

Lemma 3.1.3. Let ZG = GL, G′G = Ip, where Z : p×p is symmetric, G : p×p
is orthogonal and L : p × p is diagonal with different non-zero diagonal elements.
Then

dL
d•Z

=
dZ
d•Z

(G ⊗ G)(Kp,p)d;(i)

dG
d•Z

= − dZ
d•Z

(G ⊗ G)(I − (Kp,p)d)(I ⊗ L − L ⊗ I)−(I ⊗ G′).(ii)

Proof: The identity G′G = I implies that

0 =
dG′

d•Z
(G ⊗ I) +

dG
d•Z

(I ⊗ G) =
dG
d•Z

(I ⊗ G)(I + Kp,p). (3.1.32)

Thus, since (I + Kp,p)(Kp,p)d = 2(Kp,p)d, equation (3.1.32) establishes

dG
d•Z

(I ⊗ G)(Kp,p)d = 0. (3.1.33)

The relation ZG = GL leads to the equality

dZ
d•Z

(G ⊗ I) +
dG
d•Z

(I ⊗ Z) =
dG
d•Z

(L ⊗ I) +
dL
d•Z

(I ⊗ G′). (3.1.34)

Postmultiplying (3.1.34) by (I ⊗ G) yields

dZ
d•Z

(G ⊗ G) +
dG
d•Z

(I ⊗ G)(I ⊗ L − L ⊗ I) =
dL
d•Z

. (3.1.35)
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Now observe that since diagL consists of different non-zero elements,

C(I ⊗ L − L ⊗ I) = C(I − (Kp,p)d). (3.1.36)

To show (3.1.36), note that I − (Kp,p)d is a projection and

(Kp,p)d(I ⊗ L − L ⊗ I) = 0,

which means that

C(I ⊗ L − L ⊗ I) ⊆ C((Kp,p)d)⊥ = C(I − (Kp,p)d).

However, r(I⊗L−L⊗ I) = p2 − p, and from Proposition 1.3.20 it follows that in
B(dp) we have p basis vectors, which means that r((Kp,p)d) = p. Thus, the rank
r(I − (Kp,p)d) = p2 − p and (3.1.36) is verified.
Postmultiplying (3.1.35) by (Kp,p)d and I − (Kp,p)d gives us the equations

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dZ
d•Z

(G ⊗ G)(Kp,p)d =
dL
d•Z

(Kp,p)d,

dZ
d•Z

(G ⊗ G)(I − (Kp,p)d) +
dG
d•Z

(I ⊗ G)(I ⊗ L − L ⊗ I)(I − (Kp,p)d)

=
dL
d•Z

(I − (Kp,p)d).

(3.1.37)

(3.1.38)

Since L is diagonal,
dL
d•Z

(Kp,p)d =
dL
d•Z

,

and then from (3.1.37) it follows that (i) is established. Moreover, using this result
in (3.1.38) together with (3.1.36) and the fact that I−(Kp,p)d is a projector, yields

dZ
d•Z

(G ⊗ G)(I − (Kp,p)d) +
dG
d•Z

(I ⊗ G)(I ⊗ L − L ⊗ I) = 0.

This is a linear equation in
dG
d•Z

(I ⊗ G), which according to §1.3.5, equals

dG
d•Z

(I⊗G) = − dZ
d•Z

(G⊗G)(I− (Kp,p)d)(I⊗L−L⊗ I)− + Q(Kp,p)d, (3.1.39)

where Q is an arbitrary matrix. However, we are going to show that Q(Kp,p)d = 0.
If Q = 0, postmultiplying (3.1.39) by I + Kp,p yields, according to (3.1.32),

dZ
d•Z

(G ⊗ G)(I − (Kp,p)d)(I ⊗ L − L ⊗ I)−(I + Kp,p) = 0.

Hence, for arbitrary Q in (3.1.39)

0 = Q(Kp,p)d(I + Kp,p) = 2Q(Kp,p)d

and the lemma is verified.
Remark: The lemma also holds if the eigenvectors are not distinct, since

C(I ⊗ L − L ⊗ I) ⊆ C(I − (Kp,p)d)

is always true.
For the eigenvalue-standardized eigenvectors the next results can be established.
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Lemma 3.1.4. Let ZF = FL, F′F = L, where Z : p × p is symmetric, F : p × p
is non-singular and L : p×p is diagonal with different non-zero diagonal elements.
Then

dL
d•Z

=
dZ
d•Z

(F ⊗ FL−1)(Kp,p)d;(i)

dF
d•Z

=
dZ
d•Z

(F ⊗ F)(L ⊗ I − I ⊗ L + 2(I ⊗ L)(Kp,p)d)−1(I ⊗ L−1F′).(ii)

Proof: From the relation ZF = FL it follows that

dZ
d•Z

(F ⊗ I) +
dF
d•Z

(I ⊗ Z) =
dF
d•Z

(L ⊗ I) +
dL
d•Z

(I ⊗ F′),

and by multiplying both sides by I ⊗ F we obtain

dZ
d•Z

(F ⊗ F) +
dF
d•Z

(I ⊗ F)(I ⊗ L − L ⊗ I) =
dL
d•Z

(I ⊗ L). (3.1.40)

Postmultiplying (3.1.40) by (Kp,p)d implies that

dZ
d•Z

(F ⊗ F)(Kp,p)d =
dL
d•Z

(I ⊗ L),

since (3.1.36) holds, and

dL
d•Z

(I ⊗ L)(Kp,p)d =
dL
d•Z

(Kp,p)d(I ⊗ L) =
dL
d•Z

(I ⊗ L).

This gives us
dL
d•Z

=
dZ
d•Z

(F ⊗ F)(Kp,p)d(I ⊗ L−1)

and (i) is established.
For (ii) it is first noted that F′F = L implies

dF′F
d•Z

=
dF
d•Z

(I ⊗ F)(I + Kp,p) =
dL
d•Z

. (3.1.41)

Moreover, postmultiplying (3.1.41) by (Kp,p)d yields

dL
d•Z

= 2
dF
d•Z

(I ⊗ F)(Kp,p)d,

since (I + Kp,p)(Kp,p)d = 2(Kp,p)d and

dL
d•Z

(Kp,p)d =
dL
d•Z

.
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Hence, (3.1.40) is equivalent to

dF
d•Z

(I ⊗ F)(L ⊗ I − I ⊗ L + 2(I ⊗ L)(Kp,p)d) =
dZ
d•Z

(F ⊗ F)

and since L ⊗ I − I ⊗ L + 2(I ⊗ L)(Kp,p)d is non-singular, (ii) is established.
In (3.1.23)–(3.1.26) relations between eigenvalues and eigenvectors were given for
a positive definite matrix Σ. Since we are going to estimate Σ by V when V
is close to Σ, it is important to understand whether there exists some function
behind the eigenvectors and eigenvalues which is continuous in its arguments.
Furthermore, for approximations performed later, differentiability is an important
issue. The solution to this problem is given by the implicit function theorem (see
Rudin, 1976, pp. 223–228, for example). For instance, consider the case when the
eigenvectors are normed according to (3.1.24). Let

F̃(Z,F,L) = ZF − FL.

At the point (Σ,Γ,Λ) the function F̃(Z,F,L) = 0, and it is assumed that the
derivatives of this function with respect to F,L differ from zero. Then, according
to the implicit function theorem, there exists a neighborhood U of (Σ,Γ,Λ) such
that

F̃(Z,F,L) = 0, Z,F,L ∈ U,

and in a neighborhood of Σ there exists a continuous and differentiable function

f : Z → F,L.

Hence, if V converges to Σ and in Σ there is no specific structure other than
symmetry, we can find asymptotic expressions for eigenvalues and eigenvectors of
V via Taylor expansions, where the functions are differentiated with respect to V
and then evaluated at the point V = Σ. Similarly, the discussion above can be
applied to the unit-length eigenvectors.
Another way of formulating the consequences of the implicit functions theorem is to
note that for all positive definite matrices Z, in some neighborhood U(Σ) ⊂ Rp×p

of Σ, there exist vector functions fi(Z), gi(Z) and scalar functions li(Z) > 0 such
that

fi(Z) = fi, gi(Σ) = gi, li(Σ) = li, i = 1, . . . , p,

and

ZF = FL, (3.1.42)
F′F = L, (3.1.43)

where F = (f1, . . . , fp) and L = (l1, . . . , lp)d,

ZG = GL, (3.1.44)
G′G = Ip, (3.1.45)
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with G = (g1, . . . ,gp). In our applications it is supposed that within U(Σ) the
functions fi, gi and li are differentiable a sufficient number of times.
Now the preparation for treating eigenvalues and eigenvectors is finished. Suppose
that, when the sample size n → ∞, the following convergence relations hold

V(n) P−→Σ,
√

nvec(V(n) − Σ) D−→Np2(0,ΣV). (3.1.46)

Since V is symmetric, ΣV is singular. From Theorem 3.1.5, Lemma 3.1.3 and
Lemma 3.1.4 we get the following two theorems.

Theorem 3.1.7. Let H(n) and D(n) be defined by (3.1.27) and (3.1.28). Let Γ
and Λ be defined by (3.1.23) and (3.1.24). Suppose that (3.1.46) holds. Put

N = Λ ⊗ I − I ⊗ Λ + 2(I ⊗ Λ)(Kp,p)d. (3.1.47)

Then, if n → ∞,

√
nvec

(
D(n) − Λ

) D−→Np2(0,ΣΛ),(i)

where
ΣΛ = (Kp,p)d(Γ′ ⊗ Λ−1Γ′)ΣV(Γ ⊗ ΓΛ−1)(Kp,p)d;

√
nvec

(
H(n) − Γ

) D−→Np2(0,ΣΓ),(ii)

where

ΣΓ = (I ⊗ ΓΛ−1)N−1(Γ′ ⊗ Γ′)ΣV(Γ ⊗ Γ)N−1(I ⊗ Λ−1Γ′),

with
N−1 = (Λ ⊗ I − I ⊗ Λ)+ + 1

2 (I ⊗ Λ−1)(Kp,p)d;

√
n
(
hi(n) − γi

) D−→Np(0, [ΣΓii ]), i = 1, . . . , p,(iii)

where

[ΣΓii ] =
(
γ′

i ⊗ ΓΛ−1[N−1
ii ]Γ′)ΣV(γi ⊗ Γ[N−1

ii ]Λ−1Γ′),
with

N−1
ii = (Λ − λI)+ + 1

2Λ
−1eie′i,

and ei is the i−th unit basis vector;

(iv) the asymptotic covariance between
√

nhi(n) and
√

nhj(n) equals

[ΣΓij ] =
(
γ′

i ⊗ ΓΛ−1[N−1
ii ]Γ′)ΣV(γj ⊗ Γ[N−1

jj ]Λ−1Γ′), i 	= j; i, j = 1, 2, . . . , p.
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Theorem 3.1.8. Let P(n) and D(n) be defined by (3.1.29) and (3.1.30). Let Ψ
and Λ be defined by (3.1.25) and (3.1.26). Suppose that (3.1.46) holds with an
asymptotic dispersion matrix ΣV. Then, if n → ∞,

√
nvec

(
D(n) − Λ

) D−→Np2(0,ΣΛ),(i)

where
ΣΛ = (Kp,p)d(Ψ′ ⊗ Ψ′)ΣV(Ψ ⊗ Ψ)(Kp,p)d;

√
nvec

(
P(n) − Ψ

) D−→Np2(0,ΣΨ),(ii)

where

ΣΨ = (I ⊗ Ψ)(I ⊗ Λ − Λ ⊗ I)−(I − (Kp,p)d)(Ψ′ ⊗ Ψ′)ΣV

× (Ψ ⊗ Ψ)(I − (Kp,p)d)(I ⊗ Λ − Λ ⊗ I)−(I ⊗ Ψ′);

√
n
(
pi(n) − ψi

) D−→Np(0, [ΣΨii ]), i = 1, 2, . . . , p,(iii)

with

[ΣΨii
] =
(
ψ′

i ⊗ Ψ(Λ − λiI)+Ψ′)ΣV

(
ψi ⊗ Ψ(Λ − λiI)+Ψ′);

(iv) The asymptotic covariance between
√

npi(n) and
√

npj(n) equals

[ΣΨij ] =
(
ψ′

i ⊗ Ψ(Λ − λiI)+Ψ′ΣV(ψj ⊗ Ψ(Λ − λjI)+Ψ′),
i 	= j; i, j = 1, 2, . . . , p.

Remark: If we use a reflexive g-inverse (I ⊗ Λ − Λ ⊗ I)− in the theorem, then

(I − (Kp,p)d)(I ⊗ Λ − Λ ⊗ I)− = (I ⊗ Λ − Λ ⊗ I)−.

Observe that Theorem 3.1.8 (i) corresponds to Theorem 3.1.7 (i), since

(Kp,p)d(I⊗Λ−1)(Γ′ ⊗ Γ′)

= (Kp,p)d(Λ−1/2 ⊗ Λ−1/2)(Γ′ ⊗ Γ′)(Kp,p)d(Λ−1/2Γ′ ⊗ Λ−1/2Γ′)
= (Kp,p)d(Ψ ⊗ Ψ).

3.1.6 Asymptotic normality of eigenvalues and eigenvectors of S
Asymptotic distribution of eigenvalues and eigenvectors of the sample dispersion
matrix

S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)′
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has been examined through several decades. The first paper dates back to Girshick
(1939), who derived expressions for the variances and covariances of the asymptotic
normal distributions of the eigenvalues and the coordinates of eigenvalue normed
eigenvectors, assuming that the eigenvalues λi of the population dispersion matrix
are all different and xi ∼ Np(µ,Σ). Anderson (1963) considered the case λ1 ≥
λ2 ≥ . . . ≥ λp and described the asymptotic distribution of the eigenvalues and the
coordinates of the unit-length eigenvectors. Waternaux (1976, 1984) generalized
the results of Girshick from the normal population to the case when only the
fourth order population moments are assumed to exist. Fujikoshi (1980) found
asymptotic expansions of the distribution functions of the eigenvalues of S up to
the term of order n−1 under the assumptions of Waternaux. Fang & Krishnaiah
(1982) presented a general asymptotic theory for functions of eigenvalues of S in
the case of multiple eigenvalues, i.e. all eigenvalues do not have to be different.
For unit-length eigenvectors the results of Anderson (1963) were generalized to the
case of finite fourth order moments by Davis (1977). As in the case of multiple
eigenvalues, the eigenvectors are not uniquely determined. Therefore, in this case it
seems reasonable to use eigenprojectors. We are going to present the convergence
results for eigenvalues and eigenvectors of S, assuming that all eigenvalues are
different. When applying Theorem 3.1.3 we get directly from Theorem 3.1.8 the
asymptotic distribution of eigenvalues and unit-length eigenvectors of the sample
variance matrix S.

Theorem 3.1.9. Let the dispersion matrix Σ have eigenvalues λ1 > . . . >
λp > 0, Λ = (λ1, . . . , λp)d and associated unit-length eigenvectors ψi with ψii >
0, i = 1, . . . , p. The latter are assembled into the matrix Ψ, where Ψ′Ψ =
Ip. Let the sample dispersion matrix S(n) have p eigenvalues di(n), D(n) =
(d1(n), . . . , dp(n))d, where n is the sample size. Furthermore, let P(n) consist of
the associated orthonormal eigenvectors pi(n). Put

M4 = E[(xi − µ) ⊗ (xi − µ)′ ⊗ (xi − µ) ⊗ (xi − µ)′] < ∞.

Then, when n → ∞,
√

nvec(D(n) − Λ) D−→Np2(0,ΣΛ),(i)

where

ΣΛ = (Kp,p)d(Ψ′ ⊗ Ψ′)M4(Ψ ⊗ Ψ)(Kp,p)d − vecΛvec′Λ;

√
nvec(P(n) − Ψ) D−→Np2(0,ΣΨ),(ii)

where

ΣΨ =(I ⊗ Ψ)(I ⊗ Λ − Λ ⊗ I)−(I − (Kp,p)d)(Ψ′ ⊗ Ψ′)M4

× (Ψ ⊗ Ψ)(I − (Kp,p)d)(I ⊗ Λ − Λ ⊗ I)−(I ⊗ Ψ′).

Proof: In (ii) we have used that

(I − (Kp,p)d)(Ψ′ ⊗ Ψ′)vecΣ = 0.

When it is supposed that we have an underlying normal distribution, i.e. S is
Wishart distributed, the theorem can be simplified via Corollary 3.1.4.1.
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Corollary 3.1.9.1. Let xi ∼ Np(µ,Σ), i = 1, 2, . . . , n. Then, if n → ∞,

√
nvec(D(n) − Λ) D−→Np2(0,ΣN

Λ ),(i)

where

ΣN
Λ = 2(Kp,p)d(Λ ⊗ Λ)(Kp,p)d;

√
nvec(P(n) − Ψ) D−→Np2(0,ΣN

Ψ),(ii)

where

ΣN
Ψ =(I ⊗ Ψ)(I ⊗ Λ − Λ ⊗ I)−(I − (Kp,p)d)

× (I + Kp,p)(Λ ⊗ Λ)(I − (Kp,p)d)(I ⊗ Λ − Λ ⊗ I)−(I ⊗ Ψ′).

Remark: If (I ⊗ Λ − Λ ⊗ I)− is reflexive,

ΣN
Ψ = (I ⊗ Ψ)(I ⊗ Λ − Λ ⊗ I)−(I + Kp,p)(Λ ⊗ Λ)(I ⊗ Λ − Λ ⊗ I)−(I ⊗ Ψ′).

In the case of an elliptical population the results are only slightly more complicated
than in the normal case.

Corollary 3.1.9.2. Let xi ∼ Ep(µ,Υ), D[xi] = Σ, i = 1, 2, . . . , n, and the
kurtosis parameter be denoted by κ. Then, if n → ∞,

√
nvec(D(n) − Λ) D−→Np2(0,ΣE

Λ),(i)

where

ΣE
Λ = 2(1 + κ)(Kp,p)d(Λ ⊗ Λ)(Kp,p)d + κvecΛvec′Λ;

√
nvec(P(n) − Ψ) D−→Np2(0,ΣE

Ψ),(ii)

where

ΣE
Ψ =(1 + κ)(I ⊗ Ψ)(I ⊗ Λ − Λ ⊗ I)−(I − (Kp,p)d)(I + Kp,p)(Λ ⊗ Λ)

× (I − (Kp,p)d)(I ⊗ Λ − Λ ⊗ I)−(I ⊗ Ψ′).

Applying Theorem 3.1.7 to the matrix S gives us the following result.
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Theorem 3.1.10. Let the dispersion matrix Σ have eigenvalues λ1 > . . . >
λp > 0, Λ = (λ1, . . . , λp)d, and associated eigenvectors γi be of length

√
λi,

with γii > 0, i = 1, . . . , p. The latter are collected into the matrix Γ, where
Γ′Γ = Λ. Let the sample variance matrix S(n) have p eigenvalues di(n), D(n) =
(d1(n), . . . , dp(n))d, where n is the sample size. Furthermore, let H(n) consist of
the associated eigenvalue-normed orthogonal eigenvectors hi(n). Put

M4 = E[(xi − µ) ⊗ (xi − µ)′ ⊗ (xi − µ) ⊗ (xi − µ)′] < ∞.

Then, if n → ∞,
√

nvec(D(n) − Λ) D−→Np2(0,ΣΛ),(i)

where

ΣΛ = (Kp,p)d(Γ′ ⊗ Λ−1Γ′)M4(Γ ⊗ ΓΛ−1)(Kp,p)d − vecΛvec′Λ;
√

nvec(H(n) − Γ) D−→Np2(0,ΣΓ),(ii)

where

ΣΓ =(I ⊗ ΓΛ−1)N−1(Γ′ ⊗ Γ′)M4(Γ ⊗ Γ)N−1(I ⊗ Λ−1Γ′)
− (I ⊗ Γ)N−1vecΛvec′ΛN−1(I ⊗ Γ′),

with N given in by (3.1.47).

Proof: In (ii) we have used that

(I ⊗ ΓΛ−1)N−1(Γ′ ⊗ Γ′)vecΣ = (I ⊗ Γ)N−1vecΛ.

In the following corollary we apply Theorem 3.1.10 in the case of an elliptical
distribution with the help of Corollary 3.1.4.2.

Corollary 3.1.10.1. Let xi ∼ Ep(µ,Υ), D[xi] = Σ, i = 1, 2, . . . , n and the
kurtosis parameter be denoted by κ. Then, if n → ∞,

√
nvec(D(n) − Λ) D−→Np2(0,ΣE

Λ),(i)

where
ΣE

Λ = 2(1 + κ)(Kp,p)d(Λ ⊗ Λ) + κvecΛvec′Λ;
√

nvec(H(n) − Γ) D−→Np2(0,ΣE
Γ ),(ii)

where

ΣE
Γ =(1 + κ)(I ⊗ Γ)N−1(Λ2 ⊗ I)N−1(I ⊗ Γ′)

+ (1 + κ)(I ⊗ Γ)N−1Kp,p(Λ ⊗ Λ)N−1(I ⊗ Γ′)
+ κ(I ⊗ Γ)N−1vecΛvec′ΛN−1(I ⊗ Γ′)

and N is given by (3.1.47).

Proof: When proving (i) it has been noted that

(Kp,p)d(Γ′ ⊗ Λ−1Γ′)(Ip2 + Kp,p)(Σ ⊗ Σ)(Γ ⊗ ΓΛ−1)(Kp,p)d

= (Kp,p)d(Λ2 ⊗ I) + (Kp,p)d(Λ ⊗ Λ) = 2(Kp,p)d(Λ ⊗ Λ).

Moreover, by putting κ = 0, from Corollary 3.1.10.1 the corresponding relations
for a normally distributed population will follow.
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Corollary 3.1.10.2. Let xi ∼ Np(µ,Σ), i = 1, 2, . . . , n. Then, if n → ∞,

√
nvec(D(n) − Λ) D−→Np2(0,ΣN

Λ ),(i)

where
ΣN

Λ = 2(Kp,p)d(Λ ⊗ Λ);

√
nvec(H(n) − Γ) D−→Np2(0,ΣN

Γ ),(ii)

where

ΣN
Γ =(I ⊗ Λ)N−1(Λ2 ⊗ I)N−1(I ⊗ Γ′) + (I ⊗ Λ)N−1Kp,p(Λ ⊗ Λ)N−1(I ⊗ Γ′)

and N is given by (3.1.47).

3.1.7 Asymptotic normality of eigenvalues and eigenvectors of R
Asymptotic distributions of eigenvalues and eigenvectors of the sample correlation
matrix

R = S− 1
2

d SS− 1
2

d

are much more complicated than the distributions of the same functions of the
sample dispersion matrix. When studying asymptotic behavior of the eigenfunc-
tions of R the pioneering paper by Girshick (1939) should again be mentioned. He
obtained the asymptotic normal distribution of the eigenvalues of R for the case of
a normal population Np(µ,Σ). Kollo (1977) presented his results in a matrix form
for an enlarged class of population distributions. Konishi (1979) gave asymptotic
expansion of the distribution function of an eigenvalue of R for Np(µ,Σ), assum-
ing that eigenvalues of the theoretical correlation matrix can be multiple. Fang
& Krishnaiah (1982) generalized his results and only assumed the existence of the
fourth order moments of the population distribution. The asymptotic distribution
of the eigenvectors of R was derived by Kollo (1977), for a class of population
distributions which includes the normal distributions, assuming that the theoret-
ical eigenvalues are not multiple. Konishi (1979) gave asymptotic expansions of
the coordinates of eigenvectors of R for a normal population when the eigenvalues
of the theoretical correlation matrix can be multiple. For the general case, when
existence of the fourth order moments is assumed, the asymptotic distributions of
eigenvalues and eigenvectors of R follow from the general asymptotic distribution
formula for a symmetric matrix, which was given by Kollo & Neudecker (1993),
where also the normal and elliptic populations were considered as special cases
(see also Schott, 1997a).
The general scheme of getting asymptotic distributions of eigenvalues and eigen-
vectors of R is the same as in the case of the dispersion matrix but the formulas
become more complicated because the correlation matrix is a function of the dis-
persion matrix as it can be seen from (3.1.12). Therefore we shall leave out details
in proofs and only present the general lines in the following text.
Let us first consider eigenvalue-normed eigenvectors. In the general case, when
we assume that the fourth order population moments are finite, we get, by apply-
ing Theorem 3.1.5, the asymptotic distribution directly from Theorem 3.1.6 and
Theorem 3.1.7.
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Theorem 3.1.11. Let the population correlation matrix Ω, which is defined by
(3.1.12), have eigenvalues λ1 > . . . > λp > 0, Λ = (λ1, . . . , λp)d, and let the

associated eigenvectors γi be of length
√

λi, with γii > 0, i = 1, . . . , p. The latter
are collected into the matrix Γ, where Γ′Γ = Λ. Let the sample correlation matrix
R(n) have eigenvalues di(n), D(n) = (d1(n), . . . , dp(n))d, where n is the sample
size. Furthermore, let H(n) : p × p consist of the associated eigenvalue-normed
orthogonal eigenvectors hi(n). Then, if n → ∞,

√
nvec(D(n) − Λ) D−→Np2(0,ΣΛ),(i)

where

ΣΛ = (Kp,p)d(Γ′ ⊗ Λ−1Γ′)ΞRΠΞ′
R(Γ ⊗ ΓΛ−1)(Kp,p)d

and the matrices Π and ΞR are given by (3.1.5) and (3.1.13), respectively;
√

nvec(H(n) − Γ) D−→Np2(0,ΣΓ),(ii)

where

ΣΓ =(I ⊗ ΓΛ−1)N−1(Γ′ ⊗ Γ′)ΞRΠΞ′
R(Γ ⊗ Γ)N−1(I ⊗ Λ−1Γ′),

with N given in (3.1.47), and Π and ΞR as in (i).

As before we shall apply the theorem to the elliptical distribution.

Corollary 3.1.11.1. Let xi ∼ Ep(µ,Υ), D[xi] = Σ, i = 1, 2, . . . , n, and the
kurtosis parameter be denoted by κ. Then, if n → ∞,

√
nvec(D(n) − Λ) D−→Np2(0,ΣE

Λ),(i)

where

ΣE
Λ = (Kp,p)d(Γ′ ⊗ Λ−1Γ′)ΞRΠEΞ′

R(Γ ⊗ ΓΛ−1)(Kp,p)d

and ΠE is defined in Corollary 3.1.4.2 and ΞR is given by (3.1.13);
√

nvec(H(n) − Γ) D−→Np2(0,ΣE
Γ ),(ii)

where

ΣE
Γ =(I ⊗ ΓΛ−1)N−1(Γ′ ⊗ Γ′)ΞRΠEΞ′

R(Γ ⊗ Γ)N−1(I ⊗ Λ−1Γ′),

with N given in (3.1.47), and ΠE and ΞR as in (i).

Corollary 3.1.11.2. Let xi ∼ Np(µ,Σ), i = 1, 2, . . . , n. Then, if n → ∞,
√

nvec(D(n) − Λ) D−→Np2(0,ΣN
Λ ),(i)

where

ΣN
Λ = (Kp,p)d(Γ′ ⊗ Λ−1Γ′)ΞRΠNΞ′

R(Γ ⊗ ΓΛ−1)(Kp,p)d

and ΠN and ΞR are given in Corollary 3.1.4.1 and (3.1.13), respectively;
√

nvec(H(n) − Γ) D−→Np2(0,ΣN
Γ ),(ii)

where

ΣN
Γ =(I ⊗ ΓΛ−1)N−1(Γ′ ⊗ Γ′)ΞRΠNΞ′

R(Γ ⊗ Γ)N−1(I ⊗ Λ−1Γ′),

with N given by (3.1.47), and ΠN and ΞR as in (i).

Now we present the asymptotic distributions of the eigenvalues and corresponding
unit-length eigenvectors, which directly can be obtained from Theorem 3.1.8 by
applying Theorem 3.1.6.
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Theorem 3.1.12. Let the population correlation matrix Ω have eigenvalues λ1 >
. . . > λp > 0, Λ = (λ1 . . . λp)d and associated unit-length eigenvectors ψi with
ψii > 0, i = 1, . . . , p. The latter are assembled into the matrix Ψ, where Ψ′Ψ = Ip.
Let the sample correlation matrix R(n) have eigenvalues di(n), where n is the
sample size. Furthermore, let P(n) consist of associated orthonormal eigenvectors
pi(n). Then, if n → ∞,

√
nvec(D(n) − Λ) D−→Np2(0,ΣΛ),(i)

where

ΣΛ = (Kp,p)d(Ψ′ ⊗ Ψ′)ΞRΠΞ′
R(Ψ ⊗ Ψ)(Kp,p)d

and Π and ΞR are defined by (3.1.5) and (3.1.13), respectively;

√
nvec(P(n) − Ψ) D−→Np2(0,ΣΨ),(ii)

where

ΣΨ =(I ⊗ Ψ)(I ⊗ Λ − Λ ⊗ I)−(I − (Kp,p)d)(Ψ′ ⊗ Ψ′)ΞRΠΞ′
R

× (Ψ ⊗ Ψ)(I − (Kp,p)d)(I ⊗ Λ − Λ ⊗ I)−(I ⊗ Ψ′)

and the matrices Π and ΞR are as in (i).

The theorem is going to be applied to normal and elliptical populations.

Corollary 3.1.12.1. Let xi ∼ Ep(µ,Υ), D[xi] = Σ, i = 1, 2, . . . , n, and the
kurtosis parameter be denoted by κ. Then, if n → ∞,

√
nvec(D(n) − Λ) D−→Np2(0,ΣE

Λ),(i)

where

ΣE
Λ = (Kp,p)d(Ψ′ ⊗ Ψ′)ΞRΠEΞ′

R(Ψ ⊗ Ψ)(Kp,p)d

and the matrices ΠE and ΞR are given by Corollary 3.1.4.2 and (3.1.13),
respectively;

√
nvec(P(n) − Ψ) D−→Np2(0,ΣE

Ψ),(ii)

where

ΣE
Ψ =(I ⊗ Ψ)(I ⊗ Λ − Λ ⊗ I)−(I − (Kp,p)d)(Ψ′ ⊗ Ψ′)ΞRΠEΞ′

R

× (Ψ ⊗ Ψ)(I − (Kp,p)d)(I ⊗ Λ − Λ ⊗ I)−(I ⊗ Ψ′)

and the matrices ΠE and ΞR are as in (i).
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Corollary 3.1.12.2. Let xi ∼ Np(µ,Σ). Then, if n → ∞,

√
nvec(D(n) − Λ) D−→Np2(0,ΣN

Λ ),(i)

where

ΣN
Λ = (Kp,p)d(Ψ′ ⊗ Ψ′)ΞRΠNΞ′

R(Ψ ⊗ Ψ)(Kp,p)d

and the matrices ΠN and ΞR are given by Corollary 3.1.4.1 and (3.1.13),
respectively;

√
nvec(P(n) − Ψ) D−→Np2(0,ΣN

Ψ),(ii)

where

ΣN
Ψ =(I ⊗ Ψ)(I ⊗ Λ − Λ ⊗ I)−(I − (Kp,p)d)(Ψ′ ⊗ Ψ′)ΞRΠNΞ′

R

× (Ψ ⊗ Ψ)(I − (Kp,p)d)(I ⊗ Λ − Λ ⊗ I)−(I ⊗ Ψ′)

and the matrices ΠN and ΞR are as in (i).

3.1.8 Asymptotic distribution of eigenprojectors of S and R
Let us come back to the notations of §3.1.5 and consider a symmetric matrix Σ
with eigenvalues λi and corresponding unit-length eigenvectors ψi. Their sample
estimators are denoted by V, di and pi, respectively. It makes sense to talk about
the distribution of an eigenvector pi which corresponds to the eigenvalue di, if λi is
not multiple. When λi is a multiple characteristic root of Σ, then the eigenvectors
corresponding to the eigenvalue λi form a subspace which can be characterized
by an eigenprojector. Eigenprojectors were briefly considered in §1.2.8. Their
distributions are needed in the following testing problem (see Tyler (1983) and
Schott (1997a), for instance). Let λ1 ≥ λ2 ≥ . . . ≥ λp > 0 and let A : p × r be a
real matrix of rank r. Assume that for fixed i and m, λi−1 	= λi; λi+m−1 	= λi+m

and when r < m, we consider the hypothesis
H0: the columns of A belong to the subspace spanned by the eigenvectors of Σ

which correspond to the eigenvalues λi, . . . , λi+m−1.

This type of testing problem arises when we use principal components and we want
to omit the components belonging to the subspace spanned by the eigenvectors
corresponding to small eigenvalues. Let there be k distinct eigenvalues among
the p eigenvalues of Σ. From now on denote the distinct ones by λ1, . . . , λk and
their multiplicities by m1, . . . , mk. The eigenprojector corresponding to λi will be
denoted by Pλi or simply Pi. The projection Pi is constructed with the help of
orthogonal unit-length eigenvectors ψi1 , . . . ,ψim , which all are connected to λi,

Pλi =
mi∑
j=1

ψij ψ
′
ij

.
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Let an arbitrary subset of λ1, . . . , λk be denoted by w and the eigenprojector
corresponding to the eigenvalues from w by Pw. Suppose that all eigenvalues of
V are ordered so that dij

> di′j′ if i < i′, or if i = i′ and j < j′. Then a natural
estimator of Pw is

P̂w =
∑

i
λi∈w

mi∑
j=1

pijp
′
ij

.

The asymptotic distribution of eigenprojectors of the sample dispersion matrix was
obtained by Tyler (1981) under the assumption of normality or ellipticity of the
population. Kollo (1984) found the asymptotic distributions of the eigenprojectors
of the sample dispersion and correlation matrices when the existence of the fourth
order population moments was assumed (see also Schott, 1999; Kollo, 2000). In
the next lemma an approximation for P̂w is found. For alternative proofs see Kato
(1972), Tyler (1981) and Watson (1983, Appendix B).

Lemma 3.1.5. Suppose that for a consistent estimator V of Σ, i.e. V P−→Σ,
when n → ∞, the convergence

√
nvec(V − Σ) D−→ Np2(0,ΣΣ) (3.1.48)

takes place. Then

P̂w = Pw −
∑

i
λi∈w

(
Pλi

Σ(V − Σ)(Σ − λiIp)+ + (Σ − λiIp)+(V − Σ)Pλi

)
+oP (n− 1

2 ). (3.1.49)

Proof: Since V P−→Σ, the subspace C(pi1 ,pi2 , . . . ,pimi
) must be close to the

subspace C(ψi1 ,ψi2 , . . . , ψimi
), when n → ∞, i.e. pi1 ,pi2 , . . . ,pimi

must be close
to (ψi1 ,ψi2 , . . . ,ψimi

)Q, where Q is an orthogonal matrix, as kij and ψij are
of unit length and orthogonal. It follows from the proof that the choice of Q is
immaterial. The idea of the proof is to approximate pi1 ,pi2 , . . . ,pimi

via a Taylor
expansion and then to construct P̂w. From Corollary 3.1.2.1 it follows that

vec(pi1 , . . . ,pimi
)

=vec((ψi1 , . . . ,ψimi
)Q) +

(
dpi1 , . . . ,pimi

dV(K)

)′∣∣∣∣∣
V(K)=Σ(K)

vec(V(K) − Σ(K))

+oP (n− 1
2 ),

where V(K) and Σ(K) stand for the 1
2p(p + 1) different elements of V and Σ,

respectively. In order to determine the derivative, Lemma 3.1.3 will be used. As
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pi1 , . . . ,pimi
= P(ei1 : ei2 : . . . : eimi

), where e• are unit basis vectors, Lemma
3.1.3 (ii) yields

dP
dV(K)

{(ei1 : . . . : eimi
) ⊗ I} =

d(pi1 : . . . : pimi
)

dV(K)

= − dV
dV(K)

(P ⊗ P)(I ⊗ D − D ⊗ I)+{(ei1 : . . . : eimi
) ⊗ P′}.

Now

(P ⊗ P)(I ⊗ D − D ⊗ I)+{(ei1 : . . . : eimi
) ⊗ P′}

=(P ⊗ I)(I ⊗ V − D ⊗ I)+{(ei1 : . . . : eimi
) ⊗ I}

={(pi1 : . . . : pimi
) ⊗ I}(V − di1I,V − di2I, . . . ,V − dimi

I)+[d].

Moreover,
dV

dV(K)
= (T+(s))′,

where T+(s) is given in Proposition 1.3.18. Thus,(
dpi1 : . . . : pimi

dV(K)

)′∣∣∣∣∣
V(K)=Σ(K)

vec(V(K) − Σ(K))

= −(I ⊗ (Σ − λiI)+){Q′(ψi1 : . . . : ψimi
)′ ⊗ I}T+(s)vec(V(K) − Σ(K))

= −(I ⊗ (Σ − λiI)+)vec{(V − Σ)(ψi1 : . . . : ψimi
)Q},

since T+(s)vec(V(K) − Σ(K)) = vec(V − Σ) and

vec(pi1 , . . . ,pimi
)

= vec{(ψi1 , . . . ,ψimi
)Q} − (I ⊗ (Σ − λiI)+)vec{(V − Σ)(ψi1 , . . . ,ψimi

)Q}
+oP (n− 1

2 ).

Next it will be utilized that

P̂λi =
mi∑
j=1

pijp
′
ij

=
mi∑
j=1

(d′
j ⊗ I)vec(pi1 , . . . ,pimi

)vec′(pi1 , . . . ,pimi
)(dj ⊗ I),

where dj is the j−th unit vector. This implies that

P̂λi =
mi∑
j=1

(ψi1 , . . . ,ψimi
)Qdjd′

jQ
′(ψi1 , . . . ,ψimi

)′

−
mi∑
j=1

(Σ − λiI)+(V − Σ)(ψi1 , . . . ,ψimi
)Qdjd′

jQ
′(ψi1 , . . . ,ψimi

)′

−
mi∑
j=1

(ψi1 , . . . ,ψimi
)Qdjd′

jQ
′(V − Σ)(Σ − λiI)+ + oP (n−1/2)

=Pλi − (Σ − λiI)+(V − Σ)Pλi − Pλi(V − Σ)(Σ − λiI)+ + oP (n−1/2),
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since
∑mi

j=1 Qdjd′
jQ

′ = I. Hence, the lemma is established, because

Pw =
∑

λi∈w

Pλi
.

The asymptotic distribution of the eigenprojector P̂w is given by the following
theorem.

Theorem 3.1.13. Let the convergence (3.1.48) take place for the matrix V. Then
for the eigenprojector Pw which corresponds to the eigenvalues λi ∈ w of Σ,

√
nvec(P̂w − Pw) D−→ Np2(0, (ΞPw)′ΣΣΞPw), (3.1.50)

where ΣΣ is the asymptotic dispersion matrix of V in (3.1.48) and

ΞPw =
∑

i
λi∈w

∑
j

λj /∈w

1
λi − λj

(Pi ⊗ Pj + Pj ⊗ Pi) . (3.1.51)

Proof: From Theorem 3.1.3 it follows that the statement of the theorem holds,
if instead of ΞPw

ξPw
=

dP̂w

dV(n)

∣∣∣∣∣
V(n)=Σ

is used. Let us prove that this derivative can be approximated by (3.1.51) with an
error oP (n−1/2). Differentiating the main term in (3.1.49) yields

dP̂w

dV
= −

∑
i

λi∈w

(
(Σ − λiIp)+ ⊗ Pλi + Pλi ⊗ (Σ − λiIp)+

)
+ oP (n−1/2).

As noted in Theorem 1.2.30, the Moore-Penrose inverse can be presented through
eigenvalues and eigenprojectors:

(Σ − λiIp)+ = (
∑

j

λjPj − λi

∑
j

Pj)+ = (
∑
i�=j

(λj − λi)Pj)+ =
∑
i�=j

1
λj − λi

Pj .

The last equality follows from the uniqueness of the Moore-Penrose inverse and

the fact that the matrix
∑
i �=j

1
λj − λi

Pj satisfies the defining equalities (1.1.16) –

(1.1.19) of the Moore-Penrose inverse. Then

dP̂w

dV
= −

∑
i

λi∈w

∑
i �=j

1
λj − λi

(Pi ⊗ Pj + Pj ⊗ Pi) + oP (n−1/2)

=
∑

i
λi∈w

∑
j

λj /∈w

1
λi − λj

(Pi ⊗ Pj + Pj ⊗ Pi) + oP (n−1/2).

From the theorem we immediately get the convergence results for eigenprojectors
of the sample dispersion matrix and the correlation matrix.
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Corollary 3.1.13.1. Let (x1, . . . ,xn) be a sample of size n from a p-dimensional

population with D[xi] = Σ and m4[xi] < ∞. Then the sample estimator P̂w of
the eigenprojector Pw, corresponding to the eigenvalues λi ∈ w of the dispersion
matrix Σ, converges in distribution to the normal law, if n → ∞:

√
nvec(P̂w − Pw) D−→ Np2(0, (ΞPw)′ΠΞPw),

where the matrices ΞPw
and Π are defined by (3.1.51) and (3.1.5), respectively.

Corollary 3.1.13.2. Let (x1, . . . ,xn) be a sample of size n from a p-dimensional
population with D[xi] = Σ and m4[xi] < ∞. Then the sample estimator of the
eigenprojector Pw, which corresponds to the eigenvalues λi ∈ w of the theoretical
correlation matrix Ω, converges in distribution to the normal law, if n → ∞:

√
nvec(P̂w − Pw) D−→ Np2(0, (ΞPw)′(ΞR)′ΠΞRΞPw),

where the matrices ΞPw , ΞR and Π are defined by (3.1.51), (3.1.13) and (3.1.5),
respectively.

proof: The corollary is established by copying the statements of Lemma 3.1.5
and Theorem 3.1.13, when instead of V the correlation matrix R is used.

3.1.9 Asymptotic normality of the MANOVA matrix
In this and the next paragraph we shall consider statistics which are functions of
two multivariate arguments. The same technique as before can be applied but
now we have to deal with partitioned matrices and covariance matrices with block
structures. Let

Sj =
1

n − 1

n∑
i=1

(xij − xj)(xij − xj)′, j = 1, 2, (3.1.52)

be the sample dispersion matrices from independent samples which both are of
size n, and let Σ1, Σ2 be the corresponding population dispersion matrices. In
1970s a series of papers appeared on asymptotic distributions of different functions
of the MANOVA matrix

T = S1S−1
2 .

It was assumed that xij are normally distributed, i.e. S1 and S2 are Wishart dis-
tributed (see Chang, 1973; Hayakawa, 1973; Krishnaiah & Chattopadhyay, 1975;
Sugiura, 1976; Constantine & Muirhead, 1976; Fujikoshi, 1977; Khatri & Srivas-
tava, 1978; for example). Typical functions of interest are the determinant, the
trace, the eigenvalues and the eigenvectors of the matrices, which all play an im-
portant role in hypothesis testing in multivariate analysis. Observe that these
functions of T may be considered as functions of Z in §2.4.2, following a mul-
tivariate beta type II distribution. In this paragraph we are going to obtain the
dispersion matrix of the asymptotic normal law of the T-matrix in the case of finite
fourth order moments following Kollo (1990). As an application, the determinant
of the matrix will be considered.
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The notation

z =
(

vecS1

vecS2

)
, σ0 =

(
vecΣ1

vecΣ2

)
will be used. Moreover, let Π1 and Π2 denote the asymptotic dispersion matrices
of

√
nvec(S1−Σ1) and

√
nvec(S2−Σ2), respectively. The asymptotic distribution

of the T-matrix follows from Theorem 3.1.3.

Theorem 3.1.14. Let the p-vectors xij in (3.1.52) satisfy D[xij ] = Σj and
m4[xij ] < ∞, i = 1, 2, . . . , n, j = 1, 2. Then, if n → ∞,

√
nvec(S1S−1

2 − Σ1Σ−1
2 ) D−→ Np2(0,Ψ),

where

Ψ = (Σ−1
2 ⊗ Ip)Π1(Σ−1

2 ⊗ Ip) + (Σ−1
2 ⊗ Σ1Σ−1

2 )Π2(Σ−1
2 ⊗ Σ−1

2 Σ1), (3.1.53)

and Π1 and Π2 are defined by (3.1.5).

Proof: Applying Theorem 3.1.3 gives us

Ψ =

(
d(S1S−1

2 )
dz

∣∣∣∣
z=σ0

)′
Σz

d(S1S−1
2 )

dz

∣∣∣∣
z=σ0

,

where Σz denotes the asymptotic dispersion matrix of z, i.e.

√
n(z − σ0)

D−→ N2p2(0,Σz).

From Theorem 3.1.4 and independence of the samples it follows that

Σz =
(

Π1 0
0 Π2

)
.

Let us find the derivative
d(S1S−1

2 )
dz

. According to Theorem 3.1.5, we are going to
treat S1 and S2 as unstructured matrices.

d(S1S−1
2 )

dz
=

(1.4.19)

dS1

dz
(S−1 ⊗ Ip) +

dS−1
2

dz
(Ip ⊗ S1)

=
(1.4.21)

(
I
0

)
(S−1

2 ⊗ Ip) −
(

0
(S−1

2 ⊗ S−1
2 )

)
(Ip ⊗ S1). (3.1.54)

Thus,

Ψ = (Σ−1
2 ⊗ Ip : −Σ−1

2 ⊗ Σ1Σ−1
2 )
(

Π1 0
0 Π2

)(
(Σ−1

2 ⊗ Ip)
−(Σ−1

2 ⊗ Σ−1
2 Σ1)

)
= (Σ−1

2 ⊗ Ip)Π1(Σ−1
2 ⊗ Ip) + (Σ−1

2 ⊗ Σ1Σ−1
2 )Π2(Σ−1

2 ⊗ Σ−1
2 Σ1).
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Corollary 3.1.14.1. Let x1j ∼ Np(µ1,Σ1) and x2j ∼ Np(µ2,Σ2),
j = 1, 2, . . . , n. If n → ∞, then

√
nvec(S1S−1

2 − Σ1Σ−1
2 ) D−→ Np2(0,ΨN ),

where

ΨN = Σ−1
2 Σ1Σ−1

2 ⊗Σ1 +Σ−1
2 ⊗Σ1Σ−1

2 Σ1 + 2Kp,p(Σ1Σ−1
2 ⊗Σ−1

2 Σ1). (3.1.55)

In the special case, when Σ1 = Σ2 = Σ, we have

ΨN = 2Σ−1 ⊗ Σ + 2Kp,p.

The statement of the theorem has a simple form in the case of an elliptical distri-
bution.

Corollary 3.1.14.2. Let x1j ∼ Ep(µ1,Υ1), D[x1j ] = Σ1 and x2j ∼ Ep(µ2,Υ2),
D[x2j ] = Σ2, j = 1, 2, . . . , n, with kurtosis parameters κ1 and κ2, respectively. If
n → ∞, then √

nvec(S1S−1
2 − Σ1Σ−1

2 ) D−→ Np2(0,ΨE),

where

ΨE = (Σ−1
2 ⊗ Ip)ΠE

1 (Σ−1
2 ⊗ Ip) + (Σ−1

2 ⊗Σ1Σ−1
2 )ΠE

2 (Σ−1
2 ⊗Σ−1

2 Σ1), (3.1.56)

and ΠE
1 and ΠE

2 are given in Corollary 3.1.4.2. In the special case, when Σ1 =
Σ2 = Σ and κ1 = κ2,

ΨE = 2(1 + κ)(Σ−1 ⊗ Σ + Kp,p) + 2κvecIvec′I.

Theorem 3.1.14 makes it possible to find the asymptotic distributions of func-
tions of the T matrix in a convenient way. As an example, let us consider the
determinant of T. By Theorem 3.1.3 the following convergence holds:

√
n(|S1S−1

2 | − |Σ1Σ−1
2 |) D−→ N(0, β), (3.1.57)

where

β =

(
d|S1S−1

2 |
dz

∣∣∣∣
z=σ0

)′
Σz

d|S1S−1
2 |

dz

∣∣∣∣
z=σ0

and Ψ is given by (3.1.53). Relation (1.4.30) yields

d|S1S−1
2 |

dz
= |S1||S−1

2 |dS1S−1
2

dz
vec(S−1

1 S2)

and
dS1S−1

2

dz
was obtained in (3.1.54).
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3.1.10 Asymptotics of Hotelling T 2-statistic
In this paragraph the asymptotic behavior of the Hotelling T 2-statistic will be
examined. This statistic is a function which depends on both the sample mean
and the sample dispersion matrix. At the same time, it is a good introduction
to the next section, where we shall deal with asymptotic expansions. It appears
that different types of asymptotic distributions are valid for T 2. Its asymptotic
behavior depends on the parameters of the distribution. Different distributions
can be analyzed from the same point of view by using two terms in a Taylor
expansion of the statistic.
Suppose that we have p−variate random vectors with finite first moments: E[xi] =
µ, D[xi] = Σ and m4[xi] < ∞. The statistic x′S−1x is called Hotelling T 2-
statistic, where, as usual, x is the sample mean and S is the sample dispersion
matrix. The asymptotic distribution of the vector

√
n(z − σ0) with

z =
(

x
vecS

)
, σ0 =

(
µ

vecΣ

)
(3.1.58)

is given by √
n(z − σ0)

D−→ Np+p2(0,Σz),

where

Σz =
(

Σ M′
3

M3 Π

)
, (3.1.59)

the matrix Π is defined by (3.1.5) and

M3 = E[(x − µ) ⊗ (x − µ)′ ⊗ (x − µ)]. (3.1.60)

Using these notations, we formulate the following asymptotic result for T 2.

Theorem 3.1.15. Let x1, . . . ,xn be a sample of size n from a p-dimensional
population with the first moments E[xi] = µ 	= 0, D[xi] = Σi and m4[xi] < ∞.
Then, if n → ∞,

√
n(x′S−1x − µ′Σ−1µ) D−→ N(0, τ),

where

τ = ξ′Σzξ,

Σz is given by (3.1.59) and

ξ =
(

2Σ−1µ
−Σ−1µ ⊗ Σ−1µ

)
. (3.1.61)

If the distribution of xi is symmetric, then

τ = 4µ′Σ−1µ + (µ′Σ−1 ⊗ µ′Σ−1)Π(Σ−1µ ⊗ Σ−1µ). (3.1.62)
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Proof: From Theorem 3.1.3,

τ =

(
d(x′S−1x)

dz

∣∣∣∣
z=σ0

)′
Σz

d(x′S−1x)
dz

∣∣∣∣
z=σ0

,

where z and σ0 are given by (3.1.58) and Σz by (3.1.59). Let us find the derivative

d(x′S−1x)
dz

=
(1.4.19)

dx′

dz
S−1x +

d(S−1x)
dz

x

= 2
(

S−1x
0

)
−
(

0
S−1x ⊗ S−1x

)
,

where, as before when dealing with asymptotics, we differentiate as if S is non-
symmetric. At the point z = σ0, the matrix ξ in (3.1.61) is obtained, which also
gives the main statement of the theorem. It remains to consider the case when
the population distribution is symmetric, i.e. M3 = 0. Multiplying the matrices
in the expression of τ under this condition yields (3.1.62).

Corollary 3.1.15.1. Let xi ∼ Np(µ,Σ), i = 1, 2, . . . , n, and µ 	= 0. If n → ∞,
then √

n(x′S−1x − µ′Σ−1µ′) D−→ N(0, τN ),

where
τN = 4µ′Σ−1µ + 2(µ′Σ−1µ)2.

Corollary 3.1.15.2. Let xi ∼ Ep(µ,Υ), i = 1, 2, . . . , n, D[xi] = Σ, with kurtosis
parameter κ and µ 	= 0. If n → ∞, then

√
n(x′S−1x − µ′Σ−1µ′) D−→ N(0, τE),

where
τE = 4µ′Σ−1µ + (2 + 3κ)(µ′Σ−1µ)2.

As noted before, the asymptotic behavior of the Hotelling T 2-statistic is an inter-
esting object to study. When µ 	= 0, we get the asymptotic normal distribution
as the limiting distribution, while for µ = 0 the asymptotic distribution is a chi-
square distribution. Let us consider this case in more detail. From (3.1.61) it
follows that if µ = 0, the first derivative ξ = 0. This means that the second term
in the Taylor series of the statistic x′S−1x equals zero and its asymptotic behavior
is determined by the next term in the expansion. From Theorem 3.1.1 it follows
that we have to find the second order derivative at the point σ0. In the proof of
Theorem 3.1.15 the first derivative was derived. From here

d2(x′S−1x)
dz2

= 2
dS−1x

dz
(I : 0) − dS−1x ⊗ S−1x

dz
(0 : I).
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However, evaluating the derivative at the point z = σ0 with µ = 0 yields

d2(x′S−1x)
dz2

∣∣∣∣
z=σ0

= 2
(

Σ−1 0
0 0

)
.

From Theorem 3.1.1 we get that the first non-zero and non-constant term in the
Taylor expansion of x′S−1x is x′Σ−1x. As all the following terms will be oP (n−1),
the asymptotic distribution of the T 2-statistic is determined by the asymptotic
distribution of x′Σ−1x. If µ = 0, then we know that

nx′S−1x D−→ χ2(p),

if n → ∞ (see Moore, 1977, for instance). Here χ2(p) denotes the chi-square
distribution with p degrees of freedom. Hence, the next theorem can be formulated.

Theorem 3.1.16. Let x1, . . . ,xn be a sample of the size n, E[xi] = µ = 0 and
D[xi] = Σ. If n → ∞, then

nx′S−1x D−→ χ2(p).

Example 3.1.1. To illustrate the convergence of the T 2-statistic let us consider
the following example. It is based on the normal distribution N3(µ,Σ), where
µ = ae, e = (1, 1, 1)′, a is a constant which takes different values, and

Σ =

⎛⎝ 1.0 0.1 0.2
0.1 1.1 0.3
0.2 0.3 1.2

⎞⎠ .

A simulation experiment was carried out by the following scheme. The empirical
and the asymptotic normal distributions of the T 2-statistic were compared for
different sample sizes when µ → 0, and the parameter a was varied within the
range 0.1− 1. In the tables the number of replications k was 300. The tendencies
in the tables given below were the same when k was larger (≥ 1000). Let

Yn =
√

n(x′S−1x − µ′Σ−1µ′)

and its simulated values yi, i = 1, . . . , k. Let y = 1
k

∑k
i=1 yi and the estimated

value of the asymptotic variance of Yn be τN . From the tables we see how the
asymptotic variance changes when the parameter a tends to zero. The variance and
its estimator τN are presented. To examine the goodness-of-fit between empirical
and asymptotic normal distributions the standard chi-square test for good-ness-
of-fit was used with 13 degrees of freedom.

Table 3.1.1. Goodness-of-fit of empirical and asymptotic normal distributions of
the T 2-statistic, with n = 200 and 300 replicates.

a 1 0.7 0.5 0.3 0.2 0.15 0.1
y 0.817 0.345 0.493 0.248 0.199 0.261 0.247

τN 18.86 5.301 3.022 0.858 0.400 0.291 0.139
τN 16.489 5.999 2.561 0.802 0.340 0.188 0.082

χ2(13) 29.56 21.69 44.12 31.10 95.33 92.88 82.57
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The critical value of the chi-square statistic is 22.36 at the significance level 0.05.
The results of the simulations indicate that the speed of convergence to the asymp-
totic normal law is low and for n = 200, in one case only, we do not reject the
null-hypothesis. At the same time, we see that the chi-square coefficient starts to
grow drastically, when a ≤ 0.2.

Table 3.1.2. Goodness-of-fit of empirical and asymptotic normal distributions of
the T 2-statistic with n = 1000 and 300 replicates.

a 1 0.5 0.2 0.17 0.15 0.13 0.1
y 0.258 0.202 0.115 0.068 0.083 0.095 −0.016

τN 16.682 2.467 0.317 0.248 0.197 0.117 0.097
τN 16.489 2.561 0.340 0.243 0.188 0.140 0.082

χ2(13) 16.87 12.51 15.67 16.52 23.47 29.03 82.58

We see that if the sample size is as large as n = 1000, the fit between the asymptotic
normal distribution and the empirical one is good for larger values of a, while the
chi-square coefficient starts to grow from a = 0.15 and becomes remarkably high
when a = 0.1. It is interesting to note that the Hotelling T 2-statistic remains
biased even in the case of a sample size of n = 1000 and the bias has a tendency
to grow with the parameter a.

Now we will us examine the convergence of Hotelling’s T 2-statistic to the chi-
square distribution. Let Yn = nx′S−1x, y be as in the previous tables and denote
D̂[Yn] for the estimated value of the variance. From the convergence results above
we know that Yn converges to the chi-square distribution Y ∼ χ2(3) with E[Y ] = 3
and D[Y ] = 6, when µ = 0.

Table 3.1.3. Goodness-of-fit of empirical and asymptotic chi-square distributions
of the T 2-statistic based on 400 replicates.

n 100 200 500 1000
y 2.73 3.09 2.96 3.11

D̂[Yn] 4.93 8.56 6.71 6.67
χ2(13) 14.00 11.26 16, 67 8.41

The convergence of the T 2-statistic to the chi-square distribution is much faster
than to the normal distribution. The asymptotic variance starts to be stable from
n = 500. In the next table we show the convergence results to the chi-square
distribution, when the parameter a is growing.
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Table 3.1.4. Goodness-of-fit of the empirical and asymptotic chi-square distribu-
tions of the T 2-statistic with n = 200 and 300 replicates.

a 0 0.01 0.02 0.03 0.04 0.05 0.1
y 3.09 3.09 3.38 3.30 3.72 4.11 7.38

D̂[Yn] 8.56 5.92 7.67 6.66 7.10 12.62 23.96
χ2(13) 11.275 13.97 19.43 21.20 38.73 60.17 1107.0

We see that if the value of a is very small, the convergence to the chi-square
distribution still holds, but starting from the value a = 0.04 it breaks down in
our example. From the experiment we can conclude that there is a certain area of
values of the mean vector µ where we can describe the asymptotic behavior of the
T 2-statistic neither by the asymptotic normal nor by the asymptotic chi-square
distribution.

3.1.11 Problems
1. Show that for G and Z in Lemma 3.1.3

dG
d•Z

= − dZ
d•Z

(G ⊗ G)P2(I ⊗ (ZG)−1),

where
P2 = 1

2 (I + Kp,p) − (Kp,p)d.

2. Show that in Theorem 3.1.7

N−1 = (Λ ⊗ I − I ⊗ Λ)+ + 1
2 (I ⊗ Λ−1)(Kp,p)d.

3. Prove Corollary 3.1.6.2.
4. Show that if xij ∼ Np(µ,Σ), i = 1, 2, . . . , n, j = 1, 2, then the asymptotic

variance in (3.1.57) equals
β = 4p.

5. Let xij ∼ Ep(µ,V), i = 1, 2, . . . , n, j = 1, 2. Show that in (3.1.57)

β = 4(1 + κ)p + 2κp2,

where κ is the kurtosis parameter.
6. Let xi ∼ Np(µ,Σ), i = 1, . . . , n. Find the asymptotic dispersion matrix for

the vector
√

ndiag(D(n) − Λ). Follow the notation of Theorem 3.1.10.
7. Find an explicit expression of the asymptotic dispersion matrix of the eigen-

projector in Corollary 3.1.13.1 when xi ∼ Np(µ,Σ).
8. Find the asymptotic dispersion matrix for the i−th eigenvector hi(n) of the

sample dispersion matrix S under the assumptions of Corollary 3.1.10.2.
9. Let the population be normal, i.e. x ∼ Np(µ,Σ). Find the asymptotic normal

law for the inverse sample dispersion matrix S−1.
10. Let the population be elliptical, i.e. x ∼ Ep(µ,V). Find the asymptotic

normal law for the inverse sample dispersion matrix S−1.
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3.2. MULTIVARIATE FORMAL DENSITY EXPANSIONS IN Rp

3.2.1 Introduction
In §3.1.10 we saw that the asymptotic distribution of Hotelling’s T 2-statistic was
normal if its first derivative was non-zero at the point where the function was
expanded into a Taylor series. At the same time, if the first derivative equals
zero then a chi-square distribution describes the behavior of the T 2-statistic. In
short: when the population expectation µ = 0, we get an asymptotic chi-square
distribution as the limit distribution for T 2, and when µ 	= 0, an asymptotic
normal distribution is obtained. Certainly, when µ → 0, the convergence to the
normal distribution becomes slower. For small values of µ the asymptotic chi-
square distribution is not valid. This was clearly seen from the small simulation
experiment given in Example 3.1.1 in §3.1.10. In this case it would be natural to use
both terms which were considered when characterizing the asymptotic distribution
of T 2. Such a situation is not exceptional. Indeed it occurs quite often that the
convergence of a test statistic depends on the parameters to be tested. From
this point of view, almost the only possibility to characterize the distribution of
interest is to use several terms from the Taylor expansion. Another point is, of
course, that by using more terms in the approximation of the distribution, one
hopes to obtain better quality of the approximation which, however, may not be
true, if some quantity in the expansion has to be estimated. In this case some new
errors are introduced, which can be relatively large if higher order moments are
involved.
In the following we are going to consider density approximations. It is often fairly
straightforward to obtain formulae for distribution functions from the relations
between the densities which will be presented in the subsequent.

3.2.2 General relation between two densities in Rp

In statistical approximation theory the most common tool for approximating the
density or the distribution function of some statistic is the Edgeworth expansion
or related expansions, such as tilted Edgeworth (e.g. see Barndorff-Nielsen & Cox,
1989). In such a case a distribution is approximated by the standard normal
distribution, and the derivatives of its density function and the first cumulants of
the statistic are involved. However, for approximating a skewed random variable
it is natural to use some skewed distribution. This idea was used by Hall (1983) to
approximate a sum of independent random variables with chi-square distribution
and it is exploited in insurance mathematics for approximating claim distributions
via the Γ-distribution (see Gerber 1979, for instance).
Similar ideas can also be applied in the multivariate case. For different multi-
variate statistics, Edgeworth expansions have been derived on the basis of the
multivariate normal distribution, Np(0,Σ) (e.g. see Traat, 1986; Skovgaard, 1986;
McCullagh, 1987; Barndorff-Nielsen & Cox, 1989), but in many cases it seems more
natural to use multivariate approximations via some skewed distribution such as
non-symmetric mixtures or the Wishart distribution. A majority of the test statis-
tics in multivariate analysis is based on functions of quadratic forms. Therefore, it
is reasonable to believe, at least when the statistics are based on normal samples,
that we can expect good approximations for these statistics using the Wishart



318 Chapter III

density. Let x and y be two p−vectors with densities fx(x) and fy(x), character-
istic functions ϕx(t), ϕy(t) and cumulant functions ψx(t) and ψy(t). Our aim is
to present the more complicated density function, say fy(x), through the simpler
one, fx(x). In the univariate case, the problem in this setup was examined by
Cornish & Fisher (1937), who obtained the principal solution to the problem and
used it in the case when X ∼ N(0, 1). Finney (1963) generalized the idea for
the multivariate case and gave a general expression of the relation between two
densities. In his paper Finney applied the idea in the univariate case, presenting
one density through the other. From later presentations we mention McCullagh
(1987) and Barndorff-Nielsen & Cox (1989), who briefly considered generalized
formal Edgeworth expansions in tensor notation. When comparing our approach
with the coordinate free tensor approach, it is a matter of taste which one to pre-
fer. The tensor notation approach, as used by McCullagh (1987), gives compact
expressions. However, these can sometimes be difficult to apply in real calcula-
tions. Before going over to expansions, remember that the characteristic function
of a continuous random p−vector y can be considered as the Fourier transform of
the density function:

ϕy(t) =
∫

Rp

eit′xfy(x)dx.

To establish our results we need some properties of the inverse Fourier transforms.
An interested reader is referred to Esséen (1945). The next lemma gives the
basic relation which connects the characteristic function with the derivatives of
the density function.

Lemma 3.2.1. Assume that

lim
|xik

|→∞
∂k−1fy(x)

∂xi1 . . . ∂xik−1

= 0.

Then the k-th derivative of the density fy(x) is connected with the characteristic
function ϕy(t) of a p−vector y by the following relation:

(it)⊗kϕy(t) = (−1)k

∫
Rp

eit′xvec
dkfy(x)

dxk
dx, k = 0, 1, 2, . . . , (3.2.1)

where i is the imaginary unit and
dkfy(x)

dxk
is the matrix derivative defined by

(1.4.7).

Proof: The relation in (3.2.1) will be proved by induction. When k = 0, the
equality (3.2.1) is identical to the definition of the characteristic function. For
k = 1 we get the statement by assumption, taking into account that |eit′x| ≤ 1
and Corollary 1.4.9.1:

−
∫

Rp

d fy(x)
dx

eit′xdx =
∫

Rp

d eit′x

dx
fy(x)dx = it

∫
Rp

eit′xfy(x)dx = itϕy(t).
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Suppose that the relation (3.2.1) holds for k = s − 1. By assumption,

eit′x ds−1fy(x)
dxs−1

∣∣∣∣
x∈∂Rp

= 0,

where ∂ denotes the boundary. Thus, once again applying Corollary 1.4.9.1 we
get

−
∫

Rp

dsfy(x)
dxs

eit′xdx =
∫

Rp

d eit′x

dx
vec′

ds−1fy(x)
dxs−1

dx

= it
∫

Rp

eit′xvec′
ds−1fy(x)

dxs−1
dx = (−1)s−1it(it′)⊗s−1ϕy(t),

which means that the statement holds for k = s.
In the subsequent text we are using the notation fk

Y(X), k = 0, 1, 2, . . ., instead of
dkfY(X)

d Xk , where f0
Y(X) = fY(X). A formula for the inverse Fourier transform is

often needed. This transform is given in the next corollary.

Corollary 3.2.1.L1. Let y be a random p−vector and a an arbitrary constant
pk−vector. Then

(−1)ka′vec fk
y (x) = (2π)−p

∫
Rp

ϕy(t)a′(it)⊗ke−it′xdt, k = 0, 1, 2, . . . , (3.2.3)

where i is the imaginary unit.

Proof: By Lemma 3.2.1, the vector (it)⊗kϕy(t) is the Fourier transform of the

vectorized derivative
dkfy(x)

dxk
. Then the vector of derivatives is obtained from its

inverse Fourier transform, i.e.

(−1)kvec
dkfy(x)

dxk
= (2π)−p

∫
Rp

ϕy(t)(it)⊗ke−it′xdt.

If multiplying the left-hand side by a pk−vector a′, the necessary result is obtained.

Taking into account that Taylor expansions of matrices are realized through their
vector representations, we get immediately a result for random matrices.

Corollary 3.2.1.L2. Let Y be a random p × q−matrix and a an arbitrary con-
stant (pq)k−vector. Then

(−1)ka′vec fk
Y(X) = (2π)−pq

∫
Rpq

ϕY(T)a′(ivecT)⊗ke−ivec′TvecXdvecT,

k = 0, 1, 2, . . . ,

where i is the imaginary unit and T, X ∈ Rp×q.

Now we are can present the main result of the paragraph.
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Theorem 3.2.1. If y and x are two random p−vectors, the density fy(x) can be
presented through the density fx(x) by the following formal expansion:

fy(x) = fx(x) − (E[y] − E[x])′f1
x(x)

+ 1
2vec′{D[y] − D[x] + (E[y] − E[x])(E[y] − E[x])′}vecf2

x(x)
− 1

6

{
vec′(c3[y] − c3[x]) + 3vec′(D[y] − D[x]) ⊗ (E[y] − E[x])′

+ (E[y] − E[x])′⊗3
}
vecf3

x(x) + · · · . (3.2.4)

Proof: Using the expansion (2.1.35) of the cumulant function we have

ψy(t) − ψx(t) =
∞∑

k=1

ik

k! t
′(ck[y] − ck[x])t⊗k−1,

and thus

ϕy(t) = ϕx(t)
∞∏

k=1

exp{ 1
k! it

′(ck[y] − ck[x])(it)⊗k−1}.

By using a series expansion of the exponential function we obtain, after ordering
the terms according to ik, the following equality:

ϕy(t) = ϕx(t)
{

1 + i(c1[y] − c1[x])′t

+ i2

2 t′{c2[y] − c2[x] + (c1[y] − c1[x])(c1[y] − c1[x])′}t
+ i3

6

(
t′
{
(c3[y] − c3[x])

+ (c1[y] − c1[x])′ ⊗ (c1[y] − c1[x])(c1[y] − c1[x])′
}
t⊗2

+ 3(c1[y] − c1[x])′tt′(c2[y] − c2[x])t
)

+ · · ·
}

.

Applying the equality (1.3.31) repeatedly we obtain, when using the vec-operator,

ϕy(t) = ϕx(t)
{

1 + i(c1[y] − c1[x])′t

+ i2

2 vec′{c2[y] − c2[x] + (c1[y] − c1[x])(c1[y] − c1[x])′}t⊗2

+ i3

6

(
vec′(c3[y] − c3[x]) + 3vec′(c2[y] − c2[x]) ⊗ (c1[y] − c1[x])′

+ (c1[y] − c1[x])′⊗3
)
t⊗3 + · · ·

}
.

This equality can be inverted by applying the inverse Fourier transform given in
Corollary 3.2.1.L1. Then the characteristic functions turn into density functions
and, taking into account that c1[•] = E[•] and c2[•] = D[•], the theorem is estab-
lished.
By applying the theorem, a similar result can be stated for random matrices.
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Corollary 3.2.1.1. If Y and X are two random p×q−matrices, the density fY(X)
can be presented through the density fX(X) as the following formal expansion:

fY(X) = fX(X) − vec′(E[Y] − E[X])f1
X(X)

+ 1
2vec′{D[Y] − D[X] + vec(E[Y] − E[X])vec′(E[Y] − E[X])}vecf2

X(X)

− 1
6

(
vec′(c3[Y] − c3[X]) + 3vec′(D[Y] − D[X]) ⊗ vec′(E[Y] − E[X])

+ vec′(E[Y] − E[X])⊗3
)
vecf3

X(X) + · · · .

3.2.3 Multivariate Edgeworth type expansions
Consider the univariate case. When the known distribution of X is the standard
normal distribution, from (3.2.4) one gets a classical Edgeworth type expansion
where the density of the standardized random variable Y is presented as a series
expansion through its cumulants and derivatives of the normal density, expressed
via Hermite polynomials, as in §2.2.4. In the multivariate case, we have the vector
x ∼ Np(0,Σ) in the role of X ∼ N(0, 1). Now, the multivariate Hermite poly-
nomials Hi(x,Σ), defined by (2.2.39) – (2.2.41), will be of use. However, in the
multivariate case we can not divide by the standard deviation and therefore, we
shall present the unknown density of y through the normal density Np(0,Σ) given
by (2.2.5). When x ∼ Np(0,Σ) in the expansion (3.2.4), we say that we have a
multivariate Edgeworth type expansion for the density fy(x).

Theorem 3.2.2. Let y be a random p−vector with finite first four moments, then
the density fy(x) can be presented through the density fN (x) of the distribution
Np(0,Σ) by the following formal Edgeworth type expansion:

fy(x) = fN (x)
{

1 + E[y]′vecH1(x,Σ)

+ 1
2vec′{D[y] − Σ + E[y](E[y])′}vecH2(x,Σ)

+ 1
6 {vec′c3[y]+ 3vec′(D[y] − Σ) ⊗ (E[y])′

+(E[y])′⊗3
}

vecH3(x,Σ) + · · ·
}

, (3.2.5)

where the multivariate Hermite polynomials Hi(x,Σ) are given by the relations
in (2.2.39) – (2.2.41).

As cumulants of random matrices are defined through their vector representations,
a formal expansion for random matrices can be given in a similar way.

Corollary 3.2.2.1. If Y is a random p × q−matrix with finite first four mo-
ments, then the density fY(X) can be presented through the density fN (X) of the
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distribution Npq(0,Σ) by the following formal matrix Edgeworth type expansion:

fY(X) = fN (X)
{

1 + E[vecY]′vecH1(vecX,Σ)

+ 1
2vec′{D[vecY] − Σ + E[vecY]E[vecY]′}vecH2(vecX,Σ)

+ 1
6

(
vec′(c3[Y] + 3vec′(D[vecY] − Σ) ⊗ E[vec′Y]

+ E[vec′Y]⊗3
)
vecH3(vecX,Σ) + · · ·

}
. (3.2.6)

The importance of Edgeworth type expansions is based on the fact that asymp-
totic normality holds for a very wide class of statistics. Better approximation may
be obtained if a centered version of the statistic of interest is considered. From the
applications’ point of view the main interest is focused on statistics T which are
functions of sample moments, especially the sample mean and the sample disper-
sion matrix. If we consider the formal expansion (3.2.5) for a p−dimensional T,
the cumulants of T depend on the sample size. Let us assume that the cumulants
ci[T] depend on the sample size n in the following way:

c1[T] = n− 1
2 Γ1(T) + o(n−1), (3.2.7)

c2[T] = K2(T) + n−1Γ2(T) + o(n−1), (3.2.8)

c3[T] = n− 1
2 Γ3(T) + o(n−1), (3.2.9)

cj [T] = o(n−1), j ≥ 4, (3.2.10)

where K2(T) and Γi(T) depend on the underlying distribution but not on n.
This choice of cumulants guarantees that centered sample moments and their
functions multiplied to

√
n can be used. For example, cumulants of the statistic√

n(g(x) − g(µ)) will satisfy (3.2.7) – (3.2.10) for smooth functions g(•). In the
univariate case the Edgeworth expansion of the density of a statistic T , with the
cumulants satisfying (3.2.7) – (3.2.10), is of the form

fT (x) = fN(0,k2(T ))(x){1 + n− 1
2 {γ1(T )h1(x) +

1
6
γ3(T )h3(x)}+ o(n− 1

2 )}, (3.2.11)

where the Hermite polynomials hk(x) are defined in §2.2.4. The form of (3.2.11)
can be carried over to the multivariate case.

Corollary 3.2.2.2. Let T(n) be a p−dimensional statistic with cumulants satis-
fying (3.2.7) - (3.2.10). Then, for T(n), the following Edgeworth type expansion
is valid:

fT(n)(x) = fNp(0,K2(T))(x){1 + n− 1
2 ((Γ1(T))′vecH1(x,Σ)

+ 1
6vec′(c3[y])vecH3(x,Σ)) + o(n− 1

2 )}. (3.2.12)

If T(n) is a random matrix, a similar statement follows from Corollary 3.2.2.1.



Distribution Expansions 323

Corollary 3.2.2.3. Let T(n) : p × q be a statistic with cumulants satisfying
(3.2.7) – (3.2.10). Then, for T(n) the following formal Edgeworth type expansion
is valid:

fT(n)(X) = fNpq(0,K2(T))(X)
{
1 + n− 1

2 {(Γ1(T))′vecH1(vecX,Σ)

+ 1
6vec′

(
c3[T])vecH3(vecX,Σ)} + o(n− 1

2 )
}
. (3.2.13)

3.2.4 Wishart expansions
For different multivariate statistics, Edgeworth type expansions have been ob-
tained on the basis of the multivariate normal distribution Np(0,Σ), but in many
cases it seems more natural to use multivariate approximations via the Wishart
distribution or some other multivariate skewed distribution. As noted in the be-
ginning of this section, many test statistics in multivariate analysis are based on
functions of quadratic forms. Therefore, if some properties of a quadratic form
are transmitted to the test statistic under consideration we may hope that the
Wishart density, which often is the density of the quadratic form, will be appro-
priate to use. The starting point for our study in this paragraph is Theorem 3.2.1
and its Corollary 3.2.1.1. In Section 2.4 the Wishart distribution was examined.
We are going to use the centered Wishart distribution, which was considered in
§2.4.8. The reason for using it is that the derivatives of its density are decreasing
as functions of the degrees of freedom. This is not the case with the ordinary
Wishart distribution.
As the Wishart matrix is symmetric, we shall deal with cumulants of symmetric
matrices in the following text. In Section 2.1 we agreed not to point out sym-
metricity in the notation, and we wrote fX(X) and ϕX(T) for the density and
characteristic functions of a symmetric X : p × p, while remembering that we use
the 1

2p(p + 1) elements of the upper triangles of X and T. The formal expansion
through the centered Wishart distribution is given in the next theorem (Kollo &
von Rosen, 1995a).

Theorem 3.2.3. Let W, Y and V be p × p random symmetric matrices with
W ∼ Wp(Σ, n) and V = W − nΣ. Then, for the density fY(X), the following
formal expansion holds:

fY(X) = fV(X)
{

1 + E[V 2(Y)]′L�
1(X,Σ)

+ 1
2vec′(D[V 2(Y)] − D[V 2(V)] + E[V 2(Y)]E[V 2(Y)]′)vecL�

2(X,Σ)

+ 1
6

(
vec′(c3[V 2(Y)] − c3[V 2(V)])′

+ 3vec′(D[V 2(Y)] − D[V 2(V)]) ⊗ E[V 2(Y)]′ + E[V 2(Y)]′⊗3
)

× vecL�
3(X,Σ) + · · ·

}
, X > 0, (3.2.14)
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where V 2(•) is given in Definition 1.3.9 and L�
i (X,Σ) are defined in Lemma 2.4.2

by (2.4.66).

Proof: We get the statement of the theorem directly from Corollary 3.2.1.1, if
we take into account that by Lemma 2.4.2 the derivative of the centered Wishart
density equals

fk
V(V) = (−1)kL�

k(V,Σ)fV(V).

Theorem 3.2.3 will be used in the following, when considering an approximation
of the density of the sample dispersion matrix S with the density of a centered
Wishart distribution. An attempt to approximate the distribution of the sample
dispersion matrix with the Wishart distribution was probably first made by Tan
(1980), but he did not present general explicit expressions. Only in the two-
dimensional case formulae were derived.

Corollary 3.2.3.1. Let Z = (z1, . . . , zn) be a sample of size n from a p-dimen-
sional population with E[zi] = µ, D[zi] = Σ and mk[zi] < ∞, k = 3, 4, . . . and let
S denote the sample dispersion matrix given by (3.1.3). Then the density function
fS�(X) of S� = n(S − Σ) has the following representation through the centered
Wishart density fV(X), where V = W − nΣ, W ∼ Wp(Σ, n) and n ≥ p:

fS�(X) = fV(X)
{

1 − 1
4vec′

{
Gp{m̄4[zi] − vecΣvec′Σ − (Ip2 + Kp,p)(Σ ⊗ Σ)}G′

p

}
× vec

{
GpHp{(X/n + Σ)−1 ⊗ (X/n + Σ)−1}HpG′

p

}
+ O( 1

n )
}

, X > 0,

(3.2.15)

where Gp is defined by (1.3.49) – (1.3.50), and Hp = I + Kp,p − (Kp,p)d is from
Corollary 1.4.3.1.

Proof: To obtain (3.2.15), we have to insert the expressions of L�
k(X,Σ) and

cumulants ck[V 2(S�)] and ck[V 2(V)] in (3.2.14) and examine the result. Note
that c1[V 2(S�)] = 0 and in (3.2.14) all terms including E[V 2(Y)] vanish. By
Kollo & Neudecker (1993, Appendix 1),

D[
√

nS] = m̄4[zi] − vecΣvec′Σ + 1
n−1 (Ip2 + Kp,p)(Σ ⊗ Σ)

= m̄4[zi] − vecΣvec′Σ + O( 1
n ).

Hence, by the definition of Gp, we have

D[V 2(S�)] = nGp(m̄4[zi] − vecΣvec′Σ)G′
p + O(1). (3.2.16)

In Lemma 2.4.2 we have shown that L�
2(X,Σ) is of order n−1, and therefore in the

approximation we can neglect the second term in L�
2(X,Σ). Thus, from (3.2.16),

(2.4.62) and Theorem 2.4.16 (ii) it follows that

1
2vec′(D[V 2(S�)] − D[V 2(V)])vecL�

2(X,Σ) = − 1
4vec′

(
Gp{m̄4[zi] − vecΣvec′Σ

− (Ip2 + Kp,p)(Σ ⊗ Σ)}G′
p

)
vec
(
GpHp((X/n + Σ)−1 ⊗ (X/n + Σ)−1)HpG′

p

)
+O( 1

n ).
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To complete the proof we have to show that in (3.2.14) the remaining terms are
O( 1

n ). Let us first show that the term including L�
3(X,Σ) in (3.2.14) is of order

n−1. From Lemma 2.4.2 we have that L�
3(X,Σ) is of order n−2. From Theorem

2.4.16 (iii) it follows that the cumulant c3[V 2(V)] is of order n. Traat (1984) has
found a matrix M3, independent of n, such that

c3[S] = n−2M3 + O(n−3).

Therefore,
c3[V 2(S�)] = nK3 + O(1),

where the matrix K3 is independent of n. Thus, the difference of the third or-
der cumulants is of order n, and multiplying it with vecL�

3(X,Σ) gives us that
the product is O(n−1). All other terms in (3.2.14) are scalar products of vec-
tors which dimension do not depend on n. Thus, when examining the order of
these terms, it is sufficient to consider products of L�

k(X,Σ) and differences of
cumulants ck[V 2(S�)]− ck[V 2(V)]. Remember that it was shown in Lemma 2.4.2
that L�

k(X,Σ), k ≥ 4 is of order n−k+1. Furthermore, from Theorem 2.4.16 and
properties of sample cumulants of k-statistics (Kendall & Stuart, 1958, Chapter
12), it follows that the differences ck[V 2(S�)] − ck[V 2(V)], k ≥ 2, are of order n.
Then, from the construction of the formal expansion (3.2.14), we have that for
k = 2p, p = 2, 3, . . ., the term including L�

k(X,Σ) is of order n−p+1. The main
term of the cumulant differences is the term where the second order cumulants
have been multiplied p times. Hence, the L�

4(X,Σ)−term, i.e. the expression in-
cluding L�

4(X,Σ) and the product of D[V 2(S�)]−D[V 2(V)] with itself, is O(n−1),
the L�

6(X,Σ)-term is O(n−2), etc.
For k = 2p + 1, p = 2, 3, . . . , the order of the L�

k(X,Σ)−term is determined by
the product of L�

k(X,Σ), the (p − 1) products of the differences of the second
order cumulants and a difference of the third order cumulants. So the order of the
L�

k(X,Σ)−term (k = 2p + 1) is n−2p ×np−1 ×n = n−p. Thus, the L�
5(X,Σ)-term

is O(n−2), the L�
7(X,Σ−)term is O(n−3) and so on. The presented arguments

complete the proof.
Our second application concerns the non-central Wishart distribution. It turns
out that Theorem 3.2.3 gives a very convenient way to describe the non-central
Wishart density. The approximation of the non-central Wishart distribution by
the Wishart distributions has, among others, previously been considered by Steyn
& Roux (1972) and Tan (1979). Both Steyn & Roux (1972) and Tan (1979)
perturbed the covariance matrix in the Wishart distribution so that moments of
the Wishart distribution and the non-central Wishart distribution became close
to each other. Moreover, Tan (1979) based his approximation on Finney’s (1963)
approach, but never explicitly calculated the derivatives of the density. It was not
considered that the density is dependent on n. Although our approach is a matrix
version of Finney’s, there is a fundamental difference with the approach by Steyn
& Roux (1972) and Tan (1979). Instead of perturbing the covariance matrix, we
use the idea of centering the non-central Wishart distribution. Indeed, as shown
below, this will also simplify the calculations because we are now able to describe
the difference between the cumulants in a convenient way, instead of treating
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the cumulants of the Wishart distribution and non-central Wishart distribution
separately.
Let Y ∼ Wp(Σ, n, µ), i.e. Y follows the non-central Wishart distribution with a
non-centrality parameter µ. If Σ > 0, the matrix Y has the characteristic function
(see Muirhead, 1982)

ϕY(T) = ϕW(T)e−
1
2 tr(Σ−1µµ′)e

1
2 tr(Σ−1µµ′(Ip−iM(T)Σ)−1), (3.2.17)

where M(T) and ϕW(T), the characteristic function of W ∼ Wp(Σ, n), are given
in Theorem 2.4.5.
We shall again consider the centered versions of Y and W, where W ∼ Wp(Σ, n).
Let Z = Y−nΣ−µµ′ and V = W−nΣ. Since we are interested in the differences
ck[Z] − ck[V], k = 1, 2, 3, . . . , we take the logarithm on both sides in (3.2.17) and
obtain the difference of the cumulant functions

ψZ(T)−ψV(T)
= − 1

2 tr(Σ−1µµ′) − i 1
2 tr{M(T)µµ′} + 1

2 tr{Σ−1µµ′(I − iM(T)Σ)−1}.
After expanding the matrix (I − iM(T)Σ)−1 (Kato, 1972, for example), we have

ψZ(T) − ψV(T) = 1
2

∞∑
j=2

ijtr{Σ−1µµ′(M(T)Σ)j}. (3.2.18)

From (3.2.18) it follows that c1[Z] − c1[V] = 0, which, of course, must be true,
because E[Z] = E[V] = 0. In order to obtain the difference of the second order
cumulants, we have to differentiate (3.2.18) and we obtain

c2[V 2(Z)]− c2[V 2(V)] = 1
2

d2tr(µµ′M(T)ΣM(T))
d V 2(T)2

= Jp(µµ′ ⊗Σ + Σ⊗µµ′)G′
p,

(3.2.19)
where Jp and Gp are as in Theorem 2.4.16. Moreover,

c3[V 2(Z)] − c3[V 2(V)]

= Jp

{
Σ ⊗ Σ ⊗ vec′(µµ′) + vec′(µµ′) ⊗ Σ ⊗ Σ + vec′Σ ⊗ µµ′ ⊗ Σ

+ µµ′ ⊗ Σ ⊗ vec′Σ + Σ ⊗ µµ′ ⊗ vec′Σ

+ vec′Σ ⊗ Σ ⊗ µµ′)(Ip ⊗ Kp,p ⊗ Ip)
}
J′

pG
′
p. (3.2.20)

Hence, the next theorem is established.

Theorem 3.2.4. Let Z = Y − nΣ − µµ′, where Y ∼ Wp(Σ, n, µ), and V =
W − nΣ, where W ∼ Wp(Σ, n). Then

fZ(X) = fV(X)
{

1 +
1
2
vec′(µµ′ ⊗ Σ + Σ ⊗ µµ′)(G′

p ⊗ J′
p)vecL�

2(X,Σ)

+ 1
6vec′(c3[V 2(Z)] − c3[V 2(V)])vecL�

3(X,Σ) + o(n−2)
}

, X > 0, (3.2.21)
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where L�
k(X,Σ), k = 2, 3, are given in Lemma 2.4.2 and (c3[V 2(Z)] − c3[V 2(V)])

is determined by (3.2.20).

Proof: The proof follows from (3.2.14) if we replace the difference of the second
order cumulants by (3.2.19), taking into account that, by Lemma 2.4.2, L�

k(X,Σ)
is of order n−k+1, k ≥ 3, and note that the differences of the cumulants ck[V 2(Z)]−
ck[V 2(V)] do not depend on n.
We get an approximation of order n−1 from Theorem 3.2.4 in the following way.

Corollary 3.2.4.1.

fZ(X) = fV(X)
{

1 − 1
4n

vec′(µµ′ ⊗ Σ + Σ ⊗ µµ′)

× (G′
pGpH′

p ⊗ J′
pGpH′

p)vec((X/n + Σ)−1 ⊗ (X/n + Σ)−1) + o( 1
n )
}

, X > 0,

where, as previously, Hp = I + Kp,p − (Kp,p)d.

Proof: The statement follows from (3.2.21) if we omit the L�
3(X,Σ)-term, which

is of order n−2, and then use the n−1 term in L�
2(X,Σ) in (2.4.68).

3.2.5 Problems
1. Let S be Wishart distributed. Show that assumptions (3.2.7) and (3.2.8) are

satisfied for S−1.
2. Let Z ∼ E(µ,V, φ). Find the approximation (3.2.15) for the elliptical popu-

lation.
3. Find a matrix M3 such that

c3[S] = n−2M3 + O(n−3),

where M3 does not depend on n.
4. Establish (3.2.19).
5. Establish (3.2.20).
6. Present the expansion (3.2.21) in such a way that the terms of order 1

n and
1

n2 are presented separately.
7. Write out a formal density expansion for a p−vector y through the mixture

f(x) of two normal distributions

f(x) = γfN(0,Σ1)(x) + (1 − γ)fN(0,Σ2)(x).

8. Find a Wishart expansion for the sample dispersion matrix when the popu-
lation has a symmetric Laplace distribution with the characteristic function

ϕ(t) =
1

1 + 1
2t

′Σt
,

where Σ is the dispersion matrix.
9. Find a Wishart approximation for S−1 using two terms.
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10. The multivariate skew normal distribution SNp(Σ, α) has a density function

f(x) = 2fN(0,Σ)(x)Φ(α′x),

where Φ(x) is the distribution function of N(0, 1), α is a p−vector and Σ:
p× p is positive definite. The moment generating function of SNp(Σ,α) is of
the form

M(t) = 2e
1
2 t′ΣtΦ

(
α′Σt√

1 + α′Σα

)
(see Azzalini & Dalla Valle, 1996; Azzalini & Capitanio, 1999). Find a formal
density expansion for a p−vector y through SNp(Σ, α) which includes the
first and second order cumulants.
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3.3 GENERAL MULTIVARIATE EXPANSIONS

3.3.1 General relation between two densities
In the previous section we obtained approximation formulae for density functions
of p−dimensional distributions via densities of the same size. For multivariate
analysis this situation is somewhat restrictive. In this section we are going to
consider the approximation of the distribution of a p−dimensional random vec-
tor via a r−dimensional distribution when p ≤ r. There are many situations
when it would be natural to approximate a distribution of a multivariate statistic
with a distribution of higher dimension. Let us give some examples. The sample
correlation matrix R is a function of the sample dispersion matrix S. If the pop-
ulation is normally distributed, the matrix S is Wishart distributed. Therefore,
it can be of interest to approximate the distribution of R by the Wishart distri-
bution. However, there are 1

2p(p + 1) different random variables in S, whereas
there are 1

2p(p − 1) different variables in R. We have a similar situation when
approximating the density of an eigenvector of S with the Wishart distribution,
or if one wants to approximate the distribution of the generalized variance |S|
with the multivariate normal population distribution, for example. Very little has
been written on approximation of distributions in the case of different dimension-
alities. Kolassa (1994) examines different dimensionalities when approximating a
conditional distribution, and we can also refer to Skovgaard (1987). The following
presentation is based on the paper by Kollo & von Rosen (1998). A general rela-
tion between density functions will be obtained with the help of the next lemma,
which gives a representation of a p−dimensional density through an integral over
the r−dimensional Euclidean space. For the presentation we use the following no-
tation: let y be a random p−vector and t1, t real p− and r−vectors, respectively,
with p ≤ r. Let P : p × r be a real matrix of rank r(P) = p. Consider in Rr the
following one-to-one transformation:

t −→
(

t1

z

)
,

so that t1 = Pt, z = (P′)o′
At, where A : r × r is a positive definite matrix and

(P′)o : r×(r−p) is any full rank matrix which, as previously, spans the orthogonal
complement of the column space of P′, i.e.(

t1

z

)
=
(

P
(P′)o′

A

)
t. (3.3.1)

In the given notation the following lemma is valid.

Lemma 3.3.1. Let y be a random p−vector with density fy(x) and matrices
P, (P′)o given in (3.3.1). Then

fy(x0) = |A| 12 |PA−1P′| 12 1
(2π)

1
2 (r+p)

×
∫

Rr

exp(−i(Pt)′x0)ϕy(Pt)exp{− 1
2t

′A(P′)o((P′)o′
A(P′)o)−1(P′)o′

At}dt.
(3.3.2)
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Proof: Denote the right hand side of (3.3.2) by J . Our aim is to get an approxi-
mation of the density fy(x) of the p−dimensional y. According to (3.3.1), a change
of variables in J will be carried out. For the Jacobian of the transformation, the
following determinant is calculated:∣∣∣∣ P

(P′)o′
A

∣∣∣∣ = ∣∣∣∣( P
(P′)o′

A

)
(P′ : A(P′)o )

∣∣∣∣ 12 =
∣∣∣∣(PA−1

(P′)o′

)
A (P′ : A(P′)o )

∣∣∣∣ 12
= |A| 12 |PA−1P′| 12 |(P′)o′

A(P′)o| 12 .

This means that the Jacobian of the transformation (3.3.1) equals

|A|− 1
2 |PA−1P′|− 1

2 |(P′)o′
A(P′)o|− 1

2

and we obtain

J =
1

(2π)p

∫
Rp

exp(−it1
′x0)ϕy(t1)dt1

× 1
(2π)

1
2 (r−p)

∫
Rr−p

|(P′)o′
A(P′)o|− 1

2 exp(− 1
2z

′((P′)o′
A(P′)o)−1z)dz.

The last integral equals 1, since it is an integral over a multivariate normal density,
i.e. z ∼ Nr−p(0, (P′)o′

A(P′)o). Thus, by the inversion formula given in Corollary
3.2.1.L1,

J =
1

(2π)p

∫
Rp

exp(−it′1x0)ϕy(t1)dt1 = fy(x0)

and the statement is established.
If x and y are vectors of the same dimensionality, our starting point for getting a
relation between the two densities in the previous paragraph was the equality

ϕy(t) =
ϕy(t)
ϕx(t)

ϕx(t),

where it is supposed that ϕx(t) 	= 0. However, since in this paragraph the di-
mensions of the two distributions are different, we have to modify this identity.
Therefore, instead of the trivial equality consider the more complicated one

|A| 12 |PA−1P′| 12 (2π)−
1
2 (r+p)exp(−it′1y0)ϕy(t1)

× exp{− 1
2t

′A(P′)o((P′)o′
A(P′)o)−1(P′)o′

At}
= |A| 12 |PA−1P′| 12 (2π)−rk(t1, t)exp(−it′x0)ϕx(t), (3.3.3)

where

k(t1, t) = (2π)
1
2 (r−p) ϕy(t1)

ϕx(t)

× exp{it′x0 − it′1y0 − 1
2t

′A(P′)o((P′)o′
A(P′)o)−1(P′)o′

At}. (3.3.4)
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The approximations in this paragraph arise from the approximation of the right
hand side of (3.3.4), i.e. k(t1, t). If x and y are of the same size we may choose
t1 = t and x0 = y0, which is not necessarily the best choice. In this case, k(t1, t)

reduces to
ϕy(t)
ϕx(t)

, which was presented as the product

ϕy(t)
ϕx(t)

=
∞∏

k=1

exp{ ik

k! t
′(ck[y] − ck[x])t⊗k−1}, (3.3.5)

when proving Theorem 3.2.1. In the general case, i.e. when t1 = Pt holds for some
P, we perform a Taylor expansion of (3.3.4) and from now on k(t1, t) = k(Pt, t).
The Taylor expansion of k(Pt, t) : Rr → R, is given by Corollary 1.4.8.1 and
equals

k(Pt, t) = k(0,0) +
m∑

j=1

1
j!t

′kj(0,0)t⊗j−1 + rm(t), (3.3.6)

where the derivative

kj(Pt, t) =
djk(Pt, t)

d tj

is given by (1.4.7) and (1.4.41). The remainder term rm(t) equals

rm(t) = 1
(m+1)!t

′km+1(P(θ ◦ t), θ ◦ t)t⊗m, (3.3.7)

where θ◦t is the Hadamard product of θ and t, and θ is an r−vector with elements
between 0 and 1. Using expression (3.3.6), the relation in (3.3.3) may be rewritten.
The next lemma is a reformulation of the equality (3.3.3) via the expansion (3.3.6).

Lemma 3.3.2. Let k(t1, t) = k(Pt, t) be given by (3.3.4), where t is an r−vector
and P: p × r. Then

|A| 12 |PA−1P′| 12 (2π)−
1
2 (r+p)

× exp(−i(Pt)′y0)ϕy(Pt)exp{− 1
2t

′A(P′)o((P′)o′
A(P′)o)−1(P′)o′

At}

= |A| 12 |PA−1P′| 12
⎧⎨⎩(2π)

1
2 (r−p) +

m∑
j=1

1
j!

t′kj(0,0)t⊗j−1 + rm(t)

⎫⎬⎭
× (2π)−rexp(−it′x0)ϕx(t),

where rm(t) is given by (3.3.7), A : r× r is positive definite and (P′)o : r× (r− p)
is introduced in (3.3.1).

Put
hj(t) = i−jkj(Pt, t) (3.3.8)

and note that hj(0) is real. Now we are able to write out a formal density expansion
of general form.
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Theorem 3.3.1. Let y and x be random p−vector and r−vector, respectively,
p ≤ r, P : p× r be a real matrix of rank r(P) = p, and A : r × r positive definite.
Then

fy(y0) = |A| 12 |PA−1P′| 12{
(2π)

1
2 (r−p)fx(x0) +

m∑
k=1

(−1)k 1
k!

vec′hk(0)vecfk
x (x0) + r∗m

}

and

r∗m = (2π)−r

∫
Rr

rm(t)exp(−it′x0)ϕx(t)dt,

where rm(t) is defined by (3.3.7) and hk(t) is given by (3.3.8). When
|t′hm+1(v)t⊗m| ≤ |c′m+1t

⊗m+1| for some constant rm+1−vector cm+1, v ∈ D,
where D is a neighborhood of 0, then

|r∗m| ≤ 1
(m + 1)!

(2π)−r

∫
Rr

|c′m+1t
⊗m+1|ϕx(t)dt.

Proof: Using the basic property of the vec-operator (1.3.31), i.e. vec(ABC) =
(C′ ⊗ A)vecB, we get

t′hk(0)t⊗k−1 = vec′(hk(0))t⊗k.

Then it follows from Corollary 3.2.1.L1 that

(2π)−r

∫
Rr

(it′)hk(0)(it)⊗k−1exp(−it′x0)ϕx(t)dt = (−1)kvec′hk(0)vecfk
x (x0)

and with the help of Theorem 3.2.1, Lemma 3.3.1 and Lemma 3.3.2 the general
relation between fy(y0) and fx(x0) is established. The upper bound of the error
term r∗m follows from the fact that the error bound of the density approximation
is given by

(2π)−r|
∫

Rr

rm(t)e−it′x0ϕx(t)dt| ≤ (2π)−r

∫
Rr

|rm(t)|ϕx(t)dt

and we get the statement by assumption, Lemma 3.3.1 and Lemma 3.3.2.
We have an important application of the expression for the error bound when
x ∼ Nnr(0, In ⊗ Σ). Then ϕx(t) = exp(− 1

2t
′(In ⊗ Σ)t). If m + 1 is even,

we see that the integral in the error bound in Theorem 3.3.1 can be immediately
obtained by using moment relations for multivariate normally distributed variables
(see §2.2.2). Indeed, the problem of obtaining error bounds depends on finding a
constant vector cm+1, which has to be considered separately for every case.
In the next corollary we give a representation of the density via cumulants of the
distributions.
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Corollary 3.3.1.1. Let y be a p−vector, x an r−vector, P : p × r of rank
r(P) = p, A : r×r positive definite and (P′)o : r×(r−p) of rank r((P′)o) = r−p.
Then

fy(y0) = |A| 12 |PA−1P′| 12 (2π)
1
2 (r−p)

{
fx(x0) − (M0 + M1)′vecf1

x(x0)

+ 1
2 ((M0 + M1)′⊗2 + vec′M2)vecf2

x(x0)

− 1
6{vec′M3 + (M0 + M1)′⊗3 + vec′M2 ⊗ (M0 + M1)′(Ir3 + Ir ⊗ Kr,r + Kr2,r)}

× vecf3
x(x0) + r∗3

}
,

where

M0 =x0 − P′y0, (3.3.9)
M1 =P′c1[y] − c1[x] = P′E[y] − E[x], (3.3.10)
M2 =P′c2[y]P − c2[x] + Q = P′D[y]P − D[x] + Q, (3.3.11)
M3 =P′c3[y]P⊗2 − c3[x], (3.3.12)

Q =A(P′)o((P′)o′
A(P′)o)−1(P′)o′

A. (3.3.13)

Proof: For the functions hk(t) given by (3.3.4) and (3.3.8) we have

h1(t) = i−1k1(Pt, t) = i−1(ix0 − iP′y0 − Qt +
dlnϕP′y(t)

dt
− dlnϕx(t)

dt
)k(Pt, t),

h2(t) =
(1.4.19)

i−2k2(Pt, t) = i−2
{

(
d2lnϕP′y(t)

dt2
− d2lnϕx(t)

dt2
− Q)k(Pt, t)

+ k1(Pt, t){ix0 − iP′y0 − Qt +
dlnϕP′y(t)

dt
− dlnϕx(t)

dt
}′
}

and

h3(t) =
(1.4.19)
(1.4.23)

i−3k3(Pt, t) = i−3
{

(
d3lnϕP′y(t)

dt3
− d3lnϕx(t)

dt3
)k(Pt, t)

+ k1(Pt, t)vec′(
d2lnϕP′y(t)

dt2
− d2lnϕx(t)

dt2
− Q)

+ (
d2lnϕP′y(t)

dt2
− d2lnϕx(t)

dt2
− Q) ⊗ (k1(Pt, t)

)′
+ (ix0 − iP′y0 − Qt +

dlnϕP′y(t)
dt

− dlnϕx(t)
dt

)′ ⊗ k2(Pt, t)
}

.

Thus, according to Definition 2.1.6,

h1(0) =(x0 − P′y0 + P′c1[y] − c1[x])k(0,0), (3.3.14)
h2(0) =(P′c2[y]P − c2[x] + Q)k(0,0) + h1(0)(x0 − P′y0 + P′c1[y] − c1[x])′

(3.3.15)
and
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h3(0) =(P′c3[y]P⊗2 − c3[x])k(0,0) + h1(0)vec′(P′c2[y]P − c2[x] + Q)

+ (P′c2[y]P − c2[x] + Q) ⊗ (h1(0)
)′

+ (x0 − P′y0 + P′c1[y] − c1[x]) ⊗ h2(0). (3.3.16)

Now k(0,0) = (2π)
1
2 (r−p) and, using (3.3.9) – (3.3.12),

h1(0) =(M0 + M1)(2π)
1
2 (r−p),

h2(0) ={M2 + (M0 + M1)(M0 + M1)′}(2π)
1
2 (r−p),

h3(0) =
{
M3 + (M0 + M1)vec′M2 + M2 ⊗ (M0 + M1)′ + (M0 + M1)′ ⊗ M2

+ (M0 + M1)′ ⊗ (M0 + M1)(M0 + M1)′
}
(2π)

1
2 (r−p),

the statement of the corollary follows from Theorem 3.3.1.
We end this paragraph by giving an example where a well-known problem of error
estimation is treated through our approach.
Example 3.3.1. Consider

y = x − u,

where x and u are independent (Fujikoshi, 1985, 1987). It will be shown that if
we know the distribution of y and x, which implies that we know the moments of
u, then it is possible to approximate the density of y with an upper error bound.
In this case we may choose A = I, x0 = y0 and P = I. Moreover, using Definition
2.1.1 of mk[u], the expression in Corollary 2.1.2.1, and applying (3.3.4) and (3.3.6)
gives us

k(t, t) = ϕ−u(t) = 1 +
m∑

k=1

(−i)k

k! t′mk[u]t⊗k−1 + rm(t),

where a representation of the error term similar to (3.3.7) can be given as

rm(t) = 1
(m+1)!t

′km+1(θ ◦ t,θ ◦ t)t⊗m.

Thus, from Theorem 3.3.1 it follows that

fy(x0) = fx(x0) +
m∑

k=1

1
k!vec′E[u⊗k]vecfk

x (x0) + r∗m

and

r∗m = (2π)−r

∫
Rr

1
(m+1)!vec′(km+1(θ ◦ t, θ ◦ t))t⊗m+1exp(−it′x0)ϕx(t)dt.

In order to obtain an error bound, we note that

|r∗m| ≤ (2π)−r 1
(m+1)!

∫
Rr

|vec′(km+1(θ ◦ t, θ ◦ t))t⊗m+1||ϕx(t)|dt,
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and since k(t, t) = ϕ−u(t), it follows by Definition 2.1.1 that

|vec′(km+1(θ ◦ t,θ ◦ t))t⊗m+1| = |vec′(E[u(u′)⊗me−iu′(t◦θ)])(−i)m+1t⊗m+1|
= |E[(u′t)⊗m+1e−iu′(t◦θ)](−i)m+1| ≤ E[|(u′t)⊗m+1|]. (3.3.17)

If m+1 is even, the power (u′t)⊗m+1 is obviously positive, which implies that the
absolute moment can be changed into the ordinary one given in (3.3.17). Thus, if
m + 1 is even, the right hand side of (3.3.17) equals E[(u′)⊗m+1]t⊗m+1 and if it
is additionally supposed that ϕx(t) is real valued, then

|r∗m| ≤ (2π)−r 1
(m+1)!E[(u′)⊗m+1]

∫
Rr

t⊗m+1ϕx(t)dt, (3.3.18)

which is sometimes easy to calculate. For example, if x is normally distributed
with mean zero, the integral is obtained from moments of normally distributed
vectors. As an application of the example we may obtain multivariate extensions
of some of Fujikoshi’s (1987) results.

3.3.2 Normal expansions of densities of different dimensions
In this paragraph a formal density approximation is examined in the case when x
in Theorem 3.3.1 is normally distributed. In statistical applications y is typically
a statistic which is asymptotically normal, and we would like to present its density
through a multivariate normal density. Assume that the cumulants of y depend
on the sample size n in the same way as in (3.2.7) – (3.2.10). It means that the
first and third order cumulants are O(n− 1

2 ) and the variance of y is O(1). It is
important to observe that from Corollary 3.3.1.1 we get a normal approximation
for the density of y only in the case when the term M2 = 0. Otherwise the
products of the second order moments will appear in all even moments of higher
order and these terms will also be of order O(1). So far, we have not made any
attempts to specify the unknown parameters x0, P, (P′)o and A in the formal
expansions. The point x0 and the matrices can be chosen in many ways and this
certainly depends on what type of approximation we are interested in. A normal
approximation can be effective for one set of parameters, while for a Wishart
approximation we may need a different choice. In the following text we shall only
describe some possible choices. First, we may always choose x0 as a function of
P, so that

x0 = P′y0 − P′E[y] + E[x], (3.3.19)

which implies
h1(0) = 0,

and in Corollary 3.3.1.1
M0 + M1 = 0.

Thus, Corollary 3.3.1.1 yields the following formal expansion:

fy(y0)

= |A| 12 |PA−1P′| 12 (2π)
1
2 (r−p)

{
fx(x0) + 1

2vec′(P′D[y]P − D[x] + Q)vecf2
x(x0)

− 1
6vec′(P′c3[y]P⊗2 − c3[x])vecf3

x(x0) + r∗3

}
, (3.3.20)
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where P comes from (3.3.1) and Q is given by (3.3.13). However, this does not
mean that the point x0 has always to be chosen according to (3.3.19). The choice
x0 = P′y0, for example, would also be natural, but first we shall examine the
case (3.3.19) in some detail. When approximating fy(y) via fx(x), one seeks for a
relation where the terms are of diminishing order, and it is desirable to make the
terms following the first as small as possible. Expansion (3.3.20) suggests the idea
of finding P and A in such a way that the term M2 will be ”small”. Let us assume
that the dispersion matrices D[x] and D[y] are non-singular and the eigenvalues
of D[x] are all different. The last assumption guarantees that the eigenvectors of
D[x] will be orthogonal which we shall use later. However, we could also study
a general eigenvector system and obtain, after orthogonalization, an orthogonal
system of vectors in Rr. Suppose first that there exist matrices P and A such that
M2 = 0, where A is positive definite. In the following we shall make use of the
identity given in Corollary 1.2.25.1:

A = P′(PA−1P′)−1P + A(P′)o((P′)o′
A(P′)o)−1(P′)o′

A.

With help of the identity we get from (3.3.13) the condition

M2 = P′D[y]P − D[x] + A − P′(PA−1P′)−1P = 0.

Here, taking
A = D[x] (3.3.21)

yields
P′D[y]P − P′(PA−1P′)−1P = 0,

from where it follows that P must satisfy the equation

(D[y])−1 = P(D[x])−1P′. (3.3.22)

Then P will be a solution to (3.3.22), if

P = (D[y])−
1
2 V′, (3.3.23)

where V : r × p is a matrix with columns being p eigenvalue-normed eigenvectors
of D[x]: v′

ivi = λi, where λi is an eigenvalue of D[x]. Let us present the expansion
when x0, A and P are chosen as above.

Theorem 3.3.2. Let D[x] be a non-singular matrix with different eigenvalues λi,

i = 1, . . . , r. Let D[y] be non-singular and D[y]
1
2 any square root of D[y]. Then

fy(y0) = |D[x]| 12 |D[y]|− 1
2 (2π)

1
2 (r−p)

×
{

fx(x0) − 1
6vec′

(
P′c3[y]P⊗2 − c3[x]

)
vecf3

x(x0) + r∗3

}
, (3.3.24)

where P is defined by (3.3.23) and x0 is determined by (3.3.19).

Proof: The equality (3.3.24) follows directly from the expression (3.3.20) after
applying (3.3.21), (3.3.23) and taking into account that M2 = 0.
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With the choice of x0, P and A as in Theorem 3.3.2, we are able to omit the
first two terms in the expansion in Corollary 3.3.1.1. If one has in mind a normal
approximation, then it is necessary, as noted above, that the second term vanishes
in the expansion. However, one could also think about the classical Edgeworth
expansion, where the term including the first derivative of the density is present.
This type of formal expansion is obtained from Corollary 3.3.1.1 with a different
choice of x0. Take x0 = P′y0, which implies that M0 = 0, and applying the same
arguments as before we reach the following expansion.

Theorem 3.3.3. Let D[x] be a non-singular matrix with different eigenvalues λi,
i = 1, . . . , r, and let D[y] be non-singular. Then, if E[x] = 0,

fy(y0) = |D[x]| 12 |m2[y]|− 1
2 (2π)

1
2 (r−p)

{
fx(x0) − E[y]′Pf1

x(x0)

− 1
6vec′

(
P′(c3[y]P⊗2 − c3[x] − 2M⊗3

1

)
vecf3

x(x0) + r∗3

}
, (3.3.25)

where x0 = P′y0,
P = (m2[y])−

1
2 V′

and V is a matrix with columns being p eigenvalue-normed eigenvectors of D[x].

Proof: Now, M0 = 0 and M1 = P′E[y] in Corollary 3.3.1.1. Moreover, the sum
(M′

1)
⊗2 + vec′M2 should be put equal to 0. If we choose A = D[x], we obtain, as

in the previous theorem, the equation

(m2[y])−1 = PD[x]P′,

and the rest follows from the proof of Theorem 3.3.2.
In both Theorem 3.3.2 and Theorem 3.3.3 a matrix P has been chosen to be a
function of p eigenvectors. However, it has not been said which eigenvectors should
be used. To answer this question we suggest the following idea.
The density fx(x0) should be close to fy(y0). To achieve this, let us consider
the moments of respective distributions and make them close to each other. By
centering we may always get that both E[x] and E[y] are zero. Therefore, as the
next step, P is chosen so that the second moments will become close in some sense,
i.e. the difference

P′D[y]P − D[x]

will be studied. One way of doing this is to minimize the norm

tr{(P′D[y]P − D[x])(P′D[y]P − D[x])′} (3.3.26)

with respect to P. The obtained result is stated in the next lemma.

Lemma 3.3.3. Expression (3.3.26) is minimized, when

P = (D[y])−
1
2 V′,
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where V : r × p is a matrix with columns being eigenvalue-normed eigenvectors,
which correspond to the p largest eigenvalues of D[x].

Proof: Let
Q = P′D[y]P − D[x]

and then we are going to solve the least squares problem
d trQQ′

dP
= 0. Thus, we

have to find the derivative
d trQQ′

dP
=

(1.4.28)

dQQ′

dP
vecI =

dQ
dP

vecQ +
dQ
dP

Kp,rvecQ = 2
dQ
dP

vecQ

= 2{dP′

dP
(D[y]P ⊗ I) +

dP
dP

(I ⊗ D[y]P)}vecQ

= 4vec{D[y]P(P′D[y]P − D[x])}.
The minimum has to satisfy the equation

vec{D[y]P(P′D[y]P − D[x])} = 0. (3.3.27)

Now we make the important observation that P in (3.3.23) satisfies (3.3.27). Let
(V : V0) : r×r be a matrix of the eigenvalue-normed eigenvectors of D[x]. Observe
that D[x] = (V : V0)(V : V0)′. Thus, for P in (3.3.23),

D[y]P(P′D[y]P − D[x]) = D[y]
1
2 V′(VV′ − VV′ − V0(V0)′) = 0,

since V′V0 = 0. Furthermore,

trQQ′ = tr{(VV′ − VV′ − V0(V0)′)(VV′ − VV′ − V0(V0)′)′}

= tr(V0(V0)′V0(V0)′) =
r−p∑
i=1

(λ0
i )

2,

where λ0
i , i = 1, 2, . . . , r− p, are the eigenvalues of D[x] with corresponding eigen-

vector vo
i , V0 = (vo

1, . . . ,v
o
r−p). This sum attains its minimum, if λ0

i are the
r − p smallest eigenvalues of D[x]. Thus the norm is minimized if P is defined as
stated.
In Lemma 3.3.3 we used the norm given by (3.3.26). If it is assumed that E[x] = 0,
as in Theorem 3.3.3, it is more natural to use P′m2[y]P−m2[x] and consider the
norm

tr{(P′m2[y]P − m2[x])(P′m2[y]P − m2[x])′}. (3.3.28)

By copying the proof of the previous lemma we immediately get the next state-
ment.

Lemma 3.3.4. The expression in (3.3.28) is minimized when

P = (m2[y])−
1
2 V′,

where V : r × p is a matrix with columns being eigenvalue-normed eigenvectors
which correspond to the p largest eigenvalues of m2[x].

On the basis of Theorems 3.3.2 and 3.3.3 let us formulate two results for normal
approximations.
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Theorem 3.3.4. Let x ∼ Nr(µ,Σ), where Σ > 0, λi, i = 1, . . . , p, be the eigen-
values of Σ, and V the matrix of corresponding eigenvalue-normed eigenvectors.
Let D[y] be non-singular and D[y]

1
2 any square root of D[y]. Then

fy(y0) = |Σ| 12 |D[y]|− 1
2 (2π)

1
2 (r−p)fN(µ,Σ)(x0)

×
{

1 + 1
6vec′

(
P′c3[y]P⊗2

)
vecH3(x0, µ,Σ) + r∗3

}
,

where x0 and P are defined by (3.3.19) and (3.3.23), respectively, and the mul-
tivariate Hermite polynomial H3(x0,µ,Σ) is given by (2.2.38). The expansion is
optimal in the sense of the norm ||Q|| =

√
tr(QQ′), if λi, i = 1, . . . , p, comprise

the p largest different eigenvalues of Σ.

Proof: The expansion is obtained from Theorem 3.3.2 if we apply the definition
of multivariate Hermite polynomials (2.2.35) and take into account that ci[x] =
0, i ≥ 3, for the normal distribution. The optimality follows from Lemma 3.3.3.

Theorem 3.3.5. Let x ∼ Nr(0,Σ), where Σ > 0, λi, i = 1, . . . , p, be the eigen-
values of Σ, and V the matrix of corresponding eigenvalue-normed eigenvectors.
Let m2[y] be non-singular and m2[y]

1
2 any square root of m2[y]. Then

fy(y0) = |Σ| 12 |m2[y]|− 1
2 (2π)

1
2 (r−p)fN(0,Σ)(x0)

×
{

1 + (E[y])′PH1(x0,Σ) + 1
6vec′

(
P′c3[y]P⊗2 − 2M⊗3

1

)
vecH3(x0,Σ) + r∗3

}
,

where x0 and P are defined as in Theorem 3.3.3 and the multivariate Hermite
polynomials Hi(x0,Σ), i = 1, 3, are defined by (2.2.39) and (2.2.41). The expan-
sion is optimal in the sense of the norm ||Q|| =

√
tr(QQ′), if λi, i = 1, . . . , p

comprise the p largest different eigenvalues of Σ.

Proof: The expansion is a straightforward consequence of Theorem 3.3.3 if we
apply the definition of multivariate Hermite polynomials (2.2.35) for the case µ = 0
and take into account that ci[x] = 0, i ≥ 3, for the normal distribution. The
optimality follows from Lemma 3.3.4.
Let us now consider some examples. Remark that if we take the sample mean x
of x1,x2, . . . ,xn, where E[xi] = 0 and D[xi] = Σ, we get from Theorem 3.3.4 the
usual multivariate Edgeworth type expansion. Taking y =

√
nx, the cumulants of

y are

E[y] = 0, D[y] = Σ, c3[y] =
1√
n

c3[xi], ck[y] = o( 1√
n
), k ≥ 4.

If we choose P = I and y0 = x0, it follows from Theorem 3.3.4 that

fy(x0) = fx(x0){1 +
1

6
√

n
vec′c3[yi]vecH3(x0,Σ) + r∗3}.
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The following terms in the expansion are diminishing in powers of n− 1
2 , and the

first term in r∗3 is of order 1
n .

Example 3.3.2. We are going to approximate the distribution of the trace of
the sample covariance matrix S, where S ∼ Wp( 1

nΣ, n). Let x1,x2, . . . ,xn+1 be
a sample of size n + 1 from a p−dimensional normal population: xi ∼ Np(µ,Σ).
For a Wishart distributed matrix W ∼ Wp(Σ, n) the first cumulants of trW can
be found by differentiating the logarithm of the characteristic function

ψtrW(t) = −n
2 ln|I − 2i tΣ|.

Thus, differentiating ψtrW(t) gives us

ck[trW] = n2k−1(k − 1)tr(Σk), k = 1, 2, . . . , (3.3.29)

(see also Problems 5 and 6 in §2.4.9). Let us take

Y =
√

ntr(S − Σ).

Because S ∼ Wp( 1
nΣ, n), from the general expression (3.3.29) of the cumulants of

trW we have:

c1[Y ] =0,

c2[Y ] =2trΣ2,

c3[Y ] =8 1√
n
trΣ3,

ck[Y ] =o( 1√
n
), k ≥ 4.

Let us approximate Y by x ∼ Np(0,Σ). Theorem 3.3.4 gives the following expan-
sion:

fY (y0) = (2π)
1
2 (p−1)|Σ| 12 (2trΣ2)−

1
2 fx(x0)

×
{

1 +
√

2
3
√

n

tr(Σ3)

(trΣ2)
3
2

v′⊗3
1 vecH3(x0,Σ) + r∗3

}
,

where H3(x0,Σ) is defined by (2.2.41), and

x0 = {2tr(Σ2)}− 1
2 v1y0,

where v1 is the eigenvector of Σ with length
√

λ1 corresponding to the largest
eigenvalue λ1 of Σ. The terms in the remainder are of diminishing order in powers
of n− 1

2 , with the first term in r∗3 being of order 1
n .

Example 3.3.3. Let us present the density of an eigenvalue of the sample variance
matrix through the multivariate normal density, x ∼ Np(0,Σ). From Siotani,
Hayakawa & Fujikoshi (1985) we get the first cumulants for

√
n(di − λi), where
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λi 	= 0 is an eigenvalue of the population variance matrix Σ: p × p, and di is an
eigenvalue of the sample variance matrix S:

c1(
√

n(di − λi)) =ain
− 1

2 + O(n− 3
2 ),

c2(
√

n(di − λi)) =2λ2
i + 2bin

−1 + O(n−2),

c3(
√

n(di − λi)) =8λ3
i n

− 1
2 + O(n− 3

2 ),

ck(
√

n(di − λi)) =o(n− 1
2 ), k ≥ 4,

where

ai =
p∑

k �=i

λiλk

λi − λk
, bi =

p∑
k �=i

λ2
i λ

2
k

(λi − λk)2
.

Since the moments cannot be calculated exactly, this example differs somewhat
from the previous one. We obtain the following expansion from Theorem 3.3.4:

f√n(di−λi)(y0) = (2π)
1
2 (p−1)|Σ| 12 (2λ2

i +
1
n

2bi)−
1
2 fx(x0)

× {1 +
√

2
3
√

n
λ3

i (λ
2
i +

1
n

bi)−
3
2 v

′⊗3
1 vecH3(x0,Σ) + r∗3}, (3.3.30)

where v1 is the eigenvector corresponding to λ1, of length
√

λ1, where λ1 is the
largest eigenvalue of Σ. The point x0 should be chosen according to (3.3.19), and
thus

x0 = (2λ2
i +

2bi

n
)−

1
2 v′

1y0 − ai√
n

.

The first term in the remainder is again of order 1
n . We get a somewhat different

expansion if we apply Theorem 3.3.5. Then

f√n(di−λi)(y0) = (2π)
1
2 (p−1)|Σ| 12 (2λ2

i +
1
n

(a2
i + 2bi))−

1
2 fx(x0)

× {1 +
1√
n

(
ai(2λ2

i +
1
n

(a2
i + 2bi))−

1
2 v1

′vecH1(x0,Σ)

+
√

2
3

λ3
i (λ

2
i +

1
n

bi)−
3
2 v

′⊗3
1 vecH3(x0,Σ)

)
+ r∗3},

where
x0 = (2λ2

i +
1
n

(a2
i + 2bi))−

1
2 v1

′y0

and v1 is defined as above, since the assumption E[x] = 0 implies Σ = m2[x].
The first term in the remainder is again of order 1

n .

3.3.3. Wishart expansions for different dimensional densities
In paragraph 3.2.4 we saw that in Wishart expansions, unlike in normal approx-
imations, the second and third order cumulants are both included into the ap-
proximations. So, it is desirable to have the second order cumulants included into
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the following expansions. This can be obtained by a choice of point x0 and the
matrices P, Po and A different from the one for the normal approximation. Let us
again fix the point x0 by (3.3.19), but let us have a different choice for A. Instead
of (3.3.21), take

A = I.

Then (3.3.13) turns into the equality

Q = (P′)o((P′)o′
(P′)o)−1(P′)o′

= I − P′(PP′)−1P. (3.3.31)

We are going to make the term

M2 = P′D[y]P − D[x] + Q

as small as possible in the sense of the norm

‖ M2 ‖= {tr(M2M′
2)}

1
2 . (3.3.32)

From Lemma 3.3.2 and (3.3.15) it follows that if we are going to choose P such that
t′h2(0)t is small, we have to consider t′M2t. By the Cauchy-Schwarz inequality,
this expression is always smaller than

t′t{tr(M2M′
2)}1/2,

which motivates the norm (3.3.32). With the choice A = I, the term in the
density function which includes M2 will not vanish. The norm (3.3.32) is a rather
complicated expression in P. As an alternative to applying numerical methods to
minimize the norm, we can find an explicit expression of P which makes (3.3.32)
reasonably small. In a straightforward way it can be shown that

tr(M2M′
2) = tr(M2P′(PP′)−1PM2) + tr(M2(I − P′(PP′)−1P)M2). (3.3.33)

Since we are not able to find explicitly an expression for P minimizing (3.3.33),
the strategy will be to minimize tr(M2AP′(PP′)−1PM2) and thereafter make

tr(M2(I − P′(PP′)−1P)M2)

as small as possible.
Let U : r×p and Uo : r× (r−p) be matrices of full rank such that U′Uo = 0 and

D[x] =UU′ + UoUo′
,

(U : Uo)′(U : Uo) =Λ =
(

Λ1 0
0 Λ0

)
,

where Λ is diagonal. The last equalities define U and Uo as the matrices consisting
of eigenvectors of D[x]:

D[x](U : Uo) = (UΛ1 : UoΛ0).
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Let us take
P = D[y]−1/2U′. (3.3.34)

Then, inserting (3.3.34) into (3.3.11), we obtain

M2 = UU′ − UU′ − UoUo′
+ Q = Q − UoUo′

,

which implies that M2 is orthogonal to P, which allows us to conclude that

tr(M2P′(PP′)−1PM2) = 0.

The choice (3.3.34) for P gives us the lower bound of tr(M2P′(PP′)−1PM2), and
next we examine

tr{M2(I − P′(PP′)−1P)M2}.
Notice that from (3.3.31) Q is idempotent. Since PQ = 0, we obtain

tr{M2(I − P′(PP′)−1P)M2} = tr{(I − D[x])(I − P′(PP′)−1P)(I − D[x])}
= tr{Uo(Uo′

Uo)−1Uo′ − 2UoUo′
+ UoUo′

UoUo′}
= tr(Ir−p − 2Λ0 + Λ2

0)

= tr(Λ0 − Ir−p)2 =
r−p∑
i=1

(1 − λo
i )

2,

where λo
i are diagonal elements of Λ0. The trace is small when the eigenvalues

λo
i are close to 1. Thus, a reasonable choice of P will be based on p eigenvectors,

which correspond to the p eigenvalues λi of D[x] with the largest absolute values
|λi − 1|.
Noting that the choice of D[y]

1
2 is immaterial, we formulate the following result.

Theorem 3.3.6. Let D[x] be a non-singular matrix with different eigenvalues λi,
D[y] non-singular, and ui, i = 1, 2, . . . p, be the eigenvectors of D[x] corresponding
to λi, of length

√
λi. Put µi = |λi−1| and let µ(i) denote the diminishingly ordered

values of µi with µ(i) = |λ(i)−1|. Let U = (u(1), . . . ,u(p)), Λ(1) = (λ(1), . . . , λ(p))d

and D[y]
1
2 denote any square root of D[y]. Then the matrix

P = D[y]−
1
2 U′

minimizes M2 in (3.3.11), in the sense of the norm (3.3.32), and the following
expansion of the density fy(y0) holds:

fy(y0) = (2π)
1
2 (r−p)|D[y]|− 1

2

p∏
k=1

√
λ(k)

{
fx(x0)

+ 1
2vec′(I + U(Ip − Λ−1

(1))U
′ − D[x])vecf2

x(x0)

− 1
6vec′

(
P′c3[y]P⊗2 − c3[x]

)
vecf3

y (y0) + r∗3

}
,

where x0 is determined by (3.3.19).

Let V = W−nΣ, where W ∼ W (Σ, n) (for the centered Wishart distribution see
§2.4.8). Then the following formal Wishart approximation of the density fy(y0)
can be written out.
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Theorem 3.3.7. Let y be a random q−vector and D[y] non-singular, and let
eigenvalues of D[V 2(V)] be denoted by λi and the corresponding eigenvalue-
normed eigenvectors by ui, i = 1, . . . , 1

2p(p + 1). Put µi = |λi − 1| and let
µ(i) be the diminishingly ordered values of µi with µ(i) = |λ(i) − 1|. Let U consist
of eigenvectors u(i), i = 1, 2, . . . , q, corresponding to λ(i), Λ(1) = (λ(1), . . . , λ(q))d,

and D[y]
1
2 denote any square root of D[y]. Then the matrix

P = D[y]−
1
2 U′

minimizes the matrix M2 in (3.3.11), in the sense of the norm (3.3.32), and the
following formal Wishart expansion of the density fy(y0) holds:

fy(y0) = (2π)
1
2 ( 1

2 p(p+1)−q)|D[y]|− 1
2

q∏
k=1

√
λ(k)fV(V0)

×
{

1 + 1
2vec′(I + U(Iq − Λ−1

(1))U
′ − c2[V 2(V)])vecL∗

2(V0,Σ)

+ 1
6vec′

(
P′c3[y]P⊗2 − c3[V 2(V)]

)
vecL∗

3(V0,Σ) + r∗3

}
, (3.3.35)

where the symmetric V0 is given via its vectorized upper triangle V 2(V0) =
P′(y0 − E[y]), L∗

i (V0,Σ), i = 2, 3, are defined by (2.4.66), (2.4.62), (2.4.63),
and ci[V 2(V)], i = 2, 3, are given in Theorem 2.4.16.

Proof: The expansion follows directly from Theorem 3.3.6, if we replace fk
x (x0)

according to (2.4.66) and take into account the expressions of cumulants of the
Wishart distribution in Theorem 2.4.16.
Remark: Direct calculations show that in the second term of the expansion the
product vec′c2[V 2(V)]vecL∗

2(V0,Σ) is O( 1
n ), and the main term of the product

vec′c3[V 2(V)]vecL∗
3(V0,Σ) is O( 1

n2 ). It gives a hint that the Wishart distribution
itself can be a reasonable approximation to the density of y, and that it makes
sense to examine in more detail the approximation where the third cumulant term
has been neglected.
As the real order of terms can be estimated only in applications where the statistic
y is also specified, we shall finish this paragraph with Wishart approximations of
the same statistics as in the end of the previous paragraph.
Example 3.3.4. Consider the approximation of trS by the Wishart distribution,
where S is the sample dispersion matrix. Take

Y = ntr(S − Σ).

From (3.3.29) we get the expressions of the first cumulants:

c1[Y ] =0,
c2[Y ] =2ntrΣ2,

c3[Y ] =8ntrΣ3,

ck[Y ] =O(n), k ≥ 4.
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The expansion (3.3.35) takes the form

fY (y0) = (2π)
1
2 ( 1

2 p(p+1)−1)(2ntrΣ2)−
1
2 λ(1)fV(V0)

×
{

1 + 1
2vec′(I + u(1)(1 − λ−1

(1))u
′
(1) − c2[V 2(V)])vecL∗

2(V0,Σ)

+ 1
6vec′

(
2
√

2trΣ3

√
n
√

trΣ2
3 u(1)u

′⊗2
(1) − c3[V 2(V)]

)
vecL∗

3(V0,Σ) + r∗3

}
,

where λ(1) is the eigenvalue of D[V 2(V)] with the corresponding eigenvector u(1)

of length
√

λ(1). The index (1) in λ(1), V0, L∗
i (V0,Σ) and ci[V 2(V)] are defined

in Theorem 3.3.7.
At first it seems not an easy task to estimate the order of terms in this expansion, as
both, the cumulants ci[V 2(V)] and derivatives L∗

k(V0,Σ) depend on n. However, if
n � p, we have proved in Lemma 2.4.2 that L∗

k(V0,Σ) ∼ O(n−(k−1)), k = 2, 3, . . .,
while ck[V 2(V)] ∼ O(n). From here it follows that the L∗

2(V0,Σ)−term is O(1),
L∗

3(V0,Σ)−term is O( 1
n ) and the first term in R∗

3 is O( 1
n2 ).

Example 3.3.5. We are going to consider a Wishart approximation of the eigen-
values of the sample dispersion matrix S. Denote

Yi = n(di − δi),

where di and δi are the i−th eigenvalues of S and Σ, respectively. We get the
expressions of the first cumulants of Yi from Siotani, Hayakawa & Fujikoshi (1985),
for example:

c1(Yi) =ai + O(n−1),
c2(Yi) =2nδ2

i + 2bi + O(n−1),
c3(Yi) =8nδ3

i + O(n−1),
ck(Yi) =O(n), k ≥ 4,

where

ai =
p∑

k �=i

δiδk

δi − δk
, bi =

p∑
k �=i

δ2
i δ2

k

(δi − δk)2
.

From (3.3.35) we get the following expansions:

fYi(y0) = (2π)
1
2 ( 1

2 p(p+1)−1) λ(1)√
2nδi

fV(V0)

×
{

1 + 1
2vec′(I + u(1)(1 − λ−1

(1))u
′
(1) − c2[V 2(V)])vecL∗

2(V0,Σ)

+ 1
6vec′

(
2
√

2√
n

u(1)u
′⊗2
(1) − c3[V 2(V)]

)
vecL∗

3(V0,Σ) + r∗3

}
.
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Here again λ(1) is the eigenvalue of D[V 2(V)] with the corresponding eigenvector
u(1) of length

√
λ(1). The index (1) in λ(1), V0, L∗

i (V0,Σ) and ci[V 2(V)] are
given in Theorem 3.3.7.

Repeating the same argument as in the end of the previous example, we get that
the L∗

2(V0,Σ)−term is O(1), L∗
3(V0,Σ)−term is O( 1

n ) and the first term in r∗3 is
O( 1

n2 ).

3.3.4 Density expansions of R

We are going to finish the chapter with a non-trivial example of using general
multivariate approximations. In §3.1.4. we derived the asymptotic normal distri-
bution of the sample correlation matrix R. The exact distribution of the sample
correlation matrix is complicated. Even the density of the sample correlation
coefficient r in the classical normal case is represented as an infinite sum of com-
plicated terms (Fisher, 1915). The normalizing Fisher z−transformation, which
is commonly used for the correlation coefficient, cannot be applied to the matrix
R. Expansions of the distribution of the sample correlation coefficient and some
univariate functions of R have been studied for many years. Here we refer to Kon-
ishi (1979) and Fang & Krishnaiah (1982) as the basic references on the topic (see
also Boik, 2003). Following Kollo & Ruul (2003), in this paragraph we are going
to present multivariate normal and Wishart approximations for the density of R.
To apply Theorems 3.3.4 – 3.3.7, we need the first three cumulants of R. The cu-
mulants can be obtained by differentiating the cumulant function. Unfortunately,
the characteristic function and the cumulant function of R are not available in
the literature. In the next theorem we present an expansion of the characteristic
function.

Theorem 3.3.8. The first order approximation of the characteristic function of
the sample correlation matrix R is of the form:

ϕR(T) = eivec′TvecΩ

{
1 − 1

2
vec′TD1m2[vecS]D′

1vecT

+
i

2
vec′T{vec′(m2[vecS]) ⊗ Ip2}vecD2 + o

(
1
n

)}
, (3.3.36)

where D1 is given by (3.1.13),

m2(vecS) =
1
n

{
E[(X − µ) ⊗ (X − µ)′ ⊗ (X − µ) ⊗ (X − µ)′]

− vecΣvec′Σ +
1

n − 1
(Ip2 + Kp,p)(Σ ⊗ Σ)

}
(3.3.37)
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and

D2 = −1
2
(Ip ⊗ Kp,p ⊗ Ip)

(
Ip2 ⊗ vecΣ− 1

2
d + vecΣ− 1

2
d ⊗ Ip2

)
(Ip ⊗ Σ− 3

2
d )(Kp,p)d

− 1
2
(
Ip2 ⊗ (Kp,p)d

)
(Ip ⊗ Kp,p ⊗ Ip)

(
Ip2 ⊗ vecIp + vecIp ⊗ Ip2

)
× {Σ− 1

2
d ⊗ Σ− 3

2
d − 1

2

(
Ip ⊗ Σ− 3

2
d ΣΣ− 3

2
d + 3(Σ− 1

2
d ΣΣ− 3

2
d ⊗ Σ−1

d )
)

(Kp,p)d

}
.

(3.3.38)

Proof: The starting point for the subsequent derivation is the Taylor expansion
of vecR

vecR = vecΩ +
(

dR
dS

)′∣∣∣∣∣
S=Σ

vec(S − Σ)

+
1
2
{vec(S − Σ) ⊗ Ip2}′

(
d2R
dS2

)′∣∣∣∣∣
S=Σ

vec(S − Σ) + r2.

Denote

vecR∗ = vecR − r2, D1 =
(

dR
dS

)′∣∣∣∣∣
S=Σ

, D2 =
(

d2R
dS2

)′∣∣∣∣∣
S=Σ

.

In this notation the characteristic function of vecR∗ has the following presentation:

ϕR∗(T) = eivec′TvecΩE
[
eivec′TAeivec′TB

]
, (3.3.39)

where
A = D1vec(S − Σ),

B =
1
2
{vec(S − Σ) ⊗ Ip2}′D2vec(S − Σ).

From the convergence (3.1.4) it follows that A ∼ OP ( 1√
n
) and B ∼ OP ( 1

n ).
Expanding the exponential functions into Taylor series and taking expectation
gives

ϕR∗(T) = eivec′TvecΩ

{
1 − 1

2
vec′TD1m2(vecS)D′

1vecT

+
i

2
vec′TE

[(
vec(S − Σ) ⊗ Ip2

)′
D2vec(S − Σ)

]
+ oP

(
1
n

)}
.

The expansion (3.3.36) in the theorem follows after using properties of the vec-
operator and Kronecker product. Now we only have to find the expressions of
m2(vecS) and D2. The first one, m2(vecS), is well known and can be found in
matrix form in Kollo & Neudecker (1993, Appendix I), for instance. To obtain D2,
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we have to differentiate R by S twice. The equality (3.3.38) follows after tedious
calculations which we leave as an exercise to the reader (Problem 5 in §3.3.5). The
proof is completed by noting that the approximation of the characteristic function
of R∗ is also an approximation of the characteristic function of R.
From (3.3.36) we get an approximation of the cumulant function of R:

ψR(T) = lnϕR(T) = ivec′TvecΩ + ln
{

1 − 1
2
vec′TD1m2[vecS]D′

1vecT

+
i

2
vec′T

{
vec′(m2[vecS]) ⊗ Ip2

}
vecD2

}
+ o

(
1
n

)
. (3.3.40)

Denote

M = D1m2[vecS]D′
1, (3.3.41)

N =
(
vec′{m2[vecS]} ⊗ Ip2

)
vecD2. (3.3.42)

In this notation the main terms of the first cumulants of R will be presented in
the next

Theorem 3.3.9. The main terms of the first three cumulants c∗i [R] of the sample
correlation matrix R are of the form

c∗1[R] = vecΩ +
1
2
N, (3.3.43)

c∗2[R] =
1
2
{L(vecM ⊗ Ip2) − 1

2
NN′}, (3.3.44)

c∗3[R] =
1
4

{(1
2
NN′ − L(vecM ⊗ Ip2)

)
(N′ ⊗ Ip2)(Ip4 + Kp2,p2)

− Nvec′L(vecM ⊗ Ip2)
}

, (3.3.45)

where Ω, M and N are defined by (3.1.12), (3.3.41) and (3.3.42), respectively, and

L = (Ip2 ⊗ vec′Ip2)(Ip6 + Kp2,p4). (3.3.46)

Proof: In order to get the expressions of the cumulants, we have to differentiate
the cumulant function (3.3.40) three times. To simplify the derivations, put

ψ∗
R(T) = ivec′TvecΩ + ln

{
1 − 1

2
vec′TD1m2[vecS]D′

1vecT

+
i

2
vec′T

{
vec′(m2[vecS]) ⊗ Ip2

}
vecD2

}
.

The first derivative equals

dψ∗
R(T)
dT

= ivecΩ +
1

1 − 1
2vec′T(MvecT − iN)

× 1
2
{
iN − (Ip2 ⊗ vec′T + vec′T ⊗ Ip2)vecM

}
,
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from where the equality (3.3.42) follows by (2.1.33).
The second derivative is given by

d2ψ∗
R(T)

dT2
=

i

2
d(H2H1)

dT
=

i

2

(
dH1

dT
H′

2 +
dH2

dT
H1

)
, (3.3.47)

where
H1 =

(
1 − 1

2
vec′TMvecT +

i

2
vec′TN

)−1
,

H2 = N + i(Ip2 ⊗ vec′T + vec′T ⊗ Ip2)vecM.

The two derivatives which appear in (3.3.47) are of the form:

dH1

dT
=

1
2

d(ivec′TN − vec′TMvecT)
dT

dH1

d
(
1 − 1

2vec′TMvecT + i
2vec′TN

)
=

1
2
[
(Ip2 ⊗ vec′T)(Ip4 + Kp2,p2)vecM − iN

]
H2

1,

dH2

dT
= i(Ip2 ⊗ vec′Ip2)(Ip6 + Kp2,p4)(vecM ⊗ Ip2).

After replacing the obtained derivatives into (3.3.47), at T = 0, we get the main
term of the second cumulant

c∗2[R] =
1
2

(
L(vecM ⊗ Ip2) − 1

2
NN′

)
,

where L is given in (3.3.46).
We get the third cumulant after differentiating the right-hand side of (3.3.47).
Denote

dH2

dT
= iL1 = iL(vecM ⊗ Ip2).

Then

c∗3[R] =
1
i3

d

dT

{ i2

2
(− 1

2
H2H2

1H
′
2 + L1H1

)}∣∣∣∣
T=0

=
1
2i

{
−1

2
dH2H1(H2H1)′

dT
+

dH1vec′L1

dT

}∣∣∣∣
T=0

=
1
2

{
i

2
dH2H1

dT
(H1H′

2 ⊗ Ip2 + Ip2 ⊗ H1H′
2) −

dH1

dT
ivec′L1

}∣∣∣∣
T=0

=
1
4

{(1
2
NN′ − L1

) (
N′ ⊗ Ip2 + Ip2 ⊗ N′)− Nvec′L1

}
.

Now we shall switch over to the density expansions of R. We are going to find
approximations of the density function of the 1

2p(p − 1)−vector

z =
√

nT(cp)vec(R − Ω),
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where T(cp) is the 1
2p(p − 1) × p2−matrix defined in Proposition 1.3.21, which

eliminates constants and repeated elements from vecR and vecΩ. It is most es-
sential to construct expansions on the basis of the asymptotic distribution of R.
Let us denote the asymptotic dispersion matrices of z and

√
nvec(R − Ω) by Σz

and ΣR. The matrix ΣR was derived in Theorem 3.1.6:

ΣR = D1ΠD′
1,

where Π and D1 are given by (3.1.5) and (3.1.13), respectively. In the important
special case of the normal population, x ∼ Np(µ,Σ), the asymptotic dispersion
matrix ΠN is given in Corollary 3.1.4.1. Theorem 3.1.4 also specifies another
matrix of interest:

Σz = T(cp)ΣRT(cp)′.

Using (3.3.37) and the expressions (3.3.43) – (3.3.45) of c∗i [R], i = 1, 2, 3, it follows
that

c∗1[z] =
1√
n
Γ1 + o(n− 1

2 ),

c∗2[z] = Ξ +
1
n
Γ2 + o(n−1),

c∗3[z] =
1√
n
Γ3 + o(n− 1

2 ),

where

Γ1 =
1
2
T(cp)(vec′Π ⊗ Ip2)vecD2, (3.3.48)

Ξ =
1
2
T(cp)L{vec(D1vecΠD′

1) ⊗ Ip2}T(cp)′, (3.3.49)

Γ2 = −1
4
T(cp)(vec′Π ⊗ Ip2)vecD2vec′D2(vecΠ ⊗ Ip2)T(cp)′, (3.3.50)

Γ3 =
1
4
T(cp)

{
(vec′Π ⊗ Ip2)vecD2vec′D2(vecΠ ⊗ Ip2) (3.3.51)

− L(vec(D1vecΠD′
1) ⊗ Ip2)(+vec′D2(vecΠ ⊗ Ip2) ⊗ Ip2)(Ip4 + Kp2,p2)

− (vec′Π ⊗ Ip2)vecD2vec′{L(vec(D1vecΠD′
1) ⊗ Ip2)}

}
T(cp)′⊗2.

When approximating with the normal distribution, we are going to use the same
dimensions and will consider the normal distribution Nr(0,Ξ) as the approximat-
ing distribution, where r = 1

2p(p − 1). This guarantees the equality of the two
variance matrices of interest up to an order of n−1.

Theorem 3.3.10. Let X = (x1, . . . ,xn) be a sample of size n from a p−dimen-
sional population with E[x] = µ, D[x] = Σ, m4[x] < ∞, and let Ω and R be
the population and the sample correlation matrices, respectively. Then, for the
density function of the r−vector z =

√
nT(cp)vec(R − Ω), r = 1

2p(p − 1), the
following formal expansions are valid:

fz(y0) = fNr(0,Ξ)(x0)
{

1 +
1

6
√

n
vec′(VΞ− 1

2 Γ3(Ξ− 1
2 V′)⊗2)(i)
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× vecH3(x0,Ξ) + o(
1√
n

)
}

,

where x0 is determined by (3.3.19) and (3.3.23), V = (v1, . . . ,v 1
2 p(p−1)) is the

matrix of eigenvalue-normed eigenvectors vi of Ξ, which correspond to the r largest
eigenvalues of Ξ;

fz(y0) = fNr(0,Ξ)(x0)
{

1 +
1√
n
Γ′

1(m2[z])−
1
2 U′H1(x0,Ξ)(ii)

+
1

6
√

n
vec′

{
U′(m2[z])−

1
2 Γ3((m2[z])−

1
2 U′)⊗2

}
vecH3(x0,Ξ)

+o(
1√
n

)
}

,

where x0 = U(m2[y])−
1
2 y0 and U = (u1, . . . ,u 1

2 p(p−1)) is the matrix of eigenvalue-

normed eigenvectors ui of the moment matrix m2[z], which correspond to the r
largest eigenvalues of m2[z]. The Hermite polynomials Hi(x0,Ξ) are defined by
(2.2.39) and (2.2.41), and Γ1 and Γ3 are given by (3.3.48) and (3.3.51), respectively.

Proof: The expansion (i) directly follows from Theorem 3.3.4, and the expan-
sion (ii) is a straightforward conclusion from Theorem 3.3.5, if we include the
expressions of the cumulants of R into the expansions and take into account the
remainder terms of the cumulants.
It is also of interest to calculate fz(·) and fNr(0,Ξ)(·) at the same points, when z
has the same dimension as the approximating normal distribution. This will be
realized in the next corollary.

Corollary 3.3.10.1. In the notation of Theorem 3.3.10, the following density
expansion holds:

fz(y0) = fNr(0,Ξ)(x0)
{

1 +
1√
n
Γ′

1H1(x0,Ξ)

+
1

6
√

n
vec′Γ3vecH3(x0,Ξ) + o(

1√
n

)
}

.

Proof: The expansion follows from Corollary 3.3.1.1, when P = I and if we take
into account that D[z] − Ξ = o

(
1
n

)
.

For the Wishart approximations we shall consider

y = nT(cp)vec(R − Ω). (3.3.52)

Now the main terms of the first three cumulants of y are obtained from (3.3.43) –
(3.3.45) and (3.3.48) – (3.3.51):

c∗1[y] = Γ1, (3.3.53)
c∗2[y] = nΞ − Γ2, (3.3.54)
c∗3[y] = nΓ3. (3.3.55)

The next theorem gives us expansions of the sample correlation matrix through
the Wishart distribution. In the approximation we shall use the 1

2p(p + 1)−vector
V 2(V), where V = W − nΣ, W ∼ Wp(Σ, n).



352 Chapter III

Theorem 3.3.11. Let the assumptions of Theorem 3.3.10 about the sample and
population distribution hold, and let y = n(r−ω), where r and ω are the vectors
of upper triangles of R and Ω without the main diagonal. Then, for the density
function of the 1

2p(p − 1)−vector y, the following expansions are valid:

fy(y0) = (2π)
p
2 |c2[V 2(V)]| 12 |c2[y]|− 1

2 fV(V0)(i)

×
{

1 +
1
6
vec′
{
U(c∗2[y])−

1
2 c∗3[y]((c∗2[y])−

1
2 U′)⊗2 − c∗3[V

2(V)]
}

× vecL∗
3(V0,Σ) + r∗3

}
,

where V0 is given by its vectorized upper triangle V 2(V0) = U(c∗2[y])−
1
2 (y0−E[y])

and U = (u1, . . . ,u 1
2 p(p−1)) is the

(
1
2p(p + 1)

)×( 1
2p(p − 1)

)−matrix of eigenvalue-

normed eigenvectors ui corresponding to the 1
2p(p − 1) largest eigenvalues of

c2[V 2(V)];

fy(y0) = (2π)
p
2 |c2[V 2(V)]| 12 |c∗2[y]|− 1

2 fV(V0)
{

1 + Γ′
1U(m∗

2[y])−
1
2 L∗

1(V0,Σ)(ii)

+
1
6
vec′
{
U(m∗

2[y])−
1
2 c∗3[y]((m∗

2[y])−
1
2 U′)⊗2 − c3[V 2(V)]

}
× vecL∗

3(V0,Σ) + r∗3
}

,

where V0 is given by the vectorized upper triangle V 2(V0) = U(c∗2[y])−
1
2 (y0 −

E[y]) and U = (u1, . . . ,u 1
2 p(p−1)) is the matrix of eigenvalue-normed eigenvectors

ui corresponding to the 1
2p(p − 1) largest eigenvalues of m2[V 2(V)]. In (i) and

(ii) the matrices L∗
i (V0,Σ) are defined by (2.4.66), (2.4.61) and (2.4.63), c∗i [y] are

given in (3.3.53) – (3.3.55).
If n � p, then r∗3 = o(n−1) in (i) and (ii).

Proof: The terms in the expansions (i) and (ii) directly follow from Theorems
3.3.2 and 3.3.3, respectively, if we replace derivatives fk

V(V0,Σ) by L∗
k(V0,Σ)

according to (2.4.66). Now, we have to show that the remainder terms are o(n−1).
In Lemma 2.4.2 it was established that when p � n,

L∗
1(V0,Σ) ∼ O(n−1),

L∗
k(V0,Σ) ∼ O(n−(k−1)), k ≥ 2.

From (3.3.53) – (3.3.55), combined with (3.3.43) – (3.3.45) and (3.3.41), we get

c∗1[y] ∼ O(1),
c∗k[y] ∼ O(n), k ≥ 2,

and as ck[V 2(V)] ∼ O(n), k ≥ 2, the remainder terms in (i) and (ii) are o(n−1).
If we compare the expansions in Theorems 3.3.10 and 3.3.11, we can conclude
that Theorem 3.3.11 gives us higher order accuracy, but also more complicated
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formulae are involved in this case. The simplest Wishart approximation with the
error term O(n−1) will be obtained, if we use just the Wishart distribution itself
with the multiplier of fV(V0) in the expansions. Another possibility to get a
Wishart approximation for R stems from Theorem 3.3.7. This will be presented
in the next theorem.

Theorem 3.3.12. Let y be the random 1
2p(p − 1)−vector defined in (3.3.52),

D[y] non-singular, and let eigenvalues of D[V 2(V)] be denoted by λi and the
corresponding eigenvalue-normed eigenvectors by ui, i = 1, . . . , 1

2p(p + 1). Put
µi = |λi − 1| and let µ(i) be the diminishingly ordered values of µi with µ(i) =
|λ(i) − 1|. Let U consist of eigenvectors u(i), i = 1, 2, . . . , q, corresponding to λ(i),

Λ(1) = (λ(1), . . . , λ(q))d, and D[y]
1
2 denote any square root of D[y]. Then the

matrix
P = D[y]−

1
2 U′

minimizes the matrix M2 in (3.3.11) in the sense of the norm (3.3.32) and the
following formal Wishart expansion of the density fy(y0) holds:

fy(y0) = (2π)
p
2 |D[y]|− 1

2

1
2 p(p−1)∏

k=1

√
λ(k)fV(V0)

×
{

1 + 1
2vec′(I 1

2p(p+1)
+ U(I 1

2p(p−1)
− Λ−1

(1))U
′ − c2[V 2(V)])vecL∗

2(V0,Σ)

+ 1
6vec′

(
U(D[y])−

1
2 c3[y]((D[y])−

1
2 U′)⊗2 − c3[V 2(V)]

)
vecL∗

3(V0,Σ) + r∗3

}
,

where V0 is given by its vectorized upper triangle V 2(V0) = P′(y0 − E[y]),
L∗

i (V0,Σ), i = 2, 3 are defined by (2.4.66), (2.4.62), (2.4.63), and ci[V 2(V)], i =
2, 3, are given in Theorem 2.4.16. If n � p, then r∗3 = o(n−1).

Proof: The expansion stems from Theorem 3.3.7, if we take q = 1
2p(p− 1). The

remainder term is o(n−1) by the same argument as in the proof of Theorem 3.3.11.

From Theorem 3.3.12 we get an approximation of order O(n−1), if we do not use
the L∗

3(V0,Σ)−term.

3.3.5 Problems
1. Verify the identity

vec′M2 ⊗ (M0 + M1)′ = vec′(M2 ⊗ (M0 + M1)),

which was used in the proof of Corollary 3.3.1.1.
2. Show that

P(D[y])−1/2V

in (3.2.23) is a solution to (3.2.22).
3. Prove Lemma 3.3.4.



354 Chapter III

4. Show that equality (3.3.33) is valid.
5. Find the second order derivative (3.3.38).
6. Find the first two terms in the expansion of the characteristic function of

R−1.
7. Let S be the sample dispersion matrix for a normal population Np(µ,Σ).

Construct a formal density expansion for
√

ntr(S − Σ) through the skew
normal distribution SNp(Σ,α) (see Problem 10 in §3.2.5).

8. Show that if n � p, then c∗1[y] ∼ O(1) and c∗2[y] ∼ O(n).
9. Write out the 1

n−term in Theorem 3.3.12, if n � p.
10. Construct the density expansion for the sample correlation matrix R based

on the skew normal distribution SNp(Σ, α) (see Problem 10 in §3.2.5).



CHAPTER IV

Multivariate Linear Models

Linear models play a key role in statistics. If exact inference is not possible then
at least a linear approximate approach can often be carried out. We are going
to focus on multivariate linear models. Throughout this chapter various results
presented in earlier chapters will be utilized. The Growth Curve model by Potthoff
& Roy (1964) will serve as a starting point. Although the Growth Curve model
is a linear model, the maximum likelihood estimator of its mean parameters is
a non-linear random expression which causes many difficulties when considering
these estimators. The first section presents various multivariate linear models as
well as maximum likelihood estimators of the parameters in the models. Since
the estimators are non-linear stochastic expressions, their distributions have to be
approximated and we are going to rely on the results from Chapter 3. However,
as it is known from that chapter, one needs detailed knowledge about moments.
It turns out that even if we do not know the distributions of the estimators, exact
moment expressions can often be obtained, or at least it is possible to approximate
the moments very accurately. We base our moment expressions on the moments of
the matrix normal distribution, the Wishart distribution and the inverted Wishart
distribution. Necessary relations were obtained in Chapter 2 and in this chapter
these results are applied. Section 4.2 comprises some of the models considered in
Section 4.1 and the goal is to obtain moments of the estimators. These moments
will be used in Section 4.3 when finding approximations of the distributions.

4.1 THE GROWTH CURVE MODEL AND ITS EXTENSIONS

4.1.1 Introduction
In this section multivariate linear models are introduced. Particularly, the Growth
Curve model with some extensions is studied. In the subsequent L(B,Σ) denotes
the likelihood function with parameters B and Σ. Moreover, in order to shorten
matrix expressions we will write (X)()′ instead of (X)(X)′. See (4.1.3) below, for
example.
Suppose that we have an observation vector xi ∈ Rp, which follows the linear
model

xi = µ + Σ1/2ei,

where µ ∈ Rp and Σ ∈ Rp×p are unknown parameters, Σ1/2 is a symmetric square
root of the positive definite matrix Σ, and ei ∼ Np(0, I). Our crucial assumption
is that µ ∈ C (A), i.e. µ = Aβ. Here β is unknown, whereas A : p × q is known.
Hence we have a linear model. Note that if A ∈ Rp×q spans the whole space, i.e.
r(A) = p, there are no restrictions on µ, or in other words, there is no non-trivial
linear model for µ.
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The observations xi may be regarded as repeated measurements on some individual
or as a short time series. Up to now the model assumption about µ is a pure within-
individuals model assumption. However, in order to estimate the parameters,
more than one individual is needed. In many situations it is also natural to have
a between-individuals model. For example, if there are more than one treatment
group among the individuals. Let X ∈ Rp×n be a matrix where each column
corresponds to one individual. Then, instead of β in µ = Aβ, n parameter vectors
β1, . . . ,βn exist, and under a between-individuals linear model assumption we have

β1, . . . ,βn = BC,

where C ∈ Rk×n is a known between-individuals design matrix and B ∈ Rq×k is an
unknown parameter matrix. Another type of model is considered when instead of
µ = A(β1,β2, . . . ,βn) we put some rank condition on µ, i.e. instead of supposing
that µ ∈ C (A) it is only supposed that r(µ) is known. By Proposition 1.1.6 (i)
it follows for this model that µ = A(β1, β2, . . . ,βn), but this time both A and βi

are unknown. In the subsequent, all matrices will be supposed to be real.

Definition 4.1.1 Growth Curve model. Let X : p × n, A : p × q, q ≤ p, B :
q × k, C : k × n, r(C) + p ≤ n and Σ : p × p be p.d. Then

X = ABC + Σ1/2E (4.1.1)

defines the Growth Curve model, where E ∼ Np,n(0, Ip, In), A and C are known
matrices, and B and Σ are unknown parameter matrices.

Observe that the columns of X are independent normally distributed p−vectors
with an unknown dispersion matrix Σ, and expectation of X equals E[X] = ABC.
The model in (4.1.1) which has a long history is usually called Growth Curve
model but other names are also used. Before Potthoff & Roy (1964) introduced
the model, growth curve problems in a similar set-up had been considered by
Rao (1958), and others. For general reviews of the model we refer to Woolson &
Leeper (1980), von Rosen (1991) and Srivastava & von Rosen (1999). A recent
elementary textbook on growth curves which is mainly based on the model (4.1.1)
has been written by Kshirsagar & Smith (1995). Note that if A = I, the model is
an ordinary multivariate analysis of variance (MANOVA) model treated in most
texts on multivariate analysis. Moreover, the between-individuals design matrix
C is precisely the same design matrix as used in the theory of univariate linear
models which includes univariate analysis of variance and regression analysis. The
matrix A is often called a within-individuals design matrix.
The mean structure in (4.1.1) is bilinear, contrary to the MANOVA model, which
is linear. So, from the point of view of bilinearity the Growth Curve model is
the first fundamental multivariate linear model, whereas the MANOVA model is a
univariate model. Mathematics also supports this classification since in MANOVA,
as well as in univariate linear models, linear spaces are the proper objects to
consider, whereas for the Growth Curve model decomposition of tensor spaces is
shown to be a natural tool to use. Before going over to the technical details a
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simple artificial example is presented which illustrates the Growth Curve model.
Later on we shall return to that example.
Example 4.1.1. Let there be 3 treatment groups of animals, with nj animals in
the j−th group, and each group is subjected to different treatment conditions. The
aim is to investigate the weight increase of the animals in the groups. All animals
have been measured at the same p time points (say tr, r = 1, 2, . . . , p). This is a
necessary condition for applying the Growth Curve model. It is assumed that the
measurements of an animal are multivariate normally distributed with a dispersion
matrix Σ, and that the measurements of different animals are independent.
We will consider a case where the expected growth curve, and the mean of the
distribution for each treatment group, is supposed to be polynomial in time of
degree q − 1. Hence, the mean µj of the j−th treatment group at time t is

µj = β1j + β2jt + · · · + βqjt
q−1, j = 1, 2, 3,

where βij are unknown parameters.
Furthermore, data form a random matrix X : p×n where n = n1 +n2 +n3. Each
animal is represented by a column in X. If the first n1 columns of X represent
group one, the following n2 columns group two, and so on, we get the between-
individuals design matrix C : 3 × n:

C =

⎛⎝ 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1

⎞⎠
and by the polynomial mean structure we have that the within-individuals design
matrix A : p × q equals

A =

⎛⎜⎜⎝
1 t1 . . . tq−1

1

1 t2 . . . tq−1
2

...
...

. . .
...

1 tp . . . tq−1
p

⎞⎟⎟⎠ .

Hence, the expectation of the data matrix X can be presented as

E[X] = ABC,

where B : q × 3 is a matrix of the parameters βij , i = 1, 2, . . . q, and j = 1, 2, 3.
Note that the columns of B describe the different groups and the rows the expected
growth.
Instead of (4.1.1) we may equivalently consider the identity

vecX = (C′ ⊗ A)vecB + (I ⊗ Σ1/2)vecE,

which is a special case of the ordinary multivariate regression model

x = Tβ + e.
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However, it is not fruitful to consider the model in this form because the interesting
part lies in the connection between the tensor spaces generated by C′ ⊗ A and
I ⊗ Σ.
There are several important extensions of the Growth Curve model. We are going
to focus on extensions which comprise more general mean structures than E[X] =
ABC in the Growth Curve model. In Section 4.1 we are going to find maximum
likelihood estimators when

E[X] =µC, r(µ) = q,

as well as when

E[X] =
m∑

i=1

AiBiCi, C (C′
m) ⊆ C (C′

m−1) ⊆ . . . ⊆ C (C′
1).

We mainly discuss the special case m = 3. Furthermore, we will consider

E[X] =
m∑

i=1

AiBiCi + Bm+1Cm+1, C (C′
m) ⊆ C (C′

m−1) ⊆ . . . ⊆ C (C′
1),

which is a multivariate covariance model. All these models are treated in §4.1.4.
In §4.1.6 we study various restrictions, which can be put on B in E[X] = ABC,
i.e.

E[X] =ABC, GBH = 0,

and
E[X] =ABC, G1BH1 = 0, G2BH2 = 0,

with various subspace conditions on Gi, i = 1, 2, and Hi, i = 1, 2, which are
supposed to be known. Also, the system of equations GiBHi = 0, i = 1, 2, . . . , s,
will be discussed briefly. A different type of restriction is given by

E[X] = ABC, G1ΘH1 + G2BH2 = 0,

where Θ is also an unknown parameter.
Furthermore, in §4.1.3 we give a brief treatment of the case when the dispersion
matrix is supposed to be singular. We will not go into details because calculations
are complicated. Only some results for the Growth Curve model with a singular
Σ will be presented. The fact is that in the above given extensions it could have
been additionally assumed that Σ is singular.
Finally it is noted that in §4.1.5 we examine the conditions that give us unique
estimators. This is an important issue, but unfortunately the results usually rely
on rather tedious calculations.

4.1.2 Maximum likelihood estimators
Several approaches of finding maximum likelihood estimators will be presented in
this section. We point out that we are mainly interested in the mean structure
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and we suppose that we have no information about any structure in Σ. Therefore,
solely an arbitrary Σ is considered. We will usually assume that Σ is p.d. However,
§4.1.3 is devoted to the case when Σ is not of full rank. The reason for presenting
different approaches to the same problem is that it is useful to have some knowledge
about various techniques. The approaches discussed show several aspects which
can be useful in other situations.
In the next lemma a useful inequality is presented which will be referred to several
times. Among others, it has been used by Watson (1964), Srivastava & Khatri
(1979) and Anderson (2003).

Lemma 4.1.1. Let Σ and S be positive definite matrices of size p × p. Then

|Σ|− 1
2ne−

1
2 tr(Σ−1S) ≤ | 1nS|− 1

2ne−
1
2np,

where equality holds if and only if Σ = 1
nS.

Proof: It follows from Corollary 1.2.42.1 that there exist matrices H and D such
that

Σ = HD−1H′, S = HH′,

where H is non-singular and D = (d1, d2, . . . , dp)d. Thus,

|Σ|− 1
2ne−

1
2 tr(Σ−1S) = |HD−1H′|− 1

2ne−
1
2 trD = |HH′|− 1

2n
p∏

i=1

d
n
2
i e−

1
2di

≤ |HH′|− 1
2nn

pn
2 e−

1
2pn = | 1nS|− 1

2ne−
1
2np

and equality holds if and only if di = n which means that nΣ = S.

Now we start with the first method of obtaining maximum likelihood estimators in
the Growth Curve model. The approach is based on a direct use of the likelihood
function. From the density of the matrix normal distribution, given in (2.2.7), we
obtain that the likelihood function becomes

L(B,Σ) = (2π)−
1
2pn|Σ|− 1

2ne−
1
2 tr{Σ−1(X−ABC)(X−ABC)′}. (4.1.2)

Remember that we sometimes write (X − ABC)()′ instead of (X − ABC)(X −
ABC)′. Lemma 4.1.1 yields

|Σ|− 1
2ne−

1
2 tr{Σ−1(X−ABC)()′} ≤ | 1n (X − ABC)()′|− 1

2ne−
1
2np, (4.1.3)

and equality holds if and only if nΣ = (X − ABC)()′. Observe that Σ has been
estimated as a function of the mean and now the mean is estimated. In many
models one often starts with an estimate of the mean and thereafter searches for
an estimate of the dispersion (covariance) matrix. The aim is achieved if a lower
bound of

|(X − ABC)(X − ABC)′|,
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which is independent of B, is found and if that bound can be obtained for at least
one specific choice of B.
In order to find a lower bound two ideas are used. First we split the product
(X − ABC)(X − ABC)′ into two parts, i.e.

(X − ABC)(X − ABC)′ = S + VV′, (4.1.4)

where
S = X(I − C′(CC′)−C)X′ (4.1.5)

and
V = XC′(CC′)−C − ABC. (4.1.6)

Note that S does not depend on the parameter B. Furthermore, if S is re-scaled,
i.e. 1/(n − r(C))S, the matrix is often called sample dispersion matrix. However,
under the Growth Curve model it is not appropriate to call the scaled S the sample
dispersion matrix because there exist alternatives which are more relevant to use
in this role, as it will be shown below. Proposition 1.1.1 (ii) and (iii) imply

|S + VV′| = |S||I + S−1VV′| = |S||I + V′S−1V|.
Here it is assumed that S−1 exists, which is true with probability 1 (see Corollary
4.1.2.1L in §4.1.3).
The second idea is based on Corollary 1.2.25.1 which yields

S−1 = S−1A(A′S−1A)−A′S−1 + Ao(Ao′
SAo)−Ao′

.

Therefore,

|(X−ABC)()′| = |S||I + V′S−1V|
= |S||I + V′S−1A(A′S−1A)−A′S−1V + V′Ao(Ao′

SAo)−Ao′
V|

≥ |S||I + V′Ao(Ao′
SAo)−Ao′

V| (Proposition 1.1.5 (viii)),

which is independent of B, since Ao′
V = Ao′

XC′(CC′)−C is independent of B.
Equality holds if and only if

V′S−1A(A′S−1A)−A′S−1V = 0,

which is equivalent to
V′S−1A(A′S−1A)− = 0.

This is a linear equation in B, and from Theorem 1.3.4 it follows that the general
solution is given by

B̂ = (A′S−1A)−A′S−1XC′(CC′)− + (A′)oZ1 + A′Z2Co′
, (4.1.7)

where Z1 and Z2 are arbitrary matrices. If A and C are of full rank, i.e. r(A) = q
and r(C) = k, a unique solution exists:

B̂ = (A′S−1A)−1A′S−1XC′(CC′)−1.
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Furthermore, the maximum likelihood estimator of Σ is given by

nΣ̂ = (X − AB̂C)(X − AB̂C)′ = S + V̂V̂′, (4.1.8)

where V̂ is the matrix V given by (4.1.6) with B replaced by B̂, i.e.

V̂ = XC′(CC′)−C − AB̂C.

From (4.1.7) and Proposition 1.2.2 (x) it follows that

AB̂C = A(A′S−1A)−A′S−1XC′(CC′)−C

is always unique, i.e. the expression does not depend on the choices of g-inverses,
and therefore Σ̂ is also uniquely estimated. The conditions, under which the
parameters in the mean structure or linear combinations of them can be uniquely
estimated, will be studied in §4.1.5 in some detail. The above given results are
summarized in the next theorem.

Theorem 4.1.1. For the Growth Curve model (4.1.1) the maximum likelihood
estimator of B is given by (4.1.7) and the unique estimator of Σ by (4.1.8).

The approach above can be modified in order to get more precise information
about the covariance structure. By utilizing Corollary 1.2.39.1, the matrix normal
density in the likelihood function can be written in the following way

L(B,Σ) = c|D|−n
2 e−

1
2 tr{D−1Γ′(X−ABC)(X−ABC)′Γ}, c = (2π)−

1
2pn, (4.1.9)

where D is the diagonal matrix which consists of the p positive eigenvalues of Σ,
Σ−1 = ΓD−1Γ′, Γ : p × p, where Γ′Γ = Ip.
As before we are going to maximize (4.1.9) with respect to B and Σ, i.e. B, D
and Γ. Since D is diagonal, (4.1.9) can be rewritten as

L(B,Σ) = c|D|−n
2 e−

1
2 tr{D−1{Γ′(X−ABC)(X−ABC)′Γ}d}.

One can see that

L(B,Σ) ≤ c| 1n{Γ′(X − ABC)(X − ABC)′Γ}d|−
n
2 e−

1
2pn, (4.1.10)

where equality holds if and only if

nD = {Γ′(X − ABC)(X − ABC)′Γ}d.

From (4.1.10) it follows that we have to examine the determinant, and first we
observe that

|{Γ′(X − ABC)(X − ABC)′Γ}d| ≥ |Γ′(X − ABC)(X − ABC)′Γ|,
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since Γ is non-singular. Equality holds if Γ is a matrix of unit length eigenvectors of
(X−ABC)(X−ABC)′. The inequality is a special case of Hadamard’s inequality
(see Problem 14 in §1.1.7). This approach will be used in the next paragraph when
considering models with a singular dispersion matrix.
Although two ways of finding the maximum likelihood estimators have been pre-
sented, we will continue with two more alternative approaches. The third approach
is based on differentiation of the likelihood function. The obtained likelihood equa-
tions are then solved. In the fourth approach, which is completely different, the
model is rewritten in a reparameterized form.
When differentiating the likelihood function in (4.1.2) with respect to B, it follows,
by Proposition 1.4.9 (iii), that the likelihood equation is

A′Σ−1(X − ABC)C′ = 0. (4.1.11)

Moreover, (4.1.2) will be differentiated with respect to (Σ(K))−1, i.e. the 1
2p(p+1)

different elements of Σ−1. Hence, from (4.1.2) it follows that the derivatives

d|Σ−1|1/2

dΣ(K)−1
,

d tr{Σ−1(X − ABC)(X − ABC)′}
dΣ(K)−1

have to be found. Using the notation of §1.3.6, the equality (1.3.32) yields

d tr{Σ−1(X − ABC)(X − ABC)′}
dΣ(K)−1

=
dΣ−1

dΣ(K)−1
vec{(X − ABC)(X − ABC)′}

= (T+(s))′vec{(X − ABC)(X − ABC)′}. (4.1.12)

From the proof of (1.4.31) it follows that

d|Σ−1| 12n

dΣ(K)−1
=

d|Σ−1|1/2

dΣ(K)−1

d|Σ−1| 12n

d|Σ−1|1/2
= n|Σ−1| 12 (n−1) d|Σ−1|1/2

dΣ−1(K)

= n|Σ−1| 12 (n−1) 1
2

dΣ−1

dΣ−1(K)
|Σ−1| 12 vecΣ

=
n

2
|Σ−1|n2 (T+(s))′vecΣ. (4.1.13)

Thus, differentiating the likelihood function (4.1.2), with the use of (4.1.12) and
(4.1.13), leads to the relation

dL(B,Σ)
dΣ(K)−1

=
{n

2
(T+(s))′vecΣ − 1

2
(T+(s))′vec((X − ABC)(X − ABC)′)

}
L(B,Σ). (4.1.14)

Since for any symmetric W the equation (T+(s))′vecW = 0 is equivalent to
vecW = 0, we obtain from (4.1.14) the following equality.

nΣ = (X − ABC)(X − ABC)′. (4.1.15)
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Observe that we have differentiated with respect to the concentration matrix Σ−1,
which is, in some sense, a more natural parameter than Σ as the log-likelihood
function, besides the determinant, is a linear function in Σ−1. Now (4.1.11) and
(4.1.15) are equivalent to

A′Σ−1VC′ = 0, (4.1.16)
nΣ = S + VV′, (4.1.17)

where S and V are given by (4.1.5) and (4.1.6), respectively. From Proposition
1.3.6 it follows that instead of (4.1.16),

A′S−1VMC′ = 0 (4.1.18)

holds, where
M = (V′S−1V + I)−1.

Thus, (4.1.18) is independent of Σ, but we have now a system of non-linear equa-
tions. However,

VMC′ = (XC′(CC′)− − AB)CMC′,

and since C (CMC′) = C (C) it follows that (4.1.18) is equivalent to

A′S−1V = 0,

which is a linear equation in B. Hence, by applying Theorem 1.3.4, an explicit
solution for B is obtained via (4.1.17) that leads to the maximum likelihood esti-
mator of Σ. The solutions were given in (4.1.7) and (4.1.8). However, one should
observe that a solution of the likelihood equations does not necessarily lead to the
maximum likelihood estimate, because local maxima can appear or maximum can
be obtained on the boundary of the parameter space. Therefore, after solving the
likelihood equations, one has to do some additional work in order to guarantee
that the likelihood estimators have been obtained. From this point of view it is
advantageous to work with the likelihood function directly. On the other hand, it
may be simpler to solve the likelihood equations and the obtained results can then
be directing guidelines for further studies.
The likelihood approach is always invariant under non-singular transformations.
In the fourth approach a transformation is applied, so that the within-individual
model is presented in a canonical form. Without loss of generality it is assumed
that r(A) = q and r(C) = k. These assumptions can be made because otherwise
it follows from Proposition 1.1.6 that A = A1A2 and C′ = C′

1C
′
2 where A1 :

p × s, r(A1) = s, A2 : s × q, r(A2) = s, C′
1 : n × t, r(C1) = t and C′

2 : t × k,
r(C2) = t. Then the mean of the Growth Curve model equals

E[X] = A1A2BC2C1 = A1ΘC1,

where A1 and C1 are of full rank. This reparameterization is, of course, not
one-to-one. However, B can never be uniquely estimated, whereas Θ is always
estimated uniquely. Therefore we use Θ and obtain uniquely estimated linear
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combinations of B. The idea is to construct a non-singular transformation matrix
which is independent of the parameters. Let

Q′ = (A(A′A)−1 : Ao), (4.1.19)

where Q ∈ Rp×p and Ao ∈ Rp×(p−q), which, as previously, satisfies C (Ao) =
C (A)⊥. Hence, Q is non-singular and a new transformed model equals

QX =
(

I
0

)
BC + QΣ1/2E.

The corresponding likelihood function is given by

L(B,Σ) =(2π)−
1
2pn|QΣQ′|− 1

2nexp{− 1
2 tr{(QΣQ′)−1(QX −

(
I
0

)
BC)()′}}.

(4.1.20)

Define Y and Ψ through the following relations:

QX =Y = (Y′
1 : Y′

2)
′,

QΣQ′ =
(

Ψ11 Ψ12

Ψ21 Ψ22

)
and

Ψ1·2 = Ψ11 − Ψ12Ψ−1
22 Ψ21.

By Proposition 1.3.2 and Proposition 1.3.3, the equality (4.1.20) is identical to

L(B,Σ) = (2π)−
1
2pn|Ψ22|−

1
2n|Ψ1·2|−

1
2ne−

1
2 tr{Ψ−1

1·2(Y1−BC−ΘY2)()
′+Ψ−1

22 Y2Y
′
2},

(4.1.21)
where Θ = Ψ12Ψ−1

22 . However, there is an one-to-one correspondence between the
parameter space (Σ,B) and the space (Ψ1·2,Ψ22,Θ,B). Thus, the parameters
(Ψ1·2,Ψ22,Θ,B) may be considered, and from the likelihood function (4.1.21) it
follows that the maximum likelihood estimators are obtained via ordinary multi-
variate regression analysis. One may view this approach as a conditioning proce-
dure, i.e.

LY(B,Ψ) = LY2(Ψ22)LY1|Y2(B,Θ,Ψ1·2)

in usual notation. Thus,

nΨ̂22 =Y2Y′
2,

(B̂, Θ̂) =Y1(C′ : Y′
2)
(

CC′ CY′
2

Y2C′ Y2Y′
2

)−1

,

nΨ̂1·2 =(Y1 − B̂C − Θ̂Y2)(Y1 − B̂C − Θ̂Y2)′.

It remains to convert these results into expressions which comprise the original
matrices. Put

PC′ = C′(CC′)−1C
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and

N =Y1(I − PC′)Y′
1 − Y1(I − PC′)Y′

2{Y2(I − PC′)Y′
2}−1Y2(I − PC′)Y′

1

=
(
(I : 0)

{(
Y1

Y2

)
(I − PC′)(Y′

1 : Y′
2)
}−1(

I
0

))−1

=(A′Q′(QSQ′)−1QA)−1 = (A′S−1A)−1,

where Q is defined in (4.1.19). From Proposition 1.3.3, Proposition 1.3.4 and
Proposition 1.3.6 it follows that

B̂ =Y1C′{CC′ − CY′
2(Y2Y′

2)
−1Y2C′}−1

− Y1Y′
2{Y2(I − PC′)Y′

2}−1Y2C′(CC′)−1

=Y1C′(CC′)−1 − Y1(I − PC′)Y′
2(Y2(I − PC′)Y′

2)
−1Y2C′(CC′)−1

=N
(
N−1 : −N−1Y1(I − PC′)Y′

2{Y2(I − PC′)Y′
2}−1

)(Y1

Y2

)
C′(CC′)−1

=(A′S−1A)−1A′Q′(QSQ′)−1QXC′(CC′)−1

=(A′S−1A)−1A′S−1XC′(CC′)−1,

since Q is non-singular and A′Q′ = (I : 0). Hence, the maximum likelihood
estimator of B in the Growth Curve model has been obtained. Furthermore,

Θ̂ = Y1(I − PC′)Y′
2{Y2(I − PC′)Y′

2}−1

and

Y1−(B̂ : Θ̂)(C′ : Y′
2)

′

= Y1(I − PC′) − Y1(I − PC′)Y′
2{Y2(I − PC′)Y′

2}−1Y2(I − PC′),

which yields

nΨ̂1·2 =Y1(I − PC′)Y′
1 − Y1(I − PC′)Y′

2{Y2(I − PC′)Y′
2}−1Y2(I − PC′)Y′

1,

nΨ̂12 =Y1(I − PC′)Y′
2{Y2(I − PC′)Y′

2}−1Y2Y′
2.

Since Ψ11 = Ψ1·2 + Ψ12Ψ−1
22 Ψ21, we have

nΨ̂11 =Y1(I − PC′)Y′
1 + Y1(I − PC′)Y′

2{Y2(I − PC′)Y′
2}−1Y2PC′

× Y′
2{Y2(I − PC′)Y′

2}−1Y2(I − PC′)Y′
1.

Thus,

n

(
Ψ̂11 Ψ̂12

Ψ̂21 Ψ̂22

)
=
(

Y1

Y2

)(
I − PC′ + (I − PC′)Y′

2{Y2(I − PC′)Y′
2}−1

× Y2PC′Y′
2{Y2(I − PC′)Y′

2}−1Y2(I − PC′)
)

(Y′
1 : Y′

2).
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By definition of Q and Y2,

Y2 = (0 : I)QX = Ao′
X,

which implies that

n

(
Ψ̂11 Ψ̂12

Ψ̂21 Ψ̂22

)
= nQX

(
I − PC′ + (I − PC′)X′Ao{Ao′

X(I − PC′)X′Ao}−1

× Ao′
XPC′X′Ao{Ao′

X(I − PC′)X′Ao}−1Ao′
X(I − PC′)

)
X′Q′

= nQSQ′ + QSAo(Ao′
SAo)−1Ao′

XPC′X′Ao(Ao′
SAo)−1Ao′

SQ′

= Q(S + V̂V̂′)Q′ = nQΣ̂Q′,

where S, V and Σ̂ are given by (4.1.5), (4.1.6) and (4.1.8), respectively, and V̂ is
as in (4.1.8). Since Q is non-singular, again the maximum likelihood estimator of
Σ has been derived.
A modified version of the last approach is obtained when we utilize Proposition
1.1.6 (ii), which implies that if A : p × q is of full rank, i.e. r(A) = q,

A′ = T(Iq : 0)Γ,

where T is non-singular and Γ is orthogonal. Then, instead of (4.1.20), it can be
established that

L(B,Σ) = (2π)−
1
2pn|Σ|− 1

2ne−
1
2 tr{Σ−1(X−Γ′(Iq :0)′T′BC)()′}

= (2π)−
1
2pn|ΓΣΓ′|− 1

2ne−
1
2 tr{ΓΣ−1Γ′(ΓX−(Iq :0)′T′BC)()′}.

Put Θ = T′B and the likelihood function has the same structure as in (4.1.20).

4.1.3 The Growth Curve model with a singular dispersion matrix
Univariate linear models with correlated observations and singular dispersion ma-
trix have been extensively studied: Mitra & Rao (1968), Khatri (1968), Zyskind &
Martin (1969), Rao (1973b), Alalouf (1978), Pollock (1979), Feuerverger & Fraser
(1980) and Nordström (1985) are some examples. Here the dispersion matrix is
supposed to be known. However, very few results have been presented for multi-
variate linear models with an unknown dispersion matrix. In this paragraph the
Growth Curve model with a singular dispersion matrix is studied. For some alter-
native approaches see Wong & Cheng (2001) and Srivastava & von Rosen (2002).
In order to handle the Growth Curve model with a singular dispersion matrix, we
start by performing an one-to-one transformation. It should, however, be noted
that the transformation consists of unknown parameters and can not be given ex-
plicitly at this stage. This means also that we cannot guarantee that we do not
lose some information when estimating the parameters, even if the transformation
is one-to-one.
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Suppose r(Σ) = r < p. From (4.1.1) it follows that we should consider(
Γ′

Γo′

)
X =

(
Γ′

Γo′

)
ABC +

(
Γ′Σ

1
2 E

0

)
, (4.1.22)

where (Γ : Γo) spans the whole space, Γ′Γo = 0, Γo′
Σ = 0, Γ′Γ = Ir, Γ : p × r,

Σ = ΓΛΓ′, where Λ: r × r is a diagonal matrix of positive eigenvalues of Σ and
Γo : p × (p − r). It follows that with probability 1

Γo′
X = Γo′

ABC. (4.1.23)

Thus, by treating (4.1.23) as a linear equation in B, it follows from Theorem 1.3.4
that, with probability 1,

B = (Γo′
A)−Γo′

XC− + (A′Γo)oΘ + A′ΓoΘ2Co′
, (4.1.24)

where Θ and Θ2 are interpreted as new parameters. Inserting (4.1.24) into (4.1.22)
gives

Γ′X = Γ′A(Γo′
A)−Γo′

X + Γ′A(A′Γo)oΘC + Γ′Σ1/2E. (4.1.25)

Since by Theorem 1.2.26 (ii) C (A(A′Γo)o) = C (Γ(Γ′Ao)o), and Γ′Γ = I we may
consider (Γ′Ao)oΘ1 instead of Γ′A(A′Γo)oΘ. Furthermore, let

F = (Γ′Ao)o, Z = (I − A(Γo′
A)−Γo′

)X.

Assume that C (Γ) ∩C (A) 	= {0}, which implies that F differs from 0. The case
F = 0 will be treated later. Hence, utilizing a reparameterization, the model in
(4.1.1) can be written as

Γ′Z = FΘ1C + Γ′Σ1/2E (4.1.26)

with the corresponding likelihood function

L(Γ,Λ,Θ1) = c|Γ′ΣΓ|− 1
2netr{− 1

2 (Γ′ΣΓ)−1(Γ′Z−FΘ1C)(Γ′Z−FΘ1C)′} (4.1.27)

where c = (2π)−
1
2 rn.

First we will consider the parameters which build up the dispersion matrix
Σ. Since Λ = Γ′ΣΓ is diagonal, (4.1.27) is identical to

L(Γ,Λ,Θ1) = c|Λ|− 1
2netr{− 1

2Λ−1{(Γ′Z−FΘ1C)(Γ′Z−FΘ1C)′}d}. (4.1.28)

According to the proof of Lemma 4.1.1, the likelihood function in (4.1.28) satisfies

L(Γ,Λ,Θ1) ≤ c| 1
n
{(Γ′Z − FΘ1C)(Γ′Z − FΘ1C)′}d|−n/2e−

1
2 rn (4.1.29)
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and equality holds if and only if

nΛ = {(Γ′Z − FΘ1C)(Γ′Z − FΘ1C)′}d.

It remains to find estimators of Γ and Θ1. These will be obtained by deriving
a lower bound of |{(Γ′Z − FΘ1C)(Γ′Z − FΘ1C)′}d| which is independent of the
parameters Γ and Θ1. By using the definition of F we note that for the diagonal
matrix in (4.1.29)

|{Γ′(Z − Γ(Γ′Ao)oΘ1C)(Z − Γ(Γ′Ao)oΘ1C)′Γ}d|
≥ |Γ′(Z − Γ(Γ′Ao)oΘ1C)(Z − Γ(Γ′Ao)oΘ1C)′Γ| = |Γ′SZΓ + VV′|, (4.1.30)

where

SZ =Z(I − C′(CC′)−C)Z′, (4.1.31)
V =Γ′ZC′(CC′)−C − Γ(Γ′Ao)oΘ1C.

Equality holds in (4.1.30), if Γ is a matrix of eigenvectors of the product

(Z − Γ(Γ′Ao)oΘ1C)(Z − Γ(Γ′Ao)oΘ1C)′.

From the calculations presented via (4.1.4) – (4.1.7) it follows that (4.1.30) is
minimized, if

(Γ′Ao)oΘ̂1C

=(Γ′Ao)o{(Γ′Ao)o′
(Γ′SZΓ)−1(Γ′Ao)o}−(Γ′Ao)o′

(Γ′SZΓ)−1Γ′ZC′(CC′)−C

={I − Γ′SZΓΓ′Ao(Ao′
ΓΓ′SZΓΓ′Ao)−Ao′

Γ}Γ′ZC′(CC′)−C, (4.1.32)

where Corollary 1.2.25.1 has been used for the last equality. Since the linear
functions in X, (I − A(Γo′

A)−Γo′
)X(I − C′(CC′)−C) and X(I − C′(CC′)−C)

have the same mean and dispersion they also have the same distribution, because
X is normally distributed. This implies that SZ and

S = X(I − C′(CC′)−C)X′

have the same distribution, which is a crucial observation since S is independent
of any unknown parameter. Thus, in (4.1.32), the matrix SZ can be replaced by
S and

(Γ′Ao)oΘ̂1C

= Γ′ZC′(CC′)−C − Γ′SΓΓ′Ao(Ao′
ΓΓ′SΓΓ′Ao)−Ao′

ΓΓ′ZC′(CC′)−C (4.1.33)

is obtained.
In the next lemma a key result for inference problems in the Growth Curve model
with a singular dispersion matrix is presented.
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Lemma 4.1.2. Let S ∼ Wp(Σ, n). Then, with probability 1, C (S) ⊆ C (Σ) and
if n ≥ r = r(Σ), C (S) = C (Σ).

Proof: Since S is Wishart distributed, S = ZZ′, where Z ∼ Np,n(0,Σ, In).
Furthermore, Z = ΨU, where Σ = ΨΨ′, Ψ : p × r and the elements in U : r × n
are independent N(0, 1). Thus, C (S) = C (Z) ⊆ C (Ψ) = C (Σ). If n ≥ r,
r(U) = r, with probability 1, then equality holds.

Corollary 4.1.2.1L. If Σ is p.d. and n ≥ p, then S is p.d. with probability 1.

Let S = HLH′, where H : p × r is semiorthogonal and L : r × r is a diagonal
matrix with the non-zero eigenvalues of S on the diagonal. From Lemma 4.1.2 it
follows that

Γ = HQ (4.1.34)

for some matrix Q. Because both Γ and H are semiorthogonal, Q must be or-
thogonal. Hence, ΓΓ′ = HH′ and (with probability 1)

SΓΓ′ = S. (4.1.35)

Instead of (4.1.33) we may thus write

(Γ′Ao)oΘ̂1C = Γ′(I − SAo(Ao′
SAo)−Ao′

HH′)ZC′(CC′)−C.

We also have

Ao′
ΓV = Ao′

HH′(I − A(Ho′
A)−Ho′

)XC′(CC′)−C,

and therefore

|Γ′SZΓ + VV′|
≥ |Γ′SZΓ||I + C′(CC′)−CX′(I − A(Ho′

A)−Ho′
)′HH′Ao(Ao′

SAo)−Ao′
H

× H′(I − A(Ho′
A)−Ho′

)XC′(CC′)−C|. (4.1.36)

With probability 1 it follows that

|Γ′SZΓ| = |Γ′SΓ| = |Q′H′SHQ| = |H′SH| = |L|.

Furthermore, we can always choose Ho so that HoHo′
+ HH′ = I. Then, after

some calculations, it follows that with probability 1

Ao′
HH′Z = Ao′

HH′(I − A(Ho′
A)−Ho′

)X = Ao′
X.

Thus,

(Γ′Ao)oΘ̂1C = Γ′ZC′(CC′)−C − Γ′SAo(Ao′
SAo)−Ao′

XC′(CC′)−C (4.1.37)

and the lower bound in (4.1.36) equals

|L||I + C′(CC′)−CX′Ao(Ao′
SAo)−Ao′

XC′(CC′)−C|,
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which is free of parameters. Finally, from (4.1.37) it follows that

Γ′(Z − Γ(Γ′Ao)oΘ̂1C)

= Γ′{Z(I − C′(CC′)−C) + SAo(Ao′
SAo)−Ao′

XC′(CC′)−C}
= Γ′{X(I − C′(CC′)−C) + SAo(Ao′

SAo)−Ao′
XC′(CC′)−C}

holds with probability 1. Thus, using (4.1.29) we see that an estimator of Γ is
given by the eigenvectors, which correspond to the r = r(Σ) largest eigenvalues of

T = S + SAo(Ao′
SAo)−Ao′

XC′(CC′)−CX′Ao(Ao′
SAo)−Ao′

S. (4.1.38)

This means that we have found estimators of Λ, Γ, Γo and Σ. It remains to find
the estimator of B. Since A(A′Γo)oΘ̂C = Γ(Γ′Ao)oΘ̂1C, it follows from (4.1.23)
and (4.1.31) that, with probability 1,

AB̂C =A(Γo′
A)−Γo′

XC−C

+ Γ{I − Γ′SΓΓ′Ao(Ao′
ΓΓ′SΓΓ′Ao)−Ao′

Γ}Γ′ZC′(CC′)−C.

By (4.1.34) and (4.1.22), and since Γo′
Z = 0,

AB̂C =A(Γo′
A)−Γo′

X + (I − SAo(Ao′
SAo)−Ao′

)ΓΓ′ZC′(CC′)−C

=A(Γo′
A)−Γo′

X + ZC′(CC′)−C − SAo(Ao′
SAo)−Ao′

ZC′(CC′)−C

=XC′(CC′)−C + A(Γo′
A)−Γo′

X(I − C′(CC′)−C)

− SAo(Ao′
SAo)−Ao′

XC′(CC′)−C

=(I − SAo(Ao′
SAo)−Ao′

)XC′(CC′)−C.

If r(C) = k, r(A) = q, i.e. both design matrices are of full rank, then

B̂ = (A′A)−1A′(I − SAo(Ao′
SAo)−Ao′

)XC′(CC′)−1.

Theorem 4.1.2. Let r = r(Σ) and M : p × r be a matrix of eigenvectors which
correspond to the r largest eigenvalues di of T, given in (4.1.38), and let D be
diagonal with diagonal elements di. If n − r(X) ≥ r, and C (A) ∩ C (Σ) 	= {0},
then estimators of the parameters in (4.1.1) are given by

Σ̂ = 1
nMDM′,

AB̂C =(I − SAo(Ao′
SAo)−Ao′

)XC′(CC′)−C.

According to Corollary 1.2.25.1, the maximum likelihood estimators of Σ and
ABC in the full rank case r(Σ) = p are given by

nΣ̂ =T,

AB̂C =A(A′S−1A)−A′S−1XC′(CC′)−C,

and hence nΣ̂ is identical to (4.1.8) and AB̂C is of the same form as the expression
obtained from (4.1.7) when multiplying by A and C.
In Theorem 4.1.2 we assumed that C (A) ∩ C (Σ) 	= {0}. Note that C (A) ∩
C (Σ) = {0} is equivalent to F = 0 in (4.1.26). As (Γo′

A)−Γo′
= (Γ̃o′

A)−Γ̃o′
for

all full rank matrices Γ̃o such that C (Γo) = C (Γ̃o), we have established the next
theorem.
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Theorem 4.1.3. Let r = r(Σ) and M : p × r be a matrix of eigenvectors which

correspond to the r non-zero eigenvalues di of ẐẐ′, where

Ẑ = (I − A(Γ̃o′
A)−Γ̃o′

)X,

Γ̃o : p× (p− r) is any matrix which generates C (S)⊥, and let D be diagonal with
diagonal elements di. If C (A) ∩C (Σ) = {0}, then estimators of the parameters
in (4.1.1) are given by

Σ̂ = 1
nMDM′

AB̂C =A(Γ̃o′
A)−Γ̃o′

X.

If r(C) = k, then

AB̂ = A(Γ̃o′
A)−Γ̃o′

XC′(CC′)−1.

If r(C) = k and r(A) = q, then

B̂ = (Γ̃o′
A)−Γ̃o′

XC′(CC′)−1.

In the next theorem we are going to show that if C (A) ∩ C (Σ) = {0} holds,
the expressions of AB̂C in Theorem 4.1.2 and Theorem 4.1.3 are identical. This
means that we can always use the representation

AB̂C = (I − SAo(Ao′
SAo)−Ao′

)XC′(CC′)−C,

but the interpretation of the estimator depends heavily on the conditions C (A)∩
C (Σ) = {0} and C (A) ∩C (Σ) 	= {0}.
Theorem 4.1.4. If C (A)∩C (Σ) = 0 holds, then AB̂C and Σ̂ in Theorem 4.1.2

equal AB̂C and Σ̂ in Theorem 4.1.3, with probability 1.

Proof: Since X ∈ C (A : Σ), we have X = AQ1 + ΓQ2 for some matrices Q1

and Q2. Then

A(Γ̃o′
A)−Γ̃o′

XC′(CC′)−C = A(Γ̃o′
A)−Γ̃o′

AQ1C′(CC′)−C

= AQ1C′(CC′)−C,

where for the last equality to hold it is observed that according to Theorem 1.2.12
C (A) ∩C (Σ) = {0} implies C (A′) = C (A′Γo). Furthermore, let H be defined
as before, i.e. S = HLH′, and since C (Σ) = C (S) implies that for some Q3,
X = AQ1 + SQ3 with probability 1, and thus

(I − SAo(Ao′
SAo)−Ao′

)XC′(CC′)−C

= XC′(CC′)−C − SAo(Ao′
SAo)−Ao′

SQ3C′(CC′)−C

= XC′(CC′)−C −
(
S − H(H′Ao)o{(H′Ao)o′

H′S+H(H′Ao)o}−

× (H′Ao)o′
H′
)
Q3C′(CC′)−C

= XC′(CC′)−C − SQ3C′(CC′)−C = AQ1C′(CC′)−C,
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where S+ = HL+H′, with L being the diagonal matrix formed by the eigenvalues
of S, and the last equality is true because by assumption C (H(H′Ao)) = C (H)∩
C (A) = {0}. Moreover,

SAo(Ao′
SAo)−Ao′

XC′(CC′)−C =XC′(CC′)−C − AB̂C

=(I − A(Γ̃o′
A)−Γ̃o′

)XC′(CC′)−C,

with probability 1, and since SZ = S also holds with probability 1, the expressions
of Σ̂ in both theorems are identical.

4.1.4 Extensions of the Growth Curve model
In our first extension we are going to consider the model with a rank restriction
on the parameters describing the mean structure in an ordinary MANOVA model.
This is an extension of the Growth Curve model due to the following definition.

Definition 4.1.2 Growth Curve model with rank restriction. Let X :
p× q, µ : p× k, r(µ) = q < p, C : k × n, r(C) + p ≤ n and Σ : p× p be p.d. Then

X = µC + Σ1/2E (4.1.39)

is called a Growth Curve model with rank restriction, where E ∼ Np,n(0, Ip, In),
C is a known matrix, and µ, Σ are unknown parameter matrices.

By Proposition 1.1.6 (i),
µ = AB,

where A : p× q and B : q × k. If A is known we are back in the ordinary Growth
Curve model which was treated in §4.1.2. In this paragraph it will be assumed that
both A and B are unknown. The model is usually called a regression model with
rank restriction or reduced rank regression model and has a long history. Seminal
work was performed by Fisher (1939), Anderson (1951), (2002) and Rao (1973a).
For results on the Growth Curve model, and for an overview on multivariate
reduced rank regression, we refer to Reinsel & Velu (1998, 2003). In order to
estimate the parameters we start from the likelihood function, as before, and
initially note, as in §4.41.2, that

L(A,B,Σ) =(2π)−
1
2pn|Σ|− 1

2ne−
1
2 tr{Σ−1(X−ABC)(X−ABC)′}

≤(2π)−
1
2pn| 1n (X − ABC)(X − ABC)′|− 1

2ne−
1
2pn.

Recall S and V, which were defined by (4.1.5) and (4.1.6), respectively. Then

|(X−ABC)(X − ABC)′| = |S||I + V′S−1V|
≥ |S||I + C′(CC′)−CX′Ao(Ao′

SAo)−1Ao′
XC′(CC′)−C|. (4.1.40)

Put
F = (Ao′

SAo)−1/2Ao′
S1/2, (4.1.41)
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where M1/2 denotes a symmetric square root of M. Since FF′ = I, the right hand
side of (4.1.40) can be written as

|S||F(I + S−1/2XC′(CC′)−CX′S−1/2)F′|. (4.1.42)

However, from Proposition 1.2.3 (xviii) it follows that

|F(I + S−1/2XC′(CC′)−CX′S−1/2)F′| ≥
p∏

i=q+1

v(i),

where v(i) is the i−th largest eigenvalue (suppose v(q) > v(q+1)) of

I + S−1/2XC′(CC′)−CX′S−1/2 = S−1/2XX′S−1/2.

The minimum value of (4.1.42) is attained when F′ is estimated by the eigenvectors
corresponding to the p − q smallest eigenvalues of S−1/2XX′S−1/2. It remains to
find a matrix Ao or, equivalently, a matrix A which satisfies (4.1.41). However,
since F̂F̂′ = I, it follows that

Âo = S−1/2F̂′.

Furthermore,
Â = S1/2(F̂′)o.

As (F̂′)o we may choose the eigenvectors which correspond to the q largest eigen-
values of S−1/2XX′S−1/2. Thus, from the treatment of the ordinary Growth Curve
model it is observed that

B̂C ={(F̂′)o′
(F̂′)o}−1(F̂′)o′

S−1/2XC′(CC′)−C

=(F̂′)o′
S−1/2XC′(CC′)−C.

Theorem 4.1.5. For the model in (4.1.39), where r(µ) = q < p, the maximum
likelihood estimators are given by

nΣ̂ =(X − µ̂C)(X − µ̂C)′,

µ̂ =(F̂′)oB̂,

B̂C =(F̂′)o′
S−1/2XC′(CC′)−C.

A different type of extension of the Growth Curve model is the following one. In
the subsequent the model will be utilized several times.
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Definition 4.1.3 extended Growth Curve model. Let X : p×n, Ai : p×qi,
qi ≤ p, Bi : qi ×ki, Ci : ki ×n, r(C1)+p ≤ n, i = 1, 2, . . . , m, C (C′

i) ⊆ C (C′
i−1),

i = 2, 3, . . . , m and Σ : p × p be p.d. Then

X =
m∑

i=1

AiBiCi + Σ1/2E (4.1.43)

is called an Extended Growth Curve model, where E ∼ Np,n(0, Ip, In), Ai and Ci

are known matrices, and Bi and Σ are unknown parameter matrices.

The only difference with the Growth Curve model (4.1.1) is the presence of a more
general mean structure. If m = 1, the model is identical to the Growth Curve
model. Sometimes the model has been called sum of profiles model (Verbyla &
Venables, 1988). An alternative name is multivariate linear normal model with
mean

∑m
i=1 AiBiCi, which can be abbreviated MLNM(

∑m
i=1 AiBiCi). Note that

the Growth Curve model may be called a MLNM(ABC). Furthermore, instead
of C (C′

s) ⊆ C (C′
s−1), we may assume that C (As) ⊆ C (As−1) holds.

In the subsequent presentation we shall focus on the special case m = 3. The
general case will now and then be considered but results will usually be stated
without complete proofs. The reader who grasps the course of derivation when
m = 3 will also succeed in the treatment of the general case. As it often happens
in multivariate analysis the problems hang much on convenient notation. In par-
ticular, when working with the MLNM(

∑m
i=1 AiBiCi), the notation problem is

important.

Before starting with the technical derivation, Example 4.1.1 is continued in order
to shed some light on the extension MLNM(

∑3
i=1 AiBiCi) and, in particular, to

illuminate the nested subspace condition C (C′
3) ⊆ C (C′

2) ⊆ C (C′
1).

Example 4.1.2 (Example 4.1.1 continued). Suppose that for the three groups in
Example 4.1.1 there exist three different responses

β11+β21t + · · · + β(q−2)1t
q−3,

β12+β22t + · · · + β(q−2)2t
q−3 + β(q−1)2t

q−2,

β13+β23t + · · · + β(q−2)3t
q−3 + β(q−1)3t

q−2 + βq3t
q−1.

In order to describe these different responses, consider the model

E[X] = A1B1C1 + A2B2C2 + A3B3C3,



Multivariate Linear Models 375

where the matrices in E[X] are defined as below:

A1 =

⎛⎜⎜⎝
1 t1 . . . tq−3

1

1 t2 . . . tq−3
2

...
...

. . .
...

1 tp . . . tq−3
p

⎞⎟⎟⎠ , A2 =

⎛⎜⎜⎝
tq−2
1

tq−2
2
...

tq−2
p

⎞⎟⎟⎠ , A3 =

⎛⎜⎜⎝
tq−1
1

tq−1
2
...

tq−1
p

⎞⎟⎟⎠ ,

B1 =

⎛⎜⎜⎝
β11 β12 β13

β21 β22 β23
...

...
...

β(q−2)1 β(q−2)2 β(q−2)3

⎞⎟⎟⎠ ,

B2 = ( β(q−1)1 β(q−1)2 β(q−1)3 ) , B3 = (βq1 βq2 βq3 ) ,

C1 =

⎛⎝ 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1

⎞⎠ ,

C2 =

⎛⎝ 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1

⎞⎠ ,

C3 =

⎛⎝ 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1

⎞⎠ .

Beside those rows which consist of zeros, the rows of C3 and C2 are represented in
C2 and C1, respectively. Hence, C (C′

3) ⊆ C (C′
2) ⊆ C (C′

1). Furthermore, there
is no way of modelling the mean structure with E[X] = ABC for some A and
C and arbitrary elements in B. Thus, if different treatment groups have different
polynomial responses, this case cannot be treated with a Growth Curve model
(4.1.1).
The likelihood equations for the MLNM(

∑3
i=1 AiBiCi) are:

A′
1Σ

−1(X − A1B1C1 − A2B2C2 − A3B3C3)C′
1 = 0,

A′
2Σ

−1(X − A1B1C1 − A2B2C2 − A3B3C3)C′
2 = 0,

A′
3Σ

−1(X − A1B1C1 − A2B2C2 − A3B3C3)C′
3 = 0,

nΣ = (X − A1B1C1 − A2B2C2 − A3B3C3)()′.

However, these equations are not going to be solved. Instead we are going to
work directly with the likelihood function, as has been done in §4.1.2 and when
proving Theorem 4.1.5. As noted before, one advantage of this approach is that
the global maximum is obtained, whereas when solving the likelihood equations
we have to be sure that it is not a local maximum that has been found. For the
MLNM(

∑m
i=1 AiBiCi) this is not a trivial task.

The likelihood function equals

L(B1,B2,B3,Σ)

=(2π)−
1
2pn|Σ|− 1

2ne−
1
2 tr{Σ−1(X−A1B1C1−A2B2C2−A3B3C3)()

′}.
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By Lemma 4.1.1, the likelihood function satisfies the inequality

L(B1,B2,B3,Σ)

≤ (2π)−
1
2np| 1

n
(X − A1B1C1 − A2B2C2 − A3B3C3)()′|−

1
2ne−

1
2np,

where equality holds if and only if

nΣ = (X − A1B1C1 − A2B2C2 − A3B3C3)()′. (4.1.44)

Therefore, the determinant

|(X − A1B1C1 − A2B2C2 − A3B3C3)()′| (4.1.45)

is going to be minimized with respect to the parameters B1, B2 and B3. Since
C (C′

3) ⊆ C (C′
2) ⊆ C (C′

1) implies C′
1(C1C′

1)
−C1(C′

3 : C′
2) = (C′

3 : C′
2) we can

present (4.1.45) in the following form:

|S1 + V1V′
1|, (4.1.46)

where
S1 = X(I − C′

1(C1C′
1)

−C1)X′ (4.1.47)

and
V1 = XC′

1(C1C′
1)

−C1 − A1B1C1 − A2B2C2 − A3B3C3.

Note that S1 is identical to S given by (4.1.5), and the matrices in (4.1.46) and
(4.1.4) have a similar structure. Thus, the approach used for the Growth Curve
model may be copied. For any pair of matrices S and A, where S is p.d., we will
use the notation

PA,S = A(A′S−1A)−A′S−1,

which will shorten the subsequent matrix expressions. Observe that PA,S is a
projector and Corollary 1.2.25.1 yields

PA,S = I − P′
Ao,S−1 = I − SAo(Ao′

SAo)−Ao′
.

Moreover, Po
A,S = I − P′

A,S = PAo,S−1 . If S = I, instead of PA,I the notation
PA will be used.
We start by modifying (4.1.46), using Corollary 1.2.25.1 and Proposition 1.1.1 (iii):

|S1 + V1V′
1| =|S1||I + S−1

1 V1V′
1| = |S1||I + V′

1S
−1
1 V1|

=|S1||I + V′
1P

′
A1,S1

S−1
1 PA1,S1V1 + V′

1PAo
1,S−1

1
S−1

1 P′
Ao

1,S−1
1

V1|
≥|S1||I + V′

1PAo
1,S−1

1
S−1

1 P′
Ao

1,S−1
1

V1|
=|S1||I + W′

1PAo
1,S−1

1
S−1

1 P′
Ao

1,S−1
1

W1|, (4.1.48)

where
W1 = XC′

1(C1C′
1)

−C1 − A2B2C2 − A3B3C3. (4.1.49)
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The point is that (4.1.49) is functionally independent of B1. It will be supposed
that S1 is non-singular, which is known to be true with probability 1 (Corollary
4.1.2.1L). Moreover, it is observed that equality in (4.1.48) holds if and only if
PA1,S1V1 = 0, which is equivalent to

A′
1S

−1
1 V1 = 0. (4.1.50)

Later this system of equations will be solved. By Proposition 1.1.1 (ii) it follows
that the right hand side of (4.1.48) is identical to

|S1||I + S−1
1 P′

Ao
1,S−1

1
W1W′

1PAo
1,S−1

1
| = |S1 + P′

Ao
1,S−1

1
W1W′

1PAo
1,S−1

1
|,

which can be written as
|S1 + T1W1W′

1T
′
1|, (4.1.51)

where
T1 = I − PA1,S1 . (4.1.52)

The next calculations are based on the similarity between (4.1.46) and (4.1.51).
Let

S2 =S1 + T1XPC′
1
(I − C′

2(C2C′
2)

−C2)PC′
1
X′T′

1, (4.1.53)

V2 =T1XC′
2(C2C′

2)
−C2 − T1A2B2C2 − T1A3B3C3.

Since S1 is positive definite with probability 1, it follows that S2 is non-singular
with probability 1. Using these definitions, it is obvious that

|S1 + T1W1W′
1T

′
1| = |S2 + V2V′

2|, (4.1.54)

since C (C′
3) ⊆ C (C′

2). Moreover, by copying the derivation of (4.1.48), it follows
that from (4.1.54) we get

|S2||I + V2S−1
2 V′

2|
=|S2||I + V′

2P
′
T1A2,S2

S−1
2 PT1A2,S2V2 + V′

2P(T1A2)o,S−1
2

S−1
2 P′

(T1A2)o,S−1
2

V2|
≥|S2||I + W′

2P(T1A2)o,S−1
2

S−1
2 P′

(T1A2)o,S−1
2

W2|
=|S2||I + S−1

2 P′
(T1A2)o,S−1

2
W2W′

2P(T1A2)o,S−1
2
|

=|S2 + P′
(T1A2)o,S−1

2
W2W′

2P(T1A2)o,S−1
2
|

=|S2 + P3W2W′
2P

′
3|, (4.1.55)

where

W2 =XC′
2(C2C′

2)
−C2 − A3B3C3,

P3 =T2T1, (4.1.56)
T2 =I − PT1A2,S2 . (4.1.57)
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Equality in (4.1.55) holds if and only if

A′
2T

′
1S

−1
2 V2 = 0. (4.1.58)

Moreover, since W2 does not include B1 and B2, by (4.1.55) we are back to
the relations used when finding estimators for the ordinary Growth Curve model.
Thus, by continuing the calculations from (4.1.55) in a straightforward manner we
get

|S2 + P3W2W′
2P

′
3| = |S3 + V3V′

3|, (4.1.59)

where

S3 =S2 + P3XPC′
2
(I − PC′

3
)PC′

2
X′P′

3, (4.1.60)

V3 =P3XC′
3(C3C′

3)
−C3 − P3A3B3C3.

The matrix S3 is non-singular with probability 1. Furthermore, from (4.1.59) a
chain of calculations can be started:

|S3||I + V3S−1
3 V′

3|
=|S3||I + V′

3P
′
P3A3,S3

S−1
3 PP3A3,S3V3 + V′

3P(P3A3)o,S−1
3

S−1
3 P′

(P3A3)o,S−1
3

V3|
≥|S3||I + W′

3P(P3A3)o,S−1
3

S−1
3 P′

(P3A3)o,S−1
3

W3|
=|S3||I + S−1

3 P′
(P3A3)o,S−1

3
W3W′

3P(P3A3)o,S−1
3
|

=|S3 + P′
(P3A3)o,S−1

3
W3W′

3P(P3A3)o,S−1
3
|

=|S3 + P4W3W′
3P

′
4|, (4.1.61)

where

W3 =XC′
3(C3C′

3)
−C3,

P4 =T3T2T1,

T3 =I − PP3A3,S3 .

Note that S−1
3 exists with probability 1, and equality in (4.1.61) holds if and only

if
A′

3P
′
3S

−1
3 V3 = 0. (4.1.62)

Furthermore, it is observed that the right hand side of (4.1.61) does not include any
parameter. Thus, if we can find values of B1, B2 and B3, i.e. parameter estimators,
which satisfy (4.1.50), (4.1.58) and (4.1.62), the maximum likelihood estimators
of the parameters have been found, when X ∼ Np,n(

∑3
i=1 AiBiCi,Σ, In).

Theorem 4.1.6. Let X ∼ Np,n(
∑3

i=1 AiBiCi,Σ, In) n ≥ p + r(C1), where Bi,
i = 1, 2, 3, and Σ are unknown parameters. Representations of their maximum
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likelihood estimators are given by

B̂3 =(A′
3P

′
3S

−1
3 P3A3)−A′

3P
′
3S

−1
3 XC′

3(C3C′
3)

−

+ (A′
3P

′
3)

oZ31 + A′
3P

′
3Z32Co′

3 ,

B̂2 =(A′
2T

′
1S

−1
2 T1A2)−A′

2T
′
1S

−1
2 (X − A3B̂3C3)C′

2(C2C′
2)

−

+ (A′
2T

′
1)

oZ21 + A′
2T

′
1Z22Co′

2 ,

B̂1 =(A′
1S

−1
1 A1)−A′

1S
−1
1 (X − A2B̂2C2 − A3B̂3C3)C′

1(C1C′
1)

−

+ (A′
1)

oZ11 + A′
1Z12Co′

1 ,

nΣ̂ =(X − A1B̂1C1 − A2B̂2C2 − A3B̂3C3)()′,

where Zij , i = 1, 2, 3, j = 1, 2, are arbitrary matrices, and P3, S3 T1, S2 and S1

are defined by (4.1.56), (4.1.60), (4.1.52), (4.1.53) and (4.1.47), respectively.

Proof: The equations (4.1.50), (4.1.58) and (4.1.62) are going to be solved. The
last equation is a linear equation in B3 and using Theorem 1.3.4 the estimator
B̂3 is obtained. Inserting this solution into (4.1.58) implies that we have a linear
equation in B2 and via Theorem 1.3.4 the estimator B̂2 is found. Now, inserting
both B̂3 and B̂2 into (4.1.50) and then solving the equation gives B̂1. Finally,
plugging B̂i, i = 1, 2, 3, into (4.1.44) establishes the theorem.
It has already been mentioned that the results of Theorem 4.1.6 can be extended
so that maximum likelihood estimators can be found for the parameters in the
MLNM(

∑m
i=1 AiBiCi) (von Rosen, 1989). These estimators are presented in the

next theorem.

Theorem 4.1.7. Let

Pr =Tr−1Tr−2 × · · · × T0, T0 = I, r = 1, 2, . . . , m + 1,

Ti =I − PiAi(A′
iP

′
iS

−1
i PiAi)−A′

iP
′
iS

−1
i , i = 1, 2, . . . , m,

Si =
i∑

j=1

Kj , i = 1, 2, . . . , m,

Kj =PjXPC′
j−1

(I − PC′
j
)PC′

j−1
X′P′

j , C0 = I,

PC′
j−1

=C′
j−1(Cj−1C′

j−1)
−Cj−1.

Assume that S1 is p.d., then representations of the maximum likelihood estimators
for the MLNM(

∑m
i=1 AiBiCi) are given by

B̂r =(A′
rP

′
rS

−1
r PrAr)−A′

rP
′
rS

−1
r (X −

m∑
i=r+1

AiB̂iCi)C′
r(CrC′

r)
−

+ (A′
rP

′
r)

oZr1 + A′
rP

′
rZr2Co′

r , r = 1, 2, . . . , m,

nΣ̂ =(X −
m∑

i=1

AiB̂iCi)(X −
m∑

i=1

AiB̂iCi)′

=Sm + Pm+1XC′
m(CmC′

m)−CmX′P′
m+1,
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where the matrices Zrj are arbitrary. Here
∑m

i=m+1 AiB̂iCi = 0.

Proof: One can show that

|Sr−1 + Pr(X −
m∑

i=r

AiBiCi)C′
r−1(Cr−1C′

r−1)
−Cr−1(X −

m∑
i=r

AiBiCi)P′
r|

≥ |Sr + Pr+1(X −
m∑

i=r+1

AiBiCi)C′
r(CrC′

r)
−Cr(X −

m∑
i=r+1

AiBiCi)P′
r+1|

≥ |nΣ̂|, r = 2, 3, . . . , m.

Therefore, we get an explicit expression of the upper bound of the likelihood
function as in the proof of Theorem 4.1.6.
In order to shed some light on the expressions in Theorem 4.1.7 the next lemma
presents an important algebraic fact about Pr and Sr.

Lemma 4.1.3. Let Pr and Sr be as in Theorem 4.1.7, and

Gr+1 =Gr(G′
rAr+1)o, G0 = I,

Wr =X(I − C′
r(CrC′

r)
−Cr)X′ ∼ Wp(Σ, n − r(Cr)),

where (G′
rAr+1)o is chosen so that Gr+1 is of full rank. Then

P′
rS

−1
r Pr = P′

rS
−1
r , PrPr = Pr, r = 1, 2, . . . , m;(i)

P′
rS

−1
r Pr = Gr−1(G′

r−1WrGr−1)−1G′
r−1, r = 1, 2, . . . , m.(ii)

Proof: Both (i) and (ii) will be proved via induction. Note that (i) is true for
r = 1, 2. Suppose that P′

r−1S
−1
r−1Pr−1 = P′

r−1S
−1
r−1 and Pr−1Pr−1 = Pr−1. By

applying Proposition 1.3.6 to S−1
r = (Sr−1 + Kr)−1 we get that it is sufficient to

show that P′
rS

−1
r−1Pr = P′

rS
−1
r−1 = S−1

r−1Pr. However,

P′
rS

−1
r−1Pr = P′

r−1S
−1
r−1Pr = S−1

r−1Pr−1Pr = S−1
r−1Pr

and
PrPr = Tr−1Pr−1Pr = Tr−1Pr = Pr.

Concerning (ii), it is noted that the case r = 1 is trivial. For r = 2, if

Fj = PC′
j−1

(I − PC′
j
),

where as previously PC′
j

= C′
j(CjC′

j)
−Cj , we obtain by using Proposition 1.3.6

that

P′
2S

−1
2 P2 =T′

1S
−1
2 T1

=T′
1S

−1
1 T1 − T′

1S
−1
1 T1XF2

× {I + F′
2X

′T′
1S

−1
1 T1XF2}−1F′

2X
′T′

1S
−1
1 T1

=G1(G′
1W2G1)−1G′

1.
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In the next suppose that (ii) holds for r − 1. The following relation will be used
in the subsequent:

P′
rS

−1
r−1Pr

=P′
r−1{S−1

r−1 − S−1
r−1Pr−1Ar−1(A′

r−1P
′
r−1S

−1
r−1Pr−1Ar−1)−A′

r−1P
′
r−1S

−1
r−1}Pr−1

=Gr−1(G′
r−1WrGr−1)−1G′

r−1,

which can be verified via Proposition 1.3.6. Thus,

P′
rS

−1
r Pr

=P′
r{S−1

r−1 − S−1
r−1PrXFr(F′

rX
′P′

rS
−1
r PrXFr + I)−1F′

rX
′P′

rS
−1
r }Pr

=Gr−1{(G′
r−1Wr−1Gr−1)−1

− (G′
r−1Wr−1Gr−1)−1G′

r−1XFrF′
rX

′Gr−1(G′
r−1Wr−1Gr−1)−1}G′

r−1

=Gr−1(G′
r−1Wr−1Gr−1)−1G′

r−1

and (ii) is established.
Besides the algebraic identities, the lemma tells us that according to (i), Pr is
idempotent. Hence, Pr is a projector and thus gives us a possibility to interpret
the results geometrically. Furthermore, note that in (ii)

C (Gr) = C (A1 : A2 : . . . : Ar)⊥

and that the distribution of P′
rS

−1
r Pr follows an Inverted Wishart distribution.

Moreover, Gr consists of p rows and mr columns, where

mr =p − r(G′
r−1Ar)

=p − r(A1 : A2 : . . . : Ar) + r(A1 : A2 : . . . : Ar−1), r > 1, (4.1.63)
m1 =p − r(A1), m0 = p. (4.1.64)

Now a lemma is presented which is very important since it gives the basis for
rewriting the general MLNM(

∑m
i=1 AiBiCi) in a canonical form. In the next

section this lemma will be utilized when deriving the dispersion matrices of the
maximum likelihood estimators. The existence of the matrices in the lemma follows
from Proposition 1.1.6.

Lemma 4.1.4. Let the non-singular matrix Hr : mr × mr, where mr is given in
(4.1.63) and (4.1.64), and the orthogonal matrix

Γr = ((Γr
1)

′ : (Γr
2)

′)′, Γr : mr−1 × mr−1, Γr
1 : mr × mr−1,

be defined by

G1 = Ao′
1 = H1(Ip−r(A1) : 0)Γ1Σ−1/2 = H1Γ1

1Σ
−1/2,

(G′
r−1Ar)o′

Hr−1 = Hr(Imr : 0)Γr = HrΓr
1, Γ0 = I, H0 = I,



382 Chapter IV

where Gs is defined in Lemma 4.1.3. Furthermore, let

Vr =ΓrΓr−1
1 × · · · × Γ1

1Σ
−1/2WrΣ−1/2(Γ1

1)
′

× · · · × (Γr−1
1 )′(Γr)′ ∼ Wmr−1(I, n − r(Cr)),

Vr =Γr−1Γr−2
1 × · · · × Γ1

1Σ
−1/2WrΣ−1/2(Γ1

1)
′ × · · · × (Γr−2

1 )′(Γr−1
1 )′, r > 1,

V1 =Σ−1/2W1Σ−1/2,

Mr =WrGr(G′
rWrGr)−1G′

r

Fr =C′
r−1(Cr−1C′

r−1)
−Cr−1(I − C′

r(CrC′
r)

−Cr),

Zr,s =Γr−1
1 Γr−2

1 × · · · × Γ1
1Σ

−1/2MrMr+1 × · · · × Ms, s ≥ r ≥ 2,

Z1,s =M1M2 × · · · × Ms,

N′
r =(I : (Vr

11)
−1Vr

12),

where Vr
11 and Vr

12 refer to a standard partition of Vr. Then

G′
r = HrΓr

1Γ
r−1
1 × · · · × Γ1

1Σ
−1/2;(i)

Pr = Z1,r−1, Z1,0 = I; (Pr is as in Theorem 4.1.7)(ii)
Γr−1

1 Γr−2
1 × · · · × Γ1

1Σ
−1/2Mr = (Γr)′NrΓr

1Γ
r−1
1 × · · · × Γ1

1Σ
−1/2;(iii)

Vr
11 = Vr−1

11 + Γr−1
1 Γr−2

1 × · · · × Γ1
1Σ

−1/2XFr(iv)
× F′

rX
′Σ−1/2(Γ1

1)
′ × · · · × (Γr−2

1 )′(Γr−1
1 )′;

Σ1/2(Γ1
1)

′ × · · · × (Γr−1
1 )′(Γr

1)
′Γr

1Γ
r−1
1 × · · · × Γ1

1Σ
1/2(v)

= ΣGr(G′
rΣGr)−1G′

rΣ;
Σ1/2(Γ1

1)
′ × · · · × (Γr−1

1 )′(Γr
2)

′Γr
2Γ

r−1
1 × · · · × Γ1

1Σ
1/2(vi)

= ΣGr−1(G′
r−1ΣGr−1)−1G′

r−1Σ − ΣGr(G′
rΣGr)−1G′

rΣ.

Proof: By definition of Gr, given in Lemma 4.1.3, and the assumptions we obtain

G′
r =(G′

r−1Ar)o′
G′

r−1 = HrΓr
1H

−1
r−1G

′
r−1 = HrΓr

1Γ
r−1
1 H−1

r−2G
′
r−2

= . . . = HrΓr
1Γ

r−1
1 × · · · × Γ1

1Σ
−1/2

and thus (i) has been established.
Concerning (ii), first observe that by Corollary 1.2.25.1

P2 = I − A1(A′
1S

−1
1 A1)−A′

1S
−1
1 = W1G1(G′

1W1G1)−1G′
1,

which by definition is identical to M1. Then we assume that the statement is true
for 2, . . . , r− 1, i.e. Pr−1 = Z1,r−2. Hence, the definition of Pr, given in Theorem
4.1.7 and Lemma 4.1.3 (ii), yields

Pr =Tr−1Pr−1 = Pr−2Wr−2Gr−2(G′
r−2Wr−2Gr−2)−1

×
{
I − G′

r−2Ar−1{A′
r−1Gr−2(G′

r−2Wr−1Gr−2)−1G′
r−2Ar−1}−

× A′
r−1Gr−2(G′

r−2Wr−1Gr−2)−1
}
G′

r−2

=Pr−2Qr−2Wr−1Gr−2{(G′
r−2Ar−1)o′

G′
r−2Wr−1Gr−2(G′

r−2Ar−1)o}−1

× (G′
r−2Ar−1)o′

G′
r−2

=Pr−2Qr−2Qr−1 = Z1,r−1.



Multivariate Linear Models 383

The statement in (iii) follows immediately from (i) and the definition of Vr. Fur-
thermore, (iv) is true since

Wr = Wr−1 + XFrF′
rX

′,

and (v) and (vi) are direct consequences of (i).

The estimators B̂i in Theorem 4.1.7 are given by a recursive formula. In order
to present the expressions in a non-recursive way one has to impose some kind
of uniqueness conditions to the model, such as

∑m
i=r+1 AiB̂iCi to be unique.

Otherwise expressions given in a non-recursive way are rather hard to interpret.
However, without any further assumptions, Pr

∑m
i=r AiB̂iCi is always unique.

The next theorem gives its expression in a non-recursive form.

Theorem 4.1.8. For the estimators B̂i, given in Theorem 4.1.7,

Pr

m∑
i=r

AiB̂iCi =
m∑

i=r

(I − Ti)XC′
i(CiC′

i)
−Ci.

Proof: In Lemma 4.1.3 the relation P′
rS

−1
r Pr = P′

rS
−1
r was verified. Thus, it

follows that (I − Tr) = (I − Tr)Pr. Then

Pr

m∑
i=r

AiB̂iCi

= (I − Tr)XC′
r(CrC′

r)
−Cr − (I − Tr)

m∑
i=r+1

AiB̂iCi + Pr

m∑
i=r+1

AiB̂iCi

= (I − Tr)XC′
r(CrC′

r)
−Cr + TrPr

m∑
i=r+1

AiB̂iCi

= (I − Tr)XC′
r(CrC′

r)
−Cr + Pr+1

m∑
i=r+1

AiB̂iCi,

which establishes the theorem.
A useful application of the theorem lies in the estimation of the mean structure in
the MLNM(

∑m
i=1 AiBiCi).

Corollary 4.1.8.1. Ê[X] =
∑m

i=1 AiB̂iCi =
∑m

i=1(I − Ti)XC′
i(CiC′

i)
−Ci.

Furthermore, Theorem 4.1.8 also shows that we do not have to worry about unique-
ness properties of the maximum likelihood estimator of Σ.

Corollary 4.1.8.2. In the MLNM(
∑m

i=1 AiBiCi), the maximum likelihood esti-
mator of Σ is always unique.

In the Growth Curve model a canonical version of the model was used in the
fourth approach of estimating the parameters. Correspondingly, there exists a
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canonical version of the MLNM(
∑m

i=1 AiBiCi). The canonical version of the
MLNM(

∑m
i=1 AiBiCi) can be written as

X = Θ + Σ1/2E

where E ∼ Np,n(0, Ip, In) and

Θ =

⎛⎜⎜⎜⎜⎜⎜⎝

θ11 θ12 θ13 . . . θ1k−1 θ1k

θ21 θ22 θ23 . . . θ2k−1 0
...

...
...

. . .
...

...
θq−21 θq−22 θq−23 . . . 0 0
θq−11 θq−12 0 . . . 0 0
θq1 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.1.65)

The Growth Curve model can be identified with

Θ =
(

Θ11 Θ12

Θ21 0

)
.

Note that the zeros in (4.1.65) form a stairs structure. In order to find explicit
estimators, this type of structure is really needed. For example, in the ordi-
nary MLNM(

∑m
i=1 AiBiCi) the structure corresponds to the condition C (C′

m) ⊆
C (C′

m−1) ⊆ . . . ⊆ C (C′
1). If the stairs structure does not exist, we have to sup-

pose a suitable structure for Σ, or, more precisely, there should be zeros on proper
places in Σ−1 so that in the trace function of the likelihood function we get some-
thing similar to the stairs structure. Note that an off-diagonal element of Σ−1,
which equals 0 corresponds to a conditional independence assumption. An in-
teresting mathematical treatment of conditional independence, missing values and
extended growth curve models has been presented by Andersson & Perlman (1993,
1998).
The canonical version could have been used in order to obtain the estimators in
Theorem 4.1.8, although it is more straightforward to use the original matrices.
Now we switch over to another extension of the Growth Curve model. The exten-
sion is designed for handling covariates. Let us introduce the model via continuing
with Example 4.1.1. A formal definition is given after the example .
Example 4.1.3 (Example 4.1.1 continued). Assume that there exist some back-
ground variables which influence growth and are regarded as non-random vari-
ables similarly to univariate or multivariate covariance analysis (e.g. see Srivastava,
2002). It is assumed, analogously to covariance analysis, that the expectation of
X is of the form

E[X] = ABC + B2C2,

where A, B and C are as in the Growth Curve model (4.1.1), C2 is a known matrix
taking the values of the concomitant variables (covariables), and B2 is a matrix of
parameters. The model will be referred to as the MLNM(ABC+B2C2). Note that
the MLNM(ABC + B2C2) is a special case of the MLNM(

∑2
i=1 AiBiCi), since

if A1 = A, A2 = Ao, C1 = (C′ : C′
2)

′ are chosen and C2 is unrestricted, where
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obviously C (C′
2) ⊆ C (C′

1) holds. On the other hand, any MLNM(
∑2

i=1 AiBiCi)
can be presented as a MLNM(ABC+B2C2) after some manipulations. Moreover,
if we choose in the MLNM(

∑3
i=1 AiBiCi)

C1 = (C′
1 : C′

3)
′, C2 = (C′

2 : C′
3)

′, A3 = (A1 : A2)o,

where A1, A2 and C3 are arbitrary, we see that the MLNM(A1B1C1+A2B2C2+
B3C3) is a special case of a MLNM(

∑3
i=1 AiBiCi), if C (C′

2) ⊆ C (C′
1) holds.

The reason for presenting a separate treatment of the covariance model is that in
this case it is easy to obtain expressions through the original matrices.
Let the birth weight be measured in Example 4.1.1 , and suppose that birth weight
influences growth. Additionally, suppose that the influence from birth weight on
growth differs between the three treatment groups. Then C2 is defined as

C2 =

⎛⎝w11 w12 . . . w1n1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 w21 w22 . . . w2n2 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 w31 w32 . . . w3n3

⎞⎠ ,

(4.1.66)
where wij is the birth weight of the j−th animal in the i− th group. On the other
hand, if the influence of birth weight on growth is the same in each group, then

C2 = ( w11 w12 . . . w1n1 w21 w22 . . . w2n2 w31 w32 . . . w3n3 ) .
(4.1.67)

Finally, note that in the model building a new set of parameters has been used for
each time point. Thus, when (4.1.66) holds, 3p parameters are needed to describe
the covariates, and in (4.1.67) only p parameters are needed.
The model presented in Example 4.1.3 will now be explicitly defined.

Definition 4.1.4. Let X : p×n, A : p×q, q ≤ p, B : q×k, C : k×n, r(C)+p ≤ n,
B2 : p × k2, C2 : k2 × n and Σ : p × p be p.d. Then

X = ABC + B2C2 + Σ1/2E

is called MLNM(ABC + B2C2), where E ∼ Np,n(0, Ip, In), A and C are known
matrices, and B, B2 and Σ are unknown parameter matrices.

Maximum likelihood estimators of the parameters in the MLNM(ABC + B2C2)
are going to be obtained. This time the maximum likelihood estimators are de-
rived by solving the likelihood equations. From the likelihood equations for the
more general MLNM(

∑3
i=1 AiBiCi) it follows that the likelihood equations for

the MLNM(ABC + B2C2) equal

A′Σ−1(X − ABC − B2C2)C′ = 0, (4.1.68)
Σ−1(X − ABC − B2C2)C′

2 = 0, (4.1.69)
nΣ =(X − ABC − B2C2)(X − ABC − B2C2)′. (4.1.70)

In order to solve these equations we start with the simplest one, i.e. (4.1.69), and
note that since Σ is p.d., (4.1.69) is equivalent to the linear equation in B2:

(X − ABC − B2C2)C′
2 = 0.
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By applying Theorem 1.3.4, a solution for B2 is obtained as a function of B, i.e.

B2 = (X − ABC)C′
2(C2C′

2)
− + ZCo′

2 , (4.1.71)

where Z is an arbitrary matrix of proper size. Thus, it remains to find B and Σ.
From (4.1.71) it follows that B2C2 is always unique and equals

B2C2 = (X − ABC)C′
2(C2C′

2)
−C2. (4.1.72)

Inserting (4.1.72) into (4.1.68) and (4.1.70) leads to a new system of equations

A′Σ−1(X − ABC)(I − C′
2(C2C′

2)
−C2)C′ = 0, (4.1.73)

nΣ = {(X − ABC)(I − C′
2(C2C′

2)
−C2)}{}′. (4.1.74)

Put

Y =X(I − C′
2(C2C′

2)
−C2), (4.1.75)

H =C(I − C′
2(C2C′

2)
−C2). (4.1.76)

Note that I − C′
2(C2C′

2)
−C2 is idempotent, and thus (4.1.73) and (4.1.74) are

equivalent to

A′Σ−1(Y − ABH)H′ = 0,

nΣ = (Y − ABH)(Y − ABH)′.

These equations are identical to the equations for the ordinary Growth Curve
model, i.e. (4.1.11) and (4.1.15). Thus, via Theorem 4.1.1, the next theorem is
established.

Theorem 4.1.9. Let Y and H be defined by (4.1.75) and (4.1.76), respectively.
For the model given in Definition 4.1.4, representations of the maximum likelihood
estimators are given by

B̂ = (A′S−1
1 A)−A′S−1

1 YH′(HH′)− + (A′)oZ1 + A′Z2Ho′
,

B̂2 = (X − AB̂C)C′
2(C2C′

2)
− + Z3Co′

2 ,

nΣ̂ = (Y − AB̂H)(Y − AB̂H)′,

where Zi, i = 1, 2, 3, are arbitrary matrices and

S1 = Y(I − H′(HH′)−H)Y′.

By using Proposition 1.3.3 and the fact that (I − C′
2(C2C′

2)
−C2) is idempotent,

it can be shown that S1 in Theorem 4.1.9 can be presented in a different form.
Let as before, PC′ = C′(CC′)−C. Then

S1 =Y(I − H′(HH′)−H)Y′

=X(I − PC′
2
){I − (I − PC′

2
)C′

1(C1(I − PC′
2
)C′

1)
−C1(I − PC′

2
)}(I − PC′

2
)X′

=X{I − PC′
2
− (I − PC′

2
)C′

1(C1(I − PC′
2
)C′

1)
−C1(I − PC′

2
)}X′

=X(I − PC′
2:C

′
1
)X′.
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It is noted without a proof that the MLNM(ABC + B2C2) can be extended to a
sum of profiles model with covariates, i.e. a MLNM (

∑m
i=1 AiBiCi +Bm+1Cm+1).

To present a formal proof one can copy the ideas from the proof of Theorem 4.1.9,
where first the parameters for the covariates are expressed and thereafter one relies
on expressions for the MLNM (

∑m
i=1 AiBiCi). The result is presented in the next

theorem.

Theorem 4.1.10. Let

Hi =Ci(I − C′
m+1(Cm+1C′

m+1)
−Cm+1), r = 1, 2, . . . , m;

Pr =Tr−1Tr−2 × · · · × T0, T0 = I, r = 1, 2, . . . , m + 1;
Ti =I − PiAi(A′

iP
′
iS

−1
i PiAi)−A′

iP
′
iS

−1
i , i = 1, 2, . . . , m;

Si =
i∑

j=1

Kj , i = 1, 2, . . . , m;

Kj =PjXPH′
j−1

(I − PH′
j
)PH′

j−1
X′P′

j , j = 2, 3, . . . , m;

K1 =X(I − PC′
m+1

)X′;

PH′
j

=H′
j(HjH′

j)
−Hj .

Assume that S1 is p.d. and C (H′
m) ⊆ C (H′

m−1) ⊆ . . . ⊆ C (H′
1), then repre-

sentations of the maximum likelihood estimators for the MLNM(
∑m

i=1 AiBiCi +
Bm+1Cm+1) are given by

B̂r =(A′
rP

′
rS

−1
r PrAr)−A′

rP
′
rS

−1
r (X −

m∑
i=r+1

AiB̂iHi)H′
r(HrH′

r)
−

+ (A′
rP

′
r)

oZr1 + A′
rP

′
rZr2Ho′

r , r = 1, 2, . . . , m;

B̂m+1 =(X −
m∑

i=1

AiB̂iCi)C′
m+1(Cm+1C′

m+1)
− + Zm+1Co′

m+1;

nΣ̂ =(X −
m∑

i=1

AiB̂iCi − B̂m+1)(X −
m∑

i=1

AiB̂iCi − B̂m+1)′

=Sm + Pm+1XH′
m(HmH′

m)−HmX′P′
m+1,

where the Z−matrices are arbitrary.

We remark that the condition C (C′
m) ⊆ C (C′

m−1) ⊆ . . . ⊆ C (C′
1) used in the

MLNM(
∑m

i=1 AiBiCi) implies C (H′
m) ⊆ C (H′

m−1) ⊆ . . . ⊆ C (H′
1).

It is interesting to note that when studying multivariate linear models, i.e. the
MLNM(

∑m
i=1 AiBiCi) or the MLNM(

∑m
i=1 AiBiCi+Bm+1Cm+1), we rely heav-

ily on g-inverses. If g-inverses are not used, we have problems when estimating
the parameters. The problem does not rise in univariate linear models, since
reparametrizations can be performed straightforwardly. This remark also applies
to the MANOVA model, i.e. the MLNM(BC). For the MLNM(

∑m
i=1 AiBiCi) the

reparametrizations can be worked out, although it will be difficult to interpret the
parameters.
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4.1.5 When are the maximum likelihood estimators unique?
In Theorem 4.1.6, Theorem 4.1.7, Theorem 4.1.9 and Theorem 4.1.10 the param-
eters describing the mean are not uniquely estimated. Now, conditions will be
given on the design matrices so that unique maximum likelihood estimators are
obtained. This is important because in practice the parameters represent certain
effects and to have the estimators of the effects interpretable they must be unique.
This paragraph involves technical calculations which are often based on theorems
and propositions of Chapter 1. However, apparently there is a need to explain
results from a geometrical point of view. Projection operators are used in several
places. For the reader who is not interested in details, we refer to the results of
Theorem 4.1.11, Theorem 4.1.12 and Theorem 4.1.13.
Let us start with the Growth Curve model. In Theorem 4.1.1 the maximum
likelihood estimators for the Growth Curve model were given. It has already been
shown in Theorem 4.1.1 that Σ̂ is always unique. According to Theorem 4.1.1 the
estimator of B equals

B̂ = (A′S−1A)−A′S−1XC′(CC′)− + (A′)oZ1 + A′Z2Co′
.

Since Zi, i = 1, 2, are arbitrary matrices, it turns out that B̂ is uniquely estimated
if and only if (A′)o = 0 and Co′

= 0. Thus, A′ and C span the whole spaces
which is equivalent to the requirements r(A) = q and r(C) = k. In this case the
g-inverses (A′S−1A)− and (CC′)− become inverse matrices. Moreover, let K and
L be non-random known matrices of proper sizes. Then KB̂L is unique if and only
if K(A′)o = 0 and Co′

L = 0. These conditions are equivalent to the inclusions
C (K′) ⊆ C (A′) and C (L) ⊆ C (C).

Theorem 4.1.11. The maximum likelihood estimator B̂, given by (4.1.7), is
unique if and only if

r(A) = q, r(C) = k.

If B̂ is unique, then

B̂ = (A′S−1A)−1A′S−1XC′(CC′)−1.

The linear combination KB̂L is unique if and only if C (K′) ⊆ C (A′) and C (L) ⊆
C (C) hold.

Now we turn to the MLNM(
∑3

i=1 AiBiCi). In Theorem 4.1.6 it was stated that
the maximum likelihood estimators of the mean parameters B̂i equal

B̂3 =(A′
3P

′
3S

−1
3 P3A3)−A′

3P
′
3S

−1
3 XC′

3(C3C′
3)

−

+ (A′
3P

′
3)

oZ31 + A′
3P

′
3Z32Co′

3 , (4.1.77)

B̂2 =(A′
2T

′
1S

−1
2 T1A2)−A′

2T
′
1S

−1
2 (X − A3B̂3C3)C′

2(C2C′
2)

−

+ (A′
2T

′
1)

oZ21 + A′
2T

′
1Z22Co′

2 , (4.1.78)

B̂1 =(A′
1S

−1
1 A1)−A′

1S
−1
1 (X − A2B̂2C2 − A3B̂3C3)C′

1(C1C′
1)

−

+ (A′
1)

oZ11 + A′
1Z12Co′

1 . (4.1.79)
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These estimators are now studied in more detail. Since B̂2 and B̂1 are functions
of B̂3, we start with B̂3. It follows immediately that B̂3 is unique if and only if

r(C3) =k3,

r(A′
3P

′
3) =r(A′

3) = q3. (4.1.80)

The matrix P3 = T2T1 given by (4.1.56) is a function of the observations through
S2. However, in Lemma 4.1.3, it was shown that P3 is idempotent. Thus it is a
projector on a certain space which is independent of the observations, since S2 acts
as an estimator of the inner product matrix and has nothing to do with the space
where A3 is projected on. Thus the condition (4.1.80) should be independent of
the observations. Next we prove this in detail and present (4.1.80) in an alternative
way.
Since C (A′

3P
′
3) = C (A′

3) is equivalent to r(A′
3P

′
3) = r(A′

3), it follows from
Theorem 1.2.12 that the equality r(A′

3P
′
3) = r(A′

3) in (4.1.80) is equivalent to

C (A3) ∩C (P3)⊥ = {0}. (4.1.81)

Hence, we have to determine C (P3). From Proposition 1.2.2 (ix), (4.1.57) and
(4.1.52) it follows that (A1 : A2)′T′

1T
′
2 = 0, P3 as well as T1 and T2 are idempo-

tent, and T′
1 spans the orthogonal complement to C (A1). Then, it follows from

Proposition 1.1.4 (v) and Theorem 1.2.17 that

r(P3) =tr(P3) = tr(T1) − tr(T1A2(A′
2T

′
1S

−1
2 T1A2)−A′

2T
′
1S

−1
2 T1)

=p − r(A1) − r(T1A2) = p − r(A1 : A2) = r((A1 : A2)o).

Thus, (4.1.81) is equivalent to

C (A3) ∩C (A1 : A2) = {0},

which is independent of the observations. Moreover, KB̂3L is unique if and only
if

C (K′) ⊆C (A′
3P

′
3) = C (A′

3(A1 : A2)o), (4.1.82)

C (L) ⊆C (C3). (4.1.83)

Now we continue with discussing uniqueness properties of the maximum likelihood
estimator of B2 given by (4.1.78). By applying considerations similar to those used
when deriving uniqueness properties of B̂3 as well as by an application of (4.1.82)
and (4.1.83), we have that B̂2 is unique if and only if

r(A′
2T

′
1) = r(A′

2), (4.1.84)
r(C2) = k2, r(A2) = q2,

C (C3C′
2(C2C′

2)
−1) ⊆ C (C3), (4.1.85)

C (A′
3T

′
1S

−1
2 T1A2) ⊆ C (A′

3T
′
1T

′
2). (4.1.86)
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Note that (4.1.85) and (4.1.86) refer to the uniqueness of linear functions of B̂3.
Inclusion (4.1.85) is obviously true. Since C (T′

1) = C (A1)⊥, by Theorem 1.2.12,
(4.1.84) is equivalent to

C (A1) ∩C (A2) = {0}. (4.1.87)

Thus, it remains to interpret (4.1.86). Proposition 1.2.2 (ix) states that (4.1.86)
is equivalent to

C (A′
3T

′
1T

′
2) ⊇ C (A′

3T
′
1S

−1
2 T1A2)

= C (A′
3T

′
1S

−1
2 T1A2(A′

2T
′
1S

−1
2 T1A2)−A′

2T
′
1) = C (A′

3T
′
1(I − T′

2)). (4.1.88)

By using Proposition 1.2.2 (ii) it follows that (4.1.88) is equivalent to

C (A′
3T

′
1) ⊆ C (A′

3T
′
1T

′
2). (4.1.89)

Let

PAo
1

=I − A1(A′
1A1)−A′

1, (4.1.90)

P(A1:A2)o
1

=PAo
1
− PAo

1
A2(A′

2PAo
1
A2)−A′

2PAo
1

(4.1.91)

determine Ao
1 and (A1 : A2)o, respectively. Observe that these matrices are pro-

jectors. Since C (T′
1) = C (PAo

1
) and C (T′

1T
′
2) = C (P(A1:A2)o

1
), by Proposition

1.2.2 (iii), the inclusion (4.1.89) is equivalent to

C (A′
3PAo

1
) ⊆ C (A′

3P(A1:A2)o
1
). (4.1.92)

Moreover, (4.1.87) and Theorem 1.2.12 yield C (A′
2) = C (A′

2PAo
1
). Thus, from

Proposition 1.2.2 (ix) it follows that the matrices A2(A′
2PAo

1
A2)−A′

2PAo
1

and
I − A2(A′

2PAo
1
A2)−A′

2PAo
1

are idempotent matrices which implies the identity
C (I − A2(A′

2PAo
1
A2)−A′

2PAo
1
) = C (PAo

1
A2)⊥. Hence, by applying Theorem

1.2.12 and (4.1.91), the inclusion (4.1.92) can be written as

C (PAo
1
A3) ∩C (PAo

1
A2) = {0}.

Thus, since PAo
1

is a projector, it follows from Theorem 1.2.16 that instead of
(4.1.86), the equality

C (A1)⊥ ∩C (A1 : A2) ∩C (A1 : A3) = {0}

can be used.
Now we consider linear combinations of elements in B̂2. Necessary and sufficient
conditions for uniqueness of KB̂2L are given by

C (L) ⊆ C (C2),

C (K′) ⊆ C (A′
2T

′
1), (4.1.93)

C (A′
3T

′
1S

−1
2 T1A2(A′

2T
′
1S

−1
2 T1A2)−K′) ⊆ C (A′

3T
′
1T

′
2). (4.1.94)
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With the help of Proposition 1.2.2 (iii) we get that (4.1.93) is equivalent to

C (K′) ⊆ C (A′
2A

o
1), (4.1.95)

since C (T′
1) = C (Ao

1). Moreover, by utilizing Proposition 1.2.2 (i), (4.1.95)
implies that

K′ = A′
2A

o
1Q1 = A′

2T
′
1Q2Q1, (4.1.96)

for some matrices Q1 and Q2, where Ao
1 = T′

1Q2. Thus, the left hand side of
(4.1.94) is equivalent to

C (A′
3T

′
1S

−1
2 T1A2(A′

2T
′
1S

−1
2 T1A2)−A′

2T
′
1Q2Q1)

= C (A′
3T

′
1(I − T′

2)Q2Q1),

where T2 is defined by (4.1.57). Therefore, Proposition 1.2.2 (ii) implies that
(4.1.94) is equivalent to

C (A′
3T

′
1Q2Q1) ⊆ C (A′

3T
′
1T

′
2),

which is identical to

C (A′
3A

o
1Q1) ⊆ C (A′

3(A1 : A2)o), (4.1.97)

since T′
1Q2 = Ao

1 and C (T′
1T

′
2) = C (A1 : A1)⊥. It is noted that by (4.1.97) we

get a linear equation in Q1:

(A′
3(A1 : A2)o)o′

A′
3A

o
1Q1 = 0. (4.1.98)

In Theorem 1.3.4 a general representation of all solutions is given, and using
(4.1.96) the set of all possible matrices K is obtained, i.e.

K′ = A′
2A

o
1(A

o′
1 A3{A′

3(A1 : A2)o}o)oZ,

where Z is an arbitrary matrix. Thus, the set of all possible matrices K is identified
by the subspace

C (A′
2A

o
1(A

o′
1 A3{A′

3(A1 : A2)o}o)o). (4.1.99)

Since

C (Ao
1(A

o′
1 A3{A′

3(A1 : A2)o}o)o)
= C (A1)⊥ ∩ {C (A3) ∩C (A1 : A2)}⊥ = C (A1 : A3)⊥ + C (A1 : A2)⊥,

the subspace (4.1.99) has a simpler representation:

C (A′
2(A1 : A3)o).

Moreover, note that if (A′
3(A1 : A2)o)o′

A′
3A

o
1 = 0, relation (4.1.98), as well

as (4.1.94), are insignificant and therefore K has to satisfy (4.1.95) in order to
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determine KB̂2L uniquely. However, if (A′
3(A1 : A2)o)o′

A′
3A

o
1 = 0 holds, (4.1.99)

equals the right hand side of (4.1.95). Thus (4.1.99) always applies.
In the next, B̂1 given by (4.1.79) will be examined. First, necessary conditions for
uniqueness of B̂1 are obtained. Afterwards it is shown that these conditions are
also sufficient.
From (4.1.79) it follows that

r(A1) = q1, r(C1) = k1 (4.1.100)

must hold. However, if B̂1 is unique, it is necessary that

(A′
1S

−1
1 A1)−1(A′

1S
−1
1 (A2B̂2C2 + A3B̂3C3)C′

1(C1C′
1)

−1 (4.1.101)

is unique. The expression (4.1.101) consists of linear functions of B̂2 and B̂3. In
order to guarantee that the linear functions of B̂2, given by (4.1.78), are unique,
it is necessary to cancel the matrix expressions which involve the Z matrices. A
necessary condition for this is

C (A′
2S

−1
1 A1(A′

1S
−1
1 A1)−1) ⊆ C (A′

2T
′
1). (4.1.102)

However, (4.1.78) also includes matrix expressions which are linear functions of
B̂3, and therefore it follows from (4.1.78) and (4.1.101) that

−(A′
1S

−1
1 A1)−1A′

1S
−1
1 A2(A′

2T
′
1S

−1
2 T1A2)−A′

2T
′
1S

−1
2 T1A3B̂3C3

× C′
2(C2C′

2)
−C2C′

1(C1C′
1)

−1 + (A′
1S

−1
1 A1)−1A′

1S
−1
1 A3B̂3C3C′

1(C1C′
1)

−1

has to be considered. This expression equals

(A′
1S

−1
1 A1)−1A′

1S
−1
1

× (I − A2(A′
2T

′
1S

−1
2 T1A2)−A′

2T
′
1S

−1
2 T1)A3B̂3C3C′

1(C1C′
1)

−1, (4.1.103)

since by assumption, C (C′
3) ⊆ C (C′

2) ⊆ C (C′
1). Put

P = I − A2(A′
2T

′
1S

−1
2 T1A2)−A′

2T
′
1S

−1
2 T1. (4.1.104)

Thus, from (4.1.77) it follows that (4.1.103) is unique if and only if

C (A′
3P

′S−1
1 A1(A′

1S
−1
1 A1)−1) ⊆ C (A′

3T
′
1T

′
2). (4.1.105)

Hence, if B̂1 is unique, it is necessary that (4.1.100), (4.1.102) and (4.1.105) hold
and now we are going to see that (4.1.102) and (4.1.105) can be simplified by using
the ideas already applied above. By definition of T1, given by (4.1.52), inclusion
(4.1.102) is equivalent to

C (A′
2(I − T′

1)) ⊆ C (A′
2T

′
1),
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which by Proposition 1.2.2 (ii) is equivalent to

C (A′
2) ⊆ C (A′

2T
′
1), (4.1.106)

and by Theorem 1.2.12, inclusion (4.1.106) holds if and only if

C (A2) ∩C (A1) = {0}. (4.1.107)

Before starting to examine (4.1.105) note first that from (4.1.104) and definition
of T2, given by (4.1.57), it follows that

T′
1T

′
2 = P′T′

1.

Since

C (A′
3P

′S−1
1 A1(A′

1S
−1
1 A1)−1) = C (A′

3P
′S−1

1 A1(A′
1S

−1
1 A1)−1A′

1),

the inclusion (4.1.105) is identical to

C (A′
3P

′(I − T′
1)) ⊆ C (A′

3P
′T′

1).

By Proposition 1.2.2 (ii) we have

C (A′
3P

′) = C (A′
3P

′T′
1) = C (A′

3T
′
1T

′
2). (4.1.108)

However, from the definition of P, given by (4.1.104) and (4.1.106), it follows that
P is idempotent, r(P) = p−r(T1A2) = p−r(A2) and A′

2P
′ = 0. Hence, P′ spans

the orthogonal complement to C (A2). Analogously to (4.1.90) and (4.1.91), the
projectors

PAo
2

=I − A2(A′
2A2)−A′

2,

P(A1:A2)o
2

=PAo
2
− PAo

2
A1(A′

1PAo
2
A1)−A′

1PAo
2

(4.1.109)

define one choice of Ao
2 and (A1 : A2)o, respectively. Since C (P′) = C (PAo

2
)

and C (T′
1T

′
2) = C (P(A1:A2)o

2
), by Proposition 1.2.2 (iii), the equality (4.1.108)

is equivalent to
C (A′

3PAo
2
) = C (A′

3P(A1:A2)o
2
).

Thus, since C (I−A1(A′
1PAo

2
A1)−A′

1PAo
2
) = C (PAo

2
A1)⊥, Theorem 1.2.12 and

(4.1.109) imply that (4.1.108) is equivalent to

C (PAo
2
A3) ∩C (PAo

2
A1) = {0}. (4.1.110)

However, using properties of a projector it follows from Theorem 1.2.16 that
(4.1.110) is equivalent to

C (A2)⊥ ∩ {C (A2) + C (A3)} ∩ {C (A2) + C (A1)} = {0}. (4.1.111)
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Hence, if B̂1 given by (4.1.79) is unique, then (4.1.100), (4.1.107) and (4.1.111)
hold.
Now we show briefly that the conditions given by (4.1.100), (4.1.107) and (4.1.111)
are also sufficient. If (4.1.107) holds, it follows that P′ spans the orthogonal
complement to C (A2), and in this case it has already been shown that (4.1.111)
is equivalent to (4.1.105), which means that if (4.1.111) holds, (4.1.103) is unique.
Now, the uniqueness of (4.1.103) together with (4.1.107) imply that (4.1.101) is
unique and hence, if (4.1.100) is also satisfied, B̂1 is unique.
Finally, the uniqueness of KB̂1L will be considered and here the discussion for B̂1

will be utilized. Thus, when KB̂1L is unique, in correspondence with (4.1.100),
(4.1.102) and (4.1.105),

C (L) ⊆ C (C1),

C (K′) ⊆ C (A′
1), (4.1.112)

C (A′
2S

−1
1 A1(A′

1S
−1
1 A1)−K′) ⊆ C (A′

2T
′
1), (4.1.113)

C (A′
3P

′S−1
1 A1(A′

1S
−1
1 A1)−K′) ⊆ C (A′

3T
′
1T

′
2) (4.1.114)

hold. We are not going to summarize (4.1.112) – (4.1.114) into one relation as it
was done with (4.1.93) and (4.1.94), since such a relation would be rather compli-
cated. Instead it will be seen that there exist inclusions which are equivalent to
(4.1.113) and (4.1.114) and which do not depend on the observations in the same
way as (4.1.95) and (4.1.99) were equivalent to (4.1.93) and (4.1.94).
From (4.1.112) and Proposition 1.2.2 (i) it follows that K′ = A′

1Q1 for some
matrix Q1, and thus (4.1.113) is equivalent to

C (A′
2S

−1
1 A1(A′

1S
−1
1 A1)−A′

1Q1) ⊆ C (A′
2T

′
1),

which can be written as

C (A′
2(I − T′

1)Q1) ⊆ C (A′
2T

′
1). (4.1.115)

By Proposition 1.2.2 (ii) it follows that (4.1.115) holds if and only if

C (A′
2Q1) ⊆ C (A′

2T
′
1). (4.1.116)

The projectors PAo
1

and P(A1:A2)o
1

appearing in the following discussion are given
by (4.1.90) and (4.1.91), respectively. Since C (A′

2T
′
1) = C (A′

2PAo
1
) holds, using

Proposition 1.2.2 (ii) and inclusion (4.1.115), we get

A′
2Q1 = A′

2PAo
1
Q3 = A′

2T
′
1Q2Q3, PAo

1
= T′

1Q2, (4.1.117)

for some matrices Q2 and Q3.
We leave (4.1.116) and (4.1.113) for a while and proceed with (4.1.114). Inclusion
(4.1.114) is equivalent to

C (A′
3P

′(I − T′
1)Q1) ⊆ C (A′

3T
′
1T

′
2) = C (A′

3P
′T′

1),
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which by Proposition 1.2.2 (ii) holds if and only if

C (A′
3P

′Q1) ⊆ C (A′
3T

′
1T

′
2). (4.1.118)

When expanding the left-hand side of (4.1.118), by using (4.1.117) and the defini-
tion of P in (4.1.104), we obtain the equalities

C (A′
3(I − T′

1S
−1
2 T1A2(A′

2T
′
1S

−1
2 T1A2)−A′

2)Q1)
=C (A′

3Q1 − A′
3T

′
1S

−1
2 T1A2(A′

2T
′
1S

−1
2 T1A2)−A′

2T
′
1Q2Q3)

=C (A′
3Q1 − A′

3(T
′
1 − T′

1T
′
2)Q2Q3).

Hence, (4.1.118) can be written as

C (A′
3Q1 − A′

3(T
′
1 − T′

1T
′
2)Q2Q3) ⊆ C (A′

3T
′
1T

′
2),

which by Proposition 1.2.2 (ii) is identical to

C (A′
3Q1 − A′

3T
′
1Q2Q3) ⊆ C (A′

3T
′
1T

′
2).

By applying (4.1.117) and C (T′
1T

′
2) = C (A1 : A2) it follows that

C (A′
3Q1 − A′

3PAo
1
Q3) ⊆ C (A′

3T
′
1T

′
2) = C (A′

3(A1 : A2)o). (4.1.119)

Since C ((A1 : A2)o) = C (P(A1:A2)o
1
), the relation in (4.1.119) holds if and only

if
C (A′

3Q1 − A′
3(PAo

1
− P(A1:A2)o

1
)Q3) ⊆ C (A′

3(A1 : A2)o), (4.1.120)

and by utilizing (4.1.91), the inclusion (4.1.120) can be written

C (A′
3Q1 − A′

3PAo
1
A2(A′

2PAo
1
A2)−A′

2PAo
1
Q3) ⊆ C (A′

3(A1 : A2)o). (4.1.121)

However, applying (4.1.117) to (4.1.121) yields

C (A′
3(I − PAo

1
A2(A′

2PAo
1
A2)−A′

2)Q1) ⊆ C (A′
3(A1 : A′

2)
o),

and by definition of P(A1:A2)o
1

in (4.1.91) we get that (4.1.121) is equivalent to

C (A′
3(I−PAo

1
A2(A′

2PAo
1
A2)−A′

2)(I−PAo
1
)Q1) ⊆ C (A′

3(A1 : A′
2)

o), (4.1.122)

since C (A′
3(A1 : A2)o) = C (A′

3P(A1:A2)o
1
). Thus, by definition of PAo

1
, from

(4.1.122) and the equality K′ = A′
1Q

′
1, it follows that (4.1.114) is equivalent to

C (A′
3(I − PAo

1
A2(A′

2PAo
1
A2)−A′

2)A1(A′
1A1)−K′) ⊆ C (A′

3(A1 : A′
2)

o).
(4.1.123)

Returning to (4.1.116) we get by applying Proposition 1.2.2 (ii) that (4.1.116) is
equivalent to

C (A′
2(I − PAo

1
)Q1) ⊆ C (A′

2A
o
1),

since C (A′
2T

′
1) = C (A′

2A
o
1) = C (A′

2PAo
1
). By definition of PAo

1
and Q1, the

obtained inclusion is identical to

C (A′
2A1(A′

1A1)−K′) ⊆ C (A′
2A

o
1). (4.1.124)

Hence, (4.1.113) is equivalent to (4.1.124), and by (4.1.123) and (4.1.124) alter-
natives to (4.1.114) and (4.1.113) have been found which do not depend on the
observations.
The next theorem summarizes some of the results given above.
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Theorem 4.1.12. Let B̂i, i = 1, 2, 3, be given in Theorem 4.1.6 and let KB̂iL,
i = 1, 2, 3, be linear combinations of B̂i, where K and L are known non-random
matrices of proper sizes. Then the following statements hold:

(i) B̂3 is unique if and only if

r(A3) = q3, r(C3) = k3

and

C (A3) ∩C (A1 : A2) = {0};

(ii) KB̂3L is unique if and only if

C (L) ⊆ C (C3)

and

C (K′) ⊆ C (A′
3(A1 : A2)o);

(iii) B̂2 is unique if and only if

r(A2) = q2, r(C2) = k2,

C (A1) ∩C (A2) = {0}
and

C (A1)⊥ ∩C (A1 : A2) ∩C (A1 : A3) = {0};

(iv) KB̂2L is unique if and only if

C (L) ⊆ C (C2)

and

C (K′) ⊆ C (A′
2(A1 : A3)o);

(v) B̂1 is unique if and only if

r(A1) = q1, r(C1) = k1,

C (A1) ∩C (A2) = {0}
and

C (A2)⊥ ∩C (A1 : A2) ∩C (A2 : A3) = {0};

(vi) KB̂1L is unique if and only if

C (L) ⊆ C (C1),

C (K′) ⊆ C (A′
1),

C (A′
3(I − PAo

1
A2(A′

2PAo
1
A2)−A′

2)A1(A′
1A1)−K′) ⊆ C (A′

3(A1 : A′
2)

o),

where PAo
1

is defined in (4.1.90) and

C (A′
2A1(A′

1A1)−K′) ⊆ C (A′
2A

o
1).

Theorem 4.1.12 can be extended to cover the general MLNM(
∑m

i=1 AiBiCi). The
next theorem presents the results. A proof can be found in von Rosen (1993).
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Theorem 4.1.13. Let

As,r =(A1 : A2 : . . . : Ar−1 : Ar+1 : . . . : Ar+s+1), s = 2, 3, . . . , m − r, r > 1;
As,r =(A2 : A3 : . . . : As), s = 2, 3, . . . , m − r, r = 1;
As,r =(A1 : A2 : . . . : Ar−1), s = 1 ≤ m − r, r > 1;
As,r =0, s = 1, r = 1.

Then B̂r given in Theorem 4.1.7 is unique if and only if

r(Ar) = mr, r(Cr) = kr;

C (Ar) ∩C (A1 : A2 : . . . : Ar−1) = {0}, r > 1;

C (As,r)⊥ ∩ {C (As,r) + C (Ar+s)} ∩ {C (As,r) + C (Ar)} = {0},
s = 1, 2, . . . , m − r.

4.1.6 Restrictions on B in the Growth Curve model
When treating restrictions on the mean parameters in the Growth Curve model,
we mainly rely on previous results. Note that if it is possible to present a theory for
estimating parameters under restrictions, one can immediately find test statistics
for testing hypothesis. Of course, the problem of finding the distribution of the
test statistics still remains. For many statistics, which can be obtained from the
forthcoming results, the distributions are unknown and have to be approximated.
Let us proceed with Example 4.1.1 again.
Example 4.1.4 (Example 4.1.1 continued). In the case when the three different
treatment groups had different polynomial responses, the model had the mean

E[X] = A1B1C1 + A2B2C2 + A3B3C3. (4.1.125)

The different responses were explicitly given by

β11+β21t + · · · + β(q−2)1t
q−3,

β12+β22t + · · · + β(q−2)2t
q−3 + β(q−1)2t

q−2,

β13+β23t + · · · + β(q−2)3t
q−3 + β(q−1)3t

q−2 + βq3t
q−1.

Equivalently, this can be written in the form

β11+β21t + · · · + β(q−2)1t
q−3 + β(q−1)1t

q−2 + βq1t
q−1,

β12+β22t + · · · + β(q−2)2t
q−3 + β(q−1)2t

q−2 + βq2t
q−1,

β13+β23t + · · · + β(q−2)3t
q−3 + β(q−1)3t

q−2 + βq3t
q−1,

with
β(q−1)1 = 0, βq1 = 0, βq2 = 0. (4.1.126)
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In matrix notation the restrictions in (4.1.126) can be presented by

G1BH1 =0, (4.1.127)
G2BH2 =0, (4.1.128)

where B = (bij): q × 3,

G1 = ( 0 0 · · · 1 0 ) , H′
1 = ( 1 0 0 ) ,

G2 = ( 0 0 · · · 0 1 ) , H′
2 =

(
1 0 0
0 1 0

)
.

Hence, (4.1.125) is equivalent to E[X] = ABC if (4.1.127) and (4.1.128) hold. In
general, it follows that any model in the class of the MLNM(

∑m
i=1 AiBiCi) can

be written as a MLNM(ABC), with restrictions on B.
Consider the Growth Curve model given in Definition 4.1.1. Various types of
restrictions on the parameter B are going to be treated:

(i) B = F + GΘH, (4.1.129)
where F : q × k, G : q × s, H : t × k are known matrices and Θ : s × t is a
matrix of unknown parameters;

(ii) GB = 0, BH = 0, (4.1.130)
where G : s × q and H : k × t are known matrices;

(iii) GBH = 0, (4.1.131)
where G : s × q, H : k × t are known matrices;

(iv) G1BH1 = 0, G2BH2 = 0, (4.1.132)
where Gi : si × q, Hi : k × ti, i = 1, 2, are known matrices.

In (ii), (iii) and (iv) it is worth observing that the homogeneous restrictions can
be replaced by non-homogenous restrictions, i.e. in (ii) GB = F1, BH = F2, in
(iii) GBH = F and in (iv) G1BH1 = F1, G2BH2 = F2 where some additional
conditions on the F−matrices must be imposed. However, it is left to the reader
to carry out the treatments for the non-homogeneous restrictions. Furthermore,
in order to obtain explicit estimators under the restrictions given in (iv), some
conditions have to be put on the known matrices.
The restrictions in (ii) and (iii) are special cases of (iv), but since (ii) is very easy
to handle and (iii) is frequently used in multivariate analysis of variance, we are
going to treat them separately. When deriving the maximum likelihood estimators
B̂ and Σ̂ in (i), (ii), (iii) and (iv) it becomes clear how to obtain estimators when
more general constraints exist. Other restrictions than those given in (4.1.129) –
(4.1.132) will also be treated (see (4.1.166) and (4.1.169) given below).
The main idea of this paragraph is to identify each of the four types of dif-
ferent restrictions with either another unrestricted Growth Curve model or a
MLNM(

∑m
i=1 AiBiCi). It will be shown that (i) and (ii) can be formulated via

the ordinary Growth Curve model, whereas (iii) and (iv) utilize the more general
MLNM(

∑m
i=1 AiBiCi). These results are obtained by interpreting the restric-

tions given by (4.1.130), (4.1.131) or (4.1.132) as a system of linear equations in
the parameter matrix B. Thereafter the system is solved.
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Starting with (i) in (4.1.129), it is seen that we have an ordinary Growth Curve
model with a translated data matrix X with a mean structure which has been
changed.

Theorem 4.1.14. For the MLNM(ABC) with restriction (i) on B, given by
(4.1.129), the maximum likelihood estimators equal

B̂ =F + G(G′A′S−1AG)−G′A′S−1(X − AFC)C′H′(HCC′H′)−

+ (G′A′)oZ1 + G′A′Z2(HC)o′
,

where

S = (X − AFC)(I − C′H′(HCC′H′)−HC)(X − AFC)′

is assumed to be p.d., Zi, i = 1, 2, are arbitrary matrices and

nΣ̂ = (X − AB̂C)(X − AB̂C)′.

The estimator B̂ is unique if and only if

C (G) ∩C (A′)⊥ = {0}, (4.1.133)

C (H′) ∩C (C)⊥ = {0}. (4.1.134)

For known matrices K and L the linear combination KB̂L is unique if and only if

C (G′K′) ⊆ C (G′A′), (4.1.135)

C (HL) ⊆ C (HC). (4.1.136)

Note that the conditions (4.1.135) and (4.1.136) hold if C (K′) ⊆ C (A′) and
C (L) ⊆ C (C) which, however, are not necessary conditions.

Proof: Let

Y =X − AFC,

M =AG,

N =HC.

Hence, when inserting (4.1.129) into the mean of the MLNM(ABC), the following
Growth Curve model is obtained:

Y = MΘN + Σ1/2E,

where, as previously, Σ1/2 is a symmetric square root of Σ and E ∼ Np,n(0, Ip, In).
Thus, via Theorem 4.1.1, it follows from (4.1.7) and (4.1.8) that

Θ̂ = (M′S−1M)−M′S−1YN′(NN′)− + (M′)oZ1 + M′Z2No′
,
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where Z1 and Z2 are arbitrary matrices,

S = Y(I − N′(NN′)−N)Y′,

MΘ̂N = M(M′S−1M)−M′S−1YN′(NN′)−N (4.1.137)

and
nΣ̂ = (Y − MΘ̂N)(Y − MΘ̂N)′. (4.1.138)

According to Proposition 1.2.2 (x) the expression in (4.1.137) is invariant with
respect to any choice of g-inverse, because the expression does not depend on the
arbitrary matrices Zi, i = 1, 2. Thus, nΣ̂ given by (4.1.138) is invariant with
respect to g-inverses, and hence nΣ̂ is unique. By (4.1.129) it follows that

B̂ = F + GΘ̂H.

The maximum likelihood estimator B̂ is unique if and only if

C (G′) ⊆ C (G′A′),

C (H) ⊆ C (HC)

hold, which by Theorem 1.2.12 are equivalent to the conditions (4.1.133) and
(4.1.134). For KB̂L we also immediately obtain the conditions given by (4.1.135)
and (4.1.136).
By applying Corollary 1.3.6.2 we obtain for restrictions (ii), given by (4.1.130),
that all possible matrices B satisfying (4.1.130) are given by

B = (G′)oΘHo′
, (4.1.139)

where Θ is arbitrary, i.e. Θ is a matrix of new parameters. From (4.1.139) it
follows that the restrictions in (ii) can be formulated by restrictions (i), and the
next corollary is immediately established.

Corollary 4.1.14.1. For a MLNM(ABC) with restrictions (ii) on B, given by
(4.1.130), the maximum likelihood estimators equal

B̂ =(G′)o{(G′)o′
A′S−1A(G′)o}−(G′)o′

A′S−1XC′Ho(Ho′
CC′Ho)−

+ ((G′)o′
A′)oZ1 + G′A′Z2(Ho′

C)o′
,

where
S = X(I − C′Ho(Ho′

CC′Ho)−Ho′
C)X′

is assumed to be p.d., Zi, i = 1, 2, are arbitrary matrices and

nΣ̂ = (X − AB̂C)(X − AB̂C)′.

The estimator B̂ is unique if and only if

C (G′)⊥ ∩C (A′)⊥ = {0}, (4.1.140)

C (Ho) ∩C (C)⊥ = {0}. (4.1.141)
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For known matrices, K and L, the linear combination KB̂L is unique, if and only
if

C ((G′)o′
K′) ⊆ C ((G′)o′

A′), (4.1.142)

C (Ho′
L) ⊆ C (Ho′

C). (4.1.143)

If C ((G′)o) ⊆ C (A′) and C (Ho) ⊆ C (C), we obtain from (4.1.140) and (4.1.141)
that B̂ is always unique and these conditions are automatically satisfied if A and
C are of full rank. Furthermore, if C (K′) ⊆ C (A′) and C (L) ⊆ C (C), the
inclusions (4.1.142) and (4.1.143) are always satisfied.
Now let us consider the restrictions (iii) given by (4.1.131). Since (4.1.131) forms a
homogeneous equation system, it follows from Theorem 1.3.4 that B has to satisfy

B = (G′)oΘ1 + G′Θ2Ho′
, (4.1.144)

where Θ1 and Θ2 are new parameter matrices. Inserting (4.1.144) into E[X] =
ABC yields the mean

E[X] = A(G′)oΘ1C + AG′Θ2Ho′
C.

Since C (C′Ho) ⊆ C (C′) always holds we have a MLNM(
∑2

i=1 AiBiCi). Thus,
we have found that the MLNM(ABC) with restrictions (iii) can be reformulated
as a MLNM(

∑2
i=1 AiBiCi).

Theorem 4.1.15. For the MLNM(ABC) with restrictions (iii) on B, given by
(4.1.131), the maximum likelihood estimators equal

B̂ = (G′)oΘ̂1 + G′Θ̂2Ho′
,

where

Θ̂2 =(GA′T′
1S

−1
2 T1AG′)−GA′T′

1S
−1
2 T1XC′Ho(Ho′

CC′Ho)−

+ (GA′T′
1)

oZ11 + GA′T′
1Z12(Ho′

C)o′
,

with

T1 =I − A(G′)o{(G′)o′
A′S−1

1 A(G′)o}−(G′)o′
A′S−1

1 ,

S1 =X(I − C′(CC′)−C)X′,

S2 =S1 + T1XC′(CC′)−C{I − C′Ho(Ho′
CC′Ho)−Ho′

C}C′(CC′)−CX′T′
1,

Θ̂1 ={(G′)o′
A′S−1

1 A(G′)o}−(G′)o′
A′S−1

1 (X − AG′Θ̂2Ho′
C)C′(CC′)−

+ ((G′)o′
A′)oZ21 + (G′)o′

A′Z22Co′
,
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where S1 is assumed to be p.d., Zij are arbitrary matrices, and

nΣ̂ = (X − AB̂C)(X − AB̂C)′.

The estimator B̂ is unique if and only if

r(C) = k,

C (G′)⊥ ∩C (A′)⊥ = {0},
C (G′) ∩ {C (G′)⊥ + C (A′)⊥} = {0}.

For known matrices, K and L, the linear combinations KB̂L are unique, if and
only if

C (L) ⊆ C (C),

C ((G′)o′
K′) ⊆ C ((G′)o′

A′),

C (Ho′
L) ⊆ C (Ho′

C),

C (GK′) ⊆ C (GP′
1A

′),

where
P1 = I − (G′)o{(G′)o′

A′A(G′)o}−(G′)o′
A′A.

Proof: The estimators Θ̂1 and B̂ follow from Theorem 4.1.7, with

A1 = A(G′)o, C1 = C, A2 = AG′, C2 = Ho′
C, B1 = Θ1, B2 = Θ2.

To prove the uniqueness conditions for B̂ as well as KB̂L, one has to copy the
ideas and technique of §4.1.5 where uniqueness conditions for the estimators in the
MLNM(

∑3
i=1 AiBiCi) were discussed.

In the next restrictions (iv), given by (4.1.132), will be examined. The reader will
immediately recognize the ideas from previous discussions. From Theorem 1.3.6 it
follows that a common solution of the equations in B, given by (4.1.132), equals

B =(G′
1 : G′

2)
oΘ1 + (G′

2 : (G′
1 : G′

2)
o)oΘ2Ho′

1 + (G′
1 : (G′

1 : G′
2)

o)oΘ3Ho′
2

+ ((G′
1)

o : (G′
2)

o)oΘ4(H1 : H2)o′
, (4.1.145)

where Θ1, Θ2, Θ3 and Θ4 are arbitrary matrices interpreted as unknown param-
eters.
For the MLNM(ABC) with restrictions (iv) the mean equals E[X] = ABC, where
B is given by (4.1.145). However, when B is given by (4.1.145), the model does
not necessarily belong to the MLNM(

∑m
i=1 AiBiCi) without further assumptions,

since C (C′Ho
2) ⊆ C (C′Ho

1) or C (C′Ho
1) ⊆ C (C′Ho

2) may not hold. In a canon-
ical formulation this means that we do not have a stairs structure for the mean.
Instead, the mean structure can be identified with

Θ =
(

0 Θ12

Θ21 0

)
.
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Therefore, in order to get explicit estimators, some additional conditions have to
be imposed. In fact, there are several different alternatives which could be of
interest.
From (4.1.145) it follows that in order to utilize results for the general model
MLNM(

∑m
i=1 AiBiCi), it is natural to consider the conditions given below:

A(G′
2 : (G′

1 : G′
2)

o)o = 0, (4.1.146)
A(G′

1 : (G′
1 : G′

2)
o)o = 0,

C (C′Ho
2) ⊆ C (C′Ho

1), (4.1.147)

C (C′Ho
1) ⊆ C (C′Ho

2).

By symmetry it follows that only (4.1.146) and (4.1.147) have to be investigated,
and from a point of view of applications it is useful to make a finer division of
these conditions, namely

(G′
2 : (G′

1 : G′
2)

o)o = 0, (4.1.148)a)

A(G′
2 : (G′

1 : G′
2)

o)o = 0, (G′
2 : (G′

1 : G′
2)

o)o 	= 0, (4.1.149)b)

C (Ho
2) ⊆ C (Ho

1), (4.1.150)c)

C (C′Ho
1) ⊆ C (C′Ho

2), C (Ho
2) ⊆∣∣ C (Ho

1). (4.1.151)d)

In the subsequent, a brief discussion of the various alternatives, i.e. (4.1.148) –
(4.1.151), will be given. Unfortunately, several of the calculations are straightfor-
ward but quite tedious and therefore they will not be included. In particular, this
applies to case d), given by (4.1.151). Because there are so many uniqueness con-
ditions corresponding to the different alternatives given in (4.1.148) – (4.1.151),
we will not summarize them in any theorem. Instead some of them will appear in
the text presented below.
We start by investigating the consequences of (4.1.148). If (4.1.148) holds, then
G′

2 : (G′
1 : G′

2)
o spans the entire space, which in turn implies that

C (G′
2)

⊥ = C (G′
1 : G2)⊥, (4.1.152)

since G2(G′
1 : G′

2)
o = 0. Moreover, (4.1.152) is equivalent to

C (G′
1) ⊆ C (G′

2),

implying
C (((G′

1)
o : (G′

2)
o)o) = C (G′

1).

Hence, in the case a), instead of (4.1.145), consider

B =(G′
2)

oΘ1 + (G′
1 : (G′

2)
o)oΘ3Ho′

2 + G′
1Θ4(H1 : H2)o′

. (4.1.153)

Maximum likelihood estimators of Θ1, Θ3, Θ4, as well as B and Σ, are now
available from Theorem 4.1.6. Uniqueness conditions for Θ̂1, Θ̂3 and Θ̂4 are given
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in Theorem 4.1.12. However, we are mainly interested in uniqueness conditions
for B̂ or KB̂L. It can be shown that B̂ is unique if and only if

r(C) = k,

C (G′
2)

⊥ ∩C (A′)⊥ = {0}, (4.1.154)

C (G′
1)

⊥ ∩C (G′
2) ∩ {C (A′)⊥ + C (G′

2)
⊥} = {0}, (4.1.155)

C (G′
1) ∩ {C (A′)⊥ + C (G′

1)
⊥} = {0}. (4.1.156)

If A is of full rank, i.e. r(A) = q, then (4.1.154), (4.1.155) and (4.1.156) are all
satisfied. Hence, B̂ is unique if A and C are of full rank, and this holds for all
choices of G1, G2, H1 and H2, as long as C (G′

1) ⊆ C (G′
2).

Below, necessary and sufficient conditions for uniqueness of KB̂L are given:

C (L) ⊆ C (C),

C ((G′
2)

o′
K′) ⊆ C ((G′

2)
o′
A′),

C ({G′
1 : (G′

2)
o}o′

R′
1K

′) ⊆ C ({G′
1 : (G′

2)
o}o′

A′(A(G′
2)

o)o),

C (G1R′
2R

′
1K

′) ⊆ C (G1A′{A(G′
1)

o}o),

where

R1 =I − (G′
1 : G′

2)
o{(G′

1 : G′
2)

o′
A′A(G′

1 : G′
2)

o}−(G′
1 : G′

2)
o′
A′A, (4.1.157)

R2 =I − {G′
1 : (G′

1 : G′
2)

o}o
({G′

1 : (G′
1 : G′

2)
o}o′

R′
1A

′AR1{G′
1 : (G′

1 : G′
2)

o}o
)−

× {G′
1 : (G′

1 : G′
2)

o}o′
R′

1A
′AR1. (4.1.158)

If C (K′) ⊆ C (A′) and C (L) ⊆ C (C), it follows that KB̂L is unique.
Let us now briefly consider case b), given by (4.1.149). There are no principal dif-
ferences between a) and b). In both cases, instead of (4.1.145), the mean structure
can be written as

B =(G′
1 : G′

2)
oΘ1 + {G′

1 : (G′
1 : G′

2)
o}oΘ3Ho′

2

+ {(G′
1)

o : (G′
2)

o}oΘ4(H1 : H2)o′
. (4.1.159)

The difference compared with (4.1.153) is that in a) C (G′
1) ⊆ C (G′

2) holds,
which simplifies (4.1.159) somewhat. Now it follows that B̂ is unique if and only
if

r(C) = k, (4.1.160)

C (G′
1 : G′

2)
⊥ ∩C (A′)⊥ = {0}, (4.1.161)

C (G′
1)

⊥ ∩C (G1 : G′
2) ∩ {C (A′)⊥ + C (G′

2)
⊥} = {0}, (4.1.162)

C (G′
1) ∩C (G′

2) ∩ {C (A′)⊥ + C (G′
1)

⊥} = {0}, (4.1.163)

and KB̂L is unique if and only if

C (L) ⊆ C (C),

C ((G′
1 : G′

2)
o′
K′) ⊆ C ((G1 : G′

2)
o′
A′),

C ({G′
1 : (G′

1 : G′
2)

o}o′
R′

1K
′) ⊆ C ({G′

1 : (G′
1 : G′

2)
o}o′

A′(A(G′
2)

o)o),

C ({(G′
1)

o : (G′
2)

o}o′
R′

2R
′
1K

′) ⊆ C ({(G′
1)

o : (G′
2)

o}o′
A′(A(G′

1)
o)o),



Multivariate Linear Models 405

where R1 and R2 are given by (4.1.157) and (4.1.158), respectively.
Finally, we turn to case c). If (4.1.150) holds, then
C (H1 : H2)⊥ = C (H2)⊥ and C (H1) ⊆ C (H2). Hence, instead of B̂ given by
(4.1.145), we observe that

B =(G′
1 : G′

2)
oΘ1 + {G′

2 : (G′
1 : G′

2)
o}oΘ2Ho′

1

+ {(G′
1 : (G′

1 : G′
2)

o)o : ((G′
1)

o : (G′
2)

o)o}Θ3Ho′
2 .

Since C (C′Ho
2) ⊆ C (C′Ho

1) ⊆ C (C′), we get as before, that if restrictions (iv)
given by (4.1.132) together with (4.1.150) hold, one may equivalently consider a
MLNM(

∑3
i=1 AiBiCi). Hence, via Theorem 4.1.6, estimators are available for

Θ1, Θ2, Θ3 as well as for B and Σ. Furthermore, B̂ is unique if and only if

r(C) = k,

C (G′
1 : G′

2)
⊥ ∩C (A′)⊥ = {0},

C (G′
2)

⊥ ∩C (G′
1 : G′

2) ∩ {C (A′)⊥ + C (G′
1 : G′

2)
⊥} = {0}, (4.1.164)

C (G′
2) ∩ {C (A′)⊥ + C (G′

2)
⊥} = {0}. (4.1.165)

In comparison with case b), where the corresponding conditions for uniqueness
were given by (4.1.160) – (4.1.163), it is seen that the differences between b) and
c) lie in the difference between (4.1.162) and (4.1.164), and the difference between
(4.1.163) and (4.1.165). Furthermore, if A and C are of full rank, B̂ is uniquely
estimated.
Moreover, linear combinations of B̂, i.e. KB̂L, are unique if and only if

C (L) ⊆ C (C),

C ((G′
1 : G′

2)
o′
K′) ⊆ C ((G′

1 : G′
2)

o′
A′),

C ({G′
2 : (G′

1 : G′
2)

o}o′
R′

1K
′)

⊆ C ({G′
2 : (G′

1 : G′
2)

o}o′
A′{A(G′

1 : G′
2)

o}o),

C (G′
2R

′
2R

′
1K

′) ⊆ C (G2A′(A(G′
2)

o)o),

where R1 and R2 are given by (4.1.157) and (4.1.158), respectively.
For case d) it is just noted that since

C (C′(H1 : H2)o) ⊆ C (C′Ho
2) ⊆ C (C′Ho

1) ⊆ C (C′),

the mean structure given by (4.1.145) implies a mean structure in the general
MLNM(

∑4
i=1 AiBiCi). This model has not been considered previously in any

detail and therefore no relations are presented for d).
Now more general restrictions on B in the MLNM(ABC) than restrictions (iv)
given by (4.1.132) will be considered:

GiBHi = 0, i = 1, 2, . . . , s. (4.1.166)
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We have to be aware of two problems related to the restrictions in (4.1.166).
When considering (4.1.166) as a linear homogeneous system of equations, the first
problem is to find suitable representations of solutions. For i > 3, it is not known
how to present the general solution in an interpretable way. The special case i = 3
has been solved by von Rosen (1993). Thus, some restrictions have to be put on
Gi and Hi in GiBHi = 0, i = 1, 2, . . . , s. The second problem is how to stay
within the class of MLNM(

∑m
i=1 AiBiCi), i.e. a model where the nested subspace

condition C (C′
m) ⊆ C (C′

m−1) ⊆ . . . ⊆ C (C′
1) has to be fulfilled. There exist

many possibilities. As an example, one may suppose that

C (Hs) ⊆ C (Hs−1) ⊆ . . . ⊆ C (H1) (4.1.167)

or
C (G′

s) ⊆ C (G′
s−1) ⊆ . . . ⊆ C (G′

1). (4.1.168)

For these cases the solutions are easy to obtain and the model immediately belongs
to the class of MLNM(

∑m
i=1 AiBiCi).

Theorem 4.1.16. Suppose that for the MLNM(ABC) the parameter matrix B
satisfies the restrictions given by (4.1.166). Then the following statements are
valid.

(i) If (4.1.167) holds, then an equivalent model belonging to the
MLNM(

∑m
i=1 AiBiCi) is given by a multivariate linear model with mean

E[X] = ANo
sΘ1C + A

s∑
i=2

(Ni−1 : No
i )

oΘiHo′
i C + AG′

1Θs+1Ho′
1 C,

where Θi, i = 1, 2, . . . , s, are new parameters and

Ni = (G′
1 : G′

2 : . . . : G′
i).

(ii) If (4.1.168) holds, then an equivalent model belonging to the
MLNM(

∑m
i=1 AiBiCi) is given by a multivariate linear model with mean

E[X] = AG′
sΘ1Mo′

s C + A
s−1∑
i=1

((G′
i)

o : G′
i+1)

oΘi+1Mo′
i C + A(G′

1)
oΘs+1C,

where Θi, i = 1, 2, . . . , s, are new parameters and

Mi = (H1 : H2 : . . . : Hi).

Proof: Both statements are immediately obtained by solving (4.1.166) with re-
spect to B with the help of Theorem 1.3.9.
Hence, one can find explicit estimators and discuss properties of these estimators
for fairly general multivariate linear models. However, we are not going to use this
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model anymore in this text. Instead, we will consider another type of restriction
on B in the MLNM(ABC).
Suppose that for the MLNM(ABC) the following restriction holds:

G1ΘH1 + G2BH2 = 0, (4.1.169)

where, as previously, Gi and Hi, i = 1, 2, are known matrices, and B and Θ are
unknown. Let us return to Example 4.1.1 in order to examine an application of
the restrictions in (4.1.169).
Example 4.1.5 (Example 4.1.1 continued). It has been stated previously that
the mean structure of the example equals

β11+β21t + · · · + β(q−2)1t
q−3 + β(q−1)1t

q−2 + βq1t
q−1,

β12+β22t + · · · + β(q−2)2t
q−3 + β(q−1)2t

q−2 + βq2t
q−1,

β13+β23t + · · · + β(q−2)3t
q−3 + β(q−1)3t

q−2 + βq3t
q−1.

Furthermore, restrictions have been put on B by setting various elements in B
equal to zero. For example, in (4.1.126)

β(q−1)1 = 0, βq1 = 0, βq2 = 0

was considered in Example 4.1.4, which implies a MLNM(
∑3

i=1 AiBiCi).
Instead of these conditions on B, assume now that for two treatment groups

the intercepts, i.e. β12 and β13, are both proportional to the same unknown con-
stant. This could be realistic in many situations. For instance, when there is
one factor which influences the treatment groups but depends on the treatment
conditions, we may have a difference between the influence in each group. Math-
ematically, this may be expressed as (β12 : β13) = Θ(f1 : f2) or β12 = β13f , where
f1, f2 and f are known constants, or equivalently as GBH1 = ΘH2, for some G
and Hi, i = 1, 2, where B and Θ are unknown. Hence, we have linear restrictions
which differ from those previously discussed.

Theorem 4.1.17. The MLNM(ABC) with restriction G1ΘH1 + G2BH2 = 0,
where Gi, Hi, i = 1, 2, are known and Θ, B unknown, can equivalently be de-
scribed by a multivariate linear model with mean

E[X] = A(G′
2)

oΘ1C + A{G′
2G

o
1 : (G′

2)
o}oΘ2(H2(H′

1)
o)o′

C + AG′
2G

o
1Θ3Ho′

2 C,

which belongs to the MLNM(
∑3

i=1 AiBiCi). The maximum likelihood estimators
of the mean parameters are given by

B̂ =(G′
2)

oΘ̂1 + {G′
2G

o
1 : (G′

2)
o}oΘ̂2(H2(H′

1)
o)o′

+ G′
2G

o
1Θ̂3Ho′

2 , (4.1.170)

Θ̂ = − G−
1 G2{G′

2G
o
1 : (G′

2)
o}oΘ̂2(H2(H′

1)
o)o′

+ (G′
1)

oZ1 + G′
1Z2Ho′

1 , (4.1.171)

where the estimators Θ̂1, Θ̂2 and Θ̂3 follow from Theorem 4.1.6, and Zi, i = 1, 2,
are arbitrary matrices of proper size. Furthermore,
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(i) Θ̂3 is unique if and only if

C (AG′
2G

o
1) ∩C (A(G′

2G
o
1)

o) = {0},

and both AG′
2G

o
1 and C′Ho

2 are of full rank;

(ii) Θ̂2 is unique if and only if

C (A(G′
2)

o) ∩C (A{G′
2G

o
1 : (G′

2)
o}o) = {0},

C (A(G′
2)

o)⊥ ∩C (A(G′
2G

o
1)

o) ∩C (A{G′
2G

o
1 : (G′

2)
o}) = {0},

and both A((G′
2)

o : G′
2G

o
1)

o and C′(H2(H′
1)

o)o are of full rank;

(iii) Θ̂1 is unique if and only if

C (A(G′
2)

o) ∩C (A{G′
2G

o
1 : (G′

2)
o}o) = {0},

C (A{G′
2G

o
1 : (G′

2)
o}o)⊥ ∩C (A(G′

2G
o
1)

o) ∩C (AG′
2) = {0},

r(C) = k, and A(G′
2)

o is of full rank;

(iv) put M = G′
2G

o
1 : (G′

2)
o. Then Θ̂ is unique if and only if

C (G′
2G1) ⊆ C (M) + C (A′) ∩C (M)⊥,

and both G1 and H1 are of full rank;

(v) B̂ is unique if and only if

C (G′
2)

⊥ ∩C (A′)⊥ = {0},
C (G2{G′

2G
o
1 : (G′

2)
o}o) ∩C (G2(A′)o) = {0},

C (G2Go
1) ⊆ C (A′),

r(C) = k.

Proof: By Theorem 1.3.8 it follows that the general solution to

G1ΘH1 + G2BH2 = 0

is given by (4.1.170) and (4.1.171). For (i) – (iv) of the theorem we can rely on
Theorem 4.1.12, whereas for (v) some further calculations have to be carried out
which, however, will be omitted here.
Another case, where the restriction G1B1H1 + G2B2H2 = {0} is useful, is when
studying the MLNM(

∑m
i=1 AiBiCi), e.g. a MLNM(A1B1C1 + A2B2C2) where

G1B1H1 + G2B2H2 = {0} holds. However, for this case, besides the inclusion
C (C′

2) ⊆ C (C′
1), we have to impose some further conditions so that explicit

estimators can be obtained. This can be done in a manner similar to deriving the
results given above.
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4.1.7 Problems
1. Give a detailed proof of Theorem 4.1.17.
2. Let X = ABC+Σ1/2EW1/2, where X, A, B, C and Σ are as in the Growth

Curve model, W is known and positive definite and E ∼ N(0, Ip, In). Find
the maximum likelihood estimators of the parameters.

3. Derive the maximum likelihood estimators of the parameters in the
MLNM(

∑2
i=1 AiBiCi).

4. Show that X =
∑m

i=1 AiBiCi + Σ1/2E, where C (Am) ⊆ C (Am−1) ⊆ . . . ⊆
C (A1) is a MLNM(

∑m
i=1 AiBiCi).

5. Use the canonical form of the MLNM(
∑m

i=1 AiBiCi) defined via (4.1.65).
By performing a reparametrization show that the likelihood function can be
factorized similarly to (4.1.21).

6. If in the MLNM(
∑3

i=1 AiBiCi) the condition C (A2) ⊆ C (A3) holds, then
indicate the changes it causes in the statements of Theorem 4.1.12. What
happens if we assume C (A1) ⊆ C (A2) instead of C (A2) ⊆ C (A3) ?

7. The Complex normal distribution of X1 + iX2 is expressed through the fol-
lowing normal distribution:(

X1

X2

)
∼ N2p,n

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ11

)
, In

)
,

where Xi : p × n, µi : p × n, Σ11 > 0 and Σ12 = −Σ′
21. Estimate µ1, µ2,

Σ11 and Σ12.
8. The Quaternion normal distribution of X1 + iX2 + j X3 + k X4 is expressed

through the following normal distribution:⎛⎜⎝
X1

X2

X3

X4

⎞⎟⎠ ∼ N4p,n

⎛⎜⎝
⎛⎜⎝

µ1

µ2

µ3

µ4

⎞⎟⎠ ,

⎛⎜⎝
Σ11 Σ12 Σ13 Σ14

−Σ12 Σ11 −Σ14 Σ13

−Σ13 Σ14 Σ11 −Σ12

−Σ14 −Σ13 Σ12 Σ11

⎞⎟⎠ , In

⎞⎟⎠ ,

where Xi : p×n, µi : p×n and Σ11 > 0. Estimate µi, i = 1, 2, 3, 4, and Σ11,
Σ12, Σ13 and Σ14. For quaternions see §1.3.1.

9. Monotone missing structure (see Wu & Perlman, 2000; Srivastava, 2002).
Let x ∼ Np(µ,Σ), Σ > 0, where x′ = (X1, X2, . . . , Xp). Suppose that we
have n1 observations on x, n2 observations on xp−1 = (X1, X2, . . . , Xp−1), n3

observations on xp−2 = (X1, X2, . . . , Xp−2) and so on until nk observations
on xp−k+1 = (X1, X2, . . . , Xp−k+1). Estimate µ and Σ.

10. In §4.1.3 many statements hold with probability 1. Let X̃ and S̃ denote the
observations of X and S, respectively, and assume that

X̃ ∈ C (A,Σ) andC (S̃) = C (Σ).

Prove in the above assumptions the analogues of the statements in §4.1.3,
which hold with probability 1. Remark that now the condition ”with proba-
bility 1” is not needed in the obtained results.
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4.2. MOMENTS AND MULTIVARIATE LINEAR MODELS

The object of this section is to discuss some of the multivariate linear models from
Section 4.1, namely the Growth Curve model, given in Definition 4.1.1, and the
MLNM(

∑m
i=1 AiBiCi), given in Definition 4.1.3. In this section we are going

to find the first moments of the maximum likelihood estimators of the parameter
matrices. These results are needed for approximating the distributions of the
estimators. As previously, we emphasize that readers have to work with the details
by themselves. Most of the ideas are straightforward but it is difficult to achieve
any results without the techniques presented.

4.2.1 Moments of the mean estimator of the Growth Curve model
Let us dissect the maximum likelihood estimator of B in the Growth Curve model,
i.e. the MLNM(ABC). In Theorem 4.1.11 the maximum likelihood estimator was
given by

B̂ = (A′S−1A)−1A′S−1XC′(CC′)−1, (4.2.1)

where it was assumed that r(A) = q and r(C) = k, in order to have a unique
estimator. The uniqueness is needed as we want to discuss properties of B̂. This
would be meaningless if the estimator is not unique. In the non-unique case, B̂ is
given by (4.1.7) and equals

B̂ = (A′S−1A)−A′S−1XC′(CC′)− + (A′)oZ1 + A′Z2Co′
, (4.2.2)

where
S = X(I − C′(CC′)−C)X′. (4.2.3)

When considering B̂ in (4.2.2), we have to treat the estimator separately for each
choice of Zi, i = 1, 2. If Zi is non-random we just have a translation of B̂, and
as it will be seen later, we have a biased estimator. If Zi is random, everything is
more complicated.
As an alternative to the assumption of uniqueness of B̂, one may consider a linear
combination KB̂L where K and L are known matrices. In this paragraph

AB̂C = A(A′S−1A)−A′S−1XC′(CC′)−C (4.2.4)

is going to be treated, which according to Theorem 4.1.11 is unique. However,
since Theorem 4.1.11 states that KB̂L is unique if and only if C (K′) ⊆ C (A′),
C (L) ⊆ C (C), and by Proposition 1.2.2 (i) these conditions are equivalent to
K′ = A′Q1 and L = CQ2 for some matrices Q1 and Q2, we obtain that KB̂L =
Q′

1AB̂CQ2 and thus it will be sufficient to consider AB̂C. Note that if A and C
are both of full rank, the expression in (4.2.4) can be pre- and post-multiplied by
(A′A)−1A′ and C′(CC′)−1, respectively, which gives B̂ in (4.2.1).
From (4.2.1) it follows that B̂ is a non-linear estimator. It consists of two random
parts, namely

(A′S−1A)−1A′S−1 (4.2.5)
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and
XC′(CC′)−1. (4.2.6)

In (4.2.1) the matrix S, given by (4.2.3), is random, so the expression in (4.2.5) as
well as B̂ are quite complicated non-linear random expressions.
Gleser & Olkin (1970) were the first to derive the distributions for B̂ (under full
rank assumptions) and Σ̂ given in Theorem 4.1.2. This was performed through the
canonical reformulation of the model presented in Section 4.1.2. Kabe (1975) pre-
sented an alternative approach when working directly with the original matrices.
Kenward (1986) expressed the density of B̂ with the help of hypergeometric func-
tions. It is well to notice that these results are all quite complicated and they are
difficult to apply without suitable approximations. Fujikoshi (1985, 1987) derived
asymptotic expansions with explicit error bounds for the density of B̂.
Since the distribution of B̂ is not available in a simple form, one strategy is to
compare B̂ with some other statistic whose distribution is easier to utilize. Alter-
natives to (4.2.1) are found in the class of estimators proposed by Potthoff & Roy
(1964);

B̂G = (A′G−1A)−1A′G−1XC′(CC′)−1, (4.2.7)

where, for simplicity, G is supposed to be a non-random positive definite matrix.
One choice is G = I. According to Theorem 2.2.2, the distribution of B̂G is
matrix normal. Therefore, it can be of value to compare moments of B̂ with the
corresponding moments of B̂G in order to understand how the distribution of B̂
differs from the normal one. Furthermore, it is tempting to use a conditional
approach for inference problems concerning B̂, i.e. conditioning on S, since the
distribution of S does not involve the parameter B. Hence, it is of interest to
study how an omission of the variation in S affects the moments of B̂.

Theorem 4.2.1. Let B̂ be given by (4.2.1) and AB̂C by (4.2.4). Then the
following statements hold:

E[B̂] = B;(i)

(ii) if n − k − p + q − 1 > 0, then

D[B̂] =
n − k − 1

n − k − p + q − 1
(CC′)−1 ⊗ (A′Σ−1A)−1;

E[AB̂C] = ABC;(iii)

(iv) if n − r(C) − p + r(A) − 1 > 0, then

D[AB̂C] =
n − r(C) − 1

n − r(C) − p + r(A) − 1
C′(CC′)−C ⊗ A(A′Σ−1A)−A′.

Proof: Let us first verify (iii). Since, by Theorem 2.2.4 (iii), S and XC′ are
independent,

E[AB̂C] = E[A(A′S−1A)−A′S−1]E[XC′(CC′)−C]. (4.2.8)
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However, since E[X] = ABC implies E[XC′(CC′)−C] = ABC, the expression
in (4.2.8) is equivalent to

E[AB̂C] =E[A(A′S−1A)−A′S−1]ABC

=E[A(A′S−1A)−A′S−1A]BC = ABC,

where in the last equality Proposition 1.2.2 (ix) has been used. Similarly (i) can
be verified.
Now we start to consider

D[AB̂C] = E[vec(A(B̂ − B)C)vec′(A(B̂ − B)C)] (4.2.9)

and note that

A(B̂ − B)C = A(A′S−1A)−A′S−1(X − ABC)C′(CC′)−C. (4.2.10)

It will be utilized that

A(A′S−1A)−A′S−1 = A(A′S−1A)−1A′S−1, (4.2.11)

where A is any matrix of full rank such that C (A) = C (A) which follows from
the uniqueness property of projectors given in Proposition 1.2.1 (vi).
Put

Y = (X − ABC)C′(CC′)−C,

which by Theorem 2.2.4 (iv) is independent of S, and the dispersion of Y equals

D[Y] = C′(CC′)−C ⊗ Σ. (4.2.12)

Thus, from (4.2.9) and (4.2.11) it follows that

D[AB̂C]
= E[(I ⊗ A(A′S−1A)−1A′S−1)E[vecYvec′Y](I ⊗ S−1A(A′S−1A)−1A′)]
= E[(I ⊗ A(A′S−1A)−1A′S−1)D[Y](I ⊗ S−1A(A′S−1A)−1A′)]
= C′(CC′)−C ⊗ E[A(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1A′]. (4.2.13)

When proceeding (see also Problem 3 in §2.4.9), we will make use of a canoni-
cal representation of A′Σ−1/2, where Σ−1/2 is a symmetric square root of Σ−1.
Proposition 1.1.6 implies that there exist a non-singular matrix H and an orthog-
onal matrix Γ such that

A′Σ−1/2 = H(Ir(A) : 0)Γ = HΓ1, (4.2.14)

where Γ′ = (Γ′
1 : Γ′

2), (p × r(A) : p × (p − r(A)). Let

V = Σ−1/2SΣ−1/2, (4.2.15)
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and from Theorem 2.4.2 we have V ∼ Wp(I, n− r(C)). Furthermore, the matrices
V and V−1 will be partitioned:

V =
(

V11 V12

V21 V22

)
,

r(A) × r(A) r(A) × (p − r(A))
(p − r(A)) × r(A) (p − r(A)) × (p − r(A)) , (4.2.16)

V−1 =
(

V11 V12

V21 V22

)
,

r(A) × r(A) r(A) × (p − r(A))
(p − r(A)) × r(A) (p − r(A)) × (p − r(A)) . (4.2.17)

Thus, from (4.2.14), (4.2.15) and (4.2.17) it follows that (once again compare with
Problem 3 in §2.4.9)

E[A(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1A′]
= E[Σ1/2Γ′

1(V
11)−1(V11 : V12)(V11 : V12)′(V11)−1Γ1Σ1/2]

= E[Σ1/2Γ′
1(I : (V11)−1V12)(I : (V11)−1V12)′Γ1Σ1/2]

= E[Σ1/2Γ′
1{I + (V11)−1V12V21(V11)−1}Γ1Σ1/2]. (4.2.18)

From Proposition 1.3.4 (i) we utilize that (V11)−1V12 = −V12V−1
22 . Thus, the

last line of (4.2.18) is identical to

Σ1/2Γ′
1Γ1Σ1/2 + Σ1/2Γ′

1V12V−1
22 V−1

22 V21Γ1Σ1/2. (4.2.19)

Next we proceed by focusing on V12V−1
22 V−1

22 V21. Since V ∼ Wp(I, n − r(C)),
there exists, according to Definition 2.4.1, a matrix U ∼ Np,n−r(C)(0, I, I) such
that V = UU′. Partition U = (U′

1 : U′
2)

′ so that V21 = U2U′
1 and V11 = U1U′

1.
Then

E[V12V−1
22 V−1

22 V21] = E[U1U′
2(U2U′

2)
−1(U2U′

2)
−1U2U′

1]. (4.2.20)

By Theorem 2.2.9 (i) and independence of U1 and U2, this is equivalent to

E[V12V−1
22 V−1

22 V21] =E[tr{U′
2(U2U′

2)
−1(U2U′

2)
−1U2}]I

=E[tr(U2U′
2)

−1]I. (4.2.21)

Furthermore, since U2U′
2 ∼ Wp−r(A)(I, n−r(C)), it follows from Theorem 2.4.14

(iii) that (4.2.21) equals

E[V12V−1
22 V−1

22 V21] =
p − r(A)

n − r(C) − p + r(A) − 1
I. (4.2.22)

Alternatively, we could have used Theorem 2.4.12 (iii), which yields

U1U′
2(U2U′

2)
− 1

2 ∼ Nr(A),p−r(A)(0, I, I),

which in turn is independent of U2U′
2. Finally, it is noted that since Γ1Γ′

1 = I
and H is non-singular,

Σ1/2Γ′
1Γ1Σ1/2 = A(A′Σ−1A)−A′, (4.2.23)
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and by combining (4.2.13), (4.2.18), (4.2.22) and (4.2.23), statement (iv) of the
theorem is established.
Under full rank assumptions, (ii) follows immediately from (iv).
Next we are going to consider moments of higher order and we have chosen to use
the representation

E[(A(B̂ − B)C)⊗k].

Theorem 4.2.2. Let AB̂C be given by (4.2.4). Put

v(A) = vec(A(A′Σ−1A)−A′),
v(C′) = vec(C′(CC′)−C).

In this notation the following statements hold:
(i) E[(A(B̂ − B)C)⊗r] = 0, for odd r;
(ii) if n − r(C) − p + r(A) − 1 > 0, then

E[(A(B̂ − B)C)⊗2] =
p − r(A)

n − r(C) − p + r(A) − 1
v(A)v′(C′);

(iii) if n − r(C) − p + r(A) − 3 > 0, then

E[(A(B̂−B)C)⊗4] = (1 + 2c1){v(A)v′(C′)}⊗2

+ (1 + 2c1)(Ip ⊗ Kp,p ⊗ Ip){v(A)v′(C′)}⊗2(In ⊗ Kn,n ⊗ In)
+ (1 + 2c1)Kp,p3{v(A)v′(C′)}⊗2Kn3,n

+ (c2I + c3{(Ip ⊗ Kp,p ⊗ Ip) + Kp,p3}){v(A)v′(C′)}⊗2,

where

c1 = p−r(A)
n−r(C)−p+r(A)−1 ,

c2 = 2(p−r(A))(n−r(C)−p+r(A)−1)+{2+(n−r(C)−p+r(A))(n−r(C)−p+r(A)−3)}(p−r(A))2

(n−r(C)−p+r(A))(n−r(C)−p+r(A)−1)2(n−r(C)−p+r(A)−3) ,

c3 = p−r(A)
(n−r(C)−p+r(A))(n−r(C)−p+r(A)−3)

+ (p−r(A))2

(n−r(C)−p+r(A))(n−r(C)−p+r(A)−1)(n−r(C)−p+r(A)−3) ;

(iv) if n − r(C) − p + r(A) − 2r + 1 > 0, then

E[(AB̂C)⊗2r] = O(n−r).

Proof: First of all we note that due to independence between S and XC′,

E[(A(B̂ − B)C)⊗r] =E[(A(A′S−1A)−A′S−1)⊗r]
× E[(X − ABC)⊗r](C′(CC′)−C)⊗r, (4.2.24)

and since E[(X − ABC)⊗r] = 0, for odd r, (i) is established.
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The result in (ii) follows from Theorem 4.2.1 (iv) and Proposition 1.3.14 (vi).
Now (iii) is considered. In Corollary 2.2.7.4 (ii) the fourth order moments of a
matrix normally distributed variable were given, and applying this result implies
that (4.2.24), for r = 4, equals

E[(A(B̂ − B)C)⊗4] = E[(A(A′S−1A)−A′S−1)⊗4]

×
{

(vecΣvec′I)⊗2 + (Ip ⊗ Kp,p ⊗ Ip)(vecΣvec′I)⊗2(In ⊗ Kn,n ⊗ In)

+ Kp,p3(vecΣvec′I)⊗2Kn3,n

}
(C′(CC′)−C)⊗4. (4.2.25)

Put

K1,i =Ii,

K2,i =Ii ⊗ Ki,i ⊗ Ii, (4.2.26)
K3,i =Ki,i3 ,

where the size of the matrices is indicated by i, which according to the applications
may equal p, n, r(A), p − r(A), r(C) or n − r(C). Moreover, Kj,i′ denotes the
transpose of Kj,i.
Proposition 1.3.12 (viii) implies that for j = 1, 2, 3,

(A(A′S−1A)−A′S−1)⊗4Kj,p = Kj,p(A(A′S−1A)−A′S−1)⊗4 (4.2.27)

and
Kj,n′

(C′(CC′)−C)⊗4 = (C′(CC′)−C)⊗4Kj,n′
. (4.2.28)

Hence, (4.2.25) equals

E[(A(B̂ − B)C)⊗4]

=
3∑

j=1

Kj,p{E[vec(Γ′
1(I + V12V−1

22 V−1
22 V21)Γ1)⊗2]v′(C′)⊗2}Kj,n′

, (4.2.29)

where Γ and V are defined in (4.2.14) and (4.2.15), respectively. Expanding
(4.2.29) gives

E[(A(B̂ − B)C)⊗4] =
3∑

j=1

Kj,p

{
vec(Γ′

1Γ1)⊗2

+ vec(Γ′
1Γ1) ⊗ E[vec(Γ′

1V12V−1
22 V−1

22 V21Γ1)]
+ E[vec(Γ′

1V12V−1
22 V−1

22 V21Γ1)] ⊗ vec(Γ1Γ′
1)

+ E[vec(Γ′
1V12V−1

22 V−1
22 V21Γ1)⊗2]

}
v′(C′)⊗2Kj,n′

. (4.2.30)

According to (4.2.22),

E[Γ′
1V12V−1

22 V−1
22 V21Γ1] = c1Γ′

1Γ1,
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and now we will study

E[vec(Γ′
1V12V−1

22 V−1
22 V21Γ1)⊗2]. (4.2.31)

By using the same matrix U = (U′
1 : U′

2)
′ as in (4.2.20), where U1 and U2 in

particular are independent, it is seen that (4.2.31) can be written as

E[vec(Γ′
1V12V−1

22 V−1
22 V21Γ1)⊗2]

= (Γ′
1)

⊗4E[U⊗4
1 ]E[vec(U′

2(U2U′
2)

−1(U2U′
2)

−1U2)⊗2]. (4.2.32)

From Corollary 2.2.7.4 (ii) it follows that (4.2.32) equals

(Γ′
1)

⊗4
3∑

j=1

Kj,r(A)(vec(Ir(A))⊗2(vec′In−r(C))⊗2Kj,(n−r(C))′

× E[(vec(U′
2(U2U′

2)
−1(U2U′

2)
−1U2)⊗2]. (4.2.33)

However, Proposition 1.3.12 (viii) implies that

(Γ′
1)

⊗4Kj,r(A) = Kj,p(Γ′
1)

⊗4 (4.2.34)

holds, Proposition 1.3.14 (iii) and (4.2.26) give us that

(vec′In−r(C))⊗2K1,(n−r(C))′E[vec(U′
2(U2U′

2)
−1(U2U′

2)
−1U2)⊗2]

= E[{tr(U′
2(U2U′

2)
−1(U2U′

2)
−1U2)}2] = E[{tr(U2U′

2)
−1}2] (4.2.35)

holds, as well as that for j = 2, 3,

(vec′In−r(C))⊗2Kj,(n−r(C))′E[vec(U′
2(U2U′

2)
−1(U2U′

2)
−1U2)⊗2]

= E[tr(U′
2(U2U′

2)
−1U2U′

2(U2U′
2)

−1U2)]
= E[tr{(U2U′

2)
−1(U2U′

2)
−1}] (4.2.36)

holds. Hence, from (4.2.34) – (4.2.36) it follows that (4.2.33) is equivalent to

(Γ′
1)

⊗4(vecIr(A))⊗2E[{tr(U2U′
2)

−1}2]

+ K2,p(Γ′
1)

⊗4(vecIr(A))⊗2E[tr{(U2U′
2)

−1(U2U′
2)

−1}]
+ K3,p(Γ′

1)
⊗4(vecIr(A))2⊗2E[tr{(U2U′

2)
−1(U2U′

2)
−1}]

= (vec(Γ′
1Γ1))⊗2E[{tr(U2U′

2)
−1}2]

+ (K2,p + K3,p)(vec(Γ′
1Γ1))⊗2E[tr{(U2U′

2)
−1(U2U′

2)
−1}]. (4.2.37)

Now, according to Theorem 2.4.14 (viii) and (vi), since n−r(C)−p+r(A)−3 > 0,

c2 = E[{tr(U2U′
2)

−1}2],
c3 = E[tr{(U2U′

2)
−1(U2U′

2)
−1}],
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which establish the statement
In order to prove (iv), it is first observed that

E[(AB̂C)⊗2r] = E[(A(A′S−1A)−A′S−1)⊗2r]E[(XC′(CC′)−C)⊗2r].

Since we are just interested in the order of magnitude and no explicit expressions of
E[(AB̂C)⊗2r], it follows from Theorem 2.2.7 (iv) that from now on it is sufficient
to consider

E[vec(A(A′S−1A)−A′S−1ΣS−1A(A′S−1A)−A′)⊗r].

This expression can be presented in a canonical form as in (4.2.31):

E[(vec(Γ′
1V12V−1

22 V−1
22 V21Γ))⊗r] = E[(Γ′

1V12V
−1/2
22 )⊗2r]E[(vecV−1

22 )⊗r],

where the equality follows from Theorem 2.4.12 (iii). Now Theorem 2.4.14 (iii)
and (2.4.46) give

E[(vecV−1
22 )⊗r] = O(n−r).

Since Theorem 2.4.12 (iii) states that the matrix V12V
−1/2
22 is normally distributed

with moments independent of n, the theorem is established.

4.2.2 E[Σ̂] and D[Σ̂] for the Growth Curve model
In this section we are going to find the first and second moments for Σ̂ in the
Growth Curve model. The estimator Σ̂ is given in (4.1.8) and equals

nΣ̂ = S + (XC′(CC′)−C − AB̂C)(XC′(CC′)−C − AB̂C)′, (4.2.38)

where S and AB̂C are given by (4.2.3) and (4.2.4), respectively, and equal

S =X(I − C′(CC′)−C)X′, (4.2.39)

AB̂C =A(A′S−1A)−A′S−1XC′(CC′)−C. (4.2.40)

Inserting (4.2.40) into (4.2.38) and then applying Corollary 1.2.25.1 yields that
instead of (4.2.38) we may consider

nΣ̂ = S + SAo(Ao′
SAo)−Ao′

XC′(CC′)−CX′Ao(Ao′
SAo)−Ao′

S, (4.2.41)

where Ao has been chosen to be of full column rank, i.e. Ao : p×(p−r(A)). There
is no principal advantage of using (4.2.41) instead of (4.2.38), only the subsequent
presentation will be somewhat shorter.

Theorem 4.2.3. Let Σ̂ be as in (4.2.38).
(i) If n − r(C) − p + r(A) − 1 > 0, then

E[Σ̂] = Σ − r(C)
1
n

n − r(C) − 2(p − r(A)) − 1
n − r(C) − p + r(A) − 1

A(A′Σ−1A)−A′.
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(ii) If n − r(C) − p + r(A) − 3 > 0, then

D[Σ̂] = d1(I + Kp,p){(A(A′Σ−1A)−A′) ⊗ (A(A′Σ−1A)−A′)}
+ d2(I + Kp,p){(A(A′Σ−1A)−A′) ⊗ (Σ − A(A′Σ−1A)−A′)}
+ d2(I + Kp,p){(Σ − A(A′Σ−1A)−A′) ⊗ (A(A′Σ−1A)−A′)}
+

1
n

(I + Kp,p){(Σ − A(A′Σ−1A)−A′) ⊗ (Σ − A(A′Σ−1A)−A′)}
+ d3vec(A(A′Σ−1A)−A′)vec′(A(A′Σ−1A)−A′),

where

d1 = n−r(C)
n2 + 2r(C) p−r(A)

n2(n−r(C)−p+r(A)−1) + r(C) 2c1+c2+c3
n2 + r(C)2 c3

n2 ,

with c1, c2 and c3 as in Theorem 4.2.2, and

d2 = n−p+r(A)−1
n(n−r(C)−p+r(A)−1) ,

d3 = 2r(C)(n−r(C)−1)(n−p+r(A)−1)(p−r(A))
n2(n−r(C)−p+r(A))(n−r(C)−p+r(A)−1)2(n−r(C)−p+r(A)−3) .

Proof: We already know that S ∼ Wp(Σ, n− r(C)). From Corollary 2.4.3.1 and
Theorem 2.4.2 it follows that

Ao′
XC′(CC′)−CX′Ao ∼ Wp−r(A)(Ao′

ΣAo, r(C)). (4.2.42)

Furthermore, Theorem 2.2.4 (iii) states that S and Ao′
XC′(CC′)−CX′Ao are

independently distributed. Now, utilizing the first moments of a Wishart matrix,
given in Theorem 2.4.14 (i), relation (4.2.41) yields

E[nΣ̂] =E[S] + E[SAo(Ao′
SAo)−Ao′

XC′(CC′)−CX′Ao(Ao′
SAo)−Ao′

S]

=E[S] + E[SAo(Ao′
SAo)−E[Ao′

XC′(CC′)−CX′Ao](Ao′
SAo)−Ao′

S]

=(n − r(C))Σ + r(C)E[SAo(Ao′
SAo)−Ao′

ΣAo(Ao′
SAo)−Ao′

S].
(4.2.43)

In the following the same technique as in §4.2.1 will be used. Let Σ1/2 be a
symmetric square root of Σ. From Proposition 1.1.6 (ii) it follows that there exist
a non-singular matrix H and an orthogonal matrix Γ = (Γ′

1 : Γ′
2)

′, where Γ1 :
(p − r(A)) × p and Γ2 : r(A) × p, such that

Ao′
Σ−1/2 = H(Ip−r(A) : 0)Γ

holds, which is identical to

Ao′
= H(Ip−r(A) : 0)ΓΣ−1/2 = HΓ1Σ−1/2. (4.2.44)



Multivariate Linear Models 419

Utilizing (4.2.44) gives

SAo(Ao′
SAo)−Ao′

ΣAo(Ao′
SAo)−Ao′

S

= SΣ−1/2Γ′
1(Γ1Σ−1/2SΣ−1/2Γ′

1)
−1Γ1Σ−1/2Σ

× Σ−1/2Γ′
1(Γ1Σ−1/2SΣ−1/2Γ′

1)
−1Γ1Σ−1/2S

= SΣ−1/2Γ′
1(Γ1Σ−1/2SΣ−1/2Γ′

1)
−1(Γ1Σ−1/2SΣ−1/2Γ′

1)
−1Γ1Σ−1/2S, (4.2.45)

where it has been used that orthogonality of Γ implies Γ1Γ′
1 = I, which in turn

gives Γ1Σ−1/2ΣΣ−1/2Γ′
1 = I. In order to simplify (4.2.45), the matrix

V = ΓΣ−1/2SΣ−1/2Γ′, (4.2.46)

already defined in the previous paragraph, will be used. This time the matrix is
partitioned as

V =
(

V11 V12

V21 V22

)
,

(p − r(A)) × (p − r(A)) (p − r(A)) × r(A)
r(A) × (p − r(A)) r(A) × r(A) . (4.2.47)

After performing some calculations, we get

SAo(Ao′
SAo)−Ao′

ΣAo(Ao′
SAo)−Ao′

S

= Σ−1/2Γ′
(

I V−1
11 V12

V21V−1
11 V21V−1

11 V−1
11 V12

)
ΓΣ−1/2. (4.2.48)

Therefore, when returning to (4.2.43),

E[nΣ̂] =E[S] + r(C)Σ−1/2Γ′E
[

I V−1
11 V12

V21V−1
11 V21V−1

11 V−1
11 V12

]
ΓΣ−1/2. (4.2.49)

Since expectation of a matrix is defined by the expectation of its elements, we treat
the submatrices on the right hand side of (4.2.49) separately. The same technique
as in the previous section will be used.
Since V ∼ Wp(I, n− r(C)), there exists a matrix U ∼ Np,n−r(C)(0, I, I) such that
V = UU′. Furthermore, U is partitioned in correspondence with the partition of
V, i.e.

U′ = (U′
1 : U′

2), (n − r(C)) × (p − r(A)) : (n − r(C)) × r(A).

Note that since D[U] = I, the matrices U1 and U2 are independently distributed.
Hence,

E[V21V−1
11 ] = E[U2U′

1(U1U′
1)

−1] = E[U2]E[U′
1(U1U′

1)
−1] = 0, (4.2.50)

since E[U2] = 0. By symmetry it follows that E[V−1
11 V12] = 0. In the next lines

we copy the derivation of (4.2.22). Thus, by Theorem 2.2.9 (i) and independence
of U1 and U2,

E[V21V−1
11 V−1

11 V12] = E[U2U′
1(U1U′

1)
−1(U1U′

1)
−1U1U′

2]
= E[tr(U′

1(U1U′
1)

−1(U1U′
1)

−1U1)]I = E[tr(U1U′
1)

−1]I

=
p − r(A)

n − r(C) − p + r(A) − 1
Ir(A) = c1Ir(A), (4.2.51)
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where Theorem 2.4.14 (iii) has been applied for the last line to

U1U′
1 ∼ Wp−r(A)(I, n − r(C)),

and c1 is the same constant as in Theorem 4.2.2. Thus, using the Wishartness of
S, as well as applying the relations (4.2.50) and (4.2.51) we see that

E[nΣ̂] =(n − r(C))Σ + r(C)Σ−1/2Γ′
(

I 0
0 c1Ir(A)

)
ΓΣ−1/2

=(n − r(C))Σ + r(C)Σ−1/2Γ′
1Γ1Σ−1/2 + r(C)c1Σ−1/2Γ2Γ′

2Σ
−1/2.

(4.2.52)

In order to verify (i) of the theorem, the products Σ−1/2Γ′
iΓiΣ−1/2, i = 1, 2, have

to be expressed in the original matrices. By definition of orthogonality, we obtain
that

I = Γ′Γ = Γ′
1Γ1 + Γ′

2Γ2 (4.2.53)

holds, and (4.2.44) implies

H−1Ao′
= Γ1Σ−1/2. (4.2.54)

Furthermore,

Ao′
ΣAo = Ao′

Σ1/2Σ1/2Ao = H(I : 0)ΓΓ′(I : 0)′H′ = HH′. (4.2.55)

Thus, utilizing (4.2.54) and (4.2.55) gives

Σ1/2Γ′
1Γ1Σ1/2 = ΣAo(H−1)′H−1Ao′

Σ = ΣAo(Ao′
ΣAo)−1Ao′

Σ. (4.2.56)

However, Corollary 1.2.25.1 states that (4.2.56) is equivalent to

Σ1/2Γ′
1Γ1Σ1/2 = Σ − A(A′Σ−1A)−A′, (4.2.57)

and then (4.2.53) gives

Σ1/2Γ′
2Γ2Σ1/2 = A(A′Σ−1A)−A′. (4.2.58)

Thus, the expectations given by (4.2.52) can be expressed in the original matrices,
and from (4.2.57) and (4.2.58) it follows that (4.2.52) can be written

E[nΣ̂] = (n − r(C))Σ + r(C)(Σ − A(A′Σ−1A)−A′) + r(C)c1A(A′Σ−1A)−A′,

which is identical to (i) of the theorem.
In the next the dispersion matrix of Σ̂ will be studied. The expression for Σ̂ given
by (4.2.41) is taken as a starting point. Consider

W = Ao′
XC′(CC′)−X′Ao ∼ Wp−r(A)(Ao′

ΣAo, r(C)). (4.2.59)
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As before, S and W are independently distributed. Note that for an arbitrary
random matrix Q and arbitrary non-random matrices P1 and P2 such that the
product P1QP2 is well defined, the dispersion matrix D[P1QP2] equals

D[P1QP2] = D[vec(P1QP2)] = (P′
2 ⊗ P1)D[Q](P2 ⊗ P′

1). (4.2.60)

Now, from (4.2.41) it follows that

D[nΣ̂] =E[(SAo(Ao′
SAo)−1)⊗2D[W]((Ao′

SAo)−1Ao′
S)⊗2]

+ D[S + SAo(Ao′
SAo)−1E[W](Ao′

SAo)−1Ao′
S], (4.2.61)

which is established after lengthy matrix calculations by utilizing (4.2.60) and
the independence between S and W. Alternatively we could apply a conditional
approach:

D[nΣ̂] = E[D[nΣ̂|S]] + D[E[nΣ̂|S]].

However, in order to utilize the conditional formula, one has to show that the
moments exist and this is not always straightforward. For example, for some
vectors p and q, E[p] = E[E[p|q]] may not hold since the elements in E[p|q] may
all be zeros, while some elements in E[p] are infinite. Therefore, we prefer the
more tedious matrix derivation. From Theorem 2.4.14 (ii) it follows that

D[W] = r(C)(I + Kr,r)((Ao′
ΣAo) ⊗ (Ao′

ΣAo)), (4.2.62)

where r = p − r(A). Furthermore, Theorem 2.4.14 (i) states that

E[W] = r(C)Ao′
ΣAo. (4.2.63)

By means of (4.2.62) and (4.2.63), equality (4.2.61) is expressed in the following
form:

D[nΣ̂] =r(C)(I + Kp,p)E[(SAo(Ao′
SAo)−1Ao′

ΣAo(Ao′
SAo)−1Ao′

S)⊗2]

+ D[S + r(C)SAo(Ao′
SAo)−1Ao′

ΣAo(Ao′
SAo)−1Ao′

S]. (4.2.64)

The two expressions on the right hand side of (4.2.64) will be treated separately,
and we start from the second term. As before the canonical representation

Ao′
Σ1/2 = H(Ip−r(A) : 0)Γ

is used, where H is non-singular and Γ is an orthogonal matrix. Furthermore, the
matrix V defined by (4.2.46), as well as the partition of V given by (4.2.47), will
be utilized. From (4.2.46) it follows that

S = Σ1/2Γ′VΓΣ1/2.

Hence, applying (4.2.48) to the second term in (4.2.64) yields

D[S+r(C)SAo(Ao′
SAo)−1Ao′

ΣAo(Ao′
SAo)−1Ao′

S]

= D[Σ1/2Γ′{V + r(C)
(

I V−1
11 V12

V21V−1
11 V21V−1

11 V−1
11 V12

)
}ΓΣ1/2]. (4.2.65)
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If V is represented through U as in (4.2.50), it follows that the right hand side of
(4.2.65) can be written in the form

(Σ1/2Γ′)⊗2D[(U′
1 : U′

2)
′G(U′

1 : U′
2)](Σ

1/2Γ′)⊗2, (4.2.66)

where
G = In−r(C) + r(C)U′

1(U1U′
1)

−1(U1U′
1)

−1U1. (4.2.67)

Note that G is a symmetric matrix which is a function of U1 solely. Since U1 and
U2 are independently distributed, it would be possible to use this fact in order to
simplify (4.2.66). However, it is more straightforward to condition with respect
to U1. This approach leads to expressions which are relatively easy to handle.
Furthermore, note that since U1 is independent of U2, the conditional moments
always exist. Hence, conditioning (4.2.66) with respect to U1 gives

(Σ1/2Γ′)⊗2

{
E[D[(U′

1 : U′
2)

′G(U′
1 : U′

2)|U1]]

+ D[E[(U′
1 : U′

2)
′G(U′

1 : U′
2)|U1]]

}
(Σ1/2Γ′)⊗2. (4.2.68)

Utilizing

(U′
1 : U′

2)
′|U1 ∼ Np,n−r(C)(

(
U1

0

)
,

(
0 0
0 Ir(A)

)
, I) (4.2.69)

we get, by applying Theorem 2.2.7 (i) and (ii), that (4.2.68) equals

(I + Kp,p)(Σ1/2Γ′
2Γ2Σ1/2)⊗2E[tr(GG)]

+ Σ1/2Γ′
1E[U1GG′U′

1]Γ1Σ1/2 ⊗ Σ1/2Γ′
2Γ2Σ1/2

+ Σ1/2Γ′
2Γ2Σ1/2 ⊗ Σ1/2Γ′

1E[U1GG′U′
1]Γ1Σ1/2

+ (Σ1/2Γ′)⊗2D[E[UGU′|U1]](ΓΣ1/2)⊗2. (4.2.70)

The terms in (4.2.70) will be studied in some detail. It is observed that

E[tr(GG)] = (n − r(C) + 2r(C))E[tr(U1U′
1)

−1]
+ r(C)2E[tr{(U1U′

1)
−1(U1U′

1)
−1}], (4.2.71)

E[U1GGU′
1] = E[U1U′

1] + 2r(C)Ip−r(A) + r(C)2E[(U1U′
1)

−1] (4.2.72)

and

(Σ1/2Γ′)⊗2D[E[UGU′|U1]](ΓΣ1/2)⊗2

= r(C)2D[tr(U1U′
1)

−1]vec(Σ1/2Γ′
2Γ2Σ1/2)vec′(Σ1/2Γ′

2Γ2Σ1/2)
+ (Σ1/2Γ′

1)
⊗2D[U1U′

1](Γ1Σ1/2)⊗2

+ r(C)(Σ1/2Γ′
1)

⊗2C[U1U′
1, tr(U1U′

1)
−1]vec′(Σ1/2Γ′

2Γ2Σ1/2)
+ r(C)vec(Σ1/2Γ′

2Γ2Σ1/2)C[tr(U1U′
1)

−1,U1U′
1](Γ1Σ1/2)⊗2. (4.2.73)
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It follows from Theorem 2.4.14 (iii) and (vi) that (4.2.71) equals

d21 ≡ E[tr(GG)] = n − r(C) + 2r(C) p−r(A)
n−r(C)−p+r(A)−1

+ r(C)2 (p−r(A))(n−r(C)−1)
(n−r(C)−p+r(A))(n−r(C)−p+r(A)−1)(n−r(C)−p+r(A)−3) . (4.2.74)

Moreover, the moments in (4.2.72) are calculated:

d31Ip−r(A) ≡ E[U1GGU′
1]

= {n − r(C) + 2r(C) + r(C)2 1
n−r(C)−p+r(A)−1}Ip−r(A), (4.2.75)

and by Theorem 2.4.14 (vii) the covariance matrix in (4.2.73) is identical to

d51vec(Ip−r(A)) ≡ C[U1U′
1, tr(U1U′

1)
−1]

= E[U1U′
1tr(U1U′

1)
−1] − E[U1U′

1]E[tr(U1U′
1)

−1]

= (n−r(C))(p−r(A))−2
n−r(C)−p+r(A)−1 vec(Ip−r(A)) − (n−r(C))(p−r(A))

n−r(C)−p+r(A)−1vec(Ip−r(A))

= − 2
n−r(C)−p+r(A)−1vec(Ip−r(A)). (4.2.76)

Thus, by combining (4.2.65) – (4.2.76) we find that the second term in (4.2.64)
equals

D[S + r(C)SAo(Ao′
SAo)−1Ao′

ΣAo(Ao′
SAo)−1Ao′

S]
= d21(I + Kp,p)(Σ1/2Γ′

2Γ2Σ1/2)⊗2

+ d31Σ1/2Γ′
1Γ1Σ1/2 ⊗ Σ1/2Γ′

2Γ2Σ1/2

+ d31Σ1/2Γ′
2Γ2Σ1/2 ⊗ Σ1/2Γ′

1Γ1Σ1/2

+ d41vec(Σ1/2Γ′
2Γ2Σ1/2)vec′(Σ1/2Γ′

2Γ2Σ1/2)
+ (n − r(C))(I + Kp,p)(Σ1/2Γ′

1Γ1Σ1/2)⊗2

+ d51vec(Σ1/2Γ′
1Γ1Σ1/2)vec′(Σ1/2Γ′

2Γ2Σ1/2)
+ d51vec(Σ1/2Γ′

2Γ2Σ1/2)vec′(Σ1/2Γ′
1Γ1Σ1/2). (4.2.77)

Now (4.2.77) is expressed in the original matrices. In (4.2.57) and (4.2.58) it was
stated that

Σ1/2Γ′
2Γ2Σ1/2 =A(A′Σ−1A)−A′,

Σ1/2Γ′
1Γ1Σ1/2 =Σ − A(A′Σ−1A)−A′.

Hence, (4.2.77) is identical to

D[S + r(C)SAo(Ao′
SAo)−1Ao′

ΣAo(Ao′
SAo)−1Ao′

S]
= d21(I + Kp,p)(A(A′Σ−1A)−A′)⊗2

+ d31(Σ − A(A′Σ−1A)−A′) ⊗ A(A′Σ−1A)−A′

+ d31A(A′Σ−1A)−A′ ⊗ (Σ − A(A′Σ−1A)−A′)
+ d41vec(A(A′Σ−1A)−A′)vec′(A(A′Σ−1A)−A′)
+ (n − r(C))(I + Kp,p)(Σ − A(A′Σ−1A)−A′)⊗2

+ d51vec(Σ − A(A′Σ−1A)−A′)vec′(A(A′Σ−1A)−A′)
+ d51vec(A(A′Σ−1A)−A′)vec′(Σ − A(A′Σ−1A)−A′) (4.2.78)
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and the second expression in (4.2.64) has been determined. Proceeding with the
first one in (4.2.64), the term can be rewritten in the following way:

r(C)(I + Kp,p)E[(SAo(Ao′
SAo)−1Ao′

ΣAo(Ao′
SAo)−1Ao′

S)⊗2]

=r(C)(I + Kp,p)(Σ1/2Γ′)⊗2

× E[E[(UU′
1(U1U′

1)
−1(U1U′

1)
−1U1U′)⊗2|U1]](ΓΣ1/2)⊗2,

which by (4.2.69) and Theorem 2.2.9 (ii) equals

r(C)(I + Kp,p)
{

(Σ1/2Γ′
1Γ1Σ1/2)⊗2 + (Σ1/2Γ′

2Γ2Σ1/2)⊗2E[(tr(U1U′
1)

−1)2]

+ vec(Σ1/2Γ′
2Γ2Σ1/2)vec′(Σ1/2Γ′

2Γ2Σ1/2)E[tr{(U1U′
1)

−1(U1U′
1)

−1}]
+ (Σ1/2Γ′

2Γ2Σ1/2)⊗2E[tr{(U1U′
1)

−1(U1U′
1)

−1}]
+ (Σ1/2Γ′

2Γ2Σ1/2) ⊗ (Σ1/2Γ′
1Γ1Σ1/2)E[tr(U1U′

1)
−1]

+ (Σ1/2Γ′
1Γ1Σ1/2) ⊗ (Σ1/2Γ′

2Γ2Σ1/2)E[tr(U1U′
1)

−1]
+ vec(E[Σ1/2Γ′

1(U1U′
1)

−1Γ1Σ1/2])vec′(Σ1/2Γ′
2Γ2Σ1/2)

+ vec(Σ1/2Γ′
2Γ2Σ1/2)vec′(E[Σ1/2Γ′

1(U1U′
1)

−1Γ1Σ1/2])
+ E[Σ1/2Γ′

1(U1U′
1)

−1Γ1Σ1/2] ⊗ Σ1/2Γ′
2Γ2Σ1/2

+ Σ1/2Γ′
2Γ2Σ1/2 ⊗ E[Σ1/2Γ′

1(U1U′
1)

−1Γ1Σ1/2]
}

. (4.2.79)

In (4.2.79) it was used that

(I + Kp,p)(Σ1/2Γ′)⊗2Kp,p = (I + Kp,p)(Σ1/2Γ′)⊗2.

Furthermore,

(I + Kp,p)vec(E[Σ1/2Γ′
1(U1U′

1)
−1Γ1Σ1/2]) = 2vec(E[Σ1/2Γ′

1(U1U′
1)

−1Γ1Σ1/2])

and
(I + Kp,p)vec(Σ1/2Γ′

2Γ2Σ1/2) = 2vec(Σ1/2Γ′
2Γ2Σ1/2).

Finally, applying (4.2.70) and (4.2.79) yields (ii) of the theorem, since

n2d2 =d21 + r(C)E[(tr(U1U′
1)

−1)2] + r(C)E[tr{(U1U′
1)

−1(U1U′
1)

−1}],
n2d3 =d31 + r(C)(1 + 1/{p − r(A)})E[tr(U1U′

1)
−1],

n2d4 =d41 + 2r(C)E[tr{(U1U′
1)

−1(U1U′
1)

−1}],
d51+2r(C)/(n − r(C) − p + r(A) − 1) = 0.

A consequence of Theorem 4.2.3 (i) is that Σ̂ is a biased estimator of Σ. Usually,
when working with linear models, it is possible to correct the bias through multi-
plication by a properly chosen constant. This is impossible in the Growth Curve
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model since E[Σ̂] is a function of the within-individuals design matrix A. On the
other hand, unbiased estimators exist and, for example, one is given by

1
n−r(C)S. (4.2.80)

The statistic (4.2.80) is often used as an estimator of Σ in multivariate analysis, in
principal component analysis, canonical correlation analysis and different versions
of factor analysis, for example. However, if a mean value is structured like in the
Growth Curve model, i.e. E[X] = ABC, (4.2.80) is to some extent an unnatural
estimator since Σ is the quadratic variation around the model ABci, where ci is
the ith column of C. The statistic (4.2.80) describes only the variation around the
sample mean. The sample mean in turn varies around the estimated model, but
this is not utilized when applying (4.2.80).
The use of (4.2.80) in the Growth Curve model is solely based on its unbiasedness.
However, when the number of columns n in C is small, this argument must be
taken with caution, since S is Wishart distributed and the Wishart distribution is
a non-symmetric distribution.
In the standard MANOVA model, i.e. when A = I in the Growth Curve model,
the statistic (4.2.80) is used as an unbiased estimator of Σ. However, it is known
that (4.2.80) is inadmissible with respect to many reasonable loss functions. Fur-
thermore, using a conditional argument in the MANOVA model, the likelihood
approach leads to (4.2.80). Hence, besides unbiasedness, (4.2.80) has also other
desirable qualities. Therefore, we will require that any unbiased estimator of the
dispersion matrix in the Growth Curve model reduces to (4.2.80), if A = I.
The estimator Σ̂, given by (4.2.38), combines the deviation between the obser-
vations and the sample mean, as well as the deviation between the sample mean
and the estimated model. Hence, the maximum likelihood estimator uses two
sources of information, whereas (4.2.80) uses only one. Intuitively the maximum
likelihood estimator should be preferable, although one must remember that ev-
erything depends on the number of observations and the choice of design matrix
A.
As previously mentioned, the main drawback of Σ̂ is that its distribution is not
available in a simple form, and it seems difficult to master this problem. Further-
more, it follows by Theorem 4.2.3 (i) that Σ̂ underestimates Σ on average. This
can be overcome, and the next theorem presents an unbiased estimator, which is
solely a function of Σ̂ and reduces to (4.2.80), if A = I.

Theorem 4.2.4. Let Σ̂ be given by (4.2.38) and

e1 = r(C) n−r(C)−2p+2r(A)−1
(n−r(C)−p+r(A)−1)(n−r(C)−p+r(A)) .

Then Σ̂ + e1A(A′Σ̂−1A)−A′ is an unbiased estimator of Σ.

Proof: Observe that A′Σ̂−1 = nA′S−1, and according to Theorem 2.4.13 (i)
and Theorem 2.4.14 (i),

E[A(A′S−1A)−A′] = (n − r(C) − p + r(A))A(A′Σ−1A)−A′.
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Hence, from Theorem 4.2.3 it follows that

E[Σ̂ + e1A(A′Σ̂−1A)−A′]

=Σ +
{
−r(C) 1

n
n−r(C)−2p+2r(A)−1
n−r(C)−p+r(A)−1

+r(C) n−r(C)−2p+2r(A)−1
(n−r(C)−p+r(A)−1)(n−r(C)−p+r(A))

1
n (n − r(C) − p + r(A))

}
× A(A′Σ−1A)−A′ = Σ.

Since there exist two unbiased estimators of Σ, i.e. the one in Theorem 4.2.4 and
another in (4.2.80), we have to decide which of them should be used. Intuitively,
the estimator of Theorem 4.2.4 would be better since it uses two sources of vari-
ation. However, if the mean model E[X] = ABC does not fit the data, (4.2.80)
would be more natural to use. One way to compare these estimators is to study
their dispersion matrices. It follows from Theorem 2.4.14 (ii) that

D[
1

n − r(C)
S] =

1
n − r(C)

(I + Kp,p)Σ ⊗ Σ. (4.2.81)

Moreover, since by Theorem 2.4.13 (iii),

I − A(A′S−1A)−A′S−1 = SAo(Ao′
SAo)−Ao′

is independent of A(A′S−1A)−A′, and by Theorem 2.2.4 (iii), XC′(CC′)−CX′

is independent of S:

D[Σ̂ +
1
n

e1A(A′S−1A)−A′] = D[Σ̂] + D[
1
n

e1A(A′S−1A)−A′]

+ C[
1
n
S,

1
n

e1A(A′S−1A)−A′] + C[
1
n

e1A(A′S−1A)−A′,
1
n
S].

However, Theorem 2.4.13 (iii) states that the matrices A(A′S−1A)−A′ and S −
A(A′S−1A)−A′ are independently distributed and thus the covariance is given
by

C[
1
n
S,

1
n

e1A(A′S−1A)−A′] = C[
1
n
S − 1

n
A(A′S−1A)−A′,

1
n

e1A(A′S−1A)−A′]

+ C[
1
n
A(A′S−1A)−A′,

1
n

e1A(A′S−1A)−A′] =
1
n2

e1D[A(A′S−1A)−A′].

Consequently,

D[Σ̂ +
1
n

e1A(A′S−1A)−A′] = D[Σ̂] +
e2
1 + 2e1

n2
D[A(A′S−1A)−A′]

=D[Σ̂] +
e2
1 + 2e1

n2
(n − r(C) − p + r(A))(I + Kp,p)(A(A′Σ−1A)−A′)⊗2,

(4.2.82)
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where Theorem 2.4.14 (ii) has been used in the last equality. Hence, (4.2.81)
should be compared to (4.2.82). Unfortunately, in order to illuminate the difference
between (4.2.81) and (4.2.82), it seems difficult to discuss it without involving a
particular matrix A.

4.2.3 Moments of estimators for the MLNM(ABC + B2C2)
For the MLNM(ABC + B2C2), the estimators were presented in Theorem 4.1.9.
Let us recall the estimators and the definitions of the involved matrices:

KB̂L1 = K(A′S−1
1 A)−A′S−1

1 YH′(HH′)−L1, (4.2.83)

where C (K′) ⊆ C (A′), C (L1) ⊆ C (H),

Y =X(I − C′
2(C2C′

2)
−C2),

H =C(I − C′
2(C2C′

2)
−C2),

S1 =Y(I − H′(HH′)−H)Y′,
and

B̂2L2 =(X − AB̂C)C′
2(C2C′

2)
−L2, (4.2.84)

where C (L2) ⊆ C (C2(C′
1)

o), and

nΣ̂ = (X − AB̂C − B̂2C2)(X − AB̂2C − B̂C2)

=S1 + S1Ao(Ao′
S1Ao)−Ao′

XH′(HH′)−HX′Ao(Ao′
S1Ao)−Ao′

S1. (4.2.85)

Observe that the estimators in (4.2.83) and (4.2.85) have a similar structure as the
estimators for the Growth Curve model given by (4.1.7) and (4.1.8). Therefore,
the techniques developed in the previous paragraph can be applied. The only
difference is that in (4.2.83) and (4.2.85)

S1 ∼Wp(Σ, n − r(C′ : C′
2)),

Ao′
XH′(HH′)−HX′Ao ∼Wp−r(A)(Ao′

ΣAo, r(C′ : C′
2) − r(C′

2)),

whereas in (4.1.7) and (4.1.8), S ∼ Wp(Σ, n−r(C)) and Ao′
XC′(CC′)−CX′Ao ∼

Wp−r(A)(Ao′
ΣAo, r(C)), i.e. there is a difference in the number of degrees of

freedom. Furthermore, it follows from (4.2.84) that B̂2L2 is a linear function
of AB̂C. Therefore, the moments for B̂2L2 are fairly easy to obtain from the
moments of AB̂C. In the next theorem we list the first and second order moments.

Theorem 4.2.5. For the MLNM(ABC + B2C2), let KB̂L1, B̂2L2 and Σ̂ be
given by (4.2.83), (4.2.84) and (4.2.85), respectively. Put

c1 = n−r(C′:C′
2)−1

n−r(C′:C′
2)−p+r(A)−1 ,

c2 = n
n−r(C′:C′

2)−p+r(A)c1,

c3 = 1
n

n−r(C′:C′
2)−2(r(A)−p)−1

n−r(C′:C′
2)−p+r(A)−1 r(C′ : C′

2),

c4 = n
n−r(C′:C′

2)−p+r(A)c3.
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Then,

E[KB̂L1] = KBL1;(i)

D[KB̂L1] = c1L′
1(HH′)−L1 ⊗ K(A′Σ−1A)−K′;(ii)

D[ ̂KB̂L1] = c2L′
1(HH′)−L1 ⊗ K(A′Σ̂−1A)−K′(iii)

is an unbiased estimator of D[KB̂L1];

E[B̂2L2] = B2L2;(iv)

D[B̂2L2] = L′
2(C2C′

2)
−L2 ⊗ Σ(v)

+ c1L′
2(C2C′

2)
−C2C′(HH′)−CC′

2(C2C′
2)

−L2 ⊗ A(A′Σ−1A)−A′;

E[nΣ̂] = Σ − c3A(A′Σ−1A)−A′;(vi)

D
̂[B̂2L2] = n

n−r(C2)
L′

2(C2C′
2)

−L2 ⊗ Σ̂(vii)

+ c4L′
2(C2C′

2)
−L2 ⊗ A(A′Σ̂−1A)−A′

+ c2L′
2(C2C′

2)
−C2C′(HH′)−CC′

2(C2C′
2)

−L2 ⊗ A(A′Σ̂−1A)−A′

is an unbiased estimator of D[B̂2L2];

1
n − r(C : C′

2)
S1 and Σ̂ + c4A(A′Σ̂A)−A′(viii)

are both unbiased estimators of Σ.

Proof: By comparing Theorem 4.1.1 and Theorem 4.1.9 it follows that (i), (ii),
(iii), (vi) and (viii) are established via Theorem 4.2.1 (iii) and (iv), Theorem 4.2.3
(i) and Theorem 4.2.4.
Moreover,

E[B̂2L2] = E[(X − AB̂C)]C′
2(C2C′

2)
−L2

= (ABC + B2C2 − ABC)C′
2(C2C′

2)
−L2 = B2L2,

and (iv) is verified.
Concerning (v), observe that XC′

2 is independent of S1. Therefore, we will condi-
tion on S1 and obtain

D[B̂2L2] = E[D[B̂2L2|S1]] + D[E[B̂2L2|S1]] = E[D[B̂2L2|S1]],

since

E[B̂2L2|S1] = ABCC′
2(C2C′

2)
−L2 + B2L − E[AB̂CC′

2(C2C′
2)

−L2|S1]
= ABCC′

2(C2C′
2)

−L2 + B2L − A(A′S−1
1 A)−A′S−1

1 ABCC′
2(C2C′

2)
−L2

= B2L2.
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Now

E[D[B̂2L2|S1]] = D[XC′
2(C2C′

2)
−L2] + E[D[AB̂CC′

2(C2C2)−L2|S1]]

= L′
2(C2C′

2)
−L2 ⊗ Σ + D[AB̂CC′

2(C2C′
2)

−L2],

where in the last equality it has been used that

D[AB̂CC′
2(C2C′

2)
−L2] = E[D[AB̂CC′

2(C2C′
2)

−L2|S1]].

Finally, for proving (vii), we observe that

E[L′
2(C2C′

2)
−L2 ⊗ (Σ̂ + c4A(A′Σ̂−1A)−A′)] = L′

2(C2C′
2)

−L2 ⊗ Σ

and

E[c2A(A′Σ̂−1A)−A′] = A(A′Σ−1A)−A′.

4.2.4 Moments of estimators for the MLNM(
∑3

i=1 AiBiCi)

Already for the ordinary Growth Curve model, i.e. MLNM(ABC), distributions
of the maximum likelihood estimators are difficult to find. In Theorem 4.1.6
estimators for the MLNM(

∑3
i=1 AiBiCi) were given, and one can see that the

expressions are stochastically much more complicated than the estimators for the
MLNM(ABC). Therefore, approximations are needed and then at least the first
and second order moments of estimators have to be obtained. Before studying
B̂i, i = 1, 2, 3, the estimated mean structure Ê[X] =

∑m
i=1 AiB̂iCi and Σ̂ in

the general model MLNM(
∑m

i=1 AiBiCi) will be treated. Thereafter we look
into some details of calculating D[B̂i], i = 1, 2, 3. The scheme of derivation and
calculations is very similar to the ones presented for obtaining D[Ê[X]] and E[Σ̂]
for the MLNM(ABC).

First of all we are going to show that in the MLNM(
∑m

i=1 AiBiCi), under the
uniqueness conditions presented in Theorem 4.1.13, the maximum likelihood esti-
mators of Bi are unbiased, and then it follows that Ê[X] =

∑m
i=1 AiB̂iCi is also

unbiased. In Theorem 4.1.7, the estimators B̂r, r = 1, 2, . . . , m, were presented.
Since C (C′

j) ⊆ C (C′
k), for j ≥ k, it follows from Lemma 4.1.3 that P′

rS
−1
r is
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independent of XC′
r. Hence,

E[B̂r] = E[(A′
rP

′
rS

−1
r PrAr)−1A′

rP
′
rS

−1
r (E[X] −

m∑
i=r+1

AiB̂iCi)]C′
r(CrC′

r)
−1

= Br − E
[
(A′

rP
′
rS

−1
r PrAr)−1A′

rP
′
rS

−1
r

×
{ m∑

i=r+1

AiB̂iCi −
m∑

i=r+1

AiBiCi

}]
C′

r(CrC′
r)

−1

= Br − E
[
(A′

rP
′
rS

−1
r PrAr)−1A′

rP
′
rS

−1
r

×
{

(I − Tr+1)E[XC′
r+1(Cr+1C′

r+1)
−Cr+1]

+ Tr+1

m∑
i=r+2

AiB̂iCi −
m∑

i=r+1

AiBiCi

}]
C′

r(CrC′
r)

−1

= Br − E
[
(A′

rP
′
rS

−1
r PrAr)−1A′

rP
′
rS

−1
r Tr+1

×
{ m∑

i=r+2

AiB̂iCi −
m∑

i=r+2

AiBiCi

}]
C′

r(CrC′
r)

−1

= Br − E
[
(A′

rP
′
rS

−1
r PrAr)−1A′

rP
′
rS

−1
r Tr+1

×
{

(I − Tr+2)E[XC′
r+2(Cr+2C′

r+2)
−Cr+2]

+
m∑

i=r+2

AiB̂iCi − Tr+2

m∑
i=r+2

AiB̂iCi −
m∑

i=r+2

AiBiCi

}]
C′

r(CrC′
r)

−1

= Br − E
[
(A′

rP
′
rS

−1
r PrAr)−1A′

rP
′
rS

−1
r Tr+1Tr+2

×
{ m∑

i=r+3

AiB̂iCi −
m∑

i=r+3

AiBiCi

}]
C′

r(CrC′
r)

−1

= . . . = Br.

These calculations establish the following theorem.

Theorem 4.2.6. The estimator B̂i in Theorem 4.1.7 is an unbiased estimator
under the uniqueness conditions in Theorem 4.1.13.

Most of the results in this paragraph will rest on Lemma 4.1.3, Lemma 4.1.4 and
the following result.

Lemma 4.2.1. Let Vr
11 and Vr

11 be as in Lemma 4.1.4 (iv), and let h(•) be any
measurable function of (Vr

11)
−1. Then

E[(Vr−1
11 )−1h((Vr

11)
−1)] = cr−1E[(Vr

11)
−1h((Vr

11)
−1)],
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where

cr−1 =
n − r(Cr) − mr−1 − 1

n − r(Cr−1) − mr−1 − 1
, (4.2.86)

mr = p − r(A1 : A2 : . . . : Ar) + r(A1 : A2 : . . . : Ar−1). (4.2.87)

Proof: First Lemma 4.1.4 (iv), Definition 2.4.2 and Corollary 2.4.8.1 will be
utilized. It follows that there exists a unique lower triangular matrix T such that

Vr
11 =TT′,

Vr−1
11 =TFT′,

where F ∼ MβI(mr−1, n − r(Cr−1), r(Cr−1) − r(Cr)) is independent of T. The
lemma is verified, if E[F−1] is shown to equal to cr−1I. Since F−1 = I + Z, where
Z ∼ MβII(mr−1, n − r(Cr−1), r(Cr−1) − r(Cr)), Theorem 2.4.15 (i) gives

E[F−1] = cr−1I.

In Corollary 4.1.8.1, Ê[X] =
∑m

i=1 AiB̂iCi was presented as a sum of m depen-
dent random variables, where each variable is of the same type as Ê[X] in the
MLNM(ABC). This will be utilized now. We will show how to derive the disper-
sion matrix D[Ê[X]], where Ê[X] is given by Corollary 4.1.8.1. In the same way
as unbiasedness of B̂i was verified, it can be shown that

∑m
i=1 AiB̂iCi is unbi-

ased. The difference is that now we do not have to rely on uniqueness conditions,
because

∑m
i=1 AiB̂iCi is always unique. Thus, E[Ê[X]] = E[X] and

D[Ê[X]] = D[Ê[X] − E[X]] = D[
m∑

i=1

(I − Ti)(X − E[X])C′
i(CiC′

i)
−Ci].

Hence,
D[(I − Tr)(X − E[X])C′

r(CrC′
r)

−Cr]

and the covariance matrix

C[(I − Tr)(X − E[X])C′
r(CrC′

r)
−Cr, (I − Ts)(X − E[X])C′

s(CsC′
s)

−Cs]

will be considered for arbitrary r and s. By summing up all necessary dispersion
and covariance matrices, D[Ê[X]] is obtained. The derivation, however, is left to
the reader.

Theorem 4.2.7. Let cr and mr be defined by (4.2.86) and (4.2.87), respectively.
Put

di,r = cici+1 × · · · × cr−1er,
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where

er =
(p − mr)(n − r(Cr) − 1)

(n − r(Cr) − mr−1 − 1)(n − r(Cr) − p + mr − 1)
.

Furthermore, define

fr =
n − r(Cr) − 1

n − r(Cr) − mr − 1

and

Ki =ΣGi−1(G′
i−1ΣGi−1)−1G′

i−1Σ − ΣGi(G′
iΣGi)−1G′

iΣ,

Li =ΣGi−1(G′
i−1ΣGi−1)−1G′

i−1Ai(A′
iGi−1(G′

i−1ΣGi−1)−1G′
i−1Ai)−

× A′
iGi−1(G′

i−1ΣGi−1)−1G′
i−1Σ.

Assume that er and fr are finite and positive. Then, for the MLNM(
∑m

i=1 AiBiCi)

D[(I − Tr)(X − E[X])C′
r(CrC′

r)
−Cr] = C′

r(CrC′
r)

−Cr ⊗ (
r−1∑
i=1

di,rKi + frLr)

in the notation of Theorem 4.1.7 and Lemma 4.1.3.

Proof: Let

Rr−1

= Ar(A′
rGr−1(G′

r−1WrGr−1)−1G′
r−1A

′
r)

−A′
rGr−1(G′

r−1WrGr−1)−1G′
r−1.

(4.2.88)

Since

D[(I − Tr)(X − E[X])C′
r(CrC′

r)
−Cr]

= C′
r(CrC′

r)
−Cr ⊗ E[(I − Tr)Σ(I − Tr)′], (4.2.89)

E[(I−Tr)Σ(I−Tr)′] has to be considered. When utilizing the results and notation
of Lemma 4.1.4 and Lemma 4.2.1, it follows that

E[(I−Tr)Σ(I − Tr)′]
=E[Z1,r−1Rr−1ΣR′

r−1Z
′
1,r−1]

=Σ1/2(Γ1)′E[N1Z2,r−1Rr−1ΣR′
r−1Z

′
2,r−1N

′
1]Γ1Σ1/2

=Σ1/2(Γ1
1)

′E[Z2,r−1Rr−1ΣR′
r−1Z

′
2,r−1]Γ

1
1Σ

1/2

+ E[tr{(V1
11)

−1Z2,r−1Rr−1ΣR′
r−1Z

′
2,r−1}]Σ1/2(Γ1

2)
′Γ1

2Σ
1/2. (4.2.90)

For the last equality in (4.2.90) it has been utilized that V1
12 = U1U′

2 for some
normally distributed U′ = (U′

1 : U′
2) where U2 is uncorrelated with U1, Z2,r−1

and Rr−1. It is worth observing that (4.2.90) is a recurrence relation. Now
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the expectation of the trace function on the right-hand side of (4.2.90) will be
calculated. Note that Rr−1 is a function of G′

r−1WrGr−1:

Rr−1 = f(G′
r−1WrGr−1),

and with obvious notation,

Z2,r−1 = f(G′
1W2G1,G′

2W3G2, . . . ,G′
r−1WrGr−1).

However,
G′

iWi+1Gi = GiW2Gi + G′
iX(PC′

2
− PC′

i+1
)X′Gi.

Thus, according to Lemma 4.1.4, both Rr−1 and Z2,r−1 are functions of V2
11 and

random quantities independent of V1
11 and V2

11. This means that we can apply
Lemma 4.2.1 and obtain

E[tr{(V1
11)

−1Z2,r−1Rr−1ΣR′
r−1Z

′
2,r−1}]

= c1E[tr{(V2
11)

−1V2
11(Γ

2
1)

′(V2
11)

−1Z3,r−1Rr−1ΣR′
r−1Z

′
3,r−1(V

2
11)

−1Γ2
1V

2
11}]

= c1E[tr{(V2
11)

−1Z3,r−1Rr−1ΣR′
r−1Z

′
3,r−1}], (4.2.91)

which is a recurrence relation. Therefore, when continuing in the same manner,

E[tr{(V1
11)

−1Z2,r−1Rr−1ΣR′
r−1Z

′
2,r−1}]

= c1c2 × · · · × cr−1E[tr{(Vr
11)

−1Er(E′
r(V

r
11)

−1Er)−E′
r(V

r
11)

−1}] = d1,r,

(4.2.92)

where
Er = Γr−1

1 Γr−2
1 × · · · × Γ1

1Σ
−1/2Ar. (4.2.93)

For the last equality in (4.2.92) observe that we have to calculate E[tr{(Vr
11)

−1}−
tr{(Vr

11)
−1}] (see also Problem 2 in §2.4.9). Finally, we return to (4.2.90) and then,

utilizing that it is a recurrence relation together with Lemma 4.1.4 (v) and (vi)
and Lemma 4.2.1, we get

E[(I−Tr)Σ(I − Tr)′]

=
r−1∑
i=1

di,rKi + Σ1/2(Γ1
1)

′ × · · · × (Γr−2
1 )′(Γr−1

1 )′E
[
Er(E′

r(V
r
11)

−1Er)−

× E′
r(V

r
11)

−1(Vr
11)

−1Er(E′
r(V

r
11)

−1Er)−E′
r

]
Γr−1

1 Γr−2
1 × · · · × Γ1

1Σ
1/2

=
r−1∑
i=1

di,rKi + frLr. (4.2.94)
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Theorem 4.2.8. Let r < s and let Ki and Li be defined as in Theorem 4.2.7.
Then, using the notation of Theorem 4.1.7 for the MLNM(

∑m
i=1 AiBiCi), when

er is finite and positive,

C[(I − Tr)(X − E[X])C′
r(CrC′

r)
−Cr, (I − Ts)(X − E[X])C′

s(CsC′
s)

−Cs]

=
{−C′

s(CsC′
s)

−Cs ⊗ dr,sKr, if r > 1;
C′

s(CsC′
s)

−Cs ⊗ (d1,sK1 + Ls), if r = 1.

Proof: In order to simplify the presentation we once again use the notation
PC′

j
= C′

j(CjC′
j)

−Cj . The first observation is that (X − E[X])PC′
r

can be
written

(X − E[X])(PC′
s
+ PC′

r
− PC′

s
),

and notice that (X − E[X])PC′
s

is independent of I − Tr, I − Ts and (X −
E[X])(PC′

r
− PC′

s
). Hence,

C[(I−Tr)(X − E[X])PC′
r
, (I − Ts)(X − E[X])PC′

s
]

= PC′
s
⊗ E[(I − Tr)Σ(I − T′

s)].

From now on we will discuss E[(I−Tr)Σ(I−T′
s)] in a manner similar to the case

when r = s, and it turns out that when r < s, r > 1, there exists a recurrence
relation which is somewhat easier to handle than when r = s. Now we can show
that

E[(I−Tr)Σ(I − T′
s)]

= E[Z1,r−1Rr−1ΣR′
s−1Z

′
1,s−1]

= Σ1/2(Γ1
1)

′E[Z2,r−1Rr−1ΣR′
s−1Z

′
2,s−1]Γ

1
1Σ

1/2

= . . . = Σ1/2(Γ1
1)

′ × · · · × (Γr−2
1 )′(Γr−1

1 )′E
[
Γr−1

1 Γr−2
1

× · · · × Γ1
1Σ

−1/2Rr−1ΣR′
s−1Z

′
r,s−1

]
Γr−1

1 Γr−2
1 × · · · × Γ1

1Σ
1/2, (4.2.95)

and this is true if

E[tr{(Vk
11)

−1Zk+1,r−1Rr−1ΣR′
s−1Z

′
k+1,s−1}] = 0, k + 1 < r < s. (4.2.96)

To verify (4.2.96), some calculations are performed, and the expectation on the
left hand side equals:

ckck+1 × · · · × cr−2E[tr{(Vr−1
11 )−1Γr−1

1 Γr−2
1

× · · · × Γ1
1Σ

−1/2(I − Mr)ΣR′
s−1Z

′
r,s−1}]

=ckck+1 × · · · × cr−1E[tr{(Vr
11)

−1Γr
1Γ

r−1
1

× · · · × Γ1
1Σ

−1/2(I − I)ΣR′
s−1Z

′
r+1,s−1}] = 0.

When continuing, we obtain that the right hand side of (4.2.95) equals

Σ1/2(Γ1
1)

′ × · · · × (Γr−2
1 )′(Γr−1

1 )′E[Γr−1
1 Γr−2

1

× · · · × Γ1
1Σ

−1/2(I − Mr)ΣR′
s−1Z

′
r,s−1]Γ

r−1
1 Γr−2

1 × · · · × Γ1
1Σ

1/2.
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After some additional calculations, this expression can be shown to be identical to

−E[tr{(Vr
11)

−1Γr
1Γ

r−1
1 × · · · × Γ1

1Σ
−1/2ΣR′

s−1Z
′
r+1,s−1}]Σ1/2(Γ1

1)
′

× · · · × (Γr−1
1 )′(Γr

2)
′Γr

2Γ
r−1
1 × · · · × Γ1

1Σ
1/2

= −crcr+1 × · · · × cs−1E[tr{(Vs
11)

−1Es(E′
s(V

s
11)

−1Es)−E′
s(V

s
11)

−1}]
× Σ1/2(Γ1

1)
′ × · · · × (Γr−1

1 )′(Γr
2)

′Γr
2Γ

r−1
1 × · · · × Γ1

1Σ
1/2

= −dr,sKr,

where Es is given in (4.2.93).
It remains to examine the case r = 1:

E[(I−T1)Σ(I − Ts)] = E[M1ΣR′
s−1Z

′
1,s−1]

= Σ1/2(Γ1
1)

′E[Γ1
1Σ

−1/2ΣR′
s−1Z

′
2,s−1]Γ

1
1Σ

1/2

+ E[tr{(V1
11)

−1Γ1
1Σ

−1/2ΣR′
s−1Z

′
2,s−1}]Σ1/2(Γ1

2)
′Γ1

2Σ
1/2

= Σ1/2(Γ1
1)

′Γ1
1Σ

−1/2ΣE
[
Σ−1/2(Γ1

1)
′

× · · · × (Γs−1
1 )′(Vs−1

11 )−1Es(E′
s(V

s−1
11 )−1Es)−E′

s

]
Γs−1

1

× · · · × Γ1
1Σ

1/2 + d1,sK1 = Ls + d1,sK1,

where the last identity follows from Problem 1 in §2.4.9.
Now the expectation of Σ̂ will be considered, where Σ̂ is given in Theorem 4.1.7.
The necessary calculations are similar but easier to carry out than those presented
above, because the matrix Ri is not included in the expressions given below.

Theorem 4.2.9. Let Ki, i = 1, 2, . . . , m, be defined in Theorem 4.2.7, let cr and
mj be defined in Lemma 4.2.1, C0 = In, and put

gi,j = cici+1 × · · · × cj−1mj/(n − r(Cj) − mj − 1), i < j,

gj,j = mj/(n − r(Cj) − mj − 1)

which are supposed to be finite and positive. Then, for Σ̂ given in Theorem 4.1.7,

E[nΣ̂] =
m∑

j=1

(r(Cj−1) − r(Cj))

×
(

j−1∑
i=1

gi,j−1Ki + ΣGj−1(G′
j−1ΣGj−1)−1G′

j−1Σ

)

+ r(Cm)

(
m∑

i=1

gi,mKi + ΣGr−1(G′
r−1ΣGr−1)−1G′

r−1Σ

)
,

where
∑0

i=1 gi,j−1Ki = 0.

Proof: From Theorem 4.1.7 it follows that the expectation of PjXFjF′
jX

′P′
j ,

j = 1, 2, . . . , m, and Pm+1XPC′
m
X′P′

m+1 are needed, where Fj = PC′
j−1

(I−PC′
j
).
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Since XFjF′
jX

′ as well as XPC′
m
X′ are independent of Pj and Pm+1, respectively,

and

E[XFjF′
jX

′] =(r(Cj−1) − r(Cj))Σ,

E[XPC′
m
X′] =r(Cm)Σ,

the theorem is verified, since the following lemma is valid.

Lemma 4.2.2. In the notation of Theorem 4.2.9

E[PrΣP′
r] =

r−1∑
i=1

gi,r−1Ki+ΣGr−1(G′
r−1ΣGr−1)−1G′

r−1Σ, r = 1, 2, . . . , m+1,

where
∑0

i=1 gi,r−1Ki = 0.

Proof: From Lemma 4.1.4 it follows that

PrΣP′
r = Z1,r−1ΣZ′

1,r−1

and then the calculations, started at (4.2.90), may be repeated with the exception
that we do not have to take care of Rr−1 in (4.2.90).

As shown in Theorem 4.2.9, the estimator Σ̂ is not an unbiased estimator. This
is by no means unexpected because this has already been observed when m = 1
in the MLNM(

∑m
i=1 AiBiCi), i.e. the Growth Curve model. The next lemma will

serve as a basis for obtaining unbiased estimators of Σ.

Lemma 4.2.3. Let

ki,r = n(gi+1,r−1 − gi,r−1)/(n − r(Ci) − mi),

where gi,r−1, i = 1, 2, . . . , r − 1, is defined in Theorem 4.2.9, gr,r−1 = 1, and
suppose that ki,r are positive and finite. Then

E[PrΣP′
r] + E[

r−1∑
i=1

ki,rAi(A′
iP

′
iΣ̂

−1PiAi)−A′
i] = Σ,

where
∑0

i=1 ki,rAi(A′
iP

′
iΣ̂

−1PiAi)−A′
i = 0.

Proof: First we are going to show that

A′
iP

′
iS

−1
i Pr+1 = 0, r = i, i + 1, . . . , m, (4.2.97)

holds. If r = i, we have

A′
iP

′
iS

−1
i Pi+1 = A′

iP
′
iS

−1
i TiPi = 0,

since A′
iP

′
iS

−1
i Ti = 0. Then we may consider

A′
iP

′
iS

−1
i Pi+2 = A′

iP
′
iS

−1
i Ti+1Pi+1 = A′

iP
′
iS

−1
i Pi+1 = 0.
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Continuing in the same manner we establish (4.2.97). Thus, from Theorem 4.1.7
it follows that

A′
iP

′
iΣ̂

−1 = nA′
iP

′
iS

−1
i ,

and with the help of Lemma 4.1.3 and some calculations it implies that

E[kirAi(A′
iP

′
iΣ̂

−1PiAi)−A′
i]

= (gi+1,r−1 − gi,r−1)(Σ − ΣGi(G′
iΣGi)−1G′

iΣ).

Summing over i establishes the lemma.
By combining Theorem 4.2.9, Lemma 4.2.2 and Lemma 4.2.3 the next theorem is
verified.

Theorem 4.2.10. For Σ̂ given in Theorem 4.1.7, the expression

Σ̂ +
1
n

m∑
j=1

(r(Cj−1) − r(Cj))
j−1∑
i=1

ki,jAi(A′
iP

′
iΣ̂

−1PiAi)−A′
i

+
1
n

r(Cm)
m∑

i=1

ki,m+1Ai(A′
iP

′
iΣ̂

−1PiAi)−A′
i, C0 = In,

is an unbiased estimator of Σ, where 0 < ki,j < ∞ are defined in Lemma 4.2.3

and
∑0

i=1 ki,jAi(A′
iP

′
iΣ̂

−1PiAi)−A′
i = 0.

Now we start to derive the moments of B̂1, B̂2, B̂3 given in Theorem 4.1.6. For-
tunately, we can rely on notation and ideas given in the previous discussion about
Σ̂ and Ê[X]. However, some modifications have to be performed and since the
topic is complicated we once again go into details. Throughout, the estimators are
assumed to be unique and it is of some interest to see how and when the unique-
ness conditions in Theorem 4.1.12 have to be utilized. In Theorem 4.2.6 it was
observed that B̂1, B̂2 and B̂3 are unbiased under uniqueness conditions. When
considering the dispersion matrices of B̂1, B̂2 and B̂3, we start with B̂3.
For B̂3, it follows from Theorem 4.1.6 and Lemma 4.1.3 that

B̂3 =(A′
3G2(G′

2W3G2)−1G′
2A3)−1A′

3G2(G′
2W3G2)−1G′

2XC′
3(C3C′

3)
−1,

(4.2.98)

where G2 and W3 are defined in Lemma 4.1.3. Thus, we see from (4.2.98) that
B̂3 has the same structure as B̂ in the MLNM(ABC) and therefore, by utilizing
Theorem 4.2.1 (ii), if n − k3 − m2 + q3 − 1 > 0,

D[B̂3] =
n − k3 − 1

n − k3 − m2 + q3 − 1
(C3C′

3)
−1 ⊗ (A′

3G2(G′
2ΣG2)−1G′

2A3)−1.

It is more complicated to obtain the dispersion matrix for B̂2. The reason is that
B̂2 is a function of B̂1 which has to be taken into account. From Lemma 4.1.3 (ii)
it follows that

T′
1S

−1
2 T1 =G1(G′

1W2G1)−1G′
1,

P′
3S

−1
3 P3 =G2(G′

2W3G2)−1G′
2.
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Because of the assumption of uniqueness, we can instead of B̂2 study the linear
combinations

G′
1A2B̂2C2

since
(A′

2G1G′
1A2)−1A′

2G1G′
1A2B̂2C2C′

2(C2C′
2)

−1 = B̂2.

Furthermore, using the notation of Theorem 4.1.6 and Lemma 4.1.3, we have shown
that B̂2 is an unbiased estimator and therefore, when obtaining the dispersion
matrix of B̂2, we consider

G′
1A2(B̂2 − B2)C2. (4.2.99)

From here the technical derivations start. After some transformations the expres-
sion in (4.2.99) can be written as follows:

G′
1A2(B̂2 − B2)C2

=G′
1A2(A′

2G1(G′
1W2G1)−1G′

1A2)−1A′
2G1(G′

1W2G1)−1G′
1

× (X − E[X] − A3(B̂3 − B3)C3)C′
2(C2C′

2)
−1C2

=G′
1R1{(X − E[X])(PC′

2
− PC′

3
) + (X − E[X])PC′

3
− R2(X − E[X])PC′

3
}

=G′
1R1(X − E[X])(PC′

2
− PC′

3
) + G′

1R1(I − R2)(X − E[X])PC′
3
,

where R1 and R2 are as in (4.2.88), and

PC′
i
= C′

i(CiC′
i)

−Ci.

The basic idea behind the decomposition of G′
1A2(B̂2−B2)C2 is that the compo-

nents are partly independent: (X−E[X])PC′
3

is independent of (X−E[X])(PC′
2
−

PC′
3
), R1 and R2, since (see Theorem 2.2.4 (ii)) (PC′

2
− PC′

3
)PC′

3
= 0, (I −

PC′
2
)(PC′

2
− PC′

3
) = 0 and (I − PC′

2
)PC′

3
= 0. Thus,

C[G′
1R1(X − E[X])(PC′

2
− PC′

3
),G′

1R1(I − R2)(X − E[X])PC′
3
] = 0,

and therefore

D[G′
1A2(B̂2 − B2)C2]

= D[G′
1R1(X − E[X])(PC′

2
− PC′

3
)] + D[G′

1R1(I − R2)(X − E[X])PC′
3
].

(4.2.100)

The two expressions on the right hand side of (4.2.100) will be treated separately.
The first term equals

D[G′
1R1(X − E[X])(PC′

2
− PC′

3
)] = (PC′

2
− PC′

3
) ⊗ E[G′

1R1ΣR′
1G1],

and the rest follows from the treatment of the MLNM(ABC); e.g. see (4.2.13).
Thus,

D[G′
1R1(X − E[X])(PC′

2
− PC′

3
)] = (PC′

2
− PC′

3
)

⊗ n − r(C2) − 1
n − r(C1) − m1 + r(G′

1A2) − 1
G′

1A2(A′
2G1(G′

1ΣG1)−1G′
1A2)−1A′

2G1.

(4.2.101)
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The second expression in (4.2.100) is more complicated to deal with. In the sub-
sequent, we are going to make use of the notation Γr

1, Γr
2, Hr, Wr, Mr, Nr, Vr

and Vr, which were all defined in Lemma 4.1.3 and Lemma 4.1.4. Observe first
that

D[G′
1R1(I − R2)(X − E[X])PC′

3
]

= PC′
3
⊗ E[G′

1R1(I − R2)Σ(I − R′
2)R

′
1G1]

and

G′
1R1 = G′

1 − H1Γ′
1Σ

−1/2M2

= H1(Γ2
2)

′Γ2
2Γ

1
1Σ

−1/2 − H1(Γ2
2)

′V2
21(V

2
11)

−1Γ2
1Γ

1
1Σ

−1/2.

Then, since V2
21 = U2U′

1 for some normally distributed U′ = (U′
1 : U′

2), where
U1 and U2 are independent and U2 is also independent of R2 and V2

11,

E[G′
1R1(I − R2)Σ(I − R′

2)R
′
1G1]

= E[H1(Γ2
2)

′Γ2
2Γ

1
1Σ

−1/2(I − R2)Σ(I − R′
2)Σ

−1/2(Γ1
1)

′(Γ2
2)

′Γ2
2H

′
1]

+ E
[
H1(Γ2

2)
′V2

21(V
2
11)

−1Γ2
1Γ

1
1Σ

−1/2(I − R2)Σ(I − R′
2)

× Σ−1/2(Γ1
1)

′(Γ2
1)

′(V2
11)

−1V2
12Γ

2
2H

′
1

]
. (4.2.102)

From now on the two terms on the right-hand side of (4.2.102) will be considered
separately. First it is noted that from the uniqueness conditions in Theorem 4.1.12
it follows that

Γ′
1Σ

−1/2A3 = DΓ2
1Γ

1
1Σ

−1/2A3

for some matrix D. Thus,

Γ1
1Σ

−1/2(I − R2) = Γ1
1Σ

−1/2 − DH−1
2 (I − G′

2M3)G′
2

=Γ1
1Σ

−1/2 − D(Γ3
2)

′Γ3
2Γ

2
1Γ

1
1Σ

−1/2 + D(Γ3
2)

′V3
21(V

3
11)

−1Γ3
1Γ

2
1Γ

1
1Σ

−1/2.

Next it will be utilized that

E[V3
21(V

3
11)

−1] = 0

and
H1(Γ2

2)
′Γ2

2D(Γ3
2)

′Γ3
2Γ

2
1(Γ

2
2)

′Γ2
2H

′
1 = 0,

since Γ2
1(Γ

2
2)

′ = 0. Thus,

E[H1(Γ2
2)

′Γ2
2Γ

1
1Σ

−1/2(I − R2)Σ(I − R′
2)Σ

−1/2(Γ1
1)

′(Γ1
2)

′Γ2
2H

′
1]

= H1(Γ2
2)

′Γ2
2H

′
1 + H1(Γ2

2)
′Γ2

2D(Γ3
2)

′Γ3
2D

′(Γ2
2)

′Γ2
2H

′
1

+ E[H1(Γ2
2)

′Γ2
2D(Γ3

2)
′V3

21(V
3
11)

−1(V3
11)

−1V3
12Γ

3
2D

′(Γ2
2)

′Γ2
2H

′
1].
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Since V3
11 ∼ Wm3(Im3 , n − r(C3)), it follows, similarly to (4.2.22), that

E[H1(Γ2
2)

′Γ2
2D(Γ3

2)
′V3

21(V
3
11)

−1(V3
11)

−1V3
12Γ

3
2D

′(Γ2
2)

′Γ2
2H

′
1]

=
m3

n − r(C3) − m3 − 1
H1(Γ2

2)
′Γ2

2D(Γ3
2)

′Γ3
2D

′(Γ2
2)

′Γ2
2H

′
1.

Therefore it remains to express H1(Γ2
2)

′Γ2
2H

′
1 and

H1(Γ2
2)

′Γ2
2D(Γ3

2)
′Γ3

2D
′(Γ2

2)
′Γ2

2H
′
1

in the original matrices. Since

(Γ3
2)

′Γ3
2 = Γ2

1Γ
1
1Σ

−1/2A3(A′
3G2(G′

2ΣG2)−1G′
2A

′
3)

−A′
3Σ

−1/2(Γ1
1)

′(Γ2
1)

′,
(4.2.103)

(Γ2
2)

′Γ2
2 = Γ1

1Σ
−1/2A2(A′

2G1(G′
1ΣG1)−1G′

1A2)−A′
2Σ

−1/2(Γ1
1)

′, (4.2.104)
(Γ1

1)
′Γ1

1 = Σ1/2G1(G′
1ΣG1)−1G′

1Σ
1/2, (4.2.105)

we get from (4.2.104)

H1(Γ2
2)

′Γ2
2H

′
1 = G1A2(A′

2G1(G′
1ΣG1)−1G′

1A2)−A′
2G1, (4.2.106)

and from (4.2.103)

D(Γ3
2)

′Γ3
2D

′ = Γ1
1Σ

−1/2A3(A′
3G2(G′

2ΣG2)−1G′
2A3)−A′

3Σ
−1/2(Γ1

1)
′.

Then, using (4.2.105), the first expression on the right hand side of (4.2.102) equals

E[H1(Γ2
2)

′Γ2
2Γ

1
1Σ

−1/2(I − R2)Σ(I − R′
2)Σ

−1/2(Γ1
1)

′(Γ2
2)

′Γ2
2H

′
1]

=
n − r(C3) − 1

n − r(C3) − m3 − 1
H(G′

1ΣG1)−1G′
1A3

× (A′
3G2(G′

2ΣG2)−1G′
2A3)−A′

3G1(G′
1ΣG1)−1H′, (4.2.107)

where
H = G′

1A2(A′
2G1(G′

1ΣG1)−1G′
1A2)−A′

2G1. (4.2.108)

Now we will study the second term on the right hand side of (4.2.102). Since
V2 = UU′, where U ∼ Np,n−r(C2)(0, I, I) and V12 = U1U′

2, V11 = U1U′
1 with

U1 and U2 being independent, it follows from Theorem 2.2.9 (i) that

E
[
H1(Γ2

2)
′V2

21(V
2
11)

−1Γ2
1Γ

1
1Σ

−1/2(I − R2)Σ(I − R′
2)Σ

−1/2(Γ1
1)

′(Γ2
1)

′

× (V2
11)

−1V2
12Γ

2
2H

′
1

]
= H1(Γ2

2)
′Γ2

2H
′
1E[tr{(V2

11)
−1Γ2

1Γ
1
1Σ

−1/2(I − R2Σ(I − R′
2)Σ

−1/2(Γ1
1)

′(Γ2
1)

′}].
(4.2.109)
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It remains to obtain the expectation of the trace function in (4.2.109). Once again
Lemma 4.2.1 will be of utmost importance. The lemma can be applied, because
M3 is a function of V3

11 and

Γ2
1Γ

1
1Σ

−1/2(I − R2) = Γ2
1Γ

1
1Σ

−1/2M3

= V3
11(Γ

3
1)

′(V3
11)

−1Γ3
1Γ

2
1Γ

1
1Σ

−1/2.

Since V3
11 ∼ Wm3(I, n − r(C3)), this yields

E[tr{(V2
11)

−1Γ2
1Γ

1
1Σ

−1/2(I − R2)Σ(I − R′
2)Σ

−1/2(Γ1
1)

′(Γ2
1)

′}]
= c2E[tr{(V3

11)
−1V3

11(Γ
3
1)

′(V3
11)

−1(V3
11)

−1Γ3
1V

3
11}]

= c2E[tr{(V3
11)

−1}] = c2
m3

n − r(C3) − m3 − 1
. (4.2.110)

Hence, by using (4.2.101), (4.2.102), (4.2.107) – (4.2.110), D[B̂2] has been found.
Concerning D[B̂1] it should be noticed that the treatment of D[B̂1] is similar to the
treatment of D[B̂2], although some additional argument is needed. For uniqueness
of B̂1 it follows from Theorem 4.1.12 (v) that A1 and C1 must be of full rank.
Therefore, instead of B̂1 the linear combinations A1(B̂1 −B1)C1 will be studied.
Observe that by the unbiasedness result in Theorem 4.2.6, E[A1(B̂1−B1)C1] = 0.
First, we decompose A1(B̂1 − B1)C1, as when treating (4.2.99):

A1(B̂1 − B1)C1

= R0(X − E[X])(PC′
1
− PC′

2
) + R0(I − R1)(X − E[X])(PC′

2
− PC′

3
)

+ R0(I − R1)(I − R2)(X − E[X])PC′
3
,

where Ri is given in (4.2.88). Since (X−E[X])PC′
3

is independent (see Theorem
2.2.4) of R0, R1, R2, (X − E[X])(PC′

2
− PC′

3
), and (X − E[X])(PC′

2
− PC′

3
) is

independent of R0, R1, (X−E[X])(PC′
1
−PC′

2
) we obtain a basic decomposition

of the dispersion matrix:

D[A1(B̂1 − B1)C1]
= D[R0(X − E[X])(PC′

1
− PC′

2
)] + D[R0(I − R1)(X − E[X])(PC′

2
− PC′

3
)]

+ D[R0(I − R1)(I − R2)(X − E[X])PC′
3
]. (4.2.111)

The terms on the right hand side of (4.2.111) will be treated one by one. After some
manipulations and using the independence between R0 and (X − E[X])(PC′

1
−

PC′
2
),

D[R0(X − E[X])(PC′
1
− PC′

2
)] = (PC′

1
− PC′

2
) ⊗ E[R0ΣR′

0]. (4.2.112)

Now we can rely on the MLNM(ABC), i.e. (4.2.18) and (4.2.22), and get that

E[R0ΣR′
0] =

n − k1 − 1
n − k1 − p + q1 − 1

A1(A′
1Σ

−1A1)−1A′
1. (4.2.113)
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For the second expression it is noted that (X−E[X])(PC′
2
−PC′

3
) is independent

of R0 and R1. Thus,

D[R0(I − R1)(X − E[X])(PC′
2
− PC′

3
)]

= (PC′
2
− PC′

3
) ⊗ E[R0(I − R1)Σ(I − R′

1)R
′
0]. (4.2.114)

In order to find an explicit expression of (4.2.114) we copy the approach of finding
the expectation in (4.2.102). Let us start by rewriting R0 in a canonical form, i.e.

R0 = I − M1 = I − Σ1/2(Γ1)′N1Γ1
1Σ

−1/2

= I − Σ1/2(Γ1
1)

′Γ1
1Σ

−1/2 − Σ1/2(Γ1
2)

′V1
21(V

1
11)

−1Γ1
1Σ

−1/2

= Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2 − Σ1/2(Γ1
2)

′V1
21(V

1
11)

−1Γ1
1Σ

−1/2.

Since V1
21 is uncorrelated with V1

11 and R1,

E[R0(I − R1)Σ(I − R′
1)R

′
0]

= E[Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2(I − R1)Σ(I − R′
1)Σ

−1/2(Γ1
2)

′Γ1
2Σ

1/2]

+ E
[
Σ1/2(Γ1

2)
′V1

21(V
1
11)

−1Γ1
1Σ

−1/2(I − R1)Σ(I − R′
1)Σ

−1/2(Γ1
1)

′

× (V1
11)

−1V1
12Γ

1
2Σ

1/2
]
. (4.2.115)

The estimator B̂1 is unique if (4.1.106) holds. This implies that we have C (A′
2) =

C (A′
2G1), and then

A2 = D1G′
1A2, (4.2.116)

for some matrix D1. Now we will consider the first expression on the right hand
side of (4.2.115). From (4.2.88) it follows that

R1 = D1G′
1A2(A′

2G1(G′
1W2G1)−1G′

1A2)−A′
2G1(G′

1W2G1)−1G′
1

= D1G′
1(I − M2) = D1G′

1 − D1H1(Γ2)′N2Γ2
1Γ

1
1Σ

−1/2

= D1G′
1 − D1H1(Γ2

1)
′Γ2

1Γ
1
1Σ

−1/2 − D1H1(Γ2
2)

′V2
21(V

2
11)

−1Γ2
1Γ

1
1Σ

−1/2

= D1H1(Γ2
2)

′Γ2
2Γ

1
1Σ

−1/2 − D1H1(Γ2
2)

′V2
21(V

2
11)

−1Γ2
1Γ

1
1Σ

−1/2.

Then, since E[V2
21] = 0 and V2

21 is uncorrelated with V2
11,

E[(I − R1)Σ(I − R1)′]
= (I − D1H1(Γ2

2)
′Γ2

2Γ
1
1Σ

−1/2))Σ(I − D1H1(Γ2
2)

′Γ2
2Γ

1
1Σ

−1/2)′

+ E[D1H1(Γ2
2)

′V2
21(V

2
11)

−1(V2
11)

−1V2
12Γ

2
2H

′
1D

′
1],

and since Γ1
2(Γ

1
1)

′ = 0,

E[Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2(I − R1)Σ(I − R1)′Σ−1/2(Γ1
2)

′Γ1
2Σ

1/2]
= Σ1/2(Γ1

2)
′Γ1

2Σ
1/2 + Σ1/2(Γ1

2)
′Γ1

2Σ
−1/2D1H1(Γ2

2)
′Γ2

2H
′
1D

′
1Σ

−1/2(Γ1
2)

′Γ1
2Σ

1/2

+ Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2D1H1(Γ2
2)

′Γ2
2H

′
1D

′
1Σ

−1/2(Γ1
2)

′Γ1
2Σ

1/2E[tr{(V2
11)

−1}].
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Here we use the expression of (Γ2
2)

′Γ2
2 given in (4.2.104),

Σ1/2(Γ1
2)

′Γ1
2Σ

1/2 = A1(A′
1Σ

−1A1)−1A′
1, (4.2.117)

D1H1Γ1
1Σ

−1/2A2 = A2, (4.2.118)

and
E[tr{(V2

11)
−1}] =

m2

n − r(C2) − m2 − 1
. (4.2.119)

Thus, E[Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2(I − R1)Σ(I − R1)′Σ−1/2(Γ1
2)

′Γ1
2Σ

1/2] equals

A1(A′
1Σ

−1A1)−1A′
1

+
n − r(C2) − 1

n − r(C2) − m2 − 1
A1(A′

1Σ
−1A1)−1A′

1Σ
−1A2

× (A′
2G1(G′

1ΣG1)−1G′
1A2)−A′

2Σ
−1A1(A′

1Σ
−1A1)−1A′

1. (4.2.120)

Since R1 is a function of V2
11, we obtain from Lemma 4.2.1 that the second ex-

pression on the right hand side of (4.1.115) equals

Σ1/2(Γ1
2)

′Γ1
2Σ

1/2E[tr{(V1
11)

−1Γ1
1Σ

−1/2(I − R1)Σ(I − R′
1)Σ

−1/2(Γ1
1)

′}]
= Σ1/2(Γ1

2)
′Γ1

2Σ
1/2c1E[tr{(V2

11)
−1Γ1

1Σ
−1/2(I − R1)Σ(I − R′

1)Σ
−1/2(Γ1

1)
′}].

(4.2.121)

Moreover,

Γ1
1Σ

−1/2(I − R1) = H−1
1 G′

1(I − R1)
= H−1

1 G′
1 − H−1

1 G′
1A2(A′

2G1(G′
1W2G1)−1G′

1A2)−A′
2G1(G′

1W2G1)−1G′
1

= H−1
1 G′

1W2G2(G′
2W2G2)−G′

2 = V2
11(Γ

2
1)

′(V2
11)

−1Γ2
1Γ

1
1Σ

−1/2,

and therefore

E[tr{(V2
11)

−1Γ1
1Σ

−1/2(I − R1)Σ(I − R′
1)Σ

−1/2(Γ1
1)

′}]
= E[tr{(V2

11)
−1V2

11(Γ
2
1)

′(V2
11)

−1(V2
11)

−1Γ2
1V

2
11}]

= E[tr{(V2
11)

−1}] =
m2

n − r(C2) − m2 − 1
, (4.2.122)

where (4.2.119) has been used. Hence, applying (4.2.122) and (4.2.117) yields

E[Σ1/2(Γ1
2)

′V1
21(V

1
11)

−1Γ1
1Σ

−1/2(I − R1)Σ
× (I − R′

1)Σ
−1/2(Γ1

1)
′(V1

11)
−1V1

12Γ
1
2Σ

1/2]

= c1
m2

n − r(C2) − m2 − 1
Σ1/2(Γ1

2)
′Γ1

2Σ
1/2

= c1
m2

n − r(C2) − m2 − 1
A1(A′

1Σ
−1A1)−1A′

1. (4.2.123)
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Thus, using (4.2.120) and (4.2.121) we may state that the expectation in (4.2.115)
equals

E[R0(I − R1)Σ(I − R′
1)R

′
0]

= (1 + c1
m2

n − r(C2) − m2 − 1
)A1(A′

1Σ
−1A1)−1A′

1

+
n − r(C2) − 1

n − r(C2) − m2 − 1
A1(A′

1Σ
−1A1)−1A′

1Σ
−1A2

× (A′
2G1(G′

1ΣG1)−1G′
1A2)−A′

2Σ
−1A1(A′

1Σ
−1A1)−1A′

1.

Now we will consider the third term in (4.2.111),

D[R0(I − R1)(I − R2)(X − E[X])PC′
3
]

= PC′
3
⊗ E[R0(I − R1)(I − R2)Σ(I − R′

2)(I − R′
1)R

′
0].

The expectation equals

E[Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2(I − R1)(I − R2)Σ(I − R′
2)(I − R′

1)Σ
−1/2(Γ1

2)
′Γ1

2Σ
1/2]

+ E
[
Σ1/2(Γ1

2)
′V1

21(V
1
11)

−1Γ1
1Σ

−1/2(I − R1)(I − R2)Σ

× (I − R′
2)(I − R′

1)Σ
−1/2(Γ1

1)
′(V1

11)
−1V1

12Γ
1
2Σ

1/2
]
. (4.2.124)

Both expectations in (4.2.124) will be explored further. Using (4.2.118) we get

E[(I − R1)(I − R2)Σ(I − R′
2)(I − R′

1)]
= (I − D1H1(Γ2

2)
′Γ2

2Γ
1
1Σ

−1/2)E[(I − R2)Σ(I − R′
2)]

× (I − Σ−1/2(Γ1
1)

′(Γ2
2)

′Γ2
2H

′
1D

′
1)

+ D1H1(Γ2
2)

′E
[
V2

21(V
2
11)

−1Γ2
1Γ

1
1Σ

−1/2(I − R2)Σ

× (I − R′
2)Σ

−1/2(Γ1
1)

′(Γ2
1)

′(V2
11)

−1V2
12

]
Γ2

2H
′
1D

′
1. (4.2.125)

Observe that from (4.2.104) and (4.2.118)

D1H1(Γ2
2)

′Γ2
2Γ

1
1Σ

−1/2

= D1G′
1A2(A′

2G1(G′
1ΣG1)−1G′

1A2)−A′
2G1(G′

1ΣG1)−1G′
1

= A2(A′
2G1(G′

1ΣG1)−1G′
1A2)−A′

2G1(G′
1ΣG1)−1G′

1.

Since C (A′
2) = C (A′

2G1), we have that

C (I − Σ−1/2(Γ1
1)

′(Γ2
2)

′Γ2
2H

′
1D

′
1) = C (A′

2)
⊥.

Moreover, by (4.1.106), since C (P′) also equals C (A′
2)

⊥,

C (A′
3(I − Σ−1/2(Γ1

1)
′(Γ2

2)
′Γ2

2H
′
1D

′
1)) = C (A′

3G2).
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Thus,
(I − D1H1(Γ2

2)
′Γ2

2Γ
1
1Σ

−1/2)A3 = D2G′
2A3,

for some matrix D2. Therefore,

(I−D1H1(Γ2
2)

′Γ2
2Γ

1
1Σ

−1/2)R2

= D2G′
2 − D2G′

2M3 = D2G′
2 − D2H2(Γ3)′N3Γ3

1Γ
2
1Γ

1
1Σ

−1/2

= D2H2(Γ3
2)

′Γ3
2Γ

2
1Γ

1
1Σ

−1/2 − D2H2(Γ3
2)

′V3
21(V

3
11)

−1Γ3
1Γ

2
1Γ

1
1Σ

−1/2.

Now, by copying calculations from previous parts, we obtain

E[Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2(I − R1)(I − R2)Σ(I − R′
2)(I − R′

1)Σ
−1/2(Γ1

2)
′Γ1

2Σ
1/2]

= Σ1/2(Γ1
2)

′Γ1
2Σ

1/2 + Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2D1H1(Γ2
2)

′Γ2
2H

′
1D

′
1Σ

−1/2(Γ1
2)

′Γ1
2Σ

1/2

+ Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2D2H2(Γ3
2)

′Γ3
2H

′
2D

′
2Σ

−1/2(Γ1
2)

′Γ1
2Σ

1/2

+ Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2D2H2(Γ3
2)

′Γ3
2H

′
2D

′
2Σ

−1/2(Γ1
2)

′Γ1
2Σ

1/2E[tr{(V3
11)

−1}].

In (4.2.117) and (4.2.104) (Γ1
2)

′Γ1
2 and (Γ2

2)
′Γ2

2 were expressed in the original
matrices, respectively, and now (Γ3

2)
′Γ3

2 is presented:

(Γ3
2)

′Γ3
2 = Γ2

1Γ
1
1Σ

−1/2A3(A′
3G2(G′

2ΣG2)−1G′
2A3)−A′

3Σ
−1/2(Γ1

1)
′(Γ2

1)
′.

(4.2.126)
Furthermore,

D1H1(Γ2
2)

′Γ2
2H

′
1D

′
1 = A2(A′

2G1(G′
1ΣG1)−1G′

1A2)−A′
2,

D2H2(Γ3
2)

′Γ3
2H

′
2D

′
2 = D2G′

2A3(A′
3G2(G′

2ΣG2)−1G′
2A3)−A′

3G2D′
2

= HA3(A′
3G2(G′

2ΣG2)−1G′
2A3)−A′

3H
′,

where

H = I − A2(A′
2G1(G′

1ΣG1)−1G′
1A2)−A′

2G1(G′
1ΣG1)−1G′

1,

and
E[tr{(V3

11)
−1}] =

m3

n − r(C3) − m3 − 1
.

Using all these lengthy expressions we may write out

E[Σ1/2(Γ1
2)

′Γ1
2Σ

−1/2(I − R1)(I − R2)Σ(I − R′
2)(I − R′

1)Σ
−1/2(Γ1

2)
′Γ1

2Σ
1/2]

as

A1(A′
1Σ

−1A1)−1A′
1

+ A1(A′
1Σ

−1A1)−1A′
1Σ

−1A2(A′
2G1(G′

1ΣG1)−1G′
1A2)−

× A′
2Σ

−1A1(A′
1Σ

−1A1)−1A′
1

+ n−r(C3)−1
n−r(C3)−m3−1A1(A′

1Σ
−1A1)−1A′

1Σ
−1HA3(A′

3G2(G′
2ΣG2)−1G′

2A3)−

× A′
3H

′Σ−1A1(A′
1Σ

−1A1)−1A′
1.
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Finally, to obtain the expected value of the second expression in (4.2.124), it is
noted that V1

21 is uncorrelated with V1
11, R1 and R2, and that R2 is a function

of V2
11 and independent of V1

21:

E
[
Σ1/2(Γ1

2)
′V1

21(V
1
11)

−1Γ1
1Σ

−1/2(I − R1)(I − R2)Σ

× (I − R′
2)(I − R′

1)Σ
−1/2(Γ1

1)
′(V1

11)
−1V1

12Γ
1
2Σ

1/2
]

= Σ1/2(Γ1
2)

′Γ1
2Σ

1/2

× E[tr{(V1
11)

−1Γ1
1Σ

−1/2(I − R1)(I − R2)Σ(I − R′
2)(I − R′

1)Σ
−1/2(Γ1

1)
′}]

= Σ1/2(Γ1
2)

′Γ1
2Σ

1/2c1E
[
tr{(V2

11)
−1Γ1

1Σ
−1/2(I − R1)(I − R2)Σ

× (I − R′
2)(I − R′

1)Σ
−1/2(Γ1

1)
′}
]
. (4.2.127)

Moreover,

Γ1
1Σ

−1/2(I − R1) = V2
11(Γ

2
1)

′(V2
11)

−1Γ2
1Γ

1
1Σ

−1/2, (4.2.128)

which implies that the right hand side of (4.2.127) equals

Σ1/2(Γ1
2)

′Γ1
2Σ

1/2c1E[tr{(V2
11)

−1Γ2
1Γ

1
1Σ

−1/2(I−R2)Σ(I−R′
2)Σ

−1/2(Γ1
1)

′(Γ2
1)

′}].
(4.2.129)

Hence, (4.2.110) yields that (4.2.129) can be written as

A1(A′
1Σ

−1A1)−1A′
1c1c2

m3

n − r(C3) − m3 − 1
,

since Σ1/2(Γ1
2)

′Γ1
2Σ

1/2 = A1(A′
1Σ

−1A1)−1A′
1. The paragraph is ended by sum-

marizing all the above calculations and stating D[B̂i], i = 1, 2, 3, explicitly.

Theorem 4.2.11. Let B̂i, i = 1, 2, 3 be given in Theorem 4.1.6 and suppose that
for each B̂i the uniqueness conditions in Theorem 4.1.12 are satisfied. Let the
matrix Gi be defined in Lemma 4.1.3, and ci and mi in Lemma 4.2.1. Then, if
the dispersion matrices are supposed to exist,

D[B̂3] = n−k3−1
n−k3−m2+q3−1 (C3C′

3)
−1 ⊗ (A′

3G2(G′
2ΣG2)−1G′

2A3)−1;(i)

D[B̂2](ii)
= D[(A′

2G1G′
1A2)−1A′

2G1G′
1R1(X − E[X])(PC′

2
− PC′

3
)C′

2(C2C′
2)

−1]

+ D[(A′
2G1G′

1A2)−1A′
2G1G′

1R1(I − R2)(X − E[X])PC′
3
C′

2(C2C′
2)

−1],

where

D[(A′
2G1G′

1A2)−1A′
2G1G′

1R1(X − E[X])(PC′
2
− PC′

3
)C′

2(C2C′
2)

−1]

= (C2C′
2)

−1C2(PC′
2
− PC′

3
)C′

2(C2C′
2)

−1

⊗ n−k2−1
n−r(C1)−m1+q2−1 (A′

2G1(G1ΣG1)−1G′
1A2)−1,
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and

D[(A′
2G1G′

1A2)−1A′
2G1G′

1R1(I − R2)(X − E[X])PC′
3
C′

2(C2C′
2)

−1]

= (C2C′
2)

−1C2PC′
3
C′

2(C2C′
2)

−1

⊗
{

n−r(C3)−1
n−r(C3)−m3−1P

1A3(A′
3G2(G′

2ΣG2)−1G′
2A3)−A′

3(P
1)′

+ (1 + c2
m3

n−r(C3)−m3−1 )(A′
2G1(G′

1ΣG1)−1G′
1A2)−1

}
,

where

P1 = (A′
2G1(G′

1ΣG1)−1G′
1A2)−1A′

2G1(G′
1ΣG1)−1G′

1;

D[B̂1](iii)
= D[(A′

1A1)−1A1R0(X − E[X])(PC′
1
− PC′

2
)C′

1(C1C′
1)

−1]

+ D[(A′
1A1)−1A1R0(I − R1)(X − E[X])(PC′

2
− PC′

3
)C′

1(C1C′
1)

−1]

+ D[(A′
1A1)−1A1R0(I − R1)(I − R2)(X − E[X])PC′

3
C′

1(C1C′
1)

−1],

where

D[(A′
1A1)−1A1R0(X − E[X])(PC′

1
− PC′

2
)C′

1(C1C′
1)

−1]

= (C1C′
1)

−1C1(PC′
1
− PC′

2
)C′

1(C1C′
1)

−1 ⊗ n−k1−1
n−k1−p+q1−1 (A′

1Σ
−1A1)−1,

D[(A′
1A1)−1A1R0(I − R1)(X − E[X])(PC′

2
− PC′

3
)C′

1(C1C′
1)

−1]

= (C1C′
1)

−1C1(PC′
2
− PC′

3
)C′

1(C1C′
1)

−1

⊗
{

(1 + c1
m2

n−r(C2)−m2−1 )(A′
1Σ

−1A1)−1

+ n−r(C2)−1
n−r(C2)−m2−1P

2A2(A′
2G1(G′

1ΣG1)−1G′
1A2)−A′

2(P
2)′
}

.

Here

P2 = (A′
1Σ

−1A1)−1A′
1Σ

−1

and

D[(A′
1A1)−1A1R0(I − R1)(I − R2)(X − E[X])PC′

3
C′

1(C1C′
1)

−1]

= (C1C′
1)

−1C1PC′
3
C′

1(C1C′
1)

−1

⊗
{

(1 + c1c2
m3

n−r(C3)−m3−1 )(A′
1Σ

−1A1)−1

+ P2A2(A′
2G1(G′

1ΣG1)−1G′
1A2)−A′

2(P
2)′

+ n−r(C3)−1
n−r(C3)−m3−1P

3A3(A′
3G2(G′

2ΣG2)−1G′
2A3)−A′

3(P
2)′
}

,
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where
P3 = P2(I − A2P1).

4.2.5 Problems
1. Compare the moments of B̂G in (4.2.7) with the corresponding moments in

Theorem 4.2.1.
2. Compare (4.2.81) and (4.2.82), if

A =

⎛⎜⎝
1 1 1
1 6 36
1 12 144
1 48 2304

⎞⎟⎠ , Σ =

⎛⎜⎝
4.4 3.0 −0.3 − 0.5
3.0 25.4 −6.3 −14.4

−0.3 −6.3 4.1 3.2
−0.5 −14.4 3.2 31.1

⎞⎟⎠ , r(C) = 2.

3. Construct 5 different unbiased estimators of Σ in the MLNM(
∑m

i=1 AiBiCi),
m ≥ 5.

4. Find D[Ê[X]] for the MLNM(
∑2

i=1 AiBiCi).

5. Show that Σ̂ P−→Σ in the MLNM(
∑m

i=1 AiBiCi).
7. Show that Ê[X] =

∑m
i=1 AiB̂iCi is unbiased.

8. Find an unbiased estimator of D[KB̂L] in the MLNM(ABC) when C (K′) ⊆
C (A′) and C (L) ⊆ C (C).

9. Three natural residuals for the MLNM(ABC) are given by:

R1 = SAo(Ao′
SAo)−Ao′

X(I − C′(CC′)−C),
R2 = A(A′S−1A)−A′S−1X(I − C′(CC′)−C),

R3 = SAo(Ao′
SAo)−Ao′

XC′(CC′)−C.

Derive D[Ri], i = 1, 2, 3.
10. Are the residuals in Problem 9 uncorrelated? Are they independent?
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4.3. APPROXIMATIONS IN MULTIVARIATE LINEAR MODELS

4.3.1 Introduction
In this section we are going to approximate distributions of several estimators
obtained in Section 4.1. In some cases, the distributions of the estimators are
available in the literature (see Gleser & Olkin, 1970; Kabe, 1975; Kenward, 1986).
However, often the distributions are given as integral expressions. Therefore, we
will focus on approximations of these distributions in this section. The results
of Section 4.2 will be of utmost importance. In order to utilize these results,
we will rely on Section 3.2 and Section 3.3. The maximum likelihood estima-
tors of the parameters in the MLNM(ABC), the MLNM(ABC + B2C2) and the
MLNM(

∑3
i=3 AiBiCi) will be considered. From Theorem 4.1.1 we have in the

Growth Curve model

B̂ = (A′S−1A)−1A′S−1XC′(CC′)−1, (4.3.1)

where it is assumed that A and C are of full rank, i.e. r(A) = q and r(C) = k,

S = X(I − C′(CC′)−1C)X′,

and

nΣ̂ = (X − AB̂C)(X − AB̂C)′

= S + (XC′(CC′)−1C − AB̂C)(XC′(CC′)−1C − AB̂C)′. (4.3.2)

According to Theorem 4.1.9 and the full rank conditions, the maximum likelihood
estimators in the MLNM(ABC + B2C2) are given by

B̂ = (A′S−1
1 A)−1A′S−1

1 YH′(HH′)−1,

B̂2 = (X − AB̂C)C′
2(C2C′

2)
−1,

nΣ̂ = (Y − AB̂H)(Y − AB̂H)′,

where
S1 = Y(I − H′(HH′)−1H)Y′,

and

Y =X(I − C′
2(C2C′

2)
−1C2), (4.3.3)

H =C(I − C′
2(C2C′

2)
−1C2). (4.3.4)

Theorem 4.1.6 gives the maximum likelihood estimators of the parameters in the
MLNM(

∑3
i=1 AiBiCi):

B̂3 = (A′
3P

′
3S

−1
3 P3A3)−1A′

3P
′
3S

−1
3 XC′

3(C3C′
3)

−1, (4.3.5)

B̂2 = (A′
2P

′
2S

−1
2 P2A2)−1A′

2P
′
2S

−1
2 (X − A3B̂3C3)C′

2(C2C′
2)

−1, (4.3.6)

B̂1 = (A′
1S

−1
1 A1)−1A′

1S
−1
1 (X − A2B̂2C2 − A3B̂3C3)C′

1(C1C′
1)

−1, (4.3.7)

nΣ̂ = (X − A1B̂1C1 − A2B̂2C2 − A3B̂3C3)()′

=S3 + P4XC′
3(C3C′

3)C3X′P′
4, (4.3.8)
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where it is assumed that B̂i, i = 1, 2, 3, are unique and Pi, i = 2, 3, 4, as well as
Si, i = 1, 2, 3, are the same as in Theorem 4.1.7 and Theorem 4.1.6. Observe that
we always assume the inverses in (4.3.5) – (4.3.7) to exist.
Throughout this section fX(X0) will denote the density of X evaluated at the
point X0. Furthermore, as in Chapter 3, fk

X(X0) denotes the k−th derivative of
fX(X) evaluated at the point X0.

4.3.2 Approximation of the density of B̂ in the Growth Curve model
There are several strategies which could be followed when approximating the dis-
tribution of B̂, given in (4.3.1). The first is to use a distribution obtained from
asymptotic considerations. For example, if B̂ converges to a normal distribution,
the normal distribution would be appropriate to use. Another strategy is to use
a distribution which is easy to compute, and to perform some kind of corrections
afterwards. The third approach is to mimic some properties of the distribution
of B̂ in the approximating distribution. For instance, we may use a long tailed
distribution if B̂ has a long tail.
The starting point of this paragraph is a convergence result which is very similar
to Theorem 3.1.4 (ii), i.e. for S in (4.3.2),

1
n − k

S P−→ Σ.

Therefore it is natural to approximate B̂ by

BN = (A′Σ−1A)−1A′Σ−1XC′(CC′)−1. (4.3.9)

Since (4.3.9) is a linear function in X the distribution of B̂ will be approximated by
a normal distribution Nq,k(B, (A′Σ−1A)−1, (CC′)−1) (see Theorem 2.2.2). When
comparing B̂ and BN , it is observed that due to statements (i) and (ii) of Theorem
4.2.1 and Corollary 2.2.7.1 (i),

E[B̂] = E[BN ] = B

and
D[B̂] − D[BN ] =

p − q

n − k − p + q − 1
(CC′)−1 ⊗ (A′Σ−1A)−1,

which is positive definite. Thus BN underestimates the variation in B̂, which
can be expected because the random matrix S in B̂ has been replaced by the
non-random matrix Σ.
Next we are going to apply Example 3.3.1 which in turn relies on Theorem 3.3.1.
We are going to achieve a better approximation than given by a normal distribu-
tion. In fact, the normal distribution will be used with a correction term. The
point is that according to Example 3.3.1 it is possible to find error bounds for the
obtained density approximation. Observe that

B̂ = (A′S−1A)−1A′S−1XC′(CC′)−1

= (A′Σ−1A)−1A′Σ−1XC′(CC′)−1

+ (A′S−1A)−1A′S−1(I − A(A′Σ−1A)−1A′Σ−1)XC′(CC′)−1. (4.3.10)
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Theorem 2.2.4 (i) yields that

(A′Σ−1A)−1A′Σ−1XC′(CC′)−1

and
(I − A(A′Σ−1A)−1A′Σ−1)XC′(CC′)−1

are independently distributed. Moreover, by Theorem 2.2.4 (iv) the sums of
squares matrix S and ”mean” XC′(CC′)−1 are independent. Hence, similarly
to u in Example 3.3.1, we may take

U = (A′S−1A)−1A′S−1(I − A(A′Σ−1A)−1A′Σ−1)XC′(CC′)−1, (4.3.11)

which is independent of BN . Since E[(vecU)⊗k] = 0 for odd k, it follows from
Example 3.3.1 that the decomposition in (4.3.10) implies the next theorem. Fur-
thermore, besides that U in B̂ = BN +U is independent of BN , we also have that
E[U] = 0. Thus it is very reasonable to approximate B̂ by BN .

Theorem 4.3.1. Let B̂, BN and U be given by (4.3.1), (4.3.9) and (4.3.11),

respectively. Then an Edgeworth-type expansion of the density of B̂ equals

f
B̂

(B0) = fBE (B0) + . . . ,

where

fBE
(B0) =

{
1 + 1

2s
(
tr{A′Σ−1A(B0 − B)CC′(B0 − B)′} − kq

)}
fBN

(B0),
(4.3.12)

s =
p − q

n − k − p + q − 1
.

An upper error bound of the density approximation (4.3.12) is given by

|f
B̂

(B0) − fBE (B0)|
≤ (2π)−

1
2 qk 1

4!
E[(vec′U)⊗4]|A′Σ−1A|k/2|CC′|q/2vec(m4[BN ]). (4.3.13)

where

E[(vecU)⊗4] = vec m4[B̂] − (I + Iqk ⊗ Kqk,qk ⊗ Iqk + Iqk ⊗ K(qk)2,qk)

× (vec D[BN ] ⊗ E[(vecU)⊗2] + E[(vecU)⊗2] ⊗ vec D[BN ])
− vec m4[BN ].

Here E[(vecU)⊗2] = s(CC′)−1 ⊗ (A′Σ−1A)−1,

vec m4[BN ]
= (I + Iqk ⊗ Kqk,qk ⊗ Iqk + Iqk ⊗ K(qk)2,qk)(vec{(CC′)−1 ⊗ (A′Σ−1A)−1})⊗2,



452 Chapter IV

and m4[B̂] is obtained from Theorem 4.2.2 (iii).

Proof: The form of the approximation,

fBE
(B0) = fBN

(B0) +
1
2
E[(vec′U)⊗2]vec f2

BN
(B0),

follows from Theorem 3.3.1 and was also given in Example 3.3.1. As noted before,

B̂ = BN + U, (4.3.14)

which is identical to B̂−B = BN −B+U, and because of independence between
BN and U it follows from (4.3.10) that

E[(vecU)⊗2] = vec(D[B̂] − D[BN ]),

since vec(E[vecUvec′U]) = E[(vecU)⊗2]. By using Definition 2.2.1 and Corol-
lary 2.2.7.1 (i) D[BN ] is obtained. In Theorem 4.2.1, D[B̂] was established, and
f2
BN

(B0) was presented in Theorem 2.2.10 (iii). To obtain the error bound via
Example 3.3.1 we note that according to (4.3.9), BN − B is normally distributed
with the characteristic function (see Theorem 2.2.1 (i))

ϕBN−B(T) = exp
{− 1

2 tr{(A′Σ−1A)−1T(CC′)−1T′}}
= exp{− 1

2 (vec′T)(CC′)−1 ⊗ (A′Σ−1A)−1(vecT)}.

Here it is important to observe that

{(2π)
1
2 qk|A′Σ−1A|k/2|CC′|q/2}−1ϕBN−B(T)

is a normal density where the expectation and dispersion equal 0 and (CC′)−1 ⊗
(A′Σ−1A)−1, respectively. Thus, from Definition 2.1.4, where the central mo-
ments are defined,∫

Rqk

(vec′T)⊗4ϕBN−B(T) dT = (2π)
1
2 qk|A′Σ−1A|k/2|CC′|q/2vec(m4(BN ))

and vec(m4(BN )) is obtained from Corollary 2.2.7.1 (iv). Finally, when obtaining
E[(vec′U)⊗4], the independence between U and BN is utilized once again:

vec m4[B̂] = E[vec(U + BN − B)⊗4]
=E[(vecU)⊗4] + (I + Iqk ⊗ Kqk,qk ⊗ Iqk + Iqk ⊗ K(qk)2,qk)

× (vec D[BN ] ⊗ E[(vecU)⊗2] + E[(vecU)⊗2] ⊗ vec D[BN ])
+ vec m4[BN ]. (4.3.15)
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Corollary 4.3.1.1.
|f

B̂
(B0) − fBE

(B0)| = O(n−2).

Proof: Consider the right hand side of (4.3.13). Observe that∫
Rqk

(vec′T)⊗4ϕBN−B(T) dT

equals a constant and thus we have to study

E[(vecU)⊗4].

Once again the canonical representation (4.2.14) is used, i.e.

A′Σ−1/2 = H(Iq : 0)Γ, (4.3.16)

where H is a non-singular and Γ an orthogonal matrix. Furthermore, let

V = ΓΣ−1/2SΣ−1/2Γ′ ∼ Wp(I, n − r(C)).

In the subsequent the partition (4.2.16) is applied. Now

U|S ∼ Nq,k(0, (A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1 − (A′Σ−1A)−1, (CC′)−1)

and

(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1 − (A′Σ−1A)−1

= (H′)−1(V11)−1(V11 : V12)(V11 : V12)′(V11)−1H−1 − (A′Σ−1A)−1

= (H′)−1H−1 − (A′Σ−1A)−1 + (H′)−1(V11)−1V12V21(V11)−1H−1

= (H′)−1V12V−1
22 V−1

22 V21H−1. (4.3.17)

Using Corollary 2.4.12.1, we have

Z = (H′)−1V12V
−1/2
22 ∼ Nq,p−q(0, (A′Σ−1A)−1, I), (4.3.18)

which is independent of V22 and

(H′)−1V12V−1
22 V−1

22 V21H−1 = ZV−1
22 Z′.

Thus,
U|Z,V22 ∼ Nq,k(0,ZV−1

22 Z′, (CC′)−1).

Since
E[(vecU)⊗4] = EZ,V22 [E[(vecU)⊗4|Z,V22]],

where Z,V22 in EZ,V22 indicate that expectation is taken over Z and V22, it
follows from Corollary 2.2.7.4 that E[(vecU)⊗4] is a constant matrix multiplied by

E[(vec{(CC′)−1 ⊗ ZV−1
22 Z′})⊗2],
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which in turn is a function of

E[(vecV−1
22 )⊗2],

which by Theorem 2.4.14 (iv) is O(n−2). Since Z is normally distributed and
independent of n, the corollary is established.
Since the order of magnitude of the upper bound of approximation error of f

B̂
(B0)

is O(n−2), the approximation is fairly accurate. For example, in many cases, such
as in Theorem 3.1.4 (i) and (ii), the law of large numbers gives an error of order
O(n−1).
We are going to investigate under which assumptions fBE

(B0), given in (4.3.12),
is a density. In general, the sum of the first few terms in an Edgeworth-type
approximation is not a density. First observe that∫

X∈Rq×k

fBE
(X)dX =1 − 1

2skq + 1
2sE[tr{A′Σ−1A(BN − B)CC′(BN − B)′}]

=1 − 1
2skq + 1

2skq = 1.

It remains to check whether fBE
(B0) ≥ 0 for all B0. Since

tr{A′Σ−1A(B0 − B)CC′(B0 − B)′} ≥ 0,

it is required that

1 − 1
2
skq ≥ 0,

which is equivalent to

n ≥ (p − q)(1 + 1
2kq) + k + 1. (4.3.19)

Hence, if (4.3.19) is true, fBE
(B0) is a density. Moreover, in this case the density

represents a matrix elliptically distributed variable. This is concluded in the next
theorem

Theorem 4.3.2. Let the distribution of BE be defined via its density in (4.3.12)
and suppose that (4.3.19) holds. Then BE is matrix elliptically distributed.

There are other properties of the approximation which are worth observing.

Theorem 4.3.3. Suppose that (4.3.19) holds. Let B̂ be given by (4.3.1) and the
distribution of BE be defined via its density in (4.3.12). Then

E[BE ] = E[B̂] = B;(i)

D[BE ] = D[B̂] =
n − k − 1

n − k − p + q − 1
(CC′)−1 ⊗ (A′Σ−1A)−1.(ii)

Proof: To prove (i) we note first that since fBE (X) is a symmetric function
around X − B, ∫

X∈Rq×k

(X − B)fBE
(X) dX = 0
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and thus (i) follows, because
∫
X∈Rq×k fBE

(X) dX = 1.
For (ii) we have to calculate

(1 − skq

2
)D[Y] +

s

2
E[vecYvec′Ytr(A′Σ−1AYCC′Y′)], (4.3.20)

where
Y ∼ Nq,k(0, (A′Σ−1A)−1, (CC′)−1).

Now, let Ψ = (CC′)−1⊗(A′Σ−1A)−1. Then, by applying Proposition 1.3.14 (iii),

vecE[vecYvec′Ytr(A′Σ−1AYCC′Y′)] = (Iqk ⊗ Iqk ⊗ vec′Ψ−1)E[(vecY)⊗4]
= (Iqk ⊗ Iqk ⊗ vec′Ψ−1)(I(qk)4 + Iqk ⊗ Kqk,qk ⊗ Iqk + Iqk ⊗ K(qk)2,qk)(vecΨ)⊗2,

(4.3.21)

where Corollary 2.2.7.4 has been used in the last equality. Since, according to
Proposition 1.3.14 (iv),

(Iqk ⊗ Kqk,qk ⊗ Iqk)(vecΨ)⊗2 = vec(Ψ ⊗ Ψ)

and
(Iqk ⊗ K(qk)2,qk)(vecΨ)⊗2 = vec(Kqk,qk(Ψ ⊗ Ψ)),

the expression in (4.3.21) is equivalent to

vecE[vecYvec′Ytr(A′Σ−1AYCC′Y′)]
= (Iqk ⊗ Iqk ⊗ vec′Ψ−1)((vecΨ)⊗2 + vec(Ψ ⊗ Ψ) + vec(Kpq,pqΨ ⊗ Ψ))
= (qk + 2)vecD[Y].

Hence, (4.3.20) equals

(1 − skq

2
)D[Y] +

s

2
(qk + 2)D[Y] = (1 + s)D[Y],

which according to Theorem 4.2.1 (ii) is identical to D[B̂], and establishes the
theorem.
From Theorem 4.3.3 one can conclude that the basic statistical properties are kept
in the approximation. This is, of course, also an indication that the approximation
is performing well. However, when fBE

(X) is not positive, one should be careful
in applications.
Next we turn to a different approach and will use a normally distributed variable
with the same mean and dispersion matrix as B̂. Let BN be the approximating
normally distributed matrix such that

E[B̂] = E[BN ] = B,

D[B̂] = D[BN ] = (1 + s)(CC′)−1 ⊗ (A′Σ−1A)−1,
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i.e. BN ∼ Nq,k(B, (1 + s)(A′Σ−1A)−1, (CC′)−1), where s is given in Theorem
4.3.1. Since the third cumulant of B̂ is zero, and for BN cumulants of order higher
than 2 equal zero, a straightforward extension of Corollary 3.2.1.1 and Definition
2.2.2 yield

f
B̂

(B0) ≈ fBN
(B0)

+
1
4!

vec′c4[B̂]vecH4(vecB0, (1 + s)(CC′)−1 ⊗ (A′Σ−1A)−1)fBN
(B0), (4.3.22)

where the Hermite polynomial H4(•, •) is defined in §2.2.4. Let us approximate
f
B̂

(•) by fBN
(•) and let the second term on the right hand side of (4.3.22) indicate

the order of the error term. By Theorem 2.2.12 it follows that

H4(vecB0, (1 + s)(CC′)−1 ⊗ (A′Σ−1A)−1)

is O(1). Now c2r[B̂] will be studied and we are going to use the characteristic
function. From (4.3.10) it follows that

E[ei tr(T′B̂)] = E[ei tr(T′BN )]E[ei tr(T′U)],

where BN is defined in (4.3.9) and independent of U in (4.3.19). We are going to
show that c2r[B̂] is O(n−r), r = 2, 3, 4, . . ., from where it follows that m2r[B̂] is
O(n−r), r = 2, 3, 4, . . .. Since m2r[BN ] is O(1), r = 2, 3, 4, . . ., we have to consider

m2r[U] = i−2rE[
d2rei tr(T′U)

dT2r

∣∣∣∣∣
T=0

].

Observe, as when proving Corollary 4.3.11, that

U|S ∼ Nq,k(0, (A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1 − (A′Σ−1A)−1, (CC′)−1)

and

(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1 − (A′Σ−1A)−1

= (H′)−1V12V−1
22 V−1

22 V21H−1,

where V ∼ Wp(I, n − k), with its partition defined in (4.2.16), and H is the same
as in (4.3.16). By assumption Z, given in (4.3.18), is independent of V22 and

E[
d2rei tr(T′U)

dT2r

∣∣∣∣∣
T=0

] = E[
d2re−1/2tr(ZV−1

22 Z′T(CC′)−1T′)

dT2r

∣∣∣∣∣
T=0

].

Now the exponential function in the above expression is expanded and it is enough
to consider the (r + 1)−th term, i.e.

E[
d2r(−1/2)r{tr(ZV−1

22 Z′T(CC′)−1T′)}r

dT2r
]. (4.3.23)
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By expressing the trace function with the help of the vec-operator, we obtain that
(4.3.23) equals

d2rT⊗2r

dT2r
I(qk)2r−1 ⊗ E[Z⊗2r]E[(vecV−1

22 )⊗r] ⊗ (vec(CC′)−1)⊗r.

Here
d2rT⊗2r

dT2r
is a constant matrix, E[Z⊗2r] because of normality is O(1) and

one can conclude from (2.4.46), with the help of induction, that E[(vecV−1
22 )⊗r] is

O(n−r). Thus it has been shown that (4.3.23) is O(n−r). In particular, we have
shown that the second term on the right hand side of (4.3.22) is O(n−2). However,
it also means that the overall error of the expansion is determined by a geometrical
series, i.e. we get the terms O(n2), O(n3), O(n4), . . . , and

∞∑
r=2

1
nr

=
1

n2

1 − 1
n

.

Thus we may conclude that the overall error is O(n−2). One advantage of such
approximation is that it guarantees an approximation with a density function
where the mean and dispersion are the same as the mean and dispersion of B̂.

Theorem 4.3.4. Let B̂ be given by (4.3.1) and

BN ∼ Nq,k(B, (1 + s)(A′Σ−1A)−1, (CC′)−1),

where

s =
p − q

n − k − p + q − 1
.

Then

|f
B̂

(B0) − fBN
(B0)| = O(n−2).

Thus, Theorem 4.3.1 and Theorem 4.3.4 give two alternatives of approximating
f
B̂

(B0). It is by no means obvious which one has to be used. If the condition
(4.3.19) for fBE

(B0) being a density is not fulfilled, the choice is even more prob-
lematic. It seems reasonable to use a matrix elliptical distribution because this can
have heavier tails than the normal distribution. This is what is expected from the
distribution of B̂ because (A′S−1A)−1A′S−1 adds some variation to the normal
variation induced by XC′(CC′)−1. The choice of an approximation depends on
the situation and the interested reader is suggested to perform explicit calculations
for various choices of A and C matrices in the model.

4.3.3 Approximation of the distribution of Σ̂ in the Growth Curve model
The dispersion matrix Σ̂ was given in (4.3.2), although from now on no full rank
conditions are assumed. Moreover, we are not going to work with Σ̂ directly.
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Instead, Σ̂ will be centered around its mean and standardized to some extent.
Thus, instead of Σ̂, the density approximation of

R = nΓΣ−1/2(Σ̂ − E[Σ̂])Σ−1/2Γ′ (4.3.24)

will be considered, where E[Σ̂] is given in Theorem 4.2.3 (i), and Γ and the
symmetric square root Σ−1/2 are the matrices used in the factorization of A in
(4.3.16). We do not have to worry about the fact that A may not be of full rank
because the expressions including A are unique projections. The matrix R can be
decomposed in various ways. The reason for decomposing R is the same as in the
case when B̂ was discussed. We have some information about the moments of one
part of the decomposition. The idea is to use this and to perform an adjustment
which is based on the knowledge about the moments. Instead of (4.3.24), we will
now consider the equivalent representation

R = V − (n − r(C))I + (V−1
22 V21 : I)′Q(V−1

22 V21 : I) − Ψ,

where V and its partition are given in (4.2.16),

Q = ΓΣ−1/2XC′(CC′)−CX′Σ−1/2Γ′

and
Ψ = E[(V−1

22 V21 : I)′Q(V−1
22 V21 : I)].

Observe that V and Q are independently distributed and that

E[V] = (n − r(C))I.

Since according to Corollary 2.4.12.1 V12V
−1/2
22 is normally distributed and inde-

pendent of V22, it follows from Theorem 2.2.9 (i) and Theorem 2.4.14 (iii) that

E[V12V−1
22 V−1

22 V21] = r(C)E[tr(V−1
22 )] = aI,

where

a =
r(C)(p − r(A))

n − r(C) − p + r(A) − 1
.

Furthermore, since E[V12V−1
22 Q] = 0,

Ψ =
(

aIr(A) 0
0 r(C)Ip−r(A)

)
.

The matrix R is a function of a Wishart matrix and it is Wishart distributed in the
special case A = I. Therefore the density of R will be approximated by a Wishart
density. We are going to apply Theorem 3.2.3. The reason for using a centered
Wishart distribution and not the ordinary Wishart distribution was motivated in
§2.4.8. There are at least two natural and fairly simple ways of approximating
fR(•). Both will be obtained as applications of Theorem 3.2.3.
Since Σ̂− 1

nS P−→ 0, we will first use the density of S ∼ Wp(Σ, n−r(C)). This
means that we are ignoring the mean structure ABC, as S reflects only the dis-
tribution of the difference between the observations and the ”mean” XC′(CC′)−.
Remember that we are considering symmetric matrices in the following and there-
fore we use the upper triangle of these matrices, which means that 1

2p(p + 1)
elements are used. The next theorem is immediately established by using the first
terms of the expansion in Theorem 3.2.3.
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Theorem 4.3.5. Let gW(•) denote the density function of V 2(W), where

W = ΓΣ−1/2(S − E[S])Σ−1/2Γ′,

with S ∼ Wp(Σ, n − r(C)) and Γ is the same as in (4.3.24). Let R be given by
(4.3.24). The density of V 2(R) is approximated by

fR(R0) = gW(R0)

× {1 +
1
2
vec′{D[V 2(R)] − (n − r(C))Gp(I + Kp,p)G′

p}vecL�
2(R0, I)

}
+ . . . ,

where

n−2D[V 2(R)] = d1(I + Kp,p)(M ⊗ M) +
1
n

(I + Kp,p)(N ⊗ N)

+ d2(I + Kp,p)(N ⊗ M + M ⊗ N) + d3vecMvec′M,

and d1, d2 and d3 are as in Theorem 4.2.3,

M =
(

Ir(A) 0
0 0

)
, N =

(
0 0
0 Ip−r(A)

)
,

Gp is defined by (1.3.49) and (1.3.50),

L�
2(W, I) = − 1

2GpHp

{
t(W + (n − r(C))I)−1 ⊗ (W + (n − r(C))I)−1

− 1
2vec(t(W + (n − r(C))I)−1 − I)vec′(t(W + (n − r(C))I)−1 − I)

}
HpG′

p,

Hp = I + Kp,p − (Kp,p)d, and t = n − r(C) − p − 1.

Observe that in the theorem we have not given any error bound or indicated any
order of the error. By copying the approach when considering the error in Theorem
4.3.4 this could be achieved, but we leave it to the interested reader. Unfortunately
again it requires tedious calculations which are not of principal interest. The result
shows that the first term in the remainder is O(n−1) and that the following terms
are of diminishing order.
A minor modification of the approach above is to approximate fR(•) with the
help of a Wishart distribution having the same mean as nΓΣ−1/2Σ̂Σ−1/2Γ′. From
Theorem 4.2.3 (i) it follows that Wp(Θ, n), where

Θ =
(

(1 − c)Ir(A) 0
0 Ip−r(A)

)
, (4.3.25)

c =
r(C)(n − r(C) − 2(p − r(A)) − 1)

n(n − r(C) − p + r(A) − 1)

can be used. If n becomes large, c → 0, and in this case the next theorem will be
identical to the previous Theorem 4.3.5.
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Theorem 4.3.6. Let gW(•) denote the density function of V 2(W), where W ∼
Wp(Θ, n), and Θ be given in (4.3.25). Let R be given by (4.3.24). The density of
V 2(R) can be approximated as

fR(R0)

= gW(R0)
{
1 +

1
2
vec′{D[V 2(R)] − nGp(I + Kp,p)G′

p}vecL�
2(R0,Θ)

}
+ . . . ,

where D[V 2(R)] is given in Theorem 4.3.5, Gp is defined by (1.3.49) and (1.3.50),

L�
2(W,Θ)

= − 1
2GpHp

{
(n − p − 1)(W + nΘ)−1 ⊗ (W + nΘ)−1

− 1
2vec((n − p − 1)(W + nΘ)−1 − Θ−1)vec′((n − p − 1)(W + nΘ)−1 − Θ−1)

}
× HpG′

p,

and Hp = I + Kp,p − (Kp,p)d.

The third idea for approximation is based on the decomposition of R, given in
(4.3.24):

R = Z + U,

where

Z = ΓΣ−1/2{A(A′S−1A)−A′ − E[A(A′S−1A)−A′]}Σ−1/2Γ′ (4.3.26)

and

U = ΓΣ−1/2

{
(I − A(A′S−1A)−A′S−1)XX′(I − S−1A(A′S−1A)−A′)

− E[(I − A(A′S−1A)−A′S−1)XX′(I − S−1A(A′S−1A)−A′)]
}
Σ−1/2Γ′.

(4.3.27)

This time we will present an approximation of the distribution function instead
of approximating the density function. We start by showing that Z and U are
independently distributed. The details are given in the next lemma.

Lemma 4.3.1. Let S = X(I − C′(CC′)−C)X′ and X be as in (4.1.1). Then
A(A′S−1A)−A′ and (I − A(A′S−1A)−A′S−1)X are independently distributed.

Proof: As previously, A is factorized according to

A′ = H(Ir(A) : 0)ΓΣ1/2,

where H is non-singular and Γ is an orthogonal matrix. Furthermore, let

Y = ΓΣ−1/2(X − ABC) ∼ Np,n(0, Ip, In)
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and
V = ΓΣ−1/2SΣ−1/2Γ′ ∼ Wp(I, n − r(C)).

Then
A(A′S−1A)−A′ = Σ1/2Γ′

1(V
11)−1Γ1Σ1/2, (4.3.28)

where Γ = (Γ′
1 : Γ′

2)
′, and (V11)−1 is the left upper block of size r(A) × r(A)

of V−1, i.e. we use the partition of V and V−1 given by (4.2.16) and (4.2.17),
respectively. Furthermore, let Y′ = (Y′

1 : Y′
2), n × r(A) : n × (p − r(A)). Thus,

(I−A(A′S−1A)−A′S−1)X
= Σ1/2Γ′{I − (I : 0)′(V11)−1(V11 : V12)}ΓΣ−1/2X

= Σ1/2Γ′
(

0 V12V−1
22

0 I

)
Y = Σ1/2(Γ′

1V12V−1
22 + Γ′

2)Y2. (4.3.29)

According to Theorem 2.4.12 (ii), V11 is independent of V12V−1
22 , and from The-

orem 2.2.4 (iv) it follows that V11 is also independent of Y2. Hence, (4.3.28) and
(4.3.29) establish the lemma.
By rewriting U and Z given by (4.3.27) and (4.3.26), respectively, we obtain

Z =
(

(V11)−1 0
0 0

)
−
(

E[(V11)−1] 0
0 0

)
, (4.3.30)

U =
(

V12V−1
22 Y2Y′

2V
−1
22 V21 V12V−1

22 Y2Y′
2

Y2Y′
2V

−1
22 V21 Y2Y′

2

)
−
(

bIr(A) 0
0 nIp−r(A)

)
,

(4.3.31)

where

b =
(p − r(A))(n − p + r(A) − 1)

n − r(C) − p + r(A) − 1
. (4.3.32)

When proceeding we will make use of Lemma 4.3.2 given below, which presents
an extension of the expansion

FY(X) = GZ(X) − G1
Z(X)vecE[U] +

1
2
E[vec′UG2

Z(X)vecU] + . . . , (4.3.33)

where Y = Z + U, Z and U are independent, FY(•) and GZ(•) denote the
distribution functions of Y and Z, respectively, and Gk

Z(•) stands for the k−th
derivative of GZ(•). The proof of (4.3.33) follows by using the equality FY(X) =
EU[GZ(X − U)] and then performing a Taylor expansion. The statements of
Lemma 4.3.2 can be proven according to these lines.

Lemma 4.3.2. Let Y, Z11 and U be symmetric matrices such that

Y =
(

Z11 0
0 0

)
+
(

U11 U12

U21 U22

)
,

where Z11 and U = [Uij ] are independent. Partition the argument matrix X in
the same way as U. Let FY(X), GZ11(X11) denote the distribution functions of Y
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and Z11, respectively, and let hU(V 2(X)) be the density of V 2(U). Furthermore,
the inequality ” ≤ ” in U12 ≤ X12 means elementwice inequality, whereas ” ≤ ”
in V 2(U22) ≤ V 2(X22) means that X22 − U22 should be p.d. Then

FY(X) =
∫

V 2(U11)
U12≤X12

V 2(U22)≤V 2(X22)

GZ11(X11 − U11)hU(V 2(X))d V 2(U)

≈
∫

V 2(U11)
U12≤X12

V 2(U22)≤V 2(X22)

{
GZ11(X11) − G1

Z11
(X11)vecU11

+
1
2
vec′U11G2

Z11
(X11)vecU11

}
hU(V 2(X))d V 2(U).

Note that the lemma deals with the case

Y = AZB + U,

where A and B are known matrices of proper sizes and ranks.
Thus, when approximating R = Z + U, Lemma 4.3.1 states that Z in (4.3.26)
and U in (4.3.27) are independently distributed. Furthermore, from (4.3.30) and
Theorem 2.4.12 (i) it follows that Z11 is centered Wishart distributed, where Z11+
E[Z11] is Wr(A)(I, n − r(C) − p + r(A)) and the other elements in Z equal 0.
Therefore, Lemma 4.3.2 implies that the distribution function FR(•) of R can be
approximated by

FR(X) ≈
∫

V 2(U11)
U12≤X12

V 2(U22)≤V 2(X22)

{
GZ11(X11) − G1

Z11
(X11)vecU11

+
1
2
vec′U11G2

Z11
(X11)vecU11

}
hU(V 2(X))d V 2(U), (4.3.34)

where GZ11 is the distribution function of Z11, and Gk
Z11

, k = 1, 2, denotes its
k−th derivative (for the interpretation of ” ≥ ” see Lemma 4.3.2)). The next step
is to approximate the density hU(V 2(X)) with the help of Ũ following a centered
Wishart distribution, i.e.

Ũ + nΨ ∼ Wp(Ψ, n).

Because of (4.3.31), we choose

Ψ =
(

1
nbIr(A) 0

0 Ip−r(A)

)
,
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where b is given in (4.3.32). Let k
Ũ

(•) denote the density of Ũ. Moreover, let M
and N be as in Theorem 4.3.5. Theorem 3.2.1 yields

hV 2(U)(U0) = k
Ũ

(U0){1 +
1
2
vec′(D[V 2(U)] − D[V 2(Ũ)])vecL�

2(U0,Ψ)} + . . . ,

where
D[V 2(Ũ)]) = nGp(I + Kp,p)(Ψ ⊗ Ψ)G′

p, (4.3.35)

Gp is defined by (1.3.49) and (1.3.50). With the help of Theorem 4.2.3, and from
the independence of U and Z,

D[V 2(U)] = n2Gp{D[ΓΣ−1/2Σ̂Σ−1/2Γ] − D[Z]}G′
p

= Gp

{
(n2d1 − n + r(C) + p − r(A))(I + Kp,p)(M ⊗ M) + n(I + Kp,p)(N ⊗ N)

+ n2d2(I + Kp,p)(N ⊗ M + M ⊗ N) + n2d3vecMvec′M
}
G′

p, (4.3.36)

where d1, d2 and d3 are defined in Theorem 4.2.3, and by Lemma 2.4.2 and The-
orem 2.4.16 we have (t = n − p − 1)

vecL�
2(U,Ψ) = −1

2
(GpHp ⊗ GpHp)

×
{
{t(Ip ⊗ Kp,p ⊗ Ip) − t2

2
I}vec(U + nΨ)−1 ⊗ vec(U + nΨ)−1

+
1
2
vec(t(U + nΨ)−1 − Ψ−1) ⊗ vecΨ−1

+
1
2
vecΨ−1 ⊗ vec(t(U + nΨ)−1 − Ψ−1) +

1
2
vecΨ−1 ⊗ vecΨ−1

}
. (4.3.37)

Note that it is much easier to integrate over k
Ũ

(•) instead of hU(•) when perform-
ing a correction in (4.3.34). The result is summarized in the next theorem.

Theorem 4.3.7. Let GZ11 be the distribution function of (V11)−1 − (n− r(C)−
p + r(A))I, where (V11)−1 ∼ Wp−r(A)(I, n − r(C) − p + r(A)). The distribution
function FR(X) of R, given by (4.3.24), can be approximated as

FR(X) ≈
∫

V 2(Ũ11)

Ũ12≤X12

V 2(Ũ22)≤V 2(X22−nIp−r(A))

{
GZ11(X11) − G1

Z11
(X11)vecŨ11

+
1
2
vec′Ũ11G2

Z11
(X11)vecŨ11

}
×
{

1 +
1
2
vec′(D[V 2(U)] − D[V 2(Ũ)])vecL�

2(Ũ,Ψ)
}

k
Ũ

(V 2(Ũ))d V 2(Ũ),
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where D[V 2(U)], D[V 2(Ũ)] and L�
2(Ũ,Ψ) are given by (4.3.35) – (4.3.37).

Observe that by conditioning we can simplify the computations in Theorem 4.3.7.
We may consider three independent variables and the corresponding densities,
from which one is the density of

Ũ1·2 = Wr(A)(bI, n − p + r(A)),

where b is given in (4.3.32). Since (Ũ + nΨ) is a linear function in (Ũ1·2)−1, we
may integrate out Ũ1·2 from the approximation of FR(X) given in Theorem 4.3.7.
For details see Kollo & von Rosen (2000).

4.3.4 Approximating the distribution of the mean parameter estimators in the
MLNM(ABC + B2C2)

In Theorem 4.1.9, the maximum likelihood estimators of B and B2 were given
and we shall write them out once again. Under full rank conditions the estimators
equal

B̂ =(A′S−1
1 A)−1A′S−1

1 YH′(HH)−1, (4.3.38)

B̂2 =(X − AB̂C)C′
2(C2C′

2)
−1, (4.3.39)

where

Y =X(I − C′
2(C2C′

2)
−1C2),

H =C(I − C′
2(C2C′

2)
−1C2),

S1 =Y(I − H′(HH′)−1H)Y′.

Since B̂ in (4.3.38) has the same structure as B̂ in (4.3.1), Theorem 4.3.1 can
be used immediately when presenting the approximation of the density of B̂ in
(4.3.38). Let

BN =(A′Σ−1A)−1A′Σ−1YH′(HH)−1, (4.3.40)
UB =(A′S−1

1 A)−1A′S−1
1 (I − (A′Σ−1A)−1A′Σ−1)YH′(HH′)−1 (4.3.41)

and
D[UB] = D[B̂] − D[BN ] =

p − q

n − r(C′ : C′
2) − p + q − 1

(HH′)−1.

Theorem 4.3.8. Let B̂, and BN be given by (4.3.38) and (4.3.40), respectively.
Then, an Edgeworth-type density expansion holds:

f
B̂

(B0) = fBE (B0) + . . . ,

where

fBE (B0) =
{
1 + 1

2s1 (tr{A′Σ−1A(B0 − B)HH′(B0 − B)′} − kq)
}
fBN (B0),
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s1 =
p − q

n − r(C′ : C′
1) − p + q − 1

.

It is also possible to find an upper error bound of the approximation similar to
Theorem 4.3.1, but we shall not present it for technical reasons. Now the density
of B̂2 in (4.3.39) is approximated. Let

BN2 = XC′
2(C2C′

2)
−1 − ABNCC′

2(C2C′
2)

−1, (4.3.42)

where BN is the same as in (4.3.40). Furthermore,

B̂2 = BN2 + AUBCC′
2(C2C′

2)
−1

with the important property that BN2 and UB are independent. This is a conse-
quence of the fact that XC′

2 and Y are independently distributed, as well as that
UB is independent of BN . Before stating the next theorem it is noted that BN2

is normally distributed with mean E[BN2] = B2 and

D[BN2] =D[XC′
2(C2C′

2)
−1] + D[ABNCC′

2(C2C′
2)

−1]
=(C2C′

2)
−1 ⊗ Σ + (C2C′

2)
−1C2CC′

2(C2C′
2)

−1 ⊗ A(A′Σ−1A)−1A′.

Theorem 4.3.9. Let B̂2, and BN2 be given by (4.3.39) and (4.3.42), respectively.
Then an Edgeworth-type density expansion holds:

f
B̂2

(B0) = fBE
(B0) + . . . ,

where

fBE (B0) = fBN2(B0) + 1
2E[(vec′U)⊗2]vec f2

BN2
(B0),

E[(vec′U)⊗2] =
p − q

n − r(C′ : C′
1) − p + q − 1

vecM,

vec f2
BN2

(B0) = {M−1vec(B0 − BE)vec′(B0 − BE)M−1 − M−1}fBN2(B0)

and

M =(C2C′
2)

−1 ⊗ Σ + (C2C′
2)

−1C2CC′
2(C2C′

2)
−1 ⊗ A(A′Σ−1A)−1A′.

4.3.5 Approximating the distribution of the mean parameter estimators in the
MLNM(

∑3
i=1 AiBiCi)

We are going to find density approximations of the parameter estimators B̂1, B̂2

and B̂3 given in (4.3.5) – (4.3.7). The technique of finding relevant approximations
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will be the same as in §4.3.2. Let us first consider B̂3 given in (4.3.5). By using
the results and the notation of Lemma 4.1.3, it follows that B̂3 is identical to

B̂3 = (A′
3G2(G′

2W3G2)−1G′
2A3)−1A′

3G2(G′
2W3G2)−1G′

2XC′
3(C3C′

3)
−1.

(4.3.43)
Thus, from (4.3.43) it follows that B̂3 has the same structure as B̂ in (4.3.1).
Therefore,

B̂3 − B3 = B3N − B3 + U3,

where

B3N − B3 = (A′
3G2(G′

2ΣG2)−1G′
2A3)−1A′

3G2(G′
2ΣG2)−1G′

2

× (X − A3B3C3)C′
3(C3C′

3)
−1 (4.3.44)

and

U3 = (A′
3G2(G′

2W3G2)−1G′
2A3)−1A′

3G2(G′
2W3G2)−1

× {I − G′
2A3(A′

3G2(G′
2ΣG2)−1G′

2A3)−1A′
3G2(G′

2ΣG2)−1}G′
2XC′

3(C3C′
3)

−1.

(4.3.45)

Because of Theorem 2.2.4, the matrix XC′
3(C3C′

3)
−1 is independent of W3 and

A′
3G2(G′

2ΣG2)−1G′
2X is independent of

{I − G′
2A3(A′

3G2(G′
2ΣG2)−1G′

2A3)−1A′
3G2(G′

2ΣG2)−1}G′
2X.

Thus, Theorem 4.3.1 establishes

Theorem 4.3.10. Let B̂3, B3N and U3 be defined by (4.3.5), (4.3.44) and
(4.3.45), respectively. Then

f
B̂3

(B0) = fB3E (B0) + . . . ,

where

fB3E
(B0) =fB3N

(B0) + 1
2E[(vec′U3)⊗2]vec f2

B3N
(B0)

=
{

1 + 1
2s
(
tr{A′

3G2(G′
2ΣG2)−1G′

2A3(B0 − B3)C3C′
3(B0 − B3)′}

− k3m2

)}
fB3N (B0),

where k3 is as in (4.1.43),

s =
p − m2

n − k3 − p + m2 − 1

and m2 is defined in (4.1.63).

Now we turn to B̂2 given in (4.3.6). As before, we are going to split the estimator
and consider

B̂2 − B2 = B2N − B2 + U2,
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where

B2N − B2 =(A′
2G1(G′

1ΣG1)−1G′
1A2)−1A′

2G1(G′
1ΣG1)−1

× G′
1(X − A2B2C2)C′

2(C2C′
2)

−1

− (A′
2G1(G′

1ΣG1)−1G′
1A2)−1A′

2G1(G′
1ΣG1)−1G′

1A3

× (A′
3G2(G′

2ΣG2)−1G′
2A3)−A′

3G2(G′
2ΣG2)−1

× G′
2XC′

3(C3C′
3)

−C3C′
2(C2C′

2)
−1 (4.3.46)

and

U2 = (A′
2G1(G′

1W2G1)−1G′
1A2)−1A′

2G1(G′
1W2G1)−1

× G′
1ΣG2(G′

2ΣG2)−1G′
2XC′

2(C2C′
2)

−1

− (A′
2G1(G′

1ΣG1)−1G′
1A2)−1A′

2G1(G′
1ΣG1)−1

× G′
1A3(A′

3G2(G′
2W3G2)−1G′

2A3)−A′
3G2(G′

2W3G2)−1

× G′
2ΣG3(G′

3ΣG3)−1G′
3XC′

3(C3C′
3)

−C3C′
2(C2C′

2)
−1

− (A′
2G1(G′

1W2G1)−1G′
1A2)−1A′

2G1(G′
1W2G1)−1G′

1ΣG2(G′
2ΣG2)−1G′

2

× A3(A′
3G2(G′

2W3G2)−1G′
2A3)−A′

3G2(G′
2W3G2)−1

× G′
2XC′

3(C3C′
3)

−C3C′
2(C2C′

2)
−1. (4.3.47)

In the calculations it has been used that

{I − G′
1A2(A′

2G1(G′
1ΣG1)−1G′

1A2)−1A′
2G1(G′

1ΣG1)−1}G′
1

= G′
1ΣG2(G′

2ΣG2)−1G′
2,

{I − G′
2A3(A′

3G2(G′
2ΣG2)−1G′

2A3)−1A′
3G2(G′

2ΣG2)−1}G′
2

= G′
2ΣG3(G′

3ΣG3)−1G′
3.

We are going to show that B2N − B2 and U2 are uncorrelated. Unfortunately
independence does not hold. First observe that XC′

3(C3C′
3)

−C3 is independent
of W2 and W3, and XC′

2(C2C′
2)

−1 is independent of W2. Furthermore, Theorem
2.2.4 (i) states that A′

2G1(G′
1ΣG1)−1G′

1X is independent of

{I − G′
1A2(A′

2G1(G′
1ΣG1)−1G′

1A2)−A′
2G1(G′

1ΣG1)−1}G′
1X

as well as G′
2X, while the last condition also implies that A′

2G1(G′
1ΣG1)−1G′

1X
is independent of G′

2W3G2. Now, according to Problem 1 in §2.4.9, the covariance

C

[
(A′

2G1(G′
1W2G1)−1G′

1A2)−1A′
2G1(G′

1W2G1)−1

× G′
1ΣG2(G′

2ΣG2)−1G′
2(X − E[X])C′

2,G
′
2(X − E[X])C′

3

]
= C2C′

3 ⊗ E[(A′
2G1(G′

1W2G1)−1G′
1A2)−1A′

2G1(G′
1W2G1)−1]

× G′
1ΣG2(G′

2ΣG2)−1G′
2ΣG2

= C2C′
3 ⊗ (A′

2G1(G′
1ΣG1)−1G′

1A2)−1A′
2G1(G′

1ΣG1)−1G′
1ΣG2

= 0,
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since A′
2G1(G′

1ΣG1)−1G′
1ΣG2 = 0. Furthermore, the linear functions G′

3X and
A′

3G2(G′
2ΣG2)−1G′

2X are independent, since G′
3ΣG2(G′

2ΣG2)−1G′
2A3 = 0.

Finally we observe that

(A′
2G1(G′

1W2G1)−1G′
1A2)−1A′

2G1(G′
1W2G1)−1

× G′
1ΣG2(G′

2ΣG2)−1G′
2(X − E[X])

and

G′
1A3(A′

3G2(G′
2ΣG2)−1G′

2A3)−A′
3G2(G′

2ΣG2)−1G′
2(X − E[X])

are uncorrelated.
We also need D[B2N ]. By Theorem 2.2.4 (i), A′

2G1(G′
1ΣG1)−1G′

1X and G′
2X

are independent and we have

D[B2N ]
= (C2C′

2)
−1 ⊗ (A′

2G1(G′
1ΣG1)−1G′

1A2)−1

+ (C2C′
2)

−1C2C′
3(C3C′

3)
−C3C′

2(C2C′
2)

−1 ⊗ (A′
2G1(G′

1ΣG1)−1G′
1A2)−1

× A′
2G1(G′

1ΣG1)−1G′
1A3(A′

3G2(G′
2ΣG2)−1G′

2A3)−A′
3G1(G′

1ΣG1)−1

× G′
1A2(A′

2G1(G′
1ΣG1)−1G′

1A2)−1. (4.3.48)

It is somewhat unfortunate that B2N is not matrix normally distributed, which
means that the inverse of D[B2N ] is difficult to express in a convenient way.

Theorem 4.3.11. Let B̂2, B2N and U2 be defined by (4.3.6), (4.3.46) and
(4.3.47), respectively. Then

f
B̂2

(B0) = fB2E
(B0) + . . . ,

where

fB2E
(B0) =fB2N

(B0) + 1
2E[(vec′U2)⊗2]vec f2

B2N
(B0),

and
E[(vec′U2)⊗2] = vec(D[B̂2] − D[B2N ]),

D[B̂2] and D[B2N ] are given in Theorem 4.2.11 (ii) and (4.3.48), respectively.

Now we turn to B̂1, which is more difficult to treat than B̂2 and B̂3, because B̂1

is a function of B̂2 and B̂3. First let us introduce some notation:

PA =A(A′A)−A′,
PA =(A′A)−1A′, if (A′A)−1 exists,

PA,W =A(A′W−1A)−A′W−1,

PA,W =(A′W−1A)−1A′W−1, if (A′W−1A)−1 exists,

PA,B,W =B′A(A′B(B′WB)−1B′A)−A′B(B′WB)−1,

PA,B,W =A(A′B(B′WB)−1B′A)−A′B(B′WB)−1,
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where it is supposed that (B′WB)−1 exists in PA,B,W and PA,B,W. It follows
that B̂1, given in (4.3.7), can be written in the following form:

B̂1 =(PA1,W1
X − PA1,W1

A2B̂2C2 − PA1,W1
A3B̂3C3)C′

1(C1C′
1)

−1

=PA1,W1
XC′

1(C1C′
1)

−1 − PA1,W1
PA2,G1,W2

G′
1XPC′

2
C′

1(C1C′
1)

−1

− PA1,W1
(I − PA2,G1,W2

G′
1)PA3,G2,W3

G′
2XPC′

3
C′

1(C1C′
1)

−1.

As before, we are going to split the estimator and consider the difference

B̂1 − B1 = B1N − B1 + U1, (4.3.49)

where B1N is a matrix obtained from B̂1, when Wi, i = 1, 2, 3, is replaced by Σ.
Thus,

B1N − B1 = PA1,Σ(X − E[X])C′
1(C1C′

1)
−1

− PA1,ΣPA2,G1,ΣG′
1(X − E[X])PC′

2
C′

1(C1C′
1)

−1

− PA1,Σ(I − PA2,G1,ΣG′
1)PA3,G2,ΣG′

2(X − E[X])PC′
3
C′

1(C1C′
1)

−1.

(4.3.50)

Observe that by Theorem 2.2.4 (i), the three terms on the right hand side of
(4.3.50) are mutually independent. Thus,

D[B1N ] = (C1C′
1)

−1 ⊗ (A′
1Σ

−1A1)−1

+ (C1C′
1)

−1C1PC′
2
C′

1(C1C′
1)

−1 ⊗ PA1,Σ

× A2(A′
2G1(G′

1ΣG1)−1G′
1A2)−A′

2P
′
A1,Σ

+ (C1C′
1)

−1C1PC′
3
C′

1(C1C′
1)

−1 ⊗ PA1,Σ(I − PA1,G1,ΣG′
1)

× A3(A′
3G2(G′

2ΣG2)−1G′
2A3)−A′

3(I − G1P′
A1,G1,ΣP′

A1,Σ.

(4.3.51)

After some calculations the term U1 in (4.3.49) equals

U1 = PA1,W1
(I − PA1,Σ)XC′

1(C1C′
1)

−1

− PA1,W1
(I − PA1,Σ)PA2,G1,W2

G′
1XPC′

2
C′

1(C1C′
1)

−1

− PA1,ΣPA2,G1,W2
(I − PA2,G1,Σ)G′

1XPC′
2
C′

1(C1C′
1)

−1

− PA1,W1
(I − PA1,Σ)(I − PA2,G1,W2

G′
1)PA3,G2,W3

G′
2XPC′

3
C′

1(C1C′
1)

−1

+ PA1,ΣPA2,G1,W2
(I − PA2,G1,Σ)G′

1PA3,G2,W3
G′

2XPC′
3
C′

1(C1C′
1)

−1

− PA1,Σ(I − PA2,G1,ΣG′
1)PA3,G2,W3

(I − PA3,G2,Σ)G′
2XPC′

3
C′

1(C1C′
1)

−1.

(4.3.52)

It is of advantage that B̂1 and B1N have the same mean and now this is verified.
The calculations depend heavily on the definition of the matrix Gi, i = 1, 2, 3,
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given in Lemma 4.1.3:

E[B1N ] = PA1,ΣE[X]C′
1(C1C′

1)
−1 − PA1,ΣPA2,G1,ΣG′

1E[X]PC′
2
C′

1(C1C′
1)

−1

− PA1,Σ(I − PA2,G1,ΣG′
1)PA3,G2,ΣG′

2E[X]PC′
3
C′

1(C1C′
1)

−1

= B1 + PA1,Σ(A2B2C2 + A3B3C3)C′
1(C1C′

1)
−1

− PA1,ΣPA2,G1,ΣG′
1(A2B2C2 + A3B3C3)PC′

2
C′

1(C1C′
1)

−1

− PA1,Σ(I − PA2,G1,ΣG′
1)PA3,G2,ΣG′

2A3B3C3C′
1(C1C′

1)
−1

= B1.

This implies also that E[U1] = 0. Next the covariance between B1N and U1 is
investigated.
Since ΣG1(G′

1ΣG1)−G′
1X and A′

1Σ
−1X are independent, and I − PA1,Σ =

ΣG1(G′
1ΣG1)−G′

1, the expression PA1,ΣXC′
1(C1C′

1)
−1 is independent of all ex-

pressions in U1. Moreover, XPC′
2

is independent of W2 and W1,

C[PA1,W1
(I − PA1,Σ)XC′

1,XPC′
2] = C[PA1,Σ(I − PA1,Σ)XC′

1,XPC′
2] = 0

and

C
[
PA1,W1

(I − PA1,Σ)PA2,G1,W2
G′

1XPC′
2
C′

1(C1C′
1)

−1,

PA1,ΣPA2,G1,ΣG′
1XPC′

2
C′

1(C1C′
1)

−1
]

= (C1C′
1)

−1C1PC′
2
C′

1(C1C′
1)

−1

⊗ E[PA1,W1
(I − PA1,Σ)PA2,G1,W2

G′
1ΣG1P′

A2,G1,ΣP′
A1,Σ]

= (C1C′
1)

−1C1PC′
2
C′

1(C1C′
1)

−1

⊗ E[PA1,W1
(I − PA1,Σ)A2(A′

2G1(G′
1ΣG1)−1G′

1A2)A′
2P

′
A1,Σ]

= (C1C′
1)

−1C1PC′
2
C′

1(C1C′
1)

−1

⊗ PA1,Σ(I − PA1,Σ)A2(A′
2G1(G′

1ΣG1)−1G′
1A2)A′

2P
′
A1,Σ = 0.

We also have that

(I − PA2,G1,Σ)G′
1 = G′

1ΣG2(G′
2ΣG2)−1G′

2

and since PA2,G1,ΣG′
1X is independent of G′

2X, the second term of B1N is also
uncorrelated with all the terms in U1.
Turning to the third term in (4.3.50), note that XPC′

3
is independent of W1,

W2 and W3. Therefore, since E[PA1,W1
] = PA1,Σ (see Problem 1 in §2.4.9),

PA1,W1
(I − PA1,Σ)XC′

1(C1C′
1)

−1 is uncorrelated with XPC′
3
. Now XPC′

3
and

XPC′
2

are independent of W1 and W2, and

E[PA1,W1
(I − PA1,Σ)PA2,G1,W2

G′
1] = PA1,Σ(I − PA1,Σ)PA2,G1,ΣG′

1 = 0.

Thus, the third term in (4.3.50) is uncorrelated with the first two terms of U1.
The same arguments yield that it is uncorrelated with the third term of U1. Now
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we have to consider the last three terms of U1. First it is used that XPC′
3

is
independent of W1, W2 and W3. Moreover,

G′
2PA3,G2,W3

G′
2ΣG2P′

A3,G2,Σ = G′
2A3(A′

3G2(G′
2ΣG2)−1G′

2A3)−A′
3.

Since

(I − PA1,Σ)(I − PA2,G1,W2
G′

1)PA3,G2,W3
G′

2

= ΣG1(G′
1ΣG1)−1G′

1W2G2(G′
2W2G2)−1G′

2PA3,G2,W3
G′

2,

(I − PA2,G1,Σ)G′
1PA3,G2,W3

G′
2

= G1ΣG2(G′
2ΣG2)−1G′

2PA3,G2,W3
G′

2,

we have to consider the expectations E[PA1,W1
(I − PA1,Σ)(I − PA2,G1,W2

G′
1)]

and E[PA1,ΣPA2,G1,W2
(I − PA2,G1,Σ)]. However,

E[PA1,W1
(I − PA1,Σ)(I − PA2,G1,W2

G′
1)]

= PA1,Σ(I − PA1,Σ)(I − PA2,G1,ΣG′
1) = 0

and

E[PA1,ΣPA2,G1,W2
(I − PA2,G1,Σ)] = PA1,ΣPA2,G1,Σ(I − PA2,G1,Σ) = 0.

Therefore, the third term in (4.3.50) is uncorrelated with the fourth and fifth term
of U1. Finally it is observed that since XPC′

3
is independent of W3 and

E[PA1,Σ(I − PA2,G1,ΣG′
1)PA3,G2,W3

(I − PA3,G2,Σ)G′
2]

= PA1,Σ(I − PA2,G1,ΣG′
1)PA3,G2,Σ(I − PA3,G2,Σ)G′

2 = 0,

the third term is uncorrelated with the last term of U1. Hence, B1N and U1 in
(4.3.52) are uncorrelated and the next theorem has been established.

Theorem 4.3.12. Let B̂1, B1N and U1 be defined by (4.3.7), (4.3.50) and
(4.3.52), respectively. Then

f
B̂1

(B0) = fB1E (B0) + . . . ,

where

fB1E
(B0) =fB1N

(B0) + 1
2E[(vec′U1)⊗2]vec f2

B1N
(B0),

and
E[(vec′U1)⊗2] = vec(D[B̂1] − D[B1N ]),

while D[B̂1] and D[B1N ] are given in Theorem 4.2.11 (iii) and (4.3.51), respec-
tively.
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4.3.6 Problems
1. Present the expression of the density fBE

(B0) in (4.3.12) in the case when
k = 1. To which class of elliptical distributions does it belong?

2. Find the dispersion matrix and the kurtosis characteristic of the elliptical
distribution in Theorem 4.3.2.

3. Show that for B̂, given by (4.3.1),

m4[B̂]
= (1 + 2c1)(CC′)−1 ⊗ (A′ΣA)−1 ⊗ vec′((CC′)−1 ⊗ (A′ΣA)−1)

+ (1 + 2c1)(CC′)−1 ⊗ (A′ΣA)−1 ⊗ vec′((CC′)−1 ⊗ (A′ΣA)−1)(Kqk,qk ⊗ I)
+ (1 + 2c1)(CC′)−1 ⊗ vec′((CC′)−1 ⊗ (A′ΣA)−1) ⊗ (A′ΣA)−1(Kqk,qk ⊗ I)
+ c2(CC′)−1 ⊗ (A′ΣA)−1 ⊗ vec′((CC′)−1 ⊗ (A′ΣA)−1)
+ c3(CC′)−1 ⊗ vec′((CC′)−1 ⊗ (A′ΣA)−1) ⊗ (A′ΣA)−1(I ⊗ Kqk,qk)
+ c3(CC′)−1 ⊗ vec′((CC′)−1 ⊗ (A′ΣA)−1) ⊗ (A′ΣA)−1,

where the coefficients c1, c2 and c3 are given in Theorem 4.2.2.
4. Derive the order of the error in the approximation given in Theorem 4.3.5.
5. Verify (4.3.33).
6. Prove Lemma 4.3.2.
7. Are the first remainder terms in the expansions in Theorems 4.3.5 and 4.3.6

different?
8. Find an upper error bound to the approximation in Theorem 4.3.8.
9. Find an approximation to the density of the maximum likelihood estimator

B̂ for the MLNM(ABC) with restrictions GBH = 0.
10. Find an approximation to the density of the maximum likelihood estimator

Σ̂ for the model in Problem 9.
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model. Sankhyā, Ser. A 30 267–280.



478 References

Khatri, C.G. & Srivastava, M.S. (1978). Asymptotic expansions for distribu-
tions of characteristic roots of covariance matrices. South African Statist. J.
12 161–186.

Kolassa, J.E. (1994). Series Approximation Methods in Statistics. Springer, New
York.

Kollo, T. (1977). Some notions of matrix calculus with applications in math-
ematical statistics. Proceedings of the Computer Centre of Tartu State Uni-
versity 40 30–51 (in Russian).

Kollo, T. (1984). Asymptotic distributions of eigenprojectors of covariance and
correlation matrices for testing hypotheses. Acta et Commentationes Univer-
sitatis Tartuensis 685 3–13.

Kollo, T. (1990). Investigation of the convergence of functions of sample means
and covariances to limit distributions. In: Probability Theory and Mathe-
matical Statistics. Proceedings of the Fifth Vilnius Conference, June 25 –
July 1 1989. Eds. B. Grigelionis, Yn. V. Prohorov, et al. Mokslas/VSP,
Vilnius/Utrecht, Vol. 1, 638–646.

Kollo, T. (1991). Matrix Derivative in Multivariate Statistics. Tartu University
Press, Tartu (in Russian).

Kollo, T. (1994). A note on patterned matrices with applications in multivariate
analysis. Acta et Commentationes Universitatis Tartuensis 968 17–27.

Kollo, T. (2000). Chapter 15. Asymptotic inference based on eigenprojections
of covariance and correlation matrices. In: Innovations in Multivariate Statis-
tical Analysis, a Festschrift for Heinz Neudecker. Eds. R.J. Heijmans, D.S.G.
Pollock, A. Satorra. Kluwer, Dordrecht, 207–222.

Kollo, T. & Neudecker, H. (1993). Asymptotics of eigenvalues and unit-
length eigenvectors of sample variance and correlation matrices. J. Multi-
variate Anal., 47 283–300. Corrigendum; J. Multivariate Anal., (1994) 51
210.

Kollo, T. & von Rosen, D. (1995a). Approximating by the Wishart distribu-
tion. Ann. Inst. Statist.Math. 47 767–783.

Kollo, T. & von Rosen, D. (1995b). Minimal moments and cumulants of sym-
metric matrices: An application to the Wishart distribution. J. Multivariate
Anal. 55 149–164.

Kollo, T. & von Rosen, D. (1995c). Multivariate minimal moments. In: Sym-
posia Gaussiana. Proceedings of 2nd Gauss Symposium, Munich, Germany,
August 2.7, 1993, Conference B: Statistical Sciences Eds. V. Mammitzsch, H.
Schneeweiss. de Gruyter, Berlin, 15–23.

Kollo, T. & von Rosen, D. (1998). A unified approach to the approximation
of multivariate densities. Scand. J. Statist. 25 93–109.

Kollo, T. & Ruul, K. (2003). Approximations to the distribution of the sample
correlation matrix. J. Multivariate Anal. 85 318–334.

Kolmogorov, A.N. & Fomin, S.V. (1970). Introductory Real Analysis. Engle-
wood Cliffs, Prentice Hall, New York.

Konishi, S. (1979). Asymptotic expansions for the distributions of statistics based
on the sample correlation matrix in principal component analysis. Hiroshima
Math. J. 9 647–700.



Multivariate Linear Models 479

Koopmans, T.C., Rubin, H. & Leipnik, R.B. (1950). Measuring the equation
systems in dynamic economics. In: Statistical Inference in Dynamic Economic
Models, Ed. T.C. Koopmans. Wiley, New York.

Kotz, S., Balakrishnan, N. & Johnson, N.L. (2000). Continuous Multivari-
ate Distributions, Vol. I: Models and Applications, Second edition. Wiley,
New York.
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