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Foreword

Dear reader, On behalf of the four Scientific Statistical Societies – the SEIO,
Sociedad de Estadı́stica e Investigación Operativa (Spanish Statistical Society and
Operation Research); SFdS, Société Française de Statistique (French Statistical
Society); SIS, Società Italiana di Statistica (Italian Statistical Society); and the SPE,
Sociedade Portuguesa de Estatı́stica (Portuguese Statistical Society) – we would
like to inform you that this is a new book series of Springer entitled “Studies in
Theoretical and Applied Statistics,” with two lines of books published in the series:
“Advanced Studies” and “Selected Papers of the Statistical Societies.”

The first line of books offers constant up-to-date information on the most recent
developments and methods in the fields of theoretical statistics, applied statistics,
and demography. Books in this series are solicited in constant cooperation between
the statistical societies and need to show a high-level authorship formed by a team
preferably from different groups so as to integrate different research perspectives.

The second line of books presents a fully peer-reviewed selection of papers on
specific relevant topics organized by the editors, also on the occasion of conferences,
to show their research directions and developments in important topics, quickly and
informally, but with a high level of quality. The explicit aim is to summarize and
communicate current knowledge in an accessible way. This line of books will not
include conference proceedings and will strive to become a premier communication
medium in the scientific statistical community by receiving an Impact Factor, as
have other book series such as “Lecture Notes in Mathematics.”

The volumes of selected papers from the statistical societies will cover a broad
range of theoretical, methodological as well as application-oriented articles, surveys
and discussions. A major goal is to show the intensive interplay between various,
seemingly unrelated domains and to foster the cooperation between scientists in
different fields by offering well-founded and innovative solutions to urgent practice-
related problems.

On behalf of the founding statistical societies I wish to thank Springer,
Heidelberg and in particular Dr. Martina Bihn for the help and constant cooperation
in the organization of this new and innovative book series.

Rome, Italy Maurizio Vichi
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Preface

Statistics is the science of data analysis and inference. New theoretical developments
and new methods are stimulated by real research problems in many substantive
areas. The aim of this volume is to collect significant and innovative contributions on
statistical methodology and applications of statistics and data analysis in different
subject areas.

The volume is organized into six sections. The first two sections present
contributions on statistical theory. The second section is focused more specifically
on methods for the analysis of time series data or data with a spatial structure.
Most of the papers included in the third section illustrate new methods for modeling
complex data, while some of them present tools for data analysis. Section 4 includes
papers that are focused on methods for survey design, methods for the analysis
of data from complex surveys, and problems of relevance for producing official
statistics. Application of statistical methods for social, demographic, health and
biostatistic analysis is the common element among the papers included in Sect. 5.
The last section focuses on econometrics and new methods and original applications
for the analysis of economic data.

The papers included were selected from those presented at the 45th Meeting
of the Italian Statistical Society held in Padua in June 2010. More than 400
scientists and experts from approximately 20 countries presented 280 papers that
were accepted after a review process. More than 80 extended versions of these
papers were subsequently submitted for potential inclusion in this volume. A careful
double-blind review process was utilized and more than one hundred reviewers were
involved. Selecting from among the many interesting papers presented was no easy
task. We are grateful to all of the referees for their conscientious reviews.

Finally we would also like to thank Alice Blanck from Springer-Verlag for her
patience and for her valued assistance in preparing this volume.

Nicola Torelli
Fortunato Pesarin

Avner Bar-Hen
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1Default Priors Based on Pseudo-Likelihoods
for the Poisson-GPD Model

Stefano Cabras

Abstract
Extreme values are usually modeled with the peaks over the threshold approach
by means of the Poisson-Generalized Pareto Distribution (Poisson-GPD). This
model is governed by three parameters: the Poisson rate, the scale and the
shape of the GPD. The quantity of interest, in many applications, is the mean
return level which is a function of Poisson-GPD parameters. Moreover, the
shape parameter of GPD is itself of interest in order to gain more insights
on the underlying extremal process. For a suitable orthogonal parametrization,
we derive matching priors for shape, scale and Poisson rate parameters based
on an approximate conditional pseudo-likelihood. The formal rule, used here
to obtain such priors, in some cases leads to the same priors obtained with
Jeffreys’ and Reference procedures. Moreover, we can provide a formal proof
that each marginal prior for shape and scale parameters, respectively, are second
order matching priors. We estimate the coverages of the corresponding posterior
credible intervals and apply our approach to an example from hydrology.
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4 S. Cabras

1.1 Introduction

In the past two decades there has been an increasing interest for statistical models
of extreme events in numerous disciplines such as environmental sciences, finance
and insurance, among others (see for instance [11] and [27]).

We consider the class of models arising from extreme value theory (see i.e. [24])
with particular attention to model the exceedances of a random variableZ 2 Z �R

over a fixed high threshold, u [15]. Let Z�H.z/ represent the observable variable
(i.e. rainfall level or return of a financial asset) and Y DZ � ujZ> u represent
the exceedance over u. Pickands [24] shows that, under regularity conditions on
H.z/, the limiting distribution of Y , given Z > u, when u ! z�D sup Z , is the
Generalized Pareto Distribution (GPD) with shape � and scale � > 0,

f .y j �; �/ D
�
��1 .1C y�=�/�.1C�/=� ; if .1C y�=�/ > 0

��1 exp .�y=�/ ; � D 0

In most applications the shape parameter is of interest because:
(a) � regulates the existence of an upper limit in the Y variation. In fact, when

� < 0, z� D u � �=� < 1, while � � 0 implies z� D 1.
(b) � regulates tail thickness ofH.z/ and, in particular, 1=� determines the number

of finite moments of Y , i.e. for � D 1, E.Y / < 1 and E.Y 2/ D 1.
Because of (a), model f .�/ is irregular: for � < 0 the support of Y depends on � and,
in general, it does not satisfy usual regularity conditions for the maximum likelihood
estimator (MLE) [28]. In particular, the MLE does not exists when � < �1 and they
are not regular for �1 < � < �0:5, in order to avoid such irregularities, we assume
� > �0:5 in the rest of the paper. In practical data analyses, � > 0 is usually
encountered.

One of the main quantity of interest in extreme value analysis is the k-year mean
return level, Rk , that is the value of Y that will be exceeded once every k years. In
order to model this quantity we need to resort to a point process approach and use
the Poisson-GPD model [27]. Let y D .y1; : : : ; yn/ be n exceedances over a fixed
threshold u that have been observed during T years. The corresponding likelihood
function for the Poisson-GPD model is

L.�/ D p.yj�/ / �n expf��T g �
nY
iD1

f .yi j�; �/; (1.1)

where � D .�; �; �/ and

Rk D u C .�=�/
�
.�k/� � 1

�
:

Several papers deal with point and interval estimation of � from a frequentist
perspective; see e.g.: [14] and [28]. Frequentist approach, in extreme value analysis,
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poses difficulties not only because of model irregularities but also because n cannot
be large as extreme values are rare events. Such difficulties induced several authors
[15, 27] to resort to a Bayesian approach where L.�/ is combined with a suitable
prior �.�/ that mitigates the odd behavior of L.�/. Bayesian methods however,
introduce the problem of eliciting such prior �.�/. In particular, elicitation is
problematic because of the lack of a physical meaning of � . In this sense, paper
[3] proposes an elicitation procedure on � , while [16] use a separate elicitation for
� < 0 and � > 0, leading to a prior which is discontinuous at � D 0. The use
of vague priors is further complicated by the need of a sensitivity analysis of the
posterior with respect to the prior and this has to be done for a particular sample y.
This is not needed under a default Bayesian perspective, where �.�/ is determined
by a formal rule equal for all possible y. The default Bayesian perspective is that
used here along with other papers such as [1] that proposes a non-informative prior
for the regular case of � > 0 and [8] that discussed the use of the joint improper
Jeffreys’ prior for .�; �/,

�J .�; �/ / ��1.1C �/�1.1C 2�/�1=2; � > �1=2; � > 0;

which leads to a proper posterior distribution [8, Theorem 1]. The Jeffreys’ rule is
found to produce accurate inference on .�; �/ mitigating the odd behavior of L.�/.
Finally, a recent work of [20] studies a matching prior for the quantiles of the GPD.
However, differently from this work, none of the above papers study matching priors
for parameters of the Poisson-GPD model in Eq. (1.1).

The main contribution of this paper is to propose matching priors ��.�/, for the
parameters of model (1.1), based on the approximate conditional (AC) likelihood
function in [12]. This kind of priors have received increasing interest in the literature
as illustrated in [13]. The prior ��.�/ is derived according to the formal rule
developed in [31]. We thus have a formal proof that the matching priors ��.�/
and ��.�/ are second order matching priors, while for the joint prior ��.�; �/ /
�J .�; �/ we have heuristic arguments and numerical evidence suggesting that
��.�; �/ is jointly matching, according to the definition in [13], only for � > 0.

The rest of the paper is organized as follows: Sect. 1.2 recalls the use of pseudo-
likelihoods for deriving matching priors, with particular focus on the AC likelihood.
Derivation of ��.�/ along with the estimation of the coverage errors of posterior
credible intervals (C.I.) are contained in Sect. 1.3. An application to hydrology data
is illustrated in Sect. 1.4, while Sect. 1.5 contains further remarks.

1.2 Matching Priors from Pseudo-Likelihoods Under
Orthogonal Parametrization

In this section we summarize, under a more general setup, the procedure in [31]
that leads to the formal rule here employed in order to obtain ��.�/. We consider a
partition of the parameter � 2 �, as � D . ;�/, where  represents the parameter
of interest and � is the nuisance parameter. The elimination of � can be achieved
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using an appropriate pseudo-likelihood function, L�. /, which is a function of  
and y, with properties similar to those of a genuine likelihood function. Commonly
used pseudo-likelihood functions include: marginal, usually employed in Bayesian
analysis, conditional, profile and modified profile likelihoods; see, for instance, [2,
23, 26]. The use of L�. /, as if it were a true likelihood, leads to the posterior
distribution for  ,

��. jy/ / �. /L�. /;

where �. / is a suitable prior distribution on  only. Under a non-orthodox
Bayesian point of view, there are two main advantages in computing ��. jy/
instead of the usual marginal posterior

�. jy/ /
Z
�2�

L.�/�.�j /�. /d�;

based on the full likelihood L.�/. In particular:
• We avoid elicitation of �.�j /
• Numerical integration on the full parameter space � is no longer needed.
Bayesian inference based onL�. / has been considered, for instance, in [4–6,9,17–
19, 21, 25, 31, 32].

We define a matching prior ��. / as the prior that satisfies the following
equation [13, Chap. 2]

P� . �  ˛.Y// D P�. �  ˛.Y//COp.n
�1/;

where P� .�/ denotes the frequentist probability under � , P�.�/ is the posterior
probability and  ˛ is the ˛-quantile of ��. jy/. If � is a vector of orthogonal
parameters (i.e. the Fisher information matrix is strictly diagonal), then ��. / is
available via the approximate conditional likelihood in [12]

LAC. / D Lp. /jj��. ; O� /j�1=2 ;

where O� is the restricted MLE of � for fixed  , Lp. / D L. ; O� / is the profile
likelihood and j��. ;�/ D �@2`. ;�/=@�@�T is the observed Fisher information
for �, with `. ;�/ D logL. ;�/. According to Proposition 2.1 in [31], the
matching prior for  associated with LAC. / is given by

��. / / i  . ; O� /
1=2 ; (1.2)

where i  . ;�/ is the . ; /-component of the Fisher information matrix i. ;�/
based on L. ;�/. The corresponding pseudo-posterior is

��. jy/ / LAC. /i  . ; O� /
1=2I

see also [29, 30] and [9].
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Table 1.1 Partitions of � along with corresponding matching priors and posteriors

Case Partition Prior ��. / Posterior ��. jy/
(i )  D �, � D .�; 	/ / .1C �/�1 numerically

(ii)  D 	, � D .�; �/ / 	�1.1C 2O�	/�1 numerically
(iii)  D � , � D .�; 	/ / ��1=2 Gamma.nC 1=2; 1/
(iv)  D .�; 	/, � D � / �J .�; 	/ / 	�1.1C �/�1.1C 2�/�1=2 see [8]

1.3 Matching Priors for Parameters in the Poisson-GPD Model

Let us consider a reparametrization of the GPD density in terms of orthogonal
parameters � and 	 D �.1C �/ according to [10]. The GPD density becomes

f .yj�; 	/ D
�
	�1.1C �/.1C y�.1C �/=	/�.1C�/=�; .1C y�.1C �/=	/ > 0

	�1 exp.�y=	/; � D 0
:

(1.3)
The corresponding log-likelihood for the Poisson-GPD model, for � ¤ 0, is

`.�/ D n log.�/��T �n log.	/Cn log.1C�/� 1C �

�

nX
iD1

log

�
1C �.1C �/

	
yi

�
;

where, with an abuse of notation, � D .�; �; 	/, and the expected Fisher information
matrix, for one observation, is

i�.�/ D
0@��1 0 0

0 .1C �/�2 0

0 0 	�2.1C 2�/�1

1A :
We consider four relevant different partitions of �: (i )  D �, (i i )  D 	, (i i i )
 D � and (iv)  D .�; 	/. It is worth noting that the conditional MLE of the
Poisson rate, O� D n=T , does not depend on � and 	. The corresponding priors
(1.2), for each partition, are all improper and illustrated in Table 1.1.

Only for case (i i ) we have a data-dependent prior because the conditional MLE
O�	 enters into the prior.

Prior for case (i i i ) is the Jeffreys/Reference and the first order matching prior for
the Poisson rate. Moreover, because of factorizationL.�/ D L.�/�L.�; 	/, ��.�/
is also the unique first order matching prior for the Poison-GPD model according to
Theorem 2.5.1 in [13].

For case (iv), we have a vector of parameters of interest and the resulting prior
��. / equals the Jeffreys’ prior �J .�; 	/. Such prior is the same in [8], �J .�; �/,
under the non-orthogonal parametrization. This can be easily seen by recalling that
the Jeffreys’ prior is invariant under reparametrization. However, although Jeffreys’
and [31] procedures both lead to the same prior, in this paper we only have numerical
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Table 1.2 Empirical coverages for case (i ) with
	 D 1 and (i i ) with � D 1

n

� 10 20 30

�0.4 0.94 0.96 0.95
�0.0 0.98 0.97 0.96
�1.0 0.97 0.96 0.95
�2.0 0.97 0.97 0.96
	

�0.5 0.95 0.95 0.95
�1.0 0.94 0.95 0.94
�2.0 0.95 0.96 0.95
�5.0 0.95 0.96 0.95

Coverages of Jeffreys’s prior

n
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Fig. 1.1 Empirical coverages of ��.�; � jy/, for the regular case of � > 0. Horizontal lines
indicate coverages compatible with the nominal 95%

evidence that ��.�; 	jy/ is a joint matching prior according to the definition in [13]
that is,

P� .� � �˛; 	 � 	˛/ D P�.� � �˛; 	 � 	˛/COp.n
�1/:

Such evidence is substantial for the regular case of � > 0, while coverages of
posterior C.I., for � < 0, are less than the nominal value.

We use Monte Carlo simulations to evaluate frequentist coverages of 95%
posterior C.I. for the corresponding priors in Table 1.1 for cases (i ), (i i ) and (iv).
We use, for each combination of �, 	 and n, 5,000 simulated C.I.. Cases (i ) and (i i )
are new to the literature and coverages are shown in Table 1.2 with significant digits,
while coverages for case (iv) are showed in Fig. 1.1.

We can see from Table 1.2 and Fig. 1.1 that with n D 30 coverages are all
compatible with the nominal value of 95%.

For the mean return level, we propose to use cases (i i i ) and (iv) to derive the
prior for Rk.�/ by means of



1 Default Priors for Poisson-GPD 9

Coverages of the one−year Mean Return Level
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Fig. 1.2 Empirical coverages of �J .Rk.�/jy/, for the regular case of � > 0. Horizontal lines
indicate coverages compatible with the nominal 95%

�J .�/ / ��.�/��.�; 	/:

Such prior is the Jeffreys’ prior for the Poisson-GPD model. The corresponding
posterior, �J .Rk.�/jy/, has been also used in [8] and here we study coverages of
the corresponding 95% posterior C.I. that are showed in Fig. 1.2 for � > 0 and
k D 1 year. From n D 40 coverages are compatible with the nominal 95%.

Finally, it is possible to note, from Figs. 1.1 and 1.2, that model irregularities,
occurring when � ! �1=2, have effect on the coverages of posterior C.I.. In fact,
coverages tend to be smaller when � D 0:5 with respect to the other values of �
considered in the simulation study. However, in real applications, negative values
of � are not very common, while large positive values of � denote the presence of
heavy tails in the distribution of Y .

The difference, between the actual coverage and the nominal 95%, may be
interpreted also in terms of distance between the actual ��.�jy/ and an ideal
posterior, that based on the full likelihood and a matching prior, would lead to C.I.
with exactly 95% of coverage.

1.4 An Application to Hydrology

We apply the proposed inference procedure to a sample of 154 exceedances over the
level 65 m3/s by the River Nidd at Hunsingore Weir from 1934 to 1969 [22]. This
data set has been analyzed by several authors: [8, 15]. These data involve problems
of trend, seasonality and threshold selection. Here we use them to demonstrate
our procedure. One of the main feature of this sample is the tail bumpiness for
thresholds between 100 and 120 m3/s, because the number of observations over the
threshold u does not smoothly decreases as u increases. This feature complicates
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Table 1.3 Ninety-five percent credible intervals for � and 	 at different thresholds for Nidd data

� 	

u n 95% C.I. Length logBF � 95% C.I. Length

70 138 (0.14,0.60) 0.46 9 (23,36) 13
80 86 (0.09,0.76) 0.68 6 (26,45) 20
90 57 (�0.07,0.79) 0.86 3 (30,58) 29
100 39 (�0.30,0.65) 0.95 1 (37,75) 38
110 31 (�0.37,0.71) 1.08 0 (37,81) 44
120 24 (�0.44,0.58) 1.02 �1 (40,89) 49
130 22 (�0.42,0.87) 1.29 0 (35,88) 54
140 18 (�0.44,0.97) 1.41 0 (34,95) 61

the threshold selection problem, which is not explicitly addressed here. For different
thresholds, the C.I. for � and 	 are showed in Table 1.3, while C.I. for Rk are the
same intervals in [8]. The length of � and 	 C.I. increases with u because of the
sample size. Inference is sensitive to u because values of u up to 100 m3/s provide
similar inference (i.e. all C.I. contain � D 0) and this differs from that obtained with
u > 100. For these data, it could be of interest whether or not the exceedances of
the Nidd River are bounded. This amounts to calculate

BF � D ��.� > 0jy/=��.� < 0jy/;

that is the pseudo-Bayes Factor on the sign of �. Differently from the usual BF ,
based onL.�/, as that in [8],BF � is not based on the posterior marginal distribution
of �, but instead on pseudo-likelihood L�.�/. The general use of L�. / to obtain
BF � is further discussed in [7].

The weight of evidence, logBF �, is showed in Table 1.3. For u < 110, the
evidence in favor of � > 0 is substantial and it is larger than the one obtained in [8].

1.5 Concluding Remarks

For the Poisson-GPD model (1.1) and a reduced set of parameters of interest, we
derived priors for inference based on the AC likelihood. Some of these priors are
also first order matching priors and some of them coincide with Jeffreys’ priors.
The main objective of this work is to show the potential of the approach based
on pseudo-likelihoods to derive matching priors [31]. In fact, for the Poisson-GPD
model, matching priors are derived quite easily.

Finally, one may employ priors ��. / here developed and obtain the posterior
�. jy/ with the usual integration of the marginal likelihood

Lm. / /
Z
�2�

L.�/�.�j /d�;
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such that the posterior is

�. jy/ / Lm. /��. /:

However, the procedure here proposed avoids elicitation on �.�j / as in can be
particularly cumbersome for the parameters of the Poisson-GPD model, moreover
integration over � is avoided in our analysis. Therefore, this approach may result
to be very useful in the presence of many nuisance parameters as in the context of
regression (see [10]). Finally, the matching argument holds for ��. jy/, while the
marginal posterior �. jy/ is not guaranteed to be matching.
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2Robustness, Dispersion, and Local Functions
in Data Depth

Mario Romanazzi and Claudio Agostinelli

Abstract
Data depth is a rapidly growing area in nonparametric statistics, especially suited
for the analysis of multidimensional data. This chapter covers influence functions
and robustness, depth-based dispersion measures, and a generalization of the
basic notion of depth function, called local depth, able to deal with multimodal
data.

Keywords
Influence function • Local depth • Multivariate dispersion • Nonparametric
statistical methods • Simplicial depth

2.1 Introduction

Data depth provides a coherent framework for nonparametric analysis of multi-
variate data and is currently registering new methodological achievements. Let
X D .X1; : : : ; Xp/

T be a random vector with distribution F and let FA;b denote
the distribution of AX C b. A depth function d.�IF / W Rp ! R

C [ ˚
0p
�

should
meet several requirements [8, 17]:
1. Affine invariance, i.e., d.xIF / D d.Ax C bIFA;b/.
2. If F is centro-symmetric about c 2 R

p , then d.cIF / � d.xIF / for all x 2 R
p .

3. Ray-monotonicity: if � 2 R
p satisfies d.� IF / � d.xIF / for all x 2 R

p, then
d.� C �1uIF / � d.� C �2uIF / for any p-vector u and 0 � �1 < �2.

4. When the norm k x k is large, the rank of x is negligible, i.e., limkxk!1
d.xIF / D 0.
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The main result of data depth is a ranking of the points with respect to F which
describes the degree of centrality of x, highest values corresponding to the center
of the distribution, lowest values corresponding to the tails. Several depth-based
functionals summarizing the features of F have been suggested. The most important
one is the deepest point �.F / D arg maxx d.xIF / describing the location of F .
In general, for a given depth value d � 0, one can consider the depth regions
D.d IF / D fx 2 Rp W d.xIF / � d g whose boundary is the d -contour of the
depth function. When properties (1)–(4) hold, the depth regions form a family of
nested affine equivariant subsets of Rp conveying valuable information about F .
For example, the spread of F can be described by the scale curve [9] �.d/ D
f.p.d/; vol.D.d IF ///; d � 0g, where p.d/ is the probability mass enclosed by
D.d IF /. In a similar way, the correlation curve [14] summarizes the degree of
interdependence of the components of F . The D–D plot is another graphical display
for pairwise comparison of observed versus theoretical depth distribution, and it can
be used for informal inferences, similarly to a Q–Q plot. The reader is referred to
[9] for a comprehensive coverage of the methodology. A more recent development
is functional depth [10] which opens new perspectives in applications involving
infinite dimensional distributions.

In this work more recent developments in the classical finite dimensional setting
are presented. The influence function and breakdown point for the simplicial depth
and its maximizer are presented in Sect. 2.2. The results allow a more precise
comparison of depth functions according to robustness, complementing the work by
[17]. Depth-based dispersion functionals are discussed in Sect. 2.3. Here the result is
a general scalar measure of dispersion for multivariate distributions. The final topic,
illustrated in Sect. 2.4, is local depth, a generalization of data depth to multimodal
distributions and clustered data sets. Results are available for several geometrical
depth functions based on simple structures, like Tukey’s halfspace depth, Liu’s
simplicial depth and Oja’s simplicial volume depth, but here we concentrate on
simplicial depth whose definition for a probability distribution F is recalled below.

Definition 1. The simplicial depth function [8] dS.�IF / 	 dS.�/ is the probability
that a random simplex SpC1 D S.x1; : : : ; xpC1/ covers x,

dS.x/ D PF .SpC1 W x 2 SpC1/:

2.2 Robustness

The Influence Function (IF) [7] is the main tool to investigate local sensitivity of a
statistical functional to an infinitesimal perturbation of F . In this section the IF of
depth values d.xIF /, x 2 Rp , and depth maximizer �.F / are reviewed. Proofs and
illustrations of the results can be found in [3, 13, 15] and [4].



2 Robustness, Dispersion, and Local Functions in Data Depth 15

We write ız for the point mass distribution at z 2 Rp . For 0 � k � p C 1,
let Ak be the event that a random sample of p C 1 elements from F.�; z/ D
.1 � �/F C �ız includes exactly k observations from ız and let pk.�/ be the
corresponding probability

pk.�/ 	 P.Ak/ D
 
p C 1

k

!
�k.1 � �/pC1�k :

Moreover, let dS.xjAk; z/ be the simplicial depth of x conditional on Ak , that
is, evaluated from random simplices with 0 � k � p C 1 vertices coincident
with z. The perturbed simplicial depth value turns out to be dS.xIF.�; z// DPpC1

kD0 pk.�/dS .xjAk; z/ and the IF is [15]

IF.zI dS.xIF // D .p C 1/.dS.xjA1; z/ � dS.xIF //: (2.1)

The IF of simplicial depth is a bounded function of x 2 Rp , linearly dependent on
the dimension of the space. This suggests that the simplicial ranks could be exposed
to the risk of distortion by outliers in high dimensions. However, the rank of the
center of a symmetric distribution seems to be remarkably stable.

Example 1. Let F be an absolutely continuous distribution centro-symmetric about
the origin 0p. The origin is the deepest point and dS.0p/ D 2�p . Moreover,

IF.zI dS.0pIF // D
8<:
.p C 1/.1 � 2�p/; z D 0p; closed simplices
�.p C 1/=2p; z D 0p; open simplices
0; z ¤ 0p:

Therefore, the simplicial rank of the center should be highly resistant to perturba-
tions, for all p:

Let us now pass to depth maximizers. Suppose F to be absolutely continuous
and centro-symmetric about the origin. Under the same hypotheses, the perturbed
simplicial median is the maximizer of

ds.xIF.�; z// D
(
.1 � �/pC1.dS.xIF /C .p C 1/ �

1�� ds.x j A1; z//; x ¤ z;

.1 � �/pC1.dS.xIF /C 1�.1��/pC1

.1��/pC1 /; x D z:

When F is absolutely continuous and spherically symmetric about the origin, the
perturbed simplicial median can be represented as �S .�; z/ D t.�; z/uz, with 0 �
t.�; z/ � k z k, which shows that it belongs to the closed segment joining the origin
and the perturbing point z. However, a complete characterization of t.�; z/ and IF
are still lacking. We end with a result on the breakdown point. The (augmented)
finite sample breakdown point "� [5] of the empirical simplicial median satisfies
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lim
n!1 �

�.�S . OFn// � 2p supx dS.xIF /
p C 1C 2p supx dS.xIF / � 1

p C 2
; (2.2)

almost surely [3, Proposition 5]. These results (see also (2.1)) illustrate a general
property of simplicial depth functionals, the dependence on dimension p. For
example, when p grows higher, the breakdown point (2.2) becomes negligible. This
behavior appears remarkably different from halfspace depth, e.g., the corresponding
upper limit in (2.2) is 1=3.

2.3 Multivariate Dispersion

The information on F provided by a depth function is by no means confined to
location but also includes dispersion, as confirmed by the scale-curve [9] and the
generalized quantile curves [16]. Hereafter, we will show that some well-known
multivariate dispersion coefficients are the Lebesgue integral of a depth function.
For any simplex SpC1 D S.x1; : : : ; xpC1/, we write V for the .p C 1/ � p matrix
whose rows are the vertices x1; : : : ; xpC1 of the simplex and we write 1pC1 for the
.p C 1/-vector with unit elements. We recall that the volume of the simplex is a
function of the determinant of the augmented matrix .1pC1

:::V /, i.e.

vol.SpC1/ D .pŠ/�1 j det.1pC1
:::V / j :

Moreover, for any nonsingular affine transformation x ! Ax C b

vol.S.Ax1 C b; : : : ; AxpC1 C b// Dj detA j vol.S.x1; : : : ; xpC1//: (2.3)

Standard dispersion orderings in the univariate case are based on the comparison of
interquantile intervals. For random numbers X and Y with cumulative distribution
functions F and G, X is said to be less dispersed than Y if F�1.ˇ/ � F�1.˛/ �
G�1.ˇ/�G�1.˛/ for all 0 < ˛ < ˇ < 1. A multivariate generalization of the above
formula to the multivariate setting based on the volume of simplices was suggested
by [11] and is reproduced below.

Definition 2. Suppose there is a function h W Rp ! R
p such that Y D h.X/. The

p-variate random vector X � F is less dispersed than the p-variate random vector
Y � G if for any set of p C 1 points x1; : : : ; xpC1 of Rp

vol.S.x1; : : : ; xpC1// � vol.S.h.x1/; : : : ; h.xpC1///:

We writeX � Y (orF � G) to mean that Definition 2 holds. Let F be a suitable
family of probability distributions on Rp including the absolutely continuous
distributions. A sensible dispersion measure is required to be a -monotone
function, and it must be translation invariant and satisfy a type of scale equivariance
with respect to linear transformations [11, Definition 4.2].



2 Robustness, Dispersion, and Local Functions in Data Depth 17

Definition 3. A function  W F !RC [ f0g is a dispersion measure if
i. for F , G 2 F , F � G implies  .F / �  .G/I

ii. a nonsingular affine transformation Y D AX C b with distribution FA;b satisfies
 .FA;b/ Dj detA j  .F /.

Two well-known examples of dispersion measures based on the volume of random
simplices are Gini’s multivariate coefficient  .1/.F / and Wilks’ generalized vari-
ance  .2/.F /

 .1/.F / D EX1;:::;XpC1

˚
vol.SpC1/

�
;

 .2/.F / D .p C 1/�1EX1;:::;XpC1

˚
.vol.SpC1/2/

� D det .Cov.X// :

We now illustrate the relations between the previous coefficients and the depth
functions.

Proposition 1. For F 2 F ,

 .1/.F / D
Z
Rp

dS.xIF /dx:

Proof. The result follows from Robbins’ theorem [12].

Recall that for continuous univariate distributions dS.xIF / D 2F.x/.1 � F.x//

and 2
R
R
F.x/.1�F.x//dx is a well-known computational formula of Gini’s mean

difference. The next example deals with the multivariate normal distribution.

Example 2. Let X � N.0p; Ip/. According to Proposition 1,

 .1/.X/ D
Z
Rp

dS .xIF /dx D 4p�1.p C 1/
�p=2

� .p=2/

Z 1
�1

�pC1.t/dt;

where � .�/ is the gamma function and �.�/ denotes the probability density function
of the standard normal distribution [see 6, p. 343, for further details]. Hence .1/.X/
only depends on dimension p. The results for Wilks’ generalized variance are
similar.

2.4 Local Depth

The monotonicity property is the reason why a depth function always exhibits a
unique center, even for data showing multiple centers. To obtain a ranking system
able to recognize multimodality, we constrain the depth function to use information
from the nearby region of any given point, instead of using information from
the whole space. The ranks of different points will be comparable provided the
neighborhood size is kept constant. More theoretical background can be found in



18 M. Romanazzi and C. Agostinelli

[2]. We illustrate the general idea with the local version of simplicial depth. For any
simplex SpC1 we denote with t.SpC1/ a scalar measure of its size, like diameter,
perimeter, or volume.

Definition 4. For any � > 0, the local simplicial depth function is given by

ldS.xI �/ D PF .SpC1 W x 2 SpC1 \ t.SpC1/ � �/: (2.4)

A discussion of the computational problems of (local) simplicial depth with large
samples and/or high dimensions can be found in [1]. An R package localdepth
for computing local and global depth is available at CRAN.

Example 3. In the scalar case, (2.4) is equivalent to

ldS .xI �/ D PF
�
.X.1/ � x � X.2// \ .X.2/ �X.1/ � �/

	
;

(X.1/ D min fX1;X2g, X.2/ D max fX1;X2g) that is, the probability that a random
interval with length not greater than � covers x. In the case of absolutely continuous
distributions on the real line the expression becomes

ldS.xI �/ D
Z x

x��
.F.y C �/� F.x//f .y/dy C

Z xC�

x

.F.x/ � F.y � �//f .y/dy:
(2.5)

Using (2.5), when X has a uniform distribution on the interval .a; b/ and 0 < � <

.b � a/=2, we obtain

ldS .xI �/ D

8̂̂<̂
:̂
0; x < a or x > b;
2F.x/.�.b � a/� F.x/=2/; a � x � aC �;

.�=.b � a//2; aC � < x � b � �;

2.1� F.x//.�=.b � a/ � .1 � F.x//=2/; b � � < x � b;
(2.6)

with F.�/ denoting cumulative distribution function. The simplicial depth function
is monotone increasing in .a; .aCb/=2/ and monotone decreasing in ..aCb/=2; b/.
On the other hand, the local version (2.6) is constant in .a C �; b � �/, monotone
increasing in the left tail .a; a C �/, and monotone decreasing in the right tail
.b � �; b/.

Example 4. A sample of 200 observations was simulated from the mixture F D
.F1 CF2/=2, where Fi � N2.�i ; I2/, i D 1; 2, and �1 D .0; 0/T, �2 D .2:5; 2:5/T.
Figure 2.1 shows the estimated density contours and simplicial depth contours. As
expected, simplicial depth has an overall maximum close to the total mean � D
.1:25; 1:25/T and monotonically decreases along any ray from this point. On the
other hand, the local simplicial depth contours (see Fig. 2.2; left panel: � D 0:198,
corresponding to the 10% quantile of the volume of the simplices; right panel: � D
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1:758, corresponding to the 60% quantile) are no longer nested and they show the
partial centers, provided that � is sufficiently low.

Local depth functions should meet the general properties of depth functions
mentioned in Sect. 2.1, except monotonicity property. In particular, when the
reference distribution is centro-symmetric and unimodal about c 2 Rp , local depth
should agree with global depth.

Proposition 2. Fix x 2 R
p and let PF .fxg/ be the probability of the singleton x

according to the distribution function F .
i. If t.SpC1/ D vol.SpC1/, ldS .�I �/ is affine invariant whereas, if t.SpC1/ D

diam.SpC1/, ldS .�I �/ is translation and rotation invariant;
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ii. 0 < �1 < �2 implies ldS .xI �1/ � ldS .xI �2/;
iii. for � > 0, PF .fxg/ � ldS.xI �/ � dS.x/;
iv. lim�!1ldS.xI �/ D dS.x/;
v. if t.SpC1/ D diam.SpC1/, lim�!0C ldS .xI �/ D PF .fxg/.

Proof. Proofs are straightforward and are omitted.

Local depth ldS .�I �/ is a family of functions indexed by the values of � , the param-
eter that defines the neighborhood size and the degree of smoothing. To be effective,
the choice of � must avoid the opposite risks of over-smoothing—potentially
important information filtered out—and under-smoothing—uninteresting point-to-
point variation shown up. We suggest to set � equal to a low-order percentile of the
distribution of simplex sizes (e.g., diameters or volumes). Percentile orders from
10% to 30% prove effective in most situations.

Local depth, like global depth, implicitly defines a (vector) location parameter

�� .F / D arg max
x
ldS .xI �/ (2.7)

whose components are the partial centers of F , for a given � . The following
proposition describes the behavior of (2.7) for local simplicial depth in the scalar
case, when F is unimodal.

Proposition 3. Let X have an absolutely continuous distribution with cumulative
distribution function F and density function f strictly positive for all x 2 R.
Suppose the distribution to be unimodal about c 2 R with median x0:5.

i. If the distribution is symmetric, �� .F / D �.F / D c for all � > 0;
ii. if the distribution is asymmetric, local simplicial depth admits a unique

maximizer �� .F / and c < ��.F / < min fc C �; x0:5g or max fc � �; x0:5g <
��.F / < c, according to whether the distribution is positive or negative
asymmetric;

iii. if 0 < �1 < �2 and the distribution is asymmetric, ��1.F / < ��2.F / or ��1.F / >
��2 .F / according to whether the distribution is positive or negative asymmetric.

Proof. [2].

According to Proposition 3, in the unimodal case the maximizer of local simplicial
depth is intermediate between the mode and the median, and it converges to the
mode or to the median according to whether � ! 0C or � ! 1.

Example 5. Let X � 0:5N.�1 D �2; �1 D 3=2/ C 0:5N.�2 D 2; �1 D 1/.
The simplicial depth function is increasing for x < x0:5 D 0:4 and decreasing for
x > x0:5 . The local version with � equal to 10% quantile of interval lengths has
two local maxima �.1/� ' �1:994 and �.2/� ' 1:962, near to the modes. The plot
of the (normalized) depth functions is shown in the left panel of Fig. 2.3. While the
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line marks the median

results do depend on the value of � , both the number and the locations of the local
maxima stay almost constant for a wide range of the smoothing parameter, up to
52% quantile order (see the right panel of Fig. 2.3). Convergence to the maximum
value of the global depth, i.e., the median of the distribution, is observable starting
from 90% quantile order.

In the multivariate case, the behavior of local depth is more complex and the
details can be found in [1].

2.5 Discussion

Data depth extends the classical nonparametric domain to the analysis of multi-
variate data. Geometrical depth functions, like halfspace and simplicial depth, are
of prominent interest because their information is based on simple geometrical
structures. This makes depth methodology particularly suited to initial stages of
statistical investigations, preliminary to more precise model-based analyses. Data
depth basic ideas can easily fit more general data structures than just units-by-
variables data matrices. A notable example is functional data depth [10].

Robustness is a key property of sample statistics and from this point of view
halfspace depth performs better than simplicial depth. The IF of depth values is
dimension-free for halfspace depth whereas it is linearly dependent on dimension
for simplicial depth. This points out a possible weakness of simplicial depth because
the depth values are more exposed to distortion by contaminating observations in
high dimensions. Halfspace median is a highly robust location estimator, according
to both IF and breakdown point, able to resist at least 100.pC1/�1% contamination
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fractions. The available results show that simplicial median has a lower breakdown
point.

Together with a location estimator, a depth function provides an overall measure
of dispersion given by its Lebesgue integral. This measure is location free, has nice
geometrical interpretations for the usual depth functions, and coincides with well-
known dispersion coefficients in the scalar case.

Local depth is a recent development aiming to properly deal with multimodal
data. The rationale is similar to the nearest neighborhood method, plus affine
invariance of depth ranks and more general types of neighborhoods. The main tools
are the local depth values, to be used as ranks of multivariate observations according
to the degree of centrality in equal-size neighborhoods, and the depth maximizers,
to be used as estimators of the partial centers. A nice feature of simplicial local
depth is that when the neighborhood size tends to infinity, the usual (global) depth is
recovered. Promising applications of local depth are mode estimation and clustering
of the units.
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3New Distribution-Free Plotting Position
Through an Approximation to the Beta Median

Pasquale Erto and Antonio Lepore

Abstract
Even in the modern software, graphical techniques are often utilized to visualize
the data and to determine the actual underlying distribution. In this chapter, a
new and better distribution-free formula is obtained via an axiomatic approach
leading to a new approximation to the median of the Beta distribution. A
comparative study, carried out also by using extensive Monte Carlo simulation,
shows the advantages of the new solution especially in estimating the median
return period and for each considered sample dimension (N D 5; 15; 30; 50/.

Keywords
Beta Distribution • Distribution-free Plotting Positions • Graphics and Data
Visualization • Return Period

3.1 Introduction

Let us consider the observations .x.1/; : : : ; x.N// of the order statistics
.x.1/; : : : ; x.N// (arranged in non-decreasing order) corresponding to N random
variables .x1; : : : ; xN / which are mutually independent and identically-distributed.
The basic problem of the graphical estimation is how to determine the best
estimate OFi of the cumulative distribution function (cdf) F.x.i// (i.e. the best
plotting position) corresponding to the i -th order observation x.i/. In particular, the
appropriate plotting position choice becomes crucial when estimating the return
period (i.e. inverse of the probability of exceeding a fixed value xT /. If the parent
distribution is known it is trivial to observe that exact unbiased plotting positions
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can be obtained via order statistics-theory. Unfortunately, they are usually complex
to determine, thus invalidating the practical aim of the graphical estimation.

Harter [1] provided a detailed review of the main plotting positions up to 1984,
concluding that the optimum choice of plotting position depends on the distribution
of the variable under consideration (i.e. the parent distribution) and on the use that
has to be made of the results. However, the crux is that ideally the parent distribution
does not necessarily need to be known [2]; in fact, probability papers are often
utilized to determine the underlying distribution. On this assumption, Makkonen
[3, 4] states that the probability of non-exceedance of the i -th value in N order
ranked events equals

OFi D i

N C 1
i D 1; : : : ; N (3.1)

the so-called Weibull formula [5, 6]. Therefore, regardless of the parent distribution
and the application, the many other suggested plotting formulas and numerical
methods to determine them should be abandoned. From such a background, in [7]
the question of determining distribution-free plotting position has been reopened
and discussed.

3.2 The Proposed Axiomatic Approach

The following two main properties are assumed in order to lead to a new plotting
position formula OFi .
1. The estimate of the cdf corresponding to the median observation should equal

exactly 0.5.
2. The estimate of the cdf corresponding to the largest observation should equal

exactly the median QFN of the random variable FN D F.X.N// (which is
independent from the parent distribution).

Both properties are desirable for OFi to more accurately estimate the median QTi of
the return period

Ti D 1=Œ1� F.X.i//� i D 1; : : : ; N (3.2)

through the estimator

OTi D 1=.1� OFi / i D 1; : : : ; N (3.3)

The practical form

OFi D i �A
N C 1 � 2A

i D 1; : : : ; N I A � 0 (3.4)
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already proposed by Blom [8] satisfies the first property. Moreover imposing that
formula (3.4) satisfies also property 2, the following value for the constant A is
deduced [9]

A D N C N � 1
21=N � 2

(3.5)

which results in the new plotting position

OFi D N � i � 2�1=N .1 � 2i CN/

N � 1
i D 1; : : : ; N (3.6)

The adopted criteria to compare plotting positions is to test their ability in estimating
QTi by evaluating the following Mean Absolute Relative Error (MARE)

MARE D 1

N

NX
iD1

ˇ̌̌̌
ˇ̌ QTi � 1

1� OFi
QTi

ˇ̌̌̌
ˇ̌ D 1

N

NX
iD1

ˇ̌̌̌
ˇ QFi � OFi
1 � OFi

ˇ̌̌̌
ˇ (3.7)

where QFi D 1 � 1= QTi is the median of the random variable Fi D F.X.i// and
depends only on i and N . To be convinced, it is enough to note that Fi is a Beta
random variable apart from the parent distribution of X , with probability density
function (pdf)

fFi .t/ D �.aC b/

�.a/�.b/
ta�1.1 � t/b�1 (3.8)

where a D i and b D N � i C 1. Therefore, the new plotting position in Eq. (3.6)
can be assumed as a new approximation of the median value of the Beta random
variable with integer parameters a D i and b D N � i C 1.

Nevertheless, it is worth pointing out the need to refer to QTi , rather than to the
expected value EŒTi �. In fact, for a random sample X1; : : : ; XN from a continuous
population with cdf F.x/ and pdf f .x/, we have

E ŒTi � D i

�
N

i

� 1Z
�1

ŒF .x/�i�1 Œ1 � F.x/�N�i�1f .x/dx

D i

�
N

i

� 1Z
0

ŒF �i�1 Œ1 � F �N�i�1 dF

By using the Beta function identity (e.g. [10]), we can finally write

EŒTi � D i

�
N

i

�
�.i/ �.N � i/

�.N /
D N

N � i (3.9)

which is infinite if i D N .
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3.3 Findings and Conclusion

Starting fromm D 10; 000 pseudo-random samples .F.x1/; : : : ; F .xN // generated
by a Monte Carlo simulation from the standard uniform distribution and arranged in
non-decreasing order, m pseudo-random samples from .T1; : : : ; TN / are obtained
through Eq. (3.2). Then, for each i D 1; : : : ; N , the median QTi can be calculated
as well as the ratios OTi= QTi which are achieved by the proposed plotting position
(Eq. (3.6)) and the Weibull one (Eq. (3.1)) upon using Eq. (3.3).

In order to visualize simultaneously the behaviour of both plotting positions, the
ratio OTi= QTi is plotted in Figs. 3.1 and 3.2 for N D 5 and N D 15, respectively. It
is clear from those figures that the proposed plotting position, whose ratio OTi= QTi is
much closer to unity, always out-performs the Weibull one in estimating the median
return period.

Moreover, the new plotting position advantages are also confirmed by the MARE
values reported in Table 3.1 for N D 5, 15, 30, 50. Those values are obtained
from Eq. (3.7) where QFi is numerically evaluated as the median of the Beta random
variable with parameters a D i and b D N � i C 1.
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Table 3.1 MARE of the
median return period

Plotting positions
Erto-Lepore Weibull

N D 5 0.0024 0.069
N D 15 0.0015 0.043
N D 30 0.0012 0.028
N D 50 0.0010 0.020
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4On Gaussian Compound Poisson Type Limiting
Likelihood Ratio Process

Sergueı̈ Dachian and Ilia Negri

Abstract
Different change-point type models encountered in statistical inference for
stochastic processes give rise to different limiting likelihood ratio processes.
Recently it was established that one of these likelihood ratios, which is an
exponential functional of a two-sided Poisson process driven by some parameter,
can be approximated (for sufficiently small values of the parameter) by another
one, which is an exponential functional of a two-sided Brownian motion. In this
chapter we consider yet another likelihood ratio, which is the exponent of a two-
sided compound Poisson process driven by some parameter. We establish that
the compound Poisson type likelihood ratio can also be approximated by the
Brownian type one for sufficiently small values of the parameter. We equally
discuss the asymptotics for large values of the parameter.
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4.1 Introduction

Different change-point type models encountered in statistical inference for stochas-
tic processes give rise to different limiting likelihood ratio processes. In [3] a relation
between two of these likelihood ratios was established by one of the authors. More
precisely, it was shown that the first one, which is an exponential functional of
a two-sided Poisson process driven by some parameter, can be approximated (for
sufficiently small values of the parameter) by the second one, defined by

Z0.x/ D exp

�
W.x/ � 1

2
jxj


; x 2 R; (4.1)

where W is a standard two-sided Brownian motion. In this chapter we consider
another limiting likelihood ratio process arising in some change-point type models.

We introduce the random process Z� on R as the exponent of a two-sided
compound Poisson process given by

lnZ�.x/ D

8̂̂<̂
:̂
�
P˘C.x/

kD1 "Ck � �2

2
˘C.x/; if x � 0;

�
P˘�.�x/

kD1 "�k � �2

2
˘�.�x/; if x � 0;

(4.2)

where � > 0, ˘C and ˘� are two independent Poisson processes of intensity 1
on RC, the random variables "Ck and "�k , k 2 N, are i.i.d. standard Gaussian random
variables and are also independent of ˘C and ˘�, and we use the conventionP0

kD1 ˛k D 0 (for any sequence ˛k). We equally introduce the random variables

�� D
R
R
x Z�.x/ dxR

R
Z�.x/ dx

;

��� D inf
n
z W Z�.z/ D sup

x2R
Z�.x/

o
;

�C� D sup
n
z W Z�.z/ D sup

x2R
Z�.x/

o
;

�˛� D ˛ ��� C .1� ˛/ �C� ; ˛ 2 Œ0; 1�;

(4.3)

related to this process, as well as their second moments B� D E�2� and M˛
� D

E.�˛� /
2.

The process Z� , up to a linear time change, arises in some non-regular, namely
change-point type, statistical models

�
e.g., the threshold autoregressive model

studied by Chan and Kutoyants in [2]
	

as the limiting likelihood ratio process,
and the variables �� and �˛� as the limiting distributions of the Bayesian estimators
and of the appropriately chosen maximum likelihood estimator, respectively. Here
the maximum likelihood estimator is not unique, and the appropriate choice is a
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linear combination with weights ˛ and 1 � ˛ of its minimal and maximal values.
In particular, B� and M˛

� are the limiting variances of these estimators, and the
Bayesian estimators being asymptotically efficient, the ratio E˛

� D B�=M
˛
� is the

asymptotic efficiency of this maximum likelihood estimator.
On the other hand, many change-point type statistical models encountered in

various fields of statistical inference for stochastic processes rather have as limiting
likelihood ratio process, up to a linear time change, the process Z0. In this case,
the limiting distributions of the Bayesian estimators and of the maximum likelihood
estimator are given by

�0 D
R
R
x Z0.x/ dxR

R
Z0.x/ dx

and �0 D argsup
x2R

Z0.x/; (4.4)

respectively, and the limiting variances of these estimators are B0 D E�20 and
M0 D E�20 .

A well-known example is the model of a discontinuous signal in a white Gaussian
noise exhaustively studied by Ibragimov and Khasminskii in [10, Chapter 7.2]

�
see

also their previous work [9]
	
, but one can also cite change-point type models of

dynamical systems with small noise considered by Kutoyants in [12] and [13,
Chapter 5], those of ergodic diffusion processes examined by Kutoyants in [14,
Chapter 3], a change-point type model of delay equations analyzed by Küchler
and Kutoyants in [11], an i.i.d. change-point type model explored by Deshayes and
Picard in [4], a model of a discontinuous periodic signal in a time inhomogeneous
diffusion investigated by Höpfner and Kutoyants in [8], and so on.

Let us also note that Terent’yev in [16] determined explicitly the distribution of
�0 and calculated the constantM0 D 26. These results were taken up by Ibragimov
and Khasminskii in [10, Chapter 7.3], where by means of numerical simulation they
equally showed thatB0 D 19:5˙0:5, and soE0 D 0:73˙0:03. Later in [7], Golubev
expressed B0 in terms of the second derivative (with respect to a parameter) of an
improper integral of a composite function of modified Hankel and Bessel functions.
Finally in [15], Rubin and Song obtained the exact values B0 D 16 �.3/ and E0 D
8 �.3/=13, where � is Riemann’s zeta function defined by �.s/ D P1

nD1 1=ns.
In this chapter we establish that the limiting likelihood ratio processes Z� and

Z0 are related. More precisely, we show that as � ! 0, the process Z�.y=�2/, y 2
R, converges weakly in the space D0.�1;C1/ (the Skorohod space of functions
on R without discontinuities of the second kind and vanishing at infinity) to the
processZ0. So, the random variables �2�� and �2�˛� converge weakly to the random
variables �0 and �0, respectively. We show equally that the convergence of moments
of these random variables holds, that is, �4B� ! 16 �.3/, �4M˛

� ! 26 and E˛
� !

8 �.3/=13. Besides their theoretical interest, these results have also some practical
implications. For example, they allow to construct tests and confidence intervals
on the base of the distributions of �0 and �0 (rather than on the base of those of
�� and �˛� , which are not known explicitly) in models having the process Z� with
a small � as a limiting likelihood ratio. Also, the limiting mean squared errors of
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the estimators and the asymptotic relative efficiency of the maximum likelihood
estimator can be approximated as B� 
 16 �.3/=�4, M˛

� 
 26=�4 and E˛
� 


8 �.3/=13 in such models.
These are the main results of this chapter, and they are presented in Sect. 4.2,

where we also briefly discuss the second possible asymptotics � ! C1. The
necessary lemmas are proved in Sect. 4.3 and, finally, in Sect. 4.4 we discuss some
directions for future development.

4.2 Asymptotics of the Limiting Likelihood Ratio

Consider the process X�.y/ D Z�.y=�
2/, y 2 R, where � > 0 and Z� is

defined by (4.2). Note that
R
R
y X� .y/ dyR

R
X� .y/ dy

D �2�� . Moreover inffz W X�.z/ D
supy2R X�.y/g D �2��� and supfz W X�.z/ D supy2R X�.y/g D �2�C� , where the
random variables �� , �C� and ��� are defined by (4.3).

Remind also the process Z0 on R defined by (4.1) and the random variables �0
and �0 defined by (4.4). Recall finally the quantities B� D E�2� , M˛

� D E.�˛� /
2,

E˛
� D B�=M

˛
� , B0 D E�20 D 16 �.3/, M0 D E�20 D 26 and E0 D B0=M0 D

8 �.3/=13. Now we can state the main result of this chapter.

Theorem 1. The process X� converges weakly in the space D0.�1;C1/ to the
process Z0 as � ! 0. In particular, the random variable �2�� converges weakly to
the random variable �0 and, for any ˛ 2 Œ0; 1�, the random variable �2�˛� converges
weakly to the random variable �0. Moreover, for any k > 0 we have

�2k E�k� ! E�k0 and �2k E.�˛� /
k ! E�k0 :

In particular, �4B� ! 16 �.3/, �4M˛
� ! 26 and E˛

� ! 8 �.3/=13.

The results concerning the random variable �� are direct consequence of [10,
Theorem 1.10.2] and the following three lemmas.

Lemma 1. The finite-dimensional distributions of the processX� converge to those
of Z0 as � ! 0.

Lemma 2. For all � > 0 and all y1; y2 2 R we have

E
ˇ̌̌
X1=2
� .y1/ �X1=2

� .y2/
ˇ̌̌2 � 1

4
jy1 � y2j :

Lemma 3. For any c 2 � 0 ; 1=8 Œ we have

EX1=2
� .y/ � exp

��c jyj	
for all sufficiently small � and all y 2 R.



4 On Gaussian Compound Poisson Type Limiting LR Process 33

Note that these lemmas are not sufficient to establish the weak convergence of
the process X� in the space D0.�1;C1/ and the results concerning the random
variable �˛� . However, the increments of the process lnX� being independent, the
convergence of its restrictions (and hence of those ofX� ) on finite intervals ŒA;B� �
R
�
i.e., convergence in the Skorohod space D ŒA;B� of functions on ŒA;B� without

discontinuities of the second kind
	

follows from [6, Theorem 6.5.5], Lemma 1, and
the following lemma.

Lemma 4. For any " > 0 we have

lim
h!0 lim

�!0 sup
jy1�y2j<h

P
nˇ̌

lnX�.y1/� lnX�.y2/
ˇ̌
> "

o
D 0:

Now, Theorem 1 follows from the following estimate on the tails of the process
X� by standard argument

�
see, for example, [10]

	
.

Lemma 5. For any b 2 � 0 ; 1=12 Œ we have

P
�

sup
jyj>A

X�.y/ > e�bA



� 4 e�bA

for all sufficiently small � and all A > 0.

Before giving the proofs of the above lemmas, let us discuss the second possible
asymptotics � ! C1. One can show that in this case, the process Z� converges
weakly in the space D0.�1;C1/ to the process Z1.x/ D �f��<x<�g, x 2 R,
where � and � are two independent exponential random variables with parameter
1. So, the random variables �� , ��� , �C� , and �˛� converge weakly to the random
variables

�1 D
R
R
x Z1.x/ dxR

R
Z1.x/ dx

D � � �
2

;

��1 D inf
n
z W Z1.z/ D sup

x2R
Z1.x/

o
D ��;

�C1 D sup
n
z W Z1.z/ D sup

x2R
Z1.x/

o
D �

and

�˛1 D ˛ ��1 C .1� ˛/ �C1 D .1 � ˛/ � � ˛ �;

respectively. One can equally show that, moreover, for any k > 0 we have

E�k� ! E�k1 and E.�˛� /
k ! E.�˛1/k:
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In particular, denotingB1D E�21,M˛1D E.�˛1/2 andE˛1D B1=M˛1, we finally
have

B� ! B1D E
�� � �

2

�2 D 1

2
;

M˛
� ! M˛1D E

�
.1 � ˛/ � � ˛ �

	2 D 6

�
˛ � 1

2

�2
C 1

2
(4.5)

and

E˛
� ! E˛1D 1

12
�
˛ � 1

2

	2 C 1
: (4.6)

Let us note that these convergences are natural, since the process Z1 can be
considered as a particular case of the process Z� with � D C1 if one admits the
convention C1 � 0 D 0.

Note also that Z1 is the limiting likelihood ratio process in the problem of
estimating the parameter � by i.i.d. uniform observations on Œ�; � C 1�. So, in this
problem, the variables �1 and �˛1 are the limiting distributions of the Bayesian
estimators and of the maximum likelihood estimator, respectively, B1 and M˛1
are the limiting variances of these estimators and, the Bayesian estimators being
asymptotically efficient,E˛1 is the asymptotic efficiency of the maximum likelihood
estimator.

Finally observe that the formulae (4.5) and (4.6) clearly imply that in the latter
problem (as well as in any problem having Z1 as limiting likelihood ratio) the
best choice of the maximum likelihood estimator is ˛ D 1=2, and that the so
chosen maximum likelihood estimator is asymptotically efficient. This choice was
also suggested by Chan and Kutoyants in [2] for problems having Z� as limiting
likelihood ratio. For large values of � this suggestion is confirmed by our asymptotic
results. However, we see that for small values of � the choice of ˛ will not be so
important, since the limits in Theorem 1 do not depend on ˛.

4.3 Proofs of the Lemmas

First we prove Lemma 1. Note that the restrictions of the process lnX� (as well as
those of the process lnZ0) on RC and on R� are mutually independent processes
with stationary and independent increments. So, to obtain the convergence of all
the finite-dimensional distributions, it is sufficient to show the convergence of one-
dimensional distributions only, that is,

lnX�.y/ ) lnZ0.y/ D W.y/� jyj
2

D N

�
�jyj
2
; jyj

�
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for all y 2 R. Moreover, these processes being symmetric, it is sufficient to consider
y 2 RC only. Here and in the sequel “)” denotes the weak convergence of the
random variables, and N .m; V / denotes a “generic” random variable distributed
according to the normal law with mean m and variance V .

The characteristic function '�.t/ of lnX�.y/ is

'�.t/ D E eit lnX� .y/ D E eit�
P˘C

�
y=�2
	

kD1 "
C
k �it �

2

2 ˘C.y=�
2/

D E E
�

eit�
P˘C

�
y=�2
	

kD1 "
C
k �it �

2

2 ˘C.y=�
2/
ˇ̌̌
F˘C

�
D E

�
e�it �

2

2 ˘C.y=�
2/

˘C.y=�
2/Y

kD1
E eit�"Ck

�
D E e�

�2

2 .itCt 2/˘C.y=�
2/

where we have denoted F˘C
the �-algebra related to the Poisson process˘C, used

the independence of "Ck and ˘C and recalled that E eit "Ck D e�t 2=2.
Then, noting that ˘C.y=�2/ is a Poisson random variable of parameter y=�2

with moment generating function E et˘C.y=�
2/ D exp

� y
�2
.et � 1/

	
, we get

ln'�.t/ D y

�2

�
e�

�2

2 .itCt 2/ � 1
�

D y

�2

�
��

2

2
.it C t2/C o.�2/

�
D �y

2
.it C t2/C o.1/ ! �y

2
.it C t2/ D ln E eitN .�y=2; y/

as � ! 0, and so Lemma 1 is proved.
Now we turn to the proof of Lemma 3 (we will prove Lemma 2 just after).

Calculations similar to the above ones show that

EX1=2
� .y/ D exp

� jyj
�2

�
e�

�2

8 � 1
��

(4.7)

for all y 2 R and, since

1

�2

�
e�

�2

8 � 1
�

D 1

�2

�
��

2

8
C o.�2/

�
! �1

8

as � ! 0, for any c 2 � 0 ; 1=8 Œ we have EX1=2
� .y/ � exp

��c jyj	 for all
sufficiently small � and all y 2 R. Lemma 3 is proved.

Further we verify Lemma 2. We first consider the case y1; y2 2 RC (say y1 �
y2). Using (4.7) and taking into account the stationarity and the independence of the
increments of the process lnX� on RC, we can write
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E
ˇ̌̌
X1=2
� .y1/ �X1=2

� .y2/
ˇ̌̌2 D EX�.y1/C EX�.y2/� 2EX1=2

� .y1/X
1=2
� .y2/

D 2 � 2EX�.y2/E
X
1=2
� .y1/

X
1=2
� .y2/

D 2 � 2EX1=2
�

�jy1 � y2j
	

D 2 � 2 exp

� jy1 � y2j
�2

�
e�

�2

8 � 1
��

� �2 jy1 � y2j
�2

�
e�

�2

8 � 1
�

� 1

4
jy1 � y2j :

The other cases can be treated similarly, and so, Lemma 2 is proved.
Now let us check Lemma 4. First let y1; y2 2 RC (say y1 � y2) such that

 D jy1 � y2j < h. Then, noting that conditionally to F˘C
the random variable

lnX�./ D �

˘C.=�
2/X

kD1
"Ck � �2

2
˘C.=�2/

is Gaussian with mean � �2

2
˘C.=�2/ and variance �2˘C.=�2/, we get

P
nˇ̌

lnX�.y1/� lnX� .y2/
ˇ̌
> "

o
� 1

"2
E
ˇ̌
lnX� .y1/ � lnX�.y2/

ˇ̌2
D 1

"2
E E

��
lnX� ./

	2 ˇ̌̌
F˘C

�
D 1

"2
E

 
�2˘C.=�2/C �4

4

�
˘C.=�2/

	2!

D 1

"2

 
C �4

4

�


�2
C 2

�4

�!

D 1

"2

�
.1C �2=4/C2=4

	
<
1

"2

�
ˇ.�/ hC h2=4

	

where ˇ.�/ D 1C �2=4 ! 1 as � ! 0. So, we have

lim
�!0 sup

jy1�y2j<h
P
nˇ̌

lnX�.y1/� lnX�.y2/
ˇ̌
> "

o
� lim

�!0
1

"2

�
ˇ.�/ hC h2=4

	
D 1

"2

�
hC h2

4

�
;
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and hence

lim
h!0 lim

�!0 sup
jy1�y2j<h

P
nˇ̌

lnX�.y1/ � lnX�.y2/
ˇ̌
> "

o
D 0;

where the supremum is taken only over y1; y2 2 RC.
The same conclusion can be obtained similarly in all the other cases. Lemma 4

is proved.
It remains to verify Lemma 5. Taking into account the symmetry of the process

lnX� , as well as the stationarity and the independence of its increments on RC, we
obtain

P
�

sup
jyj>A

X�.y/ > e�bA



� 2P
�

sup
y>A

X�.y/ > e�bA



� 2 e bA=2 EX1=2
� .A/ E sup

y>A

X
1=2
� .y/

X
1=2
� .A/

D 2 e bA=2 EX1=2
� .A/ E sup

z>0
X1=2
� .z/:

(4.8)

In order to estimate the last factor we write

E sup
z>0

X1=2
� .z/ D E exp

0@1
2

sup
z>0

 
�

˘C.z=�
2/X

kD1
"Ck � �2

2
˘C.z=�2/

!1A
D E exp

 
1

2
sup
n>0

�
�

nX
kD1

"Ck � n�2

2

�!
:

Now, let us observe that the random process Sn D Pn
kD1 "

C
k , n 2 N, has the same

law as the restriction on N of a standard Brownian motionW . So,

E sup
z>0

X1=2
� .z/ D E exp

�
1

2
sup
n>0

�
�W.n/ � n�2=2	�

D E exp

�
1

2
sup
n>0

�
W.n�2/� n�2=2

	�
� E exp

�
1

2
sup
t>0

�
W.t/� t=2

	� D E exp

�
1

2
S0

�
with an evident notation. It is known that the random variable S0 is exponential
of parameter 1

�
see, for example, Borodin and Salminen [1]

	
and hence, using its

moment generating function E etS0 D .1 � t/�1, we get

E sup
z>0

X1=2
� .z/ � 2: (4.9)
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Finally, taking b 2 � 0 ; 1=12 Œ we have 3b=2 2 � 0 ; 1=8 Œ and, combining (4.8),
(4.9) and using Lemma 3, we finally obtain

P
�

sup
jyj>A

X�.y/ > e�bA



� 4 e bA=2 exp
�
�3b
2
A
�

D 4 e�bA

for all sufficiently small � and all A > 0, which concludes the proof.

4.4 Final Remarks

In conclusion let us mention that in [2], the Gaussianity of the jumps of the limiting
likelihood ratio process Z� is due to a Gaussianity assumption on the underlying
threshold autoregressive model. Without such type assumption, many change-point
type statistical models—for example, the multi-phase regression model considered
by Fujii in [5] (and probably the threshold autoregressive model itself)—gives raise
to a more general compound Poisson type limiting likelihood ratio process Z�;f .
This process is still an exponent of a two-sided compound Poisson process, but the
jumps of the latter are no longer necessarily Gaussian. More precisely, it is given by

lnZ�;f .x/ D

8̂̂<̂
:̂
P˘C.x/

kD1 ln
f ."

C
k C�/

f ."
C
k /

; if x � 0;P˘�.�x/
kD1 ln

f ."�k ��/
f ."�k /

; if x � 0;

where � > 0, ˘C and ˘� are two independent Poisson processes of intensity 1 on
RC, and the random variables "Ck and "�k , k 2 N, are i.i.d. with density f , mean 0
and variance 1 and are also independent of˘C and˘�. The guess is that our results
hold in this general situation under some regularity conditions on f .
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statistique classique. Ann. Inst. H. Poincaré Probab. Statist. 20(4), 309–327 (1984)
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5Archetypal Symbolic Objects

M.R. D’Esposito, F. Palumbo, and G. Ragozini

Abstract
Symbolic Data Analysis has represented an important innovation in statistics
since its first presentation by E. Diday in the late 1980s. Most of the interest
has been for the statistical analysis of Symbolic Data that represent complex
data structure where variables can assume more than just a single value.
Thus, Symbolic Data allow to describe classes of statistical units as a whole.
Furthermore, other entities can be defined in the realm of Symbolic data. These
entities are the Symbolic objects, defined in terms of the relationships between
two different knowledge levels. This article aims at introducing a new type of SO
based on the archetypal analysis.

Keywords
Archetypal Analysis • Interval data • Symbolic Data Analysis • Two level
paradigm

5.1 Introduction

At the end of the 1980s, Edwin Diday has introduced in statistics the new and
revolutionary idea of Symbolic Data Analysis (SDA) [8]. SDA refers to a group
of methods for managing and analyzing complex data sources.
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Symbolic data generalize the concept of variable to other types of complex
variables that are called descriptions. In SDA, beyond the classical numerical or
categorical single valued variables, three classes of complex variables have been
identified [9]: (i) categorical multivalued, a set of categories; (ii) interval valued,
a subset of <; (iii) modal variables, a set of categories with weights. Symbolic
multi/interval-valued variables occur if there is uncertainty on individual values.
They permit to take into account the uncertainty in the data coding when dealing
with queries to charactere large and huge datasets or when variables have a natural
intrinsic variation (e.g., the [min, max] blood pressure).

Practically speaking, symbolic data permit to describe more complex “statistical
entities” such as groups of units (or clusters), concepts and Symbolic Objects (SO).
A group represents a set of homogeneous statistical units; a concept may be the
description of an animal species or of a product, and so on. To represent groups
and concepts, it is necessary to use multivalued or interval-valued variables in order
to take into account the whole set of possible values. Finally, Symbolic Objects
are conjunctions of elementary “events.” According to Touati et al. [18]: Symbolic
objects are defined by a logical conjunction of elementary “events” where values
or variables may be single, multiple, or nonexistent and where objects are not
necessarily defined on the same variables.

Bock and Diday and then Diday and Noirhomme-Fraiture have theorized and
defined different knowledge orders, the two level paradigma [1, 9]. First order
knowledge corresponds to observable statistical units, which can be described both
as symbolic data and as classical punctual data. Second order knowledge consists of
concepts that are “intrinsically” symbolic data: groups of individuals are examples
of the second order knowledge level. Third knowledge level refers to concepts that
are naturally defined as complex concepts as they refer to more general ideas.
A good example for introducing the third knowledge level is given by animal
species. Species are naturally characterized by interval-valued descriptions because
of their own natural variability. All races belonging to the same species represent the
second order level, and the individuals belonging to the species are the first order
knowledge level.

Let ˝ be a set of n generic (first or second order) objects !1; !2; : : : ; !n that
are defined by p descriptions, Archetypal Objects fa1; : : : ; amg are observed or
unobserved objects in ˝ that permit to “rebuild” any !i as a weighted sum of the
archetypes. Archetypes are based on the definition given by Cutler and Breiman [3]:
archetypes rely on the definition of “pure individual types,” few points lying on the
boundary of the data scatter and characterizing the archetypal pattern in the data.
D’Esposito et al. [6, 7] and Corsaro and Marino [2] have generalized archetypes
to interval-valued data that represent one of the three type of variable in Symbolic
Data. Interval Archetypes f�1; : : : ;�mg refer to archetypes where all descriptors are
interval-valued variables.

Into the two level paradigm framework, this chapter aims at introducing interval
archetypes in terms of higher order Symbolic Objects: the Archetypal Symbolic
Object. According to the above definitions, each unit !i , i D 1; : : : ; n is either
associated with an interval archetype �m or not. That is, �i is a mapping from
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˝ ! Œ0; 1�, if �i;m > ��, !i is associated with �m. The value �� is a threshold
(with �� � 0:5 at least).

This chapter is organized as follows: In Sect. 5.2 we summarize the archetypal
analysis. Within the two level paradigm framework we present the archetypal SOs
as “basis concepts”; then we illustrate the relation between the interval archetypes
and the interval-valued statistical units, and how it leads to the introduction of a
new concept of Symbolic Objects (Sect. 5.3). Section 5.4 contains an illustrative
example.

5.2 Archetypal Analysis in a Nutshell

Given a set of n statistical units described by p variables, archetypal analysis aims
at synthesizing the data through a set of (not necessarily observed) points that are
called archetypes, under the constraint that all points can be represented as a convex
combination of the archetypes themselves, and that the archetypes are a convex
combination of the data [3].

Let fxi ; i D 1; : : : ; ng be a set of multivariate data in <p, xi D .xi1; : : : ; xip/
0.

Archetypal analysis looks formp-vectors
˚
aj ; j D 1; : : : ; m

�
that are convex com-

binations of the input dataset and such that each data point is a convex combination
of the vectors aj . Formally, given the data matrix X D .x1; : : : ; xn/0, X 2 Rn�p ,
the archetype matrix A.m/ D .a1; : : : ; am/0, A.m/ 2 Rm�p, and the convex
combination coefficients ˇj D .ˇj1; : : : ; ˇjn/

0 and � i D .�i1; : : : ; �im/
0, it is

a0j D ˇ0jX j D 1; : : : ; m; ˇj i � 0 8j; i ˇ0j 1 D 1 8j (5.1)

x0i D � 0iA.m/ i D 1; : : : ; n; �ij � 0 8i; j � 0i1 D 1 8i: (5.2)

The above equations imply that the archetypes are the vertices of the data convex
hull, and that the data points belong to the archetype convex hull. An exact solution
of Eqs. (5.1) and (5.2) exists only if m D V , where V indicates the cardinality of
the data convex hull, i.e., the archetypes coincide with its V vertices [17].

However, V is generally too large to properly synthesize the data. For this reason,
looking for a smaller number of pure types, and wishing to preserve their closeness
to the data, the archetypes can be defined as thosem aj ’s, with m < V , fulfilling as
far as possible Eq. (5.2), and solving exactly Eq. (5.1).

If Eq. (5.2) is thus relaxed, data points can be only approximated through a
convex combination of the archetypes, i.e., � 0iA.m/ D Qx0i .m/ ¤ x0i .

Define QX.m/ D .Qx1.m/; : : : ; Qxn.m//0, QX.m/ 2 Rn�p , � .m/ D .�1; : : : ;�n/
0,

� .m/ 2 Rn�m, B.m/ D .ˇ1; : : : ;ˇm/, B.m/ 2 Rn�m, and

RSS.m/ D kX � QX.m/kF D kX � � .m/A.m/kF D X � � .m/B0.m/X

F

(5.3)
where kYkF D p

T r .YY0/ is the Frobenius norm for a generic matrix Y.
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The m archetypes aj , form < V , solve the minimization problem

min
� .m/;B.m/

RSS.m/ D min
� .m/;B.m/

X � � .m/B0.m/X

F

(5.4)

holding all the other conditions on coefficients ˇ0j and � 0i .
A detailed discussion on archetypal analysis properties and usage is in [5, 17].
In the case of symbolic data described through interval-valued variables,

archetypes are defined as follows. Consider an interval � D Œx; x� D
fx W x 2 <; x � x � xg, where x and x are the interval bound values [12], and
the set of all intervals is usually written as =<.

Let � 2 =<n�p be an interval matrix, � D .�01; : : : ;�0n/. Each observed
data point is now a hyper-rectangle. In analogy with the classical case, the aim of
archetypal analysis is to define m archetypal hyper-rectangles—that we will denote
by �.m/ 2 =<m�p , �.m/ D .�01; : : : ;�0m/—which synthesize the locations and
the shapes of all the other data. These archetypal hyper-rectangles are such that the
other hyper-rectangles can be expressed as a convex combination of them, and they
are a convex combination of all the others:

�.m/ D B.m/�; (5.5)

� D � .m/�.m/: (5.6)

Given the component-wise Hausdorff distance between intervals and the Frobe-
nius norm of the distance matrix between two interval matrices [7], for each m,
the m archetypal hyper-rectangles �.m/ can be determined by minimizing the
distance between the data interval matrix � and the matrix Q�.m/ D � .m/�.m/,
Q�.m/ 2 =<n�p , i.e., the data matrix reconstructed bym archetypal hyper-rectangle.

Thus, givenm and the quantity:

���.m/ D d ��; Q�.m/	
F

D �� �
� .m/B0.m/�

	
F
; (5.7)

the m archetypes solve the minimization problem:

min
� .m/;B.m/

���.m/ D min
� .m/;B.m/

�� �
� .m/B0.m/�

	
F

(5.8)

under the constraints on the convex combination coefficient matrices � .m/ and
B.m/:

� .m/1m D 1n; B1n D 1m (5.9)

where 1n and 1m are the all-ones vectors of dimension n and m, respectively
(see [7]).

Up to now archetypal analysis has been applied in many fields. It has found
application as a tool for image decomposition [14,15], in marketing research to find
archetypal consumers [16], for market segmentation and consumer fuzzy clustering
[10, 13], and finally for product profiling [6]. In performance analysis, archetypes
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have been exploited to construct data driven benchmarks [17] and to analyze CPU
performance [11].

5.3 Archetypes and SOs

One important and innovative aspect of archetypal analysis for interval data in the
symbolic data analysis context concerns the possibility of viewing archetypes as
SOs. In accordance to the Bock and Diday two level paradigm [1, page 43], this
section aims at presenting the archetypal analysis as a new and innovative approach
for defining Symbolic Objects. We will illustrate how the definition of archetypes
implies the concept of Symbolic Objects, and how the archetypes for interval-valued
data can be consistently defined as a higher knowledge level.

5.3.1 Interval Archetypes as SOs

Given the definition of interval archetype, an interval archetype corresponds to a
junction of descriptions Aj j D 1 : : : ; p and all the statistical units in the dataset
are related to this description through a membership function D (we refer to [1,
pages 5–7] for definitions). Whereas in the classical Boolean SO definition, the SOs
are identified on the basis of a comparison function R, in the archetypal framework
statistical units are defined on the basis of distance function D from the archetypes.
Hence the SO is defined by the triple .�ij ;D ;Aj /. The membership is evaluated on
the basis of the similarity of the description of an observed generic point xi with the
description of the archetype, i.e., �ij D ŒxiDAj �. If the two descriptions coincide,
and hence the archetype corresponds to an observed statistical unit, �ij D 1. If a
statistical unit is very different from the archetype, �ij tends to zero.

The reader can refer to Sect. 5.2 for a detailed description of the coefficients
�ij in the case of single valued data and for the case of interval-valued data, i.e.,
�ij D Œ�iDAj �. It is worth reminding that in the case of interval-valued data the
function D is based on the Hausdorff distance.

As an example, in performance analysis archetypes make it possible to obtain
descriptions of the ideal “best” and “worst” performers, and to compare all the other
performers with such descriptions [4].

5.3.2 Interval Archetypes as Third Order SOs

In addition to the above discussion, interval archetypal analysis allows us to define
third order SOs. Indeed, in this case statistical units are SOs and second order
knowledge descriptions. One interval archetype is a second order “basis” SO;
however, the whole set of archetypes represents a third order knowledge. Archetypal
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SOs and all units can be then defined by the conjunction of the weighted sum of a
set of interval-valued variables.

Formally, a generic interval archetype is a description defined as �0j D ˇ0j� DP
i ˇij�

0
i . Interval-valued data represents second order SOs, archetypes evaluated

on such data are, hence, third order SOs.
What is important to remark is that, at the same time, any statistical unit is defined

as a weighted sum of all the archetypes apart from a residual: xij 
 P
m �im�mj .

Under these conditions, the generic statical units can be also described by the
triple .�ij ;D ; Yj / that represents a new SO definition. The quantity D is a distance
function that corresponds to the distance function defined to identify the archetypes.

Next section will graphically show these relations through an example.

5.4 An Illustrative Example

This section presents the Italian peppers dataset as an example to empirically show
the archetypal SO definition. Many results and computational details will be skipped
for sake of space.

Data are reported in the Table 5.1 and refer to some characteristics describing
eight different species of Italian peppers. They are natively defined as interval-
valued variables and represent some of the chemio-physical characteristics of eight
different species of Italian peppers. This is a good example of data in which we can
distinguish two different sources of variability: variability among different species,
variation admitted inside one specific breed. Variation associated with each species
is represented by the range: difference between the maximum and the minimum
value. Before the analysis, variables have been standardized: midpoints have been
centered with respect their respective means, and both have been reduced with
respect the S.D. of the midpoints.

Three interval archetypes have been determined to synthesize the eight pepper
types, according to Corsaro and Marino’s algorithm [2]. Using different random
starts, solutions have been computed 100 times. Results shown here refer to the best
one. It is worth pointing out that solutions appeared to be very stable.

The symbolic objects related to peppers are represented in the space spanned by
the archetypal symbolic objects in Fig. 5.1. In such a space the coordinates of each
symbolic objects are the gamma coefficients. In the Table 5.2 the descriptions of the
archetypal symbolic objects are reported.

Figure 5.2 shows the unit number 5 (Pimiento) reconstructed as archetype
symbolic object weighted sum. Of course, an exact reconstruction is not possible
due to the residual component. A larger number of archetypes would reduce the
deviation. The upper display shows the variables H2O versus Protein, the lower part
the variable Lipides versus Glucides.
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Table 5.1 Italian peppers dataset

Id H2O Protein Lipid Glucide

Corno di Bue [90.45, 93.15] [0.67, 0.95] [0.23, 0.30] [5.07, 7.76]
Cuban [90.46, 91.55] [0.97, 1.11] [0.24, 0.33] [6.42, 7.65]
Cuban Nano [87.89, 91.40] [0.89, 1.25] [0.28, 0.35] [6.80, 9.91]
Grosso di Nocera [90.91, 92.55] [0.52, 0.80] [0.21, 0.27] [5.98, 7.58]
Pimiento [89.92, 93.43] [0.61, 1.09] [0.23, 0.24] [5.23, 7.94]
Quadrato D’Asti [91.31, 92.99] [0.74, 0.90] [0.20, 0.27] [6.64, 7.10]
Sunnybrook [89.65, 92.58] [0.85, 1.50] [0.20, 0.28] [5.52, 8.52]
Yolo Wonder [90.80, 94.26] [0.73, 1.30] [0.20, 0.25] [4.39, 7.34]

Fig. 5.1 Peppers represented in the space spanned by the archetypes. Coordinates are the �
coefficients

Table 5.2 Italian peppers: archetypal symbolic objects calculated on standardized data

Id H2O Protein Lipid Glucide

Arc1 [�0.48, 1.46] [�1.56, �0.08] [�0.99, 0.73] [ 1.46, 0.71]
Arc2 [�3.81, �0.05] [�0.04, 2.40] [ 0.71, 3.01] [�0.11, 4.04]
Arc3 [�0.97, 2.94] [�1.38, 2.48] [�1.57, �0.20] [�3.17, 0.89]
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Fig. 5.2 The symbolic object 5 (Pimiento) reconstructed through the weighted sum of archetype
symbolic objects
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Abstract
Recently, the analysis of ordered and non-ordered categorical variables has
assumed a relevant role, especially with regard to the evaluation of customer
satisfaction, health and educational effectiveness. In such real contexts, the study
of dependence relations among the involved variables represents an attractive
research field. However, the categorical nature of variables does not always
successfully allow the application of the existing standard dependence measures,
since categorical data are not specified according to a metric scale. In fact, the
aforementioned statistical methods are more appropriate in a purely quantitative
setting, because based on the Euclidean distance. Our purpose aims at overcom-
ing these restrictions by extending the dependence study in a quali–quantitative
perspective. The idea is focused on employing specific statistical tools, such as
the Lorenz curves and the so-called Lorenz zonoids. A novel Lorenz zonoids-
based relative dependence measure is proposed as an alternative to the partial
correlation coefficient to establish each categorical covariate contribution in a
multiple linear regression model.
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6.1 Introduction

As well known, statistical dependence is a type of relation between any two features
of units under study: these units may, for instance, be individuals, or objects, or
various aspects of the environment.

In literature, several approaches addressed to the dependence and concordance
study have been developed. In many cases, the dependence and concordance notions
are strictly related especially in a quali–quantitative context, characterized by
variables assuming mostly categorical nature.1 In such a context, one of the main
occurring problem concerns the application of standard dependence measures to
capture information about the real existence of dependence relations among the
involved variables. Let us suppose, for instance, to assume the employment of
a multiple linear regression model built on a quantitative response variable and
a set of categorical covariates. Typically, the existence of dependence relations
among the response variable and the considered explanatory ones can be detected
through the so-called multiple linear determination coefficient. This measure allows
also to assess the data goodness of fit: anyway, the multiple linear determination
coefficient is affected by some relevant restrictions since based on the Euclidean
distance and then more appropriate in a quantitative context of analysis, as argued
by Agresti (2002) (see, e.g., [1]). For this reason, an interesting research field is
represented by the definition of novel and more reliable dependence measures,
as proved in some recent contributions provided by Raffinetti and Giudici (2012)
(see, e.g., [13]). More in detail, the dependence analysis has been further on
extended by considering also the concordance notion, as initially illustrated in
[10]. According to Raffinetti and Giudici’s [13] recent suggestions, a useful tool
in obtaining information about the goodness of fit of a multiple linear regression
model is the so-called Multivariate Ranks-based Concordance Index. A related
development is described in [5], where an alternative to residual analysis is
proposed through a new Gini measure decomposition in terms of concordance
and discordance. The recall to Gini measure and thus to the underlying Lorenz
curve is motivated by the last decades research proposals in dependence analysis.
In [11], for instance, the Lorenz curve tool was considered in order to define
a new characterization of monotone dependence aimed at drawing a comparison
between the regression functionE.Y jX/ Lorenz curve and the Y Lorenz curve. The
aforementioned notion is appropriate when asking the relation to be invariant under
increasing transformation of X , but sensible to increasing transformation of Y .
On the basis of such results, in [11] a partial ordering of monotone dependence
on the class of nonnegative bivariate random vectors with given marginals was
then defined. The proposed partial ordering need arises in the study of economic
problems (e.g., taxation, see [10]) and in the study of several applications such as
discriminant problems and statistical quality control.

1Hereafter we simply denote with “categorical” both ordered and non-ordered categorical vari-
ables.
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In this chapter we refer to a partial ordering based on a specific statistical tool,
named Lorenz zonoid. When considering multivariate data, the Lorenz zonoid rep-
resents the multidimensional extension of the Lorenz curve. The Lorenz zonoid has
been introduced by Koshevoy (see, e.g., [6]) for empirical distributions and Mosler
(see, e.g., [9]) for general probability distributions. More precisely, the Lorenz
zonoid of a d -dimensional random vector corresponds to a convex set in RdC1,
whose role is analyzing and comparing random vectors. Through the Lorenz zonoid
representation one can establish an ordering of random vectors that reflects their
variability: the investigation of such ordering is induced by the inclusion between
Lorenz zonoids (see, e.g., [11] and [12]). This aspect provides a helpful support
for our proposed developments in dependence relations analysis. In particular, our
contributed approach is proved to provide a better measure of goodness of fit when
the available data are characterized mainly by categorical nature.

Afterwards, the rest of this chapter is organized as follows. Section 6.2 illustrates
the Lorenz zonoid and “inclusion property” definitions: in particular, the basic
procedure needed in formalizing novel partial dependence measures will be applied
with regard to a multiple linear regression model. Finally, Sect. 6.3 will be devoted
to final comments.

6.2 Dependence Measures Based on Lorenz Zonoids

Let us begin by recalling the Lorenz curve definition of a random variable X , as
reported in [8]. The Lorenz curve of a random variableX having expectation � > 0
is the graph of the function

t 7! ��1
Z t

0

F�1X .s/ds; 0 � t � 1

where F �1X is the quantile function of X , F �1X D minfx WF.x/ � tg; 0 < t � 1.
The Lorenz zonoid of a general d -variate random vector is defined as follows

(see, e.g., [8]). Consider the set X d of random vectors in Rd that have finite
expectation, the subset X dC � X d of those vectors that have positive (in each
component) expectation, and the subset X dC

C � X dC of those that have, in
addition, support in R

dC.
For X 2 X dC, we introduce the notation

QX D
 

X1

E.X1/
; : : : ;

Xd

E.Xd /

!
;

in order to point out the relative vector2 that is the vector componentwise divided
by its expectation.

2Relative data, that is data divided by their mean value is motivated by the classical definition of
Lorenz curve. Since the Lorenz zonoid is exactly the Lorenz curve extension in the multidimen-
sional context, one has to consider relative random vectors.
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The measurable function definition is now needed (see, e.g., [2]).

Definition 1. A function g W E ! R is measurable if E is a measurable set and for
each real number r , the set fx 2 E W g.x/ > rg is measurable.

From Definition 1, it is clear that continuous and monotone functions are
measurable.

The Lorenz zonoid of a random vector X 2 X dC is a convex compact set in
RdC1, defined as follows:

LZ.X/ D ˚
EŒ.g. QX/; g. QX/ QX� W g W Rd ! Œ0; 1� measurable

�
:

In particular, if X 2 X dC
C , i.e., has support in R

dC, the Lorenz zonoid is contained
in the hypercube of RdC1. Of our interest is the Lorenz zonoid in the univariate case,
in fact when d D 1 the Lorenz zonoid corresponds to the area between the Lorenz
curve and its dual,3 and thus it is equivalent to the Gini measure, as proved by
Koshevoy and Mosler (see [7]).

The Lorenz zonoid has many attractive properties which makes it useful for a
broad range of applications: in order to introduce the following results in terms of
Lorenz zonoids-based dependence measures, two relevant properties are needed.
First, we show that linear dependence is related to inclusion of Lorenz zonoids.
The definition of linear dependence between random vectors, can be found in many
references (see, for instance, [3]).

Definition 2. A linear dependence preorder �ld on X dC is defined as follows:

Y �ld X if LZ.X/ � LZ.Y/; (6.1)

where LZ.X/ and LZ.Y/ are Lorenz zonoids of the random vectors X and Y.

Then, the condition of linear dependence can be further on extended with regard
to random variables whose linear relations can be investigated through a linear
regression model. The aforementioned issue is illustrated by resorting to the so-
called inclusion property. Let us suppose to consider a bivariate vector of random
variables .Y;X/ and to apply a simple linear regression model.

Proposition 1. Denote respectively with LY .t/ and L
0

Y .t/ the Y Lorenz curve and
its dual, and with LE.Y jX/.t/ andL

0

E.Y jX/.t/ theE.Y jX/ Lorenz curve and its dual.

One can prove that LY .t/ � LE.Y jX/.t/ � L
0

Y .t/ (see, e.g., [11] and [12]), where

L
0

Y .t/ D 1
E.Y /

R 1
1�t F

�1
Y .s/ds, 0 � t � 1. Furthermore, L

0

E.Y jX/.t/ � L
0

Y .t/.

3The dual Lorenz curve corresponds to the Lorenz curve built by ordering the underlying variable
values in a decreasing sense.
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Proof. Let xt D F�1X .t/, where F�1X .t/ D inf fx W FX.x/ � tg for 0 � t � 1 (see
[11]). In order to show that LY .t/ � LE.Y jX/.t/, note that

LE.Y jX/.t/ D 1

E.Y /
E.Y jX � xt /FX.xt /

and

LY .t/ D 1

E.Y /
E.Y jY � yt /FY .yt /:

Now, .Y jX � xt / is stochastically larger than .Y jY � yt /, that is

P.Y � yjX � xt / � P.Y � yjY � yt / for all y 2 R;

and the result follows.

In the same manner, one can prove that the dual Lorenz curve of a general regression
function always lies below the dual Lorenz curve of the response variable Y
(see [12]).

Since the univariate Lorenz zonoid corresponds to the area between the Lorenz
curves, Proposition 1 allows to conclude that LZ.E.Y jX// � LZ.Y /, implying
the same conclusion of Definition 1, even if in this case inclusion is full as
consequence of Proposition 1. The existence of a linear dependence relation
between Y and X translates into an inclusion between the response variable Lorenz
zonoid and its linear estimated values Lorenz zonoid. Figure 6.1 shows this outcome
in a depicted way. By establishing a linear relation between the response variable
Y and the X covariate, through a simple linear regression function, one computes
the response variable estimated values and then proceeds to the construction of
the E.Y jX/ Lorenz zonoid. Since between the two random variables there exists
linear dependence, the Y Lorenz zonoid contains the corresponding linear estimated
values Lorenz zonoid, as one can deduce from Fig. 6.1. For these reasons, a direct
implication is that the E.Y jX/ Lorenz zonoid represents a useful tool in order
to define the total variability explained by the response variable linear estimated
values.

In fact, in order to analyze the variability of random vectors in X dC, one can
resort to the Lorenz zonoids and consider the order between random vectors that is
induced by their inclusion. Let us suppose to consider multivariate data: an ordering
able to stress the variability between two random vectors X and Y is the dilation
order, which is related to the so-called Lorenz zonoids order (see, e.g., [7] and [12]
for more details). Let us now introduce the Lorenz zonoid order definition (see, e.g.,
[8]).

Definition 3. For X and Y 2 X dC, the Lorenz zonoid order (Lorenz dominance)
�L, is defined as:

Y �L X if LZ.X/ � LZ.Y/:
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Let us denote with �dil the dilation order. One can show (see, e.g., [12]) a perfect
equivalence between the dilation order and the Lorenz zonoid order, as proved by
the following corollary:

Corollary 1. X �dil Y ) X �L Y.

If d D 1, the reverse implication, X �L Y ) X �dil Y holds, meaning that
through the Lorenz dominance one can provide an ordering among random variables
according to their variability degree.

6.2.1 Single Partial Dependence Measures

Lorenz zonoids have been employed in statistical applications only in a bivariate
case. In this context, a dependence measure for a general regression function
E.Y jX D x/ was developed in an unpublished draft of Koshevoy and Muliere
2002 (see Koshevoy and Muliere, 2002, Dependence Orderings, Unpublished Draft,
2002).

Our current purpose consists in extending the dependence analysis when con-
sidering a linear regression function characterized by more than one independent
variable. The proposal is to define single partial dependence measures whose role
is addressed in expressing the Y Lorenz zonoid share “explained” by each single
considered explanatory variable. Since the univariate Lorenz zonoid is equivalent to
the Gini measure, it can be intended as a dispersion measure.

Let us define the response variable Y Lorenz zonoid and let us denote it with
LZ.Y /. Assuming the application of a linear regression function to bivariate
vector .Y;X1/, one can build the Lorenz zonoid of OYX1 D E.Y jX1/, denoted
with LZ. OYX1/. The next step is focused on operating with a trivariate random
vector .Y;X1;X2/. We can thus compute the Lorenz zonoid of the linear estimated
Y variable values according to the second explanatory variable X2, obtaining
LZ. OYX2/. Furthermore, by exploiting the multiple linear regression tool, one can
compute the linear estimated Y variable values OYX1;X2 D E.Y jX1;X2/, considering
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both the covariates. The area that ranges between the OYX1;X2 Lorenz curve and
its dual can be denoted with LZ. OYX1;X2/. Forward stepwise inclusion of further
covariates can be dealt in a similar manner without loss of generality. Here,
Lorenz zonoids are particularly useful in order to define our proposed partial
dependence measures. A partial measure representative of the Y Lorenz zonoid
share “explained” by covariateX1 alone, is derived through the following ratio:

GY jX1 D LZ. OYX1/
LZ.Y /

; (6.2)

and, in the same manner, a partial measure able to describe the share of the Y
variable Lorenz zonoid “explained” by covariate X2 alone is derived by the ratio

GY jX2 D LZ. OYX2/
LZ.Y /

: (6.3)

Since we are implementing a multiple linear regression model, in order to
formalize partial dependence measures expressed in terms of Lorenz zonoids, our
aim is based on determining each covariate possible partial contribution to the
overall response variable explained variability. The aforementioned outcome is
achieved by resorting to Definition 3 and Corollary 1.

6.2.2 Lorenz Zonoids-Based Approach: The Multivariate Case

Let us consider the general context characterized by k explanatory variables:
our contribution is focused on defining the effect related to the introduction of
a new .k C 1/-th explanatory variable into the linear regression model. The
addition of a new explanatory variable can provide an enlargement of the E.Y j�/
Lorenz zonoid. The Lorenz zonoid of the Y linear estimated values, denoted with
LZ.E.Y jX1; : : : ; Xk//, corresponds to the dilation measure of the Y response
variable Lorenz zonoid LZ.Y /. In other words, the introduction of an additional
covariate in a linear regression model translates into an increase of the “explained”
Y variability: this result is confirmed by the Lorenz zonoids inclusion property.

In the well-known multiple linear regression model, properly, the contribution of
a single variable to the regression plane is additive and, therefore, the inclusion of
a new explanatory variable translates into an increase of the multiple determination
coefficient (see, e.g., [4]). More precisely, suppose to build a linear regression
model characterized by k explanatory variables. Let us introduce an additional
.kC1/�th explanatory variable: its contribution corresponds to an increase of the Y
variable “explained” variability, defined as the difference between Var. OYX1;:::;XkC1

/

and Var. OYX1;:::;Xk /.4 The squared partial correlation coefficient is expressed as

4Var. OYX1;:::;Xk / denotes the Y variability “explained” by X1; : : : ; Xk whereas Var. OYX1;:::;XkC1
/

denotes the Y variability “explained” by X1; : : : ; XkC1 .



58 E. Raffinetti and P. Giudici

r2Y;XkC1jX1;:::;Xk D Var. OYX1;:::;XkC1
/� Var. OYX1;:::;Xk /

Var.Y / � Var. OYX1;:::;Xk /
; (6.4)

where Var.Y /� Var. OYX1;:::;Xk / identifies the Y variable variability not explained by
covariatesX1; : : : ; Xk.

Our purpose is building a partial dependence measure that “parallels” the partial
correlation coefficient construction. In such a context, we aim at obtaining a ratio
whose numerator is characterized by a term denoting one of the possible contribu-
tion generated by the .k C 1/-th explanatory variable and whose denominator is
defined by a term describing the share of the Y Lorenz zonoid “not explained” by
the OYXk Lorenz zonoid.

The possible additional contribution related to the .kC1/-th explanatory variable
introduction can be measured by the difference between the Lorenz zonoid of
OYX1;:::;XkC1

and that of OYX1;:::;Xk , as follows:

LZ. OYX1;:::;XkC1
/� LZ. OYX1;:::;Xk /: (6.5)

A relative measure able to stress the possible additional contribution related to
covariate XkC1 can be obtained in analogy with the partial correlation coefficient
construction. Such a measure, called “Relative Gini Index”, is expressed as:

RGIY;XkC1jX1;:::;Xk D LZ. OYX1;:::;XkC1
/ � LZ. OYX1;:::;Xk /

LZ.Y /� LZ. OYX1;:::;Xk /
: (6.6)

Let us prove this construction in the trivariate .Y;X1;X2/ case.

Proof. When only two explanatory variables are considered, the multiple linear
determination coefficient assumes the following expression:

R2Y;X1;X2 D r2Y;X1 C r2Y;X2jX1.1 � R2Y;X1/; (6.7)

whereR2Y;X1 denotes the linear determination coefficient describing theX1 covariate
contribution in explaining the response variable variability.

In the considered linear regression model, the multiple linear determination
coefficient R2Y;X1;X2 defines the linear dependence among all the involved variables.
In terms of Lorenz zonoids, the R2Y;X1;X2 corresponds to LZ.E.Y jX1;X2// D
LZ. OYX1;X2/. Thus, relation (6.7) becomes

LZ.E.Y jX1;X2// D LZ.E.Y jX1//C LZ.E.Y;X2jX1//.LZ.Y / � LZ.E.Y jX1///;

where LZ.E.Y jX1// D LZ. OYX1/ and LZ.E.Y;X2jX1// D RGIY;X2jX1 . By substi-
tuting to RGIY;X2jX1 its expression in (6.6), one gets
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Table 6.1 Data

Y 350 202 404 263 451 304 275 385 244 102 74 346 53 395 430

X1 1 2 3 2 1 3 5 1 4 2 2 3 4 3 3
X2 4 4 1 5 2 4 4 4 3 3 2 4 2 1 3

LZ.E.Y jX1;X2// D LZ. OYX1/C RGIY;X2jX1.LZ.Y / � LZ. OYX1//

D LZ. OYX1/C LZ. OYX1;X2 /� LZ. OYX1/
LZ.Y /� LZ. OYX1/

.LZ.Y / � LZ. OYX1//

D LZ. OYX1/C LZ. OYX1;X2/� LZ. OYX1/ D LZ. OYX1;X2/: ut

The obtained partial Lorenz dependence measure, RGI, defines one of the possible
partial contribution to the Y Lorenz zonoid, related to the addition of a new explana-
tory variable into the model. We now discuss about the statistical interpretation of
our proposed dependence measures. We will consider an example that combines
multiple linear regression with Lorenz zonoids theory. Suppose to consider data in
Table 6.1.

Since covariates X1 and X2 have categorical nature, we assign numeric labels to
all their ordered or non-ordered assumed categories. By resorting both to multiple
linear regression model and Lorenz zonoid tools, one obtains LZ.Y / Š 0:245,
LZ. OYX1/ Š 0:051, LZ. OYX2/ Š 0:008 and LZ. OYX1;X2/ Š 0:054. Through (6.2) and
(6.3), the following single partial dependence measures can be derived: GY jX1 Š
0:209 and GY jX2 Š 0:032. The Lorenz zonoid of E.Y jX1/ D GY jX1 represents
the 20:9% of the Y Lorenz zonoid and the Lorenz zonoid of E.Y jX2/ D GY jX2
represents the 3:2% of the Y Lorenz zonoid. The relative measure describing
the possible additional contribution of covariate X1 to the Y Lorenz zonoid
is RGIY;X1jX2 Š 0:194, meaning that the introduction of explanatory variable
X1 allows to increase the dilation of the E.Y jX2/ Lorenz zonoid in measure
equivalent to 19:4%. Finally, the relative measure describing the possible additional
contribution of covariateX2 to the Y Lorenz zonoid is RGIY;X2jX1 Š 0:013, meaning
that the introduction of covariateX2 into the model allows to increase the dilation of
the E.Y jX1/ Lorenz zonoid in measure equivalent to 1:3%. Thus, we can conclude
that an increase of the dilation measure implies a reduction of the unexplained
response variable variability. The aforementioned example allows to highlight how
our proposal represents an improvement of the classical model selection criteria,
such as the AIC or BIC criterion, with regard to a quali–quantitative context. In
fact, if we apply the AIC criterion, the stepwise forward procedure provides no
covariates being relevant in explaining the response variable variability. On the
contrary, our RGI measure denotes a substantial contribution of covariate X1 to
the response variable variability explanation. In fact, the X1 covariate introduction
allows to explain the 19:4% of the total response variable variability.
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6.3 Conclusions

In this research contribution we showed how Lorenz zonoids can be usefully
employed to verify statistical dependence relationships among the involved
variables.

The relevant feature of our proposal is provided by its adequacy in special
cases of variables expressed through different measure scales. In fact, it assures
a consistent standardization: this topic is very interesting in a model choice
perspective, as illustrated in Sect. 6.2.2.

Our approach presents similarities with the R2-based approach: indeed, both
methods are built on a quantitative response variable. Furthermore, our contribution
satisfies the property of invariance with respect to scale transformations of variables:
for this reason, it can be intended as an alternative to the linear correlation measure
in a quali–quantitative context.

According to all the previously discussed issues, we conclude that our novel
dependence measure can assume also the role of measure of fit in cases of mainly
categorical covariates. In fact, as provided, it allows to overcome the standard depen-
dence measures restrictions when the relevant considered explanatory variables are
not specified through a metric scale.

Acknowledgements A special acknowledge goes to referees for their helpful comments and
suggestions.
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7Algebraic Generation of Orthogonal Fractional
Factorial Designs
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Abstract
The joint use of counting functions, Hilbert basis, and Markov basis allows to
define a procedure to generate all the fractional factorial designs that satisfy a
given set of constraints in terms of orthogonality [Fontana, Pistone and Rogantin
(JSPI, 2000), Pistone and Rogantin (JSPI, 2008)]. The general case of mixed
level designs without restrictions on the number of levels of each factor (such as
power of prime number) is studied. The generation problem is reduced to finding
positive integer solutions of a linear system of equations [e.g., Carlini and Pistone
(JSTP, 2007)]. This new methodology has been experimented on some significant
classes of fractional factorial designs, including mixed level orthogonal arrays
and sudoku designs [Fontana and Rogantin in Algebraic and Geometric Methods
in Statistics, CUP (2009)]. For smaller cases the complete generating set of all the
solutions can be computed. For larger cases we resort to the random generation
of a sample solution.
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7.1 Introduction

The main result of this chapter is discussed in Sect. 7.3 where the problem of finding
fractional factorial designs that satisfy a set of orthogonality conditions is translated
into the problem of finding nonnegative integer solutions to a system of linear
equations, so avoiding computations with complex numbers. Fractional factorial
designs that satisfy a set of conditions in terms of orthogonality between factors
have been described as the zero-set of a system of polynomial equations whose
indeterminates are the complex coefficients of the counting polynomial functions,
[7] and [4], see [5] for a short review. In Sect. 7.4, we use the software [10] to find
the generators of classes of orthogonal arrays. Finally, in Sect. 7.5 we consider the
problem of randomly sampling one fraction from a given class of orthogonality. Two
simulation methods are considered, Simulated Annealing and Markov Chain Monte
Carlo.

7.2 Full Factorial Design and Fractions of a Full
Factorial Design

We recall notations and results from [7]:
• Dj is a factor with nj levels coded with the nj -th roots of the unity, Dj D

f!.nj /0 ; : : : ; !
.nj /

nj�1g, !
.nj /

k D exp
�p�1 2�

nj
k
�

; D D D1 � � � �Dj � � � � Dm is the

full factorial design with complex coding and #D is its cardinality.
• Xj is the j -th component function, which maps a point to its j -th component,
Xj W D 3 .�1; : : : ; �m/ 7�! �j 2 Dj ; the function Xj is called simple term
or, by abuse of terminology, factor. The interaction term is X˛ D X

˛1
1 � � �X˛m

m ,
˛ 2 L D Zn1 � � � � �Znm , i.e., the monomial functionX˛ W D 3 .�1; : : : ; �m/ 7!
�
˛1
1 � � � �˛mm .

We underline that L is both the full factorial design with integer coding and the
exponent set of all the simple factors and interaction terms and ˛ is both a treatment
combination in the integer coding and a multi-exponent of an interaction term. These
identifications make the complex coding especially simple.

A fraction F is a multiset .F�; f�/ whose underlying set of elements F� is
contained in D and f� is the multiplicity function f� W F� ! N that for each
element in F� gives the number of times it belongs to the multiset F .

Definition 1. If f is a C-valued polynomial function defined on F , briefly a
response, then its mean value on F is EF .f / D 1

#F

P
�2F f .�/, where #F is the

total number of treatment combinations of the fraction. A response f is centered if
EF .f / D 0. Two responses f and g are orthogonal on F if EF .f g/ D 0.

Remark 1. It should be noted that
P

�2F f .�/ means
P

�2F�
f�.�/f .�/.

With the complex coding the vector orthogonality of two interaction terms X˛

andXˇ , with respect to the Hermitian product f �g D EF .f g/, corresponds to the
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combinatorial orthogonality as specified in Proposition 6. We consider the general
case in which fractions can contain points that are replicated.

Definition 2. The counting function R of a fraction F is a complex polynomial
defined on D so that for each � 2 D , R.�/ equals the number of appearances
of � in the fraction. A 0 � 1 valued counting function is called indicator func-
tion of a single replicate fraction F . We denote by c˛ the coefficients of the
representation of R on D using the monomial basis fX˛; ˛ 2 Lg: R.�/ DP

˛2L c˛X˛.�/; � 2 D ; c˛ 2 C:

Given a fraction F 	 .F�; f�/, the relationship between f� and its counting
functionR is

R.�/ D
(
f�.�/ � 2 F�
0 elsewhere

Proposition 1. If F is a fraction of a full factorial design D , R D P
˛2L c˛X˛ is

its counting function and Œ˛ � ˇ� is the m-tuple made by the componentwise differ-

ence in the ring Znj ,
�
Œ˛1 � ˇ1�n1 ; : : : ;

�
˛j � ˇj

�
nj
; : : : ; Œ˛m � ˇm�nm

�
, then

1. The coefficients c˛ are given by c˛ D 1
#D

P
�2F X˛.�/

2. The term X˛ is centered on F if, and only if, c˛ D cŒ�˛� D 0

3. The terms X˛ and Xˇ are orthogonal on F if, and only if, cŒ˛�ˇ� D 0

We now define projectivity and its relation with orthogonal arrays.

Definition 3. A fraction F factorially projects onto the I -factors, I � f1; : : : ; mg,
if the projection is a multiple full factorial design, i.e., a full factorial design where
each point appears equally often. A fraction F is a mixed orthogonal array of
strength t if it factorially projects onto any I -factors with #I D t .

Proposition 2. A fraction is an orthogonal array of strength t if, and only if, all the
coefficients c˛ of the counting function up to the order t are zero.

7.3 Counting Functions and Strata

It follows from Proposition 1 and Proposition 2 that the problem of finding fractional
factorial designs that satisfy a set of conditions in terms of orthogonality between
factors can be written as a polynomial system in which the indeterminates are the
complex coefficients c˛ of the counting polynomial function.

Let us now introduce a different way to describe the full factorial design D and
all its subsets. We consider the indicator functions 1� of all the single points of
D . The counting function R of a fraction F can be written as

P
�2D y�1� with

y� 	 R.�/ 2 f0; 1; : : : ; n; : : :g. The particular case in which R is an indicator
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function corresponds to y� 2 f0; 1g. From Proposition 1 we obtain that the values
of the counting function over D , y� , are related to the coefficients c˛ by c˛ D
1

#D

P
�2D y�X˛.�/. As described in Sect. 7.2, we consider m factors, D1; : : : ;Dm

where Dj 	 ˝nj D f!.nj /0 ; : : : ; !
.nj /

nj�1g, for j D 1; : : : ; m. From [7], we recall two
basic properties which hold true for the full design D .

Proposition 3. Let Xj be the simple term with level set Dj D˝nj D f!.nj /0 ; : : : ;

!
.nj /

nj�1g. Over D , the termXr
j takes all the values of˝sj equally often, where sj D 1

if r D 0 and sj D nj = gcd.r; nj / if r > 0.

Proposition 4. Let X˛ D X
˛1
1 � � �X˛m

m be an interaction. X˛i
i takes values in ˝si

where si is determined according to the previous Proposition 3. Over D , the term
X˛ takes all the values of ˝s equally often, where s D lcm.s1; : : : ; sm/.

Let us now define the strata that are associated with simple and interaction terms.

Definition 4. Given a term X˛; ˛ 2 L D Zn1 � : : : � Znm , the full design D is

partitioned into the strataD˛
h D

n
� 2 D W X˛.�/ D !

.s/

h

o
, where !.s/h 2 ˝s and s is

determined according to the previous Propositions 3 and 4.

We use n˛;h to denote the number of points of the fraction F that are in the
stratum D˛

h , n˛;h D P
�2D˛

h
y� , h D 0; : : : ; s � 1,. The following Proposition 5

(see [3] for proof) links the coefficients c˛ with n˛;h.

Proposition 5. Let F be a fraction of D with counting fraction R D P
˛2L c˛X˛ .

Each c˛; ˛ 2 L, depends on n˛;h; h D 0; : : : ; s � 1, as c˛ D 1
#D

Ps�1
hD0 n˛;h!

.s/

h ,
where s is determined by X˛ (see Proposition 4).

We now use a part of Proposition 3 of [7] to get conditions on n˛;h that makes
X˛ centered on the fraction F .

Proposition 6. LetX˛ be a term with level set˝s on full design D . Let P.�/ be the
complex polynomial associated with the sequence .n˛;h/hD0;:::;s�1 so that P.�/ DPs�1

hD0 n˛;h�h and ˚s the cyclotomic polynomial of the s-roots of the unity.
1. Let s be prime. The term X˛ is centered on the fraction F if, and only if, its s

levels appear equally often: n˛;0 D n˛;1 D : : : D n˛;s�1 D �˛ .
2. Let s D p

h1
1 : : : p

hd
d , pi prime, i D 1; : : : ; d . The term X˛ is centered

on the fraction F if, and only if, the remainder H.�/ D P.�/ mod ˚s.�/,
whose coefficients are integer linear combinations of n˛;h; h D 0; : : : ; s � 1,
is identically zero.

We observe that, beingD˛
h a partition of D , if s is prime, we get �˛ D #F

s
.



7 Algebraic Generation of Orthogonal Fractional Factorial Designs 65

If we remind that n˛;h are related to the values of the counting function R of a
fraction F by n˛;h D P

�2D˛
h
y� , this Proposition 6 allows to express the condition

X˛ is centered on F as integer linear combinations of the values R.�/ of the
counting function over the full design D . In Sect. 7.4, we will show the use of
this property to generate fractional factorial designs.

7.4 Generation of Fractions

We use strata to generate fractions that satisfy a given set of constrains on the
coefficients of their counting functions. Formally, we give the following definition.

Definition 5. Given C � Zn1 � : : :Znm , a counting function R D P
˛ c˛X

˛

associated with F is a C -compatible counting function if c˛ D 0; 8˛ 2 C .

We will denote byOF.n1 : : : nm;C / the set of all the fractions of D whose counting
functions are C -compatible. In the next sections, we will show our methodology on
Orthogonal Arrays (other examples are in [3]). Let us consider OA.n; sm; t/, i.e.,
orthogonal arrays with n rows andm columns where each column has s symbols, s
prime, and with strength t . Using Proposition 2 we have that the coefficients of the
corresponding counting functions must satisfy the conditions c˛ D 0 for all ˛ 2 C
where C � L D f˛ W 0 < k˛k � tg and k˛k is the number of non-null elements of
˛. It follows thatOF.sm;C / D S

n OA.n; s
m; t/. Now using Proposition 6, we can

express these conditions using strata. If we consider ˛ 2 C we write the condition
c˛ D 0 as

P
�2D˛

h
y� D �; h D 0; : : : ; s�1. To obtain all the conditions it is enough

to vary ˛ 2 C . We therefore get the system of linear equations AY D �1 where A
is the .#C � sm/ matrix whose rows contains the values, over D , of the indicator
function of the strata, 1D˛

h
, Y is the sm column vector whose entries are the values of

the counting function over D , � will be equal to #F
s

and 1 is the sm column vector
whose entries are all equal to 1. We can write an equivalent homogeneous system if
we consider � as a new variable. We obtain QA QY D 0 where

QA D
24A �1

: : :

�1

35 D ŒA;�1� and QY D
"
Y

�

#
D .Y; �/

It is now immediate to verify that the sum Y D Y1 C Y2 of two Orthogonal
Arrays, Y1 2 OA.n1; s

m; t/ and Y2 2 OA.n2; s
m; t/, is an Orthogonal Array

OA.n1 C n2; s
m; t/. The Hilbert Basis [9] is a minimal set of generators such that

any OA.n; sm; t/ becomes a linear combination of the generators with positive or
null integer coefficients. This approach extends that of [1] where the conditions
c˛ D 1

#D

P
�2F X˛.�/ D 0 were used. The advantage of using strata is that we

avoid computations with complex numbers (X˛.�/). We explain this point in a
couple of examples. For the computation we use 4ti2 [10].
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• OA.n; 25; 2/were investigated in [1]. We build the matrix QA that has 30 rows and
33 columns. We find the same 26;142 solutions as in the cited paper.

• ForOA.n; 33; 2/we build the matrix QA that has 54 rows and 28 columns. We find
66 solutions, 12 have 9 points, all different and 54 have 18 points, one replicated,
i.e., support equal to 17.

Let us now consider the general case in which we do not put restrictions on the
number of levels. We show our method for OA.n; 42; 1/. In this case the number
of levels is a power of a prime, 4 D 22. Using Proposition 2 we have that the
coefficients of the corresponding counting functions must satisfy the conditions
c˛ D 0 for all ˛ 2 C where C � L D f˛ W k˛k D 1g. Let us consider
c1;0. From Proposition 3 we have that X1 takes the values in ˝s where s D 4.
From Proposition 6, X1 will be centered on F if, and only if, the remainder
H.�/ D P.�/ mod ˚4.�/ is identically zero. We have ˚4.�/ D 1C �2 (see [6]) and
so we can compute the remainder H.�/ D n.1;0/;0 � n.1;0/;2 C .n.1;0/;1 � n.1;0/;3/�.
The condition thatH.�/must be identically zero translates into n.1;0/;0�n.1;0/;2 D 0

and n.1;0/;1 � n.1;0/;3 D 0. Let us now consider c2;0. From Proposition 3 we have
that X2

1 takes the values in ˝s where s D 2. From Proposition 6, X2
1 will be

centered on F if, and only if, the remainderH.�/ D P.�/ mod ˚2.�/ is identically
zero. We have ˚2.�/ D 1 C � (see [6]) and so we can compute the remainder
H.�/ D n.2;0/;0 � n.2;0/;1.

If we repeat the same procedure for all the ˛ such that k˛k D 1 and we recall that
n˛;h D P

�2D˛
h
y� , the orthogonal arrays OA.n; 42; 1/ become the positive integer

solutions of the integer linear homogeneous system AY D 0, where

A D

26666666666666664

1 0 �1 0 1 0 �1 0 1 0 �1 0 1 0 �1 0

0 1 0 �1 0 1 0 �1 0 1 0 �1 0 1 0 �1
1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1
1 0 �1 0 1 0 �1 0 1 0 �1 0 1 0 �1 0

0 �1 0 1 0 �1 0 1 0 �1 0 1 0 �1 0 1

1 1 1 1 0 0 0 0 �1 �1 �1 �1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 �1 �1 �1 �1
1 1 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1
1 1 1 1 0 0 0 0 �1 �1 �1 �1 0 0 0 0

0 0 0 0 �1 �1 �1 �1 0 0 0 0 1 1 1 1

37777777777777775
; Y D

26666666666666666664

y00
y10
y20
y30
y01
y11
y21
y31
y02
y12
y22
y32
y03
y13
y23
y33

37777777777777777775
and 0 is the 10-rows column vector whose values are all equal to 0.

It should be noted that the matrix of the coefficients is not full rank, e.g., the first
and the fourth rows are equal. This aspect is discussed in [3]. Anyhow the solution
method used here does not require a reduction to a full rank matrix. Using 4ti2
we find 24 solutions that correspond to all the Latin Hypercupe Designs (LHD).
Analogously forOA.n; 62; 1/ we find 620 solutions that correspond to all the LHD.
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We conclude this section with three examples of mixed orthogonal arrays,
OA.n; 2 � 6; 1/,OA.n; 2 � 3 � 4; 2/ and OA.n; 2 � 3 � 6; 1/.

In the first case we have C � Z2 � Z6 D f.1; 0/; .0; 1/; .0; 2/; .0; 3/; .0; 4/;
.0; 5/g. As before, for each ˛ 2 C we consider X˛ . X˛ takes the values in ˝s˛ ,
where s˛ is determined using Proposition 3. From Proposition 6,X˛ will be centered
on F if, and only if, the remainder H˛.�/ D P˛.�/ mod ˚s˛ .�/, where P˛.�/ DPs˛�1

hD0 n˛;hX˛.�/, is identically zero. We obtain that the orthogonal arraysOA.n; 2 �
6; 1/ become the positive integer solutions of the integer linear homogenous system
AY D 0 where

A D

26666666666666664

0 �1 �1 0 1 1 0 �1 �1 0 1 1

1 1 0 �1 �1 0 1 1 0 �1 �1 0

0 �1 1 0 �1 1 0 �1 1 0 �1 1

1 �1 0 1 �1 0 1 �1 0 1 �1 0

1 �1 1 �1 1 �1 1 �1 1 �1 1 �1
0 1 �1 0 1 �1 0 1 �1 0 1 �1
1 0 �1 1 0 �1 1 0 �1 1 0 �1
0 1 1 0 �1 �1 0 1 1 0 �1 �1
1 0 �1 �1 0 1 1 0 �1 �1 0 1

1 1 1 1 1 1 �1 �1 �1 �1 �1 �1

37777777777777775
; Y D

26666666666664

y00
y01
y02
y03
y04
y05
y10
y11
y12
y13
y14
y15

37777777777775

and 0 is the 10-rows column vector whose values are all equal to 0. Using 4ti2 we
obtain 20 solutions that correspond to all the LHD.

Now we consider OA.n; 2 � 3 � 4; 2/. We have C � Z2 � Z3 � Z4 D f˛ W ˛ ¤
.0; 0; 0/ and k˛k � 2g. By using the above procedure we obtain the matrix of the
coefficients A that has 74 rows and 48 columns. Then using 4ti2 we find 1;860
solutions, all with solutions, all with 24 points, all different.

Finally we considerOA.n; 2�3�6; 1/. We find 117;360 solutions that, in Table 7.1,
are classified with respect to cardinality of support, total number of points, and
maximum number of replication.

7.4.1 Dual Characterization of C -Compatible Counting Functions

We conclude this section with a new result. We observe that, given C and using the
natural isomorphisms �i ; i D 1; : : : ; m between Zni 3 ˛i 7! �i .˛i / D !

.ni /
˛i 2 ˝ni ,

we can define C ? D �.C /, where � D �1 � : : : � �n.

Proposition 7. Given C � Zn1 � : : :Znm , a counting function R D P
˛ c˛X

˛

associated with F is a C -compatible counting function if, and only if,X
˛2L

y˛X˛.!� / D 0 !� 2 C ?

where y˛ D R.�.˛// and !� D .!
.n1/
�1 ; : : : ; !

.nm/
�m /.
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Table 7.1 Support (supp),
total, maximum replication
(maxrep), for the Hilbert
basis of the OA.n; 2 � 3 � 6; 1/

Supp. Total Maxrep N

6 6 1 1,800
8 12 2 6,480
9 12 2 25,920
9 18 3 8,640
10 12 2 30,960
10 18 3 8,640
11 12 2 20,160
11 18 3 6,480
12 12 1 6,120
12 18 2 2,160

Proof. Let us consider � 2 C � Zn1 � : : :Znm . We know from Proposition 1 that

c� D 1

#D

X
�2F

X�.�/

or, equivalently,

c� D 1

#D

X
�2D

R.�/X�.�/

Using the isomorphism � we get

c� D 1

#D

X
˛2L

R.�.˛//X�.�.˛// D 1

#D

X
˛2L

y˛X˛.�.�// D 1

#D

X
˛2L

y˛X˛.!� /

with y˛ D R.�.˛// and !� D .!
.n1/
�1 ; : : : ; !

.nm/
�m /. From the definition of

C -compatible counting function (Definition 5), we complete the proof.

This Proposition highlights an algebraic condition for a C -compatible counting
function. If we denote by Ideal .C ?/ the ideal of the polynomials that vanishes over
C ?, we have that, if y˛ represent the values of a C -compatible counting function,
the polynomial

P
˛2L y˛X˛ must belong to Ideal .C ?/.

7.5 Sampling

Sometimes, given a set of conditions C we are interested in picking up a solution
more than in finding all the generators. The basic idea is to generate somehow a
starting solution and then to randomly walk in the set of all the solutions for a certain
number of steps, taking the arrival point as a new but still C -compatible counting
function. We can combine the previous results on strata with Markov Chain Monte
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Carlo Methods to sample one solution. We show the methods on some examples
with indicator functions but it can be extended to counting functions.

Let us consider OA.n; 33; 2/ and let us suppose that we are searching for an
orthogonal array with nine design points and no replications. It means that we are
interested in an indicator function whose values y�; � 2 D satisfy the system of
linear equation AY D 1 where A, Y and 1 have been defined as in see Sect. 7.4.

We now use standard simulated annealing to find one solution of our system [8].
We define the objective function to be maximized as the function that, for every
indicator function defined over the design D , counts the number of equations of
the linear system AY D 1 that are satisfied. We have implemented this algorithm
using SAS/IML. We found a solution in 2;702 iterations (a couple of seconds on a
common laptop). We have also tried the algorithm onOA.9; 34I 3/ and 4�4 sudoku
(we found one solution in 2;895 and 2;852 iterations respectively) and 9� 9 sudoku
where we did not find any solution in 100;000 iterations.

We observe that the algorithm can also be used to explore the set of solutions
simply replacing stop when an optimal solution is found with store the optimal
solution and continue until the maximum number of iterations is reached. Let us
now use the previous results on strata to get a suitable set of moves. We will show
this procedure in the case in which all the factors have the same number of levels s,
s prime, but it can also be applied to the general case. In Sect. 7.4 we have shown
that counting functions must satisfy the system of linear equationsAY D �1, where
A corresponds to the set of conditions C written in terms of strata.

It follows that if, given a C -compatible solution Y , such that AY D �1, we
search for an additive move X such that A.Y C X/ is still equal to �1, we have
to solve the linear homogenous system AX D 0, with X D .x�/; � 2 D , x� 2 Z

and y� C x� � 0 for all � 2 D . We observe that this set of conditions allows to
determine new C -compatible solutions that give the same �. We know that � D #F

s

so this homogenous system determines moves that do not change the dimension of
the solutions.

Let us now consider the extended homogeneous system, where QA has already
been defined in Sect. 7.4, QA QX D 0 with QX D . Qx�/; � 2 D , Qx� 2 Z and Qy� C Qx� � 0

for all � 2 D . Given QY D .Y; �Y /, where Y is C -compatible counting function

and �Y D
P
� y�

s
, the solutions of QA QX D 0 determine all the other QY C QX D

.Y C X;�YCX/ such that QA. QY C QX/ D 0. Y C X are C -compatible counting
functions whose sizes, s�YCX , are, in general, different from that of Y . We use
the theory of Markov basis (see for example [2] where it is also available a rich
bibliography on this subject) to determine a set of generators of the moves. We
use the following procedure in order to randomly select a C -compatible counting
function. We compute a Markov basis of ker.A/ using 4ti2 [10]. Once we have
determined the Markov basis of ker.A/, we make a random walk on the fiber of
Y , where Y , as usual, contains the values of the counting function of an initial
design F . The fiber is made by all the C -compatible counting functions that have
the same size of F . The random walk is done randomly choosing one move among
the feasible ones, i.e., among the moves for which we do not get negative values for
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the new counting function. In the next paragraphs we consider moves for the cases
that we have already studied in Sect. 7.4.

We consider OA.8; 25; 2/. We use the matrix A, already built in Sect. 7.4 and
give it as input to 4ti2 to obtain the Markov Basis, that we denote by M . It contains
5; 538 different moves. As an initial fraction F0, we consider the eight-run regular
fraction whose indicator function isR0 D 1

4
.1CX1X2X3/.1CX1X4X5/. We obtain

the set M
f
R0

of the feasible moves from R0, selecting from M the moves M such
that R0.�/ C M.�/ � 0 8� 2 D or R0.�/ � M.�/ � 0 8� 2 D . We find 12
moves. We randomly choose one move,MR0 , out of the 12 available ones and move
to R1 D R0 C �MR0

MR0 where �MR0
is the proper plus or minus sign. We run 1.000

simulations repeating the same loop, generating Ri as Ri D Ri�1 C �MRi�1
MRi�1 .

We obtain all the 60 different 8-run fractions, each one with 8 different points as
in [1].

We now consider OA.9; 33; 2/. As before, we use 4ti2 to generate the Markov
basis M . It contains 81 different moves. As an initial fraction we consider the
nine-run regular fraction F0 whose indicator function is R0 D 1

3
.1 C X1X2X3 C

X2
1X

2
2X

2
3 /. Running 1:000 simulations we obtain all the 12 different 9-run fractions,

each one with 9 different points as known in the literature and as found in Sect. 7.4.

7.6 Conclusions

We considered mixed level fractional factorial designs. Given the counting function
R of a fraction F , we translated the constraint c˛ D 0, where c˛ is a generic
coefficient of its polynomial representation R D P

˛ c˛X
˛, into a set of linear

constraints with integer coefficients on the values y� that R takes on all the points
� 2 D . We obtained the set of generators of the solutions of some problems using
Hilbert bases. We underline that this kind of algebraic methods requires the use of
algorithms of very high combinatorial complexity and so they do not scale well
to high dimension problems. This prompts for less demanding methodologies like
those for randomly sampling one solution.

For this reason we also studied moves between fractions. We characterized these
moves as the solution of a homogeneous linear system. We defined a procedure to
randomly walk among the solutions that is based on the Markov basis of this system.
We showed the procedure on some examples. Computations have been made using
4ti2 [10]. Main advantages of the method are that we do not put restrictions on
the number of levels of factors and it is not necessary to use software that deals
with complex polynomials. Main limit is in the high computational effort that is
required. In particular, only a small part of the Markov basis is used because of the
requirement that counting functions can only take values greater than or equal to
zero. The possibility to generate only the moves that are feasible could make the
entire process more efficient and is object of current research. The use of the dual
characterization of C -compatible counting functions (Proposition 7) is also under
study.
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This work is an extended version of our contributed paper to the 45th Scientific
Meeting of the Italian Statistical Society (University of Padua, 16–18 June 2010).
The authors thank Prof. Giorgio Vittadini for the suggestions he gave on that version.
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Methods for Time Series, Spatial
and Functional Data



8A Functional Spatio-Temporal Model
for Geometric Shape Analysis

Lara Fontanella, Luigi Ippoliti, and Pasquale Valentini

Abstract
In this chapter we consider a functional spatio-temporal model for shape objects
represented by landmark data. The model describes a time-varying deformation
of the ambient space in which the objects of interest lie. The use of basis
functions, defined by principal warps in space and time, facilitates both the model
specification and the fitting of the data in Procrustes tangent coordinates. The
fitted model can be interpreted either just in terms of the finite set of landmarks at
the given set of time points, or in terms of a deformation of the space which varies
continuously in time. The method is illustrated on a facial expression dataset.

Keywords
Bending energy matrix • Procrustes tangent coordinates • Principal warps •
Shape analysis • Spatio-temporal models • Splines

8.1 Introduction

Spatio-temporal modelling has largely been developed through applications in
geostatistics, hydrology and meteorology [6]. More recent activities in the area
include environment monitoring, tracking, functional MRI, health data and facial
analysis [9]. Motivated by these applications, various modelling strategies have been
developed, and they essentially depend on the underlying objective of the analysis
and the scale and type of data.

In this chapter we are interested in shape analysis applications where data are
represented by landmark coordinates, and the aim is to construct a spatio-temporal
model which is able to describe the time-varying deformation of the shape space.
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For simplicity, we assume that the observed data take the form of a regular array in
space-time. That is, we have one-dimensional observations

yij ; i D 1; : : : ;M; j D 1; : : : ; T

at sites xi 2 Rd and time points tj 2 R. Typically, we consider objects in d D 2

dimensions but the methodology extends to higher dimensions. The objective is to
model the data as

yij D z.xi ; tj /C eij ; (8.1)

where fz.x; t/g is a deterministic space-time process and eij an error term. We
usually assume the error terms eij are independent, identically distributed. Once
a smooth process Oz.x; t/ has been fitted, it can be used for interpolation. A key-
property of spatio-temporal data is that observations at nearby sites and times will
tend to be similar to one another. This underlying smoothness characteristic of
the space-time process z.x; t/ can be captured by using a finite-dimensional space
of deterministic drift functions, or using autocorrelation to make nearby values
similar. In principle, both of these approaches can be applied in space and/or time
and for a discussion see, for example, Ippoliti et al. [12] and Lopes et al. [13].
Since the specification of spatio-temporal covariance functions is not obvious for
shape data, our space-time model results from a tensor product of drift in times
and drift in space. This modelling approach is simple and, for example, compared
with the approach described in Kume and Welling [11], shows some computational
advantages. The outline of this chapter is as follows. In Sect. 8.2 we describe how
to represent the data in a form suitable for fitting the space-time model. In Sect. 8.3
we describe the modelling strategy. Specifically, roughness penalties for directions
of variation in space and for rate of variation in time are constructed and combined
to give a joint space-time penalty. Also, a transformation of the data is given which
facilitates the fitting of these smoothing models. Section 8.4 discusses a parametric
version of the model and illustrates its application on a set of landmarks representing
the dynamic of four different facial expressions. Finally, Sect. 8.5 concludes the
chapter with a discussion.

8.2 The Data

Suppose landmark data are available on different individuals at a common set of
time points, taking the form of a 4-way array fvlkmj g where:

l D 1; : : : ; N labels different individuals; k D 1; : : : ; K labels different
landmarks; s D 1; : : : ; d labels different coordinates; j D 1; : : : ; T labels
different times t1; : : : ; tT .

It is convenient to represent these data as a collection fvlj g of K � d matrices.
Then, since the shape of an object determines its coordinates only up to similarity



8 A Functional Spatio-Temporal Model for Geometric Shape Analysis 77

transformations, it is necessary to reduce the data to just the shape information.
We do this using Procrustes tangent coordinates about a centred and scaled mean
configuration �. In general, a convenient choice for � is the Generalised Procrustes
estimate [7] based on all NT configurations, but the exact choice does not
matter [10].

Let fylj g denote theK�d (centred not Helmertized) matrix of Procrustes tangent
coordinates of the configuration data fvlj g. Next, assuming all N individuals are
i.i.d., we take a sample average of the Procrustes coordinates to get averaged data
Nyj . To fit our spatio-temporal model to the averaged data, it is convenient to rewrite
them as a M � T matrix Y, say, with M D Kd and the j th column of Y defined
by stacking the d D 2 columns of Nyj on top of one another.

8.3 The Drift–Drift Model

In this section we describe our spatio-temporal model which involves drift functions
in space xi 2 Rd and time t 2 R. There are three ingredients in this model:
(a) F : a p-dimensional vector space of functions Rd ! R, specifying possible

directions of shape variation. Let ff˛.x/ W ˛ D 1; : : : ; pg denote a basis.
(b) G: a q-dimensional vector space of functions R ! R, specifying possible rates

of variation in time. Let fgˇ.t/ W ˇ D 1; : : : ; qg denote a basis.
(c) r : a rank, r > 0 representing the complexity of the model.
Both F and G will usually include the constant function to accommodate an
intercept term. From these ingredients, we consider a deterministic spatio-temporal
process of the form

z.x; t/ D
pX
˛D1

qX
ˇD1

a˛ˇf˛.x/gˇ.t/;

where the p � q matrix of coefficients A D .a˛ˇ/ has rank r . Let the .N � p/

matrix F denote the values of the spatial basis functions at sites (landmarks) xi ; i D
1; : : : ; N . Similarly, let the .T �q/matrix G denote the values of the temporal basis
functions at the times tj ; j D 1; : : : ; T . Thus, model (8.1) takes the form

Y D FAG0 C E; (8.2)

where Y D .yij / and E D .eij /. If the basis functions are chosen so that F
and G have orthonormal columns, then A can be estimated using the dominant r
components in a singular value decomposition of F0YG, though if an intercept term
is separated out estimation can be a bit more involved (i.e. an alternating algorithm
is needed to estimate the intercept and A).
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8.3.1 Choice of Drift Functions

There are various choices for the space of drift functions, such as polynomials,
trigonometric functions, principal kriging functions or principal splines (see, for
example, Ippoliti et al. [12] and Lopes et al. [13] and references therein).

Next, we describe how to construct and use the principal kriging functions in our
model [2, 17]. For simplicity we largely focus on functions of time but a similar
construction also holds in space. Essentially, there are two main components in
the construction: a vector space of functions G0 of dimension q0 � 0 called the
“null space,” which will form a subspace of G, and a “potential” function �.t/,
conditionally positive definite with respect to G0. That is, for all distinct times
t .h/; h D 1; : : : ; h0, and all vectors of coefficients ı D .ıh; h D 1; : : : ; h0/ ¤ 0,

h0X
h1;h2D1

ıh1ıh2�.t
.h1/ � t .h2// > 0 (8.3)

whenever
Ph0

hD1 ıhg.t .h// D 0 for all g 2 G0. Given the time points tj ; j D
1; : : : ; T , define the .T �T /matrix, P, by P D �

�.ti � tj /
	
. Next, define a .T � q0/

“drift” matrix U by ujˇ D g0ˇ.tj /, where fg0ˇ.tj /; ˇ D 1; : : : ; q0g is a basis of
functions in G0. It is assumed that the data times are suitably spaced so that this
matrix is of full rank q0. These matrices can be combined into an .T Cq0/�.TCq0/
matrix H D

�
P U
U0 0

�
, with partitioned inverse H�1 D

�
B C
C0 L

�
, providing the two

matrices B and C.
Denote the eigenvectors of B by �k; k D 1; : : : ; K , with the corresponding

eigenvalues written in nondecreasing order. The first q0 eigenvalues of B are 0
and the associated eigenvectors are given by the q0 columns of U. Finally, let
�0.t/ denote the vector function of t with the j th element �0.t/j D �.t � tj /,
j D 1; : : : ; T , and let u0.t/ denote the vector function of t with ˇth component
g0ˇ.t/; ˇ D 1; : : : ; q0. The kth principal kriging function is defined by

gPKF
k .t/ D � 0k ŒB�0.t/C Cu0.t/� :

It can be shown that gPKF
k .t/ is an interpolating function with gPKF

k .tj / D .�k/j .
The vector space G is defined to be the span of gPKF

ˇ .t/; 1 � ˇ � q, where q is a
specified dimension, q0 � q � T . Different possible choices for �.t/ are available;
in general, any valid covariance function for which any null space of functions G0
will suffice is a possible choice (see, for example, Mardia et al. [16]).

In this chapter, we consider �.t/ D jt j3, which is conditionally positive definite
whenever G0 contains linear functions, span.1; t/. In this case, it turn outs that the
kth principal kriging function is an interpolating cubic spline which minimises the
penalty function
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ˆ.g/ D
Z 1
�1

�
d2g.t/

dt2

�
dt;

subject to the constraints gk.tj / D .�k/j ; j D 1; : : : ; T . This motivates the
alternative name “principal spline” for a principal kriging function.

Principal splines are also easily dealt with for two-dimensional data at landmarks
xi ; i D 1; : : : ; N . In this case, it is common [1] to use the thin-plate spline penalty

ˆ.f / D
Z (�

@2f

@xŒ1�2

�2
C
�

@2f

@xŒ1�@xŒ2�

�2
C
�
@2f

@xŒ2�2

�2)
dx;

where the integral is over R2 and x D .xŒ1�; xŒ2�/ denotes the components of x. The
above construction of principal splines can be carried out with little change in this
setting as well. Replace the potential function by �.x/ D jxj2 log jxj; x 2 R2, and the
null space by F0 D span.1; xŒ1�; xŒ2�/. Principal splines in R2 were introduced by
Bookstein [1] in the context of deformations in shape analysis, and he used the term
“principal warps”. The matrix B, instead, was called the “bending energy matrix”.

8.3.2 Model Details

In this section we describe how to obtain the matrices F and G in Eq. (8.2).
Let t1; : : : ; tT denote the common set of times at which the data are observed.
The associated .T � T / symmetric positive semidefinite bending energy matrix
B has rank T � 2. For our modelling purposes, it is useful to combine all the
eigenvectors (principle warp vectors) of B (excluding the constant vector) into the
T � .T � 1/ column orthonormal matrix G. Denote the corresponding eigenvalues
of B by ˇj ; j D 1; : : : ; T � 1, with ˇ1 D 0, arranged in nondecreasing order.
The columns of G roughly correspond to the effects of orthogonal polynomials at
the data times. A similar construction can be carried out in space for the F matrix.
In particular, let fx1; : : : ; xKg denote a fixed collection of landmarks in R2. In our
application we shall use the K rows of �. Then, a .K �K/ bending energy matrix
can be constructed with analogous properties to the above setting, though this time
of rankK�3. Then, since a deformation can be constructed from a pair of functions
R2 ! R, we combine together two copies of the eigenvectors. After removing
4 degrees of freedom for the constraints in Procrustes tangent space, we are left
with the 2K � .2K � 4/ column orthonormal matrix F. The first two columns of
F represent linear functions orthogonal to the similarity transformations—i.e. the
Bookstein’s uniform components; see Bookstein [3] and Mardia [15, Sect. 7]. The

remaining columns of F come in pairs:

�
� 0
0 �

�
, where � is the K � 1 eigenvector

of the bending energy matrix for the thin-plate spline. Also, let ˛2j�1 D ˛2j ; j D
1; : : : ; K � 2 denote the corresponding eigenvalues in nondecreasing order, each
listed twice. Note ˛1 D ˛2 D 0.
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Fig. 8.1 Frames at point times t1 and t7. The frames represent: (a) neutral and (b) surprise
expressions respectively

Thus, the .2K�4/�.T �1/matrix of coefficients, A D faij g, in equation (8.2) is
obtained as A D F0YG. As shown in Sect. 8.4, this matrix is of key importance for
specifying different models. Finally, if the eigenvectors in F and G are interpolated
to yield a pair of space-time functions .‰1.xŒ1�; t/; ‰2.xŒ2�; t//, then the penalty
function

ˆ.‰1;‰2/ D
2X
iD1

Z 8<:
 

@4‰i

@xŒ1�2@t2

!2
C 2

 
@4‰i

@xŒ1�@xŒ2�@t2

!2
C
 

@4‰i

@xŒ2�2@t2

!29=; dx dt;

where the integral is over x 2 R2; t 2 R, reduces to
P2K�4

iD1
PT�1

jD1 a2ij ˛iˇj , which
depends just on the coefficients and the eigenvalues.

8.4 Modelling Facial Expressions

In this section we consider the FG-NET Database with Facial Expressions and
Emotions from the Technical University of Munich. This is an image database con-
taining face images showing a number of subjects performing the six different basic
emotions defined by Ekman and Friesen [8]. Specifically, the database contains
material gathered from 18 different individuals, each performing all six desired
actions three times. Additionally three sequences doing no expressions at all are
recorded. All together this gives an amount of 399 sequences. Depending on the kind
of emotion, a single recorded sequence can take up to several seconds. From each
recorded sequence we have extracted five frames summarising the dynamic of the
expression and on each of them we have manually placed a set of 34 landmarks. For
our modelling purposes we have considered here four different expressions, namely:
disgust, happiness, sadness and surprise. There is thus complete information on
N D 18 subjects at T D 5 times on K D 34 landmarks. As an example Fig. 8.1
shows, for a specific subject, two frames representing the first (t1—neutral) and
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Fig. 8.2 Fitted models for the FGNET data (Disgust): (a) full, (b) full-lin, (c) spec, with the
growth patterns blown up by a factor of 3 for clarity. Part (d) shows the grid deformation, without
an expansion factor, between the initial and final times for the special model

last (t7—surprise) frames. For the purposes of this chapter we shall ignore any
differences between the subjects. Furthermore, we also ignore changes in size and
limit attention only to changes in the shape of the object.

For this dataset, let A D F0YG denote the 64 � 4 doubly rotated version of the
Procrustes tangent matrix for the mean data. The rows of A label the eigenvectors in
space and the columns label the eigenvectors in time. The mean shape � is obtained
as the generalized Procrustes estimate based on the T D 5 configurations of the
neutral expression such that the model provides insights on its deformation.

Some important models and their application to the expression data are described
below, and a selection of fitted models is plotted in Figs. 8.2–8.5 where each “o”
represents a landmark of the Procrustes mean shape �, and each closed circle
represents the position of a landmark at the initial time.
1 Full Rank. These models can be specified in terms of the nonzero entries in the

estimated A. For example, the notation Œ1 W J; 1 W L� means that the block of
entries specified by the first J rows and first L columns is allowed to be nonzero.

FULL D [1:64, 1:4]. In this case there is no data reduction (other than the
averaging over individuals in the first place). For this model, the residual sum of
squares (RSS) is zero (Figs. 8.2–8.5a).
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Fig. 8.3 Fitted models for the FGNET data (Happiness): (a) full, (b) full-lin, (c) spec, with the
growth patterns blown up by a factor of 5 for clarity. Part (d) shows the grid deformation, without
an expansion factor, between the initial and final times for the special model

LIN–LIN D [1:2,1]. This is the simplest possible model, linear in space
(a two-dimensional subspace) and linear in time (one-dimensional). Thus it
consists only of a constant variation in a single direction arising from a linear
transformation in two dimensions. This model captures some of the main features
of the data, but fails to capture the curvature of the paths, and does not in general
fit well at several landmarks.

FULL-LIN D [1:64, 1]. In this case there is full flexibility in the spatial
variation but the variation in time is still linear. In Figs. 8.2–8.5b we see that
the main pattern of variation is captured, but the curvature of the paths is not
captured at all.

SPEC D [1:64, 1] C [1:2, 2]. This model is called special because the nonzero
parameter values do not form a rectangular block. It captures the curvature in
the paths through a term which is second order in time and linear in space.
Figures 8.2–8.5c show that this model yields quite a good fit to the data.

LIN-FULL D [1:2, 1:4]. This model allows variation in the two linear
directions in space, but at arbitrary rates in time. The paths are curved but do
not match the data very well.

NULL D [1:64, 1] C [1:2, 2:4] FULLLIN C LINFULL. This is the most general
model that has 0 roughness penalty and fits the data surprisingly well. Visually
the fit is similar to the special model.
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Fig. 8.4 Fitted models for the FGNET data (Sadness): (a) full, (b) full-lin, (c) spec, with the
growth patterns blown up by a factor of 6 for clarity. Part (d) shows the grid deformation, without
an expansion factor, between the initial and final times for the special model

2 Reduced Rank. Start with a rectangular block of coefficients in A, take a singular
value decomposition and retain the dominant components. The simplest such
model which fits the data well can be written as FULL.2 D [1:64, 1:4, 2]; i.e. take
the dominant 2 components of the singular value decomposition of the whole
matrix A. This fitted model is very closely related to the exploratory analysis
based on two principal components in Le and Kume [14].

Figure 8.2 shows results for some of the fitted models for the disgust expression.
We notice that this expression is mainly characterized by mouth and eyebrow
movements. Specifically, we observe that the eyebrows are lowered and drawn
together while the lower eyelids cheeks and the upper lip are raised.

Figure 8.3 shows results for some of the fitted models for the happiness
expression. Here, we observe that the deformation is mainly characterized by the
movements of the mouth since the eyes move only slightly. Specifically, we observe
a slight narrowing of the eyelids and a raising of the lip corners describing an upward
curving of mouth and expansion on vertical and horizontal direction.

Figure 8.4 shows results for some of the fitted models for the sadness expression.
In this case, as expected, we notice that the features for this expression are
represented by narrowed eyes, eyebrows brought together and a down-turned mouth.

Finally, Fig. 8.5 shows results for some of the fitted models for the surprise
expression. In this case, we observe that this expression appears with a vertical
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Fig. 8.5 Fitted models for the FGNET data (Surprise): (a) full, (b) full-lin, (c) spec, with the
growth patterns blown up by a factor of 3 for clarity. Part (d) shows the grid deformation, without
an expansion factor, between the initial and final times for the special model

expansion of the mouth, widened eyes and slightly raised eyelids and eyebrows.
However, an asymmetry is surprisingly observed between the movement of the
upper eyelids for the two eyes.

8.5 Discussion

Accurate and efficient analysis of the expressions can be facilitated by proper
identification based on their dominant dynamic characteristics. In general, it is
required to process the acquired landmark configurations to get the relevant
information “buried” in it. As a solution of the outlined problem, we have proposed
to model the temporal dynamics of each landmark by a functional spatio-temporal
model. The proposed model is simple to estimate and is computationally appealing
respect to other models (see, for example, Kume and Welling [11]). However, results
obtained via the Procrustes tangent coordinates are based on the induced distribution
on the tangent space of the Procrustes mean. In the general covariance case and
in relatively dispersed shape data this approximation may not be reasonable and
the approach described in Kume and Welling [11] may be preferred, although the
modelling of the temporal correlation is not obvious here.
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A glance at the A matrix shows that the largest values fall in the first column
and the first two entries in the second column. This observation suggests that the
“special” parametric model will provide a good-fitting parsimonious model, as
verified by a small RSS value. Further, the reduced rank model “full.2” also captures
these effects and yields a similar fit. Overall the most useful fitted model seems to be
the “special” one. The variation can be decomposed into two components: a linear
(in time) variation in a general spatial direction, together with a quadratic component
(in time) which is restricted to a linear transformation in space. An illustration of
the deformation involved between the starting and final times under this model is
plotted (with no expansion factor) in Figs. 8.2–8.5d.

By estimating the model for each subject, we can also provide a compact,
parametrized description of shape for any instance of a face. Hence, in principle,
the model parameters in A could be used as features of an accurate classifier
for “shape” (expression) allocation. In this context, useful inferential tools which
facilitate a comparison of the different expressions are also provided by Brombin
and Salmaso [4] and Brombin et al. [5].
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9Vector Threshold Moving Average Models:
Model Specification and Invertibility

Marcella Niglio and Cosimo Damiano Vitale

Abstract
In this chapter we propose a class of nonlinear time series models in which
the underlying process shows a threshold structure where each regime follows
a vector moving average model. We call this class of processes Threshold Vector
Moving Average. The stochastic structure is presented even proposing alternative
model specifications. The invertibility of the model is discussed detail and, in this
context, empirical examples are proposed to show some features that distinguish
the stochastic structure under analysis from other linear and nonlinear time series
models widely investigated in the literature.

Keywords
Invertibility • Moving average • Vector threshold process

9.1 Introduction

In time series analysis the study of large datasets has motivated the introduction of
multivariate models that allow to investigate the interdependence among variables
which is lost in the univariate domain. Among the others [8, 9] give a wide pre-
sentation of the linear multivariate parametric models that generalize the so-called
Autoregressive Moving Average (ARMA) univariate structure largely discussed
in [2].

In this multivariate context, our interest will be given to a class of nonlinear
models whose stochastic structure has not been examined in detail until now.
We call these models Threshold Vector Moving Average (TVMA) that can be seen
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as multivariate representations of the TMA model proposed in [10] and largely
investigated in [4, 6] and [5].

More precisely, let Xt a stochastic process, it is said to follow a TMA
(`I q1; : : : ; q`) model if:

Xt D
X̀
iD1

0@�.i/ C
qiX
jD0

�
.i/
j u.i/t�j

1A Ii;t�d ; (9.1)

where �.i/0 D 1, Ii;t�d is the indicator function:

Ii;t�d 	 I.Xt�d 2 Ri / D
(
0 if Xt�d … Ri

1 if Xt�d 2 Ri ;

with Ri D Œri�1; ri /, for i D 1; 2; : : : ; `, no-overlapping subsets of the real line
R such that

S`
iD1 Ri D R and �1 D r0 < r1 < : : : < r`�1 < r` D 1,

d is the threshold delay, �.i/ and �.i/j are constants and fu.i/t g is a sequence of
independent and identically distributed (i.i.d.) random variables with zero mean and
finite variance.

Interesting properties related to this model have been investigated in [3, 6, 7]
and [5]. In this chapter the attention will be given to its multivariate analog.
In particular, after the presentation of the model, in Sect. 9.2 we investigate the
structure of the moments up to order two, whereas in Sect. 9.3 we focus the attention
on its invertibility that is an inescapable requirement under which the forecasts can
be generated. Some examples are proposed in Sect. 9.4 and the concluding remarks
are given at the end.

9.2 The Threshold Vector Moving Average Model

The TVMA model can be seen as extension, in nonlinear domain, of the VMA(q)
model whose main features have been presented in [8]. In particular, a stochastic
process y t is said to follow a VMA(q) model if:

y t D ut C M 1ut�1 C M 2ut�2 C : : :C M qut�q (9.2)

where y t D .y1t ;y2t ; : : : ;yKt /
0 is a .K � 1/ vector of variables observed at time

t , ut D .u1t ;u2t ; : : : ;uKt /0 is a .K � 1/ zero mean white noise with nonsingular
covariance matrix˙u and M j is a .K�K/matrix of coefficients, for j D 1; 2; : : : q.

Starting from model (9.2) and following the so-called threshold principle pre-
sented in [10], the TVMA model can be seen as a local linear structure characterized
by the introduction of regimes whose switching among them is regulated by a
threshold variable.
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In more detail, let y t a (K � 1) random vector, it is said to follow a
TVMA(`I q1; : : : ; q`) model if it has form:

y t D
X̀
iD1

�
M

.i/
1 ut�1 C M

.i/
2 ut�2 C : : :C M .i/

qi
ut�qi

�
I.zt�d 2 Ri /C ut (9.3)

where M
.i/
j , for j D 1; 2; : : : ; qi and i D 1; 2; : : : ; `, are the (K �K) matrices of

coefficients in regime i , fut g is a sequence of i.i.d. random variables and zt�d is the
univariate threshold variable.

To explore some features of model (9.3) it is easy to note that the joint distribution
of y t is uniquely determined by ut .

This model can be further generalized introducing regimes with different errors:

y t D
X̀
iD1

�
u.i/t C M

.i/
1 u.i/t�1 C M

.i/
2 u.i/t�2 C : : :C M .i/

qi
u.i/t�qi

�
I.zt�d 2 Ri / (9.4)

where fu.i/t g is a sequence of i.i.d. random variables with density fi .u
.i/
t / W RK , for

i D 1; 2; : : : ; ` and fi .�/ independent from fj .�/, for i ¤ j . Model (9.4) can be
brought back to the parametrization of model (9.3) noting that if fi .�/ D fj .�/, ut�s
can be given as ut�s D P`

iD1 u.i/t�sI.zt�d 2 Ri /, for s D 0; 1; : : : ; qi .
In order to simplify the notation of model (9.3), but without constrain its general

representation, in the following we assume that all regimes have the same order q
(it can be easily met including null matrices in model (9.3)).

Reminding the assumptions on ut , the first and the second moment of model
(9.3), with ` D 2, are:

EŒy t � D 0; (9.5)

� .h/ D EŒ.y ty
0
t�h/� D

qX
jD1

�
M

.1/
j ˙u

�
M

.1/

j�h
�0
ph C M

.1/
j ˙u

�
M

.2/

j�h
�0
.p � ph/

C M
.2/
j ˙u

�
M

.1/

j�h
�0
.p � ph/C M

.2/
j ˙u

�
M

.2/

j�h
�0
.1 � 2p C ph/

�
; (9.6)

where, M
.i/
0 D IK , M

.i/

j�h D 0, for j < h, � .h/ D 0 for h > q, and as widely
explored in [1]:

p D EŒI.zt�d 2 R1/�; ph D EŒI.zt�d 2 R1/I.zt�d�h 2 R1/�

p � ph D EŒI.zt�d 2 R1/.1 � I.zt�d�h 2 R1//�

1 � 2p C ph D EŒ.1 � I.zt�d 2 R1//.1 � I.zt�d�h 2 R1//�; (9.7)
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with EŒI.zt�d 2 R1/� D P.zt�d � r1/ that, in other words, corresponds to the
probability that zt�d belongs to the interval .�1; r1/.

Further note that the autocovariance (9.6) can be even extended to the more
general TVMA(`I q) model only using a more heavy notation.

Another interesting feature of model (9.3) is related to its Markovian representa-
tion. It is aKq-dimensional TVMA(`I 1) process, where all moving average regimes
are of order one:

Y t D U t C
X̀
iD1

B.i/U t�1I.zt�d 2 Ri /; (9.8)

with

Y t D

266664
y t

ut�1

:
:
:

ut�qC1

377775
.Kq�1/

U t D

266664
ut

ut�1

:
:
:

ut�qC1

377775
.Kq�1/

B.i/ D

266664
M

.i/
1 M

.i/
2 : : : M .i/

q

0 0 : : : 0

:
:
:

:
:
:

: : :
:
:
:

0 0 : : : 0

377775
.Kq�Kq/

Note that this last representation of the TVMA(`I q) model allows to remark that
model (9.3) can be seen as a vector moving average process with time-dependent
coefficients that are conditionally dependent to t through I.zt�d 2 Ri /. It becomes
more evident if we consider a TVMA(2I q) model whose form becomes:

Y t D U t C B t�dU t�1; (9.9)

with

B t�d D

266664
M

.1/
1 M

.1/
2 : : : M .1/

q

0 0 : : : 0
:::

:::
: : :

:::

0 0 : : : 0

377775 It�d C

266664
M

.2/
1 M

.2/
2 : : : M .2/

q

0 0 : : : 0
:::

:::
: : :

:::

0 0 : : : 0

377775 .1 � It�d /

and It�d D I.zt�d 2 R1/.
After n iterations, the TVMA(2I q) model (9.9) has form:

U t D Y t C
nX

jD1

j�1Y
iD0
.�1/jB t�d�iY t�j C .�1/n

nY
iD0

B t�d�iU t�n�1; (9.10)

whose notation can be simplified introducing the .K � Kq/ matrix J D
.IK; 0; : : : ; 0/, with IK an identity matrix and 0 a .K � K/ null matrix, such
that y t D JY t , ut D JU t and model (9.10) becomes:
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ut D y t C J

nX
jD1

j�1Y
iD0
.�1/jB t�d�iY t�j C .�1/nJ

nY
iD0

B t�d�iU t�n�1: (9.11)

9.3 The TVMA Invertibility

The form presented in (9.11) for the TVMA(2I q) model allows to state the
conditions under which the process y t is invertible.

Theorem 1. Let y t �TVMA(2I q) with independent white noise errors fut g and let
zt�d a strictly stationary and ergodic stochastic process, then y t is invertible if:

j�.B.1//jpj�.B.2//j.1�p/ < 1

with j�.B.i//j the dominant eigenvalue of B.i/, for i D 1; 2 and p D EŒI.zt�d 2
R1/�.

Proof. Before to show the main steps of the proof, it is interesting to remark that,
given the model representation (9.11), y t is invertible if

Qn
iD0 jB t�d�i j converges,

in some sense, to a null matrix.
In more detail, given the TVMA(2I q) process:

ut � y t � J

nX
jD1

j�1Y
iD0
.�1/jB t�d�iY t�j D .�1/nJ

nY
iD0

B t�d�iU t�n�1;

y t is invertible if
nY
iD0

jB t�d�i j p�! 0; (9.12)

as n ! 1.
The proof takes advantage of the definition of dominant sequence of matrices:

let An a sequence of matrix and let �i .An/ the i -th eigenvalue of An, then we say
that the sequence Bn is dominant with respect to An (An  Bn), if the dominant
eigenvalue of Bn, denoted j�.Bn/j, is greater or equal to the dominant eigenvalue
of An, j�.An/j, for n D 1; 2; : : : .

In other words:

An  Bn; if j�.An/j � j�.Bn/j (9.13)

From (9.13) it follows that:
1. If j�.Bn/j ! 0, as n ! 1, then Bn !p 0 and An !p 0, with 0 a null matrix.
2. Given the sequence An, then An  j�.An/jI , where I is the identity matrix.
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Using these last arguments and starting from the definition of B t�d�i :

nY
iD0

jB t�d�i j D
nY
iD0

jIt�d�iB.1/ C .1 � It�d�i /B.2/j


nY
iD0

ˇ̌̌
It�d�i j�.B.1//jI C .1 � It�d�i /j�.B.2//jI

ˇ̌̌

D exp

(
nX
iD0

ln
ˇ̌̌
It�d�i �.B.1//I C .1 � It�d�i /�.B.2//I

ˇ̌̌)

D exp

(
ln
ˇ̌̌
�.B.1//I

ˇ̌̌ nX
iD0

It�d�i C ln
ˇ̌̌
�.B.2//I

ˇ̌̌ nX
iD0
.1 � It�d�i /

)
:

Using the assumptions on the process and noting that 1
nC1

Pn
iD0 It�d�i D p C

Op.n
�1=2/, then:

nY
iD0

jB t�d�i j  exp
n
ln
ˇ̌̌
�.B.1//I

ˇ̌̌
.nC 1/.p COp.n

�1=2//

C ln
ˇ̌̌
�.B.2//I

ˇ̌̌
.nC 1/.1� p COp.n

�1=2//
o

D
ˇ̌̌
�.B.1//I

ˇ̌̌.nC1/.pCOp.n�1=2// ˇ̌̌
�.B.2//I

ˇ̌̌.nC1/.1�pCOp.n�1=2//

D
�ˇ̌̌
�.B.1//

ˇ̌̌p ˇ̌̌
�.B.2//

ˇ̌̌1�p�.nC1/ ˇ̌̌
�.B.1//�.B.2//

ˇ̌̌.nC1/Op.n�1=2/

I ;

where the convergence is reached if

j�.B.1//jpj�.B.2//j.1�p/ < 1: ut

The results of Theorem 1 can be extended to the more general TVMA(`I q)
model:

Theorem 2. Let y t � T VMA.`I q/, under the assumptions of Theorem 1, y t is
invertible if: Ỳ

iD1
j�.B.i//jpi < 1 (9.14)

where j�.B.i//j is the dominant eigenvalue of B.i/, pi D EŒIi;t�d � with
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Ii;t�d D
(
1 if zt�d 2 Ri

0 otherwise;
for i D 1; 2; : : : ; `:

Proof. The proof follows the same steps proposed in Theorem 1. Starting from
model (9.8), a TVMA(`I q) model can be always represented through the form (9.9)
and the corresponding form (9.11), where the matrix Bt�d�i now becomes:

B t�d�i D
X̀
jD1

B.i/Ij;t�d ; for i D 1; 2; : : : ; n:

It allows to state that a TVMA(`I q) model is invertible if:

nY
iD0

ˇ̌̌̌
ˇ̌X̀
jD1

B.i/Ij;t�d

ˇ̌̌̌
ˇ̌ p�! 0; as n ! 1; (9.15)

where the conditions under which this last convergence holds are obtained from the
arguments presented in Theorem 1. ut

The results of the two previous theorems are of interest for different reasons:
(i) they play an important role when one-step and/or multi-steps ahead predictors
are generated for TVMA(`I q) models; (ii) they allow to distinguish between local
and global invertibility. More precisely we say that a process is locally invertible
if all VMA regimes are invertible. From the results of the previous theorems it
follows that a TVMA process can be globally invertible even in presence of locally
non invertible regimes if the inequality (9.14) holds. Further, the invertibility allows
to differently characterize model (9.2). In fact, we can see the TVMA model as a
Vector Autoregressive structure of infinite order with conditionally time dependent
parameters so generalizing what has been done in [8] for the Vector Moving Average
models.

In more detail, let y t � T VMA.`I q/, under the invertibility conditions of
Theorem 2 it can be given as:

ut D y t C
1X
jD1

˘j;ty t�j ; (9.16)

where

˘j;t D �
qX
iD1

˘j�i;t

 X̀
kD1

M
.k/
i Ik;t�d�.j�i /

!
;

with ˘j�i;t D 0 if j < i and ˘j�i;t D IK if i D j .
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Fig. 9.1 Empirical evidence of the convergence to a null matrix of the .2 � 2/ matrix B t�d�i ,
for i D 1; 2; : : : ; 50, in

Qn
iD0 B t�d�i , in the presence of model (9.17). Each frame shows the

convergence of the four elements of B t�d�i to zero

9.4 Examples

To better clarify the distinction between local and global invertibility, we now
propose three examples where we show that, under the conditions of Theorem 1,
the TVMA(2I q) model becomes:

ut 
 y t C J

nX
jD1

j�1Y
iD0
.�1/jB t�d�iY t�j ;

for n adequately large.

Example 1. TVMA(2;1) model with both regimes locally invertible
Consider a TVMA(2;1) model:

y t D M
.1/
1 ut�1It�d C M

.2/
1 ut�1.1 � It�d /C ut ; (9.17)
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Fig. 9.2 Empirical evidence of the convergence to a null matrix of the .2�2/ matrix B t�d�i , for
i D 1; 2; : : : ; 50, in

Qn
iD0 B t�d�i when the time series is simulated from the model in Example 2.

Each frame shows the convergence of the four elements of B t�d�i to zero

where y t D .y1t ; y2t /, ut has mean zero and covariance matrix EŒutu0t � D I , zt�1
follows a stationary AR(1) process with � D 0:65, the threshold delay and the
threshold value are d D 1 and r D 0 respectively and the matrices of coefficients
are:

M
.1/
1 D

�
0:4 0:6

0 0:47

�
and M

.2/
1 D

�
0:2 0:1

0:4 0:6

�
:

Under these conditions it is easy to note that both regimes are locally invertible,
with j�.B.1//j D 0:47 and j�.B.2//j D 0:68 where, as expected from Theorem 1,
the local invertibility is sufficient for the global one and further in model (9.11) the
product

Qn
iD0 B t�d�i !p 0, as n grows.

To better clarify this last remark we have simulated from model (9.17) a time
series of length 1,000 (with burn-in 1,000) and in Fig. 9.1 we have presented the
four elements of the (2 � 2) matrix B t�d�i , for i D 1; : : : ; 50. It can be noted that
in presence of two locally invertible regimes the convergence to a null matrix of the
previous product is very fast.
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Fig. 9.3 Empirical evidence of the convergence to a null matrix of the .2�2/ matrix B t�d�i , for
i D 1; 2; : : : ; 50, in

Qn
iD0 B t�d�i when the time series is simulated from the model in Example 3.

Each frame shows the convergence of the four elements of B t�d�i to zero

Example 2. TVMA(2;1) model globally (but not locally) invertible
Starting from model (9.17) we now assume that the two matrices of coefficients

are:

M
.1/
1 D

�
1 0:6

0 0:47

�
and M

.2/
1 D

�
0:2 0:1

0:4 0:6

�
with j�.B.1//j D 1 and j�.B.2//j D 0:68, where the first regime is locally non-
invertible.

From Theorem 1 it can be noted that this condition does not affect the global
invertibility of the model. It can be empirically evaluated if we simulate a time series
of length 1,000 (with burn-in 1,000) from the current model. In Fig. 9.2 it can be
noted that the four elements of the matrix obtained from the product

Qn
iD0 Bt�d�i

become null for a moderate value of n (n 
 40).
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The main consequence of this result is that in the presence of TVMA models,
the underlying process can be globally invertible even in presence of locally non-
invertible regimes.

Example 3. TVMA(2;2) model globally (but not locally) invertible
The results of the previous example are considered even in the presence of a more

complicated model. Let y t � T VMA.2I 2/ model:

y t D .M
.1/
1 ut�1 C M

.1/
2 ut�2/It�d C .M

.2/
1 ut�1 C M

.2/
2 ut�2/.1 � It�d /C ut ;

where ut , zt�1 have the same structure described in the first example whereas

M
.1/
1 D

"
�1 0:33
0 0:7

#
; M

.1/
2 D

"
0:45 �1
0:12 0:2

#
; M

.2/
1 D

"
0:32 0:18

0:67 0:25

#
; M

.2/
2 D

"
0:25 0:12

0:31 0:06

#
:

Under these conditions j�.B1/j D 1 and j�.B2/j D 0:63 and the process y t , which
is locally non-invertible, is characterized by global invertibility. Even in this case, if
we simulate a time series of length 1,000 from the current model, the convergence to
a null matrix of the product

Qn
iD0 B t�d�i is empirically presented in Fig. 9.3 where

it can be noted that the .2 � 2/ elements of B t�d�i decrease to zero for n 
 25.

9.5 Conclusions

We have proposed a multivariate nonlinear time series model, called Threshold
Vector Moving Average, that at the same time extends the threshold moving average
model (introduced in [10]) in the multivariate domain and generalizes, in nonlinear
context, the vector moving average model [8]. The covariance structure has been
presented and sufficient conditions under which a TVMA(`I q) model is invertible
have been given and illustrated through empirical examples. These last results have
emphasized that an interesting feature of the TVMA model is that it can be invertible
even in the presence of one or more regimes with characteristic polynomials having
roots on the unit circle.

The use of the proposed model can be advantageous in different contexts: for
example in hydrology the TVMA model can be able to catch the behavior of some
variables related to the rivers flow with respect to the rainfall level (the threshold
variable) in a given area; in economics it can be able to catch the prices fluctuation
when an exogenous threshold variable assumes values within well-defined bounds
(that could be defined, among the others, by central banks, national governments,
etc.). This empirical feature of the model will be object of future research.
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10A Regionalization Method for Spatial
Functional Data Based on Variogram Models:
An Application on Environmental Data

Elvira Romano, Antonio Balzanella, and Rosanna Verde

Abstract
This chapter proposes a Dynamic Clustering Algorithm (DCA) as a new regional-
ization method for spatial functional data. The method looks for the best partition
optimizing a criterion of spatial association among functional data. Furthermore
it is such that a summary of the variability structure of each cluster is discovered.
The performance of the proposal is checked through an application on real data.

Keywords
Clustering • Functional data • Spatial data • Variogram model

10.1 Introduction and Problematic

Nowadays many phenomena are monitored by sensor networks, let’s think for
instance, to security, transport, environment (pollutant and radioactivity monitor-
ing), etc. Usually these sensed data are spatially correlated. With this in mind,
recently, in spatial data analysis, there has been an increasing interest to the
development of methods that attempt to exploit such correlation and among them,
regionalization methods.

Regionalization methods, also known as spatially constrained clustering, aim
to aggregate basic spatial units into larger units (regions) in order to preserve
confidentiality, to minimize population differences, to reduce the effects of outliers
or inaccuracies in the data, or simply, to facilitate the visualization and interpretation
of information in maps [10].
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Essentially regionalization is a special form of classification where the spatial
units are grouped together according to a particular criteria and a set of contiguity
or adjacency constraints [2]. The wide range of fields in which these methods can
be used makes it difficult to provide a single definition.

The main characteristics which are common to all methods are:
• They aggregate geographical areas into a predefined number of regions optimiz-

ing an aggregation criterion.
• They assume a prior knowledge of the aggregation process, especially of relevant

variables for the aggregation (if are several), the number of clusters, the spatial
contiguity constraint and the existence of an aggregation criterion.
These methods can be distinguished into two groups: methods in which the

results of conventional clustering algorithms are revised in terms of spatial conti-
guity and methods which force spatial contiguity by maximizing regional compact-
ness.

To our knowledge, in the framework of spatial functional data analysis, only two
clustering methods exist that consider the spatial information about the curves.

The first one [7] is a hierarchical clustering algorithm for geographically
referenced functional data developed to give a solution to the problem of classifying
spatially correlated curves. The method allows to find groups of curves which are
spatially homogeneous by weighting the dissimilarities between curves by the trace-
variogram [6].

The second one [9] is a clustering algorithm based on the minimization of
the spatial variability among the curves in each cluster and on discovering a
prototype that is a spatial functional linear model in a point of the space. The main
characteristic of the approach is that the prototype, obtained by an ordinary kriging
prediction, has a representative spatial location in the geographic cluster. The main
motivation of the method proposed in this chapter is that whenever an analyzed
region is spatially wide, global measure of correlation are not locally representative.
To deal with this issue, we propose to partition the whole spatial region into clusters
which are internally homogeneous in terms of their spatial association.

A measure of spatial association able to emphasize the average spatial depen-
dence over the studied area is the variogram.

We propose to use a Dynamic Clustering Algorithm to find the best partition of
the spatial functional data. Especially the algorithm optimizes, for each cluster, the
fitting between the empirical and the theoretical variogram function for functional
data which is chosen as the prototype of the cluster.

According to the variability structure of the regions a suitable variogram model
(linear, exponential, spherical, Gaussian, Mathern) is chosen.

The estimated variogram models are assumed as the prototypes of the clusters of
the partition. The allocation of the curves to clusters is performed according to the
minimum of the mean squared errors with respect to the estimated variogram model
of the several clusters.

The chapter is organized as follows. Section 10.2 includes details on spatial
functional data, Sect. 10.3 introduces the proposed method, and finally Sect. 10.4
ends the chapter with an application of the proposed methodology on a real dataset.
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10.2 Spatial Variability Measures for Geostatistical Functional
Data

Geostatistical functional data are a particular kind of spatially dependent functional
data. They may be defined as the data for which the measurements on each
observation that is a curve are part of a single underlying continuous spatial
functional process defined as ˚

	s W s 2 D � R
d
�

(10.1)

where s is a generic data location in a fixed d -dimensional Euclidean spaceD � R
d

with positive volume, where n points .s1; : : : ; si ; : : : ; sn/ inD are chosen to observe
the random functions .
s1 .t/; : : : ; 
si .t/; : : : ; 
sn .t//. In particular each function is
defined on T D Œa; b� � R and assumed to belong to an Hilbert space

L2.T / D ˚
f W T ! R; such that

Z
T

f .t/2dt < 1�
:

with the inner product hf; gi D R
T
f .t/g.t/dt .

For a fixed site si it is assumed that the observed data follow the model:


si .t/ D �si .t/C �si .t/; i D 1; : : : ; n (10.2)

where �si .t/ are zero-mean residuals and �si .�/ is the mean function which
summarizes the main structure of 
si . For each t , the random process is assumed
to be second order stationary and isotropic: that is, the mean and variance functions
are constant and the covariance depends only on the distance between sampling
sites.
Formally we have:

E.
s.t// D m.t/ 8 t 2 T; s 2 D,
V.
s.t// D �2.t/, 8 t 2 T; s 2 D, and
Cov.
si .t/; 
sj .t// D C.h; t/ where h D si � sj

 8 si ; sj 2 D
Moreover, since we are assuming that the mean function is constant over D, the
semivariogram function �.h; t/ D �si sj .t/ D 1

2
V.
si .t/ � 
sj .t// where h Dsi � sj

 8 si ; sj 2 D can be expressed by

�.h; t/ D �si sj .t/ D 1

2
V.
si .t/ � 
sj .t// D 1

2
E
�

si .t/ � 
sj .t/

�2
(10.3)

By considering the integral on T of this expression, using Fubini’s theorem and
following [5], a measure of spatial variability can be considered

�.h/ D 1

2
E

�Z
T

.
si .t/ � 
sj .t//2dt
�
; for si ; sj 2 D with h D ksi � sj k
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which is the so-called trace-variogram. This can be estimated as

O�.h/ D 1

2jN.h/j
X

i;j2N.h/

Z
T

.
si .t/ � 
sj .t//
2dt; (10.4)

where N.h/ D f.si ; sj / W ksi � sj k D hg, and jN.h/j is the number of distinct
elements in N.h/. For irregularly spaced data there are generally not enough
observations separated by exactly h. ThenN.h/ is modified to f.si ; sj / W ksi �sj k 2
.h � "; h C "/g, with " > 0 being a small value. Note that the estimation of the
empirical variogram for functional data using (10.4) involves the computation of
integrals that can be simplified by considering that the functions are expanded in
terms of some basis functions. The empirical variograms cannot be computed at
every lag distance h, and due to variation in the estimation, it is not ensured that
it is a valid variogram. In applied geostatistics, the empirical variograms are thus
approximated [by ordinary least squares (OLS) or weighted least squares (WLS)] by
model functions, ensuring validity [3]. Some widely used models include: Spherical,
Gaussian, exponential or Mathern [2]. The variogram, as defined before, is used
to describe the spatial variability among functional data across an entire spatial
domain. However, this spatial variability may be strongly influenced by an unusual
or changing behavior within this wide area.

Thus, in order to describe these spatial variability substructures, we introduce the
concept of the spatial functional variability components with regards to a specific
location by defining a centered variogram for functional data. Coherently with the
above definition, given a curve 
si .t/, at a specific spatial location si , we define the
centered variogram as

�si .h/ D 1

2
E

�Z
T

.
si .t/ � 
sj .t//
2

�
(10.5)

for each sj ¤ si 2 D. Differently from the simple variogram function for functional
data, the centered variogram is defined as the variability function of a set of curves
respect to a fixed location si . Similarly to the variogram function, the centered
variogram of the curve 
si .t/, as a function of the lag h, can be estimated through
the method of moments:

O�si .h/ D 1

2 jNsi .h/j
X

i;j2Nsi .h/

Z
T

�

si .t/ � 
sj .t/

	2
dt (10.6)

where Nsi .h/ � N.h/ D ˚�
si ; sj

	 Wsi � sj
 D h

�
, and it is such that N.h/ D

[Nsi .h/ and jN.h/j D P
i jNsi .h/j.

Through straightforward algebraic operations, it is possible to show that the
variogram function is a weighted average of centered variograms.
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10.3 A Variogram-Based Dynamic Clustering Approach

A Dynamic Clustering Algorithm (DCA) [1, 4] is an unsupervised learning algo-
rithm, which partitions a set of objects into internally dense and sparsely connected
clusters. The main characteristic of the DCA is that it finds, simultaneously, the
partition of data into a fixed number of clusters and a set of representative syntheses,
named prototypes, obtained through the optimization of a fitting criterion. Formally,
let E be a set of n objects. The Dynamic Clustering Algorithm finds a partition
P � D .C1; : : : ; Ck; : : : ; CK/ ofE inK nonempty clusters and a set of representative
prototypes L� D .G1; : : : ; Gk; : : : ; GK/ for each Ck cluster of P so that both P �
and L� optimize the following criterion:

.P �; L�/ D Min f.P;L/ = P 2 PK;L 2 �Kg (10.7)

with PK the set of all theK-cluster partitions of E and�K the representation space
of the prototypes. .P;L/ is a function, which measures how well the prototype
Gk represents the characteristics of the objects in a cluster, and it can usually be
interpreted as a measure of goodness of fit between Gk and Ck . The definition of
the algorithm is performed according to two main tasks:
– Representation function allowing to associate a set of prototypes
L D .G1; : : : ; Gk; : : : ; GK/ of the representation space �K , to each partition
P 2 PK of the data in K classes Ck .k D 1; : : : ; K).

– Allocation function allowing to assign to each Gk 2 L, a set of elements Ck.
The first choice concerns the representation for the classes C1; : : : ; CK 2 P .
Let f
s1 .t/; : : : ; 
sn .t/g (with t 2 T and s 2 D) be the sample of spatially

located functional data. The proposed method aims at partitioning them into clusters
in order to minimize, in each cluster, the spatial variability.

Following this aim, the method optimizes a best fit criterion between the centered
variogram function �sik .h/ and a theoretical variogram function ��k .h/ for each
cluster as follows:

.P;L/ D
KX
kD1

X

si .t/2Ck

X
h

.�
si
k .h/ � ��k .h//2 (10.8)

where �sik describes the spatial dependence between a curve 
si .t/ at the site si and
all the other curves 
sj .t/ in the cluster Ck, at each spatial lag h. This criterion
allows to evaluate the membership of the curves 
si .t/ to the variability structures
of the clusters.

As already mentioned, starting from a random initialization, the algorithm
alternates representation and allocation steps until it reaches the convergence to
a stationary value of the criterion.P;L/.

In the representation step, the theoretical variogram ��k .h/ of the set of curves

si .t/ 2 Ck , for each cluster Ck is estimated. This involves the computation of the
empirical variogram and its model fitting by the Ordinary Least Square method.
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In the allocation step, the function �sik is computed for each curve 
si .t/. Then a
curve 
si .t/ is allocated to a cluster Ck by evaluating its matching with the spatial
variability structure of the clusters according to the following rule:X
h<h�2ŒmkIMk�

.�
si
k .h/ � ��k .h//2�k <

X
h<h�2ŒmkIMk�

.�
si

k
0 .h/ � ��

k
0 .h//

2�k0 8k ¤ k
0

(10.9)
where:

• �k D jNsi k jjNk j and �k0 D
ˇ̌̌
N
si

k
0

ˇ̌̌
ˇ̌̌
N
k

0

ˇ̌̌ are the weights computed respectively, considering,

for a fixed si , the number of location pairs Nsi
k , Nsi

k
0 that are separated by a

distance h in a cluster k, and k
0
.

• mk D mink h�k ;Mk D maxk h�k where h�k is the spatial distance at which the
variogram ��k for each cluster k reaches its sill.

According to the above allocation criterion, only one level h� is chosen such
that for h > h�, there is no spatial correlation. This rule facilitates the spatial
aggregation process leading to a tendency to form regions of spatially correlated
curves. Especially, h� is set in the range Œmk;Mk�.

The consistency between the representation of the clusters and the allocation cri-
terion guarantees the convergence of the criterion to a stationary minimum value [1].

In the context of the proposed method, this is verified when:

��k .h/ D argmin
X


si .t/2Ck
.�
si
k .h/ � ��k .h//2 (10.10)

Thus, since the allocation of each curve 
si .t/ to a cluster Ck is based on
computing the squared Euclidean distance between �sik .h/ and ��k .h/; since the
variogram ��k .h/ is the average of the functions �sik .h/, then ��k .h/ minimizes the
spatial variability of each cluster.

10.4 Application

The studied dataset provides climate monitoring series from a wide set of meteo-
rological stations throughout Europe and Mediterranean by the European Climate
Assessment & Dataset (ECA&D) available at http://eca.knmi.nl/.

We focus on maximum temperature data recorded from 1 January 2000 to 28
February 2010. Even though the whole dataset contains 1; 110 series, we performed
our tests only on 730 stations available on the whole time period. Each time
series records a new observations each day, whenever single measurements are not
available, these are obtained by infilling from nearby stations.

Due to the extension of the spatial region involved in the monitoring activity,
several spatial variability structures are present in the data.

http://eca.knmi.nl/
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Algorithm 1 A variogram-based Dynamic Clustering Algorithm

Initialization:
Start from a random partition P D .C1; : : : ; Ck; : : : ; CK/

Representation step:
for all clusters Ck do

Compute the prototype ��
k .h/ which optimizes the best fitting criterion:

min
X


si .t/2Ck

.�
si
k .h/� ��

k .h//
2

end for
Allocation step:
for all 
si .t / with i D 1; : : : ; n do

find the cluster index k, for h� 2 ŒmkIMk�:

si .t /! Ck
if

P
h<h� .�si k.h/� ��

k .h//
2�k <

P
h<h� .�

si

k
0 .h/� ��

k
0 .h//

2�k0 8k ¤ k
0

end for

Thus, we evaluate how the proposed strategy is able to discover such variability
structures and their associated spatial regions. With this aim, we analyze, for each
cluster, the fitting between the empirical trace-variogram and the representative
theoretical trace-variogram according to the optimized criterion in (10.8).

In order to provide the results, the following choices have to be performed:
• The basis functions to use for series representation.
• The parameters to use in the computation of the empirical variogram.
• The number of clustersK .
• The trace variogram model function ��k .

The first step is to construct the set of functions expanded in terms of B-Spline
Basis functions. We need to choose an appropriate order of expansionZ, taking into
account that a large Z causes overfitting and a Z too small we may miss important
aspects of the function that we are estimating [8]. We consider a procedure based
on a classical nonparametric cross-validation analysis. Especially we evaluate cubic
splines for each series and get a collection of smooth curves that is able to take into
account the variability of the data.

Whenever the data are detected on irregularly spaced locations, the computation
of the empirical trace-variogram may be performed considering only one pair of
locations that is h apart. Averages based on only one or two points are poor estimates
with large uncertainties. It is usual to increase the accuracy of the point estimates
by defining tolerance regions and group the sample pairs into these regions prior
to averaging. Each region has to be small enough so that we retain enough spatial
resolution to define the structure of the semivariogram, but also large enough so that
we base each point estimate on a relative large number of paired differences.

On the studied dataset we impose that the empirical trace-variogram has to be
computed using 10 regions. Such value has allowed to get a reasonable number of
curves in the averaging process. The choice of the number of clusters is based on
tests which evaluate the optimized criterion for several values of K . As shown in
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Fig. 10.1 Value of the optimized criterion for K D 2; : : : ; 7

Table 10.1 Criterion evaluation for several Trace-variogram
model functions

Trace-variogram model &.P;L/

Exponential 1:73eC10

Gaussian 1:75eC10

Spherical 1:76eC10

Fig. 10.1, the optimal number of clusters is K D 3 since it provides the highest
decrease of .P;L/.

A further preliminary decision concerns the trace-variogram model function to
be fitted in the clustering procedure. Since we have no a priori information on what
is the best fitting trace-variogram model function, we tested the value of the criterion
for the Exponential model, the Spherical model and the Gaussian model. The results,
which are available in Table 10.1, highlight that the Exponential model is the most
suitable in our context.

Starting from the chosen input parameters, the algorithm run on the dataset
detects the spatial regions available in Fig. 10.2. The value of the optimized criterion
is .P;L/ D 1:73eC10, the number of iterations until convergence has been 7.

It is possible to note that the three discovered variability structures split the
studied area into three spatial regions which include:
• The Northern Europe
• he most of the continental Europe and the Great Britain
• The Northern Africa, the Spain, the penisola balcanica

The discovered trace-variogram model functions which are representative of each
clusters are shown in Fig. 10.3.

Looking at the plots, it is possible to highlight that the variability in the first
cluster rises at an higher rate, when it is compared to the two other clusters. This is
indicative of an high spatial dependence. At the opposite, the third cluster shows a
reduced spatial dependence due to the low rate of growth of the spatial variability.
It is still possible to note that the third cluster includes locations at an higher spatial
distance when compared with the two other clusters.
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Fig. 10.2 Discovered clusters plotted on the map

Fig. 10.3 Theoretical trace-variogram models for each cluster

10.5 Conclusion

In this chapter we have introduced a new regionalization method for spatially
dependent functional data. The method can be applied to a wide range of domains.
It is able to discover both the spatial partition of the data and the spatial variability
structures representative of each cluster. The main novelty is the use of the trace-
variogram model function as prototype of each cluster along the iterations of
the clustering process. We have analyzed an environmental dataset to assess the
performance of the method. We have focused on OLS techniques as classical
estimation method; however, further attention will be given to alternative methods
parameter and nonparametric, like weighted ordinary least squares, generalized least
squares and maximum likelihood estimation [2].
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11Spectral Decomposition of the AR Metric

Maria Iannario and Domenico Piccolo

Abstract
This work investigates a spectral decomposition of the AR metric proposed
as a measure of structural dissimilarity among ARIMA processes. Specifically,
the metric will be related to the variance of a stationary process so that
its behaviour in the frequency domain will help to detect how unobserved
components generated by the parameters of both phenomena concur in spec-
ifying the obtained distance. Foundations for the metric are briefly reminded
and the main consequences of the proposed decomposition are discussed with
special reference to some specific stochastic processes in order to improve the
interpretative content of the AR metric.

Keywords
AR metric • ARIMA processes • Spectral decomposition

11.1 Introduction

In recent years, we register an increasing interest towards dissimilarity measures
among dynamic phenomena for clustering and discrimination purposes. Motivation
stems from the current availability of data collected at very low frequencies and by
the recent computer efficiency in dealing with large amount of time series.

This interest is often involved with data mining procedures which operates
on massive data archives originated from various fields of study: Economics
and Finance, Signal processing, Environmental Sciences, Medicine, Demography,
Hydrology, Meteorology, Physics, Astronomy, Geology and so on. In this respect,
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extensive reviews of the current research on clustering and discrimination of time
series can be found in [11–13, 15, 17, 25, 26].

In this chapter, moving from a formal result about the variance of a stationary
process, a spectral decomposition of the AR metric between linear processes is
considered. Specifically, the metric will be related to the variance of a convenient
stationary process involving the parameters of both processes to be compared; so its
behaviour in the frequency domain helps to detect how unobserved components of
this new process concur in specifying the obtained distance.

From a logical point of view, this approach is similar to results of [2] who
obtained a frequential decomposition of the linear determinism index [3]. However,
it should be remarked that, in our case, a correct decomposition of a real number
over a set of discrete/continuous components strictly implies a parametric model for
both processes to be compared.

The chapter is organized as follows: in the next section, we summarize the
foundations for the metric. In Sect. 11.3 we establish the connection between
the AR metric and the variance of a suitable stationary process, and derive a
spectral decomposition of such measure. Section 11.4 is concerned with the study
and comments of the decomposition of some processes often encountered in the
applications. Some concluding remarks end the chapter.

11.2 Foundations for the AR Metric

In order to set a convenient notation, for a given stochastic process Xt , we consider
ARIMA models of a transformed process Zt D g.Xt / � ft , which is obtained after
a possibly non-linear transformation of Xt and then by removing any deterministic
componentft : trading days, calendar effects, outliers and mathematical functions of
time, including constants. Such transformations are completely general and should
improve both linearity and Gaussianity of Zt .

Hereafter, Zt is a zero-mean invertible ARIMA.p; d; q/ process,1 that is:

�.B/rd Zt D �.B/ at ; at � WN.0; �2a / ;

where at is a sequence of zero-mean uncorrelated and homoscedastic random
variables (defined White Noise) and the backshift operatorB applies to any function
ht of t in such a way that Bk ht D ht�k; 8k D 0;˙1; : : : .

The AR and MA polynomials �.B/ D 1 � �1B � � � � � �pB
p and �.B/ D

1 � �1 B � � � � � �q B
q , respectively, have no common factors and, moreover,

all the roots of �.B/�.B/ D 0 lie outside the unit circle. Finally, we denote
by L the class of all linear causal and invertible stochastic processes Zt �

1In order to simplify notation, in this chapter we are not formally considering multiplicative
seasonal ARIMA processes; however, all the subsequent results straightforwardly follow. In
addition, we are strictly using classical notation as in [5].
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ARIMA.p; d; q/. Notice that L includes (long-memory) fractional difference pro-
cesses Zt � ARFIMA.p; d C d�; q/, as long as d� 2 .�0:5; 0:5/ [4].

For convenient initial values and a constant �2a < C1, any process Zt 2 L
admits a well-defined AR operator �.B/ D 1��1 B��2 B2� : : : characterized by
the square-convergent sequence f�1; �2; : : : g, which specifies the forecast function
Ft D E.Zt j Zt�1; Zt�2; : : : /. Indeed, for all Zt 2 L , the following orthogonal
representation holds:

Ft D �1 Zt�1 C �2 Zt�2 C : : : I Zt D Ft C at ; Ft ? at :

In this context, a fundamental theorem [6, 130–133] assesses that: “for any
stationary process with a continuous spectrum f .!/ there exists a finite order
AR.p/ whose spectrum fAR.!/ is as close as possible in absolute value to f .!/
uniformly on Œ��; ��”. This theorem has been extended also to MA and, for
numerical efficiency, to ARMA processes. It confirms that the AR operator is the
simplest and effective approximation for any stationary process or for any process
that may be transformed to a stationary one. Indeed, the theorem applies to both
linear and non-linear stationary processes.

Taking these results into account, Piccolo [22, 24] introduced a measure of
structural dissimilarity among two processes Xt 2 L and Yt 2 L by defining the
AR metric as the Euclidean distance among the coefficients 
x D .�1;x ; �2;x ; : : : ; /

0
and 
y D .�1;y ; �2;y ; : : : ; /

0, obtained by the AR expansions of Xt and Yt ,
respectively.

With obvious notation, we get:

d.X; Y / D
rh

.
x � 
y/0.
x � 
y/
i

D
vuut 1X

jD1
.�j;x � �j;y/2 : (11.1)

Then, Piccolo [23] and Corduas [8, 9] derived the asymptotic distributions of the
corresponding estimator for AR and ARIMA processes, respectively. Other results
on these topics are reported by [16, 25] and [12], who provide efficient algorithms
for computation.

The main interpretation of the AR metric (which is also verified for ARFIMA
processes: [10]) is the following: the distance between two ARIMA processes is zero
if, given the same set of initial values, the corresponding models produce the same
forecasts. Notice that, as a measure of structural dissimilarity, the AR metric cannot
take WN variances into account since they are just scale factors and do not affect
the dynamic of the processes to be compared. This feature is shared by cepstral
distances [14] when computed between cointegrated processes.

A useful example of the AR metric is obtained by comparing Xt � ARMA.1; 1/
and Yt � ARMA.1; 1/, both belonging to L . Thus, with obvious notation, we get:

d2.X; Y / D .�x � �x/
2

1 � �2x
C .�y � �y/

2

1 � �2y
� 2

.�x � �x/.�y � �y/
1 � �x �y

:
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If in this formula we let some AR parameters equal to 0 and/or 1, we find distances
for several ARIMA subclasses including the ARIMA.0; 1; 1/ processes implied by
the exponential smoothing procedures.

We observe that the introduction of d.X; Y / transforms L in a metric space and
this supports several statistical consequences. Specifically, we are able to introduce
multivariate techniques (cluster analysis, discrimination, multidimensional scaling
and so on). Thus, the diameter of a class of processes seems relevant for sensible
applications of the metric if one have to choose representative time series or anoma-
lous structures, for instance. Moreover, innovative proposals aimed at extending
the use of AR metric to more complex econometric models have been extensively
discussed by [18–21, 27].

11.3 Frequential Analysis of the AR Metric

The starting point of our derivation is a theorem obtained by Corduas [7] who
proposed to compute the AR metric by means of the variance of a related ARMA
process, by using efficient algorithms for obtaining the autocovariance function
[1, 28]. We slightly modify her results for saving the symmetry of the metric and
for a more immediate fitting to our objectives.

We denote by
ıj Dj �j;x � �j;y j; j D 1; 2; : : : :

the absolute difference of the AR expansion of processes Xt 2 L and Yt 2 L .
Then, we introduce the stationary process:

Wt D �t C ˛1 �t�1 C ˛2 �t�2 C � � � D ˛.B/ �t ; (11.2)

where �t � WN.0; ı 21 / and the coefficients ˛j are obtained as2:

˛j D ıjC1
ı1

; j D 1; 2; : : :

Then, it is immediate to show that

Var.Wt / D
1X
jD1

j �j;x � �j;y j2D d2.X; Y / : (11.3)

The process Wt is obtained by filtering the WN process �t by means of a linear
operator ˛.B/ where the differences of the AR expansions of both processes Xt

2In fact, to be correct we should define as ı1 the first non-zero absolute difference between the
AR expansions of Xt and Yt processes. This consideration is important when comparing pure AR
seasonal processes, for instance; however, we are omitting this point for simplicity of notation.
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and Yt are taken into account. It is evident that the time dynamics of Wt reflects
characteristics of both processes to be compared. As a matter of fact, two processes
Xt and Yt with similar behaviour produce small ˛j coefficients while processes with
quite dissimilar structures give large coefficients˛j . Then, althoughWt is a fictitious
process, its statistical analysis helps in investigating the structural dissimilarity
among Xt and Yt as synthesized by the AR metric.

The processWt may be non-invertible but it is always stationary. Thus, it admits
a symmetric spectral function defined by:

g.!/ D ı 21
�

j ˛.e��! / j2 ; 0 < ! < � :

Then, the spectral decomposition of the AR metric immediately follows:

d2.X; Y / D
Z �

0

g.!/ d! : (11.4)

This result allows to ascertain whether some components at low, high, periodic,
seasonal frequencies contribute to the determination of the value of d2.X; Y /.

In addition, since g.!/=d2.X; Y / shares all the properties of a well-defined
density function over .0; �/, we may also consider the spectral distribution
function:

G.!/ D
Z !

0

g.z/

d 2.X; Y /
dz : (11.5)

In this way, for any fixed angular frequency !0 2 .0; �/, the function G.!0/
measures the relative proportion of distance explained by angular frequencies
less or equal to !0. Similarly, for any interval .!1; !2/ � .0; �/, the quantity
G.!2/ �G.!1/ is the proportion of the measured AR metric accounted by the
frequencies of the Wt process belonging to .!1; !2/.

Finally, for an adequate interpretation of such results, one should consider that
a high accumulation of variance of Wt around some range of angular frequencies
means that such components are important for explaining the computed distance
among processes, and thus for increasing dissimilarities among them.

11.4 Discussion of Some Specific Decompositions

We study some specific comparisons by examining the implied spectral decomposi-
tion when the AR metric is computed between the most common processes.
• AR processes. If Xt � AR.px/ and Yt � AR.py/, thenWt is a pure MA process

of order qw D max.px; py/ � 1 characterized by a finite set of coefficients:

˛j D
ˇ̌̌
�jC1;x � �jC1;y

ˇ̌̌
ˇ̌̌
�1;x � �1;y

ˇ̌̌ ; j D 1; 2; : : : ; qw :
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Fig. 11.1 Spectra of two AR.2/ processes with stochastic periods 12 (circle) and 6 (line)

As a consequence, we get a constant spectrum g.!/ when max.px; py/ D 1;
this result is also true for the comparison of pure seasonal AR.1/ processes because
of the isometry of the AR metric [24, 25].

A different situation happens in environmental studies, where it may be of
interest to compare phenomena characterized by different cycles. These time series
may be well fitted by AR.2/ processes with different stochastic periods Px � 2 and
Py � 2, and amplitudes �x > 1 and �y > 1, respectively. Thus, the AR coefficients
for Xt and Yt are:

�1;x D 2��1x cos
�2�
Px

�
I �2;x D ���2x I �1;y D 2��1y cos

�2�
Py

�
I �2;y D ���2y I

respectively. In this case, the Wt process is specified as:

Wt D �t C ˛1 �t�1 ; �t � WN.0; j �1;x � �1;y j2/ ;
where ˛1 Dj �2;x � �2;y j= j �1;x � �1;y j.

Then, the spectral decomposition (4) of d2.X; Y / derives from the spectrum:

g.!/ D ı21
�

�
1C ˛21 C 2˛1 cos.!/

�
; 0 < ! < � :

It is also possible to give a close formulation of spectral distribution function (5):

G.!/ D ı21
� d2.X; Y /

h
.1C ˛21/ ! C 2˛1 sin.!/

i
; 0 < ! < � :

As an instance, Fig. 11.1 displays the spectra of two AR.2/ processes such that:
�1;x D 1:3964; �2;x D �0:65; and �1;y D 0:9; �2;y D �0:81, which correspond
to stochastic periods Px D 12 and Py D 6, respectively. Computation of the AR
metric gives d2.X; Y / D 0:27201.
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Fig. 11.2 Spectral decomposition and distribution function of the AR metric between AR.2/
processes

The Wt process is completely specified by:

Wt D �t C 0:32232 �t�1; �t � WN.0; 0:49642/

Thus, Fig. 11.2 (upper panel) shows the spectral decomposition of the distance
d2.X; Y / between these AR.2/ processes and the corresponding spectral distribu-
tion function of the induced process Wt (lower panel).

It is evident that the main contributions to the distance among the two processes
are given by low frequencies (that is high periods) of the composite processWt . As a
matter of fact, what really makes the differences between the givenAR.2/ processes
is concentrated over the angular frequencies ! 2 .0; �=2/ since they accounts for
69% of the total variance of Wt : in fact, G.�=2/ D 0:686.

Further general considerations may be derived from these results: for instance, if
two processes are characterized by stochastic periods such that Px D 2Py=.Py�2/,
then g.!/ is uniformly constant, since this implies �2;x D �2;y . As a consequence,
two AR.2/ processes with stochastic periods are more and more distant inasmuch
as these periods are different from 4 time units (which corresponds to ! D �=2).
This result is consistent with the circumstance that the sign of �1 coefficient in
AR.2/ processes changes when the stochastic period moves around ! D �=2, and
of course this change increases d2.
• ARMA(1,1) processes. The AR expansions of two Xt � ARMA.1; 1/ and Yt �

ARMA.1; 1/ processes, both belonging to L , with a standard notation, are given
by:

�j;x D .�x � �x/ �j�1x I �j;y D .�y � �y/ �j�1y I j D 1; 2; : : :
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Fig. 11.3 Spectral decompositions of the AR metric for two ARMA.1; 1/ processes

Then, ı1 Dj .�x � �x/� .�y � �y/ j and the sequence of coefficients:

˛j D ı�11
ˇ̌̌
.�x � �x/ �

j�1
x � .�y � �y/ �j�1y

ˇ̌̌
I j D 1; 2; : : : ;

converges to 0 when ı1 ¤ 0. We can approximate the ˛.B/ operator by omitting ˛j
coefficients for j > M , where the integer M is such that max.�Mx ; �

M
y / < �, for a

small � > 0. In this way, we consider as a convenient approximation for g.!/ the
spectral decomposition gM .!/ based on a truncated ˛M .B/ operator.

The upper panel of Fig. 11.3 shows the spectral decomposition obtained when we
compare two ARMA.1; 1/ processes which are quite similar, as those characterized
by parameters: �x D 0:9I �x D 0:3I�y D 0:7I �y D 0:2, for instance. On
the contrary, in the lower panel of Fig. 11.3 we display the decomposition for
two very dissimilar ARMA.1; 1/ processes, as those characterized by parameters:
�x D �0:9I �x D 0:3I�y D 0:6I �y D �0:4, for instance.

The function g.!/ is mainly concentrated on the low frequencies in the first
instance whereas it is shared almost evenly between high and low frequencies in the
second case. As far as dissimilarity is measured by the AR metric, the distance in
the first case is mainly accounted by low frequencies (and thus by the amount of
difference about parameters which are concordant in signs); instead, in the second
case, the distance increases with both low and high angular frequencies (since now
the parameters are discordant in signs).

11.5 Concluding Remarks

This chapter provides a frequential analysis of the AR metric in order to evaluate
the relevance and persistence of possible unobserved components in determining
the observed distance. Among the possible fields of applications we quote the
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comparison of monthly indexes of industrial production (for allocating similarities
among series to short or long movements in the economic cycle), the study of EEG
time series data (for discriminating among safe and risky patterns) and so on.

Apparently, these issues are all achievable by other spectral measures proposed
by many authors (see: [26], for some comments). However, spectral metrics are not
always well defined for all processes belonging to L as it happens when processes
with difference operators of different orders are to be compared. Thus, it seems
worthwhile to explore the spectral features of a measure as the AR metric which is
always well defined on L .

As the first contribution on the topic, this work is mainly devoted to obtain useful
results based on a full knowledge of the probability structure of the processes to be
compared; further researches should translate such achievements in an inferential
framework when models are estimated on real time series datasets. However, the
availability of consistent and efficient maximum likelihood estimators should make
such further extensions immediate.

In this respect, some empirical work on real dataset seems encouraging; however,
further research is necessary for using such results in an effective way.
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12Nonlinear Nonstationary Model Building
by Genetic Algorithms

Francesco Battaglia and Mattheos K. Protopapas

Abstract
Many time series exhibits both nonlinearity and nonstationarity. Though both
features have been often taken into account separately, few attempts have been
proposed for modeling them simultaneously. We consider threshold models and
present a general model allowing for several different regimes both in time and
in levels, where regime transitions may happen according to self-exciting, or
smoothly varying, or piecewise linear threshold modeling. Since fitting such
a model involves the choice of a large number of structural parameters, we
propose a procedure based on genetic algorithms, evaluating models by means
of a generalized identification criterion. The proposed model building strategy is
applied to a financial index.

Keywords
Evolutionary computation • Threshold model • Time series

12.1 Introduction

Traditional linear models such as ARMA models cannot fit successfully nonlinear
or nonstationary time series. An interesting and simple alternative might be multi-
regime threshold models. A time series that follows such a model is generated
by several alternative linear autoregressive equations (the regimes). A generating
process switches from one regime to another according to the value of an indicator,
which may be related to time or to another time series (called the driving variable).
In the models used in this chapter the driving variable is a delayed value of the time
series itself, as well as time. When there are different regimes in time we have a
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nonstationary but linear model [also called structural change, for a description see
1,14]. When a delayed observation determines the regime the model is nonlinear but
stationary, under suitable choices of the parameter values. These are usually called
threshold models, see Tong [19].

It has been pointed out that a complex dynamic behavior could be reproduced
by a nonstationary as well as a nonlinear model, and often a confusion may arise
between the two kinds of models [see 7, 13]. This suggests that a parsimonious
model might be obtained allowing simultaneous nonlinearity and nonstationarity.
In this chapter we try to fit models that have different regimes, both in time
and according to a delayed observation of the time series as the driving variable.
Lundberg et al. [15] proposed a model based on an AR(1) structure with the
parameter changing both according to time and to a driving variable alternating
between two regimes only, with change determined by the logistic function [in
the same way as smooth transition autoregressive models of 18]. Battaglia and
Protopapas [5] introduced a change of the autoregressive parameters in a piecewise
linear fashion [piecewise linear threshold multi-regime model, 3], as well as a
smooth transition, and proposed a genetic algorithm to build a two regime model
as well. Limitation to only two regimes is a serious constraint, especially with long
series, where several regime changes in time are likely; but the implementation of
multiple-regime models is much more difficult and makes the use of meta-heuristic
methods still more convenient. We present here a genetic algorithm which allows
up to four regimes (both in time and in levels), this involves nontrivial complication
and requires a completely new coding strategy. Such a limitation seems appropriate
for most practical applications, but could be removed at the cost of larger encoding
complexity and computation time.

We stress our view, similar to that of [17], that models are only partial tools for
describing some features of the data, and our aim is to discover not the absolutely
correct generating process, but a reasonably parsimonious model, satisfactorily
fitting the time series; we shall explain how genetic algorithms may be helpful for
that search.

12.2 The Model and Estimates

The original autoregressive threshold model proposed by Tong [19] has at each t an
autoregressive structure, where parameters change according to the value of another
series (the driving variable). If the driving variable is given by the delayed series
itself, we have a self exciting threshold model (SETAR). Let rL denote the number
of regimes, and Rk D .lk�1; lk�; k D 1; : : : ; rL a partition of the real line, the
SETAR model is described by:

Xt D �
.k/
1 Xt�1 C : : :C �.k/p Xt�p C �t if Xt�d 2 Rk ; k D 1; : : : ; rL (12.1)

where d is called the delay. Teräsvirta [18] generalized the SETAR model to the
smooth transition autoregressive model (STAR) model, in which the parameters
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change in a continuous, smooth way, since the transition from one regime to the
next is driven by a continuous function (usually a logistic). The STAR equation
may be written:

Xt D
rLX
kD1

pX
jD1

�
.k/
j Gk�1.Xt�d /Xt�j C �t (12.2)

where G0.x/ D 1 and Gk.x/ D Œ1 C exp.��L.x � lk//�
�1. The autoregressive

coefficients are essentially constant in each regime, with a continuous smooth
change between regimes, whose speed is controlled by the constant �L.> 0/. The
SETAR model may be interpreted as a special case of the STAR model, when �
tends to infinity.

Baragona et al. [3] proposed the piecewise linear threshold model (PLTAR),
where the autoregressive coefficients change linearly and continuously with the driv-
ing variable Xt�d , but with different slope in each regime. PLTAR is described by:

Xt D
pX
jD1

Œ�
.0/
j C �

.1/
j Xt�d C

rLX
kD2

�
.k/
j max.0;Xt�d � lk�1/�Xt�j C �t : (12.3)

Here the autoregressive coefficient behaves like a linear spline across regimes. The
PLTAR may be written in a similar fashion to the STAR letting Sk.x/ D max.0;
x � lk�1/, S1.x/ D x, S0.x/ D 1 and

Xt D
rLC1X
kD1

pX
jD1

�
.k/
j Sk�1.Xt�d /Xt�j C �t : (12.4)

Note however that there is an additional parameter here (the linear term in Xt�d )
for each lag. Therefore the sum over k ranges from 1 to the number of regimes
plus 1. If the model has nonzero or varying means, intercept terms �.k/0 may be

added. To model nonstationarity, we allow each of the coefficients �.k/j to depend
also on time, in a STAR or PLTAR way. Let rT denote the number of regimes in
time, and tj denote the thresholds so that the regimes are defined by the partition
R0k D .tk�1; tk�, where 1 D t0 < t1 < : : : < trT D N (whereN is the series length).

We introduce STAR dependence on time using

�
.k/
j D

rTX
iD1

ˇj .i; k/G
0
i�1.t/ ; j D 1; : : : ; p (12.5)

with G00.t/ D 1, G0i .t/ D Œ1C exp.��T .t � ti /�
�1, i D 1; : : : ; rT .

Alternatively, a time nonstationarity following a PLTAR structure may be
defined as

�
.k/
j D

rTC1X
iD1

ˇj .i; k/S
0
i�1.t/ ; j D 1; : : : ; p (12.6)

where S 0i .t/ D max.0; t � ti�1/, S 01.t/ D t , S 00.t/ D 1.
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After the combination of the different types of models that are driven by levels
of the driving variable, and models driven by time, nine different kinds of models
result: the type of model in time is either stationary, STAR, or PLTAR, while the
type of the model in levels is either linear, STAR, or PLTAR. Since the final model
equation is linear in the elementary parameters ˇj .i; k/, the ˇ’s may be estimated
by least squares.

The identification of a multi-regime model requires the selection of the solution
that possesses the best properties, out of a large and discrete space of elements. Such
kind of problems have been recently addressed by means of meta-heuristic methods
[for a review see 4]. We prefer evolutionary computation methods, since they are
population-based, and evolve several solutions in parallel; and among them, the
genetic algorithm appears most suitable because the space of solutions is discrete,
while others, e.g., differential evolution [16], particle swarm [12], or ITO algorithm
[8], are employed for continuous spaces.

12.3 Genetic Algorithms

Genetic algorithms are heuristics that aim at finding near-optimal solutions in
optimization problems. They are called that way because they are inspired by natural
evolution [11]. Potential solutions of the problem are encoded as chromosomes
(strings of binary digits). The algorithm works on a set of chromosomes called
“population”; it evaluates these candidate solutions using a “fitness function” and
evolves them using transformation operators: crossover—where two chromosomes
of the population called “parent chromosomes” are recombined to form two
“children chromosomes”—and mutation—where parts of a single chromosome are
altered in a random way—in steps called generations, to find a near optimal solution
to the problem at hand. For an introduction to genetic algorithms, the reader is
referred to Holland [11] or Goldberg [9].

Chromosome Encoding. In the multi-regime threshold models analyzed here,
we have the following decision variables: the type of model in time and in levels,
the order, and in the case of STAR and PLTAR models the number of regimes in
time and in levels, the delay of the driving variable and the thresholds in time and in
levels. Finally, there are also the � coefficients in time and/or in levels, in the case
of a STAR model.

All the relevant decision variables are encoded in the chromosome in distinct bit-
strings (genes). For determining the number of thresholds, the type of the model, and
most other variables, we used standard binary encoding methods. Two further genes
encode the � parameters, allowing values between a minimum and a maximum.
Since the � parameter controls the speed of change from 0 to 1 in the logistic
function, we can select a maximum value that makes the STAR model essentially
indistinguishable from a SETAR, i.e., such that, for a sufficiently small value � the
logistic function has value � immediately before the threshold, and value .1 � �/

immediately after. On the other side, in order to select the minimum gamma values,
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we assume that the change from � to 1�� in the logistic function requires an interval
not longer than 1=q of the full observation interval. Details may be found in [5]. We
chose � D 0:01 and q D 10.

The most critical point is coding the thresholds, since many intuitive methods
lead to several illegal chromosomes and/or to large redundancy [see e.g. 2]. We
use for each threshold a gene consisting of 12 bits, which is first transformed to a
real value ui ; 0 � ui � 1. Then the range of possible values for the threshold is
computed and the gene ui is mapped to that range. Since we assume a minimum
of m observations in each regime, the allowable value for each threshold depends
upon the number of regimes and the previous thresholds. For example, for 2 regimes
in time, the first m observations should fall in the first regime, and the last m into
the second; thus a value of zero in u1 corresponds to a threshold given by the mth
observation of the time series and a value of one corresponds to observationN �m
(N is the total number of observations). If there are three regimes, at least the lastm
values should fall in the third regime, and at least m preceding observations should
fall into the second. Then, u1 D 0 determines the first threshold equal to m as
before, while a value u1 D 1 corresponds to the fact that the first regime is as large
as possible: in that case the first threshold corresponds to observation N � 2m, the
second regime consists of the observationsN � 2mC 1; : : : ; N �m, and the third
of the observationsN �mC 1; : : : ; N : essentially, we map the interval .0; 1/ to the
interval .m;N �2m/ of admissible values for the first threshold. Finally, if there are
four regimes, we must account for a minimum of m observations in each regime,
therefore the admissible values for the first thresholds are between m and N � 3m.
A similar technique is applied to the coding of the second and third threshold. The
whole process may be described in the following equations.
• Two regimes. If the gene is denoted by u1, the threshold is t1 D mC .N �2m/u1
• Three regimes. Genes u1 and u2. Thresholds: t1 D m C .N � 3m/u1, and t2 D
t1 CmC .N � 2m � t1/u2.

• Four regimes. The genes are denoted by u1; u2; u3. The thresholds are obtained
from: t1 D m C .N � 4m/u1 ; t2 D t1 C m C .N � 3m � t1/u2, and t3 D
t2 CmC .N � 2m � t2/u3.
The values ti determine the integer values of the thresholds in time (a number

between m and N � m). For thresholds in levels, an extra step is required because
the thresholds are the actual observations themselves. If the decoded gene value is
� , the corresponding threshold is the observed value Y� , where fYtg denotes the
observations arranged in increasing order (this definition has essentially the same
effect as if choosing any real number in-between two consecutive—in terms of
magnitude—observations, as the threshold).

In our implementation we set the minimum number of observations per regime
equal to m D N=5. The choice of m is important since it balances between the
flexibility of the model and the variability in parameter estimation.

Fitness, Crossover and Mutation. In order to compute the fitness, for each given
chromosome the model is estimated by least squares and the residual variance
estimate O�2 is computed. We use an identification criterion (generalized AIC)
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to determine the fitness. This is equivalent to computing a penalized gaussian
likelihood: if model M has p parameters, the quantities IC.M/ D N log O�2M C
c.p/ are evaluated and the model with minimum value is selected. Choosing a linear
penalization function c.p/ D cp corresponds to the generalized AIC criterion [6]:
the original Akaike’s criterion is obtained for c D 2, while other criteria correspond
to other choices of c; the Schwartz criterion for example corresponds to c D logN .
The value c D 3 is selected here, as in Battaglia and Protopapas [5], because in
this case the behavior of the criterion is equivalent to a test of linearity–stationarity
against two-regimes alternatives proposed by Lundberg et al. [15].

The fitness function must be related to the identification criterion through
a monotone decreasing transformation, and is positive. We use a simple
negative exponential transformation: fitness.M/ D expf�IC.M/=N g D
O��2M expf�cp=N g. We put p equal to the total number of estimated parameters,
i.e., the ˇ’s in (12.5) and (12.6), plus the number of thresholds and gammas:
thus, increasing the number of regimes implies multiplication of the value of p,
which makes our procedure relatively conservative against nonlinearity and
nonstationarity.

The rule used for parent selection is “roulette wheel selection,” i.e., the probabil-
ity of a chromosome to be selected as a parent is proportional to its fitness.

The crossover operator used is random point crossover [9]; potential cutting
points are the boundary points between genes. Consequently the children chro-
mosomes inherit each gene from only one parent. After crossover, a bit-wise
independent mutation operator is used to—possibly—alter binary digits of the
children chromosomes; the probability of mutating a bit (from 0 to 1, or vice-versa)
is selected to be 0.025. We adopted a population size equal to 50.

Finally, a form of elitism is employed: after the next generation’s population
is formed, the best chromosome of the previous generation is implanted as it is
into the population, thus replacing a random chromosome of the new generation’s
population.

12.4 Application: Dow Jones Index

We consider the daily closure values of the Dow Jones Industrial Average Index
(ˆDJL) for years 2005–2009. Figure 12.1a displays the data, and Fig. 12.1b the
returns. We only use data from January 2005 to September 2009 for the model
(1,195 observations), leaving the last 3 months for out-of-sample forecasts.

The series shows an apparent instability both in mean and in variance, and is
not well fitted by linear models. The best ARIMA model according to the Schwarz
criterion is an ARI(2,1) but its residual variance, 18,895, is nearly equal to that of the
first difference series (19,402). This corroborates the position of several analysts that
the daily variations are essentially independent, and the best forecast of tomorrow
is today’s value (the random walk hypothesis).

We applied our genetic algorithm-based procedure using alternatively the origi-
nal values or their first differences as driving variable, and repeated the applications
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Fig. 12.1 Dow Jones Industrial Average Index, daily 2005–2009. (a) Values, (b) returns

Table 12.1 Number of observations in each regime

level <10,252 10,252–11,090 >11,090

t < 478 19 300 151
479 < t < 948 2 15 453
949 < t < 1195 247 0 0

on the logs, transforming back to the original scale using the correction factor of
Guerrero [10]. The best fitting results were obtained for original values, and will be
exposed here.

The resulting optimal model is nonstationary and nonlinear, of the smooth
transition type in both domains, with 3 regimes in levels (and thresholds 10,252,
11,090) and also 3 regimes in time (thresholds 478 and 948), order 2, delay 4, and
residual variance 16111. The regimes are delimited by dotted lines in Fig. 12.1.
We also recorded the best found linear nonstationary and the best found nonlinear
stationary models, but their residual variance (18,668 and 18,428 respectively) are
similar to that of the ARI(2,1) model, indicating that both features should be taken
into account. However, looking at Fig. 12.1 and at Table 12.1, where the number
of observations falling into each combination of regimes in time and levels are
reported, an interesting fact arises: the regimes in time and levels interact, so that
essentially in the second and third time regime the data are contained in only one
level regime. Thus, the model suggests that for the first time period the series follows
essentially a nonlinear two-regime model with threshold 11,090, while in the second
and third period the fitting model is essentially a linear autoregressive model. The
estimated model equations are (after a slight simplification) as follows:
• For the first time regime (January 2005 to November 22, 2006)

rXt D f�0:03rXt�1 � 70:5gf1�G.Xt�4 � 11090/g
C f0:05rXt�1 � 223:5gG.Xt�4 � 11090/C "t

• For the second time period (November 24, 2006 to October 7, 2008)

Xt D 0:86Xt�1 C 0:125Xt�2 C 181:5C "t
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Fig. 12.2 Residuals of the STAR–STAR model

Table 12.2 Mean absolute errors of the lead-1 to lead-5 forecasts obtained with the ARI(2,1)
model, the STAR–STAR fitted model and the random walk; observations from October, 1st to
December 30h, 2009

model lead-1 lead-2 lead-3 lead-4 lead-5

STAR–STAR 67.3 94.1 108.8 116.9 124.2
Random Walk 70.4 101.6 120.6 132.7 143.1
ARI(2,1) 75.6 108.4 128.3 147.4 165.8

• For the third time period (October 8, 2008 to September 30, 2009)

Xt D 0:815Xt�1 C 0:162Xt�2 C 240:8C "t

where G.x/ D Œ1 C expf�0:7xg��1. The models for the second and third regime
are stationary autoregressive, though one root is very near to unity. The residuals are
plotted in Fig. 12.2.

Note that though the search space allows for very complicated models, the
optimal choice is relatively simple, suggesting three different time periods, and
describing the first one with a two-regime STAR model, and the next two with
ordinary autoregressive structures.

On considering the forecasts obtained with this model (in Table 12.2 we
display the mean absolute errors of lead-1 to lead-5 forecasts for the out-of-sample
observations from October 1, 2009 to December 30, 2009) we see that there is a
substantial improvement over both the random walk and the ARI(2,1) model fitted
to the entire series, and the advantage increases for larger lead times.

It may be observed that one of the most interesting features of the financial
indexes is heteroskedasticity, and also the present data, as may be seen from
the returns plot in Fig. 12.1b, exhibit an unstable volatility. We suggest that our
procedure may also contribute to the analysis of heteroskedasticity: if the residual
series of the three time regimes of the fitted model are considered separately, and
an Arch-LM test performed on each of them, only for the third series the test is
significant; moreover, also the Ljung-Box test does not reject the null hypothesis for
the first and the second time regime. Therefore we are led to conclude that a relevant
heteroskedasticity is present only in the more recent observations (beginning from
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October 2008). It may be checked that this last residual subseries is satisfactorily
fitted by a GARCH(1,1), or even an ARCH(2) model.

Some other interesting features concerning volatility may be examined consid-
ering the series of the square residuals of the STAR–STAR model. First of all,
for checking the asymmetric volatility hypothesis, implying that the conditional
variance follows two different models according to the sign of the residual, we
applied the proposed procedure to the squared residuals, using the actual residuals
as driving variable. The best obtained model is a STAR stationary model, with
3 regimes and thresholds �77 and �12. It suggests that the square residuals are
best fitted by different parameters for positive and negative residuals (and a further
different behavior for very small negative residuals), but the variance explained by
this model is only about 8 %, therefore the volatility asymmetry is not so evident.

In addition, it may be of interest to check if the segmentation in time and level
regimes, found for the data, is relevant also for volatility changes. To see this, we
have applied our procedure to the series of the squared residuals, using the original
series as driving variable. The selected model has a STAR structure in time and in
levels, and explains nearly one half of the variance. It has three regimes in time and
thresholds 475, 948, and three regimes in levels with thresholds 9,875 and 11,479.
This segmentation is very similar to that obtained for the original Dow Jones series,
suggesting that the identified regimes are relevant both for the index values and for
its volatility.
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15. Lundberg, S., Teräsvirta, T., van Dijk, D.: Time-varying smooth transition autoregressive

models. J. Bus. Econ. Stat. 21, 104–121 (2003)
16. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution, a Practical Approach to Global

Optimization. Springer, Berlin (2005)
17. Rissanen, J.: Information and Complexity in Statistical Models. Springer, Berlin (2007)
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13Using the Autodependogram in Model
Diagnostic Checking

Luca Bagnato and Antonio Punzo

Abstract
In this chapter the autodependogram is contextualized in model diagnostic
checking for nonlinear models by studying the lag-dependencies of the residuals.
Simulations are considered to evaluate its effectiveness in this context. An
application to the Swiss Market Index is also provided.

Keywords

2-test • Autodependogram • Model diagnostic checking • Nonlinear time
series • Serial independence

13.1 Introduction

As for serial correlation (better known as autocorrelation) in the linear case, the
analysis of serial dependence (that, for analogy, could be defined as autodepen-
dence) is fundamental in the nonlinear approach. The term “serial” emphasizes that
the dependence/correlation structure is analyzed as a function of the time lags. The
study of the serial dependence is particularly useful in model diagnostic checking
(also known as model validation) when the residuals from a nonlinear model are
considered.
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Università Cattolica del Sacro Cuore, Italy
e-mail: luca.bagnato@unicatt.it

A. Punzo
Dipartimento di Economia e Impresa
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This chapter addresses a particular aspect of model validation, that is, the evalu-
ation of the autodependencies (in the following alternatively said lag-dependencies)
of the estimated residuals. With this aim, the autodependogram introduced in [4]
is considered. This diagram is based on the lag-independence test proposed in
[2] which is, substantially, a serial version of the well-known Pearson 
2-test
of independence. In analogy with the autocorrelogram, the autodependogram is
obtained representing the lags on the x-axis and the values of the 
2-statistic,
corresponding to each lag, on the y-axis. Similar to the autocorrelogram, the
autodependogram has a critical line emphasizing the lags at which there is evidence
against the null hypothesis of independence.

Although the autocorrelogram and the autodependogram appear to be very
similar in aspect, they are substantially different. First, the autocorrelogram is
sensitive only to linear lag-dependencies while the autodependogram can detect
linear/nonlinear lag-dependencies (for this reason, it is defined as omnibus in [4]).
Second, the bars of the autocorrelogram measure the “strength” of the linear lag-
dependencies, while those of the autodependogram quantify the “evidence” about
the presence of dependence at the corresponding lags. Although the strength of
the dependence and its evidence are strictly related, we think that there is a deep
conceptual distinction about them: the strength of the dependence is a descriptive
aspect, while the evidence about the dependence is a purely inferential concept.
This fact makes the autodependogram a perfect tool in identification and validation
of nonlinear models.

To summarize, Sect. 13.2 presents the problem of graphically checking autode-
pendencies of the residuals from a statistical model. Here the contextualization is
in the nonlinear frame and the autodependogram is briefly illustrated. The method
proposed in [4] to select the number of classes of the contingency tables used to
construct the bars of the autodependogram is also recalled. In Sect. 13.3, some con-
venient experiments on popular models in the time series literature are performed
to compare the performances of the autocorrelogram and the autodependogram in
terms of size and power of each of their bars. In Sect. 13.4 a financial dataset is
considered to appreciate the advantages in using the autodependogram for model
validation. Conclusions are finally given in Sect. 13.5.

13.2 The Autodependogram Applied to Residuals

Let fXt gt2N represent a strictly stationary and ergodic stochastic process. Let
.Xt ; : : : ; Xt�nC1/ be a single realization, of length n, of the process at the
time t . In order to describe the process, suppose to use the nonlinear (paramet-
ric/nonparametric) model

Xt D f .�t /C � .�t / "t ; (13.1)

where � t D .Xt�1; : : : ; Xt�d ; "t�1; : : : ; "t�v/
0, f .�/ and � .�/ are known/unknown

functions of d past Xt ’s and v past "t ’s, with d < n and v < n, and where f"tg
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Table 13.1 Lagged residuals "t�r , r D 1; : : : ; l , l < n� p, and contingency table related to the
shaded residuals

Lagged residuals

εt εt−1 ··· εt−r ··· εt−l

εt−n+p+1
εt−n+p+2 εt−n+p+1

...
...

. . .
εt−n+p+r+1 εt−n+p+r ··· εt−n+p+1

...
...

...
. . .

εt−n+p+l+1 εt−n+p+l ··· εt−n+p+l+1−r ··· εt−n+p+1
...

...
...

...
εt−1 εt−2 ··· εt−r−1 ··· εt−l−1
εt εt−1 ··· εt−r ··· εt−l

Contingency table

εt−r
εt

D(r)
1 ··· D(r)

j ··· D(r)
k

C(r)
1 n(r)

11 ··· n(r)
1 j ··· n(r)

1k
...

...
...

...

C(r)
i n(r)

i1 ··· n(r)
ij ··· n(r)

ik
...

...
...

...

C(r)
k n(r)

k1 ··· n(r)
kj ··· n(r)

kk

n(r)

a b

is a serial independent process. Model (13.1) can be viewed, in the nonparametric
context, as a generalization of a NARCH model adopted in [6] where f .�/ and � .�/
depend only on the lagged variables .Xt�1; : : : ; Xt�d /. Naturally a simpler model
can be used; here, formulation (13.1) is considered to highlight the great flexibility,
in nonlinear model validation, provided by the autodependogram.

Now, let p D max.d; v/. Once estimated model (13.1), we can obtain the residual
vector

�b"t ; : : : ;b"t�nCpC1	, of length n�p, in which the elements are obtained from
the simple relations

b"t D Xt � Of .� t /
O� .� t /

; : : : ;b"t�nCpC1 D Xt�nCpC1 � Of �� t�nCpC1	
O� �� t�nCpC1	 :

Naturally,
�b"t ; : : : ;b"t�nCpC1	 can be seen as a realization of f"tg in (13.1).

Suppose to be interested in studying the lag-dependencies of f"t g in model (13.1)
using the observed counterpart

�b"t ; : : : ;b"t�nCpC1	. With this aim, we can adopt the
autodependogram, presented in [4], in the new context of model validation. Thus, let
l be an integer, with 0 < l < n�p, and consider Table 13.1a where, for each lag r ,
r D 1; : : : ; l , the estimated residuals up to time t � r are contained in the respective
column. The autodependogram allows to study the generic dependence of lag r by
using the well-known and general 
2 statistic of independence. With this aim, the
first step consists in creating the contingency table referred to the variables "t and
"t�r , as shown in Table 13.1b, considering the n.r/ D n�p�r elements highlighted
in Table 13.1a. Before proceeding, the following remark should be made: if one
focuses the attention on a fixed value of r , then evaluating the dependence between
"t and "t�r is equivalent to evaluate it between "t�1 and "t�r�1, or between "t�2
and "t�r�2, and so on. This issue can be easily comprehended considering adjacent
columns in Table 13.1a. Thus, in order to have the largest number of observations
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for each comparison, it is always convenient to fix "t that, from a practical point of
view, it is equivalent to fix the first column in Table 13.1a.

In Table 13.1b, k is the number of (marginal) classes supposed, according to [2–

4], to be the same for each variable and for each lag r , and
n
C
.r/
i

ok
iD1 and

n
D
.r/
j

ok
jD1

are two fixed sets of adjacent intervals for each r . Naturally, the procedure can be
generalized by setting k as a function of r . Thus, the simple 
2-test can be used to
evaluate the dependence of lag r at level ˛. In particular, the test statistic

bır D
kX
iD1

kX
jD1

h
n
.r/
ij � On.r/ij

i2
On.r/ij

(13.2)

is referred in [4] to AutoDependence Function (ADF), where n.r/ij are the observed

frequencies and On.r/ij are the theoretical frequencies under the (null) hypothesis of
independence of lag r , with i; j D 1; : : : ; k. The asymptotic well-known results for
a 
2-statistic of independence, as shown via simulation in [4], are preserved in the
serial context. Thus, we can state thatbır is asymptotically distributed as a 
2 with
.k � 1/2 degrees of freedom. Note that all considerations and results described so
far can also be extended to a vector of estimated residuals

�b"t ; : : : ;b"t�nCpC1	 with
missing values.

To completely specifybır it is necessary to define the partitions
n
C
.r/
i

ok
iD1 andn

D
.r/
j

ok
jD1. As in [4], we will adopt the so-called equifrequency intervals, which

assign equal frequencies to each interval C .r/
i and to each interval D.r/

j . It is
straightforward to note that this partition rule is not deterministic but stochastic.
Moreover, equifrequency intervals can be seen as the sample counterpart, via the
empirical distribution function, of the equiprobability intervals defined on the true,
but unknown, distribution function. Using the equifrequency intervals, only the
value of k must be selected. Following [4], k is chosen such that

k D min
˚
ks; kp

�
; with ks D

6664 n.l/
5

! 1
2

7775 and kp D
66642 1110  n.l/ � 1

jz1�˛ j

! 1
5

7775 :
(13.3)

The operator b�c denotes the floor function while z1�˛ stands for the .1 � ˛/-quantile
of the standard normal distribution. The value of ks is chosen in order to assure a
sufficient adherence between the actual and nominal sizes of the test and it is a
stronger version of the rule in [5] requiring at least five expected frequencies in each
cell of the contingency table. The value of kp is an adaptation, to the contingency
tables, of the well-known formula of [7] introduced in order to maximize the power
of the 
2-test of goodness of fit. Simulations in [4] have confirmed the validity of
the rule (13.3).
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Finally note that, since k is fixed and equal for each lag, the critical value

2
Œ.k�1/2I1�˛� can be used for each of the l tests of lag-independence. Then, a

horizontal line at height 
2
Œ.k�1/2I1�˛� can be added to the autodependogram. In

conformity with the autocorrelogram, the usefulness of such a line is clear since
it provides a graphical representation of the acceptance/rejection of the hypothesis
of lag-independence for each lag.

13.3 Simulation Study

In this section, Monte Carlo experiments are considered to evaluate the performance
of the autodependogram, in terms of size and power of each of its bars, in the context
of model validation. A comparison with the autocorrelogram is also considered. To
perform these experiments, we use the R computing environment [8]. The adopted
R-code is available from the authors upon request. The ACF was computed using the
acf command in the TSA package. It considers the asymptotic confidence bands
�z1�˛=2=

p
n which are usually taken into account when the ACF is used to test for

linear independence. In what follows, the nominal size will be fixed at 0.05 and a
maximum lag l D 30 will be considered.

The experimental scheme can be summarized as follows.

Step 1: Raw data are randomly generated from the following common models:

AR.1/ ! Xt D 0:3Xt�1 C "t (13.4)

ARCH.1/ ! Xt D
p
ht"t ; ht D 1C 0:4X2

t�1 (13.5)

GARCH.1; 1/ ! Xt D
p
ht"t ; ht D 0:01C 0:8ht�1 C 0:15X2

t�1 (13.6)

Quadratic MA.1/ ! Xt D 0:5"2t�1 C "t (13.7)

The white noise f"tg is generated from a standard normal.
For each model, 10; 000 samples are generated and rejection rates, of both ACF
and ADF, are recorded for each lag r , r D 1; : : : ; l (here, the r th rejection rate
corresponds to the proportion of times the r th bar exceeds the confidence bands).
Each sample has length 900 even if only the final n D 800 observations are used.
The value of k in each repetition is selected according to (13.3). To facilitate the
size evaluation, in all displayed plots, a dotted horizontal line is placed at height
0.05.

Step 2: For each repetition, an AR.1/ is fitted on raw data. Here rejection rates
arise from ACF and ADF computed on the resulting residuals.

Step 3: For each repetition, an ARMA.1; 1/-GARCH.1; 1/ is considered as a
parametric example of model (13.1). With the term ARMA.1; 1/-GARCH.1; 1/
we mean that a GARCH.1; 1/ is fitted on the residuals arising from an
ARMA.1; 1/ estimated on the raw data. Rejection rates arise, in this case, from
ACF and ADF computed on the resulting residuals from the GARCH.1; 1/.
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Note that ARMA and GARCH models are estimated in R, with the maximum
likelihood approach, by respectively using the arima command in the stats
package, and the garch command in the tseries package.

Figure 13.1 displays rejection rates for model (13.4), on the left, and
model (13.5), on the right. Here, each line of plots corresponds to one of the
above steps. With reference to raw data for model (13.4), Fig. 13.1a shows as
the autocorrelogram performs better (its bars are in fact higher for the first lags)
than the autodependogram. As mentioned in [4], this is due to the generality of
the dependence structure investigated by the ADF. In particular, because of this
generality, the autodependogram is less powerful than the autocorrelogram when
the structure of dependence characterizing the observed time series is the linear
one, like for model (13.4). However, when in step 2 the AR.1/ is estimated on
raw data, it captures this linear dependence and, consequently, there is not more
dependence structure in the resulting residuals; this can be observed in Fig. 13.1c.
The same reasoning can be applied for the results in Fig. 13.1e. The ARMA.1; 1/-
GARCH.1; 1/ is indeed a generalization of the AR.1/ used in the second step;
consequently, it will capture at least the same dependence structure captured by the
AR.1/.

Regarding model (13.5), Fig. 13.1b shows that the performance on the raw data
of the two diagrams is inverted with respect to the previous one. More specifically,
although the same general pattern can be observed, it is also possible to note
that for the active lags, actually characterized only by nonlinear dependence, the
ACF-size is greater than 0.05 (value which the ACF should assume). This is due
to the fact that when the underlying process is uncorrelated but dependent, the
asymptotic distribution of the ACF is not that which is taken into account to define
the confidence bands. By considering the second step, the fitted AR(1) can only
capture the linear dependence of the series; unfortunately, this is not the underlying
dependence structure induced by the ARCH(1). The ADF recognizes this aspect
since its power, on the first lag, is approximately maintained by moving from
Fig. 13.1b to Fig. 13.1d. Finally, in the third step, the ADF of Fig. 13.1f reflects
serial independence since the fitting of the ARMA.1; 1/-GARCH.1; 1/ allows to
remove the true underlying dependence structure.

The same general considerations stated for model (13.5) hold also for
model (13.6) since the fitted ARMA.1; 1/-GARCH.1; 1/ is more than able to
capture the serial dependence structure induced by the GARCH(1,1). Finally, in
Fig. 13.2f we can observe as the ADF preserves its power in correspondence to
the first lag since the ARMA.1; 1/-GARCH.1; 1/ cannot capture the nonlinear
dependence induced by model (13.7).

13.4 A Real Application to Financial Data

In this section we consider an application to a financial time series. The aim is to
appreciate how the use of the autodependogram, applied on the residuals from a
nonlinear (parametric) model, can detect significant lag-dependencies.
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Fig. 13.1 Rejection rates of ACF and ADF for model (13.4), on the left, and model (13.5), on
the right, in the various steps of the simulation procedure. Nominal size 0.05, l D 30, number of
replications 10,000 and sample size n D 800



136 L. Bagnato and A. Punzo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ADF
ACF

lag

re
je

ct
io

n 
ra

te
s

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

a b

c

e

d

f

model (13.6) - step 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ADF
ACF

lag

re
je

ct
io

n 
ra

te
s

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

model (13.7) - step 1

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ADF
ACF

lag

re
je

ct
io

n 
ra

te
s

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

model (13.6) - step 2

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ADF
ACF

lag

re
je

ct
io

n 
ra

te
s

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

model (13.7) - step 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ADF
ACF

lag

re
je

ct
io

n 
ra

te
s

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

model (13.6) - step 3

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ADF
ACF

lag

re
je

ct
io

n 
ra

te
s

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

model (13.7) - step 3

Fig. 13.2 Rejection rates of ACF and ADF for model (13.6), on the left, and model (13.7), on
the right, in the various steps of the simulation procedure. Nominal size 0.05, l D 30, number of
replications 10,000 and sample size n D 800
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Fig. 13.3 Autocorrelograms related to the rates of return of the Swiss Market Index (SMI) for the
period spanning from 7 August 2009 to 6 March 2012 (n D 663). By row, from top to bottom, the
plots are referred to raw data and residuals from the ARMA(3,3)-GARCH(3,3). By column, from
left to right, are reported the ACF on the series and ACF on the squared residuals (l D 20)

In particular, we consider daily returns of the Swiss Market Index (SMI),
spanning the period from 7 August 2009 to 6 March 2012 (n D 663 observations
downloadable from http://it.finance.yahoo.com/borse-mercati). Figure 13.3 shows
a 2 � 2 matrix of plots related to the autocorrelogram (l D 20). In the first
row, it is applied on raw data and on their squares; in Fig. 13.3b a clear presence
of nonlinear dependence can be observed. So, we filter the time series with a
sufficient flexible nonlinear (parametric) ARMA(3,3)-GARCH(3,3) in order to
remove serial dependence. The last row of Fig. 13.3 shows, respectively, the ACF
on the residuals and on the squared residuals from the ARMA(3,3)-GARCH(3,3).
A simple graphical inspection and the Ljung-Box test computed by considering
the first 10 lags (p-value equal to 0.932, on the residuals, and equal to 0.995 on

http://it.finance.yahoo.com/borse-mercati
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on the residuals from the
ARMA(3,3)-GARCH(3,3)
fitted on rates of return of the
Swiss Market Index (SMI) for
the period spanning from 7
August 2009 to 6 March 2012
(n D 663)

the squared ones) confirm that both the residuals and the squared residuals are
uncorrelated. On the contrary, the autodependogram on the residuals (see Fig. 13.4)
highlights the presence of ADF-values statistically significant for the first two lags.
This denotes a more complex type of nonlinear dependence due, for example, to
a different kind of heteroscedasticity in the return series. Then, a more flexible
model with nonparametric conditional mean and variance could be fitted on the
observed data [1, 9]. By adding the information gained from the autodependogram
in Fig. 13.4, such a type of dependence appears to be characterized by decaying
memory properties.

13.5 Concluding Remarks

In this chapter the autodependogram proposed in [4] is applied in the context of
nonlinear model diagnostic checking. Some experimental results on famous models
in time series literature, and a real application to financial data, have shown the
usefulness of this graphical device.
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An Application to Environmental Data

M. Ivette Gomes, Lı́gia Henriques-Rodrigues, and Frederico Caeiro

Abstract
In this chapter, we consider a recent class of generalized negative moment
estimators of a negative extreme value index, the primary parameter in statistics
of extremes. Apart from the usual integer parameter k, related to the number
of top order statistics involved in the estimation, these estimators depend on an
extra real parameter � , which makes them highly flexible and possibly second-
order unbiased for a large variety of models. In this chapter, we are interested
not only on the adaptive choice of the tuning parameters k and � , but also
on an application of these semi-parametric estimators to the analysis of sets of
environmental and simulated data.

Keywords
Bias reduction • Extreme value index • Moment estimator • Semi-parametric
estimation

14.1 Introduction and Outline of the Paper

Whenever interested in extreme large events, the most common models in statis-
tics of extremes are semi-parametric or even non-parametric in nature, with the

M.I. Gomes
CEAUL and FCUL, Campo Grande, 1749-016, Lisboa, Portugal
e-mail: ivette.gomes@fc.ul.pt

L. Henriques-Rodrigues (�)
CEAUL and IPT, Tomar, Portugal
e-mail: Ligia.Rodrigues@aim.estt.ipt.pt

F. Caeiro
CMA and FCT, Universidade Nova de Lisboa, Portugal
e-mail: fac@fct.unl.pt

N. Torelli et al. (eds.), Advances in Theoretical and Applied Statistics,
Studies in Theoretical and Applied Statistics, DOI 10.1007/978-3-642-35588-2 14,
© Springer-Verlag Berlin Heidelberg 2013

143

mailto:ivette.gomes@fc.ul.pt
mailto:Ligia.Rodrigues@aim.estt.ipt.pt
mailto:fac@fct.unl.pt


144 M.I. Gomes et al.

imposition of a few “regularity conditions” in the right-tail, F .x/ WD 1 � F.x/, as
x ! C1, of an unknown model F underlying the available data. The primordial
parameter is the extreme value index (EVI). For large values, the EVI is the shape
parameter � in the distribution function (d.f.)

EV� .x/ D
�

exp
��.1C �x/�1=�

	
; 1C �x > 0 if � 6D 0

exp.� exp.�x//; x 2 R if � D 0;
(14.1)

the (unified) extreme value (EV) distribution.
The parameter � needs to be estimated in a precise way, because such an

estimation is one of the basis for the estimation of other parameters of extreme and
large events, like the right endpoint, whenever finite, of the model F underlying the
data (for further details on the subject, see Chaps. 1 and 4 of [11]).

In this chapter we are interested in an application of statistics of extremes to a set
of environmental data. Due to the specificity of the data, we pay special attention to
the estimation of the EVI � , in (14.1), based on a quite recent estimator of a negative
EVI, the generalized negative moment estimator [1]. In Sect. 14.2, we present some
preliminary results in extreme value theory (EVT). In Sect. 14.3, we introduce
the EVI-estimators under consideration, giving special emphasis to the generalized
negative moment estimator. In Sect. 14.4, we provide an Algorithm for the adaptive
choice of the tuning parameters under play in the semi-parametric estimation of the
EVI through such an estimator. Finally, in Sect. 14.5, we apply the Algorithm, in
Sect. 14.4, to the analysis of a set of environmental data, the daily average wind
speeds in knots (one nautical mile per hour), collected in Dublin airport, in the
period 1961–1978, as well as to a set of simulated data. Due to the seasonality of
Wind data, we restrict ourselves to the Spring and Summer months.

14.2 Preliminary Results in EVT

One of the main results in EVT is related to the possible limiting laws, as n ! 1,
of the sequence XnWn WD max.X1;X2; : : : ; Xn/, of maximum values of either
independent, identically distributed random variables (r.v.’s) or possibly weakly
dependent and stationary from a model F . In order to obtain a possible non-
degenerate behaviour for XnWn, we need to normalize it. Similar to the central limit
theorem for sums or means, we know that if the maximumXnWn, linearly normalized,
converges to a non-degenerate r.v., then there exist real constants fangn�1 .an > 0/

and fbngn�1, the so-called attraction coefficients of F , such that

lim
n!1P

�
.XnWn � bn/=an � x

	 D EV� .x/; (14.2)

for some � 2 R, with EV� .x/ given in (14.1) [6, 9]. We then say that F is in the
domain of attraction (for maxima) of EV� and we use the notation F 2 DM .EV� /.
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The EVI � , in (14.1), measures essentially the weight of the right-tailF D 1�F .
If � < 0, the right tail is light, i.e. F has a finite right endpoint (xF WD supfx W
F.x/ < 1g < C1). If � > 0, the right-tail is heavy, of a negative polynomial type,
i.e. F has an infinite right endpoint. If � D 0, the right tail is of an exponential type
and the right endpoint can be either finite or infinite.

Let us define U.t/ WD F .1 � 1=t/ .t > 1/; with F .x/ WD inffy W F.y/ �
xg denoting thus the generalized inverse function of F . It is possible to prove (see
[10, 11]) that, for all x > 0, we have the validity of the first-order condition,

F 2 DM .EV� / ” lim
t!1

U.tx/ � U.t/

a.t/
D
(
x��1
�

if � 6D 0

ln x if � D 0:

We have a.t/ 	 at 	 aŒt �, Œt �D integer part of t , with an the scale attraction
coefficient in (14.2). Moreover, the location attraction coefficient bn, also in (14.2),
comes similarly from the relation bt D U.t/.

In order to derive the asymptotic behaviour of semi-parametric EVI-estimators,
we need to assume, for all x > 0, the validity of a second-order condition, like

lim
t!1

U.tx/�U.t/
a.t/

� x��1
�

A.t/
D H�;�.x/ WD 1

�

�
x�C� � 1

� C �
� x� � 1

�

�
;

where � � 0 is a second order parameter controlling the speed of convergence
in the first-order condition, and jA.t/j 2 RV�, with RV˛ standing for the class
of regularly varying functions at infinity with an index of regular variation ˛, i.e.
positive measurable functions g such that limt!1 g.tx/=g.t/ D x˛ , for all x > 0.

14.3 Semi-parametric Estimation of Some Parameters of Rare
Events

On the basis of the available random sample, .X1; : : : ; Xn/, and the sample
.X1Wn � � � � � XnWn/ of associated ascending order statistics (o.s.’s), let us see how
to estimate the EVI � , the primordial parameter in statistics of extremes. For any
integer j � 1, let us denote

M
.j /

k;n WD 1

k

kX
iD1

flnXn�iC1Wn � lnXn�kWngj : (14.3)

For the estimation of � , we shall first refer the moment (M) estimator [3], valid for
all � 2 R. The M -estimator has the functional form,

O�M
k;n WD M

.1/

k;n C 1
2

n
1 �

�
M

.2/

k;n=ŒM
.1/

k;n�
2 � 1

��1o
; (14.4)

with M.j /

k;n ; j D 1; 2 defined in (14.3). Note that the statistic M.1/

k;n , in (14.3), which
plays also a main role in the moment estimator, in (14.4), is the well-known Hill
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estimator [12], often denoted O�H
k;n 	 M

.1/

k;n , the average of the log-excesses and valid,
i.e. consistent, only for � � 0. We can thus write the moment estimator in (14.4), as

O�M
k;n D O�H

k;n C O�NM
k;n ; O�NM

k;n WD 1
2

n
1 �

�
M

.2/

k;n=ŒM
.1/

k;n�
2 � 1

��1o
; (14.5)

withNM standing for negative moment estimator. Indeed, whereas the H-estimator,
O�H
k;n, is consistent for the estimation of �C WD max.0; �/ in the whole DM .EV� /,

the NM-estimator, in (14.5), is consistent for the estimation of �� WD min.0; �/ in
the whole DM .EV� /�<0, provided that k D kn is an intermediate sequence, i.e. a
sequence of integers such that k D kn ! 1 and kn D o.n/; as n ! 1: Under
these same conditions, the M-estimator, in (14.4), is consistent for the estimation of
any real � , which can be written as � D �C C ��.

Most of the classical EVI-estimators have usually a high variance for small values
of k and a high bias when k is large. This problem affects both the moment and the
Hill estimators, and leads to a difficult choice of the “optimal” k, in the sense of the
value k that minimizes the mean squared error (MSE). On the basis of a comment
in [5], where it is noticed that when � > 0, O�H

k;n has a smaller asymptotic variance
than O�M

k;n, and when � < 0, O�NM
k;n and O�M

k;n have the same asymptotic variance, the
authors in [1] were led to the introduction of a semi-parametric class of consistent
estimators for � < 0, which generalizes both the M-estimator, in (14.4), and the
NM-estimator, in (14.5). Such a class, denoted NM.�/, is given by

O�NM.�/
k;n WD O�NM

k;n C � M
.1/

k;n; � 2 R: (14.6)

The dependence on the tuning parameter � 2 R makes such a class highly flexible,
even able to become second-order reduced-bias for a great variety of models in
DM .EV� /�<0. Indeed, with the appropriate choice of � , O�NM.�/

k;n , in (14.6), enables
us to have access to an estimator of a negative EVI with a smaller asymptotic bias
and the same asymptotic variance as the M-estimator. Note that we get the negative
moment estimator in (14.5) for � D 0 and the moment estimator, in (14.4), for
� D 1.

Figure 14.1 illustrates, for a few values of � , � D 0; 0:5; 0:9 and 1, the behaviour
of O�NM.�/

k;n , in (14.6), versus k, for a sample of size n D 6;574 (the size of the
whole sample of real data analysed in Sect. 14.5) from the generalized Pareto (GP)
distribution with � D �0:25. The GP d.f. is strongly related to the EV d.f. in (14.1),
through the equation GP� .x/ D 1C ln EV� .x/, 1C �x > 0; x > 0.

For a large variety of models and under mild second-order conditions, like the
one mentioned at the end of Sect. 14.2, we can guarantee the asymptotic normality
of all the above-mentioned estimators and build approximate confidence intervals
(CI’s) for � , as well as for all other parameters of extreme events. Indeed, for
a negative EVI, adequate conditions on k and � (see [1], for details), and with
N .�; �2/ denoting a normal r.v. with mean value � and variance �2, we get
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p
k. O�NM.�/

k;n � �/
d�!

n!1 N

�
0; �2

NM
D .1 � �/2.1 � 2�/.1� � C 6�2/

.1 � 3�/.1� 4�/

�
: (14.7)

14.4 Adaptive Choice of the Tuning Parameters Under Play

The objective of this section is to provide an Algorithm for the choice of k and � for
the EVI-estimation through the generalized negative moment estimator in (14.6).
Due to the fact that the main idea underlying this estimator is related to a possible
reduction of bias, and � is unknown, it is sensible to use any auxiliary statistic,
strongly and directly related to the estimator under consideration, but going to the
known value zero. This can be done in a way similar to the one considered in [7] for
the choice of k in the Hill estimator, through the bootstrap methodology. Indeed, in
the present setup, the most obvious auxiliary statistic is

Tk;n.�/ WD �
NM.�/
Œk=2�;n � �NM.�/

k;n D � O�NM
Œk=2�;n � O�NM

k;n

	C �
�
M

.1/

Œk=2�;n �M
.1/

k;n

	
(14.8)

DW rk C �sk; k D 2; : : : ; n � 1: (14.9)

The stability of Tk;n.�/ around zero for moderate values of k, say k 2 Œk1; k2�, with
k1 WD Œn0:05�C 1 and k2 WD Œn0:95�, enable us to choose

O� 	 O�.k1; k2/ WD arg min
�

k2X
kDk1

.rk C �sk/
2 D �

k2X
kDk1

rksk=

k2X
k1

s2k ; (14.10)

where rk and sk have been defined in (14.9).
The choice of k for the EVI-estimation is next done on the basis of the bootstrap

methodology, in a way similar to the one in [2, 4, 7] and more recently [8], and it is
written algorithmically in the following:

1. Compute O�NM. O�/
k;n , k D 1; 2; : : : ; n � 1, with O�NM.�/

k;n and O� defined in (14.6)
and (14.10), respectively.

2. Next, consider sub-sample sizes n1 D o.n/ and n2 D Œn21=n�C 1.
3. For l from 1 until B D 250, generate independently B bootstrap samples
.x�1 ; : : : ; x�n2/ and .x�1 ; : : : ; x�n2 ; x

�
n2C1; : : : ; x

�
n1
/, of sizes n2 and n1, respectively,
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from the empirical d.f., F �n .x/ D 1
n

Pn
iD1 IfXi�xg, associated with the observed

sample .x1; : : : ; xn/.
4. Denoting T �k;n. O�/ the bootstrap counterpart of Tk;n. O�/, with Tk;n.�/ defined

in (14.8), obtain .t�k;n1;l ; 1 < k < n1/, .t�k;n2;l ; 1 < k < n2/, 1 � l � B ,
the observed values of the statistics T �k;ni ; i D 1; 2. For k D 1; 2; : : : ; ni � 1,

compute MSE�.ni ; k/ D
BP
lD1

�
t�k;ni ;l

	2
=B; i D 1; 2:

5. Obtain
Ok�0jT .ni / WD arg min

1<k<ni
MSE�.ni ; k/; i D 1; 2: (14.11)

6. For the estimation of the second-order parameter �, in (14.2), consider the
bootstrap estimator of [2], given by

O�� WD ln Ok�0jT .n1/=
�
2 ln. Ok�0jT .n1/=n1/

	
: (14.12)

7. Compute the threshold estimate

Ok�0 	 Ok�0 .nIn1/
WD min

�
n � 1;

h
.1 � 2 O��

/2=.1�2 O��/
� Ok�0jT .n1/

	2
= Ok�0jT .n21=n/

i
C 1

	
; (14.13)

with Ok�
0jT .ni / and O�� given in (14.11) and (14.12), respectively (see equation (29)

and Sect. 4. of [7] for the theoretical details).

8. Obtain O�� 	 O��.nIn1/ WD O�NM. O�/
Ok0.nIn1/;n, with O�NM.�/

k;n , O� and Ok0.nIn1/ given

in (14.6), (14.10) and (14.13), respectively.

Remarks:
1. If there are negative elements in the sample, the value of n should be replaced by
nC D Pn

iD1 IfXi>0g, the number of positive values in the sample.
2. The use of the sample of size n2, .x�1 ; : : : ; x�n2/, and of the extended sample of

size n1, .x�1 ; : : : ; x�n2 ; x
�
n2C1; : : : ; x

�
n1
/, lead us to increase the precision of the

result with a smaller B , the number of bootstrap samples generated in Step 3.
This is quite similar to the use of the simulation technique of “Common Random
Numbers” in comparison problems, when we want to decrease the variance of a
final answer to z D y1 � y2, inducing a positive dependence between y1 and y2.

3. The Monte Carlo procedure in Steps 3. up to 7. or 3. up to 8. of the Algorithm in
this section can be replicated if we want to associate easily a standard error with
the estimated parameters. The value of B can also be adequately chosen.

4. The main practical question which can be raised under this setup is related to the
dependence of the method on the choice of the sub-sample size n1, in Step 2.
of the Algorithm. A possible choice seems then to be for instance n1 D Œn0:90�

or n1 D Œn0:95�. The first one will be the one used later on in Sect. 14.5. If the
sample size n is large, values of n1 larger than Œn0:95� do not seem convenient,
as we shall see later on in Sect. 14.5. Nevertheless, and particularly if we get rid
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Fig. 14.2 Estimates O�.k1I k/ (left), and estimates of the EVI provided by the estimators under
consideration (right), for the simulated GP.�0:25/ sample

of discrepant estimates of either k�
0jT .n1/ or k�

0jT .n2/, easy to detect and discard,
the sensitivity of the estimates on n1 becomes reasonably weak.

5. However, in practical applications, and contrarily to what has happened for
positive � (see [7, 8]), one should always do a sensitivity analysis for n1.

14.5 Applications to Simulated and Environmental Data Sets

We shall first provide an application to a simulated data sample, a case where we
know the value of � . We next provide an application not only to a subset related
to the periods from March 21 until June 20 of the Wind data set mentioned in
Sect. 14.1, the so-called Spring-Wind data, but also to the Summer-Wind data set.

Simulated GP Data
The analysis of a randomly simulated sample from a GP model with � D �0:25,
with a size n D 6;574, the size of the Wind data set, led us to the choice O� D 0:899,
as shown in Fig. 14.2, left.

It is sensible to note that O�.k1I k/ exhibit a stable behaviour for a wide region
of k-values. For this data set, we have got O� D 0:9 for k 2 Œ2793; 5884�.
The application of the Algorithm, in Sect. 14.4, for n1 D Œn0:9�, led then to
Ok�0 D 3;817 and the adaptive EVI-estimate O�� D �0:267, quite close to the true
value � D �0:25, and pictured in Fig. 14.2, right. In this case there is not a big
discrepancy between the M and the NM�-estimators. On the basis of (14.7), an
approximate 95 % confidence interval (CI) for � is given by

� O�� � 1:96 O�NM=
p
k,

O�� C 1:96 O�NM=
p
k
	
. In this case, we have got O�NM D 1:058 and the approximate

95 % CI, .�0:300;�0:233/, also pictured in Fig. 14.2, right.

Wind Data
The wind data set under analysis is the daily average wind speeds (in knots),
collected in Dublin airport, in the period 1961–1978, with a size n D 6;574. To
avoid seasonality we have split the original data on four data sets, according to the
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Table 14.1 Estimates associated with a GP� model, with � D �0:25
p n1 D Œnp� n2 D n21=n

Ok�
0jT
.n1/ Ok�

0jT
.n2/ Ok�

0 O��

0.8 1,133 195 662 116 3,770 �0:22
0.9 2,729 1,132 1,576 650 3,817 �0:24
0.95 4,235 2,728 2,427 1,562 3,768 �0:22
0.99 6,020 5,512 3,442 3,162 3,744 �0:20
0.999 6,516 6,458 2,169 2,160 2,128 �0:22

season of the year, and we consider in this chapter the Spring-Wind data set, with a
size n D 1;656, as well as the Summer-Wind data set, with a size n D 1;692.
• For the Spring-Wind data, we were led to O� D 1:411. The application of the

Algorithm, in Sect. 14.4, for n1 D Œn0:9�, led then to Ok�0 D 948 and the adaptive
EVI-estimate O�� D �0:201, the value pictured in Fig. 14.3, left. In this case,
the M and the NM �-estimators almost overlap. We have got O�NM D 1:005 and
the approximate 95 % CI, .�0:265;�0:137/, also pictured in Fig. 14.3, left, and
clearly indicating a light right-tail.

• For the Summer-Wind data, we were led to the choice O� D 1:655. The application
of the Algorithm, in Sect. 14.4, for n1 D Œn0:9�, led then to Ok�0 D 1; 067 and the
adaptive EVI-estimate O�� D �0:022, the value pictured in Fig. 14.3, right. In this
case, we have got O�NM D 0:982 and the approximate 95 % CI, .�0:092;C0:048/,
also pictured in Fig. 14.3, right, indicating now the possibility of an exponential-
type tail, i.e. of an EVI � D 0.

Sensitivity of the Algorithm to the Choice of n1
We shall now briefly address the sensitivity of the Algorithm in Sect. 14.4 to the
choice of the sub-sample size n1. In Table 14.1, as an illustration, we present a few
estimates of Ok�0 and O��, for the GP data set.

Bootstrap estimates of the optimal sample fractions (OSFs) and of the EVI, � , as
functions of n1, for n1 running from Œn0:8� until Œn0:999�, are pictured in Figs. 14.4–
14.6, for the GP, the Spring-Wind and the Summer-Wind data, respectively. In those
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� (right), as a function of the sub-sample size n1, for the GP data
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Fig. 14.5 Bootstrap estimates of the optimal sample fraction (left) and of the extreme value index
� (right), as a function of the sub-sample size n1, for the Spring-Wind data

figures we also picture horizontal line(s), with the overall median of all values or the
medians of different stability regions.
• In the case of an underlying GP model, with � D �0:25, it seems sensible to

advise the choice of sub-sample sizes n1 � Œn0:95�. We then get a median equal to
�0:239 (slightly over-estimating the true � ). For larger values of n1 there appears
a clear over-estimation of the EVI � . A few sub-sample sizes n1 lead to some
extremely small estimates of � , the estimates �0:84, �0:87 and �3:90, neatly
discrepant from all the other estimates.

• For the Spring-Wind data, we can now go up to sub-sample sizes n1 D Œn0:999�.
The median of the bootstrap EVI-estimates associated with all these sub-sample
sizes is equal to �0:209. There are however a few discrepant values, related to a
weak estimation of Ok�

0jT .n2/.
• For the Summer-Wind data, there is a high volatility in the estimation of the OSFs.

A few sub-sample sizes n1 (around 6.5 % of all sub-sample sizes considered)
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Fig. 14.6 Bootstrap estimates of the optimal sample fraction (left) and of the extreme value index
� (right), as a function of the sub-sample size n1, for the Summer-Wind data

lead even to small positive values of O�?, and there were two extremely small
estimates of � , the estimates �1:35 and �7:69, neatly discrepant from all the
other estimates. The volatility of the bootstrap estimates of � is also high.
The main reason for the volatility of the estimates on n1 is the bad bootstrap
estimation of OSFs, but as mentioned above, we can easily get rid of such a
volatility.

These results claim for a simulation study of the Algorithm in Sect. 14.4, a topic out
of the scope of this chapter.
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15Model-Based Classification of Clustered
Binary Data with Non-ignorable
Missing Values

Francesco Lagona

Abstract
A hierarchical logistic regression model with nested, discrete random effects is
proposed for the unsupervised classification of clustered binary data with non-
ignorable missing values. An E-M algorithm is proposed that essentially reduces
to the iterative estimation of a set of weighted logistic regressions from two
augmented datasets, alternated with weights updating. The proposed approach
is exploited on a sample of Chinese older adults, to cluster subjects according
to their cognitive impairment and ability to cope with a Mini-Mental State
Examination questionnaire.

Keywords
E-M algorithm • Latent classes • Multilevel data • Non-ignorable missing
values • Random effects

15.1 Introduction

Clustered (or repeated) binary data arise when a battery of binary variables (or
items) is observed on a sample of subjects, together with a number of subject- or
item-specific covariates. These data are typically examined by generalized linear
mixed models [12], specified on the basis of continuous (often normally distributed)
random effects, which account for the dependence between the outcomes that have
been observed on the same subject. In classification studies of repeated normal data,
mixtures of linear mixed models are widely exploited to identify clusters of subjects
according to a number of subpopulations with different correlation structures of
the random effects [1]. Because mixtures of linear mixed models are hierarchical
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models where the correlation structure of the clustered responses at the item level
is allowed to vary between clusters of subjects, the classification outcomes depend
on the distributional assumptions on the item-specific random effects, which are
often difficult to motivate in real case studies. Misspecification of the random effect
distribution can be avoided by considering mixtures of semiparametric generalized
linear mixed models, also known as multilevel latent class models [14]. In the case
of complete data information, maximum likelihood estimation of multilevel models
can be obtained by extending standard E-M algorithms for finite mixture models
to allow for the nested structure of the latent classes [14]. When observations
are incomplete, i.e., some of the clustered outcomes on a subject are missing,
the missing mechanism should be taken into account, in order to obtain efficient
MLEs [13]. If the data are ignorably missing, i.e., the probability of not observing
a value does not depend on the unobserved value, then efficient MLEs can be
found by maximizing the marginal likelihood, obtained by integrating the likelihood
function of the complete data with respect to the missing values. If, otherwise,
the data are non-ignorably missing, then a missing value is informative of the
unobserved value and a more complex likelihood function must be maximized,
obtained by specifying the joint distribution of the complete data and the missing
pattern for each subject. Such joint models can be classified into either “pattern
mixture models” or “selection models.” A pattern mixture model factors the joint
distribution into the conditional distribution of the response given the missingness
pattern, and the marginal distribution of missing indicators. A selection model
factors the joint distribution into the marginal distribution of the response and
the conditional distribution of missing indicators given the response. Because both
specifications have advantages and disadvantages, the choice of a specific approach
relies on the purpose of the analysis [10]. In classification studies the interest
lies in the identification of clusters according to the marginal distribution of the
response, and the selection model has the advantage of directly parameterizing
the marginal distribution of the response. Moreover, when the dimension of the
response is high, such as in the case considered in this chapter, pattern mixture
models are weakly identifiable if some of the missing patterns are either observed
on a small part of the sample or not observed. These issues motivate the choice of
a selection approach. A number of different selection models have been proposed
in the literature, depending on the assumptions on the process that generates the
missing values. Shared random effect models are parsimonious selection models
where the missingness is dependent on an unobserved random effect underlying the
observed and unobserved response variables. This constraint can be extended by
allowing for different but correlated random effects, because the latent variables
affecting the missingness could be different from those affecting the response.
On the other hand, they are correlated due to the common latent risk factors
associated with both the missing mechanism and the response model. Under these
correlated random-effects models, ignorable missingness is obtained when the two
random effects are independent. Correlated random effect models for the analysis
of clustered normal responses have been recently introduced in the literature, under
the assumption of normal bivariate random effects [9]. In this chapter we extend this
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strand of the literature by considering mixtures of correlated random effects models
for clustered binary data, using a nonparametric distribution of the bivariate random
effects and hence avoiding the assumption of normal random effects. A suitable
E-M algorithm is exploited for maximum-likelihood estimation, by adapting the
algorithm developed by Hunt and Jorgensen [6] to handle ignorable missing values.
The model is exploited on a sample of Chinese older adults, obtained from the
Chinese Longitudinal Health and Longevity Survey (CLHLS; [15]), to cluster
subjects according to their cognitive impairment and ability to cope with a Mini-
Mental State Examination questionnaire.

15.2 A Two-Levels Hierarchical Logistic Regression

Clustered binary data arise when a battery of J binary variables (or items) is
observed in a sample of n subjects and a binary vector yi D .yi1; : : : ; yij ; : : : ; yiJ /

is obtained for each subject (or cluster) i D 1; : : : ; n. In classification studies, these
data are often examined in conjunction with a number of covariates, which are
available at the item level and/or at the subject level. As a result, each subject is
associated with the J rows xij of a J �K design matrix Xi .

To allow for missing outcomes on each subject i , we introduce a binary vector
ri D .ri1; : : : ; rij ; : : : ; riJ /, where rij D 1 if yij is missing and 0 otherwise. When
the data are non-ignorably missing, missingness of a value is informative of the
unobserved value and, as a result, missing patterns ri and complete data vectors yi
should be jointly modeled. The joint distribution of the profile .yi ;mi / is specified
through a hierarchical model that is based on the introduction of a univariate random
effect at the subjects level, to account for subjects heterogeneity, and a set of
question-specific, correlated random effects at the item level, which accommodate
non-ignorable missing values and, simultaneously, allow for latent heterogeneity
between different items.

Discrete random effects can be conveniently introduced through latent multino-
mial random variables with classes that are associated with the support points of the
random effect. Formally, at the subject’s level, we introduce a multinomial random
vector of binary coordinates z D .z1; : : : ; zs ; : : : ; zS /, where the event zs D 1

indicates subject’s memberships to the latent class (cluster) s, with distribution

p.z/ D
SY
sD1

�zs
s ;

SX
sD1

�s D 1:

At the item level, and conditionally on z, we introduce J (item-specific) pairs of
correlated random vectors, say .usj ; vsj /, where usj D .usj1; : : : ; usjh; : : : ; usjH /
is a multinomial random variable with one trial and H classes, and vsj D
.vsj1; : : : ; vsjk; : : : ; vsjK/ is a multinomial random variable with one trial and K
classes. The conditional distribution of the j th pair .usj ; vsj /, given membership
to class s (zs D 1) is given by
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pj .usj ; vsj / D
HY
hD1

KY
kD1

w
usjhvsjk
sjhk ;

HX
hD1

KX
kD1

wsjhk D 1:

Conditionally on the covariates, profile .yi ;mi / of subject i is modeled by

p.yi ;mi jxij / D
SX
sD1

�s

JY
jD1

HX
hD1

KX
kD1

wsjhkp.yij jxij I ˇj /p.mij jxij I �j /; i D 1; : : : ; n

(15.1)
where

logit p.yij jxij ; zs D 1; usjh D 1I ˇ/ Dˇ0sjh C xT
ijˇj j D 1; : : : ; J

logit p.mij jxij ; zs D 1; vsjk D 1I �/ D�0sjk C xT
ij�j j D 1; : : : ; J;

whereas ˇ0sjh and �0sjk are random intercepts, while ˇj and �j are parametric
vectors that separately capture the effect of the covariates on question-specific
binary outcomes and missing patterns, respectively. According to model (15.1),
subjects are clustered into S clusters. Further, binary outcomes and missing patterns
that relate to different questions are assumed conditionally independent, given
subject’s membership to cluster s. Within each subject-level cluster s, item-specific
binary outcomes and missing patterns are clustered according to H � K classes,
associated with the random intercepts .ˇ0sjh; �0sjk/, allowing for flexible modeling
when subjects are more homogeneous with respect to the outcomes than to the
missing patterns, or viceversa, capturing the variation in question-specific outcomes
and unanswered items that is not explained by the available covariates. Finally, the
correlation between ˇ0sjh and �0sjk allows for non-ignorable missing values, given
subject’s membership to class s.

15.3 Estimation

For each subject i , letM.i/ andO.i/ be the subsets of the missing and the observed
items, respectively,O.i/[M.i/ D f1; 2; : : : ; J g. Maximum likelihood estimates of
the parameters � D .�;w;ˇ;�/ in model (15.1) can be obtained by maximization
of the marginal log-likelihood function

l.� jy; x/ D
nX
iD1

log
X
yM.i/

p.yi ;mi jxij /

D
nX
iD1

log
SX
sD1

�s

JY
jD1

HX
hD1

KX
kD1

wsjhk
�
p.yij jxij I ˇ/

	1�mij
p.mij jxij ;�/;

(15.2)
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obtained after integrating the log-likelihood with respect to the missing values.
Because direct maximization of (15.2) is computationally intractable, we use an
E-M algorithm, based on the iterative maximization of the expected complete
log-likelihood function. Accordingly, let zi D .zi1; : : : ; zis ; : : : ; ziS / indicate the
unobserved class membership of subject i and, for each item j in cluster i ,
let uisj D .uisj1; : : : ; uisjh; : : : ; uisjH / and visj D .visj1; : : : ; visjk; : : : ; visjK/
respectively indicate the latent class membership of item responses and missing
patterns, within the subjects class. The complete likelihood function given data and
class membership is given by

Lc.�/ D
nY
iD1

SY
sD1

0@�s JY
jD1

HY
hD1

KY
kD1

�
wsjhk

�
p.yij jxij I ˇ/

	1�mij p.mij jxij ;�/
�ui sjhvi sjk

1Azi s

:

Given a value � .g�1/ of the parameters, the expected complete log-likelihood,
computed with respect to the conditional distribution of the random effects given
the outcomes and the missing patterns, takes the form of an updating function
Q.�j� .g�1//, which depends on the parameter estimate obtained at iteration g � 1,
and which provides an update of this estimate when it is maximized. More precisely:

Q.�j�.g�1// D E.logLc.�//

D
nX
iD1

SX
sD1

�
.g�1/
is log�s

C
nX
iD1

SX
sD1

�
.g�1/
is

JX
jD1

HX
hD1

KX
kD1

w.g�1/isjhk log wsjhk

C
nX
iD1

SX
sD1

�
.g�1/
is

JX
jD1

HX
hD1

KX
kD1

w.g�1/isjhk .1 �mij / logp.yij jxij ;ˇ/

C
nX
iD1

SX
sD1

�
.g�1/
is

JX
jD1

HX
hD1

KX
kD1

w.g�1/isjhk logp.mij jxij ;�/

where

�
.g�1/
is Dp.Zs D 1jyi ;mi ; x;�.g�1//

D p.yi ;mi ; x;�.g�1/jZs D 1/�
.g�1/
sPS

sD1 p.yi ;mi ; x;�.g�1/jZs D 1/�
.g�1/
s
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and

w.g�1/isjhk Dp.usjh D 1; vsjk D 1jzs D 1; yij ;mij ; xij ;� .g�1//

D p.yij ;mij ; usjh D 1; vsjk D 1jzs D 1/wsjhkPH
hD1

PK
kD1 p.yij ;mij ; usjh D 1; vsjk D 1jzs D 1/wsjhk

:

The E-M algorithm reduces to the iterative maximization of Q.�j�.g�1//
(Maximization step) to obtain a new parameter vector �.g/, alternated with an update
of the weights (Expectation Step) �.g/is and w.g/isjhk , evaluated at �.g/, according
to the equations stated above. We observe that the four additive components of
Q.�j�.g�1// can be separately maximized, because they are functions of indepen-
dent parameters. In particular, the first component is maximized by

O�.g/s D
Pn

iD1
PS

sD1 �
.g�1/
is

n
;

while the second component is maximized by

Ow.g/sjhk D
Pn

iD1 �
.g�1/
is w.g�1/sijhkPn

iD1 �
.g�1/
is

:

The remaining components of the expected log-likelihood function can be maxi-
mized by fitting a weighted logistic model on an augmented dataset that includes
H � S pseudo-subjects, each given a weight �is

P
k wisjhk , and, respectively, a

weighted logistic model on an augmented dataset that includes K � S pseudo-
subjects, each given a weight �is

P
h wisjhk . The algorithm is iterated up to the

convergence of the estimates, whose limit is a local maximum point of the log-
likelihood.

When the number H � K � S of latent classes is small, standard errors of
the estimates can be obtained by taking the square root of the diagonal of the
observed information matrix, as obtained from the complete log-likelihood by
standard methods of the analysis of finite mixture models [11]. If the number of
classes is large, stable standard errors of the parameters of interest can be computed
[3] on the basis of the predictive distribution of the missing values, as obtained
from the estimates of the last iteration of the E-M algorithm, to compute naive point
estimates and variance estimates of the parameters. Finally, the variance of the EM
estimator is obtained as a weighted sum of the mean of the imputation variances
and the empirical variance of the imputation point estimates, with weights 1 and N ,
where N is the number of imputations used.
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15.4 Application

15.4.1 Data

The data that motivated this chapter are drawn from the study No. 3891 of the Inter-
University Consortium for Political and Social Research [15]. The study was carried
out on 7,352 Chinese subjects, aged between 80 and 106, whose cognitive impair-
ment was examined through the Chinese Mini-Mental State Examination (MMSE)
questionnaire. Questions in the MMSE questionnaire are typically compound and
include a number of single items to be separately asked to the subject. Scores on
each item are binary (e.g., 1 for a correct answer and 0 otherwise). With respect
to the popular 30-items MMSE [2], the 23-items Chinese MMSE adopts some
appropriate adjustments to make the questions more understandable and answerable
among ordinary oldest old Chinese, the majority of whom are illiterate [15].
Overall, respondents were asked a 5-items orientation-related question (naming the
current time, animal year, season, festival, and county), a 12-items language-related
question (6 items on word recalling, 3 items on word repetition, and 3 items on
sentence comprehension), a 5-items calculation question (respondents are asked to
subtract 3 from 20, then 3 from the previous result, and so on), and a single-item
drawing question (drawing a figure that is shown to the respondent). Only 57 % of
the questionnaires were complete. Partial questionnaires with a number of missing
items between 1 and 10 missing items were about the 30 % of the sample. The rest
of the sample (13 %) left more than 10 items unanswered. Of these, 7 % are subjects
who did not answer any questions of the questionnaire.

An outcome often reported in the literature is the observation that missing scores
on tests of cognitive impairment occur more frequently among cognitively impaired
patients [5, 17]. Missing values cannot therefore be ignored in the analysis, as they
are informative of the level of cognitive impairment in a subject.

For each subject, relevant covariates were obtained at the time of the MMSE
interview: age (in months), gender, type of residence (rural or urban), whether
the subject is sedentary or active, and limits in activities of daily living (ADL;
six activities including bathing, dressing, eating, indoor transferring, toileting and
continence), categorized into three levels: no, one, two or more limits. In this
sample, the median age at the MMSE interview is 92 years, while the lower and the
upper quartiles are respectively 91 and 100 years, 59 % of the subjects are males,
64 % are rural residents, 45 % have a sedentary lifestyle, 14 % have one limit in
ADL and finally 20 % have two or more ADL limits.

15.4.2 Results

Model (15.1) has been estimated from the CLHLS data by assuming different
combinations of H , K , and S . For each model, we computed the minimum of the
BIC criterion, BIC.H;M; S/ D 2 logLH;M;S .�/C q logn, where n is the number
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of subjects in the sample and q is the number of unknown parameters. According
to the above criterion, a model with H � K � S D 3 � 2 � 2 latent classes seems
a good compromise between goodness of fit and parsimony. Although preliminary
simulation studies have shown a reasonable performance of BIC in choosing the
dimension of model (15.1), the general behavior of BIC (and other alternative
criteria such as AIC) in the case of clustered binary data with non-ignorable missing
values is still an area of open research [7].

Under the chosen model, subjects are clustered in two latent groups, with O�1 D
0:77 and O�2 D 0:23. Figure 15.1 displays the bivariate, question-specific distribution
of the correlated random effects .ˇ0sjh; �0sjk/ within group s D 1 (left column) and
group s D 2 (right column), as obtained after the last iteration of the E-M algorithm.
Due to the relative homogeneity of the MMSE items, the support points of the
random effects are similar, although probability masses on these support points
are extremely heterogeneous, indicating that the missing mechanism is question-
specific and heterogeneous within classes of subjects with similar levels of cognitive
functioning, even after controlling for relevant covariates. As a result, the presence
(absence) of unanswered questions is not necessarily an indication of poor (good)
cognitive functioning, because unpredicted differences in the ability to cope with the
questionnaire might reflect the absence of important covariates, such as education
level, which influence the probability of answering specific questions. In a small
number of cases, we observe distributions with a significant negative correlation,
where most of the MMSE questionnaires are clustered according to classes that
include larger (smaller) numbers of unanswered items and wrong answers than those
predicted by the available covariates. This indicate that only in a small number
of cases missing values are strongly non-ignorable, given class membership. In
the remaining cases, the low level of correlation seems to indicate that for certain
questions, data are essentially missing at random within groups of subjects.

Table 15.1 displays the estimated effects of the covariates on cognitive func-
tioning and missing value occurrence in five multi-items questions (standard
errors within brackets). There are noticeable differences between question-specific
estimates, although signs are concordant. Overall, older adults are more cognitively
impaired than younger adults, while males are less cognitively impaired than
females, confirming the results on gender differentials found by Zhang [16] on the
same data used in this chapter. In keeping with the outcomes reported by Gu and Qui
[4], urban residents are less cognitively impaired than the rural residents, whereas
physical disabilities and a sedentary life style negatively influence a subject’s
cognitive functioning, even after correcting for age at the interview. Factors that
negatively influence cognitive functioning increase the probability of leaving an
item unanswered, in keeping with the results reported by Lagona and Zhang [8].
Interestingly, males answer the MMSE questionnaire items more often than females,
although males answer correctly less often than females.
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nonparametric distribution of
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Table 15.1 Covariate effects on cognitive functioning and missing mechanism

Cognitive functioning

Covariate Orientation Word recall Calculation Language Drawing

Age (months) �0:0058 �0:0046 �0:0060 �0:0050 �0:0024
(0.0003) (0.0002) (0.0003) (0.0003) (0.0004)

Gender Male �0:6514 �0:2029 �1:6447 �0:3704 �0:7768
(ref: female) (0.0530) (0.0299) (0.0453) (0.0518) (0.0632)
Residence Rural �0:0818 �0:0788 �0:7160 �0:1956 �0:3922
(ref: urban) (0.0506) (0.0304) (0.0437) (0.0516) (0.0650)
Lifestyle Sedentary �0:7673 �0:4315 �1:3120 0.7541 �0:7219
(ref: active) (0.0570) (0.0320) (0.0457) (0.0572) (0.0678)
ADL limits
(ref: no limits) One �0:3441 �0:3389 �0:2942 �0:4318 �0:1353

(0.0690) (0.0422) (0.0595) (0.0694) (0.0987)
Two or more �0:9107 �0:7682 �0:9239 �1:0167 �0:4260

(0.0573) (0.0392) (0.0554) (0.0576) (0.1105)
Missing mechanism

Covariate Orientation Word recall Calculation Language Drawing
Age (months) 0.0044 0.0024 0.0033 0.0036 0.0031

(0.0004) (0.0004) (0.0009) (0.0004) (0.0004)
Gender Male 0.4135 0.0967 0.7956 0.1619 0.5457
(ref: female) (0.0685) (0.0636) (0.1401) (0.0569) (0.0736)
Residence Rural 0.2137 0.1263 0.0375 0.1792 0.2546
(ref: urban) (0.0664) (0.0635) (0.1442) (0.0562) (0.0749)
Lifestyle Sedentary 0.8662 0.4797 0.8527 1.2930 1.2405
(ref: active) (0.0785) (0.0705) (0.1507) (0.0610) (0.0780)
ADL limits
(ref: no limits) One 0.3524 0.1978 0.5863 0.4958 0.1966

(0.0892) (0.0898) (0.2076) (0.0774) (0.1038)
Two or more 0.4531 0.1502 0.3069 0.9128 0.7994

(0.0696) (0.0673) (0.1485) (0.0581) (0.0941)
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16A Model for Correlated Paired
Comparison Data

Manuela Cattelan and Cristiano Varin

Abstract
Paired comparison data arise when objects are compared in couples. This type
of data occurs in many applications. Traditional models developed for the
analysis of paired comparison data assume independence among all observations,
but this seems unrealistic because comparisons with a common object are
naturally correlated. A model that introduces correlation between comparisons
with at least a common object is discussed. The likelihood function of the
proposed model involves the approximation of a high dimensional integral. To
overcome numerical difficulties a pairwise likelihood approach is adopted. The
methodology is illustrated through the analysis of the 2006/2007 Italian men’s
volleyball tournament and the 2008/2009 season of the Italian water polo league.

Keywords
Paired comparison data • Pairwise likelihood • Random effects • Thurstone–
Mosteller model

16.1 Paired Comparison Data

Paired comparison data arise from the comparison of objects in couples. This type of
data occurs in many applications. In general, it is much easier for people to compare
objects in couples than to rank a list of items. For this reason, paired comparison
data often arise when the judgement of people is involved. Examples include the
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comparison of sounds in pairs to analyze which features affect their unpleasantness
[7], the investigation of preferences of students for different universities [6], and
the judgement of the painfulness of different injections to patients under regular
haemodialysis [10].

Paired comparison data can be observed also when there is no judgement made
by people, but a sort of comparison takes place between two items from which
a winner and a loser can be identified. This happens in sport contests where two
players or teams compete and a winner is determined at the end of the match.
Another instance is animal behavior experiments that are performed by zoologists
to investigate which features influence the results of fights between animals [16].

The traditional models developed for the analysis of paired comparison data are
the Bradley–Terry model [2] and the Thurstone–Mosteller model [13, 17]. In both
models, the probability that an object is preferred over another is a function of the
difference of the true “worth” of the objects. The main difference between the two
models lies in the link function: logit for the Bradley–Terry model and probit for
the Thurstone–Mosteller model. Extensions of these models have been developed
to take into account specific features of paired comparison data as the existence of
an order effect that advantages the object presented first, or situations in which there
are three possible outcomes of the comparisons, i.e., preference for one of the two
objects or impossibility to express a preference.

Commonly, models for paired comparison data are fitted by maximum likeli-
hood under the assumption of independence among all paired comparisons. This
assumption is rarely fulfilled in real applications. An example, later discussed, is
sports tournaments where results of two matches involving a common player are
naturally correlated. This is an important limitation also in other contexts, such as
animal behavior experiments or judgements performed by the same person. It is
reasonable to believe that comparisons performed by the same person involving a
common object are dependent. In the following section, we illustrate a model that
allows for correlation between paired comparisons.

16.2 Mixed Effects Models for Paired Comparison Data

Let Yij , j > i D 1; : : : ; n, be a binary random variable taking value 1 if object i is
preferred to object j , and 0 otherwise. In traditional models for paired comparison
data, the following generalized linear model is assumed. The density of Yij is
distributed as a Bernoulli random variable whose mean is related to the worth of
objects through

g
˚
Pr
�
Yij D 1

	� D �i � �j ;
where g is a suitable link function and �i is the worth parameter for object
i D 1; : : : ; n. The link functions commonly employed are the probit link, describing
the Thurstone–Mosteller model [13,17], and the logit link, employed in the Bradley–
Terry model [2], but it is possible to adopt any symmetric link as, for example,
the cauchit link. In case a probit link is specified, then the model becomes
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˚�1
˚
Pr
�
Yij D 1

	� D �i � �j , where ˚ denotes the cumulative distribution
function of a standard normal random variable. The worth parameter may depend
on explanatory variables through the relation

�i D xT
i ˇ;

where xi is a p-dimensional vector of explanatory variables related to object i and
ˇ is a vector of p regression parameters. Note that the linear predictor does not
include an intercept because this is not identifiable in paired comparison models.

Correlation between observations with a common object can be introduced by
including an object-specific zero mean random effect ui

�i D xT
i ˇ C ui :

Accordingly, the conditional mean of an observation given the object-specific
random effects is expressed as

g
˚
Pr
�
Yij D 1jui ; uj

	� D .xi � xj /
Tˇ C ui � uj :

The binary observation Yij is equivalently represented as a censored continuous
random variable Yij D I

˚
Zij > 0

�
, where I fAg denotes the indicator function of

the set A and
Zij D .xi � xj /

Tˇ C ui � uj C �ij ;

where �ij are independent zero mean continuous random variables.
To proceed with likelihood inference, we assume that the random effects ui are

independent, identically distributed normal random variables with zero mean and
variance �2, the latent errors �ij are independent, identically distributed standard
normal variables and they are uncorrelated with the random effects. In other words,
the proposed model is a mixed effects version of the Thurstone–Mosteller model.
Accordingly, the correlation between a pair of censored random variables Zij and
Zkl is

corr
�
Zij ;Zkl

	 D
8<:
�2=.1C 2�2/ if i D k or j D l;

0 if i ¤ j ¤ k ¤ l;

��2=.1C 2�2/ if i D l or j D k;

(16.1)

thus, the model allows for dependence between pairs of observations sharing an
object.

The inclusion of the random effects is useful not only to model dependence in
paired comparison data, but it also allows to account for the imperfect representation
of the worth �i by the linear predictor xT

i ˇ.
Unfortunately, the mixed effects Thurstone–Mosteller model has an intractable

likelihood function, which results from integrating out all the random effects
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L .� Iy/ D
Z
Rn

8<:
n�1Y
iD1

nY
jDiC1

P.Yij D yij jui ; uj I �/
9=;
(

nY
iD1

1

�
�
�ui
�

�)
du1 � � � dun;

(16.2)
where � D .ˇT; �2/T is the parameter vector and �.�/ denotes the density function
of a standard normal variable. Thus, the full likelihood consists in a complicated
integral of dimension equal to the number of objects being compared. Except for
small n, a direct approximation of the likelihood can yield numerical difficulties, or
even be impractical. We propose to adopt pairwise likelihood inference to reduce
the computational complexity while retaining part of the likelihood properties.

16.3 Pairwise Likelihood Inference

A composite likelihood is a class of pseudo-likelihoods constructed by compound-
ing marginal or conditional probabilities for subsets of events [9,18]. In our specific
case, it is convenient to consider a particular example of composite likelihood
known as pairwise likelihood. This consists of the product of bivariate marginal
probabilities associated with each pair of observations

Lpair .� Iy/ D
Y

fi;j;k;l2Dg
Pr.Yij D yij ; Ykl D ykl I �/;

where D denotes the set of indexes i; j; k; l identifying two different observations,
that is with i < j , k < l , excluding the case in which both i D k and j D l ,
and with k > i in order to include all couples of observations only once. Under
the model assumptions each of the above bivariate marginal probabilities is a two-
dimensional normal integral. Indeed, the joint distribution of the pair of censored
random variables .Zij ; Zkl / is bivariate normal with zero mean, variance 1 C 2�2

and correlation as in (16.1). Let�ij D .xi �xj /Tˇ=
p
1C 2�2 and 	 D �2=1C2�2,

then the probability that object i loses against both j and k is

Pr.Yij D 0; Yik D 0I �/ D Pr.Zij < 0;Zik < 0I �/ D ˚2
���ij ;��ik I 		 ;

where ˚2.�; �I �/ denotes the cumulative distribution function of a bivariate normal
random variable with standardized marginals and correlation �. The probabilities of
the other possible outcomes (win–loss, loss–win, and win–win) are

Pr.Yij D 1; Yik D 0I �/ D ˚ .��ik/ �˚2
���ij ;��ik I 		 ;

Pr.Yij D 0; Yik D 1I �/ D ˚
���ij 	 �˚2

���ij ;��ik I 		 ;
Pr.Yij D 1; Yik D 1I �/ D 1 �˚ ���ij 	 � ˚ .��ik/C˚2

���ij ;��ik I 		 :
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Hence, pairwise likelihood considerably reduces the computational effort as it
involves a set of bivariate normal integrals in place of the high-dimensional integral
of the full likelihood. Bivariate normal integrals are computed with very high
numerical accuracy using routines in the R [15] package mvtnorm [8].

The logarithm of the pairwise likelihood is denoted by `pair.� Iy/ D
log Lpair.� Iy/ and its maximum, O� , is the maximum pairwise likelihood estimator.
Under mild regularity conditions, the maximum pairwise likelihood estimator
is consistent and asymptotically distributed as a normal random variable with
mean � and covariance matrix G.�/ D H.�/�1J.�/H.�/�1, where J.�/ D
var

˚r`pair.� IY /� and H.�/ D E
˚�r2`pair.� IY /�, see [4, 12].

Hypothesis testing and interval estimation can be based on the pairwise likeli-
hood analogue of the likelihood ratio statistic. Suppose that ı is a q-dimensional
subvector of the whole parameter vector � D .ıT; �T/T and that it is of interest to
test hypothesis H0 W ı D ı0. This hypothesis can be assessed through the pairwise
likelihood ratio statistic defined as

Wpair.Y / D 2
h
`pair. O� IY / � `pair.ı0; O�.ı0/IY /

i
;

where O�.ı0/ denotes the maximum pairwise likelihood estimator in the subspace
where ı D ı0. The pairwise log-likelihood ratio statistic has asymptotic distribution
given by the weighted sum

Pq
iD1 �i
2i.1/, where 
2i.1/ are independent chi-square

random variables with 1 degree of freedom and the �i are the eigenvalues of
.Hıı/�1Gıı , where Hıı denotes the block of the inverse of H.�/ pertaining to ı
and Gıı is the block of the matrix G.�/ pertaining to ı [12, 18]. The evaluation of
this nonstandard limit distribution is difficult. Hence, proposals for adjustments of
the statistic in order to recover an approximate chi-square distribution [3, 14] or the
use of parametric bootstrap techniques have been suggested.

16.3.1 Simulations

The performance of the pairwise likelihood estimator is evaluated through a
simulation study. Data are simulated from a single round robin tournament in which
each of n objects is compared once with all the other objects. The worth parameter
of the objects is assumed to be

�i D ˇ1x1i C ˇ2x2i C ui ;

where covariates x1i are independently simulated from a normal distribution with
mean 0 and standard deviation 0:1 and covariates x2i are independently simulated
from a Bernoulli distribution with probability of success 0:6. Table 16.1 reports
empirical means and standard deviations of 500 simulated parameter estimates in
data sets with n D 30 for various values of the random effects standard deviation
� 2 f0:2; 0:4; 0:6; 0:8; 1:0g.
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Table 16.1 Empirical means and standard deviations of 500 estimates of the parameters of the
mixed effects Thurstone–Mosteller model for increasing values of � 2 f0:2; 0:4; 0:6; 0:8; 1g

�

0.2 0.4 0.6 0.8 1.0

ˇ1 Mean �1:975 �2:098 �2:021 �2:070 �2:018
Std. dev. 0.781 1.028 1.659 2.190 2.597

ˇ2 Mean 1.008 1.006 1.021 1.013 1.023
Std. dev. 0.130 0.201 0.237 0.338 0.415

� Mean 0.185 0.376 0.592 0.787 0.985
Std. dev. 0.061 0.087 0.111 0.132 0.186

True values for ˇ1 and ˇ2 are �2 and 1, respectively

The results of the simulations seem satisfactory. Biases of the regression
parameters are relatively small. The estimate of � is slightly downward biased, as
expected in variance components models. In fact, also the full likelihood is known to
produce downward biased estimates of this parameter. Finally, as expected, inflating
� implies higher variability in the estimates of the regression coefficients.

16.4 Applications

In this section, we illustrate pairwise likelihood inference in the mixed effects
Thurstone–Mosteller model with application to two sports tournaments.

16.4.1 Volleyball

Sports data are a natural field of application of models for paired comparison data.
The first application considered regards the results of the 2006/2007 Italian men’s
volleyball A1 league. The league is composed of 14 teams that compete in a double
round-robin tournament, that is, each team competes twice against all the other
teams in the league, for a total of 182 competitions. The matches cannot end in
a tie, so there are only two possible outcomes for each contest. At the end of the
regular season, the best eight teams access to the playoffs to compete for the title
of Italian Champion. The information available about the volleyball teams are the
number of accesses to the playoffs in the previous 8 years and the mean age of
the players. The home effect is a further covariate which accounts for the advantage
deriving from playing in a home field. In fact, it is commonly recognized that a team
playing at home enjoys the benefits of the acquaintance with the playing field and
a larger number of supporters. None of the matches played during the season took
place in a neutral field, so it seems important to account for this effect. The interest
lies in determining whether these covariates affect the result of the matches.

The first two columns of Table 16.2 display the estimates of the traditional
Thurstone–Mosteller model termed independence model and corresponding to the
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Table 16.2 Estimates (est.) and standard errors (s.e.) of independence (first two columns)
and mixed effects (last two columns) models for the volleyball data

Independence Mixed effects

est. s.e. est. s.e.

Playoffs 0.101 0.032 0.116 0.061
Home effect 0.446 0.098 0.513 0.103
Mean age 0.136 0.059 0.157 0.114
� – – 0.401 0.121
Pairwise log-likelihood �20073:86 �20062:33
Last row reports the value of the maximized pairwise log-likelihood

restriction �2 D 0, and the last two columns present the estimates of the proposed
mixed effects model. The estimated home effect and its standard error confirm that,
in this tournament, teams playing at home have an important advantage. The signif-
icance of the parameter relating to the number of accesses to the playoffs in the pre-
vious 8 years reveals that teams which were strong in the past tend to remain strong
also in the present season. The independence model states that the mean age of the
team has a positive influence on its ability. This covariate has a narrow range, it lies
between 25:25 and 29:31 years old, but it seems that teams with older players, who
are probably more experienced, have higher probability of winning. The fitted mixed
effects model leads to a different conclusion. Indeed, the mean age effect is not sig-
nificant anymore, while the other covariates remain significant. Finally, the estimate
of the random effect standard deviation � is 0:401 with standard error 0:121.

The main interest is on testing whether the variance component is null, or in other
terms if correlation between matches with a common player is relevant or not. The
test of the hypothesis H0 W �2 D 0 against H1 W �2 > 0 is complicated because
the parameter value under the null hypothesis lies on the boundary of the parameter
space and thus standard asymptotic results do not apply. Even though, when just
one variance component is tested, it is possible to halve the p-values of a chi-square
distribution with one degree of freedom [11], this approximation is very poor [5] and
bootstrap methods are more robust. Moreover, if pairwise likelihood is employed, it
is necessary to compute a scaling parameter that depends on the matrixesH.�/ and
G.�/, so it is even more convenient to resort to parametric bootstrap as in [1]. First,
compute the observed value of the pairwise likelihood ratio statistic

Wpair.y/ D 2
h
`pairf O�.y/Iyg � `pairf O�0.y/Iyg

i
;

where O�0.y/ is the maximum pairwise likelihood estimator under the null hypoth-
esis. Then, setting � D O�0.y/, generate M data sets y.1/; : : : ; y.M/. For each
simulated data set, compute the maximum pairwise likelihood estimator O�.y.m//,
the maximum pairwise likelihood estimator under the null hypothesis O�0.y.m// and
the relative pairwise log-likelihood ratio statistic Wpair.y

.m//. The p-value of the test
is then estimated by quantity
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p D
PM

mD1 I
˚
Wpair.y

.m// > Wpair.y/
�C 1

M C 1
:

In the volleyball data, this parametric bootstrap test based on 1; 000 simulations
yields a p-value smaller than 0:01, thus not supporting the null hypothesis H0 W
�2 D 0.

16.4.2 Water Polo

The second data set considered here consists of the results of the water polo matches
played by teams in the male A1 league during the 2008/2009 regular season. The
water polo tournament has a double round robin structure, so in each half of the
season every team competes once against all the other teams in the league. The A1
league includes 12 teams playing altogether 132 matches. At the end of the regular
season, the best eight teams access to the playoffs to compete for the title of Italian
Champion. The available covariate is the number of accesses to the playoffs in the
previous 6 years. The analysis is focused on determining whether there is a sort of
“tradition effect” in water polo, that is whether teams strong in past seasons tend to
be strong also in the present one.

Water polo matches can also end in ties, hence the model presented so far
needs a further extension in order to account for the three possible outcomes of
the matches. This extension can be accomplished through the introduction of a
threshold parameter � . Thus, the probability that i loses against j is equal to the
probability that the corresponding latent random variable Zij is smaller than �� .
The probability of a tie between i and j is equal to the probability that the
corresponding latent variable Zij is between �� and � . Finally, the probability
that i wins against j is equal to the probability that Zij is larger than � . Let t D
�=

p
1C 2�2, then the probability that i loses both the matches against j and k is

P.Zij < ��;Zik < ��/ D ˚2
��t � �ij ;�t � �ik I 	

	
;

while the probability that i and j draws and i loses against k is equal to

P.�� < Zij < �; Zik < ��/ D P.Zij < �; Zik < ��/ � P.Zij < ��; Zik < ��/
D ˚2

�
t � �ij; � t � �ik I 		 �˚2

��t � �ij ;�t � �ikI 		 :
The probabilities of the other possible outcomes are similarly computed.

Again, besides the accesses to the playoffs in the previous 6 years, the effect of
playing at home is taken into account. Table 16.3 shows the results of the estimates
of an independence model, corresponding to the restriction �2 D 0, (first two
columns) and the mixed effects model (last two columns).

Both models confirm that the team playing at home has actually an advantage
over the away team. The estimate of the accesses to the playoffs in the previous
6 years is also significant in both models, denoting that teams which were strong in
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Table 16.3 Estimates (est.) and standard errors (s.e.) of independence (first two columns)
and mixed effects (last two columns) models for the water polo data

Independence Mixed effects

est. s.e. est. s.e.

Playoffs 0.238 0.034 0.315 0.090
Home effect 0.223 0.116 0.294 0.129
Threshold 0.218 0.051 0.290 0.066
� – – 0.616 0.134
Pairwise log-likelihood �12972:09 �12948:95
Last row reports the value of the maximized pairwise log-likelihood

the recent past tend to be strong also in the present season. Finally, the estimated
random effect standard deviation is 0:616 with standard error 0:134. The testing of
H0 W �2 D 0 presents the same problems specified for the volleyball data, hence
parametric bootstrap is used. The bootstrap test for validating the hypothesis H0 W
�2 D 0 yields a p-value smaller than 0:001 based on 1; 000 simulations. Therefore,
also in water polo the hypothesis of null variance of the random effects may not be
accepted.

16.5 Discussion

In this chapter, traditional models for paired comparison data are extended in
order to introduce correlation among observations with common objects. In many
instances, as for example in sports data, it is evident that a model which allows for
correlation is more realistic. In the volleyball and water polo data analyzed here,
the presence of correlation between matches with common teams is borne out by
the significance of the variance component. Modeling the dependence in the paired
comparison model is natural given the structure of the data. As illustrated in this
chapter, accounting for dependence may change the significance of a parameter as
found in the volleyball application.

The mixed effects Thurstone–Mosteller model can be usefully applied also in
the other areas mentioned in Sect. 16.1. For example, in biological studies scientists
are interested in determining whether some specific covariates affect the outcomes
of contests between animals [16]. In this instance it seems important to account
for dependence between fights involving the same animal in order to ascertain at
which extent covariates are associated with the outcomes of fights. Is it important
to consider the inclusion of dependence also when comparisons are performed by
people. For example, in [6] a data set about pairwise evaluations of universities
situated in different European countries is analyzed and university-specific and
student-specific covariates are taken into account. In this case it seems important
to include in the model dependence between comparisons performed by the same
student involving a common university in order to determine which covariates really
influence the decisions.
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The model for sports data can be further extended allowing for a temporal
evolution of abilities of teams. For example, it is possible to include time-
varying covariates which yield different abilities of teams in different matches. An
alternative currently under study is the specification of a temporal evolution of the
random effects which induce a temporal variation of abilities.
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17Closed Skew Normal Stochastic Frontier
Models for Panel Data

Roberto Colombi

Abstract
We introduce a stochastic frontier model for longitudinal data where a subject
random effect coexists with a time independent random inefficiency component
and with a time dependent random inefficiency component. The role of the closed
skew normal distribution in this kind of modeling is stressed.

Keywords
Longitudinal data analysis • Statistical modeling • Variance components
models

17.1 Introduction

A stochastic frontier defines a random upper bound of a response variable (output)
and it is equal to a function of independent variables (inputs) plus an idiosyncratic
random error. In a stochastic frontier model the observable response is given by the
stochastic frontier minus a nonnegative random variable which is called random
inefficiency component. Stochastic frontiers have been mainly used as statistical
models for production functions [12] but we believe that they are random effects
models of a wider applicability. In this chapter a four random component stochastic
frontier model for panel data is introduced. Subject unobservable heterogeneity is
modeled by a random component and the presence of both a time invariant and
a time dependent random inefficiency component is allowed. In this way, subject
heterogeneity is not wrongly modeled as inefficiency [11], and it is possible to
disentangle a time persistent component from the total inefficiency. The main
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contribution of this work is that time independent inefficiency can coexist with time
dependent inefficiency and with a subject random effect and that it is not necessary
to resort to simulated maximum likelihood methods as suggested by Greene [11].
Models with either time varying inefficiency or time persistent inefficiency are very
diffused in the econometric literature [3, 12, 13] but as far as we know, no attempt
was made before to define a multiple random component stochastic frontier in
order to consider subject heterogeneity and different aspect of technical inefficiency.
Previous Stochastic Frontier models are likely to be misspecified because either
confound random subject effects with time invariant inefficiency or do not separate
time invariant inefficiency from time dependent inefficiency. In this chapter we show
that these problems are avoided by a more general Stochastic Frontier model which
encompasses many used Stochastic Frontier models that can be tested against the
proposed more general model.

The model here presented is related but not identical to the stochastic frontiers
introduced by Dominguez-Molina et al. [7] and to the linear mixed models with
skew normal errors of Lin and Lee [14] and Arellano-Valle et al. [2].

17.2 A Stochastic Frontier Model for Panel Data

We consider the stochastic frontier model:

yit D ˇ0 C x0i tˇ C bi � ui0 � ıtui1 C eit (17.1)

where the index i , i D 1; 2; : : : ; n, denotes n units or subjects and t , t D
1; 2; : : : ; T , identifies the T time points at which every subject is observed. The
variable yit is the logarithm of the output of the i -th unit at time t , x0i t is a row
vector of p regressors and ˇ is a column vector of unknown parameters. The
random variable eit is the idiosyncratic random component and bi is the random
subject effect. Finally ui0 is the time invariant stochastic inefficiency and ıtui1 is the
time dependent stochastic inefficiency. As in Lee and Schmidt [13], the nonnegative
parameters ıt (ı1 D 1 for identifiability reasons) represent the impact of the random
inefficiency ui1 at time t; t D 1; 2; : : : ; T . We note that ys

i t D ˇ0 C x0i tˇ C bi C eit
is the subject specific stochastic frontier and that yp

i t D ˇ0 C x0i tˇ C eit is the
population stochastic frontier.

The specification of the time varying inefficiency component ıtui1 is often
criticized [12] on the ground that the parameters ıt are the same for every unit.
We do not agree with this point of view because the specific unit effect is taken into
account by the random variable ui1 and the parameters ıt are intended to represent
time factors which are independent from the subject efficiency. An alternative
approach to modeling the time varying inefficiency can be found in Colombi
et al. [6] and Colombi [5] and is briefly introduced in Sect. 5. As discussed in
the just quoted papers the greater generality unfortunately implies a significative
computational burden in the maximization of the log-likelihood.

Many interesting models can be obtained from (17.1) by omitting the subject
random component or a random inefficiency component. Every model can be
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identified by a three letters label. The first letter pertains to the presence (TDTrue)
or absence (FDFalse) of the random subject effect, the second letter do the same
for the time dependent stochastic inefficiency and in the same way the third letter
relates to the time independent stochastic inefficiency. For example TTT is model
(17.1), FFT is the Pitt and Lee model I [17], TFT is a generalization of the Pitt and
Lee model I obtained by introducing a subject random component, and FTF is the
Lee and Schmidt [13] stochastic frontier without time independent inefficiency and
subject specific component. The models TTT, FTT, TTF, and TFT do not seem to
have been previously examined.

We observe that testing one of the previous models against the general model
TTT is a nonstandard problem because under the null hypothesis one or two
parameters are on the boundary of the parametric space. In fact, under reasonable
assumptions the asymptotic distribution of the log-likelihood ratio test statistic is
a mixture of chi-squared distributions known as chi-bar-squared distribution [19].
For the sake of simplicity we consider only the case of balanced panel data with a
fixed number of observations per unit but the results of the following sections are
easily extended to unbalanced panels.

We assume that: (A1) for i D 1; 2; : : : ; n, the random variables ui0; bi ; ui1
and eit , t D 1; 2; : : : ; T , are independent in probability; (A2) the random vectors
.ui0; ui1; bi ; ei1; ei2; : : : ; eiT /, i D 1; 2; : : : ; n are independent in probability; (A3)
for every i , the random inefficiency component ui0 is a normal random variable
with null expected value, variance �20u and left truncated at zero; (A4) for every
i , the random inefficiency component ui1 is a normal random variable with null
expected value, variance �21u and left truncated at zero; (A5) for every i , the
subject random effect bi is a normal random variable with null expected value
and variance �2b ; (A6) for every i and t , eit is a normal random variable with
null expected value and variance �2e ; (A7) the vectors xi t are vectors of known
constants.

The following matricial representation of model (17.1) is used in the next
sections. Let 1T be a vector of T ones, 0T be a vector of T zeros and IT be the
identity matrix of dimension T . Moreover y i is the vector of the T observations on
the i -th unit, X i is the T �p matrix with rows x0i t , ui is the vector with components
ui0; ui1 and ei is the vector of the T idiosyncratic random components of the i -th
unit. From (17.1) it follows that: y i D 1T .ˇ0 C bi/ C X iˇ C Aui C ei where
the matrix A is so defined: A D �Œ1T ı � and ı is the vector of the parameters
ıt ; t D 1; 2; : : : ; T . In the next section we will derive the joint density of the random
component 1T bi C Aui C ei .

17.3 Log Likelihood of the Closed Skew Normal
Stochastic Frontier

In this section some important consequences of assumptions (A1)–(A7) are exam-
ined in order to derive the log-likelihood of model (17.1). With �q.x;�;˝/

we denote the density function of a q-dimensional normal random variable with
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expected value � and variance ˝ and N̊
q.�;˝/ is the probability that a q-variate

normal random variable of expected value � and variance matrix ˝ belongs to the
positive orthant. For an easy reference we report the definition of the closed skew
normal distribution [1, 8].

Definition 1. A random vector x has a .p; q/ closed skew normal distribution with
parameters �; � ; D; �; � if its probability density function is:

f .x;�;� ;D; �;�; p; q/ D �p.x;�;� / N̊
q.D.y � �/ � �;�/

N̊
q.��;� C D� D0/

: (17.2)

The moment generating function of the previous random variable is:

E.expft 0xg/ D
N̊
q.D� t � �;� C D� D0/

N̊
q.��;� C D� D0/

expft 0� C 1

2
t 0� tg: (17.3)

When � D 0 the previous density simplifies to

f .x;�;� ;D; �;�; p; q/ D �p.x;�;� / N̊
q.D.y � �/;�/

2�q
:

In the next Propositions we will need the following matrices:

V D
h
�21u 0

0 �22u

i
; ˙ D �2e IT C �2b 1T 10T

 D V � V A0.˙ C AV A0/�1AV D .V �1 C A0˙�1A/�1;

R D V A0.˙ C AV A0/�1 D A0˙�1:

The relevance of the closed skew normal density in the context of stochastic frontiers
derives from the following considerations. In model (17.1) the random component
bi � ui0 � ıtui1 C eit is the sum of the time independent error "i D bi � ui0 and
of the time dependent component "it D eit � ıtui1. According to our assumptions
the two components are independent in probability and are given by the difference
between a normal random variable and an independent left truncated at zero normal
random variable. It is well known [12] that "i has the following density:

f ."i / D 2�1."i ; 0; �
2
b C �20u/

N̊
1

� ��20u

�2b C �20u

"i ;
�20u�

2
b

�2b C �20u

�
:

It easy to see that the previous density is a .1; 1/ closed skew normal density.
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It is also straightforward to see [12] that the joint density of the vector �i , with
components "it , t D 1; 2; : : : ; T , is the .T; 1/ closed skew normal density:

f .�i / D 2�1.�i ; 0; �2e IT C �21uıı0/ N̊
1

 
��21u

�2e C �21u

PT
tD1 ı2t

ı0�i ;
�21u�

2
e

�2e C �21u

PT
tD1 ı2t

!
:

From Theorem (3) of González-Farı́as et al. [8], it follows that the two indepen-
dent random variables "i , �i have a joint .T C1; 2/ closed skew normal density with
parameters �0 D 0, �0 D 0 and

� 0 D
�
�20u C �2b 00T

0T �2e IT C �21uıı0
�
; D0 D

24 ��20u

�2bC�20u
00T

0
��21u

�2eC�21u

PT
tD1 ı

2
t

ı0

35 ;
�0 D

24 �20u�
2
b

�2bC�20u
0

0
�21u�

2
e

�2eC�21u

PT
tD1 ı

2
t

35 :
If L D Œ1T IT �, from Theorems 1 of González-Farı́as et al. [8], it follows that

the T dimensional random vector 1T bi C Aui C e i D L
�
"i ; �

0
i

�0

with components
bi � ui0 � ıtui1 C eit D "i C "it has a .T; 2/ closed skew normal distribution with
parameters �1 D 0, �1 D 0, � 1 D L� 0L

0 D ˙ CAV A0; D1 D D0� 0L
0� �11 D

R; �1 D 0 C D0� 0D
0
1 � D0� 0L

0� �11 L� 0D
0
0 D . From the previous result

and because the parameter � of Definition 1 is a location parameter, the following
Proposition, about the distribution of y i D .1T ˇ0 C X iˇ/ C 1T bi C Aui C ei ,
follows.

Proposition 1. Under the assumptions A1, A3–A7, the random vector y i D
1T .ˇ0 C bi /C X iˇ C Aui C ei has a (T,2) closed skew normal distribution with
density

f .y i / D �T .y i ; 1T ˇ0 C X iˇ;˙ C AV A0/
N̊
2.R.y i � X iˇ � 1T ˇ0/;/

2�2

and moment generating function

E.expft 0y i g/ D
N̊
2.V A0t;V /
2�2

expft 0.1T ˇ0 C X iˇ/C 1

2
t 0.˙ C AV A0/tg:

When y i is the vector of the logarithms of the outputs and t is the k-th column of
the identity matrix of dimension T , the moment generating function of the previous
Proposition gives the expected value of the k-th component of the vector expfy i g
of the outputs. It can be easily checked that a .T; 1/ closed skew normal distribution
is obtained in the case of models without time invariant inefficiency or when
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alternatively the time dependent inefficiency is omitted. When the subject random
component is omitted, the joint distribution is given by the previous results with
�2b D 0. The following Proposition 2 is an immediate consequence of assumption
A2 and Proposition 1.

Proposition 2. Under the assumptions A1–A7, the log-likelihood of nT observa-
tions from model (17.1) is:

L D
nX
iD1
.ln �T .y i ; 1T ˇ0 C X iˇ;˙ C AV A0/C ln N̊

2.R.y i � X iˇ � 1T ˇ0/;/

(17.4)

which is the log-likelihood of the n independent .T; 2/ closed skew normal random
variables y i .

17.4 Prediction of the Random Components

When y i is the vector of the logarithms of the outputs, an important topic in applied
research is forecasting the subject random components by the expected values
E.expfbi gjyi / and the subject random inefficiencies by E.expf�ui gjy i /. This
section shows how the relevant expected values can be computed. It is convenient
to introduce the following definitions:

r i D y i � X iˇ � 1T ˇ0; Q�2b D �2b � �4b 10T� 1T

� D .˙ C AV A0/�1; Q D  � R1T 10TR0
�4b
Q�2b
:

Proposition 3. From assumptions A1, A3–A7 it follows that:
(a) Conditionally on y i the subject specific random component bi has a (1,2) closed

skew normal distribution with density

f .bi jy i / D �.bi ; �
2
b 10� r i ; Q�2b /

N̊
2.Rr i � R1T �2b Q��2b .bi � �2b 10T� r i /; Q/

N̊
2.Rr i ;/

(b) Conditionally on y i the random inefficiency vector ui is a left truncated normal
random variable with density:

f .ui jy i / D �2.ui ;Rr i ;/

N̊
2.Rr i ;/

; ui > 0

(c)

E.expfbigjy i / D
N̊
2.Rr i � R1T �2b ;/

N̊
2.Rr i/

expf�2b10T� r i C 1

2
Q�2b g
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(d)

E.expft 0uigjy i / D
N̊
2.Rr i C t;/

N̊
2.Rr i ;/

expft 0Rr i C 1

2
t 0tg

Proof. To prove (b) note that:

f .ui jy i / D �T .y i ; 1T ˇ0 C X iˇ;˙ C AV A0/�q.u;Rr i ;/4

f .y i /
(17.5)

and use the result of Proposition 1 about f .y i /. Noting that f .ui jy i / is the density
of a left truncated at zero multi-normal random variable, (d) follows from Lemma
13.6.1 of Dominguez-Molina et al. [7]. To prove (a) we observe that:

f .bi jy i / D �.bi ; �
2
b 10� r i ; Q�2b /

�
R1
0

R1
0 �2.u0;u1;Rri�R1T �2b Q��2

b .bi��2b 10
T � ri /; Q/du0;du1R1

0

R1
0 �2.u0;u1;Rr i ;/du0du1

(17.6)

Point (a) of the proposition follows immediately. Observing that f .bi jy i / is an
instance of the closed skew normal density, point (c) follows from the result (17.3)
on the moment generating function of a closed skew normal random variable. ut

If �t 0 is the k-th row of the identity matrix of dimension q the result (d) of the
previous Proposition gives the conditional expected value of the k-th component
of the inefficiency vector expf�uig. We stress also that conditionally on the
observation y i , the subject random effect has not a normal distribution as it happens
in standard random effect models.

17.5 An Alternative Specification of the Time Dependent
Random Inefficiency

As we already pointed out the models TTT, FTT, TTF, FTF can be criticized because
every unit shares the same set of parameters ıt . An alternative approach to modeling
time varying inefficiency is obtained if the random components ıtui1 are replaced by
T independent left truncated at zero normal random variables ui t with null expected
value and variance �22u t . The heteroskedasticity parameters  t ; t D 1; 2; : : : ; T

are positive and satisfy the identifiability restriction  1 D 1. As shown in [5, 6] the
results of Sect. 4 still hold with the following replacements:

V D
h
�20u 00T
0T �21u�

i
; A D �Œ1T IT �:

where � denote the diagonal matrix with the parameters  t on the main diagonal.
The parameters �20u, �21u and  t ; t D 2; : : : ; T are identifiable and can be estimated
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by the ML method [6] even if the log-likelihood is more difficult to compute. In fact,

now f .y i / D �T .y i ; 1T ˇ0 C X iˇ;˙ C AV A0/ N̊q .R.yi�X iˇ�1T ˇ0/;/
2�q is a .q; T /

closed skew normal density with q D T C 1 for the models TTT, FTT, and q D T

for the models TTF, FTF. The computational complexity of the log-likelihood comes
from the dimensionality of the integrals N̊

q.R.y i � X iˇ � 1T ˇ0/;/. The R [18]
function: SNF maxlik, developed by the author, can be used to compute the ML-
estimates of the models of this section and of the previous section. To integrate the
multinormal density the SNF maxlik function resort to the Bretz-Genz [10] method,
implemented in R by the mvtnorm package [9]. A less accurate but computationally
faster approach, to the numerical integration of the multivariate distribution, is the
Pandey [16] approximation which is also implemented in SNF maxlik. I found this
approximation particularly useful in getting good initial estimates and in dealing
with the model of this section when T is large.

17.6 Examples

In the first example we consider the RICE panel data set of Battese et al. [3].
The data set is also available with the R-package Frontier developed by Coelli and
Henningsen [4]. In this data set the annual rice production (in tonnes) of n D 43

rice producers in the Tarlac region of the Philippines is reported from 1990 to
1997. Rice production is the output and the inputs are area planted (hectares),
labor used (man days) and fertiliser used (kg). In this application the log-linear
stochastic frontier is intended to model the maximum rice production in function
of the inputs. The random component bi models unobserved differences among
producers and the inefficiency components model the producer inability to reach
the optimal production.

It clearly emerges from Table 17.1 (only the maximum of the log-likelihood
and the estimated variances are reported) that the time dependent random inef-
ficiency component is relevant (compare TTT with TFT) and that its omission
inflates the variance of the idiosyncratic random component. On the contrary the
subject random component is not significative as shown by the comparison of
the model TTT with FTT. The asymptotic distribution of the log-likelihood ratio
statistics to test TTF against TTT is a 0.5 mixture of a chi-squared distribution
with zero degrees of freedom and a chi-squared distribution with one degree
of freedom. The p-value P D 0:029 shows that in the model TTT the time
independent inefficiency component importance is masked by the presence of
the subject random component. However the relevance of the time independent
inefficiency component is clearly stated by the comparison of the models FTT
and FTF.

The second example examines the AIRPORT panel data set [15] about n D 38

Italian airports and the years 2005–2008. The output variable is yearly number
of aircraft movements and the inputs are number of runways, total area of the
airport, number of check-in desks, number of luggage claim lines, number of aircraft
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Table 17.1 Skew normal stochastic frontiers for the RICE data

Model Max. log-lik. �2b �22u �21u �2e

TTT �63:181 0 0.073 0.056 0.068
TFT �86:430 0 0 0.0721 0.0832
FTT �63:181 0 0.073 0.056 0.068
TTF �64:975 0.0194 0.0756 0 0.0689
FFT �86:431 0 0 0.0723 0.0832
FTF �88:101 0 0 0 0.091
TFFa �88:605 0.1584 0 0 0.2901
FFFa �104:907 0 0 0 0.3283
a TFF and FFF denote the subject random effect regression model and the classical regression
model, respectively

Table 17.2 Skew normal stochastic frontiers for the AIRPORT data

Model Max. log-lik. �2b �22u �21u �2e

TTT 28.750 0.2249 0.0112 0 0.0126
TFT 26.677 0.0493 0 0.3764 0.0159
FTT 27.440 0 0.0110 0.8802 0.0125
TTF 28.750 0.2249 0.0112 0 0.0016
FFT 24.107 0 0 0.6904 0.0162
FTF �51:137 0 0 0 0.04767
TFF 25.699 0.4298 0 0 0.1261
FFF �51:132 0 0 0 0.3387

parking sites. To take into account the airports heterogeneity the factor EU category
of the airport (A: Great European Airports, B: National Airports, C: Domestic
Airports and D: Regional Airports) was also introduced in the log-linear frontier.
Table 17.2 reports the results obtained by applying the models of Sect. 2.

In this example the omission of the subject random component inflates the
variance of the time invariant inefficiency which after controlling for subject
random heterogeneity and time dependent inefficiency seems to be irrelevant. The
irrelevance of the time invariant inefficiency random component is clearly shown by
the comparison of TTT with TTF. Note that the asymptotic distribution of the log-
likelihood ratio statistics to test FTT against TTT is a 0.5 mixture of a chi-squared
distribution with zero degrees of freedom and a chi-squared distribution with one
degree of freedom. The p-value is P D 0:053 and so model comparison enlightens
that the subject specific random effect is not significant in the TTT model.
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18How Far Can Man Go?

Isabel Fraga Alves, Laurens de Haan, and Cláudia Neves

Abstract
In this chapter we address the question of “What is the Largest Jump at Man’s
reach, given today’s state of the art?” To answer that question it will be used
the best from the best, i.e., the data will be collected from the best “jumpers”
from World Athletics Competitions—“Long Jump Men Outdoors” event. Our
approach to the problem is based on the probability theory of extreme values
(EVT) and the corresponding statistical techniques. We shall only use the top
performances of World top lists. Our estimated ultimate record, i.e., the right
endpoint of the jumping event, tells us what is possible to infer about the possible
personal best mark, given today’s knowledge, sports conditions and rules.
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18.1 Introduction

In this chapter we address the question of
“What is the Largest Jump that Man can achieve, given today’s state of the art?”

For the purposes of our study we selected the following athletic jumping event:
• Long Jump Men Outdoors (LJ).
The best current mark is 8:95m from Mike Powell (USA) in Tokyo, 30 August 1991.

Our estimated ultimate record, i.e., the right endpoint of the jumping event tells
us what is possible to infer about the possible personal best mark, given today’s
knowledge, sports conditions, and rules.

In [2], Einmahl and Magnus studied a similar problem, but LJ event could not
be handled with the available methodology so far, not covering the estimation
of the right endpoint of a distribution in Gumbel domain of attraction. Related
contributions for this type of athletics data are [3, 5].

This contribution constitutes a first approach to the estimation of the right
endpoint for a distribution in the Gumbel max-domain of attraction, a subject not
yet addressed in the literature of extremes to our best knowledge. Asymptotic
distributional properties of endpoint estimator are under study.

The chapter is organized as follows. In Sect. 18.2 an overview of the first
and second order properties of the tail distribution and their relation to the right
endpoint; special attention is devoted to the special case of finite right endpoint and
Gumbel max-domain. In Sect. 18.3 the motivation for the right endpoint estimator
is presented, providing consistency in accordance to asymptotic theoretical relations
of Sect. 18.2. Finally, in Sect. 18.4 we apply the theory to the LJ-data.

18.2 Gumbel Domain of Attraction and Finite Right Endpoint

LetX1;X2; : : : ; Xn be an independent, identically distributed (i.i.d.) sample from an
unknown distribution function (d.f.) F . If there exist normalizing constants an > 0,
bn 2 R and a non-degenerate d.f. G such that, for all x,

lim
n!1P

˚
a�1n .max .X1; : : : ; Xn/ � bn/ � x

� D G.x/; (18.1)

then G is, up to scale and location, an Extreme Value d.f., dependent on a shape
parameter � 2 R, and given by

G�.x/ WD
�

exp.�.1C � x/�1=� /; 1C � x > 0 if � 6D 0

exp.� exp.�x//; x 2 R if � D 0
: (18.2)

The EV condition (18.1) is equivalent to say that F is in the max-domain of
attraction of the d.f. G� , i.e., F 2 DM .G�/. For � < 0, � D 0 and � > 0, the G�
d.f. reduces to Weibull, Gumbel, and Fréchet distribution functions, respectively.
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Fréchet, Weibull and Gumbel max-Domains of Attraction The shape parameter
� is closely related to the tail heaviness of the underlying distribution F : � < 0

refers to short tails which must have finite right endpoint xF WD supfx W F.x/ < 1g,
whereas for � > 0 the d.f. F is heavy tailed with polynomially decaying tails,
for which the right endpoint must be infinite. The intermediate case � D 0, the
Gumbel domain, has been revealed very interesting for many applied sciences
where extremes play the major role, and include a great variety of distributions
with finite right endpoint or not. Then it is assumed that the extreme value index �
of the underlying d.f. equals 0, and statistical inference procedures concerning rare
events on the tail of F , such as the estimation of high quantiles, small exceedance
probabilities or return periods, bear on this assumption. The latter has been naturally
imposed by the lack of attention to the estimation of the right endpoint xF in the
literature, under this Gumbel max-domain setup.

First order properties for U Consider the left-continuous inverse of 1=.1 � F /,
defined by

U.t/ WD F .1 � 1=t/; for; t > 1; (18.3)

where F denotes the generalized inverse function F .x/ D inffy W F.y/ � xg.
The following extended regular variation property (see [6], for instance), denoted
ERV� , is a well-known necessary and sufficient condition for F 2 DM

�
G�
	
:

lim
t!1

U.tx/ � U.t/

a.t/
D
(

x��1
�

if � 6D 0

lnx if � D 0
; (18.4)

for every x > 0 and some positive measurable function a. For the three max-
domains of attraction, the following properties on the tail of the distribution hold:

DM .G� /�>0 Heavy tails—Regularly Varying (RV ) tails. No finite right endpoint,
i.e., xF WD U.1/ D1.
U 2 RV� , i.e., limt!1

U.tx/

U.t/
D x� , for x > 0, with

limt!1
a.t/

U.t/
D � .

DM .G� /�<0 Short Tails—Finite right endpoint, i.e. xF WD U.1/ <1.

U.1/� U 2 RV� , i.e. limt!1
U.1/�U.tx/

U.1/�U.t/
D x� , for x > 0, with

limt!1
a.t/

U.1/�U.t/
D �� .
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DM .G� /�D0 Light Tails—U 2 ˘ -class, i.e., limt!1
U.tx/�U.t/

a.t/
D lnx, for

positive a 2 RV0. The right endpoint xF WD U.1/ is finite or
infinite.
U 2 RV0, i.e., limt!1

U.tx/

U.t/
D 1, with limt!1

a.t/

U.t/
D 0, for

x > 0.
If the right endpoint is finite, i.e. xF WD U.1/ < 1, then
limt!1

U.1/�U.tx/

U.1/�U.t/
D 0, limt!1

a.t/

U.1/�U.t/
D 0, with

limt!1 a.t/ D 0.

Second order properties for U The rate of convergence in (18.4) is controlled by
the existence of a second order parameter � � 0 and a function A, possibly not
changing in sign and tending to zero as t ! 1, with jAj 2 RV�, and such that for
all x > 0

lim
t!1

U.tx/�U.t/
a.t/

� x��1
�

A.t/
D H�;�.x/ WD 1

�

�
x�C� � 1
� C �

� x� � 1
�

�
: (18.5)

We then say thatU is of second order extended regular variation, and denote this by
U 2 2ERV�;�. In (18.5), the cases � D 0 and/or � D 0 are obtained by continuity.

In the particular case of F 2 DM .G0/ with xF < 1, we must have � D 0 (see
Theorem B.3.6 in [6]); consequently, (18.5) becomesH�;�.x/ D H0;0.x/ D ln2 x

2
.

Moreover, in case � D � D 0, there exists a function a0 asymptotically
equivalent to a, i.e., a0.t/ � a.t/, as t ! 1, such that (see [6], pages 382–3)

U.t/ D a0.t/C
Z t

0

a0.s/

s
ds; with a0 2 ˘: (18.6)

Consequently, by (18.6)

U.1/� U.t/ Ï
Z 1
t

a.s/

s
ds; as t ! 1;

which is slowly varying, since U.1/� U.t/ 2 RV0. Then

U.1/ D U.t/C
Z 1
t

a.s/

s
ds C o.a.t//; as t ! 1;

and the following asymptotical representation holds for the right endpoint:

U.1/ Ï U.t/C Qa.t/; as t ! 1; (18.7)
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where the positive function Qa is defined by

Qa.t/ WD
Z 1
t

a.s/

s
ds D

Z 1
1

a.ts/

s
ds D

Z 1

0

a.t=s/

s
ds:

Note that limt!1 Qa.t/ D 0 and a.t/ D o. Qa.t//, as t ! 1. Moreover, for x > 0,

lim
t!1

R 1=t
0

�
U.x=s/� U.1=s/

	
ds
sR 1=t

0
a.1=s/ ds

s

D lim
t!1

.U.tx/ � U.t// t
a.t/ t

D lnx;

makes possible to express Qa.t/ in terms of the quantile functionU , which will reveal
useful for estimation purposes.

This means that as t ! 1 and for x > 0,

Qa.t/ � 1

lnx

Z 1

0

�
U

�
t

s
x

�
� U

�
t

s

��
ds

s
: (18.8)

Example: Reversed Fréchet Distribution
The Reversed Fréchet model is defined for x < xF WD U.1/ 2 R; for scale and
shape parameters ı; ˛ > 0 the d.f. F is given by

F.x/ 	 F.xI xF ; ˛; ı/ D 1 � exp

(
�
�
xF � x

ı

��˛)
:

The following results are easily checked: U.t/ D xF � ı .ln t/�1=˛ , for t > 1;
then U 2 ˘.a/, with a.t/ D ı

˛
.ln t/�1=˛�1 ; t > 1; a 2 RV0, limt!1 a.t/ D 0

and limt!1 a.t/

U.1/�U.t/ D 0.
We conclude thatF 2 DM.G0/, i.e., the Reversed Fréchet d.f. belongs to Gumbel

max-domain of attraction with finite right endpoint xF . Moreover, the function Qa can
be chosen as Qa.t/ D ı .ln t/�1=˛ ; t > 1, and the equality xF D U.t/C Qa.t/ holds.

18.3 Estimation of the Right Endpoint in Gumbel Domain

Consider a random sample X1;X2; : : : ; Xn of i.i.d. random variables with common
d.f. F 2 DM .G0/, such that the right endpoint xF is finite. Let X1;n � X2;n � � � � �
Xn;n be the associated ascending order statistics (o.s.). The following distributional
identification will be the starting point for the estimation development:

fXi;ngniD1 dDfU.Yi;n/gniD1; (18.9)

denoting by fYi;ngniD1 the o.s. pertaining to the independent random variables (r.v.)
fYigniD1 with common standard Pareto d.f. F.y/ D 1 � y�1, y � 1. Let k D kn be
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an intermediate sequence, i.e., a sequence of positive integers such that

kn ! 1 with kn D o.n/; as n ! 1: (18.10)

Then, as the sample size n ! 1, the intermediate sequence Yn�k;n converges in

probability to infinity with the same rate as the ratio n=k, i.e., .k=n/Yn�k;n
P�!

n!1 1,

which is also equivalently denoted by the

Yn�k;n
p� n

k
; as n ! 1: (18.11)

The following steps provide the motivation for the proposed estimator. Consider
at this stage the asymptotic relation (18.7), with n=k playing the role of t , according
to (18.10); the estimator of the right endpoint xF D U.1/ will be motivated
by (18.7), through its empirical counterpart, for convenient estimators of the
components:

1U.1/ WD
3
U

�
n

k

�
C
2
Qa
�
n

k

�
: (18.12)

From representation (18.9) together with (18.11), the estimation of the first
component is immediately suggested as

3
U

�
n

k

�
WD Xn�k;n :

For the estimation of Qa.n=k/, the asymptotic result (18.8) will be considered for
the particular value x D 1=2, which has been chosen for sake of simplicity of the
explicit expression of the resulting estimator

Qa
�n
k

�
� 1

� ln 2

Z 1

0

�
U
� n

2ks

�
� U

� n
ks

�� ds

s
: (18.13)

This suggests for the estimator of Qa � n
k

	
the empirical counterpart of (18.13)

2
Qa
�
n

k

�
WD 1

� ln 2

Z 1

0

�
Xn�Œ2ks�;n � Xn�Œks�;n

	 ds

s
; (18.14)

where Œz� denotes the integer part of z.
Since Xn�Œks�;n and Xn�Œ2ks�;n are identical to Xn;n when s 2 .0; .2k/�1�, the

integral I0 WD R 1=.2k/
0

�
Xn�Œ2ks�;n � Xn�Œks�;n

	
ds
s

D 0 and is possible to rewrite the
integral in (18.14) as the sum of 2k � 1 integrals



18 How Far Can Man Go? 193

2k�1X
iD1

Ii WD
2k�1X
iD1

Z .iC1/=.2k/

i=.2k/

�
Xn�Œ2ks�;n � Xn�Œks�;n

	 ds

s
:

After integrating (18.14) all over
�
i
2k
; iC1
2k

�
; i D 1; : : : ; 2k� 1 the estimator for

Qa � n
k

	
is finally obtained as

2
Qa
�
n

k

�
D 1

ln 2

k�1X
iD0

.Xn�2i;n �Xn�2i�1;n/ ln

�
1C 1

2i C 1

�

C 1

ln 2

k�1X
iD1

.Xn�i;n � Xn�2i;n/ ln

�
1C 1

i

�
; (18.15)

which together with (18.12) leads to the endpoint estimator, involving 2k observa-
tions.

OxF WD Xn�k;n C 1

ln 2

k�1X
iD0

.Xn�2i;n �Xn�2i�1;n/ ln

�
1C 1

2i C 1

�

C 1

ln 2

k�1X
iD1

.Xn�i;n � Xn�2i;n/ ln

�
1C 1

i

�
: (18.16)

18.4 Long Jump Men Outdoors: How Far?

For the purposes of our study we selected the following athletic jumping event:
• Long Jump Men Outdoors (LJ)—best current mark: 8:95m from Mike Powell

(USA) in Tokyo, 30/08/1991.
Our estimated ultimate record, i.e., the right endpoint of the jumping event, tells

us what is possible to infer about the possible personal best mark, given today’s
knowledge, sports conditions, and rules.

LJ-Data For the LJ event the collected data have been of “the personal best” of
as many of the top athletes in LJ event as it was possible. Each athlete appears
only once in the data set, namely with his best own mark. Our observation period
ends on December 31, 2009. The LJ data are obtained from two web sites,
namely a Swedish web site compiled by Hans-Erik Pettersson, for the period up
to August 2001 (source:http://hem.bredband.net/athletics/atb-m27.htm), which has
been merged with the data for the period 1999–2009, from the official web site of
the International Association of Athletics Federations (IAAF) (source: http://www.
iaaf.org/statistics/toplists/). Similar to [2], only marks greater than 8 m have been
collected, with an obtained top list of 720 best personal marks. Let X1;X2; : : : ; Xn

http://hem.bredband.net/athletics/atb-m27.htm
http://www.iaaf.org/statistics/toplists/
http://www.iaaf.org/statistics/toplists/
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be an iid sample F and these personal bests observations associated top retained
720 order statistics Xn�720C1;n � � � � � Xn�k;n � Xn�kC1;n � � � � � Xn;n be the, so
that xn�720C1;n D 8 and xn;n denotes the world record of 8.95, obtained by Powell.
This athletics event has been previously detected by Einmahl and Magnus in [2], as
a case where the Weibull Domain of attraction is questionable, since the estimated
� achieved was not clearly negative.

LJ-Data Analysis Similar to the endpoint estimation, the semi-parametric infer-
ence procedures considered in LJ-Data Analysis do not involve explicitly the value
n and depend on the number k of top o.s.’s. The first LJ-Data Analysis involved the
estimation of � , which has been done according to three specific estimators, namely
the Pickands, Moment and Mixed Moment estimators:

O�P WD .ln 2/�1 ln
Xn�k;n � Xn�2k;n
Xn�2k;n �Xn�4k;n I (18.17)

O�M WD M.1/ C 1

2

(
1�

�
M.2/

ŒM .1/�2
� 1

��1)
; (18.18)

with M.j / WD 1
k

Pk
iD1flnXn�jC1;n � lnXn�k;ngj ; j D 1; 2;

O�MM WD O' � 1
1C 2min. O' � 1; 0/ ; (18.19)

with O' WD M.1/�L.1/
.L.1//2

, where L.1/ WD 1
k

Pk
iD1f1 �Xn�k;n=Xn�jC1;ng.

For details about these estimation procedures see [1,4,11]. In Fig. 18.1 are depicted
the sample paths of the three � -estimators, O�P; O�M and O�MM, associated with the
LJ-Data against the same number k of o.s.’s involved in the estimation.

The second LJ-Data analysis consisted in performing the test for max-Gumbel
domain of attraction, i.e.,

H0 W F 2 DM.G0/ versus H1 W F 2 DM .G�/�¤0 : (18.20)

For testing (18.20) three complementary tests statistics have been used: G
(Greenwood), HW (Hasofer&Wang), and R(Ratio), which have been studied under
semi-parametric approach in [7, 10]:

G WD M2

.M1/
2

HW WD 1

k.G � 1/
R WD Xn;n � Xn�k;n

M1

; (18.21)

with Mj WD 1
k

Pk
iD1 .Xn�iC1;n �Xn�k;n/j ; j D 1; 2. Under the null hypothesis,

the standardized versions of (18.21),G� WD p
k=4.G�2/, HW� WD p

k=4.kHW�
1/ have asymptotic Standard Normal distribution, whereasR� WD R�ln k converges
to the Gumbel distribution. An overview about EV-testing is available in [8]. In
Fig. 18.2-Up are pictured the sample paths of the three test statistics G�; HW� and
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Fig. 18.1 Long Jump Men Outdoors (till 2009, over 8 m)—�—Estimation. Sample path of �-
estimators against the number of top o.s.’s k � 720

Fig. 18.2 Long Jump Men Outdoors (till 2009, over 8 m)—Testing DM .G0/ and Testing finite-
ness of right endpoint. Sample path of the Test Statistics against the number of top o.s.’sk � 720



196 I. Fraga Alves et al.

Fig. 18.3 Long Jump Men Outdoors (till 2009, over 8 m)— OxF—Right Endpoint Estimation, i.e.
“ultimate record” (different thresholds, X.k=2C1/ and X.k/ for estimating the first and second
components in (18.12))

R� associated with the LJ-Data, together with the respective Normal and Gumbel
.0:05; 0:95/-quantiles. Altogether, from Figs. 18.1 and 18.2-Up, it seems reasonable
to conclude that the distribution underlying the LJ-Data belongs to the Gumbel
domain of attraction and not to the Weibull domain, which confirms the guess
predicted in [2].

The third LJ-Data analysis has been testing the finiteness of the endpoint, in the
same sense of Neves and Pereira in [9], i.e.,

H0 W F 2 DM .G0/; x
F D 1 versus H1 W F 2 DM .G�/��0; xF < 1 :

(18.22)
through the test statistic

T1 WD 1

k

kX
iD1

Xn�i;n � Xn�k;n � T

Xn;n � Xn�k;n
; with T WD Xn�k;n

M .1/

2

 
1 �

�
M.1/

�2
M .2/

!�1
:

(18.23)

Under the null hypothesis, the standardized version of (18.23), T �1 WD p
k ln k T1,

has asymptotic Standard Normal distribution. In Fig. 18.2-down is pictured the
sample path of T �1 associated with the LJ-Data, together with the Normal
.0:05; 0:95/-quantiles, from which it is not so clear that the right endpoint is finite.

This is not unexpected as T �1 -test is conservative, as remarked in [9]. However,
it yields a sample path near the lower critical point, the normal 0:05-quantile, for
several values of k lying in the most stable region of the graph that can be taken as
intermediate. Moreover, it seems reasonable to consider the finiteness of the ultimate
record in Long Jump Men outdoors event, by the nature of the event itself.

Finally, in Fig. 18.3 are depicted the estimates of the right endpoint of the
distribution underlying the LJ-data, against k.
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From the LJ-Analysis we conclude that there is some space to improve the
current Powell’s record of 8:95m. In fact, from this preliminary study it seems
possible to attain an ultimate record of 9m for the Long Jump Men outdoors.

Acknowledgements Research partially financed by PEst-OE/MAT/UI0006/2011 and EXTREMA-
FCT/PTDC/MAT/101736/2008.
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19Joint Modeling of Longitudinal
and Time-to-Event Data: Challenges
and Future Directions

Dimitris Rizopoulos

Abstract
In longitudinal studies measurements are often collected on different types of
outcomes for each subject. These may include several longitudinally measured
responses (such as blood values relevant to the medical condition under study)
and the time at which an event of particular interest occurs (e.g., death,
development of a disease or dropout from the study). These outcomes are often
separately analyzed; however, in many instances, a joint modeling approach is
either required or may produce a better insight into the mechanisms that underlie
the phenomenon under study. In this chapter we provide a general overview of
the joint modeling framework, discuss its main features, and we refer to future
directions.

Keywords
Dropout • Longitudinal data analysis • Missing data • Shared parameter
models • Survival analysis • Time-dependent covariates

19.1 Introduction

Longitudinal studies often produce two types of outcome, namely a set of longi-
tudinal response measurements and the time to an event of interest, such as death,
development of a disease, or dropout from the study. Two typical examples of this
setting are HIV and cancer studies. In HIV studies patients who have been infected
are monitored until they develop AIDS or die, and they are regularly measured for
the condition of the immune system using markers such as the CD4 lymphocyte
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count or the estimated viral load. Similarly in cancer studies the event outcome
is the death or metastasis and patients also provide longitudinal measurements of
antibody levels or of other markers of carcinogenesis, such as the PSA levels for
prostate cancer.

These two outcomes are often separately analyzed using a mixed-effects model
for the longitudinal outcome and a survival model for the event outcome. However,
in mainly two settings a joint modeling approach is required. First, when interest
is on the event outcome and we wish to account for the effect of the longitudinal
outcome as a time-dependent covariate, traditional approaches for analyzing time-
to-event data (such as the partial likelihood for the Cox proportional hazards
models) are not applicable. In particular, standard time-to-event models require
that time-dependent covariates are external; that is, the value of this covariate at
time point t is not affected by the occurrence of an event at time point u, with
t > u [10, Sect. 6.3]. However, the type of time-dependent covariates encountered
in longitudinal studies do not satisfy this condition due to the fact that they are the
output of a stochastic process generated by the subject, which is directly related to
the failure mechanism. Therefore, in order to produce valid inferences a model for
the joint distribution of the longitudinal and survival outcomes is required instead.
The second setting in which joint modeling is required is when interest is on the
longitudinal outcome. In this case the occurrence of events causes dropout since
no longitudinal measurements are available at and after the event time. When this
dropout is nonrandom (i.e., when the probability of dropout depends on unobserved
longitudinal responses), then bias may arise from an analysis that ignores the
dropout process [12, Chap. 15]. To avoid this problem and obtain valid inferences
the longitudinal and dropout process must be jointly modeled. One of the modeling
frameworks that have been proposed in the missing data literature for handling
nonrandom dropout is the shared parameter model [7, 28, 29], which postulates a
mixed effects model for the longitudinal outcome and time-to-dropout model for the
missingness process. In both settings the joint distribution of the event times and the
longitudinal measurements is modeled via a set of random effects that are assumed
to account for the associations between these two outcomes. Excellent overviews of
this area of biostatistics and statistics research are given by [25, 32].

In this chapter we present the basics of the joint modeling framework, refer to
the key features and assumptions behind these models, and provide some insight
regarding future directions. To illustrate the virtues of joint modeling, we use a real
data set concerning patients with primary biliary cirrhosis (PBC). The main interest
lies in investigating the strength of the association between the longitudinally
measured marker serum bilirubin and the time-to-death.

19.2 Joint Modeling Framework

19.2.1 Submodels Specification

In the following we will present the joint modeling framework motivated by the
time-to-event point of view (i.e., in the setting in which we want to incorporate a
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time-dependent covariate measured with error in a survival model)—a more direct
connection with the missing data framework is made in Sect. 19.3. Let Ti denote
the observed failure time for the i th subject (i D 1; : : : ; n), which is taken as
the minimum of the true event time T �i and the censoring time Ci , i.e., Ti D
min.T �i ; Ci /. Furthermore, we define the event indicator as ıi D I.T �i � Ci/,
where I.�/ is the indicator function that takes the value 1 if the condition T �i � Ci
is satisfied, and 0 otherwise. Thus, the observed data for the time-to-event outcome
consist of the pairs f.Ti ; ıi /; i D 1; : : : ; ng. For the longitudinal responses, let yi .t/
denote the value of the longitudinal outcome at time point t for the i th subject. We
should note here that we do not actually observe yi .t/ at all time points but only at
the very specific occasions tij at which measurements were taken. Thus, the observed
longitudinal data consist of the measurements yij D fyi .tij/; j D 1; : : : ; ni g.

Our aim is to associate the true and unobserved value of the longitudinal outcome
at time t , denoted bymi.t/, with the event outcome T �i . Note thatmi.t/ is different
from yi .t/, with the latter being the contaminated with measurement error value of
the longitudinal outcome at time t . To quantify the effect ofmi.t/ on the risk for an
event, a standard option is to use a relative risk model of the form [23]:

hi.t j Mi .t/;wi / D lim
dt!0 dt�1Prft � T �i < t C dt j T �i � t;Mi .t/;wi g

D h0.t/ exp
˚
�>wi C ˛mi.t/

�
; (19.1)

where Mi .t/ D fmi.u/; 0 � u < tg denotes the history of the true unobserved
longitudinal process up to time point t , h0.�/ denotes the baseline risk function,
and wi is a vector of baseline covariates (such as a treatment indicator, history of
diseases, etc.) with a corresponding vector of regression coefficients � . Similarly,
parameter ˛ quantifies the effect of the underlying longitudinal outcome to the risk
for an event; for instance, in the AIDS example mentioned in Sect. 19.1, ˛ measures
the effect of the number of CD4 cells to the risk for death. We should note that
alternative formulations that relate other features of the longitudinal history Mi .t/

than the current value termmi.t/ can be also employed [17]. To avoid the impact of
parametric assumptions, the baseline risk function h0.�/ is typically left unspecified.
However, within the joint modeling framework [9] have recently noted that leaving
this function completely unspecified leads to an underestimation of the standard
errors of the parameter estimates. In particular, problems arise due to the fact
that the nonparametric maximum likelihood estimate for this function cannot be
obtained explicitly under the full joint modeling approach. To avoid this problem,
we could either opt for the hazard function of a standard survival distribution (such
as the Weibull or Gamma) or for more flexible models in which h0.t/ is sufficiently
approximated using step functions or spline-based approaches.

In the definition of the survival model presented above we used mi.t/ to denote
the true value of the underlying longitudinal covariate at time point t . However and
as mentioned earlier, longitudinal information is actually collected intermittently
and with error at a set of few time points tij for each subject. Therefore, in order
to measure the effect of this covariate to the risk for an event we need to estimate
mi.t/ and successfully reconstruct the complete longitudinal history Mi .t/, using
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the available measurements yij D fyi .tij/; j D 1; : : : ; ni g of each subject and a set
of modeling assumptions. For the remaining of this chapter we will focus on normal
data and we will postulate a linear mixed effects model to describe the subject-
specific longitudinal evolutions. In particular, we have

yi .t/ D mi.t/C "i .t/

D x>i .t/ˇ C z>i .t/bi C "i .t/; "i .t/ � N .0; �2/; (19.2)

where ˇ denotes the vector of the unknown fixed effects parameters, bi denotes a
vector of random effects, xi .t/ and zi .t/ denote row vectors of the design matrices
for the fixed and random effects, respectively, and "i .t/ is the measurement error
term, which is assumed independent of bi , and with variance �2. When deemed
appropriate, the assumption of constant variance for the error terms "i .t/ can be
relaxed by postulating a suitable variance function. We should note that care should
be taken in the specification of xi .t/ and zi .t/ in order to produce a good estimate
of Mi .t/. The main reason for this is that, as we will see later in Sect. 19.2.2, in the
definition of the likelihood of the joint model the complete longitudinal history is
required for the computation of the survival function, and of the risk function under
the accelerated failure time formulation. Therefore, in applications in which subjects
show highly nonlinear longitudinal trajectories, it is advisable to consider flexible
representations for xi .t/ and zi .t/ using a possibly high-dimensional vector of
functions of time t , expressed in terms of high-order polynomials or splines [2,4,18].
Finally, in order to complete the specification of the longitudinal submodel a suitable
distributional assumption for the random effects component is required. A standard
choice for this distribution is the multivariate normal distribution; however, within
the joint modeling framework and mainly because of the nonrandom dropout
(see also Sect. 19.3), there is the concern that relying on a standard parametric
distribution may influence the derived inferences especially when this distribution
differs considerably from the true random effects distribution. This motivated [22]
to propose a more flexible model for the distribution of the random effects that is
expressed as a normal density times a polynomial function. However, the findings
of these authors suggested that the parameter estimates and standard errors of joint
models fitted under the normal assumption for the random effects were rather robust
to misspecification. This feature has been further theoretically corroborated by [19],
who showed that as the number of repeated measurements per subject ni increases, a
misspecification of the random effects distribution has a minimal effect in parameter
estimators and standard errors. Thus, here we will assume that bi � N .0;D/ and
we will not further investigate this assumption.

19.2.2 Maximum Likelihood Estimation

The main estimation methods that have been proposed for joint models are
(semiparametric) maximum likelihood [8,9,30] and Bayes using MCMC techniques
[1, 3, 27, 31]. Moreover, [24] have proposed a conditional score approach in which
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the random effects are treated as nuisance parameters, and they developed a set
of unbiased estimating equations that yields consistent and asymptotically normal
estimators. Here we give the basics of the maximum likelihood method for joint
models as the one of the more traditional approaches.

Maximum likelihood estimation for joint models is based on the maximization
of the log-likelihood corresponding to the joint distribution of the time-to-event
and longitudinal outcomes fTi ; ıi ; yi g. To define this joint distribution we will
assume that the vector of time-independent random effects bi underlies both
the longitudinal and survival processes. This means that these random effects
account for both the association between the longitudinal and event outcomes,
and the correlation between the repeated measurements in the longitudinal process
(conditional independence). Formally we have that,

p.Ti ; ıi ; yi j bi I �/ D p.Ti ; ıi j bi I �/ f .yi j bi I �/ (19.3)

f .yi j bi I �/ D
Y
j

f fyi.tij/ j bi I �g; (19.4)

where � denotes the parameter vector, and yi is the ni � 1 vector of longitudinal
responses of the i th subject. Due to the fact that the survival and longitudinal
submodels share the same random effects, joint models of this type are also known
as shared parameter models. Under the modeling assumptions presented in the
previous section, and these conditional independence assumptions the joint log-
likelihood contribution for the i th subject can be formulated as

logp.Ti ; ıi ; yi I �/ D log
Z
p.Ti ; ıi j bi I �/

hY
j

f fyi.tij/ j bi I �g
i
g.bi I �/ dbi ;

(19.5)
where the likelihood of the survival part is written as

p.Ti ; ıi j bi I �/ D fhi .Ti j Mi .Ti /I �/gıiSi .Ti j Mi .Ti /I �/; (19.6)

with hi .�/ given by (19.1), and

Si .t j Mi .t/;wi / D Pr.T �i > t j Mi .t/;wi /

D exp

�
�
Z t

0

hi .s j Mi .s/I �/ ds



; (19.7)

f fyi .tij/ j bi I �g is the univariate normal density for the longitudinal responses, and
g.bi I �/ is the multivariate normal density for the random effects.

Maximization of the log-likelihood function corresponding to (19.5) with respect
to � is a computationally challenging task. This is mainly because both the integral
with respect to the random effects in (19.5), and the integral in the definition of the
survival function (19.7) do not have an analytical solution, except in very special
cases. Standard numerical integration techniques such as Gaussian quadrature and
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Monte Carlo have been successfully applied in the joint modeling framework
[8, 22, 30]. Furthermore, Rizopoulos et al. [18] have recently discussed the use
of Laplace approximations for joint models that can be especially useful in high-
dimensional random effects settings (e.g., when splines are used in the random
effects design matrix). For the maximization of the approximated log-likelihood
the EM algorithm has been traditionally used in which the random effects are
treated as “missing data.” The main motivation for using this algorithm is the closed-
form M-step updates for certain parameters of the joint model. However, a serious
drawback of the EM algorithm is its linear convergence rate that results in slow
convergence especially near the maximum. Nonetheless, [18] have noted that a
direct maximization of the observed data log-likelihood, using for instance, a quasi-
Newton algorithm [11], requires very similar computations to the EM algorithm.
Therefore hybrid optimization approaches that start with EM and then continue with
direct maximization can be easily employed. One of the main practical limitations
for joint modeling in finding its way into the toolbox of modern statisticians
was the lack of free and reliable software. The R package JM [16] has been
developed to fill this gap to some extent. JM has a user-friendly interface to fit
joint models and also provides several supporting functions that extract or calculate
various quantities based on the fitted model (e.g., residuals, fitted values, empirical
Bayes estimates, various plots, and others). At http://rwiki.sciviews.org/doku.php?
id=packages:cran:jm, more information can be found.

19.3 Connection with the Missing Data Framework

As mentioned in Sect. 19.1, joint models for longitudinal and time-to-event are also
used when the main interest is on the longitudinal outcome and we wish to correct
for the dropout caused by the occurrence of events. Under the categorization of
missing data mechanisms proposed by [21], joint models correspond to missing
not at random mechanisms. To show this more clearly, we define for each subject
the observed and missing part of the longitudinal response vector. The observed
part yo

i D fyi .tij/ W tij < Ti ; j D 1; : : : ; ni g contains all observed longitudinal mea-
surements of the i th subject before the observed event time, whereas the missing
part ym

i D fyi .tij/ W tij � Ti ; j D 1; : : : ; n0i g contains the longitudinal measurements
that would have been taken until the end of the study, had the event not occurred.
Under these definitions and the assumptions of the joint modeling framework, we
can derive the dropout mechanism, which is the conditional distribution of the time-
to-dropout given the complete vector of longitudinal responses .yo

i ; y
m
i /,

p.T �i j yo
i ; y

m
i I �/ D

Z
p.T �i j bi I �/ p.bi j yo

i ; y
m
i I �/ dbi : (19.8)

We observe that the time-to-dropout depends on ym
i through the posterior distri-

bution of the random effects p.bi j yo
i ; y

m
i I �/, which illustrates the nonrandom

nature of the missing data mechanism implied by joint models. In practice, the major

http://rwiki.sciviews.org/doku.php?id=packages:cran:jm
http://rwiki.sciviews.org/doku.php?id=packages:cran:jm
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implication of this feature is that the observed data upon which the joint model is
fitted are not a random sample of the target population, which in turn implies that the
characteristics of the observed data distribution cannot be compared with the output
of the joint model. Therefore, residuals plots based on the observed data alone can
be deceptive regarding the fit of a joint model to the data at hand. To overcome this
problem, Rizopoulos et al. [20] proposed to take dropout into account by multiply
imputing the longitudinal responses that would have been observed had the event not
occurred. The advantage of this approach is that after the imputation, residuals can
be computed for the complete data facilitating thus the use of standard diagnostic
plots can for the longitudinal [14, 26] and event time outcomes [23]. We should
note however that the multiple imputation approach is merely used as a mechanism
to help us investigate the fit of the model, since we are not actually interested in
inferences after the event time.

19.4 Mayo Clinic Primary Biliary Cirrhosis Data

As an illustrative example of joint modeling, we consider the PBC data collected
by the Mayo Clinic from 1974 to 1984 [13]. PBC is a chronic, fatal, but rare liver
disease characterized by inflammatory destruction of the small bile ducts within
the liver, which eventually leads to cirrhosis of the liver. Patients with PBC have
abnormalities in several blood tests, such as elevated levels of serum bilirubin. In
this study 312 patients are considered of whom 158 were randomly assigned to
receive D-penicillamine and 154 placebo. In this analysis we are interested in the
association between the longitudinal bilirubin levels and the risk for death. Due to
the right skewness of the observed serum bilirubin level, we will work with the
natural logarithm of serum bilirubin for the remainder of this analysis.

Patients did not return to the study centers at prespecified time points to provide
serum bilirubin measurements, and thus we observe great variability between their
visiting patterns. In particular, patients made on average 6.23 visits (standard
deviation 3.77 visits), resulting in a total of 1945 observations. By the end of the
study 140 patients had died that corresponds to 55.1 % censoring. Taking advantage
of the randomization setup of the study, we fit a joint model in which we only correct
for treatment. In particular, for the longitudinal process, we assume a linear mixed
model, with main effects for treatment and time and their interaction for the fixed
effects part, and with random intercepts and random slopes for the random-effects
part. For the survival submodel, we include as a time-independent covariate the
treatment effect, and as time-dependent one the true underlying effect of log serum
bilirubin count as estimated from the longitudinal model. The baseline risk function
is assumed piecewise constant

h0.t/ D
QX
qD1

�qI.vq�1 < t � vq/;
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Table 19.1 Parameter estimates and standard errors for the joint model analysis of the PBC
data set

Value Std.Err z-value p-value

(Intercept) 0:556 0.033 16:77 < 0:0001

D-penicil 0:028 0.047 0:60 0.5461
year 0:185 0.007 26:99 < 0:0001

D-penicil�year �0:013 0.009 �1:38 0.1690
log.�/ �0:963 0.018

D-penicil 0:076 0.180 0:42 0.6743
mi.t/ 1:258 0.094 13:32 < 0:0001

log.�1/ �4:473 0.261
log.�2/ �4:330 0.280
log.�3/ �4:657 0.331
log.�4/ �4:613 0.383
log.�5/ �4:231 0.344
log.�6/ �3:772 0.349
log.�7/ �4:647 0.490

D11 1:027 0.088
D12 0:072 0.015
D22 0:030 0.004
The top part contains the results for the longitudinal submodel, the middle part contains the results
for the survival submodel, and the bottom part for the random-effects covariance matrix; �1; : : : ; �7
denote the parameters of the baseline risk function, D11 the variance for the random intercepts,
D22 the variance for the random slopes, and D12 their covariance

with QD 7, v0 D 0, six internal knots placed at equally spaced percentiles of the
observed event times, and v7 taken larger than the largest observed time. The
results are presented in Table 19.1. We observe a strongly significant effect of
the log serum bilirubin levels to risk for an event. In particular, the hazard ratio
for one unit increase in log serum bilirubin for patients randomized in the same
treatment equals exp.1:258/ D 3:52, which indicates the high importance of this
marker in quantifying the risk for death. To check the fit of the model we produce
multiple imputation residuals for the longitudinal outcome, discussed in [20], and
the Cox-Snell residuals for the survival outcome. These residual plots are shown in
Figure 19.1. We observe that the fitted loess curves in the plots of the standardized
marginal residuals based on the observed data alone versus the fitted values show
a systematic trend (red line). Note, however, that high levels of serum bilirubin
indicate a worsening of patients’ condition resulting in higher death rates (i.e.,
dropout). Thus, the residuals corresponding to large fitted values are only based
on patients with a “good” health condition, which explains why we observe the
systematic trend. On the contrary the loess curves based on both the multiply
imputed residuals and the residuals corresponding to yo

i (blue line) do not exhibit
any strange shapes, indicating that after taking dropout into account the fitted joint
model does seem to be a plausible model for this data set.
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Fig. 19.1 Residuals for the joint model fitted to the PBC data: the top left panel depicts the
standardized subject-specific residuals versus the subject-specific fitted values for the longitudinal
outcome; the top right panel depicts the standardized marginal residuals versus the marginal fitted
values for the longitudinal outcome; the bottom left panel depicts the Kaplan–Meier estimate of
the survival function of the Cox-Snell residuals for the event time outcome. For the top panels the
black points correspond to the residuals based on the observed data alone, the blue points to the
residuals for the multiply-imputed data, the red line depicts the loess fit for the observed data alone,
and the blue line the loess fit based on both the observed and multiply-imputed data

19.5 Conclusion

Joint modeling of longitudinal and time-to-event data is one of the most rapidly
evolving areas of current biostatistics research, with several extensions of the
standard joint model presented here already proposed in the literature. These
include, among others, handling multiple failure types [5], considering categorical
longitudinal outcomes [6], assuming that several longitudinal outcomes affect the
time-to-event [1, 3], and associating the two outcomes via latent classes instead of
random effects [15].

Furthermore, one very promising field which has emerged within the general
joint modeling framework is the use of these models in personalized medicine. In
particular, there is lately a great need for tools that can help physicians take better
informed decisions regarding their actions for the specific patients that they treat and
not for an “average” patient. Two features of joint models that allow them to become
such a flexible dynamic tool is the use of random effects and their time-dependent
nature. For instance, as longitudinal information is collected for patients, we can
continuously update the predictions of their survival probabilities, and therefore be
able to discern between patients with low and high risk for an event.
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20A Class of Linear Regression Models
for Imprecise Random Elements
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Abstract
The linear regression problem of a fuzzy response variable on a set of real and/or
fuzzy explanatory variables is investigated. The notion of LR fuzzy random
variable is introduced in this connection, leading to the probabilization of the
center and the left and right spreads of the response variable. A specific metric
is suggested for coping with this type of variables. A class of linear regression
models is then proposed for the center and for suitable transforms of the spreads
in order to satisfy the nonnegativity conditions for the latter ones. A Least
Squares solution for estimating the parameters of the models is derived, along
with a goodness-of-fit measure and the associated hypothesis testing procedure.
Finally, the results of a real-life application are illustrated.
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20.1 Introduction

In the literature a great deal of attention has been paid to the management of
uncertain information. We can roughly distinguish two sources of uncertainty,
namely, randomness and imprecision. In the case of randomness the information is
uncertain because we do not know the (precise) outcome of a (random) mechanism.
Randomness is limited to the data generation process and it can be dealt with by
means of probability theory (probabilistic uncertainty). In contrast with randomness,
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imprecision is connected to the uncertainty concerning the placement of an outcome
in a given class and, thus, it can be seen as non-probabilistic uncertainty [2].

The different sources of uncertainty are not exclusive but can occur together.
A possible way to cope with imprecision is represented by fuzzy set theory [12].
This allows us to express imprecise information in terms of fuzzy sets. When
such information is also affected by randomness, the concept of fuzzy random
variable (FRV) can be adopted [7, 9]. In this work we aim at investigating the
linear regression problem for a very common class of FRVs, namely the LR family.
The problem has been deeply analyzed by coping with the different sources of
uncertainty in a separate way. This is the case for the possibilistic approach (see, for
more details, [8, 10]) and for the least-squares approach (see, for instance, [1, 3]).
Here we choose the so-called fuzzy-probabilistic (see, for instance [7]) approach
that explicitly takes into account both imprecision and randomness.

The chapter is organized as follows. In the next section, some preliminary
concepts are recalled. Then, Sect. 20.3 focuses on a linear regression model with LR
fuzzy response and precise (crisp) explanatory variables and Sect. 20.4 deals with a
linear regression model with LR fuzzy response and LR fuzzy explanatory variables
(that is an extension of the previous one). In Sect. 20.5 we introduce a suitable
determination coefficient and a linear independence test carried out by means of
a bootstrap approach. Finally, the results of a real-life application are reported in
Sect. 20.6 and some concluding remarks are given in Sect. 20.7.

20.2 Preliminaries

Given a universe U of elements, a fuzzy set eA is defined through the so-called
membership function �eA W U ! Œ0; 1�. For a generic x 2 U , the membership
function expresses the extent to which x belongs to eA. Such a degree ranges from 0
(complete non-membership) to 1 (complete membership).

A particular class of fuzzy sets is the LR family, whose members are the so-called
LR fuzzy numbers. Denoting by FLR the space of the LR fuzzy numbers, the
membership function of eA 2 FLR can be written as

�eA.x/ D

8̂̂<̂
:̂
L
�
Am�x
Al

	
x � Am; Al > 0;

1fAmg.x/ x � Am; Al D 0;

R
�
x�Am
Ar

	
x > Am; Ar > 0;

0 x > Am; Ar D 0;

(20.1)

where the functionsL andR are particular non-increasing shape functions from R
C

to Œ0; 1� such that L.0/ D R.0/ D 1 and L.x/ D R.x/ D 0;8x 2 R n Œ0; 1�, 1I is
the indicator function of a set I andAm,Al .� 0/ andAr .� 0/ are three real-valued
parameters, namely, the center, the left spread, and the right spread, respectively.eA
is a triangular fuzzy number if L.z/ D R.z/ D 1 � z, for 0 � z � 1. Given the
shape of the membership function, eA 2 FLR can be determined uniquely in terms



20 A Class of Linear Regression Models for Imprecise Random Elements 213

of the mapping s W FLR ! R3, i.e., s.eA/ D seA D .Am;Al ; Ar/. In what follows it
is indistinctly used eA 2 FLR or .Am;Al ; Ar/.

The operations considered in FLR are the natural extensions of the Minkowski
sum and the product by a positive scalar for intervals. Going into detail, the sum ofeA and eB in FLR is the LR fuzzy number eAC eB so that

.Am;Al ; Ar/C .Bm;Bl ; Br/ D .Am C Bm;Al C Bl; Ar C Br/;

and the product of eA 2 FLR by a positive scalar � is

�.Am;Al ; Ar/ D .�Am; �Al ; �Ar/:

Yang and Ko [11] define a distance between two LR fuzzy numbers eA and eB as
follows

D2
LR.eA;eB/ D .Am � Bm/2CŒ.Am � �Al /�.Bm � �Bl/�2CŒ.Am C �Ar /�.Bm C �Br /�2;

where the parameters � D R 1
0
L�1.!/d! and � D R 1

0
R�1.!/d! play the role

of taking into account the shape of the membership function. For instance, in the
triangular case, it is � D � D 1

2
. For what follows it is necessary to embed the space

FLR into R3 by preserving the metric. For this reason a generalization of the Yang
and Ko metric can be derived [4]. Given a D .a1; a2; a3/ and b D .b1; b2; b3/ 2 R3,
it is

D2
��.a; b/ D .a1 � b1/

2C..a1 � �a2/�.b1 � �b2//2C..a1 C �a3/�.b1 C �b3//
2;

where �, � 2 RC. D2
�� will be used in the sequel as a tool for quantifying errors in

the regression models we are going to introduce.
Let .˝;A ; P / be a probability space. In this context, a mapping eX W ˝ ! FLR

is an LR FRV if the s-representation of eX , .Xm;Xl ; Xr/ W ˝ ! R � RC � RC is
a random vector [9]. Much like non-FRVs, it is possible to determine the moments
for an LR FRV. Let k � k2LR be the norm associated with D2

LR, the expectation of an
LR FRV eX is the unique fuzzy set E.eX/ (2 FLR) such that .E.eX//˛ D E.X˛/

provided that EkeXk2LR D E.Xm/2 C E.Xm � �Xl/2 C E.Xm C �Xr/2 < 1,
where X˛ is the ˛-level of fuzzy set eX , that is, X˛ D ˚

x 2 Rj�eX.x/ � ˛
�
, for

˛ 2 .0; 1�, and X0 D cl.
˚
x 2 Rj�eX � 0

�
/. Moreover, on the basis of the mapping

s, we can observe that sE.eX/ D .E.Xm/;E.Xl/; E.Xr//. The variance of eX can be

defined as �2eX D var.eX/ D EŒ.D2
LR.
eX;E.eX//�. In terms of s, it is �2eX D var.eX/ D

E < seX � sE.eX/; seX � sE.eX/ >LR D E.Xm � EXm/2 C E.Xm � EXm � �.Xl �
EXl //2 CE.Xm � EXm C �.Xr � EXr //2. In a similar way, the covariance between
two FRVs eX and eY is �eX;eY D cov.eX;eY / D E < seX � sE.eX/; seY � sE.eY / >LR D
E..Xm�EXm/.Y m�EYm//CE..Xm�EXm��.Xl �EXl //.Y m�EYm��.Y l �
EY l ///C E..Xm � EXm C �.Xr � EXr //.Y m � EYm C �.Y r � EYr ///.
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20.3 A Regression Model with LR Fuzzy Random Response
and Real Explanatory Variables

Consider a random experiment in which an LR fuzzy response variable eY and
p real explanatory variables X1, X2,. . . ,Xp are observed on n statistical units,
feY i ; Xi giD1;:::;n, where Xi D .X1i ; X2i ; : : : ; Xpi /

0
, or in a compact form .eY ;X/.

Since QY is determined by .Y m; Y l ; Y r /, the proposed regression model concerns
the real-valued random variables in this tuple. The center Y m can be related to
the explanatory variables X1;X2; : : : ; Xp through a classical regression model.
However, the restriction of nonnegativity satisfied by Y l and Y r may entail some
difficulties. We thus propose modeling a transform of the left spread and a transform
of the right spread of the response through linear regressions (on the explanatory
variables X1, X2,. . . ,Xp). This can be represented in the following way, letting
g W .0;C1/ �! R and h W .0;C1/ �! R be invertible:8<:

Y m D X
0

am C bm C "m

g.Y l / D X
0

al C bl C "l

h.Y r/ D X
0

ar C br C "r

(20.2)

where "m, "l and "r are real-valued random variables with E."mjX/ D E."l jX/ D
E."r jX/ D 0, am D .am1; : : : ; amp/

0
, al D .al1; : : : ; alp/

0
, ar D .ar1; : : : ; arp/

0

are the .p � 1/-vectors of the parameters related to the vector X and bm, bl , br are
the intercepts. In presence of nonnegative variables, a common approach consists
in transforming the constrained variable into an unconstrained one by means of g
and h. Preliminary analyses showed that a good choice is given by the logarithmic
transformation (that is g D h D log). By this we transform the spreads into real
variables without the restriction of nonnegativity.

It can be shown that the population parameters can be expressed, as usual, in
terms of some moments involving the considered random variables. In fact, let eY
be an LR FRV and X the vector of p real random variables satisfying the linear
model (20.2), then we have that

am D ˚
˙X

��1
E Œ.X � EX/.Y m � EYm/� ;

al D ˚
˙X

��1
E
�
.X �EX/.g.Y l /� Eg.Y l //

�
;

ar D ˚
˙X

��1
E Œ.X � EX/.h.Y r/� Eh.Y r//� ;

bm D E.Y mjX/� EX
0 ˚
˙X

��1
E Œ.X �EX/.Y m � EYm/� ;

bl D E.g.Y l/jX/� EX
0 ˚
˙X

��1
E
�
.X �EX/.g.Y l /� Eg.Y l //

�
;

br D E.h.Y r/jX/� EX
0 ˚
˙X

��1
E Œ.X �EX/.h.Y r/� Eh.Y r//� ;

where˙X D E
h
.X �EX/.X � EX/

0
i
.
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The estimators of the population parameters are based on the Least Squares (LS)
criterion. In this case, using the generalized Yang-Ko metric D2

�� written in vector

terms, the LS problem consists in looking forbam,bal ,bar ,bbm,bbl andbbr in order to

min2
�� D minD2

��..Y
m; g.Y l /; h.Y r //; ..Y m/�; g�.Y l /; h�.Y r ///; (20.3)

where .Y m/� D Xam C 1bm, g�.Y l / D Xal C 1bl and h�.Y r / D Xar C 1br are
the .n � 1/-vectors of the predicted values. Here we assume that the shape of the
membership function of the predicted response is inherited from the observed one.

Under the assumptions of model (20.2), the solution of the LS problem is

bam D .Xc
0

Xc/�1Xc
0

Y m
c
; bal D .Xc

0

Xc/�1Xc 0

g.Y l /c; bar D .Xc
0

Xc/�1Xc
0

h.Y r /c ;

Obm D Y m � X
0 Oam; Obl D g.Y l / �X 0 Oal ; Obr D h.Y r / � X

0 Oar ;

where Y mc D Y m�1Y m, g.Y l/c D g.Y l /�1g.Y l/, h.Y r/c D h.Y r/�1h.Y r/ are

the centered values of the response variables, Xc D X � 1X 0
is the centered matrix

of the explanatory variables and, Y m, g.Y l /, h.Y r/, andX denote, respectively, the
sample means of Y m, g.Y l/, h.Y r/, and X . The estimatorsbam,bal ,bar ,bbm,bbl , andbbr are unbiased and strongly consistent. It is worth mentioning that the significance
of the regression parameters can be tested (see, for more details, [4, 5]).

20.4 A Regression Model with LR Fuzzy Random Response
and Explanatory Variables

Model (20.2) can be generalized to the case in which the available information
refers to an LR fuzzy response variable eY and p LR fuzzy explanatory variableseX1; eX2; : : : ; eXp observed on a sample of n statistical units, feY i ; eX1i ; eX2i ; : : : ;eXpi giD1;:::;n. We are interested in analyzing the relationship between eY andeX1; eX2; : : : ; eXp . This can be done by modeling the center and the spreads of eY
by means of the centers and the spreads of eX1; eX2; : : : ; eXp . However, in doing so,
attention should be paid to the nonnegativity of the spreads of eY . Analogously to
the previous model, we introduce the functions g and h already defined. The linear
regression model can be formalized as8<:

Y m D X
0

am C bm C "m;

g.Y l/ D X
0

al C bl C "l ;

h.Y r / D X
0

ar C br C "r ;

(20.4)

whereX D .Xm
1 ;X

l
1; X

r
1 ; : : : ; X

m
p ;X

l
p; X

r
p/

0
is the .3p�1/-vector of all the compo-

nents of the explanatory variables, "m, "l , and "r are real-valued random variables
with E."mjX/ D E."l jX/DE."r jX/D 0, am D .a1mm; a

1
ml ; a

1
mr ; : : : ; a

p
mm; a

p

ml ;

a
p
mr/

0
, al D .a1lm; a

1
l l ; a

1
lr ; : : : ; a

p

lm; a
p

l l ; a
p

lr /
0
, ar D .a1rm; a

1
rl ; a

1
rr ; : : : ; a

p
rm; a

p

rl ; a
p
rr /

0
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are the .3p � 1/-vectors of the parameters related to X and bm, bl , br are the
intercepts. The generic atij is the regression coefficient between the component

i 2 fm; l; rg of eY (where m, l and r refer to the center Y m and the transforms
of the spreads g.Y l/ and h.Y r/, respectively) and the component j 2 fm; l; rg
of the explanatory variables eXt , t D 1; : : : ; p, (where m, l and r refer to
the corresponding center, left spread, and right spread). For example, a3mr
represents the relationship between the right spread of the explanatory variableeX3 (Xr

3 ) and the center of the response, Y m.
Also in this case, the estimation problem of the regression parameters is faced by

means of the LS criterion. The LS problem consists in looking for Oam, Oal , Oar , Obm,
Obl , and Obr such that

2
�� D D2

��..Y
m; g.Y l /; h.Y r //; ..Y m/�; g�.Y l /; h�.Y r ///

is minimized, where Y m, g.Y l /, and h.Y r/ are the .n � 1/-vectors of the observed
values and .Y m/� D Xam C 1bm, g�.Y l / D Xal C 1bl , and h�.Y r/ D Xar C 1br
are the theoretical ones being X D .eX1;

eX2; : : : ;
eXn/

0

the matrix of the explanatory
variables of order .n � 3p/. The solution of the LS problem is

bam D .Xc
0

Xc/�1Xc
0

Y m
c
; bal D .Xc

0

Xc/�1Xc 0

g.Y l /c; bar D .Xc
0

Xc/�1Xc
0

h.Y r /c ;

Obm D Y m � X
0 Oam; Obl D g.Y l / �X 0 Oal ; Obr D h.Y r / � X

0 Oar ;

where Y mc, g.Y l/c , h.Y r/c , and Xc are defined analogously to Sect. 20.3.

20.5 Goodness of Fit

Model (20.2) is a particular case of model (20.4); so, for brevity of exposition,
we consider only the latter model. Since the total variation of the response can
be written in terms of variances and covariances of real random variables, by
taking advantage of their properties it can be decomposed into the variation not
depending on the model and that explained by the model. In particular, let eY andeX1; eX2; : : : ; eXp be LR FRVs satisfying the linear model (20.4) so that the errors are
uncorrelated with X , by indicating eY T D .Y m; g.Y l/; h.Y l//, we obtain

E
h
D2
��.
eY T; E.eY T//

i
D E

h
D2
��.
eY T; E.eY TjX//

i
C E

h
D2
��.E.

eY TjX/;E.eY T//
i
:

(20.5)

Let eY be the LR FRV of the linear model (20.4). Based on (20.5), it is possible
to define the following determination coefficient:

R2 D
E
h
D2
��.E.

eY TjX/;E.eY T//
i

E
h
D2
��.
eY T; E.eY T//

i D 1 �
E
h
D2
��.
eY T; E.eY TjX//

i
E
h
D2
��.
eY T; E.eY T//

i : (20.6)
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This coefficient measures the degree of linear relationship. As in the classical
case, it takes values in Œ0; 1�.

In order to estimate the determination coefficient, it is worth introducing
the decomposition of the total sum of squares. Let eY and eX1;eX2; : : : ; eXp be
LR FRVs satisfying the linear model (20.4) observed on n statistical units,
feY i ; eX1i ;

eX2i ; : : : ;
eXpi giD1;:::;n. The total sum of squares, SST, is equal to the

sum of the residual sum of squares, SSE, and the regression sum of squares, SSR,
that is,

SST D SSE C SSR; (20.7)

where SST D D2
��..Y

m; g.Y l/; h.Y r //; .Y m; g.Y l/; h.Y r///, SSE D D2
��..Y

m;

g.Y l /; h.Y r //; .cY m;1g.Y l/;1h.Y r/// and SSR D D2
��..

cY m;1g.Y l/;1h.Y r//; .Y m;
g.Y l /; h.Y r ///, with cY m D XbamC1bbm, 1g.Y l / D Xbal C1bbl , 1h.Y r/ D Xbar C1bbr
denoting the vectors of the estimated values.

Under the assumptions of model (20.4), the estimator of the determination
coefficient R2 is

bR2 D 1 � SSE

SST
D SSR

SST
:

It can be shown that bR2 is a strongly consistent estimator (see, for more details,
[5, 6]).

20.5.1 Linear Independence Test

The aim of this section is to propose a procedure for testing the null hypothesis

H0 W R2 D 0 vs. H1 W R2 > 0

on the basis of the available sample information. A suitable choice for the test
statistic to be used is

Tn D nbR2 D n
SSR

SST
:

Since suitable generalized models for FRVs are not yet available and asymptotic
tests work adequately for large size samples, a bootstrap approach can be adopted.
To obtain a bootstrap population fulfilling the null hypothesis, the residual variables
Zm D Y m � X

0bam, Zl D g.Y l / � X
0bal and Zr D h.Y r/ � X

0bar must be

considered. Samples of size nwith replacement,
n
.X�i ; Zm�

i ; Z
l�
i ; Z

r�
i /
o
iD1;:::;n, are

drawn from the bootstrap population:
˚
.Xi ; Z

m
i ; Z

l
i ; Z

r
i /
�
iD1;:::;n. For each of them

the following statistic is computed:

T �n D n
SSR�

SST�
;
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where: SSR�DD2
��..

bZm�;cZl�;cZr�/; .Zm�; Zl�; Zr�// and SST� D D2
��..Z

m�;

Zl�; Zr�/; .Zm�; Zl�; Zr�//, with obvious notation.
The application of the bootstrap test is presented in the following algorithm.

Algorithm
Step 1: Compute the values Oam, Oal and Oar and Tn D n OR2.
Step 2: Compute the bootstrap population˚

.Xi ; Z
m
i ; Z

l
i ; Z

r
i /
�
iD1;:::;n :

Step 3: Draw a sample of size n with replacementn
.X�i ; Zm�

i ; Z
l�
i ; Z

r�
i /
o
iD1;:::;n ;

from the bootstrap population and compute the value of the bootstrap statistic T �n .
Step 4: Repeat Step 3 a large number B of times to get a set of B estimators,

denoted by
˚
T �n1; : : : ; T �nB

�
.

Step 5: Approximate the bootstrap p-value as the proportion of values in˚
T �n1; : : : ; T �nB

�
being greater than Tn.

It is important to note that the suggested testing procedure refers to a linear
regression model in which suitable transforms (by means of functions g and h) of
the spreads of the response variable are considered. It follows that the acceptation
or rejection of linearity depends on the chosen scales. For more details, we refer to
[5, 6].

20.6 An Application

In a recent study about the student satisfaction of a course the subjective judge-
ments/perceptions were observed on a sample of n D 64 students. To formalize
the problem we defined ˝ D fset of students attending the courseg. Since the
observations were arbitrarily chosen, P is the uniform distribution over ˝ . For
any student belonging to the sample, four characteristics were observed. These
were the overall assessment of the course, the assessment of the teaching staff,
the assessment of the course content and the average mark. The first three subjective
judgements/perceptions were managed in terms of triangular fuzzy variables (hence
� D � D 1=2). In fact, to represent them, the students were invited to draw a
triangular fuzzy number for every characteristic. The considered support went from
0 (dissatisfaction) to 100 (full satisfaction). The students were informed to place
the center where they wished to represent their average judgement/perception and
the lower and upper bounds of the triangular fuzzy number where they wished to
represent their worst and best judgement/perception, respectively. Note that the
students were informed to compute the average, minimum, and maximum values
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w.r.t. the variability of their subjective judgements/perceptions depending on the
different course contents and/or members of the teaching staff. The average mark
is a crisp variable. For analyzing the linear relationship of the overall assessment
of the course (eY ) on the assessment of the teaching staff (eX1), the assessment of
the course contents (eX2) and the average mark (X3), the linear regression model
in (20.4) was employed. To overcome the problem about the nonnegativity of
spreads estimates, we used gDhD log. Through the LS procedure we obtained
the following estimated model8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

cY m D 1:08Xm
1 C 0:13Xl

1 � 0:07Xr
1

�0:17Xm
2 � 0:89Xl

2 C 0:66Xr
2 � 1:12X3 C 34:06;cY l D exp.0:01Xm

1 C 0:02Xl
1 C 0:02Xr

1

C0:00Xm
2 C 0:03Xl

2 C 0:01Xr
2 � 0:00X3 C 0:67/;cY r D exp.0:00Xm

1 C 0:03Xl
1 � 0:02Xr

1

�0:01Xm
2 C 0:03Xl

2 C 0:01Xr
2 C 0:04X3 C 1:01/:

The center of eY is mainly related to the center of eX1 and to X3. This is not the
case for the center of X2. Conversely, the spreads of eX2 remarkably affect the
response Y m. In particular, higher values of the left spreads (more imprecision on
the lower values of the assessment of the course content) lead to lower values of
the center of the response, whereas the opposite comment holds for the right spread.
Concerning the models for the left and right spreads of the response only some of the
components of eX2 seem to be related to the transformed spreads of eY . For instance,
a positive relationship between the left spread of eY and the one of eX2 was observed.
We also found bR2 D 0:7727, hence approximately 77% of the total variation of
the overall assessment of the course was explained by the model. Furthermore, by
applying the bootstrap procedure to test the linear independence (with B D 1;000

bootstrap samples) a p-value equal to 0was obtained, so the null hypothesis of linear
independence should be rejected. The fitted model points out the relevance of the
teaching staff in the overall assessment of the course which, on the other hand, turns
out to be negatively correlated with the average mark. The spreads of the overall
assessment are only slightly affected by the explanatory variables.

20.7 Concluding Remarks

In this work a class of new linear regression models for LR fuzzy variables has
been introduced, by taking into account different kinds of uncertainty, through a
formalization in terms of FRVs. Furthermore, the problem of the nonnegativity
of the spreads of the response has been dealt with by using reasonable transform
functions. The suitability of the proposed model has been analyzed by means of a
real-life application.
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Abstract
The monitoring of the expression profiles of thousands of genes have proved
to be particularly promising for biological classification, particularly for cancer
diagnosis. However, microarray data present major challenges due to the com-
plex, multiclass nature and the overwhelming number of variables characterizing
gene expression profiles. We introduce a methodology that combine dimension
reduction method and classification based on finite mixture of Gaussian densities.
Information on the dimension reduction subspace is based on the variation of
components means for each class, which in turn are obtained by modeling the
within class distribution of the predictors through finite mixtures of Gaussian
densities. The proposed approach is applied to the leukemia data, a well known
dataset in the microarray literature. We show that the combination of dimension
reduction and model-based clustering is a powerful technique to find groups
among gene expression data.
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21.1 Introduction

By monitoring the activity of many genes from a sample in a single experiment
microarrays offer a unique perspective for explaining the global genetic picture of
a variant, whether a diseased individual or a sample subject to whatever stressing
conditions. One of the main result of an experiment with microarrays is a list of
genes that are differentially expressed between two conditions, or that allow samples
to be classified according to their phenotypic features. An overview of classification
methods for microarray data is given in [7] while a comparison among several of
them is provided in [8].

Classification of microarray data is particularly problematic due to under-
resolution, i.e., the presence of a large number of features (genes) from which to
predict classes compared to the relatively small number of observations (samples).
Moreover the expression levels of many genes are often highly correlated. Classical
procedures for dimensionality reduction are principal components analysis and
factor analysis, both of which reduce dimensionality by forming linear combinations
of the features. The first method seeks a lower-dimensional representation that
account for the most variance of the features, while the second looks for the most
correlation among the features. Alternatively, sliced inverse regression (SIR) is a
dimension reduction method which exploits the information from the inverse mean
function [15]. SIR directions span at least part of the dimension reduction subspace
[see 5, Chap. 6], and they provide an intuitive and useful basis for constructing
summary plots [22].

Dimension reduction techniques have already been studied in the microarray
context. A two-stage approach based on SIR was proposed by [4], with the first
stage aimed at eliminating the dimension redundancy through an eigenanalysis
which identified a set of linear combinations of the original genes which retained
the main variability structure. Then, the SIR method was applied on such reduced
set of eigengenes [see also 16]. A final gene selection stage was proposed based
on a ranking of genes in accordance to the concordance with the final estimated
directions. A related approach was also discussed by [3], in which they applied both
SIR and SAVE, i.e., sliced average variance estimation, to microarray data.

Clustering algorithms based on probability models offer an alternative to
heuristic-based algorithms. In particular, the model-based approach assumes that
the data are generated by a finite mixture of underlying probability distributions
such as multivariate normal distribution. The Gaussian mixture model has been
shown to be a powerful tool for many applications [1, 18, 19, 25].

In this chapter, we introduce a model-based clustering on the low dimensional
space obtained by SIR projection of the high-dimensional gene expression data. SIR
components allow to project the gene expression data in a lower dimension space
where the direction is uncorrelated. This provided a robust framework to classify
the data. On the other hand, the model-based clustering part gives the flexibility to
catch the class structure within the gene expression data. The main point of this
chapter is to propose a unified approach between dimension reduction and model-
based clustering.
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21.2 Methods

Gene expression data on p genes for n mRNA samples can be summarized by a
n � p matrix X D Œxij �, where xij denotes the expression level of gene (variable)
j in mRNA sample (observation) i . Note that in this representation the data matrix
is the transpose of that adopted in the microarray literature. The expression levels
might be either absolute (e.g., oligonucleotide arrays) or relative with respect to
the expression levels of a suitably defined common reference sample (e.g., cDNA
microarrays).

Classification methods aim at assigning a sample to one ofK given classes based
on information from a set of p predictor variables observed on n samples. Thus,
a categorical response variable Y with K levels representing biological outcomes,
such as tumors type, is also recorded along with gene expression levels. An overview
of classification methods for microarray data is given in [7] while a comparison
among several of them is provided in [8].

21.2.1 Dimension Reduction Methods

The general goal of a dimension reduction method is to find a p � d matrix ˇ, with
d � p, such that Y??X jˇ>X , i.e., the classification response Y is independent
of the predictors X given the linear reduction ˇ>X . The subspace of dimension d
spanned by the matrix ˇ is called the sufficient dimension reduction (SDR) subspace
for the regression of Y on X . It always exists, since we can trivially set ˇ D I , but
it is not unique. The central dimension-reduction (CDR) subspace is defined as the
intersection over all the SDR subspaces; under mild conditions, it exists and it is the
unique minimum SDR subspace [5].

Several methods have been proposed to estimate the CDR subspace, such
as sliced inverse regression [SIR; 15] and sliced average variance estimation
[SAVE; 6].

SIR, which is perhaps the most commonly used DR method, estimates the
basis of the CDR subspace by the first d eigenvectors of the decomposition of
˙X jY D Var.E.X jY // with respect to ˙ D Var.X/, i.e.

˙X jY vi D li˙ vi ; (21.1)

with v>i ˙ vj D 1 if i D j and 0 otherwise, and eigenvalues l1 � l2 � � � � � ld > 0.
SIR requires the linearity condition on the marginal distribution of the predictors,

i.e., requires that E.b>X jˇ>X/ is linear in ˇ>X for all b 2 R
p . This condition is

satisfied if the predictors follow an elliptical symmetric distribution, such as the
multivariate normal. Furthermore, this condition is not a severe restriction, since
most low-dimensional projections are close to being normal [14].

Usually, a sliced version of the response variable is needed, but in classification
settings Y is taken directly as the class indicator with K levels. Sample estimates
are then used to compute the unknown quantities in (21.1), and directions estimated



224 L. Scrucca and A. Bar-Hen

as b̌SIR 	 Œbv1; : : : ;bvd �. In this case SIR can find at most min.K � 1; p/ directions.
Thus, for a binary response variable SIR estimates at most a single direction.

21.2.2 Model-Based SIR

The SIR estimator is based on the information coming from the variation on slice
means. Thus, the distribution of the data within any class is summarized by the
class means �k (kD 1; : : : ; K). However, it may happen that a more complicated
distribution of the data is needed. Finite mixture of Gaussian densities can be used to
approximate the distribution of the predictors within any class, and then the kernel
matrix can be computed using the components means [23].

Assume that within each class the data can be described by the finite mixture
distribution

f .xjY D k/ D fk.x/ D
CkX
cD1

�kc�.xI �kc ;˙ kc/; (21.2)

where �kc and ˙ kc are the means and covariances for component c within class
k, �kc are the mixing weights such that �kc > 0 and

P
c �kc D 1, and �.:/ is

the multivariate Gaussian density. Geometric features, such as shape, volume, and
orientation, of each component are determined by the covariance structure. [1]
proposed a representation of the covariance matrix for a finite mixture model, say in
general ˙ g, in terms of its eigenvalue decomposition, ˙ g D�gDgAgDg

>, where
Dg is the orthogonal matrix of eigenvectors which determines the orientation, Ag

is a diagonal matrix of scales eigenvalues which determines the shape, and �g is a
scalar determining the volume of the hyper-ellipsoid.

Consider the kernel matrix given by the covariance matrix of the between-
component means

M D
KX
kD1

CkX
cD1

!kc.�kc � �/.�kc � �/>; (21.3)

where !kc D�kc Pr.Y D k/ (!kc > 0,
P

k;c !kc D 1), and the covariance matrix

˙ D n�1
Pn

iD 1.xi ��/.xi ��/> with � D PK
kD 1

PCk
cD 1 !kc�kc . An estimate of

the CDR subspace is the solution of the following constrained optimization:

argmaxˇ ˇ>Mˇ; subject to ˇ>˙ˇ D I ;

where ˇ 2 Rp�d is the spanning matrix, and I is the .d � d/ identity matrix. This
is solved through the generalized eigendecomposition

Mvi D li˙ vi ; (21.4)
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with v>i ˙ vj D 1 if i D j and 0 otherwise, and eigenvalues l1 � l2 � � � � �
ld > 0. The eigenvectors corresponding to the first d largest eigenvalues, say
ˇMSIR 	 Œv1; : : : ; vd �, provide a basis for the CDR subspace which shows the
maximal variation between component means. There are at most d D min.p; C�1/
directions which span this subspace, where C D PK

kD 1 Ck is the total number of
finite mixture components.

The proposed model-based SIR (MSIR) method allows to avoid the limitations of
the basic SIR procedure without imposing further conditions. In particular, MSIR
is able to deal with a well-known limitation of SIR in the presence of symmetric
response curves [23]. However, this additional flexibility requires that enough
observations are available within any group to allow the fit of mixture models. In
the case of a categorical response variable, such as tumor classes, MSIR allows
to better approximate the predictors distribution within any class. Finally, note
that by imposing a single mixture component for each class (i.e., Ck D 1 for all
kD 1; : : : ; K) MSIR reverts to the usual SIR estimator.

21.2.3 Estimation

Preliminary filtering of genes The large number of gene expression profiles
usually collected in microarray experiments can be drastically reduced since many
of them exhibit near constant expression levels across samples. In our analyses we
performed a preliminary filtering step by selecting the genes which have the highest
ratio of between- to within-groups sums of squares [7, 22]. Filtering of genes based
on the between- to within-group sums of squares is equivalent to filtering based on
the between- to total-group sums of squares. This means that a gene is discarded
if marginally shows no significant within-group mean differences. Therefore, it is
unlikely that it will contribute useful within-class substructure when it is included
jointly with other more relevant genes. Omitting this pre-filtering step basically
amounts to add noise into our model, which could lead to loose power in the
estimation process.

Regularized estimation of covariance matrix Usually the number of genes
is larger than the number of available samples. Hence, direct application of a
dimension reduction method, such as SIR, is not possible because of the singularity
of the predictors covariance matrix. This fact was not recognized in [3], while [4]
addressed this problem by using singular value decomposition as an intermediate
step to produce the so-called eigengenes. Other approaches are based on a form of
regularization for the covariance matrix. Reference [26] introduced a ridge estimator
with a ridge parameter selected via bootstrap. A similar shrinkage estimator has
been also employed by [22], where the proposed estimator is obtained as a convex
linear combination between the full covariance matrix and the diagonal matrix
having the average total variation along the diagonal; the coefficient that determines
the convex linear combination is selected by cross-validation. An L2-regularization
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was proposed by [17] through a least-squares formulation of SIR, with the tuning
parameter selected by an information criteria. Recently, [2] discussed a family of
regularization procedures based on a Gaussian prior distribution, with some of the
earlier proposals as special cases; however, the selection of prior parameters is still
under investigation.

In this chapter we follow a simple and classical approach, estimating the predic-
tors covariance matrix as ḃ D diagŒs2i �i D 1;:::;p , where s2i is the sample variance of
the i -th gene. Thus, genes can have different variances but they are uncorrelated.
In other words, we are more interested in their variances (within- and between-
group) that in their (linear) relationships. This is arguably a strong assumption, but it
should have a little effect. In fact, the (diagonal) covariance matrix defines the metric
of the generalized eigendecomposition in (21.4), but it doesn’t rule out that genes
are between and within-group correlated. Note that some of the most successful
methods in microarray data analysis assume very week dependence or even ignore
correlation among genes [8, 24]. This also allows to avoid the problem of selecting
any tuning parameter.

MSIR estimation Estimation of parameters for mixture models in (21.2) is
obtained via the EM algorithm [20]. The number of components Ck , as well as
the particular form of the covariance matrix ˙ kc , may be choosen by BIC [11].
The use of BIC as model selection criterion tends to choose the simpler model
which provide a good fit to the data, i.e., by penalizing the likelihood with the
number of estimated parameters. This can be viewed as a form of regularization,
so it avoids overfitting and unstable parameters estimates. However, given that
p � n, restrictions on all the possible mixture models must be imposed. In
particular, only models assuming spherical and diagonal covariance structures,
obtained by imposing Dkc D I in the spectral representation of ˙ kc , can be fitted.
Nevertheless, this appears to be sufficiently flexible to accommodate data with
different characteristics.

The sample version of MSIR is then obtained by applying the eigendecomposi-
tion in (21.4) with the kernel matrix (21.3) computed from the means estimated for
each mixture component, and b!kc D nkc=n, the observed fraction of observations
belonging to the c-th mixture component within class k.

Finally, the sample basis estimate is b̌MSIR 	 Œbv1; : : : ;bvd �, and the projections
onto such subspace are defined as Z D Xb̌MSIR.

Soft-thresholding Soft-thresholding can be used to shrink coefficients toward zero
[24]. This enables to identify subsets of genes relevant for the definition of a given
set of MSIR directions.

Let b̌�ij D b̌
ij si be the coefficient of the j -th direction for the i -th predictor

standardized to unit standard deviation. The soft-thresholding function is defined
as s.x;/D sign.x/.jxj � /C, where .u/CD u if u > 0, and zero otherwise.
For a threshold value j (j D 1; : : : ; d ), we define the shrunken coefficients as
Q̌
ij D s.b̌�ij ; j /=si , orthonormalized such that Q̌> ḃ Q̌ D I , where Q̌ D Œ Q̌

ij � 2
Rp�d .
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The shrunken directions Q̌ can be computed for a grid of j values. Let Xb̌
and X Q̌ be, respectively, the projection onto the subspace spanned by the estimated
MSIR directions and the shrunken directions. The squared trace correlation [15]
provides a measure of the agreement between the two subspaces. For single
directions it is equivalent to the usual squared correlation coefficient. However,
this measure cannot be used to select the amount of shrinkage since it is always
decreasing as the threshold value is increased.

We suggest to select the amount of shrinkage applied on the basis of the max-
imum classes separation relative to their compactness on the projection subspace.
This can be achieved by computing the Dunn index, which is given by the ratio
of the smallest distance between observations not in the same class to the largest
intra-class distance [9]. For a given threshold value j we compute

D.j / D min
kD1;:::;K

0@ min
i2Ck ;l…Ck

Dil

max
i;l2Ck

Dil

1A ;
where Dil D Œ. Q̌>xi � b̌>xl /

>. Q̌>xi � b̌>xl /�
1=2 and Ck D fi W Yi D kg is the

set of observations belonging to the k-th class (kD 1; : : : ; K ). Then, the amount
of threshold j� is chosen to maximize D.j /. Careful study D.j / can also be
useful to detect local maxima attained with smaller sets of genes.

21.3 Leukemia Data

Reference [13] analyzed data from high-density Affymetrix oligonucleotide arrays.
There were 3,571 genes and 38 samples: 27 in class ALL (acute lymphoblastic
leukemia) and 11 in class AML (acute myeloid leukemia). The samples in class
ALL could be further splitted into B-cell and T-cell types. After the preliminary
filtering a subset of 892 genes was selected. We focus on this well-known data set
for pedagogical reason. Since it was intensively studied, it is easy to compare our
results with results obtained from classical methods. From a practical point of view,
it should be kept in mind that the classical results are strongly related to the choice
of training/validation data [see 10], and that the interest of micro-array has to be
compared with the predictive power of clinical data [see 21].

MSIR estimates a 3-components mixture for AML group and a 2-components
mixture for the ALL group. There are four estimated directions, with corresponding
eigenvalues equal to 273:3, 45:5, 40:8, and 24:3. Figure 21.1a shows a scatterplot of
the samples projected along the first two MSIR directions, with marginal box-plots.
The two tumor classes ALL and AML are clearly separated on the first direction.
The second direction allows to split the ALL samples into B-cell (open circles)
and T-cell (filled circles) types, with one unusual B-cell which is very close to the
group of T-cell samples. This is interesting because MSIR estimation did not use the
information on the different type of ALL tumors; nonetheless, it was able to show
an underlying data structure.
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Fig. 21.1 (a) Scatterplot with marginal box-plots for the Golub data projected along the first two
MSIR directions, with points marked by tumor classes (the ALL tumors are further identified by
open circles for B-cell type and filled circles for T-cell type).
(b) Trace plot of Dunn index for class separation and squared trace correlation as the threshold
value is increased. By increasing such value the soft-thresholding procedure selects smaller subsets
of active genes.
(c) Scatterplot with marginal box-plots for the Golub data projected along the first two MSIR
directions after applying the soft-thresholding procedure.
(d) Heat map of gene expression profiles for the genes selected by the soft-thresholding procedure.
Values ranges from bright green (negative, under expressed) to bright red (positive, over expressed)

We also performed SIR estimation; the only direction estimable by SIR presents
a large agreement with the first one estimated by MSIR (the squared correlation
coefficient is equal to 0:997).

Figure 21.1b shows the results from applying the soft-thresholding procedure to
the first MSIR direction. The maximal separation measure by the Dunn index is
achieved for a threshold value of j D 0:049; at this value 8 genes can be used
to reproduce the original estimated MSIR direction to a large extent (the squared
correlation coefficient is equal to 0:9292).

Applying the soft-thresholding procedure to the first two MSIR directions leads
to select the previous eight genes, plus another gene (X03934) which is mainly
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responsible for the definition of the second direction. A plot analogous to Fig. 21.1a
is shown in Fig. 21.1c; here we plotted the samples projected along the first two
MSIR directions after soft-thresholding. By visual inspection we can see that the
main data features are retained, but using only a small subset of genes.

Figure 21.1d shows a plot of expression levels for the selected genes. The first
eight genes (read from top to bottom) allow to separate the ALL from AML tumor
types, and they contribute to the definition of the first MSIR direction. The last gene
is the only needed to define the second MSIR direction: as we already mentioned,
the B-cell and T-cell tumors for ALL are separated along this direction. This is
clearly visible in the corresponding gene profile shown at the bottom of Fig. 21.1d,
where samples for ALL T-cell are over-expressed, whereas those for ALL B-cell
have expression levels around zero, except for one sample (number 17) which has
a level comparable to the T-cell group. Note that this is the one outlying B-cell
observation which appears closer to the group of T-cell in Fig. 21.1a, c.

Finally, we report a comparison made with model-based discriminat analysis
[11]. The classification errors obtained with MSIR on the train and test sets
are, respectively, equal to 0 and 0:0588, using both the full set of genes and
those selected by soft-thresholding. Thus, reducing the number of genes does not
increase the classification error. These can be compared with the classification
errors obtained directly from MCLUST [12], which are 0:0526 for the training set
and 0:4118 for the test set. The large reduction in the test error for MSIR is clearly
connected with the reduced set of genes employed.
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Abstract
A Bayesian approach to causal inference in the presence of noncompliance to
assigned randomized treatment is considered. It exploits multivariate outcomes
for improving estimation of weakly identified models, when the usually invoked
exclusion restriction assumptions are relaxed. Using artificial data sets, we
analyze the properties of the posterior distribution of causal estimands to evaluate
the potential gains of jointly modeling more than one outcome. The approach can
be used to assess robustness with respect to deviations from structural identifying
assumptions. It can also be extended to the analysis of observational studies
with instrumental variables where exclusion restriction assumptions are usually
questionable.

Keywords
Bayesian statistics • Causal inference • Multivariate outcome • Noncompli-
ance • Principal stratification

22.1 Introduction

Randomized experiments are generally considered the gold standard for causal
inference. Yet even randomized experiments may suffer from a number of complica-
tions. A common complication when drawing inference about causal effects is that
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compliance is rarely perfect: noncompliance occurs when the actual treatment that
units receive differs from their nominal assignment. Noncompliance is relatively
frequent in experiments involving human subjects, complicating traditional theories
of inference that require adherence to the random treatment assignment. A standard
approach is to estimate the intention-to-treat (ITT) effect, focusing on the causal
effect of assignment of treatment rather than the causal effect of receipt of treatment.
Nevertheless, interest often centers on the effect of the treatment itself, and the
interpretation of an ITT analysis is sometimes based on an implicit assumption,
which is generally but not always plausible [5], that the effect of assignment is
indicative of the effect of the treatment.

Randomized experiments with noncompliance are closely related to economet-
rics instrumental variable (IV) settings, where the instrument plays the parallel role
of treatment assignment.

Angrist et al. [1] show that causal effects of assignment among compliers
(subjects who would take treatment if offered and would not take it if not offered)
are identifiable under the assumption that there are no subjects who would take
the active treatment if randomized to the control arm but would not take it if
assigned to the treatment arm (no-defier, monotonicity assumption) and under the
additional assumption of a null effect of assignment on the outcome for those whose
treatment status is not affected by assignment (exclusion restriction). The effect on
compliers is usually interpreted as the effect of receipt of the treatment, under the
implicit assumption that the effect of assignment is solely due to actual treatment
receipt.

The stratification of units in subpopulations characterized by their potential
compliance is a special case of Principal Stratification (PS, [4]), which is a more
general framework to deal with adjusting for post-treatment variables. Principal
strata are a latent classification of units and are defined by the joint values of one (or
more) post-treatment variable under all possible levels of treatment assignment.

Identification of causal effects for particular strata is usually possible only under
some assumptions aimed at reducing the number of strata (such as monotonicity
assumptions) or at imposing certain features of the distribution of outcomes within
or among strata (such as exclusion restrictions). Because the observed distributions
are mixtures of distributions associated with the latent strata, these assumptions
essentially allow one to uniquely disentangle these mixtures [6].

Depending on the empirical setting, some of these substantive assumptions may
be questionable. For example, the exclusion restriction appears plausible in blind or
double-blind experiments, but less so in open-label ones.

These structural assumptions can be relaxed by using a fully Bayesian model,
thereby avoiding the need for full identification. Imbens and Rubin [7] extended the
Bayesian approach to causal inference of Rubin [10] to handle simple randomized
experiments with noncompliance. Hirano et al. [5] further extended the approach to
handle fully observed covariates and considering the consequences of violations of
exclusion restrictions by the comparison of results based on different combinations
of these assumptions. Without these assumptions, inference, although straightfor-
ward in the Bayesian approach, can be imprecise even in large samples. Models
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may result as weakly identified: they have a proper posterior distribution, but do not
have unique maximum likelihood estimates.

Adding information may be pursued as a general strategy for identification pur-
poses. Covariates, for example, generally improve the precision of causal estimates
(i.e., reduce posterior variability) because they improve the prediction of missing
potential outcomes. In addition they can be used to achieve full identification
when some of the usually invoked assumptions are relaxed. For example, Jo [8]
and Frangakis [3] relax the exclusion restriction, and show how identification can
be achieved by imposing some plausible behavioral hypotheses within or among
groups defined by the values of the covariates, which translate into restrictions on
coefficients (exclusion of some interaction terms or equality of coefficients across
strata for some covariates).

Here, we investigate the role of information coming from additional outcome
variables, which may help reducing the uncertainty about the treatment effects on
the outcome of primary interest. We concentrate on the simple case of a binary
treatment assignment, to which the units comply or do not comply (the compliance
behavior is assumed to be all or none), and a bivariate continuous outcome.
More general settings with multivalued treatment assignments are conceptually
straightforward, although they may introduce substantial complications to inference.
Also, although in principle more than one additional outcome could be used in order
to reduce uncertainty about the treatment effects on the outcome of primary interest,
the additional information coming from multiple outcomes would be gained at the
cost of increasing model complexity and thus potential higher chances of model
misspecification.

The framework we adopt uses potential outcomes to define causal effects
regardless of the mode of inference. We pursue a Bayesian approach and analyze
the role of jointly modeling more than one outcome; the improved classification
of units eases the identification of the mixture components, thereby reducing the
variability of the posterior distribution of causal estimands. It is also worth noting
that, in a Bayesian setting, the effect of relaxing or maintaining assumptions can be
directly addressed by examining how the posterior distributions for causal estimands
change, therefore serving as a sort of sensitivity analysis.

In what follows we explain the structure of Bayesian inference in the presence
of noncompliance and briefly describe methods for posterior inference based on
data augmentation and MCMC algorithm (Sect. 22.2). Then we present the artificial
data set we use and show some simulation results (Sect. 22.3); a brief discussion is
provided in Sect. 22.4.

22.2 Bayesian Inference for Causal Estimands
with Noncompliance

As a motivating example, suppose to design a social experiment to assess the
efficacy of a language program for immigrants. The program is randomly offered to
a sample of eligible secondary school students. Compliance is not perfect because
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only a subset of those students assigned to treatment (i.e., offered to participate in
the program) attends the classes; access to the program is denied to those assigned to
control. The primary outcome of interest is language ability measured with the score
achieved in a written test; in addition to the test result, also the time to complete the
test is recorded and can be considered as a secondary outcome.

Let us now introduce the potential outcome notation. Zi is a binary treatment
assignment for unit i (Zi D 0 indicates the unit is assigned to the control group,
whereas Zi D 1 indicates the unit is assigned to the treatment group). Di.z/
is the indicator of the treatment unit i would receive if assigned to treatment
z (z D 0; 1), so that Di.Zi / is the actual treatment received. Throughout this
analysis we will make the stability assumption that there is neither interference
between units nor different versions of the treatment (SUTVA; [10]). Yi .z/ D
ŒYi1.z/; Yi2.z/�0 represents a bivariate (continuous) outcome for unit i if assigned to
treatment z.
Gi is an indicator (stratum membership), which partitions units in the target

population into four types based on their compliance behavior: c (complier if
Di.z/ D z for z D 0; 1), n (never-takers ifDi.z/ D 0 for z D 0; 1), a (always-takers
if Di.z/ D 1 for z D 0; 1), d (defiers if Di.z/ D 1� z for z D 0; 1). In our setting a
strong monotonicity of compliance assumption holds by design (Di.0/ D 0 for all
i ), which rules out the presence of defiers and always takers. This implies that the
population is only composed of compliers (c) and never-takers (n). In settings with
two-sided noncompliance, where there may exist also always-takers and defiers, the
monotonicity assumption is not satisfied by construction anymore, but it becomes
a substantive assumption that needs not always be satisfied. However, under the
monotonicity (no-defier) assumption, inference is not more complicated because
the likelihood structure does not substantially change.

We focus on defining and estimating two estimands: the ITT effects on the
first outcome, language ability test score (Y1), for compliers and never-takers.
The ITT effect for the subpopulation of type g is defined as: ITTg D
E ŒYi1.1/� Yi1.0/jGi D g�, g D c; n. Note that under the exclusion restriction
assumption for never-takers ITTn D 0.

The observed data are: Zobs
i , Dobs

i D Di.Z
obs
i /,Yobs

i D Yi .Z
obs
i /, whereas the

following quantities are missing: Di.1 � Zobs
i /, Yi .1 � Zobs

i /. We observe the
compliance behavior only partially, through the response to the actual assignment,
Dobs
i . Because the type of a unit is a function of both compliance under assignment

to the treatment and compliance under assignment to control, which we can never
jointly observe, we generally do not know the compliance type.

Following Imbens and Rubin [7], we model the distribution of the stratum
membership Gi and the conditional distribution of potential outcomes given the
compliance type. Both distributions are parameterized so that, conditional on a
general parameter � , the model has an independent and identical distribution (i.i.d.)
structure.

For simplicity and specificity, here we focus on commonly used outcome
distributions and use conventional prior distributions, although our approach is
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widely applicable, also using more complex models. Specifically, we assume that
language ability test scores and time to complete the test follow a bivariate normal
distribution conditional on the stratum membership and treatment assignment:

f .Yi .Zi /jGi D g;Zi D z/ D �i Œ�
g;z
1 ; �

g;z
2 ;˙

g;z�

	 1

2�
det.˙ g;z/0:5 exp

(
�1
2

�
Yi .Zi / �

�
�
g;z
1

�
g;z
2

��0
.˙ g;z/�1

�
Yi .Zi /�

�
�
g;z
1

�
g;z
2

��)
;

g D c; n and z D 0; 1. We use a Bernoulli distribution for the strata membership:

P ŒGi D c� D �c; P ŒGi D n� D .1 � �c/:

The full parameter vector � D f�c;0;�c;1�n;0;�n;1;˙ c;0;˙ c;1;˙ n;0;˙ n;1I�cg,
containing a total of 21 parameters, characterizes the complete Likelihood function:

Lcomp.� jZobs;Dobs;Yobs; G/ (22.1)

D
Y

i WGiDc
�c�i Œ�

c;Zi ;˙ c;Zi �
Y

i WGiDn
.1 � �c/�i Œ�

n;Zi ;˙ n;Zi �:

We assume that parameters are a priori independent and use conjugate prior
distributions:

�c � Beta.˛0; ˇ0/;

˙ g;z � Inv � Wishart	g;z0 ..
g;z
0 /
�1/ �g;zj˙ g;z � N.�

g;z
0 ;˙

g;z=k
g;z
0 /:

Alternative (less conventional) prior distributions could be also considered, by
relaxing the conjugacy assumption and/or imposing a dependence structure in
the prior distribution, using, for example, a hierarchical model. However, we
expect results to point to a substantial improvement irrespective of the prior
distributions.

We construct a general state-space Markov Chain that has the joint distribution
of the model parameters � and the missing membership indicators G as its unique
invariant equilibrium distribution. The Markov Chain algorithm that we adopt uses
the data augmentation (DA) method of Tanner and Wong [11] to impute at each step
the missing membership indicators and to exploit the complete likelihood function
to update the parameter distribution. At step j C 1 we first draw G according
to P.Gj�.j /IZobs;Dobs;Yobs/. Given our prior assumptions this conditional dis-
tribution has a simple form. Conditional on � , Zobs, Dobs and Yobs, the Gi are
independent of Gi 0 , Zobs

i 0
, Dobs

i 0
and Yobs

i 0
for all i 0 ¤ i . By the strong monotonicity
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assumption P.Gi D njZobs
i D 1;Dobs

i D 0;Yobs
i / D 1 and P.Gi D cjZobs

i D
1;Dobs

i D 1;Yobs
i / D 1: For observations with Zi D 0 the following holds:

P.Gi D cjZobs
i D 0;Dobs

i D 0;Yobs
i /

D �
.j /
c �i Œ�

c0.j /;˙ c0.j /�

�
.j /
c �i Œ�c0.j /;˙ c0.j /�C .1 � �

.j /
c /�i Œ�n0.j /;˙ n0.j /�

;

P.Gi D njZobs
i D 0;Dobs

i D 0;Yobs
i / D 1 � P.Gi D cjZobs

i D 0;Dobs
i D 0;Yobs

i /:

Once the missing Gi are drawn, the prior distribution of the parameters is updated
using the complete likelihood function in (22.1). Specifically, due to the assumptions
of a priori independence of the parameters and conjugacy of priors, the complete
data posterior distribution of � is the product of the following marginal posterior
distributions:

�c jG;Zobs;Dobs;Yobs � Beta.˛0 C
X

I.Gi D c/Iˇ0 C
X

I.Gi D n//;

˙ g;zjG;Zobs;Dobs;Yobs � Inv � Wishart	g;z..
g;z/�1/;

where I.�/ is the indicator function, and

	g;z D 	
g;z
0 CNg;z; where Ng;z D

X
I.Gi D n/I.Zi D z/;

�g;z D 
g;z
0 C Sg;z C k

g;z
0 N

g;z

k
g;z
0 CNg;z

. NYg;z � �
g;z
0 /.

NYg;z � �
g;z
0 /

T;

with Sg;z D P
i WGiDc;ZiDz.Y

g;z
i � NYg;z/.Yg;z

i � NYg;z/T, and

�g;zj˙ g;zIG;Zobs;Dobs;Yobs � N.�g;z;˙ g;z=kg;z/;

where kg;z D k
g;z
0 C Ng;z and �g;z D k0

k0CNg;z �
g;z
0 C Ng;z

k0CNg;z
NYg;z: At the j th step

of the MCMC algorithm the parameters vector �.j / are easily drawn from these
complete data posteriors and then used for the DA step.

22.3 An Application to Artificial Data

Simulated data sets have been used to compare posterior inferences obtained
by jointly modeling the two outcomes with those obtained working with only
the first outcome.1 Different scenarios have been considered, to take account of

1Consistently with our motivating example, the two outcomes are supposed to be language ability
measured by the score achieved in a written test (from 0 to 100) and the time to complete the test
(in minutes).
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Table 22.1 Parameters’ values used to generate the six data sets

�c;0 �c;1 �n;0 �n;1 ˙ c;0 ˙ c;1 ˙ n;0 ˙ n;1

I

�
50

30

� �
70

20

� �
40

50

� �
30

60

� �
25 �12
�12 9

� �
16 �7
�7 4

� �
36:00 �6:75
�6:75 20:25

� �
42:25 �7:15
�7:15 30:25

�

II

�
50

30

� �
70

20

� �
40

50

� �
30

60

� �
25 �12
�12 9

� �
16 �7
�7 4

� �
36:00 �21:60
�21:60 20:25

� �
42:25 �28:60
�28:60 30:25

�

III

�
50

30

� �
70

20

� �
48

50

� �
30

60

� �
25 �12
�12 9

� �
16 �7
�7 4

� �
36:00 �6:75
�6:75 20:25

� �
42:25 �7:15
�7:15 30:25

�

IV

�
50

30

� �
70

20

� �
48

50

� �
30

60

� �
25 �12
�12 9

� �
16 �7
�7 4

� �
36:00 �21:60
�21:60 20:25

� �
42:25 �28:60
�28:60 30:25

�

V

�
50

30

� �
70

20

� �
48

50

� �
45

60

� �
25 �12
�12 9

� �
16 �7
�7 4

� �
36:00 �6:75
�6:75 20:25

� �
42:25 �7:15
�7:15 30:25

�

VI

�
50

30

� �
70

20

� �
48

50

� �
45

60

� �
25 �12
�12 9

� �
16 �7
�7 4

� �
36:00 �21:60
�21:60 20:25

� �
42:25 �28:60
�28:60 30:25

�

alternative correlation structures between outcomes for compliers and never-takers
and alternative deviations from the exclusion restriction.

We present results for six data sets each containing 600 observations, generated
using principal strata probabilities of 0.6 for compliers and 0.4 for never-takers,
and the parameters’ values for the bivariate outcome reported in Table 22.1. The
simulated sample is then randomly divided into two groups, with the first assigned
to treatment, and the second assigned to control.

As we can see in Table 22.1, the parameters of the outcome sub-models for
compliers are set so that the true ITT effect on language ability score test for
compliers is equal to 20 points, and language ability score test and time to complete
the test are highly negatively correlated both under treatment and under control.

For never-takers, we consider six alternative bivariate normal distributions of
language ability score test and time to complete the test. Specifically, we use three
different pairs of mean vectors, which lead to ITT effects on the primary outcome
for never-takers equal to �3;�10; and �18. These values reflect weak, strong,
and very strong deviations from the exclusion restriction assumption, respectively.
Each pair of mean vectors is combined with two alternative correlation structures
between outcomes for never-takers: the first one implies that the correlation between
outcomes is much lower for never-takers than for compliers under both the active
treatment and the control treatment; the second one implies that compliers and
never-takers are characterized by similar correlation structures between outcomes
under both treatment arms.

We specify relatively flat prior distributions by setting the hyperparameters
equal to:

˛0 D 1; ˇ0 D 1; 	
g;z
0 D 5;

g;z
0 D

�
30 0

0 15

�
;�

g;z
0 D

�
50

30

�
;

k
g;z
0 D 1; g D c; nI z D 0; 1:
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Table 22.2 Summaries of the posterior distributions of ITT effect for compliers, c, and never-
takers, n, in the univariate case (Table on the left) and in the bivariate case (Table on the right)

Univariate case Bivariate case

Mean SD 2.5 % 50 % 97.5 % Mean SD 2.5 % 50 % 97.5 %

I c 23:45 3.23 19:26 21:84 28:24 I c 19:75 0.49 18:79 19:75 20:71

n �15:24 4.75 �21:92 �13:07 �8:80 n �9:77 0.83 �11:39 �9:77 �8:16
II c 22:91 3.38 18:47 21:96 27:76 II c 19:17 0.50 18:18 19:17 20:15

n �15:58 5.02 �22:30 �14:52 �8:58 n �10:00 0.85 �11:66 �10:00 �8:34
III c 19:99 1.77 16:83 20:11 22:99 III c 19:38 0.52 18:37 19:38 20:40

n �19:11 2.62 �23:41 �19:34 �14:37 n �18:21 0.79 �19:76 �18:21 �16:65
IV c 21:05 1.18 18:74 21:04 23:37 IV c 19:89 0.49 18:93 19:89 20:86

n �18:40 1.75 �21:83 �18:41 �14:93 n �16:68 0.80 �18:26 �16:68 �15:11
V c 20:88 1.53 18:05 20:91 23:63 V c 20:20 0.49 19:24 20:20 21:15

n �4:12 2.29 �8:18 �4:18 0:13 n �3:10 0.80 �4:67 �3:10 �1:54
VI c 20:27 1.40 17:66 20:29 22:82 VI c 19:91 0.47 18:98 19:91 20:83

n �4:15 2.09 �7:91 �4:20 �0:22 n �3:61 0.78 �5:14 �3:61 �2:08

For each of the six generated data sets, we fitted the model running three chains
from different starting values. Each chain was run for 200; 000 iterations, after
a burn-in stage of 10,000 iterations. Inference is based on 600; 000 iterations,
combining the three chains.

Results generally confirm our prior intuition that the simultaneous modeling of
more than one outcome may improve estimation by reducing posterior uncertainty
for causal estimands. Table 22.2 reports summaries of the posterior distributions
of ITT effects for compliers and never-takers on the first outcome, in the univariate
and bivariate case respectively. Figure 22.1 shows the histograms and 95 % posterior
intervals of these posterior distributions.

The bivariate approach outperforms the univariate one in any scenario we
consider, by providing considerably more precise estimates of the ITT effects for
compliers and never-takers. The benefits of the bivariate approach especially arise
when the mixture components of the observed likelihood are weakly overlapping,
irrespective of the correlation structures between outcomes for compliers and never-
takers (scenarios I and II). In such a case, jointly modeling the two outcomes reduces
the width of the 95 % posterior credible intervals more than 75 %. In addition, the
histograms (I) and (II) in Fig. 22.1 show that the posterior distributions of the
ITT effects for compliers and never-takers are bimodal in the univariate case, but
they both become unimodal in the bivariate case. This result suggests that jointly
modeling the two outcomes simplifies inference; for instance the bivariate approach
makes easier to choose a point estimate for the causal effects of interest.

In the overlapping scenarios, noticeable efficiency gains over the univariate
models are observed when compliers and never-takers are characterized by different
correlation structures (scenario III), and when deviations from the exclusion
restriction assumption are smaller (scenarios V and VI). First consider scenarios
III and IV, where the ITT effect for never-takers is equal to �18, implying that
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ITT Effect for Compliers ITT Effect for Never-Takers
I

16 20 24 28 32 −25 −22 −19 −16 −13 −10 −7 −4

II

16 20 24 28 32 −25 −21 −17 −13 −9 −5

III

14 18 22 26 −27 −23 −19 −15 −11

IV

16 18 20 22 24 26 −26 −23 −20 −17 −14 −11

V

15 18 21 24 27 −12 −8 −4 0 4

VI

14 18 22 26 −11 −9 −7 −5 −3 −1 1 3

Univariate Approach Bivariate Approach True Value

Fig. 22.1 Univariate versus bivariate approach: histograms and 95 % posterior intervals of ITT
effects for compliers and never-takers
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the exclusion restriction assumption is strongly unsatisfied. When compliers and
never-takers are characterized by different correlation structures (scenario III),
the bivariate approach clearly outperforms the univariate one leading to much
less variable and more informative posterior distributions of the causal effects
of interest. Actually, in the univariate approach the posterior distributions are
somewhat flat (see Fig. 22.1(III)). Conversely, when compliers and never-takers
are characterized by similar correlation structures (scenario IV), the univariate and
bivariate approaches lead to similar results, although jointly modeling the two
outcome increases the precision of the estimates. In the last two scenarios (scenarios
V and VI), where deviations from the exclusion restriction assumption are smaller,
jointly modeling the two outcomes reduces the posterior variability of the causal
estimands, irrespective of the correlation structures between outcomes for compliers
and never-takers. Moreover, the histograms (V) and (VI) in Fig. 22.1 suggest that
the bivariate approach allows one to easier identify a posterior mode, which is hard
to choose in the univariate case where the posterior distributions are characterized
by large regions with approximately the same likelihood values.

22.4 Discussion

Although the illustration provided is necessarily limited, the approach we propose
appears to be widely applicable, also in observational studies, whenever the
exclusion restriction assumption for the instrument may not hold. The additional
information provided by the second outcome is obtained at the cost of having to
specify more complex models for the multivariate outcome, which may increase the
chances of misspecification. Therefore, directions for future research include the
development of specific tools for assessing model fit, such as posterior predictive
checks [9] and model comparisons by marginal likelihoods and Bayes factors [2],
as well as the specification of Bayesian semiparametric models using, e.g., Dirichlet
processes.

Analogously to covariates, our current effort is directed to showing how imposing
specific dependence structures between outcomes may allow us to achieve identifi-
cation of causal effects.
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23Fuzzy Composite Indicators: An Application
for Measuring Customer Satisfaction

Sergio Zani, Maria Adele Milioli, and Isabella Morlini

Abstract
Composite indicators should ideally measure multidimensional concepts which
cannot be captured by a single variable. In this chapter, we suggest a method
based on fuzzy set theory for the construction of a fuzzy synthetic index of a
latent phenomenon (e.g., well-being, quality of life, etc.), using a set of manifest
variables measured on different scales (quantitative, ordinal and binary). A
few criteria for assigning values to the membership function are discussed, as
well as criteria for defining the weights of the variables. For ordinal variables,
we propose a fuzzy quantification method based on the sampling cumulative
function and a weighting system which takes into account the relative frequency
of each category. An application regarding the results of a survey on the users of
a contact center is presented.

Keywords
Imprecise data and fuzzy methods • Membership function • Overall satisfac-
tion • Quantification of ordinal variables • Weighting criteria

23.1 Introduction

The purpose of composite indicators is to measure multidimensional concepts which
cannot be captured by a single variable. They are usually formed on the basis of a
set of quantitative variables [11, 16]. In order to construct a composite indicator,
in this chapter we suggest a method based on the fuzzy set theory [9, 17, 18, 21].
As shown in the literature, fuzzy sets permit the representation of vague concepts,
e.g., poverty [5, 15], well-being [2, 7], quality of life [14], business scenarios [4],
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satisfaction indices [20], etc. In Sect. 23.2, we deal with the general problem
of obtaining a synthetic fuzzy measure of a latent phenomenon from a set of
manifest variables measured on different scales (quantitative, ordinal, and binary).
We present a few criteria to transform the values of a quantitative variable into
fuzzy numbers. For ordinal variables we propose a fuzzy quantification method
based on the cumulative function, and for a set of binary variables we consider
the relative frequency of the symptoms of the underlying concept. In Sect. 23.3, we
discuss the problem of weighting the variables and aggregating them in a composite
indicator. The weights should reflect the contribution of each variable to the latent
phenomenon. For ordinal variables, we suggest a new criterion taking into account
the relative frequency of each category. In Sect. 23.4, we focus on the specific
application of measuring customer satisfaction using ordinal (and binary) variables.
The gradual transition from very dissatisfied to really satisfied customers can be
captured by a fuzzy index. We apply the suggested methods to a sample of 704
respondents of a survey on the users of a contact center, in order to evaluate their
satisfaction with the service. The fuzzy indicator of customer satisfaction allows us
to obtain a ranking of respondents that can be compared with the traditional ones.
Furthermore, the comparison between the overall satisfaction scores directly stated
by the respondents and the values of the fuzzy composite indicator based on several
items shows noncoherent answers for a few customers (high stated satisfaction but
low value of the synthetic index, or viceversa). These units may be considered as
atypical observations.

23.2 Fuzzy Transformations of the Variables

Let X be a set of elements x 2 X . A fuzzy subset A of X is a set of ordered pairs:

Œx; �A.x/� 8x 2 X (23.1)

where�A.x/ is the membership function (m.f.) of x toA in the closed interval [0,1].
If �A.x/D 0, then x does not belong to A, while if �A.x/D 1 then x completely
belongs to A. If 0 < �A.x/ < 1, then x partially belongs to A and its membership
to A increases according to the values of �A.x/. Let us assume that the subset A
defines the position of each element with reference to achievement of the latent
concept, e.g., the well-being of a set of countries or the satisfaction of a sample of
customers. In this case, �A.x/D 1 identifies a situation of full achievement of the
target (a country enjoying global well-being or a completely satisfied customer),
whereas �A.x/D 0 denotes a total failure (a country with no well-being or a very
dissatisfied customer).

Consider a set of n units or elements ei .i D 1; 2; : : : ; n/ and p manifest variables
Xs (sD 1; 2; : : : ; p) reflecting the latent phenomenon. Without loss of generality, let
us assume that each variable is positively related to that phenomenon, i.e., it satisfies
the property “the larger the better.” If a quantitative variable Xs shows negative
correlation, we substitute it with a simple decreasing function transformation, e.g.,
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f .xsi /D max.xsi / � xsi . In case of an ordinal variable, we consider it in reverse
order. In order to define the m.f. for each variable it is necessary:
1. To identify the extreme situation such that �A.x/D 0 (non-membership) and
�A.x/D 1 (full membership).

2. To define a criterion for assigning m.f. values to the intermediate categories of
the variable.

Let us assume that Xs is a quantitative variable; for simplicity of notation we omit
index s. For that variableX , we choose an inferior (lower) threshold l and a superior
(upper) threshold u, with l and u finite, and we define the m.f. as follows:8<:

�A.xi / D 0; xi � l

�A.xi / D xi�l
u�l ; l < xi < u

�A.xi / D 1; xi � u
(23.2)

In (23.2) m.f. is a linear function between the values of the two thresholds.
Alternatively, we can arrange the values xi in nondecreasing order according to
i and define the following m.f.:8̂<̂

:
�A.xi / D 0; xi � l

�A.xi / D �A.xi�1/C F.xi /�F.xi�1/
1�F Œxi.l/� ; l < xi < u

�A.xi / D 1; xi � u

(23.3)

where F.xsi / is the sampling cumulative function of the variable X and xi.l/ is the
highest value xi � l . If l Dx1 D min.xi / and u Dxn D max.xi /, formula (23.3)
corresponds to the “totally fuzzy and relative approach” suggested by Cheli and
Lemmi [6]. In the literature, other specifications have been considered. If we are
trying to measure the degree of achievement of a certain target, the distance d.x/
between the value x and the goal is an indicator of the success in achieving the
target. If d.x/D 0, there is full membership to A, then �A.x/D 1. If d.x/ > 0 then
�A.x/ < 1. Hence, we can write:

�A.x/ D 1

1C d.x/
(23.4)

In general, as highlighted by Zimmermann [21], the relationship between physical
measures and perception takes an exponential form. The distance d.x/ can be
expressed as:

d.x/ D e�a.x�b/ (23.5)

so that m.f. is defined as follows:

�A.x/ D 1

1C e�a.x�b/
(23.6)
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Table 23.1 Membership
function to the subset of
satisfied customers with
reference to variable X8

Scores (xi ) ni F.xi / m.f..xi /

�3 7 0:010 0

4 5 0:017 0

5 12 0:034 0

6 40 0:091 0:059

7 161 0:320 0:296

8 240 0:732 0:723

9 93 0:864 1

10 96 1 1

704

It is worth noting that the parameter a represents the extent of vagueness and the
parameter b may be viewed as the point in which the tendency of the subject’s
attitude changes from rather positive to rather negative. Baliamoune-Lutz [1] uses
m.f. (23.6) to measure human well-being with a fuzzy approach. If variable Xs is
ordinal with k categories, a suitable choice is the following: the m.f. values of the
categories up to the threshold l are equal to 0 (absence of the phenomenon) and those
of the categories � u are equal to 1 (complete presence). The intermediate values of
m.f. are defined according to the formula (23.3). For example, consider the scores
(on a scale 1–10) of the variable “Overall satisfaction,” described in Sect. 23.4.
Choosing lD 5 and u D 9, we obtain the m.f. values indicated in the last column of
Table 23.1. A customer with a score equal to 5 does not belong to the set of satisfied
respondents, while a customer with a score equal to 8 has a value 0.723 of the m.f.
to the set of satisfied users. If variable Xs is binary, one of the categories can be
considered as a symptom of the latent concept. Therefore the m.f. is a crisp function
assuming only values equal to 0 (absence) and 1 (presence). Usually, we consider a
set of q (q � p/ binary variables reflecting several aspects of the phenomenon. In
this case the m.f. can be defined as follows:

�A.xi / D 1

q

qX
sD1

zsi (23.7)

where zsi D 1 if the corresponding xsi denotes presence of the symptom and zsi D 0

if the corresponding xsi denotes absence of the symptom. Definition (23.7) is
consistent with interpreting membership values as the proportion of “subjects” who
rate the i -th unit as an actual member of the fuzzy set A [5].

23.3 Weighting and Aggregation of the Variables

Among the steps of the construction of a crisp composite indicator, weighting and
aggregation are the major ones which directly affect the quality and reliability of the
results [16, 22]. For the aggregation functions in fuzzy set theory we refer, among
others, to Calvo and Beliakov [3].
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Let us consider the criteria for aggregating the p fuzzy variables, described in
Sect. 23.2, into a fuzzy composite indicator. The simplest operations for the i -th
unit are:

intersection W I�A.i/ D minŒ�A.x1i /; �A.x2i /; : : : ; �A.xpi /� (23.8)

union W U�A.i/ D maxŒ�A.x1i /; �A.x2i /; : : : ; �A.xpi /� (23.9)

A more general aggregation function is the weighted generalized means [12]:

�A.i/ D
pX
sD1

Œ�A.xsi /�
˛ � ws

1=˛ (23.10)

where ws > 0 is the normalized weight that expresses the relative importance of the
variables Xs; (

Pp
sD 1 ws D 1). For fixed arguments and weights, function (23.10)

is monotonic increasing with ˛; if ˛ ! �1, then formula (23.10) becomes the
intersection defined in (23.8); if ˛ ! C1, then (23.10) is equal to the union (23.9).
For ˛ ! 0 formula (23.10) becomes the weighted geometric mean. In the following,
for the sake of simplicity, we will consider ˛D 1, that is the weighted arithmetic
mean. The weighting criteria in (23.10) may be:
• Equal weights that imply a careful selection of the variables in order to assure a

balance of the different aspects of the latent phenomenon.
• Factor loadings, obtained by principal components analysis (PCA) for quantita-

tive variables or by nonlinear PCA for ordinal variables; this method of weighting
is valid if the first component accounts for a high percentage of the total variance
and the weights (loadings) of the variables are proportional to their correlation
with the first component (factor) reflecting the underlying concept.

• Obtained from expert judgements, e.g., using focus groups.
• Determined by an Analytic Hierarchy Process [13].
We suggest a criterion for the determination of the weights, considering for each
variable Xs the fuzzy proportion g.Xs/ of the achievement of the target:

g.Xs/ D 1

n

nX
iD1

�.xsi / (23.11)

If Xs is binary, formula (23.11) coincides with the crisp proportion and in general
it may be seen as an index of the proportion of the units having (totally or partially)
the latent phenomenon [6]. The normalized weights may be determined as an inverse
function of g.Xs/, in order to give higher importance to the rare features in the n
units. To avoid excessive weights to the variables with low value of g.Xs/ we
choose [5]:

ws D ln
� 1

g.Xs/

�
=

pX
sD1

ln
� 1

g.Xs/

�
(23.12)

Using (23.12), it is possible to attach to each variable a weight sensitive to the fuzzy
membership.
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23.4 A Fuzzy Indicator of Customer Satisfaction

Customer satisfaction may be defined as the degree of happiness that a customer
experiences with a product or a service and is a personal function of the gap between
expected and perceived quality. The expected degree of happiness is a random vague
concept. This latent phenomenon is here considered for all individuals and analyzed
with fuzzy method [8, 10]. We apply the methods of the previous sections to the
results of a survey on customer satisfaction of the users of the Contact Center of
the Municipality of Parma, considering a sample of 704 respondents calling for
information (see [19] for a complete description). The questions on the degree of
satisfaction of the users are:
X1 D Contact at the first call (no D 0, yes D 1).
X2 D Waiting time (too long D 1, normal D 2, fairly short D 3).
X3 D Courtesy of the operator.
X4 D Skill of the operator.
X5 D Quality of the provided information.
X6 D Speed of the information.
X7 D Complete answer (no D 1, partially D 2, yes D 3).
X8 D Overall satisfaction with the service, with scores from 1 to 10.

All the variables whose categories are not specified are measured on Likert
scale (very dissatisfied D 1, dissatisfied D 2, neither satisfied nor dissatisfied D 3,
satisfied D 4, very satisfied D 5). The cumulative function of the variables X1 - X7
and the corresponding m.f. according to formula (23.3) are presented in Table 23.2
and for variableX8 in the previous Table 23.1. For the variables on Likert scale, the
inferior threshold is “dissatisfied” and the superior threshold is “very satisfied.” We
consider the following weighting systems, with and without the variable X8, which
indicates overall satisfaction with the service (see Table 23.3):
1. Equal weights of the variables .W1/.
2. Normalized factor loadings obtained by standard (linear) PCA. The first PC

accounts for 49.7 % of the total variance with X8 and for 50.4 % without X8
(W2).

3. Normalized factor loadings applying PCA on � rank correlation matrix. The first
PC explains 46.67 % of the total variance with X8 and 46.44 % without X8 (W3).

4. Normalized weights as inverse function of the fuzzy proportion of each variable,
according to formula (23.12) (W4).

The least important variable is always X1 and could be deleted. The correlation
coefficient between W2 and W3 is 0.964 considering X8 and 0.970 without X8, but
the correlation coefficients ofW4 with the previous weights are in the interval [0.791,
0.909]. Therefore, the last weighting criterion is slightly different from the others.
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Table 23.2 Cumulative functionF of the categories of each item in the sample and corresponding
membership function to the subset A of satisfied customers

X1 X2 X3 X4 V5 X6 X7

F m:f: F m:f: F m:f: F m:f F m:f: F m:f: F m:f:

0 0.08 0 1 0.03 0 1 0 0 1 0 0 1 0.01 0 1 0.01 0 1 0.05 0

1 1 1 2 0.29 0.27 2 0.01 0 2 0.03 0 2 0.04 0 2 0.04 0 2 0.13 0.08

3 1 1 3 0.05 0.05 3 0.14 0.12 3 0.13 0.09 3 0.12 0.08 3 1 1

4 0.46 0.45 4 0.60 0.59 4 0.57 0.55 4 0.58 0.56

5 1 1 5 1 1 5 1 1 5 1 1

Table 23.3 Values of W2, W3 and W4

With X8 Without X8
W2 W3 W4 W2 W3 W4

X1 6:97 6:93 3:59 7:99 7:83 4:38

X2 9:21 8:84 10:57 10:62 10:05 12:88

X3 12:29 13:67 13:65 14:17 15:64 16:63

X4 14:76 15:50 16:18 16:95 17:71 19:71

X5 15:61 16:08 16:43 17:97 18:25 20:02

X6 17:73 16:02 16:22 18:13 18:32 19:76

X7 12:27 10:67 5:43 14:17 12:20 6:62

X8 13:16 12:29 17:93 – – –
Tot 100 100 100 100 100 100

Table 23.4 Frequency distribution of the fuzzy composite indicators with different weights

With X8 Without X8
Classes W1 W2 W3 W4 W1 W2 W3 W4

0:0 ` 0:1 4 7 7 8 5 7 7 7

0:1 ` 0:2 8 12 12 12 7 12 12 14

0:2 ` 0:3 14 13 16 20 15 15 15 18

0:3 ` 0:4 36 36 37 39 30 34 33 35

0:4 ` 0:5 30 31 33 26 35 28 29 30

0:5 ` 0:6 49 49 46 120 26 27 37 81

0:6 ` 0:7 109 158 151 103 91 205 195 142

0:7 ` 0:8 134 96 106 82 161 68 68 69

0:8 ` 0:9 105 77 66 99 122 69 69 66

0:9 ` 1:0 129 136 144 109 42 69 69 72

1.0 86 86 86 86 170 170 170 170

Total 704 704 704 704 704 704 704 704

Table 23.4 shows the frequency distribution of the values of the fuzzy composite
indicators with the mentioned weighting criteria. None of the respondents can be
regarded as completely dissatisfied, since the values of the composite indicators
are at least 0.02. Even clients experiencing dissatisfaction with most indicators
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Fig. 23.1 Scatter plot of the fuzzy indicators (obtained with inclusion of X8) and of the crisp
indicator (obtained normalizing the scores of the first principal component)

are found to be not completely dissatisfied with other indicators. On the other
hand, 86 respondents (with X8) and 170 (without X8) belong to the subset of
completely satisfied customers. In both analyses, the use of the weights increases
the frequencies of small values (less than 0.4) and decreases the frequencies in the
classes Œ0:7 � 0:8/ and Œ0:8 � 0:9/.

Figure 23.1 displays the scatter plot matrix of the fuzzy indicators obtained with
inclusion ofX8 and of the crisp indicator obtained normalizing the scores of the first
principal component. As outlined previously, fuzzy and crisp indices show high
pairwise correlations (the correlation coefficient of each off-diagonal panel of the
scatter plot matrix is nearly 0.99). With l D 1 the distribution of the values is more
symmetric. In order to compare the fuzzy indicators computed without X8 with
the mostly used crisp indicators of customer satisfaction, we normalize both the
values of X8 (overall satisfaction) and the scores of the first principal component
computed on the � rank correlation matrix, to lie in the interval Œ0; 1�. Figure 23.2
presents boxplots of the fuzzy and crisp indices. While all composite indicators
show the presence of outlying values (due to small size), the single variable X8
does not reveal this presence. Moreover, all fuzzy indicators show that 75 % of the
respondents belong to the set of satisfied customers, with m.f. values higher than
0.6. Figure 23.3 shows the distribution of the fuzzy index (computed without X8
and with weight W4) for each category of the variable X8. Note that none of the
respondents has a category smaller than 3 (i.e., no one is completely dissatisfied with
the service). Boxplots show that the distribution of the values of the m.f. to the subset
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of satisfied customers is increasing in the median, with respect to the score given to
the overall satisfaction (X8). It also reveals the presence of few incoherent responses.
For example, two customers that have a score equal to 4 in the overall satisfaction
(they are neither satisfied nor very dissatisfied) are however quite satisfied with all
the specific items that have been considered in the questionnaire. On the other hand,
some clients that have a scores equal to 8, 9, or 10 in the overall satisfaction indicate
a low degree of satisfaction in nearly all the items. We point out that the comparison
between the direct question on overall satisfaction and the values of a fuzzy index
based on the items reveals the customers with inconsistent answers who may be
considered as atypical observations.
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24Symmetric Association Measures
in Effect-Control Sampling

Riccardo Borgoni, Donata Marasini, and Piero Quatto

Abstract
In order to measure the association between an exposure variable X and an
outcome variable Y , we introduce the effect-control sampling design and we
consider the family of symmetric association measures. Focusing on the case of
binary exposure and outcome variables, a general estimator of such measures is
proposed and its asymptotic properties are also discussed. We define an allocation
procedure for a stratified effect-control design, which is optimal in terms of the
variance of such an estimator. Finally, small sample behavior is investigated by
Monte Carlo simulation for a measure belonging to the family, which we believe
particularly interesting as it possess the appealing property of being normalized.

Keywords
Association measures • Optimal sampling • Sample design and estimation

24.1 Introduction

In survey sampling theory, the control sample has been introduced to measure the
association between two dichotomous variables, denoted by X and Y [2].

In this context, X may be the indicator variable for the exposure to a possible
cause of an effect, represented by an outcome variable Y . The aim is to measure the
strength of the assumed causal relation.

To exemplify, suppose that one wants to identify potential causes of students drop
out of the University. If one restricts his attention only on a sample of those who
dropped out, it may happen that a high percentage of students interviewed says that
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they withdrew because the University studies were very difficult. This suggests the
study difficulty as a cause of the drop out. However, if a control sample of students
having continued their studies is considered together with the drop out sample, one
may find a similar proportion of students believing that the university studies are
very difficult among the controls too. In this case, the study difficulty can be hardly
considered a cause of drop out. Clearly, many other variables can have an impact
on individuals’ decision to withdraw, such as being a student–worker, the school
of provenience, and so on. For these variables, i.e., the potential causes, we need to
calculate the association with the effect under study. As there may be other variables
that affect the association between the effect and its potential causes, one may want
to control for their influence in order to prevent confounding. In this sense, such
variables can be considered as auxiliary variables and can be used to divide the
population into suitable strata (e.g., gender and age).

In this chapter we introduce a family of association measures which can be
used in effect-control sampling. Effect-control designs are introduced in Sect. 24.2.
The proposed family of association measures is described in Sect. 24.3 and a class
of estimators is introduced in Sect. 24.4 along with the homogeneity hypothesis.
Section 24.5 discusses the issue of optimal designs, and in Sect. 24.6 we focus on
the estimation procedure of a normalized measure of the family, which finite sample
behavior is evaluated by Monte Carlo simulation in Sect. 24.7.

24.2 Effect-Control Sampling

Let Y be the outcome variable, i.e., Y is the dichotomous variable taking value 1
if the effect is present and 0 otherwise. The target population U is assumed to be
finite and it is divided into two subpopulations according to Y . Let N andM be the
number of units for which Y D 1 and Y D 0, respectively. The N units for which
Y equals 1, identify the effect group, whereas the M for which Y equals 0 identify
the control group.

The two groups are partitioned in H strata according to the values of a set
of auxiliary variables, coded by a univariate variable S , identifying homogeneous
profiles.

Let Nh and Mh be the size of the stratum h .h D 1; 2; : : :;H/ in the two groups
with

N D
XH

hD1 Nh

and
M D

XH

hD1 Mh:

The effect and control samples, say e and c, are drawn in two steps. First a sample,
say eh, is taken within the units in stratum h of the effect group; then a sample ch
of size mh is taken from stratum h of the control group, in order to guarantee that
effect and control units are similar in terms of the stratification variables. Clearly,
we obtain that
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e D
H[
hD1

eh

and

C D
H[
hD1

Ch

with size
n D

XH

hD1 nh

and
m D

XH

hD1 mh;

respectively. The design allocates a positive probability to the samples of size nh C
mh that can be obtained from the Nh C Mh units in stratum h, assuming a simple
random sampling without replacement. Every nh C mh-tuple is supposed to have
the same probability

1
.�

Nh
nh

��
Mh

mh

�
h D 1; : : :;H to occur. It can be noted that the effect-control sampling design may
be considered as a particular stratified sampling design in which the population
is partitioned into 2H sub-populations according to the total number H of strata,
which rises from the product of the values each auxiliary variable can assume, and
to the two values of the dichotomous outcome variable.

24.3 Symmetric Association Measures

As mentioned above, let X be a dichotomous exposure variable and let Y be
a dichotomous outcome variable possibly associated with X . We consider the
population U consisting of N C M units of which N are characterized by Y D 1

andM are characterized by Y D 0.
Assume that N 0 units out of N and M 0 units out of M are exposed (X D 1).

Thus, the odds ratio (OR) parameter is defined by

� D N 0

N �N 0
M �M 0
M 0

(24.1)

In particular, an odds ratio of 1 indicates thatX and Y are independent, an odds ratio
greater than 1 indicates positive association, and an odds ratio less than 1 indicates
negative association. Unlike other measures of association for binary data (such as
the relative risk), the odds ratio treats the two variables X and Y symmetrically.

In general, according to [3], a symmetric association measure between X and Y
is a function of

N 0

N
;
M 0

M
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or, alternatively, of
N 0

N 0 CM 0
;

N �N 0

N CM � .N 0 CM 0/
such that these alternative measures are equal. Hence it is of the form f (OR), where
f is a strictly increasing function. Examples of measures belonging to the family of
strictly increasing functions of odds ratio are given by log(OR), Yule’s coefficient
of association and Yule’s coefficient of colligation [3].

Moreover, it can be proved by solving a functional equation that all the symmetric
and scale-invariant measures of association are strictly increasing function of OR,
where, according to [4], a measure of association

˛.N 0; M 0; N �N 0;M �M 0/

is called symmetric and scale invariant if

˛.N 0; M 0; N �N 0;M �M 0/ D ˛.N 0; N �N 0;M 0;M �M 0/

and

˛.N 0; M 0; N �N 0;M �M 0/ D ˛.�N 0; �M 0; �N � �N 0; �M � �M 0/

for any �;� > 0.
With respect to the stratification, we restrict our attention to the family of the

association measures defined by f .�h/ herein,
where f is a strictly increasing function and

�h D N 0h
Nh �N 0h

Mh �M 0h
M 0h

; (24.2)

is the stratum specific version of (24.1), assuming that N 0h units out of Nh and M 0h
units out of Mh are exposed in the stratum h D 1; 2; : : :;H .

24.4 Homogeneity Hypothesis

Cross-classifying the N units of the population according to the response variable,
Y , the exposure variable, X; and the auxiliary variable used for stratification, S
produces a 2 � 2 � H three-way contingency table. A relevant hypothesis for a
contingency table of this form often considered in practical applications [6,7] is that
the H stratum-specific odds ratios are all equal, that is to say:

�1 D : : : D �H D �:

This hypothesis of homogeneity of odds ratios amounts to assume that there is not
a three way interaction amongst Y , X and S . The homogeneity condition can then
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be stated equivalently as

f .�1/ D : : : D f .�H / D f .�/ (24.3)

for every strictly increasing function f .
Under such a hypothesis, the parameter f .�/ can be estimated by the plug-in

estimate
HX
hD1

whf . O�h/; (24.4)

once a suitable weight system wh h D 1; : : :;H has been identified. In Eq. (24.4)

O�h D n0h
nh � n0h

mh �m0h
m0h

is the usual estimate of (24.2), assuming that n0hunits are exposed amongst the nh
included in the sample for which S D h and Y D 1, whereasm0h units are exposed
amongst the mh units in the sample for which S D h and Y D 0.

Traditionally, statistical inference for contingency tables has relied heavily on
large-sample approximations for the sampling distribution of test statistics. Under
the homogeneity condition it is straightforward to prove that a chi-square with
H � 1 degree of freedom asymptotic distribution can be employed to approximate
the p-value of a suitable test statistic whatever the transformation f .�/ is.

More recently exact inference for small samples has become of paramount
importance given an increasing number of studies with small sample size. In
addition even when the sample size is quite large, large-sample approximations can
be very poor when the contingency table contains both small and large expected
frequencies [5]. Large sparse tables present typically such a problem. Agresti [1],
amongst others, reviews these methods.

Zelen [13] presents an exact test for the homogeneity of the odds ratio in a 2 �
2 � H contingency table. Since f in (24.3) is a strictly monotone function of the
odds ratio, the Zelen’s test for odds ratio homogeneity is also the one for rejecting
the null hypothesis in (24.3) independently of f .

In the presence of large tables, computational advantages are obtained by
resorting to appropriate algorithms such as network algorithm [10] which can be
used in conjunction with Monte Carlo techniques for sampling the contingency
tables [11].

24.5 Optimal Designs

For the sake of simplicity, in this section the hypergeometric distributions of n0h and
m0h.h D 1; : : :;H/ are approximated by suitable binomial distributions (according
to [9], p. 114).
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By applying the delta method [9, p. 315], it can be proved that the estimator
corresponding to (24.4) is approximately normal with mean f .�/ and variance given
by

HX
hD1

�
whf

0.�h/�h
�2 � M2

h

mhM
0
h.Mh �M 0h/

C N2
h

nhN
0
h.Nh �N 0h/

�
(24.5)

where f 0 denotes the derivative of f .
Then, from Slutsky’s theorem [9, p. 283], it follows that (24.5) can be consis-

tently estimated by

HX
hD1

h
whf

0. O�h/ O�h
i2 � 1

m0h
C 1

mh �m0h
C 1

n0h
C 1

nh � n0h

�
: (24.6)

Moreover, optimal weights can be obtained by minimizing (24.5) under the
constraint

HX
hD1

wh D 1:

For this purpose, the method of Lagrange multipliers provides the solution of the
optimization problem

wh D
1

�2h

HP
hD1

1

�2h

; (24.7)

where

�2h D Œf 0.�h/�h�2
�

M2
h

mhM
0
h.Mh �M 0h/

C N2
h

nhN
0
h.Nh �N 0h/

�
(24.8)

.h D 1; 2; : : : ;H/.
It should be noted that, under hypothesis (24.3), the optimal weights (24.7) turn

out to be independent of the choice of transformation f .
Hence, the optimal weights (24.7) can be approximated by

Owh D
1

O�2h
HP
kD1

1

O�2k

; (24.9)

where the consistent estimate

O�2h D 1

m0h
C 1

mh �m0h
C 1

n0h
C 1

nh � n0h
(24.10)
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[7, p. 27] corresponds to the variance stabilizing transformation

f .OR/ D log.OR/:

In addition, we observe that such a choice of f leads to the classical estimate
suggested by [12]

HX
hD1

Owh log. O�h/:

Finally, optimal allocation can be obtained by finding the minimum of (24.5) subject
to the constraint

HX
hD1
.nh Cmh/ D nCm D t;

where t represents the total sample size.
Under homogeneity hypothesis (24.3), the method of Lagrange multipliers

provides the optimal sample sizes which turn out to be independent of f .8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

nh D wh=�h
HP
hD1

wh

�
1

�h
C 1

�h

� t
mh D wh=�h

HP
hD1

wh

�
1

�h
C 1

�h

� t (24.11)

where 8̂̂<̂
:̂
�h D

r
M 0
h.Mh�M 0

h/

M2
h

�h D
r

N 0
h.Nh�N 0

h/

N 2
h

(24.12)

(h D 1; 2; : : :;H/.
In order to realize the optimal allocation (24.11), it would be desirable to conduct

a pilot survey for estimating the unknown parameters (24.12) or to use previous
surveys or other statistical sources, if available.

24.6 A Normalized Symmetric Measure of Association

In this section we consider the normalized OR suggested by [8],

f .OR/ D OR

1C OR
D .M �M 0/N 0
M 0.N �N 0/C .M �M 0/N 0 2 Œ0; 1�: (24.13)
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In particular, the value taken on by (24.13) is equal to 0.5 when the variables X and
Y are independent, is greater than 0.5 in the presence of positive association, and is
less than 0.5 in the presence of negative association.

Putting

�h D f .�h/ D �h

1C �h
D .Mh �M 0h/N 0h
M 0h.Nh �N 0h/C .Mh �M 0h/N 0h

(h D 1; 2; : : :;H/, the homogeneity hypothesis (24.3) becomes

�1 D : : : D �H D �:

So, the estimate (24.4), the variance (24.5), and its estimate (24.6) turn out to be,
respectively,

HX
hD1

wh O�h; (24.14)

HX
hD1
Œwh�h.1 � �h/�

2

�
M2
h

mhM
0
h.Mh �M 0h/

C N2
h

nhN
0
h.Nh �N 0h/

�
(24.15)

and
HX
hD1

h
wh O�h.1 � O�h/

i2 � 1

m0h
C 1

mh �m0h
C 1

n0h
C 1

nh � n0h

�
;

where
O�h D .mh �m0h/n0h

m0h.nh � n0h/C .mh �m0h/n0h
(h D 1; 2; : : :;H/.

Under homogeneity hypothesis (24.3), the parameter � can be estimated by
means of (24.14), in which the optimal weights specified by (24.7) and (24.8) can
be approximated using (24.9) and (24.10), and the sample sizes are provided by the
proportional allocation 8̂̂<̂

:̂
nh D Nh

N CM
t

mh D Mh

N CM
t

(24.16)

(h D 1; 2; : : :;H I t being the total sample size).
Finally, the variance (24.15) could further be reduced by the optimal allocation

(24.11), in which the parameters (24.12) may be estimated on the basis of the
preceding sample survey.
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Table 24.1 Results of the Monte Carlo study in the case A of proportional allocation and in the
case B of optimal allocation

OR � p A bias B bias B mse/A mse

4 0.8 0.05 0.011 �0.005 0.87
0.1 0.007 �0.003 0.90
0.2 0.002 �0.001 0.83
0.3 0.002 �0.001 0.99

2 0.66 0.05 0.007 �0.002 0.76
0.1 0.002 0.000 0.80
0.2 �0.001 0.000 0.83
0.3 0.001 �0.001 0.86

1 0.5 0.05 �0.004 �0.002 0.67
0.1 0.001 �0.002 0.77
0.2 0.001 0.001 0.75
0.3 0.000 0.001 0.73

0.5 0.33 0.05 �0.008 0.002 0.69
0.1 �0.007 0.000 0.71
0.2 �0.003 0.002 0.77
0.3 �0.001 0.001 0.62

0.25 0.2 0.05 �0.014 0.006 0.80
0.1 �0.008 0.003 0.71
0.2 �0.003 0.001 0.71
0.3 �0.001 0.001 0.75

24.7 A Simulation Study

In order to evaluate the small sample behavior of the estimate (24.14) with the
optimal coefficients (24.7) approximated by (24.9), an extensive simulation study
have been performed. Results are reported in Table 24.1.

The simulation design is as follows. A finite population consisting of 4,000 units
has been considered assuming N=M D 0:6. This population was stratified in two
groups (H D 2). The values of the proportion of cases and controls within the two
categories of an exposure binary variable X have also been chosen in advance.
This corresponds to fix the value of �. A grid of possible values of this parameter
has been considered to explore the performance of alternative sampling procedures
under different scenarios. More precisely the population was sampled 1,000 times
for each value of � using both the proportional and the optimal allocation for
the strata size. Calculating the optimal allocation (24.11) requires a preliminary
estimate of the parameters (24.12), a problem that can be addressed by a pilot
survey in real situations. In order to implement the optimal design in the simulation
study presented herein, we have first extracted a pilot sample from the simulated
population using a simple random sample without replacement inside each stratum.
This dataset has been used to estimate the unknown parameters (24.12) which, in
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Fig. 24.1 Monte Carlo sampling distribution of O� under proportional (a) and optimal (b) sample
size allocation for different sampling fractions. Vertical line represents the “true” value of � used
to simulate samples

turn, permitted to calculate the optimal sample size of each stratum. Then a second
sample was selected from the population and, finally, employed to estimate �. Note
that only cell counts are necessary to calculate (24.14), hence the entire Monte
Carlo experiment has been efficiently implemented using a routine to generate from
the hypergeometric distribution.

The simulation has been repeated for different sampling fractions (p) in order
to evaluate whether the performance of the estimator is influenced by the overall
sample size and the velocity at which its distribution converges to normality. The
Monte Carlo (MC) bias has been reported in Table 24.1 for the two schemes together
with the ratio between the MC MSE obtained by the optimal allocation (B) and the
MC MSE obtained by the proportional allocation (A). Hence, a value smaller than
1 of this ratio suggests a better performance of the optimal allocation.

It can be observed that the MC MSE in the case of the optimal allocation is
always smaller than the MC MSE obtained using a proportional allocation and
quite often much smaller. Broadly speaking, a bigger advantage was found when
the sampling fraction is small for a value of � bigger than 0.5. For � smaller than
0.5 the optimal allocation produces, roughly, a constant reduction of the MSE in the
case of the proportional allocation whatever the sampling fraction is.

As far as the bias is concerned results are less clear as both designs tend to have
a good performance. This was somehow expected as the estimator is asymptotically
unbiased under both allocation schemes. However, the optimal allocation has a
bias which is generally smaller than the proportional allocation, suggesting that the
optimal scheme seems preferable also in this respect.

Finally, Fig. 24.1 shows that the distribution of the considered estimator
approaches normality quickly under both designs as it resembles the Gaussian
density, also in the presence of small samples. The graphs are drown using samples
simulated under values of � equal to 0.8. Similar results were found for all the other
values of � considered in the simulation.
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25Spatial Misalignment Models for Small Area
Estimation: A Simulation Study
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Abstract
We propose a class of misaligned data models for addressing typical small
area estimation (SAE) problems. In particular, we extend hierarchical Bayesian
atom-based models for spatial misalignment to the SAE context enabling use
of auxiliary covariates, which are available on areal partitions non-nested with
the small areas of interest, along with planned domains survey estimates also
misaligned with these small areas. We model the latent characteristic of interest
at atom level as a Poisson variate with mean arising as a product of population
size and incidence. Spatial random effects are introduced using either a CAR
model or a process specification. For the latter, incidence is a function of a
Gaussian process model for the spatial point pattern over the entire region. Atom
counts are driven by integrating the point process over atoms. In the proposed
class of models benchmarking to large area estimates is automatically satisfied.
A simulation study examines the capability of the proposed models to improve
on traditional SAE model estimates.
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25.1 Introduction

This chapter considers small area estimation (SAE) when multiple data sources,
possibly misaligned with small areas, are available for inference. Supplementary
sources of relevant information may consist either in auxiliary data (from census or
administrative archives) or in survey data collected on planned or major domains.
Both these types of data may be available at a level of spatial resolution incompatible
or misaligned with that of small areas. Hence, developing models to combine
most appropriately and efficiently any source of potentially important information
becomes of crucial concern for research in SAE.

Under the hierarchical Bayesian (HB) framework, misaligned data models have
been recently proposed to address the issue of making inference for domains (target
zones) different from the ones (source zones) for which data are available (for a
review see [1, 7]; some applied recent works are [3, 6]). In particular, we consider
the so-called atom-based models and extend them to originally address typical SAE
questions: (a) combining auxiliary covariates which are available on non-nested
areal partitions (misaligned areal regression problem); (b) providing small area
estimates by using planned domain data (misaligned areal interpolation problem).

We offer two versions of the proposed class of atom-based models. The first
one, which we will refer to as Small�Large area estimation model (S�LAE for
short), introduces area-specific effects (not accounted for by auxiliary covariates)
as heterogeneous and/or spatial random effects (these last, e.g., by a conditionally
autoregressive prior specification), as is customarily done in mixed effects models.
The second, the so-called SmallˇLarge area estimation model (SˇLAE), fits over
the entire region, an intensity surface which drives a latent spatial point pattern of
locations within atoms representing the “cases” of interest (e.g., of unemployment
as in our example). Expected atom counts are obtained by integrating the intensity
over atoms.

To illustrate our approach we consider the problem of estimating the number
of unemployed at Local Labour Market (LLM) area level by using two misaligned
data sources: auxiliary information available on different administrative partitions;
reliable estimates of unemployed for Labour Force Survey (LFS) planned domains.
A simulation study examines the capability of the proposed models to improve on
traditional SAE model estimates.

25.2 Regression-Only Atom Models for SAE

Before proposing a general methodology to address SAE problems, we consider a
more familiar setting. Namely, we start with a traditional SAE model and suitably
extend it in order to perform a regression analysis also on covariates available over
areal partitions misaligned with the small area set.

Suppose that i D 1; : : : ; I index the small areas (target zones) on which we want
to estimate the characteristic � of interest. Here, driven by the motivating example,
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we consider � to be a total or a count. A crude but still challenging HB model takes
the form

di j�i � N.�i ; �i / (25.1)

�i j�i � Po.Si�i /; log.�i / D x
0

iˇ C 	i (25.2)

	i j� � N.0; �/ (25.3)

plus an hyperprior on .ˇ; �/. In sampling model (25.1), di and �i are a direct esti-
mate of �i and, respectively, a design variance estimate (of di ) which is imputed as
known (but, in model extensions, it can be made model dependent). In linking model
(25.2), Si is a regional synthetic estimate (of �i ) which takes the place of an expected
count as in standard Poisson mean formulations. Moreover, x

0

i and 	i are auxiliary
data available for each area i and, respectively, area-specific effects not accounted
for by the observed auxiliary variables. Hyperparameters ˇ and � are (regional)
regression coefficients and area effect variance respectively. The form (25.1)–(25.3)
is an unmatched model developed according to the general hierarchical perspective
Œdataj process, parameters�Œprocessj parameters�Œparameters� (see for [13, 14]).

Now, let j D 1; : : : ; J index the areas (source zones) on which a possibly
important covariate X is available. Then, some sort of realignment is needed
to carry out a regression analysis using the X ’s to produce better small area
estimates �i .

A number of techniques exist to obtain estimates for misaligned data at the
required area level (usually called the modifiable areal unit problem in statistical
literature, or areal interpolation in geography): the “pycnophylactic” density
surface estimation [12], the “areal weighting” interpolation [8], the “intelligent”
areal interpolation [4, 5] as well as other methods implemented in Geographical
Information System environment. None of these methods allows for a fully infer-
ential approach to the problem of areal interpolation. We follow instead a fully
inferential philosophy and adopt a HB approach allowing for a full uncertainty
integration and propagation through the model. In particular we adopt the so-
called atom-based models borrowed from the most recent HB literature on spatial
misalignment [1, 10]. The strategy behind atom-based models is to realign the
misaligned data onto a common “intersection–partition” whose areal unit is the
“atom,” then conveniently set the regression model at the atom level, and, finally,
build the estimates of interest by a suitable aggregation over atoms.

Then, let k D 1; : : : ; K index the intersection areas (atoms) arising from crossing
each target zone with each source zone. Attractively, for us, there are no “edge”
atoms; the target and source zones partition the same region. Accommodating the
general case is straightforward (see [1] for modeling edge atoms).

In particular, with reference to our motivating example, we address the case in
which both the small area characteristic of interest � and the possibly important
covariate X are count data (e.g., number of unemployed and of unemployment
list enrolled respectively). Thus, the skeleton of an atom-based model, as we have
framed it in the SAE context, is as follows. At atom level, small area quantity and
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non-nested auxiliary variable are modeled as

�kj�k � Po.Ske�k /; Xkj!k � Po.Nke!k / (25.4)

�k D ˇ0 C ˇ1Xk C ˇ2zk C �i.W3k/; !k D �0 C �1wk C  j.W3k/ (25.5)

where �k , Xk and .zk;wk/ are, respectively, the latent (or unknown) total of interest,
the latent auxiliary variable and further known covariates on atom-k; Sk and Nk are
known synthetic estimate and, respectively, population count for atom-k; e�k and e!k

represent the incidence rate respectively associated with � and X on atom-k; �i and
 j are random effects inherited—by atom-k—from small area-i and, respectively,
auxiliary source area-j (which atom-k belongs to, indicated in (25.5) by “3 k”
notation); ˇ’s and �’s are unknown regression coefficients.

Then, on regional partitions, �-model and X-model consist in

di j�i � Norm.�i ; �i / (25.6)

�i D
X

�kWk2i ; Xj D
X

XkWk2j (25.7)

which amount to imposing the sum-constraints (25.7) on each atom set making up
either a small area or an auxiliary source zone. Besides, likewise above—see (25.1),
we assume a customary sampling model (25.6) for small area direct survey estimates
di ’s.

Note 1. Our methodology assumes Poisson counts at the atom level for both the
unknown of interest and the latent auxiliary variable. In other cases, these variables
may have other distributions, e.g., Bernoulli trials with probit or logit links, or
normal variates.

Note 2. In principle, the linking model for � might be set at small area level. In this
case, atom values Xk should be aggregated so as to reconstruct small area value Xi
(i.e., Xi D ˙XkWk2i ) which is to be imputed into the regression equation set for
�i . However, a regression analysis is preferably carried out at atom or finer level
whenever further covariates are available on regional partitions finer than the small
area set. In (25.5), zk and wk denote known values of auxiliary variables whose
source is nested within atoms.

Note 3. Linking models (25.5) are defined on the log-linear scale although other
functional forms, such as the identity-linear or the mixed types, can be considered.
For instance, if we adopt a linear in covariates form such that arising from a mixing
(identity- and log-) link, �-model (25.4)–(25.5) is replaced by

�kj�k � Po.Sk�k/ with �k D .ˇ0 C ˇ1Xk C ˇ2zk/e�i.W3k/
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(or �k D ˇ0.1 C ˇ1Xk C ˇ2zk/e�i.W3k/ in the version of [10]). The use of linear
forms is more opportune when there are regressors thought to produce additive
rather than multiplicative effects (see e.g. [2]). Moreover, an attractive feature of
additive models may be that, regardless of aggregation level, a regression slope
maintains the same interpretation (that is why we turn to them in the simulation
study below).

Note 4. In the regression analysis for � or X , random effects, generically denoted
by �i and  j in (25.5), can be set either as spatially structured (e.g., by specifying
a Gaussian conditionally autoregressive (CAR) prior) or simply as heterogeneous
effects (by customarily assuming an exchangeable Gaussian prior), or perhaps a
sum of such effects.

25.3 A Point Level Version

An alternative to the class of misaligned data models proposed in Sect. 25.2 is based
on Gaussian process specifications. This approach envisions an underlying intensity
surface which is block-averaged to the areal units relevant to the study. Process
model priors are commonly used for explaining spatial point patterns when the
patterns are aggregated to areal units. They are interpreted as intensity surface for
the unobservable spatial point pattern of cases of interest. For us, these cases are
the unknown point locations for the unemployed individuals. Here the surface is
assumed to be a realization of a log Gaussian process model.

Suppose we revise the model for the expected incidences in (25.4) with (25.5)
using integration of latent intensity surfaces over atoms. Likewise (25.4), latent
counts of both the quantity of interest, �k , and the misaligned covariate, Xk, are
modeled as Poisson variates with mean arising as the product of the population size
(or a function of this) and the incidence rate. But now the mean arises asZ

Ak

S.s/e�.s/ ds;
Z
Ak

N.s/e!.s/ ds; (25.8)

for process-� and X respectively, where s denotes a spatial point and Ak indicates
the atom-k (with area jAkj). Atoms are assumed small enough to approximate S.s/
and N.s/ by a constant function over atom, S.s/ 
 Sk=jAkj, N.s/ 
 Nk=jAkj.
Moreover, �.s/ D ˇ0 C ˇ1Xk C ˇ2zk C �.s/ and !.s/ D �0 C �1wk C .s/ where,
differently from (25.5), random effects �.s/ and  .s/ are given Gaussian process
priors. Being intensively measured,Xk , zk , and wk values are unvaryingly assigned
to point level covariates. Hence, the expected incidences (25.8) become

Skeˇ0Cˇ1XkCˇ2zk

Z
Ak

e�.s/=jAkj; Nke�0C�1wk

Z
Ak

e .s/=jAkj (25.9)
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respectively. Note the difference between these expressions and those in (25.4) with
(25.5). In the latter �i.W3k/ D R

Ak
�.s/ds=jAkj and  j.W3k/ D R

Ak
 .s/ds=jAkj. But

exp.�i.W3k// ¤ R
Ak

exp.�.s//ds=jAkj and if �.s/ is a Gaussian process, the resulting
aggregated random effect is not normally distributed, similarly for  j.W3k/. Under
this construction, we see that (25.4) with (25.5) induces an ecological fallacy (see
[16] for reference).

Note 5. Following Note 3, the log-link can be replaced by the mixed form, thus
maintaining the log Gaussian process prior specification for the spatial random
effects.

Note 6. Initially, spatial processes �.s/ and  .s/ are set independent, but in princi-
ple could be made dependent by using coregionalization (see [1] for reference).

This version of misaligned data models fits an incidence surface over the region,
obviously a more flexible model than the “step” surface modeled through a finite
set of random effects as for the previous version. With the new approach we can
have local adjustment to these steps at every location allowing richer understanding
of the latent surface. Moreover, working at the point level achieves the highest
spatial resolution, thus avoiding the dependence of the prior model on the data
collection procedure, i.e., the number, shapes, and sizes of the areal units chosen in
the particular study. Still, it replaces the specification of a proximity matrix, which
spatially connects the subregions, with a covariance function, which directly models
dependence between arbitrary pairs of locations (and induces a covariance between
arbitrary subregions using block averaging). Lastly, it avoids an ecological fallacy.
But, in (25.9), we see that the desired relationships withXk , zk , and wk , respectively,
are unaffected in this regard, and so we can fit the simpler areal level model without
much concern. The simulation study below will distinguish the case in which this
relationship is unaffected by ecological fallacies from the one in which it is affected.

25.4 SAE via S�LAE/SˇLAE Atom Models

We proceed by addressing the problem of the additional integration of large
area estimates, i.e., direct estimates evaluated on survey planned domains. It is
reasonable that small area estimates will further improve given that large estimates
are generally reliable. We will conveniently refer to the final model as Small�Large
area estimation model—S�LAE for short—for the discrete-space version (�
symbol just means a “circular influence” between small and large areas), as SˇLAE
for the continuous-space approach of Sect. 25.3 (the “dot” within the circle depicts
a spatial point within an area) .

To this aim we generalize the spatial structure of the foregoing section by adding
a further layer, i.e., large areas p D 1; : : : ; P . Accordingly, atom product space
is updated integrating this further zonal system into it. Then, survey information
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related to large areas is conveyed by an additional stage, dpj�p � Normal.�p; �p/ ,
that is by assuming an appropriate sampling model with the large area estimates
subject to the sum-constraint �p D P

�kWk2p , as �i ’s are in (25.7). dp and �p have
the customary interpretation of direct estimates and, respectively, sampling error
variances for survey planned domains (e.g., for provinces in our application).

We point out that inference coherency synthesized by the so-called benchmarking
propriety (small area estimates sum up to large area estimates) is automatically
satisfied (since

P
k �k D P

i

P
�kWk2i D P

i �i D P
p

P
�kWk2p D P

p �p) in
the final model version of the present section.

25.5 A Simulation Study

In this section we present a subset of results from a larger plan of simulation studies.
First we give some details of the simulation experiments.

Survey data simulation was carried out on the basis of the Italian LFS design.
In particular, a number of LFS samples was generated for the sole Veneto Region
using 2001 census data on population counts available at municipality level, and
following a two-stage stratified sampling scheme with varying probability at stage-1
and simple random sampling without replacement at stage-2. Then, X (unemploy-
ment list enrolled) and � (unemployed) numbers were model-based generated at
municipality level. Setting the synthetic data generation at this level—the highest
spatial resolution available from census data—allows for a straightforward survey
data simulation. Besides, data generation at atom level would not be realistic.
More importantly, it allows to distinguish the scenario (a) (see below) in which
the relationship with covariates is not affected by ecological fallacies from the one
(b) in which it is.

In particular, X and � numbers were generated according to the following
models: (a) Xl � Po.Nl!l / with !l D �0.1 C �1wl /e�j and Yl � Po.Sl�l / with
�l D ˇ0.1 C ˇ1xl C ˇ2zl /e	i ; (b) Xl � Po.Nle!l / with !l D �0 C �1wl C �j
and Yl � Po.Sle�l / with �l D ˇ0 C ˇ1xl C ˇ2zl C 	i . In both scenarios l is
the municipality index; �0, �1, ˇ0, ˇ1 and ˇ2 were set to the estimates found out
from fitting the foregoing regression models on real data; wl and zl are covariates
available at municipality level (number of employed in industry and, respectively, of
registered immigrants); moreover, �j and 	i have been specified as heterogeneous
effects. For more information on the real context of the simulation study see [13].

Notice that in scenario (a) the mixing (additive in covariates, multiplicative in
random effects) link was chosen for its property of maintaining the same form
when aggregated on higher levels (see Note 3). Thus, first, it makes the comparison
between traditional (25.1)–(25.3) and atom-based models “fair” (otherwise possible
limits of a traditional model might depend on how synthetic data have been
generated, while might not on its intrinsic capability). Second, such a choice
allows us to avoid ecological bias issues. Whilst, the customary log-link chosen
for scenario (b) can induce ecological bias issues (the same functional form may
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Table 25.1 Simulation study: scenario (a)

not be maintained at any level). So, we are given the opportunity for distinguishing
the performance of S�LAE from that of SˇLAE.

To compare the performance of O�HBi estimators, we compute a series of standard
measures out of R D 100 simulated samples: relative bias (rb) and absolute
relative bias (arb), absolute relative error (are) and relative root mean squared error
(rE), efficiency (eff) and reliability (rel) of the standardly used efficiency indicator.
Details for their computation can be found in [14].

From the foregoing, the results shown here (Tables 25.1 and 25.2) refer to
scenarios where both the misaligned variable X and the nested covariates at finer
area level (z and w) are important auxiliary sources of information. Then, an
SAE traditional model, such as (25.1)–(25.3), might be unfit since it neglects the
auxiliary information X or, at best, includes it by merely using a “plug-in” method.
Moreover, the unit of analysis of a traditional model is set to a level not finer than
that defined by small areas. Last but not least, it fails to integrate direct large area
information.

In the tables best performance values have been framed though if misleading
the box is gray-filled. The other values are gray-colored where intensity grows
with worsening performance (by dividing, for each measure, the range of expec-
tation/median values into five equal intervals).



25 Spatial Misalignment Models for Small Area Estimation: A Simulation Study 277

Table 25.2 Simulation study: scenario (b)

Main outcomes of the selected simulation experiments are concisely listed below,
with possible explanations according to Authors’ opinion in italic. (For reading see
the table legend.)
– The T model without/with X plugged-in(1), as expected, gets the worst perfor-

mance scores.
– The T model with X plugged-in(2) gets far better scores than the coarser T

models (see bias), since the areal unit of analysis is set to a finer level than small
area, yet it performs worse than RA model (see either accuracy or reliability),
since it fails to properly account for the uncertainty related to this integration.

– Both the S�LAE and SˇLAE models have generally the best performance,
since, differently from the RA version, they integrate large area direct estimates
as well.

– S�LAE and SˇLAE models show equivalent results in scenario (a)
(Table 25.1) since here information is available on a spatial resolution not
“substantively” finer than atoms (thanks to a property of the mixing link, see
Note 3).

– The SˇLAE model improves on S�LAE one in scenario (b) (Table 25.2) as
it does not run into ecological bias issues here arising for being information
available on finer scale than atoms (the log-link fails to maintain the functional
form across aggregated levels)
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25.6 Concluding Remarks

We conclude by pointing out some relevant innovative aspects of the proposed class
of misaligned data models (in both versions) with respect to a traditional model for
SAE.

The proposed HB framework builds small area estimates (�i ) through aggrega-
tion (over �k’s), hence similar to the way survey estimates are generally obtained.
However, it integrates any source of potentially important information within a
full probability model, thus formally combining the multiple sources of variation
within a global analysis. Sources of information are those traditionally incorporated
into a SAE model, such as small area direct estimates (di ), auxiliary variables
(zk), (possibly) synthetic estimates (Sk). Furthermore, the atom-based models here
proposed allow for misaligned supplementary variables (Xk) and large area direct
estimates (dp) being incorporated as well, properly accounting for the uncertainty
related to this integration.

Finally, traditional model-based estimators do not generally benchmark to
reliable direct survey estimates for large areas (the construction of benchmarked
estimators is currently an active thread of SAE research, see e.g. [9, 11, 15]).
While the proposed atom-based models have the desirable property of automatic
benchmarking to large area estimates.
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26Scrambled Response Models Based
on Auxiliary Variables

Pier Francesco Perri and Giancarlo Diana

Abstract
We discuss the problem of obtaining reliable data on a sensitive quantitative
variable without jeopardizing respondent privacy. The information is obtained
by asking respondents to perturb the response through a scrambling mechanism.
A general device allowing for the use of multi-auxiliary variables is illustrated
as well as a class of estimators for the unknown mean of a sensitive variable.
A number of scrambled response models are shown and others discussed in terms
of the efficiency of the estimates and the privacy guaranteed to respondents.

Keywords
Privacy protection • Regression estimator • Sensitive variable

26.1 Introduction

Posing direct questions on private and confidential topics such as gambling,
alcoholism, sexual behavior, abortion, drug taking, tax evasion, illegal income, and
so on can cause embarrassment or fear of social disapproval to respondents. Even
when the interviewers do their best to guarantee confidentiality, subjects can be
skeptical and may be reluctant to supply truthful answers.
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To reduce the rate of nonresponse and minimize the underreporting of embar-
rassing, threatening, or even incriminating behaviors, survey statisticians have
developed a number of procedures which ensure interviewee anonymity or, at least,
a high degree of confidentiality. When sensitive topics are surveyed, researchers
often use self-administered questionnaires with paper and pencil, computer-assisted
self-interviews, or Internet-delivered interviews. An entirely different approach
for eliciting information on sensitive data while ensuring respondent privacy
protection is the interviewing procedure pioneered by Warner [21] and known as
the Randomized Response (RR) technique. The rationale of the technique is simple:
respondents are instructed to give partially misclassified (or perturbed) responses by
using a randomization device, such as a dice, coin, spinner, or a deck of cards. For
instance, let us consider a population divided into two mutually exclusive groups:
one group with a stigmatizing attribute A (e.g., tax evader) and the other without
such a characteristic. Then, under Warner’s procedure a deck of cards is used as
randomization device to collect information. A proportion p ¤ 0:5 of cards is
marked with the statement “I posses the sensitive attribute A”, the others are marked
with the complementary statement “I do not posses the sensitive attribute A”. The
respondents are requested to draw a card, note its mark unseen by the enquirer and
say “yes” if the statement on the card matches their true status, “no” if there is
mismatch. Since the interviewer does not know to which type of card the “yes”
or “no” refers to, the use of the mechanism ensures that respondents cannot be
identified on the basis of their answers.

Different studies have assessed the validity of RR methods and shown that these
can significantly outperform conventional data collection methods (see, e.g., [13,
20]). In the Netherlands, there is a well-established tradition of the use of RR data
collection in official surveys mainly concerned with measuring the prevalence of
fraud, especially in the area of disability benefits (see [14]). However, many authors
use RR techniques in a wide range of empirical studies. Among others, Lara et al.
[12] have recently estimated the prevalence of abortion in Mexico; van der Heijden
and Böckenholt [19] discussed applications of the methodology in e-commerce;
Ostapczuk et al. [15] and Krumpal [11] treated the issue of xenophobia and anti-
semitism in Germany, while Arnab and Singh [1] measured the impact of AIDS
infection in Botswana.

Standard RR methods are used primarily in surveys which require a “yes” or
“no” response to a sensitive question, or a choice of responses from a set of nominal
categories. The purpose is to estimate the proportion of people bearing a sensitive
characteristic (see, e.g., [5]). Nevertheless, there is a growing amount of theoretical
literature dealing with situations where the response to a sensitive question results
in a quantitative variable and the interest is on the estimation of the mean (total) of
the sensitive variable. Consider, for instance, the problem of estimating the average
personal income or the number of fraudulent acts and see Gjestvang and Singh [9]
for a recent application to the estimation of average GPA of students at St Cloude
State University. In these cases, people are asked to scramble the true response
algebraically by means of a coding mechanism.
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In the remainder of this chapter, we discuss a general approach for scrambling the
responses which takes into account the possibility of using multi-auxiliary variables,
and we show a class of estimators for the mean of a sensitive variable of interest.
The problem of evaluating the degree of privacy protection is also considered.

26.2 A Class of Estimators for the Sensitive Mean

Let P D f1; 2; : : : ; N g be a finite population of identifiable individuals and Y � 0
be a quantitative sensitive variable with mean and variance, E.Y / D �y and
V.Y / D �2y , assumed to be unknown.

In RR theory, many devices have been implemented to estimate �y . Most of
these use a coding mechanism of the response on Y in the sense that respondents
are requested to perturb the true value of Y algebraically through one or more
random numbers generated from known scrambling distributions. For instance,
Pollock and Bek [16] considered the additive/multiplicative models which involve
the respondents adding/multiplying the answer to the sensitive question by a random
number from a known distribution. The multiplicative model was later taken up
and investigated in depth by Eichhorn and Hayre [8]. Gupta et al. [10] introduced
an optional randomized response technique which is more efficient than Eichhorn
and Hayre’s scrambled device. Bar-Lev et al. [2] generalized Eichhorn and Hayre’s
device by introducing a design parameter which is used for randomizing the
responses. Hereafter, we refer to coding procedures for quantitative variables as
Scrambled Response (SR) models.

Most of the SR models in the literature do not consider the possibility of getting
more accurate estimates of �y by using multi-auxiliary information directly at the
estimation stage. Here we discuss this possibility in a design-based set-up when a
k-vector of nonsensitive auxiliary variables, say X D .X1; : : : ; Xk/

0, correlated to
Y , is available. Alternatively, a model-assisted approach could be followed as, for
instance, in Chaudhury and Roy [3]. Auxiliary variables of this type are not unusual
in many areas of social, clinical, and medical research where the researcher could
consider social, economic, or demographic information coming from administrative
sources or which are in the public domain. For instance, on studying people’s
income and tax evasion, we may consider variables such as the type of car, house
size, and neighborhood which are certainly nonsensitive but connected with the
people’s living standards.

Suppose that the vector �x of the auxiliary means is known and that the values
of Y [X] can be perturbed algebraically by means of positive scrambling variables
W and U [T and H] whose (marginal) distributions are known. The scrambling
variables are assumed to be mutually independent and also independent of Y [X].
Finally, let S D '.W;U; Y / and R D  .T;H;X/ denote the coded responses on Y
and X, respectively, according to the scrambling functions ' and  induced by the
coding device. See Diana and Perri [6, 7] and Table 26.1 for examples.

In our approach, to estimate �y , a sample of n individuals is selected from the
population and each respondent is asked to perform a Bernoulli trial with known
probability of success p. If this is successful, the respondent then gives the true
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values of Y and X; in case of failure the values S and R. Obviously, the interviewer
does not know the outcome of the Bernoulli experiment. Thus, the distribution of
the responses is

.Z;V/ D
�
.Y;X/; with probability p
.S;R/; with probability 1 � p:

(26.1)

Under this generic scheme, we consider the following class of unbiased estimators
of �y based on a SRSWOR sample f.z1; v1/; .z2; v2/; : : : ; .zn; vn/g of n responses

O�g D Nzd � c
h

; .h ¤ 0/ (26.2)

where Nzd D Nz C .�v � Nv/0b, Nz D Pn
jD1 zj =n and Nv D Pn

jD1 vj =n being unbiased
estimators of �z and �v, respectively; c and h are real constants such that
c C h�y DE.Nz/ that depend exclusively on the scrambling device adopted for
Y ; b D .b1; : : : ; bk/

0 is a vector of constants linked to the efficient use of
the auxiliary variables. In fact, setting b D 0 excludes the possibility of using
auxiliary information at the estimation stage and, thus, for fixed c and h, the
class boils down to the specific estimator (with Nzd D Nz) generated by the adopted
SR method. Therefore, equation (26.2) has the merit of including, under different
coding procedures, both classical estimators without supplementary information and
possible estimators based on auxiliary variables. Some simple estimators belonging
to the class are discussed in Sect. 26.4 as well as in Diana and Perri [6, 7].

Let � D .N � n/=n.N � 1/, ˙ D ˚
�vi vj

�k
i;jD1 and ˝ D f�zvi gkiD1, �:: being

the covariance between the variables indicated in the subscript. Then, the variance
of O�g is given by (see, e.g., [4])

V. O�g/ D �
�2z

h2
.�2z C b0˙ b C 2b0˝/: (26.3)

Minimization of (26.3) with respect to b is achieved for b D ˙�1˝ D fˇzvi gkiD1,
where ˇzvi denotes the partial regression coefficient of Z on Vi . With this choice,
the minimum variance bound is given by

V. O�g/min D �
�2z

h2
.1 � �2z:v/ (26.4)

where �2z:v D ˝ 0˙�1˝=�2z is the squared multiple correlation coefficient of Z
on V.

Expression (26.4) well emphasizes the role of the auxiliary variables in improv-
ing the accuracy of the estimates. As regard this, ��2z =h

2 is the variance of the
estimator which does not employ the k-vector X and .1��2z:v/ denotes the reduction
in the variance due to the use of X through the traditional regression estimator.
Therefore, the use of one or more auxiliary variables is certainly profitable.
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We note that the optimum coefficients ˇzvi are generally unknown and need
to be estimated. The ordinary least squares method provides consistent estimates
that can always be computed since they are based on the observed scrambled
responses provided by the sampled respondents. Obviously, OLS estimates based
on scrambled responses are less efficient than those obtained if the true values of
the sensitive variable are surveyed exactly. On this see Singh et al. [18].

The class we have introduced in a general framework is highly flexible since it
can be easily adapted to whatever perturbing response mechanism the researcher
decides to use for the sensitive problem at hand. Once the choice of the model has
been made, the coding functions ' and  assume an explicit form and the constant
c and h are defined. Table 26.1 summarizes a number of examples concerning
different specifications of the general SR model and gives the expressions for c
and h to estimate �y from (26.2). Note that the choice p D 0 excludes any
possibility of giving a direct response on Y , while for p 2 .0; 1/ responses on Y
can be partially perturbed. To evaluate the performance of a particular scrambling
scheme in terms of efficiency of the estimates we need to rewrite the following
expressions

�z D p�y C .1 � p/�s; �vi D p�xi C .1� p/�ri (26.5)

�2z D p�2;y C .1 � p/�2;s � �2z ; �2vi D p�2;xi C .1 � p/�2;ri � �2vi (26.6)

�vi z D p�xi y C .1 � p/�ri s C p.1 � p/.�y � �s/.�xi � �ri / (26.7)

�vi vj D p�xi xj C .1 � p/�ri rj C p.1 � p/ ��xi .�xj � �rj /C �ri .�rj � �xj /
�

(26.8)

where �2;: denotes the second moment of the variable indicated in the
subscript. The details have been omitted since most of these expressions, as
well as the guidelines for their derivation, can be found in Diana and Perri
[6, 7].

26.3 Respondent Privacy Protection

One relevant aspect, often underrated in RR theory, is the measure of respondent
privacy protection. An index used to measure privacy should indicate how closely
the original values of the perturbed sensitive variable Y can be estimated. The
closer these values, the higher the privacy disclosure. SR devices which ensure
high performance in terms of efficiency are usually less protective. Therefore, a
fair comparison of alternative scrambling strategies should necessarily take into
account both considerations of efficiency and privacy protection. Different ways
of measuring confidentiality are discussed in the literature and a brief review is
reported in Diana and Perri [7].
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Starting from the proposal by Zaizai et al. [22], we first consider the measure
 D E.Q � Y /2 D EdEr .Q � Y /2 where Ed and Er denote, respectively, the
expectations with respect to the sampling design and the scrambling device, and Q
is a randomized response unbiased estimator of the true value of Y . The magnitude
of deviation of the unbiased coded responseQi from the true undiscovered value Yi
determines the degree of protection to the i th respondent induced by the adopted SR
device. If  D 0 then privacy is completely jeopardized, in other words respondent
privacy has not been protected. Focusing, for simplicity, on scrambling methods
allowing us to obtain only coded sensitive responses (i.e., p D 0 and Z D S in
(26.1)), it follows thatQ D .S �c0/=h0 where c0 and h0 denote the expressions for
c and h when p D 0. Therefore, the  measure can be expressed as

 D E

�
S � c0

h0
� Y

�2
D EpEr

�
S � c0

h0
� Y

�2
: (26.9)

After some algebra, we get the form

 D h20�2;y � 2h0�ys C 2c0h0�y C �2;s � 2c0�s C c20

h20
(26.10)

which can be adapted to a given coding method by means of an appropriate
specification of the constants c0 and h0, as well as the moments involved.

26.4 Comparisons

For illustrative purposes, we consider the following simple SR models which are
taken as a starting point for the analysis of more complex devices

Author Model Coded response Z Estimator

Pollock and
Bek [16]

Additive Y C U O�PB D Nz� �u

Eichhorn and
Hayre [8]

Multiplicative YW O�EH D Nz=�w

Saha [17] Mixed 1 W.Y C U/ O�1 D .Nz=�w/� �u

Diana and
Perri [6]

Mixed 2 W Œ˛U C .1� ˛/Y � O�2 D .Nz� ˛�w�u/=.1� ˛/�w

Diana and
Perri [6]

Mixed 3 �.Y C U/C .1� �/W Y O�3 D .Nz� ��u/=Œ� C .1� �/�w�

At this stage, we assume that no auxiliary variable is involved. Considerations
on the performance of these models are detailed in Diana and Perri [6] where it is
shown that, when �2;y > �2uC

�2
w , with C: denoting the coefficient of variation of

the variable indicated in the subscript, and for � minimizing V. O�3/, the following
ordering is valid
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V. O�1/ � V. O�2j˛/ > V. O�EH/ > V. O�PB/ > V. O�3/ for 0 < ˛ � 0:5

V. O�2j˛/ > V. O�1/ > V. O�EH/ > V. O�PB/ > V. O�3/ for 0:5 < ˛ < 1:

For the above models, the  measure takes the form

PB D �2u ; EH D �2;yC
2
w; 1 D �2;ulw C �2;y.lw � 1/� �2u

2 D 1 C .2˛ � 1/aC 2˛.1 � ˛/b

.1 � ˛/2
�u; 3 D �2;y�

2
w�

2
u

�2w�
2
u C �2;y�2w

where a D �u.lulw � 1/ and b D �y.lw � 1/ with lu D �2;u=�
2
u, lw D �2;w=�

2
w.

Comparing the measures we find that the multiplicative model is more protective
than the additive one if the condition �2;y > �2uC

�2
w holds, while 1 is always

greater thanEH since1 �EH D lulw � 1: Similarly, it can be demonstrated that
PB > 3. Therefore, the following ordering holds:1 > EH > PB > 3. Note
that the variances are ordered in the same manner but with an opposite meaning:
the more protective the method, the less efficient the estimator. The analysis for the
privacy protection induced by the mixed 2 model is not so straightforward. It can be
proved, however, that2 is an increasing function of ˛ in .0; 1/ with lim

˛!1�
2 D 1

and 2 D EH for ˛ D 0. Then 2 > EH > PB for ˛ 2 .0; 1/. Moreover, a
value of ˛ exists, say ˛0 D .aCb�p

a2 C b2/=2b in the interval .0; 0:5/, such that
2 D 1 and 2 > 1 Œ2 < 1� for ˛ > ˛0 Œ˛ < ˛0�. From efficiency
considerations, it follows that for ˛ 2 .˛0; 0:5/ the mixed 2 model outperforms
mixed 1 model both in efficiency and privacy protection.
We note that the additive and multiplicative models are perfectly equivalent in terms
of efficiency and privacy protection when �2;y D �2uC

�2
w .

The results given in (26.9) and (26.10) can be easily extended to the case where
p 2 .0; 1/ and, thus, a direct response on Y is possible. In this situation we find

 D .1 � p/E

�
S � c0

h0
� Y

�2
which well emphasizes the (unsurprising) fact that privacy is less protected when a
direct response is allowed.

When the k-vector X of auxiliary variables is used, the variance of the estimators
decreases according to expression (26.4), while the confidentiality of the respon-
dents is expected to decrease as well. This aspect is not captured by the  measure.
To overcome this drawback, we extend here the measure proposed by Diana and
Perri [7] and consider the following

� D 1 � �2y:vz; (26.11)

�y:vz being the multiple correlation coefficient of Y on the coded response variable
and the coded auxiliary variables. This is a normalized and intuitive measure since,
according to the literature on the topic, it indicates how closely the true values of
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the sensitive variable can be estimated by the perturbed ones. Maximum privacy
protection is attained when � D 1 since �2y:vz D 0. On the contrary, as � approaches
zero, privacy protection declines and respondents are expected to become less
collaborative. Besides the elements given in (26.5) and (26.6), the determination
of the � measure requires additional calculations for the covariance terms, namely

�yvi D p�xi y C .1 � p/�yri ; �yz D p�2y C .1 � p/�ys :

When no auxiliary information is used, from (26.11) we get � D 1 � �2yz which
reduces to

� D 1 � h2 �
2
y

�2z

if the variable Y is linearly perturbed whatever p 2 .0; 1/. The considered models
meet this requirement of linearity. Therefore, from (26.4), the more efficient the
estimates, the less protective the coding procedure.

For illustrative purposes, let us suppose information on X is directly collected
and the sensitive response scrambled by the aforementioned SR models (p D 0 and
Z D S ). Then, after some algebra, we get

� D 1 � �2xy C �2ys � 2�xy�ys�xs

1 � �2xs
D 1 � a C .1 � 2a/�2xy

1 � a�2xy
(26.12)

where a D h0�
2
y=�

2
s .

Finally, when a direct response on Y is allowed with probability p 2 .0; 1/, the
privacy can be still measured through � in (26.12) by considering h instead of h0 in
a. Additionally, privacy can be better guaranteed by means of a suitable choice of
p. For instance, the response model

Z D
�
Y; with probability p
S D Y C U; with probability 1 � p

is more protective (in the � sense) than the simple model Z D Y C U when
p < 2 � lu. If the scrambling variable U is chosen such that lu > 2, then the
condition is never met and respondent confidentiality can be increased by avoiding
direct questioning.

26.5 Discussion and Final Remarks

The idea of releasing algebraically perturbed data rather than the exact values of
a quantitative variable can be particularly useful to combat deliberate misreporting
or untruthful responses when people are surveyed on sensitive issues. The chapter
shows how to treat scrambled response models in a general framework in order
to estimate the mean of a sensitive variable when auxiliary variables are available
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and are used directly at the estimation stage provided that correlation with the
study character can be assumed. The superiority of estimators based on auxiliary
information is clearly shown, whatever the adopted scrambling procedure.

One relevant aspect when dealing with coding methods is the degree of privacy
protection assured to the respondents. Methods which produce highly efficient
estimates tend to be more intrusive and jeopardize privacy to a much greater extent.
The key issue, when choosing a model, is to find a right trade-off between privacy
protection and efficiency in the estimates. In practical situations, the choice among
different models is not always easy and may deserve special attention since it
depends to a greater extent on the problem at hand. See on this the simulation studies
given in Diana and Perri [6, 7]. However, the issue of how to measure the degree of
privacy protection correctly still remains a matter of concern. Different measures
are discussed in the literature, two of which are mentioned in the chapter. One
important problem is that the measures can yield different conclusions and do not
always allow us to capture certain relevant aspects such as the effect of the auxiliary
information. Moreover, even if they can provide the researcher with an indication
of privacy disclosure, it is questionable whether the respondents themselves are
able to measure the extent of privacy disclosure offered by a scrambling design.
Whatever the privacy measure, respondents usually have a subjective impression
regarding disclosure which can be higher or lower than that measured by an index.
In this sense, an empirical study would certainly be useful to ascertain and quantify
the difference between the perceived and measured degree of respondent privacy
protection. Finally, since respondents cannot fully appreciate the level of privacy
protection ensured by a scrambled response method, researchers may be more
inclined towards designs allowing more efficient estimates rather that ones that offer
high protection in theory. On the other hand, simple coding mechanisms should
be preferred since it may not be easy to understand how to perturb the responses
algebraically. This may be a limitation for the application of the scrambled methods
since their correct execution can only be performed by highly educated people
unless computer support is provided.

To conclude we observe that no complete investigation on SR models can leave
two standard survey issues out of consideration. The first refers to the assessment
of the accuracy of the estimates via variance estimation. The second is related
to the extension of existing models to more complex designs such as unequal
probability sampling, multistage sampling, stratified random sampling, and small
area estimation. We hope that future investigation can shed light on these key issues.
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27Using Auxiliary Information and
Nonparametric Methods in Weighting
Adjustments

Emilia Rocco

Abstract
Weighting adjustments are commonly used in survey estimation to compensate

for unequal selection probabilities, nonresponse, noncoverage, and sampling
fluctuations from known population values. Over time many weighting methods
have been proposed, mainly in the nonresponse framework. These methods
generally make use of auxiliary variables to reduce the bias of the estimators
and improve their efficiency. Frequently, a substantial amount of auxiliary
information is available and the choice of the auxiliary variables and the way in
which they are employed may be significant. Moreover, the efficacy of weighting
adjustments is often seen as a bias–variance trade-off. In this chapter, we
analyze these aspects of the nonresponse weighting adjustments and investigate
the properties of mean estimators adjusted by individual response probabilities
estimated through nonparametric methods in situations where multiple covariates
are both categorical and continuous.

Keywords
Bias–variance trade-off • Nonresponse • Quasi-randomization inference

27.1 Introduction

Estimation in sample surveys is carried on mainly by attaching weights to observed
data and then computing the weighting summation. The weights are generally
developed in a series of stages to compensate for unequal selection probabilities,
nonresponse, noncoverage, and sampling fluctuations from known population
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values. In the first stage of weighting for unequal selection, the base weights
are usually readily determined from selection probabilities. Conversely, all their
subsequent adjustments involve models or assumptions of some kind, either explicit
or implicit, and make use of auxiliary information. Thus their efficacy in terms of
bias and/or variance reduction depends on the validity of the assumed model and
the choice of auxiliary variables.

In the remainder of the chapter we just consider the adjustments for nonresponse.
Their essence is to increase the weights of the respondents so that they represent
the nonrespondents. The respondent base weights are increased by a multiplying
factor given by the reciprocal of the estimated response probabilities. A critical
step in this procedure is the estimation of the response probabilities. This step
is usually carried out under the assumption that, after conditioning on a set of
covariates, the response mechanism is missing at random (MAR). Therefore, the
response probabilities are estimated under explicit or implicit models linking the
response occurrences to the auxiliary variables. The most common method used to
estimate them is the weighting within cell (WWC) method, where respondents and
nonrespondents are classified in adjustment cells based on covariate information
known for all the sample units, and for all cases in a cell the response weight is
calculated as the reciprocal of the response rate in that cell. Another popular way to
estimate the individual response probabilities is by fitting a parametric model, such
as logistic, probit, or exponential. An alternative, less-known approach is through
kernel regression method. The kernel type-smoothing method in the nonresponse
context was first proposed by Giommi [5] as an alternative to the WWC method
when no clearly identifiable “weighting cells” exist. He suggested turning the idea
of homogeneity within “weighting cells” into the idea that pairs of units with similar
values of an auxiliary variable have similar response probabilities. For each unit in
the sample a group of nearest neighbors is identified and the response probability is
estimated as the proportion of response units in the group. The resulting estimator of
the response function is a running mean of the response indicators but it can also be
viewed as a kernel smoother in the form of the Nadaraya–Watson estimator. Giommi
[6] extends this estimator using more general Kernel functions, and his results have
been further investigated by Niyonsenga [17, 18]. Both authors used the estimated
response probabilities to adjust the regression mean estimator. More recently,
Da Silva and Opsomer [3] used the response probabilities estimated through the
Nadaraya–Watson estimator to adjust the Horvitz–Thompson mean estimator and
the ratio-adjusted mean estimator (Hàjek estimator), and obtained several properties
of these two estimators. Da Silva and Opsomer [4] extended these results to the
estimation of the response probabilities by local polynomial regression. In this
chapter, for the three response probability estimation methods quoted above (WWC,
parametric estimation (PE), kernel regression estimation (KRE)), we first discuss the
characteristics that a covariate used in the weighing adjustment process must have
so that the adjustments are effective in reducing both the bias and the variance of
the unweighted estimator. Then, the three methods are empirically contrasted for
different scenarios, some using a unique continuous covariate and others using two
mixed type covariates. However our main interest is to evaluate the nonparametric
approach in the multiple covariate case since it has not been investigated so far.
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27.2 Framework for the Sampling Design and Response Model

Let U be a finite population of N units labeled i.i D 1; : : : ; N / and let the
population mean Y D P

i2Uyi=N the parameter of interest, where yi is the
value of the study variable for unit i . A sample s of n units is drawn from U

according to a sampling design p.s/; let �i be the inclusion probability of unit
i for all i 2 U . When nonresponse occurs the yi ’s values are only observed on
a subset r � s of nr.nr � n/ respondents, and to account for the information
lost in the estimation of the parameters of interest, it becomes necessary to model
the response process. To this end, a response indicator, Ri , is defined assuming
value one if the unit i responds and zero otherwise. The distribution of the vector
.Ri W i 2 s/ is called response mechanism and needs to be modeled. We will
keep the response mechanism quite general. More specifically, we assume that the
response mechanism is MAR given a vector of q auxiliary variables x correlated
both to nonresponse and to y and fully observed throughout the sample. Moreover,
we assume that, given the sample, the response indicators are independent random
variables with: Pr.Ri D 1ji 2 s; y; x/ D �.xi / 	 �i , for all i 2 U where
the exact form of �.:/ is unspecified, but it is assumed to be a smooth function
of xi , with �.:/ 2 .0; 1� . If all the response probabilities were known, the
theory of two-phase sampling would lead us to use the following as possible mean
estimators:

ONy� D
X

i2S yi�
�1
i '�1i Ri=N or

ONy D
X

i2S yi�
�1
i '�1i Ri=

X
i2S �

�1
i '�1i Ri (27.1)

which are the Horvitz–Thompson and the Hàjek estimators adjusted to com-
pensate for nonresponse [14]. The second, although not unbiased, is usually
preferred as it is location-scale invariant and generally more efficient. Actu-
ally, both formulas in (27.1) are unfeasible as the response probabilities are
unknown.

So we need to replace �i with their estimates O�i , satisfying 0 < O�i � 1. The
resulting estimators are:

ONy� D
X

i2S yi�
�1
i O'�1i Ri=N or

ONy D
X

i2S yi�
�1
i O'�1i Ri=

X
i2S �

�1
i O'�1i Ri : (27.2)

In order to implement the expressions in (27.2), it is necessary to estimate the
response probabilities �i . Since the WWC method and the PE method are well
known and extensively present in literature (among others [9, 15]), we only
describe the KRE method here to estimate the response probability. When auxiliary
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information consists of a scalar continuous variable x, the Kernel regression
estimator (or local constant regression (LCR) estimator) of response probability
assumes the following expression:

O�i D
X
s

K
�xj � xi

h

�
Rj =

X
s

K
�xj � xi

h

�
(27.3)

where K.:/ denotes the kernel function and h is referred to as the bandwidth.
The possibility of generalizing this approach in the case of a vector of q auxiliary
variables lies in the use of a “generalized product kernel function”:

K1

�
xj1 � xi1
h1

�
�K2

�
xj2 � xi2

h2

�
� : : : �Kq

�
xjq � xiq

hq

�
(27.4)

i.e., the product of q univariate kernel function. Each one may be a continuous
data kernel function, a categorical ordered data kernel function, or a categorical
unordered data kernel function. Moreover, Da Silva and Opsomer [4] generalized
the kernel regression estimator in (27.3) with the estimation of the response
probability by local polynomial regression (general pth order). In other words, they
suggested a more general estimator based on minimizing the following expression:

min
fb0;b1;:::bpg

nX
jD1

�
Rj � b0 � b1.xj � xi / � : : : � bp.xj � xi /

p
	2
K
�xj � xi

h

�
(27.5)

We refer to [4] for the detailed description of this estimator. Its expression is
already cumbersome in the case of only one continuous variable. For polynomial
of order 1, that is, for local linear regression (LLR), Li and Racine [11] in a more
general context suggested the extension to the case of more mixed continuous
and discrete variables. The extension is based on the generalized product kernel
function, and it actually treats the continuous regressors in a local linear fashion and
the discrete regressors in a local constant one. We refer to [11] and [12, Chap. 4] for
a description. Their idea is applied here to estimate nonresponse probability in the
presence of mixed discrete and continuous covariates.

27.3 Weighting Nonresponse Adjustments and Bias–Variance
Trade-Off

A widespread view in the survey sampling literature is that the nonresponse
weighting methods aim at reducing nonresponse bias at the expense of an increase
in variance. Kalton e Kasprzyk [8] and Kish [10], among others, define the
effectiveness of nonresponse weighting adjustments as a trade-off between bias
reduction and variance increase. Kish also gives a measure of this loss of precision
that is F D 1 C CV2.wi/, where CV2.wi/ is the coefficient of variation of the
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weights wi D ��1i . The measure F represents the multiplying factor that is applied
to the variance of a survey estimate due to the variability in the weights in the
situation where equal weights are optimal. According to Little and Vartivarian
[15], this view is an oversimplification, nonresponse weighting can in fact lead to
a reduction in variance as well as in bias. The fact that nonresponse weighting
can reduce variance is also implicit in [16], and noted in [13] and in Holt and
Smith [7]. Some other authors, including Rosenbaun [19] and Beaumont [2], noted
that the weighted adjusted estimator using the estimated response probability may
be more efficient than the estimator using the true response probability. This last
result is known as “super efficiency.” Actually, the question concerns the relation of
the auxiliary information used in the estimation of the response probability with
both the nonresponse mechanism and the outcome of interest. We address this
question explicitly here for the WWC, PE, and KRE response probability estimation
methods.

Kim and Kim [9] show for the PE method that when the response probability
is estimated using a parametric maximum likelihood method, not only the bias
of the weighted estimator is reduced but its efficiency is also generally improved
more than that of an estimator which uses the true response probability, since it
incorporates the additional information contained in the auxiliary variables used in
the response model.

For the WWC method, Little and Vartivarian [15] propose an equation that
captures the bias and variance components if the adjustment cell variables are related
to the study variables and if they are not related. From said equation it is evident
that:
1. A substantial bias reduction requires adjustment cell variables that are related to

both nonresponse and outcome variables.
2. Cell variables only related to the nonresponse increase the variance by the Kish

multiplying factor without any reduction in bias.
3. Cell variables only related to the study variable tend not to have any impact on

the bias but reduce variance as far as they are good predictors of the outcome
variable.

4. If the adjustment cell variables are good predictors of both the nonresponse
mechanism and outcome variables, weighting tends to reduce both bias and
variance.

The negative effect on the variance of the weights variability is also present in the
situations defined in bullet points 3 and 4, but it is generally less than the positive
effect of a good predictor of the study variable.

The leading idea is that some of the considerations listed in points 1 - 4 can
be extended to the case of overlapping classes that are the starting point of KRE
methods.

As regards point 1, we can argue as follows: suppose that for each respondent
a group of neighbor units is identified on the basis of a covariate x. In this case, if
xi is the value of x for the respondent i , the group of units centered on i contain
all units j 2 s for which jxj � xi j � h with h fixed. We let ni and nir be the
number of sampled and respondent units in that group respectively. Then, assuming
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that units are selected by simple random sampling, the weighted and the unweighted
(or naive) mean estimators are respectively:

Nyw D
X

i2r
yi

n

ni

nir
D
X

i2r
yi

nr

ni

nir

nr

n
and

Nyr D
X

i2r
yi

nr
D
X

i2r
yi

n

n

nr
(27.6)

The construction of the groups of neighbors with respect to variable x is equivalent
to sorting the units with respect to x and allows us to consider the terms nir=ni
as a running mean of the response indicators. If we assume that the conditional
distribution of y given x D xi and Ri D 1 has mean �ir , then, conditional to
D D fn; nr; .ni ; nir/i 2 rg , the means of Nyw and Nyr are:

EŒ NywjD� D
X

i2r
�ir

n

ni

nir
D Q�r andEŒ Nyr jD� D

X
i2r

�ir

nr
D �r (27.7)

Moreover, by neglecting the difference between the weights and their expectation,
the bias reduction may be expressed as:

b. Nyr/� b. Nyw/ D
X

i2r
�ir

nr

�
1 � ni

nir

nr

n

�
(27.8)

and this difference is zero if either nonresponse is unrelated to x (in this case
ni=nir 
 .nr=n/

�1/ or y is unrelated to x (in this case �ir 
 �r 8i and asP
i2r

ni
nir


 n then b. Nyr/ � b. Nyw/ D �r � �r
n

P
i2r

ni
nir


 0/. Thus, also in the
case of overlapping classes, a substantial bias reduction requires that the variable
used to identify the neighborhoods be related to both the nonresponse mechanism
and the outcome variable.

With regard to the effect of weighting on the variance, even if detailed analytical
proof is not shown here, it can be noted that also in the case of overlapping classes
as shown by Little and Vartivarian [15] for those not overlapping, the effect of
weighting on the variance may be measured as V. Nyr/ � V. Nyw/ , and this difference
may be expressed as the sum of two terms: V1 equal to the difference among the
variances of the conditional expectations of the two estimators and V2 equal to
the difference among the expected values of their conditional variances. With a
few simplifying assumptions, including the equality between the weights and their
expectation and the constant variance (�2) of the conditional distribution of y, it
is possible to write: V1 D P

i2r 1
nr
.�ir � �r/

2 nr
n

� P
i2r 1n .�ir � Q�r/2 nir

ni
and

V2 D ���2, where � is the population analog of the variance of the response
weights ni =nir. If the covariate x is only related to the nonresponse V1 
 0 and
V2 < 0 and therefore the variance of the weighted estimator increases. If the
covariate x is related to the study variable, V1 is positive, and it is more likely for
its size to compensate the negative effect of V2 .V2 � 0 and tends to zero when x
is not related to the nonresponse), therefore the variance of the weighted estimator
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decreases. In the next section the empirical results already show these properties:
the KRE method, as well as the logistic method and WWC method, tends to reduce
both the bias and variance of the mean if it uses covariates that are good predictors
of both the nonresponse mechanism and the outcome variable.

27.4 Simulation Study

Several Monte Carlo experiments have been performed in order to compare the
LCR and the LLR estimators of response probabilities with the two more common
response probability estimation methods: WWC and the logistic regression method.
In the first setting a unique continuous covariate x1 � Uniform.0; 1/ is considered
and two outcome variables are generated: y1 D 20 C 60x1 C "1 and y2 D 25 C
135.x1 � 0:5/3 C "2, where "1 � N.0; 16/ and "2 � N.0; 6:25/ . For both
populations, nonresponse is generated according to two response functions of x1 W
�1.x1/ D �ˇ0x21 Cˇ1x1Cˇ2 and �2.x1/ D exp.ˇ3Cˇ4x1/.1Cexp.ˇ3Cˇ4x1//�1
where the coefficients ˇ0; : : : ; ˇ4 are chosen so that the response rate is equal to
approximately 0.7.

In the second setting we consider three different pairs of covariates: (1) x1 �
Uniform.0; 1/ plus an indicator variable x2; (2) x1 � Uniform.0; 1/ plus a
categorical variable x3 with four categories; (3) x1 � Uniform.0; 1/ plus a discrete
variable x4 assuming four values. In case 1, two outcome variables are generated:
y3 as a linear function of x1 with different parameters in the two subpopulations
identified by x2, and y4 as the quadratic function of x1 with different parameters
in the two subpopulations identified by x2. In case 2, an outcome variable y5
is generated as a linear function of x1 with four different sets of parameters
corresponding to the four categories of x3. In case 3, an outcome variable y6 is
generated as a linear function of x1 � x4. For all four populations, nonresponse is
generated according to two response functions �3 and �4 equivalent to �1 and �2
respectively but with different parameters corresponding to the two categories of x2
or to two groups of categories of x3 or of x4. In all cases the response rate for the
entire population is equal to approximately 0.7 and varies at the most between 0.65
and 0.75 for the two subpopulations corresponding to different parameters of the
response function.

For each combination of the population model and response mechanism, the
simulation procedure consists of the following steps:
1. Select a simple random sample of 300 units (population size is N D 3000)
2. Perform a Bernoulli trial for each unit i 2 s with probability �i .i D 1; 2; 3; 4/

for “success” (response) and .1 � �i / for “failure” (nonresponse)
3. Compute the second expression in (27.2) on the set of respondents to obtain the

following weighted estimators of the mean:
T0 : adjusted with true response probabilities
T1 : adjusted with response probabilities estimated through LCR
T2 : adjusted with response probabilities estimated through LLR
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Table 27.1 Percentage biases of weighting-adjusted mean estimators

Response
functions Outcomes T0 T1 T2 T3 T4 T5

�1 y1 � 0.015 0.458 � 0.042 0.272 0.050 2.664
�1 y2 � 0.005 0.374 � 0.040 0.249 � 0.051 1.822
�2 y1 � 0.009 � 0.981 � 0.073 � 0.017 � 0.076 � 7.432
�2 y2 � 0.005 � 0.795 � 0.041 � 0.011 � 0.093 � 5.076
�3 y3 0.093 0.994 0.022 0.166 0.673 7.717
�3 y4 0.021 0.658 0.203 � 0.237 0.167 4.405
�3 y5 0.042 0.793 0.191 � 0.078 1.316 5.255
�3 y6 0.074 1.908 1.060 0.565 2.063 8.734
�4 y3 � 0.010 � 1.102 � 0.218 0.729 � 0.458 � 7.297
�4 y4 � 0.028 � 0.452 0.026 0.073 � 0.320 � 3.122
�4 y5 � 0.019 � 0.735 � 0.135 0.313 � 1.378 � 4.519
�4 y6 � 0.011 � 0.731 0.113 � 0.965 � 1.723 � 5.011

T3 : adjusted with response probabilities estimated through a logistic model
T4 : adjusted with response probabilities estimated with the WWC method
T5 : adjusted with O�i D 1; i 2 s (naive estimator)

4. Repeat steps 1–3 10,000 times.
For the first two populations, all the four response estimation methods use the unique
covariate x1. For y3 and y4, the pair (x1; x2) is used. For y5 and y6, the pairs
.x1; x3/ and .x1; x4/ are used respectively. In the local regression methods, x2 and
x3 are considered as factors, whereas, for x4, an ordered kernel function is used.
For the WWC method the cells are identified in the univariate case by the deciles
of the distribution of x1 and in the bivariate case by crossing x1 (first categorized
using the quartiles) with x2; x3, and x4, respectively. In the KRE methods other
choices in estimator settings concern the kernel functions and the selection criterion
of the bandwidths: the Epanechikov kernel function is used for x1, the Aitchison
and Aitken kernel function [1] is used for x2 and x3, and the Wang and van Ryzin
kernel function [20] is used for x4, in all cases the bandwidths are selected through
the least-squares cross-validation method.

The experimental results are reported in Tables 27.1 and 27.2: for each com-
bination of population and response mechanism Table 27.1 gives the relative bias
which is the bias divided by the population mean percent. Table 27.2 shows the
corresponding empirical mean square errors (MSE). It is immediately evident that
in all the scenarios each weighting adjustment method successfully reduces the bias
and the MSE of the unweighted (naive) estimator. In the single covariate scenarios:
(a) all the weighted estimators using estimated response probabilities also show a
lower MSE than T0; (b) moreover, among these, T1 is the worst in both bias and
MSE, T2 and T4 are almost equivalent, both in the bias and in the MSE, and T3
shows better bias performance than T2 and T4 for response mechanism �2, while it
is worse for response mechanism �1, and for both response mechanisms it is almost
equivalent to T2 and T4 in the MSE. For scenarios with two covariates: (a) for all
populations, when the response mechanism is �2, T2 appears the best both in the
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Table 27.2 Empirical mean square errors of weighting-adjusted mean estimators

Response
functions Outcomes T0 T1 T2 T3 T4 T5

�1 y1 1.596 1.022 0.946 0.937 0.944 3.031
�1 y2 0.262 0.173 0.154 0.157 0.161 0.396
�2 y1 1.582 1.227 0.952 0.955 0.943 14.903
�2 y2 0.254 0.208 0.162 0.178 0.160 1.802
�3 y3 1.488 1.112 0.856 0.880 0.964 13.596
�3 y4 0.588 0.522 0.387 0.387 0.377 6.525
�3 y5 1.016 0.848 0.645 0.621 1.193 9.410
�3 y6 1.040 1.282 0.877 0.739 1.374 12.346
�4 y3 1.392 1.137 0.851 0.977 0.894 12.278
�4 y4 0.637 0.456 0.378 0.394 0.413 3.456
�4 y5 0.975 0.814 0.629 0.678 1.282 7.117
�4 y6 1.192 0.848 0.746 0.864 1.167 4.580

bias and the MSE; (b) when the response mechanism is �1; T2 still appears the best
in two scenarios, in one scenario T3 is the best and in another the best is T4; (c) for
all scenarios the MSE of T2 and T3 is lower than that of T0, whereas this behavior is
not always valid for T1 and T4.

Another simulation experiment, not reported here, considers a situation with two
covariates z1 and z2 and two outcomes, one a function of z1 and the other a function
of z2 and a response mechanism which depends on both z1 and z2. If the response
probability is estimated only using z1, all the weighting estimators work “well”
both in bias and in MSE for the outcome function of this covariate, but they are
more biased and more variable than the unweighted estimator for the other outcome
variable.

27.5 Conclusions

Both the theoretical considerations in Sect. 27.3 and the empirical results in
Sect. 27.4 show that the most important aspect in weighting methods is the choice
of auxiliary information. This is to some extent an expected result, but here we also
shed light on several features than could at times be hidden in the shadow of the
real-life applications. Two main results stem from our simulation study. First, when
the set of auxiliary information is related to both the nonresponse mechanism and
the outcome variable, all the examined weighting estimation methods are effective
in reducing both the bias and the variance of the basic and unweighted estimator
of the mean. Moreover, they may also be more effective in reducing MSE than
the method based on the true response probability. Therefore we must admit that
there is no evidence of a bias–variance trade-off from using or not using a weighting
method. Second, given the set of auxiliary variables, the bias–variance trade-off may
regard the choice among different weighting methods since an inverse relationship
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between the bias reduction and the variance reduction can sometimes be observed.
When there are several outcome variables and the same weights are applied to them
all, the problem can become more complicated. Some variables may be unrelated to
the response mechanisms and for these variables the unweighted estimator should
be better. Moreover, to include all the relevant information in a weighting estimation
method may be “difficult” and produce more unstable response probability
estimations. With respect to the comparison between nonparametric and other
estimation methods, the empirical results show that the LLR method could be
an appealing alternative, especially in the multivariate case. Nevertheless, further
research is needed since when the number of auxiliary variables increases, the
application of the LLR may become very complex. Finally, we cannot rule out the
possibility that other nonparametric models such as generalized additive models,
not explored here, could give rise to more effective results.
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28Open Source Integer Linear Programming
Solvers for Error Localization in Numerical
Data

Gianpiero Bianchi, Renato Bruni, and Alessandra Reale

Abstract
Error localization problems can be converted into Integer Linear Programming
problems. This approach provides several advantages and guarantees to find a
set of erroneous fields having minimum total cost. By doing so, each erroneous
record produces an Integer Linear Programming model that should be solved.
This requires the use of specific solution softwares called Integer Linear
Programming solvers. Some of these solvers are available as open source
software. A study on the performance of internationally recognized open source
Integer Linear Programming solvers, compared to a reference commercial solver
on real-world data having only numerical fields, is reported. The aim was to
produce a stressing test environment for selecting the most appropriate open
source solver for performing error localization in numerical data.

28.1 Introduction

In many statistical data collection, data can be affected by errors, i.e. alterations of
some of the values. Errors can be due to the original answer or introduced at any
later stage of data conversion or processing. Automatic procedures for finding and
correcting errors are nowadays necessary, especially in the case of large datasets.
Data are generally organized into conceptual units called records. A record has the
formal structure of a set of n fields R D .f1; : : : ; fn/, and by giving each field
fi a value vi we obtain a record instance, or, simply, a record r D .v1; : : : ; vn/.
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In general, fields can be numerical or categorical. Throughout this chapter, we will
restrict our attention to numerical data.

The above data cleaning tasks can be performed by following several different
approaches, each of which having its own features. A main one is based on the use
of rules, called edits, that each record must respect in order to be declared exact.
Records not respecting such rules are declared erroneous. A seminal paper on the
subject is due to Fellegi and Holt [9]. After the detection of erroneous records, for
each of them one needs to determine which are its erroneous fields. Such operation
is called error localization. This is generally done by assigning each field fi a cost
ci , and by searching for the set E of fields having minimum total cost such that,
if their values are changed, edit compliance for that record can be restored. Fields
belonging to such set E are assumed to be erroneous, and are the ones that should
be modified during a subsequent error correction phase.

Finding the above-mentioned set of fields E is a nontrivial combinatorial
optimization problem in general (since one needs to choose a subset among many
possible subsets of the ground set, see e.g. [14] for details and [12] for the
complexity of those problems) and can be performed by solving Integer Linear
Programming models (see e.g. [14] for an introduction to the field) having the
structure described in Sect. 28.2. This allows to overcome the limits of other
methodologies (see e.g. [3, 17]) based on the Fellegi Holt approach, and guarantees
the individuation of the set of fields having minimum total cost. This has been
first done within the data Editing and Imputation software system DIESIS [5], and,
subsequently, in other works such as those described in [8, 16].

Integer Linear Programming models may however be quite time demanding
to be solved. Efficient software solvers are therefore needed. This has been a
very active field of research in the last 50 years, and performance improvements
were impressive. A well-known and very fast solver, based on advanced branch-
and-cut techniques [14], is Cplex (http://www-01.ibm.com/software/integration/
optimization/cplex), from the international software company ILOG. It has been
successfully used in the mentioned DIESIS system. However, such solver is a
commercial and closed source software, so there are many applications for which
such choice would not be admissible.

Luckily, open source Integer Linear Programming solvers are also available. An
overview of the most internationally recognized and used among these softwares
is given in Sect. 28.3. They too are generally based on branch-and-cut techniques.
However, there are many different algorithmic aspects that may vary within such
techniques, and that may produce very sensible variations in the resulting time per-
formance. Other fundamental issues for such kind of solvers are numerical precision
and stability, which also may vary greatly. Therefore, for solving efficiently the
described error localization problems, a careful selection of the solver, and of the
settings that the solver should use, is needed.

In order to make such a selection, a group of candidate open source solvers has
been initially identified. This was done after fixing the requirements and surveying
the literature for the best ones. Among them, by performing preliminary tests, the
group of suitable solvers has been selected. These solvers were Cbc (Coin- or

http://www-01.ibm.com/software/integration/optimization/cplex
http://www-01.ibm.com/software/integration/optimization/cplex
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branch and cut), from the COIN-OR (COmputational INfrastructure for Operations
Research) project of the International Business Machines Corporation, and SCIP
(Solving Constraint Integer Programs) from the research institute Konrad- Zuse-
Zentrum für Informationstechnik Berlin. They were compared to a reference solver
that was decided to be the mentioned Cplex, on error localization problems arising
from the processing of real-world data having numerical fields, as reported in
Sect. 28.4. Such data present wide numerical excursions in the data values, and
constitute a stressing test environment for selecting the most appropriate open
source solver for performing error localization in numerical data.

28.2 The Structure of the Integer Linear Programming
Problems

We encode error localization problems into a specific form of optimization prob-
lems, namely Integer Linear Programming (ILP), even though solving ILP models
is known to be a difficult problem in general [14]. This is because, unfortunately,
easier models could not represent the full complexity of localization problems: a
problem with a certain degree of complexity can be correctly converted only into
another one having the same degree of complexity. Indeed, if a conversion into
an easier one is attempted, a part of the problem’s features would be lost [12].
Integer Linear Programming models are constituted by a linear objective function
and by constraints expressed in the form of linear inequalities (or, equivalently,
linear equations) over a set of variables bounded to be integer. This particular
structure have been intensively studied, and very powerful solvers are available
today, probably more efficient than those available for any other class of problems
sharing the same complexity level.

Therefore, the basis of the adopted modelling technique consists in encoding the
edits by means of linear inequalities (or, equivalently, linear equations). Any other
form, though correct, would cause the impossibility of using the above-mentioned
powerful solvers.

Edits expressing linear relationships among fields are immediately convertible
into linear inequalities using n variables zi representing the values of the different
fields of the data records. In the numerical cases considered in this work, such
variables are bound to be non-negative integer, so we assume their domain to be over
ZC (even if this is not strictly required in general) up to a maximum value U . More
complex edits, possibly expressing also logical conditions, can be converted into
linear inequalities by using also a suitable set of binary variables xj . Hence, the vari-
ables used for expressing the edits, and their respective domains, are the following:

zi 2 f0; : : : ; U gI xj 2 f0; 1g (28.1)

We give now some examples of conversion from edit into linear inequalities.
Consider a very simple mathematical rule expressing that, for every record,
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the value of field h should be greater or equal to 100 plus the value of field k.

This would easily become the following linear inequality, whose meaning is clear
enough.

zh � 100C zk that is zh � zk � 100

In case a logical condition appears in the rule, such as the following, we need also
one binary variables x.

when field j is strictly greater then 10, the value of field h should be greater or equal to the
value of field k, otherwise (D when value of field j is less or equal to 10) it should be the
opposite (the value of field k should be greater or equal to the value of field h).

This edit becomes a set of linear inequalities, as follows.

zj � 10 � Ux (28.2)

11� zj � U.1 � x/ (28.3)

U.1� x/C zh � zk (28.4)

zh � zk C Ux (28.5)

This holds because, when zj > 10 (and recall it’s integer), value .zj �10/ is positive
and value .11 � zj / is less than or equal to 0. Therefore, x 2 f0; 1g is forced by
(28.2) to have value 1 so that, multiplied by the greatest value U , inequality (28.2)
is satisfied. On the contrary, (28.3) does not force any value for x. Being x D 1,
we have that U.1 � x/ is 0 and so zh � zk must hold in order to satisfy (28.4). On
the contrary, (28.5) is always satisfied for any value of zh and zk by the presence of
Ux.

On the other hand, when zj � 10, value (zj � 10) is less than or equal to 0 and
value .11 � zj / is positive. Therefore, x 2 f0; 1g is forced by (28.3) to have value
0 so that U.1 � x/ has value U and inequality (28.3) is satisfied. On the contrary,
(28.2) does not force any value for x. Being now x D 0, we have that Ux is 0 and
so zh � zk must hold in order to satisfy (28.5). On the contrary, (28.4) is always
satisfied for any value of zh and zk by the presence of U.1 � x/. So, all the above
rule is enforced when the values of the variables satisfy inequalities (28.2), (28.3),
(28.4), (28.5).

Similar techniques are used in order to convert each edit into one or mode
liner inequalities (or equations, if that is the case) [7]. Afterwards, by using
elementary algebraic transformations, all equations can be converted into couples of
inequalities, and all inequalities can be converted into � form. All in all, we obtain
a system of linear inequalities that can be denoted using the following compact
notation.

A0x C A00z � b (28.6)

The generic erroneous record g correspond to a set of values (g1; : : : ; gn/ for these
z variables. By assigning each field fi a cost ci , our aim is to find the set E of fields
having minimum total cost such that, if their values are changed, edit compliance
for that record can be restored. The total cost of a set of fields is the sum of their
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individual costs ci . In order to represent the changes, we introducen binary variables
wi 2 f0; 1g meaning

wi D
�
1 if we change gi
0 if we keep gi

The objective of our Integer Linear Programming model is therefore:

min
X

iD1;::;n ciwi (28.7)

whereas restoring edit compliance means respecting the above system (28.6). One
could observe that the variables appearing in the two parts (28.6) and (28.7) of the
model are not the same. However, the following relation can be identified between
the w and the z variables:

wi D
�
0 if zi D gi
1 if zi < gi or zi > gi

This can be used to link those variables, as described in greater detail in [5, 6],
obtaining so, for each erroneous record, an Integer Linear Programming model
representing the error localization problem for that record.

Generally, in real-world surveys, a large number of records should be pro-
cessed, and, consequently, a large number of such models should be solved. Their
complexity usually increases exponentially with the number of variables of each
model. Therefore, the optimal solutions can be obtained only by using specific
softwares called Integer Linear Programming solvers.

28.3 Overview on Open Source Solvers

The group of candidate open source Integer Linear Programming solvers has been
selected after a phase of study of the solver features and of literature survey.
The most relevant and internationally recognized solvers declaring to possess the
required features have been chosen. In particular, the candidate group was composed
by the following solvers:
1. GLPK (GNU Linear Programming Kit [13]), from the GNU operating system

project
2. Cbc (Coin-or branch and cut [10]), from the COIN-OR (COmputational INfras-

tructure for Operations Research) project
3. Symphony [15], again from the COIN-OR project
4. SCIP (Solving Constraint Integer Programs [1]), from an Integer Linear Pro-

gramming and Constraint Programming integration project
Moreover, in order to check the correctness of the obtained solutions, a reference
solver has been considered. This reference was chosen to be Cplex, from the
international software company ILOG, currently owned by IBM (International
Business Machines Corporation). This is a commercial solver, not an open source
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one, and was chosen because it is deemed to be the best Integer Linear Programming
solver nowadays available. Moreover, it is the one currently used by the data Editing
and Imputation software system DIESIS [5].

GLPK (GNU Linear Programming Kit, available from http://www.gnu.org/
software/glpk/) is an implementation of branch-and-cut techniques, primal and dual
simplex, interior- point methods [14], written in ANSI C by a research group headed
by Prof. Andrew Makhorin, from the Department of Applied Informatics of the
Moscow Aviation Institute (http://www.mai.ru/english/). This solver can be used as
free software under the General Public License (GNU GPL).

Cbc (Coin-or branch and cut, available from https://projects.coin-or.org/Cbc) is a
quite complete implementation of branch-and-cut techniques [14] written in CCC
by a research group headed by Dr. John J. Forrest, from the Watson Research Center
(http://www.watson.ibm.com/index.shtml) of IBM, within a joint project among
IBM, Maximal and Schneider called COIN-OR (COmputational INfrastructure for
Operations Research, http://www.coin-or.org/index.html). This solver can be used
as open source code under the Common Public License (CPL). Cbc requires the use
of another solver for solving the liner relaxations of the problems. The default one
for this task is Clp (Coin-or linear programming, available from https://projects.
coin-or.org/Clp), which is a complex implementation of primal and dual simplex
and barrier methods [14], written in CCC by the same research group of Cbc, and
can be used under the same licence.

Symphony (available from https://projects.coin-or.org/SYMPHONY) is a flexi-
ble implementation of branch-and- cut techniques [14] that can be customized for
specific classes of problems, written in C by a research group headed by Prof.
Ted Ralphs, from the COR@L research laboratory (Computational Optimization
Research at Lehigh, http://coral.ie.lehigh.edu/index.html) of the Department of
Industrial and Systems Engineering at Lehigh University, again within the described
COIN-OR project. This solver can be used as open source code under the Common
Public License (CPL). Symphony also requires the use of another solver for solving
the liner relaxations of the problems, and the default one for this task is again the
described Clp.

SCIP (Solving Constraint Integer Programs, available from http://scip.zib.de) is
an implementation of branch-and-cut techniques [14] integrating also constraint
programming capabilities, written in ANSI C by Dr. Tobias Achterberg, from the
Optimization Department of the Scientific Calculus Division of the Konrad-Zuse
Zentrum für Informationstechnik of Berlin (http://www.zib.de) within a project of
integration between Integer Linear Programming and Constraint Programming. This
solver can be used under the ZIB Academic License only for academic or non-
commercial institutions. SCIP also requires the use of another solver for solving the
liner relaxations of the problems, and can use the described Clp, even if the default
one is SoPlex (Sequential object-oriented simplex, available from http://soplex.zib.
de/) which is also an implementation of primal and dual simplex [14].

Integer Linear Programming solvers generally accept a number of parameters
for setting the algorithmic choices that should be used during the solution process

http://www.gnu.org/ software/glpk/
http://www.gnu.org/ software/glpk/
http://www.mai.ru/english/
https://projects.coin-or.org/Cbc
http://www.watson.ibm.com/index.shtml
http://www.coin-or.org/index.html
https://projects.coin- or.org/Clp
https://projects.coin- or.org/Clp
https://projects.coin- or.org/SYMPHONY
http://coral.ie.lehigh.edu/index.html
http://scip.zib.de
http://www.zib.de
http://soplex.zib.de/
http://soplex.zib.de/
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(i.e. cuts applied, branching strategy, backtracking policy, etc.) and the numerical
precision (i.e. integer tolerance, feasibility tolerance, scaling technique, etc.). This
is necessary for handling successfully heterogeneous problems, and setting such
kind of parameters was allowed by all the described solvers.

Those choices basically affect the evolution of the solution algorithm in reaching
the numerical solution of the optimization model, and therefore they impact (but
generally in a random way) on which one of the solutions is obtained for the cases of
problems having more than one optimal solution. However, it is impossible to draw
a direct correspondence between the above parameter choices and the statistical
quality of the data values corresponding to the obtained optimal solution.

Note, finally, that all of the above solvers are the results of several years of
development, and all of them are currently active projects, in the sense that new
releases, revised and updated, are periodically issued.

28.4 Computational Experience

Two phases of tests have been performed over the described open source solvers:
1. Preliminary tests, with the aim of selecting the group of suitable solvers within

the group of the candidate ones
2. Final tests, with the aim of selecting the most appropriate solver within the group

of the suitable ones
Note that the above tests are focused on evaluating the solvers from the computa-
tional performance point of view, and not the statistical qualities of the obtained
data. The preliminary tests were performed under Linux operating system Red Hat
EL Server ver. 5.4 64 bit. Features required to the solvers for being considered
suitable were not only speed, but also robustness (in the sense of producing
acceptable performances even in unplanned conditions) and numerical precision.
A CCC code for artificially generating series of Integer Linear Programming
models having the same characteristics of those described in Sect. 28.2, and passing
them to the solvers, was developed. A generally positive behaviour of all the
considered solvers was experienced during this phase. However, some negative
points also emerged. In particular, GLPK and Symphony are not suitable for solving
all in one run, one after another, a large number of models of the described type.
They suffer in fact from lack of stability and occasionally poor performance, and
this could compromise and even interrupt the sequential automatic solution of the
whole set of models. The group of suitable solvers was therefore composed only by
Cbc and SCIP.

The final tests were again performed under Linux operating system Red Hat
EL Server ver. 5.4 64bits by generating 8,017 files in standard LP format (Linear
Program) encoding the error localization problem for 8,017 records of data from
agricultural production each having 211 fields, all numerical (see [4] for further
details). Such data were obtained from the Italian sample survey on Farm Structure
and Production of 2005 (Indagine campionaria su Struttura e Produzioni delle
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Table 28.1 Aggregate results of Cbc, SCIP and Cplex

Cbc SCIP Cplex

Number of records processed 8,017 8,017 8,017
Number of records solved 7,994 7,291 8,017
Percentage of records solved 99.7% 90.9% 100%
Total processing time 1 h 20 min 1 h 30 min 30 min
Average time per record 0.6 s 0.7 s 0.2 s

Table 28.2 Algorithmic and numerical settings chosen for Cbc and SCIP

Feature affected Cbc settings SCIP settings

Preprocessing �preprocess on,
�presolve on

ppmethods D �

Scaling �scaling automatic, scalingD TRUE
Integer tolerance �integerT 1e-20 �
Feasibility tolerance � feastol D 1e�06

Branching strategy �strat 1, �trust 1 strategyD R, priorityD �1000
Cutting planes used clique, flow, knapsack,

mixed, probing, two
Default

Linear relax. Solver Clp simplex algorithm Clp simplex algorithm

Aziende Agricole), which contained random errors. Those data exhibit wide
numerical excursions in the data values, and were chosen because they constitute
a stressing test environment for the described solvers, and also because they can be
viewed as good representative of other types of numerical data.

The 8,017 model files have, on average, 7,681 variables (�97% binary, 3%
integers) and 8,437 constraints. They were solved by using Cbc, SCIP and Cplex,
obtaining the aggregate results reported in the following Table 28.1. SCIP was used
by solving the linear relaxations by means of the more performing Clp [11] instead
of the default SoPlex.

As observable, the reference solver Cplex numerically computes the optimal
solution in the totality of the cases. Quite the opposite, the two open source solvers
are not able to correctly compute a certain (small) percentage of the considered
models. This happens notwithstanding a considerable effort spent for choosing the
algorithmic and numerical settings (reported in Table 28.2) more fitting to solving
all in one run, one after another, the whole set of considered models, so as to fully
automatize the correction process. This is not surprising: numerical precision is a
very delicate issue in many real-world cases. Just as an example, the solver used by
the quite known software Banff [2], from Statistics Canada, running on the same
8,017 error localization problems, could not find a solution for 199 records, with a
total running time of 69 h, as reported in [4].

The cases of unsolved problems are analysed in detail in the following Table 28.3.
They are split in the two following categories:
1. Problems not solved because of strongly erroneous solution values (for instance,

an objective value of 0, whereas all the considered models should produce an
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Table 28.3 Differences
among the open source
solvers and the reference
solver

Cbc SCIP

Strongly erroneous solution values (28.2) 0 111
Numerically incorrect solution values (28.3) 23 615
Total number of not solved 23 726
Percentage of not solved 0.3% 9.1%

Table 28.4 Optimal values
of the objective function for
Cbc, SCIP, Cplex

Cbc SCIP Cplex

Number of problems with obj.D 1 4,890 4,459 4,902
Number of problems with obj.D 2 2,100 1,902 2,123
Number of problems with obj.D 3 592 430 599
Number of problems with obj.D 4 258 247 267
Number of problems with obj. >D 5 154 253 126
Total 7,994 7,291 8,017

objective value strictly positive and integer) due mainly to numerical instability
and ill-conditioning of the corresponding models

2. Problems not solved because of (slightly) numerically incorrect solution values
(for instance, fractional values smaller than 1 in the objective value) mainly due
to scaling inaccuracies, effect of the wide numerical excursions in the data values

It is not traceable a correlation among problems not solved by Cbc and those not
solved by SCIP: the two sets are only partially overlapping. It is worth to note that
even the reference solver Cplex may in general suffer from numerical errors, even
if this did not happen in the present test. Moreover, the mentioned wide numerical
excursions in the data values produce also some differences among the optimum
values obtained for the objective function by the different solvers. Recall that, in
each model, the value of the objective function is the weighted sum of the changes
that should be applied to the record values in order to restore edit compliance. Note
also that, for the considered tests, the cost of all fields were set to value 1. Therefore,
the objective should assume only integer values.

Differences are reported in the following Table 28.4, by considering the number
of problems producing the value respectively of 1, 2, 3, 4 and 5 or more for
the objective function. One can observe that SCIP, and in smaller amount Cbc,
occasionally tend to compute optimal objective values higher than those computed
by the reference solver Cplex. Therefore, among the suitable solvers, the most
appropriate open source solver for Error localization problems in numerical data
appears to be Cbc.

Moreover, the Integer Linear Programming problems solved in these tests have
a quite general structure (though a set covering [14] predominance, see also [6]).
Therefore, there is some evidence that a similar solver behaviour would be repeated
when solving other Integer Linear Programming problems of general structure
having wide numerical excursions in the values of the constraint coefficients.



312 G. Bianchi et al.

28.5 Conclusions

Error localization problems can be converted into Integer Linear Programming
problems. By doing so, each erroneous record produces an Integer Linear Pro-
gramming model that should be solved. This kind of problems are in general
computationally demanding. However, easier models could not represent the full
complexity of error localization problems, and if a conversion into some easier
class of problems is attempted, a part of the error localization problem’s features
would be lost. Luckily, this has been a very active field of research in the last
decades, and performance improvements were impressive: solvers for Integer Linear
Programming probably are today more efficient than the solvers available for any
other class of problems sharing the same complexity level. On the other hand, in
many statistical applications, treatment should be performed by means of open
source software. Efficient and open source Integer Linear Programming solvers are
therefore needed. A study on the performance of internationally recognized open
source Integer Linear Programming solvers, compared to the reference commercial
solver Cplex on data from agricultural production having only numerical fields, is
reported in this chapter. Such data present wide numerical excursions in their values,
and constitute so a stressing test environment for selecting the most appropriate open
source solver for performing error localization in numerical data.

Cbc resulted to be the fastest, more flexible, stable and robust among the tested
open source solvers. Moreover, it has a powerful modelling interface allowing
the dynamic generation of models. For these reasons, it appears to be the most
appropriate for solving the described problems. Cbc inevitably suffers from some
numerical imprecision, like any other scientific computing software, but to a degree
lower than the other open source solvers tested, even if probably higher than the
reference commercial software Cplex. Note, finally, that Cbc allows the use of
several numerical settings, so that a better precision on single model solving could
be achieved by tuning such settings specifically for that model.

References

1. Achterberg, T.: SCIP - a framework to integrate Constraint and Mixed Integer Programming.
Technical Report 04-19, Zuse Institute Berlin (2004)

2. Banff Support Team: Functional Description of the Banff System for Edit and Imputation
System. Statistics Canada, Quality Assurance and Generalized Systems Section Tech. Rep.
(2003)

3. Bankier, M.: Canadian Census Minimum change Donor imputation methodology. In: Proceed-
ings of the Workshop on Data Editing, UN/ECE, Cardiff, United Kingdom (2000)

4. Bianchi, G., Manzari, A., Reale, A., Salvi, S.: Valutazione dell’idoneità del software DIESIS
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29Integrating Business Surveys

Guidelines and Principles Based on the Belgian
Experience

Maria Caterina Bramati

Abstract
In the past few years the modernization of business surveys has been extensively
discussed by several NSI’s in Europe. The MEETS program (Modernisation of
European Enterprise and Trade Statistics) has been recently launched for the
years 2008–2013 by EUROSTAT for encouraging the reform process at the
European level in order to identify new areas for business statistics, to enhance
the integration of data collection and treatment, and to improve the harmonization
of methods and concepts in business statistics. At Statistics Belgium the debate
has been brought especially through a revision of concepts and methods in
business surveys with the aim of reducing the survey costs for the Administration
and the response burden for the enterprises. In the present contribution, the issue
of integration of business surveys is tackled with a variable-oriented approach
and using classification techniques.

Keywords
Business surveys • Classification • Data integration • Survey design

29.1 Introduction: Why Integration?

The issue of survey integration has been object of several discussions in many
Statistical Institutes of European and non-European countries.

The process of integrating surveys has the aim of reducing costs and response
burdens by a complete reorganization of the currently existing surveys into a unique
and coherent structure. Therefore, the horizontal complexity of the stove-pipe
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statistical production process currently in use, in which each surveying step is led
independently from the others, is replaced by a vertical increase in complexity.

Many key-points have been addressed as advantages coming with integration,
such as a reduction in costs, gain in efficiency, statistical productivity and data
quality from the Statistical Institute viewpoint, and reduction of the burdens from
the respondent side.

The aim of this study is to shed a light on the advantages of integration of business
surveys, measuring the current response burden for enterprises and suggesting the
criteria and the structure on which the Belgian Integrated Business Survey (IBS) is
based.

The experience of integration is not new in the current practice of some National
Statistical Offices (NSO) such as the Centraal Bureau voor de Statistiek (NL), the
Office for National Statistics (UK), and Statistics Canada among others.

Going towards integration in the business surveys is more than a need for
Statistics Belgium, since it provides a solution to many problematic issues raised
by the current way of surveying businesses, such as the harmonization of the
definitions (economic, statistical, etc.), of the statistical methods (like sampling,
calibration, construction of indexes), enhancing synergies and cooperation between
statisticians for improving the statistical procedures and the data treatment, in a
systematic approach to data quality and documentation of the surveying process.
Furthermore, too many and different tools for survey management and web surveys
are often employed which requires ad hoc IT implementation and intervention for
each survey.

Though on the one hand, integration boosts the improvement of the statistical
practices, allowing for harmonization of concepts, definitions and methods, for
synergies in the use of statistical tools, for monitoring and coordination of the
statistical production process enhancing data quality, on the other hand it involves
some increase in complexity of the process at both theoretical and practical level.
This in turns implies some non-negligible investment in terms of human capital and
of IT tools. However, one of the most challenging target is to act at the conceptual
level, enlarging the current notion of many single parallel surveys to one coherent
variable-oriented structure able to satisfy the whole end-users’ demand.

Section 29.2 describes the variable-oriented approach suggested for the reor-
ganization of business surveys, whereas in Sect. 29.3 are presented the criteria for
clustering the existing surveys. Some classifications are proposed and compared by
means of a logistic regression.

29.1.1 Business Response Burdens in Belgium

A reform in the surveying strategy for businesses has been a priority in the
past few years at Statistic Belgium. In order to quantify the response burden for
enterprises and therefore the benefit of a reorganization of business surveys into
one coordinated and integrated, the distribution of the number of potential surveys
for an establishment in a year has been derived from the population frames for
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Table 29.1 List of business surveys entering the IBS with their sampling frame size as percentage
of the universe of firms (N D 796230) in 2005

Survey Acronym
% of the sampling
frame

Structural Business Survey (SBS) SBS 88.9
Wastes from industry Afval-ind 91.4
Wastes from agriculture Afval-Landbouw 8.6
Unskilled labor costs Arbeidkost 5.6
Composition and structure of
salaries

Losa 7.9

Evolution of salaries Loon 1.4
Retail trade Dethand (Detailhandel) 13.2
Consumer credit Kred 0.04
Continuing Vocational Training
Survey

CVTS 6.7

Industrial production (PRODCOM) Prod-ind 6.5
Producer price index Prod-prijs 1.4
Tourism Tour 0.5
Information and Communication
Technology

ICT 8.9

Cinema Cine 0.02
Census for agriculture Landbouwtelling 8.1
Vegetables production Groenten (Groenteteelten) 0.4
Stock of wine Wijn 0.3
Stock of cereals Graan (Graanvoorraden) 0.2
Fruits exploitation and production Fruit (Fruitteelten) 0.3
Harvest Oogsten (Ramingen van de oogst) 6.5
Milk production Melk 0.02
Slaughtered animals Slacht (Geslachte dieren) 0.1
Short census for agriculture in
November

Novenq 6.5

each of the 24 business surveys produced at Statistics Belgium. In particular, the
frequency count is in terms of number of establishments receiving potentially xi ,
i D 1; 2; : : : questionnaires in a year according to the time frequency of each survey
(monthly, quarterly, bi-annual, yearly, etc.) and to the specific population frame of
the survey considered. In 2005 each local unit could potentially be surveyed 4:47
times per year in average, with a maximum of 44 questionnaires. Almost for a 10%
of cases (probably the largest firms in manufacturing) the response burden is very
high, over 13 questionnaires in a year and it attains the 25:5 questionnaires for the
last percentile of the distribution.

The business surveys here considered are 23 over the 24 running at Statistics
Belgium (the survey on transports of goods is not taken into account). They are listed
in Table 29.1, where in the last column is reported the size of the target populations
for each survey with their percentage on the total number of non-missing (valid)
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entries for the local units. For example, in the case of the Structural Business
Survey (SBS), over the 796,230 valid entries (i.e., those for which the information
is available, which we call the reference universe), 708,212 are the units composing
the SBS universe, i.e., the 88:9% of the reference universe.

29.2 The Variable-Oriented Approach

The logic of the integration goes further beyond the simple summation of the
existing surveys into one. The IBS has a new variable-oriented structure which
is not directly related to the structure of each single survey. The starting point
of the integration process consists of the required final outcome of the surveying
process. This means that one needs to look at the output side of the problem, which
is represented by a set of variables (say output variables) to “produce” for some
final users. This output-based approach here suggested implies a variable-oriented
structure of the IBS. The integration process should be driven mainly at four levels:
the architecture of the statistical production process, the statistical methods, the data
flows (collection, storage, rule-based processing, metadata), and the revision of the
economic variables involved in the surveys. The objectives of the methodological
framework are the standardization of methods, the improvement of quality, the
transparency, and the IT-standardization by linking methods to tools. In the next
sections the main guidelines and principles at the basis of the methodological
framework are explained.

From the viewpoint of the final outcome to deliver in terms of output-variables
vo contained in the set Vo, the basic assumption on which the following analysis
relies is that there exists a one-to-one mapping fo W !o ! Vo, where the domain
!o D IDo � SUo � To � TPo is the cartesian product of sets IDo D fidentification
of the variableg, SUo D fsampling unitg, To D ffrequency, delivering timeg,
TPo D ftarget populationg.1 In other words, the output required by the final
users of business surveys is a set of variables which are uniquely identified by
four attributes: the kind of variable (added value, number of full-time equivalent
employees, etc.), the reference sampling unit (establishment, statistical unit or
group of enterprises), the time (which might be an array of information concerning
time, like the survey frequency, the delivering time. . . ), the target population (i.e.,
information concerning the breakdown details of the variable, like NACE2 class or
size class in terms of number of employees). For instance, an output-variable i is a
combination of those characteristics exogenously3 given, i.e.

vio D fo.id
i
o; suio; t

i
o; tp

i
o/:

1Boldface symbols are used to distinguish sets and variables characterized by more complex
objects, like arrays.
2Nomenclature of economic activity.
3Not chosen by the statistician, but defined by the end-user.
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Those attributes are defined by the requirements of the statistical authorities and
more in general by recipients like Eurostat (see 1. and 2.), the National Bank of
Belgium (see 4.), etc. (indicated in the diagram by R). Therefore, a survey j from
the output side is a collection of output-variables V j

o � tVo subset of the class of
all variables. In this view and under the hypothesis that no redundant variables are
present across the current business surveys,4 the current survey structure can be seen
as a way of partitioning the output variables in Vo into clusters (which are currently
24).

One of the advantages of this approach is that the structure of the survey is
flexible to changes in the criteria defining the target population. To those changes
would correspond new output variables to produce. Now, ascending in the process
to the input-side of the variable “production,” i.e., the collection strategy, similar
assumptions to those of the output-side can be made.

An input-variable viI is an intermediate product in the survey process, a piece
of information concerning the output-variable which is either collected (part of
a questionnaire), or obtained by external sources (administrative records or other
sources). In symbols

viI D fI.idio; suiI ; t
i
I ; tp

i
I ; esi /;

where fI W !I ! VI is a one-to-one mapping with domain given by the cartesian
product !I D IDo � SUI � TI � TPI � ES, where the subscript I indicates the
input-side of the process.

The input-variables are the result of the combination of five attributes, the
variable identification, the reference sampling unit, the time, the target population,
and the external sources. Those attributes in this case are defined by the statistician
under some constraints determined by the outcome to deliver. The constraints which
are generally respected in the current business surveys are

suiI D suio tiI D tio tpiI D tpio 8viI 2 VI; vio 2 Vo;

where it is assumed an input/output correspondence between the input variable viI
and the output variable vio. With those constraints it is clear that the statistician
at present does not dispose of a lot of flexibility in the effort of optimizing and
simplifying the business survey structure. Basically the statistician is allowed to act
on the external source component only. A more intensive use of the administrative
records was indeed the policy adopted by many statistical institutes in the past
few years in view of a more efficient surveying process and of a reduction of the
statistical burdens for enterprises. However, external sources are not always such
a flexible tool for the statistician, since their use is constrained to the delivering
time, the sampling units to which they refer (very often the legal unit) and the
target population coverage. Therefore, several transformations and approximations
are often required. The transformation of the input variable into the output variable

4This is to ensure the invertibility of mapping fo.
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VI SM Vo

IDo

To

TPo

R

SUo

ES

TI

TPI

SUI

Input-side Output-side

fo
fI
current constraints
SM actions
i/o boundary
i/o process

Fig. 29.1 The variable-oriented approach

is operated by a set of techniques, i.e., statistical methods. An appropriate and
extensive use of those methods may help in relaxing some constraints under which
the current business survey structure runs (Fig. 29.1).

So far, once that redundancies in VI are eliminated, the main objective of the
IBS project is to act on the input-side of the survey process, relaxing some of the
constraints imposed by the output-variables by means of the statistical methods
and the economic knowledge. This can entail a reduction in the number of input-
variables.

For instance, for some variables the time constraint could be relaxed combining
the information coming from external sources and estimation techniques. Also the
target population constraint could be partially relaxed finding convenient estimators
of the total (with properties like the stratification-equivariance/invariance). As for
the sampling unit constraint, conversion methods from one definition to another
would be helpful.

29.3 Classification Issues

As mentioned in the previous section, surveys can be considered as clusters of
variables. Since variables are characterized by attributes like time, target population,
sampling unit, etc., variable classification can be done by one single attribute or by
a combination of them. The classification is a requirement for grouping surveys
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according to their “similarities.” There is no evidence of the advantage of keeping
the current partitioned structure of surveys in the sampling design, collection, and
treatment of data. Of course, to respond to institutional obligations the output (at the
dissemination step) should be converted by an interface into the usual disaggregated
survey structure. Several clustering criteria might be adopted. Basically, four main
grouping criteria can be considered:
1. Economic criterion. It is based on the category of variables of interest in a given

survey. For instance, surveys can be clustered by groups of variables which
summarize the economic structure of a business. These groups can be the activity,
the expenditure, the investment, the employment, and the innovation of the firm
(see 3.). A definition of “proximity” between activities needs to be introduced in
order to reflect similarities between their distributions.

2. Overlapping population criterion. Surveys are grouped according to their target
population. Survey clusters should be formed on a quantitative basis, i.e.,
computing and comparing the overlapping population rates for surveys.

3. Enterprise-based criterion. This criterion is business-centric in the sense of
adopting the viewpoint of the business. To each business is attributed a code
according to the survey for which it enters the target population. In this way
every business can be identified by a series of numbers which represents the list
of surveys to which it is concerned. Then, enterprises can be grouped by the
survey code obtaining clusters of similar businesses in terms of survey subject.
A ranking of the clusters can be made (in principle if the surveys are 24, there
are 224 possible clusters for the enterprises, but only a subset of them currently
existing) and descriptive statistics can be easily calculated (like the mode cluster).
Not only this classification might lead to a new way of classifying enterprises
(according to the survey-similarity) but also it provides crucial insights on the
way in which surveys are likely to naturally cluster between them. This topic
should be object of further discussion and research.

4. Geographical criterion. Geographical dimension is an important component
for understanding economic interactions of businesses. For instance, territorial
proximity can be used as a measure of structural similarity regarding some
economic aspects. Little attention has been payed until now to the impact of
the locational component for businesses to the sectoral economic activity and to
the geographical agglomeration (industrial districts). It would be interesting to
increase the efforts in this direction.

All of these criteria present both advantages and disadvantages. However, the
enterprise-based criterion might be privileged (at least as a starting point for
research in classification) because it entails a new clustering approach in line with
the philosophy of the IBS project. For instance, the classification criterion of surveys
by overlapping population is equivalent to a classification of variables by the target
population attribute. The classification according the enterprise criterion is also a
classification of variables by the target population attribute. Indeed, it can be seen
as the dual of the overlapping population criterion.

Also classification by the time attributes is possible. For example, variables can
be grouped by the time frequency, i.e., monthly, quarterly, biannual, yearly, etc.
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Table 29.2 Clusters of surveys obtained with Ward’s method

Group nr. List of surveys (LW measure) Surveys (SE distance)

1 SBS, Afval-ind, Dethand SBS, Afval-ind
2 Arbeidk, Losa, ICT, CVTS Arbeidk, Losa, ICT, CVTS
3 Prod-ind, Lonen Dethand
4 Prod-prijs, Toer, Cine, Prod-prijs, Toer, Cine, Prod-ind, Lonen

Kredieten, Wijn, Graan, Melk, Kredieten, Wijn, Graan, Melk,
Slacht, Groente, Fruit Slacht, Groente, Fruit

5 Oogsten, Novenq, Oogsten, Novenq,
Afval-land, Landbouwtelling Afval-land, Landbouwtelling

variables. In the same way, classification by delivering time is possible, or by the
sampling unit attribute, or even by kind of variables (economic criterion).

Clearly, each of these classification methods has the limit to consider only one
of the variable attributes at time. Of course, a classification by a combination of
the variable attributes could be a more efficient solution. In particular, two ways
of classifying variables are considered: by the overlapping population criterion and
by the enterprise-based criterion. In the first approach, target populations for each
surveys are constructed using the NACE class and the size (turnover and number of
employees) requirements. To make comparisons feasible, the statistical unit used in
this exercise is the establishment and the time unit is the year.

29.3.1 Classification by the Overlapping Population Criterion

The aim of this classification is to form clusters of surveys by means of similarities
between the sampling units belonging to each survey universe. Of course, some
natural clusters can be made on the basis of the overlap of the population frames.
For example, we observe that Wastes from Industry, SBS, and ICT are subsamples
nested one into the other, whereas SBS has the largest population frame overlap
with all the other non-agricultural surveys, which ranges between 87% and 100%.
In what follows, surveys are grouped by means of the hierarchical cluster approach,
using Ward’s method with the Squared Euclidean distance (SE, see 5.) and the Lance
and Williams measure (LW based on non-metric multidimensional scaling, see 6.).

The squared Euclidean distance for a binary variable takes value d2ijk D 0 if cases
i and j both have attribute k “present” or both “absent,” or 1 if attribute k is
“present” in one case and “absent” in the other case. In Table 29.2 are displayed the
survey clusters (the chain reported ranges from three to eight groups, we selected
the scenario for five groups) obtained by applying the Lance and Williams measure
and the squared Euclidean distances, respectively.

The two classification are quite close. It is clear that in both cases “agricultural”
surveys are grouped together; the SBS is grouped with the Wastes from industry
(in some cases with the Retail Trade). The surveys concerning the human capital
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and technology are also clustered. When the survey populations are considered in
terms of year-equivalent units, the previous results are partially confirmed. Adding
the time constraint in the classification analysis does not produce conclusive results
(at least in this approach).

29.3.2 Classification by the Business Criterion

Establishments are clustered by combination of survey questionnaires they might
receive. Again, we observe that more than half of the establishments are subjected
to be surveyed by SBS and Wastes from Industry, with few possible combinations
of surveys concerning more than 300 establishments at time.

Two step cluster is used. This cluster method is designed to handle very large
datasets. It has two steps: (1) pre-cluster the cases into many small sub-clusters
and (2) cluster the sub-clusters resulting from the pre-cluster step into a number
of clusters automatically selected. If the partition into five groups of units is
considered, the following clusters are made. Clusters of establishments by surveys
are
1. Harvest, short census for agriculture in November, wastes from agriculture,

census for agriculture, vegetables production, fruits exploitation
2. SBS (69:2%), wastes from industry (67:4%)
3. SBS (11:1%), wastes from industry (13:4%), unskilled labor costs (18:6%),

composition and structure of salaries (21:6%), retail trade (4:1%), consumers
credit (78:4%), producer prices (84:8%), industrial production (3:8%), continu-
ing vocational training (7:3%), tourism (83:4%), ICT (37:4%), cinema (68:6%),
stock of wine (94:9%), stock of cereals (93:9%), milk production (64:9%),
slaughtering (85:7%)

4. SBS (12:7%), wastes from industry (12:4%), retail trade (85:9%)
5. SBS (7%), wastes from industry (6:8%), retail trade (10:1%), unskilled labor

costs (81:4%), composition and structure of salaries (78:4%), continuing voca-
tional training (92:7%), evolution of salaries (100%), industrial production
(96:2%), consumers credit (21:6%), producer prices (15:6%), tourism (16:6%),
ICT (62:6%), cinema (31:4%), stock of wine (5:1%), stock of cereals (6:1%),
milk production (35:1%), slaughtering (14:3%)

In parenthesis are indicated percentages of those establishments between the ones
entering potentially the survey, which are selected for the given group. For example,
group 1 is formed by the 69:2% of establishment potentially surveyed by SBS and
by the 67:4% of establishments potentially participating to the survey on industrial
wastes. Of course, in this group there might be also establishments which enter
potentially both surveys, and therefore contained at the same time in the 69:2% of
SBS and 67:4% of wastes from industry. Therefore, it is confirmed the separation
in different clusters of the agriculture versus the non-agriculture surveys which are
clustered with the SBS.
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29.4 Conclusions

So far, some classification issues have been addressed, especially focusing on the
target population component of an output-variable set. Of course, there are many
other ways of classifying variables, using other variable components (such as time
and sampling units) or a combination of them. One could also set a multi-step
classification, using a priority list of criteria.

Classification by target population criteria, in particular by the enterprise-based
approach, has the main advantage to allow the construction of criteria which include
each new-born business into the appropriate universe for the target variables. On the
other hand, this system would not be enough flexible with respect to changes in the
target population criteria. Suppose for instance that for some variables a different
industry breakdown is required by the statistical authority. Then a new classification
by target population is required for all businesses to create the universes for
the variables. If the creation of new variables or changes in their breakdown
industry happen often, the enterprise-based criterion require several updates and
moreover does not allow for comparisons across the periods of change. From the
classification study, we observe that the main discriminant factors in clustering
surveys are the NACE class, which helps in separation between the agricultural
versus non-agricultural surveys, the industrial surveys concerning transformation
and manufacturing (such as food in milk, wine, slaughtering, producer prices),
services, businesses concerned by retail trade survey. Also, the employment/labor
surveys are naturally clustered, stressing the relevance of the economic classification
criterion.

The advantages of integration for both businesses and the NIS have been pointed
out throughout the chapter. It is clear that the integration process involves also some
operational costs for the administration, which need to be evaluated according to the
survey domain.
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Abstract
Asking questions about income is often a hard task: nonresponse rates are high,
and the reliability of the surveyed answers is sometimes poor. In this contribution
we propose a measure of the economic status based on a set of wealth-related
items. This measure is based on the Rasch model, which allows to estimate
different relevance weights for each item: difficulty parameters indicate the
severity of each of the situations described by the items, while ability parameters
indicate poverty level of each unit. This poverty measure is computed on survey
data collected on a sample of 2,465 households living in Veneto. Some analyses
conducted on the estimated poverty measure indicate a good consistency with the
expected relationships, and confirm the possibility to get this kind of estimates
from indirect measures.

Keywords
Composite indicators • Income • Measuring poverty and inequality • Rasch
model

30.1 A Rasch Model to Measure Poverty

Income questions are among the most threatening questions in general popula-
tion surveys, and often produce inadequate information. Nonresponse rates are
frequently quite high, and family income tends to be underestimated because
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respondents are likely to report earning after taxes and deductions, or to forget about
less common sources of income. Reluctance to report income data and difficulty to
collect and summarize information from different family income sources has led to a
number of strategies to collect data and to correct estimates. In this chapter we pro-
pose a method to estimate wealth levels (or poverty levels) which does not require to
ask threatening questions about income; this method is based on the Rasch model.

The Rasch model was developed by Georg Rasch in 1960, aimed at objectively
assessing the school achievement of Danish soldiers. Then, the most natural appli-
cations of the Rasch model are in psychometrics and education, but its flexibility
and simplicity makes it suitable for other applications as well, such as quality
measurement and social sciences in general. Broadly speaking, this model is a good
instrument to measure latent variables.

The Rasch model can also be used to study poverty, but in literature this use is
not frequent. Among the most recent works we can remind Fusco and Dickes [5],
while one of the first examples comes from the French Gailly and Hausman [6].

To apply this psychometric model, we consider poverty as a latent variable. The
Rasch model properties make it suitable to study poverty: the specific objectivity
allows to obtain an objective measure of poverty, seen as a unidimensional trait
in the model hypotheses; then, the possibility to rank items and grade them in a
hierarchical way grants a definition of economic disease as the sum of different
factors.

In the following application, the original and simpler version of the Rasch model
is used, with items coded by dichotomous variables. The starting matrix is given by
a set of units (households) observed in the values of a set of dichotomous items,
regarding the ownership of some goods, or the manifestation of some situations,
considered as deprivation indicators. The positive response xij D 1 indicates a state
of deprivation for the i -th family with regard to the good or characteristic expressed
by the j -th item, while the null response xij D 0 indicates absence of deprivation.
The aim is to transform the answers in a synthetic measure that allows to place the
latent variable on a continuous scale.

The peculiarity of this model consists in considering two factors to measure the
latent variable: the individual ability and the item difficulty. So, the latent variable
is evaluated for each individual not only on the basis of how many questions
he answered positively, but also based on the degree of difficulty of each question:
the answer xij given by the i -th respondent depends on his relative deprivation, i.e.,
his intrinsic poverty combined with the level of deprivation indicated by the j -th
item. This method produces two separate rankings: one ranks individuals from the
most to the least needy (controlling for the items difficulty parameters), the second
orders questions according to the level of poverty they imply, taking into account
how many individuals lack that good or are in that situation. The Rasch model
represents these two factors by means of two families of parameters: k parameters
of difficulty for the items (ˇj , j D 1; : : :; k), and n ability parameters for the
individuals (�i , i D 1; : : :; n/.

The parameter of difficulty ˇj is renamed “parameter of severity,” since it
corresponds to the idea of inequality: the corresponding ranking shows which
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are the goods whose lack mainly contribute to generate poverty, and describes
the inequalities in the goods distribution among families. The higher the severity
parameter, the more widespread is the ownership of the good, and the higher
is the inequality degree corresponding to its lack. The underlying hypothesis is
that lacking a good is more weighty if its ownership is common in the reference
population [10]. In this sense, we refer to a relative poverty approach, since the
inequality scales are not built in absolute terms, but in comparison with other
households.

The ability parameter �i directly refers to poverty, and is renamed “position
parameter.” Its meaning is clear, and it allows to rank families from the most to
the least poor. In fact, the higher the position parameter, the harsher its deprivation
and poverty situation. Moreover, once we know the position parameter of a family
and the severity parameter for a certain good, we can calculate the probability for
that family to suffer deprivation with respect to the item.

To formalize, the relationship between the latent variable and the observed items
corresponds to the probability P.Xij D 1j�i , ˇj / of a positive answer to the j -th
item for the i -th individual. The formula resembles that of a logistic regression
model, with parameters belonging to two families:

P.Xi D 1jqi ; bj / D e.ˇj��i /

1C e.ˇj��i /
; i D 1; : : : ; nI j D 1; : : : ; k

Compared with the psychometric applications, the use of Rasch models to study
poverty has to square with non-experimental survey designs. In fact, while psycho-
metrics and pedagogy studies are based on questionnaires especially designed to
present batteries of valid and reliable tested items, all measuring the same construct,
in the studies on economic disease the data are often collected according to a
different rationale, and data must be recoded to satisfy the basic assumptions.

30.2 Application to Survey Data

The Rasch model has been applied to the data coming from a survey conducted
on a sample of 2,465 households living in Veneto. The survey, carried out from
December 2004 to April 2005, has been conducted via computer assisted telephone
interviews by the Statistics Department of the University of Padua, on behalf
of the Local Centre for Household Documentation and Analysis. The Rasch
model analysis responds to the demand for a variable expressing the situation
of material poverty, meant as lack of goods or monetary shortage. In fact, the
questionnaire includes a question about household income, but the wide response
classes proposed1 and the problem of tailoring these classes to the family size, do

1The four wide classes are: “Less than 1;500AC net per month,” “Between 1;500AC and 3;000AC
net per month,” “Between 3;000AC and 6;000AC net per month,” and “More than 6;000AC net per
month.”
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not allow to estimate income in an easy way. Then, in order to build a measure
of material poverty, we consider a set of items that refer, to some extent, to the
economic sphere.

Unlike Gailly and Hausman [6], who consider 32 objective and subjective
indicators of disease, we try to disentangle the material and nonmaterial components
of poverty, therefore the Rasch model is fitted on the basis of a set of items all
concentrated on different aspects of material deprivation, in order to obtain a unique
principal latent trait. The selected items, dichotomized to indicate forms of material
deprivation, are those reported in Table 30.1. All the variables take value 1 for
households in a situation of deprivation with regard to the item.

In order to asses the internal consistency of the selected items, we calculate the
Cronbach ˛ [3] and we perform an exploratory factor analysis to test the existence of
a unique common latent factor. The Cronbach ˛ measures the internal consistency of
the items by measuring their correlations. In our case the value is 0.67, acceptable
even if not high.2 The factor analysis is performed on the described items with
principal components analysis and varimax rotation [7], and the plot of eigenvalues
(scree-plot) shows a unique latent factor, interpretable as a deprivation factor. The
first factor, corresponding to the first eigenvalue (�1 D 3:5), explains only 15% of
the total variance. However, the reliability of the factorial procedure, expressed by
Kaiser measure [8], equals 0.73, which indicates an “average” goodness according
to the indications found in literature.

The algorithm used to select the final set of items is a backward procedure. First
we apply the Rasch model to the whole matrix X , then we estimate the severity
parameters ˇj referred to the items, and the position parameters �i for the families
through the conditional maximum likelihood method [1, 13].3 Then, we check the

2Nunnaly [12] defines 0.70 an acceptable value for Cronbach ˛; 0.67 is quite close to that threshold.
3Among different possible estimation methods for the Rasch model, conditional maximum
likelihood is the most frequent. The method here used maximizes the log-likelihood function
conditional to the total score of each individual ri DPJ

jD1 xij:

L D �XJ

jD1
sj ˇj �

XI�1

rD1
fr log �.r; ˇ/ with sj D

XI

iD1
xij

where fr indicates the number of individuals achieving a score equal to r , J is the number of
considered items and I the number of individuals, and �.r; ˇ/ is the following symmetric function:X

.x/jr
exp

�
�XJ

jD1
xijˇj

�
:

where
P

.x/jr is a summation over all possible vectors .x/ij such that the total score is r . Due to
the property of sufficiency of the ri scores, the maximum only depends on the severity parameters,
which are the only elements in the estimate equations, resolvable through a Newton–Raphson
procedure. Once the severity parameters have been estimated, their values can be used to estimate
the position parameters, through a separate procedure.
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Table 30.1 Severity parameters estimates and standard errors, for the Rasch model fitted on the
selected items. Ranking of the deprivation items according to their relevance

Severity Outfit Infit
Item parameter S.E. MSQ MSQ

Eviction 5:77 0.30 0.23 0.82
Use of savings or loans in the last year 3:83 0.12 1.84 0.95
No TV in the household 3:41 0.10 0.91 0.92
Insufficient housing for the household
needs

3:24 0.10 1.64 1.01

Need for economic support in the last year 3:12 0.09 1.28 0.97
No cars in the household 2:45 0.07 0.47 0.77
Lives in a building with 10 flats or more
(vs. independent house)

2:34 0.07 1.30 0.99

Rental house/apartment 2:33 0.07 1.35 1.01
No holidays in the last year for economic
reasons

1:79 0.06 1.02 0.99

Savings consumption in the last year 1:48 0.06 1.54 1.17
Lives in a building with less than 10 flats
(vs. independent house)

1:14 0.05 1.10 1.08

Household income less than 1,500 AC per
month

1:08 0.05 0.64 0.75

No videotape recorder in the household 1:03 0.05 0.71 0.79
Pension as the main household income 0:70 0.05 0.81 0.83
Unable to save money in the last year 0:27 0.05 1.58 1.37
No DVD player in the household �0:26 0.05 0.72 0.80
No Internet connection in the household �0:39 0.05 0.61 0.69
No motorcycle in the household �1:30 0.05 0.98 1.01
No satellite TV in the household �1:55 0.06 0.82 0.90
No ADSL connection in the household �1:83 0.06 0.60 0.81
No laptops in the household �2:16 0.07 0.71 0.88
No paid domestic help in the household �2:36 0.07 1.62 1.02
No flat screen TV in the household �3:15 0.09 0.63 0.85
The standard errors are computed in the following way:

SE.ˇj / D
"
1=

IX
rD1

nrprj.1� prj/

#1=2

where prj is the probability estimate to correctly answer the j -th item, for an individual with
score r , and nr is the number of individuals scoring r .

item-fit indices of infit and outfit4: the item corresponding to the highest fit index
is removed, and the Rasch model re-estimated. The procedure is repeated until

4Outfit and infit statistics are residual based measures of accord between the model and the data
[16]. Outfit are unweighted mean-square outlier-sensitive fit statistics, while in infit statistics each
observation is weighted by its statistical information (model variance), yielding an inlier-pattern-
sensitive fit statistic. Their expected values are 1.0, and the mean-squares show the amount of
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we obtain a set of items for which the model assumptions hold.5 After the initial
estimate, only the parameter corresponding to the variable “no computers in the
household” is removed from the model. The second (and final) estimate of the Rasch
model produces the parameters of severity and the fit indices shown in Table 30.1.

Some outfit indices are higher than 1.5, suggesting the presence in the dataset of
outlying individual answer pattern; this is not totally unexpected, given the content
of the items; however, the corresponding infit indices do not force the item removal.

We can note that the scale range is quite wide (ranging from –3.15 to 5.77), mak-
ing the set of items quite informative; in fact, when the items have similar severity
parameters, the different response profiles tend to have the same probability, not
all the units are measured precisely, and cases of zero and perfect scores are likely
to occur. Table 30.1 reports the items ordered according to the severity parameter:
the ones with higher estimates of ˇjmainly concur to generate inequalities, and can
increase the probability of material poverty.

The first remark regards the ownership of material goods: these characteristics
usually do not generate poverty, and are placed at the bottom of the ranking, with
the only exceptions of the possess of car and TV. This confirms a predictable result,
e.g., the ownership of rare goods such as satellite TV, motorcycle, DVD players, or
Internet connection does not discriminate between poor and nonpoor households,
while the lack of common goods as a car or a TV indicates economic deprivation.
In fact, not having the first group of goods depends more on cultural factors and
life style, since they are more frequent among young, highly educated households,
while the elderly rarely hanker these devices.

Among the most relevant items we can notice eviction and recourse to savings
and loans; in fact, they are quite direct indicators of economic poverty and monetary
trouble. Items concerning housing conditions are also quite relevant in the ranking,
especially living in a rental house/apartment and in an apartment (as opposed
to independent house): this confirms the importance of the housing expenses to
determine the economic situation. Moreover, Italian families traditionally aspire to
buy their house, even at the cost of great economic sacrifice. Finally, the parameter
corresponding to the monthly income is placed in a medium ranking position; one
could expect a higher position for a variable, income, which is usually a very
good indicator of economic deprivation, but this position is due to the extremely
poor quality of the variable as collected in this survey, as seen in the beginning of
Sect. 30.2.

distortion of the measurement system. Values less than 1.0 indicate that observations are too
predictable, i.e. redundancy and model overfit. Values greater than 1.0 indicate unpredictability,
i.e. unmodeled noise and model underfit.
5The threshold used here is 2.0, in agreement with a “rule of thumb” often mentioned by practi-
tioners: items with infit and outfit indices larger than 2 distort or degrade the measurement system,
while items with indices between 1.5 and 2.0 are unproductive for measurement construction, but
not degrading, items with indices from 0.5 to 1.5 are productive for measurement, and items with
indices lower than 0.5 are too predictable but do not contradict the model [15].
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30.3 Validation of the Poverty Scale

The variable resulting from the Rasch model fit should be a measure of poverty.
In order to assess its validity, we must check if it behaves as expected. First of all,
we find the poverty measure consistent with a variable on poverty self-perception
asked in the same survey: families who perceive themselves in economic trouble
have significantly higher levels of the new poverty measure (Fig. 30.1).

Several studies show that single person, mono-parental and large households
are more prone to the risk of poverty [11]; the Rasch score is consistent with the
expectations (Table 30.2), except for large families, but when asked about general
and economic disease, large families in this sample report lower rates of problems
than smaller families [4]. Moreover, results from recent surveys on poverty in Italy
show that large families are severely at risk in Southern Italy, but not as much in
Veneto, where poverty is more related to old age, job uncertainty, and household
disruption [2].

Human capital is known to be a powerful resource immunizing from poverty [9],
and the Rasch poverty score consistently decreases for higher levels of education
(Table 30.2). Also occupational status is obviously expected to be related to poverty
[11], and in fact the poverty score is significantly higher for unemployed heads
of household, families with unemployment problems and in general for heads of
household in nonworking positions.

Moreover, we model a regression tree where the (quantitative and continuous)
criterion variable is the estimated position parameter resulting from the Rasch
model. The regression tree is estimated by maximizing a criterion functionˆ.s; t/,
giving a measure of diversity between the child nodes generated by partitioning the
corresponding parent node t . In our application, the criterion function is Fisher’s
�2 index, derived from the heterogeneity function i.t/ measuring the lack of
homogeneity of a group with respect to the dependent variable. The i.t/ function is
the deviance of node t :

i.t/ D
X
i

jyi � Nyt j2
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Table 30.2 Average Rasch score for some household characteristics, and p-value of the ANOVA
mean comparison

Household characteristics Rasch score

Number of family members (p-value < 0.001)
1 0:60

2 0:22

3–4 �0:21
5 or more �0:28
Familiar structure (p-value < 0.001)
Single person household 0:60

Couple 0:22

Nuclear family �0:24
Extended family �0:19
Single parent with children 0–5 0:31

Other 0:10

Head of household’s education (p-value < 0.001)
University or postgraduate �0:22
High school �0:07
Compulsory education �0:03
Lower education 0:45

Head of household’s occupational status (p-value < 0.001)
Employed �0:25
Unemployed 0:45

Retired 0:36

Other (invalid, student, housewife, etc.) 0:43

Presence of unemployed (p-value < 0.001) 0:29

General average 0:02

where Nyt is the mean value y in the parent node t . Thus, we can estimate the mean
value of y in each node in order to characterize the group. The tree building process
is very similar to a multiple regression model where the variables are selected
through a forward procedure. Additionally, the regression tree allows to detect
combinations of the predictive variables with interaction effects, and to insulate and
describe groups of families particularly subjected to economic deprivation.

The regression tree is fitted by means of the library tree of software R [14],
devoted to Classification And Regression Trees (CART) analysis. The halt rules are
set as follows: the minimum dimension of groups is set at 100 units to avoid the
making of tiny groups; the maximum number of final nodes is set at 14 to avoid too
complex branching; the minimum total deviance of a parent node is set at 1% of the
starting deviance of y to avoid further partitioning of homogeneous nodes.

The analysis of the regression tree (Fig. 30.2) also shows results which are
consistent with what we expect from a poverty measure. The traditional family with
an employed head of household is the wealthier type of family. These are couples,
couples with children and extended families, whose principal income derives from
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employment or self-employment. Among these, the most protected from poverty
are households with an average or high level of education. Also for households with
lower education levels, steady families are less vulnerable to poverty, both when
they have been formed from longer periods and when they have a stable structure:
in this sense, the traditional couple with children is the less economically frail.
A traditional and stable familiar structure seems to prevent from poverty indepen-
dently on the working situation of the head of the household. In any case, for each
type of family structure, children are a factor that protects from poverty; probably
their presence is a stimulus to face toward critical situations and assure them a
certain future.

Families whose main income comes from pensions or other sources have higher
poverty levels. The traditional household structure (couple with children or couple
with children and other members) is again less vulnerable to poverty. Moreover,
the existence of more than one child further protects from material deprivation; since
these are mostly old families with a retired head of the household, more children
probably imply more incomes. The main difference, compared with the traditional
families in the left side of the tree, concerns the couples without children: when
the head of the household is not employed (hence, in most cases, old), this type of
family is more frail to poverty. Finally, chronic invalids in the household correspond
to higher levels of poverty, probably because they require medical attention and care
expenses, in addition to the constant assistance of family members, thus subtracted
to other activities.

30.4 Final Remarks and Future Perspectives

The Rasch model allows to estimate a poverty measure, also in default of a reliable
and accurate measure of income. The necessary variables for the estimate pertain
the economic area and the ownership of durable goods, and are therefore much
easier to survey than income, and less prone to definition complexity, nonresponses,
and reluctant respondents. A comparison between the new poverty measure and the
perceived poverty, as well as the analysis of the relationship with some household
variables likely to influence the poverty level, confirm the adequacy of this indicator.
The lack of a reliable income variable in the survey data used for the application
prevents from performing a complete validation of the obtained measure. The
application could be replicated on a different dataset which includes an income
variable, in order to compute an alternative measure of poverty independent from
the income. The comparison of the two (direct and indirect) measures of poverty
will also shed light on the possible reasons of discrepancy, and suggest future
improvements.
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31Chronic Poverty in European Mediterranean
Countries

Daria Mendola and Annalisa Busetta

Abstract
This chapter investigates the characteristics of chronic poverty among youth in
Southern European countries. These countries have the highest levels of poverty
in Europe and welfare systems unable to smooth social inequalities effectively.
The main aim of this chapter is to investigate on how long-lasting poor among the
Mediterranean youth differs in socio-demographic and economic characteristics.
The intensity of poverty over time is measured by a very recent longitudinal
poverty index based on the rationale of cumulative hardship. We tested the effects
of many covariates on the incidence and intensity of chronic poverty, controlling
for main socio-demographic and economic characteristics, using a ZINB model.
The peculiar mix between the lack of effective state institutions and a strong
presence of families explains why many factors, which usually are significantly
related to poverty, do not have an important role here. A strong inertial effect is
due to the intensity of poverty at the start of the time-window. Italian youth has
the worst performance.

Keywords
Chronic poverty index • Initial conditions • Young adults • ZINB model

31.1 Introduction

There is a great turnover in the stock of people living around the poverty line. Indeed
many of those who have left poverty return back relatively quickly, while only a
minority of people, poor in a certain year, will experience a long-lasting poverty.
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Only around 60% of young Europeans are never poor in 7 consecutive years with
relevant differences among countries [22].

The interest goes therefore to longitudinal patterns of poverty and to the factors
related to the process of impoverishment, and marginalization. In particular, which
individual and household characteristics influence poverty persistence? Do eco-
nomics and labour market-related initial conditions prevail over socio-demographic
ones?

This chapter focuses on young people living in four countries in Southern Europe
(Greece, Italy, Portugal, and Spain) where chronic poverty is widely spread. Indeed,
analysing only this group of countries allows for controlling those confounding
factors related to the interaction among individual behaviours, family models, labour
market characteristics, and social protection schemes, which are all the features of
the “Mediterranean welfare typology” [12]. We use a synthetic measure of chronic
poverty based on a minimum and fully nonparametric set of assumptions. This
chronic poverty index is then modelled to spot factors associated with long-lasting
poverty, with particular attention to the initial conditions problem.

The chapter is structured as follows. In Sect. 31.2 we present the literature on
measurement of longitudinal poverty. In Sect. 31.3 we introduce data and describe
chronic poverty among young people in Southern European countries. The last
two sections (Sects. 31.4 and 31.5) sum up the main results of the model and our
conclusions.

31.2 Theoretical Background

Poverty is characterized by a strong state dependence (since the experience of
poverty in the past can influence the occurrence of poverty in the future) and affects,
with different strength, specific subpopulations. There is a wide literature on the
determinants of poverty persistence that uses longitudinal data, although part of
this refers to papers on income dynamics from which, however, information about
poverty can be derived. These models separate the true state dependence from
the propensity to experience poverty due to observable and unobservable factors.
Among the most successful models in the literature we highlight (a) transition
probability models, (b) covariance components models, and (c) longitudinal poverty
pattern models (see [18]).

The first category is the most applied and deals with transitions in and out of
poverty over time as a function of individual characteristics which may be fixed,
time-variant, but also lagged covariates (see the seminal paper of [2] and also [26]).

The second class introduces stochastic time-series structures in the error com-
ponent (usually autoregressive terms of order 1 or greater) and includes a further
error term that may account for individual heterogeneity, persistent effect of random
shocks, and unobserved individual specific variables.1

1A drawback of these two categories of models is that they usually do not take into account
that there is a strong correlation among multiple spells of poverty or non-poverty for the
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Finally the last category embraces models with a dependent variable accounting
for the complete longitudinal sequence of incomes observed for each individual.
This kind of models (see among others [14,17]) requires that all the covariates refer
to the first year of the sequence if they are time-varying, since they have to be related
with a response variable that is a simple fixed measure synthesizing all the individual
poverty and non-poverty spells. Nevertheless we think that these “simpler” models,
from which it is much easier to derive poverty persistence predictions, could give
a positive pay-off. In addition, according to us, they could be improved by using
as response variables more sophisticated measures, and this could represent an
interesting alternative way to study state dependence in poverty while connecting
it to household and individual characteristics. In this perspective it is noteworthy to
say that between 2009 and 2011 many papers proposed new indices of longitudinal
(or chronic) poverty which account for poverty over time.2 These indices take into
account the nonrandom patterns in the sequences of poverty (multiple) spells and
acknowledge, in some way, correlation structure of poverty and nonpoverty spells
without making any parametric assumption. The model proposed in Sect. 31.4 uses
just one of these indices inside the longitudinal poverty pattern models framework.

31.3 Data and Methods

Data come from the European Community Household Panel (ECHP). The sample
includes people aged 16–29 at the first wave, living in Greece, Italy, Portugal, or
Spain, with complete information about household income along the seven waves
of the panel (balanced panel from 1994 to 2001). The sample is of 6,201 individuals.
The poverty status is assessed according to the Eurostat criterion: the poverty line is
set at the 60% of the median net equivalized income, for each country and each year
using the OECD modified equivalence scale; the households are classified as poor
or not poor, and all their members accordingly. We calculate the measure of chronic
poverty, explained in the following, upon six waves ranging from wave 2 to wave 7;
while the supposed predictive factors (covariates) are all recorded at the first wave,
but four variables related to changes in the observation time-span.

The intensity of poverty over time is measured via a reduced form of the
individual longitudinal poverty index PPI in [21], which focuses here simply on
how poverty and poverty spells follow each other, ignoring both the “decay effect”
and the intensity weights. This reduced PPI is a rational number in the [0,1] interval,
where 0 corresponds to an individual who is never poor or is poor only once in

same individual. In particular, in transition models, spells in the two alternating states (poverty
and non-poverty) for the same individual are also assumed to be uncorrelated [. . . ] However,
when individuals differ in unobserved terms like ability, effort, tastes, and these unobservables
remain constant over the individual’s lifetime, the assumption of uncorrelated spells might be
inappropriate [8].
2See among others [5, 6, 9, 13, 15, 21, 23, 27].
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Table 31.1 Longitudinal poverty in Southern European countries

Spain Italy Greece Portugal Southern Europe

Longitudinal poverty (from 1st to 7th wave)
Sample size
(percentage of
the sample)

1,560
(25.15)

2,291
(36.95)

1,115
(17.98)

1,235
(19.92)

6,201
(100.00)

% Never
longitudinally
poor

73.27 68.31 74.80 82.11 73.47

Ever poor 2.05 5.50 1.97 2.02 3.31
Longitudinal poverty index among who experience at least two years of poverty (from 2nd and
7th wave)
Median PPI 0.21 0.41 0.29 0.29 0.29
Mean PPI 0.33 0.46 0.36 0.39 0.40
Standard
Deviation

0.29 0.33 0.29 0.32 0.32

Percentage of
years in
poverty

52.04 63.36 48.04 48.87 55.92

Mean PG along
six waves

0.19 0.29 0.18 0.21 0.24

the observation interval (named “longitudinally never poor” from now on) and 1
corresponds to an individual who is always poor. The more numerous and close the
years of poverty, the higher the intensity of poverty in a longitudinal perspective
(hypothesis of cumulative hardship). Note that PPI accounts for duration of poverty
and it refers to the spells approach, but here the emphasis is not simply on the
number of spells of poverty in the temporal sequence but also on the length of the
recovery spells. We refer the reader to the original paper for technical details and
properties of the index.

Let us now describe our sample (see Table 31.1). Comparing the situation of
chronic poverty in Mediterranean countries it is evident that Italian young people
are the most exposed to long-lasting poverty (only around 68% of them are
never longitudinally poor), while Portuguese young people are the least exposed
(Table 31.1). At the same time, the percentage of individuals who never escaped
poverty along the seven observed years ranges between around 2% in Greece,
Portugal, and Spain to more than 5% in Italy.

A synthetic display of the PPI distribution across the four Mediterranean
countries is given in Table 31.1. If we concentrate only among individuals who
experimented at least 2 years in poverty, again Italian young people are in the worst
situation also in terms of intensity of chronic poverty (highest median, mean); while
the best situation is lived by Spanish young adults. Moreover the intensity of chronic
poverty in Italy shows a median which is almost double of the Spanish one. Indeed
Greece and Spain show quite similar distributions of long-lasting poverty, but the
median value of the index is considerably higher among Greek young people.
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Among those who experienced at least 2 years of poverty (i.e. the longitudinally
poor people, according to the duration cut-off adopted in this chapter), Italy is the
country with the highest mean permanence in poverty with an average number of
years spent in poverty of more than 63% of the entire time interval. An important
feature of poverty is its severity. Again if we concentrate only on longitudinally poor
individuals, the intensity of longitudinal poverty (measured strictly by the country-
level mean of the individual poverty gaps) is substantially around 0.20, but in Italy
where it reaches 0.28.

As announced, the main goal of this chapter is studying the effect of household
and individual socio-economic characteristics on the intensity of poverty persistence
and on the process determining an individual lives permanently out of poverty. Note
that in this case study, due to the shortness of the observation period (we evaluate
longitudinal poverty over six waves), the index takes 29 different values only (apart
from 0) and the distribution is over-dispersed. This feature drives us to consider the
suitability of a negative binomial model.3

Indeed the most common motivation for using a negative binomial model is in
terms of unobserved heterogeneity, but in this case we find more appealing the
idea of the “contagion model” suggested by Eggenberger and Pólya in 1923, as
reported in [19]: “contagion occurs when individuals with a given set of x’s initially
have the same probability of an event occurring, but this probability changes as
events occur [. . . ] thus contagion violates the independence assumption of Poisson
distribution”. This seems to fit perfectly the case of individual poverty sequences.
In fact transitions from poverty to non-poverty do not have the same probability of
the reversed ones, and, in addition, the longer the permanence in poverty the lower
the probability to escape. Since, longitudinally never poor people represent nearly
75% of the distribution (see Table 31.1), this suggests the use of a zero-inflated
negative binomial model (ZINB).4 In particular firstly a logit model is estimated
for predicting whether or not a young individual is never longitudinally poor along
the six waves (PPI D 0): it shows the effect (on the logit scale) of the covariates
(referring to initial conditions and changes occurred during the observation period)
on being never poor. Secondly, a negative binomial model is generated for predicting
the values of PPI: it shows the magnitude and the direction of covariates’ effect on

3Note that here, we use rounded values of the PPI. In particular, we multiplied the PPI by 1,000 and
then rounded to the nearest integer. This transformation allows us to keep 30 different values also
in the transformed values. Indeed in presence of a longer panel a more appropriate model would be
a mixture model allowing zero-inflation and a suitable model for asymmetric data (looking at the
distribution observed a reasonable model seems to be the Beta distribution with parameters lower
than 1).
4In our case part of the inflation of zeroes is due to the fact that the PPI is zero also for individuals
with a single spell of poverty. Indeed people who are poor only once in the 6 years of observation
are 11.7% of our sample. The likelihood ratio test and the Vuong test confirm the appropriateness
of the chosen functional form compared to a standard negative binomial distribution.
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the longitudinal poverty intensity. These two models (simultaneously estimated) are
then combined. Note that the two models in the ZINB show opposite signs for the
same covariates. In the negative binomial model the estimated coefficients with a
positive sign indicate the amount of increase in longitudinal poverty index value that
would be due to an increase (or to a change in state) in the explanatory variables,
while the negative sign shows the opposite. On the other side, in the logit model
the estimated coefficients with a positive sign indicate the amount of increase in
the predicted probability to be never poor during the following 6 years (on the logit
scale). The higher the coefficient, the higher the predictive (and protective) effect of
the covariate.

31.4 Chronic Poverty Among Young Southern Europeans

As mentioned above, we focus our attention on Southern European youth poverty;
this is not only because these countries present the highest scores of chronic
poverty in Europe [16] but mainly because they represent an interesting object of
study giving that they share many common features, not only in the social welfare
organization, but more broadly in the interplay of state institutions and families
which generates a peculiar welfare mix (see [11]). Indeed, as highlighted in [20], all
these countries are characterized by “the marginal role of social assistance and the
absence of minimum income programmes [. . . ]. It is argued that the ‘patchiness’ of
safety nets in Southern Europe is due to a unique set of constraints, the most relevant
of which are the role of families and the ‘softness’ of state institutions”.

In addition note that young people in these countries have very similar patterns
of transition to adulthood: they tend to postpone leaving of parental home, take a
longer time to complete education, entry late into the labour market, postpone the
setting of a new family and the choice to have children. In the first wave of our
sample, 77% of young people lives with their parents; less than 25% is married or
lives with a partner; only 15% has a child. The reasons for this delayed transition
to adulthood are quite controversial and actually broadly studied [3, 4]. All this
helps to understand why, as we will see in the following, most of the demographic
characteristics which usually explain poverty does not play an important role in
explaining chronic poverty among Southern European youth, whereas economic
characteristics and the changes during the observation window still reveal their
importance.

Let us now introduce the main results from the ZINB model for Southern
European countries (see Table 31.2). At this stage, it is worthwhile saying that, as
mentioned in Sect. 31.2, due to the nature of our response variable, all covariates
needed to be either fixed or measured at the start of the sequence. However we also
built up four dummy variables accounting for changes, occurred at some, even if
not-specified point, in the observation period. We believe that these could add an
interesting interpretative value to the overall model.

Among the initial conditions considered, a key role is played by the intensity
of poverty experience at the first wave (poverty gap, PG in the following). This
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Table 31.2 ZINB model: estimates for Southern European countries

Negative binomial
model Logit model

Personal Characteristics Coef. Std. Err. Coef. Std. Err.
– Woman n.s. – n.s –
– Age at first wave n.s. – n.s. –
– Squared age at first wave n.s. – n.s. –
Socio-economic characteristics (at 1st wave)
– Poverty gap (PG) 1.21 0.51 �3:10 0.99
– Upper Secondary School (ref. Tertiary School) n.s. – n.s. –
Below the Upper Secondary School n.s. – �0:68 0.19
– Upper Secondary School � PG n.s. – n.s. –
Below the Upper Secondary School�PG n.s. – n.s. –
– Student (ref. worker >15 hours) n.s. – n.s. –
Unemployed or nonlabour forces n.s. – n.s. –
– Saving habits �0:38 0.09 0.87 0.13
– Saving habits � PG 0.70 0.29 �2:76 0.85
Changes from 2nd to 7th wave
– Out of parental home for at least 3 years n.s. – �0:35 0.12
– Student/nonpaid trainer for at least 3 years 0.23 0.07 �0:33 0.12
– Unemployed or nonlabour forces for 0.30 0.05 �0:60 0.11

at least 3 years
– 1 step up in education level n.s. – n.s. –
Household characteristics (at 1st wave)
– Out of parental home and without kids n.s. – n.s. –

(ref. live in parental home)
Out of parental home and with kids n.s. – n.s. –
– Number of kids in the household 0.12 0.04 �0:64 0.11
– Number of kids in the household � PG 0.10 0.04 �0:52 0.11
– Material deprivation 0.07 0.02 �0:48 0.04
– Material deprivation� PG 0.07 0.01 �0:29 0.04
Country’s effects
– Portugal (ref. Italy) �0:19 0.07 1.09 0.12
Greece �0:27 0.06 0.59 0.12
Spain �0:30 0.05 0.23 0.10
– Constant 6.16 0.80 2.91 1.41
Vuong test z D 17:15, P -value 0.0000; n.s.D not statistically significant at 5%

last has a relevant direct effect in explaining both the increase of the intensity of
poverty in the next six waves (beta D 1:21) and the decrease of probability to be
never longitudinally poor (�3:10 on the logit scale) as expected under the state
dependence hypothesis. Moreover PG interacts, sometimes in a very strong way,
with the effect of most of the other covariates.

Having a higher education at the first wave does not give any advantage in reduc-
ing the intensity of long-lasting poverty (whatever the intensity of poverty -PG- in
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the first wave), on the contrary it shows to have some effect on the probability to
never experience longitudinal poverty. In particular the coefficients estimated for
education levels attained at the first wave in the binary model show that (compared
to who completed the tertiary school) the probability to be never poor is significantly
reduced by having an education below the upper secondary school (�0:68). Even in
case young achieves a better level of education, during the 6 years considered, this
does not imply an improvement of her condition, maybe also due to the shortness
of time-window. Being unemployed or out of the labour force5 (vs. being a worker),
again recorded at the first wave, does not act neither on the chance to be never
poor nor on the intensity of poverty duration. The lack of significance of these key
variables (both education and activity status) could be explained considering the
peculiarities of Mediterranean welfare state and labour market. Indeed in Southern
European countries there is a very low economic return to education [25], increasing
difficulties in entering the labour market, and a large diffusion of underpaid and
precarious employment for young adults. Indeed “transitions to stable employment
can be long. In Europe, it takes, on average, almost two years to find a first job after
leaving school”, and it takes even more in the South [24].

Moreover, being a student or unemployed have no significant impact both on the
magnitude of the longitudinal poverty index and on the slipping into poverty, but
the condition of lasting as a student or in the unemployment (measured as more,
or less than 50% of time spent in these conditions) represents a risk factor for the
experience of high intensity poverty and of being poor more than 1 year.

It is a well-known fact that the median age of leaving home in Mediterranean
countries is higher than in any other European country. Recent studies [1, 22]
suggest that delaying the transition out of the parental home can be a strategy for
young individuals to reduce their risk of entering poverty. In this context living with
parents, as well as with a partner/spouse (with or without children), does not show
any effect on poverty. This is probably due to the fact that in all Southern European
countries young adults tend to stay at parental home until they achieve economic
independence and/or find a stable employment, and in any case until the completion
of their studies (nearly 80% of the individuals in our sample live with their parents
at the first wave). This concurs also to explain the absence of a gender effect.

As expected an important influence can be attributed to the number of kids
(aged less than 16 years) living in the household: the higher the number of kids,
the higher the probability to experience more severe forms of longitudinal poverty
and, similarly, the lower the probability to be never poor (betas respectively equals
to 0.12 and �0:64 for the negative binomial and the binary model). This effect is
amplified as long as the poverty gap at the first wave increases.

5Please note that the classification of the activity status is made through three categories, mutually
exclusive, derived from the shrinking of the main activity declared by respondents. So a young
individual is a “worker” if she is employed for at least 15 h a week, or a “student”/“unemployed or
out of the labour force” even if doing a small/odd paid job but for less than 15 h per week.
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Fig. 31.1 Distribution of predicted individual probabilities to be never longitudinally poor

Neat and expected is also the effect of the economic covariates in explaining
chronic poverty, even though with different degrees. The model shows that in the
Mediterranean countries the material deprivation (measured as the number of not
possessed items among the 7 indicators listed in [10]) slightly, but significantly,
increases the intensity of chronic poverty (beta D 0:07) and decreases the probability
to be never poor (beta D � 0:48 on the logit scale). This effect shows significant
interaction with poverty gap at first wave. Moreover, the model shows that the
individual ability to save up for the future protects them in terms of both reducing the
magnitude of longitudinal poverty and increasing the probability to not experience
poverty. But this protective power is reversed with the increasing of poverty gap at
the first wave.

In addition, the model takes into account the existence of country peculiarities
among the Mediterranean ones, including dummy variables for each country
(assuming Italy as reference category). These dummies act as a sort of control for
residual unobserved heterogeneity (in terms of legislation, labour market regulation,
and demographic behaviour not captured elsewhere). The beta estimates are all
statistically significant both in the negative binomial and in the logit model, and
show that Italian welfare system is the least able to smooth inequalities in terms of
long-lasting poverty. A more effective view can emerge from predicted probabilities
to be never longitudinally poor (Fig. 31.1), where it is evident that the higher
probability to be never poor is expected for Portuguese young adults where the
Italians show the lower one.
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31.5 Conclusion

The literature on longitudinal poverty debated a lot on how to take into account
the distortion introduced by omitting information on the characteristics of the
individuals. Most of the papers propose more and more sophisticated models that
imply strict assumptions on the error distribution. These models fully exploit the
potential of panel data (accounting both for initial conditions and time-varying
variables) but usually do not take into account that there is a strong correlation
among multiple spells of poverty or non-poverty for the same individual. Recently
some scholars proposed to model the initial poverty conditions and non-random
attrition in addition to the modelling of poverty transitions [7].

In an alternative way in this chapter we deal with these issues starting from a
synthetic measure of sequences of states (that accounts for the closeness of poverty
spells inside the observed sequence) and then including it as response variable in
a zero inflated negative binomial model. As far as we know there are no papers
which include indices of poverty persistence as response variable so that this chapter
represents a contribution, though not ambitious, in this direction.

The results of the zero inflated negative binomial model show that economic
characteristics are crucial in explaining the highest levels of chronic poverty. In
particular among the initial conditions considered a key role is played by the
intensity of poverty experience at the first wave which has a direct effect both on
the intensity of poverty in the next six waves and on the probability to be never
longitudinally poor. Moreover it interacts, sometimes in a very strong way, with the
effect of most of the other covariates (e.g., material deprivation and saving habits).

On the contrary socio-demographic characteristics seem to have a less relevant
impact on chronic poverty. In a context where families are called upon to play
a role in smoothing the negative effects of the delayed transition into adulthood,
living with a partner/spouse (with or without children) does not show any effect on
poverty. This result is likely due to the fact that young Mediterranean individuals
tend to stay in parental home until they achieve fully economic independence, and
this concurs to explain the non-relevance of different living arrangements which
usually are associated with poverty. As far as countries’ differences, Italy is the
least able to smooth inequalities in terms of incidence and duration of long-lasting
poverty.

As a consequence Italian young adults suffer more severe forms of longitudinal
poverty. The wider difference among the four countries is between Italy and
Portugal: the odds to be never poor for Portuguese young adults is three time greater
than the odds for Italian people.



31 Chronic Poverty in European Mediterranean Countries 349

Acknowledgements Although this chapter is the result of the joint effort of both authors,
who share the full responsibility for the content, Sects. 31.1, 31.2, and 31.3 are attributable to
D. Mendola, while Sects. 31.4 and 31.5 to A. Busetta. The authors gratefully acknowledge the
financial support provided by University of Palermo [grant no. 1267929730 - CORI] under the
responsibility of professor A.M. Milito, and IRISS at CEPS/INSTEAD for providing the ECHP
data under the FP6 (Trans-national Access contract RITA 026040).

References

1. Aassve, A., Iacovou, M., Mencarini, L.: Youth poverty and transition to adulthood in Europe.
Demogr. Res. 5(2), 21–50 (2006)

2. Bane, M.J., Ellwood, D.T.: Slipping into and out of poverty: the dynamics of spells. J. Hum.
Resour. 21(1), 1–23 (1986)

3. Billari, F.C.: Becoming an adult in Europe: a macro(/micro)-demographic perspective.
Demogr. Res. Spec. Collection 3(2), 15–43 (2004)

4. Billari, F.C., Rosina, A.: Italian “latest-late” transition to adulthood: an exploration of its
consequences. Genus 69, 71–88 (2004)

5. Bossert, W., Chakravarty, S.R., D’Ambrosio, C.: Poverty and time. J. Econ. Ineq. 10(2),
145–162 (2012)

6. Calvo, C., Dercon, S.: Chronic poverty and all that the measurement of poverty over time. In:
Addison, T., Hulme, D., Kanbur, R. (eds.) Poverty Dynamics. Interdisciplinary Perspectives,
pp. 29–58. Oxford University Press, Oxford (2009)

7. Cappellari, L., Jenkins, S.P.: Modelling low income transitions. J. Appl. Econ. 19, 593–610
(2004)

8. Devicienti, F.: Estimating poverty persistence in Britain. Empir. Econ. 40(3), 657–686 (2011)
9. Dutta, I., Roope, L., Zank, H.: On intertemporal poverty measures: the role of affluence and

want. Soc. Choice Welf. (2012). doi:10.1007/s00355-012-0709-8
10. Eurostat: Material deprivation in the EU. Stat. Focus 21, 1–11 (2005)
11. Ferreira, L.V.: Persistent poverty: Portugal and the southern European welfare regime. Eur Soc

10(1), 49–71 (2008)
12. Ferrera, M.: The “southern model” of welfare in social Europe. J. Eur. Soc. Policy 6(1), 17–37

(1996)
13. Foster, J.E.: A class of chronic poverty measures. In: Addison, T., Hulme, D., Kanbur, R. (eds.)

Poverty Dynamics. Interdisciplinary Perspectives, pp. 59–76. Oxford University Press, Oxford
(2009)

14. Hills, M.S., Jenkins, S.P.: Poverty among children: chronic or transitory? In: Bradbury,
B., Jenkins, S.P., Micklewright, J. (eds.) The Dynamics of Child Poverty in Industrialised
Countries, pp. 174–195. Cambridge University Press, Cambridge (2001)

15. Hoy, M., Zheng, B.: Measuring lifetime poverty. J. Econ. Theory 146(6), 2544–2562 (2011)
16. Iacovou, M., Aassve, A.: Youth Poverty in Europe. Joseph Rowntree Foundation, York (2007)

(Available at http://www.jrf.org.uk/sites/files/jrf/2121-poverty-youth-europe.pdf)
17. Jalan, J., Ravaillon, M.: Transient poverty in postreform rural China. J. Comp. Econ. 26(2),

338–357 (1998)
18. Jenkins, S.P.: Modelling household income dynamics. J. Popul. Econ. 13(4), 529–567 (2000)
19. Long, J.S.: Regression Models for Categorical and Limited Dependent Variables. Sage,

Thousand Oaks (1997)
20. Matsaganis, M., Ferrera, M., Capucha, L., Moreno, L.: Mending nets in the south: anti-poverty

policies in Greece, Italy, Portugal and Spain. Soc. Policy Adm. 37(6), 639–655 (2003)
21. Mendola, D., Busetta, A.: The importance of consecutive spells of poverty: a path-dependent

index of longitudinal poverty. Rev. Income Wealth 58(2), 355–374 (2012)
22. Mendola, D., Busetta, A., Aassve, A.: What keeps young adults in permanent poverty? A

comparative analysis using ECHP. Soc. Sci. Res. 38(4), 840–857 (2009)

http://www.jrf.org.uk/sites/files/jrf/2121-poverty-youth-europe.pdf


350 D. Mendola and A. Busetta

23. Mendola, D., Busetta, A., Milito, A.M.: Combining the intensity and sequencing of the poverty
experience: a class of longitudinal poverty indices. J. R. Stat. Soc. A 174, 953–73 (2011)

24. Quintini, G., Martin, S.: Starting Well or Losing their Way? The position of youth in the labour
market in OECD countries. OECD Social, Employment and Migration Working Papers, No. 39
(2006). doi:10.1787/351848125721

25. Reyneri, E.: Sociologia del mercato del lavoro. Il Mulino, Bologna (2005)
26. Stevens, A.H.: Climbing out of poverty, falling back in: measuring the persistence of poverty

over multiple spells. J. Hum. Resour. 34(3), 557–588 (1999)
27. Zheng, B.: Measuring chronic poverty: a gravitational approach. Seminar paper presented at

University of Colorado, Denver (2012)



32Do Union Formation and Childbearing
Improve Subjective Well-being? An
Application of Propensity Score Matching
to a Bulgarian Panel

Emiliano Sironi and Francesco C. Billari

Abstract
The link between childbearing, union formation and subjective well-being
is still under-investigated. A key problem is disentangling causal effects, a
challenge when the interplay between life course pathways and states of mind is
investigated. Here we use propensity score matching estimates applied to panel
data to demonstrate how the birth of a first child or entry into union increase
individuals’ psychological well-being and reduce disorientation in Bulgaria, a
transition country with lowest-low fertility and postponement of union formation.
Sensitivity analyses confirm the robustness of our findings to heterogeneous
levels of hidden bias.

Keywords
Union Formation • Childbearing • Propensity Score

32.1 Introduction

After the fall of communism in 1989 and the subsequent economic crisis that spread
in the former Iron Curtain, several changes in demographic behaviour arose as those
countries became engaged in the difficult transition to a market economy.

Bulgaria has been no exception to this scenario. The Total Fertility Rate (TFR)
reached “lowest low” fertility levels, i.e. lower than 1.3. Moreover, the mean age at
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marriage has become higher than the mean age at first birth [12], with an increase
of out-of-wedlock births. Since the early 1980s, a decrease in the relative risks
of marriage and a simultaneous increase in the rate of entry in cohabitation have
modified the common patterns of union formation [10].

Given the crisis, one might ask with [11] “Why do individuals in developed
countries continue to form union and have children?” Most studies discuss the
costs and benefits of having children and entering partnerships. This approach
assumes that individuals derive utility from life course events such as childbirth and
marriage/cohabitation. The “utility” deriving from these events cannot be clearly
expressed in monetary terms: a possible measure of the benefit associated with life
course pathways and events is subjective well-being.

In fact, the demographic literature has also underlined how ideational dimen-
sions (including proxies of subjective well-being) can produce a causal effect on
individuals’ intentions and subsequent life course decisions. In particular, Philipov
et al. [15] focus on anomie measures as determinants of childbearing decisions (the
concept of anomie was developed by Durkheim [5, 6] and later by Merton [14] to
define the loss of prescriptive power of norms in a society). The weakened power
of norms causes a state of uncertainty and disorientation on people’s state of mind
that may affect happiness and subjective well-being. Under the influence of anomie
people become indecisive, due to feelings such as disorientation, uncertainty and
psychological discomfort. This situation is widespread in transitional societies like
Bulgaria, where sudden changes can lead to rapid increases in material well-being
as well as entry into poverty status.

After this brief introduction the remainder of this chapter is organized as follows:
Sect. 32.2 presents the data and some introductory descriptive statistics on the
outcome of interest. Section 32.3 illustrates estimation strategy, whereas Sect. 32.4
gives empirical results of the analysis. Section 32.5 describes robustness checks and
Sect. 32.6 concludes.

32.2 Data

This study on Bulgaria is based on data from the recent survey “The Impact of Social
Capital and Coping Strategies on Reproductive and Marital Behavior”, sponsored by
the Max Planck Institute for Demographic Research in Rostock, Germany. The first
wave of the survey was carried out in 2002. The sample includes 10,003 men and
women aged 18–34. The second wave took place in the winter of 2005/2006 and
contains the interviews of 7,481 subjects already present in the first wave; one of
the aims of the second wave is to capture changes in intentions, behaviours, values
and social characteristics through a panel design.

The survey investigates anomie using several dimensions: powerlessness, lack of
orientations (that are included in a unique factor named disorientation1), loneliness

1This variable is obtained after a principal factor analysis on three items that ask to respondents
whether they agree or disagree to the following statements: “I have little influence over my fate”;
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Table 32.1 Change in anomie factors in the presence or less of the birth of the first child between
the waves

Without children
First child between waves between waves Difference

Psychological well-being 0.088 0.055 0.033
Disorientation �0.136 �0.158 �0.022
��� p < 0:01; �� p < 0:05 �p < 0:1

Table 32.2 Change in anomie factors in the presence or less of a new union formation between
the waves

Union formation
between waves Not in union between waves Difference

Psychological well-being 0.308 0.031 0.277���

Disorientation �0.212 �0.128 �0.084��

���p < 0:01; ��p < 0:05 �p < 0:1

(labelled as psychological well-being2). These dimensions measured in terms of
factor scores are subject to a process of adaptation on new life course paths similar
to what happens for attitudes and value orientations. In this framework we follow
[11] approach and test whether childbearing and marriage/cohabitation contribute
to increase subjective well-being and to reduce individual anomie.

In order to reach this purpose, it is pivotal to define more precisely the outcome
of the research as the variation in factor scores for each of the anomie dimensions
analysed. However, this chapter does not limit the analysis on the cases of marriage
and non-marital cohabitation, but aims at extending its focus also on the effects of
childbearing on anomie.

Tables 32.1 and 32.2 preliminary offer summary statistics about the variation of
anomie indices in the presence or less of two crucial life course events between
the two waves of the interview. The first life course event analysed in Table 32.1
is the birth of a first child that is supposed to increase well-being for the subset of
individuals that experimented the first childbearing. The first column displays the
variation in factor scores between the two waves for the subset of individuals that
have had the first child in that period, while the second column shows the variations
for the childless sample.

When we compare the two groups of individuals, a larger increase in psycho-
logical well-being and disorientation has been displayed for people that have had
the first child, even if the difference appears as not significant. Similarly, Table 32.2
compares the subset of individuals that entered into a union between the two waves

“One can hardly find his/her orientation in life nowadays” and “No one cares what happens to other
people”.
2This variable is obtained from a factor extracted from answers to two questions where respondents
had to choose over a five-point scale ranked from Completely Disagree to Strongly Agree. The
wording of the items was: “During the past month have you ever felt very lonely or remote from
other people?” and “During the past month have you ever felt depressed or very unhappy?”
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with a subset of individuals that remain single. On a descriptive point of you,
Table 32.2 emphasizes larger benefits than in childbirth’s case, both in increasing
psychological well-being and in reducing disorientation for people that entered in a
union.

Although descriptive analyses support the idea that childbearing has not any
effect in modifying anomie measures while a union formation increases individual
subjective well-being, the identification of a possible effect of life course events
on anomie shows statistical problems that are not present in [11], who examine
a sample of Danish twins. Indeed, estimates may easily be polluted by problems
of selection bias. For example, the estimation of a positive effect of childbearing
on individuals’ subjective well-being may be polluted by the presence of external
confounders like the gender of respondent, economic well-being, age and pre-
pregnancy level of satisfaction towards his/her own life. These factors may affect
both the probability of having a child and post-childbirth subjective well-being,
with the effect of overestimating the positive effect of childbearing. An analogous
phenomenon might arise for union formation.

32.3 Estimation Strategy

The aim of our empirical analysis is twofolded. First, we want to investigate
the causal effect of bearing a first child on individuals’ measures of anomie.
Second, the purpose is to detect the effect of the entry into union on anomie for
individuals that were not in union after the first wave. To measure the impact of
childbearing or union formation, we are interested in the difference of the factor
scores in the presence of childbearing/union or not between the two waves. Because
of the binary typology (yes/no) of these life course events, the problem can be
analysed in a treatment evaluation setting. Rosenbaum and Rubin [16] suggested
to focus on the quantity EŒYi1 � Yi0jTi D 1�, defined as the Average Treatment
Effect on Treated (ATT). Here, Yi1 is the outcome for individuals who experienced
a union or childbearing (“treatments”) between the waves; conversely Yi0 is the
potential outcome for individuals who did not experience any union formation or
fertility event (“controls”).

Many problems deal with the identification of ATT. The first is that only one
among the potential outcomes is observed, making a direct comparison impos-
sible; consequently, in order to estimate ATT one needs to identify the quantity
EŒYi0jTi D 1�. This is impossible because the outcome in the case of absence of
pregnancy/union for an individual that has had a child or started a union instead is
not observable. A possible solution to overcome the problem is to use an estimator
of EŒYi0jTi D 0� for EŒYi0jTi D 1�. Nevertheless, these estimators are biased in
the presence of observable confounders. A possible solution is conditioning on pre-
treatment covariates X: ATT.Xi / D EŒYi1 � Yi0jTi D 1;Xi � :

In this case identification of ATT is feasible if we impose mean independence, i.e.

Yi1; Yi0 ?Ti jXi (32.1)
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However, this solution is not conclusive, because a second problem dealing with
ATT estimates consists in the difficulty to find individuals with identical values in
the vector X, when the number of covariates is high or when some of them are
continuous.

Rosenbaum and Rubin [16] proposed matching based on propensity score, which
is the conditional probability of receiving the treatment given X,

p.Xi / D PrŒTi D 1jXi �: (32.2)

Rosenbaum and Rubin [16] demonstrated that matching individuals with the same
propensity score is equivalent to compare them on the basis of X with the advantage
that an estimate of propensity score is easy to obtain through a simple logistic
regression. This result reduces the dimensionality of the problem, as we only need to
condition on a one-dimensional variable. Then, ATT can be formalized as follows:

ATT D Ep.Xi /ŒAT T .Xi /� D Ep.Xi /ŒEŒYi1 � Yi0jTi D 1; p.Xi /�� D
D Ep.Xi /ŒEŒYi1jTi D 1; p.Xi /�� EŒYi0jTi D 0; p.Xi /�jTi D 1�

(32.3)

Several matching algorithms can be used to estimate (32.3); in such case we will
have that

A OT T D 1

N1

X
i2fTiD1g

24Y1i �
X

j2fTiD0g
wijY0j

35 (32.4)

where N1 indicates the number of units that experienced childbearing or union
formation in the considered time interval; wij represents a sample weight for control
units used in matching procedure. In this framework, it is useful to implement
nearest neighbour within caliper matching, consisting in matching each treated unit
i with the closest control unit in terms of propensity score. More in detail, treated
and controls are matched within a tolerance level that is settled at 0.05 in terms
of propensity score. The use of a fairly strict caliper jointly with the imposition of
the common support3 requires a high degree of observational similarity between
treatment and control cases.

Propensity score matching (PSM) presents also a strong disadvantage: its esti-
mates give robust results when individuals are matched on observables but fail in the
presence of unobservable confounding factors. When in presence of unobservables
affecting both assignment into treatment and the outcome variable simultaneously,
hidden bias might arise. In order to preserve estimates from irregular assignment
to treatment in logistic regression caused by hidden bias, we implement different
strategies.

3Estimate results showed in Table 32.3 and 32.4 are invariant with respect to the imposition of
common support, because very few units were excluded from the analysis after its imposition.
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First, the nature of our survey allows us for adding variables related to ideational
factors that limit the influence of omitted or unobservable variables and are proxies
for individuals’ religiosity, attitudes and family values.

Secondly, the presence of a longitudinal design gives us the opportunity of
measuring the outcome both before and after the treatment. This allows comparing
the mean change of anomie from the first wave t and the second wave t C�t . After
replacing the expected values with the sample means, the so-called difference in
difference estimator can be obtained for the quantity:

ATTDD D Ep.Xi /fEŒ�1i jp.Xi /; Ti D 1�� EŒ�0i jp.Xi /; Ti D 0�g (32.5)

where �i represents the difference in factor scores for the individual i between the
waves. An estimator of (32.5) is called combined PSM-DD estimator.

An important advantage of DD estimator is that controls for selection due to
unobservables that are supposed to be time invariant. Thus, it is possible to combine
DD with propensity score matching estimator, summing the advantages of both the
approaches.

Obviously, even this assumption might be violated, if some time varying
confounders exist.

Rosenbaum [17] developed a bound method for sensitivity analysis with the aim
to assess the effect of unobservable factors on the computation of hypothesis test
from the family of sign score statistics that includes the nonparametric statistics
Wilcoxon’s signed rank test used in presence of continuous outcomes. In the line
below we offer a summary of the theoretical procedure as formulated by Di Prete
and Gangl [4] and Guo and Fraser [8].

Suppose there is an unobservable source of bias U1 that varies across individuals
and that affects the assignment to treatment. Let pi be the probability that the i -th
unit is treated, then the treatment assignment rule is described as follows:

ln

�
pi

1 � pi

�
D f .Xi /C �Ui (32.6)

Rosenbaum proved that a transformation of (32.6) implies that the ratio of the odds
for treated and untreated units considered in each of the N1 pairs of treated and
untreated units is bounded:

1

�
� p1i .1 � p1i /

p2i .1 � p2i /
� � (32.7)

where � D e� , p1i is the probability that treated unit i receives the treatment, p2i
is the probability that the control unit matched to i receives also a treatment. The
sensitivity analysis goes further to assume that this odds ratio for units with the
same value of propensity score was at most some number � � 1. By the above
definitions, if � D 1, then p1i D p2i , so the study would be free of hidden bias
and the odds ratio of receiving a treatment for matched individual with identical
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values for propensity score computed with observable covariates is obviously equal
to one, i.e. � D 0. For example, if � D 2, then the two units that appear with closest
value of propensity score could differ in their odds ratio of receiving the treatment
by as much as a factor of 2, so one unit might be twice as likely as the other to
receive treatment. In other words, as [17] pointed out, � is a measure of the degree
of departure from a study that is free of hidden bias.

Sensitivity analysis consists in evaluating the sensitivity of estimates of ATT for
different values of �; from the equation (32.7) � represents the bound for the odds
ratio that units 1i (the treated) and 2i (the control) might be selected to form a
matched pair [8].

Rosenbaum [17] developed a procedure that uses the distribution of the
Wilcoxon’s signed-rank statistic (see [4] for analytical aspects) under the null
hypothesis that ATT is zero: the distribution of the Wilcoxon’s signed-rank is
function of � , i.e. of the odds ratio explained in (32.7). If ATT maintains significant
for high values of � , it means that there exists a significant causal effect of treatment
also in the presence of hidden sources of bias. Our table gives the critical value for
the odds ratio of receiving the treatment � for matched and control pairs for that
the confidence interval for ATT at 90% starts to include the 0. Literature has not
discussed in detail critical � for considering causal effects robust to hidden bias.
However, Di Prete and Gangl [4] stated that an optimal level depends on the research
question, even if a value of � close to 1.5 would represent a rather reliable threshold
to not question the significance of ATT.

32.4 Results

The empirical analysis is carried using the Stata module written by Leuven and
Sianesi [13] and is divided into two parts. In the first part we address the effect of
the birth of the first child on anomie. In the second part we analyse the effect of
marriage or cohabitation on the same dimensions.

According to the results in Table 32.3, childbearing increases psychological well-
being for women, whereas no effect appears for men. Results are consistent with
the ones obtained by Kohler et al. [11], who show how the birth of first child
increases subjective well-being in a sample of Danish twins. Focusing now on
disorientation, childbearing seems to have no effect for both women and men.
However, the combined PSM-DD estimator is reliable only in the presence of time-
invariant sources of bias. As we mentioned above, we implemented a sensitivity
analysis, using Rosenbaum’s [2002] procedure for bounding the treatment effect
estimates in previous tables. Results are displayed in the last column of Table 32.3.
This procedure provides evidence for the robustness of estimates at the maximum-
tolerated level of hidden bias expressed in terms of the odds ratio of differential
treatment assignment due to an unobservable covariate. In the case of the impact of
a first child on females’ psychological well-being, the positive effect is questioned in
the presence of an unobservable covariate with odds ratios of differential treatment
assignment of about 1.4.
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Table 32.3 Causal effect of first childbirth on anomie—Subjective well-being

No. of treated ATT t-stat � critical

Psychological Men 247 �0.003 �0.03 1
well-being Women 286 0.272�� 2.49 1.4
Disorientation Men 246 �0.008 �0.09 1

Women 283 0.065 0.86 1
���p < 0:01; ��p < 0:05 �p < 0:1

Table 32.4 Causal effect of union formation on anomie—Subjective well-being

No. of treated ATT t stat � critical

Psychological Men 234 0.277��� 2.86 1.35
well-being Women 251 0.428��� 3.85 1.6
Disorientation Men 234 �0.065 �0.85 1

Women 250 �0.233��� �3.07 1.4
���p < 0:01; ��p < 0:05 �p < 0:1

Table 32.4 shows how psychological well-being increases after marriage or
cohabitation: estimates are higher for women, but they are also significantly
positive for men. The estimates are also more reliable with respect to unobservable
confounders in the females’ sub-sample. Rosenbaum bounds suggest that selection
due to unobservables would have to attain level larger than 1.5 for odds ratio of
receiving the treatment for treated units and controls to undermine the significance
of ATT; this confirms the results as relatively robust to hidden bias, in the
approach of [4]. The effect of disorientation for females’ sub-sample also seems
to be significantly reduced after a union formation; the finding is quite robust to
unobservable heterogeneity, showing a critical value for � equal to 1.4. Finally,
Rosenbaum bounds approach does not allow for returning remarkable results for
estimates that were initially not significant with � equal to one. In these cases, for
any value of � , confidence interval estimates for ATT include 0.

32.5 Matching Details and Robustness Checks

The choice of the variables used for estimating the propensity score applied
in Table 32.3 is based on both statistical and demographic reasons. Following
[9], omitting important variables can increase bias in matching results. Even
though [18] are in favour of parsimony in choosing the regressors, the response
is unanimous in suggesting the inclusion of covariates that are supposed to be
correlated with the treatment and the outcome. Previous demographic surveys such
as [15] identified possible determinants for childbearing between the two waves of
the same interview; age of respondents, number of siblings, number of children at
first wave, marital status, household income, labour market position (working in
private or state market), respondents’ and parents’ education (primary, secondary
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or higher education), religiosity are included in this survey as decisive regressors
for the treatment. Also economic theory (see for example [7]) gives to some of the
variables listed above a central role in affecting the subjective well-being, which
represents the outcome of our research.

The list of PSM confounders includes also positive and negative attitudes towards
childbearing as estimated in [2] and that are significantly connected to the life
course events we have analysed. Finally, intentions of having a child appear in the
model as direct antecedents of the related behaviour, following the theory of planned
behaviour [1].

With respect to the model implemented in Table 32.4, a partially different list
of covariates is used, because of the different treatment (union formation instead
of childbearing): age of respondents, number of siblings, number of children at
first wave, household income, labour market position, respondents’ and parents’
education, religiosity are confirmed also as determinants also of entry into union.
Due to the specificity of the matter, the presence of past unions is a strong
predictor of the probability of receiving this kind of treatment, whereas attitudes
towards partnership specularly replace attitudes towards childbearing here, such as
intentions of living with a partner appear in the list of covariates instead of the
intentions of having children.

Finally, as suggested in literature, PSM results are more robust adding in both the
models the starting levels of anomie indicators (Disorientation and Psychological
Wellbeing) that represent the outcome of our analysis registered at the time of the
first interview.

However, the quality of matching depends not only on the variables used for
estimating the propensity score but also on the satisfaction of the assumption of
the balance property and of the reduction of average absolute standardized bias,
according to the thresholds suggested in literature [3]: all the covariates described
above are not different in means in treated and untreated groups at 1%, 5% and
10% levels without the need to introduce interactions between covariates and
higher order polynomial terms. Therefore, treatments and controls are sufficiently
homogeneous and can be successfully compared in order to reduce selection bias
due to observables. In order to conclude the discussion around the robustness
of PSM estimates, literature suggests also a brief discussion on the matching
procedure. In fact, the goodness of estimates depends also on the matching method
implemented in the analyses. Nearest neighbour matching results are compared with
those obtained via radius and kernel matching, joining very close results in terms of
causal effect estimates.

32.6 Conclusions

Our results confirm the presence of a process of anomie reduction in the presence
of childbearing and new partnerships. In particular, the loneliness dimension of
anomie is summarized by the psychological well-being factor that seems to be more
sensitive to a process of adaptation, especially for women, who increase well-being
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when they start a new cohabitation or when they bear a child. Disorientation
dimension of anomie shows a more controversial result: it seems to be reduced by
partnership only in the females’ sub-sample.
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Abstract
Over the last 50 years the aging of the population in Italy has been one of the
fastest among developed countries, and healthcare professionals have witnessed
a rapid increase in the complexity of the case mix of older patients. In Italy
in 2006, Residential Facilities (RFs) cared for 230,468 people aged 65 and
over. Due to the increase in the overall proportion of the aged in the general
population (particularly in those over 85) and the sharp decline in the number
of extended families (with the consequent reduction in informal support), the
probability of an increase in the number of RF residents in future years is
very high. The objective of this work is twofold. Firstly, to report on the
availability of institutional care in Italy by analysing the territorial distribution
of residential facilities, rehabilitation centres and the hospital structure with the
intent of gathering both quantitative and qualitative data. Secondly, to examine
the health conditions of the elderly in these institutions. Functional status,
multiple pathology and medical conditions requiring care have been evaluated in
1,215 elderly subjects living in Residential Facilities across five Italian regions.
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33.1 Introduction

The national and international debate on demographic aging in recent years has been
focused on a number of aspects. The main problem addressed has been the effect
of aging on the welfare and health care systems in various countries. Italy has the
highest proportion of aged people in Europe. In 2009, 20.1% of the population was
aged 65 and over, corresponding to about 12 million individuals. Furthermore, this
proportion is predicted to increase over the next few decades, rising to a figure of
32.5% in 2050 [7]. However, the condition of being elderly does not necessarily
imply the loss of autonomy, and health improvements among the elderly have led
to an increase in disability-free life expectancy. Nevertheless, the rapid ageing of
the population has caused an increasing level of disability and the consequent need
for long-term care. All OECD countries are agreed on the general policy direction
of maintaining disabled older people in their homes where possible rather than
in residential institutions. This tendency may guarantee a better quality of life
by providing assistance to the elderly without breaking down the social network.
According to the international literature, supply of long- term care at home is not
always the most appropriate, particularly when highly qualified and specialized
health care is required. Therefore, these findings indicate that residential institutions
are likely to play a key role if home care or hospitalization is inappropriate [1]. In the
latter case, in fact, a prolonged hospital stay frequently gives rise to a loss of residual
capabilities and a consequent worsening of quality of life [2]. In Italy, the number
of beds in elderly residential institutions is lower than other European countries,
with a territorial heterogeneity. The south of Italy is in fact totally inadequate in
the supply of residential care. The lack of statistics on the health conditions of
the institutionalized elderly hinders the assessment of the effects of some illnesses.
As a result, information on need for care, therapy and rehabilitation is deficient.

The purpose of this study is twofold. Firstly, to analyse the supply of residential
services taking into account the territorial distribution of social and health insti-
tutions, rehabilitation centres ex article 261 and hospital structures (particularly
the long-stay wards). Secondly, to analyse the health conditions of the institu-
tionalized elderly. For this purpose, the Italian Ministry of Health has funded
an elderly residential care survey addressing five Italian regions. This project is
called PROGRES-Older people (PROGetto strutture RESidenziali per Anziani -
Residential Facilities for Older People Project). The five regions are Veneto in
the north-east, Umbria in the centre, Calabria in the south, Sicily and Sardinia,

1Former art. 26 Law 833/78: the health benefits direct to the functional and social recovery of
people with physical, mental or sensory impairments, employees from any cause, are provided by
local health care through their services. The Local Health Authority may not be able to provide
the service directly; in this case, it shall make an agreement with existing institutions in the region
where a person lives or even in other regions. The recognition of institutions or rehabilitation
centers was conducted in 1998 with an ad hoc model, more complex and specific sections on the
structural characteristics, the activities and personnel. (www.salute.gov.it).

www.salute.gov.it
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both Italian islands conventionally linked to southern Italy. The data analysed
was in reference to the demographic and clinical characteristics of residents,
staffing arrangements and discharge rates. Further to this, a representative sample
of institutions and residents was studied in greater detail [3].

33.2 Data and Methods

This work analysed two different kinds of data:
1. The national statistical data provided by the National Institute of Statistics (Istat)

and the Ministry of Health. In particular, the Residential Facilities Survey (2004),
Hospital Discharge Files and the Survey on Rehabilitation Centres ex art 26 were
used.

2. The regional data obtained from a specific project on residential facilities
(PROGRES).

33.2.1 Italian Context

The Residential Facilities Survey, conducted annually by Istat since 1999, gathers
information on admissions to residential facilities and their residents, producing data
on the structure of the institutions, staff, recipients and economic information. The
aim of the survey is to report on the supply of residential facilities from both a
qualitative and quantitative perspective. The Hospital Discharge Files, established in
1991 under a specific law, is the administrative instrument that gathers information
on general admissions and outpatients across the national territory. This data source
was used to identify long-stay hospitalization. Finally, the third source allows for
the integration of data regarding public hospital beds dedicated to rehabilitation ex
article 26. This survey also provides data on users, period of care and type of staff.

Descriptive statistical analyses were conducted to show the distribution of resi-
dential institutions in Italy and to describe the health conditions of the institutional-
ized elderly. The available data enabled the health conditions of the institutionalized
elderly to be demonstrated, which included autonomy in mobility, in daily activities
and in the presence of severe mental (cognitive and behavioural) disturbances. In
addition to this, a factorial analysis was applied taking into account the supply
of alternative services and aid (living conditions, informal aid, home care and
inappropriate and long-stay hospitalization).

33.2.2 The PROGRES Project

In terms of the second point to further the analysis of the five above-mentioned
regions, we used the PROGRES project, initiated by the National Health Institute,
which includes three phases. Phase 1 was aimed at gathering accurate data on
RFs, RF features, demographic and clinical characteristics of residents, staffing
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arrangements and discharge rates. The main aim of Phase 2 and 3 was to assess
a representative sample of facilities (Phase 2) and residents (Phase 3) in greater
detail. The selection of facilities to be used in the study was made from regional RF
registers which are prepared and periodically updated with the aim of authorizing
and regulating facility functioning. Facilities with less than four beds were excluded.
Furthermore, since most RFs have no strict age limits for admission, the 23 facilities
(3% of all RFs selected) which had more than 50% of residents under 65 years
were also excluded from the analyses. At the end of Phase 1 (November 2003), we
identified and surveyed 754 RFs in five regions. Information about RFs, their staff
and management characteristics as well as suicidal behaviour which occurred has
been published elsewhere [3].

For Phase 2, we randomly selected a stratified sample of RFs surveyed in Phase 1
in order to obtain a fair representation in the sample of all categories of RFs (e.g.
those with the highest number of beds) which otherwise may have been lost during
the sampling procedure. For each RF surveyed, the sample size of the elderly to
be studied was estimated according to the distribution of older people living in
each of the five regions, to the size of each RF and to the financial resources
needed to cover the cost of the individual assessment of patients. Based on these
criteria, we estimated a number of 280 subjects to be assessed in each region as
a fair representative of the regional population of older people, as well as of the
residential population. Each resident was assessed with a “Patient Form” covering
socio-demographic, clinical and treatment-related variables. The prevalence of
multiple pathologies was evaluated and some specific conditions requiring skilled
care were investigated, which were: more severe impairment in mobility, double
incontinence, severe disturbances in speech and communication and severe decline
in sight and/or hearing. A physician or a nurse of the facility who was in contact
with the patients and was aware of their clinical history and present status was
involved in the patient assessment. The “Patient Form” included the Resident
Assessment Instrument (in Italian, Valutazione Anziano Ospite di residenza-VAOR
[4]). Trained research assistants interviewed patients using the Mini Mental State
Examination (MMSE) [5] to define global cognitive impairment, and caregivers
using the Neuropsychiatric Inventory (NPI) [6] to assess the behavioural and
psychological symptoms (BPS) of patients. Functional status was assessed using the
Index of Independence in Activities of Daily Living (ADLs). The MMSE is a widely
used neurocognitive test measure by means of 16 items including: orientation,
language, verbal memory, attention, visuospatial function and mental control with
scores ranging from 30 (no impairment) to 0 (maximum impairment). The total
score of the MMSE was corrected for age and years of education. The NPI was
used to measure the BPS in elderly people with or without dementia. It is a valid
and reliable inventory to assess 12 neuropsychiatric dimensions such as delusion,
hallucination, agitation, depression, anxiety, euphoria/elation, apathy/indifference,
lack of inhibition, irritability, aberrant motor behaviour, night-time disturbances
and appetite/eating patterns. An informant rated the frequency and severity of each
of these dimensions, and the multiplication of the two scores was used as a final
codification. The score for each dimension ranges from 0 to 12 with a maximum
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total score of 144 in the 12-item version. A product equals 0 when there is no
symptom. If the score is between 1 and 3 the symptom is not clinically relevant.
A score of 4 or more means that the symptom is clinically relevant, it probably
deserves further clinical evaluation and adequate treatment (pharmacological and/or
non-pharmacological).

The Multiple Correspondence Analysis (MCA) was used to highlight correspon-
dence between some variables displaying the social habits of elderly people living
in RFs. In this analysis we also added some passive variables, such as the size of the
RF and its type of administration (Health Authority, private, religious or mixed).

33.3 Results

33.3.1 General Overview

The descriptive analyses showed heterogeneity in the availability of residential
institutions across the Italian regions: the north of Italy seems to be able to meet
the demand the most appropriately.

The activity rate of residential institutions and hospital structures was higher in
the northern regions. Since rehabilitation centres were more widespread in the south
than in the north, it seems likely that these services are substitutes for residential
care. However, some central and southern regions such as Umbria, Calabria, Sicily
and Basilicata had the lowest level of all care services. Focusing on social and
health institutions, territorial heterogeneity was shown, particularly for nursing
homes, and a lack of these services in southern Italy was observed. The distribution
of non self-sufficient elderly recipients of social and health institutions revealed
a high prevalence of totally dependent elderly patients, particularly in the north.
Mobility difficulties were territorially homogeneous and more frequent than other
dependencies: 40% of recipients were mobile with the help of personnel, while 35%
were not at all mobile. The islands and the south had a lower value of residents with
autonomous movement.

In regards to cognitive and behavioural mental disorders, 45% of patients had
little or no disturbance, 27% moderate and 29% had a severe disorder. Territorial
variability was also displayed in the higher proportion in the northern regions
of those with severe disorders. It was also found that the health conditions of
the institutionalized elderly were consistent with the Italian supply of residential
services. The territorial distribution of residential institutions might be partly
affected by northern Italy having the highest share of very old people and elderly
with severe health conditions who need more care, as showed in Fig. 33.1.

The north-south gradient is confirmed by the principal component analysis. It
showed that the northern regions had more residential care facilities that provide
both social and health services, and also an older population with a bad health status
than in the southern regions. Nevertheless, the south was characterized more by
informal care, private services and inappropriate hospital admissions. It seems like
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Elderly patients in Residential 
Facilities (Rate per 10,000 
inhabitants aged 65-years and 
over) 

Elderly patients in 
Rehabilitation Residences ex 
art. 26 (Rate per 10,000 
inhabitants aged 65-years and 
over) 

Long-term discharge from 
hospitals (Rate per 10,000 
inhabitants aged 65-years 
and more) 

110  a 216   (5)
71  a 110   (8)
33  a 71   (7)

110 a 166   (2)
55 a 110   (3)
0 a 55  (15)

83 a 119   (3)
48 a 83   (7)
13 a 48  (10)

Fig. 33.1 Distribution of elderly by region and type of residential care. Year 2004

that in the south of Italy the lack of specific services was balanced by the family
and by personnel paid by the family. Furthermore, when the family is no longer able
to help their elderly, the hospital becomes the last resort, also if in an inappropriate
way.

33.3.2 PROGRES Project

With respect to the PROGRES project, Phase 1 was completed in November 2003.
76 (8.9%) of the 853 RFs in the five regional registers did not reply, despite several
requests to do so. The response rate differed across regions, with a 100% rate in
Veneto, Umbria and Sardinia, 89.9% in Calabria and 65.6% in Sicily. Twenty-three
facilities, 3% of the participating RFs, hosted more than 50% of residents under the
age of 65. Therefore, only 754 of the 777 eligible RFs were further examined, and
all analysis of patients presented in this chapter is based on this sample. The 754
surveyed RFs represented about 17% of the 4,304 RFs for older people operating
in Italy, as identified by the Italian Institute of Statistics as of December 31, 2000.
There was a mean number of 198 residential beds per 10,000 people aged 65 years
and older, with great variability in the availability of beds across the five different
regions, e.g. the Veneto-Calabria bed ratio was 4.3:1. 132 (17.5%) RFs had more
than 100 residential beds, and 26 (3.4%) had more than 200 places. Bed occupancy
was greater than 90% in three regions (Veneto, Umbria and Calabria).

33.3.2.1 Characteristics of RFs
Staff coverage was generally high. In fact, most RFs had 24-h staff coverage
(n D 724; 96%). In many RFs, resident turn-over was very low. In 302 (40.1%)
and 93 (12.3%) of the surveyed RFs there were no discharges and no admissions,
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respectively, in 2001. Only 141 (18.7%) RFs discharged more than nine patients
in 2001. Most RFs were managed by locally run (n D 220; 29.2%) or religious
(n D 182; 24.1%) institutions; the others were run by private, non-profit (n D 158;
21.0%) or private, for- profit organizations (n D 131; 17.4%); a very small
percentage were directly managed by the Italian Health Service (IHS) (n D 30;
4.0%); the remaining RFs were of mixed management type. The majority of
RFs relied on combined public–private funding (n D 414; 54.9%), whereas the
percentage of facilities funded by the IHS (n D 124; 16.4%) was lower than
those accommodating self-paying residents only (n D 144; 19.1%). In more than
half of the RFs all residents contributed to expenses for their stay through pension
deductions or other forms of payment. Only in 12.7% of surveyed facilities did no
residents financially contribute to their expenses.

33.3.3 Characteristics of Patients

The sample is made up of 1,215 subjects resident in RFs. All were Caucasian, with
a mean age of 83 years (SD 7.8), 73.1% (n 888) were female. In terms of age
distribution, only one-sixth of the respondents were younger than 75. From the total
numbers of patients, 74.5% of women and only 51% of men were in the class of 80
years and older. 27% of the women were older than 90 years. Education level was
rather low: 27% were illiterate, 58% had attended 1–5 years of schooling, 7.9% 6–8
years and 7.1% 9 years and more. A significantly higher prevalence of widowhood
was found in women compared with men (60.5% and 53.8%).

The MMSE was administered to 895 patients (73.7%). The remaining subjects
were excluded because of behavioural disorders (1.5%), neuro-sensorial disorders
(66.1%) or refusal to participate (21.4%). The mean MMSE score corrected by age
and years of education was 18.5 (SD C 8.7). The NPI was filled out for 1,192
patients (98.1%, missing data for 23 residents and the overall mean NPI total score
was 9.7 (SD ˙ 14.3). 628 patients (51.7%) had at least one clinically relevant
item. Apathy, depression and irritability were the most common symptoms in the
sample patients with clinically relevant symptoms, while the mean NPI total in the
same group was higher for elation, hallucinations and delusions. The item exploring
conflictual relationships (CRs) shows that 10.7% of the residents presented conflicts
with other residents, 8.6% with staff, 7.9% (n 93) with the person sharing the room
and 5.5% with relatives. However, among these residents, only 1.2% presented CRs
for all the above-mentioned categories (staff, relatives and residents) and 2.6% with
at least two categories. As regards the use of medication in the week preceding
the interview, 19.8% of the residents received anxiolytics, while 12.8% received
antipsychotics and the same proportion received antidepressants. Hypnotics were
administered to 8.8% of the sample.

Three indicators summarizing the health status of social and health residential
institution recipients across five Italian regions were calculated. The first indicator
evaluated the number of diseases for each recipient; the second estimated the
presence of severe illness. The third indicator was calculated taking into account
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the same diseases used by the National Household Survey on Health conditions,
in order to compare the health status of residential institution recipients with the
health status of the elderly living with family. The descriptive analyses showed
that 45% of elderly recipients in residential institutions had at least three diseases
and 75% had had at least one severe illness, painting a picture of multiple and
chronic diseases. In contrast, it seems that the elderly living with family have a
better health status. In fact, 17% had never had any illness and only 30% had
had at least one disease compared with 52% of elderly residential recipients. The
different health status between the elderly in residential institutions and those living
with family is also caused by the different age distribution of the two groups. In
particular, in residential institutions the percentage of people aged 80 years and
over was 43% compared to only 10% of those living with family. The different
age distribution is related to different gender distribution. Residential institutions
had a 73% proportion of females, while that of women living with family was
58%. Moreover, family structure also contributes to the difference between the
two groups: 34% of recipients in residential institutions were unmarried, 58% were
widowed and more than 46% had lived alone before admission. In contrast to this,
57% of the elderly living with family were married, while only 27% had lived alone.
In conclusion, it seems there is a higher likelihood of being institutionalized due to
bad health status caused by multichronic diseases or a severe disease, and in the
absence of an informal network able to support health-care activities.

The relationship between the third indicator (i.e. the comparison of levels of
disease in institutionalised patients with those living with family), the class of
MMSE, the sex and the age of each resident was investigated with Multivariate
Correspondence Analysis. Furthermore, region and dimension of the RFs (in class)
were included as supplementary variables. The analysis showed that the 52% of
inertia is due to the first axis and 9% is due to the second axis. The presence
of no severe illness, no cognitive problems and residing small structures seems
to characterize the patients in Umbria and in Sardinia. The presence of at least
one or two severe illnesses, severe or moderate cognitive problems, being at least
80 years old, female and in a medium or large structure characterizes the elderly
patients in Sicily. In Veneto, mild cognitive problems in males aged between 70
and 79 years residing middle-sized structures are in the majority. Finally, Calabria
is characterized by small structures and patients with three or more severe illnesses
and it is distant from the other regions. Therefore the MCA analysis highlights the
differences in illnesses, cognitive problems, age and gender distribution between
the five regions considered. It also discriminates between the different dimensions
of the RFs (Fig. 33.2).

In order to analyse the social aspect of residential living, we conducted a
Multiple Correspondence Analysis on some variables investigating social activities.
Some questions were on whether the patient was able to go outside alone, read
or had any hobbies, stayed alone, worked in group activities, went to sleep later,
participated in religious activities and was strictly religious. The MCA highlighted
the fact that generally the elderly who lived in smaller RFs with a religious
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administration preferred being alone and found strength in their religious beliefs;
people who lived in medium RFs with Health Authority administrations seemed
to be more independent with some hobbies and participated in some activities.
Finally, the elderly who lived in the biggest RFs with private administration were
not independent and did not participate in any activities (Fig. 33.3).
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33.4 Conclusion

Despite the public health importance of the issues presented in this work and the
financial burden of maintaining a large number of the aged in residential facilities,
information in Italy on older residents of such facilities is quite limited. This
highlights the importance of the PROGRES-Older people Project. The percentage
of people aged 65 years and older in Italy is currently one of the highest in the
world, and this phenomenon highlights the importance of monitoring how the
social and medical needs of this age group can best be met. Our project provides
regional and national public health authorities with reliable, accurate data to be
used for planning and management purposes. An examination of the diseases and
disabilities of subjects placed in residential facilities is an important step towards
developing and targeting effective care strategies. The assessment of the disabling
consequences of illnesses provides useful information on the need for assistance,
therapy and rehabilitation. The interventions required by the majority of subjects
living in residential facilities are assistance in personal care and mobility, and in the
management of behavioural disturbances. These requirements should determine the
staffing profiles of residential facilities.
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34Dementia in the Elderly: Health
Consequences on Household Members
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Abstract
The growing number of the oldest-old will cause an increase in the number of
mentally ill elderly persons in the population, given that no positive evolution of
senile dementia is expected in the near future. Living in the household is the best
strategy to contain the pace of mental deterioration, to better manage the disease
and to maintain as long as possible the vigilance of the demented person. But
dementia is one of the most devastating impairments, both for the persons who
are affected by it and for their entire family network and friends, and its impact is
high on life and well-being for all persons living with the demented elderly and
maximum for his/her caregiver. The aim of this work is to evaluate the impact of
the presence of an elderly person with dementia on the perceived health of the
co-living household members, using data from the Italian health interview survey
carried out by the Italian National Institute of Statistics (Istat) in 2005.

Keywords
Aging • Dementia • Elderly • Household • Mortality and Health

34.1 Introduction

Dementia, and Alzheimer’s disease, which is its most common form, is a complex
disorder mainly affecting the elderly [17]. It is a chronic disease that leads to a
progressive disability ultimately resulting in death. At present, in fact, there is no
effective treatment against this disease.
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Among degenerative disorders, dementia is one of the most devastating, not
only for the persons who are affected by it, but also for its effects on their entire
family network and friends involving the cognitive abilities of the individual, his/her
autonomy in the functions of daily life and behaviours. In the initial stages the sick
person is able to remain independent and to live alone, while at the end of the
process, when the sufferer is often dumb, unable to move and interact, confined to
bed and incontinent, he/she is very likely to live in an institution [16]. The duration
of the disease is rather long. It is estimated that from the first symptoms (loss of
memory) to the death 10 years on average could elapse with a wide variation going
from 3 to 20 years. It is also estimated that, after the age of 65, an increase of 5 years
of age implies the doubling of the incidence of mental impairment [17]. Among
people over 90 years the prevalence of dementia is estimated to be dramatically high,
about 28% for men and 45% for women [8] and among the centenarian population it
may range between 62% [20] and 100% [25]. As a result of the demographic ageing
of the population, the number of prevalent cases for the whole European region is
projected to grow from 7.1 million in 2000 to 16.2 million by 2050 (C2.3%) [26].
In the same period, the working age population having the main burden of economic
and care support of demented old persons, will decrease so that the previous ratio of
69.4% persons of working age per one demented person will decrease to 21.1. Also
in the favourable hypothesis of a delayed onset of dementia and a reduction in its
disabling consequences, the impact on the expected increase would be minor [11].

The literature does not highlight any positive trend for the future evolution of
the incidence of dementia, except for those that may be caused by a modification of
cerebrovascular risk factors and stroke treatment [9].

All studies carried out so far agree that living in the household is the best strategy
to contain the pace of mental deterioration to maintain as long as possible the
vigilance of the demented person and reduce the high and growing health care costs
[18,27], at least public ones, as the economic cost of caring for a demented patient at
home paid by the household is also very high [24]. But this does not happen without
consequences, often serious, on the physical and mental health of the household
members and of the caregiver [3,19]. Moreover, the more and more frequent marital
dissolution and the decreasing fertility rates indicate that there will be fewer spouses
and fewer children of dementia patients available to take on the role of caregiver
[2,22]. This evolution could have particularly heavy consequences in the near future
when the wide cohorts born after the 2nd World War will enter into the higher risk
ages [7].

The aim of this work is to evaluate the impact of the presence of an elderly person
with dementia in the household on the perceived health of co-living household
members, using data from the Italian Health Interview Survey carried out by Istat in
2005 in order to verify both the coherence of Italian data with international results
and to evaluate the performance of a general health interview survey on households
in reproducing results until now obtained by epidemiological surveys, frequently
based on small sample sizes and selected populations. The large sample size and
a questionnaire that allows for the study of a wide range of interactions between
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the presence of a demented old person in the household and socioeconomic and
environmental factors may provide some additional element for effective health
policies.

34.2 Data Sources and Definitions

The Italian health interview survey provides some information on the mental
health of individuals and a wide range of information about the health status
of the population living in the community and about the most important socio-
demographic health correlates. The overall sample size is about 50.5 thousand
households and 128 thousand persons. The sampling design is a two stage one, with
stratification in the first stage based on population size of municipalities for each
region. In the second stage a defined number of households is selected from each
municipality and every member of the household is interviewed.

In the self-compiled part of the questionnaire, all interviewed persons (or their
proxy respondents) are asked if they are affected by a set of chronic diseases and
if they have been diagnosed by a doctor. One of the items of the list is Alzheimer’s
disease or other forms of senile dementia. In the questionnaire administered by
interview, respondent is also asked if he/she is suffering from a disability (also
not legally recognized) due to mental insufficiency. In this study the elderly person
affected by dementia is, therefore, identified as a person who answered (directly or
through a proxy) to be suffering from Alzheimer’s disease or senile dementia, or
who declared to be suffering from a permanent disability due to a severe mental
impairment.

Using this definition and the survey occurrence of 2005 it is possible to estimate
a prevalence of dementia of 3.7%, among people aged 65 years and more. A
level that is significantly lower than that estimated for the age 65–84 years by the
epidemiological survey ILSA (Italian Longitudinal Study on Aging) with reference
to the years 1992–1993 (equal to 6.6%) [10]. Nevertheless, this study, that is one
of the few examples of a health examination longitudinal survey carried out in
Italy, adopted a survey methodology markedly different from that used for the
Italian health interview survey. Among the most important differences are the
survey technique (medical examination vs. personal interview) and the difference
in the reference population (total persons living in Italy vs. persons living in private
households). This latter one is a very important difference for the estimation of
the mental impairment prevalence because of the exclusion, in the health interview
survey, of people living in an institution presumably in poorer health. On the other
hand, the ILSA survey refers to a sample which does not represent the population
of the entire national territory, being carried out only in eight municipalities, and
it adopts a different strategy for its units selection. The prevalence estimated by the
Istat survey is also lower than that estimated by Ravaglia et al. [21] with reference to
an Italian community resident in Conselice (Emilia-Romagna region): 2.6% for men
and 8.5% for women aged 65 years and more. The same is true in comparison with
estimates based on epidemiological surveys, carried out at an international level
providing prevalence rates of around 5–6% with a high variability only partially
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explained by the different method used to detect the health condition (MRC [13] for
England and Wales: 6.6%; Letenneur et al. [14] for Gironde (France): 6.5%; Lobo
et al. [15] for Zaragoza (Spain): 7.4%; Zhang et al. [28] for China: 4.6%; Kurz et al.
[12] for Belgium: 8.0%).1

It could be stressed, however, that with the aim of this study being to estimate, not
the prevalence of dementia in the elderly population, but the impact of the presence
of an elderly person with dementia on the household members’ health, the exclusion
of demented people living in institutions does not produce distorting effects. On
the other hand, however, it is also possible that the health interview survey,
underestimating the prevalence of demented older people living in households,
selects relatively more severe cases. To address the possible distortion produced
by this problem, we will investigate the impact of the dementia stage by using the
demented old person’s functional health, expressed by ADL limitations, as a proxy
variable of the severity of the disease.

The outcome indicator selected was the poor perceived health as declared by the
household member living with a demented old person (the demented old person
excluded) answering “poor” or “very poor” to the question “How is your health
in general?” (with the following possible answers: very good, good, fair, poor
and very poor). The evaluation of the impact is made by controlling for the most
important variables affecting the perception of health, such as age and gender,
among demographic variables; living arrangement, education, housing condition,
geographic area of residence and the demographic size of the municipality (less
than 10,000 inhabitants, 10,001–50,000 inhabitants, more than 50,000 inhabitants),
among social and territorial variables. The functional and objective health of
respondents are controlled by considering disability (defined as the maximum level
of difficulty in at least one activity describing motor abilities, sensory abilities and
daily life activities) and multi-chronicity (defined as the presence of three or more
chronic diseases). This last indicator was preferred over the traditional one (referring
to the presence of at least one chronic disease) which has low variability and a weak
association with perceived health.

34.3 Results

The Italian health interview survey 2005 allows for the identification of approxi-
mately 409 thousand people aged 65 years and over who declared themselves to
suffer from dementia or mental impairment, according to the definition described
in the previous paragraph. Of these, approximately 141 thousand are men and 268
thousand are women (slightly less than 2 women for each man are found in this
condition). The disadvantage is surely due to greater female aging compared to men.
However, a greater prevalence of mental impairment among women is also found
when comparing the same age groups. The prevalence of dementia is 3.7% (3.0%

1For a recent meta-analysis of the prevalence of dementia in Europe, see Berr et al. [5].
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Table 34.1 Proportion of persons cohabiting with an elderly affected by dementia on total
population, by age and gender (�1,000)

Men Women Total

Age � IC 95% � IC 95% � IC 95%

0–24 4:1 2:9 5:2 4:4 3:2 5:6 4:2 3:4 5:0

25–44 5:7 4:5 6:9 4:3 3:2 5:3 5:0 4:2 5:8

45–64 8:3 6:7 9:9 10:5 8:7 12:2 9:4 8:2 10:6

65–74 11:2 8:1 14:3 16:7 13:3 20:1 14:2 11:9 16:5

75C 21:5 16:4 26:6 17:9 14:4 21:5 19:3 16:4 22:2

Total 7:5 6:8 8:3 8:7 7:9 9:5 8:1 7:6 8:7

Source: Italian Health Interview Survey, 2005

for men and 4.1% for the women) for the total of the elderly population, with a steep
age gradient: the percentage moves from less than 1% for people aged 65–69 years
to more than 18% (12% among men and 21% among women) for those aged over
90 years.

Overall, we can identify 881 thousand individuals who on a daily basis face
the mental health problems of elderly people, including both the elderly affected
by dementia living alone or living with other family members (409 thousand), and
the cohabiting relatives (472 thousand). Even considering that the available survey
underestimates dementia diffusion among the elderly, the problem is noteworthy
and it will be more and more important with the increase in longevity.

Excluding from the analysis the 111 thousand old people with mental problems
living alone, 472 thousand relatives cohabiting with the remaining 298 thousand
elderly with dementia were analyzed comparing them with persons not cohabiting
with demented relatives. It can be estimated that around 1.8 cohabiting relatives, on
average, share daily with each unhinged elderly his/her dreadful experience. This
situation affects about 8 � of the population, and it peeks to 19 � (Table 34.1)
for household members aged 75 years or over. The rate is higher among women in
comparison to men; but among people aged 75 and over this difference no longer
persists, because of the women’s longer life expectancy, which allows them to
outlive men, but does not protect them from sickness.

As expected, the mean age of household members living with the elderly with
dementia is higher when compared to the population mean age (55 years versus
42 years); 39% are aged 65 years or more, and 21% are over 75; they are mainly
women (121:100 on average) in all age groups, with the only exception being those
aged 25–44 years (Table 34.2).

The consequences of dementia of the elderly people on the perceived health
of their household’s members were evaluated assuming a binomial distribution
of the dichotomous response variable, and logistic regression models were used
to model the observed data and to compare perceived health of people having
and not having an elderly person with dementia as a cohabitant, controlling for
confounding variables and dementia severity. Since several studies indicate that
depression is a condition frequently involving poor perceived health [1], and that it
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Table 34.2 Age structure of the household members of the elderly with dementia living in
households. Italy 2005 (�100)

Men Women Total F/M�

Age % IC 95 % % IC 95% % IC 95% 100

0–24 14:1 10:4 17:7 11:8 8:7 14:9 12:8 10:5 15:2 102:0

25–44 24:1 19:6 28:6 14:7 11:3 18:1 18:9 16:2 21:7 74:1

45–64 28:1 23:4 32:8 30:3 25:9 34:6 29:3 26:2 32:5 130:9

65–74 14:6 10:9 18:4 21:1 17:3 25:0 18:2 15:5 20:9 175:8

75C 19:1 15:0 23:3 22:1 18:2 26:0 20:8 17:9 23:6 140:5

Total 100:0 100:0 100:0 121:5

Source: Italian Health Interview Survey, 2005

could be both a cause of the bad perceived health and a consequence of the presence
of a demented relative [6, 23] the analysis was performed both not assuming
(Model 1) and assuming (Model 2) depression as perceived health correlate, in
order to have indications on the possible mechanism producing the health perception
of the demented elderly relatives. Among persons declaring to be suffering from
depression, we selected only persons declaring that the disease was diagnosed by a
doctor, in order to distinguish the chronic depression from sadness and feeling blue.

Because the households having an older component with dementia are a small
proportion of the total (1.6%) we also evaluated the robustness of our results,
performing the models on a subsample of households not having components
affected by dementia (three times larger than the sample of households with an
elderly person with dementia). Those results completely confirm our estimates,
without significant improvements in the quality of the models.

The outcome variable of the models, shown in Table 34.3, is bad and very bad
perceived health (labelled as “poor health”) as assessed by respondents.

Results are in line with what is found in literature [1]: all confounding variables
being equal, the presence in the household of an elderly person affected by severe
dementia (the presence of difficulties in 6 ADL was considered as a proxy of
severity of dementia) has a significant impact on the perceived health of household
members (OR equal to 2.2 without controlling for depression). No significant impact
is detected when the demented elderly is autonomous in his/her daily life functions.
When chronic depression is considered among predictors of the poor perceived
health, its OR is high, the model improves its goodness-of-fit, and the impact of
the presence of an elderly person affected by severe dementia slightly decreases (OR
from 2.2 to 1.9). This suggests that chronic depression takes over a limited part of the
impact of the presence of a demented old person on the relative’s perceived health,
possibly acting as a intermediate condition of the poor perceived health. However a
strong impact is also maintained among relatives not declaring to be depressed so
that the mechanism of the poor perceived health could be independent from chronic
depression. Further analysis showed that living with an elderly person affected by
dementia has a significant impact on the mental component of health (measured
through the SF12 index called MCS), compared to the physical component (PCS).
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Table 34.3 Mutually adjusted odds ratios of “poor” perceived health declared by respondents
(demented old persons excluded) for selected variables not assuming (Model 1) and assuming
(Model 2) chronic depression as predictor. Health interview survey, Italy, 2005

Model 1 Model 2

Variable (reference value) Exp(B) Exp(B)
Sex (Male)
Female 1.38 ��� 1.21 ���

Age(< 44)
45–64 4.97 ��� 4.41 ���

65–74 8.58 ��� 7.74 ���

75C 8.69 ��� 8.15 ���

Disability (No)
Yes 12.50 ��� 11.95 ���

Multi-chronicity (No)
Yes 3.93 ��� 3.13 ���

Education (High)
Medium 1.50 ��� 1.48 ���

Low 1.97 ��� 1.96 ���

Housing condition (Good)
Bad condition 1.69 ��� 1.63 ���

Living arrangement
(Couple with children)
Couple 1.20 ��� 1.16 ��

One parent family 1.19 �� 1.14 �

Elderly living with his/her son’s
family

1.08 ns 1.07 ns

Other 1.17 � 1.16 ns
Geographic region (North)
Centre 1.52 ��� 1.50 ���

South 1.46 ��� 1.51 ���

Size of municipality
(Less than 10,000 inhabitants)
10,001–50,000 inhabitants 1.14 �� 1.13 ��

More than 50,000 inhabitants 1.30 ��� 1.30 ���

Presence of demented elderly (No)
Yes, with ADL 2.20 ��� 1.92 ���

Yes, without ADL 1.15 ns 1.04 ns
Presence of depression (No)
Yes 4.84 ���

Generalized R-squared 0.3262 0.3535
AUC 0.862 0.879
–2�Loglikelihood 29407.11 28361.46
Degrees of freedom 19 20
���p < 0:0001 ��p < 0:001 �p < 0:05
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Some interesting findings are obtained by analysing the interactions between the
presence of a demented elderly and each one of the other variables considered in
the previous models, included depression acting as determinant. In this model the
presence of a demented elderly is not specified by functional health status to avoid
too low frequencies. The large majority of the interaction effects are nonsignificant.
However the interaction with the respondent’s age indicates very high impacts for
younger members of the family up to the age of 64 years (OR higher than 2),
particularly high for people aged 45–64 years when different family and social
roles may conflict with the need for care demanded by a cohabiting demented
person (Table 34.4). The interaction with the household composition clarifies that
the impact is higher for couples (with or without children), where more than 50%
of demented elderly persons living with others live, and where the caregiver, almost
always the spouse, can get no, or only limited, help from cohabiting relatives. The
extended family with different generations living together, where the care giving, as
well as emotional burden, can be shared among more persons, is the only structure
associated with a positive impact on perceived health of the household members,
although just below the threshold of statistical significance (p-value D 0:08) due to
the limited number of cases (less than 30% of the demented elderly persons living
with others live with their son’s family). The last significant interactions underlie
the well-known isolation condition that affects elderly people living in larger cities,
especially when faced with illness. No significant interaction effect is detected with
depression, confirming that the mechanism by which the presence of a demented
elderly relative affects perceived health does not necessarily goes through chronic
depression.

34.4 Discussion and Conclusions

Estimating the prevalence of diseases and their impact through interview surveys has
several well-known limits [4]. It happens that respondents (or persons answering in
their place through “proxy” interviews) do not necessarily know the right disease
denomination, or they may not be keen to declare it, even having the correct
knowledge of it. Alzheimer’s disease and dementia in general makes no exception
to this rule, in spite of scientific evidence that highlights dementia as having the
lowest proportion of false negatives (clinically detected diseases, not declared by
the respondent) and of false positives (diseases declared by the respondent, clinically
not detected) [10].

Some other relevant limitations of the data used have to be highlighted. One of
the first and most relevant data problem is that we are not able to identify who
in the household concretely takes care of the demented person. There is no doubt
that the negative impact on the relative’s health status will be stronger as his/her
involvement in care duties gets higher. Another limitation is that the data source used
does not allow controlling for the stage of dementia, which would be an important
element in the evaluation of the entity of the impact on the health of the cohabiting
relatives, especially the caregiver, and in the analysis of the family’s strategies to
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Table 34.4 Mutually
adjusted odds ratios of “poor”
perceived health declared by
respondents (demented old
persons excluded) for
selected variables (1).
Interaction effects. Health
interview survey, Italy, 2005

Variable (reference value) Exp(B)

Age�Demented elderly
0–44�Demented elderly (Yes vs. No) 2.36 ns
45–64�Demented elderly (Yes vs. No) 2.52 ���

65–74�Demented elderly (Yes vs. No) 1.19 ns
75C�Demented elderly (Yes vs. No) 0.94 ns
Living arrangement�Demented elderly
Couple�Demented elderly (Yes vs. No) 2.14 ��

Couple with children�Demented elderly 2.12 �

One-parent family�Demented elderly
(Yes vs. No)

2.04 ns

Elderly living with his/her son’s fam-
ily � Demented elderly (Yes vs. No)

0.63 ns

Other�Demented elderly (Yes vs. No) 1.10 ns
Size of municipality�Demented elderly
Less than 10,000 inhabitants (Yes vs. No) 1.22 ns
10,001–50,000 inhabitants (Yes vs. No) 1.75 �

More than 50,000 inhabitants (Yes vs. No) 1.94 ���

Generalized R-squared 0.3539
AUC 0.88
–2�Loglikelihood 28344.61
Degrees of freedom 28
���p < 0:0001 ��p < 0:001 �p < 0:05

(1) The model is adjusted for the variables sex, age, dis-
ability, multi-chronicity, education, housing condition, living
arrangement, geographic region, size of municipality, presence
of depression, presence of demented elderly (Yes/No)

cope with the disease. We tried to overcome this drawback by adopting the demented
elderly person’s functional limitations as proxy of the dementia severity showing
that the impact on the relative’s perceived health is higher when dementia affecting
the elderly is severe. However other consequences of the progressive loss of self-
awareness by the demented elderly could be interesting to investigate.

In any case the most important limitation is that we are considering cross-
sectional data and, therefore, it is impossible to identify the order of the transitions
from one health state to another and to establish causal relations between variables.
The direction and the intensity of the evidenced relations, however, makes it unlikely
that there are other underlying explanations.

Beyond all those limits, the results have clearly shown that a general health
survey, based on a nationally representative sample, may give valuable information
about the impact of dementia among the elderly on the perceived health of the
cohabiting household members, being able to detect complex relations among
relevant variables that cannot always be taken into account by more specific
epidemiologic studies, such as geographic variables and urban settlement. All
this information, together with a continuous monitoring of the spread of mental
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health problems among the elderly, is needed to design effective health policies
able to cope with the social impact of dementia and help the informal network,
having the charge of being the caregivers for the demented elderly. In this network
the crucial role is played by the cohabiting household members (the “hidden
victims” of dementia; [29]) who very often have to face alone and without adequate
support, neither material nor psychological, the progressive and inexorable mental
deterioration of a beloved person. In several countries, just in consideration of the
social, but also therapeutic role, carried out by the household member of the elderly
with dementia, structures and supports are put in place in order to put household
members in the position of cohabiting with the disease without paying a high price
for their health. In Italy the support of the territorial services to the families with
mentally impaired persons is still completely insufficient and widely differentiated
across the territory. It is extremely important for the future that formal nets of care,
to effectively support the informal nets and households in this difficult task, are
developed; moreover the availability of care structures in order to face the most
severe stages of the disease should be improved.
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Abstract
Wealth is a useful measure of the socio-economic status of the elderly, because it
might reflect both accumulated socio-economic position and potential for current
consumption. A growing number of papers have studied household portfolio
in old age, both from a financial point of view (i.e. in the framework of the
life-cycle model) and from a marketing perspective. In this chapter, we aim
at providing new evidence on this issue both at the household and country
level, by investigating similarities and differences in the ownership patterns
of several financial and real assets among elderly in Europe. To do so, we
exploit the richness of information provided by SHARE (Survey of Health,
Ageing and Retirement in Europe), an international survey on ageing that collects
detailed information on several aspects of the socio-economic condition of the
European elderly. Given the hierarchical structure of the data, the econometric
solution we adopt is a multilevel latent class analysis, which allows us to obtain
simultaneously country and household segments.
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35.1 Introduction

International segmentation aims at structuring heterogeneity that exists among
countries and units (individuals, firms, etc.) in order to identify relatively homo-
geneous groups of countries and/or units [16]. The ongoing political process of
European unification, the introduction of the Euro currency and new developments
in information and communication technology have contributed to create a potential
large single market, the European Union. By treating the different member states
as a unique market can lead to plan some attractive (because of economies of
scale) unified marketing strategies. Nevertheless, the identification of substantial
differences among countries (because of differences in economic structures, cultural
identities or regulations) might support the use of multi-domestic or multi-regional
policies.

The segmentation of the European market has been widely investigated over
the last decade. An interesting review is provided by Lemmens et al. [9]. Mixed
evidence raises from these studies, in terms of presence (or not) of cross-country
segments, and the number and composition of such segments. However, most of
these works investigate country and consumer segmentation sequentially, that is
countries are screened at a first stage and grouping is usually based on macro
characteristic analyses. Few studies simultaneously determine country segments and
cross-national segments [1].

The identification of homogeneous segments can be helpful under different
points of view. On the one hand, the revealed structure helps companies to develop
and implement international marketing strategies [13]; on the other hand, the
findings can support the researches on the household life-cycle effects within the
financial market [5]. In this framework, it is of particular interest the study of
portfolio holdings of the elderly. The elderly control, as a group, a substantial
fraction of the household wealth; therefore their choices in investments or savings
might affect the future course of the markets. However, despite their substantial
wealth, the majority of elderly has restricted portfolio holdings and does not invest
in risky financial assets [7]. Furthermore, there is evidence of a large heterogeneity
in household portfolio ownership within and across European countries [3, 4].
The study of the portfolio choice made by old people is therefore important for
policymakers, scientific researchers and marketing managers [11].

This chapter aims at shedding more light on the behaviour of households across
Europe by investigating similarities and differences in the ownership patterns of
many financial and real assets. To this aim, we use data from SHARE (Survey
of Health, Ageing and Retirement in Europe). This is an international survey on
ageing that collects detailed information on several aspects that characterize the
socio-economic condition of the European elderly [2].

The statistical approach we use is the multilevel Latent Class (LC) analysis
introduced by Vermunt [14]. As a LC model, one of its typical applications is
clustering or constructing population typologies with observed variables. However,
differently from traditional analyses for clustering, such as principal component or
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cluster analysis, the LC approach is a model-based solution that allows to obtain
simultaneously country and household segments. As all multilevel models, this
approach takes into account the dependencies between lower-level units resulting
from the hierarchical data structure (households nested into countries). Hence,
applications of multilevel LC models typically aim at simultaneously clustering
individuals and groups: lower-level units are assumed to belong to lower-level
LCs differing in the distribution of the observed responses; higher-level units are
assumed to belong to higher-level LCs differing in the distribution of the lower-
level LCs.

The remainder of this chapter is organized as follows. Section 35.2 briefly
introduces the data analysed in this work, while Sect. 35.3 describes our econometric
approach. Results of the empirical applications are reported and commented in
Sect. 35.4. Section 35.5 ends the chapter, drawing some comments on the basis of
our findings.

35.2 Data

In this chapter we use data from the 2006 to 2007 wave of the Survey of Health,
Ageing and Retirement in Europe. SHARE is an interdisciplinary survey on ageing
that is run every 2 years in a host of European countries. It collects extensive
information on health, socio-economic status and family interactions of individuals
aged 50 and over, using a computer-assisted personal interviewing (CAPI) program,
supplemented by a self-completion paper and pencil questionnaire. In each country,
a probability sample was selected through an appropriate national survey sampling
design.

Even though data are collected at the individual level, for the purposes of our
analysis we consider data at the household level. Within couples, the eligible
reference person (“head”) is chosen as the elder partner, or the female when partners
have the same age.

Overall, our sample contains 23,238 households living in 14 countries (Sweden,
Denmark, Ireland, Germany, The Netherlands, Belgium, France, Switzerland,
Austria, Spain, Italy, Greece, Poland and Czech Republic). Heads are prevalently
females (55 %) and 65 years old on average. Almost half of them have low or
no education. More than 50 % are retired from work. About 65 % of the heads
lives with a partner and the average household size is 2.12. The average number
of living children (within or outside the household) is larger than 2. The financial
and real asset information available in the dataset is the ownership of the following
set of products: bank or postal accounts; bonds; stocks; mutual funds; individual
retirement accounts (IRAs); life insurance; house; mortgage; other real estate (RE).

As shown in Table 35.1, there is evidence of large variations in the ownership
across products and across countries. On the one hand, almost 75 % of the overall
households own bank and postal accounts or the house; on the other hand, bonds and
mutual funds are held by less than 12 % of the overall households. The ownership
of risky assets shows the largest differences across European countries, i.e. the
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Table 35.1 Percentages of the ownership of financial and real assets across European countries

Mutual Life Other
Country Accounts Bonds Stocks funds IRA insurance House RE Mortgage

Austria 88.4 3.0 6.9 7.9 8.7 22.8 60.0 10.6 8.4
Germany 94.0 17.8 14.1 14.0 13.6 31.0 59.6 12.1 15.0
Sweden 90.2 17.2 43.6 45.1 47.9 43.3 74.6 33.1 46.0
Netherlands 95.8 3.9 16.7 11.7 8.4 30.4 63.3 6.1 49.7
Spain 80.6 2.1 4.7 3.4 10.8 9.5 88.2 20.4 10.2
Italy 79.6 13.4 5.3 4.4 2.0 8.7 80.2 22.5 5.6
France 96.7 3.2 14.4 13.0 32.3 19.3 72.7 25.5 11.8
Denmark 94.2 19.7 41.7 15.7 37.9 29.8 73.3 21.3 49.0
Greece 44.0 0.9 2.7 0.6 1.1 3.5 85.7 39.1 6.4
Switzerland 94.0 23.9 27.1 22.0 27.3 22.6 56.6 22.5 46.8
Belgium 96.2 11.4 21.8 15.4 26.9 24.2 79.4 16.3 13.4
Czechia 54.7 1.3 3.7 2.9 36.1 15.6 74.0 18.0 4.4
Poland 25.2 0.7 1.3 0.8 1.9 35.1 72.1 6.1 1.4
Ireland 79.4 3.9 14.8 8.6 8.34 36.8 86.5 12.1 16.9
Total 78.7 8.6 15.7 11.9 19.6 23.1 73.9 19.9 19.8

percentage of holding mutual funds ranges from less than 1 % in Greece to more
than 45 % in Sweden. The primary accommodation is owned by more than 80 %
of the households in Mediterranean countries and Ireland. In Poland and Czech
Republic more than 10 % of the households has none of the listed products, while
in Sweden, France and Belgium this percentage falls to less than 2 %.

35.3 The Multilevel Latent Class Analysis

As introduced in the previous section, data are available for an international sample
of households, (i D 1; 2; : : : ; nj ), belonging to a set of European countries (j D
1; 2; : : : ; 14). According to the hierarchical nature of the data, households represent
lower-level units and countries higher-level units.

The multilevel Latent Class model assumes that households belong to one of
K LCs (unobserved subpopulations) at the lower-level and countries to one of C
LCs at the higher-level. The aim of the model is to classify, at the same time,
households and countries in groups with some typical profile on the basis of the
observed ownership of financial and real assets of the households.

The multilevel LC model proposed by Vermunt [14] consists of two basic
equations, one representing the mixture model at the household level, and the other
the mixture model at the country level. For each household i in country j , let yhij
denote the observed ownership of product h of household i in country j , where
yhij D 1 if household i from country j owns the financial product h, and yhij D 0

otherwise. Vectors yij and yj denote, respectively, the full vector of responses of
household i of country j and the full set of responses of country j . At the household
level, the model specifies the conditional probabilities of product ownership for
household i of country j , given that country j belongs to LC c:
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P.yijjwj D c/ D
KX
kD1

P.xij D kjwj D c/P.yijjxij D k/ (35.1)

D
KX
kD1

P.xij D kjwj D c/

HY
hD1

P.yhij D 1jxij D k/; (35.2)

where xij and wj denote the variables representing the lower- and higher-level latent
class memberships, and k (k D 1; : : : ; K) and c (c D 1; : : : ; C ) denote a particular
lower- and higher-level latent class.

As underlined by Bijmolt et al. [1], this represents a traditional mixture model,
with the exception that the relative sizes of first-level LC, P.xij D kjwj D c/,
depend on higher-level LC membership. Within each LC at the household level, the
ownership of different products is assumed to be independent, which is the basic
assumption of most LC models and usually referred to as the local independence
assumption [6].

The mixture model at the country level specifies the marginal probabilities of
product ownership for a country j :

P.yj / D
CX
cD1

P.wj D c/P.yj jwj D c/ D
CX
cD1

P.wj D c/

njY
iD1

P.yijjwj D c/:

(35.3)
As typical in multilevel analysis, the observations of the nj households in each
country j are assumed to be independent of each other given the country LC
membership.

Combining Eqs. (35.2) and (35.3), the final model is:

P.yj / D
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cD1

"
P.wj D c/

njY
iD1

"
KX
kD1

P.xij D kjwj D c/

HY
hD1

P.yhij D 1jxij D k/

##
:

(35.4)

The probability of observing a particular response pattern for a country, P.yj /, is
expressed by three components: (i) the probability that country j belongs to higher-
level LC c, (ii) the probability that household i belongs to first-level LC k, given the
country latent class membership, (iii) the probability that household i of country j
owns the financial product h, given the household latent class membership [10].

Components (i) and (ii) are modelled through multinomial logit equations:

P.wj D c/ D exp.�c/PC
rD1 exp.�r/

(35.5)

P.xij D kjwj D c/ D exp.�kc/PK
rD1 exp.�rc/

: (35.6)



388 O. Paccagnella and R. Varriale

The third component is modelled through a logit equation:

P.yhij D 1jxij D k/ D exp.ˇhk/

1C exp.ˇhk/
: (35.7)

Models with covariates affecting the class membership probability and/or the
product ownership probability are obtained by adding the relevant covariate effects
to the intercept term �c , �kc and ˇhk in the linear predictor of the logit models.

35.4 Empirical Application

We run the multilevel LC model defined in Eq. (35.4) to the SHARE dataset
described in Sect. 35.2 in order to classify countries and households in latent classes
with some typical profiles. To choose the number of latent classes at the two levels
of the analysis, we used the three step procedure proposed by Lukočienė et al. [10].
First, we determined the number of lower-level LCs ignoring the multilevel structure
(i.e. assuming that C D 1); second, we fixed the number of lower-level LCs to the
value of step 1 and determine the number of higher-level LCs; third, we fixed the
number of higher-level LCs to the value of step 2 and re-determine the number of
lower-level LCs. In particular, we used the BIC value computed with the number of
lower-level units to decide about the number of LCs at the household level and we
used the BIC value computed with the number of higher level units to decide about
the number of LCs at the country level. Each step was performed using the Latent
GOLD software [15].

The final model classifies the households in eight latent classes and the countries
in six latent classes. Results at lower- and higher-level are reported in Tables 35.2
and 35.3, respectively. Table 35.2 also highlights the main demographic and
economic characteristics of the households belonging to each LC. Since covariates
have not been specified in the model, Table 35.2 reports percentages of the main
characteristics on the basis of the ex-post assignment of each household to the LCs.

Table 35.2 shows that LC8 is the largest lower-level latent class and is char-
acterized by households with high probability of owning bank accounts and the
house, confirming the results obtained from the descriptive statistics in Sect. 35.2.
The three largest LCs are LC 5, 7 and 8 (which jointly have the probability that
household i belongs to one of them greater than 50 %) and are characterized by
people with a low probability of holding any risky assets, such as stocks or mutual
funds. Households with very large and diversified portfolios (in terms of probability
of owning different assets) are in LC4. This LC is quite similar to LC3, where the
probability of having the primary house and a mortgage is less important than LC4.
This difference between the two classes might be related to the choice of long-time
investments.

Looking at the main characteristics of the households belonging To the Five
mentioned classes, it is interesting to note that, on the one hand, LCs characterized
by the ownership of non-risky assets are mainly composed by females, low
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Table 35.2 Household segments: LC size (P.xij D k/), asset ownership probabilities (P.Yhij D
1jxij D k/) and main characteristics of LC components (computed after the household assignment
to LC)

k 1 2 3 4 5 6 7 8

P.xij D k/ 0.031 0.104 0.137 0.086 0.179 0.108 0.150 0.206
P.Yhij D 1jxij D k/

Accounts 0.735 0.938 0.992 0.974 0.887 0.213 1 0.588
Bonds 0.020 0.037 0.313 0.244 0.031 0.001 0.053 0.030
Stocks 0.064 0.134 0.554 0.601 0.035 0.003 0.070 0.009
Mutual funds 0.049 0.089 0.434 0.44 0.041 0.001 0.052 0.003
Ira 0.996 0.159 0.443 0.664 0.065 0.004 0.154 0
Life insurance 0.337 0.381 0.383 0.526 0.149 0.266 0.199 0.018
House own 0.788 1 0.712 1 0.194 0.692 0.963 0.824
Other real estate 0.295 0.101 0.379 0.390 0.033 0.044 0.184 0.262
Mortgage 0.066 0.999 0 1 0 0.010 0 0.049
Household characteristics
Female (%) 0.615 0.495 0.463 0.437 0.614 0.622 0.541 0.568
Age (mean) 59.6 60.3 65.0 60.8 68.8 65.8 67.5 66.9
Education (%)
– Low 0.442 0.358 0.303 0.220 0.522 0.550 0.430 0.725
– Medium 0.367 0.310 0.311 0.329 0.308 0.340 0.319 0.171
– High 0.191 0.332 0.386 0.451 0.170 0.110 0.251 0.104
Partner (%) 0.697 0.793 0.728 0.842 0.433 0.584 0.651 0.641
Occupation (%)
– Retired 0.469 0.317 0.537 0.316 0.593 0.655 0.615 0.508
– Worker 0.466 0.486 0.341 0.602 0.186 0.147 0.198 0.204
– Homemaker 0.009 0.110 0.059 0.023 0.098 0.048 0.132 0.232
– Other 0.056 0.087 0.063 0.059 0.123 0.150 0.055 0.056
Household size (mean) 2.29 2.31 2.02 2.21 1.65 2.55 1.97 2.29
Number of living Children (mean) 2.19 2.51 2.33 2.45 2.58 2.61 2.51 2.34

educated, particularly old (aged 67 years or more) as well as retired respondents.
Many of these households are composed by singles: in two out of the three classes
the average household size is lower than two. On the other hand, LCs characterized
by the ownership of diversified portfolios are prevalently composed by males,
highly educated individuals and workers. Few of these households are composed
by singles, even though the average household sizes are not the largest among all
LCs.

LCs 1 (the smallest class) and 6 are interesting because of the role of two
specific products: high probability of having IRAs and low probability of having
bank accounts, respectively. Since bank accounts are common in all countries, while
IRAs are typical in a few countries (for instance, Nordic countries, Czech Republic,
France, etc.), this finding might suggest the presence of country-specific features,
probably related to national regulations to incentive the ownership of some specific
assets to particular socio-economic groups of elderly. Indeed, LC1 is composed by
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Table 35.3 Country segments: LC size (P.wj D c/) and household segment probabilities
(P.xij D kjwj D c/)

c 1 2 3 4 5 6

P.wj D c/ 0.078 0.211 0.211 0.078 0.078 0.344
P.xij D kjwj D c/

k D1 0.008 0.002 0.008 0 0.343 0.005
k D2 0.005 0.134 0.028 0.455 0.003 0.098
k D3 0.015 0.284 0.048 0.047 0.015 0.177
k D4 0 0.336 0.002 0.042 0.002 0.032
k D5 0 0.228 0 0.434 0.022 0.276
k D6 0.945 0 0 0 0.284 0.036
k D7 0.026 0 0.096 0.022 0.025 0.359
k D8 0 0.016 0.818 0 0.305 0.018

the youngest group of respondents, equally divided by workers and pensioners and
with the highest prevalence of medium educated people among all latent classes. On
the other hand, LC6 highlights the least proportion—among all LCs—of workers,
as well as the highest percentages of females and low educated respondents. Even
though the household head does not often live with a partner, LC6 shows the largest
average household size, signalling the relevant presence of other relatives or persons
within the household. This LC also highlights the largest number of living children
(within or outside the household).

In the end, LC2 is characterized by households with high probability of owning
a primary accommodation, a mortgage and bank accounts: this class basically
includes “young” households (the “oldest old” people typically do not have
mortgages), whose heads have a job. Similar to LC3, in LC2 respondents are equally
distributed according to gender and education.

Table 35.3 shows the model results relative to the higher-level of the analysis:
size (P.wj D c/) and household segment probabilities (P.xij D kjwj D c/) of
the country latent classes. Using the empirical Bayes modal prediction [12], the
countries have been assigned to one of the six latent classes. As represented in
Fig. 35.1, we can segment the countries according to a geographical order.

Central Europe countries (plus Ireland) belong to the largest higher-level LC
(higher-level LC6), and they are characterized by an interesting mix of household
segments with non-risky (lower-level LC5 and LC7) and risky asset portfolio
(lower-level LC3). According to the model, the richest countries (Sweden, Denmark
and Switzerland) belong to the higher-level LC2, where the probability that house-
holds belong to lower-level LCs with risky asset portfolio (LC3 and LC4) is the
highest; then, Mediterranean countries (higher-level LC3) are mainly characterized
by household segments with a low probability of risky asset portfolio (lower-level
LC8). Each of the remaining three LCs are composed by a single country: the
Netherlands (higher-level LC4), Poland (higher-level LC1) and Czech Republic
(higher-level LC5). At a first sight, this is a surprising result, in particular for the
Eastern Europe countries. However, we should note that in each of these LCs, the
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Fig. 35.1 Empirical Bayes
modal prediction: country
segments posterior
membership

conditional probability of the household segments is the highest for the lower-level
LCs 2, 6 and 1, respectively, that are just the three household segments described
above as having some peculiar profiles.

Our results confirm the evidence of a substantial heterogeneity of portfolio
holdings of the elderly within and across Europe [3, 4]. However, the innovative
features of our approach (compared for instance to the probit modelling used in
the aforementioned literature) allow us to highlight two other important findings:
first, in each country we can recognize some groups of households whose portfolio
characteristics are similar to those in other European countries (e.g. the richest
households); second, when analysing household portfolios of the elderly in Europe,
some countries are characterized by so similar patterns of asset ownership that can
be grouped together (instead of specifying a full set of country-specific effects).

35.5 Conclusions

Hurd and Shoven [8] argue that wealth is a particularly useful measure of the socio-
economic status of the elderly, because it might reflect both accumulated socio-
economic position and potential for current consumption. People in older age are
usually retired, so their income typically reflects their pensions. Consumption in
later life can be then supported by spending down financial or real assets.

However, there is evidence from the Survey of Health, Ageing and Retirement
in Europe of a huge cross-country variability on the number and the type (risky vs
non-risky) of the asset ownership among the elderly.

For investigating similarities and differences in the ownership patterns of several
financial and real assets among European elderly, we adopt a multilevel latent class
solution that allows us to use the information collected from households to make
inference both at the household and country level.
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The overall result is that treating the different European member states as a
unique market is difficult to support and most countries can be grouped in classes
that follow a geographical division. Moreover, households can be divided in well-
defined classes, where the largest have low probability of holding risky assets. Low
educated, retired and very old individuals characterize the non-risky asset classes.
Couples are more likely to hold risky assets than singles.

There is a broad space to future researches on these topics. On the one hand, to
further investigate the role of the household characteristics in their choices of asset
ownership, we aim at extending our model by adding first-level covariates and then
comparing ex-post household profiles. On the other hand, since SHARE is a panel
survey, there is data availability for a longitudinal investigation of the acquisition
patterns of the assets, in the spirit of Paas et al. [11].
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36The Longevity Pattern in Emilia Romagna,
Italy: A Spatio-temporal Analysis

Giulia Roli, Rossella Miglio, Rosella Rettaroli,
and Alessandra Samoggia

Abstract
In this chapter, we investigate the pattern of longevity in an Italian region at
a municipality level in two different periods. Spatio-temporal modeling is used
to tackle at both periods the random variations in the occurrence of long-lived
individuals, due to the rareness of such events in small areas. This method allows
to exploit the spatial proximity smoothing the observed data, as well as to control
for the effects of a set of regressors. As a result, clusters of areas characterized by
extreme indexes of longevity are well identified and the temporal evolution of the
phenomenon can be depicted. A joint analysis of male and female longevity by
cohort in the two periods is conducted specifying a set of hierarchical Bayesian
models.

Keywords
Centenarian rate • Longevity • Space–time analysis

36.1 Introduction

In the last decades, the study of human longevity and its development has drawn
the attention of researchers belonging to different fields of analysis. Various studies
performed in different Italian regions showed the presence of specific areas where
the prevalence of oldest-old people is higher than elsewhere. For instance, a definite
geographical area in Sardinia is characterized by an exceptional male longevity [14],
as well as a low female/male centenarian ratio; a significant negative correlation
between surname abundance and index of longevity has been detected in Calabria
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where some isolated areas of male longevity present a high level of inbreeding
[11]; in Emilia Romagna some longevity “clusters” have been identified and their
persistence has been detected by comparing the results of different spatial scan
statistic methods [12]. The explanatory analysis of disparities in the frequencies
of the oldest-old population reminds of different genetic and environmental factors
differently spread at a geographical level. In order to deepen these several aspects,
one of the scientific approaches aims at mapping the geographical diffusion and
the temporal evolution of extreme longevity. With this purpose, a recent statistical
approach consists in the use of spatial and spatio-temporal models (see, e.g., [10])
which involve the geographical proximity and the time interaction of the areas
resulting in a smoothing effect among the observations. As a result, more consistent
estimates and inferences on quantities of interest are provided. Moreover, these
methods allow to control for extra-variation among the units [5]. Indeed, when the
geographical analysis is performed on a fine territorial scale and the phenomenon
under study is characterized by a scarce number of units, the territorial distribution
of the cases can be invalidated by random variations.

In this chapter, we use a Bayesian spatio-temporal model [1, 8] to manage both
the geographical structure and the temporal dimension of the extreme longevity. In
particular, we consider a modified version of Centenarian Rate [15] in two different
5-year periods (1995–1999 and 2005–2009), separately by municipality and gender.
The small numbers at municipality level are properly tackled by the model, which
further allows to embed into the analysis some areal features. The main purposes
are to identify territorial groups of areas characterized by high or low levels of
longevity and to investigate the development of these clusters by time. We consider
a joint analysis of male and female indexes of longevity which involves a set of
hierarchical models. Plausible shared and gender-specific risk components are tested
by using goodness-of-fit and complexity criteria. As a result, the best suitable model
is identified to be interpreted in its results. The chapter develops as follows. We
first describe the regional area under study and corresponding data and indicators.
Section 36.3 defines the statistical analysis. The model comparison and the results
are in Sects. 36.4 and 36.5. The last section reports the main conclusions.

36.2 Area, Data, and Indicators

Emilia Romagna is a North-Eastern Italian region which shows one of the oldest
age structures in Europe (with 22:5% persons aged 65C, and 6:9% persons aged
80C in 2009). The region is characterized by a great geographical variability in
terms of environmental context, social conditions, and economic resources. Emilia
Romagna is split up into nine provinces and 341 municipalities. The different
spread of longevity in the regional area is measured by a modified version of the
Centenarian Rate (CR) [15]. This indicator, denoted by CR95C, is obtained at a
municipality level by dividing the count of people aged 95 and over, P95C, by
the number of 55–64 years old persons living in the same area 40 years earlier,
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P55�64, in order to avoid complications due to emigration.1 In this framework, we
assume that the individuals resident in an area 40 years before the time point t
under study are the population exposed to the “risk” of becoming P95C. To depict
the temporal dimension of the phenomenon, we calculate the CR95C separately by
sex and municipality area centered on two 5-year periods: 1995–1999 and 2005–
2009.2 In practice, we draw the population exposed to the “risk” of becoming
P95C from the nearest available Italian censuses (i.e., in 1961 and 1971 for the
two periods, respectively), with analogous considerations to identify the cohort age
group.3 Additional information on the features of the municipalities are collected.
In detail, we consider the classification of areas with respect to the altimetry zone
and population density. These are then combined to form the following groups:
mountain, hill and density lower than 78 people per km2, hill and density between 78
and 193, hill and density greater than 193, coastal hill, plain and density lower than
78, plain and density between 78 and 193, plain and density greater than 193. The
sources of the data all refer to official statistics published by the Italian institutional
agency for statistical data collection (ISTAT) and by the regional authorized agency
of Emilia Romagna.

36.3 Methods

We develop a hierarchical Bayesian model to investigate the space–time pattern
of “risk” of becoming P95C among the 341 municipalities of Emilia Romagna by
exploiting the adjacency and the interaction of the geographical areas. We associate
a temporal dimension with the phenomenon, by considering the evolution of P95C
in the two periods 1995–1999 and 2005–2009. A joint analysis of male and female
indexes of longevity is conducted. In detail, with respect to the i -th municipality,
we assume the observable P95C at each time t and gender k, denoted by yitk , are
Poisson distributed with means pitk�itk. In this formulation, pitk represents the
potential P95C and �itk is the estimate of CR95C in the required location, period,
and gender. Then, we follow the conventional log-linear formulation on the rate �itk
and we allow for the possibility of different components that additively contribute to
explain the space–time distribution of these rates. We further control for the effects

1The CR has been shown to be an appropriate indicator of longevity as it takes into account for
the effects of the work-related migration. Indeed, it is well known that in Italy, including the
Emilia Romagna region, migration was very common in the recent past, especially for working
ages population. Under this perspective, the CR removes the unknown influence of the migration
process, which is assumed to be negligible only after the 60 years of age.
2A multiple-year aggregation of data is introduced to avoid random fluctuations due to specific
years or cohorts.
3Since these censuses are referred to the second half of October 1961 and 1971, we conventionally
consider the data as a proxy of population on 1 January 1962 and 1972, respectively. Therefore,
for each period, area, and gender, the CR95C is obtained as the ratio of the mean number of people
reached age 95C during the period to the count of individuals aged 60–69 at the censuses.
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of some areal features by including the eight categories of altimetry and population
density introduced above. As a result, the model for the logarithm of the rate �itk
can be analytically expressed as follows:

log .�itk/ D ˛tk C ˇkxi C uik C vik (36.1)

where ˛tk represents the time-varying and gender-specific intercept, xi is the altime-
try and population density group of the i -th municipality, ˇk is the corresponding
effect on the log rate by gender, uik and vik are the correlated and uncorrelated
spatial heterogeneity by area and gender, respectively, which are both assumed to
be constant in time. For the correlated spatial component uik, we assume a Gaussian
conditionally autoregressive (CAR) model [1, 3], separately by sex:

p.u1k; : : : ; u341kj�uk/ / exp

8<:��uk

2

X
i¤j

wij .uik � ujk/
2

9=; (36.2)

Although improper, the CAR prior leads to a posterior distribution which is
proper, allowing the Bayesian inferences still proceed. The random effects vik
which capture the region-wide heterogeneity are supposed to follow independent
exchangeable normal priors by gender, that is

vik
iid� N

�
0;

1

�vk

�
(36.3)

We specify independent, vague, and proper distributions for the other parameters
(˛tk and ˇk). At the third layer of the hierarchy we specify hyperprior distributions
for the precision parameters �uk and �vk to be diffuse uninformative Gamma,
which are also “fair,” i.e., yield the proportion of the variability due to the
spatial homogeneity to be 
 1

2
a priori [3]. Several specifications for uk , vk , and

ˇk are explored by considering various combinations of shared and sex-specific
components (see Sect. 36.4). Note that we did not specify space–time interaction
terms. We use the WinBUGS software to implement Markov chain Monte Carlo
(MCMC) techniques. In order to compute the posterior estimates of the relative
risks and, then, of the CRs95C, we consider the last 10,000 iterations of 30,000 in
total.

36.4 Model Comparison

Selecting a suitable model from a wide class of plausible models with a large
number of random terms in a Bayesian setting is a difficult task. As discussed by
Plummer [13], the use of the deviance information criterion (DIC) has practical
limitations when the effective number of parameters in the model is much smaller
than the number of independent observations. In disease mapping, this assumption
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does not hold and DIC under-penalizes more complex models. We consider an
alternative deviance-based loss function, derived from the same decision-theoretic
framework [13]. This criterion can be decomposed into the sum of the expected
posterior deviance plus a penalty which is a measure of the degree of optimism.
Interestingly, the degree of optimism is related to model complexity, and therefore
any model choice criterion discounted for optimism can be viewed as a penalized
criterion for model complexity:

D C ropt (36.4)

The first term in the previous formula is the expected posterior deviance which is a
Bayesian measure of goodness-of-fit. The penalty term is difficult to calculate and
different proposed approximations could lead to important misspecifications [4,13].
Here we consider an approximation formula of the optimism, that is:

ropt 

X
i

pDi

1 � pDi
(36.5)

and

pDi D Di � ODi (36.6)

where i denotes the generic observation, the first term in the subtraction is its
contribution to the expected posterior deviance and the second term is the deviance
contribution of the i -th observation having fixed the model parameters at their
posterior expected values.

In this work, we consider and compare five alternative models with respect to
the data under study. These are characterized by terms which are either common or
not to sexes: model (1) no common terms (uk , vk, ˇk); model (2) common covariate
effects (uk , vk, ˇ); model (3) common heterogeneity and covariate effects (uk , v, ˇ);
model (4) common clustering and covariate effects (u, vk, ˇ); model (5) common
clustering, heterogeneity and covariate effects (u, v, ˇ).

36.5 Results and Discussion

In the whole region, we can observe a greater contribution of women to the
longevity, with an average CR95C (�1,000) equal to 21:47 in 1995–1999 and 37:54
in 2005–2009. Conversely, men are characterized by lower values (6:39 in the first
period and 10:68 in the second one). The increase of the phenomenon across time
is thus larger again for females. The application of the hierarchical spatio-temporal
model introduced above offers the opportunity to investigate different aspects of
the longevity pattern, as well as control for variations due to random occurrences.
The last feature is pursued through the so-called smoothing effect, which can be
in practice highlighted by mapping and then comparing the observed with the
estimated values of the CRs95C for each areas. For both sexes, the model yields more
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Fig. 36.1 Maps of CRs95C estimated by the Bayesian spatio-temporal model. Men. (a) 1995–
1999; (b) 2005–2009

homogeneous estimates according to the geographical proximity of areas (Figs. 36.1
and 36.24). Conversely, the observed CRs95C (not shown) are denoted by a set of
spots, identifying locations with extremely different values from the other nearby
areas.

As far as the model comparison is concerned, the specification with gender-
specific covariate effects (i.e., model 1) shows a very bad index D C ropt, which
amounts to 5,555.08. A great improvement can be observed when the homogeneity
component is supposed to be shared by sexes, with measures which decrease from
5,544.45 and 5,528.11 for models 2 and 3, respectively, to 5,501.27 and 5,510.58
for models 4 and 5. In the spirit of a goodness-of-fit and parsimony approach, the

4All the results we report for the CRs95C refer to a number of 1; 000 individuals exposed to “risk”.
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Fig. 36.2 Maps of CRs95C estimated by the Bayesian spatio-temporal model. Women. (a) 1995–
1999; (b) 2005–2009

best specification is then identified in model 4, where the unstructured spatial term
keeps on varying between sexes. Results are thus referred to this model.

In order to evaluate the different territorial contributions to the CRs95C, we first
consider the ranking of the municipalities according to the decile distribution of
the estimated values of CRs95C in the first period, separately by sex, and then put
together the four central classes. This grouping becomes the scale to map the result
in the first period. For the second time observations, the amount of the regional
rise in the CR95C across the two periods is added to each class of the former
classification. As a result, we control for the variation of each area in the value
of CR95C with respect to the overall regional time increase (Figs. 36.1 and 36.2).
It is noteworthy a persistence of areas of lower and higher occurrences of P95C
across time, associated with a rise in the values of CRs95C. In particular, mean and
median values that are higher than the regional ones are shown in the municipalities
belonging to the provinces of Ravenna and Forli-Cesena, spreading out in the
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Fig. 36.3 Heterogeneity maps. Women

Adriatic coast, at one side, and in the Apennine municipalities of Bologna and
Modena, on the other. Some areas of the province of Piacenza still stand out with
high values of CR95C. Conversely, the municipalities of the province of Ferrara are
characterized by a lower longevity.5 The widening of areas characterized by the
lowest and the highest values of CR95C in the second period shows that the smallest
and largest increases of longevity concern the same municipalities identified in the
first period and the adjacent ones. Low levels of longevity also appear for some
groups of municipalities in the Apennines of Parma and Reggio Emilia, in the north-
west of the region (province of Piacenza) and in the coastal hill of the province of
Rimini. A less spatially structured component can be observed for females, where
some sparse areas over the region also emerge for different values of CRs95C with
respect to adjacent ones (see also Fig. 36.3).

The contribution of the clustering and heterogeneity effects in terms of total
territorial variability can be first evaluated through the estimates of the posterior
variance of the two components u and v, given respectively by cVar.U jY / andcVar.V jY /. For both sexes, the structured spatial variability seems to prevail. As a
consequence, the global model representations for the CRs95C are more influenced
by the territorial clusters with relatively similar longevity risks, rather than by the
heterogeneity effect. We estimated the 80% for males and the 78% for females of
the total variability is due to clustering. Moreover, once the covariates are included
into the model specification, they mainly contribute to explain the homogeneity
across the municipalities. Since the unstructured variability due to the peculiarities
of individual areas to the values of CR95C is small, for men no areas appear to have
noticeable values. For women, two municipalities spread out both with a stronger
negative contribution of the residual heterogeneity component (Fig. 36.3). The first

5We cannot exclude that some fluctuations of CR95C could depend on work-related migration
movements. For example, Ferrara has been an emigration area for population in working ages and
if we assume that emigrants have a better health profile, those who remain could be a selected
subpopulation that unlikely could reach oldest-old ages.
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Table 36.1 Effects of altimetry and population density on longevity

Fitted rate ratios 90% credibility Interval

Mountain 1 –
Hill and density <78 0.960 0.882–1.043
Hill and density 78–193 1.095 1.008–1.189
Hill and density >193 0.985 0.900–1.115
Coastal hill 0.801 0.639–1.008
Plain and density <78 0.779 0.677–0.894
Plain and density 78–193 0.930 0.849–1.021
Plain and density >193 0.997 0.919–1.085

one is Ferrara, which is part of a larger area identified by low values of CR95C. The
other municipality is Bologna, which already emerged as an individual area with low
longevity as a result of its peculiarities significantly different from the other adjacent
areas. Conversely, only one area (i.e., the municipality of S. Lazzaro) appears with
a positive unstructured residual peculiarity. According to the model specification,
the fitted rates for the intercepts in the two periods and sexes represent the level
of probability of observing long-lived subjects in the mountain areas of Emilia
Romagna, that is the reference group. An overall increase in these values can be
observed over time (0:006–0:011 for men; 0:022–0:038 for women). Municipalities
in different altimetry zones also classified with respect to the population densities all
experienced rate ratios which are lower than 1, except for people living in hill areas
with medium population density who have a significant higher rate of becoming
long-lived than mountain residents (Table 36.1).

36.6 Conclusions

Statistical theory, several simulation studies, and a large number of applications all
support the use of hierarchical Bayesian modeling for spatial and spatio-temporal
data as a powerful method which allows to yield more consistent estimates on
quantities of interest and inferences [8]. Indeed, the consequent smoothing effect in
both spatial and temporal sense allows to control for the variation in the population
size across the geographical areas [7] and for extra-variation among the units
[5]. Moreover, the opportunity of including different levels of covariates allows
to investigate some crucial effects for the study at hand and explain some parts
of variability. A critical aspect of these methods is certainly represented by the
sensitivity to the choice of the hyperpriors [2], which can be sometimes avoided
by the use of an empirical-Bayes approach [6], rather than previous knowledge,
or by making assumptions which are reasonable with the problem [1, 3]. In this
application, a crucial point is represented by the choice of the Gamma priors
for the precision parameters for �uk and �vk . Indeed, they control the strength of
the smoothing and heterogeneity effect. Those components are shown to be quite
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sensitive to the prior specification, but the effect is mainly reflected only upon the
variances of the parameters. Therefore, the posterior estimates are weakly affected.

The estimated values of the adopted longevity index allow to identify some
groups of areas where the people reaching 95C years of age are more likely to occur
with a substantial persistence over time. As a result, the effect of some areal features
and correlations can be jointly investigated. The use of a hierarchical Bayesian
modeling for spatio-temporal data to analyze the longevity pattern in small areas
represents a quite innovative application, which aims to confirm the usefulness of
these methods also in socio-demographic research. The picture detected shows the
presence of both quite large areas which are homogeneous with respect to the CR95C
values and isolated municipalities characterized by high levels of heterogeneity with
respect to neighbor ones. As far as the effects of altitude and population density
are concerned, plains are generally shown to be associated with a lower count of
the oldest-old, as already detected in Campania and Sicily [9]. Moreover, hilly
zones seem to be more favorable to longevity. Besides being influenced by spatial
interactions and areal features, it is well known that the higher or lower presence
of long-lived people across the areas largely depends on mortality features after
80 years [16, 17]. Therefore, a first development of the analysis should consist in
the use of a space-cohort model where the area-specific levels of mortality for each
group of age in the cohort are included as regressors. The results here obtained also
call for more in-depth analysis aiming at revealing the specific reasons causing the
extremely high or low levels of longevity that have been found in some areas, such
as environmental effects, which are likely to influence the spatial distribution of
longevity (e.g., pollution indicator, presence of incinerators, indexes of deprivation)
or genetic factors.
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Abstract
We study the relationship between incidence of lung cancer in males in the Tus-
can region and material deprivation defined at census block level. We developed
a bi-variate hierarchical Bayesian model to assess completeness of registration of
incidence data, and we proposed a series of random effect hierarchical Bayesian
models to estimate the degree of association with material deprivation. Model
comparison is addressed by a modified Deviance Information Criterion. We
estimated a percent increase in risk of lung cancer for an increase of one standard
deviation of material deprivation at census block level of 3.36% vs 5.87% at
municipality level. The random slope models reported a paradoxically negative
effect of material deprivation at census block level in some areas. Spatially
structured random intercept models behaved better and random slope models
were penalized by their extra complexity.
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37.1 Introduction

The relationship between socioeconomic factors and health has been studied in
many circumstances, mainly on aggregated data. A strong association with mortality
for lung cancer is reported in [1].

In the epidemiological literature material deprivation indexes defined at census
block level were used as a proxy of individual socio-economic status (e.g. [2], and
in Italy [3]). In fact census block is considered a small enough aggregation level to
assume that individuals be homogeneously exposed and thus to avoid the problem
of ecological bias [4].

The aim of this work is to study the relationship between incidence of lung cancer
in males in the Tuscan region and material deprivation defined at the census block
level.

We take advantage of individual incidence data are made available by the Tuscan
Cancer Registry for the year 2004.

We developed a hierarchical Bayesian model to assess completeness of regis-
tration of incidence data, and we proposed a series of random effect hierarchical
Bayesian models to estimate the association with material deprivation. We also
addressed model selection issue.

37.2 Data

37.2.1 Incidence and Mortality Data

Incidence data come from the Tuscany Cancer Registry [5]. Individual records
report information on disease code and demographic characteristic of the person
including the address at diagnosis. For the present analysis we considered the
incident cases of lung cancer in males in the year 2004 for the whole region (a
total of 2,097 patient records).

Through the Iter.net system [6] 1,545 over 2,097 cases have been linked to census
block indicator, because the Arezzo Province was not covered by the system. The
corresponding number of analyzed municipalities is 248 (over the whole set of 287
Tuscan municipalities).

The expected number of cases for each census block was computed under indirect
standardization applying a set of age specific (16 age classes, 0–4,. . . ,75 or more)
reference rates (Tuscany 2004) to the population of each area.

To assess the completeness of registration ISTAT death certificates of lung cancer
in males in the period 2003–2005 for the 248 municipalities for which incidence
data are available were recovered from the Regional Mortality Register.

37.2.2 Material Deprivation Data

Data on socio-economic factors derived from individual records of the 2001 census
were made available by the Tuscany Longitudinal Study (SLTo) [7, 8].
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Following the current epidemiological literature we used the following variables
to compute an indicator of socio-economic inequalities:
– Unemployment
– Low education (less than 6 years of schooling)
– House tenure
– Overcrowding

The material deprivation index has been computed as the sum of z-score of the
proportion of people with the condition listed above for each census block. Details
on the construction of a social deprivation index at census block and municipality
level for Italy are in [9].

37.3 Methods

37.3.1 Bayesian Analysis of Completeness of Registration

To check for completeness of registration we conducted a Bayesian analysis on the
mortality/incidence ratio .M=I/ [10]. Let event counts Ylk be distributed as Poisson
(™lk � Popk), where ™lk is the rate parameter, Popk the person years at risk, l D 1; 2

indexes death or incidence event, respectively, and k indexes the death. A log linear
bivariate model was specified on the rate parameter:

log �lk D ˛ C �k C ıkIl

where ˛ is the intercept, �k is an area-specific random term, I1 an indicator variable
which is 1 for mortality and 0 for incidence, ık is the parameter for the M=I ratio.
We compared different prior specifications for the �k and ık parameters: spatially
unstructured (heterogeneity) Gaussian(0; �2) (with uninformative Gamma hyper-
prior for �2) or spatially structured (clustering) Gaussian conditional autoregressive
ckjcv�k � Normal. Nck; �cnk/ where v � k denotes areas adjacent to the kth one,
Nck is the mean over the set of adjacencies and nk its cardinality [11].

The expected M=I ratio is one. In fact, when the median survival time is very
short as in the case of lung cancer, the number of incident cases will be almost
equal to the number of deaths. A value of the M=I ratio greater than one suggests
incompleteness of registration of incident cases; an M=I ratio smaller than one
suggests misclassification of prevalent cases as incident cases because of poor
definition of the date of diagnosis [10].

37.3.2 Bayesian Analysis of the Association Between Mortality
and Material Deprivation: Fixed-Effect Models

Let xjk be the material deprivation index for the j th (j D 1; : : :; 23; 182) census
block in the kth (k D 1; : : :; 248) municipality and Nxk the mean deprivation for the
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kth municipality. Let Yjk, the number of incident cases, follow a Poisson distribution
with mean �jkXEjk where �jk is the Relative Risk and Ejk the expected number
of cases under indirect standardization. We specified a series of log linear models
for �jk.

37.3.2.1 Ecological Model at Census Block Level
log �jk D 0ˇC 1ˇxjk, where 1ˇ is the ecological effect of the census block material
deprivation value.

37.3.2.2 Ecological Model at Municipality Level
log �jk D 0ˇ C 2ˇ Nxk , where 2ˇ is the ecological effect of the average material
deprivation at municipality level.

37.3.2.3 Cronbach Model
log �jk D 0ˇ C 1�ˇ.xjk � Nxk/C 2ˇ. Nxk � Nx/, where 1�ˇ is the effect of the average
census block material deprivation within municipality and 2ˇ is the ecological effect
of the average material deprivation at municipality level [12].

It is important to notice that it is erroneous to compare lower level coeffi-
cients (e.g. 1ˇ model Sect. 37.3.2.1) vs higher level coefficients (e.g. 2ˇ model
Sect. 37.3.2.2). In fact, the lower level coefficient is 1ˇ D 1�ˇ C2�ˇ Var. Nx/

Var.x/ and the

higher level coefficient is 2ˇ D 1�ˇ C2�ˇ and it is not surprising to observe that
1ˇ > 2ˇ. A more useful comparison is 2ˇ � 1�ˇ vs 1�ˇ, which are easily obtained
from the Cronbach model Sect. 37.3.2.3.

37.3.3 Random-Effect Models

The previous models do not consider random intercept, i.e. variability of the baseline
risk among areas, or random slope i.e. varying material deprivation coefficient by
municipality. We defined:

37.3.3.1 A Random Intercept Model
log �jk D 0ˇk C 1�ˇ.xjk � Nxk/C 2ˇ. Nxk � Nx/ where 0ˇk � Normal.�0ˇ; �

2
0ˇ
/.

37.3.3.2 A Random Intercept and Slope Model
log �jk D 0ˇk C 1�ˇk.xjk � Nxk/ C 2ˇ. Nxk � Nx/ where .0ˇk; 1�ˇk/ � MVNormal
.�;T�1/, � � MVNormal.a� ;b� / and T � Wishart.aT ;bT /.

37.3.3.3 A Spatially Structured Random Intercept Model
We used the conditional autoregressive specification log �jk D 0ˇk C 1�ˇ.xjk �
Nxk/C 2ˇ. Nxk � Nx/ where 0ˇk

ˇ̌0
ˇv�k � N

�
0 Ň

k; �0ˇ nk
	
, where v � k indicates the

adjacent areas to the kth municipality, 0 Ň
k is the mean over the adjacencies, nk their

number and �ˇ � IGamma.aˇ; bˇ/ is the precision parameter.
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37.3.3.4 A Spatially Structured Random Intercept and a Random
Slope Model

As before we used a conditional autoregressive specification for the intercept and
a spatially unstructured prior for the random slope log �jk D 0ˇk C 1�ˇk.xjk �
Nx/ C 2ˇ. Nxk � Nx/ where 0ˇk j0ˇv�k � Normal.0 Ň

k; �0ˇ nk/ and 1�ˇk � Normal
.�1�ˇ; �

2
1�ˇ
/.

Non-informative distribution specifications were assumed for all the hyperpa-
rameters.

37.3.4 Model Selection

Comparison of several competing hierarchical Bayesian models is a difficult task
and requires special consideration. When comparing models which involve random
terms of growing complexity usually the Deviance Information Criterion (DIC) is
used [13]. DIC is defined as the sum of two components DIC D ND C pD; ND is
the posterior deviance expectation and summarizes the fit of the model, pD is the
expected deviance minus the deviance evaluated at the posterior expectations. It
represents the “effective number” of model parameters and reflects the complexity
of the model.

Plummer [14] discussed the validity of DIC when the number of independent
observation is less than the number of parameters (as common in geographical
studies). He proposed to adjust for the “degree of optimism” present in the DIC
statistics when evaluating model complexity. A penalized loss function based on
cross-validation or a simpler modified version of the DIC was suggested. Here we
used the modified DIC.

In particular:
DICc D ND C ropt

being

ropt 

JX
jD1

pDj =.1� pDj /

where j indexes census block as before, and ropt denotes the residual optimism.

37.4 Results

Figure 37.1(Left) shows the spatial distribution of lung cancer standardized inci-
dence ratios (SIR) at municipality level for the Tuscany region (excluding the
Province of Arezzo) and Fig. 37.1(Right) shows the spatial distribution of material
deprivation index at municipality level. Both maps are highly spatially structured
with the west part of the region showing higher lung cancer incidence and higher
level of material deprivation, which is suggestive of a direct association between the
two variables.
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Fig. 37.1 (Left) Spatial distribution of the standardized incidence ratio (SIR, in quintiles). Lung
cancer. Males, Tuscany (without Arezzo Province). Tuscany Cancer Registry, 2004. (Right) Spatial
distribution of Material Deprivation index (MDI, in quintiles). Tuscany municipalities (without
Arezzo Province), ISTAT 2001Census

37.4.1 Completeness of Cancer Registration

Before addressing the analysis of the association between socioeconomic factors
and lung cancer incidence we must evaluate potential flaws in cancer registration
which could bias the results. The mortality/incidence ratio for each municipality
was estimated by means of a series of bi-variate hierarchical Bayesian models.
Figure 37.2(Left) shows the predicted M=I ratios by the best fitting model with
spatially structured terms. The distribution is slightly skewed. A slightly incomplete-
ness of registration is seen in the north-west part of the region and a misclassification
of prevalent cases in the south-eastern areas. However we cannot exclude selective
survival by covariates such as socio-economic factors. Eventually the observedM=I
ratio correlate with the material deprivation index.

37.4.2 Deprivation and Incidence of Lung Cancer

The estimate of the rate ratio (RR) for a unit increase of material deprivation at
municipality level on incidence of lung cancer ranged from RR D 1:16 (Credibility
interval CrI90% 1; 1.35) to RR D 1:18 (CrI90% 1.05; 1.33) depending on the
hierarchical Bayesian random effect model considered. To compare the estimated
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Fig. 37.2 (Left) Spatial distribution of the estimated Lung Cancer Mortality/Incidence (M=I )
ratio (in quintiles). Males, Tuscany (without Arezzo Province), Tuscany Cancer Registry, 2004.
(Right) Spatial distribution of baseline relative risks from the spatially structured random
intercept (see text). Lung Cancer, Males, Tuscany (without Arezzo Province), Tuscany Cancer
Registry, 2004

Table 37.1 Indices of goodness of fit: ND, DIC, pD, corrected DIC (DICc), ropt, EDP

Model ND DIC pD DICc ropt EDP

Random intercept 4,578 4,670 92 4,666 88 8,469
Random intercept and slope 4,580 4,680 100 4,684 104 8,466
Spatially structured random intercept 4,583 4,646 63 4,648 65 8,471
Spatially structured random intercept and random slope 4,570 4,663 93 4,667 97 8,471

rate ratios for material deprivation at census level to those at municipality level we
express the rate ratio for an increase of one standard deviation and we report here for
brevity only the best fitting model results (Table 37.1). The percent increase in risk
for an increase of one standard deviation of material deprivation at census block
level was 3.36% (CrI90%–1.44%; 8.40%) vs 5.87% (CrI90%–0.21%; 12.33%) at
municipality level. Notice that introducing a spatially structured random intercept
deflated the risk estimates from those under the fixed-effect Cronbach model -
3.87% (CrI90%–1.37%; 9.21%) and 6.72% (CrI90% 1.19%; 11.64%) respectively.
The random slope models reported a paradoxically negative effect of material
deprivation at census block level in some areas (Fig. 37.3). Table 37.1 reports
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Fig. 37.3 Census block effect of material deprivation on Lung cancer mortality by municipality
(see text: random slope model Sect. 37.3.3.4). Lung cancer. Males, Tuscany (without Arezzo
Province), Tuscany Cancer Registry, 2004. Y-axis: log relative risk; X-axis: material deprivation
(percent)

model comparison statistics. Despite a lower D-medio the spatially structured
random intercept model behaves better in terms of DICc. Random slope models
are penalized by their extra complexity.

Figure 37.2(Right) shows the spatial distribution of random intercepts from the
best fitting model. A lower risk in the north- western part of the region might by
spurious as highlighted by the predicted distribution of the M=I ratio.

37.5 Discussion and Conclusions

In Italy there are few studies that compare results from analysis at the individual and
the census block level [15]. In this paper we assumed that census block information
may be used as a surrogate for the individual level. However since a contextual effect
is plausible we expect the effect estimates be larger than those obtained having the
complete information [16].

The results showed that municipality level has a larger impact than census block
level even when we adjust for baseline risk variability. We must be cautious in
interpreting this finding, since the ecological bias may menace the validity of this
comparison [17]. We report confounding by location that is controlled by spatially
structured random effects.

The percent increase in mortality for one standard deviation increase in material
deprivation was estimated 3.36% (exp 1�ˇ) vs 2.43% (exp.2ˇ–1�ˇ/). The residual
effect of the aggregate variable (2.43%) can be interpreted as contextual effect or
ecological bias. It is outside the scope of this paper to address this issue in detail
(see Fleischer and Diez Roux [18], Dowd [19]).

In conclusion, the Bayesian approach allows flexible random effect modelling.
Future work will address a joint modelling of completeness of registration and
disease risk.
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38Mining Administrative Health Databases
for Epidemiological Purposes: A Case Study
on Acute Myocardial Infarctions Diagnoses

Francesca Ieva, Anna Maria Paganoni, and Piercesare Secchi

Abstract
We present a pilot data mining analysis on the subset of the Public Health
Database (PHD) of Lombardia Region concerning hospital discharge data
relative to Acute Myocardial Infarctions without ST segment elevation (NON-
STEMI). The analysis is carried out using nonlinear semi-parametric and
parametric mixed effects models, in order to detect different patterns of growth in
the number of NON-STEMI diagnoses within the 30 largest clinical structures of
Lombardia Region, along the time period 2000–2007. The analysis is a seminal
example of statistical support to decision makers in clinical context, aimed at
monitoring the diffusion of new procedures and the effects of health policy
interventions.

Keywords
Biostatistics and bioinformatics • Data mining • Generalized linear mixed
models • Health service research

38.1 Introduction

Recent years have witnessed a growing interest in the use of performance indicators
in health care; they may measure some aspects of the health care process, clinical
outcomes or epidemiological incidence and prevalence of diseases. In response, a
sizeable literature has emerged questioning the right use of such indicators as a
measure of quality of care, as well as stating more specific criticism of the statistical
methods used to obtain estimates adjusted for patient case-mix.
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Health care service scheduling is strictly connected with a deep knowledge of
current health needs; with respect to this, a total novelty is represented by the
potential offered by the statistical data mining of administrative data-banks for
collecting clinical and epidemiological information. Indeed, there is an increasing
agreement among epidemiologists on the validity of disease and intervention
registries based on administrative databases [1, 4, 12]. In this work we focus on
growth curves for the number of diagnoses of Acute Myocardial Infarction without
ST segment elevation (NON-STEMI), and we explore the question as to whether
they had a trend in the time interval 2000–2007. Indeed, clinical best practice
maintains that there is no evidence for a greater incidence of NON-STEMI in this
period; however, since the early 2000s a new diagnostic procedure—the troponin
exam—has been introduced and this, by easing NON-STEMI detection, could have
produced an increased number of positive diagnoses. Administrative data-banks can
be used to check for growth in the number of NON-STEMI diagnoses along with
the adoption by clinical institutions of new diagnostic procedures or devices, like
the troponin exam.

In this work we will illustrate a pilot data mining case study on hospital
discharges data for patients with NON-STEMI diagnosis; data come from the
Lombardia Region Public Health Database (PHD), an ongoing collection of data
used, up to now, only for administrative purposes. The study is part of the Strategic
Program “Exploitation, integration and study of current and future health databases
in Lombardia for Acute Myocardial Infarction” (AMI Project) funded by the Italian
Ministry of Health and by “Direzione Generale Sanità—Regione Lombardia” and
started in January 2009. The major objective of this project is the identification of
new diagnostic, therapeutic, and organizational strategies to be applied to patients
with acute coronary syndromes (ACS), in order to improve clinical outcomes.
To achieve this goal Regione Lombardia authorized the extraction from the PHD
database of data concerning patients with Acute Coronary Syndromes.

The statistical analysis is conducted along different phases. The visual evidence
for growth in the number of NON-STEMI diagnoses is first questioned by fitting
a semi-parametric mixed effect model, in order to capture the shape of growth
curves and to test the significance of the grouping factor effect. The relevant features
emerged with this first analysis are then modeled by means of parametric nonlinear
models of decreasing complexity, which are easier to interpret and more suited to
inferential purposes.

All the analyses have been performed with the R program [15]; the mgcv [18]
package and the nlme package [14], respectively, for generalized additive mixed
models and for nonlinear mixed effects models have been used.

38.2 Data Mining Discharge Data on Acute
Myocardial Infarctions

In this section we describe a data mining study of the Hospital Discharge Database
(Database Ricoveri), which is one of the three main databases belonging to the Star
scheme [10] that composes the PHD of Lombardia Region. We focus on the numbers
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Fig. 38.1 Left panel: Number of AMI without ST-elevation diagnoses in the period 2000–2007
in the 30 largest clinical institutions of Lombardia Region. Right panel: Standardized number of
AMI without ST-elevation diagnoses in the period 2000–2007 in the 30 largest clinical institutions
of Lombardia Region. For each hospital the yearly number of diagnoses has been divided by the
hospital total number of diagnoses in the time period 2000–2007

of hospital discharges with a diagnosis of NON-STEMI, grouped by hospital and
relative to the 30 largest clinical institutions of Lombardia Region, during years
2000–2007. Detection of cases is performed according to the AHQR guidelines [5].

Figure 38.1, left panel, represents the number of acute myocardial infarction
without ST-elevation (NON-STEMI) diagnoses, along the time period 2000–2007,
for the 30 hospitals. The total number of diagnoses in the time period 2000–2007
has a considerable variability between institutions: in fact it ranges from a minimum
value of 715 to a maximum of 1,872. This difference is due to the different exposure
of different hospitals; indeed, exposure could be a confounding factor in a statistical
analysis focused on the growth trend of the number NON-STEMI cases. Hence, in
order to analyze comparable data, for each hospital the yearly number of diagnoses
has been standardized by the hospital total number of diagnoses in the time period
2000–2007, thus adjusting for hospital exposure (see Fig. 38.1, right panel).

The high variability between hospitals and the structure of the data grouped by
hospital motivate the use of mixed effects models [13] for the analysis of these
longitudinal data. A first explorative analysis conducted by means of a simple linear
mixed model, where the standardized number of NON-STEMI diagnoses appears
as a linear function of time, with hospital as a grouping factor, shows a significant
linear trend over time (the p-value of the test on the “year” fixed effect is less than
10�14).

Since the use of a linear parametric model can be quite binding, a further enquire
into the growth trend has been conducted by fitting a semi-parametric mixed effect
model. Indeed, we set QNij to be the standardized number of NON-STEMI diagnoses
for hospital i D 1; : : : ; 30 and year j D 1; : : : ; 8; where j D 1 is for year 2000
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Fig. 38.2 Estimated growth curves through model (38.1) together with the original data

and j D 8 is for year 2007, and following [17], we fit the following mixed effects
semi-parametric model with respect to time

QNij D s.tj /C b0i C b1i tj C "ij i D 1; : : : 30; j D 1; : : : ; 8; (38.1)

where tj is the centered time covariate (i.e. t0 D 2000 � 2003:5D � 3:5, t1 D
2001 � 2003:5 D �2:5 and so on), s is a common cubic regression spline,
while b0i and b1i are i.i.d samples of the random variables b0 � N .0; �2b0/ and
b1 � N .0; �2b1/ respectively, representing gaussian additive independent random
effects, grouped by hospital. The quantities "ij are i.i.d. samples from the random
variable " � N .0; �2/ representing residual error: ", b0 and b1 are assumed to
be independent. Estimates are obtained by maximization of restricted likelihood.
Figure 38.2 shows the estimated growth curves together with the original data.

We fitted a semi-parametric mixed effects model in order to catch a common
behavior in the growth of normalized number of NON-STEMI diagnoses in the
years 2000–2007, smoothing data and taking into account overdispersion due to
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Table 38.1 Fixed effects estimates and Anova table for model (38.2)
Fixed effects estimates:

Value Std. Error

Asym 0.1544 0.0026
Tmid �2.7017 0.1368

Anova Table:

numDF denDF F -value p-value

Asym 1 209 5417.630 < :0001

Tmid 1 209 389.845 < :0001

the grouping factor. In fact, inspection of Fig. 38.2 suggests a common “S-shaped”
growing pattern. Concerning the random effects, the estimated parameters are:
O�b0 D 2:702� 10�07, O�b1 D 0:00765, and O� D 0:02297. The negligible effect of the
random variable b0 suggests that the curves are in fact different only with respect
to their growth rate. The greater effect of the random variable b1 is conducive to
a further analysis of these data by means of a model that captures the common
growth trend while taking into account overdispersion in the growth rates. Indeed,
the following (parametric) logistic mixed effects model accommodates for the
“S-shaped” common growing pattern, pointed out by the nonparametric analysis,
while enabling the testing of its significance:

QNij D Asym C ˛i

.1C exp .Tmid C �i � tj //
C "ij; i D 1; : : : 30; j D 1; : : : ; 8;

(38.2)
where tj is the centered time covariate, the fixed effects Asym and Tmid represent,
respectively, the asymptote and the inflection point of the logistic curve, while ˛i
and �i are i.i.d samples of the random variables ˛ � N .0; �2˛/ and � � N .0; �2� /;

respectively, representing gaussian additive random effects, grouped by hospital.
The quantities "ij are i.i.d. samples from the random variable " � N .0; �2/ and
they represent residual error. The two random effects ˛ and � are assumed to
be independent, and independent of "I all estimates are computed by restricted
maximum likelihood. Table 38.1 shows that both fixed effects Asym and Tmid are
significant.

Concerning the random effects, the estimated parameters are: O�˛ D 6:8183 �
10�07, O�� D 0:4821, and O� D 0:0287. It is then confirmed that the variability
of the additive random effect relative to the asymptote is negligible; thus ˛i can be
removed from model (38.2) without loss in model performance. On the contrary, the
variability of the random effect relative to the inflection point is large and implies
a very significant effect; this stimulates an interesting interpretation, since, in the
logistic model, the inflection point indicates the time of maximum growth speed
and this, in turn, is directly related to the timing of a growth speed significantly
different from zero.

Inspection of the set of (estimated) random effects �i ; i D 1; : : : ; 30; related
to the inflection point suggests a clustering structure that has been captured by
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partitioning the set in k D 1; 2; : : : ; clusters by means of the Partitioning Around
Medoids procedure (PAM, [11]), implemented with the Euclidean distance, denoted
by d . A critical point is the choice of k, the number of groups: an helpful method is
the computation of the average silhouette width, and the inspection of the silhouette
plot of PAM. For each estimated �i , letA be the cluster to which �i has been assigned
and compute a.�i /, the average dissimilarity of �i to all other objects in A;

a.�i / D 1

jAj � 1

X
�j2A; �j¤�i

d.�j ; �i /:

Now, if C is a cluster different from A; denote by

d.�i ; C / D 1

jC j � 1

X
�j2C

d.�j ; �i /

the average dissimilarity of �i from all objects in C and set c.�i / to be the smallest
value of d.�i ; C / when C is let to range over the set of all clusters different from A.
The silhouette value s.�i / of �i is defined as

s.�i / D c.�i /� a.�i /

maxfa.�i /; c.�i /g :

Clearly s.�i / lies between �1 and 1; large values of s.�i / support the fact that the
element �i is well classified in A. The entire silhouette plot, i.e., the plot of all
s.�i /, and the Average Silhouette Width, i.e., the average of all silhouette values,
are qualitative indexes helpful to judge and compare the results obtained by PAM
for different values of k [16].

By inspecting the silhouette plot, represented in Fig. 38.3, the presence of k D 3

clusters can be sustained. Indeed, for k D 3; the Average Silhouette Width is equal
to 0.58 and, as a general rule, it can be asserted that a reasonable clustering structure
has been found when the Average Silhouette Width is greater than 0:5. The medoids
representative of the three clusters correspond to years yA D 2000; yB D 2001

and yC D 2002: “Cluster A” denotes the institutions for which the estimated time
of inflection point Tmid C �i in model (38.2) is closer to �3:1692, i.e., closer
to year yA D 2000. Analogously, “Cluster B” denotes the institutions for which
the estimated time of inflection point is closer to �2:6839, i.e., closer to year
yB D 2001; and “Cluster C” denotes the institutions for which the estimated time
of inflection point is closer to �2:3014, i.e., closer to year yC D 2002.

In the left panel of Fig. 38.4, the curves estimated by model (38.2) are
represented, one curve for each hospital, together with the real data; the right panel
shows the estimated logistic growth curves. The thick red, black, and green curves
represent the three benchmarks growth curves, i.e., medoids for cluster A, B, and C,
respectively.

The particular interest in analyzing the clustering structure of the random
effects related to the inflection points derives by the clinical surmise about their
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Fig. 38.3 Silhouette plot of PAM procedure on the estimated inflection points with k D 3 clusters

Fig. 38.4 Estimated logistic growth curves for different medical institutions
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Table 38.2 Fixed effects
estimates for model (38.3)

Value Std. Error p-value

Asym 0.1540 0.0025 < :0001

TmidA �3.9434 0.2383 < :0001

TmidB �2.6719 0.1294 < :0001

TmidC �1.9108 0.1637 < :0001

presence. Indeed, it is known that from the early 2000s the troponin exam has
been introduced in hospital practices as a diagnostic device to better identify NON-
STEMI events; hence, the presence of three clusters for the random effects �i could
be a consequence of the different hospital timings in the introduction and adoption
of this practice. This hypothesis cannot be validated directly since the timings of
adoption of the troponin exam by the 30 different hospitals included in the analysis
are not available.

The previous analysis suggests a simpler model with fixed effects only, where
dummy variables represent the identified cluster structure (clusters A, B, or C). This
model is easier to interpret and communicate to clinicians; for instance, it quantifies
the statistical evidence of the existence of groups in terms of p-values reported in
Table 38.2. The model is:

QNij D Asym

.1C exp .TmidA � 1i2A C TmidB � 1i2B C TmidC � 1i2C � tj // C "ij;

(38.3)

where i D 1; : : : 30; is the institution index, j D 1; : : : ; 8; is the year index, and " is
defined as before. Estimates for the effects of model (38.3) appear in Table 38.2; they
are all significant. Notice that the fixed effects estimates reported in Table 38.2 are
close to the values identifying the inflection points of the three medoids yA; yB and
yC generated by the analysis of model (38.2). Testing all possible contrasts between
the three different fixed effects related to the inflection point always generates a
p-value less than 10�4I there is a strong evidence of different inflection points in
the three groups. Diagnostic checks show that normality assumption of residuals
can be sustained.

In conclusion, the statistical analysis advocates the presence of three groups of
hospitals, possibly distinguished by different timings of introduction and adoption
of the troponin test and supports the clinical tenet that in the time period 2000–
2007 there has been an apparent increase in the normalized number of NON-STEMI
diagnoses that is not due to a real increase in the disease incidence, but to a new
diagnostic procedure adopted in hospitals along different timings.

38.3 Conclusions and Further Developments

The study presented in this chapter is a pilot example of an advanced statistical
analysis performed on data drawn from a PHD. Administrative health care databases
play today a central role in epidemiological evaluation of Lombardia health care



38 Public Health Database 425

system because of their widespread diffusion and low cost of information. Public
health care regulatory organizations can assist decision makers in providing infor-
mation based on available electronic health records, promoting the development
and the implementation of the methodological tools suitable for the analysis of
administrative databases and answering questions oriented to disease management.
The aim of this kind of evaluation is to estimate adherence to best practice (in the
setting of evidence-based medicine) and potential benefits and harms of specific
health policies. Health care databases can be analyzed in order to calculate measures
of quality of care (quality indicators); moreover the implementation of disease
and intervention registries based on administrative databases could enable decision
makers to monitor the diffusion of new procedures (as was in troponin exam
adoption example) or the effects of health policy interventions. The unassailable
benefit of the use of the PHD is the high data quality, and the real time data
availability without costs increase. This innovative perspective was a paramount
motivation for the Strategic Program “Exploitation, integration and study of current
and future health databases in Lombardia for Acute Myocardial Infarction” (AMI
Project). More details about the AMI Project and the planned analyses can be found
in [2, 3, 6–9].

The case study illustrated in the previous section is an example of the potential
offered by the statistical analysis of an administrative database for clinical and
epidemiological purposes. Statistical analysis is conducted in different phases: an
explorative analysis of data conducted by means of semi-parametric models to guide
the study towards an appropriate parametric model, the fit of a suitable nonlinear
parametric model with mixed effects estimated under the usual assumptions of
random effects and residuals normality, the criticism of this model assumptions,
offered by the presence of a clustering structure in the random effects, and thus
the final improvement obtained through the introduction of appropriate dummy
variables, taking into account the identified clustering structure, and leading to a
simple and significant fixed effect logistic model.
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39Fractional Integration Models for Italian
Electricity Zonal Prices

Angelica Gianfreda and Luigi Grossi

Abstract
In the last few years we have observed an increasing interest in deregulated
electricity markets. Only few papers, to the authors’ knowledge, have considered
the Italian Electricity Spot market since it has been deregulated recently. This
contribution is an investigation with emphasis on price dynamics accounting
for technologies, market concentration, and congestions as well as extreme
spiky behavior. We aim to understand how technologies, concentration, and
congestions affect the zonal prices since all these combine to bring about
the single national price (prezzo unico d’acquisto, PUN). Implementing Reg–
ARFIMA–GARCH models, we draw policy indications based on the empirical
evidence that technologies, concentration, and congestions do affect Italian
electricity prices.

Keywords
ARFIMA models • Congestions • Electricity prices • Long memory • Market
power

39.1 Introduction and Literature Review

Mean-reversion, seasonality, volatility clustering, inverse leverage effect, long mem-
ory, and extreme values (spikes) characterize the daily electricity price dynamics.

These stylized facts should be taken into account when modeling electricity
prices [6]. In this chapter we propose to fit ARFIMA–GARCH to the seasonally
adjusted series of Italian electricity prices. ARFIMA processes are able to model
mean-reversion and residual seasonality, while volatility clustering is captured by
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GARCH models. Long memory of the generating process of electricity prices has
received small consideration in the literature. Frequently electricity prices are in fact
transformed and returns are then modeled in order to deal with stationary time series
[11]. Actually, when unit root tests are applied to electricity prices, the null is usually
rejected, while the stationarity hypothesis is rejected as well. This is the case of the
Italian electricity prices which present long memory features and can be modeled
by fractional integrated processes (as in [14]), given that there is not unanimous
consent on this issue and the fact that the Italian structure has been modified several
times inducing structural breaks into the prices series. Indeed, it is well known that
the presence of structural breaks can induce a correlation structure very similar to
that observed for long memory processes [2]. Starting from this general framework,
we propose a model in which different regressors are included.

Several explanatory variables have been proposed for this peculiar process to
understand which factors drive the price dynamics. Traded volumes, as well as
demand, reserve margin, volatility, and water supply have been explored, as for
instance in [12]. The Italian market was previously investigated by [3], however,
without considering none of previous factors. Here we propose to determine
if technical factors (as technologies, congestions, and market power) do affect
the zonal prices. We identify a congestion every time that prices of couples of
contiguous zones are different, as suggested by [10]. Moreover, the behavior of
generators can be heavily influenced by their geographical locations within zones
and by transmission network capacity, see [8]. Therefore generation, congestions,
and market power are strongly interdependent and crucial factors, see [5].

A generator has market power if it is able to raise the electricity price above
marginal cost without experiencing a significant decline in demand. Previous studies
focussed on this topic in the electricity generation sector relying on oligopoly theory,
implementing simulation techniques to model the electricity generators’ behavior.
For a survey on models to detect market power see [4]. Traditionally, analysts
and anti-trust regulators investigate market power issues using various measures
of market concentration such as the popular Hirschmann-Herfindahl index (HHI),
the residual supply index (RSI), and the Lerner index. Since there is not a consensus
on which measure is the best indicator of market power for the electricity markets,
because there is a number of factors to account for (transmission constraints are an
example), we have decided to consider two structural indexes (the HHI and the RSI)
provided by the Italian system operator (Gestore del Mercato Elettrico, GME).

Another issue which is addressed in this chapter is the effect of spikes in the time
series of electricity prices. Extreme values or spikes are results of abnormally large
variations in price caused by weather conditions, outages, or transmission failures,
as pointed out in [16]. The influence of extreme observations is not generally
considered in studying the generating processes of electricity time series, but the
bias induced by outliers on model estimates is a very well-known problem (see [1]
and cited references). We propose to treat daily spikes with median daily prices
and consider network congestions as proposed by [10] recalling that the Italian
market is segmented showing characteristics as those of Nord Pool because the most
congested links identify aggregations of zones.
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Summarizing our contribution, we propose a price dynamic modeling which
takes into account simultaneously long memory, production technologies, concen-
tration, and congestions. We also provide evidence that the special zonal structure
of this market must be considered when modeling these prices since all series have
weighted influence in determining the single national price.

The structure of the chapter is as follows. In Sect. 39.2 the Italian zonal electricity
market is presented and issues related to production technologies and market power
are discussed. The theoretical econometric background of the chapter is explained
in Sect. 39.3 which also contains the main results of the empirical analysis. In
Sect. 39.4 we conclude and discuss some further research issues related to the topic
of this chapter.

39.2 The Italian Zonal Market: Structure, Technologies,
Concentration, and Congestions

The Italian wholesale electricity market started its operations in April 2004 but
became an Exchange only in 2005 registering an increasing in traded volumes from
73 TWh in 2004 to 232 TWh in 2008. It is important to emphasize that, since
this market is comparatively young, there are continuous structural changes as for
instance the abolition of the Calabria zone and its inclusion in the Southern zone
starting from the beginning of 2009. Furthermore, the market has come to a steady
phase only in the last years. Hence, our investigations refer only to a time period
going from January 2007 to the end of 2008, see [9].

Italian electricity is produced by the following plants: thermal power plants only
with coal, or with fuel oil or with natural gas; multi-fuel thermal power plants with
oil and coal or with oil and natural gas; combined cycle gas turbines (CCGT);
hydro power plants with pumped storage, with run of the river (fluent) or with
reservoirs (modulation); gas turbine plants (GT); wind power plants; and finally
other generation plants not included in the previous ones. These technologies, used
in [7] to detect influences of generation sources on price and volatility dynamics,
have been clustered into the following six types of the marginal technology index
(MTI) distinguishing between oil, gas, and coal producing plants: Coal (all multi-
fuel and thermal power plants with coal), Thermal (plants without coal), Hydro,
Wind (renewables), CC represents combined cycles (CCGT and GT) and finally
Other is meant for plants not included in the previous ones. In this work we have
computed for every group of technology the number of hours (frequency) in which
it has fixed the price over the corresponding zone and built a set of six dummies, one
for each group, and then attributed one to the group with the maximum frequency
over the day and zero to the others. Formally, let frjt be the number of hours for the
r-th technology group used in zone j on day t . The dummy variable for the r-th
group in zone j is then defined as drjt D 1 if frjt D maxr.frjt / and drjt D 0

otherwise.
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Table 39.1 Frequencies (number of days) of technologies fixing the price over individual zones

Coal CC Thermal Wind Hydro Other

North 73 632 366 0 449 40
CNorth 122 462 702 0 218 26
CSouth 143 362 817 0 183 26
South 151 356 815 0 185 25
Calabria 188 351 810 0 156 28
Sicily 18 325 1,106 0 59 1
Sardinia 296 274 700 0 251 20

From the summary reported in Table 39.1, it is possible to exclude two
technologies, Wind and Other in all zones, from our analysis since they have a low
influence compared to the other sources.

Beside technologies, we want to analyze the effect of market power on wholesale
prices. Hence we have considered the Hirschmann–Herfindahl index (HHI) and the
Residual Supply index (RSI), whereas the Lerner index could be constructed on
zonal basis once the marginal costs of technologies will be available.

The first index, HHI, measures the degree of concentration and dispersion of
volumes sold (and/or offered1) by market participants for each hour and each zone.
It is the sum of the shares of the volumes sold in the market by market participants
as indicated in the following equation

HHI.j; h/ D
NX
iD1

ŒQi.j; h/ � 100�2 (39.1)

with

Qi.j; h/ D Vi .j; h/PN
iD1 Vi .j; h/

(39.2)

where i D 1; : : : ; N are market participants, j represents the individual zones, h is
the considered hour, and finally Vi are volumes sold by the i -th participant.

The range values of this index are 0 when there is perfect competition and 10,000
points in the case of monopoly. In the former case, the index simply shows that the
quantity sold by the i -th participant is irrelevant with respect to the total amount
of electricity sold by the other participants, and indeed in this situation the ratio
Qi.j; h/ tends to zero when the denominator is much more large (almost infinite)
than (compared to) the numerator. The latter case of monopoly is identified by
10,000 which is given by 1002 meaning that the ratio Qi is equal to one, or in other
words that the i -th participant is the only one selling electricity. From a preliminary

1The shares are defined by considering the volumes sold and/or offered (including those covered
by Bilateral Contracts) by individual market participants aggregated on the basis of the group to
which they belong.
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Table 39.2 Percentages of HHI levels with respect to the employed sample of 35,064 h

No concentration Moderate Concentration Concentration
HHI � 1;000 1;000 < HHI < 1;800 HHI � 1;800

North 1,06 90,49 8,45
CNorth 1,08 0,97 97,95
CSouth 1,93 0,11 97,96
South 2,01 2,57 95,42
Calabria 2,05 0,00 97,95
Sicily 2,03 1,02 96,95
Sardinia 2,05 0,00 97,95

analysis of the Italian zonal HHI as provided by GME (Table 39.2), it is possible
to state that in all Italian zones (apart from North) there is a poor competition on
the generation side producing expectations on a direct relation between price and
HHI, since when the latter increases then the price should increase as an effect of
market concentration (or market power). Looking at time series of certain hours
belonging to delivery periods off-peak 1, off-peak 2, and peak,2 it is possible to see
that there is a sensible shift in level in the HHI hourly series during the entire month
of November 2008, and this is also reflected in the daily series (see Fig. 39.1 for
Central North).3 In that period we observed a shift in the HHI dynamics but similar
behaviors can be seen neither in the quantities sold (not reported in both figures) nor
in the Residual Supply Index (RSI).

Therefore, given this strange dynamics for the HHI index and considering in
addition unexpected results,4 we have decided to verify the impact of market power
on electricity price dynamics using only the latter index, implicitly assuming that
this index is able to detect that kind of exercise.

The second measure of concentration, that is the Residual Supply Index,
measures the presence of residual market participants necessary to cover the total
demand, thus the index measures the ex-post residuality. The hourly zonal RSI
published by GME has the following formulation

RSIi.j; h/ D
NX

lD1;l¤i
Sl .j; h/ � Vi.j; h/ (39.3)

2The delivery periods for the Italian market refer to the following groups of hours: off peak 1 from
00.00 to 06.00 until the end of 2005 then from 2006 to 07.00; peak is from 07.00 (08.00 from
2006) to 22.00 (to 20.00 from 2006); off peak 2 from 23.00 (or 21.00 from 2006) to 24.00.
3Similar dynamics are observed on other zones and are not reported for lack of space.
4Contrary on expectations from Table 39.2, HHI is found to be significant and positive only in
CSouth.
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Fig. 39.1 Seasonal adjusted price series (top panel), HHI series (middle panel), and RSI series as
provided by GME (bottom panel) for Central Northern zone

where l; i D 1; : : : ; N are market participants, j represents the individual zones,
h is the considered hour, and finally Vi are volumes sold by the i -th participant.
This difference between the total supply and the sum of i th sellers’ supply (or in
other words the quantity offered by other market participants) represents the non-
contestable volumes. Hence dividing this quantity by the total quantities sold in one
zone at one particular hour, we determined the hourly and daily aggregatedRSIi . If
the index is less than 1, then the i th firm is necessary to cover the demand and so it is
a pivotal supplier in the market; if the index is greater or equal to 1, then the i th firm
is not necessary and the market can be considered competitive, see [13] and [15].
We observed that all RSIi adjusted for volumes are always less than one, apart for
Calabria where the index is almost always equal to one. Therefore we expect that
market power strongly affects the estimations implying a rise in electricity prices in
all zones but Calabria.

The last issue we considered in this work is the influence of grid congestions on
prices. In this chapter we only consider five physical national zones which are (until
2008): North, Central North (CNorth), Central South (CSouth), South, and Calabria
(Calb). The two isles (Sardinia and Sicily) have not been considered because these
are highly concentrated due to the limited connection to the peninsula. Electricity
flows in both directions, and so a congestion occurs every time the transmission
capacity is exceeded. We identify and define daily time series of frequencies of
congestions every time we observe different zonal prices among contiguous zonal
couples which are North–CNorth, CNorth–CSouth, CSouth–South, and South–
Calb.
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39.3 Model Specifications and Empirical Results

A preliminary empirical analysis of the Italian zonal market carried out using daily
medians of prices has provided evidence of the presence of seasonality at daily level
and a long memory autocorrelation structure, see [7].

Figure 39.2 represents the AutoCorrelation Function (ACF) and the Periodogram
(estimated by the Fast Fourier Transformation) for seasonally adjusted prices
collected in the Northern zone. Seasonal adjustment has been carried out by using
a linear model with dummy regressors for days of the week and calendar effects
(CalEf ). The pattern of ACF is typical of a long memory process. Looking at the
Periodogram, apart from peaks at low frequencies related to the trend-cycle, a peak
can be clearly detected around 0.14 frequency, corresponding to a 7-day period. This
means that the seasonal adjustment did not capture all the weekly seasonal depen-
dence of the series. For this reason we decided to use the original series as dependent
variable and explicitly model the seasonal pattern of the series. Long memory
is usually captured by fractionally integrated processes. Taking into account the
autocorrelation structure we could estimate ARFIMA models with seven autore-
gressive terms, that is a ARFIMA(7,0) or seven Moving Average terms, that is
a ARFIMA(0,7). Another stylized fact that should not be neglected is the mean
reversion of electricity prices which is usually estimated by a one-lag autoregressive
term. For this reason we added one AR term also in the case of the ARFIMA model
with seven Moving Average terms. Finally the two estimated ARFIMA models are:
ARFIMA(7,0) and ARFIMA(1,7). Residual diagnostics (tables are not reported for
lack of space) from these models show that ACF and PACF functions are inside
the confidence regions, but the null hypothesis of homoscedasticity according to
the Engle LM test cannot be accepted. For this reason we estimated ARFIMA–
GARCH models. Now all residuals diagnostics lead to the acceptance of the
model (see Table 39.3 for the ARFIMA(1,7)–GARCH(1,1) model). Comparing the
information criteria (AIC and BIC), the best model seems to be the ARFIMA(1,7)–
GARCH(1,1), which is the model we used as a basic one for testing the influence of
exogenous explanatory variables on wholesale prices. To take into account the pres-
ence of many extreme values and consequent fat tails of the distribution of electricity
prices, we estimated the models under the assumption of different distributions for
residuals. The best performance has been obtained using a Student–t distribution
with degrees of freedom jointly estimated with the other parameters of the model.

Hence, the effect of exogenous factors on wholesale prices has been measured
implementing Reg–ARFIMA–GARCH models [12] with dummies for group of
technologies, frequencies of congestions, and the market concentration index as
explanatory variables.

The proposed models can be formalized as follows:

.1�L/d .yt ��t/ D "t C�1"t�1C : : :C�q"t�q "t jIt�1 � t.0; �2t / (39.4)

where
�2t D ! C ˛"2t�1 C ˇ�2t�1 (39.5)
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Fig. 39.2 AutoCorrelation Function (upper panel) and Periodogram (lower panel) of seasonally
adjusted prices for North

Table 39.3 P -values of residuals diagnostic tests for ARFIMA(1,7)–GARCH(1,1) models esti-
mated in five zones

NORTH CNORTH CSOUTH SOUTH CALB

Q-Statistics on Standardized Residuals
Q(15) 0.302 0.406 0.340 0.369 0.251
Q(20) 0.234 0.560 0.656 0.724 0.454
Q(30) 0.112 0.373 0.242 0.394 0.165
Q-Statistics on Squared Standardized Residuals
Q(15) 0.581 0.915 0.704 0.627 0.749
Q(20) 0.640 0.972 0.718 0.609 0.775
Q(30) 0.635 0.552 0.042 0.715 0.929
Diagnostic test based on the news impact curve (EGARCH vs. GARCH)
Sign Bias Test 0.542 0.594 0.459 0.274 0.535
Negative Size Bias Test 0.851 0.620 0.820 0.674 0.835
Positive Size Bias Test 0.712 0.780 0.719 0.682 0.512
Joint Test 0.749 0.891 0.720 0.479 0.618
LM Engle test
ARCH 1–2 test 0.742 0.984 0.851 0.750 0.744
ARCH 1–5 test 0.390 0.990 0.362 0.294 0.342
ARCH 1–10 test 0.575 0.835 0.475 0.385 0.511

for t D 1; : : : ; T , yt is the zonal median electricity price at time t , L is the lag
operator defined by Lyt D yt�1, and �t D E.yt jIt�1/ is the mean equation
conditioned to the set of information available at time t � 1. The �j "t�j terms
represent the moving average component of the price dynamics with coefficients
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�j for j D 1; : : : ; q, indicating the number of moving average parameters. The
following specification has been considered for the conditional mean function:

�t D c C 	1D1 C : : :C 	7D7 C �CalEf C �1yt�1 C �1Techt C �2MarPowt

C�3Congt (39.6)

where Dj with j D 1; : : : ; 7 are dummies for days of the week and 	j are the
corresponding coefficients; CalEf is a dummy accounting for calender effects and
� is the corresponding coefficient; the �1yt�1 term represents the autoregressive
component of the price dynamics. Tech, MarPow, and Cong are respectively the
dummy variables indicating the technology group determining the price, the index
of market power and finally Cong are dummies for daily congestion events, �s are
regression coefficients.

Table 39.4 shows the maximum likelihood estimates of Reg–ARFIMA–GARCH
parameters applied to time series of daily median prices. Information criteria
(Akaike Information Criteria and Bayesian Information Criteria) and log-likelihood
values are reported in the final rows. Looking at estimates, we can draw the
following conclusions:
1. Calendar effects, seasonality, fractional integration, and volatility clustering are

important and salient features to take into account since the estimates of CalEf ,
days of the week, d , ˛ and ˇ are always significant. Moreover d is always
significant and less than 0:5 for all zones as found previously in [7], hence
confirming that these price processes have long memory.

2. The autoregressive structure, that is the �1 term, is found to be important to
capture the stylized fact of mean-reversion of electricity prices. Whereas the
inclusion of moving average terms has been used to obtain white noise residuals.

3. The employed groups of technologies determining the zonal prices are generally
significant across zones. In details, looking at Table 39.4, Combined Cycles (CC)
always reduce electricity zonal prices, whereas Thermal power (TNC) generally
increases them.

4. Concentration (or market power) has been analyzed considering two indexes.
Since we have found that the HHI has a controversial impact,5 only results
with the RSI has been reported. The RSI indicates competitive markets when it
approaches (and is greater than) one, as in Calabria. And indeed, we have found
that the exercise of market power, apart for Calabria and Central South, increases
zonal prices given that estimated parameters are positive and significant.

5. Congestions are important only in North and CNorth. In the first case, it can be
argued that when congestions affect the Northern zone, demand could be satisfied

5It is significant (with a negative sign) in some zones but it turns to be insignificant in some others,
whereas it should always have a positive sign: when the HHI increases then the price increases as
result of exercise of market power. These results are available on request.
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Table 39.4 Reg–ARFIMA estimates (with significance levels in brackets) for Italian Electricity
Zonal Prices (where ***, ** and * represent significance at 1%, 5% and 10%, respectively)

NORTH CNORTH CSOUTH SOUTH CAL

c 54:09 (***) 50:64 (***) 54:35 (***) 51:89 (***) 36:30 (***)
RSI 0:77 (***) 0:11 (**) 0:04 0:17 (**) 0:18

Cong �2:89 (***) 1:18 (**) 2:15 0:80 1:96

CC �1:37 (**) �0:68 �1:44 (**) �1:55 (**) �1:69 (***)
TNC 1:30 1:38 (*) 1:84 (***) 1:74 (**) 2:16 (***)
CalEf �12:55 (***)�21:83 (***)�22:32 (***)�22:89 (***)�21:81 (***)
Mon 8:22 (***) 20:14 (***) 20:17 (***) 19:80 (***) 18:99 (***)
Tue 11:11 (***) 21:27 (***) 21:14 (***) 20:89 (***) 20:41 (***)
Wed 10:84 (***) 21:07 (***) 21:17 (***) 20:96 (***) 20:58 (***)
Thu 10:11 (***) 20:51 (***) 20:41 (***) 20:18 (***) 19:89 (***)
Fri 8:76 (***) 19:86 (***) 19:29 (***) 18:89 (***) 18:86 (***)
Sat 2:16 (**) 5:59 (***) 5:90 (***) 6:44 (***) 6:09 (***)
d-Arfima 0:49 (***) 0:49 (***) 0:48 (***) 0:47 (***) 0:49 (***)
�1 0:19 (***) 0:22 (**) 0:19 (**) 0:13 (**) 0:18 (***)
�1 �0:26 (**) �0:23 (**) �0:16 �0:14 �0:16
�2 0:00 �0:10 (**) �0:14 (***) �0:14 (***) �0:12 (***)
�3 �0:02 �0:03 �0:05 �0:07 �0:08 (*)
�4 �0:01 0:00 0:00 (***) 0:01 0:02

�5 �0:03 �0:01 0:01 �0:01 �0:01
�6 0:04 0:07 (*) 0:03 0:03 0:02

�7 0:22 (***) 0:22 (***) 0:24 (***) 0:24 (***) 0:22 (***)
! 1:08 2:39 (*) 1:74 (*) 2:24 (*) 2:03

˛ 0:06 (***) 0:12 (***) 0:10 (***) 0:12 (***) 0:10 (***)
ˇ 0:92 (***) 0:86 (***) 0:89 (***) 0:86 (***) 0:88 (***)
Student(DF) 6:37 (***) 4:42 (***) 4:85 (***) 5:21 (***) 5:10 (***)
AIC 6:68 6:82 6:88 6:89 6:91

BIC 6:84 6:98 7:04 7:04 7:07

Log-likelihood �2,491 �2468 �2416 �2492 �2501

by imports. On the other hand, when congestions occur in CNorth electricity
prices raise because of an excess of demand. Interestingly and not surprisingly,
prices in CSouth, South, and Calabria are not influenced by congestions.6

6This could be due to the presence of limited production poles which only inject electricity into
the system then providing the necessary supply: Brindisi in the Southern zone and Rossano in
Calabria.
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39.4 Conclusions

This chapter is an analysis of effects of technologies, concentration, and congestions
on Italian Electricity zonal prices. According to the most recent contributions
in the time series analysis applied to electricity prices for instance [10], we
took into account the long memory feature of the generating stochastic process
estimating a parameter of fractional integration, which turned out to lie very close
to 0.5. A causal analysis in the framework of Reg–ARFIMA–GARCH models
confirmed the significant impact of production technologies, market concentration,
and congestions on these price dynamics. These results can be converted in tentative
suggestions for policy indications to be followed when programming the medium–
long-term energy policy in Italy.

Concluding, we have provided first insights on relationships between zonal elec-
tricity spot prices, technologies, concentration, and congestions finding parameters
significant and coherent to our expectations according to the Italian market structure
and mechanisms, especially about the degree of market power observed in Italy: the
lack of market competition leads indeed to higher prices. In addition, we would
like to emphasize that special attention should be spent on the construction of
new transmission lines given that generators can serve only if there exists adequate
transmission capacity, since the installation of new generating capacity is expected
to produce even more and could lead to sudden bottleneck problems.

Acknowledgements We would like to thank the book’s editors and two anonymous referees for
their valuable comments on a previous version of the paper.
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40A Generalized Composite Index Based
on the Non-Substitutability of Individual
Indicators

Matteo Mazziotta and Adriano Pareto

Abstract
Composite indices for ranking territorial units are widely used by many inter-
national organizations in order to measure economic, social and environmental
phenomena. The literature offers a great variety of aggregation methods, all with
their pros and cons. In this chapter, we propose an alternative composite index
which, starting from a linear aggregation, introduces penalties for the units with
“unbalanced” values of the indicators. As an example of application, we consider
the set of individual indicators of the Technology Achievement Index (TAI) and
present a comparison between some traditional methods and the proposed index.

Keywords
Dimensionality reduction • Ranking

40.1 Introduction

Social and economic phenomena, such as development, poverty, wellness and
malnourishment have been measured, in the past, principally from an unidimen-
sional point of view, that is using only one variable. The more recent literature
tends to consider these phenomena as multidimensional or complex since they
are characterized by the combination of different variables. The measurement of
complex phenomena is a difficult and dangerous operation since it requires simpli-
fications that are inherently somewhat arbitrary, is always constrained by limited
resources and time, inevitably involves competing and conflicting priorities, and
rests on a foundation of values preferences that are typically resolved by pragmatic
considerations, disciplinary biases and measurement traditions. Nevertheless, it is
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possible to consistently combine both the selection of variables representing the
phenomenon and the choice of the “best” aggregation function in order not to lose
much statistical information.

The aim of this chapter is to present a generalized composite index, denoted as
MPI (Mazziotta-Pareto Index), suitable in the case in which the variables are “non-
substitutable”, i.e. they have all the same weight (importance) and a compensation
among them is not allowed [7]. In Sect. 40.2, the steps to implement a composite
index are presented; in Sect. 40.3, the MPI and its main properties are shown; finally,
in Sect. 40.4, an empirical comparison among simple arithmetic mean, geometric
mean, median and MPI is proposed.

40.2 Steps Towards the Synthesis of Indicators

In the scientific literature, there are many studies, by eminent authors, concerning
the use of composite indices in order to measure complex, economic and social,
phenomena about geographical areas. The main problems, in this approach, are the
availability of the data, the choice of the more representative indicators and their
treatment in order to allow comparisons (normalization). An other very important
step is the definition of the synthesis measure because it is the tool used to “add”
the normalized indicators; in this delicate phase, from a methodological point of
view, the choices of the researcher assume a fundamental role. In fact, to define
the aggregation function, there are many possible alternatives such as multivariate
techniques, distance measures and linear or nonlinear functions.

The steps for constructing a composite index can be summarized as follows:
(a) Defining the phenomenon to be measured. The definition of the concept should

give a clear sense of what is being measured by the composite index. It should
refer to a theoretical framework, linking various sub-groups and underlying
indicators.

(b) Selecting a group of individual indicators, usually expressed in different units
of measurement. The strengths and weaknesses of a composite index reflect
the quality of the underlying individual indicators. Ideally, indicators should
be selected according to their relevance, analytical soundness, timeliness,
accessibility, etc. [9]. Proxy measures can be used when the desired data are
unavailable or when cross-country comparability is limited. Besides, there must
not be redundancies and all the aspects of the phenomenon must be considered.

(c) Normalizing the individual indicators to make them comparable. Normalization
is required prior to any data aggregation as the indicators in a data set often have
different measurement units. Therefore, it is necessary to bring the indicators
to the same standard, by transforming them into pure, dimensionless, numbers.
There are various methods of normalization, such as ranking, re-scaling,
standardization (or z-scores) and “distance” to a reference. Assigning the same
“importance” to each indicator, it is indispensable to apply a transformation
criterion that makes the indicators independent from both the unit of measure-
ment and the variability, e.g. the standardization.
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(d) Aggregating the normalized indicators by composite indices (mathematical
functions). Different aggregation methods are possible. The most used are
additive methods that range from summing up unit ranking in each indicator
to aggregating weighted transformations of the original indicators. Multivariate
techniques as Principal Component Analysis [3] and distance measures as
Wroclaw Taxonomic Method [4] are also often used.

For this approach, obviously, there are several problems such as finding data,
losing information and researcher arbitrariness for: (1) selection of indicators,
(2) normalization, and (3) aggregation and weighting. In spite of these problems,
how mentioned in the introduction, the advantages of this approach are clear and
they can be summarized in: (a) unidimensional measurement of the phenomenon;
(b) immediate availability; and (c) simplification of the geographical data analysis.

Many works and analysis have won over the critics and the scientific community
concluded that it is impossible to obtain a “perfect” method where the results are
universally efficient. On the contrary, the data and the specific targets of the work
must, time by time, individuate the “best” method in terms of robustness, reliability
and consistency of the solutions.

40.3 The Composite Index

Additive methods for constructing composite indices imply requirements and
properties which are often not desirable or difficult to meet. They assume above
all a full substitutability among the components of the index: a deficit in one
dimension can be compensated by a surplus in another. However, a complete
compensability among individual indicators is generally not acceptable and a
“balanced” distribution of the values is required.

The proposed method wants to supply a composite measure of a set of indicators
that are considered “non-substitutable”, i.e. all the dimensions of the phenomenon
must be “balanced” [5].

40.3.1 General Aspects

The MPI is designed in order to satisfy the following properties: (1) normalization
of the indicators by a specific criterion that deletes both the unit of measurement
and the variability effect [2]; (2) synthesis independent from an “ideal unit”, since
a set of “optimal values” is arbitrary, non-univocal and can vary with time [1];
(3) simplicity of computation; and (4) ease of interpretation.

These properties can be satisfied by the following approach.
It is known that distributions of different indicators, measured in different way,

can be compared by the transformation in standardized deviations. Therefore, the
individual indicators can be converted to a common scale with a mean of 100
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and a standard deviation of 10: the obtained values will fall approximately in the
range 70–1301. In this type of normalization the “ideal vector” is the set of mean
values and it is easy to identify both the units that are above average (values greater
than 100) and the units that are below average (values less than 100). Moreover,
normalizing by standardized deviations allows to release the indicators from their
variability and to assign them the same weight.

In such context, a penalty coefficient can be introduced that is function, for
each unit, of the indicators’ variability in relation to the mean value (“horizontal
variability”): this variability is measured by the coefficient of variation. The
proposed approach penalizes the score of each unit by adjusting the mean of the
standardized values with a quantity that is directly proportional to the “horizontal
variability”. The purpose is to favour the units that, mean being equal, have a greater
balance among the values of the indicators [8].2

The method provides a “robust” measure that is less “sensitive” to inclusion or
exclusion of individual indicators [6].

The steps for computing MPI are the following.
1. Normalization
Let X D fxij g be the matrix with n rows (statistical units) and m columns
(individual indicators) and let Mxi and Sxj denote the mean and the standard
deviation of the j -th indicator:

Mxj D

nP
iD1

xij

n
I Sxj D

vuuut nP
iD1
.xij � Mxj /

2

n
:

The standardized matrix Z D fzij g is defined as follows:

zij D 100˙ .xij � Mxj /

Sxj
10 (40.1)

where the sign ˙ is the “polarity” of the j -th indicator, i.e. the sign of the
relation between the j -th indicator and the phenomenon to be measured (C if the
individual indicator represents a dimension considered positive and – if it represents
a dimension considered negative).
2. Aggregation
Let cvi be the coefficient of variation for the i -th unit:

cvi D Szi

Mzi

1On the basis of Bienaymé-Cebycev theorem, the terms of the distribution within the range 70–130
are at least 89% of total terms.
2Note that the penalty can be viewed as the “price” to pay for having uneven achievement across
dimensions.
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where:

Mzi D

mP
jD1

zij

m
I Szi D

vuuut mP
jD1

.zij � Mzi /
2

m
:

Then, the generalized form3 of MPI is given by:

MPIC=�i D Mzi .1˙ cv2i / D Mzi ˙ Szi cvi

where the sign of the penalty (the product Szicvi / depends on the kind of
phenomenon to be measured.

If the composite index is “increasing” or “positive”, i.e. increasing values of the
index correspond to positive variations of the phenomenon (e.g. the socio-economic
development), then MPI� is used. Vice versa, if the composite index is “decreasing”
or “negative”, i.e. increasing values of the index correspond to negative variations
of the phenomenon (e.g. the poverty), then MPIC is used.

In the first case, the penalty is subtracted and the index is less than the mean for
unbalanced values; in the second one, the penalty is added and the index is greater
than the mean for unbalanced values.

40.3.2 Computation and Properties

Table 40.1 shows an example of how to calculate the MPIC=�.
MPIC and MPI� can also be written as follows:

MPICi D

mP
jD1

z2ij

mP
jD1

zij

and MPI�i D 2

m

mX
jD1

zij �

mP
jD1

z2ij

mP
jD1

zij

where zij is given by (40.1). The MPICi is a concave function of the generic zik.k D
1; : : :; m/, while the MPI�i is a convex function of zik.

Given the matrix X D fxij g, the generalized index has the following properties:
i. The MPIC of the i -th unit is greater or equal than the MPI� of the same unit,

that is:
MPICi � MPI�i :

In particular, MPICi D MPI�i if and only if Szi D 0 .
ii. The MPIC and the MPI� of the i -th unit are linked by the relation:

MPI�i D 2Mzi � MPICi :

3It is a generalized form since it includes “two indices in one”.
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Table 40.1 Example of calculating MPI

Original Normalized
indicators indicators

Unit X1 X2 Z1 Z2 Mean Std. dev. CV MPIC MPI�

A 1 100 88:4 114:1 101:28 12:86 0:127 102:91 99:65

B 6 80 110:7 107:1 108:88 1:81 0:017 108:91 108:85

C 4 60 101:8 100:0 100:89 0:89 0:009 100:90 100:88

D 6 40 110:7 92:9 101:81 8:88 0:087 102:58 101:04

E 1 20 88:4 85:9 87:14 1:28 0:015 87:16 87:12

Mean 3.6 60.0 100.0 100.0
Std. dev. 2.2 28.3 10.0 10.0

iii. Given two units i and h, with Mzi D Mzh , we have:

MPI�i > MPI�h if and only if Szh > Szi I
MPICi > MPICh if and only if Szi > Szh :

iv. Given two units i and h, with Mzi > Mzh , we have:

MPI�i > MPI�h if and only if Mzi � Mzh > Szi cvi � SzhcvhI
MPICi > MPICh if and only if Mzi � Mzh > Szhcvh � Szi cvi :

v. Let xj xk be the linear correlation coefficient between the j -th and the k-th
indicator; if rxj xk D 1, for each j and k with j ¤ k, then:

MPICi D MPI�i D Mzi :

This result is due to the fact that, for the i -th unit, we have zij D zik for j ¤ k.
Property (v) is very interesting because it shows the relation between the

behaviour of the MPI and the structure of the correlations among the individual
indicators.

In general, the lower the correlation among the indicators, the higher the
“horizontal variability” induced in each unit and the greater the difference between
MPI and arithmetic mean.

Therefore, the MPI may be a useful tool to summarize uncorrelated variables,
such as the principal components, in a “non-compensatory” point of view.

40.4 An Application to Real Data

In this section, an application of MPI to the variables of the Technology Achieve-
ment Index (TAI) is presented; see [9] for more details.

The TAI is a composite measure of technological progress that ranks countries
on a comparative global scale [10].
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Table 40.2 List of individual indicators of the Technology Achievement Index (TAI)

Indicator Definition Unit

PATENTS Number of patents granted to residents, to reflect the
current level of invention activities (1998)

Patents granted per
1,000,000 people

ROYALTIES Receipts of royalty and license fees from abroad per
capita, so as to reflect the stock of successful
innovations of the past that are still useful and hence
have market value (1999)

US $ per 1,000 people

INTERNET Diffusion of the Internet, which is indispensable to
participation in the network age (2000)

Internet hosts per
1,000 people

EXPORTS Exports of high and medium technology products as
a share of total goods exports (1999)

%

TELEPHONES Number of telephone lines (mainline and cellular),
which represents old innovation needed to use newer
technologies and is also pervasive input to a
multitude of human activities (1999)

Telephone lines per
1,000 people (log)

ELECTRICITY Electricity consumption, which represents old
innovation needed to use newer technologies and is
also pervasive input to a multitude of human
activities (1998)

kWh per capita (log)

SCHOOLING Mean years of schooling (age 15 and above), which
represents the basic education needed to develop
cognitive skills (2000)

Years

UNIVERSITY Gross enrolment ratio of tertiary students enrolled in
science, mathematics and engineering, which
reflects the human skills needed to create and absorb
innovations (1995–1997)

%

In Table 40.2 is reported the indicators list of the TAI.
Note that the variables have all the same importance in order to represent the

technological progress. So, we may assume that the variables of the TAI have
the property of non-substitutability, or rather it is very important that there are
no compensatory effects among the variables; they have the same weight and a
balanced distribution of the values is desirable.

The data matrix is shown in Table 40.3. For the sake of simplicity, only 33 of the
72 original countries measured by the TAI are considered.

The aim of the application is to compare the MPI with some traditional methods
in order to test the action of the penalty function. Indicators are normalized by
(40.1).

The aggregation functions used are:
– Arithmetic Mean (AM)
– Geometric Mean (GM)
– Median (ME)
The AM is the most commonly used aggregation method: its popularity is due to its
transparency and ease of interpretation. Nevertheless, it implies full compensability,
whereby low values in some indicators can be compensated by high values of others.
A better suited method, if the researcher wants some degree of non-compensability
among individual indicators, is the GM, but it can be used only for sets of positive
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Fig. 40.1 Individual indicators of the TAI: a comparison of countries (normalized values)

values that are interpreted according to their product and not their sum. Moreover,
the value of the GM is “biased” low. Both the AM and the GM are affected, in
different way, by extreme values (outliers). On the contrary, the ME, i.e. the middle
value of the variable in the ranking, is less sensitive to outliers.

In Table 40.4, a comparison between MPI with negative penalty (MPI�/ and the
above methods is reported.

On the whole, the rankings of the countries (ordered by MPI�) do not present
relevant surprises from a geo-economic point of view, but this is not the aim of the
work.

The most similar method to the MPI� is the GM4(mean absolute difference of
rank of 0.24), the most different one is the ME (mean absolute difference of rank of
1.58). Comparing MPI�and AM rankings, each country changes, on average, less
than half position (mean absolute difference of rank of 0.48). The Spearman’s rank
correlation index is 0.995 so that there is not a great difference between AM and
MPI�.

The divergence between the two methods lies in the penalty function, as the
MPI is a mean adjusted on the basis of the “horizontal variability” of standardized
indicators. The greater differences between the rankings are in the middle part of
the list where, probably, the countries have a higher variability of the indicators.

In Fig. 40.1 is displayed a comparison between the distributions of the normal-
ized individual indicators of Australia and Germany.

4Note, however, that the GM is very different to MPIC.
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Germany has a balanced distribution of the values (all, except INTERNET,
fall approximately in the range 100–110), whereas Australia has an unbalanced
distribution (UNIVERSITY has a very high value and EXPORT a low value).

Germany ranks 12th according to the AM, 10th according to the GM and MPI�
and 8th according to the ME.

On the other hand, Australia ranks 10th with the AM and 5th with the ME, while
its ranking is much lower according to the other two methods (GM and MPI�/. In
this case, the penalty function of the MPI penalizes the country causing a decrement
of 3 positions respect to the AM, 1 position respect to the GM and a good 8 positions
compared with the ME.

40.5 Concluding Remarks

Social and economic phenomena, such as development, poverty, wellness and mal-
nourishment, are very difficult to measure and evaluate since they are characterized
by a multiplicity of aspects or dimensions. The complex and multidimensional
nature of these phenomena requires the definition of intermediate objectives whose
achievement can be observed and measured by individual indicators. The idea of
summarizing individual indicators into composite indices is not straightforward. It
involves both theoretical and methodological assumptions which need to be assessed
carefully to avoid producing results of dubious analytic rigour. The international
literature on composite indices offers a wide variety of aggregation methods. The
most used are additive methods, but they imply requirements and properties which
are often not desirable or difficult to meet, such as a full substitutability among the
components of the index.

To overcome this assumption, we proposed an alternative composite index,
denoted as MPI (Mazziotta-Pareto Index). The MPI is independent from both the
range and the “polarity” of the individual indicators and can be validly applied to
different scientific contexts.

Acknowledgements This chapter is the result of the common work of the authors: in particular
M. Mazziotta has written Sects. 40.1, 40.2, 40.3.2 and A. Pareto has written Sects. 40.3.1, 40.4 and
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41Evaluating the Efficiency of the Italian
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Abstract
The university efficiency indicators, computed as partial indices following the
input–output approach, are subject to criticism mainly concerning the problem
of comparability of institutions due to the influence of several environmental
factors. The aim of this study is to construct comparable efficiency indicators for
the university educational processes by using frontier production methods which
enable us to solve the problem. The indicators are computed for the Italian State
Universities by using a new data set referring to the cohort of students enrolled
in the academic year 2004/2005. A comparison with the corresponding partial
indicators usually employed is presented.

Keywords
Educational process • Stochastic Frontier Models • University Efficiency
Indicators

41.1 Introduction

University performance indicators (UPIs) are widely used in several OECD coun-
tries (including Italy) due to their key role concerning the distribution of public
funds (core fund or targeted fund) for teaching and research among universities.
Nevertheless, there has been a great deal of debate over the validity and reliability
of the different partial indicators used, each measuring a different aspect of a
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university’s performance [2]. The main criticism regarding UPIs concerns the
problem of comparability of universities and faculties. This problem is particularly
significant when partial efficiency indicators (PEIs) of the educational processes are
considered since they refer to the production process which can be influenced by
exogenous factors that characterize the context in which the universities operate.

The aim of this paper is threefold. Firstly, to suggest a new approach based on
frontier production methods for constructing comparable efficiency indicators of the
educational processes in order to avoid misleading comparisons of university per-
formance. Secondly, to estimate comparable efficiency indicators of the educational
processes of the Italian State Universities, referring to the entire production process
of a graduate and the various sub-processes in which the formation of a graduate can
be divided. For the first time in Italy, the estimation is carried out by using data from
the Italian University Student Archive considering a specific cohort of students. The
third aim is to analyse the differences between the estimated comparable technical
efficiency indicators and the partial indicators used by the Ministry of Education,
University and Research (MIUR) in order to verify if the use of the partial indicators
for the allocation of funds could be biased.

41.2 From Partial Efficiency Indicators to Comparable Technical
Efficiency Indicators

The usual practice for measuring the efficiency of the university educational process
has been to find a set of PEIs (i.e. drop-out rate, percentage of credits achieved
and graduation rate) constructed by referring to the input–output approach [3].
Although these indicators are useful, because they are simple to construct and
easily understood, they do not provide a reliable base for comparing institutions
with different features. Therefore PEIs must be adjusted to “contextual” factors,
i.e. university differences in “quality” of students and course-related characteristics,
in order to potentially avoid misleading comparisons of university performance.

In order to construct comparable technical efficiency indicators (CTEIs), which
consider the various characteristics of universities, we need to refer to the production
theory framework. Therefore, bearing in mind the requirements of the neoclassical
production theory we can model the university educational process of the first
level degree courses as a series of production processes: the entire educational
process where freshmen are transformed into graduates and the three sub-processes
represented by the results obtained by the freshmen at the end of each year of the
degree course. These different processes can be regarded as processes of human
capital formation. The university, through the training it delivers, transforms a
cultural “raw” material (input) into a cultural “refined” material (output) by using a
number of other inputs, such as teachers, textbooks and class rooms.

With the aim of measuring the technical efficiency of these processes the
stochastic frontier approach [8, 9] is used to allow for the various “environmental”
factors which can affect the results of the educational processes, such as the
students’ characteristics [1], the resources used and the socio-economic context.
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In this way we can obtain the efficiency measures that represent CTEIs which enable
us to make comparisons among the universities at ceteris paribus conditions.

We propose a heteroscedastic stochastic frontier model [5] for cross-sectional
data as a general model to be used for describing the various processes. This model
can be written in natural logs as:

ln yi D ln f .xi I “/C vi � ui (41.1)

where yi is the output of production unit i.i D 1; : : : ; n/; xi is a vector of s inputs,
f .xi I “) is the production function and “ a vector of technological parameters to
be estimated; the vi components, which capture the effect of statistical noises, are
assumed to be normal with zero mean and constant variance vi � i:i:dN.0; �2v /.
Concerning the one-sided error terms ui , which express technical inefficiency of
each production unit, the scaled half-normal model was selected since it satisfies
the scaling property that has several statistical advantages and attractive features.

The model specification was carried out by referring to literature on this subject
and considering the results obtained from preliminary analyses. First of all, the
production unit is represented by the faculty1 since teaching activities are considered
the most important aspect of human capital formation. The production technology
is specified by the Cobb–Douglas production function as it is suitable for describing
the attitude of the faculties in carrying out the formation process as well as
estimating a parsimonious number of parameters.

In the university formation process framework the issue of distinguishing
between heterogeneity in the production model and heterogeneity in the inefficiency
model is particularly important. The problem of heterogeneity in the production
model is due to different technologies, which may simultaneously coexist as the
various faculties carry out their production in different environments. In order
to deal with this problem and allow for a statistical test of the assumption of a
common technology, we included the type of faculty in the production function [4].
To overcome the issue of heterogeneity in the inefficiency model, caused by the
students’ characteristics and other contextual factors, we assumed that the variance
of the inefficiency terms is a function of a vector zi of variables which are exogenous
to the production process but influence its efficiency, such as the students’ individual
characteristics and the size and territorial location of the universities, that is �2ui D
exp.•0zi /. Since the study subject can influence both the technology of production
and the inefficiency level, we also included the degree subject, which represents
the type of faculty according to the NUEC classification, in the model of technical
inefficiency [4, 10].

1The faculty is the entity of a university that organizes teaching activities in a specific area (study
subject). We are aware that there are various degree courses with different educational objectives
within a faculty but it was not possible to consider them in our study due to lack of disaggregated
data.
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The estimates of the unknown parameters in (41.1) can be obtained by maximiz-
ing the generalized log likelihood function [7]. The individual technical efficiency
(TE) of each faculty, expressed by TEi D expf� OE.ui j"i /g is of particular interest
in our study because it expresses a CTEI. An unbiased estimate of technical
inefficiency OE.ui j"i / is obtained by adjusting for heteroscedasticity the formula of
the conditional mean suggested by Jondrow et al. [6] when u is homoscedastic.

41.3 Data and Model Specification

We constructed a specific database by using data from the newly established Italian
University Student Archive referring to the cohort of students enrolled in first level
degree courses in the academic year 2004/2005 and following their progress up
to the academic year 2007/2008. We also included data concerning the university
facilities and equipment gathered yearly by the National University Evaluation
Committee (NUEC) and the Ministry of University and Research (MIUR). The
final dataset refers to the 60 Italian State Universities2 and to the 452 faculties. The
database contains a lot of valuable information, but most variables are only observed
at faculty level while other variables are observed at university level.

Bearing in mind the aim of our paper we considered the three sub-processes
mentioned above for which we specified three models by identifying the following
outputs as semi-manufactured products that indicate the students’ progress in their
human capital formation:
1. Full Credit Equivalent Students in the first year (FCES1) who are the theoretical

number of students (which is less than or equal to the number of freshmen) who
would have obtained the 60 credits required.

2. Full Credit Equivalent Students at the end of the second year (FCES2) who are
the theoretical number of students who would have obtained the 120 credits
required.

3. Full Credit Equivalent Students at the end of the third year (FCES3), who are the
theoretical number of students who would have obtained the 180 credits required.

We analysed the efficiency of the entire educational process by considering two
different models identifying two different outputs as finished products:
1. Number of Graduates within institutional time (GT), equal to three years.
2. Number of Graduates who got their degree within a year after the institutional

time3 (G1L).

2After examining the reliability and quality of the data, two universities were excluded from the
analysis.
3Although the number of graduates within the institutional time is the real output of the process,
the indicator G1L can be considered as a second best result of the entire formation process bearing
in mind the fact that some students take longer than three years to obtain their degrees.
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We considered the following variables as inputs in the educational processes:
(1) Freshmen who enrolled in the academic year 2004/2005; (2) Full and/or
Associate Professors and/or researchers; (3) Seats in lecture halls; (4) Seats in
laboratories; (5) Seats in libraries; (6) Books in libraries; (7) Subscriptions to
journals in libraries; (8) Weekly opening hours of libraries. Among the environmen-
tal factors we specified the following characteristics of freshmen: (1) Percentage
of female freshman; (2) Percentage of freshmen with best results of secondary
school leaving examination (90–100/100); (3) Percentage of freshmen with Lyceum
Diploma; (4) Percentage of freshmen aged over 25; (5) Percentage of freshmen
from other areas (outside the University region). Moreover, we included variables
on size (small, medium and big) and territorial location (North, Centre, South) of
the universities, the Gross Domestic Product (GDP) of the province in which the
university is located and the survival rate of the students enrolled in the academic
year 2004/2005 in the model up to the second and third year.

It is interesting to note that a descriptive analysis of the PEIs, concerning
credits achieved and graduation rates, shows that on average the Italian university
educational process is characterized by a low degree of efficiency, with great
variability among the faculties. For example, the average rate of credits achieved
in the first year is 0.43, with a standard deviation of 0.137, and ranges from a
minimum of 0.28 (Veterinary medicine) to a maximum of 0.60 (Medicine) while
the average graduation rate within the institutional time is equal to 0.16, with a
standard deviation of 0.146, and ranges from 0.06 (Law) to 0.46 (Medicine).

41.4 Estimation Results

Although we estimated five different models concerning the various educational
processes (FCES1, FCES2, FCES3, GT, G1L), testing different specifications with
different sets of variables, hereunder there are the results regarding the sub-process
specified by the first year of the degree course (Tables 41.1 and 41.4) and the
estimation results of the entire process4 considering the number of graduates within
institutional time (Tables 41.2 and 41.3) as the output.

Concerning the efficiency analysis of the first year of the degree course, which
represents the most interesting sub-process to be evaluated due to the high drop-out
rate observed (about 30% on average for the 2004/2005 cohort), a likelihood ratio
test showed that there was no significant statistical heterogeneity in the technology
of production (Table 41.1). On the contrary the hypothesis that faculties share the
same technology was strongly rejected by the data in the case of the stochastic
production model describing the entire formation process (Table 41.2).

Therefore in the first year of the degree course, the evaluation of technical
efficiency can be performed by considering a common technology since the process

4The results of the models FCES2, FCES3 and G1L are available from the authors on request.
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Table 41.1 FCES1 model:
production function
parameter estimates

Variable Coefficient

Undergraduate enrolments 0:973 .0:023/���

Professors 0:057 .0:022/���

Seats in lecture hall 0:085 .0:003/���

Seats in laboratories 0.018 (0.026) ��

Seats in libraries 0.019 (0.032)
Journal subscriptions �0.019 (0.015)
Labs – office hours 0.182 (0.088)
Constant �0.992 (0.403)���

Two-sided error variance
Ln�2v �3.373 (0.217)���

Note: �Significant at the 10% level ��Significant at
the 5% level ���Significant at the 1% level

Table 41.2 GT model:
production function
parameter estimates

Variable Coefficient

Undergraduate enrolments 0.797 (0.054)���

Professors 0.167 (0.056)���

Seats in lecture hall 0.180 (0.023)��

Seats in laboratories 0.078 (0.059)
Seats in libraries 0.019 (0.063)
Journal subscriptions 0.021 (0.026)
Labs – office hours 0.091 (0.186)
Degree subject
(Reference group D Law)
Agricultural sciences �0.272 (0.224)
Architecture 0.564 (0.207)���

Economics 0.259 (0.161)
Pharmacology �0.366 (0.220)�

Engineering �0.155 (0.175)
Medicine 0.619 (0.194)���

Literature 0.108 (0.166)
Languages 0.373 (0.205)�

Psychology 0.437 (0.034)��

Veterinary medicine �0.931 (0.260)���

Education 0.161 (0.200)
Biology and Mathematics �0.285 (0.185)
Physical science and education 0.185 (0.283)
Political sciences 0.346 (0.175)��

Constant �0.977 (0.875)
Two-sided error variance
Ln�2v �3.317 (0.446)���

Note: �Significant at the 10% level ��Significant at
the 5% level ���Significant at the 1% level
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Table 41.3 GT model: variance parameter estimates and marginal effects

Marginal effect Marginal effect
Variable Coefficient on E.ui / On Var.ui /

Degree subject
(Ref. groupD Law)
Agricultural sciences �0.777 (0.530) �0.384 �0.567
Architecture �0.608 (0.449) �0.301 �0.444
Economics �1.877 (0.416)��� �0.928 �1.371
Pharmacology �1.494 (0.476)��� �0.738 �1.090
Engineering �0.990 (0.570)� �0.495 �0.723
Medicine �3.806 (0.603)��� �1.877 �2.779
Literature �1.762 (0.379)��� �0.871 �1.286
Languages �1.625 (0.611)��� �0.802 �1.187
Psychology �2.776 (0.750)��� �1.372 �2.027
Veterinary medicine �1.727 (0.616)��� �0.854 1.261
Education �1.843 (0.597)��� �0.911 �1.346
Biology and Mathematics �1.588 (0.392)��� �0.785 �1.160
Physical science and
education

�2.122 (0.723)��� �1.049 �1.549

Political sciences �2.185 (0.469)��� �1.080 �1.595
Students’ characteristics
Percentage of female 0.805 (0.884) 0.398 0.587
Best freshmen �4.413 (1.298)��� �2.181 �3.222
Freshmen with Lyceum
Diploma

�1.122 (1.061) �0.555 �0.819

Freshmen aged over 25 �0.518 (1.020) �0.256 �0.378
Freshmen from other areas
(outside of University
region)

�0.679 (0.530) �0.335 �0.496

University Dimension
(Ref. group: Big University)
Medium University �0.463 (0.190)�� �0.229 �0.338
Small University �0.663 (0.268)�� �0.328 �0.484
University Localization
(Reference Group: North)
Centre 1.033 (0.234)��� 0.511 0.754
South 0.541 (0.400) 0.267 0.395
GDP per capita �0.072 (0.28)�� �0.036 �0.053
Constant 4.794 (1.101)���

Note: �Significant at the 10% level ��Significant at the 5% level ���Significant at the 1% level

of achievement of credits in the first year may not greatly differ among the various
groups of faculties.

The production function parameter estimates (Tables 41.1 and 41.2) show that
the statistically significant inputs are the number of undergraduate enrolments, the
number of seats in lecture halls, the number of professors and the number of seats
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Table 41.4 FCES1 model: variance parameter estimates and marginal effects

Marginal effect Marginal effect
Variable Coefficient on E(ui/ on Var.ui/

Degree Subject
(Reference groupD Law)
Agricultural sciences 0.316 (0.540) 0.063 0.031
Architecture �1.838 (0.514) �0.369 �0.180
Economics �0.463 (0.409) �0.093 �0.045
Pharmacology 0.838 (0.470)�� 0.168 0.082
Engineering �1.327 (0.585)�� �0.266 �0.130
Medicine �1.556 (0.538)��� �0.311 �0.152
Literature 0.253 (0.359) 0.052 0.025
Languages �0.659 (0.597) �0.133 �0.064
Psychology 0.319 (0.660) 0.064 0.031
Veterinary medicine 1.723 (0.534)��� 0.344 0.168
Education �0.120 (0.584) �0.024 �0.012
Biology and Mathematics 0.610 (0.394)� 0.122 0.060
Physical science and
education

�0.428 (0.698) �0.086 �0.042

Political sciences �0.735 (0.431) �0.147 �0.072
Students’ characteristics
Percentage of Female �2.853 (0.978)��� �0.572 �0.279
Best freshmen 0.355 (0.949) 0.071 0.035
Freshmen with Lyceum
Diploma

�2.809 (1.043)��� �0.564 �0.275

Freshmen aged over 25 1.480 (1.063) 0.297 0.145
Freshmen from other areas
(outside of University
region)

�0.914 (0.587) �0.183 �0.089

University Dimension
(Ref. group: Big University)
Medium University �0.468 (0.209)�� �0.094 �0.046
Small University �0.144 (0.305) �0.029 �0.014
University Localization
(Reference Group: North)
Centre 0.087 (0.239) 0.017 0.008
South �0.521 (0.452) �0.105 �0.051
GDP per capita �0.052 (0.031)� �0.010 �0.005
Constant 2.702 (1.246)��

Note: �Significant at the 10% level ��Significant at the 5% level ���Significant at the 1% level

in laboratories (the latter only for the FCES1 sub-process). The variance parameter
of the two-sided error term is statistically significant.

Considering the entire formation process, the coefficients related to the various
faculties suggest that there is also significant variation in the levels of inefficiency



41 Evaluating the Efficiency of the Italian University Educational Processes . . . 463

across the faculties (Table 41.3). The degree subject and the students’ characteristics
play an important role in shaping technical efficiency. For example the negative
significant coefficient of “Best Freshmen” makes the variance of the best freshmen
lower than the variance of the other freshmen, ceteris paribus, thus showing a lower
level of inefficiency of best freshmen.

It is interesting to note that the percentage of females and the percentage of
students from Lyceum significantly influence the results obtained by the freshmen
at the end of the first year of their degree courses (Table 41.4). Therefore faculties
including a high percentage of students with these characteristics achieve a higher
level of efficiency. Moreover, the size of the university and the economic indicators
of the province are also statistically significant in both models.

In reference to the other formation processes, it is worth noting that in the FCES2
and FCES3 models the statistically significant inputs are identical to those found for
FCES1 and GL models, respectively. The FCES3 model shows the importance of
the survival rate of students after the first year course among the exogenous variables
in the inefficient component u. Finally the results obtained from the G1L model are
very similar to the GT model.

41.5 Comparable Efficiency Indicators Versus Usual Indicators

The most important result of our study is the estimation of the CTEIs obtained
from the five models which take into account the different contexts characterizing
each faculty. It is interesting to compare the ranking of faculties obtained by using
CTEIs with the ranking based on the usual PEIs, which are obtained by dividing
each of the five outputs by the number of freshmen enrolled in the academic year
2004/2005. This comparison enables us to verify if a faculty modifies its position
in the classification according to the two efficiency indicators (Fig. 41.1). The
comparison regarding the FCSE3 output is not reported in Fig. 41.1 since the scatter
plot representation is similar to that of the graduation process.

Plots in Fig. 41.1 show the sensitivity of the rankings to the change of the
efficiency measurement method. Each point in the four plots represents the position
of a faculty according to the PEI and the CTEI indicators. Clearly, if the positions
of the faculties in the two classifications had remained the same, the dots would be
situated on the bisecting line. There is major stability in the ranking in the higher
part of the classification situated at the bottom of the graphs and in the lower part
situated in the upper right-hand corner. Thus, the most efficient and less efficient
faculties tend to be stable regardless of the efficiency measurement method used.
Yet there is much more dispersion in the central part of the distribution and we can
note that, especially in case of GL1, there are sharp differences between the adjusted
and the unadjusted UPIs and thus the use of the unadjusted indicators (PEIs) could
result in misleading comparisons.
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Fig. 41.1 Comparison of faculty rankings by usual PEIs vs. CTEIs indicators

41.6 Concluding Remarks

The models estimated in this study proved to be suitable for describing the
educational production process in Italian State Universities. Moreover, the results
obtained enable us to underline some important issues concerning the use of UPIs
constructed as PEIs for the evaluation of the universities. CTEIs are more accurate
for describing the level of efficiency among the various faculties in the educational
production process since they take into consideration several contextual factors such
as the available resources and the students’ characteristics. The CTEIs are adjusted
efficiency indicators which could be used by MIUR for allocating funds among
universities.
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Abstract
In this chapter, we estimate, model, and forecast Realized Range Volatility, a
realized measure and estimator of the quadratic variation of financial prices.
This quantity was early introduced in the literature and it is based on the high-
low range observed at high frequency during the day. We consider the impact
of the microstructure noise in high frequency data and correct our estimations,
following a known procedure. Then, we model the Realized Range accounting
for the well-known stylized effects present in financial data. We consider an HAR
model with asymmetric effects with respect to the volatility and the return, and
GARCH and GJR-GARCH specifications for the variance equation. Moreover,
we consider a non-Gaussian distribution for the innovations. The analysis of the
forecast performance during the different periods suggests that the introduction
of asymmetric effects with respect to the returns and the volatility in the HAR
model results in a significant improvement in the point forecasting accuracy.
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42.1 Introduction

In the last years, realized volatility measures, constructed from high frequency finan-
cial data and modeled with standard time series techniques, have shown to perform
much better than traditional generalized autoregressive conditional heteroskedas-
ticity (GARCH) and stochastic volatility models, when forecasting conditional
second order moments. Most of the works that forecast volatility through realized
measures, have concentrated on the Realized Variance (RV) introduced by Andersen
et al. [1] and Barndorff-Nielsen and Shephard [4]. The RV is based on the continuous
time price theory and it is defined as a function of the sum of squared intra-
day returns. The RV is a highly efficient and unbiased estimator of the quadratic
variation and converges to it when the intraday measurement period goes to zero.
Later on, Martens and van Dijk [13] and Christensen and Podolskij [6] introduced
the Realized Range Volatility (RRV), another realized estimator consistent for the
quadratic variation. The RRV is based on the difference between the minimum and
maximum prices observed during a certain time interval. This new estimator tries
to exploit the higher efficiency of the range relatively to that of the squared daily
close-to-close return in the estimation of quadratic variation.

When dealing with high frequency financial market data, the asymptotic prop-
erties of the simple estimators are highly affected by the microstructure noise
(noncontinuous trading, infrequent trade, bid ask bounce). As a result, an important
part of the literature has presented different corrections to restore the efficiency of
realized estimators for the volatility. These studies aimed at improving over the
first generation of models, whose purpose was to construct estimates of realized
variances by using series at a moderate frequency (see [2]). Some of the corrections
presented to the RV are the Two Time Scale Estimator (TTSE), the subsampling
method of [18] and the generalization introduced by Zhang [17]. Furthermore,
kernel estimation was introduced by Hansen and Lunde [11], while [3] provide a
generalization of this approach. Differently, Martens and van Dijk [13] proposed a
correction for the RRV based on scaling the range with the daily range, while [7]
presented another approach based on an adjustment by a constant which has to be
estimated by simulation methods.

With the availability of new observable series for the volatility, many authors
have applied traditional discrete time series models for their forecast (and implicitly
for the forecast of returns volatility). Financial data are characterized by a series of
well-known stylized facts. Being able to capture them will result in a more accurate
prevision of our variable of interest. These stylized facts are also observable over
realized variance series and require appropriate modeling strategies. The presence of
long memory in volatility, documented in several studies, has been modeled through
different specifications: Andersen et al. [2] introduced an ARFIMA model, and their
forecasts for the RV generally dominate those obtained through GARCH models;
Corsi [8] presented the Heterogenous autoregressive (HAR) model that reproduces
the hyperbolic decay of the autocorrelation function by including the sums of RV
over different horizons in order to capture the time strategies of the agents in
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the market. The second model has the advantage to be much simpler to estimate.
Additionally, asymmetry, leverage effects, and fat tails should also be taken into
account. Martens et al. [14] specified a flexible unrestricted high-order AR model.
They also considered leverage effects, days of the week effects, and macroeconomic
announcements. Differently, Corsi [8] presented the Heterogeneous Autoregressive
model (HAR) and [9] introduced two important extensions specifying a GARCH
component modeling the volatility of volatility and assuming non-Gaussian errors.
Their results suggested an improvement in the accuracy in the point forecasting and
a better density forecast.

In this work, we model and forecast volatility through the Realized Range
Volatility. Our main objective is to study the prediction performance of the range
as a proxy of the volatility. An accurate forecast of financial variability should
have important implications in asset and derivative pricing, asset allocation, and
risk management. In the first part of this chapter, we construct and analyze the
realized range series, correct it from the microstructure noise following [13]. In the
second part, we implement time series techniques to model and capture the stylized
facts within the volatility equation to gain in forecasting accuracy. In details, we
consider an HAR model, we introduce leverage effects with respect to the return
and the volatility, and a GARCH and a GJR-GARCH specification, introduced by
Bollerslev [5] and Glosten et al. [10], for the volatility of volatility. Furthermore, in
order to capture the statistical feature of the residuals of our model, we also consider
a Normal Inverse Gaussian (NIG) distribution.

The remainder of this chapter is structured as follows. In Sect. 42.2, we present
the data and the correction procedure. In Sect. 42.3, we present the model and we
discuss the results for the estimation and forecast in Sect. 42.4. Finally, Sect. 42.5
presents the results and futures steps.

42.2 Data and Correction Procedure

Under the assumption that there are no market frictions and there is continuous
trading, Christensen and Podolskij [6] demonstrate that the RRV is five times more
efficient than RV. In the reality, there are evidences against these assumptions and
the realized estimators become inconsistent and unbiased, see for example [15].
Hence, a corrected version for the RRV should restore the efficiency of this estimator
over the RV. In this chapter, we follow [13] that proposed a correction based on
scaling the realized range with a ratio involving the daily range and the realized
range over the previous trading days.

Basically, the scaling bias correction is not difficult to implement because it does
not require the availability of tick by tick data. The idea of [13] is based on the fact
that the daily range is almost not contaminated by market frictions. The simulation
results of [13] confirm the theory that the range is more efficient than the RV, and in
the presence of market frictions the scaling correction removes the bias and restores
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Fig. 42.1 Returns, annualized RRVscaled, log RRVscaled and ACF for log RRVscaled

the efficiency of the Realized Range estimator over the Realized Volatility. The
RRVt is defined as

RRVt D 1

�2

nX
iD1
.ln phg

t;i � ln plo
t;i /

2 (42.1)

where phg
t;i and plo

t;i are the high and low prices observed in the i th interval of length
 of an equidistant partition of day t , and � is the scaling factor. Therefore, the
scaled RRVt is defined as:

RRVscaled;t D
 Pq

lD1 RRVt�lPq

lD1 RRVt�l

!
RRVt (42.2)

where RRVt 	 RRVt (with  D 1 day) is the daily range and q is the number of
previous trading days used to compute the scaling factor. If the trading intensity and
the spread do not change, q must be set as large as possible. However, in the reality
only recent history should be taken into consideration.

Our database includes more than 7 years of 1 min high, low, open, and close
prices for 16 stocks quoted on the NYSE. Because of space limitation, we
concentrate on the analysis and present the detailed results for Procter and Gamble
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Company. However, similar conclusions emerge from the other series. The original
sample covers the period from January 2, 2003 to March 30, 2010, from 09:30
trough 16:00 for a total of 1,823 trading days. We construct the series for the range
for the 1, 5, 30 min and daily sampling frequency (i.e.,  D 1, 5, 30 min or 1 day).
We correct them using one, two, and three previous months (i.e., qD 22, 44, or 66).
The results of the corrections show that, after scaling with different q, the mean
volatility stabilized across the different sampling frequencies. We choose to sample
every 5 min and to correct for the presence of noise with the 66 previous days, as
in [13].

A statistical analysis of the return and volatility series confirms the presence
of the stylized facts vastly documented in the literature. Figure 42.1 displays the
returns, the annualized RRVscaled, the log RRVscaled, and the sample autocorrelation
function for log RRVscaled. The distribution of the returns exhibits excess of kurtosis
and volatility clustering. The plot of the annualized RRVscaled also displays volatility
clustering (volatility of volatility) while the long-memory pattern is observed in the
hyperbolic and slow decay of the ACF for the log RRVscaled.

42.3 Models for the Observed Volatility Sequences

Different models have been presented to capture the stylized facts that financial
series exhibit. Based on the statistical features briefly mentioned before, we consider
the HAR model of Corsi [8] to capture the long-memory pattern. We also account
for asymmetric effects with respect to the volatility and the returns. Moreover,
following [9] we include a GARCH specification to account for heteroskedasticity
in the observed volatility sequences and a standardized Normal Inverse Gaussian
(NIG) distribution to deal with the observed skewness of the residuals. Finally, to
account for asymmetric effects in the variance equation or volatility of the volatility
we consider the GJR-GARCH specification.

We thus estimate the following model:

ht D ˛ C ısIs.ht�1/ht�1 C ˇdht�1 C ˇwh.t�1Wt�5/ C ˇmh.t�1Wt�22/ (42.3)

C�RRt�1 C �IRI.Rt�1/Rt�1 C p
�t �t

�t D ! C ˇ1�t�1 C ˛1u
2
t�1 C �1u

2
t�1I.ut�1/

�t j˝t�1 � d.0; 1/

where ht is the log RRVscaled;t , h.t�1Wt�j / is the HAR component defined as

h.t�1Wt�j / D 1

j

jX
kD1

ht�k (42.4)
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with j D 5 and 22 in order to capture the weekly and monthly components. Is.ht�1/
is an indicator for RRVscaled;t�1 bigger than the mean over s D 5; 10; 22; 44 and
66 previous days and the unconditional mean (um) up to t � 1. These variables
capture the asymmetric effects with respect to the volatility. Rt D ln.pcl

t =p
cl
t�1/ is

the return, with pcl
t the closing price for the day t and I.Rt�1/ is an indicator for

negative returns in t � 1, that captures the asymmetric effects with regard to the
lagged return. ut D p

�t �t is the error term. The full specification for �t is a GJR-
GARCH model, introduced by Glosten et al. [10], to account for the asymmetric
effect in the volatility of the volatility, where I.ut�1/ is an indicator for ut�1 < 0.

Initially, we consider 21 alternative specifications for the mean equation, three
possible variance equations and two different distributions for the innovations.
Combining those three elements, we have a total of 126 models. After an in-sample
selection, we decide to concentrate on six different specifications for the mean
equation. The specifications for the mean are the AR(1) (I ), the HAR model of
Corsi [8] (II), the HAR model with symmetry effects with respect to the historical
volatility and the returns and the lagged returns (III), the HAR with asymmetric
effects with respect to the returns and lagged returns (IV), the HAR model with
only asymmetric effects with respect to the returns (V ) and finally the HAR model
with symmetric effects for the past weekly volatility and the returns (VI). The last
five models also include an AR(1) term. Finally, we have 36 models that are used
to compute one-step-ahead rolling forecast for the volatility series and to assess
the importance of the variable. Because of a space restriction, we only present
estimation results for some of the considered models. The forecast analysis is carried
out for different horizons.

42.4 Estimation and Forecast Results

First, we estimate the models for the entire sample from January 2003 to March
2010. The aim is to assess the impact and significance of our different variables
in our models. Second, we compute one-day-ahead out-of-sample rolling forecast
from January 3, 2006 to March 30, 2010 for a total of 1,067 periods. We estimate
the models until December 30, 2005 and then we re-estimate each model at each
recursion.To evaluate the performance, we compute the mean absolute error (MAE)
and the mean square error (MSE). We compare the different performances of the
models with the Diebold Mariano Test based on the MAE and on the MSE, that is a
robust loss function in the sense of [16]. Besides, we consider the Model Confidence
Set approach of [12] based on the same two loss functions.1 Table 42.1 presents the
results for the 2003–2010 estimation of some of the models, whereas Table 42.2
reports the forecast performance evaluation.

1In this version, we only present the results based on the MSE loss function. Similar results are
obtained with the other loss function.
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Table 42.1 Estimation results

II III IV V VI II III IV V VI
Co-NO Co-NO Co-NO Co-NO Co-NO Gj-NI Gj-NI Gj-NI Gj-NI Gj-NI

˛ �0:279a �0:493a �0:515a �0:472a �0:468a �0:263a �0:456a �0:449a �0:394a �0:393a

.0:069/ .0:091/ .0:084/ .0:078/ .0:078/ .0:076/ .0:097/ .0:084/ .0:078/ .0:078/

ˇd 0:360a 0:324a 0:319a 0:323a 0:291a 0:334a 0:307a 0:309a 0:314a 0:294a

.0:024/ .0:026/ .0:025/ .0:025/ .0:030/ .0:027/ .0:031/ .0:028/ .0:028/ .0:038/

ˇw 0:460a 0:468a 0:468a 0:469a 0:505a 0:462a 0:465a 0:466a 0:466a 0:487a

.0:042/ .0:042/ .0:042/ .0:042/ .0:048/ .0:042/ .0:041/ .0:041/ .0:041/ .0:051/

ˇm 0:122a 0:113a 0:115a 0:117a 0:116a 0:148a 0:141a 0:140a 0:143a 0:144a

.0:035/ .0:035/ .0:035/ .0:035/ .0:035/ .0:034/ .0:033/ .0:033/ .0:033/ .0:033/

ıum – 0:002 – – – – �0:000 – – –
.0:005/ .0:004/

ı5 – – – – �0:007 – – – – �0:003
.0:005/ .0:005/

�RT – 1:532 1:588 – – – 2:025 2:009 – –
.1:671/ .1:667/ .1:612/ .1:609/

�IRT – �11:79a �11:94a �9:656a �9:658a – �10:90a �10:87a �7:918a �7:908a

.2:474/ .2:451/ .1:147/ .1:144/ .2:599/ .2:584/ .1:312/ .1:311/

! 0:182a 0:177a 0:177a 0:177a 0:177a 0:009a 0:011a 0:011a 0:011a 0:010b

.0:004/ .0:004/ .0:004/ .0:004/ .0:004/ .0:003/ .0:004/ .0:004/ .0:004/ .0:004/

ˇ1 – – – – – 0:898a 0:884a 0:884a 0:887a 0:892a

.0:029/ .0:035/ .0:035/ .0:034/ .0:032/

˛1 – – – – – 0:063a 0:067a 0:067a 0:066a 0:064a

.0:017/ .0:019/ .0:019/ .0:019/ .0:018/

�1 – – – – – �0:036c �0:045c �0:045c �0:044c �0:041c

.0:022/ .0:024/ .0:024/ .0:024/ .0:023/

˛NIG – – – – – 1:584a 1:527a 1:528a 1:537a 1:532a

.0:181/ .0:170/ .0:170/ .0:171/ .0:170/

ˇNIG – – – – – 0:429a 0:367a 0:368a 0:370a 0:367a

.0:112/ .0:103/ .0:103/ .0:103/ .0:103/

LLF �985.03 �963.07 �963.17 �963.66 �962.90 �884.67 �868.95 �868.96 �869.87 �869.62
AIC 1980.0 1942.1 1940.3 1939.3 1939.8 1789.3 1763.9 1761.9 1761.7 1763.2
BIC 2007.3 1985.8 1978.5 1972.0 1978.0 1843.9 1834.8 1827.4 1821.7 1828.7
Lj30 0.186 0.318 0.315 0.301 0.273 0.164 0.268 0.271 0.269 0.258
Lj40 0.400 0.615 0.612 0.594 0.561 0.388 0.574 0.577 0.566 0.553
JB 0.001 0.001 0.001 0.001 0.001 – – – – –
KS 0.000 0.000 0.000 0.000 0.000 – – – – –
LL 0.001 0.001 0.001 0.001 0.001 – – – – –

Note: Estimation results for the whole sample from January 2003 to May 2010. We only present
results for some of the models. Model II is an HAR, VII is an HARC Ium.ht�1/ht�1 C Rt�1 C
I.Rt�1/Rt�1, VIII is an HARCRt�1CI.Rt�1/Rt�1, IX is an HARCI.Rt�1/Rt�1 and XIV is an
HARCI5.ht�1/ht�1CI.Rt�1/Rt�1. They also include an AR(1) term. NO is Normal distribution
and NI indicates Normal Inverse Gaussian distribution. Co is a constant variance specification, Ga
is a GARCH and Gj is a GJR variance specification. LLF is the Log-likelihood function, AIC is
the Akaike Information Criteria, and BIC is the Bayesian information criterion. LJ30 and LJ40 are
the p-values for the Ljung Box test for 30 and 40 lags. JB, KS, and LL are the p-values for the
Jarque–Bera test for Normality, the Kolmogorov–Smirnov test, and the Lilliefors test, respectively.
Standard errors in bracket. “a,” “b,” and “c” indicate significance at the 1%, 5%, and 10%.
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Table 42.2 Out-of-sample forecast evaluation: Diebold Mariando test and Model Confidence Set

Full Crisis

DM MCS DM MCS

MSE vs II pvR pvSQ MSE vs II pvR pvSQ

II-Co-NO 0:196 – 0:08 0:19a 0:249 – 0:46b 0:23a

III-Co-NO 0:192 1:43 0:28b 0:29b 0:225 1:74c 0:82b 0:81b

IV-Co-NO 0:191 1:60 0:35b 0:40b 0:224 1:79c 1:00b 1:00b

V-Co-NO 0:191 1:83c 1:00b 1:00b 0:225 1:75c 0:82b 0:79b

VI-Co-NO 0:191 1:75c 0:61b 0:61b 0:225 1:78c 0:82b 0:81b

II-Ga-NO 0:200 – 0:08 0:09 0:265 – 0:30b 0:10a

III-Ga-NO 0:193 1:78c 0:08 0:14a 0:232 2:13b 0:46b 0:27b

IV-Ga-NO 0:193 1:92c 0:08 0:24a 0:233 2:15b 0:46b 0:21a

V-Ga-NO 0:192 2:08b 0:22a 0:29b 0:234 2:11b 0:31b 0:15a

VI-Ga-NO 0:193 2:01b 0:08 0:27b 0:233 2:16b 0:46b 0:29b

II-Gj-NO 0:199 – 0:08 0:10a 0:261 – 0:31b 0:11a

III-Gj-NO 0:192 1:74c 0:08 0:27b 0:227 2:10b 0:82b 0:52b

IV-Gj-NO 0:192 1:84c 0:22a 0:29b 0:228 2:09b 0:82b 0:52b

V-Gj-NO 0:192 2:00b 0:35b 0:31b 0:230 2:05b 0:78b 0:46b

VI-Gj-NO 0:192 1:94c 0:28b 0:29b 0:229 2:09b 0:82b 0:53b

II-Co-NI 0:200 – 0:08 0:09 0:262 – 0:46b 0:18a

III-Co-NI 0:194 1:55 0:08 0:15a 0:230 1:96b 0:78b 0:46b

IV-Co-NI 0:193 1:70c 0:08 0:23a 0:229 1:98b 0:81b 0:48b

V-Co-NI 0:192 2:01b 0:28b 0:29b 0:231 2:00b 0:68b 0:38b

VI-Co-NI 0:193 1:97b 0:19a 0:28b 0:231 2:01b 0:78b 0:43b

II-Ga-NI 0:200 – 0:08 0:08 0:265 – 0:31b 0:12a

III-Ga-NI 0:193 1:68c 0:08 0:12a 0:231 2:05b 0:56b 0:36b

IV-Ga-NI 0:193 1:78c 0:08 0:17a 0:231 2:04b 0:56b 0:38b

V-Ga-NI 0:193 2:05b 0:08 0:27b 0:233 2:05b 0:56b 0:31b

VI-Ga-NI 0:193 2:04b 0:08 0:27b 0:232 2:09b 0:68b 0:39b

II-Gj-NI 0:199 – 0:08 0:09 0:262 – 0:31b 0:13a

III-Gj-NI 0:193 1:68c 0:08 0:25b 0:228 2:06b 0:82b 0:62b

IV-Gj-NI 0:192 1:80c 0:19a 0:28b 0:227 2:07b 0:82b 0:72b

V-Gj-NI 0:192 2:06b 0:28b 0:29b 0:230 2:07b 0:81b 0:47b

VI-Gj-NI 0:192 2:03b 0:28b 0:29b 0:230 2:07b 0:82b 0:49b

Note: Forecast performance evaluation for the full out-of-sample period Full (1,067 obs.) and the
financial crisis period Crisis (200 obs.). Model II is an HAR, VII is an HARC Ium.ht�1/ht�1 C
Rt�1 C I.Rt�1/Rt�1, VIII is an HARC Rt�1 C I.Rt�1/Rt�1, IX is an HARC I.Rt�1/Rt�1,
and XIV is an HAR C I5.ht�1/ht�1 C I.Rt�1/Rt�1. They also include an AR(1) term. NO
is Normal distribution and NI indicates Normal Inverse Gaussian distribution. Co is a constant
variance specification, Ga is a GARCH and Gj is a GJR variance specification. MSE is the mean
square error. DM is the Diebold Mariano test for equal predictive accuracy between two models
based on the MSE loss function. vs II indicates a test for the row model versus the model II with
same distribution and variance specification (indicated in the row model). Under Ho, both models
have the same performance. T-statistic in the column. “a,” “b,” and “c” indicate significance at the
1%, 5%, and 10%. Positive T-statistic favors the row model. MCS is the Model Confidence Set,
a procedure to determine the “best” models from a collection of models based on the MSE loss
function and two t-statistics: pvR is the p-value for the range deviation method and pvSQ is the
p-value for the semi-quadratic deviation method (see [12]). “a” and “b” denote that the model
belongs to the 10% and 25% MCS.
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Estimation results for the full sample period (2003–2010) suggest that HAR
components are significant for the three variance specifications (constant variance,
GARCH, and GJR-GARCH) and the two different distributions (Normal and NIG
distribution). The asymmetric effects with respect to the return and the volatility
improve the goodness of fit of the model. The first one is highly significant and
it increases the volatility after a negative return. On the contrary, the asymmetric
effects with respect to the volatility are not significant. The sign and significance of
the coefficients in the mean equation remain stable for the different specifications
in the variance equation. The inclusion of the GARCH or GJR specifications
improves the fitting of the models. The models that best fit the series are the ones that
include the HAR and leverage effects, with GARCH and GJR variances. Diagnostic
tests for the residuals present different results. Only for the models that include the
HAR components we cannot reject the null hypothesis of no serial correlation in the
residual, implying a good performance. The Normality hypothesis for the residuals
is rejected for all the models, which is an argument to introduce a non-Gaussian
distribution. As we said, the estimated parameters of the mean equation for the
models with NIG distribution are similar to the models with Normal distribution.
The estimated parameters of the NIG distribution (˛NIG and ˇNIG) capture the right
skewness and excess of kurtosis displayed in the residuals. We analyze the results
for the out-of-sample forecast in two different periods. In particular, we study the
accuracy of our models for the full out-of-sample (1,067 observations) and during
the financial crisis, from September 15, 2008 to July 30, 2009 (200 observations).

For the full out-of-sample forecast, the model that performs better, based on
the MAE and MSE, is the HAR with lagged and asymmetry over the return, with
constant variance and Normal distribution. Other models that include asymmetric
effects with respect to the volatility over the five previous days and the unconditional
mean perform similarly. Models with different specifications for the variance and
distribution for the innovation perform as the models with constant variance.
Although, GARCH and GJR improve the goodness of fitness in the estimation, they
do not have impact in the forecast. The third column of Table 42.1 presents the
t-statistics for the Diebold Mariano test for equal predictive accuracy between the
HAR specification (II) and five different specifications for the mean equations2 (III,
IV, V, VI) with same variance and distribution assumptions. The results suggest that
models with symmetric effects with respect to the volatility and the returns perform
significantly better than the HAR models. This result is confirmed by the Model
Confidence Set approach, p-values displayed in the third and fourth column of the
same table, that recursively eliminates the models that worst perform starting from
an initial set that includes the 36 models. For the range test statistic, the HAR model
with different variance specifications and distributions for the innovations remains
out of the set of best models. Similar results are obtained for the semi-quadratic test
statistic.

2Results for the test between model I and II are not presented. As expected, HAR models perform
significantly better than AR(1) model.
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During the financial crisis, the model that performs better is the HAR with lagged
return and asymmetric effect over the returns. The results of the Diebold Mariano
Test, based on the MSE loss function, display evidence in favor of models with
asymmetric effects with respect to the volatility and the returns. However, when
considering the results of the Model Confidence Set approach, the set of best models
includes the HAR component of Corsi [8] with different distributions and variance
specifications.

42.5 Conclusions and Future Steps

In this chapter, we have modeled and forecasted price variation through the Realized
Range Volatility introduced by Martens and van Dijk [13] and Christensen and
Podolskij [6]. We have estimated the series for different sampling frequencies
and corrected them with the scaling procedure of [13]. After the corrections, the
volatility stabilizes across different sampling frequencies and scaling factors which
suggest that the bias caused by the microstructure friction was removed, restoring
the efficiency of the estimator. We have considered a model which approximates
long memory, has asymmetric effects with respect to the return and the volatility in
the mean equation, and includes GARCH and GJR-GARCH specifications for the
variance equation (which models the volatility of the volatility). A non-Gaussian
distribution was also considered for the innovations.

The results suggest that the HAR model with the asymmetric effects with respect
to the volatility and returns is the one that better fit the data. The analysis of
the forecast performances of the different models provides similar results for the
two considered periods, the full sample and the financial crisis. The introduction
of asymmetric effects numerically improves the point forecasting performance.
Following the Diebold Mariano test and the Model Confidence Set approach, we
find that the models that include asymmetries over the return and the volatility
perform statistically better than the HAR for the different variance specifications
and distributions for the innovations. As we expected, models with GARCH and
GJR-GARCH specifications and different distributions for the innovations do not
lead to more accurate point forecasts than models with constant variance.

Finally, the HAR with asymmetric effects with respect to the returns is able to
capture most of the variability during the out-of-sample prevision. Then, in order
to improve this performance, the introduction of financial and macroeconomic
variables should be considered. Other future steps are the possible correction for
jumps in the volatility series and an economic analysis of the performances of the
models forecast.

Acknowledgements The authors wish to thank the participants to the Italian Statistical Society
XLV Conference held in Padova in June 2010 for their helpful comments and suggestions.
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Abstract
Equivalence scales (S ) are difficult to estimate: even apparently solid microeco-
nomic foundations do not necessarily lead to consistent results. We contend that
this depends on “style” effects: households with the same economic resources
and identical “needs” (e.g. same number of members) may spend differently,
following unobservable inclinations (“style” or “taste”). We submit that these
style effects must be kept under control if one wants to obtain unbiased estimates
of S . One way of doing this is to create clusters of households, with different
resources (income), different demographic characteristics (number of members)
but similar “economic profile”, in terms of both standard of living and “style”.
Cluster-specific scales, and the general S that derives from their average, prove
defensible on theoretical grounds and are empirically reasonable and consistent.

Keywords
Cluster analysis • Equivalence scales • Measuring poverty and inequality

43.1 Equivalence Scales: A Dead End?

As Muellbauer and van de Ven [9:1] put it, “despite a considerable research effort: : :,
almost every aspect of equivalence scale specification remains controversial”.
Indeed, the difficulties seem to be of both micro-economic and statistical nature.

Micro-economic theory suggests that equivalence scales S cannot be derived
from the observation of empirical consumption patterns, because of their implicit
compensation nature. Consider, for instance, the case when the size of the family
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increases because of the birth of a child, welcome by his/her parents. By definition,
happy parents cannot be worse off, but the equivalence scale will nonetheless
indicate the extra money they need to be “compensated” for the presence of the
child. With varying emphasis, this objection can be found in virtually all authors
(see, e.g., [8]) since when Pollak and Wales [11] first raised the issue. We submit,
instead, that the idea is defensible, as long as one keeps it confined to a strictly
economic ground: parents can be both happier and poorer, and equivalence scales
try to estimate precisely if they are poorer, by how much.

Estimation methods are either mono- or multi-equational. In the former case, one
variable (e.g. food share, as in the Engel method) is assumed to vary monotonically
with (and thus represent) the standard of living of the household. Two households,
say H1 and H2, where this indicator reaches the same value are thus assumed to
enjoy the same standard of living, and, if this assumption holds, the ratio of their
incomes (Y2=Y1/ provides the desired equivalence index. Mono-equational models
are easy to estimate, and, among them, one in particular, Engel’s method, generally
leads to reasonable results. This is probably the main reason why the “Carbonaro
scale” (based on the Engel method) is generally used in Italy, by both Istat [5] and
the Government (with the ISEE scale, a variant of Carbonaro’s one— https://servizi.
inps.it/servizi/isee/default.htm).

Mono-equational models, unfortunately, are scarcely defensible on a theoretical
plan: whatever indicator one chooses (e.g. food share) there is always the possi-
bility that two households at the same level of economic well-being will behave
differently, that is, spend a different amount of money on that good (food), and thus
incorrectly appear to enjoy different standards of living. This may happen in part
because of price effects (consumers tend to purchase less of what is, or becomes,
comparatively more expensive), and in part because of a set of other reasons which,
in this paper, we will call “taste” or “style” for the sake of simplicity.

In order to see more clearly how this could happen, let us assume that the object
of the research is the estimate of child costs (or, which is the same, the estimate
of the equivalence scales for households with and without children) and that the
selected indicator is food share (Engel’s method). The result may be biased basically
for two, non-alternative reasons:
(a) Households with preference for (and therefore greater presence of) children are

selected in several ways, including some that directly affect our indicator of
economic well-being. Imagine for instance that these households are (or, after
the birth of their child, become) more indoor-oriented and, consequently, tend
to consume more food at home. They will incorrectly appear poorer than they
actually are, and this apparent lack of economic resources will normally be
associated with, if not attributed to, the presence of children.

(b) A child differs from his or her parents: he/she may consume proportionally more
food than other items (e.g. travel, culture and apparel). Overall, the household
will shift its consumption pattern towards food, which, here too, will make
households with children appear poorer than they actually are.

https://servizi.inps.it/servizi/isee/default.htm
https://servizi.inps.it/servizi/isee/default.htm
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With complete demand systems and multi-equational models the problem becomes
less visible but is still present, and it emerges clearly whenever one looks deeper
into the data: equivalence scales that abruptly change from one year to the next
without any apparent reason or that prove too sensitive to patently minor details
(e.g. number or type of expenditure items considered), suggest that the estimates
that one obtains are not robust. And methods specifically aimed at limiting this bias
do not necessarily perform better than others (see, e.g., [2, 3].

This depends probably on two main causes. One is that there is an intrinsic
multicollinearity between the object of interest (the equivalence scale) and style
effects: to estimate the two at the same time proves difficult [4]. The other is that
individual (household) consumption data are collected in so short a lapse of time
and are therefore so variable, and so full of zeros, that even the best models can
explain only a tiny fraction of the observed variance (see, e.g., [1]). Aggregating
observations, or expenditure shares, or both, is an option, of course, but then other
questions arise: how to proceed? When to stop? Besides, as mentioned before,
aggregation is not neutral: it may affect the results very deeply [4], and, to the best of
our knowledge, this major shortcoming has not been overcome yet. Are equivalence
scales at a dead end?

43.2 A Possible Solution: Clusters

Both theoretical and practical issues (multicollinearity and “proper” aggregation of
expenditure items) may find a solution in clustering observations in such a way that
each cluster contains households that “behave similarly” in economic terms and
can be assumed to enjoy more or less the same standard of living and also have a
comparable lifestyle.

Let us imagine that each householdH can be characterized by the following set
of variables: E(Economic indicators), Y (income) and N (Number of members), so
that

H D .Eh; Yh;Nh/ (43.1)

For any given household typology, each economic indicator in Eh will reflect both
its level of affluence (some households are richer than others) and its lifestyle (e.g.
some households prefer the car and others the motorbike, if they can’t afford to buy
both).

Indicators of lifestyle tend to “sum to zero” for any given level of affluence.
This is mathematically true if one refers to budgets shares, where styles are, by
definition, deviations from the mean [3]. In other cases, this is no longer true in
mathematical terms, but the notion tends to preserve its validity in a more general
sense. In order to see why this happens and also how the system works, consider
the following, extremely simplified, case. Imagine that we work only with 1- and
2-person households, which we want to classify on the basis of only two dichoto-
mous active variables: having a car (yes/no) and having a motorbike (yes/no).
We can form four clusters (K D 4), depending on whether the observed households
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own both car and motorbike, only car, only motorbike, or none of these. In each
of these four groups we find households of both types, with one and two members.
We assume that, within each cluster, households share a similar economic profile,
in terms of both affluence and lifestyle, and are therefore comparable, which is an
essential prerequisite for the construction of equivalence shares. Note that income
Y is not an active variable and that we do not use it in clustering. Note, also, that we
do not need to rank households on the basis of their standard of living (who is worse
and who is better off)—but, of course we expect (and, in our empirical applications,
we successfully checked for) consistency: households with both car and motorbike
should be richer that others, both among 1- and 2-person households.

Next, we calculate the average income of households belonging to each cluster
k with, respectively, 1 and 2 members: Y1;k and Y2;k . We expect that Y2;k > Y1;k
(because two persons need more resources than one to reach any given standard
of living) and since, by assumption, the standard of living is the same within
each cluster, we can estimate K.D 4/ cluster-specific equivalence scales S2;k D
Y2;k=Y1;k.k D 1; 2; : : :; 4/. We average the four results, and what we obtain is an
estimate of the “true” equivalence scale S2 D Y2=Y1.

In practice, we refer to more household dimensions (n D 1–5/, we use more
active variables (14), we form many more clusters k.1 � 200/ and we try several
clustering methods (see below), but the basic procedure is as just outlined. All
estimates are weighted, both in the calculation of cluster-specific average incomes
Yn;k and in the estimate of equivalence scales Sn

Sn D
X
k

Sn;kwn;k (43.2)

where weights wn;k
�
DpHn;k �H1;k=

P
k

p
Hn;k �H1;k

�
keep into account the num-

ber of households both in the numerator and in the denominator. Finally, as shown in
the next section, we can also compute confidence interval, both for cluster-specific
estimates Sn;k.n D household size) and for the general estimate Sn.

43.3 Estimating the Variance of Our Equivalence Scale

The equivalence scales that we compute are random variables, and we can estimate
their variance. Within each cluster, we get Sn;k D Yn;k=Y1;k, where Y is income,
k is the cluster and n is the household dimension (n D 1 for the reference
household). Yn;k and Y1;k are sample estimates of averages, the variances of which
[Var (Yn;k/; Var.Y1;k/� can be estimated [6, p. 187].

Var.Sn;k/ D 1

.Y1;k/2

˚
Var.Yn;k/C S2n;k ŒVar.Y1;k/�

�
(43.3)
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Since we estimate our equivalence scale Sn by averaging a series of independent
cluster-specific estimates, Sn;k, each with its own weight wk (given by Istat, for
each household), the variance of Sn can be estimated as follows [6, p. 206]

Var.Sn/ D
X
k

w2n;k � Var.Sn;k/ (43.4)

43.4 An Empirical Application to Italian Data on Consumption

We work on data that derive from Istat’s consumption survey for the years 2003–
2008 (6 years), after inflating monetary values so as to make them comparable.
We consider households made up of 1–5 persons, dropping larger households,
because they are rare, and because at this preliminary stage we want to make
sure that our method works correctly on “standard” cases. To this end, we also
decided to discard outliers, i.e. households that, given their dimension and their
budget, spend proportionally too much or too little on each expenditure typology
(of which we formed eight: food, housing, apparel, etc. the acceptable range is
centred on the median, and spans 4 interquartile intervals, more and less—that
is eight interquartile intervals, overall). This has two purposes: first, there may
be errors in these cases, and it is better to get rid of them. Second, we look for
households of various dimensions that are comparable in economic terms—and
these outliers, by definition, differ from virtually every other household in the
survey. This leaves us with about 128,000 “acceptable” households—but we also
checked that our estimates practically do not change if we keep all the original
households (about 148,000—results not shown here). Note that we do not have
information on household’s income Y : we will instead use their total expenditureX ,
as a proxy.

For each household there are, in principle, very many indicators apt to describe
its affluence, either directly (the indicator increases with total spending X—e.g.
probability of having heating in one’s home) or inversely (the indicator decreases
with X—e.g. food share). In practice, we checked about a hundred of them, but we
eventually retained only 14 of them (Table 43.1): the others did not prove consistent,
which means that they did not vary monotonically with X , for each household
dimension, in the relevant range of X .

The two “ancillary” variables that appear in Table 43.1 are needed to form
subgroups on which other active variables (luxuries) can be identified, because only
non-vegetarian households spend on proteins, and it is only among oil consumers
that the better off, consuming prevalently or exclusively olive oil, can be identified.
On the basis of these 14 economic indicators Eh, we form clusters.

In a clustering process, several potentially important choices are arbitrary: type
of clustering (fuzzy, disjoint, hierarchical,. . . ), what criterion to use (Centroid,
Ward,. . . ), whether to preliminary standardize the variables, and how many groups
to form. In the following, we show only a subset of our results (with hierarchical,



484 G. De Santis and M. Maltagliati

Table 43.1 Active variables

Category Label # Variable Filters Notes

Luxuries %Lux 1 Share of luxuries on total expenses (1)
Ktchn 2 Kitchen as an independent room (Dummy: yes/no)
Garage 3 Garage (Dummy: yes/no)
Motor 4 Motorbike (Dummy: yes/no)
Washr 5 Washer (Dummy: yes/no)
Dishw 6 Dishwasher (Dummy: yes/no)
Hclnrs 7 Home-cleaning machines (Dummy: yes/no)
Cond 8 Air conditioning (Dummy: yes/no)
Tel 9 Telephone (Dummy: yes/no)
%Rchprt 10 Share of rich proteins on total proteins var. 13 (2)
5Olive 11 Share of olive oil out of total oil purchased var. 14 (3)

Necessities %Food 12 Share of food on total expenditure
Ancillaries Vgtm 13 Vegetarian (Dummy: yes/no)

Oilcnsmr 14 Oil consumer (Dummy: yes/no)
Notes. (1) Includes a long list of expenditure items ranging from men’s apparel to domestic help;
from sportswear to pets; from private lessons to jewelry; etc. (2) This variable applies only to
non- vegetarian households (var. 13). “Rich” are the proteins that derive from the purchase of
meat (except chicken) or fish. Total protein expenditure includes “rich” protein, plus chicken, milk
and eggs. (3) This variable applies only to oil-consuming households (var. 14). Besides olive oil,
households can also purchase the less valuable seed oil and pomace oil

Ward method, on non-standardized variables, with different number of clusters),
but other outputs, not presented here, differ only marginally: the method seems to
be fairly robust.

43.5 Main Results

Our main results are as follows. First, the equivalence scale that we estimate
increases monotonically with N (household size), which was not granted a priori,
since this is a non-parametric model, and each equivalence factor, for each
household dimension, forms independently of each other. Second, our equivalence
scales depend in part on the criterion and, within that, on the number of clusters
that we use (see Fig. 43.1). This is unfortunate, of course: but the good news is
that the differences are not huge, or, at least, not with Ward (and with k-means—
not shown here), while with other hierarchical methods this is not always granted
(not shown here). As the number of clusters increases, the scales flatten, but they
eventually converge towards a unique and apparently stable value, which is tempting
to interpret as the “true” value of the scale. Incidentally, this is also the value towards
which other clustering methods converge, too, although less rapidly (not shown
here).



43 Clusters and Equivalence Scales 485

1.9
5 Cls

10 Cls

20 Cls

50 Cls

100+ Cls

1.8

1.6

1.5

1.4

1.3

E
qu

iv
al

en
ce

 s
ca

le

Household size

1.2

1.1

1
0 1 2 3 4 5 6

1.7

Fig. 43.1 Equivalence scales obtained with clustering, and a varying number of clusters (House-
holds with 1–5 members). Source: Authors’ elaborations on Istat data

Table 43.2 Estimated equivalence scale (S) and confidence intervals (95%; Italy 2003–2008)

HhldS with 100 Clusters (Ward method) Other selected S’s

Hhld Size Average Min (95%) Max (95%) Carbonaro OECD Sq.Root

1 1 1 1 1 1
2 1.263 1.253 1.272 1.667 1.414
3 1.526 1.515 1.536 2.222 1.732
4 1.672 1.658 1.686 2.716 2.000
5 1.786 1.770 1.803 3.169 2.236
Source: Authors’ elaborations on Istat data

Because of the very large number of observations that we have, and because
of clustering, which dramatically reduces the variance of each estimate, the 95%
confidence intervals that we can construct around our estimated equivalence scales
are all very small (Table 43.2).

Our equivalence scale is considerably flatter than those that are normally used in
Italy and worldwide (Fig. 43.2). It is flatter that Carbonaro’s scale, which is normally
considered to be too steep, as all Engel-based scales, but it is also somewhat flatter
than the OECD square-root scale (square root of household size).

How variable are our cluster-specific estimates? This is a crucial question, but
the answer is not easy, because it depends, among other things, on the clustering
method, on the number of clusters, on the variables used for clustering, on the
number of years and therefore on the number of households within each cluster,
etc. An illustrative result is shown in Fig. 43.3, which refers to the estimates of S3;k
(but the same holds for other household dimensions): cluster-specific estimates S3;k
appear to be rather disperse, but outliers have very few observations and therefore
scarce weight (not shown in the figure). Besides, there is at least one important
systematic influence: equivalence scales appear to be lower at high income levels.
Indeed, if the standard of reference is a one-person households with 1,000 Euros
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Fig. 43.3 Estimates of cluster-specific equivalence factors S3;k.D X3;k=X1;k/ at different utility
levels, Italy 2003–2008. Source: Authors’ elaborations on Istat data. 100 clusters; Ward method.
Regression: unweighted

(2,008 values) of total monthly expenditure, the income-adjusted equivalence scale
turns out to be very close to the OECD square root one (details not shown here).

This finding suggests, among other things, that the so-called IB (or Independence
of Base) property does not hold [7]. Assuming that equivalence scales do not vary
with the level of utility (i.e. income or total expenditure of the reference household)
may be tempting and makes parametric estimation considerably easier, but can only
be accepted as a first approximation: extra members are more expensive for poorer
households—arguably, because of fixed costs.
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43.6 Discussion

The method that we propose in this paper for the estimation of equivalence scales
has, in our view, several merits. In the first place, to the best of our knowledge,
it is completely original. Besides, our results, although based on non-parametric
methods, are all consistent with a priori expectations: for instance, they increase
with household size, but less then proportionally as N increases, they indicate that
marginal costs are proportionally more relevant to poorer households, etc.

Not surprisingly, our estimates vary with the clustering method and, within
that, with the number of clusters, but, at least with Ward (and with k-means),
not too much, and not at all once the number of clusters is sufficiently high (100
or more). Our results are also robust to the choice of partially alternative sets of
active variables (those used for clustering—not shown here), although we should
like to insist that active variables must be chosen carefully, and must all be “well-
behaved”, i.e. they must vary consistently with household resources, separately for
each household typology.

Our confidence intervals are extremely narrow. With fewer observations, of
course, results may differ, but thanks to the efficiency of clustering, the increase
is not dramatic, as our first tests suggest (not shown here). Besides, our method can
be applied also to alternative databases, which, thus far, could not be exploited for
the estimation of equivalence scales. Take, for instance, the Bank of Italy SHIW—
Survey on Household Income and Wealth (http://www.bancaditalia.it/statistiche/
indcamp/bilfait); or all the surveys of the same kind that converge into the LIS—
Luxemburg Income study (http://www.lisdatacenter.org/). They do not detail house-
hold expenditure, and this is an essential ingredient in all the “traditional” methods
for the estimation of equivalence scales. Our method, instead, only demands that a
few well-behaved indicators of economic affluence be present in the database (e.g.
current accounts, life insurances, and jewelry). Indeed, our preliminary estimates
on the SHIW database show not only that estimating equivalence scales is possible,
but also that they prove consistent with those estimated, in the same period, on Istat
consumption data. Once again, to the best of our knowledge, the mere possibility
of such a comparison is an absolute novelty in this field of study. Precisely because
of its simplicity and flexibility, the method appears apt to several extensions: for
instance, the study of the evolution of equivalence scales (or child costs) over time,
possibly with the use of pseudo panels [10, 12].

Theoretically speaking, the method is more solid than it may appear at first sight:
it is a conscious attempt at circumventing the thorny, but underestimated problems
that derive from style effects—i.e. households of comparable standards of living
who, nonetheless, choose to spend their money in different ways.

But this method has its limits, too. For instance, it relies on the implicit
assumption that certain indicators (e.g. having a motorbike) have the same economic
meaning for small and large households, or in different parts of the country. It may
become difficult to handle when households differ not only because of their size

http://www.bancaditalia.it/statistiche/indcamp/bilfait
http://www.bancaditalia.it/statistiche/indcamp/bilfait
http://www.lisdatacenter.org/
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but also because of other characteristics (e.g. the sex and age of their members).
It mixes flow data (expenditure) with stock data (durables), which may not be fully
justifiable.

Obviously, the method is still in its very early phase: it needs to be tested on
several more databases, for several years, with different indicators of affluence,
before it can qualify as a viable alternative for the estimation of equivalence scales.
But the preliminary results seem to us to be encouraging.
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44The Determinants of Income Dynamics

Gustavo De Santis and Giambattista Salinari

Abstract
Models of income distribution more or less succeed in linking the current level
of household (or individual) income to household (or individual) characteristics.
However, they are typically far less satisfactory in explaining income dynamics.
Gibrat’s model proves helpful in highlighting the predominant role of random-
ness in the short run (here, 2–4 years), and this explains why other systematic
influences are difficult to identify. One empirical regularity that does emerge,
however, is that small incomes tend to increase more, and with more variability,
than large ones. The traditional version of Gibrat’s model does not incorporate
this peculiarity, but this shortcoming can be overcome with a relatively minor
modification of the original model.

Keywords
Income dynamics • Poverty and inequality • Statistical modelling

44.1 Household Income Dynamics and the Problem
of Heteroscedasticity

The analysis of income dynamics is frequently carried out with regressions and
OLS estimators, both of which assume homoscedasticity. But results can be biased
if this condition is violated, and this, unfortunately, is virtually always the case with
income dynamics.
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At least two systematic violations of homoscedasticity have been observed. First,
small incomes tend to increase more, and with more variability, than large ones
[8]. Second, there are occupational categories whose incomes follow markedly
different paths in terms of both average rates of increase and variability. Consider,
for instance, two employed persons, a dependent and an independent worker. In any
given period, the income growth rate of the independent worker tends to be not only
higher but also more variable. Therefore, in order to determine, for instance, which
of the two individuals is more likely to fall in poverty in any given time interval,
both aspects (average and variance of growth rates) must be modelled.

And this is precisely what this paper sets out to do: present a model of income
dynamics where heteroscedasticity is explicitly taken into account and can be
(partly) explained by covariates. In so doing, we will also highlight the great
variability of income trajectories—greater, indeed, than it is normally acknowledged
in literature.

Already at the individual level, income trajectories are affected by very many
variables: education, age, gender, industry, SES (Socio-Economic Status), changes
in the labour market, economic cycles, etc. At the household level, which is what
this paper refers to, the number of these influences increases exponentially, if one
takes interactions into account, and soon becomes very difficult, if not impossible,
to handle.

In order to simplify the problem, we break it in two: (A) we first model income
trajectories in a theoretical, perfectly homogeneous population; and (B) later on,
we complicate the model, by explicitly considering heterogeneity. This procedure
permits us to disentangle the general features of income dynamics, common to all
trajectories (point A), from those that are contingent on households characteristics
(point B).

An empirical application to household incomes and their dynamics in the period
1998–2006 suggests that our model can keep both dimensions under control (the
general process and the influence of specific situations, in terms of both average
and variability of growth rates), and, both theoretically and empirically, compares
favourably with other more conventional models of income dynamics.

44.2 Gibrat’s Model: Traditional and Modified Version

Our model of income dynamics in a homogeneous population (see [8]), derives from
[2] seminal paper, where incomes are assumed to evolve in a multiplicative form.
In Gibrat’s formulation, for every individual, income at time t C k .ytCk/ can be
obtained by multiplying income at time t (yt / by a series of random shocks Rj
occurring in between

ytCk D yt

kY
jD1

Rj (44.1)
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which, in logarithms, becomes

log.ytCk/ D log.yt /C
kX
iD1

Ri (44.2)

The multiplicative form implies that income is always strictly positive: depending
on how income is defined and on the length of the period under consideration,
this limitation may occasionally force researchers to drop a few rather extreme
observations (but not in our application). In all cases, this does not constitute a
major obstacle to the use of a model that has repeatedly proved very effective in the
description of income dynamics.

Gibrat’s model implies four main theoretical predictions, all of them relevant and
empirically testable (see, e.g., [4–6, 8, 9]):
1. Log-growth is independent of log-income
2. The distribution of log-incomes approximates the normal
3. The variance of log-income increases linearly with k
4. The covariance of log-income increases with t , but decreases with k.
Empirical analyses, reported, for instance, by Hart [1, 3], or by Salinari and
De Santis [7, 8], show that implications (44.2)–(44.4) hold, but implication (44.1)
does not, because incomes that start from low levels tend to increase more and with
more variability than the model predicts.

We contend that this divergence between theoretical expectations and empirical
results depends on a sort of mechanical reason. In order to see this more clearly, it
is convenient to transform Gibrat’s model in its additive version:

ytC1 D yt C yt .R � 1/ D yt C yt r (44.3)

The growth rate r.D R–1/ can be thought of as the difference between what might
be defined as the “gain rate” g and the “loss rate” l , so that Eq. (44.3) can be
rewritten as:

ytC1 D yt CG �L (44.4)

where bothG.D g � yt / and L.D l � yt / are random, non-negative variables. Losses
L cannot be greater than yt CG, otherwise income at time t C1 would be negative.
Therefore, L is a truncated random variable, the probability density function of
which ranges between 0 and yt C G. The impact of truncation is obviously greater
for small than for large incomes, so that the growth rate of small incomes tends to
be positively affected.

But why is it also more variable? Under our homogeneity assumption, gains and
losses can be imagined to occur to individuals as in a Bernoulli experiment, where
the probability of getting a “unit” of loss (or gain) is proportional to individual
income. In this case, the gains and losses experienced by households distribute as
a Poisson, the mean and variance of which increase linearly with income. As a
consequence, the variance of the growth rate V Œr� D V Œg–l� decreases as income
increases.
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A possible way of improving over Gibrat’s model is to use a truncated normal
distribution (T ) to model income variations (�y D ytC1–yt /. Let these variations
be normally distributed with mean and variance proportional to yt . Since variations
cannot be smaller than –yt (otherwise ytC1 would be negative), we restrict the
domain of the probability distribution to the interval .–yt ;C1/. The probability
density function f .�/ of the relevant truncated random variable T is therefore:

f .�yjyt ; ˛; ˇ/ D
�
�
�y�ayt
byt

�
1 �˚

��yt�ayt
byt

� (44.5)

where a and b are two parameters defining the mean .ayt / and the variance .byt /
of the normal distribution, �.�/ is the probability density function of the standard
normal variable, and ˚.�/ its cumulative function.

We can now define Gibrat’s “modified model” as:

ytC1 D yt C T (44.6)

where the two parameters a and b can be estimated numerically, for instance with
maximum likelihood. Figure 44.1 shows a comparison between the actual and the
expected (44.5) income variations registered for 5,195 Italian households in a series
of 2-year intervals (1998–2000, 2000–2002,. . . , 2004–2006), conditional on the
income class to which households belonged at the beginning of each period. Note
that the variability of absolute income variations increases with income and that our
model curves approximate reality rather well, especially if one considers that no
covariate has been taken into consideration yet (homogeneity assumption).

The model of Eq. (44.6) can be extended to the case of heterogeneous popula-
tions, where households differ by their socio-economic characteristics. Let xt;i D
.1; x1;i ; : : :; xp;i / be a time-dependent vector of covariates for household i , while
˛ D .˛0; ˛1; : : :; ˛p/ and ˇ D .ˇ0; ˇ1; : : :; ˇp/ are two vectors of parameters
describing the effects produced by these covariates, respectively, on the mean and
on the variance of the distribution of the variations. Model (44.5) can now be
generalized as follows: �

ai D exp .˛0xt;i /
bi D exp

�
ˇ0xt;i

	 (44.7)

44.3 SHIW Data

For the empirical part of our study, we use micro data taken from the Survey
on Household Income and Wealth (SHIW). The Bank of Italy carries out this
survey every other year, on about 8,000 households (about 20,000 individuals): it
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Fig. 44.1 Probability density distribution of conditional income variations (Italy 1998–2006). The
variations (�y) are observed in the periods 1998–2000,: : :, 2004–2006 for 5,195 Italian households
initially belonging to different income classes (0–10,000,: : :, 80,000–90,000 Euros). The solid line
indicates the empirical densities estimated with Gaussian kernel. The dashed lines indicate the
theoretical distribution generated by Eq. (44.5) (with a D 0:16 and b D 0:32)

is described in detail on the website of the Bank,1 from where elementary data can
be downloaded, and, most importantly, it contains a panel part that we will exploit
in this application.

We work on five rounds of the survey (years 1998, 2000, 2002, 2004 and 2006),
and we study the change in the total net household income over a period of either
2 years (1998–2000; 2000–2002;. . . ) or 4 years (1998–2002; 2000–2004;: : :). We
work on a subset of the panels, selected on the basis of two criteria: the demographic
structure of the household must not change in the period under examination (2 years
or 4 years, depending on the application; see further in the text) and, at the beginning
of the period, the reference person must not be older than 64 years and must be in the
labour market. After dropping a few outliers (fewer than 1%, with abnormally high
or low growth rates), we are left with about 5,100 biannual transitions and 2,400
quadrennial transitions, approximately equally distributed among the various time
intervals considered.

1http://www.bancaditalia.it/statistiche/indcamp/bilfait.

http://www.bancaditalia.it/statistiche/indcamp/bilfait.
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44.4 A Regression Analysis of Income Dynamics

Before applying our modified version of Gibrat’s model, let us take a step backward
and consider the results produced by an ordinary regression analysis of household
income and growth rates, which we will later compare to our own.

We are interested in modeling income dynamics, using “independent” explana-
tory variables. Actually, most of the variables that we use are not truly exogenous
(as we will briefly discuss below) but our interest here is not really about how to
“explain” income: merely to show that our approach (modified Gibrat’s model)
works better than other, more traditional ones, using the same set of explanatory
variables.

In the traditional version, the dependent variable is the growth rate (Table 44.1,
columns 2 and 3); we, instead, model transition probabilities (not reported here; but
see, e.g. [8]) which result, among other things, in growth rates (Table 44.2). In both
cases, we use a set of “independent” variables, of two broad types:
(a) Demographic: number of children .0; 1; 2; 3C/, region (North, Center, South),

age, and educational attainment of the reference person (1 D illiterate or
primary school; 2 D secondary education; 3 D tertiary education; 4 D
university degree or PhD).

(b) Labour force: occupation of the reference person (dependent, self-employed,
unemployed, other), period.

As for the traditional approach, although we are basically interested in dynamics
(growth rates), we also model income levels. In the latter case, we use:

log.yt / D ˇTxt;i C "t;i (44.8)

while in the former (growth rates—both for 2- and 4-year periods), we use:

log

�
ytC1;i
yt;i

�
D ˇTxt;i C "t;i (44.9)

Our results are summarized in Table 44.1. In all the cases, the baseline is a household
living in the north of Italy, with one child and whose reference person is dependent
worker, aged 45, with an average level of education. The static regression of income
(first column) confirms what is generally known: all the covariates we use affect
income in the expected direction: incomes are higher for better educated and older
(but younger than 65 years) reference persons, while living in the south, or being a
dependent worker (or, worse still, unemployed), depresses income. Finally, income
increases with the number of children. In all of these cases, the interpretation
must be particularly cautious, because reverse causation, selection and unobserved
heterogeneity surely play a major role, but, as mentioned before, we will not
attempt to investigate these issues here; we are simply comparing models of income
dynamics, and we are using this regression on income levels as an entry point, whose
utility will appear shortly. This simple model “explains” about 43% of the variance
in incomes.
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Table 44.1 Regression analysis of income and income growth rates

Dependent variable Income Growth rate over 2 years Growth rate over 4 years

Intercept 10:223 ��� 0:087 ��� 0:167 ���

Children 0 �0:089 ��� �0:025 �0:056
Children 2 0:077 ��� 0:010 0:034

Children 3 0:069 �� 0:040 � 0:051

Age (Stand.) 0:140 ��� �0:014 � �0:011
Education 1 �0:254 ��� 0:052 �� 0:095 ��

Education 3 0:240 ��� 0:009 0:008

Education 4 0:562 ��� 0:023 0:006

Self-Empl. 0:064 ��� 0:008 0:037

Unempl. �0:616 ��� 0:231 ��� 0:403 ���

Other �0:160 ��� 0:036 . 0:084 ��

Period 2 0:067 ��� �0:011 0:012

Period 3 0:110 ��� 0:002 �0:010
Period 4 0:168 ��� �0:023 =

Center It. �0:124 ��� 0:017 0:030

South It. �0:476 ��� �0:008 �0:028
R2 0:43 0:01 0:03

Significance level: ��� D 1%I��D 5%I�D 10%. Periods: 1 D from 1998 (ref.); 2 D from
2000; 3 D from 2002; 4 D from 2004. Education: 1 D low; 2 D medium (ref.); 3 D high;
4 D very high. For the reasons of comparability, R2 for the growth rates regressions have been
calculated as var[exp(fitted.values)]/var(actual.growth.rates)

If we now turn to the analysis of dynamics, i.e. of 2-year growth rates (second
column) we find that only a few of our covariates exert a measurable effect, and
the explained variance is much lower—merely 1%. The only variables that seem
to matter are those associated with a low income at the start (which favours a
more rapid increase in the period): for instance being unemployed, or with a low
education.

Basically the same happens over a longer time span (4 years, third column), with
a very slight improvement in the overall goodness of fit (R2, from 1% to 3%). In
short, while our covariates are associated with income levels, they do not seem to
be associated with growth rates. How is this possible?

In order to answer this question, we note that:
(a) Income growth is highly erratic
(b) Growth is a cumulative process: very small systematic differences, even if they

go unnoticed in the short run, may result in large differences in the long run
(c) Income trajectories can (and indeed do seem to) depend on their starting point
(d) What we observe here are net incomes, which are also influenced by the effects

of the fiscal policy (progressive taxation, subsidies, etc.)
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Table 44.2 Analysis of income rates of growth through the modified Gibrat’s model

Variation after 2 years Variation after 4 years

Coeff. Estim. ˛ Estim. ˇ Estim. ˛ Estim. ˇ

Intercept �1:498 � �0:599 � �0:934 � �0:266 �

Children 0 0:114 � �0:010 �0:260 � �0:002
Children 2 �0:105 0:028 �0:067 �0:150 �

Children 3 0:025 0:075 0:081 �0:058
Age (Stand.) �0:083 � �0:009 0:059 0:013

Education 1 �0:063 0:233 � 0:150 0:357 �

Education 3 �0:249 � �0:121 � �0:155 � �0:089
Education 4 �0:232 � �0:057 �1:160 � �0:597 �

Self-Empl. 0:203 � 0:295 � 0:201 � 0:289 �

Unempl. 0:518 � 0:347 � 0:568 � 0:486 �

Other 0:047 0:023 0:294 � 0:080

Period 2 �0:071 �0:306 � 0:045 �0:216 �

Period 3 0:011 �0:111 � 0:004 �0:214 �

Period 4 0:150 � �0:121 n n
Center It. �0:011 �0:077 0:093 0:091 �

South It. 0:118 0:196 � 0:142 � 0:050

R2 0:02 0:05
� Significant at 10%
R2 calculated as var(fitted.growth-rates)/var(actual.growth-rates)

As for the first two points, consider, for example, “Self-employment” in Table 44.1
(2nd and 3rd column): the coefficients are positive (income increases more rapidly
for this category), but not significant. However, the mean income of the self-
employed is significantly higher than that of the dependent workers. Besides, over
a 4-year period, the effect of self-employment is slightly more significant than it is
over a 2-year period, and this is a pattern that holds for most of our variables.

Unfortunately, this explanation cannot be simply extended to all our covariates.
Take “Education 1”, for instance: this has a positive and significant effect on both
the biannual and quadrennial growth rates, but the income of the poorly educated
workers is significantly smaller than that of highly educated ones. Our interpretation
is that this apparent contradiction depends on the different starting income of the two
groups: highly educated workers are richer at the beginning (they typically come
from richer families, and their entry wage is higher), but they tend to lose some of
their initial advantage as time goes by.

44.5 Income Dynamics from Gibrat’s Perspective

Let us now apply our modified Gibrat’s model to the same data set. Our starting
values are the estimates of the coefficients obtained in the previous regression
(Table 44.1, columns 2 and 3), and the confidence intervals for the coefficients
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have been estimated through bootstrapping (500 repetitions). The results of our
analysis are summarized in Table 44.2, where the ˛ coefficients represent the effect
produced by the covariates on the average increment, and, apart from the intercept,
are directly comparable with those estimated in the regression of growth rates. The
ˇ coefficients, instead, represent the effects of the covariates on the variance of these
rates of growth, and for these there is no corresponding value in the preceding table.

The ˛ parameters of Table 44.2 tell basically the same story as in Table 44.1:
variations in income are, on average, more strongly positive for the unemployed and
for the self-employed; the evolution is relatively worse for the well educated, and the
effect of age is not so clear. Note, however, that the variance explained by the model,
although still very low, improves slightly and, more importantly, the cases when the
˛ parameters are significant (if only at the 10% level) are now considerably more
numerous than in Table 44.1. For example, self-employment exerts a significant
positive effect in all the cases of Table 44.2, while this effect is weak or insignificant
in the estimation of Table 44.1. We advance two tentative explanations for this
improvement: (1) our modified Gibrat’s model corrects the bias produced by what
we referred to as the “differential dynamics of income” (small incomes increase
faster and with a greater variability than others); (2) an optimization process based
on likelihood is less influenced by the presence of outliers.

A distinctive feature of our modified Gibrat’s model is that it allows us to measure
the effects produced by household’s characteristics also on the variability of income,
and not only on its average. Our results suggest that low education, unemployment
and self-employment all contribute to an increase in the variability of income
variations in the subsequent period (of either 2 or 4 years). Note that periods 2
and 3 of both analyses (2 years and 4 years increments) are characterized by a
significant lower variability than the baseline period (period 1). This may depend
on the macroeconomic situation: the period 2002–2005 witnessed a slowdown of
economic growth in Italy, with an average annual growth rate of the GDP of only
about 0.6%. And in times of economic recession, the variability of income variations
typically shrinks.

44.6 Conclusions

Our modified Gibrat’s model seems to describe income dynamics better than other
models from at least three different points of view:
1. We can theoretically justify, and model, why smaller incomes increase more, and

with more variability, than others.
2. In our estimation, we circumvent the problem of heteroscedasticity, which is

explicitly modelled. In our case, the bias turns out to be relatively modest (˛
coefficients are similar in Tables 44.1 and 44.2), but this need not be always the
case.

3. Finally, and perhaps most importantly, our modified Gibrat’s model permits us to
model the variance of income dynamics, and to measure the impact of covariates
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on this variance. This has several advantages: for instance, it allows researchers
to better identify the population subgroups who are more exposed to the risk of
poverty in any given time interval.
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Abstract
The benchmarking problem arises when time series data for the same target
variable are measured at different frequencies with different level of accuracy,
and there is the need to remove discrepancies between annual benchmarks and
corresponding sums of the sub-annual values. Two widely used benchmarking
procedures are the modified Denton Proportionate First Differences (PFD) and
the Causey and Trager Growth Rates Preservation (GRP) techniques. In the
literature it is often claimed that the PFD procedure produces results very close
to those obtained through the GRP procedure. In this chapter we study the
conditions under which this result holds, by looking at an artificial and a real-
life economic series, and by means of a simulation exercise.
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45.1 Introduction

Benchmarking monthly and quarterly series to annual series is a common practice
in many National Statistical Institutes. The benchmarking problem arises when time
series data for the same target variable are measured at different frequencies with
different level of accuracy, and there is the need to remove discrepancies between
annual benchmarks and corresponding sums of the sub-annual values. The most
widely used benchmarking procedures are the modified Denton Proportionate First
Differences (PFD) technique [4, 6], and the [3] Growth Rates Preservation (GRP)
procedure (see also Trager [11], and Bozik and Otto [2]). The PFD procedure looks
for benchmarked estimates aimed at minimizing the sum of squared proportional
differences between the target and the unbenchmarked values, and is characterized
by an explicit benchmarking formula involving simple matrix operations. The
GRP technique is a nonlinear procedure based on a “true” movement preservation
principle, according to which the sum of squared differences between the growth
rates of the target and of the unbenchmarked series is minimized. As in the
literature [1, 4, 5] it is often claimed that the PFD procedure produces results very
close to those obtained through the GRP procedure, in this chapter we study the
conditions under which this result holds. We do that by showing how the two
procedures work in practice, by looking at an artificial and a real-life economic
series. Then a simulation exercise is performed in order to appreciate the impact on
the benchmarked series of the variance of the observational error and of possible
“steps” in the annual benchmarks.

The chapter is organized as follows. In Sect. 45.2 the two benchmarking
procedures are described, and the way they take into account a “movement
preservation principle” is discussed. In Sect. 45.3 the artificial time series of Denton
[6] and a quarterly preliminary series of the EU Quarterly Sector Accounts [7] are
benchmarked to their annual counterparts, using both modified Denton PFD and
Causey and Trager GRP benchmarking procedures, and the results are discussed. In
Sect. 45.4 we design a simulation exercise in order to analyze the distinctive features
of the two procedures.

45.2 Two Benchmarking Procedures

Let YT , T D 1; : : : ; N , and pt , t D 1; : : : ; n, be, respectively, the (say annual)
totals and the (say quarterly) preliminary values of an unknown quarterly target
variable yt . The preliminary values being not in line with the annual benchmarks,
i.e.,

X
t2T

pt ¤ YT , T D 1; : : : ; N , we look for benchmarked estimates ybt such thatX
t2T

ybt D YT .

As Bozik and Otto [2, p. 2] stress, “Just forcing a series to sum to its benchmark
totals does not make a unique benchmark series.” Some characteristic of the
original series pt should be considered in addition, in order to get benchmarked
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estimates “as close as possible” to the preliminary values. In an economic time
series framework, the preservation of the temporal dynamics (however defined) of
the preliminary series is often a major interest of the practitioner. Thus in what
follows we consider two procedures designed to preserve at the best the movement
of the series pt : modified Denton PFD and Causey and Trager GRP.1

Denton [6] proposed a benchmarking procedure grounded on the Proportionate
First Differences between the target and the original series. Cholette [4] slightly
modified the result of Denton, in order to correctly deal with the starting conditions
of the problem. The PFD benchmarked estimates are thus obtained as the solution
to the constrained quadratic minimization problem

min
yt

nX
tD2

�
yt

pt
� yt�1
pt�1

�2
subject to

X
t2T

yt D YT ; T D 1; : : : ; N: (45.1)

In matrix notation, denoting p and Y the (n � 1) and (N � 1), respectively, vectors
of preliminary and benchmark values, the PFD benchmarked series is contained in
the .n � 1/ vector yPFD solution of the linear system [4, p. 40]�

Q C0
C 0

� �
yPFD

�

�
D
�

Qp
Y

�
; (45.2)

where � is a .N � 1/ vector of Lagrange multipliers, Q D P�10nnP�1, P D
diag.p), C is a (N � n) temporal aggregation matrix converting quarterly values in
their annual sums, and n is the ..n � 1/ � n/ first differences matrix.

Notice that 0nn has rank n � 1, so Q is singular. However, provided no
preliminary value is equal to zero, the coefficient matrix of system (45.2) has full
rank (see the Appendix). After a bit of algebra, the solution of the linear system
(45.2) can be written as�

yPFD

�

�
D
�

P 0
0 IN

� �
0nn PC0

CP 0

��1 �
0
Y

�
: (45.3)

Causey and Trager [3] consider a different quadratic minimization problem, in
which the criterion to be minimized is explicitly related to the growth rate, which is
a natural measure of the movement of a time series:

min
yt

nX
tD2

�
yt

yt�1
� pt

pt�1

�2
subject to

X
t2T

yt D YT ; T D 1; : : : ; N:

(45.4)

1Empirical comparisons between the Cholette–Dagum regression-based benchmarking approach,
which can be seen [5] as a generalization of the seminal contribution by Denton [6], and the Causey
and Trager approach, are shown in Titova et al. [10].
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Looking at the criterion to be minimized in (45.4), it clearly appears that, differ-
ently from (45.1), it is grounded on an “ideal” movement preservation principle,
“formulated as an explicit preservation of the period-to-period rate of change” of
the preliminary series [1, p. 100].

It should be noted that while problem (45.1) has linear first-order conditions
for a minimum, and thus gives rise to an explicit solution as shown in (45.3), the
minimization problem in (45.4) is inherently nonlinear. Trager [11, see Bozik and
Otto [2]] suggests to use a technique based on the steepest descent method,2 using
yPFD as starting values, in order to calculate the benchmarked estimates yGRP

t , t D
1; : : : ; n, solution to problem (45.4).

We employ the Interior Point method of the Optimization Toolbox of MATLAB R�
(version 2009b). It consists of an iterative procedure that solves a sequence
of approximate unconstrained minimization problems by standard (quadratic)
nonlinear programming methods. In each iteration the procedure exploits the exact
gradient vector and hessian matrix of the Lagrangian function [8], which enables to
make informed decisions regarding directions of search and step length. This fact
makes the procedure feasible and robust, in terms of reduced numbers of iterations
required for the convergence, as far as of quality of the found minimum.

It is interesting to go deep into the relationship between the criteria optimized by
the two alternative procedures. Let

CPFD D
nX
tD2

�
yt

pt
� yt�1
pt�1

�2
and CGRP D

nX
tD2

�
yt

yt�1
� pt

pt�1

�2
be the objective functions of the PFD and GRP benchmarking procedures, respec-
tively. We can write (U.S. Census Bureau [12], p. 96):

CPFD D
nX
tD2

�
yt�1
pt

�
yt

yt�1
� pt

pt�1

��2
: (45.5)

Expression (45.5) makes clear the relationship between CPFD and CGRP. The term
in parentheses is the difference between the growth rates of the target and the
preliminary series, namely the addendum of CGRP. In CPFD these terms are weighted
by the ratio between the target series at t � 1 and the preliminary series at t . When
these ratios are relatively stable over time, which is the case when the “benchmark-
to-indicator ratio” [1]

YTP
t2T pt

; T D 1; : : : ; N

2For a recent survey on this issue, see Di Fonzo and Marini [8].
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is a smooth series, CPFD and CGRP are very close to each other. On the contrary,
when the ratios (yt�1=pt ) behave differently each term in the summation is
over-(under-)weighted according to the specific relationship between target and
preliminary series in that period. For example, sudden breaks in the movements of
yt�1=pt might arise in case of large differences between the annual benchmarks and
the annually aggregated preliminary series. The situation is rather similar to the one
described by Dagum and Cholette [5, p. 121], when the risk of producing negative
benchmarked values is discussed: “These situations occur when the benchmarks
dramatically change from one year to the next, while the sub-annual series changed
very little in comparison; or, when the benchmarks change little, while the annual
sums of the sub-annual series change dramatically.”

Keeping in mind this relationship, we move to investigate on the differences
between the PFD and the GRP benchmarking solutions in simulated and real-life
cases.

45.3 Evidences from Artificial and Real Time Series

In this section we apply both the PFD and GRP benchmarking procedures to two
illustrative examples, in order to show to what extent the former solution can be
used effectively to approximate the “ideal” movement preservation criterion based
on growth rates. We consider also a distance measure between the growth rates of
the preliminary and target series given by the absolute, rather than the squared, value
of their difference. The results are thus evaluated looking at the two ratios

r˛ D

0BBBB@
nX
tD2

ˇ̌̌̌
yGRP
t

yGRP
t�1

� pt

pt�1

ˇ̌̌̌˛
nX
tD2

ˇ̌̌̌
yPFD
t

yPFD
t�1

� pt

pt�1

ˇ̌̌̌˛
1CCCCA

1
˛

˛ D 1; 2: (45.6)

When ˛ D 2, this index is simply the square root of the ratio between the Causey
and Trager “Growth Rate Preservation” criteria computed from the two solutions.
Obviously, we expect that the GRP technique always reaches a lower value of the
chosen criterion than PFD, and thus the ratio r2 should be never larger than 1.
Put in other words, r2 is the ratio between the Root Mean Squared Adjustments
to the preliminary growth rates produced by the Causey and Trager GRP and the
Denton PFD benchmarking procedures. On the other hand, r1 can be seen as the
ratio between the Mean Absolute Adjustments: sometimes this index can be larger
than 1, thus indicating a better performance of Denton PFD when the size of the
corrections to the preliminary growth rates is measured according to an absolute
rather than a squared form.

The first example we consider is the artificial preliminary series used in the
seminal paper of Denton [6]. It consists of a 5-year artificial quarterly series,
with a fixed seasonal pattern invariant from year to year. The values are 50, 100,
150, and 100 in the four quarters, for a total yearly amount of 400. The annual
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Fig. 45.1 Adjustments to the
artificial series produced by
the PFD and GRP procedures
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Fig. 45.2 Adjustments to the
real-life series produced by
the PFD and GRP procedures

benchmarks are assumed to be 500, 400, 300, 400, and 500 in the 5 successive
years. The corresponding discrepancies (i.e., the differences between the known
benchmarks and the annual sums of the preliminary series) are therefore 100, 0,
�100, 0, and 100, respectively. As expected, the minimum CGRP is achieved by
the GRP procedure (0.04412 against 0.14428 of PFD, with r2 D 0:553). The GRP
procedure shows better results as regards the movement preservation, also when the
distance between the preliminary and the target growth rates is measured by the
absolute differences (r1 D 0:539). Figure 45.1 shows the adjustments to the levels
of the original series in the two cases. The horizontal lines in each year denote the
(average) annual discrepancy to be distributed.

The second example is a real-life economic series coming from the European
Quarterly Sector Accounts (EU-QSA). The EU-QSA system has been dealt with
by Di Fonzo and Marini [7] in a reconciliation exercise, where several time series
have to be adjusted in order to be in line with both temporal and contemporaneous
known aggregates [5]. In this chapter we consider the series “Other Property
Income” of the Financial Corporation sector, showing a considerable amount of
temporal discrepancies. Figure 45.2 shows the large discrepancy in 2002, when the
original series accounts for just 65% of the annual target. From 2003 onwards the
discrepancies are much more contained. This is a typical practical situation where
the preservation of the original growth rates can be better guaranteed by the GRP
procedure (r2 D 0:579 and r1 D 0:615). The quarterly adjustments in the two
cases are also displayed in Fig. 45.2. The differences are large in the years with
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large discrepancies (2001–2002), but they are also remarkable in 2003, when the
discrepancy is limited. In this case the smoother distribution produced by the GRP
procedure is clearly visible.

45.4 The Simulation Exercise

By means of this experiment we wish to shed light on the conditions under which
the PFD benchmarking procedure produces results “close” to the GRP technique in
terms of differences between the growth rates of the benchmarked and preliminary
series. We consider quarterly series covering a period of 7 years (n D 28).

Let �t D �t�1 C "t be a random walk process, where "t is a Gaussian white noise
with unit variance (�2" D 1) and �0 D "0. The target series of the exercise, yt , is
derived as

yt D ��t C �t ; t D 1; : : : ; n

with ��t D 100C�t , where the constant term 100 is large enough to prevent negative
values, and �t is given by

�t D
8<:
� t D 9; : : : ; 16

�� t D 17; : : : ; 24

0 elsewhere
:

The preliminary series pt is related to yt as follows:

pt D ��t C et ; t D 1; : : : ; n

where et is a Gaussian white noise with variance �2e . It is clear that preliminary and
target series are different for the effects of �t and et . The former is introduced in
the model for yt in order to simulate yearly biases of the preliminary series. The
first control parameter of the experiment is thus �. When � > 0, the target series
contains a positive drift from pt in years 3 and 4, followed by a negative step (of the
same amount) in years 5 and 6. We set � D 0; 15; 30; 45; 60. The second control
parameter is �e , the standard deviation of the innovation process et . The larger this
parameter is, the larger the observational error in the preliminary series will be. We
set �e D 5; 10; 15; 20; 25.

We drew two sets of 1,000 n-dimensional vectors as N.0; 1/. One set is used to
simulate "t ; the other is used to derive the innovation et according to the five levels
of �e . By using the five values of �, we achieved 1,000 experiments for each of
the 25 combinations. For each combination, we computed summary statistics on the
ratios r1 and r2 obtained over the 1,000 experiments.
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Table 45.1 Median of r2
for different values of �e and
� (across 1,000 experiments)

�

�e 0 15 30 45 60

5 0.992 0.984 0.959 0.903 0.763
10 0.967 0.961 0.935 0.879 0.739
15 0.928 0.922 0.895 0.839 0.702
20 0.870 0.866 0.841 0.785 0.655
25 0.800 0.795 0.771 0.718 0.598

Table 45.2 Maximum of r2
for different values of �e and
� (across 1,000 experiments)

�

�e 0 15 30 45 60

5 0.999 0.995 0.982 0.946 0.870
10 0.996 0.993 0.978 0.950 0.888
15 0.992 0.987 0.977 0.946 0.903
20 0.987 0.982 0.973 0.941 0.907
25 0.980 0.977 0.965 0.943 0.885

Tables 45.1 and 45.2 show, respectively, the median and the maximum values3

of r2 under different values of �e (rows) and � (columns).
According to Bozik and Otto [2], we used the series benchmarked via modified

Denton PFD as starting values of the GRP procedure, and this turned out to be a
good choice4: as one would expect, from Table 45.2 it appears that in all cases the
GRP procedure improves on the modified PFD starting values and reaches a lower
value of the criterion.

However, from Table 45.1 we observe that the PFD procedure provides very
similar results to GRP when discrepancies are small and unsystematic (median r2 �
0:9 when �e � 10 and � � 15). The reduction is stronger as both �e and � increase.

These results are confirmed by r1, whose median and maximum values are shown
in Tables 45.3 and 45.4, respectively, with an important remark: from Table 45.4 we
observe that if the absolute differences between preliminary and target growth rates
are considered, and when the bias is either absent or small (� � 15), there are cases
where Denton PFD gives benchmarked estimates whose dynamics is “closer” to the
preliminary series than Causey and Trager GRP does.5

3The median is more representative than the mean in the case of atypical values. We also calculated
mean, standard deviation, minimum, and range of r1 and r2, available on request from the authors.
4When the preliminary series were used as starting values, in 50 out of 25,000 cases (0.2%) the
GRP procedure produced benchmarked series with r2 > 1.
5The index r1 is greater than one for 488 out of 25,000 series (1,95%). The highest number of cases
with r1 > 1 (270) is observed for .�e; �/ D .5; 0/, followed by 101 cases for .�e; �/ D .10; 0/.
The remaining cases are: 50 for .�e; �/ D .15; 0/, 15 for .�e; �/ D .20; 0/, 4 for .�e; �/ D
.25; 0/, 20 for .�e; �/ D .5; 15/, 15 for .�e; �/ D .10; 15/, 8 for .�e; �/ D .15; 15/, 2 for
.�e; �/ D .20; 15/, and 3 for .�e; �/D .25; 15/.
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Table 45.3 Median of r1
for different values of �e and
� (across 1,000 experiments)

�

�e 0 15 30 45 60

5 0.993 0.977 0.941 0.880 0.748
10 0.969 0.956 0.922 0.860 0.725
15 0.928 0.917 0.884 0.825 0.693
20 0.873 0.864 0.832 0.773 0.650
25 0.805 0.795 0.765 0.710 0.597

Table 45.4 Maximum of r1
for different values of �e and
� (across 1,000 experiments)

�

�e 0 15 30 45 60

5 1.035 1.015 0.997 0.936 0.841
10 1.053 1.013 0.997 0.964 0.871
15 1.047 1.017 0.982 0.952 0.896
20 1.028 1.022 0.982 0.941 0.903
25 1.013 1.057 0.970 0.929 0.874
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Fig. 45.3 Boxplots of r2

A visual, more comprehensive overview of the results of the simulation experi-
ment is given by the boxplots of r2 (Fig. 45.3), and r1 (Fig. 45.4). The 25 boxplots
in each figure are ordered (from left to right) so that the first group of five boxplots
corresponds to �e D 5 and � D 0; 15; 30; 45; 60, respectively, the second group to
�e D 10 and � D 0; 15; 30; 45; 60, and so on.

From these evidences, and for this dataset, we conclude that the modified Denton
PFD benchmarking procedure can be viewed as a sensible approximation of the
Causey and Trager benchmarking procedure when the variability of the preliminary
series and/or its bias are low with respect to the target variable. When this is
not the case (high variability and/or large bias), the quality of the approximation
clearly worsens. In addition, as regards the “movement preservation,” we have found
that generally the Causey and Trager GRP benchmarking procedure gives better
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performances as compared to Denton PFD. This turned out to be always the case
(as one would expect) when the comparison criterion is the one optimized by the
Causey and Trager procedure, and in the very largest amount (more than 98%) of the
25,000 series of our simulation experiment, when the distance between the growth
rates of the preliminary and the benchmarked series is measured by the absolute
difference.

Appendix: Non-singularity of the Coefficient Matrix
of System (45.2)

Luenberger [9, p. 424] shows that a unique solution to the problem

min
y

y0Qy subject to Cy D Y

exists if the matrix C is of full rank, and the matrix Q is positive definite on the null
space of matrix C: N .C/ D fx 2 Rn W Cx D 0g.

Let us consider the matrix Q D P�10nnP�1, and let the vector y belong to
N (C). We assume pt ¤ 0, t D 1; : : : ; n (otherwise the objective function is not
defined), and Cp ¤ Y, which corresponds to exclude the trivial solution y� D p,
valid when there is no benchmarking problem. Given that

y0Qy D
nX
tD2

�
yt

pt
� yt�1
pt�1

�2
;

it is immediately recognized that the expression above is strictly positive, which
means that matrix Q D P�10nnP�1 is positive definite on the null space spanned
by the columns of matrix C, and thus the coefficient matrix of system (45.2) is
nonsingular.
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46Cumulation of Poverty Measures
to Meet New Policy Needs

Vijay Verma, Francesca Gagliardi, and Caterina Ferretti

Abstract
Reliable indicators of poverty and social exclusion are an essential monitoring
tool. Policy research and application increasingly require statistics disaggregated
to lower levels and smaller subpopulations. This paper addresses some statistical
aspects relating to improving the sampling precision of such indicators for
subnational regions, in particular through the cumulation of data.

Keywords
Longitudinal data analysis • Measuring poverty and inequality • Sample design
and estimation • Variance components models.

46.1 Context and Scope

Reliable indicators of poverty and social exclusion are an essential monitoring tool.
In the EU-wide context, these indicators are most useful when they are comparable
across countries and over time for monitoring trends. Furthermore, policy research
and application increasingly require statistics disaggregated to lower levels and
smaller subpopulations. Direct, one-time estimates from surveys designed primarily
to meet national needs tend to be insufficiently precise for meeting these new policy
needs. This is particularly true in the domain of poverty and social exclusion, the
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monitoring of which requires complex distributional statistics—statistics necessar-
ily based on intensive and relatively small-scale surveys of households and persons.

This paper addresses some statistical aspects relating to improving the sampling
precision of such indicators for subnational regions in EU countries [8], in particular
through the cumulation of data over rounds of regularly repeated national surveys
[9]. The reference data for this purpose are based on EU Statistics on Income
and Living Conditions (EU-SILC), which is the major source of comparative
statistics on income and living conditions in Europe. EU-SILC covers data and
data sources of various types: cross-sectional and longitudinal; household-level and
person-level; on income and social conditions; and from registers and interview
surveys depending on the country. A standard integrated design has been adopted
by nearly all EU countries. It involves a rotational panel in which a new sample of
households and persons is introduced each year to replace one quarter of the existing
sample. Persons enumerated in each new sample are followed up in the survey for 4
years. The design yields each year a cross-sectional sample, as well as longitudinal
samples of various durations. Two types of measures can be so constructed at the
regional level by aggregating information on individual elementary units: average
measures such as totals, means, rates and proportions constructed by aggregating
or averaging individual values and distributional measures, such as measures of
variation or dispersion among households and persons in the region. Average
measures are often more easily constructed or are available from alternative sources.
Distributional measures tend to be more complex and are less readily available from
sources other than complex surveys; at the same time, such measures are more
pertinent to the analysis of poverty and social exclusion. An important point to
note is that, more than at the national level, many measures of averages can also
serve as indicators of disparity and deprivation when seen in the regional context:
the dispersion of regional means is of direct relevance in the identification of
geographical disparity. Survey data such as from EU-SILC can be used in different
forms and manners to construct regional indicators.
1. Direct estimation from survey data—in the same way as done normally at the

national level—provided that the regional sample sizes are adequate for the
purpose.

2. Constructing alternative (but with a substantively similar meaning) indicators
which utilise the available survey data more intensively.

3. Cumulation of data over survey waves to increase the precision of the direct
estimates.

4. Using survey data in conjunction with data from other (especially administrative)
sources—which are larger in size but less detailed in content than survey data—
in order to produce improved estimates using small area estimation (SAE)
techniques.

5. Going altogether beyond the survey by exploiting administrative and other
sources.
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46.2 Cumulation Over Waves in a Rotational Panel Design

46.2.1 Illustration from EU-SILC Survey

One of the most important regular social surveys in the EU is the Statistics on
Income and Living Conditions survey (EU-SILC). The EU-SILC was launched
starting from 2003 in some countries; it covered 27 EU and EFTA countries by 2005,
and all 30 by 2008. In each country it involves an annual survey with a rotational
panel design. Its content is comprehensive, focusing on income, poverty and living
conditions.

EU-SILC involves comprehensiveness in the substantive dimension (coverage
of different topics), in space (coverage of different countries) and in time (regular
waves or rounds). In EU-SILC most countries use the standard rotational household
panel design as shown below. The survey is annual, and each panel stays in the
survey for four consecutive years.

46.2.2 Pooling of Data Versus Pooling of Estimates

When two or more data sources contain—for the same type of units such as
households or persons—a set of variables measured in a comparable way, then the
information may be pooled either (a) by combining estimates from the different
sources or (b) by pooling data at the micro level. Technical details and relative
efficiencies of the procedures depend on the situation. The two approaches may
give numerically identical results, or the one or the other may provide more accurate
estimates; in certain cases, only one of the two approaches may be appropriate or
feasible in any case.

Consider, for instance, the common case of pooling results across countries in a
multi-country survey programme such as EU-SILC or EU-LFS. For linear statistics
such as totals, pooling individual country estimates say �i with some appropriate
weights Pi gives the same result as pooling data at the micro level with unit weights
wij rescaled as w0ij D wij � .Pi=Pj wij/ where i is the country and j is the final
unit (e.g. individuals). For ratios of the form �i D P

j wij � vij=
P

j wij � uij, the two
forms give very similar but not identical results, corresponding, respectively, to the
“separate” and “combined” types of ratio estimate.
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This paper is concerned with a different but equally common type of prob-
lem, namely pooling of different sources pertaining to the same population or
largely overlapping and similar populations. Estimates from samples from the
same population are most efficiently pooled with weights in proportion to their
variances (meaning, with similar designs, in direct proportion to their sample sizes).
Alternatively, the samples may be pooled at the micro level, with unit weights
inversely proportion to their probabilities of appearing in any of the samples. This
latter procedure may be more efficient (e.g., [4]), but be impossible to apply as
it requires information, for every unit in the pooled sample, on its probability of
selection into each of the samples irrespective of whether or not the unit appears
in the particular sample [10]. Another serious difficulty in pooling samples is
that, in the presence of complex sampling designs, the structure of the resulting
pooled sample can become too complex or even unknown to permit proper variance
estimation. In any case, different waves of a survey like EU-SILC or EU-LFS do not
correspond to exactly the same population. The problem is akin to that of combining
samples selected from multiple frames, for which it has been noted that micro level
pooling is generally not the most efficient method [3].

For the above reasons, pooling of wave-specific estimates rather than of micro
data sets is generally the appropriate approach to aggregation over time from surveys
such as EU-SILC and EU-LFS.

46.3 Gain in Precision from Cumulation Over Survey Waves

Consider that for each wave, a person’s poverty status is determined based on the
income distribution of that wave separately, and the proportion poor at each wave is
computed. These proportions are then averaged over a number of consecutive waves.
The issue is to quantify the gain in sampling precision from such pooling, given that
data from different waves of a rotational panel are highly correlated. Variance for the
pooled estimators can be estimated on the following lines, using, for instance, the
Jackknife Repeated Replication (JRR) procedure (see Sect. 46.4). The total sample
of interest is formed by the union of all the cross-sectional samples being compared
or aggregated. Using as basis for the common structure of this total sample, a set of
JRR replications is defined in the usual way. Each replication is formed such that
when a unit is to be excluded in its construction, it is excluded simultaneously from
every wave where the unit appears. For each replication, the required measure is
constructed for each of the cross-sectional samples involved, and these measures
are used to obtain the required averaged measure for the replication, from which
variance is then estimated in the usual way [1].
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In terms of the quantities defined above, rows (1)–(5) of Table 46.1 are as follows.

Standard error of average HCR over 2 years
(assuming independent samples)

.1/ D 1=2 � .V1 C V2/1=2

Factor by which standard error is increased
due to positive correlation between waves

.2/ D �.1C b: .n=nH //1=2

Standard error of average HCR over 2 years
(given correlated samples)

.3/ D .1/ � .2/ D � .V /1=2

Average standard error over a single year .4/ D Œ.V1/
1=2 C .V2/1=2�=2

Average gain in precision (variance reduction,
or increase in effective sample size, over a
single year sample)

.5/ D 1� ..3/=.4//2

In place of the full JRR application, it is more illuminating to provide here the
following simplified procedure for quantifying the gain in precision from averaging
over waves of the rotational panel. It illustrates the statistical mechanism of how
the gain is achieved. Indicating by pj and p0j the (1, 0) indicators of poverty of
individual j over the two adjacent waves, we have the following for the population
variances:

var.pj / D
X

.pj � p/2 D p � .1 � p/ D vI similarly; var.p0
j / D p0 � .1 � p0/ D v0

cov.pj ; p
0
j / D

X
.pj � p/ � .p0

j � p0/ D a � p � p0 D c1; say;

where “a” is the persistent poverty rate over the 2 years. For the simple case where
the two waves completely overlap and p0 D p, variance vA for the averaged measure

is: vA D v
2

� .1C b/, with correlation b D . c1v / D .
a�p2
p�p2 /. The correlation between

two periods is expected to decline as the two become more widely separated.
Consider, for example, the case when the correlation between two points k waves
apart can be approximated as .ck=v/ D .c1=v/k . In a set of K periods there are
.K � k/ pairs exactly k periods apart, k D 1 to .K � 1/. It follows that variance
vK of an average over K periods relates to variance v of the estimate from a single
wave as:

fc D
�vk

v

�
D 1

K
�
 
1C 2 �

k�1X
kD1

�
�
K � k

K

�
�
�c1

v

�k!
where a, the persistent poverty between pairs of adjacent waves, and p, the cross-
sectional poverty rate, are averages over the waves involved. For application to
pairs of waves in EU-SILC, it is necessary to allow for variations in cross-sectional
sample sizes and partial overlaps. The result is:

V D Œ.V1 C V2/=4� � .1C b � .n=nH //

where V1 and V2 are the sampling variances, b the correlation coefficient over the
two cross-sections, n is the overlap between the cross-sectional samples and nH is
the harmonic mean of their sample sizes n1 and n2.
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Table 46.1 Gain from cumulation over two waves: cross-sectional and persistent poverty rates.
Poland EU-SILC 2005–2006

HCR: poverty lineSample n %se� Mean
Base Poverty rate Est persons actual income National Regional

CS-2006 HCR 2006 19.1 45,122 0.51 (1) 0.42 0.34 0.40
CS-2005 HCR 2005 20.6 49,044 0.45 (2) 1.31 1.18 1.18
LG 05–06 HCR 2006 18.5 32,820 (3) 0.55 0.40 0.47
LG 05–06 HCR 2005 20.2 32,820 (4) 0.60 0.48 0.56
LG 05–06 Persistent ‘05–06 12.5 32,820 (5) 14% 30% 30%

The methodology described above was applied to the 2005–2006 cross-sectional
and longitudinal EU-SILC samples for Poland. Table 46.1 shows some results at the
national level. Averaging the poverty rate (head count ratio, HCR) over two waves
leads to a variance of this averaged estimator that is 30% less than the variance of
the HCR estimated from just a single wave.

46.3.1 Reduction from Averaging Over Rounds in a Rotational
Design

Consider a rotational sample in which each unit stays in the sample for n consecutive
periods, with the required estimate being the average over Q consecutive periods,
such asQD 4 for 4-year average. The case nD 1 corresponds simply to independent
samples each quarter. In the general case, the total sample involved in the estimation
consists of .n C Q � 1/ independent subsamples. With some simplifying but
reasonable assumptions, it can be proved [9] that the variance of the pooled estimate
is approximately

V 2
a D

�
V 2

n �Q
�

�
(
m1 � Œm2 � .m1 � 1/� � Œ1C f .m1/�

C2
m1�1X
mD1

m � Œ1C f .m/�

)
=.n �Q/ D

�
V 2

n �Q
�

� F.R/

f .m/ D 2

m
� ˚.m � 1/ �R C .m � 2/ �R2 C : : :CRm�1

�
The first factor is the variance which would be obtained in the absence of
correlations between waves;F.R/ is the increase over that as a result of correlations.
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46.4 Variance and Design Effects

Comparisons and cumulation over correlated cross-sections, with which this paper
is concerned, add another layer of complexity.

JRR provides a versatile and straightforward technique for variance estimation
in these situations. It is one of the classes of variance estimation methods based
on comparisons among replications generated through repeated re-sampling of the
same parent sample. Once the set of replications has been appropriately defined
for any complex design, the same variance estimation algorithm can be applied
to a statistic of any complexity. We have extended and applied this method for
estimating variances for subpopulations (including regions and other geographical
domains), longitudinal measures such as persistent poverty rates and measures of
net changes and averages over cross-sections in the rotational panel design of
EU-SILC [5]. Appropriate coding of the sample structure, in the survey micro-
data and accompanying documentation, is an essential requirement in order to
compute sampling errors taking into account the actual sample design. Lack of
information on the sample structure in survey data files is a long-standing and
persistent problem in survey work, and unfortunately affects EU-SILC as well.
Indeed, the major problem in computing sampling errors for EU-SILC is the lack
of sufficient information for this purpose in the micro-data available to researchers.
We have developed approximate procedures in order to overcome these limitations
at least partially and used them to produce useful estimates of sampling errors [7].
Use has been made of these results in this paper, but it is not possible here to go into
detail concerning them.

A most useful concept for the computation, analysis and interpretation of sam-
pling errors concerns “design effect” [2]. Design effect is the ratio of the variance (v)
under the given sample design to the variance (v0/ under a simple random sample of
the same size: d2 D v=v0; d D se=se0. Proceeding from estimates of sampling error
to estimates of design effects is essential for understanding the patterns of variation
in and the determinants of magnitude of the error, for smoothing and extrapolating
the results of computations, and for evaluating the performance of the sampling
design.

Analysis of design effects into components is also needed in order to understand
from where inefficiencies of the sample arise to identify patterns of variation,
and through that to extend the results to other statistics, designs and situations.
And most importantly, with JRR (and other replication methods) the total design
effect can only be estimated by estimating (some of) its components separately
[6]. In applications for EU-SILC, there is in addition a most important and special
reason for decomposing the total design effect into its components. Because of
the limited information on sample structure included in the micro-data available to
researchers, direct and complete computation of variances cannot be done in many
cases. Decomposition of variances and design effects identifies more “portable”
components, which may be more easily imputed (carried over) from a situation
where they can be computed with the given information, to another situation
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where such direct computations are not possible. On this basis valid estimates
of variances can be produced for a wider range of statistics, thus at least partly
overcoming the problem due to lack of information on sample structure. We may
decompose total variance v (for the actual design) into the components or factors as
v D v0:d 2 D v0:.dW :dH :dD:dX/2, where dW is the effect of sample weights, dH
of clustering of individual persons into households, dD of clustering of households
into dwellings and dX that of other complexities of the design, mainly clustering
and stratification. All factors other than dX do not involve clusters or strata, but
depend only on individual elements (households, persons etc.), and the sample
weight associated with each such element in the sample. Parameter dW depends on
variability of sample weights and also on the correlation between the weights and
the variable being estimated; dH is determined by the number of and correlation
among relevant individuals in the household, and similarly dD by the number of
households per dwelling in a sample of the latter. By contrast, factor dX represents
the effect on sampling error of various complexities of the design such as multiple
stages and stratification. Hence unlike other components, dX requires information
on the sample structure linking elementary units to higher stage units and strata. This
effect can be estimated as follows using the JRR procedures. We compute variance
under two assumptions about structure of the design: variance v under the actual
design, and vR computed by assuming the design to be (weighted) simple random
sampling of the ultimate units (addresses, households, persons as the case may be).
This can be estimated from a “randomised sample” created from the actual sample
by completely disregarding its structure other than the weights attached to individual
elements. This gives .dx/2 D .v=vR/, with vR D v0:.dW :dH :dD/2.

Table 46.2 gives standard error, design effect and components of design effect for
the cross-sectional 2006 EU-SILC sample for Poland. The sample was a two-stage
stratified sample of dwellings containing 45,122 individual persons. With “%se”
(3rd and last column) we mean: for mean statistics, e.g. equivalised disposable
income—standard error expressed as percentage of the mean value; for proportions
and rates (e.g. poverty rates)—standard error given as absolute percent points. Terms
(%se actual) and (%se SRS) relate, respectively, to the variances v and v0 in the text.
Parameter dD cannot be estimated separately because of lack of information, but its
effect is small and is, in any case, already incorporated into overall design effect d .

Table 46.2 gives poverty rates defined with respect to two different “levels” of
poverty line: country level and NUTS1 level. By this we mean the population level
to which the income distribution is pooled for the purpose of defining the poverty
line. Conventionally poverty rates are defined in terms of the country poverty line
(as 60% of the national median income). The income distribution is considered at
the country level, in relation to which a poverty line is defined and the number
(and proportion) of poor computed. It is also useful to consider poverty lines at
other levels. Especially useful for constructing regional indicators is the use of
regional poverty lines, i.e. a poverty line defined for each region based only on
the income distribution within that region. The numbers of poor persons identified
with these lines can then be used to estimate regional poverty rates. They can also
be aggregated upwards to give an alternative national poverty rate—but which still
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Table 46.2 Estimation of variance and design effects at the national level. Cross-sectional
sample. Poland EU-SILC 2006

Design effect%se %se
Est. actual dX dW dH d SRS

(1) Mean equivalised
disposable income

3,704 0.57 0.94 1.22 1.74 1.99 0.29

(2) HCR—“head count” or
poverty rate, using national
poverty line

19.1 0.51 1.02 1.09 1.74 1.94 0.26

(3) HCR—“head count” or
poverty rate, using regional
(NUTS1) poverty line

19.0 0.61 1.05 1.09 1.74 1.99 0.30

remains based on the regional poverty lines. So defined, the poverty measures are
not affected by disparities in the mean levels of income among the regions. The
measures are therefore more purely relative.

46.5 Illustrative Applications of Cumulation at the Regional
Level

Table 46.3 shows results for the estimation of variance and design effect for the
cross-sectional 2006 and 2005 Poland datasets. The results at national level for the
three measures considered have been already presented in previous sections. Here
we present the results at NUTS1 regional level. All the values, except “%se SRS”
and dX , are computed at regional level in the same manner as the national level.
All factors other than dX do not involve clusters or strata but essentially depend
only on individual elements and the associated sample weights. Hence normally
they are well estimated, even for quite small regions. Factor dX.G/ for a region
(G) may be estimated in relation to dX.C/ estimated at the country (C) level on
the following lines. For large regions, each with a large enough number of PSUs
(say over 25 or 30), we may estimate the variance and hence dX.G/ directly at
the regional level. Sometimes a region involves an SRS of elements, even if the
national sample is multi-stage in other parts; here obviously, dX.G/ D 1. If the
sample design in the region is the same or very similar to that for the country as a
whole—which is quite often the case—we can take dX.G/ D dX.C/. It is common
that the main difference between the regional and the total samples is the average
cluster size (b). In this case we use d2X.G/ D 1 C .d 2X.C/ � 1/ � b.G/=b.C/. The last-
mentioned model concerns the effect of clustering and hence is meaningful only if
dX.C/ � 1, which is often but not always the case in actual computations. Values
smaller than 1.0 may arise when the effect of stratification is stronger than that of
clustering, when units within clusters are negatively correlated (which is rare, but
not impossible), or simply as a result of random variability in the empirical results.
In any case, if dX.C/ < 1, the above equation should be replaced by dX.G/ D dX.C/.
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Table 46.3 Estimation of variance and design effects at the regional (NUTS1) level. Full cross-
sectional dataset

2006 n %se� %se� 2005 n %se�

Est. persons SRS dX d actual Est. persons actual

Mean equivalised disposable income
Poland 3,704 45,122 0.29 0.94 1.99 0.57 3,040 49,044 0.62
PL1 4,236 8,728 0.65 0.94 2.06 1.34 3,455 9,871 1.32
PL2 3,889 9,273 0.63 0.94 1.78 1.13 3,143 10,181 1.22
PL3 3,162 9,079 0.64 0.94 2.00 1.28 2,618 9,674 1.32
PL4 3,530 6,912 0.73 0.94 1.90 1.39 2,977 7,195 1.84
PL5 3,906 4,538 0.90 0.94 1.96 1.77 3,164 5,066 1.85
PL6 3,419 6,592 0.75 0.94 1.90 1.43 2,816 7,057 1.58
At-risk-of-poverty rate, national poverty line
Poland 19.1 45,122 0.26 1.02 1.94 0.51 20.6 49,044 0.45
PL1 17.1 8,728 0.57 1.02 1.85 1.06 19.1 9,871 0.92
PL2 14.7 9,273 0.52 1.02 1.86 0.97 16.4 10,181 0.87
PL3 25.2 9,079 0.64 1.02 2.09 1.34 25.2 9,674 1.13
PL4 18.7 6,912 0.66 1.02 1.98 1.32 20.2 7,195 1.19
PL5 18.6 4,538 0.82 1.02 1.91 1.56 20.2 5,066 1.43
PL6 21.4 6,592 0.71 1.02 1.95 1.40 23.7 7,057 1.26
At-risk-of-poverty rate, regional poverty lines
Poland 19.0 45,122 0.30 1.05 1.99 0.61 20.5 49,044 0.51
PL1 19.8 8,728 0.70 1.04 1.90 1.34 20.9 9,871 1.07
PL2 18.5 9,273 0.67 1.04 1.91 1.27 19.0 10,181 1.05
PL3 18.6 9,079 0.68 1.06 2.14 1.45 20.8 9,674 1.21
PL4 17.5 6,912 0.76 1.05 2.04 1.54 20.1 7,195 1.35
PL5 20.9 4,538 1.00 1.04 1.97 1.96 22.2 5,066 1.68
PL6 19.1 6,592 0.80 1.05 2.00 1.60 21.3 7,057 1.37

The quantity (%se� SRS) can be directly computed at the regional level as was
done for the national level in Table 46.2. However, very good approximation can
be usually obtained very simply without involving JRR computations of variance.
The following model has been used in Table 46.3. For means (such as equivalised
income) over very similar populations, assumption of a constant coefficient of
variation is reasonable. The region-to-country ratio of relative standard errors
(expressed as percentage of the mean value as in Table 46.3) under simple random
sampling is inversely proportional to the square-root of their respective sample
sizes: .%se�SRS/2.G/ D .%se�SRS/2.C / : .n.C/=n.G//. For proportions (p, with q D
100� p), with standard error expressed in absolute percent points as in Table 46.3,
we can take: .%se�SRS/2.G/ D .%se�SRS/2.C / : .

p.G/�q.G/
p.C /�q.C / / : .n.C/=n.G//. A poverty

rate may be treated as proportions for the purpose of applying the above. We see
from Table 46.3 that the (%se�actual) at regional level is generally, for all the three
measures, 2–3 times larger than that at the national level.
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Table 46.4 Gain in precision from averaging over correlated samples. Poland NUTS1 regions

Country PL1 PL2 PL3 PL4 PL5 PL6

Mean equivalised income
(1) 0.42 0.94 0.83 0.92 1.15 1.28 1.07
(2) 1.31 1.33 1.30 1.31 1.27 1.32 1.32
(3) 0.55 1.26 1.08 1.20 1.47 1.70 1.41
(4) 0.60 1.33 1.17 1.30 1.62 1.81 1.51
(5) 14% 11% 15% 14% 18% 12% 12%
HCR national poverty line
(1) 0.34 0.70 0.65 0.88 0.89 1.06 0.94
(2) 1.18 1.18 1.17 1.18 1.18 1.17 1.19
(3) 0.40 0.83 0.76 1.03 1.05 1.23 1.12
(4) 0.48 0.99 0.92 1.24 1.26 1.50 1.33
(5) 30% 29% 31% 30% 30% 32% 29%
HCR regional poverty line
(1) 0.40 0.86 0.83 0.94 1.03 1.29 1.05
(2) 1.18 1.18 1.18 1.17 1.18 1.17 1.18
(3) 0.47 1.02 0.98 1.10 1.21 1.51 1.24
(4) 0.56 1.21 1.16 1.33 1.45 1.82 1.49
(5) 30% 29% 29% 31% 30% 31% 31%
Rows (1)–(5) have been defined in Table 46.1

Regional HCR estimates based on the national poverty line are quite different
from those based on the regional ones. Also, while individual regional estimates of
HCR using the regional poverty line are quite close to the national estimate (19.0
for 2006), the ones using the national poverty line are more variable (from 14.7 to
25.2 for 2006).

From Table 46.4 below it can be seen that generally for the HCR measures, both
for country and for NUTS1 level poverty lines, cumulating the estimates over two
waves leads to a reduction of 30% in variance compared to that for a single wave.
This reduction of the variance is smaller for mean equivalised income due to a higher
correlation between incomes for the 2 years—generally the coefficient of correlation
of the equivalised income between waves exceeds 0.70.
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47Long Memory in Integrated and Realized
Variance

Eduardo Rossi and Paolo Santucci de Magistris

Abstract
The long memory properties of the integrated and realized volatility are inves-
tigated under the assumption that the instantaneous volatility is driven by a
fractional Brownian motion. The equality of their long memory degrees is proved
in the ideal situation when prices are observed continuously. In this case, the
spectral density of the integrated and realized volatility coincide.

Keywords
Fractional Brownian Motion • Long memory • Measurement error • Realized
volatility

47.1 Introduction

An overwhelming empirical evidence supports the hypothesis that the volatility of
financial returns is a long-memory process, see e.g. [4, 7, 12, 14, 15]. More recently
[1–3, 20], and [23] report evidence of long memory in the realized variance series,
RV . As a consequence of long memory, realized volatility series are clustered and
highly predictable, given its past realizations. Therefore, it is interesting to explore a
possible explanation of long memory in volatility, in order to understand its dynamic
behavior. As a matter of fact, no theoretical justification for the presence of long
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memory in integrated variance (or integrated volatility, IV henceforth) is given from
a continuous time perspective. A possible explanation of long memory in RV is
aggregation. Hurvich and Soulier [17], referring to the result in [22], show that
RV , given by the sum of n squared returns, has long memory. A recent paper
by [18] shows that the presence of long memory in the RV can be the outcome
of the aggregation of a finite number of short-memory series and it depends on
the choice of the sampling scheme. However, the theory of RV , as an ex-post
estimator of IV , lies in the continuous time framework, while [18]’s proof is based
on the aggregation of discretely sampled squared returns. Moreover, Hurvich and
Soulier [17] do not mention the effect of the discretization of the trajectories of the
underlying continuous time process.

In this chapter we focus on the dynamic properties of ex-post estimators of IV ,
such as RV , when we assume that the trajectories of the instantaneous volatility,
�2.t/, are generated by a fractional Brownian motion of order d , see [6] and
[10, 11], encompassing the regular Brownian motion. First, we demonstrate (see
Proposition 1) that IV has the same fractional integration order of �2.t/, that is d .
Second, following Proposition 2, which features the discretization error, we are able
to characterize the spectral density ofRV for a given sampling frequency. We show
that, letting the sampling interval to zero, the spectral density of RV coincides with
that of IV , so that they are characterized by the same long memory degree.

The chapter is organized as follows. In Sect. 47.2, we prove that the IV has the
same long memory degree of the instantaneous volatility, when the latter is driven
by a fractional Brownian motion. In Sect. 47.3, we characterize the properties of the
discretization error and the spectral density of RV . Finally, Sect. 47.4 concludes.

47.2 Long Memory in Integrated Variance

Let us assume that the logarithm of the instantaneous volatility be driven by a
fractional Ornstein–Uhlenbeck process, with zero long run mean, as in [11]:

d ln �2.t/ D �k ln �2.t/dt C �dWd.t/ (47.1)

where k > 0 is the drift parameter, while � > 0 is the volatility parameter andWd.t/

is the fractional Brownian motion (fBm). The literature on long memory processes
in econometrics distinguishes between type I and type II fractional Brownian
motion. These processes have been carefully examined and contrasted by Marinucci
and Robinson [19] and Davidson and Hashimzade [13]. When considered as real
continuous processes on the unit interval, they can be defined respectively by

Bd .t/ D 1

� .1C d/

Z t

0

.t � s/ddW.s/C
Z 0

�1
Œ.t � s/d � .�s/d �dW.s/ (47.2)
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and

Wd.t/ D 1

� .1C d/

Z t

0

.t � s/ddW.s/: (47.3)

where � .�/ is the gamma function, d is the long memory parameter, andW.�/ is the
Brownian motion. In the type II case, the second term in (47.2) is omitted, it is the
truncated version of the general fBm, see [10,11] and [19]. As shown by Marinucci
and Robinson [19], the increments of (47.2) are stationary, whereas those of (47.3)
are not. When d D 0, both definitions of fBm collapse into the usual Brownian
motion.

The solution of (47.1) can be written as ln �2.t/ D R t
0

e�k.t�s/� dWd.s/. The
process ln �2.t/ has long memory of order d , with 0 < d < 1=2, when k1 D d�

k

is a nonzero constant, see [9]. This makes clear that the long memory feature of
process in (47.1) is directly linked to the characteristics of the drift term. Indeed,
when k D 0, i.e., the mean reversion is zero, the condition on k1 is no more
satisfied. When k > 0, the volatility process �2.t/ is asymptotically equivalent (in
quadratic mean) to the stationary process (see [11]) :

Q�2.t/ D exp

�Z t

�1
e�k.t�u/� dWd.u/

�
; k > 0 0 < d <

1

2
: (47.4)

where the solution is expressed using type II fBm. Comte and Renault [11] prove
that the spectral density, fQ�2 .�/, of the process Q�2.t/, is equal to c��2d for � ! 0

where c is a positive constant, so that the volatility process inherits the long-memory
property induced by the fBm.

Proposition 1. Given the process in (47.1) for the logarithm of the instantaneous
volatility, then lim�!0 �2d fIV.�/ D c 2 RC where fIV.�/ is the spectral density of
IV D R t

t�1 Q�2.u/du.

This means that the IV process has the same degree of fractional integration as the
instantaneous volatility and is covariance stationary when k > 0.1 Given this result,
in the next section, we will provide a rationale for the empirical evidence of long
memory in the ex-post realized measures of IV .

47.3 The Discretization Error

Let P.t/ be the price of an asset, where its logarithm, p.t/, follows the stochastic
differential equation:

dp.t/ D m.t/dt C �.t/dW.t/ (47.5)

1Since �2.t/ is asymptotically equivalent to Q�2.t/, then
R t
t�1 Q�2.s/ds and

R t
t�1 �

2.s/ds asymptoti-
cally coincide.
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where W.t/ is a standard Brownian motion and m.t/ is locally bounded and
predictable. �.t/ is assumed to be independent of W.t/ and càdlàg, see [5].
Meddahi [21] provide both qualitative and quantitative measures of the precision
of measuring IV by RV for a given frequency. The parameter of interest is the IV

IV D
Z 1

0

�2.u/du: (47.6)

Meddahi [21] assumes that the underlying data generating process is a continuous
time, continuous sample-path model. While RV  converges to IV t when  ! 0,
the difference may be not negligible for a given. Consider an equidistant partition
0 D t0 < t1 < : : : < tn D 1, where ti D i=n, and  D 1=n, that is the interval
is normalized to have unit length. Define ri; D pi; � p.i�1/;, the RV at
sampling frequency n is

RV  D
nX
iD1

r2i;: (47.7)

From the theory of stochastic integration, when n ! 1, then RV 
p! IV .

Following [21] we can decompose the difference between RV and IV, for a given
 as

RV 
t D

nX
iD1

�Z t�1Ci

t�1C.i�1/
�2.u/du

�
C

nX
iD1

ut�1Ci;

D IV t C ut : (47.8)

with

ut�1Ci; D .�t�1Ci;/2 C 2.�t�1Ci;"t�1Ci;/

C2
Z t�1Ci

t�1C.i�1/

�Z u

t�1C.i�1/
�.s/dW.s/

�
�.u/dWu (47.9)

where

�t�1Ci; 	
Z t�1Ci

t�1C.i�1/
m.u/du

"t�1Ci; 	
Z t�1Ci

t�1C.i�1/
�.u/dW.u/

As in [5, p. 257], we assume that the drift in the price equation is null,m.t/ D 0,
and there is no leverage effect, so that, for finite > 0, the error term can be written
as

ut�1Ci; D �2t;i;
�
z2t;i � 1	 (47.10)
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where zt;i is iiN.0; 1/ and it is independent of �2t;i;. According to [5, p. 253] this
result is valid for any stationary instantaneous volatility process with locally square
integrable sample paths and independent of the standard Brownian motion in the
price equation. The process in Eq. (47.1) fulfills these conditions.

Note that �2t;i; D R t�1Ci
t�1C.i�1/ �

2.s/ds, is the IV over the i-th subinterval of
length. Therefore,

ut D
nX
iD1

�2t;i;
�
z2t;i � 1	 : (47.11)

It is clear from the result in Proposition 1 that �2t;i; has long memory. Given the
representation of the measurement error in Eq. (47.10), we are able to characterize
the error term and the spectral density of RV , when the IV has long memory. In
particular,

Proposition 2. Let  be an integer and consider the processes p.t/, RV  and ut
defined respectively in (47.5) (47.7) and (47.11). Then:

(i) ut is dynamically uncorrelated;
(ii) The error term is uncorrelated with IV t ;

(iii) The variance of the error term is 2�1E
�
.�2t;i;/

2
�
;

(iv) Cov.RV 
t ; RV


t�h/ D Cov.IV t ; IV t�h/ 8h ¤ 0.

Given .iv/ we can characterize the spectrum of RV , which includes the variance
of ut , say

fRV .�/ D 1

2�

8<:Var.RV /C 2

1X
jD1

�
Cov.IV t ; IV t�j / cos.�j /

�9=;
D 1

2�

8<:Var.IV/C Var.ut /C 2

1X
jD1

�
Cov.IV t ; IV t�j / cos.�j /

�9=;
Therefore, given the properties of ut , the spectral density of RV 

t is

fRV .�/ D fIV.�/C fu.�/ (47.12)

where fu.�/ D 2�1EŒ.�2i;/
2�

2�
. As showed by [5], the variance of ut converges to

zero as  ! 0, so that fu.�/ ! 0. In fact, in the ideal situation where prices are
recorded continuously and without measurement errors, since lim!0 RV  D IV ,
it is evident that

lim
!0 fRV .�/ D fIV.�/

where fRV  is the spectral density of the RV . Therefore
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lim
�!0

�
lim
!0 �

2dfRV .�/

�
D lim

�!0 �
2d fIV.�/ (47.13)

so that RV is characterized by the same degree of long memory of IV when the
instantaneous volatility is generated according to (47.1). Differently from [18], we
are able to demonstrate the presence of long memory in RV from a continuous
time perspective, where the process of the instantaneous volatility is driven by a
fractional Brownian motion of order d . It is also interesting to note that the additive
noise term has a spectral density that depends on the variance of �2i;t;, and on length
of the intradaily interval, . A possible extension would be to consider also the
presence of microstructure noise, such that the measurement error does not vanish
when ! 0 and it enters in the spectral density of RV .

From a practical point of view, the presence of the measurement error, due to
the discretization effect and microstructure noise, poses problems from the point
of view of the inference on the long memory parameter, d , as noted among others
by Hurvich et al. [16] in a discrete time stochastic volatility context. Therefore,
the investigation of the finite sample performances of the estimates of the long
memory parameter of IV represents a promising aspect that will be addressed in
future research.

47.4 Conclusions

A stylized fact is that RV has long memory. In this chapter, we investigate the
dynamic properties and the source of the long-range dependence of RV . When
the instantaneous volatility is driven by a fractional Brownian motion the IV is
characterized by long-range dependence. As a consequence, the RV inherits this
property in the ideal situation where prices are observed continuously and without
microstructure noise, and the spectral densities of IV and RV coincide. In this
chapter we also focus on the dynamic properties of ex-post estimators of IV , such
as RV , when we assume that the trajectories of the instantaneous volatility, �2.t/,
are generated by a fractional Brownian motion of order d . First, we demonstrate
that IV has the same fractional integration order of �2.t/, that is d . It is therefore
natural that realized measures of volatility have the same integration order of IV
in the ideal situation where the price is recorded continuously and without market
microstructure noise. In this case, we know that RV is a consistent estimator of
IV , but also the spectral densities converge to the spectral density of IV . We also
characterize the measurement error term, due to the discretization error, when the
IV has long memory. These theoretical results represent a starting point for a refined
inference technique on the long memory parameter of the IV , based on realized
proxies. In particular, future research on this topic will study not only the effect
of microstructure noise and leverage on the dynamic behavior of RV , but also the
finite sample performance of the semi-parametric estimators of the long memory
parameter of the IV, when a measurement error contaminates the observed price.
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Proofs

Proof of Proposition 1

We know from [11] that lim�!0 �2d fQ�2.�/ D c 2 RC. Given that IV D R 1
0

Q�2.s/ds.
Following [8, p. 388] we express the integral operator in the IV definition as a simple
filter that has transfer function

T .�/ D
Z 1

0

e�i�udu D 1

.�i�/
Œe�i� � 1�:

Therefore the spectral density of IV is given by

fIV.�/ D jT .�/j2fQ�2.�/:

The limit of the spectral density of IV for � ! 0 is

lim
�!0 fIV.�/ D lim

�!0ŒjT .�/j
2fQ�2.�/�

Since jT .�/j2 D 2.1�cos .�//
j�j2 and .1 � cos .�// D j�j2=2 C O.�3/, then

lim�!0 jT .�/j2 D 1, thus

lim
�!0 �

2d fIV.�/ D lim
�!0 �

2d fQ�2.�/ D c

that is IV has the same degree of long memory of Q�2.t/.

Proof of Proposition 2

(i)

Cov.ut;i ; u

t;iCh/ D Cov.ut;i ; u


t;iCh/

D E
�
�2t;i;.z

2
t;i � 1/�2t;iCh;.z2t;iCh � 1/

	
D E

�
�2t;i;�

2
t;iCh;

	
E
�
.z2t;i � 1/.z2t;iCh � 1/

	
D E

�
�2t;i;�

2
t;iCh;

	 � 0
D 0 8h > 0:
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(ii)

Cov.IV t ; u

t / D Cov

 
IV t ;

nX
iD1

�2t;i;
�
z2t;i � 1

	!

D E

 
IV t �

nX
iD1

�2t;i;
�
z2t;i � 1	!

�E .IV t / �E
 

nX
iD1

�2t;i;
�
z2t;i � 1

	!

Given that zi;t is i.i.d. N.0; 1/, then

Cov
�
IV t ; u


t

	 D E

 
IV t �

nX
iD1

�2t;i;
�
z2t;i � 1	!

given that IV t D Pn
iD1 �2t;i;, then given the independence between zt;i

and �2t;i;, we have that E
�
IV t �Pn

iD1 �2t;i;
�
z2t;i � 1

		 D 0. So, despite the
presence of long memory in IV , the error term is uncorrelated with IV t .

(iii) Given that E
�
ut
	 D 0, then

Var
�
ut
� D E

�
.ut /

2
� D E

24 nX
iD1

�2t;i;.z
2
t;i � 1/

!235
D E

24 nX
iD1

nX
jD1

�2t;i;.z
2
t;i � 1/�2t;j;.z

2
t;j � 1/

35 :
Note that, for a generic cross product,

E
h
�2t;i;.z

2
t;i � 1/�2t;j;.z2t;j � 1/

i
D E

h�
�2t;i;�

2
t;j;

�i
E
h
.z2t;i � 1/.z2t;j � 1/

i
Given that zi;t?zj;t , then E

�
�2t;i;.z

2
t;i � 1/�2t;j;.z2t;j � 1/

�
D 0 and all the

cross products are equal to 0. Therefore

E
�
.ut /

2
� D

nX
iD1

E
h�
�2t;i;.z

2
t;i � 1/

	2i

D
nX
iD1

E
�
.�2t;i;/

2
� �E

h�
z2t;i � 1

	2i
D 2�1 �E �.�2t;i;/2� :
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Since the interval are equally spaced, then E
�
.�2t;i;/

2
� D Var.�2t;i;/ C

E.�2t;i;/
2 D Var.�2t;j;/CE.�2t;j;/

2 D E
h
.�2s;j;/

2
i

8s ¤ t and 8i ¤ j .

(iv) The autocovariance function of RV 
t is

Cov
�
RV 

t ; RV

tCh
	 D Cov

�
IV t C ut ; IV tCh C utCh

	
D E

��
IV t C ut

	 �
IV tCh C utCh

	�
�E �IV t C ut

	 �E �IV tCh C utCh
	

D E .IV t � IV tCh/CE
�
ut � utCh

	CE
�
IV t � utCh

	
CE �IV

tCh � ut
	 �E .IV t / �E .IV tCh/

D E .IV t � IV tCh/ �E .IV t / �E .IV tCh/

D Cov.IV t ; IV tCh/ 8h ¤ 0:
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