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Preface

Regression is the most popular and commonly used statistical methodology for
analyzing empirical problems in social sciences, economics, and life sciences.
Correspondingly, there exist a large variety of models and inferential tools, ranging
from conventional linear models to modern non- and semiparametric regression.
Currently available textbooks mostly focus on particular classes of regression
models, however, strongly varying in style, mathematical level, and orientation
towards theory or application. Why then another book on regression? Several
introductory textbooks are available for students and practitioners in diverse fields
of applications, but they deal almost exclusively with linear regression. On the other
hand, most texts concentrating on modern non- and semiparametric methods primar-
ily address readers with strong theoretical interest and methodological background,
presupposing a correspondingly high-level mathematical basis. They are therefore
less accessible to readers from applied fields who need to employ these methods.

The aim of this book is an applied and unified introduction into parametric, non-,
and semiparametric regression that closes the gap between theory and application.
The most important models and methods in regression are presented on a solid
formal basis, and their appropriate application is shown through many real data
examples and case studies. Availability of (user-friendly) software has been a major
criterion for the methods selected and presented. In our view, the interplay and
balance between theory and application are essential for progress in substantive
disciplines, as well as for the development of statistical methodology, motivated
and stimulated through new challenges arising from multidisciplinary collaboration.
A similar goal, but with somewhat different focus, has been pursued in the book
Semiparametric Regression by Ruppert, Wand, and Carroll (2003).

Thus, our book primarily targets an audience that includes students, teachers, and
practitioners in social, economic, and life sciences, as well as students and teachers
in statistics programs and mathematicians and computer scientists with interests in
statistical modeling and data analysis. It is written at an intermediate mathematical
level and assumes only knowledge of basic probability, calculus, and statistics.
Short parts in the text dealing with more complex details or providing additional
information start with the symbol and end with . These parts may be omitted
in a first reading without loss of continuity. The most important definitions and
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vi Preface

statements are concisely summarized in boxes. Two appendices describe required
matrix algebra, as well as elements of probability calculus and statistical inference.

Depending on the particular interests, parts of the book can be read independently
of remaining parts or also in modified order:
• Chapter 2 provides an introductory overview on parametric, non-, and semipara-

metric regression models, deliberately omitting technical details and inferential
tools.

• Chapters 1–4 can be read as an introduction to linear models.
• Linear mixed models (Sects. 7.1–7.4) can be studied immediately after

Chaps. 1–4 and before reading Chaps. 5 and 6.
• Sections 10.1 and 10.2 on linear quantile regression can be read immediately

after Chaps. 1–4.
• Chapters 1–4, Sects. 7.1–7.4, and Chaps. 8–10 can be read as an introduction to

parametric and semiparametric regression for continuous responses (including
semiparametric quantile regression).

• Chapters 1–6 comprise parametric regression models for continuous and discrete
responses.

An overview of possible reading alternatives is given in the following table (chapters
in brackets [: : : ] could be omitted):

Description Chapters

Linear models 1, 2, 3, 4, [Sects. 10.1, 10.2]
Linear mixed models 1, 2, 3, 4, Sects. 7.1–7.4, [Sects. 10.1–10.2]
Variable selection in linear models 3, Sects. 4.2–4.4
Generalized linear models 1, 2, 3, 4, 5, [6]
Generalized linear mixed models 1, 2, 3, 4, 5, [6], 7
Semiparametric regression for continuous

responses (excluding mixed models)
1, 2, 3, 4 , 8 (excl. pages 481 ff.), 9 (excl.

Sects. 9.4, 9.6.2), [10]
Semiparametric regression for continuous

responses (including mixed models)
1, 2, 3, 4, Sects. 7.1–7.4, 8, 9, [10]

Many examples and applications from diverse fields illustrate models and meth-
ods. Most of the data sets are available via the url http://www.regressionbook.org/

and the symbol added to an example indicates the availability of corresponding
software code from the web site. This facilitates independent work and studies
through real data applications and small case studies. In addition, the web site
provides information about statistical software for regression.

Highlights of the book include:
• An introduction of regression models from first principles, i.e., a complete and

comprehensive introduction to the linear model in Chaps. 3, 4, and 10
• A coverage of the entire range of regression models starting with linear models,

covering generalized linear and mixed models and also including (generalized)
additive models and quantile regression

http://www.regressionbook.org/
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• A presentation of both frequentist and Bayesian approaches to regression
• The inclusion of a large number of worked out examples and case studies
• Although the book is written in textbook style suitable for students, the material

is close to current research on advanced regression analysis
This book is partly based on a preceding German version that has been translated

and considerably extended. We are indebted to Alexandra Reuber for translating
large parts of the German version. We also thank Herwig Friedl, Christian Heumann,
Torsten Hothorn, and Helga Wagner for acting as referees of the book. They
all did a great job and were very helpful in improving the manuscript. Many
thanks to Jesus Crespo Cuaresma, Kathrin Dallmeier, Martin Feldkircher, Oliver
Joost, Franziska Kohl, Jana Lehmann, Lorenz Oberhammer, Cornelia Oberhauser,
Alexander Razen, Helene Roth, Judith Santer, Sylvia Schmidt, Nora Seiwald, Iris
Burger, Sven Steinert, Nikolaus Umlauf, Janette Walde, Elisabeth Waldmann, and
Peter Wechselberger for support and assistance in various ways. Last but not least
we thank Alice Blanck, Alphonseraja Sagayaraj, Ulrike Stricker-Komba and Niels
Peter Thomas from Springer Verlag for their continued support and patience during
the preparation of the manuscript.

München, Germany Ludwig Fahrmeir
Göttingen, Germany Thomas Kneib
Innsbruck, Austria Stefan Lang
Baton Rouge, LA Brian Marx
January 2013
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1Introduction

Sir Francis Galton (1822–1911) was a diverse researcher, who did pioneering
work in many disciplines. Among statisticians, he is especially known for the
Galton board which demonstrates the binomial distribution. At the end of the
nineteenth century, Galton was mainly interested in questions regarding heredity.
Galton collected extensive data illustrating body height of parents and their grown
children. He examined the relationship between body heights of the children and
the average body height of both parents. To adjust for the natural height differences
across gender, the body height of women was multiplied by a factor of 1.08. In
order to better examine this relationship, he listed all his data in a contingency
table (Table 1.1). With the help of this table, he was able to make the following
discoveries:
• Column-wise, i.e., for given average heights of the parents, the heights of the

adolescents approximately follow a normal distribution.
• The normal distributions in each column have a common variance.
• When examining the relationship between the height of the children and the

average height of the parents, an approximate linear trend was found with a slope
of 2/3. A slope with value less than one led Galton to the conclusion that children
of extremely tall (short) parents are usually shorter (taller) than their parents.
In either case there is a tendency towards the population average, and Galton
referred to this as regression towards the mean.

Later, Galton illustrated the data in the form of a scatter plot showing the heights
of the children and the average height of the parents (Fig. 1.1). He visually added
the trend or the regression line, which provides the average height of children as
(average) parent height is varied.

Galton is viewed as a pioneer of regression analysis, because of his regression
analytic study of heredity. However, Galton’s mathematical capabilities were
limited. His successors, especially Karl Pearson (1857–1936), Francis Ysidro
Edgeworth (1845–1926), and George Udny Yule (1871–1951) formalized his work.
Today, linear regression models are part of every introductory statistics book. In
modern terms, Galton studied the systematic influence of the explanatory variable

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9 1,
© Springer-Verlag Berlin Heidelberg 2013
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2 1 Introduction

Table 1.1 Galton heredity data: contingency table between the height of 928 adult children and
the average height of their 205 set of parents

Average height of parentsHeight of
children 64:0 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5 72.5 73.0 Total

73.7 0 0 0 0 0 0 5 3 2 4 0 14

73.2 0 0 0 0 0 3 4 3 2 2 3 17

72.2 0 0 1 0 4 4 11 4 9 7 1 41

71.2 0 0 2 0 11 18 20 7 4 2 0 64

70.2 0 0 5 4 19 21 25 14 10 1 0 99

69.2 1 2 7 13 38 48 33 18 5 2 0 167

68.2 1 0 7 14 28 34 20 12 3 1 0 120

67.2 2 5 11 17 38 31 27 3 4 0 0 138

66.2 2 5 11 17 36 25 17 1 3 0 0 117

65.2 1 1 7 2 15 16 4 1 1 0 0 48

64.2 4 4 5 5 14 11 16 0 0 0 0 59

63.2 2 4 9 3 5 7 1 1 0 0 0 32

62.2 – 1 0 3 3 0 0 0 0 0 0 7

61.7 1 1 1 0 0 1 0 1 0 0 0 5

Total 14 23 66 78 211 219 183 68 43 19 4 928

The unit of measurement is inch which has already been used by Galton (1 inch corresponds to
2.54 cm)
Source: Galton (1889)
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Fig. 1.1 Galton heredity data: scatter plot including a regression line between the height of
children and the average height of their parents

xD “average size of the parents” on the response variable yD “height of grown-up
children.” Explanatory variables are also known as independent variables, regres-
sors, or covariates. Response variables are also known as dependent variables or
target variables. The fact that the linear relationship is not exact, but rather depends
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on random errors, is a main characteristic for regression problems. Galton assumed
the most simple regression model,

y D ˇ0 C ˇ1x C ";

where the systematic component ˇ0 C ˇ1x is linear and " constitutes the random
error. While Galton determined the parameters ˇ0 and ˇ1 of the regression line
in an ad hoc manner, nowadays these regression parameters are estimated via the
method of least squares. The parameters ˇ0 and ˇ1 are estimated using the data
pairs .yi ; xi /, i D 1; : : : ; n, so that the sum of the squared deviations

nX

iD1
.yi � ˇ0 � ˇ1xi /2

of the observations yi from the regression line ˇ0 C ˇ1xi is minimized. If we apply
this principle to Galton’s data, the estimated slope of the regression line is 0.64, a
value that is fairly close to Galton’s visually determined slope of 2/3.

Interestingly, the method of least squares was already discovered prior to
Galton’s study of heredity. The first publication by the mathematician Adrien Marie
Legendre (1752–1833) appeared in 1805 making the method of least squares one of
the oldest general estimation concepts in statistics. In the eighteenth and nineteenth
century, the method was primarily used to predict the orbits of asteroids. Carl
Friedrich Gauß (1777–1855) became famous for the prediction of the orbit of the
asteroid Ceres, which was discovered in the year 1801 by the astronomer Giuseppe
Piazzi. After forty days of observation, the asteroid disappeared behind the sun.
Since an exact calculation of the asteroid’s orbit was very difficult at that time, it
was impossible to relocate the asteroid. By using the method of least squares, the
twenty-four-year-old Gauß was able to give a feasible prediction of the asteroid’s
orbit. In his book “Theoria Motus Corporum Coelestium in Sectionibus Conicis
Solem Ambientium” (1809), Gauß claimed the discovery of the method of least
squares. Sometime later, Gauß even stated to have used this method since 1795
(as an eighteen year old), which provoked a priority dispute between Legendre and
Gauß. Fact is that Gauß’s work is the basis of the modern linear regression model
with Gaussian errors.

Since the discovery of the method of least squares by Legendre and Gauß and
the first regression analysis by Francis Galton, the methodology of regression has
been improved and developed in many ways, and is nowadays applied in almost all
scientific disciplines. The aim of this book is to give a modern introduction of the
most important techniques and models of regression analysis and their application.
We will address the following models in detail:
• Regression models: In Chap. 2, we present the different model classes without

technical details; the subsequent chapters provide a thorough presentation of each
of these models.
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• Linear models: In Chaps. 3 and 4, we present a comprehensive introduction into
linear regression models, including recent developments.

• Generalized linear models: In Chaps. 5 and 6, we discuss generalized linear
models. These are especially suitable for problems where the response variables
do not follow a normal distribution, including categorical response variables or
count data.

• Mixed models: In Chap. 7, we present mixed models (models with random
effects) for clustered data. A main focus in this chapter will be the analysis of
panel and longitudinal data.

• Univariate, bivariate, and spatial smoothing: In Chap. 8, we introduce univariate
and bivariate smoothing (nonparametric regression). These semiparametric and
nonparametric methods are suitable to estimate complex nonlinear relationships
including an automatic determination of the required amount of nonlinearity.
Methods of spatial smoothing will also be discussed in detail.

• Structured additive regression: In Chap. 9, we present a unifying framework that
combines the methods presented in Chap. 8 into one all-encompassing model.
Structured additive regression models include a variety of special cases, for
example, nonparametric and semiparametric regression models, additive models,
geoadditive models, and varying-coefficient models. This chapter also illustrates
how these models can be put into practice using a detailed case study.

• Quantile regression: Chapter 10 presents an introduction to quantile regression.
While the methods of the previous chapters are more or less restricted to
estimating the (conditional) mean depending on covariates, quantile regression
allows to estimate the (conditional) quantiles of a response variable depending
on covariates.
For the first time, this book presents a comprehensive and practical presentation

of the most important models and methods of regression analysis. Chapter 2 is
especially innovative, since it illustrates all model classes in a unified setting without
focusing on the (often complicated) estimation techniques. The chapter gives the
reader an overview of modern methods of regression and, at the same time, serves
as a guide for choosing the appropriate model for each individual problem.

The following section illustrates the versatility of modern regression models to
examine scientific questions in a variety of disciplines.

1.1 Examples of Applications

This book illustrates models and techniques of regression analysis via several
applications taken from a variety of disciplines. The following list gives an
overview:
• Development economics: Analysis of socioeconomic determinants of childhood

malnutrition in developing countries
• Hedonic prices: Analysis of retail prices of the VW-Golf model
• Innovation research: Examination of the probability of opposition against patents

granted by the European patent office



1.1 Examples of Applications 5

• Credit scoring: Analysis of the creditability of private bank customers
• Marketing research: Analysis of the relationship between the weekly unit sales

of a product and sales promotions, particularly price variations
• Rent index: Analysis of the dependence between the monthly rent and the type,

location, and condition of the rented apartment
• Calculation of risk premium: Analysis of claim frequency and claim size of motor

vehicle insurance in order to calculate the risk premium
• Ecology: Analysis of the health status of trees in forests
• Neuroscience: Determination of the active brain area when solving certain

cognitive tasks
• Epidemiologic studies and clinical trials:

– Impact of testosterone on the growth of rats
– Analysis of the probability of infection after Caesarean delivery
– Study of the impairment to pulmonary function
– Analysis of the life span of leukemia patients

• Social science: Analysis of speed dating data
Some of the listed examples will play a central role in this book and will now be

discussed in more detail.

Example 1.1 Munich Rent Index
Many cities and communities in Germany establish rent indices in order to provide the renter
and landlord with a market review for the “typical rent for the area.” The basis for this index
is a law in Germany that defines the “typical rent for the area” as the common remuneration
that has been stipulated or changed over the last few years for price-maintained living area
of comparable condition, size, and location within a specific community. This means that the
average rent results from the apartment’s characteristics, size, condition, etc. and therefore
constitutes a typical regression problem. We use the net rent—the monthly rental price,
which remains after having subtracted all running costs and incidentals—as the response
variable. Alternatively, we can use the net rent per square meter as the response.

Within the scope of this book and due to data confidentiality, we confine ourselves to
a fraction of the data and variables, which were used in the rent index for Munich in the
year 1999. We use the 1999 data since more recent data is either not publicly available
or less adequate for illustration purposes. The current rent index of Munich including
documentation can be found at www.mietspiegel.muenchen.de (in German only).

Table 1.2 includes names and descriptions of the variables used in the subsequent
analyses. The data of more than 3,000 apartments were collected by representative random
sampling.

The goal of a regression analysis is to model the impact of explanatory variables (living
area, year of construction, location, etc.) on the response variable of net rent or net rent per
square meter. In a final step, we aim at representing the estimated effect of each explanatory
variable in a simpler form by appropriate tables in a brochure or on the internet.

In this book, we use the Munich rent index data mainly to illustrate regression models
with continuous responses (see Chaps. 2–4, 9, and 10). In doing so, we use simplified
models for illustration purposes. This implies that the results do not always correspond
to the official rent index. 4

Example 1.2 Malnutrition in Zambia
The World Health Organization (WHO) has decided to conduct representative household
surveys (demographic and health surveys) in developing countries on a regular basis.
Among others, these surveys consist of information regarding malnutrition, mortality, and

www.mietspiegel.muenchen.de
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Table 1.2 Munich rent index: description of variables including summary statistics

Mean/ Std.-
Variable Description frequency in % dev. Min/max

rent Net rent per month
(in Euro)

459.43 195.66 40.51/1,843.38

rentsqm Net rent per month per
square meter (in Euro)

7.11 2.44 0.41/17.72

area Living area in square meters 67.37 23.72 20/160
yearc Year of construction 1,956.31 22.31 1918/1997
location Quality of location

according to an expert
assessment

1 D average location 58.21
2 D good location 39.26
3 D top location 2.53

bath Quality of bathroom
0 D standard 93.80
1 D premium 6.20

kitchen Quality of kitchen
0 D standard 95.75
1 D premium 4.25

cheating Central heating
0 D without central heating 10.42
1 D with central heating 89.58

district District in Munich

health risks for children. The American institute Macro International collects data from over
50 countries. This data is freely available at www.measuredhs.com for research purposes.
In this book, we look at an exemplary profile of a data set for Zambia taken in the year 1992
(4,421 observations in total). The Republic of Zambia is located in the south of Africa and
is one of the poorest and most underdeveloped countries of the world.

One of the most serious problems of developing countries is the poor and often
catastrophic nutritional condition of a high proportion of the population. Immediate
consequences of malnutrition are reduced productivity and high mortality. Within the scope
of this book, we will analyze the nutritional condition of children who are between 0 and
5 years old. The nutritional condition of children is usually determined by an anthropometric
measure called Z-score. A Z-score compares the anthropometric status of a child, for
example, a standardized age-specific body height, with comparable measures taken from
a reference population. Until the age of 24 months, this reference population is based on
white US-American children from wealthy families with a high socioeconomic status. After
24 months, the reference population changes and then consists of a representative sample
taken from all US-American children. Among several possible anthropometric indicators,
we use a measure for chronic malnutrition, which is based on body height as indication for
the long-term development of the nutritional condition. This measure is defined as

zscorei D hi � mh

�
;

for a child i , where hi represents the height of the child, mh represents the median height
of children belonging to the reference population of the same age group, and � refers to the
corresponding standard deviation for the reference population.

www.measuredhs.com
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Table 1.3 Malnutrition in Zambia: description of variables including summary statistics

Mean/ Std-
Variable Description frequency in % dev. Min/max

zscore Child’s Z-score �171.19 139.34 �600/503
c gender Gender

1 D male 49.02
0 D female 50.98

c breastf Duration of breast-feeding in months 11.11 9.42 0/46
c age Child’s age in months 27.61 17.08 0/59
m agebirth Mother’s age at birth in years 26.40 6.87 13.16/48.66
m height Mother’s height in centimeter 158.06 5.99 134/185
m bmi Mother’s body mass index 21.99 3.32 13.15/39.29
m education Mother’s level of education

1 D no education 18.59
2 D primary school 62.34
3 D secondary school 17.35
4 D higher education 1.72

m work Mother’s work status
1 D mother working 55.25
0 D mother not working 44.75

region Region of residence in Zambia
1 D Central 8.89
2 D Copperbelt 21.87
3 D Eastern 9.27
4 D Luapula 8.91
5 D Lusaka 13.78
6 D Northern 9.73
7 D North western 5.88
8 D Southern 14.91
9 D Western 6.76

district District of residence in Zambia (55 districts)

The primary goal of the statistical analysis is to determine the effect of certain
socioeconomic variables of the child, the mother, and the household on the child’s nutri-
tional condition. Examples for socioeconomic variables are the duration of breastfeeding
(c breastf ), the age of the child (c age), the mother’s nutritional condition as measured by
the body mass index (m bmi/, and the mother’s level of education as well as her work status
(m education and m work). The data record also includes geographic information such as
region or district where the mother’s place of residence is located. A description of all
available variables can be found in Table 1.3.

With the help of the regression models presented in this book, we will be able to pursue
the aforementioned goals. Geoadditive models (see Sect. 9.2) are employed in particular.
These also allow an adequate consideration of spatial information in the data. The data are
analyzed within a comprehensive case study (see Sect. 9.8), which illustrates in detail the
practical application of many techniques and methods presented in this book. 4
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Table 1.4 Patent opposition: description of variables including summary statistics

Mean/ Std-
Variable Description frequency in % dev. Min/max

opp Patent opposition
1 D yes 41.49
0 D no 58.51

biopharm Patent from biotech/pharma
sector

1 D yes 44.31
0 D no 55.69

ustwin US twin patent exists
1 D yes 60.85
0 D no 39.15

patus Patent holder from the USA
1 D yes 33.74
0 D no 66.26

patgsgr Patent holder from Germany,
Switzerland, or Great
Britain

1 D yes 23.49
0 D no 76.51

year Grant year
1980 0.18
:
:
:

:
:
:

1997 1.62
ncit Number of citations for the

patent
1.64 2.74 0/40

ncountry Number of designated states
for the patent

7.8 4.12 1/17

nclaims Number of claims 13.13 12.09 1/355

Example 1.3 Patent Opposition
The European Patent Office is able to protect a patent from competition for a certain period
of time. The Patent Office has the task to examine inventions and to declare patent if
certain prerequisites are fulfilled. The most important requirement is that the invention
is something truly new. Even though the office examines each patent carefully, in about
80 % of cases competitors raise an objection against already assigned patents. In the
economic literature the analysis of patent opposition plays an important role as it allows
to (indirectly) investigate a number of economic questions. For instance, the frequency of
patent opposition can be used as an indicator for the intensity of the competition in different
market segments.

In order to analyze objections against patents, a data set with 4,866 patents from the
sectors biotechnology/pharmaceutics and semiconductor/computer was collected. Table 1.4
lists the variables contained in this data set. The goal of the analysis is to model the
probability of patent opposition, while using a variety of explanatory variables for the binary
response variable “patent opposition” (yes/no). This corresponds to a regression problem
with a binary response.
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A possible explanatory variable is how often a patent has been cited in succeeding patents
(variable ncit). Citations of patents are somewhat comparable to citations of scientific
papers. Empirical experience and economic arguments indicate that the probability of an
objection against a patent increases the more often it is cited. Regression models for binary
response variables can formulate and examine this particular and other hypotheses. In this
book the data set on patent opposition is primarily used to illustrate regression models with
binary responses; see Chaps. 2 and 5. 4

Example 1.4 Forest Health Status
Knowledge about the health status of trees in a forest and its influencing factors is important
from an ecological and economical point of view. This is the reason why Germany (and
many other countries) conducts annual surveys regarding the condition of the forest. The
data in our example come from a specific project in the forest of Rothenbuch (Spessart),
which has been carried out by Axel Göttlein (Technical University, Munich) since 1982.
In comparison to the extensive official land surveys, the observations, i.e., the locations of
the examined trees, are much closer to each other. Figure 1.2 visualizes the 83 examined
locations in Rothenbuch forest. Five tree species are part of this survey: beech, oak, spruce,
larch, and pine. Here we will restrict ourselves to beech trees. Every year, the condition of
beech trees is categorized by the response variable “defoliation” (defol) into nine ordinal
categories 0 %, 12.5 %, 25 %, 37.5 %, 50 %, 62.5 %, 75 %, 87.5 %, and 100 %. Whereas the
category 0 % signifies that the beech tree is healthy, the category 100 % implies that the tree
is dead.

In addition to the (ordinal) response variable, explanatory variables are collected every
year as well. Table 1.5 includes a selection of these variables including summary statistics.
The mean values and frequencies (in percent) have been averaged over the years (1982–
2004) and the observation points.

The goal of the analysis is to determine the effect of explanatory variables on the degree
of defoliation. Moreover, we aim at quantifying the temporal trend and the spatial effect of
geographic location, while adjusting for the effects of the other regressors. Additionally to
the observed locations Fig. 1.2 presents the temporal trend of relative frequencies for the
degree of defoliation of three (aggregated) categories.
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Table 1.5 Forest health status: description of variables including summary statistics

Mean/ Std-
Variable Description frequency in % dev. Min/max

id Location identification
number

year Year of data collection 1,993.58 6.33 1983/2004
defol Degree of defoliation, in

nine ordinal categories
0 % 62.07
12.5 % 24.26
25 % 7.03
37.5 % 3.79
50 % 1.62
62.5 % 0.89
75 % 0.33
87.5 % 0.00
100 % 0.00

x x-coordinate of location
y y-coordinate of location
age Average age of trees at the

observation plot in years
106.17 51.38 7/234

canopyd Canopy density in percent 77.31 23.70 0/100
gradient Gradient of slope in percent 15.45 11.27 0/46
alt Altitude above see level in

meter
387.04 58.86 250/480

depth Soil depth in cm 24.63 9.93 9/51
ph pH-value in 0–2 cm depth 4.29 0.34 3.28/6.05
watermoisture Level of soil moisture in

three categories
1 D moderately dry 11.04
2 D moderately moist 55.16
3 D moist or temporarily

wet
33.80

alkali Fraction of alkali ions in
soil in four categories

1 D very low 19.63
2 D low 55.10
3 D moderate 17.18
4 D high 8.09

humus Thickness of humus layer in
five categories

0 D 0 cm 25.71
1 D 1 cm 28.56
2 D 2 cm 21.58
3 D 3 cm 14.84
4 D more than 3 cm 9.31

(continued)
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Table 1.5 (continued)

Mean/ Std-
Variable Description frequency in % dev. Min/max

type Type of forest
0 D deciduous forest 50.31
1 D mixed forest 49.69

fert Fertilization
0 D not fertilized 80.87
1 D fertilized 19.13

To analyze the data we apply regression models for multi-categorical response variables
that can simultaneously accommodate nonlinear effects of the continuous covariates, as well
as temporal and spatial trends. Such complex categorical regression models are illustrated
in Chaps. 6 and 9. 4
The next section shows the first exploratory steps of regression analysis, which

are illustrated using the data on the Munich rent index and the Zambia malnutri-
tion data.

1.2 First Steps

1.2.1 Univariate Distributions of the Variables

The first step when conducting a regression analysis (and any other statistical
evaluation) is to get an overview of the variables in the data set. We pursue the
following goals for the initial descriptive and graphical univariate analysis:
• Summary and exploration of the distribution of the variables
• Identification of extreme values and outliers
• Identification of incorrect variable coding
To achieve these goals, we can use descriptive statistics, as well as graphical visu-
alization techniques. The choice of appropriate methods depends on the individual
type of variable. In general, we can differentiate between continuous and categorical
variables.

We can get a first overview of continuous variables by determining some
descriptive summary statistics, in particular the arithmetic mean and the median as
typical measures of location, the standard deviation as a measure of variation, and
the minimum and maximum of variables. Furthermore, it is useful to visualize the
data. Histograms and box plots are most frequently used, but smooth nonparametric
density estimators such as kernel densities are useful alternatives to histograms.
Many introductory books, e.g., Veaux, Velleman, and Bock (2011) or Agresti and
Finlay (2008), give easily accessible introductions to descriptive and exploratory
statistics.
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Fig. 1.3 Munich rent index: histograms and kernel density estimators for the continuous variables
rent, rentsqm, area and yearc

Compared to continuous variables, it is easier to get an overview of the
distribution of categorical variables. Here, we can use simple frequency tables or
their graphical counterparts, particularly bar graphs.

Example 1.5 Munich Rent Index—Univariate Distributions
Summary statistics for the continuous variables rent, rentsqm, area, and yearc are already
listed in Table 1.2 (p. 6). Figure 1.3 displays histograms and kernel density estimators
for these variables. To give an example, we interpret summary statistics and graphical
representations for the two variables “net rent” and “year of construction”:

The monthly net rent roughly varies between 40 and 1,843 Euro with an average rent of
approximately 459 Euro. For the majority of apartments, the rent varies between 50 and
1,200 Euro. For only a few apartments the monthly rent is higher than 1,200 Euro. This
implies that any inference from a regression analysis regarding expensive apartments is
comparably uncertain, when compared to the smaller and more modest sized apartments.
Generally, the distribution of the monthly net rent is asymmetric and skewed towards the
right.

The distribution of the year of construction is highly irregular and multimodal, which
is in part due to historical reasons. Whereas the data basis for apartments for the years of
the economic crises during the Weimar Constitution and the Second World War is rather
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limited, there are much more observations for the later years of reconstruction (mode near
1960). Starting in the mid-1970s the construction boom stopped again. Altogether the data
range from 1918 until 1997. Obviously, the 1999 rent index does not allow us to draw
conclusions about new buildings after 1997 since there is a temporal gap of more than one
year between data collection and the publication of the rent index. Particularly striking is
the relative accumulation of apartments constructed in 1918. However, this is a data artifact
since all apartments that were built prior to 1918 are antedated to the year 1918.

We leave the interpretation of the distribution of the other continuous variables in the data
set to the reader.

Table 1.2 also shows frequency tables for the categorical variables. We observe, for
example, that most of the apartments (58 %) are located in an average location. Only about
3 % of the apartments are to be found in top locations. 4

Example 1.6 Malnutrition in Zambia—Univariate Distributions
In addition to Table 1.3 (p. 7), Fig. 1.4 provides a visual overview of the distribution of
the response variable and selected continuous explanatory variables using histograms and
kernel density estimators. We provide detailed interpretations in our case study in Sect. 9.8.
Note that for some variables (duration of breast-feeding and child’s age in months) the
kernel density estimate shows artifacts in the sense that the density is positive for values
lower than zero. However, for the purpose of getting an overview of the variables, this
somewhat unsatisfactory behavior is not problematic. 4

1.2.2 Graphical Association Analysis

In a second step, we can graphically investigate the relationship between the
response variable and the explanatory variables, at least for continuous responses.
By doing so, we get a first overview regarding the type (e.g., linear versus nonlinear)
and strength of the relationship between the response variable and the explanatory
variables. In most cases, we focus on bivariate analyses (between the response
and one explanatory variable). In the following we assume a continuous response
variable.

The appropriateness of graphical tools depends on whether the explanatory
variable is continuous or categorical.

Continuous Explanatory Variables
As already used by Galton at the end of the nineteenth century, simple scatter plots
can provide useful information about the relationship between the response variable
and the explanatory variables.

Example 1.7 Munich Rent Index—Scatter Plots
Figure 1.5 shows for the rent index data scatter plots between net rent or net rent per square
meter and the continuous explanatory variables living area and year of construction. A first
impression is that the scatter plots are not very informative which is a general problem with
large sample sizes (in our case more than 3,000 observations). We do find some evidence
of an approximately linear relationship between net rent and living area. We also notice
that the variability of the net rent increases with an increased living area. The relationship
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Fig. 1.4 Malnutrition in Zambia: histograms and kernel density estimators for the continuous
variables

between net rent per square meter and living area is more difficult to determine. Generally
the net rent per square meter for larger apartments seems to decrease. It is however difficult
to assess the type of relationship (linear or nonlinear). The relationship of either of the two
response variables and the year of construction is again hardly visible (if it exists at all), but
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Fig. 1.5 Munich rent index: scatter plots between net rent (left) / net rent per sqm (right) and the
covariates area and year of construction

there is at least evidence for a monotonic increase of rents (and rents per square meter) for
flats built after 1948. 4
The preceding example shows that for large sample sizes simple scatter plots do

not necessarily contain much information. In this situation, it can be useful to cluster
the data. If the number of different values of the explanatory variable is relatively
small in comparison to the sample size, we can summarize the response with the
mean value and the corresponding standard deviation for each observed level of
the explanatory variable and then visualize these in a scatter plot. Alternatively we
could visualize the cluster medians together with the 25 % and 75 % quantiles (or
any other combination of quantiles). The resulting data reduction often makes it
easier to detect relationships. If the number of different levels of the explanatory
variables is large relative to the sample size, it can be useful to cluster or categorize
the data. More specifically, we divide the range of values of the explanatory variable
into small intervals and calculate mean and standard deviation of the aggregated
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Fig. 1.6 Munich rent index: average net rent (left) and net rent per sqm (right) plus/minus one
standard deviation versus area and year of construction

response for each interval separately. The cluster mean plus/minus one standard
deviation is next combined into a scatter plot.

Example 1.8 Munich Rent Index—Clustered Scatter Plots
Living area and year of construction are measured in square meters and years, respectively.
In both cases the units of measurement provide a natural basis for clustering. It is thus
possible to calculate and visualize the mean values and standard deviations for either of
the net rent responses clustered either by living area or year of construction (see Fig. 1.6).
Compared to Fig. 1.5 it is now easier to make statements regarding possible relationships
that may exist. If we take, e.g., the net rent per square meter as the response variable, a clear
nonlinear and monotonically decreasing relationship with the living area becomes apparent.
For large apartments (120 square meters or larger), we can also see a clear increase in the
variability of average rents.

It also appears that there exists a relationship between the year of construction and the
net rent per square meter, even though the relationship seems to be much weaker. Again the
relationship is nonlinear: for apartments that were constructed prior to 1940, the rent per
square meter is relatively constant (about 6 Euro). On average the rent appears somewhat
lower for the few apartments from the sample taken from the years of the war. After
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Fig. 1.8 Malnutrition in Zambia: different visualizations of the relationship between Z-score and
child’s age

1945, the average rent per square meter shows a linearly increasing trend with year of
construction. 4

Categorical Explanatory Variables
Visualizing the relationship between a continuous response variable and categorical
explanatory variables can be obtained by summarizing the response variable at
each level of the categorical variable. Histograms, box plots, and (kernel) density
estimators are all adequate means of illustration. In many cases, box plots are best
suited as differences in mean values (measured through the median) can be well
detected.
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Fig. 1.9 Malnutrition in Zambia: visualization of the relationship between Z-score and selected
explanatory variables

Example 1.9 Munich Rent Index—Categorical Explanatory Variables
Figure 1.7 illustrates the distribution of the net rent per square meter as the location
(average, good, top) of the apartment is varied. The left panel uses box plots for illustration,
and the right panel uses kernel density estimators. The box plots clearly show how the
median rent (as well as the variation) increases as the location of the apartment improves.
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Even though the smooth density estimators offer similar information, the visualization of
these findings is not as obvious as for box plots. 4

Example 1.10 Malnutrition in Zambia—Graphical Association Analysis
Figures 1.8 and 1.9 offer a graphical illustration of the relationship between Z-scores
and various explanatory variables. Similar to the rent data, the relationship between the
Z-score and the age of the child is difficult to visualize (Fig. 1.8, left panel). A better
choice of illustration is obtained when clustering the Z-scores by monthly age of the
children (0 to 59 months). For each month, the mean plus/minus standard deviation of
Z-scores is computed and plotted (right panel), which provides a much clearer picture of
the relationship between Z-score and age. This type of illustration is also used for the other
continuous explanatory variables, see Fig. 1.9. We will provide detailed interpretations of
Figs. 1.8 and 1.9 in our case study on malnutrition in Zambia in Sect. 9.8. 4

1.3 Notational Remarks

Before we give an overview of regression models in the next chapter some remarks
on notation are in order.

In introductory textbooks on statistics authors usually distinguish notationally
between random variables and their realizations (the observations). Random vari-
ables are denoted by upper case letters, e.g., X , Y , while realizations are denoted
by lower case letters, e.g., x, y. However, in more advanced textbook, in particular
books on regression analysis, random variables and their realizations are usually not
distinguished and both denoted by lower case letters, i.e., x, y. It then depends on
the context whether y denotes the random variable or the realization. In this book we
will keep this convention with the exception of Appendix B which introduces some
concepts of probability and statistics. Here we will distinguish between random
variables and realizations notationally in the way described above, i.e., by denoting
random variables as capital letters and realizations as lower case letters.



2Regression Models

2.1 Introduction

All case studies that have been discussed in Chap. 1 have one main feature in
common: We aim at modeling the effect of a given set of explanatory variables
x1; : : : ; xk on a variable y of primary interest. The variable of primary interest y
is called response or dependent variable and the explanatory variables are also
called covariates, independent variables, or regressors. The various models differ
mainly through the type of response variables (continuous, binary, categorical, or
counts) and the different kinds of covariates, which can also be continuous, binary,
or categorical. In more complex situations, it is also possible to include time scales,
variables to describe the spatial distribution or geographical location, or group
indicators.

A main characteristic of regression models is that the relationship between the
response variable y and the covariates is not a deterministic function f .x1; : : : ; xk/
of x1; : : : ; xk (as often is the case in classical physics), but rather shows random
errors. This implies that the response y is a random variable, whose distribution
depends on the explanatory variables. Galton’s data set on heredity exemplified that,
even though we know the exact height of the parents, we are unable to predict the
exact height of their children. We can rather only estimate the average size of the
children and the degree of dispersion from the mean value. Similar statements are
valid for all problems discussed in Chap. 1. One main goal of regression is to analyze
the influence of the covariates on the mean value of the response variable. In other
words, we model the (conditional) expected value E.y j x1; : : : ; xk/ of y depending
on the covariates. Hence, the expected value is a function of the covariates:

E.y j x1; : : : ; xk/ D f .x1; : : : ; xk/:

It is then possible to decompose the response into

y D E.y j x1; : : : ; xk/C " D f .x1; : : : ; xk/C ";

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9 2,
© Springer-Verlag Berlin Heidelberg 2013
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where " is the random deviation from the expected value. The expected value
E.y j x1; : : : ; xk/ D f .x1; : : : ; xk/ is often denoted as the systematic component of
the model. The random deviation " is also called random or stochastic component,
disturbance, or error term. In many regression models, in particular in the classical
linear model (see Sect. 2.2 and Chap. 2), it is assumed that the error term does not
depend on covariates. This may not be true, however, in general. The primary goal
of regression analysis is to use the data yi ; xi1; : : : ; xik , i D 1; : : : ; n, to estimate
the systematic component f , and to separate it from the stochastic component ".

The most common class is the linear regression model given by

y D ˇ0 C ˇ1x1 C : : :C ˇkxk C ":

Here, the function f is linear so that

E.y j x1; : : : ; xk/ D f .x1; : : : ; xk/ D ˇ0 C ˇ1x1 C : : :C ˇkxk

holds, i.e., the (conditional) mean of y is a linear combination of the covariates.
Inserting the data yields the n equations

yi D ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i ; i D 1; : : : ; n;

with unknown parameters or regression coefficients ˇ0; : : : ; ˇk . The linear regres-
sion model is especially applicable when the response variable y is continuous
and shows an approximately normal distribution (conditional on the covariates).
More general regression models are, e.g., required when either the response
variable is binary, the effect of covariates is nonlinear, or if spatial or cluster-
specific heterogeneity has to be considered. Starting from the classical linear
regression model, the following sections of this chapter describe regression models
of increasing flexibility and complexity. Examples taken from various fields of
application provide an overview of their usefulness. A more detailed presentation
of the different regression models, and especially the corresponding statistical
inference techniques, will be given in the chapters to follow.

2.2 Linear Regression Models

2.2.1 Simple Linear Regression Model

Example 2.1 Munich Rent Index—Simple Linear Regression
We start by analyzing only the subset of apartments built after 1966. This sample is divided
into three location strata: average, good, and top location. The left panel of Fig. 2.1 shows
the scatter plot between the response variable net rent and the explanatory variable living
area for apartments in average location. The scatter plot displays an approximate linear
relationship between rent and area, i.e.,
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Fig. 2.1 Munich rent index: scatter plot between net rent and area for apartments in average
location built after 1966 (left panel). In the right panel, a regression line is additionally included

renti D ˇ0 C ˇ1 � areai C "i : (2.1)

The errors "i are random deviations from the regression line ˇ0Cˇ1 �area. Since systematic
deviations from zero are already included in the parameter ˇ0, E("i ) D 0 can be assumed.
An alternative formulation of Eq. (2.1) is

E.rent j area/ D ˇ0 C ˇ1 � area:

This means that the expected net rent is a linear function of the living area. 4
The example is a special case of the simple linear regression model

y D ˇ0 C ˇ1x C ";

where the expected value E.y j x/ D f .x/ is assumed to be linear in the general
relationship

y D f .x/C " D E.y j x/C ":

This implies that E.y j x/ D f .x/ D ˇ0 C ˇ1x. More specifically, for the standard
model of a simple linear regression, we assume

yi D ˇ0 C ˇ1xi C "i ; i D 1; : : : ; n; (2.2)

with independent and identically distributed errors "i , such that

E."i / D 0 and Var."i / D �2:

The property of constant variance �2 across errors "i is also called homoscedas-
ticity. In particular, this implies that the errors are independent of the covariates.
When constructing confidence intervals and statistical tests, it is convenient if the
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2.1 Standard Model of Simple Linear Regression

Data

.yi ; xi /, i D 1; : : : ; n, with continuous variables y and x.

Model
yi D ˇ0 C ˇ1xi C "i ; i D 1; : : : ; n :

The errors "1; : : : ; "n are independent and identically distributed (i.i.d.) with

E."i / D 0; Var."i / D �2:

We can interpret the estimated regression line Of .x/ D Ǒ
0 C Ǒ

1x as an

estimate 2E.yjx/ for the conditional expected value of y given the covariate
value x. We can, thus, predict y through Oy D Ǒ

0 C Ǒ
1x.

additional assumption of Gaussian errors is reasonable:

"i � N.0; �2/:

In this case, the observations of the response variable follow a (conditional) normal
distribution with

E.yi / D ˇ0 C ˇ1xi ; Var.yi / D �2;

and the yi are (conditionally) independent given covariate values xi . The unknown
parameters ˇ0 and ˇ1 are estimated according to the method of least squares (LS):
the estimated values Ǒ

0 and Ǒ
1 are determined as the minimizers of the sum of the

squared deviations

LS.ˇ0; ˇ1/ D
nX

iD1
.yi � ˇ0 � ˇ1xi /2

for given data (yi ; xi ), i D 1; : : : ; n. Section 3.2 will present the method of least
squares in detail. Inserting Ǒ

0, Ǒ
1 into the conditional mean, the estimated regression

line
Of .x/ D Ǒ

0 C Ǒ
1x

results. The regression line is to be understood as an estimate 2E.yjx/ for the
conditional mean of y given the covariate value x. Thus, the regression line can
also be used to predict y for a given x. The predicted value of y is usually denoted
by Oy, i.e., Oy D Ǒ

0 C Ǒ
1x.
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Fig. 2.2 Munich rent index: scatter plots between net rent per square meter and area. Included is
the estimated effect Of of living area for a linear (left) and reciprocal (right) area effect

Example 2.2 Munich Rent Index—Simple Linear Regression
We illustrate the simple linear regression model using the data shown in Fig. 2.1 and the
corresponding model (2.1). The data gives rise to doubts about the assumption of equal
variances Var."i / D Var.yi / D �2 across observations since variability in rent seems
to increase as living area increases. For the moment, we will ignore this problem, but
Sect. 4.1.3 will illustrate how to deal with problems associated with unequal variances.
See also Sect. 2.9.2 and Chap. 10 on quantile regression. According to the method of least
squares, the parameter estimates for model (2.1) are Ǒ

0 D 130:23 and Ǒ
1 D 5:57 implying

the estimated regression line

Of .area/ D 130:23C 5:57 � area

illustrated in the right panel of Fig. 2.1. The slope parameter Ǒ
1 D 5:57 can be interpreted as

follows: If the living area increases by 1 m2, the rent increases about 5.57 Euro on average.
If we choose the rent per square meter instead of the rent as response variable, the scatter

plot illustrated in Fig. 2.2 (left) results. It is quite obvious that the relationship between
rent per square meter and living area is nonlinear. This is also supported by the estimated
regression line

Of .area/ D 10:5� 0:041 � area:

The fit to the data is poor for small and large living area. A better fit can be achieved by
defining the new explanatory variable

x D 1

area

that yields a simple linear regression of the form

rentsqmi D ˇ0 C ˇ1xi C "i D ˇ0 C ˇ1
1

areai
C "i : (2.3)
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With the help of the transformed covariate, Eq. (2.3) is again a simple linear regression, and
we can still use the method of least squares to estimate the parameters ˇ0 and ˇ1 of the
function

f .area/ D ˇ0 C ˇ1 � 1

area
:

We obtain
Of .area/ D 5:44C 138:32 � 1

area
:

The corresponding curve in Fig. 2.2 (right) shows a better fit to the data. It reveals that on
average the net rent per square meter declines nonlinearly as living area increases. A given
living area, e.g., 30 m2, corresponds to an estimated average rent per square meter of

1rentsqm D 5:44C 138:32 � 1

area
:

If the living area increases by 1 m2, the average rent decreases and is now given by

1rentsqm D 5:44C 138:32
1

area C 1
:

Figure 2.2 (right) shows that the decline is nonlinear. It can be computed by inserting the
specific values (e.g., 30 and 31 m2):

1rentsqm.30/� 1rentsqm.31/ D 138:32=30 � 138:32=31 � 0:15Euro.

An apartment of 60 m2 shows a decline of the average rent per square meter by

1rentsqm.60/� 1rentsqm.61/ � 0:038Euro :

4
In general, the application of a linear regression model requires a relationship

between the response and the covariate that is linear in the coefficients ˇ0 and ˇ1.
The regressor x- and also the response y-can be transformed to achieve linearity in
the parameters, as has been illustrated in the above example. However, the question
remains how to find an appropriate transformation for the covariate. Nonparametric
regression models offer flexible and automatic approaches; see Sect. 2.5 for a first
impression and Chap. 8 for full details.

2.2.2 Multiple Linear Regression

Example 2.3 Munich Rent Index—Rent in Average and Good Locations
We now add apartments in good location to the analysis. Figure 2.3 shows the data for rents
in average and good locations. In addition to the estimated regression line for apartments
in average location, there is another estimated regression line for apartments in a good
location. Alternatively, both strata can be analyzed within a single model that shows parallel
regression lines. This can be achieved through the model

renti D ˇ0 C ˇ1 areai C ˇ2 glocationi C "i : (2.4)
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Fig. 2.3 Munich rent index: The left panel shows a scatter plot between net rent and area for
apartments in average (circles) and good location (plus signs). The right panel displays separate
regression lines for apartments in average (solid line) and good location (dashed line)

The variable glocation is a binary indicator variable

glocationi D
(
1 if the i th apartment is in good location,

0 if the i th apartment is in average location.

The least squares method produces the estimated regression equation

crent D 112:69C 5:85 � area C 57:26 � glocation:

Because of the 1/0 coding of glocation, we obtain the equivalent formulation

crent D
(
112:69C 5:85 � area for average location,

169:95 C 5:85 � area for good location.

Figure 2.4 shows both parallel lines. The coefficients can be interpreted as follows:
• For apartments in a good and average location, the increase of living area by 1 m2 leads

to an average increase of rent of about 5.85 Euro.

• The average rent for an apartment in a good location is about 57.26 Euro higher than for
an apartment of the same living area in an average location. 4

Model (2.4) is a special case of a multiple linear regression model for k regressors
or covariates x1; : : : ; xk :

yi D ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i ;

where xij is the value of the j th covariate, j D 1; : : : ; k; for the i th observation,
i D 1; : : : ; n. The covariates can be continuous, binary, or multi-categorical (after an
appropriate coding, see below). Similar to the simple linear regression, x-variables
can also be attained via transformation of original covariates. The same assumptions
are made for the error variables "i in a multiple linear regression model as those in a
simple linear regression model. In the case of Gaussian errors, the response variable
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Fig. 2.4 Munich rent index: estimated regression lines for apartments in average (solid line) and
good location (dashed line) according to model (2.4)

is (conditionally) independent and normally distributed given the covariates

yi � N.�i ; �2/;

with
�i D E.yi / D ˇ0 C ˇ1xi1 C : : :C ˇkxik:

The model is also called the classical linear regression model. A summary is given
in Box 2.2. For notational convenience we omit here (and elsewhere) the dependence
of expressions on the covariates, i.e., E.yi / is to be understood as an abbreviation
for E.yi j xi1; : : : ; xik/.

The following examples illustrate the flexible usage of a multiple linear regres-
sion model through appropriate transformation and coding of covariates.

Example 2.4 Munich Rent Index—Nonlinear Influence of Living Area
As in Example 2.2, we transform the living area to x D 1

area and formulate the linear model

rentsqmi D ˇ0 C ˇ1 � 1

areai
C ˇ2 � glocationi C "i : (2.5)

The estimated model for the average rent per square meter is

1rentsqm D 5:51C 134:72 � 1

area
C 0:9 � glocation:

Figure 2.5 shows both graphs for the average rent per square meter:

1rentsqm D
(
5:51C 134:72 � 1

area for average location,

6:41C 134:72 � 1
area for good location.

The nonlinear effect of the living area can be interpreted as in Example 2.2. 4
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2.2 Classical Linear Regression Model

Data

.yi ; xi1; : : : ; xik/; i D 1; : : : ; n, for a continuous variable y and continuous
or appropriately coded categorical regressors x1; : : : ; xk .

Model
yi D ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i ; i D 1; : : : ; n :

The errors "1; : : : ; "n are independent and identically distributed (i.i.d.) with

E."i / D 0 ; Var."i / D �2:

The estimated linear function

Of .x1; : : : ; xk/ D Ǒ
0 C Ǒ

1x1 C : : :C Ǒ
kxk

can be used as an estimator bE.yjx1; : : : ; xk/ for the conditional expected
value of y given the covariates x1; : : : ; xk . As such it can be used to predict
y, denoted as Oy.
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Fig. 2.5 Munich rent index: The left panel shows a scatter plot between net rent per square meter
and area for apartments in average (circles) and good location (plus signs). The right panel shows
estimated regression curves for apartments in normal (solid line) and good location (dashed line)

Examples 2.3 and 2.4 assume an additive effect of the location. Both models
show that an apartment in a good location leads to an increase in rent (or rent per
square meter) when compared to an apartment in average location with equal living
area. In Example 2.3, the increase in rent is 57.26 Euro and in the previous example
0.9 Euro per square meter. The assumption of a solely additive effect in model
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(2.4) implies the parallel lines in Fig. 2.4. However, comparing Figs. 2.3 and 2.4,
the validity of this assumption is questionable. Including an interaction between the
two covariates living area and location relaxes the assumption of parallel regression
lines.

Example 2.5 Munich Rent Index—Interaction Between Living Area and
Location

In order to include an interaction between living area and location in model (2.4), it is
necessary to define an interaction variable by multiplying the covariates area and glocation

interi D areai � glocationi :

It follows

interi D
(
0 for average location,

areai for good location.

We now extend the model (2.4) by adding the interaction effect inter D area � glocation to
the two main effects and obtain

renti D ˇ0 C ˇ1 areai C ˇ2 glocationi C ˇ3 interi C "i : (2.6)

Because of the definition of glocation and inter, an equivalent formulation of the model is
given by

renti D
(
ˇ0 C ˇ1 areai C "i for average location,

.ˇ0 C ˇ2/C .ˇ1 C ˇ3/ areai C "i for good location.

There is no interaction effect if ˇ3 D 0, and we retain the assumption of parallel lines with
common slope ˇ1 as in model (2.4). If ˇ3 ¤ 0, the effect of the living area, i.e., the slope
of the line for apartments in a good location, changes by an amount of ˇ3 when compared
to apartments in average location. In contrast to Fig. 2.3 (right), the least squares estimates
for the regression coefficients are not obtained separately for the two locations, but rather
simultaneously for model (2.6). We obtain

Ǒ
0 D 130:23; Ǒ

1 D 5:57; Ǒ
2 D 5:20; Ǒ

3 D 0:82:

Figure 2.6 shows the estimated regression lines for apartments in average and good location.
Whether or not an inclusion of an interaction effect is necessary can be statistically tested
using the hypothesis

H0 W ˇ3 D 0 against H1 W ˇ3 ¤ 0I
see Sect. 3.3. 4

As described in Example 1.1 (p. 5), in the entire data set, the location of apartments
is given in three categories:

1 D average location,
2 D good location,
3 D top location.
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Fig. 2.6 Munich rent index: estimated regression lines for average (solid line) and good location
(dashed line) based on the interaction model (2.6)

Since location is categorical and not continuous, it is not possible to include the
effect of the location in the form of ˇ � location in a linear regression model with
the integer values 1, 2, or 3 for the location. The arbitrary coding of location would
have considerable impact on the estimation results. The chosen coding automatically
implies that the effect of apartments in a good location would be twice as high as in
average location and the effect of apartments in top location would be three times
as high. These relations change automatically with a different coding, especially if
the distance between the arbitrarily coded covariate values is altered. For example,
with a coding of 1, 4, and 9 for average, good, and top location, the effect would
be four times or nine times as high for apartments in a good or top location as for
apartments in average location, and the incremental impact varies when comparing
average and good or good and top location. Further, not all categorical covariates
have ordinal structure. Similar to the previous coding of location via one binary
indicator variable expressed in Example 2.3, a coding using two binary variables is
now necessary. In order to do so, one of the three location categories must be defined
as the reference category. In the case of average location as the reference category,
the two 1/0-indicator variables for good location and top location are defined as

glocationi D
�
1 if apartment i is in good location,
0 otherwise,

tlocationi D
�
1 if apartment i is in top location,
0 otherwise.

An apartment in the reference category (average location) is, thus, defined as
glocation D tlocation D 0. The effect of each of these two binary variables is
always directly interpreted in relation to the reference category in the regression
model, as demonstrated in the next example. This type of 1/0 coding of a multi-
categorical variable is also called dummy or indicator coding. In general, dummy
coding is defined as follows for a variable x with c categories, x 2 f1; : : : ; cg: A
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Table 2.1 Munich rent index: estimated coeffi-
cients in the multiple regression model

Variable Estimated coefficient

1=area 137.504
yearc �3:801
yearc2 0.001
glocation 0.679
tlocation 1.519
bath 0.503
kitchen 0.866
cheating 1.870

reference category must be defined, e.g., c. The variable x can be then coded with
c � 1 dummy variables x1; : : : ; xc�1:

xj D
�
1 if x D j;

0 otherwise,
j D 1; : : : ; c � 1 :

For the reference category c we obtain

x1 D : : : D xc�1 D 0:

Section 3.1.3 describes the coding of categorical covariates in more detail.

Example 2.6 Munich Rent Index—Multiple Regression Model
For illustration, we now use the entire data set, including all explanatory variables
mentioned in Example 1.1, in a multiple regression model for the response variable rent
per square meter (rentsqm). The nonlinear effect of the living area is modeled via the
transformed variable 1=area and the effect of location via dummy coding as described
above. Since the effect of the year of construction may also be nonlinear, an additional
quadratic polynomial is specified. We obtain the following model without interaction:

rentsqmi D ˇ0 C ˇ1 � .1=areai /C ˇ2 yearci C ˇ3 yearc2i C ˇ4 glocationi C ˇ5 tlocationi

Cˇ6 bathi C ˇ7 kitcheni C ˇ8 cheatingi C "i :

The binary regressors bath, kitchen, and cheating (central heating system) are dummy
coded, as shown in Table 1.2 (p. 6). Table 2.1 contains the estimated coefficients Ǒ

1 to Ǒ
8 for

the regressors. Figure 2.7 shows the estimated nonlinear effects of living area and year of
construction. The average effect plots (solid lines) are obtained by inserting different values
for living area into the predicted rent per square meter

1rentsqm D 3684:991 C 137:5044 � .1=area/� 3:8007 yearc C 0:0098 yearc2i

C0:6795 glocationi C 1:5187 tlocationi C 0:5027 bathi C 0:8664 kitchen

C1:8704 cheating;

while the other covariates are held constant at their mean values (apart from year of
construction). As expected, the effect on the net rent per square meter decreases nonlinearly
with an increase of living area. For a detailed comparison of two apartments, e.g., with a
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Fig. 2.7 Munich rent index: effects of area (left) and year of construction (right)

living area of 60 and 100 m2, but with otherwise identical values for the year of construction,
location, bath room, and central heating system indicators, we obtain a difference of
Ǒ
1.1=60/ � Ǒ

1.1=100/ D 137:504 .1=60 � 1=100/ D 0:92 Euro for the average rent per
square meter. The effect of year of construction is almost constant until 1945 and increases
linearly thereafter. The effects of the indicator variables shown in Table 2.1 are interpreted as
the difference in net rent per square meter compared to the reference category. The average
rent per square meter increases, for example, by 0.68 Euro, if the apartment is in a good
location (relative to one in average location). 4

2.3 Regression with Binary Response Variables: The Logit
Model

The linear regression model is well suited for continuous response variables,
which show—possibly after an appropriate transformation—an approximate normal
distribution (conditional on the covariates). However, many applications have binary
or more general categorical response variables.

Example 2.7 Patent Opposition
During the validation of a patent application, it is possible that objections are raised, e.g. see
Example 1.3 (p. 8). The response variable patent opposition (opp) is binary and coded by

oppi D
(
1 opposition against patent i ,

0 otherwise.

The decision for an opposition against a patent may depend on various covariates. Some of
these variables are continuous, for example, the year of the application (variable year), the
number of citations (ncit), and the number of designated states (ncountry). Other covariates
are binary, as given in Table 1.4 (p. 8). 4
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The expected value of a binary variable y is given by

E.y/ D P.y D 0/ � 0C P.y D 1/ � 1 D P.y D 1/:

The aim of a regression analysis with binary responses y 2 f0; 1g is to model the
expected value E.y/ or in other words the probability

P.y D 1/ D P.y D 1 j x1; : : : ; xk/ D �

in the presence of covariates. The classical linear regression model

yi D P.yi D 1/C "i D ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i ;

with "i � N.0; �2/ is not applicable for several reasons:
• In contrast to the left-hand side, the right-hand side is not binary.
• Even if the assumption of normality is relaxed for "i , the error variance Var."i /

cannot be homoscedastic, i.e., Var."i / D �2. Since yi would have a Bernoulli
distribution with �i D ˇ0 C ˇ1xi1 C : : :C ˇkxik , it follows that

Var.yi / D �i .1 � �i /

depends on the values of the covariates and the parameters ˇ0,. . . ,ˇk , and thus
cannot have the same value �2 for all observations i .

• The linear model allows values �i < 0 or �i > 1 for �i D P.yi D 1/ which are
impossible for probabilities.

These problems can be avoided by assuming the model

�i D P.yi D 1/ D F.ˇ0 C ˇ1xi1 C : : :C ˇk; xik/;

where the domain of the function F is restricted to the interval Œ0; 1�. For reasons
of interpretability it is sensible if we restrict ourselves to monotonically increasing
functions F . Hence cumulative distribution functions (cdfs) are a natural choice
for F . Choosing the logistic distribution function

F.�/ D exp.�/

1C exp.�/

yields the logit model

�i D P.yi D 1/ D exp.�i /

1C exp.�i /
; (2.7)

with the linear predictor

�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik:
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Analogous to the linear regression model, the binary response variables yi are
assumed to be (conditionally) independent given the covariates xi D .xi1; : : : ; xik/

0.
Even though the predictor is linear, the interpretation changes compared to the linear
model: If the value of the predictor � increases to �C 1; the probability for y D 1

increases in a nonlinear way from F.�/ to F.�C 1/. An alternative interpretation
is obtained by solving the model equation (2.7) for � using the inverse function
� D logf�=.1� �/g of the logistic cdf � D exp.�/=f1C exp.�/g. We obtain

log

�
�i

1 � �i

�
D log

�
P.yi D 1/

1 � P.yi D 1/

�
D ˇ0 C ˇ1xi1 C : : :C ˇkxik (2.8)

or alternatively (because of exp.aC b/ D exp.a/ � exp.b/)

�i

1 � �i
D P.yi D 1/

P.yi D 0/
D exp.ˇ0/ exp.ˇ1xi1/ � : : : � exp.ˇkxik/: (2.9)

The left-hand side of Eq. (2.9), i.e., the ratio of the probabilities for y D 1 and
y D 0, is referred to as odds. The left-hand side of Eq. (2.8), thus, corresponds to
logarithmic odds (log-odds) for the outcome of y D 1 relative to y D 0. Here,
we obtain a multiplicative model for the odds: A unit increase of the value xi1 of
the covariate x1 leads to a multiplication of the ratio (2.9) by the factor exp.ˇ1/:
Specifically,

P.yi D 1 j xi1 C 1; : : :/

P.yi D 0 j xi1 C 1; : : :/
D exp.ˇ0/ exp.ˇ1.xi1 C 1// � : : : � exp.ˇkxik/

D P.yi D 1 j xi1; : : :/
P.yi D 0 j xi1; : : :/ exp.ˇ1/:

(2.10)

In the special case of a binary covariate x1 the result is

P.yi D 1 j xi1 D 1; : : :/

P.yi D 0 j xi1 D 1; : : :/
D P.yi D 1 j xi1 D 0; : : :/

P.yi D 0 j xi1 D 0; : : :/
exp.ˇ1/: (2.11)

This implies an increase of the odds P.yi D 1/=P.yi D 0/ for ˇ1 > 0, a decrease for
ˇ1 < 0, and no change for ˇ1 D 0. For the log-odds (2.8) the usual interpretations of
the parameters as in the classical linear regression model apply: if x1, say, increases
by 1 unit, the log-odds change by ˇ1. Since the assumptions for the linear regression
model are not met, the parameters will not be estimated via the least squares method,
but rather using the method of maximum likelihood (ML); see Sect. 5.1. A general
introduction to likelihood-based inference is given in Appendix B.4.

Example 2.8 Patent Opposition
Prior to analyzing the probability of patent opposition, we take a look at Fig. 2.8, which
presents histograms and kernel density estimators for the continuous covariates number of
patent claims (nclaims) and number of citations (ncit). The distributions of both variables
show an extreme skewness to the right. The majority of the observations of nclaims are
between 0 and 60, with only very few observations between 61 and the maximum value of
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2.3 The Logit Model for Binary Response Variables

Data

.yi ; xi1; : : : ; xik/; i D 1; : : : ; n, for a binary response variable y 2 f0; 1g
and for continuous or appropriately coded covariates x1; : : : ; xk .

Model

For the binary response variables yi 2 f0; 1g the probabilities �i D P.yi D
1/ are modeled by

�i D exp.�i /

1C exp.�i /

with the linear predictor

�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik:

An equivalent formulation is given by assuming the multiplicative model

P.yi D 1/

P.yi D 0/
D �i

1 � �i
D exp.ˇ0/ � exp.ˇ1xi1/ � : : : � exp.ˇkxik/

for the odds �i=.1� �i /.

355. The variable ncit varies mainly between 0 and 15 with only a handful of observations
between 15 and the maximum value of 40. Hence, it is impossible to make any reliable
statements regarding the probability of patent opposition for observations with nclaims>60
or ncit > 15. Consequently, these extreme cases are excluded from all analyses to follow.
This example demonstrates the importance of the descriptive analysis of data prior to the
application of more complex statistical tools.

We next divide the data into two groups: biopharm D 0 and biopharm D 1. For the
subset biopharm D 0, i.e., the patents derived from the semiconductor/computer industry,
a logit model

P.oppi D 1/ D exp.�i /

1C exp.�i /

is estimated with the main effects linear predictor

�i D ˇ0 C ˇ1 yeari C ˇ2 nciti C ˇ3 nclaimsi C ˇ4 ustwini C ˇ5 patusi

Cˇ6 patgsgri C ˇ7 ncountryi :

Table 2.2 contains the estimated coefficients Ǒ
j , j D 0; : : : ; 7, together with the

corresponding odds ratios exp. Ǒ
j /. In multiplicative form (2.9) we obtain

P.opposition/

P.no opposition/
D exp.201:74/ � exp.�0:102 � yeari / � : : : � exp.0:097 � ncountryi /:
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Fig. 2.8 Patent opposition: histogram and kernel density estimator for the continuous covariates
nclaims (left) and ncit (right)

Table 2.2 Patent opposition: estimated coeffi-
cients and odds ratios for the logit model

Estimated Estimated
Variable coefficient odds ratio

intercept Ǒ
0 D 201:74

year Ǒ
1 D �0:102 exp. Ǒ

1/ D 0.902

ncit Ǒ
2 D 0.113 exp. Ǒ

2/ D 1.120

nclaims Ǒ
3 D 0.026 exp. Ǒ

3/ D 1.026

ustwin Ǒ
4 D �0:402 exp. Ǒ

4/ D 0.668

patus Ǒ
5 D �0:526 exp. Ǒ

5/ D 0.591

patgsgr Ǒ
6 D 0.196 exp. Ǒ

6/ D 1.217

ncountry Ǒ
7 D 0.097 exp. Ǒ

7/ D 1.102

We observe, for instance, an increase in the odds of opposition against a patent from
Germany, Switzerland, or Great Britain (patgsgr D 1) by the factor exp.0:196/ D 1:217

relative to a patent from the United States with the same values of the other covariates.
A prediction of the odds P.opposition/ =P.no opposition/ for a new patent is obtained by
inserting the observed covariate values into the estimated model. Similar to linear regression
models, we have to decide whether the effect of a continuous covariate is linear or nonlinear.
As an example, we model the effect of the number of countries (ncountry) using a cubic
polynomial

ˇ7 ncountry C ˇ8 ncountry2 C ˇ9 ncountry3:

The parameter estimates are given by

Ǒ
7 D 0:3938 Ǒ

8 D �0:0378 Ǒ
9 D 0:0014:

Figure 2.9 shows the estimated polynomial and, for comparison, the linear effect (left panel).
As before, the values of the remaining covariates are held fixed at their respective average
values. Both the estimated regression coefficients and the visualized functions suggest
that a linear effect of ncountry is sufficient in this case. This hypothesis can be formally
tested using the statistical tests described in Sect. 5.1. The right panel of Fig. 2.9 shows
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Fig. 2.9 Patent opposition: estimated linear and cubic effect of covariate ncountry (left panel) as
well as estimated probabilities (right panel). For the probability plot, the values of the remaining
covariates are held fixed at their respective mean values

the estimated probabilities � corresponding to the estimated ncountry effects. This is an
alternative to the effect plots as the probability plots provide an intuition about the variability
of the probability of patent opposition as the number of designated states increases and the
remaining covariates are kept fixed at their mean values. Specifically, the graph is obtained
by plotting O�.�.ncountry// against ncountry. Thereby

�.ncountry/ D Ǒ
0C Ǒ

1 yearC� � �C Ǒ
6 patgsgrC Ǒ

7 ncountryC Ǒ
8 ncountry2C Ǒ

9 ncountry3;

with year; : : : ; patgsgr being the mean values of the remaining covariates. In our case the
probability of patent opposition varies approximately between 0.15 and 0.6 as ncountry
increases. 4
In addition to the logit model, other regression models for binary responses exist.

Different models result when the logistic distribution function is replaced by an
alternative distribution function. For instance, assuming F D ˚ , where ˚ is the cdf
of the standard normal distribution, yields the probit model (see Sect. 5.1 for more
details).

In addition to binary response variables, other types of discrete response variables
are possible in applications. For these applications, linear regression models are not
appropriate. An example is a response y that represents counts f0; 1; 2; : : :g; e.g., the
amount of damage events reported to an insurance company (see Example 2.12),
or a multi-categorical response variable, e.g., with the categories poor, average,
and good. Chapters 5 and 6 describe regression models for such discrete response
variables in full detail.

2.4 Mixed Models

The regression models presented so far are particularly useful for the analysis
of regression data resulting from cross-sectional studies, where the regression
coefficients ˇ0; : : : ; ˇk are unknown population (“fixed”) parameters. Regression
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Table 2.3 Hormone therapy with rats: num-
ber of observations per time point and dose
group

Age (in days) Control Low High Total

50 15 18 17 50
60 13 17 16 46
70 13 15 15 43
80 10 15 13 38
90 7 12 10 29
100 4 10 10 24
110 4 8 10 22

problems also occur when analyzing longitudinal data, where a number of subjects
or objects are repeatedly observed over time. In such a case, regression models for
longitudinal data allow to model and estimate both the fixed population parameters
and subject- or object-specific effects. The latter are called “random effects,”
since they often belong to individuals who have been selected randomly from the
population. Closely related to the random effects models with temporal structure
are models for clustered data. Here, the response and covariates are collected
repeatedly on several subjects, selected from primary units (clusters). An example
for clusters are selected schools, in which certain tests for a subsample of students
are conducted.

Mixed models include both the usual fixed population effects ˇ0; : : : ; ˇk and
subject- or cluster-specific random effects in the linear predictor. Mixed modeling
allows estimation and analysis on a subject-specific level, which is illustrated in the
following example in the case of longitudinal data.

Example 2.9 Hormone Therapy with Rats
Researchers at the Katholieke Universiteit Leuven (KUL, Belgium) performed an experi-
ment to examine the effect of testosterone on the growth of rats. A detailed description of
the data and the scientific questions of the study can be found in Verbeke and Molenberghs
(2000). A total of 50 rats were randomly assigned to either a control group or to one of
two therapy groups. The therapy consisted of either a low or high dose of Decapeptyl, an
agent to inhibit the production of testosterone in rats. The therapy started when the rats
were 45 days old. Starting with the 50th day, the growth of the rat’s head was measured
every tenth day via an X-ray examination. The distance (measured in pixels) between two
well-defined points of the head served as a measure for the head height and was used as the
response variable. The number ni of repeated measures yij , j D 1; : : : ; ni , i D 1; : : : ; 50,
of the response was different for each rat. Only 22 rats in total had the complete seven
measurements until the age of 110 days. Four rats were actually only measured once when
they were 50 days old. Table 2.3 summarizes the resulting design of the study. Figure 2.10
shows the individual time series fyij ; j D 1; : : : ; nig of rats i D 1; : : : ; 50 separated for
the three treatment groups.

To formulate regression models, we define the transformed age

t D log.1C .age � 45/=10/
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Fig. 2.10 Hormone therapy with rats: time series stratified for dose groups

as a covariate, analogous to Verbeke and Molenberghs (2000). The value t D 0 corresponds
to the initiation of the treatment (age D 45 days). For the three therapy groups we define
the indicator variables L, H , and C by

Li D
(
1 rat i in low-dose group,

0 otherwise,

Hi D
(
1 rat i in high-dose group,

0 otherwise,

Ci D
(
1 rat i in control group,

0 otherwise.

Using the transformed age t as time scale and t D 0 as the initiation of the treatment, we
can formulate simple linear regression models according to the three groups:

yij D
8
<̂

:̂

ˇ0 C ˇ1tij C "ij i in low-dose group,

ˇ0 C ˇ2tij C "ij i in high-dose group,

ˇ0 C ˇ3tij C "ij i in control.
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For t D 0, all three treatment groups have E.yij / D ˇ0, i.e., ˇ0 is the population mean
at treatment initiation. The coefficients ˇ1, ˇ2, and ˇ3 correspond to the different slopes
associated with the variable t , i.e., the effects of the (transformed) age in the three linear
models. The three models can be combined into the single model

yij D ˇ0 C ˇ1 Li � tij C ˇ2 Hi � tij C ˇ3 Ci � tij C "ij ; (2.12)

with 1/0-indicator variables L,H , and C for the three groups. Similar to ˇ0; the parameters
ˇ1, ˇ2, and ˇ3 are population effects, which do not capture any individual differences
between the rats. However, Fig. 2.10 reveals some obvious differences of the individual
curves in the intercept, as well as possible differences in the slope. Moreover, the variability
within the individual curves is notably less than the total variation of the data in any of the
three group-specific scatter plots. In particular, these findings show that the observations
are partly correlated, whereas so far we have always assumed independence among
observations. While the observations between subjects can still be assumed independent,
observations within rats are clearly correlated. The inclusion of subject-specific information
will consider the correlation and therefore improve the quality of the estimates. In order to
incorporate subject-specific effects, we extend the regression models mentioned above and
obtain

yij D
8
<̂

:̂

ˇ0 C �0i C .ˇ1 C �1i /tij C "ij i in low-dose group,

ˇ0 C �0i C .ˇ2 C �1i /tij C "ij i in high-dose group,

ˇ0 C �0i C .ˇ3 C �1i /tij C "ij i in control group,

or equivalently

yij D ˇ0 C �0i C ˇ1Li � tij C ˇ2Hi � tij C ˇ3Ci � tij C �1i � tij C "ij : (2.13)

The model contains subject-specific deviations �0i from the population mean ˇ0 as well
as subject-specific deviations �1i from the population slopes ˇ1, ˇ2, and ˇ3. In contrast
to the “fixed” effects ˇ D .ˇ0; ˇ1; ˇ2; ˇ3/

0; the subject-specific effects � i D .�0i ; �1i /
0

are considered as random effects, because the rats have been randomly selected from a
population. We assume that the random effects are independent and identically distributed
and follow a normal distribution, i.e.,

�0i � N.0; �20 /; �1i � N.0; �21 /: (2.14)

Without loss of generality the expected values can be set to zero, because the population
mean values are already included in the fixed effects ˇ. At first sight, a more natural
approach to consider subject-specific effects is the inclusion of subject-specific dummy
variables without a random effects distribution. In principal, such an approach is possible
for a small or moderate number of subject-specific effects. However, since usually a large
or even huge number of dummy variables are necessary for the subject-specific effects, the
resulting estimates would be highly unstable. As we will see in full detail in Chap. 7, the
random effects distribution Eq. (2.14), in particular, the common variances �20 and �21 across
subjects, stabilizes estimation.

For the errors "ij , we make the same assumptions as in the classical linear model, i.e., the
errors are independent and identically distributed as

"ij � N.0; �2/: (2.15)

Note, however, that correlation within individuals is considered through the subject-specific
effects. Since the model (2.13) includes fixed effects as in the classical linear regression
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2.4 Linear Mixed Models for Longitudinal and Clustered Data

Data

For each of the i D 1; : : : ; m subjects or clusters, ni repeated observations

�
yij ; xij1; : : : ; xijk

�
; j D 1; : : : ; ni ;

for a continuous response variable y and continuous or appropriately coded
covariates x1; : : : ; xk are given.

Model

For the linear mixed model, we assume

yij D ˇ0 C ˇ1xij1 C : : :C ˇkxijk C �0i C �1iuij1 C : : :C �qiuijq C "ij ;

i D 1; : : : ; m, j D 1; : : : ; ni . Thereby, the ˇ0; : : : ; ˇk are fixed population
effects and � i D .�0i ; �1i ; : : : ; �qi /

0 are subject- or cluster-specific effects.
We assume that the random effects � i are independent and identically
distributed according to a (possibly multivariate) normal distribution.

model (2.12), as well as random effects �0i ; �1i , i D 1; : : : ; 50, it is called a linear mixed
model or a regression model with both fixed and random effects. 4
In the case of longitudinal data, some of the covariates xij1; : : : ; xijk can be time-

varying, as, e.g., the transformed age in the rats example. They can also be time-
constant; examples are the indicator variables Li , Hi , and Ci . For cluster data, this
means that in cluster i the covariate value depends on object j or alternatively that
the covariate contains only cluster-specific information.

A general notation for linear mixed models for longitudinal and cluster data is
given by

yij D ˇ0 C ˇ1xij1 C : : :C ˇkxijk C �0i C �1iuij1 C : : :C �qiuijq C "ij ; (2.16)

where i D 1; : : : ; m is the individual or cluster index and j D 1; : : : ; ni
indicates the j th measurement for individual or cluster i . In the case of repeated
measurements over time, the observed (not necessarily equally spaced) time points
for individual i are denoted by ti1 < : : : < tij < : : : < tini . The fixed parameters
ˇ0; : : : ; ˇk in Eq. (2.16) measure population effects, while the random parameters
� i D .�0i ; �1i ; : : : ; �qi /

0 describe subject- or cluster-specific effects. The additional
design variables uij1; : : : ; uijq often consist of some of the covariates xij1; : : : ; xijk ,
as the transformed age tij in Example 2.9.
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In most situations, similar assumptions are made for the random errors as in
the classical linear regression model, i.e., the "ij are independently and identically
(normally) distributed with E

�
"ij
� D 0 and Var

�
"ij
� D �2. It is also possible to

model correlations between the errors "ij , j D 1; : : : ; ni , of repeated observations
within individuals or clusters; see Chap. 7. Such correlated errors are necessary
if there is extra correlation not taken into account by the subject-specific effects.
For the random effects, it is also often assumed that the �li , l D 0; : : : ; q, are
independent and identically distributed according to separate normal distribution, as
in Example 2.9. Again, more general formulations with correlated random effects
are possible. Then the vector of individual random effects � i is assumed to be
i.i.d. according to a multivariate normal distribution with possibly non-diagonal
covariance matrix; see Chap. 7 for details.

Analyses with mixed models for longitudinal or cluster data have the following
advantages:
• Correlations between observations of the same individual or cluster are taken into

account (at least to a certain extent).
• Subject-specific effects can serve as surrogates for unobserved covariate effects,

which either have been measured insufficiently or not measured at all. Since
the observations differ due to such unobserved covariates, there is an implied
unobserved heterogeneity.

• The inclusion of subject-specific information often leads to more precise es-
timates for the fixed effects, i.e., less variable estimators, when compared to
standard regression models. In any case, mixed models ensure that inference
regarding the regression coefficients is correct in the sense that we obtain correct
standard errors, confidence intervals, and tests.

• Mixed models stabilize the estimators of random effects by assuming a common
random effects distribution.

• The estimated individual curves further allow for individual-specific predictions,
which are not available in standard regression models.

Statistical inference for fixed and random effects, as well as for the error and
random effects variances, is accomplished using likelihood approaches or Bayesian
inference as outlined in Chap. 7.

Example 2.10 Hormone Therapy with Rats
First consider model (2.13), which comprises subject-specific deviations �0i from the
overall population intercept ˇ0 and the subject-specific slope parameters �1i . We estimate
the fixed effects, the variance parameters �2, �20 , and �21 ; and the random effects using
inference techniques described in Chap. 7 and implemented in function lmer of the R
package lme4. Table 2.4 contains the estimated fixed effects and the variance parameters.
Since the estimated value O�21 for Var.�1i / is very small, we also consider a simpler model
that does not contain the subject-specific terms �1i tij . The results can be found again in
Table 2.4. As we can see, the estimates are all very similar.

For the simpler model without random slope, Fig. 2.11 shows a kernel density estimator
for the estimated values O�0i , i D 1; : : : ; 50 together with a superimposed normal density
and a normal quantile plot in a separate graph. We do not find any serious deviations from
the assumed normal distribution. 4
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Table 2.4 Hormone therapy with rats: estimation results for
the mixed model (2.13) and the simplified model without
individual-specific slope parameter

Model (2.13) Simplified model
Parameter estimated value estimated value

Intercept ˇ0 68.607 68.607
Low-dose ˇ1 7.505 7.507
High-dose ˇ2 6.874 6.871
Control ˇ3 7.313 7.314
Var.�0i / �20 3.739 3.565
Var.�1i / �21 <0.001
Var."ij / �2 1.481 1.445
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Fig. 2.11 Hormone therapy with rats: The left plot shows for the random intercept a kernel density
estimator (solid line) and the density of an adapted normal distribution (dashed line). The right
panel displays a normal quantile plot

In Chap. 7, we present generalizations of the basic linear mixed models, includ-
ing mixed models for binary and discrete response variables. This more general
group of models can also be used as a basis for inference in nonparametric and
semiparametric regression models outlined in the next section and presented in
detail in Chaps. 8 and 9.

2.5 Simple Nonparametric Regression

Figure 2.2 (p. 25) shows the scatter plot of the two variables rentsqm and area for the
rent index data discussed in Sect. 2.2. The scatter plot reveals that the living area has
a nonlinear effect on the net rent per square meter. Consequently, in Example 2.2,
the effect of living area was modeled nonlinearly by

f .area/ D ˇ0 C ˇ1=area: (2.17)
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Figure 1.8 (p. 17) presents the scatter plot between the Z-score (as a measure
of chronic undernutrition) of a child in Zambia and the age of the child (see
Example 1.2 on p. 5). Again, we observe that the Z-score depends on the age of
the child in a nonlinear way.

In fact, in most of the various applications presented in Chap. 1, nonlinear effects
are present. It is often very difficult to model these with ad hoc parametric ap-
proaches as for instance in Eq. (2.17). Moreover, in most cases other transformations
are reasonable, e.g., f .area/ D ˇ0Cˇ1 log.area/ or f .area/ D ˇ0Cˇ1.area/

1
2 . In

more complex applications with more continuous regressors, searching for suitable
transformations becomes very difficult or intractable even for very experienced
researchers.

Non- and semiparametric regression models allow for flexible estimation of
nonlinear effects. They do not require any restrictive assumptions regarding a certain
parametric functional form. In the case of just one continuous covariate x, the
standard model for nonparametric regression is defined as

yi D f .xi /C "i : (2.18)

For the error variable "i , the same assumptions as in the simple linear regression
model (2.2) are made.

The function f is assumed to be sufficiently smooth, but no specific parametric
form is specified. It is estimated in a data-driven way through nonparametric
approaches. Chapter 8 describes several techniques of how to estimate the unknown
function f . To give the reader a first impression of nonparametric regression
models, Figs. 2.12 and 2.13 demonstrate an easily comprehensible estimation
concept using the Zambia malnutrition data. For illustration purposes, we restrict
our analysis to the observations of a specific district in Zambia; see Fig. 2.12a. The
goal is to find an estimator Of .c age/ for the (nonlinear) relationship between the
Z-score and the age of a child. Figure 2.12a shows that a simple regression line
cannot produce a satisfactory fit. However, we find that a linear model is locally
justified, i.e., if the analysis is restricted to appropriately defined intervals; see
Fig. 2.12b, c.

Based on these observations, we obtain the following approach that is known as
the nearest neighbor estimator:
1. Determine a number of values

c age1 < c age2 < : : : < c agem

within the support of c age for which estimates Of .c agej /, j D 1; : : : ; m, of f
are to be computed.

2. When estimating f at c agej , use a predetermined number of observations in
the neighborhood of c agej . In Fig. 2.12b, c the nearest 70 observations, either
to the right or left, of c agej D 11 (panel b) and c agej D 28 (panel c) were
used.
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Fig. 2.12 Malnutrition in Zambia: illustration of a global and local regression. (a) shows a
global regression line for the relationship between Z-score and child’s age. (b) and (c) show local
regression lines based on a subset of the data

3. Estimate a local regression line based on the observations taken in step 2. to
obtain the estimate Of .c agej / D Ǒ

0 C Ǒ
1c agej. Note that for every value of

c agej ; a separate regression line is estimated. This implies that the regression

coefficients Ǒ
0 and Ǒ

1 vary according to c age.
4. Combine the obtained estimates Of .c age1/; : : : ; Of .c agem/ and visualize the

estimated curve.
An illustration of the nearest neighbor estimator is given in Fig. 2.13.

Figure 2.12 also suggests another approach. Instead of estimating a global
regression line, the domain of the covariate, in our example the child’s age, could
first be subdivided into several non-overlapping intervals. In a second step, a
separate regression line could then be estimated using the data in each interval.
This procedure is illustrated in Fig. 2.14a. Here the range of values was divided
into the three intervals Œ0; 19/, Œ19; 39/ and Œ39; 59�. In contrast to the global
regression line, we obtain a satisfactory fit to the data. There is, however, a flaw:
the separate regression lines induce discontinuities at the interval boundaries. An
obvious solution is to impose the additional constraint that the function is globally
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Fig. 2.13 Malnutrition in Zambia: illustration for a nearest neighbor estimator based on the
nearest 70 observations (either to the right or left) of the relationship between Z-score and child’s
age

continuous. This implies that the regression lines merge continuously at the interval
boundaries. Taking this requirement into consideration, we obtain the estimates
shown in Fig. 2.14b, which is a special case of polynomial splines. Splines are
piecewise polynomials, which fulfill certain smoothness conditions at the interval
boundaries (also called the knots of the spline). Flexible regression based on splines
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Fig. 2.14 Malnutrition in Zambia: piecewise linear regression [panel (a)], linear spline [panel
(b)], and cubic P-spline [panel (c)] for estimating the relationship between Z-score and child’s age.
Panel (d) shows a comparison of parametric and nonparametric regressions

will play a major role in Chaps. 8 and 9. There we will discuss the most important
questions and problems regarding spline regression, for example, how can splines be
represented mathematically? How many knots are required to get a satisfactory fit?
Where should we place the knots? Figure 2.14c gives a first flavor of the capabilities
of spline estimators. It shows a flexible fit to the data based on so-called P(enalized)-
splines.

On the basis of a nonparametric fit to the data, it is reasonable to search for a
simpler parametric functional form that conserves the key features of the function. In
this sense we can also understand nonparametric and semiparametric regression as a
means of exploratory data analysis that helps to find satisfactory parametric forms.
Figure 2.14d shows a comparison of the nonparametric fit with two parametric
specifications given by

zscore D ˇ0 C ˇ1 log.age C 1/C "
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2.5 Standard Nonparametric Regression Model

Data

.yi ; xi /; i D 1; : : : ; n, with continuous response variable y and continuous
covariate x.

Model
yi D f .xi /C "i ; i D 1; : : : ; n:

We do not assume a simple parametric form for function f . We rather
assume certain smoothness characteristics, for example, continuity or
differentiability. The same assumptions as in the classical linear regression
model apply for errors "i .

and
zscore D ˇ0 C ˇ1=.age C 1/C ":

Despite similar functional forms, the nonparametric estimated curve still fits better,
particularly in the range of 0–20 months.

2.6 Additive Models

In most applications, as in the examples on the Munich rent index and on malnu-
trition in Zambia, a moderate (or even large) number of continuous or categorical
covariates are available.

Example 2.11 Malnutrition in Zambia
The continuous covariates are c age (age of the child), c breastf (duration of breastfeeding),
m bmi (mother’s body mass index), m height (mother’s height), and m agebirth (mother’s
age at birth). As in the linear regression model, the categorical covariates m education
(mother’s education), m work (mother’s professional status), and region (place of residence)
must be dummy coded. Category 2 D “primary school” is chosen as the reference
category for the education level. The dummy variables m education1, m education3, and
m education4 correspond to the education levels “no education,” “secondary education,”
and “higher education,” respectively. For the place of residence, we choose the region Cop-
perbelt (region D 2) as reference category. The variables region1; region3; : : : ; region9
serve as dummy variables for the remaining regions.

For some of the continuous covariates nonlinear effects on the Z-score can be expected
(see the scatter plots in Figs. 1.8 and 1.9). For this reason, we specify the additive model

zscore D f1.c age/C f2.m bmi/C f3.m agebirth/C f4.m height/
Cˇ0 C ˇ1 m education1 C : : :C ˇ11 region9 C "

(2.19)
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rather than a linear model. For the moment, the duration of breast-feeding (c breastf ) is
excluded from the model, since it is highly correlated with the child’s age (c age). See the
case study in Sect. 9.8 for more details on modeling the effects of the correlated covariates
c breastf and c age.

The interpretation of the intercept ˇ0 and the regression coefficients ˇ1; ˇ2; : : : of the
categorical covariates m education; m work; and region is identical to the linear regression
model.

Similar to the possibly nonlinear function f in the basic nonparametric regression
model (2.18), the functions f1; f2; f3; andf4 remain unspecified and are also estimated in
a nonparametric way, together with the regression coefficients ˇ0; ˇ1; : : :. Even though the
model is no longer linear due to the nonlinear effects f1; : : : ; f4; it remains additive. As
there are no interaction terms between the covariates, it is called an additive main effects
model.

Additive models exhibit the following identification problem: If we change, e.g.,
f1 .c age/ to Qf1 .c age/ D f1 .c age/Ca by adding an arbitrary constant a, and at the same
time change ˇ0 to Q̌

0 D ˇ0 � a by subtracting a, the right-hand side of Eq. (2.19) remains
unchanged. Hence, the level of the nonlinear function is not identified, and we are forced
to impose additional identifiability conditions. This is done, for instance, by imposing the
constraints

nX

iD1

f1
�
c agei

� D : : : D
nX

iD1

f4
�
m heighti

� D 0;

i.e., each nonlinear function is centered around zero. In Fig. 2.15, the estimated functions
are constrained in this way. Visualization of the estimated curves as is done in Fig. 2.15
is also the best way to interpret the estimated effects. The effect of the child’s age can be
interpreted as follows: The average Z-score decreases linearly as the child gets older until
18 months, then stabilizes. There is slight evidence that children older than three years may
even show a slight improvement in nutrition condition. Figure 2.15 shows also 80 % and
95 % confidence intervals for the estimated effects. They can be understood as measures for
the uncertainty of the effects. In case of the age effect the confidence intervals become wider
as age increases. To a large extent the width of confidence intervals reflects the distribution
of covariates. Densely populated areas of the covariate domain typically show narrower
confidence intervals than sparsely populated areas. For the covariate age the number of
observations (slightly) decreases as age increases.

In Sect. 9.8, we will interpret the remaining effects within the scope of a detailed case
study. 4
The general form of an additive model (without interaction) is

yi D f1.zi1/C : : :C fq.ziq/C ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i ; (2.20)

with the same assumptions for the error term as in the linear regression model.
The smooth functions f1; : : : ; fq represent the (main) effects of the continuous
covariates z1; : : : ; zq and are estimated using nonparametric techniques; see Chap. 9.
The covariates x1; : : : ; xk are categorical or continuous having linear effects.
Additive main effect models of the form Eq. (2.20) can be expanded with the
inclusion of interaction terms. For two continuous covariates z1 and z2, this can
be achieved by adding a smooth two-dimensional function f1;2.z1; z2/. Compared to
(2.20) this leads to the extended predictor
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Fig. 2.15 Malnutrition in Zambia: estimated nonlinear functions including 80 % and 95 %
pointwise confidence intervals. The dots in the lower part of the figures show the distribution
of covariate values. Estimation has been carried out using remlreg objects of the software
package BayesX

�i D f1.zi1/C f2.zi2/C f1;2.zi1; zi2/C : : : :

Hence, the interaction effect f1;2 modifies the main effects f1 and f2 of both
covariates. Estimation of the smooth surface f1;2 results from the extension of
nonparametric techniques for one-dimensional functions to the bivariate case; see
Sect. 8.2 for details. An interaction between a continuous covariate z1 and a binary
covariate x1 is modeled by extending the predictor to

�i D f1.zi1/C : : :C fq.ziq/C ˇ0 C fx1.zi1/ xi1 C : : : :

The interaction term fx1.z1/ x1, with a smooth function fx , can be interpreted as
a varying effect of x1 over the domain of z1. Models with parametric interactions
are covered in detail in section on “Interactions Between Covariates” of Sect. 3.1.3,
while Sect. 9.3 focuses on models with nonparametric interactions.
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2.6 Standard Additive Regression Models

Data

.yi ; zi1; : : : ; ziq; xi1; : : : ; xik/; i D 1; : : : ; n, with y and x1; : : : ; xk similar
to those in linear regression models and additional continuous covariates
z1; : : : ; zq .

Model

yi D f1 .zi1/C : : :C fq
�
ziq
�C ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i :

For the errors "i the same assumptions as in the classical linear regression
model are made. The functions f1 .z1/, : : :, fq

�
zq
�

are assumed to be
“smooth” and represent nonlinear effects of the continuous covariates
z1; : : : ; zq .

A possible approach to estimate additive models is via an iterative procedure,
called backfitting, with the simple smoothers (nearest neighbor, splines, etc.) as
building blocks. Details will be given in Chap. 9.

2.7 Generalized Additive Models

Nonlinear effects of continuous covariates can also occur in regression models for
binary and other non-normal response variables. Similar to the additive models
presented in the previous section, it is often preferable to allow for flexible
nonparametric effects of the continuous covariates rather than assuming restrictive
parametric functional forms. Approaches for flexible and data-driven estimation
of nonlinear effects become even more important for non-normal responses, as
graphical tools (e.g., scatter plots) are often not applicable to get an intuition about
the relationship between responses and covariates.

Example 2.12 Vehicle Insurance
We first illustrate the usage of generalized additive models with the analysis of vehicle
insurance data for Belgium in 1997; see Denuit and Lang (2005) for a complete description
of the data.

The calculation of vehicle insurance premiums is based on a detailed statistical analysis
of the risk structure of the policyholders. An important part of the analysis is the modeling of
the claim frequency, which generally depends on the characteristics of the policyholder and
the vehicle type. Typical influencing factors of the claim frequency are the policyholder’s
age (age), the age of the vehicle (age v), the engine capacity measured in horsepower
(hp), and the claim history of the policyholder. In Belgium, the claim history is measured
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2.7 Poisson Additive Model

A Poisson additive model yi � Po.	i / is defined via the rate

	i D E.yi / D exp.�i /

and the additive predictor

�i D f1.zi1/C : : :C fq.ziq/C ˇ0 C ˇ1xi1 C : : :C xik:

Poisson additive models are a special case of generalized additive models for
non-normal responses (Chap. 9).

with the help of a 23-step bonus malus score (bm). The higher the score, the worse is
the insurant’s claims history. The statistical analysis is based on regression models with
the claim frequency (within 1 year) as the response variable. Since the claim frequency
is restricted to the discrete values 0; 1; 2; : : : ; regression models for continuous response
variables are not appropriate. 4
For count data, the Poisson distribution is often assumed for the response, i.e.,

y � Po.	/, with 	 D E.y/ as the expected number of claims; see Definition B.4 in
Appendix B.1 for the Poisson distribution. Our goal is to model the expected number
of claims 	 as a function of the covariates. Similar to binary responses, the obvious
choice of 	 D � with a linear or additive predictor � is problematic, since we cannot
guarantee that the estimated expected claim frequency O	 is positive. We therefore
assume 	 D exp.�/ in order to ensure a positive expected claim frequency. When
using a linear predictor, we obtain a multiplicative model for the expected claim
frequency that leads us to a similar interpretation as we already obtained in the logit
model:

	 D exp.ˇ0 C ˇ1x1 C : : :C ˇkxk/ D exp.ˇ0/ � exp.ˇ1x1/ � : : : � exp.ˇkxk/:

A unit increase in one of the covariates, e.g., x1, leads to a change of the expected
claim frequency by a factor of exp.ˇ1/. For an additive predictor, we obtain

	 D exp.f1 .z1/C : : :C fq
�
zq
�C ˇ0 C ˇ1x1 C : : :C ˇkxk/:

Depending on the form of the nonlinear function, the expected count increases or
decreases with a unit increase in a covariate. Moreover, in contrast to the purely
linear predictor, the change is also dependent on the value of the covariate (because
of the nonlinearity). Typically, an increase in x1, e.g., from 20 to 21, causes a
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Fig. 2.16 Vehicle insurance: estimated nonlinear functions including 80 % and 95 % pointwise
confidence intervals. The dots in the lower part of the figures show the distribution of covariate
values. Estimation has been carried out using remlreg objects of the software package
BayesX

different change in the expected count when compared to that of an increase, e.g.,
from 30 to 31.

Example 2.13 Vehicle Insurance—Additive Model
We model the claim frequencies of the Belgian insurance data using an additive predictor
with possibly nonlinear functions of the variables age, age v, hp, and bm:

�i D f1.agei/C f2.age vi/C f3.hpi/C f4.bmi/C ˇ0 C ˇ1genderi C : : : :

The dots indicate that the predictor may contain other categorical covariates in addition
to the continuous variables, e.g., gender. We estimated the nonlinear functions and the
regression coefficients using the methods presented in detail in Chap. 9. Figure 2.16 shows
the estimates Of1; : : : ; Of4 for the insurance data. The function related to policyholder’s age
is notably nonlinear. Initially, the effect on the expected frequency is almost linear until the
policyholder reaches the age of 40, then the effect remains nearly constant for several years
until the age of 50, then decreases until approximately 70, followed by a rapid increase for
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Fig. 2.17 Vehicle insurance: expected number of cases per year among 1,000 policyholders
depending on the policyholder’s age and vehicle’s engine power. The effects of the remaining
covariates are held fixed at their mean values

older policyholders. Since we do not have much data on the elderly policyholders, we must
be careful with interpretation. This is also reflected by the wide confidence intervals.

Since the expected claim frequency 	 D exp.�/ is a nonlinear function of the covariates,
it is not easy to decipher the effect of a particular covariate on 	. It is therefore advisable
to plot the estimated expected claim frequency O	 against the covariates. To do so, we plot
the estimated rate O	 separately against every continuous covariate while keeping the effects
of the remaining covariates fixed at their mean value. See Fig. 2.17 which demonstrates
such plots with the covariates age and hp. Since the expected frequencies are quite low,
we plotted 1000O	, i.e., the expected claim frequency per year among 1,000 policyholders,
rather than the estimated rate O	 itself. For instance, we have plotted

1000 exp
� Of1.age/C Of2.age v/C Of3.hp/C Of4.bm/C ˇ0 C ˇ1gender C : : :

�

against age with age v, hp, bm, and gender being the respective covariate means. We
observe that the expected number of insurance cases varies between 0.35 and 0.6 per 1,000
policyholders for the age variable and between 0.2 and 1.2 for hp. 4

2.8 Geoadditive Regression

In addition to the values .yi ; xi1; : : : ; xik ; zi1; : : : ; ziq/, i D 1; : : : ; n; of the response
and covariates, many applications contain small-scale geographical information, for
example, the residence (address), zip code, location, or county for the individual or
unit. For the examples discussed so far, this applies to the data regarding the Munich
rent index, malnutrition in Zambia, vehicle insurance, and the health status of
trees. In these applications, it is often important to appropriately include geographic
information into the regression models in order to capture spatial heterogeneity not
covered by the other covariates.
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Example 2.14 Malnutrition in Zambia—Geoadditive Model
Example 2.11 (p. 49) already included regional effects using dummy variables for the
regions. The corresponding region effects were estimated as categorical “fixed” effects.
This conventional approach has two disadvantages. First, information regarding regional
closeness or the neighborhood of regions is not considered. Second, if we wish to use
small scale information about the district the mother resides, the analogous district-specific
approach is difficult or even impossible. Including a separate fixed effect dummy variable
for every district results in a model with a large number of parameters, causing a high
degree of estimation inaccuracy. Hence, it is better to understand the geographic effect of the
variable district as an unspecified function fgeo.district/ and to consider the geographical
distance of the districts appropriately when modeling and estimating fgeo. A typical
assumption is that the regression parameters of two neighboring districts sharing a common
boundary should be “similar in size” (a more precise definition of this concept is given in
Sect. 8.2). Conceptually, this is very similar to the nonparametric estimation of a smooth
function f of a continuous covariate, as, for example, f (c age). Hence, we reanalyze the
data with the following geoadditive model:

zscore D f1.c age/C f2.m bmi/C f3.m agebirth/C f4.m height/
Cfgeo.district/C ˇ0 C ˇ1 m education C : : :C ˇ4 m work C ":

We used remlreg objects of the software BayesX for estimation. In comparison to
Example 2.11, the linear part of the predictor no longer contains any region-specific dummy
variables. Figure 2.18 shows the map of Zambia, which is divided into color-coded district-
specific effects. The geographic effect can now be interpreted similar to a nonlinear effect
of a continuous covariate. An effect of, e.g., 40 implies an average Z-score increase of
40 points relative to a district with a zero effect.

The district-specific pattern shows that geographic or spatial effects do not have much in
common with the administrative boarders. Other causes must be responsible for the spatial
effects. In the current situation, the visible north–south divide is due to climatic differences,
with a much better nutrition situation in the north. The climatic conditions in the south are
worse than in the north, since the southern regions have a much lower altitude compared to
the northern ones. In this sense geoadditive models can be understood as an exploratory tool
for data analysis: The estimated spatial effects may help to identify geographic covariates
that explain the geographic variations. 4
In general, geoadditive regression is useful, if in addition to the response variable

and continuous or categorical covariates, a location variable si , i D 1; : : : ; n, is
observed for every unit i . This location variable s can be a location index, as in
Example 2.14, with a finite domain s 2 f1; : : : ; Sg, comprising, e.g., counties,
districts etc. In addition, neighborhood information, on the basis of a geographical
map or a graph, is available. In other applications, for example, the data on the
health status of trees (see Example 1.4), s is a continuous variable containing precise
information about the position or the location through geographic coordinates. For
flexibly modeling the function fgeo, several alternative approaches are available.
The choice of a particular model in part depends on whether the location variable is
discrete or continuous; see Sect. 8.2 for details.

Geoadditive regression analyses can also be conducted for non-normally dis-
tributed responses, especially binary, categorical, or discrete response variables,
as in the analysis of the health status of trees or the claim frequency of vehicle
insurance policies. In these cases, we expand the predictor �i in additive logit
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Fig. 2.18 Malnutrition in Zambia: estimated spatial effect

or Poisson models or in generalized additive models to a so-called geoadditive
predictor

�i D f1.zi1/C : : :C fq.ziq/C fgeo.si /C ˇ0 C ˇ1xi1 C : : :C ˇkxik:

Example 2.15 Vehicle Insurance
It is known that claims associated with vehicle insurance can widely vary across geographic
areas. For this reason, many insurance companies report geographically heterogeneous in-
surance premiums, i.e., the insurance rates differ depending on the policyholder’s residence.
A realistic modeling of the claim frequency, thus, requires an adequate consideration of the
spatial heterogeneity of claim frequencies. In order to do so, we extend the additive predictor
of Example 2.13 to

�i D f1.agei/C f2.agev/C f3.hpi/C f4.bmi/C fgeo.districti/C : : : ;

where fgeo.district/ represents a spatial district-specific effect. Figure 2.19 shows the
estimated geographic effect obtained using remlreg objects of the software BayesX:
the darker the color, the higher is the estimated effect. The hatched areas mark districts for
which we do not have any observations. In comparison to a region with an effect of zero,
an effect of approximately 0.3 implies an increase of the expected frequency by a factor
of exp.0:3/ D 1:35. We find three areas where the expected claims frequencies are clearly
higher: the metropolitan areas around Brussels in the center, Antwerp in the North, and
Liége in the East of Belgium. The sparsely populated regions in the South show on average
lower frequencies. 4
In the following example, we will look at an application taken from survival

analysis.

Example 2.16 Survival Analysis of Patients Suffering from Leukemia
The goal of this application is the analysis of covariate effects on the survival time of
patients who are diagnosed with a specific type of leukemia. The geographic variation of
the survival time is of particular interest, as it might give us information about other risk
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factors that so far are unknown. The geographical effect may also be closely related to the
quality of the health care system in a certain area.

The application studies the survival time of 1,043 patients from the Northwest of England
who were diagnosed with acute myeloid leukemia during 1982 through 1998. The data are
taken from the British Northwest leukemia register. In addition to the survival time of the
patients, there is also information about the following covariates: gender (1 D female, 0 D
male), patient’s age at the time of diagnosis (age), the amount of leucocytes (lc), and the
Townsend Index (ti) that specifies a poverty index of a patient’s residential district. A higher
value of the Townsend Index reflects a poorer residential district. Geographic information
is also included for each patient, as we know the exact coordinates (longitude and latitude)
of the patient’s residence in Northwest England. Moreover, the patient’s residence can be
assigned to the particular district of Northwest England. Figure 2.20 shows the geographic
distribution of the observations. Approximately 16 % of the patients were censored, i.e.,
they survived the end of the study.
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2.8 Geoadditive Models

Data

In addition to the continuous response variable y, the continuous covariates
z1; : : : ; zq , and the remaining covariates x1; : : : ; xk; there is information
about the geographic location s available.

Model

yi D f1.zi1/C : : :C fq.ziq/C fgeo.si /C ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i :

We make the same assumptions for the error variable "i as in the classical
linear regression model. The unknown smooth functions f1; : : : ; fq; fgeo

and the parametric effects are to be estimated on the basis of the given
data.

−0.39−0.31 0.24 0.270

Fig. 2.21 Leukemia data: estimated spatial effect based on districts (left) and exact coordinates
of the observations (right)

In order to estimate the effect of the covariates on the survival time Ti of an individual
i , we use hazard rate models. The hazard rate 	i .t/ of the survival time for individual i is
defined as the limit

	i .t/ D lim

t!0

P.t � Ti � t C
t jTi � t /


t
:
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Fig. 2.22 Leukemia data: estimated nonlinear covariate effects with 80 % and 95 % pointwise
confidence intervals

The hazard rate 	i .t/ therefore characterizes the conditional probability of survival in the
interval Œt; t C
t�; given the individual survived until time t; relative to the interval length

t . In our application, we use a geoadditive hazard rate model, which links the hazard
rate 	i .t/ with a geoadditive predictor over the exponential function (similar to the Poisson
model of Examples 2.13 and 2.15):

	i .t/ D exp
	
g.t/C f1.agei /C f2.tii /C fgeo.si /C ˇ0 C ˇ1lci C ˇ2genderi



:

This model can be viewed as a generalization of the popular Cox model with simple
linear predictors. The model contains nonparametric effects of the continuous covariates
age and ti; linear effects of lc and gender; as well as a spatial effect, which can either be
defined by being based on the exact coordinates or on the districts. We will outline different
possibilities of how to model various types of spatial effects in Sect. 8.2. Furthermore, the
model also has a time-dependent component g.t/, which models the temporal variation
of the mortality risk from the time of diagnosis. We refer to the function g.t/ as the log
baseline hazard rate and 	0.t/ D expŒg.t/� as the baseline hazard rate.

The following results are based on remlreg objects of the software BayesX.
Figure 2.21 shows the estimated spatial effects and displays obvious geographic variation
of the mortality risk. Presumably the geographic effects are surrogates for unobserved
covariates, which could to some extent explain the geographic variation. Figure 2.22 shows
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the estimated functions g.t/, f1.age/, and f2.ti/. The log-baseline hazard rate reflects a
decreasing nonlinear trend in mortality risk, up to approximately eight years after the first
diagnosis, then followed by an increasing trend. The effect of age has a monotone, almost
linear trend, whereas the effect of the Townsend Index indicates that the mortality risk
increases in poorer areas (corresponding to higher values in the index) and then remains
relatively constant. The estimated effect of the number of leucocytes lc is positive with
Ǒ
1 D 0:003, but apparently very low. Only when lc is large, the effect of Ǒ

1lci becomes
important in size. The estimated effect of gender is very small with Ǒ

2 D 0:073; upon
further testing, we conclude that gender has little effect on the hazard rate. 4
Even though regression models for the analysis of survival times play an

important role in many fields, this book will not give a detailed presentation, but
Sect. 5.8 lists references for further reading. The methodology for the presented
example is described in Kneib and Fahrmeir (2007) and Fahrmeir and Kneib (2011).

2.9 Beyond Mean Regression

In the models considered so far, we have restricted ourselves to modeling the
(conditional) mean of the response y in dependence of covariates. For example,
in the multiple linear regression model of Sect. 2.2.2, we assume independent and
normally distributed responses yi � N.�i ; �2/, i D 1; : : : ; n, where the expected
value �i depends linearly on the covariates in the form

�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik:

Other parameters of the response distribution (in case of the normal distribution the
variance �2) are explicitly assumed to be independent of covariates. In a number of
applications, this assumption might not be justified as we will illustrate through the
data on the Munich rent index.

Example 2.17 Munich Rent Index—Heterogeneous Variances
Consider Fig. 2.23 which shows scatter plots between the net rent in Euro and the living
area (left panel) and year of construction (right panel). Additionally included are estimated
regression lines between the response and the covariates. At least the scatter plot between
net rent and living area suggests that, additional to the expected value �, also the variance
�2 of net rents depends on the covariates. We observe increasing variability as living area
increases. 4
In the next two sections, we present regression models that allow the modeling

of other parameters of the response distribution in dependence of covariates, in
addition to the expected value. In Sect. 2.9.1 we introduce models with normally
distributed responses where the mean and the variance depend on covariates. In
Sect. 2.9.2 we even go one step further by dropping the normality assumption and
modeling the quantiles of the response distribution in dependence of covariates.

Another important class of regression models beyond the mean are hazard
regression models for durations or lifetimes, which are briefly considered in
Example 2.16. In fact, it can be shown that a complete specification of the hazard
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Fig. 2.23 Munich rent index: scatter plots of rents in Euro versus living area (left panel) and year
of construction (right panel) together with estimated regression lines

rate implies a complete specification of the distribution of a lifetime in dependence
of covariates. We do not further discuss hazard rate regression in this book, but refer
to the literature cited in Sect. 5.8.

2.9.1 Regression Models for Location, Scale, and Shape

A straightforward approach that extends the multiple linear regression model to cope
with variances depending on covariates is to assume yi � N.�i ; �2i /, where in
addition to the means

�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik;

the standard deviations (alternatively the variances)

�i D ˛0 C ˛1xi1 C : : :C ˛kxik (2.21)

depend linearly on the covariates. Similar to logit or probit models and Poisson
regression, assumption (2.21) is problematic as it does not guarantee positive
standard deviations. Therefore, we replace Eq. (2.21) by

�i D exp .˛0 C ˛1xi1 C : : :C ˛kxik/ D exp.˛0/ exp.˛1xi1/ � � � exp.˛kxik/;
(2.22)

to ensure that the standard deviations are positive. For notational simplicity, we
assume exactly the same set of covariates for the expected values �i as for the
standard deviations �i . Of course, this limitation can easily be dropped in practice
to allow for different covariates in the mean and the variance equation.
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Example 2.18 Munich Rent Index—Linear Model for Location and Scale
We take the data on the Munich rent index and assume the model renti � N.�i ; �2i / with

�i D ˇ0 C ˇ1areai C ˇ2yearci ; �i D exp
�
˛0 C ˛1areai C ˛2yearci

�
;

for the expected value and standard deviation of the net rents. For simplicity, we restrict
ourselves to the two covariates living area and year of construction. Using the R package
gamlss we obtain the estimates

O�i D �4617:6889 C 5:1847 � areai C 2:4162 � yearci

and
O�i D exp

�
8:5235C 0:0141areai � 0:0023yearci

�
:

The results for the mean can be interpreted in the usual way as outlined in Sect. 2.2.2:
• Increasing the living area by 1 m2 leads to an average increase of the net rent of about

5.18 Euro.
• Modern flats are on average more expensive than older flats. Every year increases the

average net rent by 2.42 Euro.
Of course, this interpretation is only meaningful if the chosen linear model is justified (apart
from the question whether the net rent per square meter is more appropriate than the plain
net rent as a response variable). Figure 2.23 suggests that the linearity assumption is at least
problematic for the effect of the year of construction.

Interpretation of the results for the standard deviation is slightly more complicated due
to the nonlinearity induced by the exponential link but is similar to Poisson regression (see
Sect. 2.7):
• A unit increase of the living area increases the standard deviation by a (small) factor of

exp.0:014094/ D 1:0141938. This is in line with our observation from the scatter plot
in Fig. 2.23 which shows increased variability of net rents as the living area increases.

• A unit increase of the year of construction decreases the standard deviation of net
rents by the factor exp.�0:002347/ D 0:99765575 which is again close to unity. This
estimate is not easily verified through the scatter plot in Fig. 2.23. 4

It is straightforward to generalize mean and variance estimation in Gaussian
regression models to nonlinear covariate effects as in additive or geoadditive models.
An additive model for location and scale is obtained by generalizing the equations
for the mean and standard deviation to

�i D f1.zi1/C : : :C fq.ziq/C ˇ0 C ˇ1xi1 C : : :C ˇkxik

and
�i D exp.g1.zi1/C : : :C gq.ziq/C ˛0 C ˛1xi1 C : : :C ˛kxik/:

Here, g1; : : : ; gk are additional smooth functions of the covariates z1; : : : ; zq .
Additive modeling is even more important for the standard deviation as the type of
effect (linear or nonlinear) of a certain covariate is much harder (if not impossible)
to detect through graphical aids as with mean regression. For instance, the scatter
plot between the net rent and the year of construction in the right panel of Fig. 2.23
does not provide clear guidance how to model the effect of year of construction on
the standard deviation of the net rent. The following example shows additive models
for location and scale in action.
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Fig. 2.24 Munich rent index: estimated effects of living area and year of construction for the
mean and standard deviation

Example 2.19 Munich Rent Index—Additive Model for Location and
Scale

We continue the previous example and assume now possibly nonlinear effects of living area
and year of construction in the equations for the mean and the standard deviation:

�i D f1.areai /C f2.yearci /C ˇ0 �i D exp
�
g1.areai /C g2.yearci /C ˛0

�
:

The resulting estimates including pointwise confidence intervals have been obtained using
the R package gamlss and are provided in Fig. 2.24. We see that the linear effects of
Example 2.18 are (ex post) justified for the area effects but not for the effects of year of
construction. The upper left panel of Fig. 2.24 confirms our previous finding that larger flats
are on average more expensive than smaller flats with more or less linearly increasing rents.
The effect of the year of construction is almost constant until the post-World War II era
indicating that flats built before 1945 with otherwise identical living area are on average
equally expensive. After World War II, the rents increase almost linearly as the year of
construction increases. The effect of living area on the standard deviation is again almost
linear implying increasing variability of net rents as the living area increases. The effect of
the year of construction is approximately U-shaped with lower variability of net rents in the
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1960s and 1970s. This can be explained by a boom in construction building in these years,
with flats having comparably homogeneous (typically poor) quality. 4
So far we have modeled the mean and the standard deviation of responses

as a function of covariates. This type of modeling is a special case of an even
more general approach for linear or additive modeling of location, scale, and
shape. Generalized additive models for location, scale, and shape (GAMLSS) have
been proposed by Rigby and Stasinopoulos (2005). Meanwhile the approach has
been fully developed including professional software and inference; see Rigby and
Stasinopoulos (2009) and the GAMLSS homepage http://gamlss.org/ for a full
introduction. The approach and corresponding software are able to deal with a
huge variety of continuous and discrete distributions for regression modeling. An
example is the so-called power exponential distribution whose probability density
contains, additional to the mean � 2 R and variance �2 > 0, a shape parameter
� > 0 controlling the shape of the density. The probability density is given by

f .y/ D � exp
��j z

c
j��

2c� .1=�/
;

where c2 D � .1=�/� .3=�/�1 is a constant depending on the shape parameter �,
z D .y��/=� , and � is the gamma function. Compared to the normal distribution,
the parameter � gives the density some extra flexibility to control the shape (to a
certain extent). Figure 2.25 shows the density of the power exponential distribution
for the three choices � D 1; 2; 4 of the shape parameter and fixed mean � D 0

and variance �2 D 1. For � D 2 we obtain the normal distribution as a special
case. Using GAMLSS, we are able to assign additive predictors for each of the
three parameters �, �2, and � of the power exponential distribution. It is beyond
the scope of this book to cover GAMLSS modeling in full detail. However, the
GAMLSS literature is readily accessible once the material on additive models and
extensions described in Chaps. 8 and 9 has been studied.

http://gamlss.org/
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2.9.2 Quantile Regression

The GAMLSS framework allows to model the most important characteristics of
the response distribution as a function of covariates. However, we still rely on a
specific parametric probability distribution like the normal or power exponential
distribution. In contrast, quantile regression aims at directly modeling the quantiles
of the response distribution in dependence of covariates without resorting to a
specific parametric distribution family. For 0 < � < 1 let q� be the �-quantile
of the response distribution, e.g., q0:75 is the 75 % quantile. Then in linear quantile
regression we assume

q�;i D ˇ�;0 C ˇ�;1xi1 C : : :C ˇ�;kxik;

i.e., the quantile q� of the response distribution is a linear combination of the
covariates as in the multiple linear regression model. Generalizations to additive
or geoadditive predictors are conceptually straightforward (although estimation
is truly a challenge). The response distribution is implicitly determined by the
estimated quantiles q� provided that quantiles for a reasonable dense grid of
�-values are estimated. In contrast to the GAMLSS framework, a specific para-
metric distribution is not specified a priori which makes quantile regression a
distribution-free approach. The following example gives a flavor of the capabilities
of quantile regression. Full details are given in the last chapter of the book (but note
that large portions of Chap. 10 on quantile regression are accessible immediately
after reading the parts on the classical linear model in Chap. 3 and Sect. 4.1).

Example 2.20 Munich Rent Index—Quantile Regression
We take the rent index data and estimate a linear effect of living area on 11 quantiles q� ,
� D 0:05; 0:1; : : : ; 0:9; 0:95, of the net rent in Euro, i.e.,

q�;i D ˇ�;0 C ˇ�;1 � areai :

The top left panel of Fig. 2.26 shows a scatter plot of the net rents versus living area together
with estimated quantile regression lines. From top to bottom the lines correspond to the
95 %, 90 %, 80 %, : : : , 10 %, and 5 % quantiles. The results are based on the R package
quantreg. We observe a clear change of the slope (and to a lesser extent also the intercept)
of the regression lines with the quantile � . For higher quantiles, the regression lines are
comparably steep indicating a strong effect of the living area on the respective quantile.
Note that higher quantiles correspond to the high-price segment of the rent market. As
� decreases, the slopes of the regression lines decrease more and more. For the lowest
quantiles, corresponding to the low-price segment of the rent market, the regression lines
are almost parallel to a constant line. That is, in the low-price segment, the rents increase
very slowly.

We finally point out that estimates for the quantiles of the response distribution can be
obtained also on the basis of the linear models based on normally distributed responses.
Assuming the simple linear model renti D ˇ0 C ˇ1areai C "i with "i � N.0; �2/ implies
renti � N.ˇ0 Cˇ1areai ; �2/ and the quantiles q�;i D ˇ0 Cˇ1areai C� � z� where z� is the
� -quantile of the N.0; 1/ distribution. Thus, assuming a simple linear model with normal
errors implies quantile curves that are parallel to each other. Assuming a model with linear
predictors for location and scale, i.e.,
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Fig. 2.26 Munich rent index: scatter plots of the rents in Euro versus living area together with
linear quantile regression fits for 11 quantiles (top left panel), quantiles determined from a classical
linear model (top right panel), and quantiles determined from a linear model for location and scale
(bottom panel)

renti � N.ˇ0 C ˇ1areai ; �
2
i /; �i D exp.˛0 C ˛1areai /;

results in the quantiles

q�;i D �i C �i z� D ˇ0 C ˇ1areai C exp.˛0 C ˛1areai /z� ;

which are no longer parallel to each other because the standard deviations of the rents
depend on the living area. For comparison with completely distribution-free quantile
regression, the estimated quantiles based on linear models with normal errors are also
included in Fig. 2.26. The top right panel shows estimated quantiles in the simple linear
model; the bottom panel displays results if the standard deviation is additionally modeled in
dependence of the living area. While the parallel quantile lines of the simple linear model
are clearly not adequate, the linear model for location and scale shows reasonable estimated
quantiles that are not too far away from the distribution-free estimated quantile curves in
the top left row. The largest differences can be observed for very large and low quantiles
(95 %, 90 %, 5 %, 10 %). Our comparison shows that parametric regression models, in
our case normal regression models for location and scale, may well be an alternative to
completely distribution-free quantile regression. Particularly promising are the models from
the GAMLSS family of regression models. 4
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2.10 Models in a Nutshell

We summarize the regression models of this chapter in concise form and indicate in
which chapters they are described in more detail. In this way, the common general
structure of all models will also become more transparent.

2.10.1 Linear Models (LMs, Chaps. 3 and 4)

• Response: Observations yi are continuous with

yi D �i C "i ; i D 1; : : : ; n:

Errors "1; : : : ; "n are i.i.d. with

E ."i / D 0; Var ."i / D �2:

• Mean:

E.yi / D ˇ0 C ˇ1xi1 C : : :C ˇkxik D �lin
i :

• Predictor:

�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik D �lin
i :

2.10.2 Logit Model (Chap. 5)

• Response: Observations yi 2 f0; 1g are binary and independently B.1; �i /
distributed.

• Mean:

E .yi / D P .yi D 1/ D �i D exp
�
�lin
i

�

1C exp
�
�lin
i

� :

• Predictor:

�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik D �lin
i :

2.10.3 Poisson Regression (Chap. 5)

• Response: Observations yi 2 f0; 1; 2; : : :g are count data, indicating how often
some event of interest has been observed in a certain period of time. In a Poisson
model it is assumed that the yi are independently Po.	i / distributed.
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• Mean:
E .yi / D 	i D exp

�
�lin
i

�
:

• Predictor:
�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik D �lin

i :

2.10.4 Generalized Linear Models (GLMs, Chaps. 5 and 6)

• Response: Observations yi are continuous, categorical, or count data. Depending
on the measurement scale and distributional assumptions, they are (realizations
of) independent Gaussian, binomial, Poisson, or gamma random variables.

• Mean:
E.yi / D �i D h .ˇ0 C ˇ1xi1 C : : :C ˇkxik/ D h

�
�lin
i

�
;

where h is a (known) response function, such as h.�/ D exp.�/=.1C exp.�// in
a logit model.

• Predictor:
�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik D �lin

i :

• Remark: Generalized linear models are a broad class of models, with linear
models, logit models, and Poisson models as special cases. Extensions to
categorical responses are presented in Chap. 6.

2.10.5 Linear Mixed Models (LMMs, Chap. 7)

• Response: Observations yij , i D 1; : : : ; m, j D 1; : : : ; ni are continuous with

yij D �ij C "ij :

They are structured in form of longitudinal or clustered data form individuals
or clusters, with ni observations per individual or cluster. For errors "ij , we
usually make the same assumptions as for linear models. More general error as-
sumptions, taking correlations within individual- or cluster-specific observations
into account, are possible.

• Mean:

E.yij / D ˇ0 C ˇ1xij1 C : : :C ˇkxijk C �0i C �1iuij1 C : : :C �qiuijq

D �linij C �0i C �1iuij1 C : : :C �qiuijq:

The individual- or cluster-specific random effects �li , l D 0; : : : ; q; are
assumed to be i.i.d. Gaussian random variables. Alternatively the vector � i D
.y0i ; : : : ; �qi /

0 is i.i.d. multivariate Gaussian with possibly non-diagonal covari-
ance matrix.
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• Predictor:
�ij D �lin

ij C �0i C �1iuij1 C : : :C �qiuijq:

• Remark: LMM with correlated random effects, as well as generalized linear
mixed models (GLMMs), will also be considered in Chap. 7.

2.10.6 Additive Models and Extensions (AMs, Chaps. 8 and 9)

• Response: Observations yi are continuous with

yi D �i C "i :

For errors "i , the same assumptions are made as for linear models.
• Mean:

E.yi / D f1.zi1/C : : :C fq.ziq/C �lin
i D �add

i :

• Predictor:
�i D f1.zi1/C : : :C fq.ziq/C �lin

i D �add
i :

• Remark: Additive models can be extended to include interactions, spatial effects,
and random effects. For interactions the predictor is extended to

�i D �add
i C f1.z1; z2/C : : :

or
�i D �add

i C f .z1/ x1 C : : : :

In geoadditive models the predictor is extended to

�i D �add
i C fgeo.si /

with the spatial effect fgeo.s/ of the location variable s. Incorporation of random
effect results in the predictor

�ij D �add
ij C �0i C �1iuij1 C : : : :

The additive model then becomes an additive mixed model (AMM), generalizing
linear mixed models.

2.10.7 Generalized Additive (Mixed) Models (GA(M)Ms, Chap. 9)

• Response: Observations yi are continuous, categorical, or count data. Depending
on the measurement scale and distributional assumptions, they are (realizations
of) independent Gaussian, binomial, multinomial, Poisson, or gamma random
variables.
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• Mean:
E.yi / D �i D h

�
�add
i

�

with (known) response function h.
• Predictor:

�i D f1.zi1/C : : :C fq.ziq/C �lin
i D �add

i :

• Remark: Interactions, spatial effects, and random effects can be included as for
additive (mixed) models.

2.10.8 Structured Additive Regression (STAR, Chap. 9)

• Response: Observations yi are continuous, categorical, or count data. Depending
on the measurement scale and distributional assumptions, they are (realizations
of) independent Gaussian, binomial, multinomial, Poisson, or gamma random
variables.

• Mean:
E.yi / D �i D h.�i /

with response function h.
• Predictor:

�i D f1.vi1/C : : :C fq.viq/C �lini :

The arguments v1; : : : ; vq are scalar or multivariate variables of different type,
constructed from the covariates. Correspondingly, the functions f1; : : : ; fq are of
different type. Some examples are:

f1.v1/ D f .z1/; v1 D z1; nonlinear effect of z1

f2.v2/ D fgeo.s/; v2 D s; spatial effect of the location variable s

f3.v3/ D f .z/x; v3 D .z; x/; effect of x varying over the domain of z

f4.v4/ D f1;2.z1; z2/; v4 D .z1; z2/; nonlinear interaction between z1 and z2

f5.v5/ D �iu; v5 D u; random effect of u:

• Remark: Structured additive regression reflects the fact that the predictor includes
effects of different type in structured additive form. All model classes discussed
so far are special cases of STAR models.

2.10.9 Quantile Regression (Chap. 10)

• Response: Observations yi are continuous and independent with generally
unspecified distribution.

• Quantiles: Quantile regression models the quantiles q� , 0 < � < 1, of the
response distribution using a linear or additive predictor. The most general
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predictor is a STAR predictor, i.e.,

q�;i D f�;1.vi1/C : : :C f�;q.viq/C �lin
�;i

with variables vj and functions fj as in Sect. 2.10.8.



3The Classical Linear Model

The following two chapters will focus on the theory and application of linear
regression models, which play a major role in statistics. We already studied some
examples in Sect. 2.2. In addition to the direct application of linear regression
models, they are also the basis of a variety of more complex regression methods.
Examples are generalized linear models (Chap. 5), mixed models (Chap. 7), or
semiparametric models (Chaps. 8 and 9).

In this chapter, we will focus exclusively on the classical linear model y D
ˇ0Cˇ1x1C: : :CˇkxkC", with independent and identically distributed errors, which
were already introduced in Sect. 2.2.2. Section 3.1 defines the model, discusses
model assumptions, and illustrates how covariate effects are modeled. The following
Sects. 3.2 and 3.3 describe the theory of classical estimation and testing within
the linear model framework. The method of least squares plays a major role for
estimating the unknown regression coefficients ˇ0; : : : ; ˇk .

This chapter’s last part (Sect. 3.4) discusses methods and strategies for model
choice and diagnostics, as well as the application of the models and inference
techniques presented so far. A careful and detailed case study on prices of used
cars will show how linear models can be used in practice.

The concluding Sect. 3.5 gives suggestions for further reading and provides
proofs of the theorems that have been omitted in the main text to improve readability.

In order to circumvent limitations of classical linear models, several extensions
have been proposed in the literature. These extensions are devoted to the next
chapter.

3.1 Model Definition

Suppose we are given a variable of primary interest y and we aim to model the
relationship between this response variable y and a set of regressors or explanatory
variables x1; : : : ; xk . In general, we model the relationship between y and x1; : : : ; xk
with a function f .x1; : : : ; xk/. This relationship is not exact, as it is affected by
random noise ". In practice, we usually assume additive errors and thus obtain

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9 3,
© Springer-Verlag Berlin Heidelberg 2013
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y D f .x1; : : : ; xk/C ":

Our goal is to estimate the unknown function f , i.e., to separate the systematic
component f from the random noise ". Within the framework of linear models, the
following specific assumptions regarding the unknown function f and the noise "
are made:
1. The systematic component f is a linear combination of covariates

The unknown function f .x1; : : : ; xk/ is modeled as a linear combination of
covariates, i.e.,

f .x1; : : : ; xk/ D ˇ0 C ˇ1x1 C : : :C ˇkxk:

The parameters ˇ0; ˇ1; : : : ; ˇk are unknown and need to be estimated. The
parameter ˇ0 represents the intercept. If we combine the covariates and the un-
known parameters each into pD .kC1/ dimensional vectors, x D .1; x1; : : : ; xk/

0
and ˇ D .ˇ0; : : : ; ˇk/

0; then
f .x/ D x0ˇ:

Note that the intercept ˇ0 in the model implies that the first element of the vector
x equals one.

At first glance, the assumption of a linear function f , i.e., a linear relation
between y and x, appears to be very restrictive. As already demonstrated
in Sect. 2.2 (p. 22), nonlinear relationships can also be modeled within the
framework of linear models. Section 3.1.3 will elaborate on this aspect in even
more detail.

2. Additive Errors
Another basic assumption of the linear model is additivity of errors, which

implies
y D x0ˇ C ":

Even though this appears to be very restrictive, this assumption is reasonable
for many practical applications. Moreover, problems, which at first do not show
additive error structure, can be specified by models with additive errors after a
transformation of the response variable y (refer to Sect. 3.1.2, p. 83).
In order to estimate the unknown parameters ˇ, we collect data yi and xi D

.1; xi1; : : : ; xik/
0, i D 1; : : : ; n, and for every observation construct the equation

yi D ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i D x0
iˇ C "i : (3.1)

If we define the vectors

y D

0

B@
y1
:::

yn

1

CA and " D

0

B@
"1
:::

"n

1

CA
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and the design matrix X ,

X D

0

B@
1 x11 � � � x1k
:::
:::

:::

1 xn1 � � � xnk

1

CA D

0

B@
x0
1
:::

x0
n

1

CA ;

then the n equations in Eq. (3.1) can be compactly summarized as

y D Xˇ C ":

For the remaining chapter we assume that X is of full column rank, i.e., rk.X/ D
k C 1 D p, implying the columns of X are linearly independent. A necessary
requirement is that the number of observations n must at least be equal to (or
larger than) the number p of regression coefficients. The assumption is violated
if one of the covariates is a linear transformation of another covariate, for example,
x1 D a C b x2. For example, the variable x1 could represent the height of a person
in meters and x2 the height in centimeters, implying a D 0 and b D 1=100. In
general, the assumption of linear independence is always violated when at least
one of the explanatory variables can be represented as a linear combination of
the other covariates, implying redundancy of information. We will see that linear
independence of the columns in the design matrix X is necessary in order to obtain
unique estimators of the regression coefficients in ˇ.

Our model is finalized by appropriate assumptions on the error terms "i . Within
the classical linear model, the following assumptions for the vector " of errors are
made:
1. Expectation of the errors

The errors have mean or expectation zero, i.e., E."i / D 0 or in matrix notation
E."/ D 0.

2. Variances and correlation structure of the errors
We assume a constant error variance �2 across observations, that is

homoscedastic errors with Var."i / D �2. The errors are called heteroscedastic
when the variances vary among observations, i.e., Var."i / D �2i . In addition to
homoscedastic variances, we assume that errors are uncorrelated, which means
Cov."i ; "j / D 0 for i ¤ j . The assumption of homoscedastic and uncorrelated
errors leads to the covariance matrix Cov."/ D E.""0/ D �2I .

3. Assumptions about the covariates and the design matrix
We distinguish between two situations. On one hand, explanatory variables

x1; : : : ; xk may be deterministic or non-stochastic, e.g., as is the case in designed
experiments. In most cases, and also in almost every application presented in this
book, both the response as well as the covariates are stochastic (observational
data). For example, the rent data for apartments in Munich are a random sample
of all apartments in the city of Munich. Hence, all characteristics of an apartment,
for example, its area or year of construction, are realizations of random variables.
In the case of stochastic regressors, the observations .yi ;x0

i /, i D 1; : : : ; n,
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3.1 The Classical Linear Model

The model
y D Xˇ C "

is called the classical linear regression model, if the following assumptions are
true:
1. E."/ D 0.
2. Cov."/ D E.""0/ D �2I .
3. The design matrix X has full column rank, i.e., rk.X / D k C 1 D p.
The classical normal regression model is obtained if additionally
4. " � N.0; �2I/
holds. For stochastic covariates these assumptions are to be understood
conditionally on X .

can be understood as realizations of a random vector .y;x0/, and all model
assumptions are conditional on the design matrix, as, for example, E." j X/ D 0

(instead of E."/ D 0) or Cov." j X/ D �2I (instead of Cov."/ D �2I). The
latter implies that "i and xi are (stochastically) independent. The assumption
that errors and stochastic covariates are independent can be relaxed, for example,
by allowing Var."i j xi / to depend on covariates, i.e., Var."i j xi / D �2.xi / (see
in Chap. 4, Sect. 4.1.3).

In any case, we assume that the design matrix has full column rank, i.e.
rk.X/ D k C 1 D p.

4. Gaussian errors
To construct confidence intervals and hypothesis tests for the regression

coefficients, we often assume a normal distribution for the errors (at least
approximately). Together with assumptions 1 and 2, we obtain "i � N.0; �2/ or
in matrix notation " � N.0; �2I/. With stochastic covariates we have "i j xi �
N.0; �2/ and " j X � N.0; �2I/, implying that "i and xi are independent.
For notational simplicity we usually suppress the dependence of terms on the

design matrix X in case of stochastic covariates.
From our model assumptions it immediately follows that

E.yi / D E.x0
iˇ C "i / D x0

iˇ D ˇ0 C ˇ1xi1 C : : :C ˇkxik;

Var.yi / D Var.x0
iˇ C "i / D Var."i / D �2;

Cov.yi ; yj / D Cov."i ; "j / D 0;

for the mean and the variance of yi , as well as the covariance between yi and yj ,
respectively. In matrix notation we obtain

E.y/ D Xˇ and Cov.y/ D �2I :
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If we additionally assume normally distributed errors, we have

y � N.Xˇ; �2I/:

Note that covariates do only affect the mean of y . The variance �2 of yi or the
covariance matrix �2I of y is independent of the covariates; however we relax this
assumption in Chap. 4, Sect. 4.1.3.

3.1.1 Model Parameters, Estimation, and Residuals

Prior to discussing the model assumptions for the classical linear model, we
introduce some notation and terminology. We distinguish the model parameters
from their estimates by a “hat,” which means estimates of ˇ and �2 are denoted
by Ǒ and O�2; respectively. This distinction is necessary, since it is more or less
impossible to estimate the “true” parameter vector ˇ without error; thus Ǒ ¤ ˇ

in general. Regression parameters are usually estimated using the method of least
squares, which we have begun to introduce in Sect. 2.2 for the simple linear model
with just one regressor (see p. 24). Section 3.2 will outline estimation of ˇ and �2 in
full detail. Based on an estimator Ǒ for ˇ, a straightforward estimator of the mean
E.yi / of yi is given by

1E.yi / D Ǒ
0 C Ǒ

1xi1 C � � � C Ǒ
kxik D x0

i
Ǒ:

We usually refer to this estimator as Oyi ; i.e., Oyi D 1E.yi /. The estimated error, i.e.,
the deviation yi �x0

i
Ǒ between the true value yi and the estimated value Oyi , is called

residual and denoted by O"i . We have

O"i D yi � Oyi D yi � x0
i

Ǒ:
Defining the vector of residuals O" D .O"1; : : : ; O"n/0, we obtain

O" D y � X Ǒ:
It is important to understand that the residuals O"i are not identical to the errors "i .
These are, like the parameter vector ˇ, unknown. In fact the residuals O"i can be seen
as estimates (or more precisely predictions) of "i .

The residuals contain the variation in the data that could not be explained by
covariates. In some situations, especially for model diagnostics, we compute partial
residuals, which quantify the removal of the effect of most, but not of all, covariates.
Partial residuals with respect to the j th covariate xj are defined as follows:

O"xj ;i D yi � Ǒ
0 � : : : � Ǒ

j�1xi;j�1 � Ǒ
jC1xi;jC1 � : : : � Ǒ

kxik

D yi � x0
i

Ǒ C Ǒ
j xij

D O"i C Ǒ
j xij :
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Here, the effect of all covariates with the exception of xj is removed. We will
see that the partial residuals are helpful for model choice, model diagnostics, and
visualization.

3.1.2 Discussion of Model Assumptions

This section has two goals: First, the assumptions of the classical linear model are
critically discussed. Secondly, we direct the reader to particular sections within this
book, in which various restrictive assumptions of classical linear models will be
relaxed to yield more flexible modeling approaches. For illustration, we usually use
the simple regression model y D ˇ0 C ˇ1x C " with one explanatory variable.

Linearity of Covariate Effects
At first, the assumption of linear covariate effects may appear quite restrictive.
However, within the scope of linear models, nonlinear relations are possible as well.
Consider, for instance, the following model, in which the effect of the explanatory
variable zi is logarithmic:

yi D ˇ0 C ˇ1 log.zi /C "i :

Defining a new variable xi D log.zi / yields the linear model yi D ˇ0 C ˇ1xi C "i .
In general, nonlinear relationships can be connected to linear models provided that
they are linear in the parameters. An example for a model, which is nonlinear in the
parameter ˇ2, is given by

yi D ˇ0 C ˇ1 sin.ˇ2zi /C "i :

This book discusses several techniques on how to model nonlinear relationships
between a response variable y and an explanatory variable x. Section 3.1.3 will
illustrate two simple techniques in detail: the modeling of nonlinear relationships
through variable transformation and also through polynomials. Example 2.2 (p. 25)
already presented an example for variable transformation. We also already used
polynomial regression in Example 2.6 (p. 32). Both of these simple techniques do
have the disadvantage that the functional form of the relationship must be known
in advance. In Chaps. 8 and 9, we will discuss methods for estimating nonlinear
covariate effects without special assumptions on the functional form.

Homoscedastic Error Variances
Homoscedastic error variances imply that the variance of "i does not systematically
vary across individuals, e.g., by an increase or decrease with one or more covari-
ates xj . Figure 3.1 illustrates the difference between homo- and heteroscedastic
variances with simulated data. Panel (a) displays the typical ideal setting of
homoscedastic errors: All observations fluctuate with a stable variability around the
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Fig. 3.1 Illustration for homo- and heteroscedastic variances: The graphs on the left show simu-
lated data together with the true regression line. In the graphs on the right the corresponding errors
are displayed. The data are based on the model yi � N.�1C 2xi ; 1/ [panels (a)—homoscedastic
variance and (b)—homoscedastic variance, errors] and yi � N.�1 C 2xi ; .0:1 C 0:3.xi C
3//2/ [panels (c)—funnel-shaped heteroscedastic variance and (d)—funnel-shaped heteroscedastic
variance, errors]

regression line. Panel (b) shows the associated errors centered at zero. Since these
data are simulated, we know the true regression coefficients and also the regression
line and error values. In real data situations, we have to rely on estimators of the
regression parameters. Since the errors "i D yi � x0

iˇ depend on the unknown
regression parameters, we estimate the errors with the residuals O"i D yi � x0

i
Ǒ.

When verifying the assumption of homoscedastic errors, we rely on the examination
of the residuals. Section 3.4.4 provides further details. Panels (c) and (d) in Fig. 3.1
provide a typical example for heteroscedastic variances. With an increasing x, the
variation around the regression line also increases. The error values in panel (d) still
fluctuate around zero, but the variances increase with increasing x.
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Fig. 3.2 Munich rent index: illustration of heteroscedastic variances. The left panel shows a
scatter plot between net rent and area together with the estimated regression line. The right panel
displays the corresponding residuals versus area

Example 3.1 Munich Rent Index—Heteroscedastic Variances
The funnel-shaped trend of the errors in Fig. 3.1c d is typical for many real data situations.
As an example we take the Munich rent data; see Fig. 3.2 which shows the scatter plot
between the net rent and living area together with the estimated regression line (left panel).
The right panel of Fig. 3.2 shows a scatter plot of the corresponding residuals as a function
of living area. The observed net rent scatters with an increasing variance around the plotted
regression line. Clearly, a wider range of rent is found for larger living areas than for smaller
ones. The scatter plot of the residuals shows the funnel-shaped trend mentioned above.
We already encountered this phenomenon in Example 2.1 (p. 22), where we examined the
relationship between net rent and area of apartments in average location that were built
after 1966 (Fig. 2.1 on p. 23). We obtain a very similar pattern as presented in Fig. 3.2. The
variability is, however, less pronounced, which is due to the fact that data for the apartments
in average location are more homogeneous. 4
An obvious question arises: What are the consequences of ignoring heteroscedas-

tic variances? In particular, we will see that the variances of estimated regression
coefficients Ǒ are not properly estimated. This in turn may cause problems for
hypothesis tests and confidence intervals for the regression coefficients.

Section 4.1 (p. 177) of the next chapter will discuss heteroscedastic variances
in more detail. There we will generalize the classical linear model to allow for
heteroscedastic variances of the errors.

Uncorrelated Errors
In some cases, especially in time series and longitudinal data, the assumption of
uncorrelated errors is not realistic. Many applications show autocorrelated errors.
For example, first-order autocorrelation reveals a linear relationship "i D "i�1Cui
between the errors "i at time i and the errors of the previous time period, "i�1. The
ui are independent and identically distributed random variables. Second-order or
more generally l th-order autocorrelation is given if "i D 1"i�1 C 2"i�2 C ui or
"i D 1"i�1 C : : :C l"i�l C ui , respectively.
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Fig. 3.3 Illustration for autocorrelated errors: Panels (a) and (b) show errors with positive
autocorrelation and panels (c) and (d) correspond to negative autocorrelation. The respective
graphs on the left show the (simulated) data including the (true) regression line. The graphs on the
right-hand side display the corresponding errors. In case of negative autocorrelation, observations
are connected in order to emphasize the changing algebraic sign. The data with positive correlation
are simulated according to the model yi D �1 C 2xi C "i where "i D 0:9"i�1 C ui and
ui � N.0; 0:52/. The data with negative correlation in the errors are simulated according to
yi D �1C 2xi C "i where "i D �0:9"i�1 C ui and ui � N.0; 0:52/

An example for autocorrelated errors is presented in Fig. 3.3. Panels (a) and (b)
display simulated data with errors that have a first-order positive autocorrelation,
which means that a positive (negative) error is likely to be followed by yet another
positive (negative) error. Panels (c) and (d) illustrate the contrary, showing errors
with negative autocorrelation. Positive (negative) errors are typically followed by
negative (positive) errors, i.e., we frequently observe alternating signs of the errors.

Autocorrelated errors usually appear when the regression model is misspecified,
e.g., a covariate is missing or the effect of a continuous covariate is nonlinear
rather than linear. Figure 3.4 exemplifies such a situation. Panel (a) shows data



82 3 The Classical Linear Model

a b

c

−4

−2

0

2

4

−3 −2 −1 0 1 2 3

observations and true function

−4

−2

0

2

4

−3 −2 −1 0 1 2 3

observations and regression line

−1

−.5

0

.5

1

−3 −2 −1 0 1 2 3

residuals

Fig. 3.4 Illustration for correlated residuals when the model is misspecified: Panel (a) displays
(simulated) data based on the function E.yi j xi / D sin.xi / C xi and "i � N.0; 0:32/.
Panel (b) shows the estimated regression line, i.e., the nonlinear relationship is ignored. The
corresponding residuals can be found in panel (c)

simulated from the model yi D sin.xi / C xi C "i . The conditional mean of yi
is E.yi j xi / D sin.xi / C xi ; which is a nonlinear function of x; see Fig. 3.4a.
In panel (b), a simple linear regression line has been fitted, which means that the
estimated model is misspecified. The corresponding residuals in panel (c) show
positive autocorrelation.

Autocorrelated errors are most often encountered in time series or longitudinal
data. In many cases, relevant covariates cannot be included in the model because
they cannot be observed. If the unobserved but relevant covariates show a temporal
or seasonal trend, correlated errors are induced. We again use simulated data for
illustration. Panels (a) and (b) of Fig. 3.5 show a time series plot of variables x1
and x2. Whereas x1 is apparently subject to a clear temporal trend, x2 fluctuates
randomly around zero. Now consider the regression model yi D �1 C x1 �
0:6 x2 C "i , i D 1; : : : ; 100, with independent and identically distributed normal
errors "i � N.0; 0:52/. This is a classical linear regression model, which complies
with the assumptions stated in Box 3.1 on p. 76. We obtain the estimates Oyi D
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�1:03 C 0:98xi1 � 0:61xi2. Figure 3.5c shows the corresponding residuals, which
does not reveal any conspicuous behavior. Moreover, we do not see any evidence of
autocorrelation. If we estimate a regression model that does not include covariate x2;
we obtain Oyi D �1:01 C 0:95 � xi1. The corresponding time series of residuals is
presented in Fig. 3.5d. Even though covariate x2 is missing, there does not appear to
be any anomalies in the fit. The estimated regression coefficients are close to their
true values, and the residual variation over time appears to be random. In case that
we neglect to model the variable x1 fluctuating about some trend, we obtain the
estimates Oyi D �2:22 � 0:60 � xi2. Figure 3.5e shows the residuals, which now
suggest presence of autocorrelation. Why are the residuals rather inconspicuous
when x2 is not considered and why do the residuals show autocorrelation when
neglecting x1? The reason is that x1 shows a distinct temporal trend, whereas x2
does not. We can explain these relationships as follows: The omitted effects ˇ1x1 or
ˇ2x2 can be absorbed into the error term. If x1 (x2) is omitted in the model, we can
denote the corresponding errors as Q" D ˇ1x1C" ( Q" D ˇ2x2C"). Since x2 essentially
shows no time trend, the residuals Q" are still uncorrelated. However, if the effect of
x1 is absorbed into Q"; the trend in x1 is reflected in the errors and autocorrelated
residuals are obtained.

Analogous to heteroscedastic errors, we also have to examine the consequences
of ignoring correlated errors. Section 4.1 (p. 177) of the next chapter will discuss
this in detail including estimation methods in the presence of correlated errors.
Intuitively, it is clear that ignorance regarding correlation implies loss of infor-
mation. Suppose we are interested in predicting the response based on a new
observation xnC1 of the covariates at time nC 1. An obvious estimator in this situa-
tion is given by OynC1 D x0

nC1 Ǒ. For correlated errors using this estimator results in
a loss of information. If, for instance, errors are positively correlated, then positive
residuals are more likely to be followed by other positive residuals. That is, if the
residual "n at time n is positive, the residual "nC1 in the next time period is likely
positive again. The stronger the correlation, the less O"n differs from O"nC1. Thus, it
makes sense to predict a higher value for ynC1 than x0

nC1 Ǒ. On the other hand we

should predict a smaller value than x0
nC1 Ǒ if the residual O"n is negative. Section 4.1

(p. 177) will show that OynC1 D x0
nC1 Ǒ C O O"n represents an optimal prediction of

ynC1, where O is the (empirical) correlation coefficient between O"i and O"i�1.

Additivity of Errors
In principle, many different models for the structure of the errors are conceivable.
In the vast majority of cases, two alternative error structures are assumed: additive
errors and multiplicative errors. An example for multiplicative errors is the expo-
nential model

yi D exp.ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i /

D exp.ˇ0/ exp.ˇ1xi1/ � : : : � exp.ˇkxik/ exp."i /;
(3.2)
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Fig. 3.5 Illustration for autocorrelated errors if relevant covariates showing a temporal trend are
ignored. Panels (a) and (b) show the covariates over time. Panels (c–e) display the residuals for
the regression models yi D ˇ0 C ˇ1xi1 C ˇ2xi2 C "i (correct model), yi D ˇ0 C ˇ1xi1 C "i (x2
ignored), and yi D ˇ0 C ˇ1xi2 C "i (x1 ignored)
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Fig. 3.6 Example for a multiplicative model: Panels (a) and (b) show scatter plots between
simulated data y and x1, respectively, x2 based on the model yi D exp.1C xi1 � xi2 C "i / with
"i � N.0; 0:42/. Panels (c) and (d) display scatter plots of log.y/ versus x1 and x2, respectively

with multiplicative errors Q"i D exp."i /. Models with multiplicative error structure
are more plausible for exponential relationships since the errors are proportional to
the mean value of y. Figure 3.6 shows simulated data with multiplicative errors.
Panels (a) and (b) display scatter plots of a response y with two explanatory
variables x1 and x2. The data are generated according to the model

yi D exp.1C xi1 � xi2 C "i /; (3.3)

with "i � N.0; 0:42/. It is difficult to make a statement about the strength and
type of the relationship between y and x1 or x2 on the basis of the scatter plots.
Many popular models with multiplicative errors can be expressed as linear models
with additive errors through a simple transformation of variables. A logarithmic
transformation of (3.2) results in the linear model
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Fig. 3.7 Supermarket scanner data: scatter plot between the sales of a particular brand and its
price [panel (a)] and the price of a competing brand [panel (b)], respectively

log.yi / D ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i :

Hence, we can treat an exponential model within the scope of linear models by
taking the logarithm of the response variable. Panels (c) and (d) in Fig. 3.6 show
scatter plots between the logarithmic response value log.y/ and the covariates x1
and x2 for the simulated model (3.3), which provides clear evidence of linear
relationships under transformation. Provided that the errors are normally distributed,
the response y is log-normally distributed (see Appendix B, p. 641) resulting in

E.yi / D exp.x0
iˇ C �2=2/

for the (conditional) mean of yi .

Example 3.2 Supermarket Scanner Data
Figure 3.7 shows scatter plots for real data that look similar to the simulated data in
Fig. 3.6. The graphs show scanner data, which are collected routinely during checkout at
supermarkets. Here, we want to examine the dependence of weekly sales of a product (in
our case a particular brand of coffee) on its own price and the price of a competing brand,
respectively. Panel (a) shows the scatter plot between sales and the brand price; panel (b)
shows a similar scatter plot between sales and the price for a competing brand of coffee.
Based on the scatter plots alone, it is difficult to verify the hypothesis that a higher price
leads to a decrease in sales and a higher price for the competing brand leads to an increase
in sales. 4

3.1.3 Modeling the Effects of Covariates

Modeling the effects of covariates has already been explored in Sect. 2.2 (p. 22)
and in connection with the discussion of model assumptions (last paragraph of
Sect. 3.1.2). This section examines this aspect in more detail.
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Continuous Covariates
As mentioned in our discussion of the model assumptions, we can fit nonlinear
relationships within the scope of linear models. When dealing with continuous
explanatory variables, a nonlinear specification is often necessary, and in this
section we examine two simple methods to do so: simple variable transformations
and polynomial regression. Chapter 8 will examine more flexible and automated
methods.

Modeling with variable transformation or use of polynomials can be best
demonstrated through examples. We use the Munich rent index data for illustration
and start by modeling the relationship between net rent and area.

Example 3.3 Munich Rent Index—Variable Transformation
In connection with homo- and heteroscedastic variances in Sect. 3.1.2, a regression line
between net rent and area has already been fit (see Fig. 3.2). Here, the assumption of a
linear relationship seems to be justified. If we rather use the net rent per square meter as
the response variable, we obtain the fit 1rentsqmi D 9:47 � 0:035 areai . Figure 3.8, panel
(a) shows the scatter plot between net rent per square meter and living area, along with
the fitted regression line. Panels (c) and (e) show the corresponding residuals and average
residuals for every square meter.

We find that the residuals are mostly positive for smaller apartments (area < 30)
indicating a nonlinear relationship between net rent per square meter and area. Variable
transformations offer one possibility to specify such a nonlinear relationship. To do so, we
consider the regression model

rentsqmi D ˇ0 C ˇ1 � f .areai /C "i ; (3.4)

where f is an arbitrary function. The function f must be appropriately specified, i.e., f
itself is fixed in advance and not estimated. Obviously, this model is a generalization of the
linear model rentsqmi D ˇ0 C ˇ1areai C "i . By defining the variable xi D f .areai /; we
again obtain a linear model rentsqmi D ˇ0 C ˇ1xi C "i as a special case. A transformation
that seems to be appropriate for modeling the nonlinear relationship between rentsqm and
area is given by f .areai / D 1=areai . We also chose this transformation in Example 2.2,
but using only a subset of the data (apartments built after 1966 in average location). The
least squares estimates for the entire data set result in

1rentsqmi D 4:73C 140:18 � f .areai / D 4:73C 140:18 � 1=areai :

The design matrix for this model is

X D

0
BBBBBB@

1 1=30

1 1=37
:
:
:

:
:
:

1 1=73

1 1=73

1
CCCCCCA
:

The second column of the design matrix contains observations x1 D f .area1/ D
1=area1 D 1=30, x2 D 1=37, : : : of the variable x, which represents the transformed
area variable.
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Fig. 3.8 Munich rent index: illustration for modeling nonlinear relationships via variable trans-
formation. The left column shows the estimated regression line including observations [panel (a)],
corresponding residuals [panel (b)], and average residuals for every distinct covariate value [panel
(c)]. The right column displays the estimated nonlinear relationship 1rentsqmi D 4:73 C 140:18 �
1=areai [panel (d)] and the corresponding residual plots [panels (e) and (f)]
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The interpretation of nonlinear relationships is best done by visualizing the estimated
curves. Figure 3.8b plots the estimated relationship 1rentsqm D 4:73 C 140:18 � 1=area
as a function of living area together with the observations .rentsqmi ; areai /. Note that the
curve represents the (conditional) mean of the response variable rentsqm conditional on
the living area. Overall the average net rent per square meter decreases with an increase of
living area. The decrease of net rent is highest for small apartments up to about 40 to 45
square meters, then the curve levels off. Apartments of about 100 square meters or more
have almost the same average net rent per square meter. When looking at the residuals
O"i D rentsqmi � 4:73� 140:18 � 1=areai in Fig. 3.8d or the average residuals in Fig. 3.8f,
we can see that the chosen nonlinear curve fits the data well. Of course, transformations
other than f .areai / D 1=areai are possible, e.g., f .areai / D log.areai /: In many cases
different transformations lead to very similar fits. Hence, we do not have a panacea when
choosing an appropriate transformation. We depend on the visual inspection of scatter plots
or residuals in order to find reasonable and suitable variable transformations. 4
Polynomial fitting offers another simple way to specify nonlinear relationships.

In this case, we approximate the effect of a continuous covariate with a polynomial.
We illustrate polynomial modeling again using the data of the Munich rent index.

Example 3.4 Munich Rent Index—Polynomial Regression
Assuming a second-order polynomial for the effect of area, we obtain the following
regression model:

rentsqmi D ˇ0 C ˇ1 � areai C ˇ2 � area2i C "i :

A polynomial of third degree leads to

rentsqmi D ˇ0 C ˇ1 � areai C ˇ2 � area2i C ˇ3 � area3i C "i :

Typically, polynomials of a low degree are preferred. We rarely use polynomials of
degree higher than three, as the resulting estimates become very unstable and exhibit high
variability particularly at the borders of the covariate domain. Similar to using variable
transformation, the nonlinear models can be connected to linear models. By defining new
variables xi1 D areai , xi2 D area2i and xi3 D area3i ; we obtain

rentsqmi D ˇ0 C ˇ1 � xi1 C ˇ2 � xi2 C "i ;

when using a polynomial of degree 2 and

rentsqmi D ˇ0 C ˇ1 � xi1 C ˇ2 � xi2 C ˇ3 � xi3 C "i

when using a polynomial of degree 3. The corresponding design matrices are defined,
respectively, by

X D

0
BBBBBB@

1 30 302

1 37 372

:
:
:
:
:
:

:
:
:

1 73 732

1 73 732

1
CCCCCCA

D

0
BBBBBB@

1 30 900

1 37 1369
:
:
:
:
:
:

:
:
:

1 73 5329

1 73 5329

1
CCCCCCA

(3.5)
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and

X D

0

BBBBBB@

1 30 302 303

1 37 372 373

:
:
:
:
:
:

:
:
:

:
:
:

1 73 732 733

1 73 732 733

1

CCCCCCA
D

0

BBBBBB@

1 30 900 27000

1 37 1369 50653
:
:
:
:
:
:

:
:
:

:
:
:

1 73 5329 389017

1 73 5329 389017

1

CCCCCCA
:

The estimated curves are given by

1rentsqmi D 11:83� 0:106 � xi1 C 0:00047 � xi2
D 11:83� 0:106 � areai C 0:00047 � area2i ;

when using a polynomial of degree 2 and

1rentsqmi D 14:28� 0:217 � xi1 C 0:002 � xi2 � 0:000006 � xi3
D 14:28� 0:217 � areai C 0:002 � area2i � 0:000006 � area3i

for the polynomial of degree 3. To interpret results, we again visualize the estimated
effects. Figure 3.9, panel (a) shows the estimated curve between net rent per square meter
and living area for a second-degree polynomial. Panel (c) illustrates the corresponding
residuals associated with this model. Panels (b) and (d) show the fit when using a third-
degree polynomial. We obtain quite similar results compared to variable transformation
f .areai / D 1=areai . Using visualization, we cannot decide as to which of the models is
more appropriate. Here, we need more formal techniques for variable selection and model
choice; see Sect. 3.4. 4
Thus far we have only considered one variable. The extension to more covariates

is straightforward, as the next example demonstrates.

Example 3.5 Munich Rent Index—Additive Models
It is straightforward to include additional covariates with a linear effect into the model. For
instance, we can extend the model (3.4) by adding the apartment’s year of construction. We
obtain

rentsqmi D ˇ0 C ˇ1 � f .areai /C ˇ2 � yearci C "i : (3.6)

When using the transformation f .area/ D 1=area, we obtain the fit

1rentsqmi D �65:41C 119:36 � 1=areai C 0:036 � yearci :

Alternatively, we can also estimate the effect of the year of construction nonlinearly. A
model using a polynomial of degree 3 is given by

rentsqmi D ˇ0 C ˇ1 � 1=areai C ˇ2 � yearci C ˇ3 � yearc2i C ˇ4 � yearc3i C "i : (3.7)

The corresponding fit is

1rentsqmi D 29113:6C 129:57 � 1=areai � 42:835 � yearci C 0:020949 � yearc2i

�0:00000340 � yearc3i :



3.1 Model Definition 91

0

5

10

15

20
a b

c d

ne
t r

en
t p

er
 s

qm

20 40 60 80 100 120 140 160

area in sqm

polynomial of degree 2

0

5

10

15

20

ne
t r

en
t p

er
 s

qm

20 40 60 80 100 120 140 160

area in sqm

polynomial of degree 3

−10

−5

0

5

10

re
si

du
al

s

20 40 60 80 100 120 140 160

area in sqm

residuals

−10

−5

0

5

10
re

si
du

al
s

20 40 60 80 100 120 140 160

area in sqm

residuals

Fig. 3.9 Munich rent index: illustration for modeling nonlinear relationships using polynomials.
The upper panels show fitted quadratic and cubic polynomials including observations. The lower
panels display the corresponding residuals

The results are obtained with STATA. Note that with other statistics packages we sometimes
obtained slightly different results due to rounding errors.
Combining the effects of the living area and the year of construction in the functions

f1.area/ D ˇ1 � 1=area

and
f2.yearc/ D ˇ2 � yearc C ˇ3 � yearc2 C ˇ4 � yearc3

we obtain the model

rentsqmi D ˇ0 C f1.areai /C f2.yearci /C "i :

The estimated functions are

Of1.area/ D 129:57 � 1=area



92 3 The Classical Linear Model

−29110

−29109

−29108

−29107

−29106

ef
fe

ct
 o

f y
ea

r 
of

 c
on

st
ru

ct
io

n 

1918 1928 1938 1948 1958 1968 1978 1988 1998

a b

year of construction

effect of year of construction

−2

−1

0

1

2

ef
fe

ct
 o

f y
ea

r 
of

 c
on

st
ru

ct
io

n 

18 28 38 48 58 68 78 88 98

year of construction

effect of year of construction, coded from 18 to 98

Fig. 3.10 Munich rent index: plots of the estimated nonlinear effect Of2.yearc/ of the year of
construction

and

Of2.yearc/ D �42:835 � yearc C 0:020949 � yearc2 � 0:00000340 � yearc3;

respectively. This is a special case of an additive model as in Chap. 2, Sect. 2.6.
The interpretation of the effects can again be achieved most successfully through

visualization. We plot the estimated effects Of1.area/ and Of2.yearc/ for living area or year of
construction. Figure 3.10a provides a visualization of the effect of year of construction. We
first notice that the range of values on the vertical axis is approximately between �29; 110
and �29; 106. The reason for the unusual range is the scale of the year of construction,
having values between 1918 and 1998. If we rather specify the year of construction with the
values 18; : : : ; 98 (subtracting 1,900 of the original values), we obtain

1rentsqmi D 5:42C129:57 �1=areai �0:094 �yearci C0:0016 �yearc2i �0:0000034 �yearc3i :

Looking at the parameter estimates, it appears that the redefined effect of the year of
construction differs clearly from the original effect. However, Fig. 3.10b shows that the
effect is only shifted vertically, otherwise remaining the same. In fact, the level of the
nonlinear function is not identifiable (as already pointed out in Sect. 2.6). If we add any
constant a to Of2 and subtract the same constant from Ǒ

0, the estimated rent per square
meter 1rentsqm remains unchanged. This implies that the level of the nonlinear function can
be arbitrarily changed, e.g., by transforming the explanatory variable.

For the sake of better interpretability, it is often useful to require that all functions “are
centered around zero.” This condition is automatically fulfilled if all covariates are centered
around zero. In case of the living area, we would replace the variable areainv D 1=area by
the centered version areainvc D areainv � areainv, where areainv is the arithmetic mean
of the variable areainv. We could do the same with the year of construction by replacing
the variables yearc, yearc2 D yearc2 and yearc3 D yearc3 by yearcc D yearc � yearc,
yearc2c D yearc2 � yearc2 and yearc3c D yearc3 � yearc3.

In case of polynomial modeling, we can go a step further and use the so-called orthogonal
polynomials, where we replace the usual basis yearc; yearc2; yearc3 for representing
polynomials with an orthogonal polynomial basis. This implies that the columns of the
design matrix corresponding to the variables yearc, yearc2, and yearc3 are centered and
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Fig. 3.11 Munich rent index: plots of the nonlinear and centered effects of living area and year of
construction including partial residuals

orthogonal. Apart from the fact that the corresponding covariate effects are centered,
orthogonal polynomials have other desirable properties, such as more stable computation of
the least squares estimators. Typically, orthogonal polynomials are computed automatically
using built-in functions provided by most statistical packages (e.g., in STATA the function
orthpol). In Example 3.9 (p. 111), however, we show how to compute orthogonal
polynomials using properties of the least squares method.

Using the orthogonal variables yearco, yearco2, yearco3, and the centered variable
areainvc; we obtain the model fit

1rentsqmi D 7:11C129:57 � areainvc i C0:79 � yearcoi C0:50 � yearco2 i �0:032 � yearco3 i :

Figure 3.11 displays the corresponding effects Of1.area/ and Of2.yearc/ together with the
partial residuals O"area;i and O"yearc;i , which are defined by

O"area;i D rentsqmi � Ǒ
0 � Of2.yearci / D O"i C Of1.areai /

and
O"yearc;i D rentsqmi � Ǒ

0 � Of1.areai / D O"i C Of2.yearci /;

respectively. The partial residuals for area, O"area;i ; account for the remaining variation due to
area, where all of the other effects are eliminated (in this case only the year of construction).
Analogously, in the partial residuals for year of construction, O"yearc;i ; the effect of the
area, but not that of year of construction, is eliminated. By plotting the partial residuals
in Fig. 3.11, we are able to visually assess whether or not the nonlinear fit is adequate.

We can interpret the effects of the living area and the year of construction accordingly:
The plotted area effect specifies the influence of the living area on the average net rent per
square meter, if the other covariates (in our case the year of construction) are held constant.
For apartments with living area of 40 and 60 square meters, we obtain, for example, the
effects Of1.40/ � 1 and Of1.60/ � 0. This implies that on average 60-square-meter-sized
apartments are 1 Euro less expensive than apartments of size 40 square meters, assuming
that both apartments were constructed in the same year. If we compare 60- and 80-square-
meter-sized apartments, the difference in price is only 0.5 Euro. Even though in both
examples we have a difference of 20 square meters of living space, the difference is cut
in half in relation to the average net rent. The reason for this can be seen through the clear
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3.2 Modeling Nonlinear Covariate Effects Through Variable
Transformation

If the continuous covariate z has an approximately nonlinear effect ˇ1f .z/
with known transformation f , then the model

yi D ˇ0 C ˇ1f .zi /C : : :C "i

can be transformed into the linear regression model

yi D ˇ0 C ˇ1xi C : : :C "i ;

where xi D f .zi /� Nf : By subtracting

Nf D 1

n

nX

iD1
f .zi /;

the estimated effect Ǒ
1x is automatically centered around zero. The estimated

curve is best interpreted by plotting Ǒ
1x against z (instead of x).

nonlinear effect, which becomes nearly constant for large values of the living area. We can
interpret the effect of the year of construction in a similar fashion. Apartments that were
constructed prior to World War II show roughly the same price (for the same living area).
Apartments that were constructed after 1945 show an approximately linear price increase.4

Categorical Covariates
To this point, we have discussed modeling the effect of continuous covariates. In
this section, we will discuss categorical covariates and their characteristics. We
will illustrate the methodology with the help of the Munich rent index data. More
specifically, we will discuss appropriate modeling of the variable location with the
three categories, 1 D average location, 2 D good location, and 3 D top location. In
a first (naive) attempt we treat location as if it were continuous and obtain the model

rentsqmi D ˇ0 C ˇ1 � locationi C "i :

For simplicity, we have omitted all other covariates in this illustrative model. Using
the least squares method, we obtain the fit

2rentsqmi D 6:54C 0:39 � location:
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3.3 Modeling Nonlinear Covariate Effects Through Polynomials

If the continuous covariate z has an approximately polynomial effect ˇ1z C
ˇ2z2 C : : :C ˇl zl of degree l , then the model

yi D ˇ0 C ˇ1zi C ˇ2z
2
i C : : :C ˇl z

l
i C : : :C "i

can be transformed into the linear regression model

yi D ˇ0 C ˇ1xi1 C ˇ1xi2 C : : :C ˇlxil C : : :C "i ;

where xi1 D zi , xi2 D z2i , : : :, xil D zli .
The centering (and possibly orthogonalization) of the vectors xj D
.x1j ; : : : ; xnj /

0, j D 1; : : : ; l , to x1 � Nx1; : : : ;xl � Nxl with the mean vector
Nxj D . Nxj ; : : : ; Nxj /0 facilitates interpretation of the estimated effects. A
graphical illustration of the estimated polynomial is a useful way to interpret
the estimated effect of z.

Due to the chosen coding, the effect of a good location would be twice as high as
it would be for an average location (0.39 Euro versus 2 � 0:39 D 0:78 Euro). The
effect for top location would be three times as high (0.39 Euro versus 3 �0:39 D 1:17

Euro). If we coded the location with 2 D average location, 6 D good location, and
8 D top location; apartments in a good location would be three times as expensive as
apartments in an average location; apartments in a top location would be four times
as expensive as apartments in an average location. This shows that the results are
dependent on the arbitrarily chosen coding of the categorical covariate. The problem
is that we cannot interpret the distances between the categories in a reasonable way.
A good location is not twice as good (or three times as good in the second coding)
as an average location. A remedy is to define new covariates, so-called dummy
variables, and estimate a separate effect for each category of the original covariate.
In the case of location, we define the following three dummy variables:

alocation D
�
1 location D 1 (average location),
0 otherwise;

glocation D
�
1 location D 2 (good location),
0 otherwise;

tlocation D
�
1 location D 3 (top location).
0 otherwise;
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We obtain the model

rentsqmi D ˇ0 C ˇ1 � alocationi C ˇ2 � glocationi C ˇ3 � tlocationi C "i :

If we look more closely, we find another difficulty when taking this approach: The
regression parameters are not identifiable. To fully understand the identification
problem, we inspect the definition of the location effects. For an average location
(alocationi D 1, glocationi D 0, tlocationi D 0), we obtain the effect ˇ0 C ˇ1.
For good or top locations the effects result in ˇ0 C ˇ2 and ˇ0 C ˇ3, respectively. If
we now add an arbitrary value a to the intercept ˇ0 and, at the same time, subtract
a from the coefficients ˇ1, ˇ2, and ˇ3, we obtain the same total effects. Hence we
cannot uniquely determine the regression parameters. Even with the help of the least
squares method, we would not obtain unique estimators. This identification problem
can be resolved in one of two ways: Either we use a model without intercept, or
we remove one of the dummy variables alocation, glocation, or tlocation from the
model. Since an intercept is usually included in the model, we restrict ourselves to
the second option. If we do not consider the variable glocation, we obtain the model

rentsqmi D ˇ0 C ˇ1 � alocationi C ˇ2 � tlocationi C "i :

The effects are now given by ˇ0 C ˇ1 for an average location, ˇ0 for good location,
and ˇ0 C ˇ2 for top location. The regression parameters are uniquely determined
and are thus identifiable. Using the method of least squares, we obtain the fit

2rentsqmi D 7:27� 0:31 � alocationi C 0:90 � tlocationi :

Care must be taken when interpreting the estimated regression coefficients. They
have to be interpreted with respect to the omitted category, in our example apart-
ments in good location. We obtain an estimated effect of Ǒ

0 C Ǒ
1 D 7:27� 0:31 D

6:96 for average location, Ǒ
0 D 7:27 for good location, and Ǒ

0C Ǒ
2 D 7:27C0:90 D

8:17 for the top location. Compared to apartments in good location, apartments in
average location are 0.31 Euro less expensive and apartments in top location are 0.90
Euro more expensive. The category of good location omitted in the model and used
for comparison is also called the reference category. Note that the interpretation
of the estimated regression coefficients depends on the chosen reference category.
However, all models are equivalent, which means that the estimated regression
coefficients for a particular reference category can be computed from the regression
coefficients of the original model. For example, if we use the average location as
reference category, we obtain the fitted model

2rentsqmi D 6:96C 0:31 � glocationi C 1:21 � tlocationi :

In comparison to apartments in average location, apartments in good location are
0.31 Euro more expensive and apartments in top location are 1.21 Euro more
expensive. The results are fully consistent with the previous coding.
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3.4 Dummy Coding for Categorical Covariates

For modeling the effect of a covariate x 2 f1; : : : ; cg with c categories using
dummy coding, we define the c � 1 dummy variables

xi1 D
�
1 xi D 1;

0 otherwise;
: : : xi;c�1 D

�
1 xi D c � 1;

0 otherwise;

for i D 1; : : : ; n; and include them as explanatory variables in the regression
model

yi D ˇ0 C ˇ1xi1 C : : :C ˇi;c�1xi;c�1 C : : :C "i :

For reasons of identifiability, we omit one of the dummy variables, in this
case the dummy variable for category c. This category is called reference
category. The estimated effects can be interpreted by direct comparison with
the (omitted) reference category.

In principle, any of the categories of a categorical variable could be chosen as the
reference. In practice, we usually choose the category which makes most sense for
interpretation, for example, the most common category found in the data set. For an
arbitrary categorical covariate x with c categories, dummy coding is summarized in
Box 3.4.

Note that there is more than one coding scheme for categorical covariates.
Another popular scheme is effect coding, which is defined by

xi1 D
8
<

:

1 xi D 1;

�1 xi D c;

0 otherwise;
: : : xi;c�1 D

8
<

:

1 xi D c � 1;
�1 xi D c;

0 otherwise.

In contrast to dummy coding, effect coding produces new variables that are coded
with �1 for the reference category yielding a sum to zero constraint as explained
in the following example that illustrates the difference between the two coding
schemes, using the Munich rent index data.

Example 3.6 Munich Rent Index—Effect Coding
If we choose an average location as the reference category, we obtain the two variables

glocation D
8
<

:

1 location D 2 (good location);
�1 location D 1 (average location),
0 otherwise,

tlocation D
8
<

:

1 location D 3 (top location),
�1 location D 1 (average location),
0 otherwise,
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in effect coding. For the regression model

rentsqmi D ˇ0 C ˇ1 � glocationi C ˇ2 � tlocationi C "i ;

we obtain the fitted model

1rentsqmi D 7:47� 0:19 � glocationi C 0:71 � tlocationi :

Due to the specific coding, we are able to compute an additional regression coefficient
associated with the reference category. It is obtained as the negative sum of the other
parameters, i.e., Ǒ

3 D � Ǒ
1 � Ǒ

2 D 0:19 � 0:71 D �0:52. This results in estimated
effects Ǒ

0 C Ǒ
3 D 7:47 � 0:52 D 6:95, Ǒ

0 C Ǒ
1 D 7:47 � 0:19 D 7:28, and

Ǒ
0 C Ǒ

2 D 7:47C 0:71 D 8:18 for average, good, and top locations, respectively. 4

Interactions Between Covariates
An interaction between covariates exists if the effect of a covariate depends on the
value of at least one other covariate. To start with, consider the following simple
model:

y D ˇ0 C ˇ1 x C ˇ2 z C ˇ3 x z C " (3.8)

between a response y and two other explanatory variables x and z. The term ˇ3 x z is
called an interaction between x and z. The terms ˇ1 x and ˇ2 z depend on only one
variable and are called main effects. We can understand the impact of an interaction
term when considering how E.y/ changes when one variable, e.g., x, changes by an
amount d . We have

E.y j x C d; z/� E.y j x; z/ D ˇ0 C ˇ1 .x C d/C ˇ2 z C ˇ3 .x C d/ z

�ˇ0 � ˇ1 x � ˇ2 z � ˇ3 x z

D ˇ1 d C ˇ3 d z:

Now we can distinguish between the two cases ˇ3 D 0 and ˇ3 ¤ 0:
• In the case ˇ3 D 0, the interaction is dropped from the model and the expected

change ˇ1 d is independent from the specific value of the second covariate z.
• In the case ˇ3 ¤ 0, the expected change ˇ1 d C ˇ3 d z does not only depend on

the amount d but also on the value of the covariate z.
Therefore, an interaction is always needed if the effect of the change of a variable

is also dependent on the value of another variable. The specification of interactions
is dependent on the type of the variables involved. In the sections to follow, we
discuss interactions between two categorical variables, i.e. between a continuous
and a categorical variable, as well as between two continuous variables.

Interactions Between Categorical Variables
We first consider the simplest case, the interaction between two binary variables x
and z. In context of the rent index example, the value x D 1 or z D 1 could imply
the existence of, e.g., a premium kitchen or bathroom. In this case, the coefficient ˇ1
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in Eq. (3.8) measures the effect of a premium kitchen on the net rent, ˇ2 measures
the effect of a premium bathroom, and ˇ3 measures the additional effect of having
both a premium kitchen and a premium bathroom. The interpretation depends on
the values of the coefficients. In our example, all three coefficients are most likely
positive, leading to the following interpretation: The existence of either a premium
kitchen (x D 1) or a premium bathroom (z D 1) will increase the average net rent.
If the apartment has both a premium kitchen and a bathroom, there is an additional
rent increase.

Our example shows that the interaction between two binary variables quantifies
the effect of both characteristics associated with x and z occurring simultaneously.
In the case of two arbitrary categorical variables x and z with c and m categories,
respectively, modeling of interactions is more complicated. We next illustrate the
situation of two categorical covariates, each with three categories: Define the
dummy variables x1, x2 that correspond to x and the dummy variables z1, z2
corresponding to z. We choose the last category as the reference for both x and z.
For modeling the interaction effect we have to consider all possible combinations
of the values of x and z (with the exception of the reference categories), specifically
x1z1, x1z2, x2z1, and x2z2. We now obtain

y D ˇ0 C ˇ1x1 C ˇ2x2 C ˇ3z1 C ˇ4z2 C ˇ5x1z1 C ˇ6x1z2 C ˇ7x2z1 C ˇ8x2z2 C ":

The coefficients can be interpreted as follows:

ˇ0: effect if x D 3 (reference) and z D 3 (reference),
ˇ0 C ˇ1: effect if x D 1 and z D 3 (reference),
ˇ0 C ˇ2: effect if x D 2 and z D 3 (reference),
ˇ0 C ˇ3: effect if x D 3 (reference) and z D 1,
ˇ0 C ˇ4: effect if x D 3 (reference) and z D 2,
ˇ0 C ˇ1 C ˇ3 C ˇ5:effect if x D 1 and z D 1,
ˇ0 C ˇ1 C ˇ4 C ˇ6:effect if x D 1 and z D 2,
ˇ0 C ˇ2 C ˇ3 C ˇ7:effect if x D 2 and z D 1,
ˇ0 C ˇ2 C ˇ4 C ˇ8:effect if x D 2 and z D 2.

As is common with categorical covariates, the effects have to be interpreted as
difference relative to the reference categories x D 3 and z D 3. The quantity ˇ2 C
ˇ4 C ˇ8, e.g., measures the effect of the combination x D 2, z D 2 when compared
to the combination x D 3, z D 3. Note that the interaction between x and z can also
be modeled by defining the new categorical variable w, whose categories consist of
all possible combinations of the values of x and z:

w D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1 x D 1; z D 1;

2 x D 1; z D 2;

3 x D 1; z D 3;
:::
:::

:::

9 x D 3; z D 3:
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Of course, one of the categories of w must be specified as the reference category
when defining the eight dummy variables to include in the regression model. In
many cases this approach is preferable because interpretation of the effects is more
straightforward.

Example 3.7 Munich Rent Index—Interaction with Quality of Kitchen
The rent index is updated every two years, with the collection of new data. For financial
reasons, the update during 2001 only consisted of data for 1,500 apartments. Due to the
smaller sample size, a complete redesign of the rent index was not possible. Instead the
following procedure was chosen: The same characteristics of the 1999 rent index were used,
implying that the structure of the rent index did not change. For all characteristics possible
changes of their effects compared to 1999 have been examined. To do so, both data sets of
1999 and 2001 were analyzed simultaneously, and changes in covariate effects have been
investigated with the help of interactions. We will illustrate the approach using the quality of
the kitchen (kitchen), with categories “kitchen below average” (reference category), “normal
kitchen” (dummy variable nkitchen), and premium kitchen (dummy variable pkitchen). Note
that we measure in this example the quality of the kitchen in three categories rather than two
categories as in Table 1.2 (p. 6) and all examples so far. Our starting point is the model (3.7)
which was developed in Example 3.5 (p. 90). Here, we modeled the effect of the living area
with the help of the transformation 1=area and the effect of the year of construction through
a third-degree polynomial. We now extend this model with an interaction term between the
quality of the kitchen and the survey year. We obtain the estimate

1rentsqm D � � � � 0:26 year01 C 0:91 nkitchen C 1:09 pkitchen

C0:41 nkitchen � year01 C 0:74 pkitchen � year01:

The dummy variable year01 specifies whether an observation has been taken from the
year 2001 (year01 D 1) or from the year 1999 (year01 D 0). For interpretation purposes,
we compare apartments with the same living area and year of construction. The results can
be summarized as follows, on a per square meter basis:
• In 2001, apartments with a below average kitchen are approximately 0:26 Euro per

square meter cheaper than apartments in 1999.
• Apartments with a normal kitchen are approximately �0:26C 0:41 D 0:15 Euro more

expensive in 2001 than in 1999.
• Apartments with a premium kitchen are approximately �0:26C0:74 D 0:48 Euro more

expensive in 2001 than in 1999.
In comparison to the original rent index, the estimated surcharge is very high for average
and above average kitchens. This results partly from the fact that the model in this example
does not contain all relevant covariates. At this point it is impossible to determine if
the interaction is necessary. The required inference techniques will be developed in the
following sections; in particular, see Sects. 3.3 and 3.4. 4

Interactions with Continuous and Categorical Variables
In the illustrative Example 2.5 (p. 30) of Chap. 2, we were already concerned with
the modeling of an interaction between continuous and categorical variables. There,
we used data from apartments that were built after 1966 and that were found in an
average or good location. Our goal was to model the relationship of the net rent
with the explanatory variables living area and location. Figure 2.3 (p. 27) gives the
impression that the main effects model

rent D ˇ0 C ˇ1 area C ˇ2 glocation C "
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is not adequate, as the regression line between net rent and living area for apartments
in a good location (glocation D 1) is very steep relative to the reference of average
location. As a result, we replaced the main effect model by

rent D ˇ0 C ˇ1 area C ˇ2 glocation C ˇ3 inter C ";

with the interaction variable inter D area � glocation and obtained the estimate

brent D 130:23C 5:57 area C 5:20 glocation C 0:82 inter:

We can interpret the terms as follows:
• ˇ1 area: Effect of the living area for apartments in average location (glocation D
0).

• ˇ1 area Cˇ2 Cˇ3 inter D ˇ2 C .ˇ1 Cˇ3/area: Effect of the area for apartments
in a good location (glocation D 1/. The two linear area effects for normal and
good location can be best interpreted through visualization; see Fig. 2.6 (p. 31).

• ˇ2 C ˇ3 inter D ˇ2 C ˇ3 area: This is the difference effect of apartments in
good location in comparison to apartments in average location. This effect varies
depending on the area. Due to the positive coefficients Ǒ

2 D 5:20 and Ǒ
3 D

0:82, apartments in good location are always more expensive than apartments in
average location (when having the same living area). The difference is even more
evident when the living area is larger. Every additional square meter of living area
increases the difference to apartments in average location by 0.82 Euro.
Interactions for any continuous and categorical covariates x and z can be handled

analogously. To keep things simple we first assume z 2 f0; 1g is binary. If the main
effects and interaction effects are linear, we have the model

y D ˇ0 C ˇ1 z C ˇ2 x C ˇ3 xz C : : :C ":

The dots indicate that the model may contain additional terms (of other covariates).
The terms in the model can be interpreted both with respect to the continuous
covariate x and the binary variable z. Referring to x, we obtain the following
interpretation:
• ˇ2 x: Linear effect of the continuous covariate x, if z D 0.
• ˇ1 C .ˇ2 C ˇ3/ x: Linear effect of the continuous covariate x, if z D 1.

On the contrary, we obtain the following interpretation with respect to z:
• ˇ1 C ˇ3x: Difference effect for observations with z D 1 relative to z D 0. The

difference effect varies depending on the value of x (unlike a constant difference
effect in models without interaction).
To this point, we assumed that the main effect of the continuous variable x and

the interaction effect are linear. Modeling nonlinear interaction effects within the
scope of our current modeling framework is also possible. To do so, we express the
model in terms of the functions f1 and f2:

y D ˇ0 C ˇ1 z C f1.x/C f2.x/ z C : : :C ": (3.9)
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In the case of linear modeling, we obtain the special cases f1.x/ D ˇ2 x and
f2.x/ D ˇ3 x. Nonlinear relationships can be achieved using transformation of
variables or through polynomials. For example, using polynomials of degree 2
yields the functions f1.x/ D ˇ2 x C ˇ3 x

2 and f2.x/ D ˇ4 x C ˇ5 x
2 and the

model
y D ˇ0 C ˇ1 z C ˇ2 x C ˇ3 x

2 C .ˇ4 x C ˇ5 x
2/ z C "

D ˇ0 C ˇ1 z C ˇ2 x C ˇ3 x
2 C ˇ4 xz C ˇ5 x

2z C ":

We can interpret the terms analogously to linear interaction effects:
• f1.x/: Nonlinear effect of the continuous covariate x when z D 0.
• ˇ1 Cf1.x/Cf2.x/ W Nonlinear effect of the continuous covariate x when z D 1.

The two curves f1.x/ and ˇ1 C f1.x/C f2.x/ show the strength of interaction.
In an extreme case of no interaction both curves run parallel to each other, i.e.,
they only differ by the constant ˇ1.

• ˇ1 C f2.x/: Nonlinear difference effect for observations with z D 1 relative to
z D 0. The effect varies nonlinearly, depending on x. We call this a varying
coefficient term, since the effect of z varies in a way that depends on the value
of the other variable x. The variable x “modifies” the effect of z and thus is also
called an effect modifier. In Sect. 9.3.1, we will deal with methods for flexibly
and automatically estimating nonlinear effects f2.

To facilitate interpretation, again it is convenient to center the main effect f1.x/
around zero. Automatic centering can be achieved when using centered design
vectors. We do not have to center the function f2, since it serves as the difference
effect to the main effect. The estimated effects Of1, Ǒ

1 C Of1 C Of2 and Ǒ
1 C Of2 can be

plotted together against x for interpretation.

Example 3.8 Munich Rent Index—Interaction Between Living Area and
Location

For illustration, we use the data for the Munich rent index. For simplicity, we only consider
apartments in average or top locations and model the relationship between net rent per
square meter and the explanatory variables living area and location. In previous examples
(e.g., Example 2.4, p. 28), we modeled the effect of the living area using the transformation
1=area. If we assume a linear interaction effect between area and location, we have

rentsqm D ˇ0 C ˇ1 tlocation C ˇ2 areainvc C ˇ3 area � tlocation C "

D ˇ0 C ˇ1 tlocation C f1.area/C f2.area/ � tlocation C ";

where areainvc denotes the transformation 1=area centered around zero. The dummy
variable tlocation is one for apartments in top location, zero otherwise. The function
f1.area/ D ˇ2 areainvc represents the nonlinear effect of living area and is automatically
centered around zero. The function f2.area/ D ˇ3 area � tlocation represents the linear
interaction effect. We obtain

1rentsqm D 6:94C 0:77 tlocation C 143:12 areainvc C 0:01 area � tlocation:

To interpret the estimated results, we visualize:
• The estimated effect Of1.area/ of the living area for apartments in an average location

(Fig. 3.12a, solid line)
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Fig. 3.12 Munich rent index: Panel (a) visualizes the area effect for average (solid line) and top
location (dashed line). Panel (b) shows the effect of top location varying with respect to area

• The effect Ǒ
1 C Of1.area/C Of2.area/ of the living area for apartments in a top location

(Fig. 3.12a, dotted line)
• The varying effect Ǒ

1 C Of2.area/ of apartments in top location (relative to average
location), depending on the living area (Fig. 3.12b)

These figures can be interpreted both with respect to the living area or the location:
• Living area: The effects of area in average or top location in Fig. 3.12a are similar.

However, the fitted curves are not parallel to each other implying an interaction effect.
If the living area increases, the average rent per square meter decreases. The decrease
in rent is at first very steep, but the slope moderates for apartments of about 80 square
meters or larger. Apartments in top location are always more expensive than apartments
in average location, regardless of size. For smaller apartments this difference is much
smaller than for larger apartments. This implies that with an increase in living area,
we find an increase in the difference of the net rent per square meter for apartments in
average relative to top location.

• Location: Regardless of living area, apartments in top location are more expensive than
apartments in average location. The difference increases linearly with an increase in
living area.

Thus far, we are unable to answer whether the inclusion of an interaction is significant
and necessary. This question can be answered with inference techniques described in the
sections to follow, specifically with statistical hypothesis testing (Sect. 3.3) and methods of
model choice (Sect. 3.4). 4
Next, we briefly illustrate the case of an interaction involving multi-categorical

rather than binary variables. To simplify notation, we limit ourselves to a variable
with three categories 1, 2, and 3. Extensions to more than three categories are
straightforward. Let z1 and z2 denote the dummy variables derived from z, with
z1 D 1 if z D 1, and z2 D 1 if z D 2, and zero otherwise. The third level z D 3

serves as the reference category. Analogous to Eq. (3.9), an interaction model can
be written as

y D ˇ0 C ˇ1 z1 C ˇ2 z2 C f1.x/C f2.x/ z1 C f3.x/ z2 C : : :C ";
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where f1, f2, and f3 are again linear or nonlinear functions. The model consists of
the following effects:
• f1.x/: Effect of the continuous variable x, if z D 3 (reference category).
• ˇ1 C f1.x/C f2.x/: Effect of the continuous variable x, if z D 1.
• ˇ2 C f1.x/C f3.x/: Effect of the continuous variable x, if z D 2.
• ˇ1 C f2.x/: Varying effect of the level z D 1 depending on x. As always with

categorical variables, the effect has to be interpreted as a difference relative to
the reference category z D 3.

• ˇ2 C f3.x/: Varying effect of the level z D 2, depending on x.
We can interpret the estimated results most easily if all the estimated effects Of1.x/,Ǒ
1C Of1.x/C Of2.x/, and Ǒ

2C Of1.x/C Of3.x/ are visualized in one figure. The varying
effects Ǒ

1 C Of2.x/ and Ǒ
2 C Of3.x/ can be plotted and analogously interpreted.

If we model all functions linearly, then we obtain the linear model

y D ˇ0 C ˇ1 z1 C ˇ2 z2 C ˇ3 x C ˇ4 x z1 C ˇ5 x z2 C : : :C ":

Using quadratic polynomials results in

y D ˇ0Cˇ1 z1Cˇ2 z2Cˇ3 xCˇ4 x2Cˇ5 x z1Cˇ6 x2 z1Cˇ7 x z2Cˇ8 x2 z2C: : :C":

Interactions Between Continuous Variables
When estimating interactions between two continuous covariates, we need to model
two-dimensional functions, e.g., by using two- or higher-dimensional polynomials.
Here we reach the limit within the scope of linear models, since it is very
difficult if not impossible to find adequate models through the inspection of (three-
dimensional) scatter plots. In this case, automated methods are clearly superior, and
we refer to Sects. 8.2 and 9.3.2.

3.2 Parameter Estimation

In this section we develop estimators for the unknown parameters ˇ and �2 of
the linear model and derive their statistical properties. Section 3.2.1 that follows
addresses estimation of the regression coefficients ˇ, and Sect. 3.2.2 discusses
estimation of the variance �2. In Sect. 3.2.3, we examine the statistical properties
of these estimators.

3.2.1 Estimation of Regression Coefficients

The theory of estimation for the regression coefficients of linear models is closely
connected to the method of least squares, first discovered by Legendre in 1806. In
addition to the method of least squares, other principles for parameter estimation
are possible, in particular the maximum likelihood estimator; see Appendix B.4 for
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a general introduction to likelihood-based inference. We will see that the maximum
likelihood estimator of the regression coefficients coincides with the least squares
estimator with Gaussian errors. Alternatives include robust methods, which reduce
the influence of outlying observations, compared to the least squares method.

The Method of Least Squares
According to the principle of least squares, the unknown regression coefficients ˇ

are estimated by minimizing the sum of the squared deviations

LS.ˇ/ D
nX

iD1
.yi � x0

iˇ/
2 D

nX

iD1
"2i D "0"; (3.10)

with respect to ˇ 2 Rp. Perhaps, at first thought, a more reasonable principle is
minimizing the sum of absolute deviations

SM.ˇ/ D
nX

iD1
jyi � x0

iˇj D
nX

iD1
j"i j:

In fact, this method is historically much older than the method of least squares.
It was first proposed around 1760, by Rudjer Joseph Boscovich (1711–1787). In
more modern terminology, we refer to this approach as median regression, since
the minimizing solution yields an estimate for the median of the response variable
conditional on the covariates. Median regression is a special case of quantile
regression, which aims at estimating an arbitrary quantile q� , � 2 .0; 1/ of the
response variable conditional on the covariates. More on quantile regression can
be found in Chap. 10.

Yet, the method of least squares remains the most common method for estimating
the regression coefficients ˇ. This is mainly due to the following reasons: On the one
hand, the use of the least squares principle is relatively simple from a mathematical
point of view. It is, for example, possible to differentiate LS.ˇ/, in contrast to
SM.ˇ/, with respect to ˇ. Additionally, estimators that rely on the least squares
method have a number of desirable statistical properties; see Sect. 3.2.3. Figure 3.13
illustrates the difference between the least squares principle and the minimization
of absolute differences by means of the simple model y D ˇ0 C ˇ1x C ".
The illustration shows that observations with large deviations have relatively large
impact as a matter of taking squares in the minimization criterion. Unlike median
regression, least squares estimators have the disadvantage of being highly sensitive
to outliers.

In order to determine the minimum of LS.ˇ/, we rearrange Eq. (3.10) and obtain

LS.ˇ/ D "0"

D .y � Xˇ/0.y � Xˇ/

D y 0y � ˇ0X 0y � y 0Xˇ C ˇ0X 0Xˇ

D y 0y � 2y 0Xˇ C ˇ0X 0Xˇ: (3.11)
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Fig. 3.13 Illustration of the least squares method: The upper panel shows some observations
.yi ; xi /, scattered around a straight line. According to the principle of least squares, the regression
line is chosen such that the sum of squared differences in the lower left panel is minimized.
As discussed before, squaring the residuals yields comparably large values for observations with
larger deviations from the regression line. For comparison, the lower right panel displays absolute
deviations where this effect is much smaller

We exploit the fact that the terms ˇ0X 0y and y 0Xˇ (as well as y 0y and ˇ0X 0Xˇ)
are scalars. Thus ˇ0X 0y is equal to its transpose .ˇ0X 0y/0; and we have ˇ0X 0y D
.ˇ0X 0y/0 D y 0Xˇ.

We minimize LS.ˇ/ by setting the vector of first derivatives zero and by showing
that the matrix of second derivatives is positive definite. Readers unfamiliar with
vector and matrix calculus should first inspect Appendix A.8 (p. 635). Applying
two rules for the differentiation of vector functions [see Theorem A.33 (1) and (3)],
we obtain

@ LS.ˇ/

@ˇ
D �2X 0y C 2X 0Xˇ: (3.12)

Taking second derivatives results in

@2 LS.ˇ/

@ˇ@ˇ0 D @ .�2X 0y C 2X 0Xˇ/

@ˇ0 D 2X 0X :

We thereby used Theorem A.33 (5). According to our assumptions, the columns
of the design matrix X are linear independent, i.e., rk.X/ D k C 1 D p.
Thus, according to Theorem A.30 (p. 634), the matrix X 0X is positive definite.
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We therefore obtain the least squares estimator Ǒ by setting Eq. (3.12) to zero or
equivalently by solving the so-called normal equations:

X 0X Ǒ D X 0y : (3.13)

Since X 0X is positive definite and invertible (see Theorem A.28, p. 634), the normal
equations have a unique solution given by the least squares estimator

Ǒ D .X 0X/�1X 0y : (3.14)

Maximum Likelihood Estimation
We obtained the least squares estimator without any specific distributional assump-
tions regarding the error term ". Assuming normally distributed errors, i.e., " �
N.0; �2I/, the maximum likelihood (ML) estimator for the unknown parameters
can be computed (see Appendix B.4 for an introduction to the theory of maximum
likelihood estimators). We next show that the ML estimator for ˇ is equivalent to
the least squares estimator.

Assuming normally distributed errors we have y � N.Xˇ; �2I/, which yields
the likelihood

L.ˇ; �2/ D 1

.2��2/
n=2

exp

�
� 1

2�2
.y � Xˇ/0.y � Xˇ/

�
: (3.15)

The log-likelihood is thus given by

l.ˇ; �2/ D �n
2

log.2�/ � n

2
log.�2/ � 1

2�2
.y � Xˇ/0.y � Xˇ/: (3.16)

When maximizing the log-likelihood with respect to ˇ, we can ignore the first two
terms of the sum in Eq. (3.16) because they are independent of ˇ. Maximizing
� 1
2�2
.y � Xˇ/0.y � Xˇ/ is equivalent to minimizing .y � Xˇ/0.y � Xˇ/, which

is the least squares criterion (3.10). The maximum likelihood estimator of ˇ is
therefore identical to the least squares estimator (3.14).

Predicted Values and Residuals
Based on the least squares estimator Ǒ D .X 0X/�1X 0y for ˇ, we can estimate the
(conditional) mean of y by

dE.y/ D Oy D X Ǒ:
Substituting the least squares estimator further results in

Oy D X.X 0X/�1X 0y D H y;

with the n � n-matrix
H D X .X 0X/�1X 0:
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3.5 Properties of the Hat Matrix

The hat matrix H D X.X 0X/�1X 0 has the following properties:
1. H is symmetric.
2. H is idempotent. For the definition of idempotent matrices, see

Appendix A, Definition A.12.
3. rk.H / D tr.H / D p, i.e., the trace is equal to the rank.
4. 1

n
� hii � 1

r
, where r represents the number of rows in X with different

xi . If the rows are all different, then 1
n

� hii � 1.
5. The matrix I � H is also symmetric and idempotent, with rk.I � H / D
n � p.

The matrix H is also called the prediction matrix or hat matrix . Some easily
verifiable properties of the hat matrix are summarized in Box 3.5.

With the help of the hat matrix H , it is also possible to express the residuals
O"i D yi � Oyi in matrix notion. We have

O" D y � Oy D y � H y D .I � H /y :

3.2.2 Estimation of the Error Variance

Maximum Likelihood Estimation
It is rather natural to estimate the variance �2 using maximum likelihood. We
already determined the likelihood L.ˇ; �2/ and the log-likelihood l.ˇ; �2/ for the
linear model; see Eqs. (3.15) and (3.16). Differentiation of the log-likelihood (3.16)
with respect to �2, and setting to zero, provides

@l.ˇ; �2/

@�2
D � n

2�2
C 1

2�4
.y � Xˇ/0.y � Xˇ/

ŠD 0:

Substituting the ML or least squares estimator Ǒ for ˇ results in

� n

2�2
C 1

2�4
.y � X Ǒ/0.y � X Ǒ/ D � n

2�2
C 1

2�4
.y � Oy/0.y � Oy/ D � n

2�2
C 1

2�4
O"0 O" ŠD 0;

which yields

O�2ML D O"0 O"
n
:
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3.6 Parameter Estimation in the Classical Linear Model

Estimation of ˇ

In the classical linear model, the estimator

Ǒ D .X 0X/�1X 0y

minimizes the least squares criterion

LS.ˇ/ D
nX

iD1
.yi � x0

iˇ/
2:

Under the assumption of normally distributed errors, the least squares
estimator is also the ML estimator for ˇ.

Estimation of �2

The estimator

O�2 D 1

n � p O"0 O"

is unbiased and can be characterized as the REML estimator for �2.

However, this estimator for �2 is rarely used. The mean of the sum of squared
residuals is

E. O"0 O"/ D .n � p/ � �2 (3.17)

and thus
E. O�2ML/ D n � p

n
�2:

This implies that the ML estimator for �2 is biased. A proof for Eq. (3.17) is
provided in Sect. 3.5.2 on p. 168.

Restricted Maximum Likelihood Estimation
Using Eq. (3.17), we easily get an unbiased estimator O�2 for �2. We obtain

O�2 D 1

n � p O"0 O"; (3.18)

which is a commonly used estimator for �2. Estimator (3.18) also possesses the
interesting feature of being the restricted maximum likelihood estimator (REML). It
can be shown that Eq. (3.18) maximizes the marginal likelihood
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L.�2/ D
Z
L.ˇ; �2/ dˇ;

which is obtained by integration over the vector of regression coefficients ˇ. In
general, the REML estimator for variance parameters is less biased than the ML
estimator and thus is generally preferred. In the present case the REML estimator is
even unbiased, in contrast to the ML estimator. A further application of the REML
principle can be found when estimating linear mixed models; see Chap. 7.

3.2.3 Properties of the Estimators

We will now discuss the properties of the estimators in the classical linear model.
First, we will discuss the geometric properties of the least squares estimator and
then move to its statistical properties for finite and infinite samples. We will also
discuss properties of the residuals.

Geometric Properties of Least Squares
From a geometric perspective, the (conditional) mean � D E.y/ D Xˇ of the
linear model y D Xˇ C " is an n-dimensional vector in Rn. Since � is a linear
combination of the columns of the design matrix X , � must be an element of
the column space of X . See Definition A.15 in Appendix A for the definition of
the column space of a matrix. The column space of X is spanned by the columns
1;x1; : : : ;xk , which are assumed to be linearly independent (rk.X/ D kC 1 D p).
Thus the columns of X define a p-dimensional vector space.

Geometrically, the response vector y is also a vector in Rn. However, y is usually
(similar to ") not an element of the column space of X . We illustrate the scenario
with the help of the very simple model

y D
�
y1
y2

�
D Xˇ C " D

�
1

1

�
ˇ0 C

�
"1
"2

�
;

having only two observations and one parameter ˇ0. Since the design matrix only
consists of the column vector x0 D .1; 1/0, the column space of X consists of
all points in R2 that are on the line defined by the origin and the point (1; 1/; see
Fig. 3.14.

For example, if we observe the vector y D .2; 3/0, we obtain the value
Ǒ
0 D 2:5 as the least squares estimator for ˇ0. The resulting predicted values

are Oy D .2:5; 2:5/0 (see Fig. 3.14). Since the method of least squares minimizes
.y�Xˇ/0.y�Xˇ/ D "0", the Euclidean distance between y and Xˇ is minimized.
Figure 3.14 shows this distance is minimized if Ǒ

0 is chosen such that the line
connecting y with Oy is orthogonal to Oy. The connecting line is in fact the residual
vector O". This in turn implies that the residuals O" and the predicted values Oy are
orthogonal, i.e., O"0 Oy D 0. Notice that x0 and O" are also orthogonal to each other.
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Fig. 3.14 Visualization of
the geometric properties of
the least squares estimator

We can generalize these observations for arbitrary linear models: The method of
least squares yields parameter estimates Ǒ such that the residuals O" and the predicted
values Oy are orthogonal to each other. This can be easily proved using properties of
the hat matrix H . Using Oy D H y and O" D .I � H /y (see p. 108), we obtain

Oy 0 O" D y 0H .I � H /y D y 0H y � y 0H H y D y 0H y � y 0H y D 0:

Moreover, all columns of the design matrix are orthogonal to the residuals, i.e.,
.xj /0 O" D 0, j D 0; : : : ; k, or X 0 O" D 0. For a proof we take again advantage of
properties of the hat matrix:

X 0 O" D X 0.I � H /y D X 0y � X 0H y D X 0y � X 0X.X 0X/�1X 0y D 0:

The fact that the columns of the design matrix and the residuals are orthogonal
provides some more interesting implications; see properties 3–5 in Box 3.7. A proof
can be found in Sect. 3.5.2, on p. 169.

Example 3.9 Orthogonal Design
The fact that the residuals and the columns of the design matrix are orthogonal can be
used for constructing an orthogonal design matrix. An orthogonal design matrix implies
uncorrelated covariates. Orthogonalizing the design matrix is useful, e.g., when constructing
orthogonal polynomials to model nonlinear relationships (see Example 3.5, p. 90).

Let X be the design matrix with columns xj . The goal is to transform the columns xj

such that the resulting columns Qxj of the transformed design matrix QX are orthogonal. To
achieve this we use for j D 1; : : : ; k the transformations

Qxj D xj � QX j . QX 0

j
QX j /

�1 QX 0

jxj ;

where matrix QX j contains the first j � 1 transformed vectors. We do not transform the first
column of the design matrix X , associated with the intercept. The transformed vector Qxj
can be viewed as the residual vector of a regression with xj as the response variable and
the j transformed vectors Qx0 D 1; Qx1; : : : ; Qxj�1 as the covariates. Due to the orthogonality
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3.7 Geometric Properties of the Least Squares Estimator

The method of least squares has the following geometric properties:
1. The predicted values Oy are orthogonal to the residuals O", i.e., Oy 0 O" D 0.
2. The columns xj of X are orthogonal to the residuals O", i.e., .xj /0 O" D 0 or

X 0 O" D 0.
3. The average of the residuals is zero, i.e.,

nX

iD1
O"i D 0 or

1

n

nX

iD1
O"i D 0:

4. The average of the predicted values Oyi is equal to the average of the
observed response yi , i.e.,

1

n

nX

iD1
Oyi D Ny:

5. The regression hyperplane runs through the average of the data, i.e.,

Ny D Ǒ
0 C Ǒ

1 Nx1 C � � � C Ǒ
k Nxk:

of the residuals, Qxj is orthogonal to the columns of QX j . This implies that Qxj is orthogonal
to all j �1 previously constructed variables Qx1; : : : ; Qxj�1 . Notice that the first transformed
variable Qx1 results from a simple centering around the column mean value of x1. In linear
algebra, this method is also known as Gram–Schmidt orthogonalization. 4

Analysis of Variance and Coefficient of Determination
Using the geometric properties of the least squares estimator, we can derive a
fundamental analysis of variance formula for the empirical variance of observed
responses yi . This allows us to define the coefficient of determination or the propor-
tion of total variance that is explained by the regression model. The coefficient of
determination is closely related to the empirical correlation coefficient and can be
used as a goodness-of-fit measure (among many others).

In Sect. 3.5.2 (p. 169), we prove the following decomposition formula:

nX

iD1
.yi � Ny/2 D

nX

iD1
. Oyi � Ny/2 C

nX

iD1
O"2i : (3.19)

Division by n (or n � 1) on both sides leads to the analysis of variance formula:
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s2y D s2Oy C s2O";

where s2y , s2Oy , and s2O" are the empirical variances of the observed response, the
predicted values, and the residuals. Thus we obtain an additive decomposition of
the empirical variance of the response into the empirical variance of the predicted
values and the residuals.

Based on the analysis of variance formula, we can define the coefficient of
determinationR2 as a goodness-of-fit measure. It is defined as

R2 D

nX

iD1
. Oyi � Ny/2

nX

iD1
.yi � Ny/2

D 1 �

nX

iD1
O"2i

nX

iD1
.yi � Ny/2

:

As a consequence of Eq. (3.19), 0 � R2 � 1:

Using the analysis of variance formula, we can interpret the coefficient of
determination in the following way: The closer R2 is to 1, the smaller the residual
sum of squares

P O"2i and thus the better the fit to the data. The extreme case of
R2 D 1 implies

P O"2i D 0, i.e., all residuals are zero and the fit to the data is perfect.
If R2 is close to 0, the sum of squared residuals is relatively large and the model fit
is poor. The limit R2 D 0 implies

P
. Oyi � Ny/2 D 0, and hence Oyi D Ny for all i . That

is the prediction of yi is always equal to the mean Ny of the response variable and is
thus independent of the explanatory variables. Consequently, the covariates do not
have any explanatory power with regard to the mean of y. However, it is important to
note that the model can be misspecified, e.g., there could be a nonlinear relationship
for one of the covariates. In such a case, covariates can hold uncovered explanatory
power, even if the coefficient of determination is close to zero.

In the special case of a simple regression model

y D ˇ0 C ˇ1x C ";

it can be shown that
R2 D r2xy ;

where r2xy is the squared empirical correlation coefficient between x and y. This
property of the coefficient of determination is responsible for the notation R2.
In the simple regression model, as well as in the multiple regression model,
we can interpret the coefficient of determination as the squared empirical correlation
coefficient between the observations y and the predicted values Oy. Formally we have

R2 D r2
y Oy :

Finally, a warning is in order. It is quite common to choose models with
preferably high coefficients of determination. However, we must be careful when
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Table 3.1 Munich rent index: comparison of different models for the relationship between net
rent per square meter (rentsqm) and area (area)

Model Equation R2

M1 1rentsqm D 9:47� 0:035 � area 0:116

M2 1rentsqm D 4:73C 140:18 � 1=area 0:154

M3 1rentsqm D 11:83� 0:106 � area C 0:00047 � area2 0:143

M4 1rentsqm D 14:28� 0:22 � area C 0:0020 � area2 � 0:000006 � area3 0:150

comparing different models using the coefficients of determination. Model compar-
ison using R2 is only meaningful if the following three conditions are fulfilled:
• Every model must use the same response variable y, e.g., it is not possible to

compare models with an original response y to that of a transformed response,
e.g., log.y/.

• Every model must have the same number of parameters.
• Every model should include an intercept ˇ0.
Thus, in general, we cannot use the coefficient of determination for model com-
parison. It can be shown that the coefficient of determination cannot decrease if an
additional explanatory variable is added to the model. The following example will
illustrate the difficulty of using R2 for model comparison.

Example 3.10 Munich Rent Index—Comparison of Models Using R2

In Sect. 3.1.3 (p. 87), we examined several models to investigate the relationship between
net rent per square meter and living area. Table 3.1 contains the estimated models and
their corresponding coefficients of determination. First, we find that every coefficient of
determination is relatively small. One reason is the strong variability in the data; see the
scatter plot in Fig. 3.8 on p. 88. Another reason is that many important covariates of the
original rent index are missing in the models of this illustrative example. The final model
that was chosen for the official rent index for 1999 contained more than 20 explanatory
variables, which led to a coefficient of determination of 0.49.

If we compare model M1 and M2, we find that M2 has a higher coefficient of
determination. Since both models have the same number of parameters, a comparison based
on the coefficient of determination is appropriate, and Model M2 should be preferred.
Note, however, that we came to the same conclusion with residual analysis; see Fig. 3.8
(p. 88). The models M1, M3, and M4 are nested, which means that M4 contains both
M3 and M1, and M3 contains M1 as a special case. As a consequence M1 must have
the smallest R2 value, M3 has the second smallest R2 value, and M4 has the highest R2

value. A comparison on the basis of the coefficient of determination does not make sense
here, as the number of parameters differs across models. Nevertheless, we point out that a
model with a higher number of regression parameters does not necessarily imply a higher
coefficient of determination. This is the case, e.g., if the models have different explanatory
variables (non-nested models). A comparison of models M2 and M3 demonstrates such a
comparison: Even though M3 has three regression parameters and M2 only has two, M2 has
a higher coefficient of determination. In such a case, M2 is preferred over M3, as it contains
less parameters with a higher coefficient of determination. The coefficient of determination
only increases automatically with an increase of parameters for nested models, i.e., if more
complex models contain the other models as special cases, as is the case with the models
M1, M3, and M4. 4
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3.8 The Coefficient of Determination

Definition

R2 D

nX

iD1
. Oyi � Ny/2

nX

iD1
.yi � Ny/2

D 1 �

nX

iD1
O"2i

nX

iD1
.yi � Ny/2

:

Interpretation

The closer the coefficient of determination is to 1, the smaller is the residual
sum of squares, and the better the fit is to the data. If R2 D 1, all residuals
are zero with perfect fit to the data.

Properties

1. In the simple linear regression model yi D ˇ0Cˇ1xiC"i , the coefficient
of determination corresponds to the squared correlation coefficient
(according to Bravais–Pearson), implying R2 D r2xy .

2. In the multiple regression model, the coefficient of determination can be
understood as a squared correlation coefficient between the observations
y and the predicted values Oy , implying R2 D r2

y Oy .
3. Let the vector x of the explanatory variables be partitioned into two

subvectors x1 and x2. Consider the full model M1 yi D ˇ0 C ˇ0
1xi1 C

ˇ0
2xi2 C "i and the submodel M2 yi D ˇ0 C ˇ0

1xi1 C "i . Then

R2M1 � R2M2;

i.e., for nested models, the coefficient of determination of the submodel
is always less than or equal to the coefficient of determination of the full
model.

4. Comparing the coefficient of determination across models is meaningful
for a common response variable and if the models contain the same
number of parameters and an intercept.

In Sect. 3.4, we will investigate other model choice criteria that are appropriate
to compare models containing a varying number of parameters.

Statistical Properties Without Specific Distributional Assumptions
We will now investigate the statistical properties of the least squares estimator.
Thereby we will admit an arbitrary distribution for the error term. In particular,
we do not assume that the errors necessarily follow a normal distribution. Note,
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however, that the following properties are only true if the model is otherwise
correctly specified; see Sect. 3.4 for the consequences of model misspecification.

Expectation and Bias
For the expectation of the least squares estimator, we have

E. Ǒ/ D E
�
.X 0X/�1X 0y

� D .X 0X/�1X 0E.y/ D .X 0X/�1X 0Xˇ D ˇ:

Thus the least squares estimator is unbiased for ˇ.

Covariance Matrix
Using Theorem B.2.5 (p. 647), the covariance matrix of the least squares estimator
is given by

Cov . Ǒ/ D Cov
�
.X 0X/�1X 0y

� D .X 0X/�1X 0Cov.y/..X 0X/�1X 0/0

D �2 .X 0X/�1X 0X.X 0X/�1 D �2 .X 0X /�1:

For the variances of the estimated regression coefficients Ǒ
j , there exists a more

easily interpretable formula (see, e.g., Wooldridge, 2006):

Var. Ǒ
j / D �2

.1 � R2j /

nX

iD1
.xij � xj /

2

:

We defineR2j here as the coefficient of determination for the regression between xj ,
as the response variable, and all of the other explanatory variables (except xj ). We
immediately see which components determine the precision of the estimates for the
regression coefficients:
• The smaller the model variance �2, the smaller the variance of Ǒ

j and thus the
more accurate the estimation.

• The smaller the linear dependence between xj and the other explanatory
variables (measured throughR2j ), the smaller is the variance of Ǒ

j . The variance,

Var. Ǒ
j /, is minimized for R2j D 0, i.e., when the covariates are uncorrelated.

Orthogonal designs guarantee uncorrelated regressors and are typically used in
experimental design situations to maximize the precision of estimators. On the
other hand, when some of the covariates are highly correlated, the estimators can
be very imprecise. In the extreme case of R2j ! 1 the variances explode towards
infinity. We will explain this collinearity problem in detail in Sect. 3.4.

• The larger the variability of covariate xj around its average, the smaller is the

variance of Ǒ
j .

The true covariance of Ǒ cannot be calculated in applications, as the error
variance �2 is unknown. Rather, we have to estimate Cov. Ǒ /, by replacing �2 with
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its estimate O�2 D O"0 O"=.n� p/:

dCov. Ǒ/ D O�2 .X 0X/�1 D 1

n � p O"0 O".X 0X/�1:

The diagonal elements of this matrix represent the estimated variances of the least
squares estimator Ǒ

j . The square root of the diagonal elements are the estimated
standard errors, which we abbreviate as sej from this point forward:

sej D 2Var. Ǒ
j /
1=2; j D 0; 1; : : : ; k:

The estimated covariance matrix, especially the standard errors sej , are used
for statistical testing and confidence intervals for the regression coefficients; see
Sect. 3.3.

Comparison with Linear Estimators
In the following, we want to compare the least squares estimator with the more
general class of linear estimators. A linear estimator ǑL takes the form of

ǑL D a C Ay ;

where a D .a0; : : : ; ak/
0 is a p � 1-vector, and A D .aij / is a matrix of dimension

p � n. Thus, the components ˇj of ˇ are estimated through a linear combination of
the response observations yi :

ǑL
j D aj C aj1y1 C � � � C ajnyn j D 0; : : : ; k:

Obviously, the least squares estimator Ǒ is a special case of a linear estimator with
a D 0 and A D .X 0X/�1X 0. We can derive the expectation and the covariance
matrix of linear estimators in a similar way as we did with the least squares
estimator. We have

E. ǑL/ D a C AXˇ Cov . ǑL/ D �2 AA0:

Linear estimators are, thus, not necessarily unbiased. A comparison of the least
squares estimator with the subclass of linear unbiased estimators ǑL shows that the
least squares estimator has minimal variances, i.e.,

Var. ǑL
j / � Var. Ǒ

j /; j D 0; : : : ; k:

This property also holds for any linear combination

b0ˇ0 C b1ˇ1 C : : :C bkˇk D b0ˇ
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of ˇ, i.e.,
Var.b0 ǑL/ � Var.b0 Ǒ/:

These properties of the least squares estimator are known as Gauß–Markov Theo-
rem. A proof can be found in this chapter’s appendix, on p. 170. The Gauß–Markov
Theorem can also be used to obtain an “optimal” prediction for a new (future)
observation y0 with a given covariate vector x0. We use the conditional mean for
prediction:

E.y0 jx0/ D x0
0ˇ:

An optimal estimator of the expectation (in terms of the Gauß–Markov Theorem) is
then given by

Oy0 D x0
0 Ǒ:

Statistical Properties Under Normality Assumption
Thus far, the derived statistical properties of the least squares estimator have been
obtained without assuming any specific distribution for the error term ". Assuming
a normal distribution for the errors, i.e., " � N.0; �2I/, additional properties of
the least squares estimator can be derived. They will be especially useful when
constructing hypothesis tests and confidence intervals for ˇ.

Normality of the errors results in y � N.Xˇ; �2I/. It follows that the least
squares estimator Ǒ D .X 0X/�1X 0y will also follow a normal distribution, as Ǒ is
a linear transformation of y (refer to Theorem B.5 on p. 649). Using the previously
derived results for the expectation and the covariance matrix of the least squares
estimator, we immediately have

Ǒ � N.ˇ; �2.X 0X/�1/:

Moreover, Theorem B.8.1 (p. 651) shows that the distribution for the distance
(weighted by the inverse covariance matrix) between the least squares estimator
Ǒ and the true ˇ follows a �2-distribution with p degrees of freedom:

. Ǒ � ˇ/0.X 0X/. Ǒ � ˇ/

�2
� �2p:

This property is useful when deriving the distribution of a test statistic in hypothesis
testing.

Asymptotic Properties of the Least Squares Estimator
The distributional properties of the least squares estimator are the basis for tests
and confidence intervals that we will discuss in the next chapter. In order to have
exact tests and intervals, the assumption of normally distributed errors is needed.
However, some of the properties are still approximately valid, as long as the sample
size n tends to infinity or is sufficiently large. For clarification, we index the model
with the number of observations n:
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3.9 Statistical Properties of the Least Squares Estimator

Without Specific Distributional Assumptions

1. Expectation: E. Ǒ/ D ˇ, implying that the least squares estimator is
unbiased.

2. Covariance Matrix: Cov. Ǒ/ D �2 .X 0X/�1. The diagonal elements can
be expressed as

Var. Ǒ
j / D �2

.1 �R2j /
nX

iD1
.xij � xj /2

;

whereR2j is the coefficient of determination of the regression between xj
as the response variable and the remaining columns of X as regressors.
An estimator for the covariance matrix is given by

dCov . Ǒ/ D O�2 .X 0X/�1 D 1

n � p O"0 O".X 0X/�1:

3. Gauß–Markov Theorem: Among all linear and unbiased estimators ǑL,
the least squares estimator has minimal variances, implying

Var. Ǒ
j / � Var. ǑL

j /; j D 0; : : : ; k:

For any linear combination b0ˇ it holds

Var.b0 Ǒ/ � Var.b0 ǑL/:

With Normality Assumption

1. Distribution of the response variable:

y � N.Xˇ; �2I/:

2. Distribution of the least squares estimator:

Ǒ � N.ˇ; �2.X 0X/�1/:

3. Distribution of weighted distance:

. Ǒ � ˇ/0.X 0X/. Ǒ � ˇ/

�2
� �2p:
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yn D X nˇ C "n; E."n/ D 0; Cov."n/ D �2In:

Similarly, we index the least squares estimator Ǒ
n and the variance estimator O�2n

with n. To obtain valid asymptotic results, we need to go beyond the assumptions
1–3 stated in Box 3.1 (p. 76). Further assumptions are needed regarding the limiting
behavior of the design matrix Xn and with it the sequence x1; : : : ;xn; : : : of the
design vectors. A standard assumption is that the matrix X 0

nXn averaged over n
converges to a limiting positive definite matrix V , i.e.,

lim
n!1

1

n
X 0
nXn D V ; V positive definite: (3.20)

In this case we have the following asymptotic results:

3.10 Asymptotic Properties of the Least Squares Estimator

1. The least squares estimator Ǒ
n for ˇ and the ML or REML estimator O�2n

for the variance �2 are consistent.
2. The least squares estimator asymptotically follows a normal distribution,

specifically p
n. Ǒ

n � ˇ/
d! N.0; �2V �1/:

That is the difference Ǒ
n�ˇ normalized with

p
n converges in distribution

to the normal distribution on the right-hand side.

We use these asymptotic results for a sufficiently large sample size n as follows.
First, Ǒ

n has an approximately normal distribution

Ǒ
n
a� N.ˇ; �2V �1=n/:

If we replace �2 with the consistent estimator O�2n and V with the approximation
V

a� 1=nX 0
nXn, we have

Ǒ
n
a� N.ˇ; O�2n.X 0

nXn/
�1/:

This implies that, with sufficiently large sample size and provided that Eq. (3.20)
holds, the least squares estimator has the same approximate normal distribution,
regardless of the normal assumption for ". Assumption (3.20) is particularly ensured
if the observed covariate vectors xi , i D 1; : : : ; n, are independent and identically
distributed realizations of stochastic covariates x D .1; x1; : : : ; xk/

0, i.e., if the
observations .yi ;xi / form a random sample from .y;x/. This condition is met for
many empirical studies, e.g., in our applications on the Munich rent index and on
malnutrition in developing countries. In such cases, the law of large numbers implies
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1

n
X 0
nXn D 1

n

nX

iD1
xix

0
i ! E.xx0/ DW V :

However, the condition is typically violated for regressors following a trend.
A simple example is a linear trend xi D i , i.e.,

yi D ˇ � i C "i ; i D 1; : : : ; n:

For simplicity the intercept ˇ0 is assumed to be zero. We have

1

n
X 0
nXn D 1

n

nX

iD1
x2i D 1

n
.1C � � � C i 2 C � � � C n2/ ! 1;

resulting in a violation of assumption (3.20).
In fact, consistency can be derived under the following more general condition:

.X 0
nXn/

�1 ! 0: (3.21)

Informally, this implies that the covariate information grows as the sample size
increases. It can be shown that Eq. (3.21) is a necessary and sufficient condition
for consistency of the least squares estimator and its variance estimator; see Lai,
Robins, and Wei (1979) and Drygas (1976).

For asymptotic normality, we additionally need the condition

max
iD1;:::;nx0

i .X
0
nXn/

�1xi ! 0 for n ! 1: (3.22)

In short, this implies that the influence of each observation xi is negligible relative to
the entire information X 0

nXn D Pn
iD1 xix

0
i . The central limit theorem (specifically

in the Lindeberg–Feller form) then applies. Provided that the conditions (3.21) and
(3.22) are satisfied, the normal approximation still holds:

Ǒ
n
a� N.ˇ; O�2n.X 0

nXn/
�1/;

which is important for practical use.

Example 3.11 Simple Linear Regression
For the simple linear regression model (excluding the intercept ˇ0)

yi D ˇxi C "i ;

the following can be easily verified:
1. For a linear trend xi D i , conditions (3.21) and (3.22) are satisfied.
2. For xi D 1=i , both Eqs. (3.21) and (3.22) are violated, which implies that the least

squares estimator is neither consistent nor asymptotically normal. The reason is that the
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sequence of regressor values xi D 1=i converges too fast towards zero and, thus, does
not provide increasing information with increasing sample size.

3. For xi D 1=
p
i , conditions (3.21) and (3.22) are met. Despite that xi ! 0, enough

covariate information is provided as n ! 1. 4

Statistical Properties of Residuals
We close this section with the examination of the statistical properties of the
residuals O"i D yi � x0

i
Ǒ . In terms of the hat matrix H D X.X 0X/�1X 0, the

residuals can be expressed as

O" D .I � H /y D y � X .X 0X/�1X 0yI

see p. 107.
Thus, we obtain the expectation of the residuals as

E. O"/ D E.y/� X.X 0X/�1X 0E.y/ D Xˇ � X.X 0X/�1X 0Xˇ D 0;

as well as their covariance matrix

Cov. O"/ D Cov..I � H /y/ D .I � H /�2I.I � H /0 D �2.I � H /:

In deriving the covariance matrix, we used Theorem B.2.5 (p. 647) in Appendix B
in combination with the fact that the matrix I � H is symmetric and idempotent.
Specifically for the variances of the residuals, we have

Var.O"i / D �2.1 � hii /;

where hii is the i th diagonal element of the hat matrix. We state the following:
• Similar to the error terms, the residuals have mean zero.
• In contrast to the error terms, the residuals are not uncorrelated.
• In contrast to the error terms, the residuals have heteroscedastic variances. Since

1
n

� hii � 1 (see p. 108), the variance of the i th residual approaches zero as hii
approaches one.

If we additionally assume normally distributed errors, we are able to derive the
distribution of the residuals. We then have

O" � N.0; �2.I � H //: (3.23)

Due to rk.H / D p � n; this is a singular normal distribution; see also Sect. B.3.2
(p. 650) in Appendix B.

Using Eq. (3.23), we can also make statements about the residual sum of squares.
In Sect. 3.5.2 (p. 171), we show

O"0 O"
�2

� �2n�p;
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3.11 Statistical Properties of Residuals

Without Specific Distributional Assumptions

1. Expectation: E. O"/ D 0, i.e., the residuals have mean zero.
2. Variance:

Var.O"i / D �2.1 � hii /;

which means that the residuals (in contrast to the errors "i ) have
heteroscedastic variances.

3. Covariance Matrix:

Cov. O"/ D �2.I � H / D �2.I � X.X 0X/�1X 0/;

which implies that the residuals (in contrast to the errors) are not
uncorrelated.

With Normal Assumption

4. Distribution of Residuals:

O" � N.0; �2.I � H //:

5. Distribution of the Residual Sum of Squares:

O"0 O"
�2

D .n � p/ O�2
�2

� �2n�p:

6. Independence: The residual sum of squares O"0 O" and the least squares
estimator Ǒ are independent.

which is equivalent to

.n � p/ O�2
�2

� �2n�p:

Moreover, it can be shown that the residual sum of squares and the least squares esti-
mator are independent (again see Sect. 3.5.2 p. 171 for a proof). Both statements are
necessary for the derivation of hypothesis tests regarding the regression coefficients.

Standardized and Studentized Residuals
In practice, the residuals are often used to confirm model assumptions in a linear
model. However, the residuals are not always adequate for this purpose. As we
have seen, the residuals are neither homoscedastic nor uncorrelated. In most cases,
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the correlation is negligible, but this is not the case with the heteroscedasticity
of the residuals. Thus, the verification of the assumption of homoscedastic errors
is problematic, as heteroscedastic residuals are in general not an indicator for
heteroscedastic errors. An obvious solution of the heteroscedasticity problem is
standardization. Dividing through the estimated standard deviation of the residuals,
we obtain the standardized residuals

ri D O"i
O�p
1 � hii

: (3.24)

Provided that the model assumptions are correct, the standardized residuals are
homoscedastic. Thus, the analysis of standardized residuals helps to assess whether
or not the assumption of homoscedastic variances is violated. We often plot the
standardized residuals against the predicted values or the values of covariates; see
Sect. 3.4.4 on model diagnosis for examples.

Since the residuals are normally distributed and .n � p/ O�2=�2 follows a
�2n�p-distribution, it is tempting to assume the standardized residuals follow a
t-distribution; see Definition B.13 in Appendix B. This conclusion is not correct, as
O"i is part of O� , thus numerator and denominator in Eq. (3.24) are not stochastically
independent. However, it is possible to bypass the problem of dependence. To do so,
we define “leave-one-out” estimators, which are based on all observations excluding
the i th observation. We can then define residuals, which are based on these “leave-
one-out” estimators, and show that they follow a valid t-distribution.

Define X .i/ and y.i/ as the design matrix and response vector, respectively, from
which the i th row is removed. The corresponding least squares estimator Ǒ

.i/, which
is based on all observations except the i th one, is then given by

Ǒ
.i/ D .X 0

.i/X .i//
�1X 0

.i/y.i/:

Using Ǒ
.i/, we obtain predicted values Oy.i/ D x0

i
Ǒ
.i/ and thus residuals

O".i/ D yi � Oy.i/ D yi � x0
i .X

0
.i/X .i//

�1X 0
.i/y.i/

for the i th observation. Simple calculations show

O".i/ � N.0; �2.1C x0
i .X

0
.i/X .i//

�1xi //

or O".i/
�.1C x0

i .X
0
.i/X .i//�1xi /1=2

� N.0; 1/:

According to property 5 of the preceding Box 3.11, it follows

.n � p � 1/ O�2.i/
�2

� �2n�p�1;
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where

O�2.i/ D 1
n�p�1

��
y1 � x0

1
Ǒ
.i/

�2 C : : :C
�
yi�1 � x0

i�1 Ǒ
.i/

�2

C
�
yiC1 � x0

iC1 Ǒ
.i/

�2 C : : :C
�
yn � x0

n
Ǒ
.i/

�2�

is an estimator for �2, which is not based on the i th observation. Now we can use
Definition B.13 of the t-distribution (p. 644) and obtain the studentized residuals

r	
i D O".i/

O�.i/.1C x0
i .X

0
.i/X .i//�1xi /1=2

� tn�p�1:

A crucial requirement for this distributional statement is that O".i/ and O�.i/ are
independent, which holds because we did not use the i th observation yi when
calculating O�.i/. Another requirement is that the model is correctly specified.
Knowledge of the distribution of the studentized residuals can be used for model
diagnosis to identify observations which are not in agreement with the estimated
model; see Sect. 3.4.4 for details.

The standardized and studentized residuals help to circumvent the problem of
heteroscedastic residuals. However there remains the problem of correlation among
the residuals. The literature does offer suggestions on how to define uncorrelated
residuals. As mentioned, in practice the correlation of standardized and studentized
residuals in correctly specified models can be neglected. Thus we do not pursue this
issue further.

Box 3.12 summarizes the various definitions of residuals. The box also shows
(without proof) alternative definitions of studentized residuals. In particular, we find
that the studentized residuals can be computed from the standardized residuals.
The beauty of this result is that it is unnecessary to recompute the least squares
estimator every time we delete one observation: all that we need is the full model
least squares estimator and the diagonal elements of the hat matrix. Finally, we recap
the definition of partial residuals as used in Example 3.5 (p. 90).

3.3 Hypothesis Testing and Confidence Intervals

This section describes statistical tests for hypotheses regarding the unknown
regression parameters ˇ. Due to the duality between statistical tests and confidence
intervals, we are also able to construct confidence intervals for the regression
parameters ˇ. A requirement for the construction of (exact) tests and confidence
intervals is the assumption of normally distributed errors. Therefore, we first assume
independently and identically normally distributed errors, i.e., "i � N.0; �2/.
However, tests and confidence intervals are relatively robust to mild departures from
the normality assumption. Moreover, in Sect. 3.3.1 we will show that the tests and
confidence intervals, derived under the assumption of normality, remain valid for
large sample size even with non-normal errors.
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3.12 Overview of Residuals

Ordinary Residuals

The residuals are given by

O"i D yi � Oyi D yi � x0
i
Ǒ i D 1; : : : ; n:

Standardized Residuals

The standardized residuals are defined by

ri D O"i
O�p
1 � hii

;

where hii is the i th diagonal element of the hat matrix.

Studentized Residuals

The studentized residuals are defined by

r�

i D O".i/
O�.i/.1C x0

i .X
0

.i /
X .i //�1xi /1=2

D O"i
O�.i/

p
1� hii

D ri

�
n� p � 1
n � p � r2i

�1=2
:

The studentized residuals are used to verify model assumptions and to
discover outliers (see Sect. 3.4.4).

Partial Residuals

The partial residuals regarding covariate xj are defined by

O"xj ;i D yi � Ǒ
0� : : :� Ǒ

j�1xi;j�1� Ǒ
jC1xi;jC1� : : :� Ǒ

kxik D O"i C Ǒ
j xij :

In the partial residuals O"xj ;i , all covariate effects with the exception of
the one associated with xj are removed. Hence, they are very useful for
exploring whether the influence of xj is modeled correctly (see Sect. 3.4.4).

Example 3.12 Munich Rent Index—Hypothesis Testing
We revisit the data from the Munich rent index to illustrate hypothesis testing. We use
the data for the 1999 rent index, in combination with the follow-up data from 2001; see
Example 3.7 (p. 100). Consider the regression model

rentsqmi D ˇ0 C ˇ1 areainvci C ˇ2 yearcoi C ˇ3 yearco2i

Cˇ4 yearco3i C ˇ5 nkitchen C ˇ6 pkitchen C ˇ7 year01 C "i ;
(3.25)
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where areainvc is the transformation 1=area centered around zero and yearo, yearo2,
yearo3 constitute third-order orthogonal polynomials (see Example 3.5 on p. 90) for the
year of construction. The dummy variable year01 is an indicator for the follow-up period,
i.e., year01 D 1 if an observation is from the follow-up and year01 D 0 otherwise. The
following estimated model results:

1rentsqmi D 6:94C 124:34 areainvci C 0:73 yearcoi C 0:44 yearco2i

�0:01 yearco3i C 1:04 nkitchen C 1:31 pkitchen � 0:19 year01:

We find that the average net rent per square meter in the year 2001 decreases about 0.19
Euro, in comparison to the net rent in 1999. First of all, this change is relatively small.
Moreover a decrease from 1999 to 2001 is surprising. It raises the question if such a net rent
decrease can be extrapolated to the entire population or if it is merely a random phenomenon
of the observed random sample. Thus we wish to test if the regression parameter ˇ7 is
significantly different from zero. This can be achieved by testing the hypothesis

H0 W ˇ7 D 0 against H1 W ˇ7 ¤ 0;

using an appropriate statistical test. Of course, we also want to test whether or not other
variables should be included in the regression model. The test for significance of the variable
kitchen with the three categories, “substandard kitchen” (reference category), “standard
kitchen” (dummy variable nkitchen), and “premium kitchen” (dummy variable pkitchen),
is more complicated since it involves a categorical variable at three levels. In this case, we
have to test the hypothesis

H0 W
�
ˇ5
ˇ6

�
D
�
0

0

�
against H1 W

�
ˇ5
ˇ6

�
¤
�
0

0

�
:

Generally, a rent index should be as simple as possible. In statistical terms, this means
that the model should be sparse and avoid overparameterization. Having this in mind,
we may ask whether it is really necessary to differentiate between standard and premium
kitchens. The estimated regression coefficients for standard kitchens are not very different
from premium ones. The corresponding statistical hypotheses are given by

H0 W ˇ5 D ˇ6 against H1 W ˇ5 ¤ ˇ6

or equivalently

H0 W ˇ5 � ˇ6 D 0 against H1 W ˇ5 � ˇ6 ¤ 0:

4
The discussed problems are exemplary for the most common statistical hypotheses
in linear models:
1. Test of significance:

H0 W ˇj D 0 against H1 W ˇj ¤ 0:

2. Composite test of a subvector ˇ1 D .ˇ1; : : : ; ˇr /
0:

H0 W ˇ1 D 0 against H1 W ˇ1 ¤ 0:
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3. Test of equality:

H0 W ˇj � ˇr D 0 against H1 W ˇj � ˇr ¤ 0:

We can treat these three test problems as special cases of tests for general linear
hypotheses

H0 W C ˇ D d against H1 W C ˇ ¤ d ; (3.26)

where C is an r � p-matrix with rk.C / D r � p. This means that under H0 a
total of r linear-independent conditions apply. When testing the significance of an
influential variable, d D 0 is a scalar and C is a 1 � p-matrix given by C D
.0; : : : ; 0; 1; 0; : : : ; 0/, where the one is at the .j C 1/-th column of the matrix. In
the case of testing the first r components, we obtain the r-dimensional vector d D 0

and the r � p-matrix

C D

0

BBB@

0 1 0 � � � 0 0 � � � 0
0 0 1 � � � 0 0 � � � 0
:::

: : : 0 � � � 0
0 0 0 � � � 1 0 � � � 0

1

CCCA :

Lastly, when testing equality of two coefficients, we obtain the scalar d D 0 and
the 1 � p-matrix C D .0; : : : ; 1; : : : ;�1; : : : ; 0/; where the one is at the .j C 1/-th
position and the minus one at the .r C 1/-th position.

In the next section, we will develop a test for general linear hypotheses (3.26),
which will contain the test problems 1–3 given above as special cases.

3.3.1 Exact F-Test

We first assume Gaussian errors to derive an exact test. In order to develop
an appropriate test statistic for the general test problem (3.26), we proceed as
follows:
1. Compute the residual sum of squares SSE D O"0 O" for the full model.
2. Compute the residual sum of squares SSEH0 D O"0

H0
O"H0 for the model under the

null hypothesis, i.e., under the restriction C ˇ D d :

3. Calculate the statistic

SSE

SSE
D SSEH0 � SSE

SSE
; (3.27)

which is the relative distance in residual sum of squares between the restricted
model and the full model.
To interpret the test statistic, we first note that the fit to the data under the

restriction is at most equal to the unrestricted fit. Figure 3.15 gives an illustration in
the case of a linear model y D ˇxC";with only one parameter ˇ. This figure shows
the residual sum of squares LS(ˇ) depending on ˇ. The least squares estimator
Ǒ D 1:78 is additionally marked. If the restriction 0 � ˇ � 1 applies, the parameter

estimates can only be chosen within the two vertical lines. In this limited parameter
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Fig. 3.15 Illustration of the difference in goodness of fit between the unconstrained least squares
estimator and the estimator under the constraint 0 � ˇ � 1. The (unconstrained) least squares
estimator is labeled as Ǒ. For the constrained solution, we have Ǒ D 1

space, the residual sum of squares reaches its minimum for Ǒ D 1. In summary, the
difference SSEH0 � SSE is always greater or equal to zero, since the fit to the data
under the restriction C ˇ D d can be, at best, as good as with the unconstrained
least squares estimator. A formal proof for
SSE � 0 will be given in the appendix
of this chapter on p. 172.

The above illustration also shows the main idea behind the statistic (3.27). The
smaller the difference between SSEH0 and SSE, the closer the two minima are,
shown in Fig. 3.15, and the more likely it is that we will retain the null hypothesis.
On the other hand, the larger the difference, the more likely it is that we will reject
the null hypotheses. The test statistic actually used is

F D
1
r

SSE
1

n�pSSE
D n � p

r


SSE

SSE
; (3.28)

where r represents the number of (linear independent) restrictions, or the number of
rows in C . The additional constant factor n�p

r
is not important for interpretation. It

ensures that the distribution of the test statistic under the null hypothesis is a known
distribution.

In order to derive the distribution of the test statistic under H0, we proceed as
follows:
1. Determine the least squares estimator under H0

In Sect. 3.5.2 (p. 172), we derive the least squares estimator ǑR underH0, i.e.,
under the restriction C ˇ D d . We obtain

ǑR D Ǒ � .X 0X/�1C 0.C .X 0X/�1C 0 /�1.C Ǒ � d/:

2. Determine the difference in residual sum of squares
In Sect. 3.5.2, we derive the difference 
SSE in the residual sum of squares,

given by
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SSE D .C Ǒ � d/0
�
C .X 0X/�1C 0��1 .C Ǒ � d/:

3. Stochastic properties of the difference in residual sum of squares
When determining the distribution of the test statistic under H0, we need the

following stochastic properties of 
SSE:
(a) E.
SSE/ D r�2 C .C ˇ � d/0

�
C .X 0X/�1C 0��1 .C ˇ � d/ (whether the

restriction is fulfilled or not).

(b) UnderH0, we have
1

�2
�
SSE � �2r .

(c) 
SSE and SSE are stochastically independent.
Proofs of these statements are again found in Sect. 3.5.2.

4. Distribution of the test statistic
Using the stochastic properties in 3, we can now derive the distribution of the

test statistic under the null hypothesis: According to property 3(b), we obtain
underH0:

1

�2

SSE � �2r :

Furthermore, we have
1

�2
SSE � �2n�pI

refer to Box 3.11 on p. 123. Finally, 
SSE and SSE are stochastically inde-
pendent according to property 3(c). Thus, under H0; the test statistic (3.28)
follows an F-distribution with r and n � p degrees of freedom, i.e., F � Fr;n�p.
This result follows from the definition of the F-distribution; see Definition B.14
(p. 645) in Appendix B.1.
This leads us to the following test: Let ˛ be the significance level. We then reject

the null hypothesis if the test statistic is larger than the .1 � ˛/-quantile of the
corresponding F-distribution, i.e.,

F > Fr;n�p.1 � ˛/:

Connection to the Wald Test
We next demonstrate an interesting connection to the Wald test. See Sect. B.4.4
(p. 662) in Appendix B for the general background and the idea of the Wald test.
The steps to derive the distribution of the test statistic for the F-test (see above) yield
the relationship


SSE D .C Ǒ � d/0
�
C .X 0X/�1C 0��1 .C Ǒ � d/:

With SSE D O"0 O" D .n � p/ O�2, we have

F D .C Ǒ � d/0
� O�2C .X 0X/�1C 0��1 .C Ǒ � d/

r

D .C Ǒ � d/0 dCov.C Ǒ/�1.C Ǒ � d/

r
:
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This representation offers another interesting interpretation of the test statistic.
Clearly, F compares the difference between the estimator C Ǒ and the hypothesized
value d , weighted by the inverse of the estimated covariance matrix

dCov.C Ǒ/ D O�2C .X 0X/�1C 0

of C Ǒ. Note that O�2 denotes the estimator of �2 based on the unconstrained model.
The Wald test has an analogous construction, and we have the relationship

W D rF

between the Wald W and the F statistics. Lastly, we note that the F -test can also
be equivalently derived as a likelihood ratio test.

F-Tests for Some Specific Test Problems
In the following, we examine the F -test statistic in detail for some specific test
problems:
1. Test of significance (t-test):

H0 W ˇj D 0 against H1 W ˇj ¤ 0 j D 1; : : : ; k:

In this special case, it can be shown that

F D
Ǒ2
j

2Var. Ǒ
j /

� F1;n�p:

Equivalently, the test can be based on the “t-statistic,”

tj D
Ǒ
j

sej
; (3.29)

where sej D 2Var. Ǒ
j /
1=2 denotes the estimated standard deviation or standard

error of Ǒ
j . We can view the original F-test statistic as the square of tj . According

to Definition B.14 in Appendix B.1 tj is t-distributed with n � p degrees
of freedom. We obtain the critical value for the rejection region of the null
hypothesis as the .1 � ˛=2/-quantile of the t-distribution with n � p degrees
of freedom. Thus, we reject the null hypothesis, if

jtj j > t1�˛=2.n � p/:

We can test the slightly more general hypotheses

H0 W ˇj D dj against H1 W ˇj ¤ dj j D 1; : : : ; k
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in a similar way, by using the modified test statistic

tj D ˇj � dj

sej
:

2. Composite test of an r-dimensional subvector ˇ1 D .ˇ1; : : : ; ˇr /
0:

H0 W ˇ1 D 0 against H1 W ˇ1 ¤ 0:

In this case, we obtain the test statistic

F D 1

r
Ǒ 0
1

dCov. Ǒ
1/

�1 Ǒ
1 � Fr;n�p: (3.30)

The estimated covariance matrix of the subvector Ǒ
1 consists of the correspond-

ing elements of the full covariance matrix O�2.X 0X/�1.
3. Test for significance of regression:

We want to test if there is a linear relationship between the response and any of
the regressors, i.e.,

H0 W ˇ1 D ˇ2 D � � � D ˇk D 0:

Note, that the alternative hypothesis does not imply that all variables are influ-
ential. Rather it simply states that at least one of the k covariates is influential.
Under H0 the least squares estimator simplifies to Ǒ

0 D Ny. Consequentially, we
obtain

SSEH0 D
nX

iD1
.yi � Ny/2;

for the residual sum of squares under the null hypothesis. For the difference in the
residual sum of squares between the null model and the full model we then have


SSE D SSEH0 � SSE D
nX

iD1
. Oyi � Ny/2;

where we applied the analysis of variance formula (3.19) on p. 112. This yields

F D n � p
k

X
. Oyi � Ny/2
X

O"2i

D n � p
k

X
. Oyi � Ny/2

X
.yi � Ny/2 �

X
. Oyi � Ny/2
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Table 3.2 Munich rent index: output for the regression model (3.25) on p. 126

Variable Coefficient Standard error t-statistic p-value 95 % Confidence-interval

intercept 6.936 0.037 184.50 <0.001 6.862 7.009
areainv 124.341 4.445 27.97 <0.001 115.625 133.057
yearco 0.729 0.030 24.29 <0.001 0.670 0.788
yearco2 0.436 0.030 14.53 <0.001 0.377 0.495
yearco3 �0.011 0.029 �0.38 0.701 �0.068 0.046
nkitchen 1.044 0.101 10.28 <0.001 0.845 1.243
pkitchen 1.306 0.152 8.57 <0.001 1.007 1.604
year01 �0.192 0.062 �3.08 0.002 �0.314 �0.069

D n � p
k

X
. Oyi � Ny/2=

X
.yi � Ny/2

1 �
X

. Oyi � Ny/2=
X

.yi � Ny/2

D n � p
k

R2

1 �R2 :
This result can be interpreted as follows: For a small coefficient of determination
R2 it is more likely to retain the null hypothesis “no linear relationship” (because
F is small) than when the coefficient of determination is close to one (as F is
then comparably large).

Example 3.13 Munich Rent Index—Standard Output and Hypothesis
Tests

At this point, we are able to understand standard output for regression problems provided
by software packages. Table 3.2 shows estimation results for the regression model (3.25)
of Example 3.12 on p. 126. The table consists of six columns. From the left to the right
we find the variable names, the estimated regression coefficients Ǒ

j , the standard errors
of the coefficients sej , the test statistics tj of the tests for H0 W ˇj D 0 against H1 W
ˇj ¤ 0, the corresponding p-values, as well as the respective 95 % confidence intervals
(see Sect. 3.3.2 on p. 136). According to Eq. (3.29), the t -statistic is the ratio between the
estimated regression coefficient (second column) and the standard error (third column).
As usual, the p-value states the minimal significance level ˛ such that the null hypothesis
H0 W ˇj D 0 can be rejected.

We first notice that the decrease of the average net rent by 0.19 Euro in the year 2001 is
significant when comparing it to the year of 1999. We can reject the hypothesisH0 W ˇ7 D 0

for every significance level ˛ > 0:002. As a matter of fact, there appeared to be a small
market break in the housing market during the survey period of the rent index recording.
Thus, the estimated decline is explainable.

In order to analyze the significance of the kitchen effect, we test the hypotheses

H0 W
�
ˇ5
ˇ6

�
D
�
0

0

�
versus H1 W

�
ˇ5
ˇ6

�
¤
�
0

0

�
:

To compute the test statistic (3.30), we need the estimated covariance matrix dCov. Ǒ/ of Ǒ,
which is given by



134 3 The Classical Linear Model

0
BBBBBBBBBBBBB@

0:00141321

0:00732468 19:765577

0:00007468 �0:01912079 0:00090096

0:000076 0:02088758 0:00001069 0:00090025

�0:00003344 0:00206132 0:00000174 0:00000641 0:00085407

�0:00109763 �0:09199374 �0:00038591 �0:00039643 0:00009397 0:01031718

�0:00113005 0:0237961 �0:00062755 �0:00072908 �0:00023632 0:0014074 0:02321696

�0:00127122 0:0025953 �0:00003465 �0:00002294 0:00010375 0:00005632 0:00018081 0:0038842

1
CCCCCCCCCCCCCA

:

Due to symmetry in the covariance matrix, only the elements below the main diagonal are
provided. The test statistic can now be computed as

F D 1

2

�
1:044

1:306

�0 �
0:01031718 0:0014074

0:0014074 0:02321696

��1 �
1:044

1:306

�
D 82:22:

With a significance level of ˛ D 0:05, the corresponding quantile of the F-distribution is
given by

F2;4559�8.0:95/ D 3:00:

Since F D 82:22 > 3:00 D F2;4551.0:95/, we can reject the null hypothesis at this level.
The quality of the kitchen, thus, has a significant influence on the average net rent. Note
that this test does not necessarily imply that both regression coefficients are different from
zero for the two kitchen dummy variables. The null hypothesis is rejected when at least
one coefficient significantly differs from zero. However, taking a look at the p-values in
Table 3.2 for the variables nkitchen and pkitchen, we do find that both regression coefficients
are significant. The practical implementation of the test is not as intricate as demonstrated
here. Most of the statistics software packages provide simple and fast routines for linear
tests. In STATA, for example, the command test nkitchen pkitchen would have
produced the desired result.

We conclude this example by answering the question whether a distinction between a
standard and a premium kitchen is necessary. We want to test the hypothesis

H0 W ˇ5 � ˇ6 D 0 against H1 W ˇ5 � ˇ6 ¤ 0:

We obtain the test statistic F D 2.23. For ˛ D 0:05; the corresponding quantile of the
F -distribution is given by F1;4551.0:95/ D 3:84. Since F D 2:23 < 3:84 D F1;4551.0:95/,
we cannot reject the null hypothesis. Hence, the difference between a standard and premium
kitchen is not significant. This test has a p-value of p D 0:13. 4

Asymptotic Properties of the F-Test
The applicability of the F -test, considered thus far, requires normally distributed
errors. Respecting the connection to the Wald test, we can show that the test can
even be applied if the errors are not normally distributed. As already shown, we
have the relationship W D rF . Moreover, W

a� �2r holds; see Sect. B.4.4 in
Appendix B. Thus the Fr;n�p-distribution converges in distribution with n ! 1
to a �2r=r-distribution, and we are able to use critical values or p-values of the F-test
(for large sample size) even in the case of non-normal errors.
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3.13 Testing Linear Hypotheses

Hypotheses

1. General linear hypothesis:

H0 W C ˇ D d against H0 W C ˇ ¤ d

where C is a r � p-matrix with rk.C / D r � p (r linear independent
restrictions).

2. Test of significance (t-test):

H0 W ˇj D 0 against H1 W ˇj ¤ 0

3. Composite test of a subvector:

H0 W ˇ1 D 0 against H1 W ˇ1 ¤ 0

4. Test for significance of regression:

H0 W ˇ1 D ˇ2 D � � � D ˇk D 0 against

H1 W ˇj ¤ 0 for at least one j 2 f1; : : : ; kg

Test Statistics

Assuming normal errors we obtain underH0:
1. F D 1=r .C Ǒ � d/0

� O�2C .X 0X/�1C 0��1 .C Ǒ � d/ � Fr;n�p

2. tj D Ǒ
j

sej � tn�p

3. F D 1
r
. Ǒ

1/
0 dCov. Ǒ

1/
�1. Ǒ

1/ � Fr;n�p

4. F D n � p
k

R2

1 � R2
� Fk;n�p

Critical Values

Reject H0 in the case of:

1. F > Fr;n�p.1 � ˛/

2. jt j > tn�p.1 � ˛=2/

3. F > Fr;n�p.1 � ˛/

4. F > Fk;n�p.1 � ˛/

The tests are relatively robust against moderate departures from normality.
In addition, the tests can be applied for large sample size, even with non-
normal errors.
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3.3.2 Confidence Regions and Prediction Intervals

Confidence Intervals and Ellipsoids for Regression Coefficients
The duality between two-sided tests and confidence intervals or confidence regions
allows us to construct a confidence interval for a single parameter ˇj , j D 0; : : : ; k

or a confidence ellipsoid for a subvector ˇ1 of ˇ. To construct a confidence interval
for ˇj under normality, we use the test statistic tj D . Ǒ

j � dj /=sej corresponding
to the test H0 W ˇj D dj . Recall that we reject the null hypothesis when jtj j >
tn�p.1 � ˛=2/. The test is constructed such that the probability of rejecting H0

whenH0 is true equals ˛. Therefore, underH0 we have

P.jtj j > tn�p.1 � ˛=2// D ˛:

Thus the probability of not rejecting H0 (givenH0 is true) is provided by

P.jtj j < tn�p.1 � ˛=2// D P.j. Ǒ
j � ˇj /=sej j < tn�p.1 � ˛=2// D 1 � ˛:

This is equivalent to

P. Ǒ
j � tn�p.1 � ˛=2/ � sej < ˇj < Ǒ

j C tn�p.1 � ˛=2/ � sej / D 1 � ˛;

and we obtain

Œ Ǒ
j � tn�p.1 � ˛=2/ � sej ; Ǒ

j C tn�p.1 � ˛=2/ � sej �

as a .1 � ˛/-confidence interval for ˇj .
In a similar way, we can create a .1 � ˛/-confidence region for a r-dimensional

subvector ˇ1 of ˇ; see Box 3.14.

Example 3.14 Munich Rent Index—Confidence Intervals
We illustrate the construction of confidence intervals using the regression model taken from
the last example; see p. 133. A 95 % confidence interval for the regression coefficient ˇ7,
associated with the time dummy variable, can be calculated as

�0:192˙ 1:96 � 0:062 D Œ�0:313;�0:070�:
Here we used se7 D 0:062 (see Table 3.2) and tn�p.1� ˛=2/ D t4551.0:975/ D 1:96. The
minor differences found between this confidence interval and the one found in Table 3.2
result from rounding error. 4

Prediction Intervals
In Sect. 3.2.3 on p. 118, we derived an optimal prediction Oy0 D x0

0
Ǒ for a

new (future) observation at location x0. Specifically, Oy0 is an estimator for the
(conditional) mean E.y0/ D x0

0ˇ D �0 of the future observation y0. In addition
to the point estimate, interval estimation for �0 is often of interest and is easy to
construct. Since Ǒ � N.ˇ; �2.X 0X/�1/, it follows for the linear combination



3.3 Hypothesis Testing and Confidence Intervals 137

3.14 Confidence Regions and Prediction Intervals

Provided that we have (at least approximately) normally distributed errors
or a large sample size, we obtain the following confidence intervals or
regions and prediction intervals:

Confidence Interval for ˇj

A confidence interval for ˇj with level 1 � ˛ is given by

Œ Ǒ
j � tn�p.1 � ˛=2/ � sej ; Ǒ

j C tn�p.1 � ˛=2/ � sej �:

Confidence Ellipsoid for Subvector ˇ1

A confidence ellipsoid for ˇ1 D .ˇ1; : : : ; ˇr /
0 with level 1 � ˛ is given by

�
ˇ1 W 1

r
. Ǒ

1 � ˇ1/
0 dCov. Ǒ

1/
�1. Ǒ

1 � ˇ1/ � Fr;n�p.1 � ˛/

:

Confidence Interval for �0

A confidence interval for �0 D E.y0/ of a future observation y0 at location
x0 with level 1 � ˛ is given by

x0
0

Ǒ ˙ tn�p.1 � ˛=2/ O�.x0
0.X

0X/�1x0/1=2:

Prediction Interval

A prediction interval for a future observation y0 at location x0 with level
1 � ˛ is given by

x0
0

Ǒ ˙ tn�p.1 � ˛=2/ O�.1C x0
0.X

0X/�1x0/1=2:

x0
0

Ǒ � N.x0
0ˇ; �

2x0
0.X

0X/�1x0/:

Standardizing yields

x0
0

Ǒ � �0
�.x0

0.X
0X/�1x0/1=2

� N.0; 1/:
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Fig. 3.16 Munich rent index: estimated rent per square meter depending on the living area
including 95 % confidence interval (solid lines) and 95 % prediction interval (dashed lines). The
values of the remaining covariates have been set to yearc D 1918, nkitchen D 0, gkitchen D 0,
and year01 D 0. Additionally included are the observations available for this covariate pattern

If we substitute �2 with the estimator O�2, the resulting expression follows a
t-distribution with n � p degrees of freedom, and we have

P

 
�tn�p.1 � ˛=2/ � x0

0
Ǒ � �0

O�.x0
0.X

0X/�1x0/1=2
� tn�p.1 � ˛=2/

!
D 1 � ˛:

Consequently,

Œx0
0

Ǒ �tn�p.1�˛=2/ O�.x0
0.X

0X/�1x0/1=2;x0
0

Ǒ Ctn�p.1�˛=2/ O�.x0
0.X

0X/�1x0/1=2�

is a .1� ˛/-confidence interval for �0.
In many cases, one is also interested in determining an interval, which contains

the future observation y0 with high probability. In relation to the rent index, this
means that a prospective tenant wants to know the range of reasonable rent values
for a specific apartment. Thus, we are looking for a prediction interval for the future
observation y0. For this purpose we look at the prediction error O"0 D y0 � x0

0
Ǒ .

We have
O"0 � N.0; �2 C �2x0

0.X
0X/�1x0/:

Standardizing and replacing O�2 for �2 yields

y0 � x0
0

Ǒ
O�.1C x0

0.X
0X/�1x0/1=2

� tn�p

and therefore

P

 
�tn�p.1 � ˛=2/ � y0 � x0

0
Ǒ

O�.1C x0
0.X

0X/�1x0/1=2
� tn�p.1 � ˛=2/

!
D 1 � ˛:
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Thus, with .1� ˛/-confidence, we find the future observation at x0 to be within the
prediction interval

x0
0

Ǒ ˙ tn�p.1 � ˛=2/ O�.1C x0
0.X

0X/�1x0/1=2:

Per construction, the prediction interval is always wider than the corresponding
confidence interval for �0. In applications with high error variance, the interval can
be considerably wider; see the following Example 3.15 on the rent index.

Even though at first the two intervals appear to be similar, they are in fact very
different. In the first case, we constructed a confidence interval for E.y0/ D �0.
This implies that the random interval overlaps the (fixed and constant) mean E.y0/
with probability 1 � ˛. In the second case, we rather constructed an interval which
is very likely (more precisely with probability 1� ˛) to contain the (random) future
observation y0.

Example 3.15 Munich Rent Index—Prediction Intervals
We again use the model from Example 3.13 (p. 133). Figure 3.16 shows the estimated
rent per square meter for apartments constructed in the year 1918, with a standard kitchen
(nkitchen D 0; pkitchen D 0) and time of assessment in 1999, depending on the living
area. The 95 % confidence and prediction intervals are also included: individual confidence
intervals were connected with lines leading to the bands shown. Due to the high variability
of the rent index data, prediction intervals are much wider than confidence intervals for
E.y0/. 4

3.4 Model Choice and Variable Selection

In many applications, a large (potentially enormous) number of candidate predictor
variables are available, and we face the challenge and decision as to which of
these variables to include in the regression model. As a typical example, take the
Munich rent index data with approximately 200 variables that are collected through
a questionnaire. The following are two naive (but often practiced) approaches to the
model selection problem:
• Strategy 1: Estimate the most complex model which includes all available

covariates.
• Strategy 2: First, estimate a model with all variables. Then, remove all insignifi-

cant variables from the model.
We discuss and illustrate each of these approaches using two simulated data sets.

Example 3.16 Polynomial Regression
We investigate the simulated data illustrated in Fig. 3.17a. The scatter plot suggests
polynomial modeling of the relationship between y and x resulting in the regression model

yi D ˇ0 C ˇ1xi C ˇ2x
2
i C � � � C ˇlx

l
i C "i :

As with any polynomial regression, we have to choose the polynomial degree l . Panels
(c–e) in Fig. 3.17 show the estimated relationship for l D 1 (regression line), l D 2, and
l D 5. Apparently, a simple regression line, i.e., a first-order polynomial, does not fit the
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Fig. 3.17 Simulated training data yi [panel (a)] and validation data y�

i [panel (b)] based on 50
design points xi , i D 1; : : : ; 50. The true model used for simulation is yi D �1C0:3xi C0:4x2i �
0:8x3i C "i with "i � N.0; 0:072/. Panels (c–e) show estimated polynomials of degree l D 1; 2; 5

based on the training set. Panel (f) displays the mean squared error MSE.l/ of the fitted values
in relation to the polynomial degree (solid line). The dashed line shows MSE.l/, if the estimated
polynomials are used to predict the validation data y�

i



3.4 Model Choice and Variable Selection 141

y

x1

x2

x3

−1.5

−1

−.5

−1.5 −1 −.5

0

.5

1

0 .5 1

0

.5

1

1.5

0 .5 1 1.5

0

.5

1

0 .5 1

scatter plot matrix for y, x1, x2, x3

Fig. 3.18 Scatter plot matrix for the variables y, x1, x2, and x3

data well. With polynomial degrees l > 2 onward, a satisfactory fit to the data appears to
be guaranteed. Figure 3.17f additionally displays the mean squared error

MSE.l/ D 1

50

50X

iD1

.yi � Oyi .l//2

of the fitted models depending on the order of the polynomial (continuous line). Clearly,
MSE.l/ decreases monotonically with increased l . This suggests that the fit to the data
is better with larger polynomial order. This finding appears to confirm the first strategy
described above, namely to include as many regressors as possible into the model.

In a next step, we investigate how well the fitted models predict new observations
that have been simulated according to the same model. Figure 3.17b shows additionally
simulated observations for every design point xi , i D 1; : : : ; 50. We refer to this data set
as the validation sample, whereas we refer to the first data set (used for estimation) as the
training set. Figure 3.17f shows the mean squared error of Oy�

i for the data y�

i (dashed line)
in the validation set. Apparently, the fit to the new data is initially getting better with an
increase of the polynomial order. However, from the polynomial order l D 3 onward, the
fit is getting worse. We recognize the following: The more complex the model, the better is
the fit to the data that were used for estimation. However, with new data resulting from the
same data generating process, models that are too complex can cause a poorer fit. 4

Example 3.17 Correlated Covariates
Consider the n D 150 observations .yi ; xi1; xi2; xi3/, i D 1; � � � ; 150, in the scatter
plot matrix in Fig. 3.18. The data were generated as follows: The variables x1 and x3 are
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Table 3.3 Results for the model based on covariates x1, x2, and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept �0.970 0.047 �20.46 <0.001 �1.064 �0.877
x1 0.146 0.187 0.78 0.436 �0.224 0.516
x2 0.027 0.177 0.15 0.880 �0.323 0.377
x3 0.227 0.052 4.32 <0.001 0.123 0.331

Table 3.4 Results for the correctly specified model based on covariates x1 and x3

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept �0.967 0.039 �24.91 <0.001 �1.042 �0.889
x1 0.173 0.055 3.17 0.002 0.065 0.281
x3 0.226 0.052 4.33 <0.001 0.123 0.330

independent and uniformly distributed on [0,1]. The variable x2 is defined as x2 D x1 C u,
where u is also uniformly distributed on [0,1]. Thus, the variables x1 and x2 are highly
correlated. Finally, the response variable y is simulated according to the model

y j x1; x2; x3 � N.�1C 0:3x1 C 0:2x3; 0:2
2/:

The conditional mean of y is thus dependent on x1 and x3, but not on x2. In the following,
we assume, however, that we do not know the true model (as is typically the case in
practice). At first, we estimate a regression model with all available covariates x1, x2, and
x3, and we obtain the results provided in Table 3.3. Clearly, x1 and x2 are nonsignificant. If
we followed strategy 2, i.e., if we eliminate the nonsignificant variables from the model, we
would eliminate not only the nonrelevant covariate x2, but also the relevant variable x1.
If we instead estimate a correctly specified model with true predictor variables x1 and x3,
we obtain the results shown in Table 3.4. When having a correct model specification, not
only is x3 significant but so is the previously insignificant variable x1. We conclude: If we
first consider all variables and then eliminate the insignificant variables from the model,
it is possible that also important variables will be eliminated. The main reason for such
unfortunate model estimation circumstances is the existing correlation among covariates.4

3.4.1 Effect of Model Specification on Bias, Variance,
and Prediction Quality

We now strengthen the new insights of the previous examples with more theoretical
considerations. In particular, we focus on the following questions:
1. Irrelevant Variables: What can be said about the bias and the variance of the least

squares estimator, in the case that we include irrelevant variables in the model?
2. Missing Variables: What can be said about the bias and the variance of the least

squares estimator, if we omit relevant variables in the model?
3. Prediction Quality: What effect does the model specification, more specifically

the selected variables in the model, have on prediction?
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Effect of Model Specification on Bias and Variance of the Least Squares
Estimator
Consider a partition of the available explanatory variables x D .x0; x1; : : : ; xk/

0
with x0 	 1 into the subsets x1 D .x0; x1; : : : ; xk1/

0 and x2 D .xk1C1; : : : ; xk/0.
We look at the two models

y D Xˇ C " D X 1ˇ1 C X 2ˇ2 C "

and
y D X 1ˇ1 C u:

The first model uses all available variables. The second model uses only the subset
x1. We obtain the least squares estimators

Ǒ D .X 0X/�1X 0y and Q̌
1 D .X 0

1X 1/
�1X 0

1y

respectively. For the estimator Q̌
1 of the submodel, we obtain

E. Q̌
1/ D E..X 0

1X 1/
�1X 0

1y/

D .X 0
1X 1/

�1X 0
1E.X 1ˇ1 C X 2ˇ2 C "/

D .X 0
1X 1/

�1X 0
1.X 1ˇ1 C X 2ˇ2/

D ˇ1 C .X 0
1X 1/

�1X 0
1X 2ˇ2

and

Cov. Q̌
1/ D Cov..X 0

1X 1/
�1X 0

1y/ D .X 0
1X 1/

�1X 0
1�

2IX 1.X
0
1X 1/

�1

D �2.X 0
1X 1/

�1:

for the mean and covariance matrix. The statistical properties of the estimator Ǒ in
the full model have already been derived in Sect. 3.2.3; see Box 3.9 on p. 119.

We now investigate the following two situations:
• Missing Variables: Even though the complete model y D Xˇ C " is correct, we

mistakenly estimate the reduced model y D X 1ˇ1 C u. In this case we neglect
the relevant variables x2.

• Irrelevant Variables: Even though the reduced model y D X 1ˇ1 C u is correct,
we mistakenly estimate the full model y D Xˇ C ". In this case, we included
irrelevant variables in the model. The variables in x2 are redundant.
In the first case of missing variables the following applies:

• ˇ1 is biased. An exception is the case when X 0
1X 2 D 0, i.e., every variable in

X 1 is uncorrelated to every variable in X 2.
• It can be shown that the difference Cov. Ǒ

1/� Cov. Q̌
1/ of covariance matrices is

positive semi-definite. This implies that the components of the estimator Q̌
1 based

on the submodel y D X 1ˇ1 C u show a smaller variance than the corresponding
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components of the estimator Ǒ
1 based on the correct model y D Xˇ C ". Thus

we have Var. Ǒ
j / � Var. Q̌

j /.
• Moreover, it can be shown that situations exist, in which the components in

Q̌
1 based on the misspecified submodel actually show a smaller MSE than

the components in Ǒ
1, which are based on the full model, i.e., MSE. Ǒ

j / �
MSE. Q̌

j /. Hence, it is possible that a sparse model with unconsidered covariates
has better statistical properties than the correctly specified full model.
In the second case of irrelevant variables, we have:

• Even though irrelevant variables were considered, Ǒ is unbiased. Of course, the
estimator Ǒ

1 based on the true model is also unbiased.
• It can be shown that the estimators for the components in ˇ1 based on Ǒ have

larger variance than based on Ǒ
1. Thus, we have Var. Ǒ

j / � Var. Q̌
j /. If the

estimated model contains irrelevant variables, then the precision of the estimators
decreases.

Analogous statements can be made about Oy.
We can reach the following conclusion: Preferably, the specified model should

not contain irrelevant covariates. Moreover, we should aim for a sparse model so
that bias and variance, and thus MSE, are small.

Consequences of the Model Specification on Prediction Quality
Next we take a look at prediction quality in linear models. Thereby, we do not
necessarily assume that the model is correctly specified. Our considerations will
become useful when constructing model choice criteria for the comparison of
different models.

We assume independent observations yi , i D 1; : : : ; n, with expectation E.yi / D
�i and variance Var.yi / D �2. The variables x0 D 1; x1; : : : ; xk are available
as potential regressors. In the following we assume that a subset of the available
variables will be used for estimation. The specified model is defined by the subset
M 
 f0; 1; 2; : : : ; kg of included covariates with corresponding design matrix XM .
For the least squares estimator we obtain

Ǒ
M D .X 0

MXM /
�1X 0

My :

An estimator OyM for the vector � of means �i D E.yi / is given by

OyM D XM
Ǒ
M :

We can view the estimator OyiM also as a prediction for future observations
ynCi D �i C "nCi , i D 1; : : : ; n, with given covariates xi1; : : : ; xik . In the
following, we derive a formula for the sum of the expected squared prediction errorsP

E.ynCi � OyiM /2. To do so, we need the following, easily verifiable, properties of
OyM :
1. Expectation:

E. OyM/ D XM .X
0
MXM/

�1X 0
ME.y/:
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2. Covariance matrix:

Cov. OyM / D �2XM.X
0
MXM/

�1X 0
M :

3. Sum of the variances:

nX

iD1
Var. OyiM / D �2tr.XM.X

0
MXM/

�1X 0
M / D jM j �2;

where jM j represents the cardinal number of M , i.e., the number of the
covariates included in the model. The sum of the variances increases as more
covariates are included in the model.

4. Sum of the mean squared errors (SMSE):

SMSE D
nX

iD1
E. OyiM � �i/

2

D
nX

iD1
E .. OyiM � �iM /C .�iM � �i //2

D
nX

iD1
Var. OyiM /C 2

nX

iD1
E .. OyiM � �iM /.�iM � �i //C

nX

iD1
.�iM � �i /2

D jM j �2 C
nX

iD1
.�iM � �i /2:

Here we used �iM D E. OyiM / as an abbreviation for the expectation of the
estimator OyiM .
These properties provide us with the expected squared prediction error:

SPSE D
nX

iD1
E.ynCi � OyiM /2

D
nX

iD1
E..ynCi � �i /� . OyiM � �i //2

D
nX

iD1
.E.ynCi � �i /2 � 2E..ynCi � �i /. OyiM � �i//C E. OyiM � �i/

2/

D
nX

iD1
E.ynCi � �i /2 C

nX

iD1
E. OyiM � �i/

2

D n�2 C SMSE

D n�2 C jM j �2 C
nX

iD1
.�iM � �i /2:
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Note that in line 3 of the above derivation, the expectation for the cross product
term can be written as the product of expectations due to the independence of
OyiM and ynCi . This way the entire term becomes zero. Thus, the expected squared
prediction error can be decomposed into three additive terms:
• Irreducible Prediction Error: The first term n�2 depends on the error variance.

Hence, it cannot be reduced, even by sophisticated inference techniques. This
term is therefore referred to as the irreducible prediction error.

• Variance: The second term consists of the sum of variances Var. OyiM / of the
estimators OyiM . This term can be manipulated through model choice. It becomes
smaller as fewer variables are included in the model.

• Squared Bias: The last term
P
.�iM ��i/2 can be seen as a bias term. It consists

of the squared bias of the estimator OyiM for the expectation�i . This term can also
be manipulated through model choice and becomes smaller as more variables are
included in the model.
The decomposition of the expected prediction error into an irreducible error, a

variance term, and a squared bias term is not limited to linear models but rather a
fundamental property of prediction in all statistical models.

The formula for SPSE shows a classical bias–variance trade-off. The more
complex the model, the smaller the squared bias and the greater the variance. On
the contrary, simpler models show a greater squared bias and in return for that a
smaller variance. This bias–variance trade-off is not only characteristic for linear
models, but for all statistical models; see for example the discussion of the bias–
variance trade-off with regard to smoothing techniques in Sect. 8.1.8.

3.4.2 Model Choice Criteria

The theoretical considerations regarding prediction quality in the last section,
especially the fundamental formula for the expected squared prediction error, help to
develop tools for model choice, in particular variable selection. A possible approach
is to minimize the expected squared prediction error: We include those covariates in
the model, which minimize SPSE. Unfortunately, SPSE is not directly accessible,
since �i and �2 are unknown. Thus, we need to estimate SPSE. Two strategies are
possible:
1. Estimate SPSE using new and independent data

If in fact additional observations ynCi are available, we are able to estimate
SPSE D P

E.ynCi � OyiM /2 simply by

1SPSE D
nX

iD1
.ynCi � OyiM /2:

In practice, it is usually not possible to use this approach, as it rarely happens
that additional observations are collected. An alternative procedure is the follow-
ing:
• Randomly split the data into two parts, i.e., a test and a validation sample.
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• Use the test data set to estimate the specified model, i.e., for the estimation of
regression coefficients ˇ and the expectations �i .

• Use the validation set to assess the goodness of fit, i.e., for the estimation of
SPSE.

This approach is possible if the available data set is large enough. If the data set is
too small, partitioning the data would cause loss of accuracy in estimation of the
regression coefficients. How large the sample size has to be in order to proceed
in a reasonable manner depends on the problem. As far as we are aware, there is
not any rule of thumb or general advice in the literature. This is the reason why
we often use the second strategy.

2. Estimate SPSE using existing data
A naive estimator for SPSE would be the use of the squared sum of residualsP
.yi � OyiM /2. Note that this sum underestimates on average the expected

prediction error, as it can be shown that

E

 
nX

iD1
.yi � OyiM /2

!
D SPSE � 2jM j�2:

Thus a better estimate for SPSE is given by

1SPSE D
nX

iD1
.yi � OyiM /2 C 2jM j O�2:

Accordingly, we choose a model that minimizes 1SPSE. In doing so we have
to keep in mind that we always use the same estimator for O�2. Preferably, this
estimator should be based on the full model with all available variables, in order
to keep the bias in O�2 small. The criterion 1SPSE has the typical structure of many
model choice criteria. It consists of two terms: The first term, the sum of squared
residuals, measures the goodness of fit and becomes smaller the more complex
the model becomes. The second term 2jM j O�2 measures model complexity and
becomes smaller as models become simpler.

We next present some of the most widely used criteria for model choice in
linear models. Their derivation follows ideas similar to that of 1SPSE.

The Corrected Coefficient of Determination
In Sect. 3.2.3, we defined the coefficient of determination R2 as a measure for
the goodness of fit to the data. When comparing different models, the use of
the coefficient of determination is limited, since the coefficient of determination
will always increase (never decrease) with the addition of a new covariate into
the model. The corrected coefficient of determination adjusts for this problem, by
including a correction term for the number of parameters. The corrected coefficient
of determination is defined by
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NR2 D 1 � n � 1
n � p .1� R2/:

The corrected coefficient of determination is very popular and is provided by default
with all statistical program packages. At this point, we advice against its usage, since
the “penalty” for newly included covariates appears to be too small. It can be shown
that NR2 already increases when a variable with a t-value greater than 1 is included
in the model, implying we would include variables with a p-value of about 0.3.

Mallow’s Cp

Mallow’s Cp (“complexity parameter”) relies directly on the ideas presented above
and is defined by

Cp D

nX

iD1
.yi � OyiM /2

O�2 � nC 2jM j:

Cp can be understood as an estimate of SMSE=�2. Thus minimizing Cp produces

the same optimal model as minimizing 1SPSE.

Akaike Information Criterion
The Akaike information criterion (AIC) is one of the most widely used criteria
for model choice within the scope of likelihood-based inference; see Appendix B,
p. 664. In general, AIC is defined by

AIC D �2 � l. Ǒ
M ; O�2/C 2 .jM j C 1/;

where l. Ǒ
M ; O�2/ is the maximum value of the log-likelihood, i.e., when the ML

estimators Ǒ
M and O�2 are inserted into the log-likelihood. Smaller values of the

AIC correspond to a better model fit. Note that the total number of parameter is
jM j C1 since the error variance �2 is also counted as a parameter. In a linear model
with Gaussian errors, we obtain

�2 l. Ǒ
M ; O�2/ D n log. O�2/C 1

O�2 .y � XM
Ǒ
M/

0.y � XM
Ǒ
M/

D n log. O�2/C n O�2
O�2

D n log. O�2/C n;

and thus
AIC D n � log. O�2/C 2 .jM j C 1/;

when ignoring the constant n.
Note that the ML estimator O�2 D O"0 O"=n is considered in AIC and not the usual

unbiased variance estimator.
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Cross Validation
Cross validation imitates partitioning of the data into a test set for parameter
estimation and a validation set to assess predictive quality. Cross validation is based
on the following general principle:
• Partition the data set into r subsets 1; : : : ; r , of similar size.
• Start with the first data set as validation set and use the combined remaining r�1

data sets for parameter estimation. Based on the estimates, obtain predictions for
the validation set and determine the sum of the squared prediction errors.

• Cycle through the partitions using the second, third, up to the r th data set as
validation sample and all other data sets for estimation. Determine the sum of
squared prediction errors.

• Use the model with the smallest sum of squared prediction errors, where the final
parameter estimates reflect all data. The partition into test and validation samples
serves only to estimate the expected squared prediction error.
An important special case is the so-called “leave-one-out” cross validation,

which uses all observations with the exception of one for the estimation of model
parameters. We use this “leave-one-out” estimator to predict the deleted observation
and to determine the squared prediction error. If we denote the “leave-one-out”
estimator with Oy�i

iM , we obtain the cross validation score

CV D 1

n

nX

iD1
.yi � Oy�i

iM /
2:

At first glance, computation of the cross validation score CV appears to be quite
expensive, since the least squares estimator has to be calculated n times. It can be
shown, however, that the cross validation score can be computed with the help of
the original estimators OyiM that are based on all data. We obtain

CV D 1

n

nX

iD1

�
yi � OyiM
1 � hiiM

�2
;

where hiiM are the diagonal elements of the hat matrix HM D XM.X
0
MXM/

�1X 0
M .

Bayesian Information Criterion
The Bayesian information criterion (BIC) is generally defined by

BIC D �2 � l. Ǒ
M ; O�2/C log.n/ .jM j C 1/I

see in Appendix B, p. 676. The BIC multiplied by 1=2 is also known as Schwartz
criterion. Assuming Gaussian errors, we obtain

BIC D n � log. O�2/C log.n/ .jM j C 1/:

The form of the BIC is similar to that of the AIC, and again smaller values indicate
a better model fit. Note, however, that the BIC and AIC are motivated in a very
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Fig. 3.19 AIC as a function of the polynomial degree for the simulated data of Example 3.16
(p. 139)

different way. From a practical point of view, the main difference is that the BIC
penalizes complex models much more than the AIC. Thus, the resulting “best”
models are typically more parsimonious when using the BIC rather than the AIC.

Example 3.18 Polynomial Regression—Model Choice with AIC
Figure 3.19 plots AIC for the simulated data from Example 3.16 (p. 139) as a function of
the polynomial degree. AIC obtains a minimum for l D 2 resulting in a reasonable model,
even though we do not obtain the polynomial order of the true model with l D 3. 4

3.4.3 Practical Use of Model Choice Criteria

We can use the various model choice criteria to select the most promising models
from candidate models. We recommend the following approach:
• On the basis of scientific knowledge, perhaps gained from previous research, we

obtain a preselection of potential models. The models can differ in the number of
variables but also in model type (e.g., linear versus nonlinear). The total number
of potential models should be as small as possible.

• All potential models can now be assessed with the aid of one of the various model
choice criteria. The summary of the results should not be restricted to the “best”
model. As a rule, there are a number of competitive models having approximately
equal model fit, differing only in small aspects from each other. These differences
cause some uncertainty regarding the conclusions.
Unfortunately, this method is not always practical, since the number of regressor

variables and modeling variants can be very large in many applications. In short, the
calculation of all models is often impossible. In this case, we can use the following
partially heuristic methods:
• Complete Model Selection (All-Subset-Selection): In case that the number of

covariates is smaller than about 40, we can determine the best model (in the sense
of a model choice criterion) with the “leaps and bounds” algorithm introduced
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by Furnival and Wilson (1974). The algorithm returns the optimal model thereby
avoiding the computation of all models. An implementation can be found in the
software SAS and also in the R package leaps.

• Forward Selection: Based on a starting model, forward selection includes one
additional variable in every iteration of the algorithm. The variable which offers
the greatest reduction of a preselected model choice criteria (Cp, AIC, CV, BIC)
is chosen. The algorithm terminates if no further reduction is possible.

• Backward Elimination: Backward elimination starts with the full model contain-
ing all potential covariates. Subsequently, in every iteration, the covariate which
provides the greatest reduction of the model choice criteria (Cp, AIC, CV, BIC)
is eliminated from the model. The algorithm terminates if no further reduction is
possible.

• Stepwise Selection: Stepwise selection is a combination of forward selection and
backward elimination. In every iteration of the algorithm, the inclusion and the
deletion of a variable are both possible.
Generally speaking, forward, backward, and stepwise selection do not offer the

best model in the sense of the model choice criteria. However, typically a model that
is close to the best model is selected.

Unfortunately, the available software for model choice is often problematic.
A main problem is that dummy variables of multi-categorical variables are, in
general, neither jointly included nor removed from the model. Instead it can happen
that only a subset of the dummies of a categorical variable appears in the model.
This causes an indirect change of the reference category and the interpretation of
the regression coefficients. Moreover, other difficulties can occur, e.g., methods for
hierarchical terms are frequently missing. For example, if we use polynomials for
modeling nonlinear covariate effects, it can happen that the selected model has a
squared and cubic term, but not a linear one. Often it is impossible to exclude certain
terms from selection and force them into the model.

The listed procedures should not be confounded with an algorithm proposed by
Efroymson in the 1960s, even though the approach is similar. In contrast to what has
been proposed above, the Efroymson algorithm includes or excludes those variables
in/from the model, which have the highest or lowest t-value.

The procedure terminates when no variable that potentially needs to be included
has a p-value of less than a previously fixed maximal p-value (e.g., 0.05) and
when no variable that needs to be excluded has a p-value greater than a minimal
p-value (e.g., 0.1). This automatic procedure, which is implemented in all major
statistical software packages, is often viewed as obscure among statisticians due to
the following two reasons:
• Forward, backward, and stepwise selection usually provide different results. This

also happens when using a global model choice criterion such as AIC. We can,
however, compare the different selected models with the help of the global model
choice criterion. When using the Efroymson approach, discrimination between
the different models is impossible.

• The repetitive use of the t-test statistic, to assess whether or not a regression
coefficient is different from zero, suggests exact tests. However, the t-test statistic
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does not follow a t-distribution under the null hypothesis, since during the
selection process we do not test an arbitrary variable but rather the variable with
the maximal t-value.

Example 3.19 Prices of Used Cars—Model Choice
We illustrate the approaches for model choice using data from the sales price of pre-owned
VW Golf automobiles. Our goal is to model the relationship between the sales price in 1,000
Euro (variable price) and the five explanatory variables “age of the car in months” (age),
“kilometer reading in 1,000 km” (kilometer), “number of months until the next appointment
with the Technical Inspection Agency” (TIA), “ABS brake yes/no” (extras1), and “sunroof
yes/no” (extras2). Examinations of this kind play an important role in the context of hedonic
price indices. In contrast to common price indices, hedonic price indices take quality
differences of a product into consideration. This is especially of importance when dealing
with product groups that undergo fast technological changes.

Figure 3.20 provides scatter plots and box plots to get a first impression about the
relationships between the response variable and the various explanatory variables. The plots
suggest the following effects: We can assume a linear or monotonically decreasing nonlinear
effect for the variables age and kilometer, which could be appropriately modeled using
(orthogonal) polynomials of degree three or less. The variable TIA appears to either have no
effect or a very weak linear effect on the average sales price. Cars with ABS (extras1) seem
to be slightly more expensive than cars without ABS; the effect, however, remains arguable.
We can attest to no difference in the average sales price for models with or without sunroof
(extras2). All in all, there seems to be a relationship with age and the kilometer reading.
The effects of the remaining variables appear doubtful.

Based on these considerations, we first examine eight regression models (see Table 3.5),
which do not differ in the modeling of the variables age and kilometer. For the remaining
three regressors, all possible model combinations will be tested. Using the AIC criterion,
we obtain the first model in Table 3.5 as the preliminary best model. Figure 3.21 displays
the AIC values for the eight models under consideration. In addition, the AIC for a ninth
model based on automatic variable selection is provided; see below.

Since only five explanatory variables are available, we can even determine the AIC best
model with the help of the “leaps and bounds” algorithm. This model attains an AIC value
of 389.35. It differs from the current “best model,” in that it only makes use of polynomials
of second degree (not third) for the variables age and kilometer. Figure 3.21 shows that the
obtained AIC for this ninth model is considerably smaller than the best AIC value of all
the models that we examined so far. Table 3.6 shows the estimation output for model 9.
Figure 3.22 provides additional visualization of the estimated effects for age and kilometer
reading. Table 3.6 reveals that all regression coefficients differ significantly from zero at
the 5 % level, and only one quadratic term is not significant at the 1 % level. Note that
a model, which is selected according to a global goodness-of-fit criterion, can contain
nonsignificant coefficients. This is only remarkable at first glance. All selection criteria
are global measures, which, for example, minimize the prediction error. Statistical tests can
rather be seen as local measures, which in addition are constructed asymmetrically. This
means that the type I error is controlled and kept small so that we favor the null hypothesis
over the alternative hypothesis. 4
We finally point out that there are alternative ways for variable selection than the

optimization of a model choice criteria such as AIC or the cross validation score.
In fact there is vital current research in variable selection for linear models. In this
book we will present some of the most interesting approaches in Chap. 4. More
specifically, we will discuss:
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Fig. 3.20 Prices of used cars: scatter plots between sales prices and the continuous covariates
age, kilometer, and TIA. Box plots of sales prices stratified according to the values of the binary
variables extras1 and extras2

• Regularization techniques for the least squares estimator, in particular the
LASSO: Regularization of the least squares estimator allows to set some of the
regression coefficients zero, so that the corresponding covariates are essentially
removed from the model; see Sect. 4.2 for details.
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Table 3.5 Prices of used cars: potential models

kilometer age extras1 extras2

Model degree 3 degree 3 linear TIA AIC

1 x x 393.234 (1)
2 x x x 394.566 (2)
3 x x x 395.119 (4)
4 x x x 394.973 (3)
5 x x x x 396.481 (6)
6 x x x x 396.143 (5)
7 x x x x 396.881 (7)
8 x x x x x 398.085 (8)
The values in brackets indicate the rank of the models according to AIC

387
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model number

AIC for the different models

Fig. 3.21 Prices of used cars: AIC values for the potential models

Table 3.6 Prices of used cars: estimation results for the best model according to AIC

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 3.397 0.056 60.220 <0.001 3.285 3.508
ageop1 �0.705 0.061 �11.470 <0.001 �0.826 �0.584
ageop2 0.187 0.057 3.270 0.001 0.074 0.300
kilometerop1 �0.439 0.061 �7.170 <0.001 �0.560 �0.318
kilometerop2 0.141 0.057 2.460 0.015 0.028 0.254

• Boosting: Similar to the LASSO, boosting is able to simultaneously estimate the
regression coefficients and select relevant variables; see Sect. 4.3.

• Bayesian variable selection: The last decades have seen a large number of prac-
tical Bayesian approaches for variable selection. We will present one approach
with corresponding software in detail and give an overview over alternative
approaches; see Sect. 4.4, in particular Sect. 4.4.3.

We will apply the alternative techniques for variable selection in our case study
on prices of used cars and compare the results to those obtained by optimizing
AIC in the previous example; refer to Examples 4.11 (LASSO), 4.12 (boosting),
and 4.15, 4.16 (Bayesian variable selection).
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Fig. 3.22 Prices of used cars: model 9 based on all-subset selection, effects of age, and kilometer
reading including partial residuals

3.4.4 Model Diagnosis

Having selected a working “best” model, the next step is to assess the validity of the
model using diagnostic tools, in search of an improved model. In principle, model
diagnosis pursues the following goals:
• Examination of the model assumptions: No model is correct. Nevertheless, the

assumptions on which a model is based should be met at least approximatively. In
the classical linear model, we have to evaluate the assumptions of homoscedastic,
uncorrelated, and possibly normally distributed errors, as well as the linearity of
the predictors.

• Outlier detection: In some situations, the results are heavily influenced by a few
“unusual” observations. These observations should be identified and their effect
on the estimates quantified.

• Collinearity analysis: Theoretical results have shown that highly correlated
covariates can have a strong influence on the stability of the estimates; see pages
115ff. or Box 3.9 on p. 119. Thus it is important to examine the correlation
structure of the covariates in the model.
In the following sections and Sect. 4.1, we describe a selection of tools useful for

model diagnosis.

Examination of Model Assumptions
Homoscedasticity: The examination of the assumption of homoscedastic error
variances will be outlined in Sect. 4.1.3 (p. 182). Important tools include residual
plots and tests for heteroscedasticity. When heteroscedasticity occurs, transforma-
tion of the response variable or the use of weighted regression are possible remedies;
see Sect. 4.1.3 in the next chapter.
Uncorrelated Errors: We can detect correlated errors through residual plots
over time or through the use of statistical tests; see Sect. 4.1.4 (p. 191) of the
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Fig. 3.23 Prices of used cars: studentized residuals against bprice (top left) and against the
continuous covariates. The horizontal lines mark the critical values of the test for outliers to be
discussed in Sect. 3.4.4 (p. 160)

next chapter. Since correlated errors indicate misspecification (especially through
omitted explanatory variables and unnoticed nonlinearity), we should first examine
whether or not model specification can be improved. If not, we can use one of the
estimation procedures discussed in Sect. 4.1.4 (p. 191).
Linearity: We can eventually discover undetected nonlinear effects of covariates
with the help of scatter plots of (standardized or studentized) residuals as a function
of estimated values. Moreover, plots of partial residuals O"xj ;i D O"i C Ǒ

j xij against
covariate xij can be useful.
Assumption of Normality: We can test distributional assumptions with the
quantile–quantile plot (Q–Q plot). In Q–Q plots, the empirical quantiles are
compared to the quantiles of the theoretical distribution. If the data follows the
distribution, the points should closely follow the 45 ı bisecting line.

Example 3.20 Price of Used Cars—Model Diagnosis
Figure 3.23 plots the studentized residuals versus the estimated price and the continuous
covariates for the model estimated in Example 3.19. There is no evidence of any additional
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Fig. 3.24 Prices of used cars: Q–Q plot of standardized residuals

nonlinear effects. Nevertheless, evidence of (mild) heteroscedastic errors exists. The
variability of studentized residuals decreases as kilometer reading increases. Also note the
increasing variability of residuals for VW Golf models that have 18 months or more until
their next TIA checkup. It appears that the variable TIA does not affect the conditional mean
of sales prices but rather the conditional variance. Figure 3.24 shows the Q–Q plot for the
standardized residuals. Significant deviations from the normal distribution are visible only
in the extreme left and right tails. 4

Collinearity Analysis
We first illustrate the goals of collinearity analysis with the most extreme situation.
Consider the model

y D ˇ0 C ˇ1 x1 C ˇ2 x2 C ˇ3 x3 C ";

with covariates x1, x2, and x3. We first assume that there is perfect linear dependence
x1 D a x2 between x1 and x2. The variable x1 could represent, for example, weight
in kilogram and x2 weight in tons, that is, x1 and x2 only differ in the measure unit.
In this extreme case, we cannot uniquely estimate the regression coefficients ˇ1 and
ˇ2 belonging to x1 and x2, since

y D ˇ0 C ˇ1x1 C ˇ2 x2 C ˇ3 x3 C " D ˇ0 C .ˇ1 aC ˇ2/ x2 C ˇ3 x3 C ":

In practice, the covariates typically do not show such an exact linear dependence,
but they can be highly correlated, which is called (multi)collinearity. As we have
seen in Sect. 3.2.3 on p. 116, highly correlated covariates cause imprecise estimation
of the regression parameters, as again seen through the variance formula for Ǒ

j ,

Var. Ǒ
j / D �2

.1 �R2j /
Pn

iD1.xij � xj /2 :
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The greater the linear dependence of a covariate xj with the other explanatory
variables (measured through the coefficient of determination R2j ), the greater is the

variance Var. Ǒ
j /. In the extreme case of R2j ! 1; the variance explodes towards

infinity. The variance formula also provides a diagnostic tool for measuring the
degree of collinearity, i.e., the variance inflation factor:

VIFj D 1

1 �R2j
:

The variance inflation factor quantifies the factor increase of the variance of Ǒ
j due

to the linear dependence of xj with the other regressors. The greater the correlation
between xj and the other covariates, the greater is R2j , and thus the greater is VIFj .
As a general benchmark, we say that a serious collinearity problem exists when the
variance inflation factor is greater than 10, i.e., VIFj > 10.

Example 3.21 Prices of Used Cars—Collinearity
For the regression model of Example 3.19, the variance inflation factors range between 1.03
and 1.19. In other words, the variances of the estimated coefficients increase, at most, by
factor 1.19, when compared to an “ideal” (orthogonal) setting. Thus, there is no evidence
for a serious collinearity problem. 4
The literature offers a variety of proposals on how to deal with strong collinearity:

• Omission of some affected covariates: This method is probably both the most
practiced and the most criticized in literature. However, in many cases there are
different measures for the same purpose. Consider, for instance, the various mea-
sures for the nutritional status of the mother in our data example on malnutrition
in Zambia. The original data set offers the body mass index, as well as the Rohrer
Index as measures of nutritional status. Although constructed differently, these
two variables are highly correlated, with a correlation coefficient greater than
0.95. In this case, as well as in other similar cases, we are forced to decide which
index to use and which to exclude from further analysis.

• Construct a single combined (easily interpretable) variable from the variables
in question: Of particular interest are linear combinations of the variables or
simple summaries, such as the minimum or maximum of the variables. Recall
the supermarket scanner data, which examines different marketing measures and
relates them to the sale of a particular coffee brand (see Example 3.2 on p. 86).
When modeling the sales of a coffee brand, in addition to its own price, the prices
of other competitors are important covariates. For some competitors, several
brands exist, which only differ from each other by package size. The prices for
these brands often change at the same time and proportional to package size.
Thus, strong collinearity results if we include all brands as separate effects into
the model. We can avoid the collinearity problem by computing, for example, the
average price (a specific linear combination) of the competitive brands, which is
then included in the model in place of the individual brands. Another possibility
is to use a simple summary, e.g., the lowest price (minimum).



3.4 Model Choice and Variable Selection 159

• Ridge Regression: The ridge estimator is an alternative to the least squares
estimator and is defined as

Ǒ D .X 0X C 	I/�1X 0y ;

where 	 � 0 is an appropriately chosen tuning-parameter. The ridge estimator,
unlike the least squares estimator, is biased. The literature suggests the use of the
ridge estimator, especially in the presence of collinearity problems. The addition
of 	I to X 0X leads to a regularized and invertible matrix, even if X 0X is near
singular due to severe collinearity. Thus, the components of the ridge estimator
often have a smaller MSE when compared to the corresponding components of
the least squares estimator. The least squares estimator is only optimal in the
class of linear and unbiased estimators. If we also allow biased estimators, it
is possible that other estimators are better in terms of the MSE than the least
squares estimators. Even though the ridge estimator has been highly researched
and elaborated on in many publications, until recently it was rarely used in
practice. One reason is that even when using the ridge estimator, separating
the covariate effects is impossible with severe collinearity. However, ridge and
related estimators have recently received increasing attention in order to cope
with situations that have a huge number of possible regressors in combination
with a relatively small sample size, i.e., largep, small n problems. Such problems
occur frequently in biostatistics when analyzing gene expression and related data.
More details on ridge and related estimators are given in Sect. 4.2.

Estimators with a similar structure to that of the ridge estimator are also widely
used in nonparametric regression; see Chap. 8.

• Principal component regression: This variant does not directly include all
available covariates in the model but rather appropriate linear combinations
of covariates. Throughout, continuous covariates are assumed. The basis of
principal component regression is the spectral analysis of the matrix X 0X (see
Theorem A.25 on p. 633), i.e.,

X 0X D Pdiag.	1; : : : ; 	p/P 0:

The matrix P consists of the eigenvectors pj or the principal components of
X 0X . The first principal component p1 has the characteristic that the linear
combination z1 D Xp1 has the largest variance among all linear combinations
of the columns of X . The second principal component p2 determines the linear
combination z2 D Xp2, which has the second highest variance among all linear
combinations that are also orthogonal to z1. Accordingly, the linear combination
zj D Xpj of the j th principal component has the highest variance relative to
the linear combinations which are orthogonal to all of the first j � 1 principle
components. Instead of the original regressor variables, we use the derived linear
combinations z1; z2; : : : as covariates in the principal component regression.
Typically only the first q � p of the p linear combinations are considered
and sufficient for modeling. The remaining ones are neglected due to a lack of
interpretability or due to low variance.
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An application of principal component regression arises in the context of
modeling determinants of malnutrition. Here, a number of variables describing
the economical situation of the household is available. In most cases it does
not make sense to include all economical covariates in the model. Based on
a principal component analysis, easily interpretable linear combinations as
measurements for the economical status are included instead. In almost all cases,
only the linear combination with the highest variance based on the first principle
component is used.

Outlier and Influence Analysis
In addition to checking model assumptions and collinearity analysis, another
important aspect of model diagnosis is to investigate the influence of individual
observations on the estimators. We will see that outliers are of particular importance,
which we next examine in more detail.

Outliers
There is no exact definition for the term outlier. In this book, outliers are obser-
vations which do not adhere to the fitted model. We (informally) define the i th
observation as an outlier if the (conditional) mean of yi is not E.yi j xi / D x0

iˇ, as is
postulated by the model, but rather shifted by the value d , i.e., E.yi j xi / D x0

iˇCd .
We illustrate the outlier problem using the simulated data presented in Fig. 3.25.

Panel (a) displays simulated observations .yi ; xi / together with an estimated
regression line (solid line). The solid point in the center of the range of values of x
appears to be a severe outlier. If we estimate a new regression line, this time without
considering the outlier, the resulting estimate (dotted line) only slightly changes.
The estimated standard errors and, thus, also the confidence intervals however do
change dramatically. Using all observations, we obtain 0.241 as estimated standard
error for Ǒ

1, whereas without the outlier, we obtain the value 0.069. Accordingly,
we obtain the confidence interval [1.53, 2.50] for ˇ1 based on all observations
and [1.84, 2.11] without considering the outlier. Even though in this case the
outlier only slightly changes the estimated regression line, statistical inference is
influenced considerably. In comparison to panel (a), panel (c) shows a slightly
modified situation, where in this case, the outlier is not in the center but rather on
the boundary of the range of values. As such, the outlier has now an effect on both
the estimated standard errors and the estimated regression line. If multiple outliers
appear as in panel (e), the impact is even greater.

Summarizing, we can state: Outliers can have a significant effect on estimation
and inference. Further, the influence becomes more significant on the boundary of
the covariate range and with multiple outliers. Thus, the following questions arise:
First, how can we detect outliers? Secondly, what should we do when outliers are
detected? The literature offers a multitude of possible answers to both questions. We
first address the question how to detect outliers.



3.4 Model Choice and Variable Selection 161

−5

0

5

10

y

−2 −1 0 1 2
x

outlier in the center of the range of x

−5

0

5

10

15

20

st
ud

en
tiz

ed
 r

es
id

ua
ls

−2 −1 0 1 2
x

outlier in the center: studentized residuals

−4

−2

0

2

4

y

−2 −1 0 1 2

x

outlier on the boundary of the range of x

−5

0

5

10

15

20
st

ud
en

tiz
ed

 r
es

id
ua

ls

−2 −1 0 1 2

x

outlier on the boundary: studenized residuals

−5

0

5

y

−2 −1 0 1 2
x

multiple outliers on the boundary of the range of x

−4

−2

0

2

4

st
ud

en
tiz

ed
 r

es
id

ua
ls

−2 −1 0 1 2
x

multiple outliers on the boundary: studentized residuals

a b

c d

e f

Fig. 3.25 Illustration of the outlier problem: The left panels show scatter plots between y and x
together with the estimated regression line (solid line) and estimated regression line if the outliers
are not considered (dashed line). The right panels display studentized residuals against x. Outliers
are marked by solid points
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A good starting point to detect outliers seems to be the search for large residuals.
The discovery of outliers is, however, complicated by the fact that they can have
a considerable effect on estimation. Note that estimates are “pulled” towards the
outliers, such that the corresponding residuals can be relatively small, especially at
the boundary of the covariate range. Therefore, if we wish to examine whether or
not the i th observation is an outlier, it should be excluded from estimation.

In Sect. 3.10 on p. 123, we defined the “leave-one-out” residuals:

O".i/ D yi � Oy.i/ D yi � x0
i .X

0
.i/X .i//

�1X 0
.i/y .i/:

These residuals are based on estimates which do not consider the i th observation.
With standardization, we obtained the studentized residuals:

r	
i D O".i/

O�.i/.1C x0
i .X

0
.i/X .i//�1xi /1=2

;

which follow a t-distribution with n � p � 1 degree of freedom when the model is
correctly specified. Observations with large studentized residuals are thus potential
outlier candidates. Since we know the distribution of studentized residuals in a
correctly specified model, we can formally test whether or not the i th observation
yi is an outlier. In order to do so, we have to compare the i th studentized residual
r	
i with the ˛=2 or the 1 � ˛=2 quantile of the t-distribution with n � p � 1 degree

of freedom, for a given significance level ˛. If the residual is smaller than the ˛=2
or larger than the 1� ˛=2 quantile, then it is an outlier candidate.

In most cases, we do not want to test a single observation, but we want to test all
observations simultaneously. In order to obtain a correct overall significance level
˛, we have to adjust the significance level for each observation. A straightforward
approach is the Bonferroni correction, which uses the level ˛=n in each test.
The Bonferroni correction is relatively conservative, which means that in general
(especially with a large sample size) we tend not to discover all outliers even when
they exist.

Figure 3.25b, d, f shows studentized residuals as a function of x for the simulated
data sets. The plotted horizontal lines mark the 0.5 % and 99.5 % quantiles of the
t-distribution with n� p � 1 D 40� 2 � 1 D 37 degrees of freedom. Observations
that are below or above the two lines are potential outlier candidates. It appears
that the two individual outliers are identified, one in the center and the other on the
boundary of the covariate range. The multiple outliers in panel (e) are, however, not
identified. In general, it can be very difficult to discover multiple outliers. In this
case, the visualization of the studentized residuals in panel (f) does offer us some
help to notice the unusual observations.

Example 3.22 Prices of Used Cars—Outliers
Figure 3.23 shows the studentized residuals as a function of the fitted values and the
covariates in the regression model derived from Example 3.19 (p. 152). The 0.5 % and
99.5 % quantiles of the t-distribution with n�p�1 D 172�6�1 D 165 degrees of freedom
(horizontal lines) are also plotted. Based on the overall significance level of ˛ D 0:01, we
obtain one observation above the line with a studentized residual of r�

i D 4:36. 4
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Fig. 3.26 Robust regression: estimated regression line based on various estimation techniques
(least squares estimator based on all observations, least squares estimator without considering the
outliers and median regression). Left: outlier on the border of the covariate range. Right: multiple
outliers on the border of the covariate range

In practice, outlier candidates are often excluded from the analysis without
further comment. This procedure is often not the best alternative. Instead, we
recommend the following:
• Exclusion of data errors: Outliers can indicate data errors, for example, incorrect

data coding. This source of error should first be eliminated.
• Search for an explanation of outliers: In some applications, the outliers of a

model are the most interesting observations. A case in point is the satellite
Nimbus 7 operated by the NASA to provide information about the atmosphere.
In the year 1985, the satellite had been in use for several years and scientists
observed an extremely large decrease of the ozone concentration in the atmo-
sphere, the ozone hole was discovered. In this case, an explanation for the unusual
observations existed.

• Description of the differences in results: Instead of excluding outliers from the
analysis, it is possible to estimate the model with and without outliers. In this
way, we can describe the emerged model differences and we do not lose the
outlier information.

• Robust regression: Since the 1960s, robust methods have become increasingly
more important in statistics. These methods are less sensitive to outliers, i.e.,
estimation results are not (or only slightly) influenced by outliers. The first
robust method is median regression proposed by Boscovich already in 1760 (see
Sect. 3.2.1). Median regression minimizes the sum of the absolute deviations
instead of the sum of the squared deviations. Such an approach is much more
robust against outliers than the least squares method; see Fig. 3.26, which com-
pares several estimation methods in the presence of one or multiple outliers at the
boundary of the covariate range. The least squares results are only insensitive to
the outliers, in the cases that they are excluded from estimation. When using all
observations, the estimated least squares regression lines are “pulled” towards the
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Fig. 3.27 The left panel shows a scatter plot between y and x including an estimated regression
line (dashed line) and an estimated regression line if the influential observation is not considered
(solid line). The right panel shows the leverage depending on x

outliers. However, outliers do not affect the median regression, even when they
are not excluded from estimation. Median regression then has the advantage that
we do not need to detect potential outliers, since estimation is unaffected. The use
of median regression does become problematic when we have a relatively large
amount of outliers. In such cases, we have to use other specialized methods,
which, however, would go beyond the scope of this book; see, for example,
Rousseeuw and Leroy (2003). Note that median regression is a special case of
more general quantile regression which has recently become quite popular. More
on quantile regression can be found in Chap. 10.

We may wonder why the least squares method is still used more often than
the method of median regression, especially in light of the fact that median
regression is much less sensitive to outliers. The answer is that the least squares
estimator has much better estimation properties when no outliers exist. When the
data follow a normal distribution, median regression needs about 50 % more data
in order to obtain the same estimation precision compared to the least squares
method. Nevertheless, within the scope of diagnostics, we also recommend to
use robust methods (when available) to examine the sensitivity or robustness of
the obtained least squares estimators.

Influence Analysis
Influence analysis focuses on measuring the impact of specific observations on
estimation. The main objective is to find observations which have a large influence
on Ǒ and, thus, Oy . Estimation can drastically change, when such observations
are removed. In many cases, influential observations are outliers, as informally
defined above. In extreme cases, a single observation can drive the entire estimated
relationship or the elimination of a certain observation destroys the relationship.
Figure 3.27 (left panel) illustrates such a case using simulated data.
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The literature offers numerous suggestions on how to detect highly influential
observations including the following:
• Leverage: The diagonal elements hii of the hat matrix H D X.X 0X/�1X 0

measure the leverage of the i th data point. The leverage ranges from 1=n to
1; see Box 3.5 on p. 108. A large leverage (close to 1) implies two things. First,
Var.O"i / D �2.1 � hii / is small, or even near zero when leverage is close to
one. In the case of a single covariate, the regression line nearly passes through
the point .yi ; xi /; regardless of any other observation. Thus an observation
with high leverage has a considerable influence on the estimation results. These
considerations can easily be extended to observations with more covariates,
where now, in the extreme case, the regression hyperplane nearly intersects the
point .yi ;xi /.

Secondly, large leverage values indicate some unusual covariates values xi .
This property is best seen in the case of only one covariate xi as then the leverage
is given by

hii D 1

n
C .xi � Nx/2P

j .xj � Nx/2 :

The leverage hii increases, the further the observation xi is from the average Nx.
In this sense, leverage values can also be understood as outliers in x-direction. In
general, we have

hii D 1

n
C .xi � Nx/0. QX 0 QX/�1.xi � Nx/

using the design matrix of centered covariates

QX D

0

BBB@

.x11 � Nx1/ � � � .x1k � Nxk/

.x21 � Nx1/ � � � .x2k � Nxk/
::: � � � :::

.xn1 � Nx1/ � � � .xnk � Nxk/

1

CCCA :

Ideally, the leverages hii are uniformly distributed. As a rule of thumb,
observations with hii > 2p=n (twice the average) should be examined more
closely. We should keep in mind, however, that large leverages do not necessarily
lead to problems.

• Cook’s Distance: Denote by Oy.i/ the estimator for E.y/ that uses all observations
with exception of the i th observation. An obvious measure for the difference
between Oy based on all observations and Oy.i/ is the Euclidean distance between
the estimators. More precisely, Cook’s distance is defined by

Di D . Oy.i/ � Oy/0. Oy .i/ � Oy/
p � O�2 ;
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where the numerator is standardized by the estimated variance O�2. As a rule of
thumb, observations with Di > 0:5 are worthy of attention, and observations
with Di > 1 should always be examined.
For our simulated data, the right panel of Fig. 3.27 shows the leverages hii as a

function of xi . The horizontal line marks the rule of thumb hii > 2p=n D 2�2=40 D
0:1 for influential observations. The most influential observation is with x D 12

having hii D 0:6 and is the only leverage larger than the rule of thumb. Cook’s
distance with Di D 2:55 is extremely large for this observation, indicating extreme
influence of the observation. It is also the only observation with Di > 0:5.

Example 3.23 Prices of Used Cars—Influence Analysis
Cook’s distances are all low for the regression model outlined in Example 3.19 (p. 152). The
largest Cook’s distance is 0.12, and no observation has a D larger than 0.5. Approximately
ten observations have leverages larger than the cutoff hii > 2p=n D 0:058. For the most
part, these are observations with a rather small (kilometer < 50) or large kilometer
reading (kilometer > 230). The largest leverage is hii D 0:23: It is therefore reasonable
to examine the effect on estimation by removing the observations associated with extremely
low or large kilometer readings and refitting; see the next Example 3.24. 4

Alternative Modeling Approaches Due to Model Diagnosis
Model diagnosis often provides evidence for alternative modeling approaches to
be investigated. When estimating alternative models, the main goal is, on the one
hand, to find even more adequate models and, on the other hand, to evaluate model
stability. In most cases, we do not find a single model that clearly outperforms all
the others. On the contrary, we typically find a few competing models with almost
equal fit. It is important to extract the common features of these models, as well as
refer to their differences. Typically, the models will be different only with respect to
some aspects which then cause uncertainty regarding our conclusions.

The following alternative modeling variants are possible:
• Residual plots can particularly provide useful information about alternative

modeling of the effect of one or more covariates.
• We can reestimate the model after removing conspicuous observations having

extremely large residuals, leverages, and/or Cook’s distance.
• We can reestimate the model using alternative approaches, especially robust

regression.
• Sometimes model diagnosis provides evidence for transforming the response

variable. Especially if the response is strictly positive with a large range, then
a logarithmic transformation of the response might be useful.

• If there is evidence of heteroscedastic errors, an alternative is weighted regres-
sion, as developed in Sect. 4.1.3 of the next chapter.

Example 3.24 Prices of Used Cars—Alternative Models
The regression model of Example 3.19 (p. 152) has undergone detailed regression diagnos-
tics, as provided in the Examples 3.20–3.23. We conclude the following:
• There is no evidence of misspecification of continuous covariate effects; see Fig. 3.22

(p. 155).
• Figure 3.23 suggests moderately heteroscedastic errors.
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Fig. 3.28 Prices of used cars: effect of the kilometer reading for different modeling alternatives

• The influence analysis suggests unstable effects for Golf models with a kilometer
reading smaller than 50 or larger than 230.

Hence, the following alternative model specifications were tested:
• Weighted regression to cope with heteroscedastic errors: Since heteroscedastic errors

will be treated in Sect. 4.1.3 of Chap. 4, we defer the reader to Example 4.5 for details.
For the moment, it suffices to know that the difference between the classical linear model
and the heteroscedastic model is marginal. Example 4.5 elaborates this point further.

• Logarithmic transformation of the response variable price: Due to the positive and
skewed response, we also estimated models with the log price. When using transformed
responses, we have to keep in mind that model choice and model diagnoses have to
be conducted again. For example, it is possible that outliers in the model with an
untransformed response disappear in a model with a log-response, or vice versa. With
the transformed response, we obtain a somewhat more parsimonious model, than with an
untransformed one, since we can now model the effect of the kilometer reading linearly.
Moreover, the model is more stable regarding outliers and influential observations.
However, the main conclusions remain the same.

• Model estimation after removing observations with kilometer < 50 or kilometer >
230, as well as robust regression: Figure 3.28 shows the impact of different specifica-
tions on the effect of the kilometer reading. All models show a monotonically decreasing
effect. We observe some uncertainty in the effect only in the domain kilometer < 50.

Based on our results, we can now draw the following final conclusions:
• We find weakly nonlinear and monotonically decreasing effects for age and the

kilometer reading.
• The other explanatory variables do not have a significant effect (at most a very minor

one) on sale’s price.
• The models are relatively stable regarding outliers and influential observations. For the

untransformed price response, the effect of the kilometer reading for kilometer < 50

is somewhat unstable.
• Any apparent heteroscedasticity can be neglected; see Example 4.5 for more details. 4
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3.5 Bibliographic Notes and Proofs

3.5.1 Bibliographic Notes

Since linear models play a very prominent role in statistics, a vast amount of
literature exists. Faraway (2004), Rawlings, Pantula, and Dickey (2001), and
Weisberg (2005) are among some of the textbooks that we recommend.

The linear model also finds a strong representation in econometrics textbooks,
often with a different focus. In particular, exploratory and graphical tools for
model diagnosis and specification are rare. Rather, statistical tests for model
diagnostics and specification do play an important role. A standard textbook is
Wooldridge (2006). A somewhat more challenging presentation is the detailed
overview provided by Greene (2000); its fifth edition appeared in 2008. We
recommend the second edition (2000), since the subsequent editions appear to be
somewhat confusing and excessive in coverage.

Some specific topics, which were only lightly touched upon in this chapter
are outlined in monographs. We recommend Rousseeuw and Leroy (2003) for
robust regression (but see also Chap. 10) and Belsley, Kuh, and Welsch (2003) for
identification of outliers and influential observations. A standard book for variable
selection in linear models is Miller (2002). We also did not examine models with
a multivariate response. These models are described, for example, in Anderson
(2003). Further elaboration on SUR models (seemingly unrelated regression) and
simultaneous equation systems can be found in econometric textbooks, for example,
Greene (2000).

3.5.2 Proofs

Derivation of the Expected Sum of Squared Residuals (p. 109)
Applying Theorem B.2 (p. 647) and using the properties of the matrix I � H (see
Box 3.5 on p. 108), we obtain the expected sum of squared residuals as follows:

E. O"0 O"/ D E.y 0.I � H /y/

D tr..I � H /�2I/C ˇ0X 0.I � H /Xˇ

D �2.n � p/C ˇ0X 0.I � X.X 0X/�1X 0/Xˇ

D �2.n � p/C ˇ0X 0Xˇ � ˇ0X 0X.X 0X/�1X 0Xˇ

D �2.n � p/C ˇ0X 0Xˇ � ˇ0X 0Xˇ

D �2.n � p/: ut
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Proof of Properties 3–5 in Box 3.7 on p. 112
3. Because the first column x0 of the design matrix is the vector 1 D .1; : : : ; 1/0,
property 3 follows from the orthogonality property 2:

0 D .x0/0 O" D 10 O" D
nX

iD1
O"i :

4. Property 3 implies

nX

iD1
Oyi D

nX

iD1
.yi � O"i / D

nX

iD1
yi �

nX

iD1
O"i D

nX

iD1
yi :

5. We have

Ny D 1

n

nX

iD1
yi D 1

n

nX

iD1
. Oyi C O"i / D 1

n

nX

iD1
. Ǒ
0 C Ǒ

1xi1 C � � � C Ǒ
kxik C O"i /

D 1

n

nX

iD1
. Ǒ
0 C Ǒ

1xi1 C � � � C Ǒ
kxik/ D Ǒ

0 C Ǒ
1 Nx1 C � � � C Ǒ

k Nxk:

Note that the proof of these properties essentially relies on the fact that the model
contains an intercept term. Therefore, these properties are only valid in models with
an intercept. ut

Proof of the Variance Decomposition Formula (3.19) on p. 112
For the derivation of the formula for variance decomposition we make use of the
special n � n-matrix

C D I � 1

n
110:

Clearly, C is symmetric and idempotent. The matrix has several remarkable
properties. For example, multiplying C with a vector a 2 Rn, we obtain

C a D

0

B@
a1 � Na
:::

an � Na

1

CA : (3.31)

Thus, multiplication with C centers the vector a. For the quadratic form a0C a, we
obtain

a0C a D
nX

iD1
.ai � Na/2: (3.32)
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Further properties of C are given in Definition A.12 (p. 625). For deriving the
variance decomposition formula, however, we only need properties (3.31) and
(3.32).

We first multiply the identity y D Oy C O" with C from the left and obtain

C y D C Oy C C O":

Using Eq. (3.31) and property 3 on p. 112 gives C O" D O". This implies

C y D C Oy C O" and y 0C D Oy 0
C C O"0

:

Thus, we get

y 0C C y D . Oy 0
C C O"0

/.C Oy C O"/
D Oy 0

C C Oy C Oy 0
C O" C O"0

C Oy C O"0 O"
D Oy 0

C Oy C Oy 0 O" C O"0 Oy C O"0 O":
(3.33)

From Eq. (3.33), the left-hand side of Eq. (3.32) is y 0C C y D y 0C y D P
.yi� Ny/2.

Using NOy D Ny (see property 4 on p. 112), it follows that Oy 0
C Oy D P

. Oyi � Ny/2.
Property 1 on p. 112 implies Oy 0 O" D O"0 Oy D 0 and we obtain

nX

iD1
.yi � Ny/2 D

nX

iD1
. Oyi � Ny/2 C

nX

iD1
O"2i : ut

Proof of the Gauß–Markov Theorem on p. 119
We first consider conditions under which linear estimators are unbiased. For an
unbiased linear estimator, the equation E. ǑL/ D a C AXˇ D ˇ must hold for
all ˇ 2 Rp . Setting ˇ D 0, we obtain a D 0 as a necessary condition for ǑL being
unbiased. Rearranging AXˇ D ˇ gives .AX � Ip/ˇ D 0, implying AX D Ip as
a further condition for ǑL being unbiased. From rk.AX/ D min .rk.X/; rk.A// D
rk.Ip/ D p, we also obtain rk.A/ D p.

Now, without loss of generality, let A be of the form A D .X 0X/�1X 0 C B.
Insertion into the condition Ip D AX yields

Ip D AX D .X 0X/�1X 0X C BX D Ip C BX

resulting in the condition
BX D 0:
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This implies

Cov. ǑL/ D �2 AA0

D �2
˚
.X 0X/�1X 0 C B

� ˚
X .X 0X/�1 C B 0�

D �2
n
.X 0X/�1X 0X.X 0X/�1 C .X 0X/�1X 0B 0

C BX.X 0X/�1 C BB 0o

D �2 .X 0X/�1 C �2 BB 0

D Cov. Ǒ/ C �2 BB 0

for the covariance matrix of ˇL. From Theorem A.30 (p. 634), BB 0 is nonnegative
definite. Rearranging results in

Cov. ǑL/� Cov. Ǒ/ D �2BB 0 � 0:

Based on this, we can now derive the optimality properties of the estimator. The
variances of b0 ǑL and b0 Ǒ are given by

Var.b0 ǑL/ D b0Cov. ǑL/b and Var.b0 Ǒ/ D b0Cov. Ǒ/b:

Since the difference of covariance matrices is nonnegative definite, the difference of
variances is nonnegative for any vector b (see Definition A.27 (p. 633) of definite
matrices). This proves the proposition

Var.b0 ǑL/ � Var.b0 Ǒ/

for vector b. In particular, we can set b D .0; : : : ; 1; : : : ; 0/0 with 1 at position j C1

for j D 0; : : : ; k. Then we obtain

Var. ǑL
j / D Var.b0 ǑL/ � Var.b0 Ǒ/ D Var. Ǒ

j /: ut

Proof of Propositions 5 and 6 on p. 123
5. The proof makes use of the matrix

Q D I � H D I � X.X 0X/�1X 0;

where H is the hat matrix from Sect. 3.2.1 (p. 107). The matrix Q is symmetric
and idempotent with rank rk.Q/ D n� p. Multiplication with the design matrix X

gives
QX D X � X.X 0X/�1X 0X D 0:
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From this, and because Q is symmetric and idempotent, we obtain

O"0 O" D y 0Qy D .XˇC"/0QQ.XˇC"/ D .ˇ0X 0QC"0Q/.QXˇCQ"/ D "0Q":

The proposition now follows from "=� � N.0; I/ and from Theorem B.8 (2) on
p. 651.
6. To prove the proposition, we show that 1

� . Ǒ � ˇ/ and 1
�2

O"0 O" are independent.
For this we apply Theorem B.8 (2) on p. 651 with R D Q and B D .X 0X/�1X 0.
The condition BR D 0 holds since

.X 0X/�1X 0Q D 0:

Since "=� � N.0; I/, the theorem implies that

"

�

0
Q

"

�
D 1

�2
O"0 O" and .X 0X /�1X 0"=�

are independent. The proposition finally follows from

1
� .

Ǒ � ˇ/ D 1
�

˚
.X 0X/�1X 0y � ˇ

�

D 1
�

˚
.X 0X/�1X 0.Xˇ C "/� ˇ

�

D 1
� .X

0X/�1X 0"

D .X 0X/�1X 0 "
� : ut

Distribution of the Test Statistic Under Linear Null Hypothesis H0

(p. 128)
Computation of the Least Squares Estimator UnderH0

To minimize the residual sum of squares under the null hypothesis C ˇ D d , we
apply the Lagrangeapproach

LSR.ˇI �/ D LS.ˇ/� 2�0.C ˇ � d/

D y 0y � 2y 0Xˇ C ˇ0X 0Xˇ � 2�0C ˇ C 2�0d ;

where � is a column vector of Lagrangian multipliers of dimension r . Using
Theorems A.33.1 and A.33.3 (p. 636) on differentiation of matrix functions, we
obtain
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@LSR.ˇI �/

@ˇ
D �2X 0y C 2X 0Xˇ � 2C 0�

@LSR.ˇI �/

@�
D �2C ˇ C 2d :

Setting these derivatives to zero gives

X 0X ˇ � X 0y D C 0�

C ˇ D d :

We solve these equations first for � and then for ˇ. Multiplying the first equation
from the left with .X 0X/�1 gives

ˇ � Ǒ D .X 0X/�1C 0�:

Multiplying this equation from the left with the matrix C yields

C ˇ � C Ǒ D C .X 0X/�1C 0�:

Inserting the second equation C ˇ D d , we obtain

d � C Ǒ D C .X 0X/�1C 0�;

and
� D .C .X 0X/�1C 0 /�1.d � C Ǒ/:

In the last step, we have used the fact that C .X 0X/�1C 0 is positive definite
[Theorem A.29.2 (p. 634)] and, therefore, invertible.

Inserting � into the first equation gives

X 0X ˇ � X 0y D C 0.C .X 0X/�1C 0 /�1.d � C Ǒ/;

and finally, the (restricted) least squares estimator

ǑR D Ǒ � .X 0X/�1C 0.C .X 0X/�1C 0 /�1.C Ǒ � d/:

Derivation of the Difference of Residual Sum of Squares
We first denote the restricted least squares estimator ǑR as

ǑR D Ǒ �
H0;

where
H0 is defined through


H0 D .X 0X/�1C 0 �C .X 0X/�1C 0��1 .C Ǒ � d/:
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For the values OyH0 fitted under the restriction of the null hypothesis we then obtain

OyH0 D X ǑR D X. Ǒ �
H0/ D X Ǒ � X
H0 D Oy � X
H0

and
O"H0 D y � OyH0 D y � Oy C X
H0 D O" C X
H0

for the residuals under the null hypothesis. Then the residual sum of squares SSEH0
underH0 can be written in the form

SSEH0 D O"0
H0

O"H0
D .O" C X
H0/

0
. O" C X
H0/

D O"0 O" C O"0
X
H0 C
0

H0
X 0 O" C
0

H0
X 0X
H0

D O"0 O" C
0
H0

X 0X
H0:

The last equality holds because the residuals of the full model and the columns of
the design matrix are orthogonal, i.e., O"0

X D 0 (see Box 3.7 on p. 112).
The matrix X 0X is positive definite, implying that 
0

H0
X 0X
H0 is nonnegative.

Therefore, the residual sum of squares SSEH0 under H0 is always greater than or
equal to the residual sum of squares SSE in the unrestricted model; see p. 128.

For the difference
SSE of residual sum of squares we finally obtain


SSE D O"0 O" C
0
H0

X 0X
H0 � O"0 O"

D
n
.X 0X/�1C 0 �C .X 0X/�1C 0��1 .C Ǒ � d/

o0
X 0X

�
n
.X 0X /�1C 0 �C .X 0X/�1C 0��1 .C Ǒ � d/

o

D .C Ǒ � d/0
�
C .X 0X/�1C 0��1

�C .X 0X/�1C 0 �C .X 0X/�1C 0��1 .C Ǒ � d/

D .C Ǒ � d/0
�
C .X 0X/�1C 0��1 .C Ǒ � d/:

Stochastic Properties of the Difference of Residual Sum of Squares
1. To prove this property, we apply Theorem B.2.8 (p. 647) on the expectation of

quadratic forms. We have

E.C Ǒ � d/ D C ˇ � d

and
Cov.C Ǒ � d/ D �2C .X 0X/�1C 0:
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Setting Z D C Ǒ � d and A D �
C .X 0X/�1C 0��1 in Theorem B.2.8, we obtain

E.
SSE/ D E
n
.C Ǒ � d/0

�
C .X 0X/�1C 0��1 .C Ǒ � d/

o

D tr
n
�2
�
C .X 0X/�1C 0��1 C .X 0X/�1C 0o

C.C ˇ � d/0
�
C .X 0X/�1C 0��1 .C ˇ � d/

D tr.�2I r /C .C ˇ � d/0
�
C .X 0X/�1C 0��1 .C ˇ � d/

D r�2 C .C ˇ � d/0
�
C .X 0X /�1C 0��1 .C ˇ � d/:

2. The proposition follows from Theorem B.8.1 (p. 651). Defining the random
vector Z D C Ǒ, we obtain

E.Z / D C ˇ D d

and
Cov.Z / D �2C .X 0X/�1C 0

underH0. Since Ǒ is normally distributed, it follows that

Z � N.d ; �2C .X 0X/�1C 0/:

The proposition follows directly by applying Theorem B.8.1 to the random vector
Z .

3. The difference of residual sum of squares 
SSE only depends on the LS
estimator Ǒ. The proposition now follows directly from the independence of O"0 O"
and Ǒ; see Box 3.11 on p. 123. ut



4Extensions of the Classical Linear Model

This chapter discusses several extensions of the classical linear model. We first
describe in Sect. 4.1 the general linear model and its applications. This model
allows for correlated errors and heteroscedastic variances of the errors. Section 4.2
discusses several techniques to regularize the least squares estimator. Such a
regularization may be useful in cases where the design matrix is highly collinear or
even rank deficient. Moreover, regularization techniques allow for built-in variable
selection. Section 4.4 describes Bayesian linear models as an alternative to the
frequentist linear model framework. In modern statistics, Bayesian approaches
have become increasingly more important and widely used. Hence, Sect. 4.4 (in
combination with Appendix B.5) serves as a basis for the Bayesian approaches to be
described in chapters to follow. Moreover, we present powerful Bayesian techniques
for model choice, in particular variable selection.

4.1 The General Linear Model

Thus far, we have addressed the classical linear model y D Xˇ C " with uncorre-
lated and homoscedastic errors, i.e., Cov."/ D �2I . Least squares estimation based
on these assumptions is referred to as ordinary least squares. The discussion of the
model has shown that the assumption of uncorrelated and homoscedastic errors is
not always satisfied. In this section, we want to extend the class of linear models
such that correlated and heteroscedastic errors are possible. The resulting model is
called the general linear model. The classical linear model considered so far is an
important special case. In fact, many inference problems in the general linear model
can be traced back to the classical linear model.

4.1.1 Model Definition

In the general linear model, we replace

Cov."/ D �2I

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9 4,
© Springer-Verlag Berlin Heidelberg 2013
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by the more general assumption

Cov."/ D �2W �1;

where W is a positive definite matrix. In the special case of heteroscedastic and
(still) uncorrelated errors, we have

W D diag.w1; : : : ;wn/:

The heteroscedastic error variances are then given by Var."i / D �2i D �2=wi .
When introducing a more general model class, more complicated inference

techniques are usually needed than in the simpler special case. Thus, it is worth
investigating whether or not the use of the more general model is really necessary.
We therefore study the consequences of using the comparably simple inference
techniques of the classical linear model if the true model is the general linear model,
i.e., Cov."/ D �2W �1 and not Cov."/ D �2I . We first examine the consequences
of using the ordinary least squares estimator Ǒ D .X 0X/�1X 0y within the general
linear model. Analogous to the derivations on p. 115 for the classical linear model,
we obtain

E. Ǒ/ D ˇ Cov. Ǒ/ D �2.X 0X/�1X 0W �1X.X 0X/�1: (4.1)

Hence, ordinary least squares developed for the classical linear model is still
unbiased for ˇ within the general linear model setting. However, the covariance
matrix in the general linear model does not correspond with the one found for
the classical model, �2.X 0X/�1. Thus, all derivations that are based on the
covariance matrix of Ǒ are wrong. In particular, we obtain incorrect variances and
standard errors for the estimated regression coefficients, and thus incorrect tests and
confidence intervals.

In the following section, we discuss several alternatives to obtain improved
estimators within the general linear model. Section 4.1.2 develops a weighted least
squares estimator (WLS) as a generalization of the ordinary least squares estimator.
The WLS estimator shares many of the desirable properties as found with the
ordinary least squares estimator in the classical setting. When using the WLS
estimator, the matrix W must be known, which in practice is usually not the
case. Therefore Sects. 4.1.3 and 4.1.4 address inference in the case of unknown
W . We restrict ourselves to the two important special cases of heteroscedastic and
autocorrelated errors.

4.1.2 Weighted Least Squares

We now develop an estimator that bypasses the above mentioned problems when
using the ordinary least squares estimator in the general linear model. The idea
is to transform the response variable, design matrix, and errors such that the
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4.1 The General Linear Model

The model
y D Xˇ C "

is called general linear model, if the following assumptions hold:
1. E."/ D 0.
2. Cov."/ D E.""0/ D �2W �1, where W is a known positive definite matrix.
3. The design matrix X has full column rank, i.e., rk.X / D k C 1 D p.
We refer to general normal regression when the additional assumption
4. " � N.0; �2W �1/
applies.

transformed variables follow a classical linear model. For illustration, we first look
at a model with uncorrelated and heteroscedastic errors, i.e., Cov."/ D �2W �1 D
�2diag.1=w1; : : : ; 1=wn/. Multiplication of the errors "i with

p
wi produces the

transformed errors "	
i D p

wi "i with constant variances Var."	
i / D Var.

p
wi "i / D

�2. To make sure that the model is unchanged, we must transform the response
variable and all covariates (including the constant) accordingly. We obtain y	

i Dp
wi yi , x	

i0 D p
wi ; x	

i1 D p
wi xi1; : : : ; x	

ik D p
wi xik , and, thus, the classical

linear model
y	
i D ˇ0x

	
i0 C ˇ1x

	
i1 C : : :C ˇkx

	
ik C "	

i

with homoscedastic errors "	
i . This transformation formally corresponds to mul-

tiplication of the model equation y D Xˇ C ", from the left, with the matrix
W 1=2 D diag.

p
w1; : : : ;

p
wn/, yielding

W 1=2y D W 1=2Xˇ C W 1=2":

Using the transformed values y	 D W 1=2y, X	 D W 1=2X , and "	 D W 1=2", we
finally obtain

y	 D X	ˇ C "	: (4.2)

The transformation allows us to work in the familiar framework of the classical
linear model. For the least squares estimator we get

Ǒ D �
X 	0

X	��1 X	0
y	

D �
X 0W 1=2W 1=2X

��1
X 0W 1=2W 1=2y

D .X 0W X/
�1

X 0 W y;
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which is referred to as the Aitken or WLS estimator. It can be shown that the Aitken
estimator minimizes the “weighted” residual sum of squares

GLS.ˇ/ D .y � Xˇ/0W .y � Xˇ/ D
nX

iD1
wi .yi � x0

iˇ/
2:

Observations with a higher variance �2=wi have less weight wi than observations
with a smaller variance.

Assuming normal errors, we can also show that the WLS estimator coincides
with the ML estimator for ˇ, i.e., Ǒ

ML D Ǒ. For the ML estimator for �2, we obtain

O�2ML D 1

n
.y � X Ǒ/0W .y � X Ǒ/ D 1

n
O"0

W O":

As in the classical linear model, this estimator is biased. An unbiased estimator is
given by

O�2 D 1

n � p
O"0

W O" D 1

n � p
nX

iD1
wi .yi � x0

i
Ǒ /2:

This estimator can be seen as a restricted maximum likelihood estimator; see
Sect. 3.2.2 (p. 108). All derivations and proofs are completely analogous to the
classical linear model.

The approach exemplified for heteroscedastic errors can be extended to the case
of a general covariance matrix �2W �1. When doing so, we use a “square root”
W 1=2 of W with W 1=2.W 1=2/0 D W . The matrix W 1=2 is not uniquely determined.
It can be obtained using, e.g., the spectral decomposition

W D P diag.	1; : : : ; 	n/P 0

of W (see result A.25 (p. 633) in Appendix A), resulting in

W 1=2 D P diag.	1=21 ; : : : ; 	1=2n /P 0:

We can then transform the response vector, the design matrix, and the errors with
W 1=2. This results in a model of the form (4.2), which is a classical linear model
since we have

E."	/ D E.W 1=2"/ D W 1=2 E."/ D 0

and

Cov."	/ D E.W 1=2""0W 1=2/ D �2W 1=2W W 1=2 D �2I :

Finally, the WLS estimator shares the same stochastic properties as ordinary least
squares; see the following Box 4.2. The proof for the properties of the weighted
estimator is completely analogous to the unweighted estimator. Moreover, the tests
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4.2 Estimators in the General Linear Model

Weighted Least Squares or ML Estimator for ˇ

Ǒ D �
X 0W X

��1
X 0 W y :

Properties of the Weighted Least Squares Estimator

1. Expectation: E. Ǒ/ D ˇ, i.e., the WLS estimator is unbiased.
2. Covariance matrix: Cov. Ǒ/ D �2 .X 0 W X /

�1.
3. Gauß-Markov Theorem: Among all linear and unbiased estimators ǑL D

Ay, the WLS estimator has minimal variance, i.e.,

Var. Ǒ
j / � Var. ǑL

j /; j D 0; : : : ; k:

REML Estimator for �2

O�2 D 1

n � p
O"0

W O":

The REML estimator is unbiased.

Note that all properties hold only for known W and correctly specified
model.

and confidence intervals of the classical linear model can be easily adapted. We
simply have to replace the standard errors of the classical linear model by those
of the general linear model. They are computed as usual by inserting O�2 into the

covariance Cov. Ǒ/ D �2 .X 0 W X/
�1 (see Box 4.2) to obtain dCov. Ǒ/. The standard

errors are then the square roots of the main diagonal.
A first application of the WLS estimator with known weight matrix W is given

for grouped data as follows.

Grouped Data
Thus far we have considered individual or ungrouped data, which implies that we
have an observation .yi ;xi / for every individual or subject i in a sample of size n.
Every response yi and every covariate vector xi D .1; xi1; : : : ; xik/

0 belongs to
exactly one subject i :
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Unit 1
:::

Unit i
:::

Unit n

2
6666664

y1
:::

yi
:::

yn

3
7777775

2
6666664

1 x11 � � � x1k
:::
:::

:::

1 xi1 xik
:::
:::

:::

1 xn1 � � � xnk

3
7777775

If several covariate vectors or rows of the design matrix are identical, we can
group the data. After sorting and combining the data, the grouped design matrix
now only contains rows with different covariate vectors xi . We denote by ni the
number of replicates of xi within the original sample of individual data. We further
denote by Nyi the arithmetic mean of the respective individual response values that
were observed for xi :

Group 1
:::

Group i
:::

GroupG

2

6666664

n1
:::

ni
:::

nG

3

7777775

2

6666664

Ny1
:::

Nyi
:::

NyG

3

7777775

2

6666664

1 x11 � � � x1k
:::
:::

:::

1 xi1 � � � xik
:::
:::

:::

1 xG1 � � � xGk

3

7777775

Thereby G represents the number of unique covariate vectors in the sample. In
many cases G is much smaller than the sample size n, especially with binary or
categorical covariates.

Grouped data can be easily handled within the scope of the general linear model
by defining y D . Ny1; : : : ; NyG/0 and Cov."/ D �2diag.1=n1; : : : ; 1=nG/, i.e., W D
diag.n1; : : : ; nG/.

Other applications of the WLS estimator with known weight matrix W will be
discussed in Chaps. 5 and 8. In Chap. 5, the WLS estimator will be the basis for
parameter estimates in generalized linear models. In Chap. 8, WLS estimation will
be of importance in relation to local smoothers; see Sect. 8.1.7.

In the following two sections, we consider situations in which the weight matrix
W is, to some extent, unknown. More specifically, we will discuss heteroscedastic
and autocorrelated errors.

4.1.3 Heteroscedastic Errors

In the linear model with heteroscedastic errors, the covariance matrix of the errors
is given by Cov."/ D �2diag.1=w1; : : : ; 1=wn/. In the literature, especially in
the econometrics literature, we find a large variety of estimators and modeling
approaches, which are beyond the scope of this book. A good overview can be
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found in Greene (2000). Here, we discuss a two-stage least squares estimator and we
briefly sketch the ML estimator. The drawback of both estimators is that they require
knowledge of the specific form of heteroscedasticity. We therefore describe an
alternative approach developed by White (1980), which avoids assumptions about
the form of heteroscedasticity. Before we present the different estimators, we show
how to detect heteroscedastic errors.

Detecting Heteroscedastic Errors
As a starting point for detecting heteroscedastic errors, a classical linear model is
typically estimated, followed by a careful residual analysis. In the literature, we
generally find two different strategies. The statistics and biometry literature pro-
poses graphical tools, residual plots in particular. The econometrics literature
rather develops a variety of statistical tests to discover heteroscedasticity.

Residual Plots
In order to detect heteroscedastic errors, it is useful to plot the residuals against
the predicted values Oyi and the covariates xij . Covariates not included in the model
should also be considered. Note also that a plot of the residuals against y (rather
than the predicted values Oy) is not recommended because the residuals O" depend
(by definition) on the response y and a plot would reveal this dependency. The
standardized or studentized residuals (see Box 3.12 on p. 126) are preferred over
the raw residuals, since the latter are heteroscedastic with Var.O"i / D �2.1 � hii /:

Consequently, raw residuals are less appropriate to examine heteroscedasticity (see
p. 122). In the case of homoscedastic error variances, the standardized or studentized
residuals exhibit random fluctuation around zero with a constant variance. If this is
not the case, there is evidence for heteroscedastic variances.

Example 4.1 Munich Rent Index—Diagnostics for Heteroscedastic
Errors

We illustrate the detection of heteroscedastic errors with the rent index data. For simplicity
we restrict ourselves to a model with the net rent as response variable and the covariates
living area and year of construction. In Fig. 1.5 (p. 15), the scatter plots between net rent
and living area and year of construction show a linear effect of the living area and a slightly
nonlinear effect of the year of construction. We model the effect of the year of construction
using an orthogonal polynomial of degree three. Thus, we assume the classical linear model

renti D ˇ0 C ˇ1 areai C ˇ2 yearcoi C ˇ3 yearco2i C ˇ4 yearco3i C "i : (4.3)

Estimation results can be found in Table 4.1. Figure 4.1a, b shows the estimated effects of
living area and year of construction, including the corresponding partial residuals. Panels
(c), (d), and (e) show the studentized residuals as a function of the estimated
net rent, the living area, and the year of construction. There is clear evidence of het-
eroscedastic variances depending on both the living area and the year of construction. 4

Testing Heteroscedasticity
Tests of heteroscedasticity are treated extensively in the econometrics literature, as,
for example, in Greene (2000) and Judge, Griffith, Hill, Lütkepohl, and Lee (1980).
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Table 4.1 Munich rent index: estimation results for the unweighted regression

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 459:437 2.631 174.600 <0.001 454.278 464.597
areao 121:817 2.742 44.430 <0.001 116.441 127.193
yearco 54:336 2.706 20.080 <0.001 49.030 59.642
yearco2 31:484 2.668 11.800 <0.001 26.252 36.715
yearco3 �0:198 2.631 �0.080 0.940 �5.358 4.961

We illustrate heteroscedasticity tests with a test according to Breusch and Pagan
(1979). The basis for the test is a multiplicative model for the error variances:

�2i D �2 � h.˛0 C ˛1zi1 C � � � C ˛qziq/;

where h is a function not depending on the unit index i and z1; : : : ; zq are covariates
that may influence the variance. The hypothesis of homoscedastic variances is
equivalent to ˛1 D � � � D ˛q D 0: The Breusch–Pagan test is based on the
hypothesis

H0 W ˛1 D : : : D ˛q D 0 against H1 W ˛j ¤ 0 for at least one j:

In order to conduct the test, an auxiliary regression between the response variable

gi D O"2i
O�2ML

and the explanatory variables z1; : : : ; zq is performed. Here, O"i are the residuals and
O�2ML is the ML estimator for �2 for the linear model y D x0ˇC"with homoscedastic
errors. The test statistic is given by

T D 1

2

nX

iD1
. Ogi � Ng/2:

In the case that none of the covariates influence the variance, i.e., heteroscedasticity
does not exist, then we have Ogi � Ng. The larger T is, i.e., the larger the sum
of squared deviations of the estimated values Ogi from the mean Ng, the more
evidence in favor of the alternative hypothesis of heteroscedastic variances. Under
H0, the distribution of T is independent of the function h and is asymptotically
�2-distributed with q degrees of freedom, i.e., T

a� �2q . With a significance level
of ˛, we reject the null hypothesis if the observed test statistic is greater than the
.1 � ˛/-quantile of the �2q-distribution.
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Fig. 4.1 Munich rent index: Panels (a) and (b) show the effects of living area and year of
construction including partial residuals. Panels (c–e) display studentized residuals against the
estimated net rent, living area, and year of construction



186 4 Extensions of the Classical Linear Model

Example 4.2 Munich Rent Index—Breusch–Pagan Test
It is reasonable to assume that the error variances both depend (possibly nonlinearly) on
living area and year of construction; see Example 4.1. We therefore assume the variance
model

�2i D �2 h.˛0 C ˛1areaoi C ˛2areao2i C ˛3areao3i

C˛4yearcoi C ˛5yearco2i C ˛6yearco3i /;

where areao, areao2, and areao3 are cubic orthogonal polynomials (see Example 3.5 on
p. 90) for living area. Based on this model, we obtain T D 997:164 as the Breusch–
Pagan test statistic. The corresponding p-value is essentially zero so that the Breusch–Pagan
test (in addition to the studentized residuals) provides further evidence for heteroscedastic
variances. The Breusch–Pagan test has been carried out using function hettest of
STATA. 4
Some concluding (critical) remarks regarding tests on heteroscedasticity are in

order. For some of the readers, applying a formal test might seem more exact
than the inspection of residual plots. However, in most cases, heteroscedasticity is
diagnosed with exploratory techniques, while substantial scientific theory regarding
the type and magnitude of heteroscedasticity almost never exists. This is the reason
why we face even more uncertainty when modeling error variances in a linear
model than when modeling expectations. The validity of statistical tests is extremely
dependent on the correctness of models. The Breusch–Pagan test assumes, for
example, multiplicative variances with exactly defined covariates. The number of
covariates in the variance expression determines the distribution of the test statistic.
Hence, tests on heteroscedasticity should be seen as a (heuristic) exploratory tool,
similar to residual plots. These tests should by no means be the only device to
diagnose heteroscedasticity. Yet, this is suggested by most econometrics textbooks,
in which a battery of heteroscedasticity tests are described, while rarely is there a
mention of residual plots. Residual plots should always be part of heteroscedasticity
analysis, since they are in many cases the only tool to detect the specific type
of heteroscedasticity or to determine which of the covariates influence the error
variances.

Treating Heteroscedastic Variances
When diagnosing heteroscedastic errors, we should react appropriately to prevent
incorrect conclusions that may result from ignoring heteroscedasticity. The most
widely used approaches are described below.

Variable Transformation
When discussing the assumptions of the linear model, we have encountered models
with multiplicative errors (see p. 83). A popular model with multiplicative errors is
the exponential model

yi D exp.ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i /

D exp.ˇ0/ exp.ˇ1xi1/ � : : : � exp.ˇkxik/ exp."i /:
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If the errors are normally distributed "i � N.0; �2/, then exp."i / and yi are log-
normally distributed. Using the variance of the log-normal distribution (see p. 641
in Appendix B), we obtain

Var.exp."i // D exp.�2/ � .exp.�2/ � 1/

and, thus
Var.yi / D .exp.x0

iˇ//
2 exp.�2/ � .exp.�2/� 1/:

This implies that the variances of yi are heteroscedastic in models with multiplica-
tive errors, even though the variances of the errors are homoscedastic. As mentioned
before, it is possible to log-transform the exponential model and obtain the general
linear model log.yi / D x0

iˇ C "i ; with homoscedastic variances; see p. 83ff. This
result provides us with a simple tool if heteroscedastic variances are diagnosed. In
case of a multiplicative model, we can take a simple logarithmic transformation of
the response and estimate a classical linear model using the transformed response.

Two-Stage Least Squares
In addition to the regression coefficients ˇ and the variance parameter �2, the
weights wi are also unknown with heteroscedastic variances. Thus, a reasonable
approach is joint estimation of all unknown parameters. Since E."i / D 0; we have
E."2i / D Var."i / D �2i ; and we can represent "2i as

"2i D �2i C vi ;

where vi are the deviations of the squared errors from their expectations. In most
cases �2i depends on one or more covariates. It seems natural to assume

�2i D ˛0 C ˛1zi1 C : : :C ˛qziq D z0
i˛;

where the vector z consists of all covariates that influence the variance. In many
cases, the vector z is identical with the covariate vector x. In order to estimate
the unknown parameters ˛, we could fit a linear model using the squared errors
"2i as dependent variable and zi as independent variables. Since the errors are
unobserved, they have to be replaced by the residuals O"i D yi � x0

i
Ǒ resulting from

an unweighted regression between y and x. As a result, we obtain the following
two-stage method:
1. Obtain preliminary estimates Ǒ from an unweighted regression between y and x.

Compute the residuals O"i .
2. Obtain estimates Ǫ from an unweighted regression between the squared residuals

O"2i and the variance explanatory variables zi . Fit a general linear model using the
weights

Owi D 1

z0
i Ǫ :
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However, this method is not always practical, since we cannot guarantee that z0
i Ǫ

is greater than zero. If z0
i Ǫ < 0, then negative weights Owi and negatively estimated

variances O�2i would result. Alternatively, we can assume the model

�2i D exp.z0
i˛/

similar to the Breusch–Pagan test. The exponential function ensures that the
estimated expected variances are positive. In this model, ˛ can be estimated with
the help of the regression

log.O"2i / D z0
i˛ C vi :

The weights for the regression between y and x are then given by

Owi D 1

exp.z0
i Ǫ / :

Example 4.3 Munich Rent Index—Two-Stage Estimation
We illustrate the two-stage least squares approach with the rent index data. Recall that we
diagnosed heteroscedastic variances for model (4.3) in Examples 4.1 and 4.2. We obtain the
two-stage estimator for this model with the following three steps:
1. First step: Classical linear model

In the first step, we estimate a classical linear model; see the results in Example 4.1.
Panels (a) and (b) of Fig. 4.2 show scatter plots between log.O"2i / and living area or year of
construction. Both panels indicate that the variances �2i may depend on both covariates.

2. Second step: Auxiliary regression
To determine the weights Owi for the weighted regression, we estimate the regression
model

log.O"2i / D ˛0 C ˛1 areaoi C ˛2 areao2i C ˛3 areao3i

C˛4 yearcoi C ˛5 yearco2i C ˛6 yearco3i C vi

using ordinary least squares. Figure 4.2c, d show the estimated effects of the living
area and the year of construction. The variability of the net rent appears to increase
monotonically with increased living area. The effect of the year of construction is slightly
S-shaped, with a considerably smaller effect than that associated with living area. The
interpretation of this effect is that the variability of the net rents for older apartments is
higher than for more modern apartments.

3. Third step: Weighted linear model
In the last step we reestimate the regression model (4.3) with the weights

Owi D 1

exp.O�i /
using O�i D Ǫ0C Ǫ1 areaoi C : : :C Ǫ6 yearco3i . We obtain the results listed in Table 4.2.
The estimated standard errors are based on the estimated covariance matrix

dCov. Ǒ / D O�2.X 0diag. Ow1; : : : ; Own/X /�1;

which are generally “smaller” than those of the unweighted regression. Using these
corrected standard errors, we can perform tests and construct confidence intervals,
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Fig. 4.2 Munich rent index: Panels (a) and (b) show scatter plots between log.O"2i / and area
respectively year of construction. Panels (c) and (d) display effects of area and year of construction
including partial residuals for the variance regression

Table 4.2 Munich rent index: estimation results for the weighted regression

Variable Coefficient Standard error t-value p-Wert 95 % Confidence interval

intercept 458.840 2.608 175.900 <0.001 453.726 463.955
areao 117.736 2.381 49.430 <0.001 113.066 122.406
yearco 48.697 2.656 18.330 <0.001 43.488 53.906
yearco2 25.282 2.334 10.830 <0.001 20.706 29.858
yearco3 �1.323 2.381 �0.560 0.578 �5.991 3.344

like the ones that were developed for the classical linear model. In the present case,
confidence intervals are somewhat narrower than those based on the unweighted least
squares estimator. 4

Simultaneous Estimation
In comparison to a two-stage method, simultaneous estimation of ˇ, ˛; and �2 is
more favorable, such as full ML estimation or a combination of ML estimation for
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ˇ and REML estimation for the variance parameters ˛ and �2. At this point, we
omit a detailed description of these estimation approaches, as they are technically
involved and software is limited. Chapter 12 of Greene (2000) describes in detail
a maximum likelihood method for a model with multiplicative variances �2i D
�2 exp.z0

i˛/. An implementation exists, for example, in STATA (function regh).
The R package gamlss allows full maximum likelihood estimation of Gaussian
regression models with heteroscedastic variances; see also Sect. 2.9. Both the mean
and the standard deviation or variance may depend on covariates. The approach even
allows for semiparametric predictors as described in Chaps. 8 and 9. Details can be
found in Rigby and Stasinopoulos (2005) and in the documentation to gamlss, see
the web page gamlss.org.

White-Estimators
One of the prerequisites for using the methods discussed thus far is knowledge about
the type of heteroscedasticity. An alternative approach by White (1980) proposes
to correct the usual standard errors, confidence intervals, and tests associated with
ordinary least squares. The correction is based on a consistent estimate of the
covariance matrix (4.1) on p. 178. Under general conditions White (1980) shows
that

dCov. Ǒ/ D .X 0X/�1X 0diag.O"21; : : : ; O"2n/X.X 0X/�1 (4.4)

is a consistent estimator for the covariance matrix (4.1) of Ǒ. The variances
�2i D �2=wi in Eq. (4.1) are thus replaced or estimated by the squared residuals
O�2i D O"2i . Due to its form the matrix (4.4) is referred to as “sandwich matrix.”
In Sects. 7.3.3 (p. 378) and 8.1.2 (p. 439) we will encounter similar forms for
covariance matrices. The estimated robust covariance matrix for Ǒ can be used for
computing the F-test statistic when testing general linear hypotheses. In doing so,
we obtain asymptotically correct tests and confidence intervals.

The approach has the advantage that it is not necessary to know the weight matrix
W as is the case for the other approaches. However, there is no free lunch. The price
we pay for the generality is less accuracy of estimators through increased variances
of the estimators.

Example 4.4 Munich Rent Index—White-Estimator
We again estimate model (4.3) on p. 183. However, this time we use the White covariance
matrix (4.4) for the construction of tests and confidence intervals. Using the regress
function of STATA with additional option robust we obtain the results listed in Table 4.3.
The estimated standard errors tend to be much higher in comparison to the results based
on an unadjusted covariance matrix, as well as in comparison to the two-stage estimation
method. This should not be surprising: we have less information because we make no
specific assumptions regarding the type of heteroscedasticity.

We can conclude as follows: In comparison to the classical linear model, the different
variants of heteroscedastic errors provide only little qualitative differences in interpretation.
The effect of the living area and the year of construction is significant in all estimated
models. Moreover there is evidence that a second degree polynomial for modeling the effect
of the year of construction is sufficient. Such relative robustness of results can be observed in
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Table 4.3 Munich rent index: estimation results for the unweighted regression with corrected
standard errors

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 459:437 2.631 174.600 <0.001 454.277 464.596
areao 121:817 3.681 33.090 <0.001 114.599 129.035
yearco 54:336 3.098 17.530 <0.001 48.260 60.412
yearco2 31:484 2.810 11.200 <0.001 25.974 36.994
yearco3 �0:198 2.919 �0.070 0.946 �5.923 5.526

many applications. Although heteroscedastic variances have been considered for estimation,
we often do not find significant changes in the interpretation compared to the classical linear
model. 4

Example 4.5 Prices of Used Cars—Weighted Regression
In Chap. 3 we illustrated the practical application of the classical linear model with
a detailed case study on prices of used cars in the presence of covariates; see the
Examples 3.19 (p. 152), 3.20 (p. 156), 3.21 (p. 158), 3.22 (p. 162), 3.23 (p. 166),
and 3.24 (p. 166). Example 3.20 provided some evidence for heteroscedastic errors. We
therefore applied the two-stage method outlined on p. 187 for the AIC optimal model with
second-degree orthogonal polynomials of age and kilometer. For the variance equation,
we used the covariates age, kilometer, and TIA. We modeled the effects of the age and
the kilometer reading using third-degree polynomials. Overall, we found no significant
differences relative to unweighted regression. 4

4.1.4 Autocorrelated Errors

In addition to heteroscedastic errors, correlated errors are one of the main reasons
why the assumptions of the classical linear model are violated in applications.
Section 3.1.2 (p. 80) pointed out that autocorrelated errors may arise if the model
is not correctly specified. We mentioned the following reasons for misspecified
models:
• Misspecified covariate effect: The effect of an explanatory variable is not

modeled correctly. The examples in Sect. 3.1.3 could prove helpful in this
respect as they discuss various approaches for nonlinear modeling of continuous
covariate effects.

• Omitted variables: Relevant explanatory variables cannot be observed and
consequently cannot be considered in the model. In relation to autocorrelated
errors, this problem occurs especially with time series, panel, or longitudinal
data, especially if the missing explanatory variables show a temporal trend. In
this case, we can use the estimation methods provided in this section in order to
achieve more precise estimates and better prediction.
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First-Order Autocorrelation
We restrict ourselves to one of the simplest and most frequently used error process,
first-order autocorrelation. More specifically, we assume that the errors follow an
autoregressive process of first-order (AR(1)) with

"i D  "i�1 C ui ;

where �1 <  < 1. Regarding the ui , we assume:
1. E.ui / D 0

2. Var.ui / D E.u2i / D �2u ; i D 1; : : : ; n

3. Cov.ui ; uj / D E.uiuj / D 0; i ¤ j

Related to sample size, we additionally assume that the data are sufficiently
historical in nature. Based on these assumptions, a specific linear model with
E."/ D 0 and with covariance matrix

Cov."/ D �2W �1 D �2u
1 � 2

0
BBB@

1  2 � � � n�1
 1  � � � n�2
:::

:::
:::

: : :
:::

n�1 n�2 n�3 � � � 1

1
CCCA (4.5)

results; see Sect. 4.5.2 on p. 258 for a derivation.
With the help of the covariance matrix, we are able to calculate the correlation

coefficients between the errors "i and the errors "i�j lagged by j periods. We obtain
the autocorrelation function

ACF.j / D Cov."i ; "i�j /
Var."j /

D j j D 0; 1; 2; : : : :

An obvious characteristic of first-order autocorrelation is a slow decay of the
correlation between "i and "i�j as the lag j increases. If  is positive, the
correlation decreases geometrically. If  is negative, the correlation decreases with
alternating signs. This is illustrated in the left column of Fig. 4.3, which shows the
autocorrelation function for different values of . These graphical representations
are usually referred to as correlograms.

In addition to the autocorrelation function, the partial autocorrelation function
is another tool to characterize correlated errors or, more generally, stochastic
processes. The partial autocorrelation PACF.j / between "i and "i�j is defined as
the regression coefficient ˛j in the model

"i D ˛1"i�1 C : : :C ˛j "i�j C vi : (4.6)

We have PACF.1/ D ACF.1/, independent of the order of the autocorrelation.
For first-order autocorrelated errors, we have PACF.1/ D  and PACF.j / D 0 for
j > 1 by definition of the AR(1) process. The right column of Fig. 4.3 shows the
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Fig. 4.3 Autocorrelation function and partial autocorrelation function for autocorrelated errors of
first order. The functions for  D 0:7; 0:9;�0:9 are shown
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partial autocorrelation function for some AR(1) processes. A characteristic property
is the abrupt decline of the partial autocorrelation for j > 1. We can interpret the
coefficient ˛j in Eq. (4.6) as the correlation coefficient between "i � ˛1"i�1 � : : :�
"i�jC1˛j�1 and "i�j . The terminology partial correlation coefficient is due to the
fact that we do not simply calculate the correlation between "i and "i�j , but rather
the correlation between "i and "i�j while controlling the effect of intermediate
errors.

Diagnosing Autocorrelated Errors
Similar to the diagnosis of heteroscedastic errors, we first rely on the residuals from
a classical linear model. The following diagnostic tools work well in practice:

Graphical Illustration of the Residuals Over Time
A straightforward tool for diagnosing correlated errors are residual plots, more
specifically scatter plots of residuals or studentized residuals over time. If a
positive (negative) residual is followed in tendency by a positive (negative) residual
the errors are positively autocorrelated. Likewise, if in tendency residuals with
alternating signs are observed, we have negative autocorrelation.

Empirical Autocorrelation Function
Other useful instruments for diagnosing autocorrelation are the empirical auto-
correlation and the partial autocorrelation functions along with their display in
correlograms. The empirical autocorrelation function is an estimate for ACF.j / and
is given by

bACF.j / D
bCov."i ; "i�j /
cVar."i /

with bCov."i ; "i�j / D 1

n

nX

iDjC1
O"i O"i�j :

Basically, the estimates are empirical correlation coefficients between the residuals
and the lagged residuals by j periods.

The partial autocorrelations are obtained by repeatedly estimating the regression
model (4.6) for j D 1; 2; 3; : : : . This yields 1PACF.j / D Ǫj , thereby substituting
the errors "i in Eq. (4.6) with O"i . By inspecting both the empirical correlogram
and the partial correlogram, we obtain information about existing autocorrelation.
If all empirical autocorrelations and partial autocorrelations are near zero, we can
reasonably assume uncorrelated errors. If the empirical autocorrelations are similar
to the theoretical (partial) autocorrelation function of AR(1)-errors, then we have
evidence for the existence of first-order autocorrelation. If the correlograms do not
follow the typical form of an AR(1)-process, then there is evidence of a more
complex correlation structure. Such error structures go beyond the scope of this
book and are examined in the literature on statistical time series analysis; see, e.g.,
Hamilton (1994).
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Fig. 4.4 Residuals over time (a), empirical autocorrelation function (b), and empirical partial
autocorrelation function (c) based on simulated data with first-order autocorrelation

Example 4.6 Simulated Data—Graphical Diagnosis of Autocorrelated
Errors

For illustration purposes, we examine the simulated regression model with positive
autocorrelation, as shown in Fig. 3.3 (p. 81). We simulated the model yi D �1C 2xi C "i
with "i D 0:9"i�1 C ui . To show how autocorrelated errors are diagnosed using residual
plots and correlograms, we assume a classical linear model for the data. We obtain the
estimated model Oyi D �1:08 C 2:13 xi . Figure 4.4 shows the residuals over time and the
empirical (partial) autocorrelation function. Note that the residual plot in panel (a) differs
slightly from the errors over time as presented in Fig. 3.3b, since the residuals are only
estimates of the true errors. The plots display almost perfect first-order autocorrelation. The
residuals are highly correlated, the empirical autocorrelation decreases geometrically, and
the partial autocorrelations are almost zero for j > 1. 4

Tests for Autocorrelation—Durbin–Watson Test
In addition to graphical techniques, we can also use statistical tests to uncover
autocorrelation. In this context, a test for serial correlation developed by Durbin
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Fig. 4.5 Acceptance and rejection ranges for the Durbin–Watson test

and Watson (1950, 1951, 1971) is widely used. The Durbin–Watson test considers
the hypothesis

H0 W  D 0 versus H1 W  ¤ 0

and is based on the test statistic

d D

nX

iD2
.O"i � O"i�1/2

nX

iD1
O"2i

:

The rationale behind the test statistic is as follows: For large sample size nwe obtain

d D

nX

iD2
O"2i C

nX

iD2
O"2i�1 � 2

nX

iD2
O"i O"i�1

nX

iD1
O"2i

� 1C 1 � 2 O D 2.1� O/:

Since �1 < O < 1; we have 0 < d < 4. If d is close to 2, then O � 0, and we fail to
reject the null hypothesis. The closer the test statistic d is to either 0 or 4, the closer
is O to 1 or �1; and we then generally reject the null hypothesis.

The distribution of the test statistic underH0 is relatively difficult to obtain, since
it depends on the design matrix. Hence, a test decision is sometimes difficult. Durbin
and Watson partially solved the problem, and were able to provide a decision for
certain interval ranges of d . The intervals depend on some lower and upper limits
dl and du, which vary for different sample size n and numbers of regressors k.
Figure 4.5 provides a graphical presentation of the acceptance and rejection ranges
for the Durbin–Watson test.
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Nowadays, it has become more routine to obtain the p-values for the Durbin–
Watson test numerically using statistical software. An implementation can be found,
for instance, in the function dwtest of matlab. The R function dwtest of the
package lmtest turned out to be erroneous in the following example.

Example 4.7 Simulated Data—Durbin–Watson Test
For the data used in Example 4.6, we obtain the test statistic d D 0:2619 and a very
small p-value with the matlab function dwtest. Thus the Durbin–Watson test, in addition
to the previously presented graphical diagnostics, provides clear evidence of first-order
autocorrelation. 4

Treating First-Order Autocorrelated Errors
As already pointed out, autocorrelated errors are an indicator for model misspeci-
fication. Hence, we should first examine whether or not it is possible to correct the
specification problem. Possible improvements can result from the inclusion of other
covariates into the model or nonlinear modeling of some continuous covariates.

If these attempts fail to correct for the correlation, we can use estimation
procedures for models with autocorrelated errors. In a model with first-order
autocorrelated errors, we need estimates for the regression coefficients ˇ, the
variance parameter �2, and the correlation coefficient . The statistical literature
provides a wealth of methods to estimate these parameters. We first present a
two-stage procedure. In the first step, the correlation coefficient is estimated using
the ordinary least squares estimates for the regression coefficients. The regression
coefficients are then re-estimated with the help of WLS. As an alternative to the two-
stage procedure, we briefly describe maximum likelihood estimation. An overview
of alternative approaches is provided by Judge et al. (1980).

Two-Stage Estimation
We estimate a model with autocorrelated errors as follows:
1. Obtain a preliminary estimate Ǒ for ˇ using the unweighted regression between
y and x. Denote the resulting residuals with O"i .

2. Obtain an estimate O of the correlation coefficient through

O D

nX

iD2
O"i O"i�1

vuut
nX

iD2
O"2i
vuut

nX

iD2
O"2i�1

; (4.7)

where O is the empirical correlation coefficient between O"i and O"i�1.
3. Insert O into the weight matrix W and obtain the estimate OW . Use OW to re-

estimate the regression coefficients using WLS.
To improve the estimates, it is helpful to iterate steps 2 and 3. This method is known
as Prais–Winsten estimator. Under quite general conditions, it can be shown that
the resulting estimator for ˇ is consistent. In addition to the method by Prais and
Winsten, there exist numerous modifications; see Greene (2000).
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Table 4.4 Prais–Winsten estimator for the simulated data

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept �0.988 0.308 �3.200 0.002 �1.600 �0.376
x 2.095 0.152 13.74 <0.001 1.792 2.397

Table 4.5 ML estimator for the simulated data

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept �0.982 0.307 �3.200 0.001 �1.583 �0.380
x 2.094 0.139 15.000 <0.001 1.821 2.368

Maximum Likelihood Estimation
For maximum likelihood estimation, we need the additional assumption of normally
distributed errors. The likelihood is then given by

L.ˇ; �2; / D 1

.2��2/
n=2 jW �1j1=2 exp

�
� 1

2�2
.y � Xˇ/0W .y � Xˇ/

�
: (4.8)

At first we calculate

W D

0
BBBBBBBB@

1 � 0 : : : 0 0

� 1C 2 � : : : 0 0

0 � 1C 2 : : : 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 : : : 1C 2 �
0 0 0 : : : � 1

1
CCCCCCCCA

:

and

jW �1j D 1

1 � 2 :

Then the log-likelihood becomes

l.ˇ; �2; / D �n
2

log.�2/C 1

2
log.1 � 2/ � 1

2�2
.y � Xˇ/0W .y � Xˇ/;

which can not be maximized in closed form. We rather have to compute the ML
estimator iteratively. Details are provided in Greene (2000) and in the literature
cited therein.

Example 4.8 Simulated Data—ML Estimators
For the simulated data of the preceding examples, Table 4.4 contains the Prais–Winsten
estimator and Table 4.5 the maximum likelihood estimator. Both estimators are in close
agreement. We used the STATA functions prais for the Prais–Winsten estimator and
arima for the ML estimator. 4
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Fig. 4.6 Supermarket scanner data: scatter plot between log-sales and own price including fitted
regression line [panel (a)]. Panel (b) shows the residuals over time. Panel (c) displays the price of
the coffee brand over time

Example 4.9 Supermarket Scanner Data
For illustration of multiplicative errors, we examined the scanner data in Example 3.2
(p. 86), which are obtained from payments processed at the supermarket check-out counter.
The goal is to model the relationship between the weekly sales of a product (in this case
a particular coffee brand) and the own price or the price of competing brands (cross price
effects); see the scatter plots in Fig. 3.6 (p. 85). In this example, we analyze the data to
illustrate the approaches for correlated errors. To simplify matters, we use the data for just
one store (Fig. 3.6 on p. 85 contains data of five stores). Due to the multiplicative error
structure, we use log-sales rather than original responses. Figure 4.6a shows the scatter
plot between log-sales and own price. Additionally, a fitted regression line is included.
Panel (b) shows the corresponding residuals over time, which are clearly correlated. The
Durbin–Watson test statistic is d D 1:1751 (p-value < 10�4). The p-value is based on
the matlab function dwtest. The p-value indicates that the null hypothesis H0 W  D 0

can be rejected at the ˛ D 0:05 and ˛ D 0:01 level. In Fig. 4.7, we additionally examine
the empirical autocorrelation and partial autocorrelation function of the residuals. The plots
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Fig. 4.7 Supermarket scanner data: empirical and partial autocorrelation function of the residuals
in the regression between log-sales and price

additionally contain pointwise 95 % confidence intervals (their derivation is omitted at this
point). The correlogram provides further evidence for autocorrelated errors, as it decreases
slowly with increasing lag. The partial autocorrelation function is relatively small from a
lag of 3 onward. Consequently, the correlograms do not point to first-order autocorrelation
and a more complex correlation structure should be taken into account (e.g., second-order
autocorrelation). We see the benefit here of graphical devices in comparison to formal
tests. The Durbin–Watson test provides evidence for autocorrelation, but is not useful to
determine the type of correlation.

To correct for autocorrelated errors, we should first examine whether or not an improved
model specification eliminates correlations. Estimating a model with autocorrelated errors
should be the last resort. In the current example, looking at the prices over time [panel
(c) of Fig. 4.6] provides clear evidence how to improve the model. We can identify three
time periods with different “regular” sales price of the coffee brand. Initially, the regular
price was about 4.35 Euro, then the regular price was further decreased to 4.10 Euro, and
finally to 3.8 Euro. During all periods we regularly encounter price reductions to promote
the sales of the coffee brand. Clearly, ignoring the temporal development of regular prices is
problematic. The marketing literature proposes to replace the price as explanatory variable
with the ratio between the actual and the current regular price for the time period; see, for
example, Leeflang, Wittink, Wedel, and Naert (2000). We therefore define the new covariate

priceq D actual price

regular price
;

which takes values between zero and one. If priceq D 1, the actual price is equal to
the regular price, implying that there was no price reduction during the week. Figure 4.8a
shows the scatter plot between log-sales and the ratio resulting from the actual and regular
price including the fitted regression line. The residuals over time in panel (b) are now
approximately uncorrelated. This is also supported by the Durbin–Watson test with test
statistic d D 1:5946 (p-value D 0:04559). We can conclude that the Durbin–Watson test
does not give us any compelling evidence of autocorrelation. 4
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4.2 Regularization Techniques

This section deals with another extension of the classical linear model. We present
regularization techniques to “regularize” the least squares estimator. This is useful
in situations where the least squares estimator is numerically instable leading to
(very) high variances. Moreover, regularization techniques provide an alternative to
the variable selection procedures discussed in Sect. 3.4.

Throughout this section we assume Cov."/ D �2I rather than Cov."/ D �2W �1
as in the preceding section. However, generalizations of the presented regularization
techniques to the general covariance matrix are straightforward.
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4.2.1 Statistical Regularization

To compute the least squares estimator in the classical linear model, the system of
equations

X 0Xˇ D X 0y (4.9)

has to be solved with respect to ˇ. Thus far, we have assumed that X has full
rank p so that a unique solution exists. However, when X contains columns
that are close to collinear or if the number of regression effects p grows large,
computing the solution will become numerically instable, even if the coefficients
are still identifiable in theory. Moreover, modern applications arising, for example,
in genetics often involve situations where the number of covariates exceeds
(sometimes by orders of magnitude) the number of observations. In the statistical
community, such problems are commonly referred to as “small n, large p”
problems. For example, in studies of gene expression, the expression level of
thousands of genes may be measured for only a few dozen individuals. In such
situations, regularization techniques are commonly applied to obtain estimates of
regression coefficients even in situations where the coefficient matrix X 0X in
Eq. (4.9) is close to or exactly singular.

The notion of regularization summarizes approaches that make a problem “look
nicer than it actually is” by imposing specific restrictions on the set of admissible
solutions. In fact, this is closely related to the concept of Bayesian models where
prior knowledge on the regression coefficients is incorporated (see Sect. 4.4).
Regularization is typically implemented by considering a penalized least squares
objective function

PLS.ˇ/ D .y � Xˇ/0.y � Xˇ/C 	 � pen.ˇ/ ! min
ˇ
;

where pen.ˇ/ is a penalty term measuring the complexity of the vector of regression
coefficients and 	 � 0 is a smoothing parameter governing the impact of the
penalty. In principle, pen.ˇ/ will be constructed so that it is large when many of
the entries in ˇ are large. Another related principle would be to consider sparsity
penalties that, for example, count the number of nonzero entries in ˇ and therefore
enforce sparseness of the resulting coefficient vector. The smoothing parameter then
determines the trade-off between fidelity to the data as measured by the least squares
criterion (	 small) and the impact of the penalty (	 large).

Using mathematical theory for optimization under constraints, one can show that
obtaining the penalized least squares estimator

Ǒ
PLS D arg min

ˇ

	
.y � Xˇ/0.y � Xˇ/C 	 � pen.ˇ/




is equivalent to seeking the solution



4.2 Regularization Techniques 203

Ǒ
PLS D arg min

ˇ

.y � Xˇ/0.y � Xˇ/

subject to the constraint
pen.ˇ/ � t;

where t is a constant related to the smoothing parameter 	 in a one-to-one
relationship. A derivation of this well-known fact in optimization theory can be
found, e.g., in Sydsaeter, Hammond, Seierstad, and Strom (2005).

4.2.2 Ridge Regression

In Sect. 3.4.4 (p. 159), we already introduced the first statistical regularization
approach known as ridge regression. It corresponds to the classical approach of
Tikhonov regularization achieved by adding the (squared) L2-norm of the solution
to an optimality criterion. In case of linear regression, the resulting penalty is simply
given by the sum of the squared coefficients so that

pen.ˇ/ D
kX

jD0
ˇ2j D ˇ0ˇ

and

PLS.ˇ/ D .y � Xˇ/0.y � Xˇ/C 	ˇ0ˇ:

Proceeding in analogy to the derivation of the least squares estimator in Sect. 3.2.1
(p. 105), we first take the derivative of PLS.ˇ/ with respect to ˇ and obtain

@

@ˇ
PLS.ˇ/ D @

@ˇ

�
y 0y � 2y 0Xˇ C ˇ0X 0Xˇ C 	ˇ0ˇ

�

D �2X 0y C 2X 0Xˇ C 2	ˇ:

Setting the derivative equal to zero and solving for ˇ yields the ridge regularized
penalized least squares estimator

Ǒ
PLS D .X 0X C 	Ip/

�1X 0y;

i.e., Ǒ
PLS only differs from Ǒ

LS by the additional term 	Ip that arises from the
penalty. For values of the smoothing parameter close to zero, the impact of this
additional term practically vanishes and we end up with a solution that is close to the
usual least squares estimator. However, if 	 is large, X 0X C 	Ip will be invertible,
even if X 0X does not have full rank. Moreover, the solution Ǒ

PLS will be shrunken
towards zero. This is most easily seen from the penalized least squares criterion:
When the smoothing parameter 	 grows large, the penalty term will completely
determine the optimization problem so that the optimal solution has to minimize the
penalty term, i.e., pen.ˇ/ D ˇ0ˇ. This will clearly be the case for ˇ D 0.
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Typically, penalization of the intercept is not desired in ridge regression so that
ˇ0 should be excluded from the penalty term. This can be achieved in two different
ways. A first, popular approach is to center all covariates and the responses so that
Ny D 0 and Nx D 0 which automatically results in Ǒ

0 D 0. This implies that the
intercept can simply be dropped from the model and therefore is also not penalized.
A second approach is to modify the penalty to

pen.ˇ/ D
kX

jD1
ˇ2j D ˇ0Kˇ;

where K D diag.0; 1; : : : ; 1/ D blockdiag.0; Ik/, i.e., we introduce a penalty
matrix that excludes the intercept but remains the identity matrix for the rest of
the coefficient vector. The ridge regression estimate is then given by

Ǒ
PLS D .X 0X C 	K /�1X 0y ;

i.e., it has exactly the same structure as before but replaces the identity matrix Ip
with the penalty matrix K . The second approach has the advantage that it can still
be used in more complex models when ridge regression shall be combined, for
example, with nonlinear regression as introduced in Chap. 8. We therefore follow
the second approach in the rest of this section.

The optimality properties derived for the least squares estimator included
unbiasedness, i.e.,

E. Ǒ
LS/ D E..X 0X/�1X 0y/ D .X 0X/�1X 0Xˇ D ˇ;

and the covariance matrix of the least squares estimator is given by

Cov. Ǒ
LS/ D �2.X 0X/�1:

In contrast, the penalized least squares estimator is biased since

E. Ǒ
PLS/ D E..X 0X C 	K /�1X 0y/ D .X 0X C 	K /�1X 0Xˇ;

as the matrices .X 0X C 	K /�1 and X 0X do not cancel, unless 	 D 0. Most of
the coefficients in ˇPLS will typically be shrunken towards zero as compared to the
coefficients in ˇLS, i.e.,

j Ǒ
j;PLSj � j Ǒ

j;LSj; j D 1; : : : ; k:

This relation holds exactly for orthogonal designs, where X 0X is a diagonal matrix,
and as such all coefficients can be estimated independently (but may be violated for
some coefficients in more general settings).
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To motivate the shrinkage effect of ridge regression, note first that 	K D
.X 0X C 	K / � X 0X is positive semidefinite (for 	 > 0), i.e., “.X 0X C 	K /

is larger than (or equal to) X 0X” in a matrix sense, since a nonnegative amount
	K is added to X 0X . Multiplying two positive semidefinite matrices again yields a
positive semidefinite matrix. Therefore, multiplying .X 0X C 	K /�1 with .X 0X C
	K / � X 0X yields positive semidefinite Ip � .X 0X C 	K /�1X 0X . In particular,
this implies that the diagonal elements of .X 0X C 	K /�1X 0X are smaller than
(or equal to) one because the diagonal elements of a positive semidefinite matrix
are always greater than (or equal to) zero (see Theorem A.28. 3 of Appendix A.7).
Re-expressing the representation of the penalized least squares estimator as

Ǒ
PLS D .X 0X C 	K /�1X 0X.X 0X/�1X 0y D .X 0X C 	K /�1X 0X Ǒ

LS;

indicates that we can obtain Ǒ
PLS from Ǒ

LS through premultiplication with a matrix
that is “smaller than Ip .” For the special case of an orthogonal design matrix, both
X 0X and X 0X C 	K (and therefore also .X 0X C 	K /�1 are diagonal matrices so
that we can write

Ǒ
j;PLS D .xj /0xj

.xj /0xj C 	
Ǒ
j;LS; j D 1; : : : ; k;

where xj denotes the j th column of X . Since the factor .xj /0xj =..xj /0xj C 	/

is smaller than one, we immediately obtain the shrinkage effect of ridge regression
estimates.

The covariance matrix for the ridge regression estimator is given by

Cov. Ǒ
PLS/ D �2.X 0X C 	K /�1X 0X.X 0X C 	K /�1:

Proceeding analogously, one can show that

Cov. Ǒ
LS/� Cov. Ǒ

PLS/

is positive definite (for 	 > 0), i.e., the covariance matrix of the penalized least
squares estimator is smaller than the covariance matrix of the least squares estimator.
In particular, this implies that

Var. Ǒ
j;PLS/ < Var. Ǒ

j;LS/; j D 1; : : : ; k;

since for a positive definite matrix the diagonal elements are positive.
In summary, we find that the penalized least squares estimator is biased, but

has a smaller variance than the least squares estimator. When combining bias and
covariance to the mean squared error one hopes to achieve a smaller MSE when
choosing an appropriate smoothing parameter 	. In particular, if X is close to
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collinear or if X is high-dimensional, the variance usually dominates the mean
squared error and thus regularization is desirable. Often, ridge regression is also
considered as a possibility to further shrink small coefficients towards zero. In
particular, this may give a clearer indication of which variables are actually required
in the model so that variable selection can be achieved.

The smoothing parameter is typically determined using r-fold cross validation;
see Sect. 3.4, p. 149. Therefore, the data set is split into r parts of approximately
equal size. Estimation is performed for a given grid of smoothing parameters on
r � 1 parts of the data set, while prediction based on these estimates is obtained
for the last remaining part (holdout sample). Cycling through the different splits
an average prediction error can be obtained for a given smoothing parameter. The
“optimal” smoothing parameter can be defined as the one that minimizes the average
prediction error on the hold-out samples.

Finally, the scaling of covariates is important when applying a regularization
approach. The penalty formed of squared regression coefficients assumes that all
coefficients can be compared in their absolute value. However, the scaling of
covariates has immediate impact on the interpretation of these absolute values.
For example, the coefficient associated with a covariate measuring a distance will
be scaled by a factor of 1,000 when the variable is measured in meters instead
of kilometers. Hence it is important to make all variables comparable in their
scaling before applying a penalized least squares approach. A common solution
is to transform all covariates to have zero mean and unit standard deviation, i.e., to
standardize all covariates.

Example 4.10 Price of Used Cars—Ridge Regression
We illustrate the impact of ridge regularization using the data on prices of used cars
introduced in Example 3.19 (p. 152). Instead of performing a formal variable selection,
we will use a relatively complex model comprising all covariates and also higher-order
polynomials. Often such a model can yield rather large uncertainty in the coefficient
estimates. As a remedy, we apply ridge regularization that effectively reduces the variance
while introducing some bias in the coefficient estimates. Estimation is based on the R
package penalized and in particular function optL2.

For the variables representing the age of the car in months (age) and kilometer reading in
1,000 km (kilometer), we consider orthogonal polynomials of degree three (see Example 3.5
on p. 90) to allow for potential nonlinearity while the remaining covariates, corresponding to
months until the next appointment with the technical inspection agency (TIA), ABS brake
(extras1), and sunroof (extras2), are included with linear effects. The second column in
Table 4.6 represents the least squares estimates obtained for this model specification. Note
that our analyses in Example 3.19 have shown that some of the variables may not actually
be needed to adequately predict the prices of used cars. As a consequence, regularization in
terms of a ridge penalty may be applied with the aim to shrink such redundant parameters
towards zero.

Figure 4.9 illustrates the impact of the ridge penalty for a variety of smoothing parameter
values 	. On the left-hand side, the graph starts with a rather large value of the smoothing
parameter yielding strong shrinkage towards zero. When moving to the right (corresponding
to a decrease in the smoothing parameter), the coefficient estimates approach the least
squares estimate for 	 ! 0. The surprising scaling of the x-axis with large values on the
left and small values on the right is motivated by the fact that many graphics represent
coefficient paths as functions of the constraint parameter t instead of the smoothing
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Table 4.6 Prices of used cars: estimated coefficients for different models

Ridge Ridge LASSO
Variable LS 	 D 6:43 	 � 250 	 D 10:34

intercept 3.585 3.580 3.569 3.421
ageop1 �0.709 �0.672 �0.594 �0.682
ageop2 0.172 0.164 0.146 0.150
ageop3 0.016 0.015 0.013 –
kilometerop1 �0.437 �0.425 �0.393 �0.412
kilometerop2 0.142 0.138 0.128 0.110
kilometerop3 0.009 0.010 0.010 –
TIA �0.005 �0.005 �0.004 –
extras1 �0.114 �0.104 �0.086 �0.036
extras2 �0.031 �0.042 �0.060 –
Second column: least squares estimate; third column: ridge regression with estimated smoothing
parameter based on cross validation; fourth column: ridge regression with fixed, large smoothing
parameter; fifth column: LASSO with estimated smoothing parameter based on cross validation
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Fig. 4.9 Prices of used cars: estimated ridge regression coefficients as a function of the smoothing
parameter 	. The dashed vertical line indicates the optimal smoothing parameter determined by
tenfold cross validation. All effects refer to standardized versions of the covariates

parameter. In order to comply with the resulting visual impression of coefficient paths
evolving from zero to the least squares estimate, we chose a reverse scaling with respect
to the smoothing parameter. Note that Fig. 4.9 shows standardized coefficients, i.e., all
covariates have been standardized to zero mean and unit variance prior to the analysis
to make them comparable in their magnitude. In contrast, Table 4.6 contains estimates
transformed back to the original scaling. In fact, the scaling only impacts the categorical
covariates since the orthonormal polynomials constructed for continuous covariates are
already standardized.

To obtain an optimal amount of shrinkage, the smoothing parameter 	 was determined
based on tenfold cross validation (the optimal smoothing parameter is indicated as a dashed
line in Fig. 4.9). Clearly, only a very small amount of smoothness is needed, so that
estimates remain almost unchanged after applying ridge regularization. The third column
of Table 4.6 contains the corresponding precise numerical values while the fourth column
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contains estimates achieved with a rather large smoothing parameter. In this latter case, the
impact of the penalty can be seen much more clearly with shrinkage towards zero. Note,
however, that single coefficients may actually also increase after applying a penalty as can
be seen for the coefficient of extras2. While this may seem to be surprising at first sight, it is
a result of (negative) correlations in the covariates. If a certain effect is reduced, the effect of
a closely related variable may increase. For very large values of the smoothing parameter,
however, all coefficient estimates will eventually approach a limiting value of zero. We will
provide a geometric explanation later in this section. 4

4.2.3 Least Absolute Shrinkage and Selection Operator

While ridge regression enables estimation of regression coefficients in high-
dimensional covariate settings or with design matrices that are close to collinear,
it does not yield a sparse solution: all estimated regression coefficients will still be
different from zero (with probability one). For interpretational purposes, it would,
however, be desirable not only to shrink small coefficients towards zero but to
have the possibility to set some effects exactly to zero. In particular, this would
allow us to combine model estimation with variable selection in one single model
estimation step. Such an approach can be obtained by replacing the penalty of
squared regression coefficients with the penalty of absolute values yielding

pen.ˇ/ D
kX

jD1
jˇj j

and

Ǒ
LASSO D arg min

ˇ

.y � Xˇ/0.y � Xˇ/C 	

kX

jD1
jˇj j; (4.10)

where again we left the intercept unpenalized. As for ridge regression, the penalized
least squares criterion balances between fit to the data as measured by the least
squares criterion and regularized solutions as determined by the penalty. The trade-
off between these two goals is governed by the smoothing parameter 	. Since
Ǒ

LASSO is defined in terms of an absolute value penalty and allows to select
covariates in a variable selection type fashion (as we will see in the following),
it is referred to as the least absolute shrinkage and selection operator (LASSO,
Tibshirani, 1996).

The difference between ridge regression and the LASSO can be seen from the
different form of the penalty functionals depicted in Fig. 4.10. Ridge regression
imposes a quadratic penalty that has very strong impact on large coefficient values
but small penalty for values close to zero (compare also the coefficient path depicted
in Fig. 4.9). In contrast, the absolute value penalty for the LASSO increases at
a slower rate for large coefficient values, but moves away from zero faster for
coefficients that are close to zero. Consequently, we expect the desirable behavior
that small coefficients will be more strongly shrunken towards zero, while larger
coefficients will be less affected by the penalty.
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Fig. 4.10 Penalties for ridge regression (dashed line) and the LASSO (solid line)

In contrast to ridge regression, no closed-form solution for the LASSO-
regularized estimate is available. While the penalized least squares criterion (4.10)
is not differentiable, because of the inclusion of the absolute value penalty, one can
still obtain “estimation equations” similar to the normal equations in the classical
linear model. Omitting their derivation they are given by

2X 0Xˇ C 2X 0y C 	

kX

jD1
sign.ˇj / D 0:

However, no explicit solution can be computed because of the sign function that
indicates that the LASSO estimate, in contrast to the ridge estimator, is nonlinear
in the data. Stated differently, it cannot be expressed as a linear estimator Ǒ D Ay

with a p � n-matrix A (compare also Sect. 3.2.3, p. 117). This also implies that
statistical properties of Ǒ

LASSO are more difficult to derive than in case of ridge
regression. Still, these are in principle analogously to ridge regression, i.e., Ǒ

LASSO
is biased, but has smaller variance than the least squares estimate. A comparison
between ridge and LASSO is more complicated and there will be no general answer
on which of the two is preferable in terms of mean squared error.

The LASSO criterion (4.10) can equivalently be rewritten as

Ǒ
PLS D arg min

ˇ

.y � Xˇ/0.y � Xˇ/

subject to the constraint
kX

jD1
jˇj j � t;

where again t and the smoothing parameter 	 are connected in a one-to-one
relationship; see, e.g., Sydsaeter et al. (2005) in Sect. 3.5 for a proof of the
equivalence. For interpretational purposes and graphical visualization, one often
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Fig. 4.11 Prices of used cars: estimated LASSO-regularized coefficients as a function of the
smoothing parameter 	. The dashed vertical line indicates the optimal smoothing parameter
determined by tenfold cross validation. All effects refer to standardized versions of the covariates

varies t between the two extremal values 0 and tLS, corresponding to extreme and
no regularization, where

tLS D
kX

jD1
j Ǒ

LS;j j:

Estimation of the LASSO relies on numerical optimization approaches. In the
original proposal of the LASSO (Tibshirani, 1996), a quadratic programming
approach has been applied to optimize the penalized least squares criterion subject
to the inequality constraint on the sum of absolute values. Most current imple-
mentations use least angle regression (LARS) to determine the LASSO estimates
(Efron, Hastie, Johnstone, & Tibshirani, 2004). The main advantage of LARS is
that it allows to determine the complete coefficient paths in one estimation run. We
used an alternative approach developed in Goeman (2010) and implemented in the
R package penalized to compute both LASSO-regularized estimates and ridge
regression estimates. This package also implements the determination of optimal
smoothing parameters based on cross validation.

Example 4.11 Price of Used Cars—LASSO
We repeat the analysis conducted in Example 4.10, now replacing the ridge penalty with
the LASSO penalty (estimated via function optL1 also contained in the R package
penalized). The resulting coefficient paths are shown in Fig. 4.11. The first striking
difference compared to the results achieved with ridge regression is that for large values
of the smoothing parameter several coefficients are actually set to zero. At a sequence of
threshold values, one covariate at a time enters the model until all coefficients are nonzero
for values of the smoothing parameter approaching zero and finally achieve the values of
the least squares estimate. Moreover, the paths are all linear in the smoothing parameter and
only change their slope once a new variable enters the model.

More specifically, several of the covariates associated with small least squares estimates
enter the model very late, with rather small values of the smoothing parameter. When
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determining a data-driven, optimal value of the smoothing parameter through tenfold cross
validation, these coefficients actually drop out of the model so that a sparse solution
is obtained. In fact, the resulting model is quite close to the model chosen by AIC in
Example 3.19 with quadratic effects of age and kilometer reading and no effects of TIA
and extras2. With AIC, extras1 was also deleted from the model which is not the case with
LASSO regularization. Note, however, that the estimated coefficient is very small especially
compared to the least squares estimate (Table 4.6).

When comparing the cross validation criterion for the least squares estimate, ridge
regression, and LASSO-regularized estimation, we obtain values of �202.519 (least
squares), �204.733 (ridge), and �200.746 (LASSO). The best fit is obtained with the
LASSO, while ridge regression actually leads to a larger cross validation criterion in
comparison to least squares. Therefore, in this particular example, it is not per se important
to regularize estimates, but we have to use a specific form of regularization to achieve an
improvement in terms of model fit. This may be explained by the specific properties of
the regularization approaches in combination with the settings in our example. While ridge
regression shrinks large, important coefficients more strongly than the LASSO, we have the
reverse behavior for small coefficients (again see Fig. 4.10). To obtain good prediction for
the price of used cars, the type of regularization imposed by the LASSO seems to be more
plausible. Note also that we have only a moderate number of covariates compared to the
sample size and therefore the need for regularization may not be so great in this example.4

4.2.4 Geometric Properties of Regularized Estimates

As we have seen in the application, LASSO regularization yields estimated coef-
ficient vectors such that some of the parameters are estimated to be exactly zero.
To understand this behavior, we have to investigate the geometric properties of
penalized least squares estimation. For illustration purposes, we will consider a
bivariate coefficient vector ˇ D .ˇ1; ˇ2/

0; but all results are easily generalized to
the multivariable setup. Note that we have not included an intercept but consider
standardized covariates and a centered response.

First, the least squares criterion LS.ˇ/ can be rewritten as

LS.ˇ/ D .ˇ � Ǒ /0X 0X.ˇ � Ǒ /C y 0.In � X.X 0X/�1X 0/y

D .ˇ � Ǒ /0X 0X.ˇ � Ǒ /C O"0 O"
(4.11)

and is therefore (up to an additive constant) equivalent to the quadratic form

.ˇ � Ǒ /0X 0X.ˇ � Ǒ /

in ˇ. A proof can be found in the appendix of this chapter on p. 259.
Since Eq. (4.11) defines a quadratic form in ˇ, the contour lines of LS.ˇ/, i.e.,

the values of ˇ resulting from solving LS.ˇ/ D c for a constant c, are ellipses
with the specific shape determined by the matrix X 0X . On the other hand, for two
dimensions, the constraint

jˇ1j C jˇ2j D t
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4.3 Regularized Estimation

Penalized Least Squares Criteria

Regularized estimation in the linear model relies on penalized least squares
criteria

PLS.ˇ/ D .y � Xˇ/0.y � Xˇ/C 	 � pen.ˇ/

with smoothing parameter 	 � 0 and pen.ˇ/ penalizing model complexity.

Ridge Regression

For ridge regression, the penalty is given by the sum of squared coefficients,
i.e.,

pen.ˇ/ D
kX

jD1
ˇ2j D ˇ0Kˇ;

with penalty matrix K D diag.0; 1; : : : ; 1/. The resulting penalized least
squares estimate is

Ǒ
PLS D .X 0X C 	K /�1X 0y:

LASSO

For the LASSO, the penalty is given by the sum of absolute coefficients,
i.e.,

pen.ˇ/ D
kX

jD1
jˇj j:

The resulting estimate is not available in closed form and has to be
determined numerically (for example based on quadratic programming).

Choice of the Smoothing Parameter

The optimal smoothing parameter 	 can be determined based on r-fold
cross validation.

Software

R package penalized.
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Fig. 4.12 Geometrical interpretation of the penalized least squares criteria for ridge regression
(left panel) and LASSO (right panel). In the upper panel, a non-diagonal matrix X 0X is considered
while the lower panel corresponds to an orthonormal design with X 0X D I2

defines diamond-shaped contour lines with side lengths
p
2t . Therefore the LASSO-

regularized estimate for a given t is the contact point between the two geometrical
regions defined by the constraint and the least squares criterion. If this contact point
is located in one of the corners of the diamond, some of the coefficients will be
estimated to be zero.

This geometric definition of LASSO-regularized regression estimates is visual-
ized in Fig. 4.12 for artificial data and a hypothetical value of Ǒ D .6; 3/0 for the
least squares estimate. The contour lines of the least squares criterion are centered
around this least squares estimate since it is the corresponding unique minimum. In
the upper panel of Fig. 4.12, usual data with correlated design vectors have been
considered so that the contour lines of the least squares criterion are ellipsoids.
In comparison, the lower panel considers the special case of orthonormal design
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Fig. 4.13 Ridge regression estimates in case of a design matrix with large negative correlation

matrix with X 0X D I2 so that the contour lines are exact circles. The contours of
the penalty are depicted as shaded areas centered about the minimum of the penalty
functional given by .0; 0/0. Depending on the value of the smoothing parameter, a
specific contact point of the contour lines of the fit and penalty criterion is chosen
that determines the regularized estimated coefficients. If the smoothing parameter
is large enough, the contact point will be forced to lie on one (or several) of the
coefficient axes, and therefore one (or more) coefficients are shrunk to zero.

For ridge regression, the contour lines are circular, defined by the constraint

ˇ21 C ˇ22 D t:

When considering candidate contact points within the geometric regions that are
defined by the constrained least squares criterion, no possibility arises to set
coefficients equal to zero, as illustrated in the left panel of Fig. 4.12. In contrast
to the LASSO, an increasing value for the ridge constraint parameter, t , provides a
smooth transition of the coefficients towards zero.

Figure 4.13 provides a geometric explanation for the surprising behavior that we
observed in Example 4.10, i.e., where ridge regression in fact yielded an increased,
instead of shrunken estimates, for some coefficients. We previously argued that
negative correlations between covariates are the reason for this observation. In
Fig. 4.13, we have generated artificial data with a rather high negative correlation,
which is indicated by the negative orientation of the ellipsoids representing the
least squares criterion. Seeking the contact point between the outer contour line
for the penalty and the least squares criterion yields a shrunken estimate for ˇ1 but
a somewhat increased estimate for ˇ2 due to the extreme orientation of the least
squares contours. When increasing the smoothing parameter (i.e., moving towards
the inner contours of the penalty), we again find the expected shrinkage effect and
finally approach zero for both regression coefficients.



4.2 Regularization Techniques 215

0

1

2

3

4

5

6

t

C
oe

ffi
ci

en
t p

at
h

0 5 10 15 20 25 30 35 40 45

β1

^
β1

^

β2

^
β2

^

β1

^
β1

^

β2

^

β2

^

β1(t)

β2(t)

β2(t)

β1(t)

^

^

0

1

2

3

4

5

6

t

C
oe

ffi
ci

en
t p

at
h

0 1 2 3 4 5 6 7 8 9

^

^

0

1

2

3

4

5

6

λ

C
oe

ffi
ci

en
t p

at
h

0 5 10 15 20 25 30 35 40 45

β2(λ)
β2(λ)β1(λ)

^

β1(λ)
^

^

0

1

2

3

4

5

6

λ

C
oe

ffi
ci

en
t p

at
h

0 3 6 9 12 15

^

Fig. 4.14 Coefficient paths for ridge regression (left panel) and the LASSO (right panel) as
functions of either the complexity parameter t (upper panel) or the smoothing parameter 	 (lower
panel). The dashed lines indicate the values of the least squares estimates

Additional insights can be gained when considering situations with orthonormal
design matrices, i.e., with X 0X D I . In this case, the contour lines of the least
squares criterion are circular and explicit formulae for both ridge and LASSO-
regularized estimates can be derived either in terms of the smoothing parameter
	 or the constraint parameter t . For the LASSO, we obtain

Ǒ
LASSO;j .	/ D sign. Ǒ

LS;j /

�
j Ǒ

LS;j j � 	

2

�

C
;

where Œx�C D maxf0; xg. For ridge regression, we have

Ǒ
PLS;j .	/ D 1

1C 	
Ǒ
LS;j :

A comparison of these expressions again reveals the distinct, yet different, behavior
of ridge regression and the LASSO (also see the graphical representation in
Fig. 4.14). For the LASSO, the restriction to positive parts via the function Œx�C
allows to set coefficients to zero if they are smaller than 0:5	. Moreover, the
LASSO-regularized estimates move away from zero at a constant slope until a
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Fig. 4.15 Ridge (dotted line) and LASSO (dashed line) estimates as a function of the least squares
estimate in case of an orthonormal design and for smoothing parameter 	 D 5. The solid line
represents the unregularized least squares estimate

further nonzero regression coefficient enters the model (top right panel of Fig. 4.14).
In contrast, estimates from ridge regression are shrunken towards zero for a large
penalty, but actually never reach zero. Specifically, they are simply shrunken by the
factor 1=.1 C 	/. However, note again that this only holds in case of orthonormal
design matrices.

Figure 4.15 illustrates this shrinkage behavior from a different perspective, which
shows a regularized estimate as a function of the least squares estimate for a fixed
value of the smoothing parameter 	 (	 D 5 in this case). While the LASSO-
regularized estimate equals zero for a small coefficient (smaller than 0:5	), the ridge
regression estimate is simply a scaled version of the least squares estimate with the
amount of scaling determined by 	.

4.2.5 Partial Regularization

Thus far, we have exclusively dealt with the situation that all coefficients of
a regression model (except the intercept) should be subject to regularization.
However, it is also possible to penalize only parts of the coefficient vector, yielding,
for example,

.y � X 1ˇ1 � X 2ˇ2/
0.y � X 1ˇ1 � X 2ˇ2/C 	 pen.ˇ2/;

where X D .X 1;X 2/ is a partition of the design matrix and ˇ D .ˇ0
1;ˇ

0
2/

0
analogously partitions the coefficients. The penalty now only applies to the part of
the model defined in X 2ˇ2, while the remaining covariates in X 1 are left untouched.
Such a distinction can, for example, be relevant when including clinical covariates
and gene expression levels in a simultaneous regression model. While the former
will typically be included due to prior knowledge and are of a much smaller num-
ber, gene expression often contains diverse, heterogeneous, and high-dimensional
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information. Therefore it is sensible to regularize only the regression coefficients
of the latter, while coefficients associated with information such as age or disease
status remain unpenalized.

4.3 Boosting Linear Regression Models

In this section, we will describe an alternative regularization approach called
boosting where regularization is implicitly achieved through early stopping of
an iterative stepwise algorithm. Boosting turns out to be a rather general and
versatile regularization approach since estimation problems are described in terms
of a loss function and, as a consequence, boosting can also be applied beyond
the linear model, e.g., in robust regression or generalized linear models for non-
Gaussian responses. Moreover, the implicit regularization performed with boosting
allows for automatic model choice and variable selection, similar to the LASSO.
A disadvantage of boosting, similar to ridge regression and the LASSO, is that
standard inference tools like standard errors or confidence intervals are not easily
available. We introduce the general ideas of boosting applied to classical linear
models and further present the general framework at the end of the section.

4.3.1 Basic Principles

Consider the linear model

yi D �i C "i D x0
iˇ C "i ; i D 1; : : : ; n;

with the standard predictor �i D x0
iˇ. Similar to the cases of ridge regression and

the LASSO, we are interested in situations where the ordinary least squares estimate
is not optimal. This especially may be the case when the number of regression
coefficients is large, when the design matrix is close to collinear, or when we are
interested in determining a suitable subset of covariates. In particular in the last
case, using either too many or using too few covariates may induce suboptimal
predictions (as discussed in Sect. 3.4), and regularized estimation is often a useful
alternative to least squares estimation.

The principle idea of boosting can be explained along the following basic
algorithm:

1. Choose an initial estimate Ǒ .0/ and set t D 1.

2. Compute the current residuals u D y � X Ǒ .t�1/ and the corresponding least
squares estimate Ob D .X 0X/�1X 0u. Perform the update

Ǒ .t/ D Ǒ .t�1/ C � Ob
with 0 < � < 1 and set t D t C 1.
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3. Iterate step 2 for a fixed number of iterationsmstop.

Starting from the initial value Ǒ .0/, the algorithm iteratively proceeds towards the

final estimate by updating Ǒ .t�1/ with small portions of the least squares estimate
obtained from current residuals. Instead of making large steps towards the least
squares estimate, we multiply Ob with the step length factor � to implicitly implement
regularization since—when stopping early enough—the multiplication with � yields
a proportional shrinkage of the estimates analogous to ridge regression. Usually �
will be chosen to be rather small, for example, � D 0:1 or even � D 0:01.

In boosting terminology, the least squares estimate used in step 2. of the
algorithm is a base-learning procedure that provides a means of fitting the model
of interest. Often this single estimation step will be replaced with componentwise
fits in the following. We then actually fit a sequence of base-learning procedures
(for example corresponding to the different covariates in the linear model) and only
update the best-fitting one. Yet the application of the step length factor induces
regularization.

We now consider a somewhat different interpretation of boosting that is useful to
generalize the approach in particular in terms of the available class of base-learning
procedures.

When starting with initial guesses Ǒ .0/, we can compute the lack of fit informa-
tion associated with this starting values as the corresponding derivative of the least
squares criterion, i.e.,

@

@ˇ
LS.ˇ/

ˇ̌
ˇ̌
ˇD Ǒ .0/

D �2X 0
�
y � X Ǒ .0/� :

This derivative indicates the direction towards the least squares estimate and would
be zero if the initial value is already the least squares estimate since it then coincides
with the normal equations. In fact, here the minimizer of the least squares criterion
could be obtained in one step by setting the derivative to zero and solving with
respect to the regression coefficients. However, to achieve regularization, we only
do small steps towards the solution so that

Ǒ .1/ D Ǒ .0/ C � Ob;
where Ob D .X 0X/�1X 0u is the least squares estimate obtained from the residuals

u D y � X Ǒ .0/.

4.3.2 Componentwise Boosting

After introducing the basic principles, we will next move towards more interesting
versions of boosting algorithms. Figure 4.16 shows how the boosting approach
moves from the initial guess [.0; 0/0 in this case] towards the minimum of the least
squares criterion. If we use Ob D .X 0X/�1X 0u to update the coefficient vector,
we always move along the direction of the steepest descent directly towards the
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Fig. 4.16 Surface plots of the least squares criterion together with the coefficient path from the
starting value .0; 0/0 towards the least squares estimate. The left panels show direct paths along the
steepest descent; the right panels restrict the directions to be parallel to the coefficient axes

least squares estimate. In the upper left panel of Fig. 4.16, this is indicated for a
least squares estimate where both components are quite different from zero. In the
bottom left panel, in contrast, one of the coefficients is estimated to be rather close
to zero. In this case, the path along steepest descent is almost parallel to one of the
coefficient axes.

The basic idea of componentwise boosting now is to restrict updates in the
iterative fitting process to directions that are exactly parallel to the coefficient
axes. This is implemented as follows: We first compute least squares estimates
for all covariates separately, i.e., estimate the models ui D bj xij C "ij and obtain
coefficient estimates

Obj D ..xj /0xj /�1.xj /0u D

nX

iD1
.xij � Nxj /ui

nX

iD1
.xij � Nxj /2

; j D 0; : : : ; k

based on the current residuals u where xj D .x1j ; : : : ; xnj /
0 is the column of X

corresponding to the j th covariate and Nxj is the average of the covariate values. We
then do not update all coefficients, but rather only the one that leads to the largest
reduction in the least squares criterion, i.e., we determine
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j 	 D arg min
jD0;:::;k

nX

iD1
.ui � xij Obj /2;

and then update the coefficients using

Ǒ.1/
j� D Ǒ.0/

j� C � Obj� ;

Ǒ.1/
j D Ǒ.0/

j ; j ¤ j 	:

Such an approach is illustrated in the right panel of Fig. 4.16. The upper right panel
shows that in the beginning the algorithm moves along one of the coefficient axes for
a longer time until a certain decrease in the least squares criterion is achieved. From
this, it then alternates between steps in the two different directions. For the lower
right panel this implies that the algorithm moves along one direction for many steps
(as long as the corresponding covariate is “more informative” about the variability
in the response). Finally at the very end of the algorithm, a step is made towards the
coefficient that is close to zero.

This finding enables to implement implicit regularization or shrinkage of the
estimated coefficients by stopping the algorithm not at the minimum of the least
squares criterion, but after a fixed number of iterations. In this case of early stopping,
covariates associated with small least squares estimates will drop out of the model,
while all other least squares estimates will be shrunken towards the initial guesses
(which typically will be ˇ.0/ D 0). In principle, this achieves a similar shrinkage
as induced by the LASSO presented in the last section. Recall in the case of an
orthonormal design, LASSO-regularized estimates were given by

Ǒ
LASSO;j .	/ D sign. Ǒ

LS;j /

�
j Ǒ

LS;j j � 	

2

�

C
I

also see Fig. 4.15. The quantity that plays a similar role to the smoothing parameter
	 for the LASSO, in case of boosting, is the number of iterations. In particular, a
small number of iterations will induce large regularization and will yield a sparse
model with only a few coefficients differing from zero. On the other hand, choosing
a large number of iterations will yield estimates that are close to the least squares
estimate. As with the smoothing parameter, the optimal number of iterations will
typically be determined via r-fold cross validation to minimize prediction error.

Example 4.12 Price of Used Cars—Boosting
To illustrate the application of componentwise boosting, we again consider the data set
on prices of used cars with the same model specification as in Example 4.10 (p. 206). Our
computations are based on a generic boosting implementation for a wide range of regression
models available in the R package mboost (function glmboost). Figure 4.17 shows the
resulting coefficient path as a function of the number of boosting iterations. While the upper
plot contains the paths for a large number of iterations, the lower panel shows the path
restricted to the optimal number of iterations (determined by tenfold cross validation).
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Fig. 4.17 Prices of used cars: estimated regression coefficients as a function of the boosting
iterations. The upper panel shows the path for 1,000 boosting iterations; the horizontal line
indicates the optimal stopping iteration determined by tenfold cross validation. The lower panel
shows the path only until this optimal iteration

Figure 4.18 illustrates the process of determining the optimal number of iterations. For
each of the cross validation folds, the prediction error is shown as a function of the boosting
iterations (in grey). Averaging over the folds gives the cross validation score shown as a
black line. During the first iteration the score strongly decreases but reaches a plateau after
about 50 iterations. In fact, the cross validation score reaches a minimum at 78 iterations
and then starts to increase again (although very slowly in our example). This indicates that
the resulting fit will be rather insensitive to the choice of the boosting iterations. However,
since we are interested in a sparse model with not too many nonzero coefficients, a small
value will usually be preferable.

Similar to the LASSO, some variables drop out of the model when using the optimal
number of boosting iterations, in particular the cubic effects of the age of the car and
kilometer reading as well as the effects of TIA and extras2. These effects are also estimated
to be rather small in a least squares approach, as shown in Table 4.7, and directly visible
from the overplotting of several variable names that are associated with small effects in
the upper panel of Fig. 4.17. Table 4.7 also contains the boosting estimates obtained after
1,000 iterations and for the optimal number of boosting iterations (mstop D 78). While the
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Fig. 4.18 Prices of used cars: cross validation criterion (black line) as a function of the boosting
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The dashed vertical line shows the optimal boosting iteration, i.e., the minimal cross validation
criterion

Table 4.7 Prices of used cars: estimated coefficients for different models

Variable LS mstop D 1; 000 mstop D 78

intercept 3.585 3.547 3.397
ageop1 �0.709 �0.707 �0.689
ageop2 0.172 0.175 0.163
ageop3 0.016 0.014 –
kilometerop1 �0.437 �0.436 �0.421
kilometerop2 0.142 0.140 0.118
kilometerop3 0.009 0.009 –
TIA �0.005 �0.004 –
extras1 �0.114 �0.100 �0.003
extras2 �0.031 �0.021 –
Second column: least squares estimate, third column: boosting with large stopping iteration, fourth
column: boosting with optimal stopping iteration determined by tenfold cross validation

former are rather close to the least squares estimates (and would be even closer for a further
increase in the iterations), the latter are considerably shrunken towards zero.

Overall the results are again very close to the AIC optimal model of Example 3.19 and
the LASSO in Example 4.11. 4

4.3.3 Generic Componentwise Boosting

To enable the generalization of boosting to more general model classes, it is
advantageous to reformulate it in a somewhat more general context. Instead of
relating estimation of a linear model to the determination of regression coefficients,
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the aim of fitting a linear model can also be interpreted as minimizing the sum of
squared errors

LS.�/ D
nX

iD1
.yi � �i /

2

with respect to the predictor vector � D .�1; : : : ; �n/. If a candidate predictor value
O�.0/ is given, the corresponding lack of fit can then be evaluated with LS. O�.0//, but
more detailed information is contained in the unit-specific derivatives

ui D @

@�i
LS.�/

ˇ̌
ˇ̌
�iDO�.0/i

D 2
�
yi � O�.0/i

�
:

For a perfect fit, all these derivatives will be zero while large derivatives point
towards observations where the fit could be substantially improved. In fact, the
derivatives are basically the residuals obtained by plugging in the candidate
predictor (multiplied with a factor of 2).

Now, an improved predictor O�.1/ is obtained by fitting a linear model to the
derivatives ui , which correspond to the residuals. This can be conceptualized by
multiplying the vector of derivatives u D .u1; : : : ; un/0 with the hat matrix

H D X.X 0X/�1X 0

of the linear model. Similar as in the basic algorithm discussed before, we do not
update the predictor O�.0/ with the full fit obtained by applying the hat matrix but
only with a fraction 0 < � < 1, i.e.,

O�.1/ D O�.0/ C �H u:

Based on the updated predictor O�.1/, we can obtain updated derivatives, fit the linear
model again, and iterate this process until finally ending up with the least squares
fit for the given linear model. The advantage of the general formulation in terms of
predictors instead of regression coefficients is that we can replace the least squares
base-learners with any fitting routine that provides predictions for the linear model.
In particular, we do not have to rely on parametric models but can instead consider
regression trees or semiparametric regression techniques as described in Chap. 8.

Figure 4.19 illustrates predictor-based boosting for the model yi D 2xi C "i , "i
i.i.d. N.0; 0:25/. As starting predictor, we chose O�.0/ D 0; an alternative popular
choice would be the average response value, i.e., O�.0/ D Ny1n. The top left plot of
Fig. 4.19 shows the data set together with the starting predictor. The top right plot
shows the resulting residuals which in the first iteration are the original data. The
middle row shows similar information obtained in the fourth iteration when applying
a step length factor of � D 0:1 (with one intermediate fit shown in addition).
The bottom row shows the results after 60 iterations. The estimated function has
approximately reached the least squares fit and the residuals do no longer show any
specific structure.
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Fig. 4.19 Iterative update of model fits with boosting. The left panel shows the current fit (along
with some intermediate regression lines); the right panel shows the corresponding residuals

If boosting only implements an alternative method for regularized estimation in
linear models, why should we be interested in using it? There are actually a number
of advantages:
• It is possible to replace the least squares criterion LS.�/ with more general loss

functions .�/ such as the absolute value loss

.�/ D
nX

iD1
jyi � �i j

corresponding to median regression. Therefore, boosting does not only allow
to fit linear models with regularization, but also more general types of models.
For example, boosting can also be used in generalized linear models for non-
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Gaussian models as will be discussed in the following chapter when the negative
log-likelihood is used as the loss function; see Sect. 5.7.

• We can also use more complex model components and replace the least squares
base-learners with more general learning approaches such as regression trees
or penalized splines. We will return to such more complex model structures in
Chap. 9.

• Boosting combines regularization with implicit variable selection. This again
is of particular interest in more complex regression models comprising, for
example, nonlinear effects where the LASSO can no longer be used (at least
not without suitable modifications).

• Boosting can also be used in situations with high-dimensional covariate vectors,
where p may even exceed the sample size n. Since we only fit one linear effect
at a time, the implicit regularization achieved by early stopping also allows to fit
models for p large compared to n.
Finally, we want to further clarify the role of the step length factor � in the

boosting algorithm. When using a large step length, the boosting algorithm would
make large steps towards the least squares estimates in each iteration. While at
first glance this may seem to be desirable since it would ensure fast convergence,
it actually could be problematic for two reasons: On the one hand, the regularization
property of boosting would work very unevenly on the different coefficients while
small steps allow to regularize all effects with a comparable strength. On the other
hand, in case of correlated covariates, boosting would only be able to pick one
covariate, make a large step towards the least squares estimate of the covariate,
and would never include the remaining, correlated covariates. Making smaller steps
in each iteration avoids this overshooting in specific directions and also allows the
simultaneous inclusion of several correlated variables in the final model.

4.4 Bayesian Linear Models

This section covers linear models from a Bayesian point of view. Readers who
are unfamiliar with the basic concepts of Bayesian inference should first consult
Sect. B.5 in Appendix B. One advantage of the Bayesian approach, in relation to
classical inference, is the possibility to consider prior information on the parameters
in the model. Bayesian models are particularly useful to regularize regression
problems where data information is limited. We will see, that some of the frequentist
regularization techniques in Sect. 4.2, such as ridge regression and the LASSO, have
a Bayesian interpretation. Another advantage of the Bayesian approach is that model
choice and variable selection can be an integral part of the estimation process.

The starting point of this section is the classical linear model equipped with
the conjugate normal-inverse gamma prior. This standard model described in all
textbooks on Bayesian analysis will be treated in Sect. 4.4.1. Section 4.4.2 discusses
Bayesian regularization techniques as a counterpart to the frequentist techniques
encountered in Sect. 4.2. In Sects. 4.4.3 and 4.4.4, we discuss model choice and
variable selection from a Bayesian point of view.
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4.4 Generic Componentwise Boosting for Linear Models

Model

Given are observations for the model

yi D xiˇ C "i D
kX

jD0
xij ˇj C "i

with xi0 D 1 for the intercept.

Algorithm
1. Initialize the regression coefficients, e.g., as

ˇ
.0/
0 D Ny and ˇ

.0/
j D 0; j D 1; : : : ; k;

choose a number of iterationsmstop and set t D 0.
2. Increase t by 1. Compute the negative gradients (“residuals”)

ui D � @

@�
.yi ; �/j�DO�.t�1/i

; i D 1; : : : ; n;

where  is a general loss function, e.g., the least squares criterion,
describing the estimation problem.

3. Fit separate linear models for all covariates, i.e., obtain

Obj D ..xj /0xj /�1.xj /0u; j D 0; : : : ; k

and determine the best-fitting variable via

j 	 D arg min
jD0;:::;k

nX

iD1
.ui � xij Obj /2:

4. Update the coefficients and the predictor:

�
.t/
i D �

.t�1/
i C � � xij�

Obj�

Ǒ.1/
j� D Ǒ.0/

j� C � Obj�

Ǒ.1/
j D Ǒ.0/

j ; j ¤ j 	:

5. Iterate steps 2–4 until t D mstop.
An optimal value of mstop can be determined via cross validation.

Software

R packages mboost and gbm.
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4.4.1 Standard Conjugate Analysis

Our starting point is the classical linear model y D Xˇ C ". In contrast to classical
inference, the Bayesian approach considers the unknown parameters ˇ and �2 as
random variables. Thus, the distribution of the response y can be understood as
conditional on the parameters ˇ and �2, and we obtain the observation model

y j ˇ; �2 � N.Xˇ; �2I/:

We next introduce the classical conjugate prior distribution in Bayesian linear
models.

Normal-Inverse Gamma Prior
The standard conjugate prior for linear models described in all introductory
textbooks on Bayesian inference is obtained by assuming a multivariate normal prior
for the regression coefficients

ˇ j �2 � N.m; �2M /;

with known expectation m and covariance matrix M , e.g., m D 0 and M D I .
A normal distribution seems a natural choice as the distribution of the estimated
regression coefficients in the classical linear model is (approximately) multivariate
normal. For �2, we specify an inverse gamma distribution with hyperparameters a
and b, i.e.,

�2 � IG.a; b/: (4.12)

To shed light on the specific form of the inverse gamma prior for �2, Fig. 4.20 shows
the prior density for various choices of a and b. Of particular interest is the case
a D b and both values approaching zero. Then the distribution of log �2 tends to
a uniform distribution as can be shown analytically through the change in variables
theorem; see Theorem B.1 of Appendix B.1. This is why small values for a and b
are identified with a weakly informative or noninformative prior. We will further
elaborate on this point below when we discuss noninformative priors in the linear
model.

The joint prior for ˇ and �2 is a normal-inverse gamma distribution with density

p.ˇ; �2/ D p.ˇ j �2/ p.�2/ (4.13)

D 1

.2�/
p
2 .�2/

p
2 jM j 12

exp

�
� 1

2�2
.ˇ � m/0M �1.ˇ � m/

�

ba

� .a/

1

.�2/aC1 exp

�
� b

�2

�

and parameters m, M , a, and b; see also Definition B.3.5 in Appendix B.3. We write
ˇ; �2 � NIG.m;M ; a; b/. Ignoring all factors in Eq. (4.13) that are independent of
ˇ and �2, we obtain
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Fig. 4.20 Inverse gamma prior density for �2 for various values of the hyperparameters a and b

p.ˇ; �2/ / 1

.�2/
p
2 CaC1 exp

�
� 1

2�2
.ˇ � m/0M �1.ˇ � m/� b

�2

�
(4.14)

for the density of the normal-inverse gamma prior.
We now derive some useful properties of the general NIG.m;M ; a; b/ prior. For

convenience, these are summarized in Definition B.3.5 (p. 652) of Appendix B.
Readers who are not interested in the technical details can safely skip this more
difficult part.

From the properties of the multivariate normal distribution and the inverse
gamma distribution (see Definition B.12 in Appendix B), it follows that

E.ˇ j �2/ D m Cov.ˇ j �2/ D �2M

and

E.�2/ D b

a � 1 if a > 1 Var.�2/ D b2

.a � 1/2.a � 2/ if a > 2:
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We next derive the unconditional prior distribution of ˇ. Since the conditional mean
of ˇ is independent of �2, we obtain the unconditional mean

E.ˇ/ D E.E.ˇ j �2// D m;

using the law of iterated expectations (see Theorem B.2. 9 in Appendix B.2). For
the unconditional covariance matrix, we have

Cov.ˇ/ D E.Cov.ˇ j �2//C Cov.E.ˇ j �2// D E.�2/M D b

a � 1
M I

see Theorem B.2. 10 in Appendix B.2.
In order to derive the specific distribution of ˇ, it is useful to determine the

conditional distribution of �2 j ˇ first. The density of this distribution is proportional
to the joint distribution (4.14) of ˇ; �2, which yields

p.�2 j ˇ/ / p.ˇ; �2/

/ 1

.�2/aC
p
2 C1

exp
�� 1

�2

�
1
2
.ˇ � m/0M�1.ˇ � m/C b

��
:

(4.15)

This is the form of an inverse gamma distribution, more specifically

�2 j ˇ � IG

�
aC p

2
; b C 1

2
.ˇ � m/0M �1.ˇ � m/

�
:

Hence the normalizing constant in Eq. (4.15) is given by

c D .b C 1
2
.ˇ � m/0M �1.ˇ � m//aC p

2

�
�
a C p

2

� :

Turning again our attention to the unconditional distribution of ˇ, we can
integrate Eq. (4.14) with respect to �2. Since the integral of the density of �2 j ˇ

must equal one, it follows that

Z
1

.�2/aC p
2 C1 exp

�
� 1

2�2
.ˇ � m/0M �1.ˇ � m/

�
exp.� b

�2
/ d�2

D
Z
c�1p.�2 j ˇ/d�2

D .b C 1

2
.ˇ � m/0M �1.ˇ � m//�.aC p

2 /�
�
a C p

2

�
:
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We now have

p.ˇ/ / �
b C 1

2
.ˇ � m/0M�1.ˇ � m/

��.aC p
2 / �

�
a C p

2

�

/ �
1C 1

2a
.ˇ � m/0. b

a
M /�1.ˇ � m/

��.aC p
2 / :

This is the density of a multivariate t-distribution with 2a degrees of freedom, hav-
ing location parameter m, and dispersion matrix b=aM , i.e., ˇ � t.2a;m; b=aM /.
Details of the multivariate t-distribution can be found in Appendix B.3.4 (p. 651).

Eliciting the NIG.m;M ; a; b/ prior is a difficult task in practice as there are four
parameters to choose (including the prior covariance matrix). Full specification of
m and M is typically only possible if there is prior knowledge, e.g., in the form of
past results. One then could use the posterior parameters of the previous analysis as
the prior values for the new analysis; see Example 4.13 (p. 235) below.

Zellner’s g-Prior
In the absence of valid prior knowledge, the choice of the prior parameters is
more difficult, if not impossible. For the prior mean a possible choice is m D
.m1; 0; : : : ; 0/

0 wherem1 is a prior guess for the overall level. Assuming zero means
for the other components of ˇ reflects the assumption that a priori the effect of the
covariates is centered around zero. More difficult is the specification of the prior
correlation structure. A widely used choice is Zellner’s g-prior (Zellner, 1986)

ˇ j �2 � N.m; �2.gX 0X/�1/;

where g > 0 is a hyperparameter. This is a special case of the NIG.m;M ; a; b/

prior with M D .gX 0X /�1. The prior assumes that the prior precision M�1 is
a fraction of the precision X 0X in the data. Choices for g are discussed, e.g., in
Fernandez, Ley, and Steel (2001), and include the following:
• The choice g D 1=n corresponds to assigning roughly the same information as

is contained in one observation.
• The choice g D 1=k2 (where k is the number of regressors) is suggested by the

risk inflation criterion of Foster and George (1994). They consider the predictive
risk function R.ˇ; Ǒ / D E..X Ǒ � Xˇ/0.X Ǒ � Xˇ//, i.e., the expected squared
difference between the true, but unknown, mean Xˇ and the estimate X Ǒ . The
risk inflation criterion is defined as

RIC D sup
ˇ

R
�
ˇ; Ǒ

working

�

R
�
ˇ; Ǒ

true

� ;

where Ǒ
true is the least squares estimator obtained if we estimate the correctly

specified model and Ǒ
working is the least squares estimator of a working model
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that is not necessarily correct (the typical situation in practice). Thus the risk
inflation criterion is the maximum of the ratio between the risk of the working
model and the risk of the correct model. George and Foster (2000) showed that in
a model with Zellner’s g-prior and known variance �2, the selection of the model
with highest posterior probability is equivalent to maximizing the RIC provided
that we choose g D 1=k2.

• A compromise between the two choices is given by g D 1=maxfn; k2g. This
choice is proposed in Fernandez et al. (2001) based on theoretical reasoning and
simulation results.

Noninformative Prior
An alternative to Zellner’s g-prior is to use fully noninformative priors. As pointed
out in Appendix B.5.1, the construction of noninformative priors is a quite delicate
task. The widely accepted noninformative prior in the linear model is given by

p.ˇ; �2/ / 1

�2
; (4.16)

which is the reference prior that maximizes the expected Kullback–Leibler distance
of the posterior distribution relative to the prior. Informally, the reference prior can
be characterized as the distribution that maximizes the influence of the data on the
posterior. Since the density (4.16) cannot be normalized such that it integrates to
one, it is an improper prior. The prior can be expressed as the product between a
uniform prior p.ˇ/ / 1 for ˇ and the prior p.�2/ / 1=�2 for �2 so that ˇ and
�2 are a priori stochastically independent. Note that the prior for �2 is equivalent to
a uniform prior for log.�2/. Technically, we can identify the noninformative prior
(4.16) with the conjugate NIG.m;M ; a; b/ prior by setting m D 0, M �1 D 0,
a D �p, and b D 0. This is useful for posterior analysis because we can treat
the noninformative case within the standard prior. Note, however, that we have to
be very careful when proceeding this way. When dealing with improper priors,
it is important to check whether the resulting posterior is truly proper. For the
noninformative prior (4.16) this is indeed the case.

Another approach to define a noninformative prior is described in O’Hagan
(1994). Here we start with the marginal IG.a; b/ distribution for �2. If a ! 0 and
b ! 0 tend to zero we obtain

p.�2/ / 1

�2
:

The prior corresponds to a uniform distribution for log �2. For the jointNIG.m;M ,
a; b/ prior, we then have

p.ˇ; �2/ / 1

.�2/
p
2 C1 exp

�
� 1

2�2
.ˇ � m/0M �1.ˇ � m/

�
:
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If rather M �1 D 0, we arrive at the alternative noninformative prior

p.ˇ; �2/ / ��.pC2/:

This can be shown to be Jeffreys’ prior. Although Jeffreys’ prior is usually not used
in multiparameter settings, our derivation justifies the widely used choice of a and b
as equal and near zero as a weakly informative choice for the prior of �2 (and more
generally variance parameters).

Posterior Analysis
Bayesian inference is based on properties of the posterior distribution, i.e., on the
conditional distribution of the unknown parameters ˇ and �2 given the data y .
The density of the posterior distribution is proportional to the product of the
likelihood and the prior distribution. Hence, we obtain

p.ˇ; �2 j y/ / L.ˇ; �2/ p.ˇ j �2/ p.�2/ (4.17)

/ 1

.�2/
n
2

exp

�
� 1

2�2
.y � Xˇ/0.y � Xˇ/

�

1

.�2/
p
2

exp

�
� 1

2�2
.ˇ � m/0M �1.ˇ � m/

�

1

.�2/aC1 exp

�
� b

�2

�
:

Technically, we can determine the properties of the posterior distribution mainly
in two ways. On the one hand, we can derive the posterior distribution and its
properties analytically. Alternatively, we can draw a random sample from the
posterior distribution based on Markov chain Monte Carlo (MCMC) simulation
methods. In most cases, an analytical derivation of the posterior distribution is
impossible and only the time-consuming sampling-based approach is possible.
The linear model is one of a few examples, in which the posterior distribution is
analytically tractable, at least for the standard NIG.m;M ; a; b/ prior. We can show
that the posterior distribution, like the prior distribution, is a normal-inverse gamma
distribution. The parameters Qm, QM , Qa, and Qb of the distribution can be found in
Box 4.5; see Sect. 4.5.2, p. 260, for a derivation. Additionally, the box contains
conditional and marginal posteriors of the parameters as well as other quantities of
interest. They can be obtained directly from the properties of the normal-inverse
gamma distribution derived on p. 228 and summarized in Definition B.3.5 (p. 652)
of Appendix B.

Of particular interest is the posterior mean

Ǒ
B D E.ˇ j y/ D Qm D .X 0X C M �1/�1.M �1m C X 0y/
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4.5 Bayesian Linear Model with Conjugate Prior

Observation Model and Prior Distribution

1. Observation model: y j ˇ; �2 � N.Xˇ; �2I/.
2. Prior distribution: ˇ j �2 � N.m; �2M / and �2 � IG.a; b/.

Posterior

ˇ; �2 j y � NIG. Qm; QM ; Qa; Qb/ with parameters

QM D .X 0X C M �1/�1 Qm D QM .M �1m C X 0y/;

and

Qa D a C n

2
Qb D b C 1

2

�
y 0y C m0M �1m � Qm0 QM�1 Qm

�
:

• The conditional posterior distribution of ˇ given �2 is ˇ j �2;y �
N. Qm; �2 QM /.

• The marginal posterior of ˇ is ˇ j y � t.2 Qa; Qm; Qb= Qa QM /.

Posterior with Noninformative Prior

In case of a noninformative prior with m D 0, M �1 D 0, a D �p, and
b D 0, we obtain

QM D .X 0X/�1 Qm D .X 0X/�1X 0y D Ǒ
LS

and
Qa D �p C n

2
Qb D 1

2

�
y 0y � Ǒ 0

LSX 0X Ǒ
LS

�
:

• The conditional posterior distribution of ˇ given �2 is ˇ j �2;y �
N. Ǒ

LS; �
2.X 0X/�1/.

• The marginal posterior of ˇ is ˇ j y � t.2 Qa; Ǒ
LS;

Qb= Qa QM /.

Posterior Mean

Ǒ
B D E.ˇ j y/ D Qm D .X 0X C M�1/�1.M �1m C X 0y/:

For a noninformative prior the posterior mean coincides with the least
squares estimator.

Software

• Functions bayesLMRef and bayesLMConjugate of the R package
spBayes.

• Software package BayesX for noninformative priors only (see also the
R interface R2BayesX).

• Function zlm of the R package BMS (Zellner’s g-prior only).
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as a point estimate of ˇ. Using the matrix A D .X 0X CM �1/�1X 0X , we can write
the Bayes estimator as a weighted average of the prior expectation m and the least
squares estimator Ǒ :

Ǒ
B D .I � A/m C A Ǒ :

To interpret the Bayes estimator, note that the diagonal elements of M contain (up to
the factor �2) the prior variances of ˇ. The greater the diagonal elements of M (i.e.,
the variances of ˇ), the smaller are the elements of M�1. In the limit M �1 ! 0 the
matrix A approaches the identity matrix and Ǒ

B the ordinary least squares estimator.
On the contrary, small elements in M (corresponding to small variances of ˇ) imply
that the matrix A approaches the zero matrix and I � A the identity matrix. The
Bayes estimator is then identical with the prior mean m. This gives us the following
interpretation of Ǒ

B : The smaller the prior information about ˇ, i.e., the greater
the diagonal elements of M , the closer is Ǒ

B to the least squares estimator. The
larger the prior information, i.e., the smaller the diagonal elements of M , the more
the prior mean m dominates Ǒ

B . For the noninformative prior with m D 0 and
M�1 D 0 the Bayes estimator coincides with the least squares estimator, i.e.,

Ǒ
B D .X 0X/�1X 0y D Ǒ

LS:

Full Conditional Densities and MCMC Inference
Since the linear model is often a building block for more complex models where
analytical posterior analysis is impossible, we additionally discuss simulation-based
inference using MCMC methods. We develop a Gibbs sampler (see Appendix B.5.3
for an introduction), that consecutively draws random numbers from the full
conditional distributions of ˇ and �2.

We start by deriving the full conditional of ˇ. The density is proportional to the
density (4.17) of the posterior distribution, and we can disregard all factors which
are independent of ˇ. In the appendix of this chapter on p. 211, we derive the identity

.y � Xˇ/0.y � Xˇ/ D .ˇ � Ǒ /0X 0X.ˇ � Ǒ /C y 0.In � X.X 0X/�1X 0/y (4.18)

for the least squares criterion. Since the second summand does not depend on ˇ, we
obtain

p.ˇ j�/ / exp
�� 1

2�2
.y � Xˇ/0.y � Xˇ/

�
exp

�� 1
2�2
.ˇ � m/0M �1.ˇ � m/

�

/ exp
�
� 1
2�2
.ˇ � Ǒ /0X 0X.ˇ � Ǒ /

�
exp

�� 1
2�2
.ˇ � m/0M �1.ˇ � m/

�

for the full conditional of ˇ. This is the form of a multivariate normal distribution;
see Appendix B, Theorem B.4. According to the theorem, the covariance matrix is
given by
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˙ ˇ D
�
1

�2
X 0X C 1

�2
M �1

��1
: (4.19)

For the mean �ˇ, we obtain

�ˇ D ˙ ˇ

�
1

�2
X 0y C 1

�2
M �1m

�
: (4.20)

In summary, we have ˇ j � � N
�
�ˇ;˙ ˇ

�
.

Similarly, the full conditional distribution of �2 can be derived. We have

p.�2 j �/ / 1

.�2/
n
2

exp.� 1
2�2
.y � Xˇ/0.y � Xˇ//

1

.�2/
p
2 CaC1

exp
�� 1

2�2
.ˇ � m/0M �1.ˇ � m/� b

�2

�

D 1

.�2/aC
n
2 C

p
2 C1

exp
�� 1

�2

�
b C 1

2
.y � Xˇ/0.y � Xˇ/C 1

2
.ˇ � m/0M �1.ˇ � m/

��
:

This is the form of an inverse gamma distribution with parameters

a0 D a C n

2
C p

2
(4.21)

and

b0 D b C 1

2
.y � Xˇ/0.y � Xˇ/C 1

2
.ˇ � m/0M�1.ˇ � m/: (4.22)

Summarizing, we obtain the following Gibbs sampler:
1. Define initial values ˇ.0/ and .�2/.0/. Set t D 1.
2. Sample ˇ.t/ by drawing from the Gaussian full conditional with covariance

matrix (4.19) and mean (4.20). Replace in (4.19) and (4.20) �2 by the current
state of the chain .�2/.t�1/.

3. Sample .�2/.t/ by drawing from the inverse gamma full conditional with
parameters a0 and b0 given by Eqs. (4.21) and (4.22). Replace in Eqs. (4.21) and
(4.22) ˇ by the current state of the chain ˇ.t/.

4. Stop if t D T , otherwise set t D t C 1 and go to 2.

Example 4.13 Munich Rent Index—Quality of Kitchen
In Example 3.7 (p. 100), we were confronted with the problem to update the Munich rent
index 1999 with new data collected in 2001. Recall that we constructed a two period
model with an interaction between the quality of kitchen and the data collection period.
In this example, we follow a Bayesian approach to cope with the update problem. For
illustration, we again use model (3.7) of Example 3.5 (p. 90) augmented by the kitchen
dummy variables. Hence, the model consists of the transformed living area 1=area, a
cubic polynomial for year of construction, and the two kitchen dummies nkitchen (“normal
kitchen”) and pkitchen (“premium kitchen”). We first develop a Bayesian version of the
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Table 4.8 Munich rent index: estimation results based on the noninformative prior (4.16) for the
parameters

Standard 2.5 % 97.5 %
Variable Coefficient deviation Quantile Quantile

invarea 122.5,417 5.5,877 �111.5,955 �133.7,277
yearc �0.0861 0.0351 �0.1,549 �0.0174
yearc2 0.0015 0.0007 0.0002 0.0028
yearc3 0.0000 0.0000 0.0000 0.0000
nkitchen 0.9274 0.1258 0.6770 1.1840
pkitchen 1.1022 0.1873 �0.7410 1.4718
Results are based on the data collected in 1999

model based solely on the data for 1999. At that time we have no prior information regarding
the unknown parameters. We therefore use the noninformative prior (4.16). Although the
model could in principle be estimated analytically using the results of Box 4.5, we used
the Gibbs sampler outlined on p. 234 for inference. The reason is that the available software
packages usually do not support the analytical solution. Using the function bayesLMRef
of the R package spBayes, we obtained the results of Table 4.8. Up to sampling
imprecision, the posterior mean is identical to the least squares estimator (as suggested
by the analytically derived posterior). The posterior standard deviations and the quantiles
are also very close to the respective least squares standard errors and the 95 % confidence
intervals. Note that the analytical posterior mean (and mode) coincides exactly with the least
squares estimator, while the posterior standard deviation and quantiles are slightly different
from their least squares counterpart.

Turning our attention to the new data collected in 2001 for the rent index update, it seems
natural to use the posterior values obtained with the data from 1999 as prior information
for the new analysis. That is we estimate a Bayesian linear model using the data collected
in 2001 together with a NIG.m;M ; a; b/ prior with parameters derived from the posterior
obtained with the 1999 data. Clearly, m should be the empirical mean vector of the sampled
regression coefficients in the MCMC sampler for the 1999 data. Since the prior covariance
matrix is given by �2M , we set M D 1=O�2S , where S is the empirical covariance matrix
of the MCMC samples for the 1999 data and O�2 the empirical mean of the samples for �2.
To obtain prior values for a and b, we note that the mean and variance of the IG.a; b/ prior
for �2 are given by

E.�2/ D b
a � 1 ;

Var.�2/ D b2

.a � 1/2.a � 2/
D E.�2/2 1

a � 2 :

Solving for a and b yields

a D E.�2/C 2Var.�2/
Var.�2/

;

b D .a � 1/E.�2/:

Based on the analysis for the 1999 data, we can now replace E.�2/ and Var.�2/ by their
posterior estimates O�2 and s2

O�2
to obtain prior values for a and b.

Using these values for the NIG.m;M ; a; b/ prior, we arrive at the results given in
Table 4.9. The table is obtained from the function bayesLMConjugate in the R package
spBayes. For comparison, we additionally included the least squares estimates for the
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Table 4.9 Munich rent index: comparison of the Bayes estimate with informative prior and the
least squares estimate for the data collected in 2001

LS 2001 Bayes 2001

Variable Coeff. Std Coeff. Std

invarea 125.8373 7.2360 124.3540 3.3618
yearc �0.0335 0.0480 �0.0631 0.0208
yearc2 0.0004 0.0009 0.0010 0.0004
yearc3 0.0000 0.0000 0.0000 0.0000
nkitchen 1.2944 0.1701 1.0327 0.0795
pkitchen 1.7935 0.2714 1.2910 0.1193

2001 data. In particular for the kitchen dummies, the least squares estimates for the 2001
data differ considerably from those for the 1999 data (see Table 4.8). The Bayes estimator
is a compromise between the least squares results for the 1999 and the 2001 data. Although
the new data based on 2001 have an impact on the estimates for nkitchen and pkitchen, the
Bayes estimator is closer to the least squares estimate for the 1999 data. This is a clear
result of the prior which pulls the posterior mean to a certain extent towards the prior mean,
which is identical to the 1999 least squares estimate. We also observe that the posterior
standard deviations of the regression coefficients are considerably lower than the least
squares standard errors. This is again a result of the use of additional prior information. 4

4.4.2 Regularization Priors

In recent years, a number of “regularization priors” have been proposed in the
literature. The main idea is to define priors that have a similar effect as the penalties
in the penalized least squares approaches of Sect. 4.2. In this section we will develop
some of the most widely used Bayesian regularization priors. As this topic is
subject to extensive current research, our presentation cannot be exhaustive (but
see Sect. 4.5.1 for references). We start with a Bayesian version of ridge regression,
followed by Bayesian LASSO.

Throughout this section, the observation model is a classical linear model
given by

y j ˇ; �2 � N.ˇ01 C QX Q̌ ; �2I/;
where QX is the n � k-design matrix excluding the column of ones for the intercept
and Q̌ is the corresponding vector of regression coefficients excluding ˇ0. Since
the intercept is not subject to regularization, we assume a noninformative (diffuse)
prior, i.e.,

p.ˇ0/ / const :

We also assume that the intercept ˇ0 is independent of the other regression
coefficients Q̌ . For the variance parameter �2 we specify the usual inverse gamma
prior with hyperparameters a and b, i.e., �2 � IG.a; b/.



238 4 Extensions of the Classical Linear Model

Bayesian Ridge Regression
Ridge regression minimizes the penalized least squares criterion

PLS.ˇ/ D .y � Xˇ/0.y � Xˇ/C 	 Q̌ 0 Q̌ I (4.23)

see Sect. 4.2.2. Usually the intercept is not penalized so that here the penalty is
restricted to Q̌ D .ˇ1; : : : ; ˇk/

0. The penalty shrinks the parameters towards zero
in order to reduce the variance of the least squares estimator at the cost of a
(typically small) bias. The amount of penalization is governed by the parameter 	.
Small values for 	 correspond to negligible penalization, whereas large values lead
to strong penalization. Using a particular prior for the regression coefficients, we
obtain a Bayesian version of ridge regression. More specifically, we assume a priori
independent regression coefficients ˇj , j D 1; : : : ; k, and set

Q̌ j �2 � N.0; �2I/: (4.24)

Since the prior for the intercept is improper, the joint prior for ˇ D .ˇ0; Q̌ /0 is also
improper. It can be identified with a singular multivariate normal distribution (see
Appendix B.3.2) with mean 0 and precision matrix K D 1=�2diag.0; 1; : : : ; 1/.

We will show in the appendix of this chapter on p. 261 that maximizing the
corresponding posterior with respect to ˇ is equivalent to minimizing the penalized
least squares criterion (4.23) for fixed 	 D �2=�2.

While in the frequentist approach to ridge regression, the penalty parameter 	
is estimated outside of the optimization criterion, e.g., via cross validation, the
Bayesian approach allows for simultaneous inference for the regression coefficients
and the amount of penalization measured through �2. This is obtained by defining
an additional prior for �2. A convenient and flexible choice is an inverse gamma
distribution �2 � IG.a�2 ; b�2/, similar to the conjugate prior for �2 outlined above.
The advantage of this specification is that the full conditional for �2 is again an
inverse gamma distribution allowing for straightforward simulation-based MCMC
inference; see p. 240 below.

Introducing an additional prior for �2, however, changes the interpretation of
the prior. This is illustrated in Fig. 4.21 (left panel) which displays the log-prior
density, for a single parameter ˇj , conditional on �2 and the marginal log-prior with
the variance parameter �2 integrated out. The marginal log-prior is quite different
to the Gaussian conditional log-prior. It shows a distinct peak at zero with sharp
declines. To derive the marginal prior for Q̌ formally, we note that the joint prior
for Q̌ ; �2 is a NIG.0; I ; a�2 ; b�2/ distribution. The marginal prior for Q̌ is then
a multivariate t-distribution with 2a�2 degrees of freedom, location parameter 0,
and dispersion matrix b�2=a�2I ; see Property 5 in Appendix B.3.5. Note that the
diagonal dispersion matrix implies that the regression coefficients are marginally
uncorrelated. However, they are not stochastically independent as would be the case
if the marginal distribution would be multivariate Gaussian rather than a multivariate
t-distribution. In a multivariate t-distribution, a diagonal dispersion matrix implies
uncorrelated but not stochastically independent components.
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Fig. 4.21 Conditional (solid lines) and marginal (dashed lines) log-priors for the ridge (left panel)
and the LASSO prior (right panel). In case of the ridge prior, the plots are based on a D 0:28 and
b D 0:005 for the inverse gamma prior. In case of the LASSO, the plots correspond to a D 0:08

and b D 0:001. With these choices, roughly 90 % of the probability mass are contained in the
interval Œ�4; 4�. The hyperparameters are chosen such that the differences between conditional
and marginal distributions and between ridge and LASSO are best visible

Bayesian LASSO
The LASSO replaces the quadratic penalty of ridge regression by the sum of
absolute values leading to the penalized least squares criterion

PLS.ˇ/ D .y � Xˇ/0.y � Xˇ/C 	

kX

jD1
jˇj j: (4.25)

Similar to ridge regression, we define a prior for the regression coefficients such
that the corresponding posterior mode is obtained by minimizing (4.25). We again
assume (conditional) independence among the regression coefficients and arrive at
the prior

Q̌ j �21 ; : : : ; �2k � N.0; diag.�21 ; : : : ; �
2
k //; (4.26)

where now each regression coefficient ˇj has its own variance �2j . The joint prior of

ˇ D .ˇ0; Q̌ 0
/0 can again be identified with a singular multivariate normal distribution

with mean 0 and precision matrix K D diag.0; 1=�21 ; : : : ; 1=�
2
k /.

The variance parameters are assumed mutually independent with priors

�2j j � Expo.0:5	2/I

see Definition B.10 of Appendix B.1 for the exponential distribution. The marginal
distribution for ˇj obtained by integrating over �2j is a Laplace distribution with
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location parameter 0 and scale parameter 1=	, i.e., p.ˇj / / exp.�	jˇj j/; see
Definition B.8 in Appendix B.1 for the Laplace distribution. Based on this prior
specification it can be shown that the posterior mode for ˇ with fixed penalty
parameter 	 corresponds to minimizing the penalized least squares criterion (4.25).
The proof is left to the reader as an exercise.

Similar to Bayesian ridge regression, we can assign a hyperprior for 	 that
allows for simultaneous estimation of the regression coefficients and the amount
of penalization. Since the precision of the regression coefficients is given by
Var.ˇj /�1 D 2	2, we assign a gamma distribution to 	2, i.e., 	2 � G.a	; b	/.

Summarizing, the joint prior for ˇ, �2j , j D 0; : : : ; k, and 	 factors as

p.ˇ; �21 ; : : : ; �
2
k ; 	/ D p.ˇ0/ p. Q̌ j �21 ; : : : ; �2k / p.�21 j	/ � : : : � p.�2k j	/ p.	2/:

A summary of all prior assumptions for the Bayesian LASSO (and ridge regression)
can be found in Box 4.6.

We finally compare the LASSO prior with the ridge prior. The right panel of
Fig. 4.21 shows the log-prior logp.ˇj j	/, for a single parameter ˇj , conditional
on the parameter 	 together with the marginal log-prior with 	 integrated out. As
stated, the conditional prior is a Laplace distribution and therefore quite different
from the Gaussian conditional log-prior in case of ridge regression (see the left
panel of the figure). Somewhat surprisingly, the marginal log-priors appear to be
similar although the LASSO prior still has heavier tails than the ridge prior. This
is the reason why the Bayesian variants of ridge regression and the LASSO behave
often very similar in empirical studies; see Example 4.14.

Posterior Inference
In case of regularization priors the posterior is analytically intractable because
of the various variance hyperparameters involved. Therefore inference relies on
MCMC simulation techniques. In both cases, a Gibbs sampler can be derived to
subsequently draw from the full conditionals of the parameters. Box 4.7 summarizes
the resulting algorithms. For the LASSO, the derivation is given in the appendix of
this chapter on p. 262. For Bayesian ridge regression the derivation is in complete
analogy and left to the reader as an exercise.

Example 4.14 Prices of Used Cars—Bayesian Ridge and LASSO
This example compares the Bayesian variants of ridge regression and the LASSO with
their classical counterparts described in Sect. 4.2. Using the software package BayesX, we
obtained the estimates displayed in Table 4.10 together with their 95 % credible intervals.

The Bayesian ridge estimates behave quite similar to classical ridge regression. Both
variants provide similar results which are also very close to the unpenalized least squares
estimate for these data. On the other hand, both LASSO variants show pronounced
differences. Most striking is that the Bayesian LASSO does not allow removal of a
covariate from the model, as is possible with the classical LASSO. The reason is that
the Bayesian LASSO point estimator is the posterior mean or median (rather than the
posterior mode) estimated via MCMC. Since the posterior for the regression coefficients
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4.6 Regularization Priors

Observation Model

y j ˇ; �2 � N.ˇ01 C QX Q̌ ; �2I/

Common Prior Assumptions

p.ˇ0/ / const

�2 � IG.a; b/

Ridge Prior

Q̌ j �2 � N.0; �2I/

�2 � IG.a�2 ; b�2/

LASSO Prior

Q̌ j �21 ; : : : ; �2k � N.0; diag.�21 ; : : : ; �
2
k //

�2j j	 iid� Expo.0:5	2/

	2 � G.a	; b	/

Software

Software package BayesX.

is typically skewed, the posterior mean and median will not coincide with the posterior
mode, and, as a consequence, will always be different from zero. This is a distinct
disadvantage of the Bayesian LASSO, as the main attraction of the classical LASSO is lost:
the ability to perform variable selection. On the other hand, the sampling-based approach
provides richer information regarding the posterior, such as posterior standard deviations
and quantiles. A possible way to identify redundant covariates with the Bayesian LASSO
(as well as Bayesian ridge regression) is to dismiss all covariates which have Bayesian
credible intervals covering zero. Bayesian credible intervals are easily constructed from
the corresponding posterior quantiles. For instance, the 95 % credible intervals displayed
in Table 4.10 are composed of the 2.5 % quantile as the lower bound and the 97.5 %
quantile as the upper bound. Based on the 95 % credible intervals only the variables ageop1,
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4.7 Regularization Priors—Gibbs Sampler

1. Initialization:
• Define initial values ˇ.0/, .�2/.0/, and .�2/.0/ (ridge), .�21 /

.0/; : : : ; .�2k /
.0/;

	.0/ (LASSO).
• Set t D 1 and specify the number of iterations T .

2. Sample ˇ: Draw ˇ.t/ j � � N.�ˇ; ˙ˇ/ with �ˇ and ˙ˇ given by

˙ ˇ D
�
1

�2
X 0X C K

��1
�ˇ D 1

�2
˙ ˇX 0y :

Here K D 1=�2 � diag.0; 1; : : : ; 1/ in case of ridge regression and K D
.0; 1=�21 ; : : : ; 1=�

2
k / in case of LASSO.

3. Sample �2: Sample .�2/.t/ from the full conditional of �2 which is inverse
gamma with parameters

anew D a C n

2
; bnew D b C 1

2
.y � Xˇ/0.y � Xˇ/:

4. Sample variance parameters:
• For the ridge prior draw .�2/.t/ j � from an inverse gamma distribution

with parameters

anew D a C k

2
; bnew D b C 1

2
Q̌ 0 Q̌ :

• For the LASSO prior, sample

.1=�2j /
.t/ j � � InvGauss. j	j

jˇj j ; 	
2/;

.	2/.t/ j � � G

0

@a C k; b C 1
2

kX

jD1
�2j

1

A :

5. Stop if t D T , otherwise set t D t C 1 and proceed with step 2.

ageop2, kilometerop1, and kilometerop2 are “relevant”, while the others are redundant (see
Table 4.10).

Finally we note that the Bayesian LASSO appears to induce less shrinkage than the
classical LASSO. In fact, Bayesian ridge regression and LASSO show quite similar
shrinkage behavior. Indeed, Table 4.10 shows that both regularization variants, albeit
conceptually different, produce almost identical posterior estimates. This is in agreement
with our theoretical findings on p. 239; see in particular Fig. 4.21. 4
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Table 4.10 Prices of used cars: posterior mean and 95 % credible intervals for Bayesian ridge
regression and LASSO

Bayesian ridge Bayesian LASSO Ridge LASSO LS

Variable Coeff. 95 % CI Coeff. 95 % CI Coeff. Coeff. Coeff.

ageop1 �0.682 (�0.802,�0.559) �0.694 (�0.813, �0.563) �0.672 �0.682 �0.709
ageop2 0.165 (0.052,0.280) 0.163 (0.052,0.270) 0.164 0.150 0.172
ageop3 0.014 (�0.089,0.128) 0.011 (-0.099,0.113) 0.015 – 0.016
kilometerop1 �0.428 (�0.541, �0.308) �0.424 (�0.545,�0.303) �0.425 �0.412 �0.437
kilometerop2 0.140 (0.028,0.252) 0.126 (0.012,0.244) 0.138 0.110 0.142
kilometerop3 0.013 (�0.103,0.125) 0.009 (�0.085,0.108) 0.010 – 0.009
TIA �0.005 (�0.021,0.011) �0.004 (�0.020,0.012) �0.005 – �0.005
extras1 �0.093 (�0.332,0.152) �0.075 (�0.306,0.124) �0.104 �0.036 �0.114
extras2 �0.030 (�0.257,0.211) �0.022 (�0.240, 0.200) �0.042 – �0.031
For comparison the last three columns contain results for classical ridge and LASSO regression as
well as the least squares estimator

4.4.3 Classical Bayesian Model Choice (and Beyond)

The classical approach to Bayesian model choice is to compare the models
under consideration through their posterior model probabilities (PMP); see
Appendix B.5.4 for a general introduction to Bayesian model choice. In this section,
we apply this framework to linear models.

Suppose we are given a number of potential covariates and there is uncertainty
as to which of the covariates should enter the model. For k possible regressors there
are 2k different models when the intercept ˇ0 is always included. Denote by Mr ,
r D 1; : : : ; 2k , the different models. More specifically,Mr is given by

y j ˇ; �2;Mr D y jˇ0; Q̌
r ; �

2;Mr � N.ˇ01 C QX r
Q̌
r ; �

2I/;

where the kr � n-design matrix QX r consists of all kr covariates included in Mr and
Q̌
r is the corresponding vector of regression coefficients. As usual, the vector ˇ is

the full vector of regression coefficients (including the intercept). Those components
of ˇ not contained in Q̌

r are zero in modelMr .
We assign the normal-inverse gamma prior discussed in Sect. 4.4.1 to ˇ0, Q̌

r , and
the error variance �2, i.e., ˇ0; Q̌

r j �2;Mr � N.mr ; �
2M r /, and �2 jMr D �2 �

IG.a; b/. This results in the prior distribution

p.ˇ0; Q̌
r ; �

2 jMr/ D p.ˇ0; Q̌
r j �2;Mr/ p.�

2/ D N.mr ; �
2M r / � IG.a; b/:

For completeness, we combine the zero components of ˇ in the .k�kr/-dimensional
vector Q̌ �r with a Dirac prior at .0; : : : ; 0/0

p. Q̌ �r jˇ0; Q̌
r ; �

2;Mr/ D p. Q̌ �r jMr/ D Dirac.0; : : : ; 0/:
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The Dirac prior concentrates all probability mass onto the point .0; : : : ; 0/0, i.e.,
P. Q̌ �r D .0; : : : ; 0/0 jMr/ D 1 and zero otherwise. Thus the prior for ˇ and �2

under modelMr factors into

p.ˇ; �2 jMr/ D p. Q̌ �r jˇ0; Q̌
r ; �

2;Mr/ p.ˇ0; Q̌
r ; �

2 jMr/:

To compare models using their posterior probabilities, we additionally have to
assign prior probabilities to each model Mr . A popular prior is

p.Mr/ D �kr .1 � �/k�kr ; (4.27)

i.e., every possible covariate enters the model independently and with inclusion
probability � 2 .0; 1/. The “natural” choice � D 1=2 results in a uniform prior
p.Mr/ D 1=2k, i.e., each model Mr has the same prior probability.

Prior (4.27) with inclusion probability � implies a certain prior distribution on
the size of the models, denoted by S . Let ıj , j D 1; : : : ; k, be inclusion indicators
with ıj D 1 if covariate xj is included in the model and 0 otherwise. Then ıj has
a Bernoulli distribution, i.e., ıj � B.1; �/, and the model size S has a binomial
distribution with

S D
kX

jD1
ıj � B.k; �/;

resulting in a prior mean model size of E.S/ D � � k and variance Var.S/ D � �
.1� �/ � k (see Definition B.1 in Appendix B.1). In light of these results, the choice
� D 1=2 seems less natural as suggested at first sight. In particular for a large
number k of possible predictors, the prior expected model size appears to be much
higher than one would typically expect in applications. For instance, for k D 50

potential covariates, the prior expected model size of E.S/ D 25 seems to be far too
high for most applications.

A convenient way to elicit the model prior (4.27) is to specify the prior mean
model size E.S/ and then to set � D E.S/=k. For instance, if we have k D 20

potential regressors and assume a priori a model size of E.S/ D 5, then we must set
� D 5=20 D 1=4.

Based on our prior assumptions, the posterior probability for model Mr is
given by

p.Mr j y/ D p.y jMr/ p.Mr/

2kX

hD1
p.y jMh/p.Mh/

; (4.28)

where p.y jMr/ is the marginal likelihood obtained as
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p.y jMr/ D
Z
p.y jˇ0; Q̌

r ; �
2;Mr/ p.ˇ0; Q̌

r ; �
2 jMr/ dˇ0 d Q̌

r d�
2:

It can be shown that p.y jMr/ is multivariate t-distributed with 2a degrees of
freedom, location parameter X rmr , and dispersion matrix I C X rM rX

0
r , where

X r D .1 QX r /; see p. 264 in the appendix of this chapter for the derivation. The
Bayes factor for two competing modelsMr and Ms is obtained as

BFrs D p.y jMr/

p.y jMs/
:

With QM r D .X 0
rX r C M �1

r /
�1, it results in

BFrs D
 

j QM r jjM s j
j QM s jjM r j

!1=2  
2a C .y � X sms/

0.I � X s
QM sX

0
s/.y � X sms/

2aC .y � X rmr /0.I � X r
QM rX 0

r /.y � X rmr /

!aCn=2
I

(4.29)
see again p. 264 for a derivation.

Once the posterior probabilities p.Mr j y/ are computed for every model Mr

under consideration, there are several ways to summarize the results. If the primary
focus is on selecting one single (preferably sparse) model, often the modelM	 with
highest posterior probability is taken and inference for the regression coefficients
is based on the posterior p.ˇ	; �2 j y;M	/ conditional on model M	. If model
selection is done by minimizing the BIC, as in Sect. 3.4.2 of the previous chapter,
we exactly follow this strategy. However, Barbieri and Berger (2004) point out
that often the model M	 with highest posterior probability is not optimal in terms
of prediction. They show that the optimal predictive model is often the median
probability model. This model consists of those covariates with posterior probability
of 1/2 and higher for being in the model.

Both approaches, however, ignore model uncertainty. In many applications, there
are a number of models which are close in terms of posterior probabilities. If this
is the case, inference for ˇ (or any other quantity of interest) is better conducted
by model averaging where the models are weighted by their posterior probability.
More specifically, the posterior is given by

p.ˇ; �2 j y/ D
2kX

rD1
p.ˇ; �2 j y;Mr/ p.Mr j y/; (4.30)

where p.ˇ; �2 j y ;Mr/ is the conditional posterior under model Mr and p.Mr j y/

is the corresponding posterior model probability given in Eq. (4.28). While models
with high posterior probability make important contributions to the posterior, those
with negligible posterior probability will contribute only very little information. If
most models coincide in their posterior assessment of specific subvectors of ˇ, this
assessment will also carry over to the model-averaged estimate.
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While the computation of the posteriors p.ˇ; �2 j y;Mr/ and p.Mr j y/ required
to obtain Eq. (4.30) is straightforward for a particular model Mr , it may be
prohibitive for all models. The problem is that the number of possible models grows
exponentially with k. For k � 25 regressors, enumeration of all models under
consideration is usually possible in the available software packages. If k exceeds 25,
more sophisticated algorithms are necessary. The model space then can be explored
via MCMC simulation techniques. In doing so, we usually do not visit all models
but those models with relatively high posterior probabilities. One such Monte Carlo
approach is the MC3 algorithm of Madigan and York (1995); see also Fernandez
et al. (2001). The MC3 algorithm for exploring model space works as described in
Box 4.8.

As already mentioned, eliciting the conjugate prior is difficult in practice as it
contains four hyperparameters: the prior mean mr , the prior covariance M r for
the regression coefficients, as well as the inverse gamma parameters a and b of
the variance prior. Therefore in applications and software packages a modified
prior structure often is assumed that requires to specify less hyperparameters. Fully
noninformative priors are not possible if variable selection should be an integral
part of the analysis as then the Bayes factor is not determined; see Appendix B.5.4.
A widely used choice is to assume a noninformative prior for the intercept, Zellner’s
g-prior for the regression coefficients in combination with a zero prior mean, and a
noninformative prior for the variance. This leads to the prior structure

p.ˇ0/ / const;

p. Q̌
r j �2;Mr/ � N.0; �2.g QX 0

r
QX r /

�1/;

p.�2/ / 1
�2
:

(4.31)

This prior depends only on one hyperparameter which reduces initialization of the
prior to the choice of the factor g. An alternative to Zellner’s g-prior is to assume a
priori independence among the regression coefficients leading to p. Q̌

r j �2;Mr/ �
N.0; �2I/. These priors take us outside the conjugate model framework because of
the improper priors for the intercept and the overall variance. Although the prior
is partially improper, posterior analysis including model choice is possible because
the intercept and the variance are the same for all models, so that Bayes factors are
uniquely determined. Moreover, the MC3 algorithm for exploring the model space
can be easily adapted. Using Zellner’s g-prior, the Bayes factor required to compute
the acceptance rate (4.33) is given by

BFrs D
�

g

g C 1

� kr�ks
2
�
1C g �R2s
1C g �R2r

� n�1
2

; (4.32)
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4.8 MC3 Algorithm

Algorithm

1. Choose a start model Mr0 with r0 2 f1; : : : ; 2kg and the number T of
iterations. Set t D 1.

2. Propose a new model Mr	 randomly from the neighborhood models
of the current model Mrt�1 . The neighborhood of Mrt�1 consists of all
models that are obtained by adding or deleting one variable. Accept the
newly proposed model with acceptance probability

˛.Mr	 jMrt�1/ D min

�
p.y jMr	/ p.Mr	/
p.y jMrt�1/ p.Mrt�1/

; 1



D min

�
BFr�;rt�1

p.Mr	/
p.Mrt�1 /

; 1

 (4.33)

as the current modelMrt . Otherwise set Mrt D Mrt�1 .
3. Update the full parameter vector ˇ by sampling from the full conditional

of the model parameter vector ˇrt (see the derivation on p. 234) and
setting all other parameters in ˇ to zero.

4. Update the error variance �2 by sampling from the full conditional (see
again the derivation on p. 234).

5. Stop if t D T , otherwise set t D t C 1 and go to 2.

Software

• R package BMS.
• Other R packages for Bayesian variable selection (partly based on other

methodology than described here) are BAS and BMA.

where R2r and R2s are the coefficients of determination of models Mr and Ms .
Sampling the regression parameters ˇ and �2 is done by a Gibbs sampler that
consecutively samples from the full conditionals of ˇr D .ˇ0; Q̌

r /
0 and �2. Since

the prior for ˇ0 is improper, joint updating ˇ0 and Q̌
r is not straightforward. The

joint prior for ˇ0 and Q̌
r can be written as

p.ˇ0; Q̌
r j �2/ / exp

�
1

2�2
ˇ0
rKˇr

�
;

where the precision matrix K is given by

K D
 
0 0

0 g QX 0
r

QX r

!
:
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Now the full conditional is expressed as

p.ˇr j �/ / exp
�� 1

2�2
.y � X rˇr /

0.y � X rˇr /
�

exp
�� 1

2
ˇ0
rKˇr

�

/ exp
�
� 1
2�2
.ˇr � Ǒ

r /
0X 0

rX r .ˇr � Ǒ
r /
�

exp
�� 1

2
ˇ0
rKˇr

�
;

where we have again used identity (4.18). Applying Theorem B.4 (p. 649) of
Appendix B.3 with A D 1

�2
X 0
rX r , a D Ǒ

r , B D K , and b D 0 shows that
the full conditional is multivariate Gaussian with covariance matrix ˙ ˇr and mean
�ˇr given by

˙ ˇr D
�
1

�2
X 0
rX r C K

��1
�ˇr D 1

�2
˙ ˇrX

0
ry :

The full conditional of �2 is given by

p.�2 j �/ / 1

.�2/n=2
exp

�� 1
2�2
.y � X rˇr /

0.y � X rˇr /
�

1

.�2/kr =2
exp

�
� 1
2�2

Q̌ 0
rg

QX 0
r

QX r
Q̌
r

�
1

�2
;

which can be identified with an inverse gamma distribution with parameters

a D nC kr

2
b D 1

2

�
.y � X rˇr /

0.y � X rˇr /C Q̌ 0
rg

QX 0
r

QX r
Q̌
r

�
:

Assuming p. Q̌
r j �2;Mr/ � N.0; �2I/ instead of Zellner’s g-prior, the Bayes

factor and the Gibbs sampler are similar, details are left to the reader as an exercise.

Example 4.15 Prices of Used Cars—Bayesian Model Averaging (1)
We illustrate the Bayesian approach for model choice using the data on the price of
used cars. As in Example 3.19 (p. 152), we assume possibly nonlinear effects for the
variables age and kilometer modeled through the orthogonal cubic polynomials ageop1,
ageop2, ageop3 and kilop1, kilop2, kilop3; see Example 3.5 on p. 90 for orthogonal
polynomials. Together with the regressors TIA, extras1, and extras2 we have k D 9

potential covariates. We used the package BMS of R for the analysis; see Zeugner (2010) for
a tutorial. We started with a uniform prior for the models, i.e., � D 1=2 in Eq. (4.27), and
g D 1=n for Zellner’s g-prior. Table 4.11 provides a summary of the preliminary results.
From left to right, the columns correspond to the variable names, the posterior inclusion
probabilities (PIP), the posterior estimates for the regression coefficients together with their
standard deviations, the probability of a positive sign for the respective coefficient, and (for
comparison) the least squares estimates. The PIP is the ratio between the number of visited
models that include a particular covariate and the total number of visited models. Similarly,
the probability of a positive sign reflects the ratio between models with positive sign for a
covariate and the total number of models.

For the covariates ageop1; ageop2; kilop1; and kilop2 with high inclusion probabilities
(> 0:5), the Bayesian estimator averaged over the models is quite close to the ordinary
least squares estimator. For the remaining covariates, the inclusion probabilities are very
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Table 4.11 Prices of used cars: posterior inclusion probabilities (PIP), model averaged estimated
coefficients and standard deviations, probabilities of positive sign, and for comparison the ordinary
least squares estimates

Variable PIP Mean Std. dev. Cond. pos sign LS

ageop1 1.00 �0.7065 0.0621 0 �0.7085
ageop2 0.94 0.1823 0.0721 1 0.1716
ageop3 0.07 0.0009 0.0156 1 0.0162
kilop1 1.00 �0.4345 0.0616 0 �0.4366
kilop2 0.61 0.0872 0.0827 1 0.1417
kilop3 0.07 0.0011 0.0160 1 0.0090
TIA 0.08 �0.0003 0.0025 0 �0.0051
extras1 0.11 �0.0127 0.0565 0 �0.1135
extras2 0.07 �0.0029 0.0374 0 �0.0315
The results are based on a uniform prior for the models (� D 0:5) and g D 1=n for Zellner’s g

Table 4.12 Prices of used cars: top five models T1–T5 with highest posterior probabilities

Variable T1 T2 T3 T4 T5

ageop1 C C C C C
ageop2 C C C C C
ageop3 � � � � �
kilop1 C C C C C
kilop2 C � C C C
kilop3 � � � � �
TIA � � � C �
extras1 � � C � �
extras2 � � � � C
PMP 0.375 0.250 0.040 0.032 0.030
The results are based on a uniform prior for the models (� D 0:5) and g D 1=n for Zellner’s g.
A plus (minus) sign indicates that the variable is included in (excluded from) the model. The last
row displays the posterior model probabilities (PMP).

low and the model averaged estimates are shrunk to zero compared to least squares. As
can be seen from Table 4.12, the covariates with high inclusion probability also build the
two models with by far the highest posterior probabilities. The top model, with posterior
model probability of 0.37, consists exactly of the four covariates with inclusion probabilities
higher than 0.5. In this case, the median probability model, that consists of those covariates
with posterior probability of 1/2 and higher for being in the model, coincides with the
model with highest posterior probability. The second model, with posterior probability 0.25,
additionally excludes the variable kilop2. All other models have comparably low posterior
probabilities. Note that the model with highest posterior probability corresponds exactly to
the best AIC model of Example 3.19. It is also close to the model obtained with the LASSO
in Example 4.11, which additionally contains covariate extras1.

We conclude the example by an investigation of the sensitivity of results on prior
assumptions, particularly on the prior expected model size E.S/. The upper panel of
Fig. 4.22 compares the PIP for the three models with � D 1=2, � D 2=9, and � D 8=9

corresponding to expected model sizes E.S/ D 4:5, E.S/ D 2, and E.S/ D 8. Clearly,
the results are quite sensitive to the choice of � and E.S/. Except for ageop1, ageop2,
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Fig. 4.22 Prices of used cars: comparison of posterior inclusion probabilities with � D 1=2

(corresponds to expected model size E.S/ D 4:5), � D 2=9 (E.S/ D 2), and � D 8=9

(E.S/ D 8). The upper panel corresponds to fixed � . The lower panel corresponds to a beta
hyperprior for �

and kilop1, the PIP differ considerably, e.g., for kilop2 from 0:33 (E.S/ D 2/ over 0:61
(E.S/ D 4:5) to 0:92 (E.S/ D 8). We will explain the reasons of this undesirable behavior
below. 4
The example shows that the results can be strongly affected by the prior choice

for � and the corresponding prior on the model size. Indeed, if � is chosen as
� D E.S/=k, then the induced prior for the model size S places relatively small
probability mass on model sizes that are moderately far away from the mean E.S/.
This is illustrated with Fig. 4.23 which shows, for k D 10 (left column) and k D 40

(right column) regressors, some priors for model size based on different choices for
� (dashed lines). In particular, with asymmetric prior expected model size E.S/
and for k D 40, a broad range of possible model sizes has virtually no prior
probability mass. As a result, estimates are often quite sensitive to the choice of
the prior expected model size.

A remedy to reduce the dependence of results on the prior choice is to introduce
a hyperprior in a further stage of the hierarchy. In our case, a flexible and
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Fig. 4.23 Priors for model size. The left column shows various priors for model size with k D 10

potential regressors; the right column corresponds to k D 40. The solid lines correspond to a
Beta.a; b/ hyperprior for � . The dashed lines correspond to fixed �

convenient choice for � is to assume a beta distribution with hyperparameters a
and b (Ley & Steel, 2009), i.e., � � Beta.a; b/. For the beta distribution see also
Definition B.2 in Appendix B.1.
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Since S j � � B.k; �/, the marginal distribution for S is beta-binomial (see
Definition B.3 in Appendix B.1), i.e., S � BetaB.k; a; b/ with prior model size
distribution

P.S D s/ D � .a C b/

� .a/� .b/� .a C b C k/

 
k

s

!
� .a C s/� .b C k � s/;

and mean and variance given by

E.S/ D a

a C b
k;

Var.S/ D ab.a C b C k/

.a C b/2.a C b C 1/
k:

(4.34)

To ease initiation of the prior, we fix a D 1, which still allows for very flexible
priors. To choose b, we rearrange E.S/ in Eq. (4.34) to obtain b D .k�E.S//=E.S/.
Hence, similar to fixed � , we can choose the prior expected model size to fully
specify the prior. As can be seen from Fig. 4.23, the (marginal) prior for model size
S shows much more variability compared to fixed � so that all possible model sizes
have positive probability mass.

Using a Beta.a; b/ hyperprior requires a slight modification of the MC3 algo-
rithm as the prior model odds in Eq. (4.33) has to be adapted. The marginal prior for
modelMr is obtained by integrating over �

p.Mr/ D � .a C b/

� .a/� .b/

� .aC kr/� .b C k � kr/
� .aC b C k/

I (4.35)

see the appendix of this chapter, p. 266, for a derivation.
Using formula (4.35) the prior odds between two models Mr and Ms required

for Eq. (4.33) in the MC3 algorithm are easily computed as

p.Mr/

p.Ms/
D � .aC kr/� .b C k � kr/
� .a C ks/� .b C k � ks/ :

Example 4.16 Prices of Used Cars—Bayesian Model Averaging (2)
We rerun the three regressions of Example 4.15, again with prior expected model size
E.S/ D 2; 4:5; 8, but now with a beta hyperprior for � . The bottom panel of Fig. 4.22
compares the PIP for the nine possible covariates. The probabilities are now quite close to
each other. An exception are the PIP for kilop2, where there is some inclusion uncertainty.
For two of the three model priors (with E.S/ D 4:5 and E.S/ D 8) the best model with
highest posterior probability consists of the covariates ageop1, ageop2, kilop1, and kilop2.
The model that excludes kilop2 is the second best model. It is also the best model for prior
expected model size E.S/ D 2. All other models have very low posterior probabilities.

In summary, we are quite certain that only two covariates, the age of the car and the
kilometer reading, are relevant predictors for the price. A second-order polynomial is
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sufficient to model the nonlinear effects of the two covariates. There is some uncertainty
whether a linear effect for kilometer reading is sufficient. Note also that the quadratic effect
of kilometer reading is already close to linearity; see Fig. 3.22 (p. 155). 4
We finally note that there are also approaches to specify an additional hyperprior

for the factor g. Details can be found in Liang, Paulo, Molina, Clyde, and Berger
(2008). The approach is also implemented in the R package BMS.

4.4.4 Spike and Slab Priors

We again consider the Bayesian linear variable selection model of the previous
section; see Box 4.9 for a summary. For simplicity, we restrict ourselves to a priori
independent regression coefficients, i.e., p.ˇr j �2;Mr/ � N.0; �2I/.

We now present an equivalent model formulation that provides further insight
and gives rise to interesting modifications. In the last section, we specified the prior
p.Mr j �/ D �kr � .1� �/k�kr for the modelsMr together with a Beta.a� ; b� / prior
for � . Each modelMr can also be identified with a specific vector ır of the inclusion
indicators ı D .ı1; : : : ; ık/

0. Recall that the j th component ıj of ı defines whether
or not the j th covariate xj is included in the model. The model prior can now be
specified equivalently in terms of the inclusion indicator ı by assuming

ıj j � i:i:d:� B.1; �/;

i.e., P.ıj D 1/ D � and P.ıj / D 1 � � . Hence, we assume a priori that a particular
covariate xj enters the model with inclusion probability � . Since posterior analysis
is based on MCMC simulations, we can interpret the relative frequency of ıj D 1

in the MCMC samples as the posterior probability that xj enters the model.
The priors for the regression coefficients ˇj , j D 1; : : : ; k, can now be defined

in dependence of the inclusion vector ı by assuming the mixture prior

p.ˇj j ıj ; �2/ D .1 � ıj /Dirac.0/C ıj N.0; �2/: (4.36)

The mixture prior has the following interpretation: If ıj D 0 the first component
in Eq. (4.36) is “activated” and the corresponding regression coefficient is zero with
probability one. In other words, covariate xj is removed from the model. We call
this first part of the mixture prior the spike component. For ıj D 1, we have the usual
normal prior for ˇj . This part of the mixture prior is called the slab component.

We summarize the alternative formulation of the model in Box 4.10. This is fully
equivalent to the model of the previous Sect. 4.4.3. We presented the alternative
formulation in terms of spike and slab priors because it gives rise to various other
approaches related to Bayesian variable selection, which may be preferable in some
situations. The main disadvantage of the spike and slab mixture prior (4.36) (and the
equivalent model of the previous section) is that the MCMC algorithms for Bayesian
inference require computation of the marginal likelihood, which is only analytically
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4.9 Bayesian Linear Variable Selection Model

Observation Model Conditional on Model Mr

y j ˇ; �2;Mr � N.ˇ01 C QX r
Q̌
r ; �

2I/:

Prior Structure Conditional on Model Mr

p.ˇ; �2 jMr/ D p. Q̌ �r jˇ0; Q̌
r ; �

2;Mr/ p.ˇ0; Q̌
r ; �

2 jMr/

D p. Q̌ �r jˇ0; Q̌
r ; �

2;Mr/ p.ˇ0 jMr/ p. Q̌
r j �2;Mr/ p.�

2 jMr/;

with
p. Q̌ �r jˇ0; Q̌

r ; �
2;Mr/ D Dirac.0; : : : ; 0/;

p.ˇ0 jMr/ D p.ˇ0/ / const;

p. Q̌
r j �2;Mr/ � N.0; �2.g QX 0

r
QX r /

�1/;

p.�2 jMr/ D p.�2/ � 1
�2
:

An alternative to Zellner’s g-prior is to assume independent regression
coefficients and assume p. Q̌

r j �2;Mr/ � N.0; �2I/.

Model Prior

Fixed inclusion parameter

p.Mr/ D �kr .1 � �/k�kr :
Stochastic inclusion parameter

p.Mr j �/ D �kr .1 � �/k�kr

� � Beta.a� ; b�/:

available in special cases, e.g., the linear model. In many other settings, for instance
in the regression models with non-normal responses, discussed in Chaps. 5 and 6,
the marginal likelihood is not analytically, and also not often numerically, tractable.

The recent literature has therefore proposed various alternatives. An approach
due to George and Mc Culloch (1993) that is conceptually close replaces the mixture
prior (4.36) by

p.ˇj j ıj ; �2/ D .1 � ıj /N.0; �0 �2/C ıj N.0; �2/; (4.37)
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4.10 Spike and Slab Priors

Observation Model

y j ˇ; �2 � N.ˇ01 C Q̌ QX ; �2I/
Spike and Slab Prior for the Regression Coefficients

Dirac spike

p.ˇj j ıj ; �2/ i idD .1 � ıj /Dirac.0/C ıj N.0; �2/ for j D 1; : : : ; k.

Continuous normal spike

p.ˇj j ıj ; �2/ i idD .1 � ıj / N.0; �0 �2/C ıj N.0; �2/; with �0 “small.”

Spike and Slab Prior for the Variances

ˇ1; : : : ; ˇk j �21 ; : : : ; �2k � N.0; diag.�21 ; : : : ; �
2
k //.

Dirac spike

�2j j ıj i idD .1 � ıj /Dirac.0/C ıj IG.a�2 ; b�2/.

Continuous inverse gamma spike

�2j j ıj i idD .1 � ıj / IG.a�2 ; �0b�2/C ıj IG.a�2 ; b�2/ with �0 “small.”

Common Prior Assumptions

p.ˇ0/ / const

�2 � IG.a; b/

ıj j � i id� B.1; �/

� � Beta.a� ; b� /

Software

• Software package BayesX for continuous variance spikes.
• R package BMS for Dirac spikes for the regression coefficients.
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where the Dirac spike at 0 is replaced by the N.0; �0�2/ distribution. The variance
component �0 is a hyperparameter and is chosen very small (close to zero), such
that the spike part has very small variance. Consequently if ıj D 0, then the small
variance of the spike part, in combination with the zero mean, ensures that the
corresponding regression coefficient is essentially zero. Hence, ıj D 0 still implies
that covariate xj is (essentially) removed from the model. The main advantage of the
alternative mixture prior (4.37) is that MCMC inference is simplified considerably
since the computation of marginal likelihoods can be avoided.

A different concept due to Ishwaran and Rao (2005) focuses on the prior variance
of the regression coefficients. Recall the Bayesian LASSO, where we assigned
independent normal distributions to the regression coefficients ˇj conditional on
the variance parameters �2j , i.e., ˇj j �2j � N.0; �2j / or

Q̌ j �21 ; : : : ; �2k � N.0; diag.�21 ; : : : ; �
2
k //:

Spike and slab priors for the variances are based on the observation that the
regression coefficient ˇj is estimated essentially zero if the corresponding variance
parameter �2j is zero or at least close to zero. The prior mean of zero, in combination
with (near) zero variance, then guarantees that ˇj cannot deviate far from zero,
which in turn implies that the corresponding covariate xj is essentially removed
from the model.

The idea now is to specify a prior for the variances �2j that puts relatively large
probability mass on near zero variance. This can again be obtained using a mixture
distribution. One such approach is a mixture of a Dirac spike at 0 and an inverse
gamma slab given by

�2j j ıj D .1 � ıj / � Dirac.0/C ıj � IG.a�2 ; b�2/;

where ıj 2 f0; 1g again is an indicator variable. Alternatively, we can use a mixture
of two inverse gamma distributions. More specifically, we obtain

�2j j ıj D .1 � ıj / � IG.a�2 ; �0b�2/C ıj � IG.a�2 ; b�2/; (4.38)

where the hyperparameter �0 is chosen to be small. This prior has the following
interpretation: The mean, mode, and variance of an IG.a; b/ distribution are
given by

E.X/ D b

a � 1 a > 1;

Mod.X/ D b

a C 1
;

Var.X/ D b2

.a � 1/2.a � 2/ a > 2:
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Fig. 4.24 Spike and slab priors: marginal density of the variance parameter �2j for some
hyperparameter combinations

Provided that �0 is very small, the first component in Eq. (4.38) has its mode (and
mean if it exists) close to zero while the variability of the prior is limited. Thus,
the first component makes sure that the marginal prior for �2j will have a spike near
zero. The second component in Eq. (4.38), the slab part, can be seen as the “usual”
variance prior if the corresponding covariate should be included in the model. To
shed more light on the distribution of the variance component, Fig. 4.24 shows the
marginal density (with ıj integrated out) of the variance parameter �2j for some
hyperparameter combinations. The characteristic feature is the “spike” at zero.

A summary of the various spike and slab approaches is given in Box 4.10. For
illustration, in the appendix of this chapter (p. 266), we derive a Gibbs sampler
for the continuous variance spike and slab prior (4.38). The derivation of Gibbs
samplers for the other spike and slab variants is similar and left as an exercise to the
reader. The great advantage of spike and slab priors for the variances, rather than
the regression coefficients, is that updating of the variance and inclusion parameters
is independent of the observation model. This means that the concept carries over
to more complex models, e.g., the regression models for non-normal responses
of Chaps. 5 and 6. If we are able to update the regressions coefficients, which
is typically possible even in complex models, the remaining update steps remain
unchanged.

4.5 Bibliographic Notes and Proofs

4.5.1 Bibliographic Notes

For modeling correlated errors in Sect. 4.1.4, we only examined autoregressive
processes of first order. More complex error structures, especially ARMA models
(Autoregressive Moving Average), are treated in greater detail in the literature
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focusing on time series analysis. Standard books are Brockwell and Davis (2002)
and Hamilton (1994).

A standard book for variable selection in linear models is Miller (2002). A good
overview on regularization approaches, such as ridge regression and the LASSO,
can be found in Hastie, Tibshirani, and Friedman (2009). Alternative regularization
approaches based on different penalties are, for example, bridge regression, where
general norms of coefficient vectors are used as penalties (Fu, 1998), or the elastic
net that is a compromise between ridge regression and LASSO (Zou & Hastie
2005). The latter has the particular advantage to select complete blocks of correlated
coefficients instead of only single representatives of such groups. Penalties with
a similar aim are defined in the octogonal shrinkage and clustering algorithm for
regression (OSCAR, Bondell & Reich, 2008) or with the smoothly clipped absolute
deviation (SCAD, Fan & Li, 2001).

Boosting approaches in a regression context, including theoretical properties, are
described in Friedman (2001), Bühlmann and Yu (2003), and Bühlmann (2006).
Bühlmann and Hothorn (2007) give a general introduction into boosting based on
a functional gradient interpretation. A different variant of boosting that relies on
likelihood maximization techniques (likelihood-based boosting) is considered, for
example, in Tutz and Binder (2006).

Bayesian linear models are covered in all introductory books on Bayesian
analysis. Standard references are the textbooks of Gelman, Carlin, Stern, and Rubin
(2003) and O’Hagan (1994). Still interesting is the classical book by Box and Tiao
(1992). The Bayesian LASSO is due to Park and Casella (2008). An overview
over other Bayesian regularization priors is given in Fahrmeir, Kneib, and Konrath
(2010). Recent references to the Bayesian linear variable selection model of Box 4.9
are the papers by Fernandez et al. (2001), Ley and Steel (2009), and the many
references therein. Spike and slab priors with continuous spike for the regression
coefficients are introduced in George and Mc Culloch (1993) and George and
Mc Culloch (1997). Spike and slab priors for the variances are proposed in Ishwaran
and Rao (2003, 2005). A good overview of spike and slab priors is provided in
Malsiner-Walli and Wagner (2011).

4.5.2 Proofs

Autocorrelated Errors of First Order (p. 192)
We first derive the so-called MA.1/ presentation for the errors "i . Based on this
representation, we then derive means, variances, and covariances of errors.

MA.1/ Presentation
Our goal is to represent "i as a weighted infinite sum of the ui . This is based on the
idea that the process started far back in the past. Inserting first "i�1 D  "i�2 C ui�1
into "i D  "i�1 C ui , we obtain

"i D  . "i�2 C ui�1/C ui D 2 "i�2 C  ui�1 C ui :
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Inserting "i�2 D  "i�3 C ui�2 yields

"i D 3 "i�3 C 2 ui�2 C  ui�1 C ui :

Successive insertion finally results in the presentation

"i D
1X

kD0
kui�k D ui C ui�1 C 2ui�2 C : : : : (4.39)

Mean of Errors
Using representation (4.39) we obtain

E."i / D
1X

kD0
k E.ui�k/ D 0:

Covariance of Errors
Using again representation (4.39) as well as E."i / D 0 and E.uiuj / D 0 for i ¤ j ,
we obtain

Cov."i ; "i�j / D E."i "i�j /

D E
��

ui C ui�1 C : : :C jui�j C : : :
� �

ui�j C ui�j�1 C : : :
��

D E.j u2i�j /C E.jC2u2i�j�1/C : : :

D j
1X

kD0

�
2
�k

E
�

u2i�j�k
�

D j
1X

kD0

�
2
�k
�2u

D j
�2u

1 � 2
:

The special case j D 0 implies

Var."i / D �2u
1 � 2

:

ut

Proof of the Least Squares Identity (p. 211)
We show

LS. Ǒ / D .ˇ � Ǒ /0X 0X.ˇ � Ǒ /C y 0.In � X.X 0X/�1X 0/y

D .ˇ � Ǒ /0X 0X.ˇ � Ǒ /C O"0 O":
(4.40)
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To verify Eq. (4.40) we first evaluate the products for the least squares criterion
to obtain

.y � Xˇ/0.y � Xˇ/ D y 0y � 2ˇ0X 0y C ˇ0X 0Xˇ: (4.41)

On the other hand, we expand the quadratic form in Eq. (4.40) which gives

.ˇ � Ǒ /0X 0X.ˇ � Ǒ / D ˇ0X 0Xˇ � 2ˇ0X 0X Ǒ C Ǒ 0
X 0X Ǒ :

Inserting Ǒ D .X 0X/�1X 0y yields

2ˇ0X 0X Ǒ D 2ˇ0X 0X.X 0X/�1X 0y D 2ˇX 0y

for the second addend and

Ǒ 0
X 0X Ǒ D y 0X.X 0X/�1X 0X .X 0X/�1X 0y D y 0X.X 0X/�1X 0y

for the third addend. We thus obtain

.ˇ � Ǒ /0X 0X.ˇ � Ǒ / D ˇ0X 0Xˇ � 2ˇX 0y C y 0X.X 0X/�1X 0y :

Inserting this expression in the right-hand side of Eq. (4.40) gives exactly the right-
hand side of Eq. (4.41) which proves the least squares identity. The second line of
Eq. (4.40) states that

y 0.In � X.X 0X/�1X 0/y D O"0 O";

which is easily verified by expanding

O"0 O" D .y � X Ǒ /0.y � X Ǒ /

and inserting Ǒ D .X 0X/�1X 0y.

Derivation of the Posterior in the Linear Model with NIG Prior (p. 227)
We first rewrite the expression

.y � Xˇ/0.y � Xˇ/C .ˇ � m/0M �1.ˇ � m/:

Defining

QM D .X 0X C M�1/�1

Qm D QM .M �1m C X 0y/;
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we obtain

.y � Xˇ/0.y � Xˇ/C .ˇ � m/0M�1.ˇ � m/

D y 0y � 2ˇ0X 0y C ˇ0X 0Xˇ C ˇ0M �1ˇ � 2ˇ0M �1m C m0M�1m

D y 0y C ˇ0.X 0X C M �1/ˇ � 2ˇ0.X 0y C M�1m/C m0M�1m

D y 0y C ˇ0 QM �1
ˇ � 2ˇ0 QM �1 QM .X 0y C M�1m/C m0M�1m

D y 0y C ˇ0 QM �1
ˇ � 2ˇ0 QM �1 Qm C m0M �1m

D y 0y C .ˇ � Qm/0 QM�1
.ˇ � Qm/ � Qm0 QM �1 Qm C m0M �1m:

Defining

Qa D a C n

2

and
Qb D b C 1

2

�
y 0y C m0M �1m � Qm0 QM �1 Qm

�
;

insertion into the posterior distribution (4.17) gives

P.ˇ; �2 j y/ / 1

.�2/
p
2

exp
�
� 1
2�2
.ˇ � Qm/0 QM�1

.ˇ � Qm/
�

1

.�2/QaC1 exp
�
� Qb
�2

�
:

Comparison with the density of a normal-inverse gamma distribution (compare the
density (4.14) on p. 228) shows that the posterior is again a normal-inverse gamma
distribution with parameters Qm, QM , Qa, and Qb.

ut

Derivation of the Posterior Mode for Bayesian Ridge Regression (p. 238)
As stated in the text, the derivation is based on fixed �2 and �2. The posterior for ˇ

is then given by

p.ˇ j y/ / p.y j ˇ/ p.ˇ0/ p. Q̌ /

/ exp
�� 1

2�2
.y � Xˇ/0.y � Xˇ/

�
exp

�
� 1
2�2

Q̌ 0 Q̌ � :

Maximizing the posterior is equivalent to maximizing logp.ˇ j y/ or minimizing
� logp.ˇ j y/. This computes to

� logp.ˇ j y/ D 1
2�2
.y � Xˇ/0.y � Xˇ/C 1

2�2
Q̌ 0 Q̌

D 1
2�2

�
.y � Xˇ/0.y � Xˇ/C 	 Q̌ 0 Q̌� ;
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with 	 D �2=�2. Hence the posterior mode is for given 	 obtained by minimizing
the penalized least squares criterion

PLS.	/ D .y � Xˇ/0.y � Xˇ/C 	 Q̌ 0 Q̌ :

Derivation of the Gibbs Sampler for the Bayesian LASSO (p. 239)
We develop a Gibbs sampler that subsequently draws from the full conditionals of
ˇ D .ˇ0; Q̌ /0, �2, �21 ; : : : ; �2k , and 	2. All full conditionals are proportional to the
posterior which is given by

p.ˇ; �2; �21 ; : : : ; �
2
k ; 	 j y/ / p.y j ˇ; �2/ p.ˇ0/p. Q̌ j �21 ; : : : ; �2k /

kY

jD1

p.�2j j	/p.	2/:

To derive the specific distribution of the full conditionals we can always disregard
those factors in the posterior that do not depend on the parameter of current interest.

Full Conditional of ˇ

To derive the full conditional for ˇ we first note that p.ˇ j �21 ; : : : ; �2k / D p.ˇ0/

p. Q̌ j �21 ; : : : ; �2k / can be expressed as

p.ˇ j �21 ; : : : ; �2k / / exp

�
�1
2

ˇ0Kˇ

�
;

where K D diag.0; 1=�21 ; : : : ; 1=�
2
k /. Now the full conditional is given by

p.ˇ j �/ / exp

�
� 1

2�2
.y � Xˇ/0.y � Xˇ/

�
exp

�
�1
2

ˇ0Kˇ

�
:

Since the least squares criterion can be written as

.y � Xˇ/0.y � Xˇ/ D .ˇ � Ǒ /0X 0X.ˇ � Ǒ /C y 0.In � X.X 0X/�1X 0/y

(see the derivation on p. 211) with the second summand independent of ˇ, we obtain

p.ˇ j �/ / exp

�
� 1

2�2
.ˇ � Ǒ /0X 0X.ˇ � Ǒ /

�
exp

�
�1
2

ˇ0Kˇ

�
:

Invoking Theorem B.4 of Appendix B.3 with A D 1
�2

X 0X , a D Ǒ , B D K ,
and b D 0 shows that the full conditional is multivariate Gaussian with covariance
matrix ˙ ˇ and mean �ˇ given by

˙ D
�
1

�2
X 0X C K

��1
�ˇ D 1

�2
˙ ˇX 0y:

In summary we have ˇ j � � N.�ˇ;˙ ˇ/.
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Full Conditional of �2

The full conditional for �2 is given by

p.�2 j �/ / p.y j ˇ; �2/ p.�2/

/ 1

.�2/n=2
exp

�� 1
2�2
.y � Xˇ/0.y � Xˇ/

�
1

.�2/aC1 exp
�� b

�2

�

D 1

.�2/aCn=2C1 exp
�� 1

�2
.b C 1

2
.y � Xˇ/0.y � Xˇ//

�
;

which can be identified as an inverse gamma distribution with parameters

anew D aC n

2
bnew D b C 1

2
.y � Xˇ/0.y � Xˇ/:

Full Conditional of �2j
Define

� D
 
	2

ˇ2j

!1=2
:

The full conditional of �2j , j D 1; : : : ; k, is then given by

p.�2j j �/ / p.ˇj j �2j / p.�2j j	/

/ 1

.�2j /
1=2

exp

�
� 1

2�2j
ˇ2j

�
exp

�
�	2

2
�2j

�

D 1

.�2j /
1=2 exp

�
� ˇ2j

2�2j
� 	2�2j

2

�

/ 1

.�2j /
1=2 exp

�
� ˇ2j

2�2j
C 	2

�
� 	2�2j

2

�

/ 1

.�2j /
1=2

exp

�
�	2�2j

2�2

�
1

.�2j /
2

� 2
�

�2j
C �2

��

D 1

.�2j /
1=2 exp

 
�	2�2j

2�2

�
1

�2j
� �

�2!
:

This is not a standard distribution. However, it turns out that the distribution of
!j D 1=�2j is inverse Gaussian with location parameter � and scale parameter 	2.
Updating of �2j is then obtained by first sampling 1=�2j from the inverse Gaussian
distribution and then inverting the result to obtain �2j .

To derive the distribution of !j we apply the change of variables Theorem B.1
of Appendix B.1. With !j D g.�2j / D 1=�2j , g�1.!j / D 1=!j , and g0.�2j / D
�1=.�2j /2, we obtain
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p.!j j � /
 
1

!3j

!1=2
exp

�
� 	2

2�!j
.!j � �/2

�
;

which has the form of the proposed inverse Gaussian distribution.

Full Conditional of 	2

We update 	 by drawing from the full conditional of 	2. It is given by

p.	2 j �/ /
kY

jD1
p.�2j j	/ p.	2/

/
�
	2

2

�k
exp

0

@� 1
2
	2

kX

jD1
�2j

1

A .	2/a�1 exp
��b	2�

/ .	2/aCk�1 exp

0

@�	2
0

@b C 1
2

kX

jD1
�2j

1

A

1

A ;

which can be identified with a gamma distribution. More specifically,

	2 j � � G

0

@a C k; b C 1

2

kX

jD1
�2j

1

A :

Derivation of the Marginal Likelihood and the Bayes Factor in the
Linear Model (p. 243)
We derive the marginal likelihood for modelMr given by

y j ˇ; �2;Mr D y jˇ0; Q̌
r ; �

2;Mr � N.ˇ01 C QX r
Q̌
r ; �

2I/;

with priors ˇ0; Q̌
r j �2;Mr � N.mr ; �

2M r /, and �2 jMr � IG.a; b/; see
Sect. 4.4.3.

To derive the marginal distribution we write modelMr as

y D X rˇr C "1; "1 � N.0; �2I/;

ˇr D mr C "2 "2;� N.0; �2M r /;

where X r D .1 QX r /, ˇr D .ˇ0; Q̌
r /

0, and "1 and "2 are stochastically independent.
Inserting ˇr into the first equation gives

y D X r .mr C "2/C "1 D X rmr C X r"2 C "1 � N.X rmr ; �
2.I C X rM rX

0
r //;
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which is the conditional distribution of y given �2. To derive the covariance matrix
�2.I C X rM rX

0
r /, we used properties 5 and 6 of Theorem B.2 in Appendix B.2.

Since y j �2 � N.X rmr ; �
2.I C X rM rX

0
r // and �2 � IG.a; b/, the joint

distribution is y ; �2 � NIG.X rmr ; I C X rM rX
0
r ; a; b/. Hence y is marginally

multivariate t with � D 2a degrees of freedom, location parameter � D X rmr ,
and dispersion matrix ˙ D I C X rM rX

0
r ; see property 5 in Definition B.3.5 of

Appendix B.3 and the derivation on p. 228.
To obtain the Bayes factor we need to compute the inverse ˙ �1 of the dispersion

matrix. Using the matrix inversion lemma (Appendix A.3, Theorem A.14) with A D
I , B D �X r , C D X r , and D D M�1

r , we obtain

˙ �1 D .I C X rM rX
0
r /

�1 D I � X r .X
0
rX r C M�1

r /
�1X 0

r D I � X r
QM rX

0
r ;

(4.42)
with

QM r D .X 0
rX r C M �1

r /
�1:

The Bayes factor for two competing modelsMr andMs is obtained as

BFjs D p.y jMr/

p.y jMs/

and results in:

BFjs D t2a.X rmr ; I C X rM rX
0
r /

t2a.X sms ; I C X sM sX
0
s/

D
 

jI C X sM sX
0
s j

jI C X rM rX
0
j j

!1=2 �
2aC .y � X sms /

0.I � X s
QM sX

0
s/.X sms/

2a C .y � X rmr /
0.I � X r

QM rX
0
r /.X rmr /

�aCn=2
:

In the literature, the Bayes factor is usually given in a slightly different form. Using
Appendix A.4 property 4 of Theorem A.17 and Eq. (4.42) we obtain

� jI C X sM sX
0
sj

jI C X rM rX
0
r j
�1=2

D
 

I � X r
QM rX

0
r

I � X s
QM sX 0

s

!1=2
:

Invoking Sylvester’s theorem (Appendix A.4, Theorem A.17, property 6) with A D
QM�1
r D X 0

rX r C M�1
r , B D X 0

r , and C D �X r yields

j QM�1
r � X 0

rX r j D j QM�1
r j � jI � X r

QM jX 0
r j

, jM�1
r C X 0

rX r � X 0
rX r j D 1

j QM r j jI � X r
QM rX

0
r j

, j QM r j
jM r j D jI � X r

QM rX
0
r j:
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We finally arrive at the Bayes factor

BFrs D
 

j QM r jjM s j
j QM s jjM r j

!1=2  
2a C .y � X sms/

0.I � X s
QM sX

0
s/.y � X sms/

2aC .y � X rmr /0.I � X r
QM rX 0

r /.y � X rmr /

!aCn=2
:

Derivation of the Marginal Model Prior If a Beta Prior Is Assumed for �

(p. 252)
We obtain

p.Mr/ D
1Z

0

p.Mr j �/ p.�/ d�

D
1Z

0

�kr .1 � �/k�kr � .a C b/

� .a/� .b/
�a�1.1 � �/b�1 d�

D � .a C b/

� .a/� .b/

1Z

0

�aCkr�1.1 � �/bCk�kr�1 d�

D � .a C b/

� .a/� .b/

� .a C kr/� .b C k � kr/

� .a C b C k/

1Z

0

Beta.a C kr ; b C k � kr/ d�

D � .a C b/

� .a/� .b/

� .a C kr/� .b C k � kr/

� .a C b C k/
:

The integration has been done by expanding the term within the integral sign
such that the density of a Beta.a C kr ; b C k � kr/ distribution results. Then the
corresponding integral over the unit interval is one.

Derivation of the Gibbs Sampler for the Continuous Spike and Slab
Variance Prior (p. 253)
We develop a Gibbs sampler that consecutively samples from the full conditionals
of ˇ, �2, �21 ; : : : ; �

2
k , ı1; : : : ; ık , and � .

The full conditionals of ˇ and �2 are identical to those of the Bayesian LASSO.
It remains to derive the full conditionals of the variances �2j , the indicators ıj , and
the prior inclusion parameter � .

Full Conditional of �2j
Suppose first that ıj D 1. We then have

p.�2j j �/ / 1

.�2j /
1=2

exp

�
� 1

2�2j
ˇ2j

�
1

.�2j /
a
�2

C1 exp

�
� b�2

�2j

�

D 1

.�2j /
a
�2

C1=2C1 exp

�
� 1

�2j

�
b�2 C 1

2
ˇ2j

��
;

which is the IG.a�2 C 1=2; b�2 C 1=2ˇ2j / distribution.
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For ıj D 0, we have to exchange b�2 by �0b and arrive at the IG.a�2 C
1=2; �0b�2 C 1=2ˇ2j / distribution. Summarizing we have

�2j j � D .1 � ıj /IG.a�2 C 1=2; �0b�2 C 1=2ˇ2j /C ıj IG.a�2 C 1=2; b�2 C 1=2ˇ2j /:

Full Conditional of ıj
For ıj D 1, we have

P.ıj D 1 j �/ / � � IG.�2j ; a; b/;

where IG.�2j ; a; b/ denotes the density of the respective inverse gamma distribution
evaluated at the current value �2j . For ıj D 0 the corresponding probability is given
as

P.ıj D 0 j �/ / .1 � �/ � IG.�2j ; a; �0b/:

Thus ıj j � � B.1; �new/ with

�new D � � IG.�2j ; a; b/

� � IG.�2j ; a; b/C .1 � �/ � IG.�2j ; a; �0b/
:

Full Conditional of �
Let

s D
kX

jD1
ıj

be the number indicators with ıj D 1. Then the full conditional is given by

p.� j �/ /
kY

jD1
p.ıj j �/p.�/

/ �s.1 � �/k�s�a�1.1 � �/b�1

D �aCs�1.1 � �/bCk�s�1;

which is a beta distribution. More specifically,

� j � � Beta.aC s; b C k � s/:
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Linear models are well suited for regression analyses when the response variable
is continuous and at least approximately normal. In some cases, an appropriate
transformation is needed to ensure approximate normality of the response. In
addition, the expectation of the response is assumed to be a linear combination of
covariates. Again, these covariates may be transformed before being included in the
linear predictor. However, in many applications the response is not a continuous
variable, but rather binary, categorical, or a count variable as in the following
examples:
• Patent opposition (yes/no), see Sect. 2.3 (p. 33).
• Creditworthiness of a client (yes/no).
• Benign or malignant tumor.
• Person is unemployed, part-time employed, or fully employed.
• Tree is very damaged, averagely or lightly damaged, or not damaged at all.
• Number of cases of illness, insurance claims, or problematic credits within a

certain time frame.
Moreover, we are not always able to perform a satisfactory regression analysis for
certain types of continuous response variables using a linear model. This is the case
when dealing with a variable whose distribution is considerably skewed, as, for
example, a life span, the amount of damages, or income. Even though data with a
skewed distribution can sometimes be transformed into one with an approximately
symmetric distribution, it is often advantageous to apply, for example, a gamma
regression model to the original response variable.

Within a broad framework, generalized linear models (GLMs) unify many
regression approaches with response variables that do not necessarily follow a
normal distribution, including, for example, the logit model for binary response
variables (Sect. 2.3) as well as the classical linear model with normally distributed
errors. GLMs still rely on the assumption that the effect of covariates can be
modeled through a linear predictor, similar as in logit and linear models. We
start our description of GLMs with regression models for binary responses in
Sect. 5.1. Next, Sect. 5.2 describes regression models for count data, especially
Poisson regression. Section 5.3 is dedicated to models for nonnegative, continuous

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9 5,
© Springer-Verlag Berlin Heidelberg 2013
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responses. Along with the introduction of suitable models, we discuss statistical
inference relying on the likelihood principle. Section 5.4 offers a general unified dis-
cussion of GLMs and likelihood inference, while Sect. 5.5 outlines quasi-likelihood
inference. Section 5.6 considers Bayesian GLMs. Finally, Sect. 5.7 transfers the
boosting idea outlined for linear models in Sect. 4.3 to GLMs.

5.1 Binary Regression

5.1.1 Binary Regression Models

As in the previous chapters, we assume that (ungrouped) data on n objects or
individuals are given in the form .yi ; xi1; : : : ; xik/, i D 1; : : : ; n, with the binary
response y coded by 0 and 1 and covariates denoted by x1; : : : ; xk . Similar to
linear and logit models in Example 2.8, x1; : : : ; xk may have been derived from an
appropriate transformation or coding of the original covariates. The main goal of a
binary regression analysis is then to model and estimate the effects of the covariates
on the (conditional) probability

�i D P.yi D 1/ D E.yi /;

for the outcome yi D 1 and given values of the covariates xi1; : : : ; xik . In this
specification, the response variables are assumed to be (conditionally) independent.

We already discussed the disadvantages of the linear probability model

�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik

for binary response variables in Sect. 2.3. In particular, the linear predictor

�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik D x0
iˇ;

with ˇ = .ˇ0; ˇ1; : : : ; ˇk/0 and xi = .1; xi1; : : : ; xik/0 must lie in the interval Œ0; 1�
for all vectors x. This requires restrictions on the parameters ˇ that are difficult
to handle in the estimation process. Thus, all popular binary regression models
combine the probability �i with the linear predictor �i through a relation of the
form

�i D h.�i / D h.ˇ0 C ˇ1xi1 C : : :C ˇkxik/; (5.1)

where h is a strictly monotonically increasing cumulative distribution function on
the real line. This ensures h.�/ 2 Œ0; 1� and Eq. (5.1) can always be expressed in the
form

�i D g.�i /;

with the inverse function g D h�1. Within the framework of GLMs, h is called the
response function and g D h�1 is known as the link function. Logit and probit
models are the most widely used binary regression models.
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Logit Model
The logit model presented in Sect. 2.3 results from the choice of the logistic response
function

� D h.�/ D exp.�/

1C exp.�/
(5.2)

or (equivalently) the logit link function

g.�/ D log
� �

1 � �

�
D � D ˇ0 C ˇ1x1 C : : :C ˇkxk: (5.3)

This yields a linear model for the logarithmic odds (log-odds) log.�=.1 � �//.
Transformation with the exponential function gives

�

1 � � D exp.ˇ0/ exp.ˇ1x1/ � : : : � exp.ˇkxk/; (5.4)

implying that the effects of the covariates affect the odds �=.1 � �/ in an
exponential-multiplicative form; see Sect. 2.3 for this interpretation. Another
interpretation—which is also available for the two models introduced in the
following—results from the connection to latent linear models; see p. 274 for
details.

Probit Model
For h, we use the standard normal cumulative distribution function ˚ , i.e.,

� D ˚.�/ D ˚.x0ˇ/: (5.5)

A (minor) disadvantage is the required numerical evaluation of ˚ in the maximum
likelihood estimation of the parameter ˇ.

Complementary Log–Log Model
The complementary log–log model uses the extreme minimum-value cumulative
distribution function

h.�/ D 1 � exp.� exp.�// (5.6)

as response function, with the inverse

g.�/ D log.� log.1 � �//
as link function. In comparison to logit and probit models, this model is useful in
more specific applications, for example, when modeling discrete duration times; see,
e.g., Fahrmeir and Tutz (2001) for an introduction to discrete time duration models.

Figure 5.1 (left) shows the response functions of the three binary regression
models, i.e., the logistic distribution function (5.2), the standard normal distribution
function (5.5), and the extreme-value distribution function (5.6).

At first glance, the three models seem very different from each other: Even
though the response function of logit and probit models are both symmetric around
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Fig. 5.1 Response functions (left) and adjusted response functions (right) in binary regression
models: logit model (—), probit model (- - -), complementary log–log model (� � � )

zero, the logistic distribution function approaches 0 or 1 much slower for � ! �1
or � ! C1, respectively. In contrast, the response function of the complementary
log–log model is asymmetric, following a similar pattern as the logit response
function for small �, but showing a faster approach towards 1 as � ! C1. Thus,
statistical analyses involving the three models might be expected to lead to very
different results. However, for an adequate comparison of the models, we have to
keep in mind that we could have used the more general cumulative distribution
function h of a N.0; �2/ distribution with any choice of variance �2 6D 1, rather
than the standard normal cumulative distribution function of the N.0; 1/ distribution
that defines the probit model. Standardizing h yields the relation

�.�/ D h.x0ˇ/ D ˚.x0ˇ=�/ D ˚.x0 Q̌/;

where Q̌ D ˇ=� . Hence, even though the two response functions ˚ (with �2 D 1)
and h (with �2 6D 1, e.g. �2 D 4) differ from each other, the resulting model for
the probability �.�/ based on h.�/ with � D x0ˇ is equivalent to a probit model
with the rescaled parameters Q̌ D ˇ=� . In this sense, the requirement of �2 D 1

in the probit model is arbitrary and we might just as well have assumed �2 D 4.
We also obtain the same equivalence when deriving binary regression models from
latent linear models; see p. 274.

For a fair comparison of logit and probit models, we need to put each on equal
footing. Since the logistic distribution function has variance �2=3 with the circular
constant � D 3:141593 : : :, we need to compare it to a rescaled normal distribution
function whose variance is adjusted to �2 D �2=3. Figure 5.1 (right) shows the
similarity of the logit and the adjusted probit response function.

Statistical analyses with logit and probit models therefore lead to similar
estimated probabilities. The scaling Q̌ D ˇ=� or ˇ D Q̌ � will automatically be
taken into account in the estimation process. Thus, the estimated coefficients
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5.1 Binary Regression Models

Data

The binary response variables yi are coded 0=1 and are (conditionally)
independent given the covariates xi1, : : : , xik .

Models

The probability �i D P.yi D 1/ D E.yi / and the linear predictor

�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik D x0
iˇ

are connected by the response function h.�/ 2 Œ0; 1� via

�i D h.�i /:

Logit model

� D exp.�/

1C exp.�/
” log

�

1 � � D �.

Probit model

� D ˚.�/ ” ˚�1.�/ D �.

Complementary log–log model

� D 1 � exp.� exp.�// ” log.� log.1 � �// D �.

Q̌
1; Q̌

2; : : : of a logit model differ from the corresponding values ˇ1; ˇ2; : : : of
a probit model (with �2 D 1) approximately by the factor � D�=

p
3 � 1:814,

yet the estimated probabilities �.�/ are very similar. Since the ratios Q̌
1= Q̌

2 D
ˇ1=ˇ2 etc. are independent of � , therefore we should not interpret the absolute
(estimated) coefficients, but rather the ratios ˇ1=ˇ2 etc., as illustrated in Example 5.1
(p. 275).

Similar considerations apply to the comparison with the complementary log–log
model. Since the extreme-value distribution has variance �2 D�2=6 and expectation
�0.5772, the response function has to be adjusted to the variance �2 D �2=3

and expectation 0 for a comparison with the logistic distribution function. This
adjustment does have additional impact on the (estimated) intercept ˇ0. Figure 5.1
(right) shows the corresponding adjusted response function, which follows a similar
form as those of the logit and probit function for small �, but also shows clear
differences for larger �. Accordingly, the results of statistical analyses obtained with
the complementary log–log model differ more substantially from those obtained by
logit or probit models.
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Binary Models and Latent Linear Models
Binary regression models can be derived by considering a latent (unobserved)
continuous response variable, which is connected with the observed binary response
via a threshold mechanism. Suppose we are investigating the decision of some
individuals i D 1; : : : ; nwhen choosing between two alternatives y D 0 and y D 1.
Typical examples include decision problems, e.g., related to buying a certain product
or not. We further assume that individuals assign utilities ui0 and ui1 to each of the
two alternatives. The alternative that maximizes the utility is chosen, i.e., yi D 1 if
ui1 > ui0 and yi D 0 if ui1 � ui0.

Now suppose a researcher investigates the choice problem. However, one is
not able to observe the latent utilities behind the decision, but rather observes the
binary decisions yi together with a number of explanatory variables xi1; : : : ; xik ,
which may influence the choice between the two alternatives. Assuming that the
unobserved utilities can be additively decomposed and follow a linear model, we
obtain

ui1 D x0
i
Q̌
1 C Q"i1;

ui0 D x0
i
Q̌
0 C Q"i0;

with xi D .1; xi1; : : : ; xik/
0. The unknown coefficient vectors Q̌

1 and Q̌
0 determine

the effect of the explanatory variables on the utilities. The “errors” Q"i1 and Q"i0
include the effects of unobserved explanatory variables. Equivalently, we may
choose to investigate utility differences, then obtaining

Qyi D ui1 � ui0 D x0
i .

Q̌
1 � Q̌

0/C Q"i1 � Q"i0 D x0
iˇ C "i ;

with ˇ D Q̌
1 � Q̌

0 and "i D Q"i1 � Q"i0. The connection to the observable binary
variables yi is now given by yi D 1 if Qyi D ui1 � ui0 > 0 and yi D 0 if Qyi D ui1 �
ui0 � 0.

Based on this framework, the binary responses yi follow a Bernoulli distribution,
i.e., yi � B.1; �i / with

�i D P.yi D 1/ D P. Qyi > 0/ D P.x0
iˇ C "i > 0/ D

Z
I.x0

iˇ C "i > 0/f ."i / d"i ;

where I.�/ is the indicator function and f is the probability density of "i . We obtain
different models depending on the choice of f . Specifically, when "i follows a
logistic distribution, we obtain the logit model, while for standard normal errors
"i � N.0; 1/ we have the probit model �i D ˚.x0

iˇ/. For "i � N.0; �2/, we have

�i D ˚.x0
iˇ=�/ D ˚.x0

i
Q̌/;

through standardization with Q̌ D ˇ=� . This implies that regression coefficients
ˇ of a latent linear regression model can only be identified up to a factor 1=� .
However, the ratio of two coefficients, for example, ˇ1 and ˇ2, is identifiable, since
ˇ1=ˇ2 D Q̌

1= Q̌
2.
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5.2 Interpretation of the Logit Model

Based on the linear predictor

�i D ˇ0 C ˇ1xi1 C : : :C ˇkxik D x0
iˇ;

the odds
�i

1 � �i D P.yi D 1 j xi /

P.yi D 0 j xi /

follow the multiplicative model

P.yi D 1 j xi /

P.yi D 0 j xi /
D exp.ˇ0/ � exp.xi1ˇ1/ � : : : � exp.xikˇk/:

If, for example, xi1 increases by 1 unit to xi1C1, the following changes apply
to the relationship of the odds:

P.yi D 1 j xi1; : : : /
P.yi D 0 j xi1; : : : /

ıP.yi D 1 j xi1 C 1; : : : /

P.yi D 0 j xi1 C 1; : : : /
D exp.ˇ1/:

ˇ1 > 0 W P.yi D 1/=P.yi D 0/ increases,

ˇ1 < 0 W P.yi D 1/=P.yi D 0/ decreases,

ˇ1 D 0 W P.yi D 1/=P.yi D 0/ remains unchanged.

Interpretation of Parameters
One of the main reasons for the popularity of the logit model is its interpretation as a
linear model for log-odds, as well as a multiplicative model for the odds �=.1��/,
as outlined in Sect. 2.3 and formulae (5.3) and (5.4). The latent linear model is useful
to interpret effects in the probit model, since the covariate effects can be interpreted
in the usual way with this model formulation (up to a common multiplicative factor).
In general, interpretation best proceeds in two steps: For the linear predictor, we
interpret the effects in the same way as in the linear model. Then we transform the
linear effect for � D x0ˇ into a nonlinear effect for � D h.�/ with the response
function h.

Example 5.1 Patent Opposition—Binary Regression
In Example 2.8 (p. 35), we analyzed the probability of patent opposition using a logit model
with linear predictor
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Table 5.1 Patent opposition: estimated regression coefficients for the logit, probit, and comple-
mentary log–log model. Adjusted coefficients for the probit and complementary log–log model are
also included

Variable Logit Probit Probit (adj.) Log–Log Log–Log (adj.)

intercept 201.740 119.204 216.212 164.519 211.744
year �0.102 �0.060 �0.109 �0.083 �0.106
ncit 0.113 0.068 0.123 0.088 0.113
nclaim 0.026 0.016 0.029 0.021 0.027
ustwin �0.406 �0.243 �0.441 �0.310 �0.398
patus �0.526 �0.309 �0.560 �0.439 �0.563
patgsgr 0.196 0.121 0.219 0.154 0.198
ncountry 0.097 0.058 0.105 0.080 0.103

�i D ˇ0 C ˇ1yeari C ˇ2nciti C ˇ3nclaimsi C ˇ4ustwini

Cˇ5patusi C ˇ6patgsgri C ˇ7ncountryi :

For an interpretation of the estimated parameters in the logit model compare Example 2.8.
For comparison, we now choose a probit model and a complementary log–log model using
the same linear predictor and reanalyze the data. Table 5.1 contains parameter estimates
for all three models. In order to compare the probit and logit fits, we have to multiply the
estimated coefficients of the probit model with the factor �=

p
3 � 1:814, following our

previous considerations. For example, we obtain the estimated effect �0:060 � 1:814 �
�0:109 for the covariate year compared to �0:102 in the logit model. For the other
coefficients, somewhat higher discrepancies occur at some places (see the fourth column
in Table 5.1); however, the discrepancies are much smaller than the standard deviations of
the estimates. Since, according to the interpretation of binary models, coefficients can only
be interpreted up to a factor of 1=� , the probit and the logit models provide essentially the
same results. After rescaling with the factor �=

p
6 � 1:283, we also obtain comparable

coefficients for the complementary log–log model, which are close to those of the logit
model; see column 6 in Table 5.1. 4

Grouped Data
Thus far, we have assumed individual data or ungrouped data, which means that one
observation .yi ;xi / is given for each individual or object i in a sample of size n.
Every binary, 0/1 coded value yi of the response variable and every covariate vector
xi D .xi1; : : : ; xik/ then belongs to exactly one unit i D 1; : : : ; n.

If some covariate vectors (i.e., rows of the design matrix) are identical, the data
can be grouped as in Sect. 4.1.2 (p. 181). Specifically, after sorting and summarizing
the data, the design matrix only contains rows with unique covariate vectors xi . In
addition, the number ni of replications of xi in the original sample of the individual
data and the relative frequencies Nyi of the corresponding individual binary values of
the response variables are given:
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Group 1
:::

Group i
:::

GroupG

2
6666664

n1
:::

ni
:::

nG

3
7777775

2
6666664

Ny1
:::

Nyi
:::

NyG

3
7777775

2
6666664

1 x11 � � � x1k
:::

:::

1 xi1 xik
:::

:::

1 xG1 � � � xGk

3
7777775

The number of unique covariate vectors in the sample G is often much smaller
than the sample size n, especially when covariates are binary or categorial. Rather
than relative frequencies Nyi , we can also provide the absolute frequencies ni Nyi .
Grouped data are then often presented in condensed form in a contingency table, as
in the following Example 5.2.

The grouping of individual data decreases computing time, as well as memory
requirements, and is also done to ensure data identification protection. Moreover,
some inferential methods are only applicable for grouped data, especially when
testing the goodness of fit for the model or for model diagnostics; see Sect. 5.1.4
(p. 287).

Individual data yi are Bernoulli distributed with P.yi D 1/ D �i , i.e. yi �
B.1; �i /. If the response variables yi are (conditionally) independent, the absolute
frequencies ni Nyi of grouped data are binomially distributed, i.e.,

ni Nyi � B.ni ; �i /;

with E.ni Nyi / D ni�i , Var.ni Nyi / D ni�i .1 � �i /. The relative frequencies then
follow a “scaled” binomial distribution

Nyi � B.ni I�i /=ni ;

i.e., the range of values of the probability function for relative frequencies is f0;
1=ni , 2=ni , : : :, 1g, instead of f0; 1; 2; : : : ; ni g. The probability function is

P. Nyi D j=ni / D
 
ni

j

!
�
j
i .1 � �i /

ni�j j D 0; : : : ; ni :

The mean and the variance are given by

E. Nyi / D �i ; Var. Nyi / D �i .1� �i /

ni
:

For modeling the probability �i , we can use the same binary regression models as
in case of individual data.
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Table 5.2 Grouped infection data

C-section

Planned Not planned

Infection Infection

Yes No Yes No

Antibiotics
Risk factor 1 17 11 87
No risk factor 0 2 0 0

No antibiotics
Risk factor 28 30 23 3
No risk factor 8 32 0 9

Example 5.2 Caesarean Delivery—Grouped Data
Table 5.2 contains grouped data on infections of mothers after a C-section collected at the
clinical center of the University of Munich. The response variable y “infection” is binary
with

y D
(
1 infection,

0 no infection:

After each childbirth the following three binary covariates were collected:

NPLAN D
(
1 C-section was not planned,

0 planned,

RISK D
(
1 risk factors existed,

0 no risk factors,

ANTIB D
(
1 antibiotics were administered as prophylaxis,

0 no antibiotics:

After grouping the individual data of 251 mothers, the data can be represented in the form
of a contingency table; see Table 5.2.

If we model the probability for an infection with a logit model

log
P(Infection)

P(No Infection)
D ˇ0 C ˇ1 NPLAN C ˇ2 RISK C ˇ3 ANTIB;

we obtain the estimated coefficients

Ǒ
0 D �1:89 ; Ǒ

1 D 1:07 ; Ǒ
2 D 2:03 ; Ǒ

3 D �3:25 :

The multiplicative effect exp. Ǒ
2/ D 7:6 implies that the odds of an infection is seven

times higher when risk factors are present, for fixed levels of the other two factors. Such
an interpretation of course requires that the chosen model without any interaction terms is
adequate. We will return to this question in Example 5.3.

If we select a probit model with the same linear predictor, we obtain the estimated
coefficients

Ǒ
0 D �1:09 ; Ǒ

1 D 0:61 ; Ǒ
2 D 1:20 ; Ǒ

3 D �1:90 :
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Similar to Example 5.1, the absolute values seem to be very different. However, the relative
effects, e.g., the ratios Ǒ

1= Ǒ
2, are again very similar. 4

Overdispersion
For grouped data, we can estimate the variance within a group via Nyi .1 � Nyi /=ni ,
since Nyi is the ML estimator for �i based on the data in group i , disregarding
the covariate information. In applications, this empirical variance is often much
larger than the variance O�i .1 � O�i /=ni predicted by a binomial regression model
with O�i D h.x0

i
Ǒ /. This phenomenon is called overdispersion, since the data

show a higher variability than is presumed by the model. The two main reasons
for overdispersion are unobserved heterogeneity, which remains unexplained by
the observed covariates, and positive correlations between the individual binary
observations of the response variables, for example, when individual units belong
to one cluster such as the same household. In either case, the individual binary
response variables within a group are then (in most cases positively) correlated.
The sum of binary responses is then no longer binomially distributed and has
a larger variance according to the variance formula for correlated variables; see
in Appendix B.2 Theorem B.2.4. This situation occurs in Sect. 5.2 for Poisson
distributed response variables, where a data example of overdispersion is presented.

The easiest way to address the increased variability is through the introduction
of a multiplicative overdispersion parameter � > 1 into the variance formula, i.e.,
we assume

Var.yi / D �
�i .1 � �i /

ni
:

Estimation of the overdispersion parameter is described in Sect. 5.1.5.

5.1.2 Maximum Likelihood Estimation

The primary goal of statistical inference is the estimation of parameters ˇ D
.ˇ0; ˇ1; : : : ; ˇk/

0 and hypothesis testing for these effects, similar to linear models
in Chap. 3. The methodology of this section is based on the likelihood principle:
For given data .yi ;xi /, estimation of the parameters relies on the maximization of
the likelihood function. Hypotheses regarding the parameters are tested using either
likelihood ratio, Wald, or score tests; see Sect. 5.1.3. Appendix B.4.4 provides a
general introduction into likelihood-based hypothesis testing.

Due to the (conditional) independence of the response variables, the likelihood
L.ˇ/ is given as the product

L.ˇ/ D
nY

iD1
f .yi j ˇ/ (5.7)

of the densities of yi , which depend on the unknown parameter ˇ through �i D
E.yi / D h.x0

iˇ/. Maximization of L.ˇ/ or the log-likelihood l.ˇ/ D log.L.ˇ//
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then yields the ML estimator Ǒ. It turns out that the ML estimator has no closed
form as for linear models. Instead we rely on iterative methods, in particular
Fisher scoring as briefly described in Appendix B.4.2. In order to compute the
ML estimator numerically we require the score function s.ˇ/ and the observed or
expected Fisher matrix H .ˇ/ or F .ˇ/.

We consider the case of individual data and describe the necessary steps for
deriving ML estimates in the binary logit model:
1. Likelihood
For binary response variables yi � B.1; �i / with �i D P.yi D 1/ D E.yi /D�i ,
the (discrete) density is given by

f .yi j�i / D �
yi
i .1 � �i /

1�yi :

Since�i D h.x0
iˇ/, the density depends on ˇ for given xi , and we can therefore also

denote it as f .yi j ˇ/. The density also defines the likelihood contribution Li .ˇ/ of
the i th observation. Due to the (conditional) independence of the responses yi , the
likelihood L.ˇ/ is given by

L.ˇ/ D
nY

iD1
Li .ˇ/ D

nY

iD1
�
yi
i .1 � �i /1�yi ;

i.e., the product of the individual likelihood contributionsLi.ˇ/.

2. Log-likelihood
The log-likelihood results from taking the logarithm of the likelihood yielding

l.ˇ/ D
nX

iD1
li .ˇ/ D

nX

iD1
fyi log.�i /� yi log.1 � �i /C log.1 � �i /g;

with the log-likelihood contributions

li .ˇ/ D logLi.ˇ/ D yi log.�i /� yi log.1 � �i /C log.1 � �i /

D yi log

�
�i

1 � �i

�
C log.1 � �i /:

For the logit model, we have

�i D exp.x0
iˇ/

1C exp.x0
iˇ/

or log

�
�i

1 � �i
�

D x0
iˇ D �i

and .1 � �i / D .1C exp.x0
iˇ//

�1. Therefore we obtain

li .ˇ/ D yi .x
0
iˇ/ � log.1C exp.x0

iˇ// D yi�i � log.1C exp.�i //:
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3. Score function
To calculate the ML estimator, defined as the maximizer of the log-likelihood l.ˇ/,
we require the score function, i.e., the first derivative of l.ˇ/ with respect to ˇ:

s.ˇ/ D @l.ˇ/

@ˇ
D

nX

iD1

@li .ˇ/

@ˇ
D

nX

iD1
si .ˇ/:

The individual contributions are given by si .ˇ/ D @li .ˇ/=@ˇ, or more specifically
for logistic regression, using the chain rule,

@li .ˇ/

@ˇ
D @li

@�i

@�i

@ˇ
D
�
yi � 1

1C exp.�i /
exp.�i /

�
xi ;

with p-dimensional vector @�i=@ˇ D xi . Further substitution of �i D exp.x0
iˇ/=

.1C exp.x0
iˇ// provides

si .ˇ/ D xi .yi � �i /
and the score function

s.ˇ/ D
nX

iD1
xi .yi � �i /: (5.8)

Here, s.ˇ/ depends on �i D �i .ˇ/ D h.x0
iˇ/ D exp.x0

iˇ/=.1C exp.x0
iˇ// and is

therefore nonlinear in ˇ. From E.yi / D �i it follows

E.s.ˇ// D 0:

Equating the score function to zero leads to the ML equations

s. Ǒ/ D
nX

iD1
xi

 
yi � exp.x0

i
Ǒ/

1C exp.x0
i

Ǒ/

!
D 0: (5.9)

This p-dimensional, nonlinear system of equations for Ǒ is usually solved iteratively
by the Newton–Raphson or Fisher scoring algorithm; see p. 283.
4. Information matrix
For the estimation of the regression coefficients and the covariance matrix of the
ML estimator Ǒ, we need the observed information matrix

H .ˇ/ D �@
2l.ˇ/

@ˇ@ˇ0 ;

with the second derivatives @2l.ˇ/=@̌ j @̌ r as elements of the matrix @2l.ˇ/=@ˇ@ˇ0,
or the Fisher matrix (expected information matrix)
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F .ˇ/ D E

�
�@

2l.ˇ/

@ˇ@ˇ0

�
D Cov.s.ˇ// D E.s.ˇ/s0.ˇ//:

The last equality holds since E.s.ˇ// D 0. To derive the Fisher matrix note that
F.ˇ/ is additive, i.e., F .ˇ/ D Pn

iD1 F i .ˇ/; where F i .ˇ/ D E.si .ˇ/si .ˇ/0/ is the
contribution of the i th observation. For F i .ˇ/ we obtain

F i .ˇ/ D E .si .ˇ/si .ˇ/0/

D E
�
xix

0
i .yi � �i /

2
�

D xix
0
iE .yi � �i /2

D xix
0
iVar.yi /

D xix
0
i�i .1 � �i /:

We finally get

F .ˇ/ D
nX

iD1
F i .ˇ/ D

nX

iD1
xix

0
i�i .1 � �i /:

Since �i D h.x0
iˇ/, the Fisher matrix also depends on ˇ.

To derive the observed information matrix we use Definition A.29 of
Appendix A.8. We obtain H .ˇ/ D �@2l.ˇ/=@ˇ@ˇ0 D �@s.ˇ/=@ˇ0 through
another differentiation of

�s.ˇ/ D
nX

iD1
xi .�i .ˇ/� yi /:

Using the chain rule, this yields

H .ˇ/ D �@s.ˇ/
@ˇ0 D

nX

iD1
xi
@�i .ˇ/

@ˇ0 D
nX

iD1
xi
@�i

@ˇ0
@�i .ˇ/

@�i
D

nX

iD1
xix

0
i �i .ˇ/.1 � �i .ˇ//:

We thereby used
@�i

@ˇ0 D
�
@�i

@ˇ

�0
D x0

i

and

@�i .ˇ/

@�i
D .1C exp.�i // exp.�i / � exp.�i / exp.�i /

.1C exp.�i //2
D �i .ˇ/.1 � �i .ˇ//:

The expected and the observed information matrix are, thus, identical for the
logit model, i.e., H .ˇ/ D F .ˇ/. This relationship, however, does not hold for other
models, e.g., the probit or the complementary log–log model. In these models, we
usually use the Fisher matrix F .ˇ/, which is typically easier to compute than the
observed Fisher matrix H .ˇ/. Its general form will be given in Sect. 5.4.2.
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If now instead of individual data with binary response variables yi � B.1; �i /,
we rather consider a binomially distributed response yi � B.ni ; �i / or relative
frequencies

Nyi � B.ni ; �i /=ni ; i D 1; : : : ; n;

as, for example, in the case of grouped data, the formulae for l.ˇ/; s.ˇ/, and F .ˇ/

have to be modified appropriately. Analogous arguments than for individual data
yield

l.ˇ/ D
GX

iD1
fyi log.�i /� yi log.1 � �i /C ni log.1 � �i /g

s.ˇ/ D
GX

iD1
xi .yi � ni�i / D

GX

iD1
nixi . Nyi � �i /

F .ˇ/ D
GX

iD1
xix

0
i ni�i .1� �i /:

Iterative Calculation of the ML Estimator
Several iterative algorithms that compute the ML estimator as the solution of the
ML equation s. Ǒ/ D 0 can be used for computing Ǒ. The most common method is
the Fisher scoring algorithm; see Sect. B.4.2 in Appendix B. Given starting values
Ǒ.0/, e.g., the least squares estimate, the algorithm iteratively performs updates

Ǒ.tC1/ D Ǒ.t/ C F �1. Ǒ.t//s. Ǒ.t//; t D 0; 1; 2; : : : : (5.10)

Once a convergence criterion is met, for example, jj Ǒ.tC1/ � Ǒ.t/jj=jj Ǒ.t/jj � "

(with jj � jj denoting the L2-norm of a vector), the iterations will be stopped, and
Ǒ 	 Ǒ.t/ is the ML estimator. Since F .ˇ/ D H .ˇ/ in the logit model, the Fisher

scoring algorithm corresponds to a Newton method. The iterations Eq. (5.10) can
also be expressed in the form of an iteratively weighted least squares estimation;
see Sect. 5.4.2 (p. 306).

The Fisher scoring iterations can only converge to the ML solution Ǒ if the Fisher
matrix F .ˇ/ is invertible for all ˇ. As in the linear regression model, this requires
that the design matrix X D .x1; : : : ;xn/

0 has full rank p. Then F .ˇ/ is invertible
for the types of regression models that we have considered thus far. For example, in
case of the logit model, F .ˇ/ D P

i xix
0
i�i .1 � �i / has full rank because X 0X DP

i xix
0
i has full rank p and �i .1 � �i / > 0 for all ˇ 2 Rp. Hence, as in the linear

regression model, we will always assume that

rk.X/ D p:

Typically, the algorithm then converges and stops close to the maximum after only
a few iterations.

Nevertheless, it is possible that iterations diverge, i.e., that the successive
differences k Ǒ.tC1/ � Ǒ.t/k increase instead of converging towards zero. This is
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the case when the likelihood does not have a maximum for finite ˇ, i.e., if at
least one component in Ǒ.t/ diverges to ˙1, and no finite ML estimator exists.
In general, the non-existence of the ML estimator is observed in very unfavorable
data configurations, especially when the sample size n is small in comparison to the
dimension p.

Even though several authors have elaborated on conditions of the uniqueness and
existence of ML estimators, these conditions are, to some extent, very complex. For
practical purposes it is, thus, easier to check the convergence or divergence of the
iterative method empirically.

Example 5.3 Caesarian Delivery—Binary Regression
In Example 5.2, we chose a main effects model

� D ˇ0 C ˇ1 NPLAN C ˇ2 RISK C ˇ3 ANTIB

for the linear predictor, i.e., a model without interactions between the covariates. If we want
to improve the model fit by introducing interaction terms, we observe the following:

If we only include the interaction NPLAN � ANTIB, the corresponding estimated
coefficient is close to zero. If we include the interactions RISK � ANTIB or NPLAN � RISK,
we observe the problem of a nonexistent maximum, i.e., the ML estimator diverges. The
reason is that we exclusively observed “no infection” for the response variable for both
NPLAN D 0, RISK D 0, ANTIB D 1 and NPLAN D 1, RISK D 0, ANTIB D 0. This leads
to the divergence towards infinity for the estimated effects of ANTIB and RISK � ANTIB or
NPLAN and NPLAN �RISK, and a termination before convergence yields exceptionally high
estimated interaction effects and standard errors. Depending on the chosen software, the
user may receive a warning or not. In any case, very high estimated regression coefficients
and/or standard errors may be a sign for non-convergence of the ML estimator.

It is clear that the problem is dependent on the specific data configuration: If we were to
move one observation from the two empty cells over to the “infection” category, then the
interactions converge and finite ML estimators exist. 4

Comparison of the ML and Least Squares Estimator
In a linear regression model with normally distributed error terms, we have

yi � N.�i D x0
iˇ; �

2/:

Apart from constant factors, the score function is then given by

s.ˇ/ D
nX

iD1
xi .yi � �i/;

where E.yi /D�i D x0
iˇ linearly depends on ˇ. For the logit model, the score

function (5.8) follows the same structure, with E.yi /D �i D�i . However, s.ˇ/ is
nonlinear in ˇ since �i D �i D exp.x0

iˇ/=f1Cexp.x0
iˇ/g. The ML or least squares

system of equations for the linear model has the form

s. Ǒ/ D
nX

iD1
xi .yi � x0

i
Ǒ/ D X 0y � X 0X Ǒ D 0;
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with responses y D .y1; : : : ; yn/
0. If the design matrix X has full rank p, we obtain

the estimated regression coefficients as the solution of the system of equations
X 0X Ǒ D X 0y in a single step, yielding

Ǒ D .X 0X/�1X 0y :

In contrast, the solution to the nonlinear system of equations (5.9) has to be obtained
numerically in several iterative steps in the logit model. The (observed and expected)
information matrix in the linear model is

F .ˇ/ D
nX

iD1
x0
ixi =�

2 D 1

�2
X 0X :

The structure is again very similar to the one in the logit model, but the information
matrix does not depend on ˇ.

Asymptotic Properties of the ML Estimator
Under relatively weak regularity conditions, one can shows that asymptotically
(i.e., for n ! 1), the ML estimator exists, is consistent, and follows a normal
distribution. This result does not require that the sample size goes to infinity for
each distinct location in the covariate space, but it is sufficient that the total sample
size goes to infinity, i.e., n ! 1. Then, for a sufficiently large sample size n, Ǒ has
an approximate normal distribution

Ǒ a� N.ˇ;F �1. Ǒ//;
with estimated covariance matrix

bCov. Ǒ/ D F �1. Ǒ/
equal to the inverse Fisher matrix evaluated at the ML estimator Ǒ. The diagonal
element ajj of the inverse Fisher matrix A D F �1. Ǒ/ is then an estimator of the

variance of the j th component Ǒ
j of Ǒ, i.e.,

cVar. Ǒ
j / D ajj ;

and sej D p
ajj is the standard error of Ǒ

j or in other words an estimator for the

standard deviation
q

Var. Ǒ
j /. More details regarding the asymptotic properties of

the ML estimator can be found in Fahrmeir and Kaufmann (1985).

5.1.3 Testing Linear Hypotheses

Linear hypotheses have the same form as in linear models:

H0 W C ˇ D d versus H1 W C ˇ 6D d ;
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with C having full row rank r � p. We can use the likelihood ratio, the score and
the Wald statistics for testing; see Appendix B.4.4. The likelihood ratio statistic

lr D �2fl. Q̌/ � l. Ǒ/g
measures the deviation in log-likelihood between the unrestricted maximum l. Ǒ/
and that of the restricted maximum l. Q̌/ under H0, where Q̌ is the ML estimator
under the restriction C ˇ D d . For the special case

H0 W ˇ1 D 0 versus H1 W ˇ1 6D 0; (5.11)

where ˇ1 is a subset of ˇ, we test the significance of the effects belonging to ˇ1.
The computation of Q̌ then simply requires ML estimation of the corresponding
submodel. The numerical complexity is much greater for general linear hypotheses,
since maximization has to be carried out under the constraint C ˇ D d .

The Wald statistic

w D .C Ǒ � d/0ŒC F �1. Ǒ/C 0��1.C Ǒ � d/

measures the distance between the estimate C Ǒ and the hypothetical value d under
H0, weighted with the (inverse) asymptotic covariance matrix C F �1. Ǒ/C 0 of C Ǒ.

The score statistic
u D s0. Q̌/F �1. Q̌/s. Q̌/

measures the distance between 0 D s. Ǒ/, i.e., the score function evaluated at the
ML estimator Ǒ, and s. Q̌/, i.e., the score function evaluated at the restricted ML
estimator Q̌.

Wald tests are mathematically convenient when an estimated model is to be tested
against a simplified submodel, since it does not require additional estimation of the
submodel. Conversely, the score test is convenient when an estimated model is to be
tested against a more complex model alternative.

For the special hypothesis Eq. (5.11), the Wald and score statistic are reduced to

w D Ǒ 0
1

OA�1
1

Ǒ
1

and
u D s1. Q̌

1/
0 QA1s1. Q̌

1/;

where A1 represents the submatrix of A D F �1 and s1. Q̌
1/ represents the subvector

of the score function s. Q̌ / that corresponds to the elements of Q̌
1. The notation “O”

or “Q ” reflects the respective evaluation at Ǒ or Q̌.
Under weak regularity conditions, similar to those required for the asymptotic

normality of the ML estimators, the three test statistics are asymptotically equivalent
underH0 and approximately follow a �2-distribution with r degrees of freedom:

lr;w; u
a� �2r :
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Critical values or p-values are calculated using this asymptotic distribution. For
moderate sample sizes, the approximation through the �2-distribution is generally
sufficient. For a smaller sample size, e.g., n � 50, the values of the test statistics
can, however, differ considerably.

In the special case H0 W ˇj D 0 versusH1 W ˇj ¤ 0 the Wald statistic equals the
squared “t-value”

w D t2j D
Ǒ2
j

ajj
;

with ajj as the j th diagonal element of the asymptotic covariance matrix A D
F �1. Ǒ/. Then the test is usually based on tj which is asymptotically N.0; 1/
distributed. The null hypothesis is then rejected if jtj j > z1�˛=2 where z1�˛=2 is
the .1 � ˛=2/-quantile of the N.0; 1/ distribution.

5.1.4 Criteria for Model Fit and Model Choice

Assessing the fit of an estimated model relies on the following idea: When the data
have been maximally grouped, we can estimate the group-specific parameter �i
using the mean value Nyi . The use of these mean values as estimators corresponds
to the saturated model, i.e., the model which contains separate parameters for each
group. Thus the saturated model provides the best fit to the data and serves as a
benchmark when evaluating the fit of estimated regression models. We now can
formally test whether the departure between the estimated model and the saturated
model is significant or not. The Pearson statistic and the deviance are the most
frequently used goodness-of-fit statistics used for testing such a departure, both
requiring that the data have been grouped as much as possible.

The Pearson statistic is given by the sum of the squared standardized residuals:

�2 D
GX

iD1

. Nyi � O�i /2
O�i .1 � O�i /=ni ;

where G represents the number of groups, Nyi is the relative frequency for group i ,
O�i D h.x0

i
Ǒ/ is the probability P.yi D 1/ estimated by the model, and O�i .1� O�i/=ni

is the corresponding estimated variance.
The deviance is defined by

D D �2
GX

iD1
fli . O�i /� li . Nyi /g ;

where li . O�i / and li . Nyi / represent the log-likelihood of group i for the estimated and
the saturated model, respectively. The Pearson statistic looks similar to conventional
chi-square statistics for testing if a random sample comes from a hypothesized
discrete distribution: The squared differences between data and estimates are
standardized by the variance and then summed up. The deviance compares the
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Table 5.3 Patent opposition: estimation results from the logit model

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 201.740 22.321 9.04 <0.001 157.991 245.489
year �0.102 0.011 �9.10 <0.001 �0.124 �0.080
ncit 0.114 0.022 5.09 <0.001 0.070 0.157
nclaim 0.027 0.006 4.49 <0.001 0.015 0.038
ustwin �0.403 0.100 �4.03 <0.001 �0.599 �0.207
patus �0.526 0.113 �4.67 <0.001 �0.747 �0.306
patgsgr 0.197 0.117 1.68 0.094 �0.033 0.427
ncountry 0.098 0.015 6.55 <0.001 0.068 0.127

(maximum of the) log-likelihood of the estimated model to the value of the log-
likelihood of the saturated model, i.e., the largest value of the log-likelihood that
can be attained. For finite samples, the Pearson and the deviance statistic will differ,
but it can be shown that they are asymptotically equivalent for grouped data. If the ni
are sufficiently large for all groups i D 1; : : : ; G, both statistics are approximately
�2G�p-distributed, where p represents the number of estimated coefficients. Based
on this approximate distribution, we can conduct a formal test for model fit by
comparing the observed value of the test statistic to the corresponding quantile of
the �2G�p -distribution. Larger values in the observed test statistic indicate lack of fit
and therefore correspond to larger p-values. For a prespecified significance level ˛
a model is rejected if the .1� ˛/-quantile is exceeded or the p-value is smaller than
˛. However, if ni is small (especially if ni D 1 as with ungrouped individual data),
conducting such a test can be problematic. In this case, large values of �2 or D do
not necessarily indicate a poor fit.

As already discussed for the coefficient of determination in linear regression
(section “Analysis of Variance and Coefficient of Determination” of Sect. 3.2.3),
a model choice strategy that tries to make the goodness-of-fit statistics as small as
possible will usually result in an overfit model choice. When comparing models
with different predictors and parameters, a compromise should be found between a
good model fit obtained with a large number of parameters and model complexity.
A well-known compromise is Akaike’s information criterion

AIC D �2l. Ǒ/C 2p ;

in which the term 2p penalizes complex models with a large number of parameters.
When choosing between several models, we prefer those with small AIC values.
Rather than the AIC value, one also often considers AIC=n, i.e., the AIC
standardized for sample size n. Another alternative is the BIC; see Appendix B.5.4.

Example 5.4 Patent Opposition—Testing and Model Choice
Table 5.3 presents the estimated coefficients for the logit model in Example 5.1 (p. 275),
along with the corresponding standard errors, t-values, p-values, and 95 % confidence
intervals. For the log-likelihood and the AIC criterion of the estimated model, we have
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Table 5.4 Patent opposition: estimation results from the probit model

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 119.204 13.192 9.04 <0.001 93.349 145.060
year �0.060 0.007 �9.11 <0.001 �0.073 �0.047
ncit 0.068 0.014 5.02 <0.001 0.041 0.094
nclaim 0.016 0.004 4.46 <0.001 0.009 0.023
ustwin �0.243 0.060 �4.07 <0.001 �0.360 �0.126
patus �0.309 0.066 �4.72 <0.001 �0.438 �0.181
patgsgr 0.121 0.071 1.71 0.086 �0.017 0.260
ncountry 0.059 0.009 6.51 <0.001 0.041 0.076

Table 5.5 Patent opposition: estimation results of the extended logit model

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 198.131 22.739 8.71 <0.001 153.563 242.699
year �0.101 0.011 �8.82 <0.001 �0.123 �0.078
ncit 0.113 0.022 5.08 <0.001 0.070 0.157
nclaim 0.026 0.006 4.45 <0.001 0.015 0.038
ustwin �0.409 0.100 �4.09 <0.001 �0.605 �0.213
patus �0.539 0.113 �4.77 <0.001 �0.761 �0.318
patgsgr 0.180 0.119 1.52 0.130 �0.053 0.414
ncountry 0.394 0.184 2.14 0.032 0.034 0.754
ncountry2 �0.038 0.024 �1.58 0.113 �0.085 0.009
ncountry3 0.001 0.001 1.50 0.134 �0.000 0.003

l. Ǒ/ D �1488:560 ; AIC D 2993:12 :

With a p-value of 0.094, the effect of the variable patgsgr is at best marginally significant.
If we choose ˛ D 5% as the significance level, the hypothesis H0 W ˇ6 D 0 will not be
rejected. This implies that the increased probability of patent objection if the patent comes
from Germany, Switzerland, or Great Britain appears nonsignificant.

Table 5.4 contains the corresponding values for the probit model. Even though the
estimated coefficients and their standard deviations differ due to the absence of a proper
adjustment (see Example 5.1), the t-values and p-values are in good agreement and lead to
the same conclusions regarding the significance of the effects. With

l. Ǒ/ D �1488:407 ; AIC D 2992:815;

we obtain very similar values for the log-likelihood and the AIC criterion. Since the results
for the patent data are comparable for the logit and probit model, we only further describe
the findings for the logit model.

In order to examine whether or not the effect of the continuous covariate ncountry is
linear, we included a cubic polynomial

ˇ7 ncountry C ˇ8 ncountry2 C ˇ9 ncountry3

into the linear predictor as in Example 2.8 (p. 35) and estimated this modified logit model.
Table 5.5 contains the estimated coefficients, their standard errors, as well as t-values,



290 5 Generalized Linear Models

Table 5.6 Credit scoring: description of the covariates including summary statistics

Mean/ Std.
Variable Description frequency in % dev. Min/max

acc1 1 D no running account 27.40
0 D good or bad running account 72.60

acc2 1 D good running account 39.40
0 D no or bad running account 60.60

duration Duration of the credit in months 20.90 12.06 4/72
amount Credit amount in 1000 Euro, 1.67 1.44 0.13/9.42
moral Previous payment behavior

1 D good 91.10
0 D bad 8.90

intuse Intended use
1 D private 65.70
0 D business 34.30

p-values, and 95 % confidence intervals. The t-values and the p-values corresponding to
ncountry2 and ncountry3 already indicate that the more conservative linear model may
be sufficient and that the nonlinearity is over-interpreted. The log-likelihood and the AIC
criterion for the extended model yields

l. Ǒ/ D �1487:232 ; AIC D 2994:463 :

This further confirms that we should rather choose the simpler model with linear modeling
of the ncountry effect. We can also investigate nonlinearity by testing the hypotheses

H0 W .ˇ8; ˇ9/ D .0; 0/ versus H1 W .ˇ8; ˇ9/ ¤ .0; 0/:

The likelihood ratio test statistic results in

lr D �2f�1488:56 � .�1487:23/g D 2:66 :

The 95 % quantile of the (approximate) �2.2/-distribution is �295%.2/D 5:99, thus H0

cannot be rejected, which also follows from the p-value of 0.269. In summary, the
assumption of a linear effect of covariate ncountry cannot be rejected. The Wald test also
leads to the same result. 4

Example 5.5 Credit Scoring—Binary Regression
When issuing credit, banks check the “solvency” or “creditworthiness” of clients, i.e., their
ability and willingness to pay back the credit in the specified time frame. To evaluate
creditworthiness using statistical methods (credit scoring), characteristics of the borrower
are requested that reflect his or her personal and economic situation and thus influence the
probability of creditworthiness. Binary regression models are suited for such evaluations
since they model the probability of a loan default for given characteristics of the client.

We use a data set on nD 1;000 private credits issued by a German bank published in
Fahrmeir, Hamerle, and Tutz (1996). Every client is associated with a binary response y
defined as

y D
(
1 client is not creditworthy,

0 client is creditworthy:

Among a total of 20 characteristics, we use those described in Table 5.6 as covariates.
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Table 5.7 Credit scoring: estimation results for the logit model

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 0.487 0.266 1.83 0.067 �0.034 1.007
acc1 0.618 0.175 3.53 <0.001 0.275 0.960
acc2 �1.338 0.201 �6.65 <0.001 �1.732 �0.944
durationo 0.401 0.093 4.29 <0.001 0.218 0.584
amounto 0.066 0.092 0.72 0.474 �0.115 0.247
moral �0.986 0.251 �3.93 <0.001 �1.478 �0.494
intuse �0.426 0.158 �2.69 0.007 �0.736 �0.115

Table 5.8 Credit scoring: results for the extended logit model

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 0.474 0.270 1.75 0.079 �0.055 1.004
acc1 0.618 0.176 3.51 <0.001 0.272 0.963
acc2 �1.337 0.202 �6.61 <0.001 �1.734 �0.941
durationo 0.508 0.100 5.07 <0.001 0.312 0.705
duration2o �0.173 0.079 �2.20 0.028 �0.327 �0.019
amounto 0.035 0.098 0.36 0.720 �0.155 �0.224
amount2o 0.288 0.097 3.07 0.002 0.104 0.471
moral �0.995 0.255 �3.90 <0.001 �1.495 �0.495
intuse �0.404 0.160 �2.52 0.012 �0.718 �0.090

We model the probability P.y D 1/ for a weak creditworthiness with a logit model and
the linear predictor

� D ˇ0 C ˇ1 acc1 C ˇ2 acc2 C ˇ3 durationo C ˇ4 amounto C ˇ5 moral C ˇ6 intuse:

Since we will later also estimate quadratic orthogonal polynomials (see Example 3.5 on
p. 90) for the effects of the continuous covariates duration and amount we included
the linear parts durationo and amounto of these orthogonal polynomials in the predictor
rather than the original covariates. Table 5.7 lists the estimated coefficients, along with
their corresponding standard errors, t-values, p-values, and 95 % confidence intervals. The
p-value for the effect of amounto indicates that the corresponding effect is not significant.
The AIC value for this model is 1,043.815.

In a second step of our analysis, we assume a quadratic orthogonal polynomial for the
effects of the continuous covariates duration and amount to detect possible nonlinearity.
Table 5.8 contains the corresponding estimated results. All p-values, also those for squared
effects, now show significance. Furthermore, the lower AIC value of 1,035.371 indicates an
improved model fit.

Figure 5.2 shows the estimated linear effects of credit amount and duration together with
the quadratic, nonlinear effects. The “bathtub” shape of the squared effects of the credit
amount illustrates that small and large credit increases the risk of not paying back the credit.
This effect is missed when reducing the model to linear effects.

We finally apply the likelihood ratio and Wald test in order to test the model having
quadratic effects against the submodel with linear effects for credit amount and duration.
The likelihood ratio and the Wald statistic yield
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Fig. 5.2 Credit scoring: estimated linear (- - -) and quadratic (—) effects of credit amount and
credit duration

lr D 12:44 ; w D 11:47

with two degrees of freedom and corresponding p-values of 0.0020 and 0.0032, respectively.
Hence, both tests again confirm the specification of the more complex model with quadratic
effects. 4

5.1.5 Estimation of the Overdispersion Parameter

As discussed in Sect. 5.1 (p. 279), we may observe overdispersion when working
with grouped data. To allow for overdispersion, we assume

Var.yi / D �
�i .1 � �i /

ni
:

The overdispersion parameter � can be estimated as the average Pearson statistic or
the average deviance:

O�P D 1

n � p�
2 or O�D D 1

n � pD :

This is analogous to the estimation of the error variance in the linear model, with �2

or D replacing the residual sum of squares.
Accordingly, we multiply the estimated covariance matrix with O�, i.e., bCov. Ǒ/ D

O�F �1. Ǒ/. Strictly speaking, this approach to treat overdispersion does not cor-
respond to a true likelihood method, but rather to a quasi-likelihood model; see
Sect. 5.5.
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Since we only need �i D E.yi / and Var.yi /, and not the likelihood itself for
the maximum likelihood estimation of ˇ, both ˇ and � can be formally estimated
just as if we considered a distribution with scale parameter �, such as a normal or
gamma distribution; see Sect. 5.4.2. In fact, the introduction of an overdispersion
parameter leads to one of the simplest forms of quasi-likelihood estimation. Even
though distributions with variance ��i .1 � �i /=ni exist, for example, the beta-
binomial distribution, their actual likelihood is not necessary and will also not be
used in the estimation process. Other approaches to account for overdispersion are,
for example, models with random effects; see Chap. 7. A good additional reference
on models with overdispersion is Collett (1991).

5.2 Count Data Regression

Count data are frequently observed when the number of certain events within a fixed
time frame or frequencies in a contingency table have to be analyzed. Sometimes, a
normal approximation can be sufficient, particularly when the events occur with
high frequencies. In situations with only a small number of counts, models for
categorial response variables (Chap. 6) can be an alternative. In general, however,
discrete distributions recognizing the specific properties of count data are most
appropriate. The Poisson distribution is the simplest and most widely used choice,
but model modifications and alternatives such as the negative binomial distribution
are also used. For details on such extensions, we refer to the specialized literature
on count data regression given in the final section of this chapter.

5.2.1 Models for Count Data

Log-Linear Poisson Model
The most widely used model for count data connects the rate 	i D E.yi / of the
Poisson distribution with the linear predictor �i D x0

iˇ D ˇ0Cˇ1xi1C : : :Cˇkxik
via

	i D exp.�i / D exp.ˇ0/exp.ˇ1xi1/ � : : : � exp.ˇkxik/

or in log-linear form through

log.	i / D �i D x0
iˇ D ˇ0 C ˇ1xi1 C : : :C ˇkxik: (5.12)

The effect of covariates on the rate 	 is, thus, exponentially multiplicative similar
to the effect on the odds �=.1 � �/ in the logit model. The effect on the logarithm
of the rate in Eq. (5.12) is linear.

Linear Poisson Model
The direct relationship

	i D �i D x0
iˇ
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5.3 Log-Linear Poisson Model for Count Data

Data

The response variables yi take values f0; 1; 2; : : : g and are (conditionally)
independent given the covariates xi1; : : : ; xik .

Model Without Overdispersion

yi � Po.	i / with

	i D exp.x0
iˇ/ or log.	i / D x0

iˇ:

Model with Overdispersion

E.yi / D 	i D exp.x0
iˇ/; Var.yi / D �	i

with overdispersion parameter �.

is useful when the covariates have an additive effect on the rate. Since x0
iˇ must not

be nonnegative, this usually implies restrictions for the parameter space of ˇ.

Overdispersion
The assumption of a Poisson distribution for the responses implies

	i D E.yi / D Var.yi /:

For similar reasons as in case with binomial data, a significantly higher empirical
variance is frequently observed in applications of Poisson regression. For this reason
it is often useful to introduce an overdispersion parameter � by assuming

Var.yi / D �	i :

As for binomial data, there are also more complex modeling approaches for count
data which take the additional variability into account. One possibility is the use
of the negative binomial distribution, which is closely related to the use of random
effects models; see Chap. 7.

Example 5.6 Number of Citations from Patents—Poisson Regression
We illustrate the use of regression models for counts with the patent data described in
Example 1.3 (p. 8). In contrast to Examples 5.1 and 5.4, we now choose the number of
citations for a patent, variable ncit, as the response. We also use the complete data set,
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i.e., patents which either belong to the biotechnology or to the pharmaceutical industry.
We incorporate the remaining variables described in Table 1.4 (p. 8) as covariates. As in
Sect. 3.1.2 (p. 92), we center the continuous covariates yearc, ncountryc, and nclaimsc
around their means and use these centered covariates in the linear predictor. Based on
previous descriptive analysis in Example 2.8, we exclude all observations with nclaims >
60 and ncit > 15 from further analysis.

As a first step, we examine a log-linear model for the rate 	i D E.nciti / with purely
linear predictor

log.	i / D �i D ˇ0 C ˇ1yearci C ˇ2ncountryci C ˇ3nclaimci C ˇ4biopharmi

C ˇ5ustwini C ˇ6patusi C ˇ7patgsgri C ˇ8oppi :

In Example 5.7, we estimate a Poisson model without an overdispersion parameter, as well
as a model that includes an overdispersion parameter � in the variance Var.nciti / D �	i .
To allow for possibly nonlinear effects of the continuous covariates, we further considered
polynomial effects for yearc, ncountryc, and nclaimsc and compare the different models
using AIC. 4

5.2.2 Estimation and Testing: Likelihood Inference

We again assume that the response variables yi are (conditionally) independent.
The derivations of the likelihood, score function, and the information matrix are
analogous to the developments for binary data in Sect. 5.1.

Maximum Likelihood Estimation
For the Poisson distributed response variable, the discrete density (or the likelihood
Li.ˇ/ of the i th observation) is given by

f .yi j ˇ/ D 	
yi
i exp.�	i/

yi Š
; E.yi / D 	i :

It depends on ˇ through 	i D x0
iˇ in the linear Poisson model and through

	i D exp.x0
iˇ/ in the log-linear Poisson model. The ML estimator for the log-linear

Poisson model is obtained in the following steps:
1. Log-likelihood
The log-likelihood is given by

l.ˇ/ D
nX

iD1
li .ˇ/ D

nX

iD1
.yi log.	i / � 	i /;

apart from the additive constant �nlog.yi Š/ (that is independent of ˇ). The Poisson
log-linear model with log.	i / D x0

iˇ D �i yields

l.ˇ/ D
nX

iD1
li .ˇ/ D

nX

iD1
yi .x

0
iˇ/� exp.x0

iˇ/ D
nX

iD1
.yi�i � exp.�i // :



296 5 Generalized Linear Models

2. Score function
Differentiating according to the chain rule @li .ˇ/=@ˇ D .@li =@�i / � @�i=@ˇ D
@li =@�i � xi , we obtain the score function

s.ˇ/ D
nX

iD1
xi .yi � exp.�i // D

nX

iD1
xi .yi � 	i /:

3. Fisher information
Using the same arguments as in the logit model, we obtain the Fisher information

F .ˇ/ D E.s.ˇ/s0.ˇ// D
nX

iD1
xix

0
i 	i ;

utilizing E.yi � 	i /2 D Var.yi / D 	i .

4. Numerical computation
Due to 	i D exp.x0

iˇ/, we obtain the nonlinear equation system

s. Ǒ/ D 0

for Ǒ. The numerical computation of Ǒ is again carried out using Fisher scoring
Eq. (5.10), inserting the corresponding expressions for s.ˇ/ and F .ˇ/. Similar to
linear and binary regression, we assume

rk.X/ D p

for the design matrix X D .x1; : : : ;xn/
0. The remarks made in Sect. 5.1.2 also

apply for the convergence or divergence of the iterations in the Poisson model.
Under moderate regularity assumptions and for large n (more precisely for n !

1), we have the asymptotic result

Ǒ a� N.ˇ;F �1. Ǒ//

with estimated covariance matrix bCov. Ǒ/ D F �1. Ǒ/.

Testing Linear Hypotheses
We use the same test statistics as in binary regression models for testing linear
hypotheses C ˇ D d , where the appropriate expressions for l.ˇ/; s.ˇ/, and
F .ˇ/ associated with the Poisson model are to be inserted. In addition, the same
statements regarding the asymptotic or approximate �2-distribution of the test
statistics apply.
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5.2.3 Criteria for Model Fit and Model Choice

The criteria discussed in Sect. 5.1.2 for binary regression models can be transferred
to the Poisson case. Since Var.yi / D 	i for the Poisson distribution, we obtain the
Pearson statistic

�2 D
GX

iD1

.yi � O	i /2
O	i=ni

:

The Poisson log-likelihood must be inserted into the definition of the deviance and
the AIC. Note that by convention 0 � log.0/ D 0 (for yi D 0).

5.2.4 Estimation of the Overdispersion Parameter

As previously stated, in situations where we allow for possible overdispersion with
the assumption Var.yi j xi / D �	i , the overdispersion parameter � can be estimated
as the average Pearson statistic or the average deviance:

O�P D 1

n � p�
2 or O�D D 1

n � pD :

This is analogous to the estimation of the error variance in the linear model, with �2

or D replacing the residual sum of squares.
We then have to multiply the estimated covariance matrix with O�, i.e., bCov. Ǒ/ D

O�F �1. Ǒ/. Strictly speaking, this approach to the estimation of overdispersion does
not correspond to a true likelihood method, but rather to a quasi-likelihood model;
see Sect. 5.5.

Example 5.7 Number of Citations from Patents—Overdispersion
Table 5.9 shows estimation results for the log-linear Poisson model of Example 5.6 having
no overdispersion (i.e., � D 1) and only linear effects (AIC D 19; 092:25, deviance D
12; 085:31, Pearson-�2 D 14; 091:66).

The p-values indicate significance of all covariates, with the exception of ustwin. Since
overdispersion is very common with Poisson models, we reanalyze the model by estimating
the overdispersion parameter as the mean Pearson statistic or mean deviance. We obtain

O�P D 1

n� p
�2 D 2:935 resp. O�D D 1

n� p
D D 2:518 ;

with nD 4; 809, pD 9. In contrast to the Poisson model, the estimated variance or standard
deviation of the estimated regression coefficients needs to be multiplied by O� and O�1=2,
respectively, while the point estimates are the same as for the pure Poisson model without
overdispersion. Table 5.10 lists the results for O�P . In comparison to Table 5.9, we see that
the standard errors increase by the factor O�1=2P D 1:71. This adjustment causes an increase
of the p-values, such that the effect of variable patus is now insignificant, while the analysis
without overdispersion resulted in a p-value that was significant.

In order to detect possibly nonlinear effects of the centered continuous covariates
yearc, ncountryc, and nclaimc, we construct polynomials of degree three. The centering
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Table 5.9 Number of citations from patents: model with linear effects and � D 1

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 0.158 0.033 4:85 <0.001 0.094 0.222
yearc �0.072 0.003 �24:17 <0.001 �0.078 �0.066
ncountryc �0.028 0.004 �6:60 <0.001 �0.036 �0.020
nclaimc 0.018 0.001 14:16 <0.001 0.016 0.021
biopharm 0.239 0.032 7:42 <0.001 0.176 0.302
ustwin 0.002 0.026 0:09 0.926 �0.048 0.053
patus �0.078 0.027 �2:84 0.005 �0.132 �0.024
patgsgr �0.198 0.032 �6:24 <0.001 �0.260 �0.136
opp 0.372 0.025 14:81 <0.001 0.322 0.421

Table 5.10 Number of citations from patents: model with linear effects and overdispersion

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 0.158 0.056 2.83 0.005 0.049 0.267
yearc �0.072 0.005 �14.11 <0.001 �0.082 �0.062
ncountryc �0.028 0.007 �3.85 <0.001 �0.042 �0.014
nclaimc 0.018 0.002 8.26 <0.001 0.014 0.022
biopharm 0.239 0.055 4.33 <0.001 0.131 0.347
ustwin 0.002 0.044 0.05 0.957 �0.084 0.088
patus �0.078 0.047 �1.66 0.098 �0.170 0.014
patgsgr �0.198 0.054 �3.64 <0.001 �0.305 �0.091
opp 0.372 0.043 8.64 <0.001 0.287 0.456

is conducted as described in section “Continuous Covariates” of Sect. 3.1.3. The model
obtains AIC D 18; 786:32, devianceD 11; 767:37, Pearson-�2 D 13; 815:96, O�D D 2:45,
O�P D 2:88. Compared to the model with only linear effects the fit is considerably improved.
Table 5.11 shows the results. The variable ustwin remains nonsignificant while patus is now
weakly significant. The other variables all remain significant (on a level of 5 %) with the
exception of some of the polynomial terms. This indicates that lower-order polynomials
might be sufficient to model the nonlinearity of the covariate effects. Figure 5.3 compares
linear and nonlinear effects of the continuous covariates. We leave the interpretation of the
results to the reader; see Example 2.13 (p. 54) on how to interpret the (nonlinear) effects in
Poisson regression models. 4

5.3 Models for Nonnegative Continuous Response Variables

The classical linear model

yi D x0
iˇ C "i ; E."i / D 0; Var."i / D �2
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Table 5.11 Number of citations from patents: extended model with overdispersion

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 0.17115 0.05558 3.08 0.002 0.06221 0.28009
yearc �0.09924 0.00966 �10.27 <0.001 �0.11818 �0.08031
yearc2 �0.00974 0.00226 �4.31 <0.001 �0.01417 �0.00531
yearc3 �0.00011 0.00030 �0.37 0.715 �0.00070 0.00048
ncountryc 0.01552 0.01322 1.17 0.241 �0.01040 0.04143
ncountryc2 �0.00213 0.00206 �1.03 0.301 �0.00618 0.00191
ncountryc3 �0.00157 0.00044 �3.60 <0.001 �0.00243 �0.00071
nclaimc 0.02611 0.00352 7.42 <0.001 0.01922 0.03301
nclaimc2 �0.00046 0.00036 �1.30 0.195 �0.00116 0.00024
nclaimc3 0.00000 0.00000 0.18 0.855 �0.00002 0.00002
biopharm 0.15504 0.05564 2.79 0.005 0.04598 0.26410
ustwin �0.00288 0.04338 �0.07 0.947 �0.08791 0.08215
patus �0.09502 0.04715 �2.02 0.044 �0.18743 �0.00260
patgsgr �0.20185 0.05446 �3.71 <0.001 �0.30859 �0.09511
opp 0.37154 0.04253 8.74 <0.001 0.28819 0.45489

is well suited for analyzing regression data when the errors "i have (at least
approximately) a normal distribution. In this case, the response variables yi , for
given covariate vector xi , are (conditionally) independent and follow a normal
distribution with

yi � N.�i ; �2/; �i D E.yi / D x0
iˇ:

In many applications, the response variable cannot be negative, for example, in
case of life times, claim sizes, and costs. Such responses are also usually highly
non-normal, often following a (right) skewed distribution.

Lognormal Model
To enable the application of linear models, the response variable y is often
transformed logarithmically such that a usual linear model with normal errors can
be assumed for Qy D log.y/, i.e.,

Qyi D x0
iˇ C "i or Qyi � N.x0

iˇ; �
2/:

This implies that the original variable y follows a log-normal distribution (see
Definition B.6 in Appendix B.1) with

E.yi / D exp.x0
iˇ C �2=2/; Var.yi / D exp.2x0

iˇ C �2/.exp.�2/� 1/: (5.13)

We can obtain “plug-in” estimators for Eq. (5.13), using the least squares estimates
Ǒ and the estimated variance O�2 for the linear model. When estimating O�i D

exp. O�i / D exp.xi Ǒ C O�2=2/, considerable bias can be induced by the nonlinear
back-transformation with the exponential function.
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Fig. 5.3 Number of citations from patents: linear (- - -) and nonlinear (—) effects of the
continuous covariates year, ncountry, and nclaim

Gamma Regression
To circumvent this difficulty, the assumption of a gamma distribution (see Defini-
tion B.9 in Appendix B.1), with expectation E.yi / D �i and scale parameter � for
the response variables yi , can be a valuable alternative. The variance is then given
by

Var.yi / D �2i D �2i =�:

For the nonnegative, gamma-distributed response, we have E.yi /D�i > 0. A direct
linear link

�i D x0
iˇ

is again problematic, since we have to comply with the condition x0
iˇ > 0. Thus a

multiplicative exponential model

�i D exp.�i / D exp.x0
iˇ/ D exp.ˇ0/exp.ˇ1xi1/ � : : : � exp.ˇkxik/; (5.14)

with response function h.�/ D exp.�/, is often better suited than the linear link
function.
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Another possible choice for the response or link function is the reciprocal

�i D 1

�i
D 1

x0
iˇ

.

Since x0
iˇ > 0 has to be fulfilled, the choice again implies restrictions for ˇ.

Even though the reciprocal response function is the so-called natural or canonical
response function for the gamma distribution (see Sect. 5.4), the multiplicative expo-
nential model (5.14) is usually more adequate for both modeling and interpretation.

5.4 Generalized Linear Models

5.4.1 General Model Definition

The linear model and the regression models for non-normal response variables
described in the preceding sections have common properties that can be summarized
in a unified framework:
1. The mean � D E.y/ of the response y is connected with the linear predictor
� D x0ˇ by a response function h or by a link function g D h�1:

� D h.�/ or � D g.�/:

2. The distribution of the response variables (normal, binomial, Poisson, and
gamma distribution) can be written in the form of a univariate exponential family:

5.4 Exponential Family

The density of a univariate exponential family for the response variable y is
defined by

f .y j �/ D exp

�
y� � b.�/

�
w C c.y; �;w/

�
:

The log-density is given by

logf .y j �/ D y� � b.�/
�

w C c.y; �;w/:

The parameter � is called the natural or canonical parameter. For the function
b.�/ it is required that f .y j �/ can be normalized and the first and second
derivative b0.�/ and b00.�/ exist. The second parameter � is a dispersion
parameter, while w is a known value (usually a weight).
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As a consequence, both the definition of GLMs and the corresponding statistical
inference can be presented in a unified framework. More generally, the resulting
concepts can also be applied to regression problems with distributions that do
not belong to the exponential family. To treat individual data and grouped data
simultaneously, we introduce the weight factor w. For individual data, we set w D 1,
whereas in the case when the response is summarized as a group mean, w is rather
set to the corresponding group size. In the case when the sum of the individual
responses of group i is selected for the response variable yi , the weight equals 1=ni .

The Bernoulli and Poisson distributions do not include a dispersion parameter,
i.e., � D 1. For the normal distribution, we have �D �2. The parameter � represents
the parameter of main interest that is connected to the linear predictor � D x0ˇ,
while the parameter � is often considered a “nuisance parameter” of secondary
interest. The term c.y; �; a/ does not depend on � . It can be shown that

E.y/ D � D b0.�/; Var.y/ D � b00.�/=w:

Example 5.8 Bernoulli, Poisson, and Normal Distribution
1. Bernoulli distribution: A Bernoulli variable has probability mass function or (discrete)

density
f .y j�/ D P.Y D y/ D �y.1� �/1�y; y D 0; 1;

where P.Y D 1/ D � D E.Y / D � and Var.Y / D �.1 � �/. Taking the logarithm
yields

log.f .y j�// D ylog.�/� ylog.1� �/C log.1� �/:

If we define � D log.�/� log.1��/ D log.�=.1��// as the natural parameter and
take log.1� �/ D �log.1C exp.�// into account, we obtain the density in the form of
an exponential family:

f .y j �/ D exp.y� � log.1C exp.�//;

with b.�/ D log.1 C exp.�//, � D 1 and c D 0. Differentiation results in b0.�/ D
exp.�/=.1Cexp.�// and b00.�/ D exp.�/=.1Cexp.�//2 . Solving � D log.�=.1��//
for � results in

� D exp.�/=.1C exp.�// ;

so that
E.y/ D b0.�/ D �; Var.y/ D b00.�/ D �.1� �/

holds.
2. Poisson distribution: A Poisson variable has the (discrete) density

f .y j	/ D P.Y D y/ D 	y exp.�	/
yŠ

; y D 0; 1; : : :

The logarithm of this density results in

log.f .y j	// D ylog.	/� 	� log.yŠ/:

With � D log.	/ as the natural parameter, we obtain

log.f .y j �// D y� � exp.�/� log.yŠ/:
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Table 5.12 Univariate exponential families

(a) Density

f .y j �; �;w/ D exp

�
y� � b.�/

�
w C c.y; �;w/

�

(b) Exponential family parameters

Distribution �.�/ b.�/ �

Normal N.�; �2/ � �2=2 �2

Bernoulli B.1; �/ log.�=.1 � �// log.1C exp.�// 1

Poisson Po.	/ log.	/ exp.�/ 1

Gamma G.�; �/ �1=� � log.��/ ��1

Inverse
Gaussian IG.�; �2/ �1=.2�2/ �.�2�/1=2 �2

(c) Expectation and variance

Distribution E.y/ D b0.�/ b00.�/ Var.y/ D b00.�/�=w

Normal � D � 1 �2=w

Bernoulli � D exp.�/
1Cexp.�/ �.1� �/ �.1� �/=w

Poisson 	 D exp.�/ 	 	=w
Gamma � D �1=� �2 �2��1=w
Inverse
Gaussian � D .�2�/�1=2 �3 �3�2=w

It follows that b.�/ D exp.�/ D 	, � D 1 and c.y; �/ D �log.yŠ/. With b0.�/ D
b00.�/ D exp.�/ D 	, we obtain

E.y/ D � D 	; Var.y/ D 	;

i.e., the equality of expectation and variance that is characteristic for Poisson variables.
3. Normal distribution: The density of the normal distribution is

f .y j�/ D 1

.2��2/1=2
exp

�
� 1

2�2
.y � �/2

�
;

where � D E.y/ is the parameter of interest and �2 D Var.y/ is the nuisance parameter.
The density can be written in the form of an exponential family

f .y j�/ D exp

�
� y2

2�2
C y�

�2
� �2

2�2
� 1

2
log.2��2/

�

D exp

�
y�� �2=2

�2
� y2

2�2
� 1

2
log.2��2/

�

with � D �, � D �2, b.�/ D �2=2 D �2=2 and c.y; �/ D �y2=.2�2/ �
0:5 log.2��2/. It follows, as expected, that

b0.�/ D � D � D E.y/; b00.�/ D 1

and thus
Var.y/ D �b00.�/ D �2:

4
Similarly, one can derive the properties for the other distributions; see the

summary in Table 5.12.
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5.5 Generalized Linear Model

Distributional Assumptions

For given covariates xi D .1; xi1; : : : ; xik/
0, the response variables are

(conditionally) independent and the (conditional) density of yi belongs to
an exponential family with

f .yi j �i / D exp

�
yi�i � b.�i /

�
wi C c.yi ; �;wi /

�
:

The parameter �i is the natural parameter and � is a common dispersion
parameter, independent of i . For E.yi / D �i and Var.yi /, we have

E.yi / D �i D b0.�i /; Var.yi / D �2i D � b00.�i /=wi :

The weight parameter wi is 1 for ungrouped data (i D 1; : : : ; n). In the
case when the sum of the individual responses of group i is selected for
the response variable yi , the weight equals 1=ni for grouped data (i D
1; : : : ; G). Note wi D ni when the group mean, rather than the sum, is
selected.

Structural Assumptions

The (conditional) mean �i is connected to the linear predictor �i D x0
iˇ D

ˇ0 C ˇ1xi1 C : : :C ˇkxik through

�i D h.�i / D h.x0
iˇ/ or �i D g.�i /;

where

h is a (one-to-one and twice differentiable) response function and
g is the link function, i.e., the inverse g D h�1.

In summary, a specific GLM is completely determined by the type of the
exponential family (Gaussian, binomial, Poisson, gamma, inverse Gaussian), the
choice of the link or response function, and the definition and selection of covariates.

The choice of an appropriate response or link function is, as presented in the pre-
ceding examples, dependent on the type of the response variable. Every exponential
family has a unique canonical (or natural) link function, defined by �i D �i D x0

iˇ.
According to Table 5.12, the linear model �i D �i D x0

iˇ corresponds to the natural
link function for the normal distribution, whereas the logit model is obtained in
binary regression models, and the log-linear model results for Poisson models.
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5.6 Maximum Likelihood Estimation in GLMs

Definition

The ML estimator Ǒ maximizes the (log-)likelihood and is defined as the
solution

s. Ǒ/ D 0

of the score function given by

s.ˇ/ D
X

xi
h0.�i /
�2i

.yi � �i / D X 0D˙ �1.y � �/;

where D D diag.h0.�1/; : : : ; h0.�n//, ˙ D diag.�21 ; : : : ; �
2
n / and � D

.�1; : : : ; �n/
0 is the vector of expectations E.yi / D �i D h.�i /.

The Fisher matrix is

F .ˇ/ D
X

xix
0
i Qwi D X 0W X

where W D diag. Qw1; : : : ; Qwn/ is the diagonal matrix of working weights

Qwi D .h0.�i //2

�2i
:

Numerical Computation

The ML estimator Ǒ is obtained iteratively using Fisher scoring in form of
iteratively weighted least squares estimates

Ǒ.tC1/ D .X 0W .t/X/�1X 0W .t/ Qy .t/; t D 0; 1; 2; : : :

with working weights and observations given in Eqs. (5.17) and (5.16).

For canonical link functions, the log-likelihood is always concave so that the ML
estimator is always unique (if it exists). Moreover, it can be shown that the expected
and observed information matrix coincide, i.e., F.ˇ/ D H.ˇ/.
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5.4.2 Likelihood Inference

Inference in GLMs is again based on the likelihood principle. Let

X D

0

B@
x0
1
:::

x0
n

1

CA D

0

B@
1 x11 � � � x1k
:::

:::

1 xn1 � � � xnk

1

CA

be the design matrix with rk.X/ D p. In Sect. 5.8.2 we derive the log-likelihood
l.ˇ/, score function s.ˇ/, and Fisher information F .ˇ/; see Box 5.6 for a summary.
Based on the score function and the Fisher information, Sect. 5.8.2 also shows that
the ML estimator for ˇ can be iteratively obtained as

Ǒ.tC1/ D �
X 0W .t/X

��1
X 0W .t/ Qy .t/; t D 0; 1; 2; : : : : (5.15)

Here, Qy.t/ D
�

Qy1
�

O�.t/1
�
; : : : ; Qyn

�
O�.t/n
��0

is a vector of “working observations” with

elements

Qyi
�

O�.t/i
�

D O�.t/i C
�
yi � h

�
O�.t/i
��

h0
�

O�.t/i
� ; (5.16)

where O�.t/i D x0
i

Ǒ.t/ is the actual predictor, h is the response function, and h0.�/ D
@h.�/=@� is the derivative of h with respect to �. The matrix

W .t/ D diag
�

Qw1
�

O�.t/1
�
; : : : ; Qwn

� O�.t/n
��

is a diagonal matrix of the “working weights”

Qwi
�

O�.t/i
�

D
�
h0
�

O�.t/i
��2

�2i

�
O�.t/i
� ; (5.17)

where �2i

�
O�.t/i
�

is the (conditional) variance Var.yi / evaluated at � D O�.t/i . The

required quantities to compute the weighted least squares estimator can be easily
obtained from Table 5.12. A key role in the iterations Eq. (5.15) plays the Fisher
matrix F .ˇ/ D X 0W X . Since the elements Qwi of the diagonal matrix W depend on
the covariates xi and on ˇ, invertibility of F .ˇ/ in Eq. (5.15) does not follow from
the invertibility of X 0X (or equivalently the full rank of X ) in general. However,
usually (almost) all of the weights are positive such that F .ˇ/ is invertible, which
we assume in the following. Then, according to the stopping criterion, the algorithm
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5.7 Asymptotic Properties of the ML Estimator

Let Ǒ
n denote the ML estimator based on a sample of size n. Under regularity

conditions, Ǒ
n is consistent and asymptotically normal:

Ǒ
n
a� N.ˇ;F �1.ˇ//:

This result holds even if the estimator F . Ǒ/ replaces F .ˇ/.

typically converges close to a maximum after a number of iterative steps. With
the natural link function, it can be shown that the achieved maximum is unique.
However, this statement does not hold in general and therefore several different
starting values should be used to help ensure the global maximum is achieved.

Asymptotic Properties of ML Estimates
As in section “Asymptotic Properties of the Least Squares Estimator” of Sect. 3.2.3
we index the model quantities with the number of observations n. For regressors
with compact support, .X 0

nXn/
�1 ! 0 or 	min.X

0
nXn/ ! 1 are sufficient for

asymptotic normality and weak consistency in case of models with canonical link
function (where 	min denotes the smallest eigenvalue of X 0

nXn). Compare also
section “Asymptotic Properties of the Least Squares Estimator” of Sect. 3.2.3 for
a brief discussion and some examples of these conditions. For non-canonical link
function, stronger conditions on the limiting behavior of X 0

nX n have to be imposed.
If, in the case of stochastic regressors, the observations .yi ;xi / are independent and
identically distributed, e.g., .y;x/, and comply with the assumptions of a general
linear model, asymptotic normality follows under mild regularity conditions on the
marginal distribution of x.

Under the same assumptions, Ǒ
n asymptotically exists with probability 1, i.e.,

lim
n!1 P. Ǒ

n exists/ D 1:

Details and general proofs can be found in Fahrmeir and Kaufmann (1985).
The inverse of the Fisher information matrix F .ˇ/, evaluated at the ML estimator

Ǒ, is the asymptotic or approximate covariance matrix A D F �1. Ǒ/ of Ǒ. The
diagonal element ajj is an estimator for the variance �2j D Var. Ǒ

j / of the j th
component and

p
ajj for the standard deviation �j .

Estimation of the Scale or Overdispersion Parameter
Recall that Var.yi / D � b00.�i /=wi for general exponential families. Denote by
v.�i / D b00.�i / the so-called variance function; see Table 5.12 for the specific
expression of b00. Note that b00.�i / implicitly depends on �i through the relation
b0.�i / D �i .
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Using the variance function the dispersion parameter can then be estimated
consistently by

O� D 1

G � p

GX

iD1

.yi � O�i /2
v. O�i/=ni ;

wherep denotes the number of regression parameters, O�i D h.x0
i

Ǒ/ is the estimated
expectation, v. O�i/ is the estimated variance function, and the data should be grouped
as much as possible. We then substitute O� for � in every term containing �, as, for
example, in F . Ǒ/.

Testing Linear Hypotheses
For testing linear hypotheses

H0 W C ˇ D d versus H1 W C ˇ 6D d ;

where C has a full row rank r � p, we can use the likelihood ratio statistic lr ,
the Wald statistic w, and the score statistic u as discussed in more detail for binary
responses in Sect. 5.1.3; see also Appendix B.4.4 (p. 662) for a general presentation
of likelihood-based hypothesis testing. In the corresponding definitions, the specific
formulae for the chosen GLM have to be used for l.ˇ/, s.ˇ/, and F.ˇ/. Under
conditions similar to those for the asymptotic results on ML estimation, we have
lr;w; s

a� �2r , allowing for the computation of appropriate critical values and
(approximate) p-values.

Criteria for Model Fit and Model Selection
The Pearson statistic

�2 D
GX

iD1

.yi � O�i /2
v. O�i/=wi

and the deviance

D D �2
GX

iD1
fli . O�i/ � li . Nyi /g

are the two most common global statistics to verify the fit of a model relative to the
saturated model. Here, O�i and v. O�i/ are the estimated expectations and variance
functions, respectively, and the i th log-likelihood contribution of the saturated
model is li . Nyi /;where Nyi replaces�i . This results in the maximum possible value of
the log-likelihood. For both model fit statistics, the data should be grouped as much
as possible. When ni is sufficiently large in all groups i D 1; : : : ; G, both statistics
are approximately or asymptotically (for n ! 1) ��2.G � p/-distributed, where
p denotes the number of estimated parameters. In this situation, we can use both
statistics for formal testing of model fit, i.e., for comparing the estimated model fit
to that of the saturated model. For small ni , especially for ni D 1, such formal tests
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5.8 Testing Linear Hypotheses

Hypotheses

H0 W C ˇ D d versus H1 W C ˇ 6D d :

Test Statistics
1. Likelihood ratio statistic: lr D �2fl. Q̌/� l. Ǒ/g
2. Wald statistic: w D .C Ǒ � d/0ŒC F �1. Ǒ/C 0��1.C Ǒ � d/

3. Score statistic: u D s0. Q̌/F �1. Q̌/s. Q̌/
where Q̌ is the ML estimator underH0.

Test Decision

For large n and underH0, we have the asymptotic results

lr;w; u
a� �2r

where r is the (full) row rank of C . We reject H0 when

lq;w; u > �2r.1 � ˛/:

can be problematic, even with a large sample size n. Large values of �2 or D then
will not necessarily indicate a poor model fit.

The AIC for model selection is defined generally as

AIC D �2l. Ǒ/C 2p :

If the model contains a dispersion parameter �, as is the case with the normal
distribution, its maximum likelihood estimator should be substituted into the
respective model. Accordingly, the total number of parameters must be increased
to p C 1.

5.5 Quasi-likelihood Models

For GLMs, the response is assumed to be a member of the exponential family, e.g.,
the Gaussian, Poisson, or binomial distribution. This distributional assumption, in
combination with the mean structure E.y/ D � D h.x0ˇ), implies a specific
variance structure Var.y/ D � b00.�/=w, where the variance function v.�/ D
b00.�/ is determined by the exponential family. If the empirical variance does not
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comply with the estimated variance O� b00. O�/=w, the distribution of the data will be
incorrectly specified, i.e., the data do not agree with the chosen distribution from the
exponential family.

Quasi-likelihood models allow for a separate specification of the mean and the
variance structure. Furthermore, it is not necessary that these specifications corre-
spond to a proper likelihood function. It suffices to specify a correct expectation
structure E.y/ D h.x0ˇ/, together with a “working” variance structure �2i , and
to define parameter estimates as the roots of a quasi-score function or generalized
estimating equation (GEE) that has the same form as in usual GLMs; see the formula
for s.ˇ/ in Box 5.6.

We then start directly with the specification of a generalized estimating function

s.ˇ/ D
nX

iD1
xi
h0.�i /
�2i

.yi � �i/: (5.18)

Similar as in the score function of Box 5.6 that was obtained as the derivative of the
log-likelihood of a GLM, we assume that the expectation �i D h.x0

iˇ/ of yi given
xi is correctly specified with

E.yi / D �i D h.x0
iˇ/:

We then have

E.s.ˇ// D
nX

iD1
xi
h0.�i /
�2i

.E.yi /� �i/ D 0;

as for a real score function, a property that is crucial for the consistency of parameter
estimates.

In contrast, it is not necessary that the specified variance �2i in Eq. (5.18) equals
the true variance Var.yi /, but it can rather be specified with the help of a given quasi-
variance function v.�/, i.e., �2.�/ D � v.�/=w. We then call �2.�/ D � v.�/=w
the working variance.

The simplest form of a (working) variance function results from overdispersion
in binomial and Poisson models with wi D ni and

�2i .�i / D �
�i .1 � �i /

ni

or
�2i .	i / D �	i ;

respectively. In this case, the quasi-score function (5.18) is identical to the score
function of a binomial or Poisson model up to a constant factor 1=�, but it no longer
corresponds to the derivative of a log-likelihood function.

The (working) variance function is often parameterized with another parameter
� as

�2.�/ D �v.�I �/:
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An important special case is
v.�I �/ D �� ;

where we obtain the variance function of the Gaussian, Poisson, gamma, and of the
inverse Gaussian distribution, for � D 0; 1; 2; 3, respectively.

The quasi-ML estimator Ǒ is defined as the root of the quasi-score function, i.e.,
as the solution to the generalized estimating equation (GEE)

s. Ǒ/ D 0:

As in case of ML estimation, the solution is obtained iteratively. The quasi-Fisher
information matrix F .ˇ/ D E.�@s.ˇ/=@ˇ0/ becomes

F .ˇ/ D
nX

iD1
xix

0
i Qwi ;

with working variance �2i included in the working weights Qwi D .h0.�i //2=�2i .
However, F .ˇ/ differs from V .ˇ/ D Cov.s.ˇ// D E.s.ˇ/s0.ˇ// in general. In
fact, we have

V .ˇ/ D
nX

iD1
xix

0
i Qwi �

2
0i

�2i
:

Thus only in the case when the working variances equal the true variances �20i we
obtain F .ˇ/ D V .ˇ/ as in ML estimation.

Under regularity assumptions, quasi-ML estimators are consistent and asymptot-
ically normal

ˇ
a� N

�
ˇ; OF �1 OV OF �1�

with estimates OF D F . Ǒ / and

OV D
nX

iD1
xix

0
i .h

0. O�i //2 .yi � O�i/2
�4i .

Ǒ /

for F .ˇ/ and V .ˇ/. Compared with the asymptotic properties of the ML estimator,

only the asymptotic covariance matrix Cov. Ǒ /D OF �1
has to be corrected to the

“sandwich” matrix OA D OF �1 OV OF �1
. Thus, quasi-likelihood models allow consistent

and asymptotically normal estimation of ˇ but with some loss of (asymptotic)
efficiency. To keep this loss minimal, the working variance structure should be not
far off the true variance structure.

5.6 Bayesian Generalized Linear Models

The Bayesian approach for linear models discussed in Sect. 4.4 can, in principle,
be applied to GLMs. However, the application is more complicated both mathemat-
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ically and numerically. Fully Bayesian inference usually requires the use of MCMC
simulation techniques that are more complex than the corresponding techniques for
linear models. This section gives a brief overview of Bayesian inference in GLMs.
We limit the discussion to models without dispersion parameters, specifically
focusing on binomial and Poisson models. A more complete discussion of Bayesian
GLMs and extensions can be found in Dey, Gosh, and Mallick (2000), as well as in
the corresponding sections in Fahrmeir and Tutz (2001).

In Bayesian GLMs, we assume a prior density p.ˇ/ for the parameter vector ˇ

which is considered a random variable. Similar to Bayesian linear models discussed
in Sect. 4.4 we assume a multivariate Gaussian prior, i.e.,

ˇ � N.m;M /; (5.19)

where m is the prior mean vector and M the prior covariance matrix. A typical
choice is m D 0 and M D I thereby assuming independence among the regression
coefficients. A noninformative prior is obtained by m D 0 and the limit M �1 D 0.
Other choices such as a combination of informative and noninformative priors,
Bayesian ridge and LASSO or spike and slab priors, that have been discussed
extensively for Bayesian linear models, can be used as well. We restrict the
discussion here to the normal prior (5.19) because the only difficulty compared to
linear models is inference regarding the regression coefficients. Inference for the
hyperparameters is typically based on identical MCMC updating steps as for linear
models. The reason is that their full conditionals are independent of the specific
observation model. For instance, the Bayesian LASSO assumes

ˇ1; : : : ; ˇk j �21 ; : : : ; �2k � N.0; diag.�21 ; : : : ; �
2
k //:

While updating the regression coefficients in the Bayesian LASSO might be
problematic because the full conditional is not Gaussian (see below), updating the
variances �2j proceeds exactly as described in Sect. 4.4.2.

We now discuss the difficulties involved with Bayesian inference for non-Gaussian
data. According to Bayes’ theorem, inference relies on the posterior densityp.ˇ j y/,
given the (conditionally independent) response variables y D .y1; : : : ; yn/

0 and
covariates. Suppressing the notational dependence on covariates, this yields

p.ˇ j y/ D L.ˇ j y/ p.ˇ/R
L.ˇ j y/ p.ˇ/ dˇ

/ L.ˇ j y/ p.ˇ/ ; (5.20)

where

L.ˇ j y/ D
nY

iD1
fi .yi j ˇ/

is the likelihood of a given GLM, for example, a binomial logit model or a log-linear
Poisson model. The posterior mean is defined as

E.ˇ j y/ D
Z

ˇ p.ˇ j y/dˇ
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and the corresponding posterior covariance matrix

Cov.ˇ j y/ D
Z
.ˇ � E.ˇ j y//.ˇ � E.ˇ j y//0 p.ˇ j y/ dˇ

provides a measure for the precision of the posterior mean. At first glance, it seems
straightforward to put Bayesian inference into effect. However, the integrations
involved are problematic, as their analytical solution is only possible in a few special
cases. Numerical integration methods are applicable, as long as the dimension of
ˇ remains relatively small (about � 5); extensions to more complex models are
described in the following chapters, yet remain widely intractable. Hence, we have
two options: First, posteriori mode or MAP (maximum a posteriori) estimation, for
which we have to maximize the numerator in Eq. (5.20), or second, fully Bayesian
inference with MCMC techniques.

5.6.1 Posterior Mode Estimation

The posterior mode ǑMAP maximizes the posterior density p.ˇ j y/ or the log-
posterior

log.p.ˇ j y// D l.ˇ/C log p.ˇ/ ;

where l.ˇ/ is the log-likelihood of the given GLM. For a Gaussian prior

ˇ � N.m;M /; M positive definite;

we obtain the special case

log.p.ˇ j y// D l.ˇ/� 1

2
.ˇ � m/0M �1.ˇ � m/ ;

where terms independent of ˇ have been left out. Now log.p.ˇ j y// can also be
viewed as a penalized (log-)likelihood, where the penalty term .ˇ � m/0M �1.ˇ �
m/ penalizes large deviations from the prior mean m. This penalization potentially
overcomes the problem of non-existence or divergence of the ML estimators. We
also refer to the estimator ǑMAP as a penalized ML estimator.

For the limiting case M�1 ! 0 of a flat prior

p.ˇ/ / const;

the penalty disappears, which results in the posterior mode estimator equaling the
(unpenalized) ML estimator.

The ridge estimator with shrinkage parameter 	 D 1=.2�2/ results as a special
case with m D 0 and M D �2diag.0; 1; : : : ; 1/; see also section “Bayesian Ridge
Regression” of Sect. 4.4.2. The penalty then simplifies to

	ˇ0diag.0; 1; : : : ; 1/ˇ D 	.ˇ21 C ˇ22 C : : :C ˇ2k/ ;
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and the parameter 	 regularizes shrinkage of the ML estimator Ǒ towards 0 and
therefore stabilizes the ML estimator in cases of large variability.

Estimation of the posterior mode proceeds analogously to ML estimation. With
a Gaussian prior distribution, the score function s.ˇ/ becomes the penalized score
function

sp.ˇ/ D @ log.p.ˇ j y//

@ˇ
D s.ˇ/� M�1.ˇ � m/

and the Fisher information matrix F .ˇ/ becomes

F p.ˇ/ D �E

�
�@

2 log.p.ˇ j y//

@ˇ@ˇ0

�
D F .ˇ/C M �1 :

Computation is carried out with a modified Fisher scoring algorithm or IWLS
algorithm, in which sp.ˇ/ and F p.ˇ/ replace s.ˇ/ and F .ˇ/, respectively.

Under regularity assumptions, for n! 1, Ǒ
MAP has an asymptotic (or approxi-

mate) normal distribution with

ǑMAP
a� N

�
ˇ;F �1

p .
ǑMAP/

�
;

and, as a consequence, the posterior mode Ǒ
MAP and the (expected) curvature

F �1
p .

Ǒ
MAP/ are good approximations of the posterior mean E.ˇ j y/ and of the

posterior covariance matrix Cov.ˇ j y/, respectively.

5.6.2 Fully Bayesian Inference via MCMC Simulation Techniques

Fully Bayesian inference relies on MCMC techniques (see Appendix B.5) for
drawing random numbers from the posterior p.ˇ j y/. Posterior means, medians,
quantiles, variances, etc. are then approximated with their empirical analogues. For
the Gaussian prior ˇ � N.m;M / and also for the limiting case M �1 ! 0 of a
non-informative prior p.ˇ/ / const, we have

p.ˇ j y/ / exp

�
l.ˇ/ � 1

2
.ˇ � m/0M�1.ˇ � m/

�
:

With the exception of some special cases, no closed analytical form exists for
the normalizing constant of this posterior. We therefore use MCMC techniques
for drawing samples ˇ.t/; t D 1; : : : ; T , from p.ˇ j y/. Dellaportas and Smith
(1993) recommend a Gibbs sampler based on adaptive rejection sampling, which
is implemented in the software WinBUGS. We prefer to draw the entire parameter
vector ˇ.t/, in every iteration step t , with a Metropolis–Hastings (MH) algorithm
based on IWLS proposals; see Gamerman (1997) and Lenk and DeSarbo (2000).
IWLS proposals q.ˇ	 j ˇ.t//, for the update ˇ.tC1/, rely on a normal distribution
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5.9 Bayesian GLMs

Posterior Distribution

p.ˇ j y/ D L.ˇ j y/p.ˇ/R
L.ˇ j y/p.ˇ/dˇ

/ L.ˇ j y/p.ˇ/;

where L.ˇ j y/ is the likelihood of a GLM and p.ˇ/ is the prior distribu-
tion.

Posterior Mode

The posterior mode ǑMAP maximizes the posterior density p.ˇ j y/. With a
normal prior distribution

ˇ � N.m;M /;

this is equivalent to maximizing the penalized log-likelihood

log.p.ˇ j y// D l.ˇ/� 1

2
.ˇ � m/0M �1.ˇ � m/ ;

with l.ˇ/ D logL.ˇ j y/. The iterative calculation of ǑMAP via IWLS relies
on the penalized score function and Fisher information matrix

sp.ˇ/ D s.ˇ/� M�1.ˇ � m/ F p.ˇ/ D F .ˇ/C M �1:

Fully Bayesian Inference

Fully Bayesian inference is accomplished using an MH algorithm with
IWLS proposals for drawing random numbers from the posterior density
p.ˇ j y/.
Let ˇ.t/ be the actual state of the Markov chain. We then draw the IWLS
proposal ˇ	 from a normal distribution density q.ˇ	jˇ.t// with

ˇ	 � N.�.t/; .X 0W .t/X C M �1/�1/:

The Fisher matrix F
.t/
p D X 0W .t/X CM �1 is evaluated at the current state

ˇ.t/ and
�.t/ D .F .t/

p /
�1.X 0W .t/ Qy .t/ C M �1m/;

with W .t/ D W .ˇ.t// and the current working observations Qy.t/ (defined in
the same way as for ML estimation). The probability of acceptance is then
given by

˛.ˇ	 j ˇ.t// D min

�
L.ˇ	/ p.ˇ	/ q.ˇ.t/ j ˇ	/
L.ˇ.t// p.ˇ.t// q.ˇ	 j ˇ.t//


;

with the likelihood L.ˇ/ of the GLM evaluated at the proposed and current
value, ˇ	 and ˇ.t/, respectively.
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Table 5.13 Number of citations from patents: Bayesian Poisson model

Variable Coefficient Standard deviation 2.5 % Quantile 97.5 % Quantile

intercept 0.156 0.031 0.090 0.218
yearc �0.072 0.003 �0.077 �0.066
ncountryc �0.028 0.004 �0.036 �0.020
nclaimc 0.018 0.001 0.015 0.021
biopharm 0.240 0.032 0.180 0.301
ustwin 0.003 0.025 �0.043 0.054
patus �0.078 0.029 �0.133 �0.019
patgsgr �0.199 0.032 �0.262 �0.138
opp 0.372 0.025 0.321 0.422

having expectation and covariance matrix that are a (first) approximation of the
posterior mode estimator and of the respective covariance matrix. Refer to Box 5.9
for details.

Example 5.9 Number of Citations from Patents—Bayesian Inference
We illustrate Bayesian inference through reanalyzing the log-linear Poisson model of
Example 5.7 (p. 297) with a flat prior p.ˇ/ / const for ˇ. With this choice, the posterior
mean obtained from a fully Bayesian model specification and the ML estimator, which is
identical to the posterior mode, should not differ too much from each other. Table 5.13
contains the posterior mean estimates, as well as the posterior standard deviations and
quantiles, for the Bayesian Poisson model with purely linear effects. Table 5.14 contains
the corresponding results obtained with nonlinear effects for the continuous covariates.
The results are based on bayesreg objects of the software BayesX. We find good
agreement with our previous results based on ML inference. Note, however, that the existing
overdispersion has not been taken into account so that the standard deviations are below the
standard errors of Table 5.11 (p. 299).

The fact that the results of ML and Bayes inference differ only slightly from each other
in this example provokes the following question: What is the advantage of the comparably
computer intensive Bayesian estimator based on MCMC methods? One advantage is that, in
addition to point estimates and confidence intervals, we are also able to estimate the entire
posterior density p .ˇ j y/ based on the sampled random numbers. Figure 5.4 shows kernel
density estimates for the posterior densities p

�
ˇj j y

�
of the covariate effects for ustwin,

patus, and patgsgr, as well as corresponding normal densities with adjusted expectations
and variances. The posterior densities are all close to normality, which should be expected
due to the comparably large sample size in this example. In general, Bayesian inference
with MCMC is especially important for more complex regression models, if asymptotic
normality approximations of likelihood inference are not reliable. 4

5.6.3 MCMC-Based Inference Using Data Augmentation

For a number of response distributions alternative sampling schemes, based on the
representation of the models as latent linear models, can be developed. For binary
response models, the connection to latent linear models has been pointed out in
Sect. 5.1 on p. 274.
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Table 5.14 Number of citations from patents: extended Bayesian Poisson model with nonlinear
effects

Variable Coefficient Standard deviation 2.5 % Quantile 97.5 % Quantile

intercept 0.17022 0.03225 0.10759 0.23645
yearc �0.09897 0.00556 �0.10975 �0.08807
yearc2 �0.00973 0.00131 �0.01242 �0.00723
yearc3 �0.00011 0.00017 �0.00046 0.00022
ncountryc 0.01581 0.00804 �0.00061 0.03318
ncountryc2 �0.00215 0.00124 �0.00456 0.00025
ncountryc3 �0.00158 0.00026 �0.00211 �0.00109
nclaimc 0.02609 0.00208 0.02205 0.03016
nclaimc2 �0.00047 0.00021 �0.00085 �0.00006
nclaimc3 0.00000 0.00000 �0.00000 �0.00001
biopharm 0.15549 0.03254 0.09443 0.21985
ustwin �0.00294 0.02458 �0.05460 0.04415
patus �0.09475 0.02757 �0.14652 �0.04188
patgsgr �0.20191 0.03207 �0.26613 �0.13890
opp 0.37127 0.02506 0.32115 0.42044

We illustrate the alternative sampling approach for binary probit models. Con-
ditional on the covariates and the parameters, yi follows a Bernoulli distribution
yi � B.1; �i / with conditional mean �i D ˚.�i / where ˚ is the cumulative
distribution function of a standard normal distribution. On p. 274, the probit model
was equivalently defined using latent variables

Qyi D x0
iˇ C "i D �i C "i

with normally distributed errors "i � N.0; 1/. The connection between the binary
responses and the latent variables is yi D 1 if Qyi > 0, and yi D 0 if Qyi � 0.

The idea is to use the latent variable representation rather than the original
formulation for parameter estimation. This approach was first introduced in a paper
by Albert and Chib (1993). The main idea is to consider the latent variables
as additional parameters in the model, and to base posterior inference on the
extended parameter space. Correspondingly, additional sampling steps for updating
the Qyi ’s are required. Fortunately, sampling the Qyi ’s is relatively easy and fast
because the full conditionals are truncated normal distributions (see Definition B.5
in Appendix B.1). More specifically, Qyi j � � TN0;1.�i ; 1/ if yi D 1 and Qyi j � �
TN�1;0.�i ; 1/ if yi D 0. Efficient algorithms for drawing random numbers from
a truncated normal distribution can be found in Geweke (1991) or Robert (1995)
and are implemented in many major statistics packages. The advantage of defining
a probit model through the latent variables Qyi is that the full conditionals for the
regression coefficients ˇ are Gaussian with covariance matrix and mean given by

˙ ˇ D �
X 0X C M�1��1 ; �ˇ D ˙ ˇ

�
X 0 Qy C M�1m

�
: (5.21)
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Fig. 5.4 Number of citations from patents: estimated posteriori densities for the effects of ustwin,
patus, and patgsgr (solid line) together with a normal approximation (dashed line)

Hence, we can avoid costly MH steps as is the case with IWLS proposals. Instead,
we can resort to the simple Gibbs sampler that was developed for Gaussian
responses with slight modifications. Updating of ˇ can be done exactly as described
in Sect. 4.4.1 (p. 234) using the current values Qyi of the latent variables as (pseudo)
responses. Another distinct advantage of the Gibbs step is that it works even for
high-dimensional parameter vectors, whereas the MH steps with IWLS proposals
may break down because acceptance rates typically go down as the parameter
dimension increases. The price we pay for the simplicity is the additional update
step to draw the latent variables which may be time-consuming in large samples.
Then the MH algorithm with IWLS proposals may be faster.

Summarizing, we obtain the following Gibbs sampler:
1. Define initial values Qy.0/ and ˇ.0/. Set t D 1.
2. Sample Qy.t/ by drawing Qy.t/i , i D 1; : : : ; n, from TN0;1.�.t�1/i ; 1/ if yi D 1 and

Qyi j � � TN�1;0.�
.t�1/
i ; 1/ if yi D 0.
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3. Sample ˇ.t/ by drawing from the Gaussian full conditional with covariance
matrix and mean given in Eq. (5.21) thereby replacing Qy by the actual state Qy .t/.

4. Stop if t D T , otherwise set t D t C 1 and go to 2.
We finally note that the data augmentation trick is not limited to binary probit

models. Similar algorithms have been developed, e.g., for binary logit models,
multi-categorical logit or probit models as outlined in Chap. 6, and Poisson regres-
sion. References to the literature are given in Sect. 5.8.

5.7 Boosting Generalized Linear Models

In Sect. 4.3, we introduced a versatile method for obtaining regularized estimates
in linear regression with the particular advantage of implicit variable selection
(boosting). In fact, the approach can be immediately transferred to the context of
GLMs with rather minor modifications. When considering the generic algorithm in
Box 4.4 (p. 226), the basic ingredients of a boosting algorithm are:
• The specification of a lack-of-fit criterion via a loss function
• The specification of base learning procedures
A suitable loss function in GLMs is given by the negative log-likelihood such that

.�/ D �l.�/ D �
nX

iD1

yi�i � b.�i /
�

wi :

The negative gradients are then still given by

ui D � @

@�
.yi ; �/j�DO�.t�1/i

and are, for GLMs, computed as

ui D h0.�i /.t�1/

.�2i /
.t�1/

�
yi � �

.t�1/
i

�
:

In contrast, no modifications are required for the base learning procedures, and
we can still rely on least squares fits applied to the working responses ui . In
summary, boosting can immediately be adapted to generalized response types by
providing a suitable loss function. While the negative log-likelihood is a natural
choice, different loss functions can in principle be considered. For example, in case
of binary regression, the exponential loss

.�/ D
nX

iD1
exp.�yi�i /

(with yi 2 f�1; 1g instead of yi 2 f0; 1g) is sometimes used as an alternative
popular in the classification literature; see Friedman, Hastie, and Tibshirani (2000)
for details.
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5.8 Bibliographic Notes and Proofs

5.8.1 Bibliographic Notes

Nelder and Wedderburn (1972) introduced GLMs as a general class of models for
response variables with densities belonging to the exponential family of distribu-
tions. Linear, logit, probit, and Poisson models could therefore be subsumed under
one conceptual umbrella, leading to important new stimulations for statistical model
building, methodological developments, and applications. The book McCullagh and
Nelder (1989) gives a detailed outline of GLMs; a more compact introduction can
be found in Fahrmeir and Tutz (2001, Chap. 2). Collett (1991) and Tutz (2011,
Chaps. 2–5) provide a detailed exposition of binary regression models. These books
also give a good overview of methods for model diagnosis that are based on
residuals, developed analogously to the linear model of Chap. 3. In the econometrics
literature GLMs are usually treated within the field of “microeconometrics.”
Standard textbooks on microeconometrics are Cameron and Trivedi (2005) and
Winkelmann (2010a). Kleiber and Zeileis (2008) discuss econometrics models
including GLMs in the software package R.

Several aspects motivated modifications and additions to basic GLMs. For exam-
ple, the response distribution may be difficult to model with univariate exponential
families (as assumed in Sect. 5.4) in some applications. This especially applies to
the following regression situation:
• Regression Models for Count Data: Although Poisson regression, as illustrated

in Sect. 5.2, is the standard model for count data regression, the Poisson
distribution is often too simplistic in applications. Cameron and Trivedi (1998)
and Winkelmann (2010b) describe enhanced regression modeling for count data.
An overview of available count data models in the software package R is given
in Zeileis, Kleiber, and Jackman (2008).

• Life Time (Survival) and Duration Time Models: Life times, duration times, and
waiting times up to a certain event appear in many areas of application. Statistical
analyses are then often complicated by incomplete data due to censoring, e.g.,
when life spans are not terminated until the end of a study period. The Cox model
is the most popular regression model for (censored) life times and is closely
related to Poisson regression. Standard textbooks on survival and duration time
models are Collett (2003), Klein and Moeschberger (2005), Hosmer, Lemeshow,
and May (2008), and Therneau and Grambsch (2000).

• GLMs for Location, Scale, and Shape: For continuous response variables, we
can model the effect of covariates not only on the mean but also on the variance,
skewness, or kurtosis; see Sect. 2.9.1 for a brief introduction and Rigby and
Stasinopoulos (2005) for more details.

• Multivariate Response Variables: If the response y D .y1; : : : ; yc/ consists of
several scalar responses y1; : : : ; yc , this yields multivariate regression. Anderson
(2003) gives an introduction to multivariate linear regression as an extension
of the linear regression model. Components y1; : : : ; yc that do not have a
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normal distribution face the difficulty of finding an appropriate joint distribution.
Copula concepts offer appropriate possibilities (Joe, 1997) especially for con-
tinuous components. Other approaches are quasi-likelihood or marginal models
(Fahrmeir and Tutz, 2001, Chap. 3), and models with latent variables (Skrondal
and Rabe-Hesketh, 2004).
One of the most important extensions of GLMs is the inclusion of nonparametric

and semiparametric approaches that allow for flexible modeling of nonlinear
covariate effects. The resulting model class, e.g., generalized additive models
(GAM), has already been introduced in Chap. 2 and will be discussed in more detail
in Chaps. 8 and 9.

In their original definition, GLMs are especially suited for the regression analysis
of cross-sectional data. Mixed models (Chap. 7) are a popular tool for the analysis
of clustered or longitudinal data. Depending on the goals of a longitudinal study,
autoregressive (or conditional) models including temporally lagged values of the
response variable as additional covariates, or marginal models based on quasi-
likelihood approaches, can be a reasonable alternative for the analysis; see Diggle,
Heagerty, Liang, and Zeger (2002), Fahrmeir and Tutz (2001, Chap. 6), and the
additional comments in Sect. 7.8.

In the early 1990s, Bayesian GLMs and corresponding extensions have seen a
fast development parallel to the spread of MCMC simulation techniques; see Dey
et al. (2000) and corresponding sections in the following chapters. IWLS proposals
for updating the regression coefficients are due to Gamerman (1997); see also Lenk
and DeSarbo (2000) for a slightly modified approach. Estimating Bayesian GLMs
using data augmentation similar as described for probit models works for a variety
of response distributions; see Holmes and Held (2006) and Frühwirth-Schnatter
and Frühwirth (2010) for logit models, Frühwirth-Schnatter and Wagner (2006)
and Frühwirth-Schnatter, Frühwirth, Held, and Rue (2009) for Poisson and gamma
regression.

GLMs with errors in variables have been developed for data situations where
covariates cannot be observed exactly, but only subject to measurement errors.
For details on models of this type, we refer to Carroll, Ruppert, Stefanski, and
Crainiceanu (2006).

5.8.2 Proofs

Derivation of the ML Estimator in GLMs (Sect. 5.4.2)
The ML estimator in GLMs is derived with the following steps:
1. Log-likelihood
The log-likelihood contribution of an observation .yi ;xi / (up to an additive
constant) is given by

li .ˇ/ D log.f .yi j ˇ// D yi�i � b.�i /
�

wi : (5.22)
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Thereby, the log-likelihood depends on the regression parameters ˇ through the
natural parameter �i of the exponential family via

�i D b0.�i / D h.x0
iˇ/:

Due to the (conditional) independence of yi ,

l.ˇ/ D
X

li .ˇ/

is the complete log-likelihood of the sample. To treat individual data (i D 1; : : : ; n)
and grouped data (i D 1; : : : ; G) simultaneously, we omit n or G from the upper
limit of the summation signs.

2. Score function
The score function s.ˇ/ D @l.ˇ/=@ˇ is obtained by applying the chain rule to the
individual score function contributions:

si .ˇ/ D @li .ˇ/=@ˇ D @�i

@ˇ

@�i

@�i

@�i

@�i

@.yi �i � b.�i //
@�i

wi
�
:

The first contribution is simply given by

@�i

@ˇ
D xi :

The second contribution
@�i

@�i
D @h.�i /

@�i
D h0.�i /

depends on the response function h and is therefore specific to a given model. In the
following we use the shortcut:

di D h0.�i /:

The third term is obtained by reversing the nominator and denominator, which yields

@�i

@�i
D @b0.�i /

@�i
D b00.�i / D wiVar.yi /

�
D wi �2i

�

and therefore
@�i

@�i
D �

wi �2i
:

Finally, we have

@.yi �i � b.�i //
@�i

D yi � b0.�i / D yi � �i :
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Putting these pieces together yields the score function as

s.ˇ/ D
X

xi di
�

wi �2i
.yi � �i /wi

�
D
X

xi
di

�2i
.yi � �i /

From E.yi / D �i , it follows that E.s.ˇ// D 0 holds.
To express the score function more compactly in matrix notation we define the

vectors
y D .y1; : : : ; yn/

0; � D .�1; : : : ; �n/
0;

and the diagonal matrices

D D diag.d1; : : : ; dn/; ˙ D diag.�21 ; : : : ; �
2
n /:

Then we obtain
s.ˇ/ D X 0D˙ �1.y � �/

where D and ˙ are both dependent on ˇ.

3. Information matrix
To derive the Fisher matrix F .ˇ/ D E.s.ˇ/s0.ˇ//, we note that

F .ˇ/ D
X

E.si .ˇ/s
0
i .ˇ//:

We obtain

E
�
si .ˇ/s

0
i .ˇ/

� D E

�
xix

0
i

d 2i
.�2i /

2 .yi � �i/2
�

D xix
0
i

d 2i
.�2i /

2E.yi � �i /2

D xix
0
i

d 2i
.�2i /

2Var.yi /

D xix
0
i

d 2i
�2i
:

This yields
F .ˇ/ D

X
xix

0
i Qwi ; (5.23)

with the “working weights”

Qwi D d2i

�2i
D �

h0.�i /
�2 wi
b00.�i /�

also depending on ˇ. In matrix notation the Fisher matrix can be written as

F .ˇ/ D X 0W X
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with the diagonal matrix W D diag.: : : ; Qwi ; : : : / of working weights. Note that
W D D2˙ �1.

4. Numerical computation of the ML estimator
Computation of the ML estimator Ǒ is usually based on the Fisher scoring algorithm

Ǒ.tC1/ D Ǒ.t/ C F �1. Ǒ.t//s. Ǒ.t//; t D 0; 1; 2; : : : :

Inserting the formulae for s.ˇ/ and F .ˇ/ we obtain

Ǒ.tC1/ D Ǒ.t/ C .X 0W . Ǒ.t//X/�1X 0D. Ǒ.t//˙ . Ǒ.t//�1.y � �. Ǒ.t///
D .X 0W . Ǒ.t//X/�1X 0W . Ǒ.t//X Ǒ.t/

C.X 0W . Ǒ.t//X/�1XW . Ǒ.t//0D. Ǒ.t//�1.y � �. Ǒ.t///

D .X 0W . Ǒ.t//X/�1X 0W . Ǒ.t//
h
�. Ǒ.t//C D. Ǒ.t//�1.y � �. Ǒ.t///

i
:

Hence the iterations can be expressed as an iteratively weighted least squares
estimator

Ǒ.tC1/ D .X 0W .t/X/�1X 0W .t/ Qy .t/; t D 0; 1; 2; : : :

where Qy .t/ D .: : : ; Qyi . Ǒ.t//; : : : /0 is a “working response vector” with elements

Qyi . Ǒ.t// D x0
i

Ǒ.t/ C d�1
i . Ǒ.t//.yi � O�i. Ǒ.t///;

and W .t/ is the weight matrix, evaluated at ˇ D Ǒ.t/. Replacing in Qwi and Qyi the di
by h0.x0

i
Ǒ.t// and writing the expressions in terms of O�.t/i D x0

i
Ǒ .t/ rather than Ǒ .t/

we obtain the formulae (5.17) and (5.16) as stated in Sect. 5.4.2.
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In Sect. 5.1 we considered binary regression models, that is, regression situations
where the response is observed in two categories. In many applications, from social
science to medicine, response variables often have more than two categories. For
example, consumers may choose between different brands of a product or they may
express their opinion about some product in ordered categories ranging from “very
satisfied” to “not satisfied at all.” Similarly, voters choose between several parties
or they assess the quality of candidates in ordered categories. In medicine, we may,
for example, not only distinguish between “infection” and “no infection” but also
between several types of infection, as in Example 6.1 below. Another application
with a categorical response is Example 1.4 (p. 9) on forest health, where the status
of trees is assessed in ordered categories, such as “no damage”, “medium damage”,
and “severe damage.” This chapter extends regression models and methods for
binary responses to the case of categorical responses with more than two categories.
Compared to binary regression there is a greater variety of models, depending
on the type of response and (underlying) response mechanisms. In particular, we
distinguish between models for responses with unordered categories (Sect. 6.2) and
ordered categories (Sect. 6.3).

6.1 Introduction

In many applications, the response variable is not binary as in Sect. 5.1, but rather
multi-categorical. Such a response variable can be defined as either ordinal, i.e., the
categories 1; : : : ; c C 1 of the response can be ordered, or nominal, which means
that the categories 1; : : : ; cC1 are unordered. We distinguish cC1 categories as we
will later define c dummy variables representing the response variable and choose
the .c C 1/th category as the reference.

Example 6.1 Caesarian Delivery—Categorical Response
Table 6.1 shows data on infections after C-sections performed at a clinical center in Munich;
see also Example 5.3 (p. 284) of Chap. 5. The response variable has three unordered

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9 6,
© Springer-Verlag Berlin Heidelberg 2013
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Table 6.1 Data on infections for 251 C-sections

C-section

Planned Unplanned

Infection Infection

I II no I II no

Antibiotics
Risk factor 0 1 17 4 7 87
No risk factor 0 0 2 0 0 0

No antibiotics
Risk factor 11 17 30 10 13 3
No risk factor 4 4 32 0 0 9

Table 6.2 Pulmonary function test

Breathing test

Age Smoking status Normal Borderline Abnormal

<40 Nonsmoker 577 27 7
Former smoker 192 20 3
Current smoker 682 46 11

40–59 Nonsmoker 164 4 0
Former smoker 145 15 7
Current smoker 245 47 27

categories: type I infection, type II infection, and no infection. In addition, information
on three covariates is available:

NPLAN W C-section was not planned/planned.

RISK W Presence/absence of risk factors, such as diabetes or obesity.

ANTIB W Antibiotics were prescribed/not prescribed as prophylaxis. 4

Example 6.2 Forest Health Status—Categorical Response
Example 1.4 (p. 9) studies the health status of beech trees measured in terms of the response
variable “degree of defoliation” with nine ordered categories (0 %, 12.5 %, . . . , 100 %
defoliation). We aggregate the response variable into three categories, 1 D no (0 %), 2 D
weak (12.5 %–37.5 %), and 3 D severe (� 50 %) defoliation, since some original response
categories have only a few observations or are completely missing. For every observation in
this study, the continuous and categorical covariates that are listed in Table 1.5 (p. 10) have
been collected annually along with the response variable. In contrast to Example 6.1, this
data set contains ungrouped, individual observations. 4

Example 6.3 Pulmonary Function—Categorical Response
In a study on the impairment of pulmonary function, the age and the smoking behavior of
Texan industrial workers were collected as covariates; see Forthofer and Lehnen (1981).
The results of a breathing test with categories “normal,” “borderline,” and “abnormal” are
considered as the dependent variable. The resulting data are summarized in the contingency
table given in Table 6.2. 4
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In all these examples and for the remainder of this chapter, the response variable
Y has c C 1 ordered or unordered categories, i.e., Y 2 f1; : : : ; c C 1g. Categorical
regression models relate the probabilities

�r D P.Y D r/; r D 1; : : : ; c C 1;

to covariates. To formulate such models, it is useful to represent the response
variable by a vector y D .y1; : : : ; yc/

0 of c dummy variables

yr D
�
1; Y D r

0; otherwise
r D 1; : : : ; c:

Here, we have chosen category c C 1 as the “reference” category so that ycC1 D
1 � y1 � : : : � yc . We therefore obtain

Y D r ” y D .0; : : : ; 1; : : : ; 0/0; r D 1; : : : ; c;

with a value of 1 as the r th component of y, and

�r D P.Y D r/ D P.yr D 1/; r D 1; : : : ; c:

Correspondingly, for the reference category, we have

Y D c C 1 ” y D .0; : : : ; 0; : : : ; 0/0; P.Y D c C 1/ D 1 � �1 � : : : � �c:

Multinomial Distribution
The multinomial distribution provides the generalization of the binomial distribution
that is necessary for modeling categorical responses. For an individual observation
y D .y1; : : : ; yc/

0 with binary 0/1 variables y1; : : : ; yc and vector � D .�1; : : : ; �c/
0

of occurrence probabilities, the probability function is given by

f .y j �/ D �
y1
1 � : : : � �ycc .1 � �1 � : : : � �c/1�y1�:::�yc :

For m independent trials, yr represents the number of repetitions of category r ,
r D 1; : : : ; c. The multinomial probability function of y D .y1; : : : ; yc/

0 is then
given by

f .yj�/ D mŠ

y1Š � : : : � ycŠ.m� y1 � : : : � yc/Š
�
y1
1 � : : : � �ycc .1� �1 � : : : � �c/

1�y1�:::�yc :

(6.1)

We write

y � M.m;�/;
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with the parameters m (number of trials) and � D .�1; : : : ; �c/
0 (occurrence

probabilities). The first two moments of the multinomial distribution are given by

E.y/ D m� D

0
B@
m�1
:::

m�c

1
CA ; Cov.y/ D m

0
B@
�1.1 � �1/ � � � ��1�c

:::
: : :

:::

��c�1 � � � �c.1 � �c/

1
CA :

When using the relative frequencies Nyr D yr=m instead of the absolute frequencies
yr , the relative frequency vector Ny D . Ny1; : : : ; Nyc/0 follows a scaled multinomial
distribution, Ny � M.m;�/=m, such that

E. Ny/ D

0

B@
�1
:::

�c

1

CA ; Cov. Ny/ D 1

m

0

B@
�1.1 � �1/ � � � ��1�c

:::
: : :

:::

��c�1 � � � �c.1 � �c/

1

CA :

Data
The data structure is analogous to binary and other univariate generalized linear
models. For ungrouped individual data, the value of the categorical response
variable Yi 2 f1; : : : ; c C 1g or y i D .yi1; : : : ; yic/

0 and the covariate vector
xi D .1; xi1; : : : ; xik/

0 for each unit i are given:

Unit 1
:::

Unit i
:::

Unit n

0
BBBBBB@

y 0
1 D .y11; : : : ; y1c/

:::

y 0
i D .yi1; : : : ; yic/

:::

y 0
n D .yn1; : : : ; ync/

1
CCCCCCA

0
BBBBBB@

1 x11 � � � x1k
:::

:::

1 xi1 � � � xik
:::

:::

1 xn1 � � � xnk

1
CCCCCCA
:

With grouped data, we combine observations with identical covariate vectors xi into
a group i of ni units. Then, absolute frequencies y i D .yi1; : : : ; yic/

0 or relative
frequencies Ny i D . Nyi1; : : : ; Nyic/0 of observed categories in group i; i D 1; : : : ; G

are collected along with the covariates:

Group 1
:::

Group i
:::

Group G

0

BBBBBB@

n1
:::

ni
:::

nG

1

CCCCCCA

0

BBBBBB@

Ny 0
1 D . Ny11; : : : ; Ny1c/

:::

Ny 0
i D . Nyi1; : : : ; Nyic/

:::

Ny 0
G D . NyG1; : : : ; NyGc/

1

CCCCCCA

0

BBBBBB@

1 x11 � � � x1k
:::

:::

1 xi1 � � � xik
:::

:::

1 xG1 � � � xGk

1

CCCCCCA
:

Grouped data are often presented in contingency tables, as in Examples 6.1 and 6.3,
indicating absolute frequencies yi1; : : : ; yic instead of relative frequencies.
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Given the covariates xi , individual data y i follow a multinomial distribution with

y i � M.1;� i /; � i D .�i1; : : : ; �ic/
0:

For grouped data, the absolute frequencies are multinomial distributed with

y i � M.ni ;� i /;

whereas the relative frequencies Ny i follow a scaled multinomial distribution.
Categorical regression aims at modeling and estimating the probabilities �ir D
P.Yi D r/ D P.yir D 1/ depending on covariates xi .

In comparison to binary regression models, multinomial regression has a larger
variety of modeling possibilities. In the next two sections, we describe some
important models for nominal and ordinal response variables. Additional models
can be found in Agresti (2002), Fahrmeir and Tutz (2001), and Tutz (2011).

6.2 Models for Unordered Categories

In this section, we assume that the categories r 2 f1; : : : ; c C 1g either do not
have an ordered structure or this structure is not modeled in the analyses, which
is the case for Example 6.1 and for many applications in biomedicine, social, and
economic sciences. Well-known areas of application are, for example, the modeling
of decisions, the choice of political party, or the mode of transportation when going
to work (e.g., car, train, bike). The categories of the response variable simply
represent the different alternatives without requiring any ordered structure. This
implies that the response variable is of a nominal scale.

For binary response variables (c D 1), we considered the logit model

P.Yi D 1/ D �i D exp.ˇ0 C ˇ1xi1 C : : :C ˇkxik/

1C exp.ˇ0 C ˇ1xi1 C : : :C ˇkxik/
D exp.x0

iˇ/

1C exp.x0
iˇ/

;

as presented in Sect. 5.1. A direct generalization is the categorical (multinomial)
logit model defined in Box 6.1.

It follows from Eq. (6.3) that the linear predictor �ir D x0
iˇr specifies the

(logarithmic) odds or relative risk between category r and the reference category
c C 1 in terms of either a log-linear or exponentially multiplicative model. Thus,
the interpretation of parameters is analogous to the binary logit model. The only
difference is that we do not model the logit for presence (Y D 1) in relation to
absence (Y D 0) but rather the different logits for category r (Y D r) relative to the
reference category c C 1 (Y D c C 1).

When interpreting the covariate effects, we have to be aware that a positive
regression coefficient ˇrj does not necessarily imply an increasing probability for
category r as xj increases. It does hold that the odds for category r increase relative
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6.1 Multinomial Logit Model

Data

The categorical response variable Yi 2 f1; : : : ; c C 1g is measured on a
nominal scale. In addition, covariates xi , which are independent of the
response category, are given.

Model

The probability of occurrence for category r is specified as

P.Yi D r/ D �ir D exp.x0
iˇr /

1C
cX

sD1
exp.x0

iˇs/

r D 1; : : : ; c: (6.2)

For the reference category, we have

�i;cC1 D 1 � �i1 � : : : � �ic D 1

1C
cX

sD1
exp.x0

iˇs/

:

An equivalent representation is

log
�ir

�i;cC1
D x0

iˇr or
�ir

�i;cC1
D exp.x0

iˇr /; r D 1; : : : ; c:

(6.3)

The parameter vectors ˇr D .ˇr0; ˇr1; : : : ; ˇrk/
0 and therefore the linear

predictor �ir D x0
iˇr D ˇr0 C xi1ˇr1 C : : : C xikˇrk are specific for each

category, r D 1; : : : ; c.

to the reference category. However, this does not imply that the odds for category
r relative to all other alternatives also increase. If, for example, category s has a
higher regression coefficient than category r , i.e., ˇsj > ˇrj , the odds for category
s relative to the reference category grows faster than that of category r . Hence, it is
possible that the probability for category r decreases despite its positive coefficient
ˇrj . To assess how a changing covariate affects probabilities, it is useful to visualize
the probabilities in a plot with all of the remaining covariates kept fixed, e.g., at
average values. The most straightforward interpretation is, however, in terms of the
log-odds or odds (6.3).
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Table 6.3 C-section births: grouped data

Response Covariates

y1 y2 NPLAN RISK ANTIB

Group 1 n1 D 40 4 4 0 0 0
Group 2 n2 D 58 11 17 0 1 0
Group 3 n3 D 2 0 0 0 0 1
Group 4 n4 D 18 0 1 0 1 1
Group 5 n5 D 9 0 0 1 0 0
Group 6 n6 D 26 10 13 1 1 0
Group 7 n7 D 98 4 7 1 1 1

Example 6.4 Caesarian Delivery—Categorical Response
The response variable Y “infection” has three categories: “infection type I” (Y D 1),
“infection type II” (Y D 2), and “no infection” (Y D 3). With Y D 3 as reference category,
we code the response variable through y 0 D .y1; y2/, with

y 0 D .1; 0/ infection of type I
y 0 D .0; 1/ infection of type II
y 0 D .0; 0/ no infection

Similar to Example 5.2 (p. 278), we use the binary covariates NPLAN, RISK, and ANTIB.
The grouped data arising from the contingency table of Example 6.1 can be found in
Table 6.3.

We consider a main effects multinomial logit model based on (6.3), i.e.,

log
P.infection type r/

P.no infection/
D ˇr0 C ˇrNNPLAN C ˇrRRISK C ˇrAANTIB; r D 1; 2;

or equivalently

P.infection type r/

P.no infection/
D exp.ˇr0/ exp.ˇrNNPLAN/ exp.ˇrRRISK/ exp.ˇrAANTIB/:

As such, exp.ˇrN / is the multiplicative effect of the binary covariate NPLAN for category r ,
when the covariate has the value 1 instead of 0. Alternatively, we can also interpret exp.ˇrN /
as the increase in relative risk (odds ratio) if the covariate takes a value 1 relative to 0.
If NPLAN D 0 is increased to NPLAN D 1, we have

exp.ˇrN / D P.type r j NPLAN D 1; R; A/

P.no j NPLAN D 1; R; A/

�
P.type r j NPLAN D 0; R; A/

P.no j NPLAN D 0; R; A/
:

Analogous interpretations hold for the covariates RISK and ANTIB. Table 6.4 provides the
estimated parameters for the given data. The estimates are based on the methods provided
in Sect. 6.4.

According to these parameter estimates, antibiotics decrease the relative risk for both
types of infections, with a somewhat stronger effect for the type I infections. We also find
that the relative risk strongly increases when risk factors exist or when a C-section was not
planned. We will analyze whether or not the differences in effects for type I and type II
infections are significant in more detail in Sect. 6.4.
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Table 6.4 C-section births: estimated coefficients

Type I infection Type II infection

ˇ exp.ˇ/ ˇ exp.ˇ/

intercept �2.621 0.072 intercept �2.560 0.077
NPLAN 1.174 3.235 NPLAN 0.996 2.707
ANTIB �3.520 0.030 ANTIB �3.087 0.046
RISK 1.829 6.228 RISK 2.195 8.980

The results are based on the STATA function mlogit

Table 6.5 C-section births: estimated probabilities for “no infection,”
infection type I, and infection type II

NPLAN ANTIB RISK P.no infection/ P.type I/ P.type II/

0 0 0 0.870 0.063 0.067
1 0 0 0.692 0.163 0.145
0 1 0 0.994 0.002 0.004
0 0 1 0.466 0.211 0.323
1 1 0 0.984 0.007 0.009
1 0 1 0.230 0.337 0.433
0 1 1 0.957 0.013 0.030
1 1 1 0.886 0.038 0.076

Since the estimated parameters cannot easily be transferred to the underlying probabil-
ities, Table 6.5 provides the estimated probabilities for all possible covariate combinations.
We see that infections of type I or II are generally unlikely. Exceptions are the cases where
risk factors are present and antibiotics are not given (RISK D 1 and ANTIB D 0). Then the
probability of “no infection” is below 50%; 0.466 if C-section was planned (NPLAN D 0)
and 0.230 if C-section was not planned (NPLAN D 1). On the other hand, the probabilities
for type I and II infections are rather high in these cases. 4

Nominal Models and Latent Utility Models
The multinomial logit model, as well as other categorical regression models,
especially probit models, can be motivated and derived with the help of latent utility
models. This is not only interesting for alternative interpretations but also useful for
statistical inference, especially for Bayesian approaches; see also Sect. 5.6.3.

We assume that each of the c C 1 alternatives is associated with a specific utility
and that the random utility function of the r th alternative has the form

ur D Q�r C "r ;

where Q�r is a constant (the utility of the r th alternative), and "r is a random variable
with cumulative distribution function F . According to the principle of maximum
utility, we observe alternative r if the associated (unobserved) utility is maximal, i.e.,
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Y D r ” ur D max
sD1;:::;cC1 us:

Assuming independent errors "r with extreme maximal-value distribution F.x/ D
exp.� exp.�x// yields

P.Y D r/ D exp. Q�r/
cC1X

sD1
exp. Q�s/

; r D 1; : : : ; c C 1I

see McFadden (1973). Since only the difference in utility functions is identifiable,
we choose a reference category. With category c C 1 as the reference category, we
obtain

P.Y D r/ D exp. Q�r � Q�cC1/

1C
cX

sD1
exp. Q�s � Q�cC1/

D exp.�r /

1C
cX

sD1
exp.�s/

;

with �r D Q�r � Q�cC1.
An extension of this concept results when the utilities do not only depend on

the covariates characterizing the statistical units facing the decision but also on the
alternatives. Let xi denote the covariates that have already been included in �ir and
wir the vector of covariates that are specific to the alternative r . If the mode of
transportation is considered as the decision problem, the cost or time associated
with a specific mode of transportation provides examples of category-specific
covariates. Since category-specific covariates often also vary between the individual
observations, we use a double subscript on wir , where i represents the individual,
while r represents the alternative. Assuming independent errors that follow an
extreme maximal-value distribution leads to the extended multinomial logit model

�ir D exp.x0
iˇr C .wir � wi;cC1/0�/

1C
cX

sD1
exp.x0

iˇs C .wis � wi;cC1/0�/
;

r D 1; : : : ; c. The model has category-unspecific (global) covariates xi , which
are supplemented with category-specific coefficients ˇr , and category-specific
covariates wir � wi;cC1, which are accompanied by category-unspecific (global)
coefficients � . The difference from wir to wi;cC1 of the reference category results
from building the difference �ir D Q�ir � Q�i;cC1 D w0

ir� � w0
i;cC1� .

Other distributional assumptions for the errors in the latent utility model lead to
alternative models. If we assume independent but standard normal distributed errors
"r , we obtain the (“independent”) probit model. If we choose a multivariate normal
distribution (with a nondiagonal covariance matrix) for the errors ", we obtain the
multivariate probit model.
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6.3 Ordinal Models

In this section, we present models that are useful when the response variable is
ordinal, i.e., the categories can be ordered. The explicit use of the ordinal scale of Y
allows for models with parsimonious parameterization. Ordinal responses have been
present in the examples on forest health (Example 6.2), as well as in the example
regarding pulmonary function (Example 6.3).

6.3.1 The Cumulative Model

The most widely used ordinal regression model is motivated from a threshold
mechanism, similar to the binary regression model in Sect. 5.1 (p. 274). We can
derive the model by assuming a latent (unobserved) variable that drives the decision
for the observed alternatives. Exceeding a certain threshold on the latent scale results
in an observable category of the response variable.

Let u denote the unobserved latent variable. In the examples on forest health or
the pulmonary function test, u can be considered the latent damage state of a tree
or the lung. The latent variable corresponding to covariate value xi (excluding the
intercept) is assumed to be

ui D �x0
iˇ C "i ; (6.4)

where ˇ is the parameter vector and "i is an error variable with cumulative
distribution function F . The reason for the minus sign in front of x0

iˇ will become
clear later. The link between observed and latent variable is defined by the threshold
mechanism

Yi D r ” �r�1 < ui � �r ; r D 1; : : : ; c C 1; (6.5)

where �1 D �0 < �1 < : : : < �cC1 D 1 are the latent, ordered thresholds placed
on the latent continuum. Note that the intercept has to be excluded from the predictor
x0
iˇ in order to obtain an identifiable model. Otherwise, a shift of the intercept and

a corresponding negative shift of the thresholds would lead to an equivalent model.
Category r is observed, if the latent variable falls between the thresholds �r�1

and �r . Interpreted as a binary decision, we obtain a response variable Yi � r , if
ui � �r , i.e., when the latent variable remains under the threshold �r , and Yi > r if
ui > �r .

Figure 6.1 illustrates the threshold concept. It shows the density of the latent
variable ui D �x0

iˇ C "i for two different realizations of xi . The corresponding
densities do have the same form ("i �F ), but they are shifted on the latent
continuum. The area between two thresholds corresponds to the probability of
a certain category as exemplified by the grey area in Fig. 6.1 for the second
category. Obviously there is a strong change in the probability due to the shift
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Fig. 6.1 Thresholds and densities of the latent variable

forced through xi . The illustration in Fig. 6.1 is based on a logistic density, but
all statements remain unchanged when using a different distribution for the error
terms.

The cumulative model with distribution function F results from the two assump-
tions (6.4) and (6.5) through

P.Yi � r/ D P.ui � �r/

D P.�x0
iˇ C "i � �r /

D P."i � �r C x0
iˇ/

D F.�r C x0
iˇ/; r D 1; : : : ; c C 1:

The name “cumulative model” refers to the specification of cumulative probabilities
P.Yi � r/ D P.Yi D 1/ C : : : C P.Yi D r/ on the left-hand side of the model
equation. The model itself no longer contains the latent variable and can be
considered a regression model with regressors xi and parameters �1; : : : ; �c and ˇ.
The occurrence probabilities are given by

P.Yi D r/ D F.�r C x0
iˇ/� F.�r�1 C x0

iˇ/; r D 1; : : : ; c C 1:

Depending on the choice of F , we obtain different models. For example, the
cumulative logit model results for the logistic distribution function F with

P.Yi � r/ D exp.�r C x0
iˇ/

1C exp.�r C x0
iˇ/

or equivalently

log
P.Yi � r/

P.Yi > r/
D �r C x0

iˇ:
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6.2 Cumulative Model

Data

The response variable Yi 2 f1; : : : ; cC1g is categorical and measured on an
ordinal scale. The covariates xi do not depend on the response categories.

Model

The response variable Yi is linked to a latent variable ui via

Yi D r ” �r�1 < ui � �r ; r D 1; : : : ; c C 1;

with thresholds �1 D �0 < �1 < : : : < �cC1 D 1. A linear model

ui D �xiˇ C "i ;

with error distribution F is assumed for ui . The cumulative model for Yi is
then given by

P.Yi � r/ D F.�r C x0
iˇ/; r D 1; : : : ; c C 1;

or equivalently

P.Yi D r/ D F.�r C x0
iˇ/ � F.�r�1 C x0

iˇ/:

This model is also called the proportional odds model. The term proportional
refers to the fact that the ratio of the cumulative odds for subpopulations character-
ized by xi and Qxi is given by

P.Yi � r j xi /=P.Yi > r j xi /

P.Yi � r j Qxi /=P.Yi > r j Qxi / D exp..xi � Qxi /0ˇ/: (6.6)

The ratio is independent of category r , and therefore the cumulative odds are
proportional across all categories.

If we choose F to be the extreme minimum-value distribution F.x/ D 1 �
exp.� exp.x//, we obtain the cumulative extreme value or grouped Cox model

P.Yi � r/ D 1 � exp.� exp.�r C x0
iˇ//; (6.7)

or
log.� log P.Yi > r// D �r C x0

iˇ:
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The term “grouped Cox” or “proportional hazards model” stems from a property
analogous to Eq. (6.6) of an underlying duration time model. With the reparameter-
ization Q�r D log.exp.�r/ � exp.�r�1//, r D 1; : : : ; c, we can equivalently express
Eq. (6.7) as

P.Y D r jY � r/ D 1 � exp.� exp. Q�r C x0
iˇ// D F. Q�r C x0

iˇ/: (6.8)

On the left-hand side, we find the probability of the response variable in category r ,
given that the category r or a larger category is reached. In duration time analysis
(when Y represents a discrete time), this conditional probability is referred to
as the discrete hazard function. Model (6.8) is the discrete-time analogue of the
continuous-time Cox model from duration time analysis.

Example 6.5 Forest Health Status—Cumulative Logit Model
We model the three-categorical response variable representing the health status with a
cumulative logit model. The effects of year and age are approximated by orthogonal
cubic polynomials (see Example 3.5 on p. 90), whereas all other continuous covariates
from Table 1.5 of Example 1.4 are modeled with linear effects. All binary or categorical
covariates are effect-coded with the most common category as reference category (coded
as �1). In this analysis, we do not consider the spatial information, which is provided by
the location of a tree. The results in Table 6.6 and Fig. 6.2 should therefore be mainly
considered as illustrations of a preliminary nature. Estimation is based on the methods
outlined in the next section. In Sect. 9.5, we will further analyze the data with a more
flexible geoadditive model. The nonlinear effects of age and year shown in Fig. 6.2 are
only very rough approximations for the corresponding covariate effects as we will see
in Sect. 9.5. There is evidence that younger trees do generally show a lower damage
state than middle-aged and older trees. The calendar effect year reflects the observed
temporal trends. The risk of damage increases starting in 1983, flattens towards the end
of the decade and then shows a continuous decrease from 1990 to 2000. In recent years,
however, we again find some evidence of an increasing risk. To get an intuitive feel about
the variability of the probabilities for the three damage states it is recommended to plot the
estimated probabilities in addition to the effect plots. As an example, Fig. 6.3 visualizes the
probabilities for “no damage,” “weak damage,” and “severe damage” depending on the age
of the trees. Thereby we kept the effects of the other continuous covariates fixed at their
mean value and of the categorical covariates at their mode category; see also Examples 2.8
(p. 35) and 2.13 (p. 54) of Chap. 2.

We only comment on some selected linear effects: A high canopy density, the presence
of fertilization, and a moderately dry soil significantly reduce the risk of damage. In
contrast, humid soil and a homogeneous deciduous forest increase the probability of
damage. We reanalyze the data in Example 9.7 (p. 556) using a flexible geoadditive model,
which shows that some effects react sensitively to model choice, especially when spatial
effects are included. 4

6.3.2 The Sequential Model

An alternative to the cumulative model is the sequential model, which also explicitly
uses the ordinal scaling of the response categories. Due to its construction, the
sequential model is useful when the categories of the response variable are obtained
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Table 6.6 Forest health status: estimated covariate effects. The results are obtained using function
ologit of the software STATA

Variable Coefficient Standard error t-statistic p-value 95 % Confidence interval

�0 �5.8994 1.298 �8.4444 �3.3544
�1 �1.8424 1.290 �4.3709 0.6861
gradient 0.0004 0.007 0.05 0.959 �0.0130 0.0137
canopyd �0.0319 0.003 �10.51 <0.001 �0.0378 �0.0259
alt �0.0004 0.001 �0.26 0.794 �0.0030 0.0023
depth �0.0206 0.007 �2.98 0.003 �0.0341 �0.0070
ph �0.8598 0.250 �3.44 0.001 �1.3501 �0.3695
type �0.3963 0.074 5.35 <0.001 0.2512 0.5414
fert �0.4453 0.125 �3.56 <0.001 �0.6902 �0.2004
humus0 �0.1256 0.132 �0.95 0.343 �0.3851 0.1340
humus2 0.3100 0.116 2.67 0.007 0.0828 0.5373
humus3 0.1688 0.134 1.26 0.209 �0.0943 0.4319
humus4 �0.2739 0.179 �1.53 0.126 �0.6247 0.0769
watermoisture1 �0.6270 0.150 �4.17 <0.001 �0.9217 �0.3323
watermoisture3 0.4926 0.108 4.58 <0.001 0.2817 0.7036
alkali1 0.3646 0.159 2.30 0.022 0.0536 0.6756
alkali3 �0.5451 0.156 �3.50 <0.001 �0.8500 �0.2401
alkali4 0.9230 0.221 4.18 <0.001 0.4901 1.3559
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Fig. 6.2 Forest health status: estimated polynomial effects of age and calendar time

sequentially. If we assume that, in Example 6.3, the pulmonary function is originally
normal, the abnormal category (for given smoking status and age) can only be
reached provided that the borderline category has been reached in between. Another
example would be years of unemployment considered as categories of a duration
time response. One can only be unemployed for two years provided that one
has been unemployed for one year before. The assumptions on which we build



6.3 Ordinal Models 339

.5

.6

.7

.8

.9

1

5 30 55 80 105 130 155 180 205 230
age

Estimated probability for no damage

0

.1

.2

.3

.4

.5

5 30 55 80 105 130 155 180 205 230
age

Estimated probability for weak damage

0

.005

.01

.015

5 30 55 80 105 130 155 180 205 230
age

Estimated probability for severe damage

Fig. 6.3 Forest health status: estimated probabilities for “no damage,” “weak damage,” and
“severe damage” depending on age. The remaining continuous covariates are held fixed at their
mean values. The categorical covariates are held fixed at their mode category

sequential models are, thus, successively or gradually achievable categories of the
variable Y 2 f1; : : : ; c C 1g.

The sequential reachability of the categories is modeled explicitly in terms of a
sequence of binary transitions. The process starts in Yi D 1 and a binary model of
Sect. 5.1 describes the transition to Yi > 1:

P.Yi D 1/ D F.�1 C x0
iˇ/:

If the response variable remains in category 1, the process stops. Otherwise, the
following transition is dichotomously modeled with

P.Yi D 2 jYi � 2/ D F.�2 C x0
iˇ/

as the conditional probability for remaining in Yi D 2 and complementary probabil-
ity 1 � P.Yi D 2 jYi � 2/ for the transition to Yi > 2.
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Accordingly, the r th step of the sequential mechanism is based on

P.Yi D r jYi � r/ D F.�r C x0
iˇ/; r D 1; : : : ; c: (6.9)

The process stops as soon as one of the binary transition equations decides for the
process to remain in category r .

It should be pointed out that we are not actually observing individual transitions
but only the realized category of the response variable. The sequential mechanism
is basically an assumption which helps to formulate the sequential model. Alterna-
tively, model (6.9) can be expressed in terms of marginal probabilities

P.Yi D r/ D F.�r C x0
iˇ/

r�1Y

sD1
.1 � F.�s C x0

iˇ//; r D 1; : : : ; c;

and

P.Yi D c C 1/ D 1 �
cX

sD1
P.Yi D s/

for the reference category.
For the logistic distribution function F , we specifically obtain the sequen-

tial logistic model; for the extreme minimum-value distribution F.x/ D 1 �
exp.� exp.x//, we obtain the extreme value sequential model. Possible alternatives
are the probit model or other binary regression models. The sequential logit model
can be represented through the conditional transition probabilities

log
P.Yi D r jYi � r/

1 � P.Yi D r jYi � r/
D �r C x0

iˇ:

When the number of categories is small, an extended sequential model with
category-specific regression coefficients for some of the covariates can be consid-
ered. Instead of the linear term �r C x0

iˇ in Eq. (6.9), we obtain the general linear
predictor

�r C x0
iˇr C z0

i�;

where xi and zi represent groups of variables with category-specific effects ˇr and
global effects � , respectively.

Example 6.6 Pulmonary Function—Sequential Model
We specify the influence of age and smoking behavior on the test results of Table 6.2 using
a sequential model. Dummy coding is used for the explanatory variables with reference
categories age � 40 and smoking status “current smoker.” The results provided in Table 6.7
are based on remlreg objects of BayesX and are generally as expected. Younger
workers of age lower than 40 and nonsmokers are less likely to show a borderline or
abnormal breathing test compared to older workers of age larger than 40 and current
smokers. The difference between former and current smokers is comparably small (and
nonsignificant).
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6.3 Sequential Models

Data

The response variable Yi 2 f1; : : : ; c C 1g is categorical and measured on
an ordinal scale. The categories can only be reached sequentially.

Model

The transitions between the categories are modeled using binary regression
models. If category r 2 f1; : : : ; cg has already been reached, the (potential)
termination of the process in r is defined by

P.Yi D r jYi � r/ D F.�r C x0
iˇ/:

Thus, we have

P.Yi D r/ D F.�r C x0
iˇ/

r�1Y

sD1
.1 � F.�s C x0

iˇ//; r D 1; : : : ; c:

If F is the logistic distribution function, we obtain the sequential logit
model. If F is the standard normal distribution function, the sequential
probit model results. We can also consider category-specific effects of
covariates based on the general predictor �r C x0

iˇr C z0
i� .

Table 6.7 Lung function test: estimated effects for the main effects sequential model

Variable Coefficient Standard error p-value 95 % Confidence interval

�1 1.495 0.120 <0.001 1.260 1.730
�2 0.551 0.179 0.002 0.200 0.901
age < 40 �0.742 0.135 <0.001 �1.007 �0.478
non sm: �0.867 0.175 <0.001 �1.210 0.522
former sm: �0.188 0.171 0.272 �0.523 0.147

We now additionally include interactions between age and smoking status; see Table 6.8
for the results. The interaction model has a comparably lower AIC of 1575.13 compared
to the main effects model which shows an AIC of 1596.59. Quite surprisingly (at least
at first sight), the interaction effects are both positive. For instance, nonsmoking workers
with age below 40 show a considerably high interaction effect of 2.220 indicating that the
risk of borderline and abnormal breathing test is increased. However, it is not justified to
interpret the main effects and the interaction effects separately. It is rather necessary to
compute the effects of the six combinations of age and smoking behavior. For instance, for
the combination age < 40 and “nonsmoking,” we obtain the effect

�1:207 � 1� 2:519 � 1� 0:586 � 0C 2:220 � 1C 0:832 � 0 D �1:506:
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Table 6.8 Lung function test: estimated effects for the sequential model with interactions

Variable Coefficient Standard error p-value 95 % Confidence interval

�1 1.249 0.125 <0.001 1.004 1.495
�2 0.387 0.181 0.032 0.032 0.742
age < 40 �1.207 0.174 <0.001 �1.548 �0.865
non sm: �2.519 0.521 <0.001 �3.541 �1.496
former sm: �0.586 0.234 0.012 �1.045 �0.127
age < 40; non 2.220 0.560 <0.001 �1.122 3.318
age < 40; former 0.832 0.339 0.014 0.167 1.498

Table 6.9 Lung function test: combined effects in the main effects plus interactions model

Covariate combination Effect

age < 40, nonsmoker �1:207� 2:519C 2:220 D �1:506
age < 40, former smoker �1:207� 0:586C 0:832 D �0:961
age < 40, current smoker �1:207
age � 40, nonsmoker �2:519
age � 40, former smoker �0:586
age � 40, current smoker 0

Table 6.10 Lung function test: estimated probabilities for the sequential model with interactions

Covariate combination P.normal/ P.borderline/ P.abnormal/

age < 40, nonsmoker 0.940 0.052 0.008
age < 40, former smoker 0.901 0.078 0.020
age < 40, current smoker 0.921 0.066 0.013
age � 40, nonsmoker 0.977 0.021 0.001
age � 40, former smoker 0.862 0.100 0.038
age � 40, current smoker 0.778 0.133 0.090

Table 6.9 lists the calculated effects of all covariate combinations and Table 6.10 lists the
estimated probabilities. We now clearly see that in both age groups the risk of borderline or
abnormal breathing test is lower for nonsmokers and to a lesser extent for former smokers
compared to current smokers. Surprisingly, the non-smokers in the age group age � 40

have an even lower effect than in the group age < 40.
The example shows that it can be tedious to interpret models with interaction effects.

We have already pointed out in Sect. 3.4 that the interaction between covariates can
also be modeled by defining a new variable whose categories consist of all possible
combinations of age and smoking status. The result of this approach with reference category
age � 40; current smoker is given in Table 6.11. We now immediately see the effects of the
covariates without any tedious calculations (the differences in the third digit are due to
rounding errors). 4
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Table 6.11 Lung function test: estimated effects for the sequential model with interactions and
alternative dummy coding

Variable Coefficient Standard error p-value 95 % Confidence interval

�1 1.249 0.125 <0.001 1.004 1.495
�2 0.387 0.181 0.032 0.032 0.742
age < 40; non �1.505 0.201 <0.001 �1.899 �1.111
age < 40; former �0.960 0.241 <0.001 �1.433 �0.487
age < 40; current �1.207 0.174 <0.001 �1.548 �0.865
age � 40; non �2.519 0.521 <0.001 �3.541 �1.496
age � 40; former �0.586 0.234 0.013 �1.046 �0.127

6.4 Estimation and Testing: Likelihood Inference

Parameter estimation relies on the same maximum likelihood principles that have
been used for binary regression models and more generally with GLMs in Chap. 5.
We assume the more general case of grouped data where the responses yir ,
i D 1; : : : ; G, r D 1; : : : ; c represent the number of repetitions of category r out
of ni independent trials. Since the response variables y i D .yi1; : : : ; yic/

0 follow
multinomial distributions

y i � M.ni ;� i /

and are assumed to be (conditionally) independent, the likelihood function is given
by the product

L.ˇ/ D
GY

iD1
f .y i j � i /

of densities f .y i j � i / of the form (6.1).
The vector of probabilities � i D .�i1; : : : ; �ic/

0 depends on the vector ˇ of all
parameters through linear predictors with specific forms depending on the chosen
model. Up to an additive constant, the log-likelihood is given by

l.ˇ/ D
GX

iD1
.yi1 log�i1 C : : :C yic log�ic C yi;cC1 log�i;cC1/

with yi;cC1 D ni � yi1 � : : : � yic and �i;cC1 D 1 � �i1 � : : : � �ic . From this, we
can derive the score function s.ˇ/ D @l.ˇ/=@ˇ as the vector of first derivatives and
the expected information matrix

F .ˇ/ D E.s.ˇ/s0.ˇ//:

The ML estimator is computed as the iterative solution of the ML equations

s. Ǒ/ D 0:
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The score function and the information matrix as well as the iterative computation
of the ML estimator are multivariate extensions of the quantities derived for binary
regression models and univariate GLMs in Chap. 5; see the following details.

To allow for a unified presentation of all categorical regression models, we
introduce some common notation. In every categorical regression model, the
occurrence probabilities P.Yi D r/D P.yir D 1/D�ir for category r are connected
to linear predictors �ir, r D 1; : : : ; c via response functions hr , i.e.,

�ir D hr.�i1; : : : ; �ic/; r D 1; : : : ; c:

The specification of the response functions and the linear predictors depends on the
chosen categorical regression model.

For the multinomial logit model in Box 6.1, we have

�ir D exp.�ir/

1C
cX

sD1
exp.�is/

D hr.�i1; : : : ; �ic/;

with �ir D x0
iˇr D ˇr0Cxi1ˇr1C : : :Cxikˇrk . In the extended form with category-

specific explanatory variables wir � wi;cC1 and global parameters � , the predictor is
extended to

�ir D x0
iˇr C .wir � wi;cC1/0�: (6.10)

For the ordinal cumulative model in Box 6.2, we have�i1 D F.�i1/Dh1.�i1; : : : ;

�ic/ and

�ir D F.�ir/� F.�i;r�1/ D hr.�i1; : : : ; �ic/; r D 2; : : : ; c;

with

�ir D �r C xi1ˇ1 C : : :C xikˇk:

Combining the predictors into the vector

�i D .�i1; : : : ; �ic/
0;

and the parameters to the parameter vector ˇ, we can always obtain the form

�i D X iˇ;

with an appropriately defined design matrix X i .
For the multinomial logit model with the extended predictor (6.10), we have

ˇ D .ˇ1; : : : ;ˇc;�/
0 and

X i D

0

BBB@

x0
i w0

i1 � w0
i;cC1

x0
i w0

i2 � w0
i;cC1

: : :
:::

x0
i w0

ic � w0
i;cC1

1

CCCA :
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For the ordinal cumulative models, the vector of regression coefficients is ˇ D
.�1; : : : ; �c; ˇ1; : : : ; ˇk/

0 and the design matrix has to be defined as

X i D

0
BBB@

1 x0
i

1 x0
i

: : :
:::

1 x0
i

1
CCCA :

If we additionally introduce the c-dimensional response function

h.�i / D .h1.�i /; : : : ; hc.�i //
0;

we can write all categorical regression models for � i D .�i1; : : : ; �ic/
0 in compact

matrix notion as
� i D h.�i /; �i D X iˇ:

The score function s.ˇ/ D @l.ˇ/=@ˇ of the multinomial distribution does have
a structure that is similar to the univariate GLM, presented in Chap. 5. We have

s.ˇ/ D
GX

iD1
X 0
iDi˙

�1
i .y i � ni� i /;

where Di D @h.�i /=@� is the c � c-matrix of the partial derivatives, evaluated at
�i D X iˇ, and ˙ i is the covariance matrix

˙ i D ni

0

BBB@

�i1.1 � �i1/ ��i1�i2 � � � ��i1�ic
��i2�i1 �i2.1 � �i2/

:::
: : :

:::

��ic�i1 � � � �ic.1 � �ic/

1

CCCA :

Introducing the weight matrix

W i D Di˙
�1
i D0

i ;

(that depends on ˇ), we can write the Fisher matrix as

F .ˇ/ D
GX

iD1
X 0
iW iX i ;

which again is the generalization of the Fisher matrix in univariate GLMs.
Combining all observations and probabilities in y D .y 0

1; : : : ;y
0
G/

0 and � D
.� 0

1; : : : ;�
0
G/

0, defining the full design matrix

X D

0

B@
X 1

:::

XG

1

CA
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for all observations, and forming the block-diagonal matrices ˙ D blockdiag
.˙ 1; : : : ;˙G/, D D blockdiag.D1; : : : ;DG/, and W D blockdiag.W 1; : : : ;W G/

finally yields

s.ˇ/ D X 0D˙ �1.y � ni�/; F .ˇ/ D X 0W X :

Numerical Computation of the ML Estimator
We can again use the Fisher scoring method discussed in Sect. 5.1.2 for the iterative
solution of the ML equations with .t C 1/-th iteration given by

Ǒ.tC1/ D Ǒ.t/ C F �1. Ǒ.t//s. Ǒ.t//:

The iterations can also be expressed as iteratively (re)weighted least squares updates

Ǒ.tC1/ D .X 0W . Ǒ.t//X/�1X 0W . Ǒ.t// Qy.t/;

based on the working observations Qy .t/ D . Qy1. Ǒ.t//; : : : ; QyG. Ǒ.t///; with compo-
nents

Qy i .
Ǒ.t// D X i

Ǒ.t/ C .D�1
i .

Ǒ.t///0.y i � � i . Ǒ.t///:

Asymptotic Properties and Tests of Linear Hypotheses
The asymptotic properties of the ML estimator are analogous to those in the
univariate case. Under relatively weak regularity conditions and with increasing
sample size n ! 1, the ML estimator Ǒ exists, is consistent, and is asymptotically
normal, i.e.,

Ǒ a� N.ˇ;F �1. Ǒ//I
see Fahrmeir and Kaufmann (1985). Tests of linear hypotheses H0 W C ˇ D d can
be conducted analogously to the univariate case (Chap. 5) after replacing the log-
likelihood, the score function, and the information matrix by their multivariate
versions.

Example 6.7 Caesarian Delivery—Hypotheses Testing
We now test whether or not the effects of NPLAN and RISK differ significantly across both
types of infections. Thus we have the hypotheses

H0 W ˇ1N D ˇ2N and ˇ1R D ˇ2R; H1 W ˇ1N 6D ˇ2N or ˇ1R 6D ˇ2R:

This can be written as a special linear hypothesis in the form of C ˇ D 0, where C has
rank 2. As for the Wald test statistic, we have w D 0:33 which results in a p-value of
0.8465. Thus H0 cannot be rejected. Therefore, the two effects do not differ significantly
across the two categories. 4
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6.5 Bibliographic Notes

Analogously to Sect. 5.6, the concepts of Bayesian inference can be transferred to
categorical regression models. For fully Bayesian inference, we can work either
with MH algorithms based on IWLS proposals or with data augmentation schemes.
IWLS proposals are described in Gamerman (1997) and Lenk and DeSarbo (2000)
for univariate responses. Brezger and Lang (2006) propose a scheme for the
multinomial logit model. Sampling schemes for categorical probit models based on
data augmentation are more complicated than for binary probit models but similar
in nature; see Albert and Chib (1993), Chen and Dey (2000), Fahrmeir and Lang
(2001), and Imai and van Dyk (2005). Recently similar sampling schemes have been
proposed for multinomial logit models; see Holmes and Held (2006) and Frühwirth-
Schnatter and Frühwirth (2010).

Categorical regression models are described in full detail in the books by Tutz
(2011) and Agresti (2002). A shorter account can be found in Fahrmeir and Tutz
(2001, Chap. 3). The derivation of categorical regression models and more general
discrete choice models traces back to McFadden, who was awarded the Noble Prize
for Economic Sciences for this work; see, for example, McFadden (1984) or Train
(2003).
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Mixed models extend the predictor �D x0ˇ of linear, generalized linear, and
categorical regression models by incorporating random effects or coefficients in
addition to the non-random or “fixed” effects ˇ. Therefore, mixed models are
sometimes also called random effects models, and have become quite popular for
analyzing longitudinal data obtained from repeated observations on individuals or
objects in longitudinal studies. A closely related situation is the analysis of clustered
data, i.e., when observations are obtained from objects selected by subsampling
primary sampling units (clusters or groups of objects) in cross-sectional studies. For
example, clusters may be defined by hospitals, schools, or firms, where data from
(possibly small) subsamples of patients, students, or clients are collected. Generally,
clustering may result from any data generating mechanism that induces a cluster
structure. In any case, the data consist of ni repeated observations

.yi1; : : : ; yij; : : : ; yini ;xi1; : : : ;xij; : : : ;xini /

of responses and covariates for each individual or cluster i D 1; : : : ; m. For longitu-
dinal data, yij and xij denote the observed value of the response and the covariate
vector, respectively, for individual i at time tij, j D 1; : : : ; ni , while for clustered
data these values are observations for subjects or objects j from cluster i . Mixed
models allow estimation of individual- or cluster-specific effects, even in the case
of relatively small numbers ni of repeated individual measurements or sizes ni of
subsamples from clusters. The basic idea is to extend the linear predictor �ij D x0

ijˇ

for observation yij with fixed population effects ˇ to the linear mixed predictor
�ij D x0

ijˇ C u0
ij� i . Usually u0

ij is a subvector of the covariates, and � i is a vector
of individual- or cluster-specific random effects. The assumption of � i to be fixed
effects as in the standard linear or generalized linear model is often impractical
since the number of parameters to be estimated becomes quite large relative to
the sample size. On the other hand, the random effects distribution implicitly
induces certain regularization properties for the cluster parameters � i . An additional
advantage of mixed models is that correlations, induced by repeated observations
from individuals or clusters, are taken into account during estimation.

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9 7,
© Springer-Verlag Berlin Heidelberg 2013
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In the following, we first describe linear mixed models (LMMs) with (con-
ditionally) Gaussian responses yij, making the conventional assumption that the
random effects are i.i.d. Gaussian variables. We then extend LMMs by allowing
correlated Gaussian random effects. This leads to a very broad class of models
that are appropriate for analyzing spatial and spatio-temporal data, as well as for
Bayesian approaches to non- and semiparametric regression in Chaps. 8 and 9, in
particular in Sects. 8.1.9 and 9.6. Statistical inference is described from a frequentist
likelihood-oriented as well as a Bayesian perspective.

The second part of chapter extends generalized linear models for non-Gaussian
responses to generalized linear mixed models (GLMMs), such as logit or Poisson
regression models. Statistical inference for the GLMM is based on similar, but more
complicated concepts of the LMM.

7.1 Linear Mixed Models for Longitudinal and Clustered Data

7.1.1 Random Intercept Models

We start with random intercept models which are among the most simple (albeit
quite important) mixed models. For notational simplicity we first restrict ourselves
to the case of just one covariate x. Let

.yij; xij/; i D 1; : : : ; m; j D 1; : : : ; ni

denote the values of the response variable y and covariate x observed at times ti1 <
: : : < tij < : : : < tini for individuals i D 1; : : : ; m in a longitudinal study, or for
subjects j D 1; : : : ; ni in clusters i D 1; : : : ; m. Our starting point for modeling the
relationship between y and x is the classical linear model

yij D ˇ0 C ˇ1xij C "ij; (7.1)

with i.i.d. errors "ij � N.0; �2/. In this model, the fact that we have repeated mea-
surements j D 1; : : : ; ni on the same individual or cluster i is not taken into account.
In particular, we not only assume that the observations yij and yrl , of different
individuals i and r , are (stochastically) independent but also repeated measurements
yij and yil on the same individual or cluster i . A possible graphical way to check
this independence assumption is to estimate and plot separate regression lines (or
more generally regression curves) for each individual or cluster i . If there is no
cluster-specific heterogeneity all regression lines should have similar (not identical
due to sampling variability) intercepts and slopes. A typical plot is shown in the left
panel of Fig. 7.1. The estimates are based on artificial data drawn from the model
yij D 1C xij C "ij, i D 1; : : : ; 10, j D 1; : : : ; 20, for mD 10 individuals or clusters,
ni D 20 repeated measurements in each cluster, and i.i.d. errors "ij � N.0; 0:12/.
Clearly, the estimated cluster-specific regression lines scatter with low variability
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Fig. 7.1 Illustration of random intercept models: both panels show separately estimated regres-
sion lines for each cluster. In the left panel, there is no cluster-specific random intercept, while in
the right panel a random intercept is present. The dashed line corresponds to the population model

around the true regression line 1 C x (dashed line in Fig. 7.1). Hence, there is no
reason for assuming cluster-specific heterogeneity and a common regression model
for all clusters is sufficient.

The right panel of Fig. 7.1 reveals a different scenario. The estimated cluster-
specific regression lines still show a common slope across clusters, but the intercept
appears to be different from cluster to cluster. To model this type of cluster-specific
heterogeneity we introduce cluster-specific parameters �0i and obtain

yij D ˇ0 C ˇ1xij C �0i C "ij; (7.2)

where "ij � N.0; �2/ are the usual i.i.d. errors of the classical linear model. In
Eq. (7.2):
• ˇ0 is the “fixed” population intercept.
• �0i is the individual- or cluster-specific (random) deviation from the population

intercept ˇ0.
• ˇ0 C �0i is the (random) intercept for cluster i .
• ˇ1 is a “fixed” population slope parameter of covariate x that is common across

clusters.
Since the individuals or clusters are a random sample from a larger population, the
cluster-specific parameters �0i are assumed to be random with

�0i
i:i:d:� N

�
0; �20

�
: (7.3)

We also assume mutual independence between the "ij and the �0i . The normal
random effects distribution in Eq. (7.3) is also sometimes called a mixture distribu-
tion. The mean can be set to zero because the population mean is already represented
by the fixed effect ˇ0.
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The random intercepts ˇ0 C �0i � N.ˇ0; �20 / may be interpreted as effects
of omitted (individual- or cluster-specific) covariates and account for unobserved
heterogeneity. Another way to look at the model is to interpret �0i as an additional
error term. The random intercept model appears as a linear regression model with
two error terms, where �0i is then a cluster-level error shared between measurements
on the same individual or cluster i and "ij is the observation error of measurement
j in cluster i .

The random intercept model induces a specific correlation or dependence
structure on the responses yij. Given the random intercepts �0i , the yij are still
conditionally independent with

yij j �0i � N.ˇ0 C ˇ1xij C �0i ; �
2/:

Marginally, however, repeated measurements yij for subject or cluster i are corre-
lated with within-subject correlation coefficient

Corr.yij; yil / D �20

�20 C �2
; j ¤ l I (7.4)

see Sect. 7.1.4 for a derivation. Based on the normality assumption of the random
effects and the errors, we can further derive the marginal distribution of responses.
We have

y i � N.X iˇ; �
2Ini C �20J ni /; (7.5)

where X i is an .ni �2/-design matrix with ones in the first column and the observed
xij in the second column, and J ni denotes an .ni �ni /-matrix of ones. Between two
subjects i and r , the observations yij and yrl are still uncorrelated. The strength
of the within-subject correlation Eq. (7.4) depends on the magnitude of the error
variances �20 and �2. The higher the random effects variance �20 relative to the error
variance �2, the stronger the within-subject correlation. Note also that the within-
subject correlation is constant (equicorrelation) from measurement to measurement.
This may be questionable for longitudinal data, where we might expect correlations
dying off for measurements which are farther apart in time.

The marginal model (7.5) also shows what happens with the estimates for ˇ if
the classical linear model (7.1) is estimated instead of the random intercept model
(7.2). If the assumed correlation structure induced by the random intercept model
is correct, estimating a classical linear model means that we mistakenly assume an
error covariance matrix �2I instead of a non-diagonal covariance matrix as imposed
in the marginal model (7.5) of the random intercept model. The consequences of
using an incorrect covariance matrix have already been established in Sect. 4.1.1
in the context of the general linear model. As stated there, the estimates for the
“fixed” regression coefficients ˇ are still unbiased. However, the covariance matrix
of ˇ and all derived quantities in particular standard errors, confidence intervals, and
tests are not correct. Note that the standard errors could either be smaller or larger,
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as in a misspecified classical linear model. A nice description of the consequences
of mistakenly specifying a classical linear model is also given in Skrondal and Rabe-
Hesketh (2008) in Sect. 3.10.1.

Between- and Within-Cluster Effects
The random intercept model (7.2) considered thus far has an important limitation:
The so-called within- and between-cluster effects of x are the same. The within-
cluster effect denotes the effect if x changes within the same individual at different
occasions. The between-cluster effect refers to different x values between different
subjects or clusters. In either case, a difference of one unit of x in model (7.2)
induces a difference of ˇ1 in expected responses. This equality between the
within- and between-cluster effect might be questionable in applications. A possible
example is our data on undernutrition in Zambia. Here the individual data on
children are nested within the districts of Zambia as the cluster variable. Suppose we
are interested in the effect of the households wealth, measured by a wealth index,
x say, on the Z-score. Now we focus our attention on two imaginary districts, one
comparably rich district i and a second rather poor district l . More precisely, we
assume that in district i the population is on average richer than in the second
district l , i.e., Nxi > Nxl with Nxi , Nxl being the cluster averages of the wealth index.
Suppose first that we compare a child living in the rich district with a child living
in the poor district (between district comparison). It is then conceivable that the
child living in the rich environment has a higher Z-score, i.e., is better nourished,
than the child in the poor environment, even if the individual household wealth
is identical. The reason might be that the child profits from the rich environment
independent of the individual household situation that might be much less favorable.
Economists call this an external effect. A possible way to model this between-cluster
effect is simply to include the cluster averages Nxi as an additional covariate into the
regression equation. On the other hand, there might be also a within-cluster effect
if the individual household wealth is different to that of the average cluster wealth.
Children living in households which are wealthier than the average households in
the district should have an even higher Z-score (at least on average). This effect may
be equal in size to the between-cluster effect but could just as well differ, i.e., being
smaller or larger in size. An illustration of different within- and between-cluster
effects is shown in Fig. 7.2. The left panel shows different sizes of the within- and
between-cluster effects but with identical signs. In the right panel, the signs of the
within- and between-cluster effects are opposite of each other.

To deal with possibly different within- and between-cluster effects we can
incorporate two covariates derived from x into the predictor: The between-cluster
effect can be modeled by the respective cluster means Nxi as a covariate. The
within-cluster effect is modeled by incorporating the individual difference from the
cluster mean xij � Nxi . This yields the extended random intercept model

yij D ˇ0 C ˇ1.xij � Nxi /C ˇ2 Nxi C �0i C "ij; (7.6)
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Fig. 7.2 Illustration of within- and between-cluster effects: the between-cluster effects are
visualized through the cluster means Nxi marked by black dots and the corresponding linear trends
(solid lines) which are increasing with x in both panels. The within-cluster effects are illustrated
by dashed lines

where the coefficient ˇ2 of the cluster mean represents the between-cluster effect,
and the coefficient ˇ1 of the individual deviation from the cluster mean represents
the within-cluster effect. The model collapses to the original random intercept model
(7.2) if the within- and between-cluster effects are identical, i.e., if ˇ1 D ˇ2. Another
interpretation of model (7.6) is obtained by considering Q�0i D ˇ2 Nxi C �0i as a
random intercept that depends through ˇ2 Nxi on the covariates.

Alternative Views on the Random Intercept Model
For some applications, the view of the �0i as random effects can be questionable.
This is the case when we do not have the interpretation that clusters are randomly
sampled from a larger population. Such a situation arises, for example, when data
have been observed on a discrete spatial grid. A typical example is the data for
the Munich rent index where the district of each apartment in Munich is given.
To account for spatial heterogeneity it might be useful to add a district-specific
effect into the predictor; see Example 9.2 of Chap. 9. Since the districts cannot be
seen as a random sample of a larger “population” of districts, the interpretation
of the district-specific effects as random effects is somewhat artificial. However,
there are alternative useful interpretations of the random intercept model which are
more suitable for the given situation. In particular, the random effects distribution
Eq. (7.3) can be readily understood as the prior for �0i in a corresponding Bayesian
approach. In fact Eq. (7.3) is identical to the Bayesian ridge prior of Sect. 4.4.2.
Assuming noninformative priors for the “fixed” effects, i.e., p.ˇ0/ / const and
p.ˇ1/ / const, the posterior is given by
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p.ˇ0; ˇ1;� j y/ / L.ˇ0; ˇ1;�/

mY

iD1

1
q
�20

exp

�
� 1

2�20
�20i

�
;

where � D .�01; : : : ; �0m/
0 is the vector of cluster effects and L.�/ is the Gaussian

likelihood of the conditional model. The variances �2 and �20 are assumed fixed
for the moment. Now the posterior mode can be obtained by maximizing the log-
posterior resulting in the optimization criterion

PLS.ˇ0; ˇ1;�/ D
mX

iD1

niX

jD1
.yij � ˇ0 � ˇ1xij � �0i /2 C 	

mX

iD1
�20i (7.7)

with 	D �2=�20 . This has the form of a penalized least squares criterion quite
similar to ridge regression outlined in Sect. 4.2.2. To understand the nature of the
penalization, we consider the particularly simple random intercept model

yij D ˇ0 C �0i C "ij; (7.8)

without any covariates, and as usual with �0i
i:i:d:� N.0; �20 /, "ij

i:i:d:� N.0; �2/. As will
be shown in Sect. 7.3.2, the estimator for the �0i is given by

O�0i D ni�
2
0

�2 C ni�
2
0

1

ni

niX

jD1
.yij � Ǒ

0/;

where Ǒ
0 D Ny, with Ny the overall mean of the responses. The estimator for the

cluster mean �i D ˇ0 C �0i is now given by

O�i D Ǒ
0 C O�0i D Ny C ni�

2
0

�2 C ni �
2
0

1

ni

niX

jD1
.yij � Ny/: (7.9)

The term ei D 1
ni

Pni
jD1.yij � Ny/ can be seen as an average residual for individual i ,

which is a rather natural estimate of �0i . This is multiplied by the factor

	i D ni �
2
0

�2 C ni �
2
0

< 1;

which is sometimes called a shrinkage effect, because the ad hoc estimate ei for �i
is shrunken towards the prior mean 0. The larger the ni , the closer the weight 	i
is to 1 and the smaller the shrinkage. Additional shrinkage is obtained if the error
variance �2 is large relative to the random effects variance �20 .
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It is instructive to contrast the estimator Eq. (7.9) with two extreme modeling
strategies:
• Full ignorance of groups: On the one extreme we could fully ignore the groups

and estimate the model yij D ˇ0 C "ij with fixed overall intercept ˇ0. This is
also called the fully pooled model. Of course the least squares estimator for ˇ0
(which is then identical to the cluster mean �i ) is given by the overall mean Ny of
responses, i.e., O�i D Ǒ

0 D Ny.
• Full distinction of groups: The other extreme would be to estimate separate

models yij D �i C"ij for each cluster i treating the �i as fixed parameters without
random effects distribution in a model without intercept (to omit collinearity
problems). This is also known as fully unpooled estimation. Here, the least
squares estimators for the �i are given by the cluster means Nyi , i.e., O�i D Nyi .
Now the random effects estimator Eq. (7.9) can be seen as a compromise between

the two extreme cases. For large ni or small �2 relative to �20 , the estimator Eq. (7.9)
approaches the fully unpooled estimator Nyi . For small ni or large �2 relative to �20
the fully pooled estimator Ny is approached. In the extreme cases ni D 0 or �20 ! 0

or �2 ! 1 the mean Ny is reached as a limit. In the other extreme cases ni ! 1 or
�20 ! 1 or �2 ! 0 we reach the cluster mean Nyi as a limit. An illustration of the
shrinkage factor 	i depending on the cluster size ni (panel a), the random effects
variance �20 (panel b), and the error variance �2 (panel c) can be found in Fig. 7.3.

Key Features of Mixed Models
Although the random intercept model is comparably simple it already reveals the
key features and advantages of mixed models:
• Individual- or cluster-specific effects can be introduced to account for specific

deviations from the population behavior.
• They allow to correct for unobserved heterogeneity induced by omitted covari-

ates.
• Correlations between observations of the same individual or cluster can be taken

into account (at least to some extent). This ensures that inference regarding the
regression coefficients is correct in the sense that we obtain correct standard
errors, confidence intervals, and tests.

• Estimation is stabilized by assuming a common random effects distribution that
acts as a penalty term for the otherwise unpenalized cluster-specific effects.
We finally summarize the various interpretations of the random intercept model:

• A classical interpretation, where clusters are a random sample of a larger
population and the �0i are cluster-specific random effects.

• A marginal interpretation, where the random effects �0i induce the general linear
model (7.5) with correlated errors for the observed yij.

• A Bayesian point of view, which interprets Eq. (7.3) as an underlying prior.
• A penalized least squares view, where the penalized least squares criterion

induces a penalty on the cluster-specific effects to regularize the estimated
parameters.
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Fig. 7.3 Shrinkage factor in simple random intercept models: Panel (a) illustrates the shrinkage
factor 	i depending on the cluster size ni (for fixed �2 D 1 and �20 D 1). Panels (b) and (c) display
the shrinkage factor depending on the random effects variance �20 (for fixed �2 D 1) and the error
variance �2 (for fixed �20 D 1), respectively

7.1.2 Random Coefficient or Slope Models

Random intercept models are still based on the assumption that the covariate effect
of x is equal in size for each individual or cluster. However, this may be too
restrictive as Fig. 7.4 reveals. The left panel shows the separately estimated cluster-
specific regression lines for some artificial data. Here, the intercept for the regression
lines seems to be identical (or at least close), whereas the slopes are clearly different.
More typical is the situation in the right panel of Fig. 7.4, where the regression lines
exhibit both cluster-specific intercepts and slopes. To cope with such cluster-specific
slopes, we extend the random intercept model (7.2) to obtain

yij D ˇ0 C ˇ1xij C �0i C �1ixij C "ij; (7.10)
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Fig. 7.4 Illustration of random slope models: both panels show separately estimated regression
lines for each cluster. In the left panel, there is a cluster-specific random slope and a common
intercept across clusters. In the right panel, both the intercept and the slope are cluster-specific.
The dashed line corresponds to the population model

where:
• ˇ1 is the “fixed” population slope of the effect of x.
• �1i is the individual- or cluster-specific deviation for the slope.
• ˇ1xij is the population effect of x.
• ˇ1xij C �1ixij is the cluster-specific effect of x.
The left panel of Fig. 7.4 corresponds to a model with most random intercept
parameters �0i zero or close to zero and random slope parameters �1i different from
zero. In the right panel both random coefficients are mostly found to be away from
zero.

For the cluster-specific parameters, we now define the bivariate normal random
effects distribution

� i D
�
�0i
�1i

�
i:i:d:� N

��
0

0

�
;

�
�20 �01
�10 �

2
1

��
(7.11)

with mean 0 D .0; 0/0 and covariance matrix

Q D
�
�20 �01
�10 �

2
1

�
:

The parameters �20 and �21 determine the variability of the cluster-specific intercepts
and slopes, respectively. The left panel of Fig. 7.4 corresponds to �20 � 0 and �21 > 0,
while in the right panel, �20 > 0 also holds.

The covariance �01 D �10 can capture correlations between random intercepts
and slopes. Such a correlation may be present, for example, when individuals with
larger slopes tend to have smaller intercepts, leading to negatively correlated random
intercepts and slopes.
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Similar to simple random intercepts, the random coefficient model (7.10) induces
a certain (marginal) correlation structure on observations yij and yir from the same
cluster. This correlation structure is, however, more complicated as it depends on
the covariate values xij. First of all, the marginal variances of yij are heteroscedastic
with

Var.yij/ D �20 C 2�01xij C �21 x
2
ij C �2I

see Sect. 7.1.4 for a derivation. Thus, the marginal variances depend quadratically
on the covariate values. The covariance between yij and yir can be shown to be

Cov.yij; yir/ D �20 C �01xij C �01xir C �21 xijxir

resulting in an intraclass correlation coefficient

Corr.yij; yir/ D Cov.yij; yir/

Var.yij/1=2Var.yir/1=2
;

which depends in a rather complicated way on the observed covariate values and is
very difficult to interpret.

We now illustrate the idea of random intercept and slope models with a first
example, thereby extending our framework in a natural way to more than one
covariate. We reconsider Example 2.9 (p. 39). Another application with cluster data
and several random slopes can be found in Sect. 7.7, which presents a case study on
sales of orange juice.

Example 7.1 Hormone Therapy with Rats—Linear Mixed Model
To investigate the effect of testosterone on their craniofacial growth, 50 male rats have been
randomized to either a control group or one of two treatment groups. Treatment consisted
of a low or high dose of the drug Decapeptyl, an inhibitor for testosterone production, and
started at the age of 45 days. To measure the growth of the skull of each rat, X-ray pictures
were taken every 10 days, with the first observation at the age of 50 days. In this example,
height of the skull, defined as the distance (in pixels) between two well-defined points, is
considered as the response variable. The individual profiles

˚
yij; j D 1; : : : ; ni

�
for the

three groups are shown in Fig. 2.10 (p. 40). Since many rats drop out before the end of
the study, the numbers ni of individual repeated measurements are different; see Table 2.3
(p. 39).

In Example 2.9 (p. 39), we formulated the LMM

yij D ˇ0 C ˇ1 Li tij C ˇ2 Hi tij C ˇ3 Ci tij C �0i C �1i tij C "ij; (7.12)

with the transformed age

t D log.1C .age � 45/=10/

as the time scale (with t D 0 corresponding to begin of treatment), the time points

tij D log.1C .ageij � 45/=10/
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for measurement j of rat i , and the indicator variables

Li D
(
1; rat i in low-dose group,

0; otherwise,

Hi D
(
1; rat i in high-dose group,

0; otherwise,

Ci D
(
1; rat i in control group,

0; otherwise.

In this model, ˇ0 is the population intercept of rats before treatment, �0i are individual-
specific deviations from this population intercept, the effects ˇ1, ˇ2, and ˇ3 are the
(different) population slopes for the three groups, and �1i are individual-specific deviations
from these slopes. Therefore, ˇ1 C �1i , ˇ2 C �1i , and ˇ3 C �1i are the individual
slopes for rat i , in the low-dose, high-dose, and control group, respectively. Similarly,
ˇ0 C ˇ1tij C �0i C �1i tij, ˇ0 C ˇ2tij C �0i C �1i tij, and ˇ0 C ˇ3tij C �0i C �1i tij are
the corresponding linear trends.

In contrast to the “fixed” effects ˇ D .ˇ0; ˇ1; ˇ2; ˇ3/
0, the individual-specific effects

� i D .�0i ; �1i /
0 are considered to be “random” because the rats are randomly selected

from a population. We make the usual assumption that the random effects are independent
and identically distributed Gaussian random variables according to Eq. (7.11) but with the
additional restriction �01 D �10 D 0.

The variances �20 and �21 characterize the amount of variability of individual-specific
deviations �0i from the population intercept ˇ0 and of deviations �1i from population slopes,
respectively. Note that we implicitly assume that deviations from the three population slopes
have the same variance.

A closer look at Fig. 2.10 (p. 40) suggests that individual-specific slopes do not differ
much from each other, corresponding to the assumption �1i D 0 for all i . This leads to the
simplified or reduced model

yij D ˇ0 C ˇ1 Li tij C ˇ2 Hi tij C ˇ3 Ci tij C �0i C "ij; (7.13)

where only i.i.d. random intercepts �0i � N.0; �20 / are incorporated, without random slopes.
Table 7.1 contains estimates for the fixed effects and the variance parameters in both

models. Estimates are based on methodology outlined in Sect. 7.3 and estimation has been
carried out using function lmer of the R package lme4. Furthermore, Table 7.1 shows the
estimated effects of a linear regression model without any random effects.

We first take a look at the random intercept model (7.13). The estimated random effects
variance of 3.565 is quite large compared to the overall error variance of 1.445 yielding a
comparably high intraclass correlation coefficient of

bCorr.yij; yir/ D 3:565

3:565C 1:445
D 0:71:

This indicates strong individual-specific heterogeneity. Compared to the linear model
without random effects, the estimated population intercepts are in close agreement, whereas
estimated treatment effects differ. In particular, the standard errors are higher in the simple
linear model, which is in part due to the considerably larger estimate for the error variance
�2 that has “captured” omitted individual-specific random effects. Comparing the random
intercept model (7.13) with the more complex random slope model (7.12), all estimates are
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Table 7.1 Hormone therapy with rats: estimates including standard errors for the random slope
model, the reduced random intercept model, and a classical linear model without any random
effects

Model (7.12) Model (7.13) Linear model

Parameter Estimate s.e. Estimate s.e. Estimate s.e.

intercept ˇ0 68.606 0.327 68.607 0.331 68.687 0.348
low-dose ˇ1 7.505 0.227 7.507 0.225 7.677 0.286
high-dose ˇ2 6.875 0.230 6.871 0.228 6.529 0.284
control ˇ3 7.318 0.284 7.314 0.281 7.212 0.326
Var.�0i / �20 3.430 3.565
Var.�1i / �21 0.001
Var."ij/ �2 1.444 1.445 4.730

very close. Moreover, the variance for the random slope is very small (0.001), so that the
simpler random intercept model may be sufficient in this application. The decision as to
whether or not the reduced model (7.13) is appropriate can be also supported by a statistical
test; see Sect. 7.3.4. 4

7.1.3 General Model Definition and Matrix Notation

We now define LMMs in the more general matrix notation containing the illustrative
models and examples of the previous sections as special cases. Let

.yij;x
0
ij/; i D 1; : : : ; m; j D 1; : : : ; ni ;

denote the values of a response variable y and a covariate vector x observed at times
ti1 < : : : < tij < : : : < tini for individuals i D 1; : : : ; m in a longitudinal study (as in
Example 7.1) or for subjects j D 1; : : : ; ni in cluster i D 1; : : : ; m.

A LMM is hierarchically defined through the following stages. In the first stage,
responses yij are assumed to depend linearly on unknown fixed population effects ˇ

and on unknown individual- or cluster-specific effects � i through the measurement
model

yij D x0
ijˇ C u0

ij� i C "ij:

In this case, xij D .1; xij1; : : : ; xijk/
0, uij D .1; uij1; : : : ; uijq/0, and "ij represent

design vectors and the error terms, respectively; the latter are assumed to be i.i.d.
N.0; �2/ random variables. The design vectors include original covariates from
the given data set or can be constructed from original covariates. The components
may be time-dependent, such as the transformed age t in Example 7.1, or may be
time-constant. For clustered data, this corresponds to covariates that vary across
subjects or only across clusters. Usually, xij as well as uij both contain the
constant 1, so that the linear predictor includes a fixed population intercept ˇ0 and
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a random intercept �0i . In addition, uij is typically a subvector of xij and will not
contain additional components. As an example consider the simple random intercept
model (7.2), where xij D .1; xij/

0 and uij D 1. In the extended random intercept
model (7.6), we have xij D .1; xij � Nxi ; Nxi /0 and uij D 1, while for the simple
random slope model (7.10) we obtain xij D .1; xij/

0 and uij D .1; xij/
0.

Collecting all individual- or cluster-specific responses yij, design vectors xij, uij,
and errors "ij, j D 1; : : : ; ni , into vectors or design matrices

y i D

0

BBBBBB@

yi1
:::

yij
:::

yini

1

CCCCCCA
; X i D

0

BBBBBBB@

x0
i1
:::

x0
ij
:::

x0
ini

1

CCCCCCCA

; U i D

0

BBBBBBB@

u0
i1
:::

u0
ij
:::

u0
ini

1

CCCCCCCA

; "i D

0

BBBBBB@

"i1
:::

"ij
:::

"ini

1

CCCCCCA
; (7.14)

we obtain the measurement model in matrix notation

y i D X iˇ C U i� i C "i (7.15)

for individual or cluster i D 1; : : : ; m with E."i / D 0.
In the second stage, the model is supplemented through a distributional assump-

tion for the random effects � i , reflecting the idea that the data are generated by
drawing individuals or clusters from a population. We assume that the random
effects are independent and identically distributed according to a random effects
or—from a Bayesian perspective—a prior distribution. In this book, we make the
conventional assumption of a Gaussian random effects distribution

� i � N.0;Q/;

with unknown .qC1/�.qC1/-covariance matrix Q. The covariance matrix may be
of a specific structural form. In particular, the special case of (a priori) independent
components �il of � i corresponds to a diagonal matrix Q D diag.�20 ; : : : ; �

2
q / with

elements �2l D Var.�il /, l D 0; : : : ; q. Such models are sometimes called variance
components models and are among the least complex random effects models.

The assumption of i.i.d. N.0; �2/ errors implies

"i � N.0; �2Ini /; (7.16)

as well as independence of error vectors "1; : : : ; "m. Additionally, error terms
and random effects are assumed to be mutually independent. Correlation between
repeated observations within individuals or clusters is, however, induced by the
common vector � i of random effects, as is illustrated for simple random intercept
and slope models in the previous Sects. 7.1.1 and 7.1.2.
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Additional correlation can be specified through

"i � N.0;˙ i /

with a non-diagonal ni � ni -covariance matrix ˙ i . Special forms for ˙ i result
from assumptions about the error process f"ijg. For example, the assumption of
autoregressive errors leads to covariance matrices as considered in Sect. 4.1.4. If
the errors follow autoregressive processes of first order, i.e.,

"ij D  "i;j�1 C Q"ij; Q"ij � N.0; �2Q" /; 0 <  < 1;

and if observations are made at the same equidistant time points t1 < t2 < : : : < tn,
then all covariance matrices ˙ i have the form (4.5) (see p. 192). More generally, the
correlations jj�j 0j in Eq. (4.5) have to be replaced by jtij�tij 0 j, j; j 0 D 1; : : : ; ni .
In our examples, we will usually adhere to the stronger assumption (7.16) of i.i.d.
errors. A summary of LMMs for longitudinal and clustered data can be found in
Box 7.1.

The following example illustrates how the LMM Eq. (7.12) for the rats data is
reexpressed in the general form (7.14) and (7.15).

Example 7.2 Hormone Therapy with Rats—Matrix Notation
Measurements are available for rats at the age of a D 50; 60; : : : ; 110 days, as long as they
remain in the study. After the logarithmic transformation t D log.1C .age � 45/=10/, time
corresponds to the values

t1 D log.1:5/; t2 D log.2:5/; : : : ; t7 D log.7:5/ :

For rat 17 from the low-dose group (L17 D 1;H17 D 0; C17 D 0), n17 D 5 measurements
have been made. This results in

y17 D

0

BB@

y17;1
:
:
:

y17;5

1

CCA ; X 17 D

0

BB@

1 log.1:5/ 0 0
:
:
:

:
:
:

:
:
:
:
:
:

1 log.5:5/ 0 0

1

CCA ; U 17 D

0

BB@

1 log.1:5/
:
:
:

:
:
:

1 log.5:5/

1

CCA

for model (7.12). For rat 12 from the high-dose group (L12 D 0;H12 D 1; C12 D 0) with
n12 D 4 measurements, we obtain

y12 D

0

BB@

y12;1
:
:
:

y12;4

1

CCA ; X 12 D

0

BB@

1 0 log.1:5/ 0
:
:
:
:
:
:

:
:
:

:
:
:

1 0 log.4:5/ 0

1

CCA ; U 12 D

0

BB@

1 log.1:5/
:
:
:

:
:
:

1 log.4:5/

1

CCA ;

and for rat 22 from the control group (L22 D 0;H22 D 0; C22 D 1),

y22 D

0

BB@

y22;1
:
:
:

y22;7

1

CCA ; X22 D

0

BB@

1 0 0 log.1:5/
:
:
:
:
:
:
:
:
:

:
:
:

1 0 0 log.7:5/

1

CCA ; U 22 D

0

BB@

1 log.1:5/
:
:
:

:
:
:

1 log.7:5/

1

CCA :
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7.1 Linear Mixed Model for Longitudinal and Clustered Data

Measurement Model

LMM for longitudinal or clustered data is given by

yij D x0
ijˇ C u0

ij� i C "ij

for individuals or clusters i D 1; : : : ; m observed at occasions

ti1 < : : : < tij < : : : < tini ;

or in matrix notation

y i D X iˇ C U i� i C "i :

In this model y i is the ni -dimensional vector of responses for individual or
cluster i , X i and U i are ni�p- and ni�.qC1/-dimensional design matrices
constructed from known covariates, ˇ is the p-dimensional vector of fixed
effects, � i is a .qC 1/-dimensional vector of individual- or cluster-specific
effects, and "i is a ni -dimensional vector of errors.

Distributional Assumptions

For � i and "i , i D 1; : : : ; m, the following distributional assumptions hold:

� i � N.0;Q/; "i � N.0; �2Ini /:

�1; : : : ; �m; "1; : : : ; "m are assumed to be independent.

Software

• Functionsxtreg, xtmixed, and gllamm of STATA; see Skrondal and
Rabe-Hesketh (2008)

• Package lme4 of R
• proc mixed of SAS
• Software package BayesX; see also the R interface R2BayesX

For model (7.13) without random slopes �1i � tij, the second column needs to be deleted
in the design matrices U 12; U 17, and U 22. 4
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7.1.4 Conditional and Marginal Formulation

The measurement model (7.15) implies the conditional Gaussian model

y i j � i � N.Xǐ C U i� i ; �
2I/

for the response vector y i , given the random effect � i . From this conditional
perspective, the individual- or cluster-specific effects � i are interpreted similarly
as the usual regression effects, with the difference that they only apply to individual
or cluster i . Rewriting the model (7.15) in the form

y i D Xǐ C "	
i ;

with errors "	
i D U i� i C "i , results in a linear Gaussian regression model with

correlated errors

"	
i � N.0;V i /; V i D Cov."i /C Cov.U i� i / D �2I C U iQU 0

i :

The first equality for V i holds because "i and � i are assumed to be independent, and
Cov.U i� i / D U iQU 0

i follows from Theorem B.2, property 5, in Appendix B.2.
Therefore the corresponding marginal Gaussian model for y i is given by

y i � N.X iˇ; �
2I C U iQU 0

i /:

This shows that interpretation of population parameters ˇ in the conditional model
is the same as in the marginal model. This useful property of LMMs is lost for
GLMMs that follow in Sect. 7.5. The non-diagonal covariance matrix V i induces a
correlation structure between repeated measurements of individual or cluster i in the
marginal model, even if the errors "ij in the conditional model are uncorrelated. For
the special case of a random intercept model, where U i D .1; : : : ; 1/0 and Q D �20 ,
we obtain

U iQU 0
i D �20

0
B@
1 : : : 1
:::
: : :

:::

1 : : : 1

1
CA D �20J ni ;

where J ni is an .ni � ni /-matrix of ones. The covariance matrix V i reduces to the
equi-covariance matrix of the marginal form of the random intercept model, which
has diagonal elements Var."	

ij/ D �2C�20 and off-diagonal elements Cov."	
ij ; "

	
i l / D

Var.�i / D �20 , j ¤ l , implying equal correlations

Corr."	
ij ; "

	
i l / D �20

�2 C �20
; j ¤ l;

for errors in cluster i . Errors from different clusters are assumed to be uncorrelated.
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7.1.5 Stochastic Covariates

As in linear and generalized linear models, we have to distinguish between
deterministic and stochastic covariates. In designed experiments, as in Example 7.1,
covariates are typically deterministic. On the other hand, observational studies
have mostly stochastic covariates, i.e., both responses y i and covariates xij,
i D 1; : : : ; m, j D 1; : : : ; ni , have to be considered as realizations of a random
vector .y ;x0/. Our assumptions on errors and random effects in Box 7.1 are then to
be understood conditionally on the covariates, as, for example,

"i j X i � N.0; �2Ini /; � i j X i � N.0;Q/:

Since the conditional distributions of "i and � i do not depend on X i , these
two assumptions imply that the errors and random effects are independent from
covariates. For errors, this is completely analogous to linear models; see Sect. 3.1.
For random effects, this assumption is likely to be violated if we assume that
the random effects are surrogates for omitted covariates, as the omitted covariates
may well be correlated with the observed covariates. In the econometrics literature,
covariates that are correlated with the errors are called endogenous.

We illustrate the problem of correlation between random effects and observed
covariates with the simple random intercept model. Following Sect. 3.2.1 of
Skrondal and Rabe-Hesketh (2004), we discuss the situation for the case when the
correct model is

yij D ˇ0 C ˇ1xij C ˇ2wi C �0i C "ij;

and the misspecified working model is

yij D ˇ0 C ˇ1xij C Q�0i C "ij;

where the cluster-specific covariate wi is omitted. Therefore, Q�0i D ˇ2wi C �0i .
Assume now that wi and xij are dependent in form of the regression model

wi D ˛0 C ˛1 Nxi C ui ;

where Nxi is the mean of the xij, j D 1; : : : ; ni . Inserting wi in the equation for Q�0i
gives

Q�0i D ˇ2˛0 C ˇ2˛1 Nxi C ˇ2ui C �0i D ı0 C ı1 Nxi C ı0i

after reparameterizing with ı0 D ˇ2˛0, ı1 D ˇ2˛1, and ı0i D ˇ2ui C �0i .
Substituting these results into the misspecified model finally yields

yij D ˇ0 C ı0 C ı1 Nxi C ˇ1xij C ı0i C "ij; (7.17)

with the new fixed intercept ˇ0 C ı0 and the new random intercept ı0i . Therefore,
inclusion of Nxi as a separate covariate retainsˇ1 as the required effect of xij, although
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the covariate wi is missing. Omitting Nxi from the model will, however, lead to a
biased estimate of ˇ1 if ı1 D ˇ2˛1 ¤ 0; see also Sect. 3.4 for a discussion of the
effect of missing covariates on the bias in regression models. For interpretational
purposes it is often better to include the centered covariate xij � Nxi rather than xij

into the model. We can then estimate the extended random intercept model (7.6)
discussed in Sect. 7.1.1 and interpret the effects of Nxi and xij � Nxi as between-
and within-cluster effects, respectively. For models with several random effects, in
particular random slopes, analogous results are available; see Snijders and Berkhof
(2004).

In the econometrics literature often another approach to cope with the problem
of correlation between random effects and observed covariates is preferred. Here, a
fixed effects approach is proposed assuming fixed cluster-specific effects �0i
without assuming a random effects distribution. Of course, inclusion of all �0i ,
i D 1; : : : ; m; into the regression equation is not feasible as then the design matrix is
rank deficient. As a remedy we could either omit one of the �0i ’s (the corresponding
cluster then serves as the reference category) or omit the global intercept ˇ0.
Omitting the global intercept we arrive at the model

yij D ˇ1xij C �0i C "ij; (7.18)

where the �0i are treated as fixed parameters and the cluster index has the role of
a categorical covariate albeit with a large number of categories. The advantage of
such a specification is that we eliminated the correlation of xij with the random
effect simply with the replacement of fixed effects. Since Eq. (7.18) is a classical
linear model both the regression parameter ˇ1 and the cluster dummies �0i can
be estimated unbiasedly using ordinary least squares. However, since the cluster
dummies are not regularized as in the random effects approach, they are usually
estimated with considerable variance at least if the cluster sizes ni are small
(as is often the case). Moreover, the fixed effects approach uses only within-cluster
information. For covariates with equal between- and within-cluster effect, a random
effects approach allows more precise estimation of the effect as also the between-
cluster variability is used. Finally, covariates at the cluster level are not possible
in a fixed effects approach because of perfect linear dependence between the
columns in the design matrix corresponding to the cluster dummies and the cluster-
specific variables. Nevertheless, the approach can be useful if interest lies solely
in estimating the regression coefficient ˇ1, while the cluster dummies are nuisance
parameters. It turns out that the regression coefficient ˇ1 can be estimated without
resorting to the �0i ’s. It can be shown that the least squares estimator for ˇ1 can
be obtained by regressing the centered responses yij � Nyi on the centered covariate
values xij � Nxi in a model without intercept; see p. 410 in Sect. 7.8 for a derivation.
This result also carries over to more than one covariate, then all covariates need to
be centered by their respective cluster means.

In summary, there are two ways to deal with the problem of random intercepts
that are correlated with the available covariates. If interest primarily lies in the
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fixed effect regression coefficients, we can simply regress the cluster-wise centered
responses on the cluster-wise centered covariate values. If we are also interested
in estimates for the random effects �0i and their variance �20 , a random effects
approach with the cluster means of the covariates and the deviations from the means
as regressors is preferable. This approach also allows to estimate the between- and
within-cluster effects.

7.2 General Linear Mixed Models

The LMM y i D X iˇ C U i� i C "i , i D 1; : : : ; m, as well as multilevel extensions
and further types of mixed models considered below and in subsequent chapters,
can be formulated in a rather compact form by defining the vectors

y D

0

BBBBBB@

y1

:::

y i
:::

ym

1

CCCCCCA
; " D

0

BBBBBB@

"1
:::

"i
:::

"m

1

CCCCCCA
; � D

0

BBBBBB@

�1
:::

� i
:::

�m

1

CCCCCCA

of all responses, errors, and random effects, respectively, as well as the design
matrices

X D

0

BBBBBB@

X 1

:::

X i

:::

Xm

1

CCCCCCA
(7.19)

and

U D blockdiag.U 1; : : : ;U i ; : : : ;Um/ D

0
BBBBBB@

U 1 0

: : :

U i

: : :

0 Um

1
CCCCCCA
: (7.20)

The LMM can then be written as

y D Xˇ C U � C "
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7.2 General Linear Mixed Model

Model

A general linear mixed model is given by

y D Xˇ C U � C "

with �
�

"

�
� N

��
0

0

�
;

�
G 0

0 R

��
:

In this model, X and U are design matrices, ˇ is a vector of fixed effects,
and � is a vector of random effects. The covariance matrices for � and "

are assumed to be nonsingular, and therefore positive definite, and � and "

are independent.

Software

Package lme4 of R and proc mixed of SAS.

with " � N.0;R/, � � N.0;G /, and the block diagonal covariance matrices

R D blockdiag.�2˙ n1 ; : : : ; �
2˙ ni ; : : : ; �

2˙ nm/

G D blockdiag.Q; : : : ;Q; : : : ;Q/:
(7.21)

Note that " and � are still assumed to be independent. For i.i.d. errors, R simplifies
to R D �2I .

Box 7.2 summarizes LMMs in this compact notation. Such a representation is
useful for two main reasons: First, likelihood inference (Sect. 7.3) and Bayesian
inference (Sect. 7.4) can be similarly formulated. Secondly, and more importantly,
statistical inference remains valid if we allow general design matrices X and U

that are not of the special forms (7.19) and (7.20) and further allow more general
covariance matrices G and R, which are not block-diagonal as in Eq. (7.21).
We make primarily use of such general linear mixed models in Chaps. 8 and 9,
representing non- and semiparametric regression models as mixed models. To give
the reader a flavor of the capabilities of general LMMs, we briefly discuss multilevel
models in the remarks that follow.

Remarks
1. Multilevel models: Mixed models for longitudinal or clustered data as described

in Sect. 7.1 are suitable for modeling and analyzing data structures with one
grouping level given by the individual or the cluster to which the observation
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belongs. Multilevel models extend mixed models to data structures with more
than one grouping level: Each observation may belong to several, possibly
nested, groups. The classical example for this type of data structure results from
school tests where pupils are grouped within classes and classes are grouped in
schools. If we assume nested data, i.e., one pupil is member of exactly one class
and each class belongs to exactly one school, then this leads to three-level models
such as

yijl D x0
ijlˇ C �i C �ij C "ijl;

where i indexes schools, j indexes classes, l indexes individual pupils within
classes, and only random intercepts are considered. Naturally, random slopes can
also be included at any level, and it is then of particular interest to compare effects
of the same type of covariate on different levels. For example, the covariate
“math score” can be constructed both on the class level as an average score and
also on the individual level. Such three-level nested models allow for a variance
decomposition on the different levels, similar to the presentation in mixed models
(where it was limited to only two levels). Although the models have more than
one grouping level, they can be written as a general LMM as defined in Box 7.2.

Multilevel models can also be extended to further hierarchical stages, as well
as to non-nested models. Such models with more than two hierarchical levels
will not be considered in this book, although they are useful in several areas
of research, such as meta-analyses in clinical research or models for learning
achievements. We recommend introductions provided in, for example, Gelman
and Hill (2006), Skrondal and Rabe-Hesketh (2004), Scott, Simonoff, and Marx
(2012), and Skrondal and Rabe-Hesketh (2008). The latter is an introduction with
STATA but worth reading even if other software is used.

2. Normality assumption: As in LMMs for longitudinal and clustered data, the
normality assumption is not necessary for all inferential results. However,
estimation of unknown parameters in G and R is likelihood-based, thus we
include the normality assumption in the definition.

3. Conditional and marginal formulation: We distinguish the conditional and the
marginal model formulation. The conditional model for y given � is

y j � � N.Xˇ C U � ;R/;

together with the random effects distribution

� � N.0;G /:

The marginal model can be obtained by reexpressing the model in the form

y D Xˇ C "	; "	 D U � C ":

This results in the general marginal model

y � N.Xˇ;R C U GU 0/; (7.22)
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or y � N.Xˇ;V / with covariance matrix

V D R C U GU 0:

Note that the marginal model can be derived from the conditional model, but
not vice versa. If interest only lies in estimation of fixed effects ˇ, the marginal
model may be used. However, the conditional formulation is needed to estimate
random effects � .

7.3 Likelihood Inference in LMMs

This section describes in Sects. 7.3.1–7.3.3 likelihood-based estimation of fixed and
random effects, as well as of the unknown parameters in G and R in the general
LMM of Box 7.2. Section 7.3.4 discusses tests of hypotheses. Bayesian inference is
presented in Sect. 7.4.

7.3.1 Known Variance–Covariance Parameters

We first assume that all parameters in R and G , and therefore in V D R C U GU 0,
are known.

The unknown parameters can be estimated by simultaneously maximizing the
joint log-likelihood of y;� with respect to ˇ and � . The logarithm of p.y;�/ D
p.y j �/p.�/ yields the log-likelihood (up to an additive constant)

�1
2
.y � Xˇ � U �/0R�1.y � Xˇ � U �/� 1

2
� 0G �1� :

It follows that maximization of the above expression is equivalent to minimizing

LSpen.ˇ;�/ D .y � Xˇ � U �/0R�1.y � Xˇ � U �/C � 0G �1� : (7.23)

The first term corresponds to a (general) least squares criterion. Without the second
term, � would be estimated exactly as a fixed effect. The second term takes into
account that � is random and follows a distribution, i.e., � � N.0;G /, with positive
definite covariance matrix G . Additionally, � 0G �1� penalizes deviations of � from
0 and is therefore called a penalty term. The penalty is large if G is “small,” and it is
small if G is “large.” In the limiting case of G �1 ! 0, the penalty term becomes 0,
and � is estimated exactly as a fixed effect without any distributional assumptions.
For a random intercept model, the penalty Eq. (7.23) reduces to the form (7.7) where
the quadratic penalty term shrinks parameters towards zero. See in Sect. 7.1.1 on
p. 354f. for a more detailed discussion.
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Setting the first derivatives of LSpen.ˇ;�/ to zero results in the mixed model
equations

�
X 0R�1X X 0R�1U
U 0R�1X U 0R�1U C G �1

�� Ǒ
O�
�

D
�

X 0R�1y
U 0R�1y

�
: (7.24)

Defining C D .X ;U / and the partitioned matrix

B D
�

0 0

0 G �1
�
;

the solution of Eq. (7.24) can be written as

� Ǒ
O�
�

D .C 0R�1C C B/�1C 0R�1y: (7.25)

This form also shows the close relationship to ridge estimation; see Sect. 4.2.2
(p. 203). A full derivation of the penalized least squares estimator Eq. (7.25) can
be found in Sect. 7.8.2 on p. 412.

Some (tedious) matrix manipulations show that the estimator Eq. (7.25) has the
form

Ǒ D .X 0V �1X /�1X 0V �1y (7.26)

and
O� D GU 0V �1.y � X Ǒ /: (7.27)

This implies that Ǒ is a weighted least squares estimator with the inverse of the
marginal covariance matrix V D R C U GU 0 of ˇ as the weight matrix.

Omitting the normality assumption, . Ǒ ; O�/ can also be derived as the best linear
unbiased predictor (BLUP); see, for example, McCulloch and Searle (2001).

7.3.2 Unknown Variance–Covariance Parameters

This section describes the maximum likelihood (ML) and restricted maximum
likelihood (REML) approach for estimating unknown parameters # in R, G , or V .
These estimators are the most widely used, and they are implemented in software
such as SAS, STATA, and R. To make dependence on # explicit, we write

V D V .#/ D U G .#/U 0 C R.#/:

Maximum Likelihood Estimation of #

ML estimation of # is based on the likelihood of the marginal model

y � N.Xˇ;V .#//:
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The corresponding log-likelihood, up to additive constants, is

logL.ˇ;#/ D l.ˇ;#/ D �1
2

	
log jV .#/j C .y � Xˇ/0V .#/�1.y � Xˇ/



:

(7.28)

The maximization of l.ˇ;#/ with respect to ˇ (while holding # fixed) gives

Ǒ .#/ D .X 0V .#/�1X /�1X 0V .#/�1y :

Inserting Ǒ .#/ in l.ˇ;#/ results in the profile log-likelihood

lP .#/ D �1
2

h
log jV .#/j C .y � X Ǒ .#//0V .#/�1.y � X Ǒ .#//

i
:

The maximization of lP .#/ with respect to # provides the ML estimator O#ML.
Refer to Harville (1977) for explicit formulae and algorithms.

Restricted Maximum Likelihood Estimation of #

Rather than using lP .#/, estimation of # is often based on the marginal or restricted
log-likelihood

lR.#/ D log

�Z
L.ˇ;#/dˇ

�
;

integrating out ˇ from the likelihood. This marginal log-likelihood is motivated
from an empirical Bayesian perspective, where ˇ is assumed to be random with a
flat prior p.ˇ/ / const. It can be shown that the restricted log-likelihood is

lR.#/ D lP .#/� 1

2
log jX 0V .#/�1X j; (7.29)

and maximization of lR.#/ provides the restricted ML estimator O#REML; see
Harville (1974) for details.

As discussed in Sect. 3.2.2, the REML estimator

O�2 D 1

n � p
nX

iD1
.yi � x0

i
Ǒ/2

removes the bias of the ML estimator for the error variance �2 in linear models.
Just as in this simpler context, reduction of the bias of O#ML is the main reason for
preferring O#REML in LMMs as an estimator for # . However, in our more general
setting, the REML estimator is generally not unbiased. A rather simple example
for a biased REML estimator is the random intercept model with unbalanced data
where the number of observations ni is different in each cluster. Moreover, there
are no general results available to ensure that the MSE is also reduced compared to
full maximum likelihood.
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The estimators O#REML and O#ML are computed numerically through iterative
algorithms, for example, by maximizing lR.#/ or lP .#/ using Newton–Raphson
or Fisher scoring algorithms; see Appendix B.4.2.

Finally, plugging in O# after convergence provides the estimated covariance
matrices

OR D R. O#/; OG D G . O#/; OV D V . O#/:

Estimation of Fixed and Random Effects
The final estimators Ǒ and O� of fixed effects ˇ and random effects � are obtained
using the estimates Eqs. (7.26) and (7.27) after replacing the matrices R;G , and
V with their estimates OR; OG , and OV . However, after plugging in O# , optimality
properties are no longer exactly valid.

A summary of likelihood inference in LMMs is provided in Box 7.3.

Random Intercept Model
As a special case, we consider the random intercept model

yij D x0
ijˇ C �0i C "ij; i D 1; : : : ; m; j D 1; : : : ; ni ;

or, equivalently,

y i D X iˇ C U i �0i C "i ; i D 1; : : : ; m;

where "i � N.0; �2I/, �0i
i:i:d:� N.0; �20 /, and U i D .1; : : : ; 1/0 is a ni -dimensional

vector of ones.
Now G D �20 Im, R D �2I , V D blockdiag.V 1; : : : ;V m/ with

V i D �2Ini C �20J ni ;

V �1
i D 1

�2

�
Ini � �20

�2Cni �20
J ni

�
:

The inverse can be verified by direct multiplication. More specifically, the elements
on the main diagonal of V �1

i are given by

1

�2.�2 C ni �
2
0 /
;

and the elements above and below the main diagonal are ��20 . Therefore

O� D OGU 0 OV �1
.y � X Ǒ /

D O�20 blockdiag.U 1; : : : ;Um/
0 blockdiag. OV �1

1 ; : : : ;
OV �1
m /.y � X Ǒ /:
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7.3 Likelihood Inference in LMMs

Estimation of Variance and Covariance Parameters

We denote # as the vector of unknown parameters in R D R.#/;G D
G .#/; and V D V .#/. The ML estimator for # is obtained by maximizing
the (profile) log-likelihood

lP .#/ D �1
2

h
log jV .#/j C .y � X Ǒ .#//0V .#/�1.y � X Ǒ .#//

i

with
Ǒ .#/ D .X 0V .#/�1X/�1X 0V .#/�1y :

The REML (restricted ML) estimator is obtained by maximizing the
restricted log-likelihood

lR.#/ D lP .#/� 1

2
log jX 0V .#/�1X j:

Estimation of Fixed and Random Effects

Estimators Ǒ and O� for fixed and random effects are

Ǒ D .X 0 OV �1
X/�1X 0 OV �1

y

O� D OGU 0 OV �1
.y � X Ǒ /;

or, equivalently,

� Ǒ
O�
�

D .C 0 OR�1
C C OB/�1C 0 OR�1

y;

with C D .X ;U / and OB D
 

0 0

0 OG �1

!
. These estimators are also referred

to as empirical best linear predictors (EBLP or EBLUP).

Estimated Covariance Matrix

Bayesian Covariance Matrix

bCov

� Ǒ
O�
�

D A D .C 0 OR�1
C C OB/�1

Frequentist Covariance Matrix

bCov

�� Ǒ
O�
�

j �

�
D AC 0 OR�1

C A
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Table 7.2 Hormone therapy with rats: comparison of estimates based on REML and ML

REML ML

Parameter Estimate s.e. Estimate s.e.

intercept ˇ0 68.606 0.327 68.607 0.326
low-dose ˇ1 7.505 0.227 7.508 0.224
high-dose ˇ2 6.875 0.230 6.869 0.226
control ˇ3 7.318 0.284 7.315 0.279

Var.�0i / �20 3.430 3.417
Var.�1i / �21 0.001 <0.001
Var."ij/ �2 1.444 1.428

Hence, the estimated random intercepts are

O�0i D O�20 .1; : : : ; 1/ OV �1
i

�
y i � X i

Ǒ� ;

which can be simplified to

O�0i D ni O�20
O�2 C ni O�20

8
<

:
1

ni

niX

jD1

�
yij � x0

ij
Ǒ�
9
=

; D ni O�20
O�2 C ni O�20

ei

with the average residual ei D 1
ni

Pni
jD1.yij � x0

ij
Ǒ /. An interpretation of this result

is already given in Sect. 7.1.1 on p. 354ff.

Example 7.3 Hormone Therapy with Rats—Estimated Effects
The results presented in Example 7.1 (p. 359) are obtained using REML to estimate the
variance and covariance parameters of random effects. REML is also the default in most
statistical software packages when estimating mixed models. Table 7.2 contrasts the REML
estimates with maximum likelihood for the random slope model (7.12). Generally the
results are very close. The estimates for the variance components with ML are slightly below
those based on REML. This could have been expected as ML is more biased downwards
towards zero compared to REML, i.e., it tends to underestimate the variances.

The estimated random effects O�0i and O�1i of model (7.12) are best presented graphically.
A particularly useful visual representation of the random effects is found in caterpillar
plots. These plots show the estimated random effects in increasing order together with 95 %
confidence intervals; see the next section for the computation of the latter. Figure 7.5 shows
such caterpillar plots for model (7.12). Clearly, the estimated random intercept parameters
O�0i show considerable variability indicating large rat-specific deviations from the average
height of skull. On the other hand, the estimated random slope parameters O�1i are all
estimated close to zero (note the different scaling of the figures). This is not really a surprise
as already the estimated random slope variance is essentially zero; refer to Table 7.2.

Another option to visualize the random effects distribution is to produce (nonparametric)
kernel densities computed from the estimates O�0i and O�1i , i D 1; : : : ; 50; of the random
effects. Such plots are also helpful to investigate the normality assumption of the random
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Fig. 7.5 Hormone therapy with rats: caterpillar plots of the estimated random effects O�0i and O�1i
in the random slope model (7.12)
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Fig. 7.6 Hormone therapy with rats: kernel density estimators (solid line) and normal approxima-
tion (dashed line) for the random effects

effects (at least to a certain extent). Figure 7.6 shows kernel densities for O�0i and O�1i .
Deviations from the assumed normal distribution are comparably small. Once again, the
random slopes are close to zero.

The estimated random effects can also be used to obtain estimates for the individual
(rat-specific) trends. These trends are computed by inserting the estimates into the trend
lines. For instance, for the low-dose group, we obtain the estimated trends 68:606 C O�0i C
7:505tij C O�1i tij. Plots of the individual trends are given in Fig. 7.7 which again reveals
considerable rat-specific heterogeneity at least regarding the intercept. The slopes of the
individual trends are almost in parallel. This is another indicator that the simple random
intercept model (7.13) is sufficient. In fact, if we would superimpose the trends obtained
from Eq. (7.13), they would be visually indistinguishable. 4
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Fig. 7.7 Hormone therapy with rats: individual estimated trends in the random slope model (7.12)

7.3.3 Variability of Fixed and Random Effects Estimators

Bayesian Covariance Matrix
For known variance and covariance parameters, we can derive the covariance matrix

Cov

� Ǒ
O�
�

D .C 0R�1C C B/�1 (7.30)

from a Bayesian perspective; see Sect. 7.4.1 (p. 384) for a derivation. Plugging in OR
and OB, we obtain the estimated covariance matrix

bCov

� Ǒ
O�
�

D A D .C 0 OR�1
C C OB/�1: (7.31)
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Note that the additional variability introduced by plugging in estimates OR and
OB for R and B is not taken into account in Eq. (7.31), implying a tendency to

underestimate the true covariance matrix.
To construct confidence intervals or confidence bands for Ǒ and O� , it is assumed

that . Ǒ; O�/ has an approximate normal distribution for large sample size. For special
LMMs, asymptotic results can be derived under appropriate regularity assumptions
(e.g., Ruppert et al., 2003). However, generally, rigorous proofs remain open
problems. Based on the normality approximation, quantiles and confidence intervals
for the components of Ǒ and O� can be computed.

Frequentist Covariance Matrix
An alternative approximate covariance matrix can be derived by conditioning on � .
Then y j � � N.Xˇ C U �;R/ and Cov.y j �/ D R. Applying the rules for linear
transformations (Appendix B.2, Theorem B.2.5) to Eq. (7.25) yields

Cov

�� Ǒ
O�
�

j �

�
D .C 0R�1C C B/�1C 0R�1C .C 0R�1C C B/�1: (7.32)

This covariance matrix has the form of a “sandwich” matrix, composed of the
terms .C 0R�1C C B/�1 and C 0R�1C (see also Sects. 4.1.3, p. 190, 8.1.2, p. 439,
and Sect. 8.1.9, p. 486). Inserting the estimates OR and OB provides the estimated
covariance matrix

bCov

�� Ǒ
O�
�

j �

�
D AC 0 OR�1

C A; (7.33)

where A is the Bayesian covariance matrix Eq. (7.31). In comparison to A,
Eq. (7.33) tends to further underestimate the true covariance matrix because the

additional factor C 0 OR�1
C A is “smaller” than the identity matrix I . Therefore,

we prefer the Bayesian covariance matrix Eq. (7.31). Motivated by its derivation,
Eq. (7.33) is called the frequentist version of the covariance matrix.

Approximate Covariance Matrices for Covariance Parameters
Approximate covariance matrices bCov. O#/ for the estimators O#ML and O#REML

can be obtained from the Fisher information involved in Newton–Raphson or
Fisher scoring iterations. However, since the estimators are skewed, particularly
for variances, these approximations are relatively imprecise and are less appropriate
for constructing confidence intervals or tests.
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7.3.4 Testing Hypotheses

Testing Fixed Effects Parameters
Hypotheses on fixed effects are often of primary interest. The simplest case is testing

H0 W ˇj D dj versus H1 W ˇj ¤ dj

for a component ˇj of ˇ.
With dj D 0, this is a test on the significance of the j th covariate, just as in

the linear regression model. Assuming an approximate normal distribution for Ǒ, a
decision can be based on an (approximate) confidence interval for ˇj .H0 is rejected
at a significance level ˛ if dj is outside the corresponding 1�˛ confidence interval.
Equivalently, the test statistic

tj D
Ǒ
j � dj

O�j
can be used, where O�j is the square root of the corresponding diagonal element of
the approximate covariance matrix Eq. (7.31) of Ǒ; O� . Under normality assumptions
on � and ", the test statistic tj even has an exact t-distribution (underH0) in special
cases (e.g., Ruppert et al., 2003). In general, it is assumed that tj is approximately
standard normal under the null hypothesis, and H0 is rejected if jtj j > z1�˛=2.

To test linear hypotheses

H0 W C ˇ D d versus H1 W C ˇ ¤ d

one may consider the Wald statistic (see Appendix B.4.4)

W D .C Ǒ � d/0.C bCov. Ǒ /C 0/�1.C Ǒ � d/;

where bCov. Ǒ / D .X 0 OV �1
X/�1 is the estimated covariance matrix of Ǒ . However,

.X 0 OV �1
X /�1 might be a poor estimate of Cov. Ǒ / for small samples, and the asymp-

totic �2-distribution forW is lacking a general rigorous foundation. Therefore Wald
tests, or F-tests with F D W=rk.C / as implemented in SAS, STATA, and R, must
be used with caution.

Alternatively, tests could be carried out with the likelihood ratio statistic

LRT D 2fl. Ǒ ; O#/� l. Q̌ ; Q#/g

or with the restricted likelihood ratio statistic

RLRT D 2flR. Ǒ ; O#/� lR. Q̌ ; Q#/; g

where l.ˇ;#/ is the log-likelihood Eq. (7.28) of the marginal model and lR.ˇ;#/ D
l.ˇ;#/� 0:5 log jX 0V .#/�1X j is the restricted log-likelihood. Thereby . Ǒ ; O#/ are
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the unrestricted ML estimates and . Q̌ ; Q#/ are the ML estimates underH0. However,
cautionary remarks have to be made for these tests, as outlined in Crainiceanu and
Ruppert (2004).

An important example for a general linear hypothesis in the context of LMMs is
the test for equality of ˇ1 and ˇ2 in the extended random intercept model

yij D ˇ0 C ˇ1.xij � Nxi /C ˇ2 Nxi C �0i C "ij;

discussed in Sect. 7.1.1. Equality of ˇ1 and ˇ2 means that the between- and within-
cluster effects of x are identical. If H0 W ˇ1 D ˇ2 is rejected, there are significantly
different within- and between-cluster effects. The test can also be seen as a test for
correlation between random effects and observed covariates or endogeneity; see the
discussion in Sect. 7.1.5 on stochastic covariates. A rejection of H0 then provides
evidence of correlation between random effects and covariates or endogenous x.
In the econometrics literature testing endogeneity is usually performed using the
(among econometricians) well-known Hausman specification test; see Hausmann
(1978). In the context of the random intercept model the Hausman test is equivalent
to the Wald test described above.

Testing Random Effects or Variance Parameters
Testing hypotheses about random effects or random effects variances is more dif-
ficult and generally applicable tests are comparably scarce. Consider, for example,
the random intercept model

yij D ˇ0 C ˇ1xij C �0i C "ij ; i D 1; : : : ; m ; j D 1; : : : ; ni ;

with "ij � N.0; �2/ and �0i � N.0; �20 /. The null hypothesis H0 W �20 D 0 is then
equivalent to H0 W � D .�01; : : : ; �0m/

0 D 0 and the simple linear regression model

yij D ˇ0 C ˇ1xij C "ij

without the random intercept �0i .
Extending the random intercept model to a random slope model

yij D ˇ0 C ˇ1xij C �0i C �1ixij C "ij

with �1i � N.0; �21 /, the null hypothesis H0 W �21 D 0 or H0 W �1 D
.�11; : : : ; �1m/

0 D 0 is then equivalent to the simpler random intercept model.
In SAS, an F-test is implemented for testing linear hypotheses about random

effects vectors, such asH0 W �0 D 0 orH0 W �1 D 0. However, we do not encourage
its use because it can be quite conservative and its power is weak. Of course, if a null
hypothesis such as �0 D 0 or �1 D 0 is rejected, we can safely include the random
effect component. On the other hand, if H0 is not rejected, there is a considerable
risk to falsely omit the random effect component.
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As an alternative, (restricted) likelihood ratio tests for testing hypotheses on
random effects variances, such as

H0 W �20 D 0 versus H1 W �20 > 0 (7.34)

or
H0 W �21 D 0 versus H1 W �21 > 0 (7.35)

should be considered, based on the LRT or, even better, the RLRT statistics. For the
random intercept model, the parameters are ˇ D .ˇ0; ˇ1/

0 and # D .�2; �20 /, with
�20 D 0 under H0, while ˇ0; ˇ1, and �2 are “nuisance parameters.” For the random
slope model, # D .�2; �20 ; �

2
1 /, with �21 D 0 under H0, and ˇ0; ˇ1; �2 and �20 are

“nuisance parameters.”
However, standard asymptotic theory is violated for tests of this form, because

�20 D 0 or �21 D 0 is on the boundary of the parameter space. Stram and Lee (1994)
show that the asymptotic distribution of LRT and RLRT is a 0:5�20 W 0:5�21 mixture
distribution, where �20 denotes a point mass in zero. The latter has to be included
because, with a chance of (asymptotically) 50 %, the random effects variance is
estimated to be zero under the null hypothesis. Testing the variance of a random
effects component based on this asymptotic mixture distribution is implemented,
for example, in STATA. However, it has to be applied with caution because of the
assumptions made by Stram and Lee (1994). They assume that the response vector
y can be divided into subvectors y i , i D 1; : : : ; m; which are independent and
identically distributed (in the marginal model) under both the null hypothesis and
the alternative. Such a decomposition is possible for random intercept models with
a balanced design ni D n, i.e., with the same number of observations within each
cluster or for each individual. It is not possible, however, for unbalanced designs or
for testing Eq. (7.35) in random slope models in the presence of a random intercept.
Moreover, it is required that the number m of clusters tends to infinity. This is an
appropriate assumption for longitudinal data with a large number m of individuals,
but not for clustered data with a small number of clusters, even if the numbers of
observations within clusters are large. Giampaoli and Singer (2009) relax the quite
restrictive assumptions of Stram and Lee (1994) and prove that the (R)LRT statistic
for testing Eq. (7.34) still has an asymptotic 0:5�20 W 0:5�21 distribution, without
requiring balanced data or large m. They also consider the hypothesis Eq. (7.35)
for testing one random slope in the presence of a random intercept. In this case,
however, the asymptotic distribution of (R)LRT is a 0:5�21 W 0:5�22 mixture. It seems
tempting to extend this result to models with more random slope components (as
was done in Stram and Lee (1994) under the stronger assumptions discussed above),
but no corresponding results are available.

Crainiceanu and Ruppert (2004a) and Crainiceanu, Ruppert, Claeskens, and
Wand (2005) have investigated the finite sample and asymptotic distributions of
the (R)LRT statistic under various scenarios and found that finite sample deviations
from the 0:5�20 W 0:5�21 mixture can be considerable.
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However, Crainiceanu and Ruppert (2004a) also present representations of the
finite sample distribution of (R)LRT tests that allow to construct exact tests, based
on simulations, for zero variances in LMMs with one variance component. Scheipl,
Greven, and Küchenhoff (2008) compare (R)LRT tests and F-type tests in a massive
simulation study, concluding that RLRT tests are superior to F-tests. They include a
fast and reliable approximation of the exact RLRT test and an extension to LMMs
with several variance components, implemented in the R package RLRsim. It is
recommended to apply it at least in addition to the tests based on asymptotic �2-
mixtures.

We summarize as follows: For testing linear hypotheses on fixed effects, the same
toolkit of test statistics (t-, F-, Wald, and (restricted) likelihood ratio test statistics) is
available as for linear and generalized linear models. Conclusions should be drawn
with more caution, however, in particular for more complex models involving many
parameters and random effects. The main reason is a lack of rigorous asymptotic
justification, caused by correlation of observations induced by random effects.

In comparison, reliable tests to select or deselect random effects components are
more scarce. This is not surprising because these tests are faced with non-standard
problems, not covered by classical testing theory. For random intercept models, the
0:5�20 W 0:5�21 mixture test is a sound asymptotic approximation. In addition, the test
based on the exact finite sample distribution in the R package RLRsim should be
applied. For models with one (scalar) additional random slope, the 0:5�21 W 0:5�22
mixture test is still justified asymptotically. In all other cases, with more random
slopes, only the test offered in RLRsim seems to be a reliable approximation. A
good strategy is always to compare results with and without certain random slopes.

We finally note that there are some recent Bayesian approaches for random
effects selection; see, e.g., Chen and Dunson (2003) and Frühwirth-Schnatter and
Tüchler (2008).

7.4 Bayesian Linear Mixed Models

From a Bayesian perspective, both the population effects ˇ and the random effects
� in a LMM

y D Xˇ C U � C "

are considered to be random variables. The priors for ˇ and � are different, however.
A noninformative prior

p.ˇ/ / const

corresponds to the frequentist approach, where ˇ is assumed to be fixed but
(completely) unknown. A more informative prior is, for example, a Gaussian prior

ˇ � N.m;M /;

where m and M are assumed to be known. The noninformative, flat prior p.ˇ/ /
const is obtained for the limiting case M �1 ! 0, i.e., when the precision matrix
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tends to zero. The choice of a Gaussian prior is also motivated by the fact that, as
in linear regression models, posterior inference is relatively straightforward. In a
Bayesian approach, the random effects distribution

� � N.0;G /

in the general LMM of Sect. 7.2 is now seen as a prior for the random effects.
However, the covariance matrices G and R will usually contain a vector # of
unknown hyperparameters. To make explicit dependence on these hyperparameters,
we write

� � N.0;G .#//; " � N.0;R.#//:

In addition, ˇ;� , and " are assumed to be independent a priori.
Two different concepts exist for Bayesian inference, including the parameter

# : In a fully Bayesian approach, # is also considered as a random variable with
a hyperprior p.#/. In contrast, # is considered as unknown, but fixed, in an
empirical Bayes approach and is estimated, for example, through maximization of
the (marginal) likelihood. The estimate O# is then inserted into G .#/ and R.#/,
and Bayesian inference for ˇ and � proceeds as with “known” covariance matrices
OG D G . O#/ and OR D R. O#/.

7.4.1 Estimation for Known Covariance Structure

We first consider the posterior distribution of ˇ and � for known (or given)
covariance matrices G and R, required in both Bayesian approaches. Applying
Bayes’ theorem, the joint posterior is determined through

p.ˇ;� j y/ / p.y j ˇ;�/ p.ˇ/ p.�/

/ exp

�
�1
2
.y � Xˇ � U �/0R�1.y � Xˇ � U �/

�

� exp

�
�1
2
.ˇ � m/0M�1.ˇ � m/

�
� exp

�
�1
2

� 0G �1�
�
:

Defining

C D .X ;U /; B D
�

M�1 0

0 G �1
�
; Qm D

�
M �1m

0

�
;

algebraic manipulations (similar as for Bayesian linear models in Sect. 4.4) show
that the posterior is a multivariate Gaussian distribution with mean vector
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 Ǒ
O�

!
D E

��
ˇ

�

�
j y

�
D .C 0R�1C C B/�1. Qm C C 0R�1y/ (7.36)

and covariance matrix

Cov

��
ˇ

�

�
j y

�
D .C 0R�1C C B/�1:

For the case of a noninformative prior p.ˇ/ / const , we can simply set M�1 D 0,
resulting in

B D
�

0 0

0 G �1
�
; Qm D

�
0

0

�
:

The posterior mean then coincides with the BLUP estimator (7.25), while the
posterior covariance matrix is the Bayesian covariance matrix (7.30).

7.4.2 Estimation for Unknown Covariance Structure

Empirical Bayes Estimation
In an empirical Bayes approach the covariance parameters # are considered as
unknown, but fixed, and are estimated by maximizing the (marginal) likelihood

p.y j #/ /
Z
p.y j ˇ;� ;#/ p.�/ p.ˇ/ dˇ d� (7.37)

with respect to # . For a noninformative prior p.ˇ/ / const , it can be shown
that logp.y j #/ D lR.#/, i.e., the logarithm of the marginal likelihood coincides
with the restricted log-likelihood (7.29). Thus, for a noninformative prior for ˇ, the
empirical Bayes estimator of # is identical with the REML estimator O#REML.

The empirical Bayes estimator for ˇ and � results if the covariance matrices G

and R in Eq. (7.36) are replaced by their estimates OG and OR. For a noninformative
prior for ˇ, the empirical Bayes estimator is identical with the empirical best linear
predictor ( Ǒ; O�) of Box 7.3.

Fully Bayesian Estimation
In a fully Bayesian approach, a prior p.#/ must be specified for the unknown
parameters # in G D G .#/ and R D R.#/. Inference is then based on the
posterior

p.ˇ;�;# j y/ / p.y j ˇ;�;#/ p.ˇ/ p.� j #/ p.#/;

with ˇ;� and # assumed to be independent. To ensure that p.ˇ;�;# j y/ is a proper
posterior density,
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p.y/ D
Z
p.y j ˇ;�;#/ p.ˇ/ p.� j #/ p.#/ dˇ d� d# < 1 (7.38)

must hold for the marginal density in the denominator of Bayes’ theorem. If p.#/
is a proper, informative prior, i.e.,

R
p.#/ d# D 1, then p.ˇ;� ;# j y/ is also

proper. For an improper prior with
R
p.#/ d# D 1, the posterior is not generally

guaranteed to be proper.
In general, the integral in Eq. (7.38) cannot be solved analytically, so that the

posterior p.ˇ;� ;# j y/ is not available in closed form. Therefore, fully Bayesian
inference typically relies on MCMC simulation, with the entire vector .ˇ;�;#/ of
parameters partitioned into subvectors. As long as no specific covariance structures
are assumed, these subvectors (or blocks) are ˇ;� , and # . The full conditional
distributions of each subvector, given the data y and the rest of parameters, then have
to be derived so that random numbers can be drawn sequentially; see Appendix B.5.

Similarly to the classical linear model in Sect. 4.4, it can be shown that the
full conditionals for ˇ and � are multivariate Gaussian. For ˇ, we obtain ˇ j � �
N.�ˇ;˙ ˇ/ with

�ˇ D .X 0R.#/�1X C M �1/�1.M�1m C X 0R.#/�1.y � U �// (7.39)

˙ ˇ D .X 0R.#/�1X C M �1/�1: (7.40)

The full conditional for � is given by � j � � N.�� ;˙ �/ with

�� D .U 0R.#/�1U C G �1/�1.U 0R.#/�1.y � Xˇ//

˙ � D .U 0R.#/�1U C G �1/�1:

With a noninformative prior p.ˇ/ / const, we have M�1 D 0 and the conditional
mean

�ˇ D .X 0R.#/�1X/�1X 0R.#/�1.y � U �/

is the weighted least squares estimator applied to y � U � , i.e., the data y adjusted
for the random effects U � . In analogy, �� is a Bayes estimator with prior � �
N.0;G .#//, applied to y � Xˇ.

The full conditional p.# j �/ can be simplified for special LMMs with appro-
priately specified prior p.#/. As an example, we consider the Bayesian LMM for
longitudinal or clustered data

yij D x0
ijˇ C u0

ij� i C "ij; i D 1; : : : ; m; j D 1; : : : ; ni ;

with i.i.d. errors "ij. It follows that Cov."i / D �2Ini , R D �2I , Cov.� i / D Q,
G D blockdiag.Q; : : : ;Q/, and
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X D

0
BBBBBB@

X 1

:::

X i

:::

Xm

1
CCCCCCA

U D

0
BBBBBB@

U 1 0

: : :

U i

: : :

0 Um

1
CCCCCCA
;

see Sect. 7.2.
The vector # consists of both �2 and the elements of Q, without more specific

assumptions. The noninformative (but improper) Jeffreys’ prior

p.�2/ / ��2; p.Q/ / jQj� qC2
2 ;

with qC1 D dim.� i /, can lead to improper posteriors such that MCMC techniques
also break down. Therefore, a weakly informative inverse gamma prior �2 �
IG.a; b/ is commonly proposed with small values a and b. Note that meaningful
values for a and b depend on the magnitude of the response observations. We
have good experience with a D b D 0:001 if the responses are divided by their
standard deviation prior to estimation. For Q, an inverse Wishart distribution may
be specified as a prior, generalizing an inverse gamma distribution to the multivariate
case. However, our experience shows, that a full Wishart prior works in practice only
for two or three random effects (if at all). To simplify, we further assume that Q is
a diagonal matrix with elements �2r , r D 0; : : : ; q. The inverse Wishart distribution
then factorizes into the product of inverse gamma priors

�2r � IG.ar ; br /; r D 0; : : : ; q:

We therefore implicitly assume that the components �ir in � i are conditionally
independent a priori with priors

�ir j �2r � N.0; �2r /; r D 0; : : : ; q:

The full conditionals then become �2 j � � IG. Qa; Qb/ and �2r j � � IG. Qar ; Qbr/; r D
0; : : : ; q, with hyperparameters provided in Box 7.4. Note that the full conditional
for � in the general LMM considerably simplifies due to the independence assump-
tions on the �ir. In fact, the �ir can be updated independently by sampling from
univariate normal densities. The resulting Gibbs sampler is provided in Box 7.4.
Note that this sampler is derived under special prior assumptions, in particular
independent inverse gamma priors, for the variances of the random effects priors.
The latter assumption is sometimes criticized, and alternatives are suggested; see
Gelman (2006). When using inverse gamma priors it is important to investigate how
sensitive results are with respect to the values ar and br of the hyperparameters; see
the following Example 7.4.
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7.4 Gibbs Sampler for Longitudinal and Clustered Data

Model

yij j ˇ;� i ; �
2 � N.x0

ijˇ C u0
ij� i ; �

2/; i D 1; : : : ; m; j D 1; : : : ; ni :

Priors

• ˇ � N.m;M /, where m and M are assumed to be known.
• The random effects parameters �ir are conditionally independent with
�ir j �2r � N.0; �2r /, i D 1; : : : ; m, r D 0; : : : ; q.

• The variance parameters are independent inverse gamma distributed, i.e.,
�2 � IG.a; b/ and �2r � IG.ar ; br /, r D 0; : : : ; q.

Gibbs Sampler

1. Initialization: Specify initial values ˇ.0/;�
.0/
i ; i D 1; : : : ; m, .�2/.0/,

.�2r /
.0/, r D 0; : : : ; q and the number of iterations T . Set t D 1.

2. Sample ˇ.t/ from N.�ˇ;˙ ˇ/ with

˙ ˇ D .
1

�2
X 0X C M�1/�1; �ˇ D ˙ ˇ.M

�1m C 1

�2
X 0.y � U �//:

Use � D �.t�1/; �2 D .�2/.t�1/ in �ˇ and ˙ ˇ.

3. For r D 0; : : : ; q sample �.t/ir from N.��ir ; �
2
�ir
/ with

�2�ir
D �2

0

@
niX

jD1
u2ijr C �2=�2r

1

A
�1

; ��ir D �2�ir

�2

niX

jD1
uijr.yij � x0

ijˇ/:

Use ˇ D ˇ.t/; �2 D .�2/.t�1/; .�2r /.t�1/ in ��ir and �2�ir
.

4. Sample .�2/.t/ from IG. Qa; Qb/ with

Qa D a C 1

2
; Qb D b C 1

2
.y � Xˇ � U �/0.y � Xˇ � U �/:

Use ˇ D ˇ.t/, � D �.t/ in Qa and Qb.
5. For r D 0; : : : ; q sample .�2r /

.t/ from IG. Qar ; Qbr/ with

Qar D ar C m

2
; Qbr D br C 1

2

mX

iD1
�2ir:

Use �ir D �
.t/
ir in Qar and Qbr .

6. Stop if t D T , otherwise set t D t C 1 and go to step 2.
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Table 7.3 Hormone therapy with rats: estimated fixed effects
in a fully Bayesian approach

Standard 2.5 % 97.5 %
Variable Coefficient deviation quantile quantile

intercept 68.610 0.343 67.895 69.272
low-dose 7.500 0.227 7.066 7.953
high-dose 6.862 0.235 6.402 7.307
control 7.318 0.284 6.764 7.902

Example 7.4 Hormone Therapy with Rats—Bayesian Linear Mixed
Model

We reanalyze the random intercept model (7.13) in Example 7.1, specifying inverse gamma
priors for �2 and �20 D Var.�0i / with a D a0 D b D b0 D 0:001. Table 7.3
shows estimates corresponding to Table 7.1 and, additionally, 2.5 %- and 97.5 %-quantiles.
The results are obtained with the software package BayesX and are based on 102,000
iterations and using every 100th sampled parameter for estimation after the burn in
period of 2,000 iterations. The estimates are in good agreement with corresponding ML
estimates. The posterior mean of the random effects variance is 3:674 and hence also
close to the likelihood-based estimator. A sensitivity analysis regarding the choice of the
hyperparameters a0 and b0 with alternative choices a0 D b0 D 0:01 and a0 D b0 D 0:0001

showed no substantially different results. 4

7.5 Generalized Linear Mixed Models

Similar to linear models, the linear predictor in generalized linear models will be
extended by including random effects. This leads to GLMMs, generalizing LMMs
to models for non-Gaussian responses that are, for example, binary, discrete, or
nonnegative. As expected, statistical inference becomes technically more involved
when moving from LMMs to GLMMs.

7.5.1 GLMMs for Longitudinal and Clustered Data

Recall the definitions in Sect. 5.5 (p. 304). The (conditional) density of yi , given the
linear predictor �i D x0

iˇ, belongs to an exponential family (e.g., has a binomial,
Poisson, or gamma distribution) and the linear predictor is related to the mean �i D
E.yi / through

�i D h.�i / and �i D g.�i /:

To define GLMMs, we extend the linear predictor �i D x0
iˇ of a GLM by adding

random effects.
The responses yij, i D 1; : : : ; m, j D 1; : : : ; ni , with ni repeated measurements

per individual or cluster, may now be, for example, binary, or count variables.
Including individual- or cluster-specific random effects � i , responses yij given
� i are then (conditionally) independent and could be, e.g., binomial or Poisson
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distributed. The conditional mean �ij D E.yij j �i / is related to a linear mixed
predictor of the same form as for the LMM, i.e.,

�ij D x0
ijˇ C u0

ij� i ; i D 1; : : : ; m; j D 1; : : : ; ni ;

through the relation �ij D h.�ij/, with a suitable response function h.
As in the LMM, uij is usually a subvector of xij. In particular, the choice uij 	 1

defines a random intercept model

�ij D x0
ijˇ C �0i D ˇ0 C ˇ1xij1 C : : :C ˇkxijk C �0i ;

where �0i are random deviations from the fixed intercept ˇ0. For random effects, we
make the same assumptions as for LMMs, i.e., they are independent and identically
normal with � i � N.0;Q/ and independent from covariates.

The assumption of conditionally independent responses, given the random
effects, corresponds to the assumption of independent errors in LMMs. This
assumption may be relaxed by assuming appropriate dependency structures, e.g.,
for odds ratios with binary responses. However, such generalized approaches in
GLMMs are typically much more complicated compared to introducing correlated
residuals in LMMs.

A summary of GLMMs for longitudinal and clustered data is given in Box 7.5.
We will now discuss some specific GLMMs.

Mixed Logit and Probit Models
For binary response variables, we obtain mixed logit models, for example,

log
P.yij D 1 j �i /

P.yij D 0 j �i /
D x0

ijˇ C u0
ij� i : (7.41)

As in Chap. 5, mixed probit models are a possible alternative.

Example 7.5 Speed Dating—Mixed Logit Model
We will illustrate (binary) mixed logit models with data from Fisman et al. (2006) on a
speed dating experiment on a sample of a few hundred students in graduate and professional
schools at Columbia University. In the speed dating events, the experiment randomly
assigned each participant to ten short dates with participants of the opposite sex. For each
date, each person rated six attributes (attractive, sincere, intelligent, fun, ambitious, shared
interests) of the other person on a 10-point scale and wrote down whether he or she would
like to see the other person again. We denote these repeated binary decisions as

yij D
�
1 if person i likes to see the j th partner again
0 otherwise;

and analyze the data with a mixed logit model of the form (7.41), where the covariates
consist of the ratings, as well as the gender of the person. A similar example, also based on
the speed dating data, appears in the exercises to Chap. 14 in Gelman and Hill (2006). 4
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7.5 GLMMs for Longitudinal and Clustered Data

Distributional Assumption

Given the random effects � i and the covariates xij, uij, the responses yij are
conditionally independent and the conditional density f .yij j � i / belongs to
an exponential family as in GLMs; see Sect. 5.5 (p. 304).

Structural Assumption

The conditional mean �ij D E.yij j �i / is linked to the linear predictor

�ij D x0
ijˇ C u0

i� i

through
�ij D h.�ij/ or �ij D g.�ij/;

where h is the response function and g D h�1 the link function.

Distributional Assumption for Random Effects

The random effects � i , i D 1; : : : ; m, are independent and identically
distributed with

� i
i:i:d:� N.0;Q/

and positive definite covariance matrix Q. An important special case is
Q D diag.�20 ; : : : ; �

2
q /.

Software

• Function gllamm of STATA; see Skrondal and Rabe-Hesketh (2008)
• Package lme4 of R
• proc mixed of SAS
• Software package BayesX (also see the R interface R2BayesX)

Mixed Poisson Models
For count responses yij � Po.	ij j � i / mixed log-linear Poisson models

log.	ij/ D x0
ijˇ C u0

ij� i ;

are the most common choice.
While repeated measurements (ni > 1) are usually needed to identify binary

random intercept models, this is not necessary for mixed Poisson models. It is
possible to specify the (random) rate without repeated observations, i.e.,
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	i D exp.x0
iˇ C �0i / ; (7.42)

with �0i � N.0; �20 / in a random intercept model. A log-linear random inter-
cept model is also called a Poisson-normal or Poisson-lognormal model because
Eq. (7.42) is equivalent to

	i D �i exp.x0
iˇ/ ;

where �i D exp.�0i / has a lognormal distribution. Poisson-(log)normal models can
be used to analyze count data with overdispersion; see the following example and
the discussion on the implied marginal model in Sect. 7.5.2.

Example 7.6 Number of Citations of Patents—Mixed Poisson
Regression

In Example 5.7 (p. 297), log-linear Poisson models, both with and without overdispersion,
have been employed for regression analyzes using the response ncit (number of citations).
There is clear evidence of overdispersion, and log-linear Poisson random intercept models
(7.42) provide an alternative for such modeling. For illustrative purposes, we consider a
log-linear model with linear effects and extend it to the log-linear Poisson-normal model

log.	i / D �i D ˇ0 C ˇ1yearci C ˇ2ncountryci C ˇ3nclaimsci C ˇ4biopharmi

Cˇ5ustwini C ˇ6patusi C ˇ7patgsgri C ˇ8oppi C �0i ;

where again yearc, ncountryc, and nclaimsc are the centered versions of the covariates. 4

Mixed Models for Categorical Responses
Mixed models can also be formulated for categorical responses through suitable
generalization of predictors in categorical regression models (Chap. 6). For example,
multinomial logit mixed models for a response Y with unordered categories
(1; : : : ; c C 1) that include global covariates, but additionally include category-
specific fixed effects ˇr and random effects � r , are defined through

P.Yij D r j �r / D exp.�ijr/

1C
cX

sD1
exp.�ijs/

r D 1; : : : ; c;

with category-specific predictors

�ijr D x0
ijˇr C u0

ij� ir:

The random effects � i1; : : : ;� i;c are assumed to be i.i.d. Gaussian, � ir � N.0;Qr /.

7.5.2 Conditional and Marginal Models

Conceptually, the marginal density p.yij/ can be obtained by integrating the condi-
tional density p.yij j � i / determined through the specific exponential family, i.e.,
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p.yij/ D
Z
p.yij j � i /p.� i / d� i :

The density p.� i / of � i is a N.0;Q/ distribution. Apart from the case of LMMs,
where p.yij j � i / also follows a normal distribution, the integration only can be
carried out analytically in rather special cases. This is also one of the main reasons
why statistical inference in GLMMs becomes more complex compared to LMMs.
Marginal means, variances, and covariances are also only available analytically in
special cases.

For the log-linear Poisson random intercept model (7.42) with ni D 1, the
marginal means, variances, and covariances can all be determined analytically
because

�i j �0i D �i exp.x0
iˇ/;

and �i D exp.�0i / has a lognormal distribution. Thus

E.yi / D E.�i exp.x0
iˇ// D exp.�20 =2/ exp.x0

iˇ/ D exp.�20 =2C x0
iˇ/ :

Up to the intercept term, the fixed population effects ˇ are identical in the marginal
and in the conditional model. Furthermore, it can be shown that

Var.yi / D E.yi /f1C exp.x0
iˇ/.exp.3�20 =2/� exp.�20 =2//g:

Since the second factor is greater than 1, the marginal variance is larger than the
marginal mean. Therefore the marginal distribution is not a Poisson distribution, but
rather a distribution with overdispersion. It is not possible, however, to derive an
explicit form for its density. In addition, it can be shown that

Cov.yi ; yj / D exp.x0
iˇ C x0

jˇ/fexp.�20 /.exp.�20 / � 1/g:

Therefore, yi and yj have positive marginal correlations, with specific covariance
structure.

In contrast to the log-linear Poisson model, particularly in contrast to the LMM,
fixed covariate effects in conditional and marginal models are generally different.
For example, in the case of a probit-normal random intercept model

E.yij j �0i / D P.yij D 1 j �0i / D ˚.x0
ijˇ C �0i / ; �0i � N.0; �20 /;

it can be shown that

P.yij D 1/ D ˚

0

B@
x0

ijˇq
�20 C 1

1

CA D ˚.x0
ijˇ

	/;
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with ˇ	 D ˇ=

q
�20 C 1. Thus absolute values of fixed effects in the marginal model

are shrunken by the factor 1=
q
�20 C 1. For a logit model with the same predictor,

it is not even possible to derive any explicit formula, rather only an approximation
based on Taylor expansion; see, for example, Fahrmeir and Tutz (2001, Sect. 7.7).

7.5.3 GLMMs in General Form

Similar to the LMMs in Sect. 7.3, the predictor vector � for all observations can be
expressed as

� D Xˇ C U �;

where X and U are appropriate design matrices and � D .� 0
1; : : : ;�

0
m/

0 is the vector
of all random effects. As for the LMM, we may replace the assumption

� i
i:i:d:� N.0;Q/;

more generally with � � N.0;G /, where G is any positive definite covariance
matrix. This allows for correlated random effects, as needed in the mixed model rep-
resentation of spline functions in Chaps. 8 and 9. Furthermore, statistical inference
in the next section is formulated using this compact notation for the distribution of � .

For GLMMs in general form, we allow X and U to be general design matrices
and G may be any positive definite covariance matrix. This is completely analogous
to general LMMs in Sect. 7.2. In the following section on inference we will refer ro
a specific observation in a general GLMM by the index i , i.e., yi denotes the i th
observation.

7.6 Likelihood and Bayesian Inference in GLMMs

Conceptually, inference in GLMMs is based on the same likelihood or Bayes
principles as in LMMs. However, since the conditional likelihood is in general non-
Gaussian and the relationship between mean and predictor is nonlinear in GLMMs,
important parts of these approaches cannot be carried out analytically but rather
have to be replaced by numerical methods or suitable approximations. We focus
on an approximate penalized likelihood approach and on MCMC techniques for
fully Bayesian inference. Both approaches are strongly related since the penalized
likelihood estimator can also be seen as an empirical Bayes estimator. For simplicity,
we restrict the presentation to models with scale parameter � D 1; however, the
more general case, such as for gamma-distributed responses, can be dealt with as in
the GLM.
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7.6.1 Penalized Likelihood and Empirical Bayes Estimation

Known Variance–Covariance Parameters
We first assume that all parameters in G are known.

Similar to Sect. 7.3.1, we consider the joint likelihood

L.ˇ;�/ D p.y j ˇ;�/ p.�/

for known G , and maximize it simultaneously with respect to ˇ and � . Since

p.ˇ;� j y/ / p.y j ˇ;�/ p.�/;

this is equivalent to determining the posterior mode estimator . Ǒ ; O�/ or an empirical
Bayes estimator. Taking logarithms, we obtain the penalized log-likelihood

lpen.ˇ;�/ D l.ˇ;�/ � 1

2
� 0G �1�: (7.43)

The log-likelihood l.ˇ;�/ is defined as in a GLM, where only the predictor �i D
x0
iˇ for a particular observation i has to be replaced by the extended mixed model

predictor �i D x0
iˇCu0

i� . Maximization of lpen.ˇ;�/ proceeds in complete analogy
to simple GLMs as outlined in Sect. 5.4.2 and fully derived in Sect. 5.8.2. With
C D .X U / and the partitioned matrix

B D
�

0 0

0 G �1
�
;

the resulting iteratively weighted least squares estimator

 
Ǒ .tC1/
O�.tC1/

!
D �

C 0W .t/C C B
��1

C 0W .t/ Qy .t/

has the same form as the ML or penalized least squares estimator in the LMM; see
formula (7.25) of Sect. 7.3.1. The matrix of working weights W .t/ and the working
observations Qyi are defined in complete analogy to simple GLMs. More specifically,
we obtain for a particular observation xi ;ui in the general GLMM

Qyi
�

O�.t/i
�

D O�.t/i C
�
yi � h

�
O�.t/i
��

h0
�

O�.t/i
� ; (7.44)

where O�.t/i D x0
i

Ǒ.t/ C u0
i O�.t/ is the actual predictor, h is the response function, and

h0.�/ D @h.�/=@� is the derivative of h with respect to �. The working weight is
given by
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Qwi
�

O�.t/i
�

D
�
h0
�

O�.t/i
��2

�2i

�
O�.t/i
� ; (7.45)

where �2i

�
O�.t/i
�

is the (conditional) variance Var.yi / evaluated at � D O�.t/i . Omitting

the iteration index we obtain in matrix notation

W D D˙ �1D;

Qy D X Ǒ C U O� C D�1.y � �/;
(7.46)

with D D diag
�
: : : ;

@h.�i /

@�
; : : :

�
and ˙ D diag.: : : ; �2i ; : : : /.

Unknown Variance–Covariance Parameters
Now assume that the covariance matrix G D G .#/ contains unknown parameters # .
Estimation of the variance–covariance parameters # can be accomplished by
means of an approximate marginal likelihood. A Laplace approximation argument
(Breslow and Clayton, 1993) shows that the conditional log-likelihood can be
approximated through a quadratic form:

l.ˇ;� I #/ D log p.y j ˇ;�/ � 1

2
.y � �/0˙ �1.y � �/;

where � and ˙ depend on ˇ and � . From the definition Eq. (7.46) of the working
observations Qy , we get

y � � D D. Qy � X Ǒ � U O�/;
which implies (together with W D D˙ �1D)

l.ˇ;� I #/ � . Qy � X Ǒ � U O�/0W . Qy � X Ǒ � U O�/:

Therefore, the conditional log-likelihood of a GLMM can be approximated for fixed
# through the log-likelihood of the LMM

Qy j � � N.Xˇ C U �;W �1/:

Setting
V D W C U G .#/�1U 0;

we obtain the (approximate) marginal or restricted log-likelihood

lR.#/ D �1
2

log jV .#/j � 1

2
log.jX 0V .#/�1X j/� 1

2
. Qy.#/� X Ǒ /0V .#/�1. Qy.#/� X Ǒ /;

where V .#/ and Qy.#/ also depend on Ǒ and O� .
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This leads to the estimation algorithm in Box 7.6, which switches between
estimation of ˇ and � and estimation of # .

The estimated covariance matrix is the inverse of the estimated Fisher informa-
tion matrix OF D F . Ǒ; O�; O#/, i.e.,

bCov

� Ǒ
O�
�

� OF �1
:

Assuming approximate normality, confidence intervals and tests of linear hypothe-
ses can be constructed analogously to those for the LMM. If the number of
parameters is large relative to the sample size, we expect increased bias and a
degraded normality approximation, in particular for responses with low information,
such as binary observations. Additional analyses that use fully Bayesian inference
are recommended in such cases.

7.6.2 Fully Bayesian Inference Using MCMC

For fully Bayesian inference, we assume the same priors for ˇ and # as in
LMMs, i.e.,

ˇ � N.m;M /;

with the limiting case M�1 ! 0 corresponding to a flat prior

p.ˇ/ / const :

Usually Bayesian inference using MCMC requires knowledge of the specific
structure of the GLMM. Bayesian inference for a general GLMM is usually difficult
to accomplish, and there is no guarantee that the sampler works.

We therefore restrict ourselves to the specific GLMM for longitudinal or
clustered data,

E.yij j � i / D �ij D h.x0
ijˇ C u0

ij� i /; i D 1; : : : ; m; j D 1; : : : ; ni ;

with i.i.d. random effects
� i � N.0;Q/:

We also make the simplifying assumption Q D diag.�20 ; : : : ; �
2
q / and assume a priori

independent diagonal elements with

�2r � IG.ar ; br /; r D 0; : : : ; q:

Moreover, we only consider GLMMs with scale parameter � D 1, otherwise an
additional prior for � has to be specified.
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7.6 Penalized Likelihood/Empirical Bayes Estimation in GLMMs

Score Function and Fisher Information

sˇ.ˇ;� ;#/ D @ lpen.ˇ;�I#/
@ˇ

D X 0D˙ �1.y � �/;

s�.ˇ;� ;#/ D @ lpen.ˇ;�I#/
@�

D U 0D˙ �1.y � �/� G .#/�1�:

F .ˇ;� ;#/ D
�

X 0W X X 0W U

U 0W X U 0W U C G .#/�1
�

with D D diag
�
: : : ;

@h.�i /

@�
; : : :

�
, ˙ D diag.: : : ; �2i ; : : : /, and � D

.: : : ; h.�i /; : : : /
0.

Numerical Computation

1. Initialize with starting values Ǒ.0/; O�.0/; O# .0/
. Set t D 1.

2. Determine Ǒ.tC1/ and O�.tC1/ through

 
Ǒ .tC1/
O�.tC1/

!
D �

C 0W .t/C C B
��1

C 0W .t/ Qy.t/

with working weights and observations as given in Eqs. (7.45) and (7.44).

3. Compute the (approximate) ML estimator O# .tC1/
through one iteration

step of some numerical algorithm for maximizing lR.#/, for example, a
Newton–Raphson step.

4. Terminate the algorithm if convergence (according to some stopping
criterion) is reached and obtain Ǒ; O� ; O# . Otherwise, set t D t C 1 and
proceed with 2.

Based on this assumptions, we obtain the posterior

p.ˇ;�1; : : : ;�m;Q j y/ /
mY

iD1

niY

jD1
p.yij j ˇ;� i /p.ˇ/

mY

iD1
p.� i j Q/p.Q/:

This implies the full conditionals
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p.ˇ j �/ /
mY

iD1

niY

jD1
p.yij j ˇ;� i /p.ˇ/

p.� i j �/ /
niY

jD1
p.yij j ˇ;� i /p.� i j Q/; i D 1; : : : ; m

p.�2r j �/ /
mY

iD1
p.� ir j �2r /p.�2r /; r D 0; : : : ; q:

In contrast to the LMM, full conditionals for ˇ and � i , i D 1; : : : ; m, are no
longer available in a known analytical form. Therefore random numbers cannot
be directly drawn from these full conditionals, and thus the Metropolis–Hastings
(MH) algorithm needs to be employed instead of the Gibbs sampler (as for LMMs
in Sect. 7.4). We prefer the automated algorithm of Gamerman (1997) containing
IWLS (iteratively weighted least squares) proposals. See Sect. 5.6.2 for the general
idea of IWLS proposals.

The full conditionals p.�2r j �/ are again inverse gamma densities

�2r j � � IG. Qar ; Qbr/

with updated parameters

Qar D ar C m

2
; Qbr D br C 1

2

mX

iD1
�2ir:

Alternatively the data augmentation schemes outlined in Sect. 5.6.3 for GLMs
could be applied in a straightforward way for GLMMs.

Example 7.7 Speed Dating—Mixed Binary Regression
To analyze binary repeated measurement data from the speed dating experiment (Exam-
ple 7.5), we first reduced the sample by deleting all participants who never wanted or always
wanted to see a partner again. Without these “outliers,” m D 390 persons remained in
the sample. For illustration, we only included the two attributes “attractive” and “shared
interests,” as well as gender, and the interactions between gender and the two attributes as
fixed effects into the predictor �ij of a mixed logit model for P

�
Yij D 1 j �ij

�
, the probability

that person i likes to see partner j again. For a random intercept model, the predictor is

�ij D ˇ0 C ˇ1 genderi C ˇ2 attrij C ˇ3 sharij

Cˇ4 genderi � attrij C ˇ5 genderij � sharij C �0i :

Gender is dummy-coded (male D 1, female D 0) and the two attributes are rated on a
10-point scale. The variables attr and shar are standardized prior to estimation. With such
a model we can analyze the effect of gender and the main effects of attractiveness and
shared interests on the decision to see a partner again. The interaction terms allow analysis
as to whether or not there are gender-specific differences of the effects of the two attributes.
The intercept term �0i captures omitted covariates and induces correlation between repeated
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Table 7.4 Speed dating: random intercept and random slope models based on likelihood (L)
and Bayesian (B) inference. Posterior estimates and standard errors for fixed effects, (posterior)
variance estimates for random effects

Covariate L: random intercept L: random slopes

intercept �0:6976 (0.118) �0:7997 (0.126)
gender �0:1751 (0.166) 0.2823 (0.177)
attr 1.6329 (0.077) 1.9323 (0.105)
shar 1.2546 (0.073) 1.4393 (0.095)
gender � attr 0.4567 (0.116) 0.4630 (0.153)
gender � shar �0:1933 (0.103) �0:2334 (0.134)

�2intercept 2.55 2.70

�2gender – 0.00

�2attr – 0.69
�2shar – 0.49

Covariate B: random intercept B: random slopes

intercept �0:6984 (0.121) �0:8008 (0.128)
gender 0.1737 (0.165) 0.2737 (0.163)
attr 1.6370 (0.082) 1.9520 (0.116)
shar 1.2527 (0.076) 1.4466 (0.104)
gender � attr 0.4501 (0.118) 0.4603 (0.152)
gender � shar �0:1877 (0.102) �0:2310 (0.133)

�2intercept 2.61 2.77

�2gender – 0.07

�2attr – 0.76
�2shar – 0.56

measurements, at least to some extent. In addition, we also considered a model with random
slopes for the main effects, i.e., the predictor is extended to

Q�ij D �ij C �1i genderi C �2i attrij C �3i sharij;

and a diagonal matrix Q D diag
�
�20 ; �

2
1 ; �

2
2 ; �

2
3

�
is assumed for � i � N .0;Q/.

Table 7.4 contains estimates for the fixed effects and the random effects variances
obtained through likelihood and Bayesian MCMC inference. Likelihood-based inference
is carried out using function lmer of the R package lme4. Results for the Bayesian
approach are obtained using BayesX with 102,000 iterations, 2,000 burn in iterations, and
taking every 100th sampled parameter for inference. The hyperparameters for the inverse
gamma variance parameters are aD bD 0:001. A sensitivity analysis with the alternatives
aD bD 0:01 and aD bD 0:0001 shows that the results are relatively insensitive regarding
the choice of hyperparameters. Only the variance parameter of the random slope for gender
shows some sensitivity with a posterior mean ranging from 0.045 to 0.12.

As Table 7.4 reveals, the results for both approaches are in very close agreement.
Attractiveness and shared interests have significant positive influence on the decision to
see a partner again. Whereas the main effect of gender is not significant, the interactions
of gender with the attributes reveal significant gender-specific differences. Attractiveness
of the (female) partner increases the already positive effect on the decision of males to
see her again, while shared interests are less important for males compared to females.
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Table 7.5 Number of citations of patents: Poisson-normal model

Standard
Variable Coefficient error 2.5 % quantile 97.5 % quantile

intercept �0.347 0.061 �0.466 �0.227
yearc �0.088 0.006 �0.100 �0.078
ncountryc �0.036 0.008 �0.052 �0.019
nclaimsc 0.018 0.003 0.013 0.023
biopharm 0.174 0.061 0.051 0.290
ustwin 0.022 0.048 �0.074 0.112
patus �0.163 0.051 �0.267 �0.063
patgsgr �0.284 0.058 �0.400 �0.167
opp 0.399 0.045 0.316 0.489

The relatively large variance of the random intercept reflects the fact that there are still
many individual-specific covariates or preferences not included in the model. 4

Example 7.8 Number of Citations of Patents—Bayesian Linear Mixed
Model

We analyze the Poisson-normal random intercept model of Example 7.6 (p. 392) using
empirical and fully Bayesian inference. For fully Bayesian inference, we choose a nonin-
formative flat prior for fixed effects and an inverse gamma distribution �20 � IG.a; b/ with
a D b D 0:001 for the variance parameter of the random intercepts. Results for empirical
and fully Bayesian inference are similar. We therefore restrict the presentation to fully
Bayesian inference which has been obtained using bayesreg objects of BayesX.
The estimated fixed effects in Table 7.5, as well as standard errors, are in good agreement
with the results in Example 5.7 (Table 5.10, p. 298). The estimated intercept �0:347
cannot be directly compared with the corresponding intercept 0:158 in Table 5.10, i.e., we
have to adjust for �20 =2; see the remark on the Poisson-normal model in Sect. 7.5.2. After
adjustment, the intercepts are in better agreement. The estimated value of �20 is O�20 D 1:17

(posterior mean). 4

7.7 Practical Application of Mixed Models

This section serves as a case study on (generalized) LMMs and how they can
be applied in practice. Here, we restrict ourselves to models for longitudinal and
cluster data.

7.7.1 General Guidelines and Recommendations

We first present some general guidelines and recommendations on how to apply
LMMs or GLMMs in practice:
• Exploratory analysis of cluster-specific heterogeneity: Besides the usual inspec-

tion of the data through summary statistics and graphical tools (as outlined in
Sect. 1.2) some additional graphical utilities may be useful for longitudinal and
cluster data. An effective device is to perform a cluster-wise analysis.
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In its simplest form, one could produce cluster-wise scatter plots of the
relationship between the response and the continuous covariates as has been
done in Example 2.9 (p. 39, Fig. 2.10) for the rats data. Such plots are also
helpful to detect nonlinear relationships between the response and the covariates.
Alternatively, one could estimate and visualize separate cluster-specific regres-
sion lines (or more generally regression curves), as illustrated in Sect. 7.1.1
(Figs. 7.1 and 7.4). For categorical covariates scatter plots can be replaced by
box plots.

Additionally it is helpful to estimate the assumed regression model separately
for each cluster (at least for the clusters where there are enough data for a
separate analysis). The obtained cluster-specific intercepts and slopes could then
be visualized in caterpillar plots together with 95 % confidence intervals. If there
is cluster-specific heterogeneity, the cluster-specific intercepts and slopes should
show considerable variability. We illustrate this approach in our case study below
on sales of orange juice, as also seen in Fig. 7.10.

As mentioned, all cluster-wise analyses naturally require a sufficient amount
of data in each cluster. If there are clusters with only a few observations, the
cluster-wise analysis must be restricted to those clusters with sufficient data.

• Model specification: The specification of random intercepts and slopes is usually
guided by subject-matter knowledge and a preceding exploratory analysis. When
specifying random coefficient models, one should always think of possibly dif-
ferent between- and within-cluster effects or endogenous (stochastic) covariates;
recall the discussions in Sect. 7.1.1 (p. 353) and in Sect. 7.1.5 (p. 366).

Usually it does not make sense to include random slopes without including
a random intercept. It is also typically not sensible to include a random slope
without including a corresponding fixed effect. Generally, the specification
of random slopes should be as parsimonious as possible. Often convergence
problems of estimation algorithms are encountered if too complex models
are specified. A nice discussion of the pitfalls in the specification of random
coefficient models is given in Sect. 4.10 of Skrondal and Rabe-Hesketh (2008).

• Model assessment and diagnostics: In addition to the usual model diagnostic
tools discussed in Sect. 3.4.4 (p. 155), tools similar to those used for the
exploratory analysis are helpful for model assessment in random coefficients
models. In particular, caterpillar plots of the estimated random coefficients
help to assess the heterogeneity assumption. It may also be useful to visualize
the estimated cluster-specific curves together with partial residuals and kernel
densities of random effects to assess the normality assumption (at least to a
certain extent). The results of hypothesis tests could be used as an additional
source of information for model diagnostics, but should be taken with care; see
the discussion in Sect. 7.3.4.

Since there are a considerable number of competing estimation approaches, it
is recommended to estimate the models using these different approaches (ML,
REML, fully Bayesian under different choices of hyperparameters) and even
different software to assess the stability of estimates and to investigate possible
convergence problems (at least when using complex model specifications).
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Fig. 7.8 Sales of orange juice: scatter plots between the log number of packages sold and the price
of “tree fresh” (upper left panel), as well as prices of competitive brands

7.7.2 Case Study on Sales of Orange Juice

Data Description and Exploratory Analysis
We now illustrate the application of LMMs using the supermarket scanner data
that were briefly outlined in Example 4.9 (p. 199) in the context of multiplicative
errors. The data include weekly unit sales and respective retail prices for different
brands of orange juice (premium, national, and store brands) in 81 chains of a
store over a time span of 89 weeks. We restrict ourselves to one of the national
brands, i.e., the “Tree Fresh” brand. In the following, we model the log sales yij in
store i , i D 1; : : : ; 81, at time tij in relation to its own-item price pij and competitor
prices pc1ij, pc2ij, and pc3ij among the three quality tiers (premium, national,
store). To get an intuitive feel for the data, Fig. 7.8 shows scatter plots of log sales
against the covariates. We clearly find an inverse relationship between unit sales and
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Fig. 7.9 Sales of orange juice: scatter plots between the log number of sold packages and the
own price in four different stores. Each plot displays the log sales versus price in two outlets using
different symbols (plus signs and black dots)

own-item price. The relationship also appears to be nonlinear as the slope decreases
for prices higher than values near 2. However, the situation is less clear for the
impact of competitive prices on the sales of Tree Fresh, i.e., it is much more difficult
to discern any relationships in these scatter plots. Of course, economic theory
suggests a positive correlation between sales and prices of competitors, which can
be observed at least for the price of the store brand. In order to investigate possible
store-specific heterogeneity, it is instructive to plot the log sales price relationship
for different stores. Figure 7.9 displays log sales against own-item price for four
different stores exhibiting a clear tendency for outlet-specific heterogeneity. It is
apparent that the overall sales level and also the slope of the relationship vary across
the four stores. The scatter plots further suggest transforming prices to log prices in
order to satisfactorily capture the nonlinearity in the relationships. To further check
cluster-specific heterogeneity, we estimate the model

yij D ˇ0i Cˇ1i � logpij Cˇ2i � logpc1ij Cˇ3i � logpc2ij Cˇ4i � logpc3ij C "ij (7.47)

separately for each store i D 1; : : : ; 81. In this model, ˇ1i ; : : : ; ˇ4i are fixed effects
of the log price and the log prices of competitors. All covariates are centered about
their mean values to avoid problems with meaningless origins. Figure 7.10 shows
caterpillar plots of the estimated cluster-specific coefficients. We clearly see that
the intercepts, as well as the regression coefficients, of the own-item price shows
considerable cluster-specific heterogeneity. The regression coefficients of the cross-
price effects reveal much less heterogeneity.
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Fig. 7.10 Sales of orange juice: caterpillar plots of the regression coefficients in a cluster-wise
analysis of the regression model (7.47). Shown are the estimated regression coefficients and their
95 % confidence intervals. The solid lines correspond to the regression coefficients of a global
regression model
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Table 7.6 Sales of orange juice: estimated fixed effects and variance parameters for the full model
(7.48) and a reduced model without random slopes for cross-price effects

Full Reduced

Parameter Estimate s.e. Estimate s.e.

intercept ˇ0 3.489 0.045 3.490 0.045
logp ˇ1 �2.558 0.077 �2.533 0.074
logpc1 ˇ2 0.454 0.036 0.453 0.033
logpc2 ˇ3 1.114 0.038 1.107 0.031
logpc3 ˇ3 0.549 0.029 0.535 0.023

Var.�0i / �20 0.166 0.165
Var.�1i / �21 0.354 0.309
Var.�2i / �22 0.020 –
Var.�3i / �23 0.041 –
Var.�4i / �24 0.023 –
Var."ij/ �2 0.186 1.190

Model Specification and Results
In light of our discussion and exploratory analysis, we estimate the two-level
random coefficients model

yij D .ˇ0 C �0i /C .ˇ1 C �1i / � logpij C .ˇ2 C �2i / � logpc1ij

C.ˇ3 C �3i / � logpc2ij C .ˇ4 C �4i / � logpc3ij C "ij:
(7.48)

Here, ˇ0 C �0i are store-specific random intercepts, and �1i ; : : : ; �4i are store-
specific deviations from the overall slopes of price effects. For the random effects,
a fully unspecified covariance matrix is assumed a priori. Estimation has been
carried out using function lmer of the R package lme4.

Table 7.6 shows the estimated fixed effects and variance parameters. The
estimated log-linear price effects are in agreement with economic theory. Increasing
own prices reduce sales, while increasing prices of competing brands lead to
increased sales for “Tree Fresh.” The strength of the outlet-specific random variation
differs across stores, measured through the random effects variances. While the
random intercept (measuring the outlet-specific overall sales level) and the own-
price random effects are comparably strong with variances of �20 D 0:166 and
�21 D 0:354 (in relation to the overall variance of �2 D 0:186), the random effects of
cross-price effects are comparably small. Note that a comparison of random effects
variances only makes sense if the covariates are measured on the same scale, which
is the case for all price covariates.
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Fig. 7.11 Sales of orange juice: caterpillar plots of some random effects in the full model (7.48).
The estimated regression coefficients and their 95 % confidence intervals are shown

Model Diagnostics
Figure 7.11 displays caterpillar plots of the estimated random effects, while Fig. 7.12
shows kernel densities of the random effects. Both figures confirm that the random
effects of cross-prices are small compared to the random intercept and the random
slope of the own-item price. Another way to get an intuition about the store-specific
heterogeneity is to plot the store-specific price curves. This is done for four outlets
in Fig. 7.13 showing considerable own-price heterogeneity.

To test the stability of the results, model (7.48) has been reestimated using
a fully Bayesian approach based on MCMC methods and the software package
BayesX. The estimates are built on 102,000 iterations, with 2,000 iterations as burn
in period and every 100th sampled parameter used for subsequent inference. We
assumed independent inverse gamma priors for the variance parameters �20 ; : : : ; �

2
4

with hyperparameters a D b D 0:001. The results remain stable for the alternative
choices a D b D 0:01 and a D b D 0:0001. Table 7.7 shows the resulting fixed
effects and random effects variance parameter estimates. Overall the results are in
close agreement with the results of lme4 given in Table 7.6.
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Fig. 7.12 Sales of orange juice: kernel densities of random effects (solid lines) together with
corresponding normal densities (dashed lines) in the full model (7.48)

Since the estimated variances of cross-price random slopes are small, it seems
reasonable to simplify the model by removing all or some of the cross-price random
effects. Indeed, if we apply the simulation-based restricted likelihood ratio test
(function exactRLRT of the R package RLRsim) for testing H0 W �2l D 0,
l D 2; 3; 4 versus H1 W �2l ¤ 0, most p-values are comparably large indicating
that the null hypotheses cannot be rejected. The only p-value lower than 0:05 is
for logpc3. Moreover, the DIC in a fully Bayesian approach for a reduced model
without cross-price random effects is only 11 points above that of the full model
(7.48). Hence, these results are at least supportive that a reduced model without
cross-price random slopes may be sufficient for these data. The results for the
reduced model are again given in Tables 7.6 and 7.7.
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Fig. 7.13 Sales of orange juice: log sales versus log price curves for four different outlets together
with corresponding partial residuals in the full model (7.48)

Table 7.7 Sales of orange juice: estimated fixed effects and variance parameters for the full model
(7.48) and a reduced model without random slopes for cross-price effects in a fully Bayesian
approach

Full Reduced

Parameter Estimate s.e. Estimate s.e.

intercept ˇ0 3.489 0.046 3.488 0.047
logp ˇ1 �2.540 0.076 �2.532 0.074
logpc1 ˇ2 0.454 0.033 0.453 0.033
logpc2 ˇ3 1.110 0.034 1.108 0.031
logpc3 ˇ4 0.542 0.028 0.535 0.023

Var.�0i / �20 0.171 0.169
Var.�1i / �21 0.320 0.317
Var.�2i / �22 0.008 –
Var.�3i / �23 0.014 –
Var.�4i / �24 0.017 –
Var."ij/ �2 0.188 1.190

7.8 Bibliographic Notes and Proofs

7.8.1 Bibliographic Notes

LMMs for longitudinal data are described extensively in Verbeke and Molenberghs
(2000), with a focus on likelihood inference and biostatistical applications. Other
books including (chapters on) LMMs and GLMMs are Diggle et al. (2002) (also
with biostatistical applications), Demidenko (2004), Skrondal and Rabe-Hesketh
(2004), and the handbook on longitudinal data edited by Fitzmaurice, Davidian,
Verbeke, and Molenberghs (2003). Gelman and Hill (2006) place more emphasis on



410 7 Mixed Models

clustered and, more generally, multilevel data and on social science applications.
LMMs from an econometricians point of view are covered in Hsiao (2003).
Bayesian LMM and GLMM are described in Fahrmeir and Kneib (2011), Chap. 3,
including models with non-Gaussian random effects priors. A nice introduction to
LMM for longitudinal and cluster data from a practitioner’s point of view is given in
Skrondal and Rabe-Hesketh (2008). Although the focus is on analysis with STATA,
it is worth reading even if STATA is not used for inference.

Besides mixed models, two other conceptual models exist for the analysis of
longitudinal data. Conditional or autoregressive models extend linear and general-
ized linear models for cross-sectional data by including effects of response values
observed at previous time points j � 1; j � 2; : : : into the predictor. The simplest
possibility is

�ij D x0
ijˇ C yi;j�1˛;

i.e., an autoregressive predictor of first order. For statistical inference, yi;j�1 is
treated formally as an additional covariate.

Marginal models, often in form of generalized estimating equations (GEE)
approaches, consider multivariate versions of score functions with similar structure
as the score functions in Sect. 6.4 for categorical response. However, the true
covariance matrix ˙ i of the multinomial distribution is replaced through a “working
covariance matrix” S i , leading to a multivariate version of the quasi-likelihood
approach in Sect. 5.5. Solving the estimating equation s. Ǒ/ D 0 provides the quasi-
likelihood or GEE estimator Ǒ in marginal models.

Both classes of models are described, for example, in Diggle et al. (2002) and, in
less detail, in Fahrmeir and Tutz (2001).

7.8.2 Proofs

Estimator in the Fixed Effects Model (P. 367)
We first consider the classical linear model

y D Xˇ C " D X 1ˇ1 C X 2ˇ2 C "

involving two sets of covariates with design matrices X 1 and X 2. We derive the
least squares estimator for ˇ2. The normal equations are given by

�
X 0
1X 1 X 0

1X 2

X 0
2X 1 X 0

2X 2

��
ˇ1

ˇ2

�
D
�

X 0
1X 1ˇ1 C X 0

1X 2ˇ2

X 0
2X 1ˇ1 C X 0

2X 2ˇ2

�
D
�

X 0
1y

X 0
2y

�
:

Solving the first set of equations for ˇ1 gives the solution

Ǒ
1 D .X 0

1X 1/
�1X 0

1y � .X 0
1X 1/

�1X 0
1X 2

Ǒ
2 D .X 0

1X 1/
�1X 0

1.y � X 2
Ǒ
2/: (7.49)



7.8 Bibliographic Notes and Proofs 411

Thus, the estimator for ˇ1 is obtained by regressing the covariates in X 1 on the
partial residuals y �X 2

Ǒ
2. Inserting Eq. (7.49) in the second equation of the normal

equations yields

X 0
2X 1.X

0
1X 1/

�1X 0
1y � X 0

2X 1.X
0
1X 1/

�1X 0
1X 2

Ǒ
2 C X 0

2X 2
Ǒ
2 D X 0

2y :

Rearranging terms then gives

X 0
2X 2

Ǒ
2 � X 0

2X 1.X
0
1X 1/

�1X 0
1X 2

Ǒ
2 D X 0

2.I � X 1.X
0
1X 1/

�1X 0
1/y :

Solving for Ǒ
2 finally produces

Ǒ
2 D �

X 0
2.I � X 1.X

0
1X 1/

�1X 0
1/X 2

��1 �
X 0
2.I � X 1.X

0
1X 1/

�1X 0
1/y

�

D �
X 0
2.I � H 1/X 2

��1 �
X 0
2.I � H 1/y

�
;

where H 1 is the hat matrix (see Box 3.5 on p. 108) of a regression with the variables
in X 1 as the regressors. Note that .I �H 1/X 2 is a matrix of residuals in regressions
of the variables in X 1 on the variables in X 2. Since both H 1 and I � H 1 are
idempotent, we obtain

Ǒ
2 D

� QX 0
2

QX 2

��1 QX 0
2 Qy;

where QX 2 D .I � H 1/X 2 and Qy D .I � H 1/y . Thus, the estimator Ǒ
2 is obtained

in two steps. We first regress each column of X 2 on the variables in X 1. In a second
step the set of residuals from the first regression is regressed on the residuals of
a regression of X 1 on y. While this is an important result on its own, we use it
to derive the estimator for the regression coefficients in the fixed effects model of
p. 367. Consider the model

y D Xˇ C Z�0 C ";

where X is the design matrix of the covariates (excluding the intercept) and
Z D .z1; : : : ; zm/ with zi being a dummy vector indicating the i th unit or cluster.
Applying our result on partitioned regression, we obtain

Ǒ D .X 0.I � H Z /X/
�1X 0..I � H Z /y/;

with H Z D Z .Z 0Z /�1Z 0. This corresponds to a least squares regression using the
transformed design matrix .I � H Z /X and the transformed response vector .I �
H Z /y. Due to the specific structure of Z , it is easily verified that premultiplication
of .I � H Z / results in cluster-wise centering of the columns of X and of y . Thus
we obtain Ǒ using a regression of the cluster-wise centered covariates xijl � Nxil on
the cluster-wise centered responses yij � Nyi .
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Derivation of the Penalized Least Squares Estimator in the LMM
(Sect. 7.3.1 on p. 371)
We first rearrange the penalized least squares criterion to obtain

LSpen.ˇ;�/ D .y � Xˇ � U �/0R�1.y � Xˇ � U �/C � 0G �1�

D y 0R�1y � y 0R�1Xˇ � yR�1U �

�ˇ0X 0R�1y C ˇ0X 0R�1Xˇ C ˇ0X 0R�1U �

�� 0U 0R�1y C � 0U 0R�1Xˇ C � 0U 0R�1U �

C� 0G �1�

D y 0R�1y � 2y 0R�1Xˇ C ˇ0X 0R�1Xˇ C 2� 0U 0R�1Xˇ

�2yR�1U � C � 0 �U 0R�1U C G ��� :

Applying two rules for the differentiation of vector functions [see Theorem A.33 (1)
and (3)], we obtain the derivatives

@LSpen.ˇ;�/
@ˇ

D �2X 0R�1y C 2X 0R�1Xˇ C 2X 0R�1U �;

@LSpen.ˇ;�/
@�

D �2U 0R�1y C 2.U 0R�1U C G �1/� C 2U 0R�1Xˇ:

This results in the equation system

�
X 0R�1X X 0R�1U
U 0R�1X U 0R�1U C G �1

�� Ǒ
O�
�

D
�

X 0R�1y
U 0R�1y

�
:

Defining C D .X ;U / and the partitioned matrix

B D
�

0 0

0 G �1
�
;

yields

.C 0R�1C C B/

�
ˇ

�

�
D C 0R�1y:

The solution is the penalized least squares estimator (7.25).



8Nonparametric Regression

The main goal of nonparametric regression is the flexible modeling of effects of
continuous covariates on a dependent variable. We have already seen in several
practical applications that a purely linear model is not always sufficient. This
insufficiency could either result from theoretical considerations about the given
application or simply from uncertainty about the specific form of an effect that a
covariate has on the response. In Sect. 3.1.3, we considered two possible approaches
for modeling the nonlinear effect of a continuous covariate: simple transformations
and polynomials. We found that scatter plots of the residuals, in particular partial
residual plots, are useful diagnostic devices for identifying nonlinear relations
between covariates and response. Even though these methods may be sufficient
for simple relationships, they quickly become intractable in situations with a
larger number of potential covariates. Moreover, due to the limited number of
transformations that are actually used in practice, the functional forms associated
with covariate effects are both limited and not very flexible. In this chapter, we
will therefore introduce flexible regression techniques that enable the automatic,
data-driven estimation of nonlinear effects. We will first concentrate on models
for the effect of one single continuous covariate on a response variable, having an
approximately normal distribution. The methods developed in this context will be
the basis for the bivariate smoothing methods presented in Sect. 8.2, and the more
complex additive models of Chap. 9.

To motivate the following discussion, we consider two examples. In the first,
we analyze the risk of malnutrition of children in developing countries (Tanzania, in
this case), similar to Example 1.2 (p. 5). We consider chronic malnutrition measured
in terms of a Z-score as the response variable and examine its dependence on the
age of the child. Figure 8.1 shows the corresponding scatter plot for only one of
the districts in Tanzania (Ruvuma). We will limit our considerations in this chapter
to this single district, since this yields clearer graphical presentations due to the
relatively small sample size. However, in general, the results carry over to the entire
data set. Figure 8.1 suggests a nonlinear relationship, where young children have
a higher Z-score than older children, implying that young children suffer from a
lower risk of malnutrition than older ones. At first glance, a simple polynomial or

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9 8,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 8.1 Malnutrition in Tanzania: scatter plot of the Z-score for chronic malnutrition versus the
age of the child in months for one of the districts in Tanzania (Ruvuma)
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Fig. 8.2 Scatter plot of a simulated data set with nonlinear effect of the covariate: The right panel
additionally shows the true covariate effect. The data have been simulated according to the model
y D f .x/C " where f .x/ D sin.2.4x � 2//C 2 exp.�.162/.x � 0:5/2/ and " � N.0; 0:32/

the inverse transformation of age appears adequate for modeling the age effect. In
the approaches presented in Sect. 8.1, we will, however, learn that a more flexible
model provides additional insights.

As a second example, we use the simulated data set presented in Fig. 8.2. The
left panel shows a scatter plot of the simulated data, whereas the right panel
also provides the underlying true effect of the covariate. Despite the fact that
the scatter plot indicates the structure of the true function fairly well, it is rather
difficult to approximate this function through a transformation or in terms of simple
polynomials.
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8.1 Univariate Smoothing

In this first basic section, we examine several nonparametric regression approaches,
which allow flexible modeling of the effect of one continuous covariate on a
continuous dependent variable. Such approaches are called scatter plot smoothers
since the data can be visualized best in a scatter plot, and the goal is to determine a
smooth function representing the effect of the covariate. More precisely, we assume
that data are given in the form .yi ; zi /, i D 1; : : : ; n, where the yi are observations of
the response variable and the zi represent the corresponding values of the continuous
covariate. In the standard univariate nonparametric regression model, we assume
that we are able to explain the response variable through a deterministic function of
the covariate plus an additive error term:

yi D f .zi /C "i :

Different assumptions regarding the function f then lead to different modeling
possibilities. In order to obtain a simpler estimation problem, we often impose
qualitative constraints concerning the smoothness of the function f , e.g., regarding
its continuity or differentiability. We also should point out that some nonparametric
smoothing approaches are, despite their name, in fact purely parametric. In contrast
to the regression models we have examined thus far, these models are usually
determined by a large number of parameters, so that individual parameters no longer
have a meaningful interpretation. Nevertheless, we will continue to use the term
nonparametric regression in our presentation, but will also exchangeably use the
notion of univariate smoothing.

In nonparametric regression models, we make the same assumptions about the
error term as in the classical linear model of Chap. 3: The errors are independent
and identically distributed with

E."i / D 0 and Var."i / D �2; i D 1; : : : ; n:

Similar as in the linear model, it follows

E.yi / D f .zi / and Var.yi / D �2; i D 1; : : : ; n;

i.e., the expected value of the response variable is to be modeled through the function
f . In some situations, we will additionally assume that the errors follow a normal
distribution, especially when constructing confidence intervals for f .

8.1.1 Polynomial Splines

As a first approach for nonparametric regression, we consider polynomial splines
or regression splines which are closely related to the idea of polynomial regression
modeling. Therefore, we revisit the polynomial model

f .zi / D �0 C �1zi C : : :C �lz
l
i ;
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8.1 Univariate Smoothing

Data

Measurements .yi ; zi /, i D 1; : : : ; n, for a continuous response variable y
and a continuous covariate z.

Model
yi D f .zi /C "i

with independent and identically distributed errors and

E."i / D 0 and Var."i / D �2:

In some cases, we additionally assume that the errors are i.i.d. normally
distributed, so that

"i � N.0; �2/:

which models the effect of covariate z on responses y as a polynomial of degree l .
This model is within the scope of linear models discussed in Chap. 3 and, thus,
we are able to determine the regression coefficients of the polynomials and the
complete function f using ordinary least squares. In contrast to Chap. 3, we denote
the regression coefficients as �j , which will allow us to distinguish the more flexible
models discussed in this chapter from linear models.

Based on the simulated data example, Fig. 8.3 shows why a purely polynomial
model is often insufficient to estimate nonlinear functions f .z/. We considered
polynomials up to a degree of l D 15 for estimating f . As seen, polynomials are not
able to properly reproduce the local maximum at z D 0:5, even with (the very high)
degree of l D 11. For l D 15 this maximum is nearly obtained, but the estimated
relationship is very wiggly and not quite satisfactory in other regions.

To make the polynomial model more flexible, we next partition the domain of the
covariate into intervals and estimate separate polynomials in each interval. In other
words, we use several locally defined polynomials instead of one global model. Yet
we can still estimate each of the polynomial parts separately using least squares.
The left panel in Fig. 8.4 illustrates this approach. Here we split up the domain of
z into ten intervals of width 0.1 and fit separate polynomials in each. This actually
leads to a more flexible estimate of the function, which reflects the form of the true
function. However, the estimated function also exemplifies the major disadvantage
of piecewise polynomial models: Since the polynomials are fit separately on the
intervals, the polynomial pieces do not lead to an overall smooth function and, in
particular, they show different function values at the interval boundaries. Therefore,
it would be desirable to impose further smoothness restrictions on the function
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Fig. 8.3 Polynomial regression models for the simulated data set
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Fig. 8.4 Piecewise polynomial regression (left) and polynomial splines (right)

at the interval boundaries to obtain a function estimate similar to the one shown
in the right panel of Fig. 8.4. Introducing these additional smoothness constraints
leads to the class of polynomial splines. The main idea still is to define local
polynomials on intervals in the domain of the covariate; however, to guarantee
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sufficient smoothness, we additionally require that the resulting function should be
.l � 1/-times continuously differentiable at the interval boundaries. This yields the
following definition:

8.2 Polynomial Splines

A function f W Œa; b� ! R is called a polynomial spline of degree l � 0 with
knots a D �1 < : : : < �m D b, if it fulfills the following conditions:
1. f .z/ is .l � 1/-times continuously differentiable. The special case of l D 1

corresponds to f .z/ being continuous (but not differentiable). We do not
state any smoothness requirements for f .z/ when l D 0.

2. f .z/ is a polynomial of degree l on the intervals Œ�j ; �jC1/ defined by the
knots.

This summarizes our initial considerations, yielding a piecewise polynomial
function where the partition of the covariate domain results from the specification
of the knots �1 < : : : < �m. Moreover, the function is assumed to be .l � 1/-
times continuously differentiable to ensure the desired smoothness restrictions at
the knots. Figure 8.5 shows some simple polynomial splines with a small number of
knots to demonstrate the impact of the chosen spline degree. While the degree l of
the spline determines the global smoothness, the diversity of available functions is
mainly driven by the number of knots. The more knots we use the higher the number
of piecewise polynomials that constitute the polynomial spline. In the following
sections, we will discuss the influence of the spline degree and the number (as well
as the location) of knots in more detail.

Prior to using polynomial splines in nonparametric regression, we need a
representation of the set of polynomial splines for a given degree and knots
configuration. This can be achieved with different but equivalent approaches. In the
following two sections, we will discuss the two most popular variants: the truncated
power series and B-splines.

Polynomial Splines and the Truncated Power Series
Consider the regression model

yi D �1 C �2zi C : : :C �lC1zli C �lC2.zi � �2/lC C : : :C �lCm�1.zi � �m�1/lC C "i

with

.z � �j /
lC D

(
.z � �j /

l z � �j ;

0 otherwise.

The first part of this model is a global polynomial of degree l , as presented at the
beginning of this chapter (but with a different way of indexing where the intercept is
denoted as �1 instead of �0 for reasons that will become clearer later on). In contrast,
the coefficient of the highest polynomial changes at every single knot �2; : : : ; �m�1.
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Fig. 8.5 Examples of polynomial splines of degree 0, 1, 2, and 3 with knots �1 D 0, �2 D 0:25,
�3 D 0:5, �4 D 0:75, and �5 D 1. (a) Spline of degree 0, (b) Spline of degree 1, (c) Spline of
degree 2, (d) Spline of degree 3

On the one hand, this specification allows the use of local polynomials in every
interval defined by the knots, and on the other hand it fulfills the demand for global
smoothness. Figure 8.6 illustrates the concept for a polynomial spline with l D 1.
Panel (a) shows the functions that define the model, i.e., the global polynomial
function of degree l D 1 (dashed line) and the additional truncated portions (solid
lines). We scale these functions with estimated regression coefficients according to
the given data, yielding panel (b). We used equally spaced knots with a distance of
0.1 to define the basis functions.

The horizontal line at y � 0:8 then corresponds to the global constant �1. In
the first interval Œ0; 0:1/, we obtain a decreasing function starting from this global
level, represented by the slope parameter �2. From the knot �2 D 0:1 onward, �3
superimposes this slope. In our example, �3 is also negative resulting in a somewhat
steeper decreasing trend of the function. The positive coefficient �4 decreases the
negative slope from �3 D 0:2 onward. Nevertheless, we still have a negative trend.
When considering the further trend of the function, the coefficients �j indicate the
change of the slope that occurs at the corresponding knot �j�1. Due to the special
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Fig. 8.6 Polynomial spline fit with linear truncated polynomials. (a) Basis functions, (b) Scaled
basis functions (c) Sum of scaled basis functions

construction of the truncated function .z � �j /lC, we ensure that the change in slope
is smooth enough so that the properties of a polynomial spline are preserved. Finally,
when adding up all of the scaled functions, we obtain the fit of f .z/ illustrated in
Fig. 8.6c.

More formally, it can be shown that each polynomial spline of degree l with
knots �1 < : : : < �m can be uniquely determined as a linear combination of the
d D mC l � 1 functions:

B1.z/ D 1; B2.z/ D z; : : : ; BlC1.z/ D zl ;

BlC2.z/ D .z � �2/
lC; : : : ; Bd .z/ D .z � �m�1/lC

(see Figs. 8.7 and 8.8, in which these functions are shown for l D 0 and l D 2

based on a small number of knots). This yields the following representation of the
nonparametric regression problem:

yi D f .zi /C "i D
dX

jD1
�jBj .zi /C "i :
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Fig. 8.7 TP basis for splines of degree 0 based on the knots f0,0.25,0.5,0.75,1g. (a) Basis function
B 1, (b) Basis function B 2, (c) Basis function B 3, (d) Basis function B 4

We call the functionsB1; : : : ; Bd basis functions, since we can uniquely represent
all polynomial splines by using these functions. To distinguish between various
bases for the function space of all splines, we call this basis the truncated power
series basis (TP basis). One can show that polynomial splines indeed form a
d -dimensional vector space so that it is justified to call the TP basis a basis.

Modeling f .z/ as a polynomial spline has the advantage that we can still
understand the nonparametric regression model as a linear model, but with a
possibly large number of parameters. If we define the vectors of the observed
response variables y and the errors ", as well as the design matrix

Z D

0
B@
B1.z1/ : : : Bd .z1/
:::

:::

B1.zn/ : : : Bd .zn/

1
CA D

0
B@
1 z1 : : : zl1 .z1 � �2/

lC : : : .z1 � �m�1/lC
:::

:::

1 zn : : : zln .zn � �2/
lC : : : .zn � �m�1/lC

1
CA ;

we obtain the equation
y D Z� C ";
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with the coefficient vector � D .�1; : : : ; �d /
0. This is indeed a linear model with

regression coefficients � . The usual least squares estimate is thus

O� D .Z 0Z /�1Z 0y :

However, in contrast to the linear models described in Chap. 3, an interpretation
of the individual estimated parameters O�j is not very informative. Rather, we are
interested in the form of the estimated function, which results from the estimated
coefficients. In other words, we consider

Of .z/ D z0 O�

with z D .B1.z/; : : : ; Bd .z//0 depending on the chosen covariate value z. We can
then assess the quality of the model fit in a scatter plot of the data, using the
estimated curve. We will return to appropriate measures for assessing the model
fit in a subsequent section.

Example 8.1 Malnutrition in Tanzania—Modeling with
Polynomial Splines

In our first illustration of nonparametric regression, we compare different specifications for
the spline degree and the number of knots using the Tanzania data. Figure 8.9 displays
various corresponding fits. Whereas the spline degree mainly determines the overall
smoothness of the estimated function, the number of knots influences the flexibility of the
estimated curve. For example, with the spline degree l D 0, we obtain a piecewise constant
function. However, such a fit is inconsistent with the suggestions of a smooth trend for
the Z-score with varying age. Increasing the spline degree accordingly, we move from a
continuous .l D 1/ to a continuous and differentiable function .l D 2/.

For comparison, the numbers of knots are varied (11 and 21). The larger number of knots
leads to a “wigglier” estimate for the function, irrespective of the chosen spline degree. It
appears that the estimation of the function with 11 knots corresponds better to the theoretical
understanding regarding the relationship between age and malnutrition than the one with
21 knots where the additional roughness is difficult to interpret in a meaningful way. It is
interesting to note that, in addition to the low risk of malnutrition of young children, we
see an unexpected increase in the estimated function after 24 months. This increase actually
has an assignable cause due to a change in the reference population to which the Tanzanian
children are compared. For young children up to 24 months age, the reference population
consists of US American children from white parents of a high socioeconomic status,
whereas for older children the reference population is a representative sample from all US
American children. This change in reference population is what produces an artificially
higher Z-score or a perceived lower risk of malnutrition for the age of 24 months. It is
unlikely that we would have been able to identify this effect of the change in the reference
population with the use of simple transformations or low-order polynomials. 4

Influence of the Knots
Example 8.1 showed that the choice of the number and the position of the knots,
as well as the spline degree, have a definite effect on function estimation. Cubic
splines are often used as a default, since they lead to a smooth, twice continuously
differentiable function. In contrast, it is much more difficult to provide a “rule
of thumb” for the number of knots. As already shown in Example 8.1, a higher
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Fig. 8.9 Nonparametric estimates for the age effect based on polynomial splines

(lower) number of knots usually leads to a more (less) flexible estimated function.
Figure 8.10 illustrates this effect for simulated data, using a cubic spline while
varying the numbers of knots. Since we know the true function for the simulated
data, it is easier to assess the quality of the estimates in relation to the number of
knots in this case.
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Fig. 8.10 Impact of the number of knots on cubic spline fits: The estimated function is represented
as a solid line while the true function is superimposed as a dashed line

We find results similar to those found in Example 8.1: For a small number of
knots, the resulting function estimate is very smooth, and, in our example, does not
fit the true function well. In particular, the maximum at z D 0:5 is not achieved. We
do get more satisfactory results with 20 knots, while further increasing the number
of knots produces additional artifacts and results in very rough estimates that are
difficult to interpret.

In addition to the number of knots, we also have to choose the distribution or the
position of the knots along the covariate axis. The following three approaches are
commonly used in practice:
• Equidistant knots: The domain Œa; b� of z is split into m � 1 intervals of width

h D b � a
m � 1

in order to obtain the knots

�j D aC .j � 1/ � h; j D 1; : : : ; m:



426 8 Nonparametric Regression

In all examples considered so far, we have always tacitly assumed equidistant
knots.

• Quantile-based knots: Use the .j � 1/=.m � 1/-quantiles (j D 1; : : : ; m) of
the observed covariate values z1; : : : ; zn as knots. By doing so, we place many
knots in areas where we have a large number of observations and therefore
the distribution of the knots better adapts to the distribution of the explanatory
variable.

• Visual knot choice based on a scatter plot: Studying the scatter plot of the data
allows us to (subjectively) target the placement of the knots either to adapt the
knot density to the variability of data or to account for the specific context of the
estimation problem.

None of these strategies, however, answers the main question regarding the number
of knots. To overcome this problem, we basically have two possibilities: the
regularization of the estimation problem through the introduction of a penalty
(similar to ridge regression, see Sect. 3.4.4), or the adaptive (i.e., the automatic,
data-driven) selection of knots with the help of model choice strategies. Penalization
approaches will be the main focus of this book and will be discussed in Sects. 8.1.2–
8.1.6. Adaptive methods will be sketched in Sect. 8.1.10. First, we consider an
alternative representation of polynomial splines.

B-Splines
Although the TP basis is easy to understand, alternative bases for polynomial splines
with numerically favorable properties exist. These alternatives will also be useful in
the construction of penalization approaches in the subsequent sections. Due to their
construction from truncated polynomials, the calculation of TP basis functions can
lead to numerical instabilities for covariates with large values. Moreover, the basis
functions of the TP basis are nearly collinear (nearly linear dependent), especially
in cases when two knots are very close to each other. Consequently, we will choose
the basic spline or B-spline basis as an alternative basis for polynomial splines.

Prior to giving an exact mathematical definition of B-splines, we first informally
motivate the construction of the basis functions. We start with the observations that
we made at the beginning of the chapter about the approximation of f .z/ with
piecewise polynomials. There we realized that additional smoothness conditions had
to be imposed on the function f .z/. B-spline basis functions are now constructed
from piecewise polynomials that are fused smoothly at the knots to achieve the
desired smoothness constraints. More specifically, a B-spline basis function consists
of .l C 1/ polynomial pieces of degree l , which are joined in an .l � 1/-times
continuously differentiable way. Figure 8.11 displays the resulting basis function
for the spline degrees l D 0; 1; 2; 3. All B-spline basis functions are set up based
on a given knot configuration. Figure 8.12 displays such complete B-spline bases for
equidistant and unevenly distributed knots. Using the complete basis, the function
f .z/ can again be represented through a linear combination of d D mC l � 1 basis
functions, i.e.,
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Fig. 8.11 Single B-spline basis functions for degrees l D 0; 1; 2; 3 and equidistant knots

f .z/ D
dX

jD1
�jBj .z/:

The main advantage of the B-spline basis is its local definition. In contrast to the
truncated polynomials of the TP basis with positive values starting from a certain
knot, B-spline basis functions are only positive on an interval based on l C 2 knots.
Moreover, B-spline basis functions are bounded from above so that the numerical
problems of the TP basis do not occur.

From Fig. 8.11, we can immediately deduce the definition for B-splines of order
l D 0 as

B0
j .z/ D I.�j � z < �jC1/ D

(
1 �j � z < �jC1
0 otherwise

j D 1; : : : ; d � 1;
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Fig. 8.12 B-spline bases of degree l D 1; 2; 3 with equidistant knots (left panel) and unevenly
distributed knots (right panel)
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where I.�/ denotes the indicator function. In this case, it is also easy to show the
equivalence to the TP basis. If we build successive differences of the TP basis
functions of degree l D 0, we obtain functions that are constant over intervals
formed by two adjacent knots, and therefore form a B-spline basis. For B-splines
of a higher order, analogous representations based on combinations of piecewise
polynomials of degree l can be derived. For example, we obtain the basis functions
of degree l D 1 as

B1
j .z/ D z � �j�1

�j � �j�1
I.�j�1 � z < �j /C �jC1 � z

�jC1 � �j
I.�j � z < �jC1/;

i.e., each basis function is defined by two linear segments on the intervals Œ�j�1; �j /
and Œ�j ; �jC1/, which are continuously combined at the knot �j . In general, higher-
order B-splines are defined recursively:

Bl
j .z/ D z � �j�l

�j � �j�l
Bl�1
j�1.z/C �jC1 � z

�jC1 � �jC1�l
Bl�1
j .z/:

Applying this formula, for example, for B-splines of order l D 1, we obtain exactly
the same expression as above. To use the recursive definition of B-splines for the
calculation of the basis functions, we need 2l outer knots outside of the domain
Œa; b� in addition to the interior knots �1; : : : ; �m. This leads to the expanded knots
sequence �1�l ; �1�lC1; : : : ; �mCl�1; �mCl . The definition of this enlarged number of
knots is straightforward for equidistant knots, since we can use the same distance h
when defining knots outside of the domain Œa; b�. This, however, is not possible for
unequally distributed knots. Here, it is common to use the distance between the two
smallest or largest knots within the covariate domain.

The recursive definition of B-splines makes them appear more complicated than
TP-splines; however, this apparent disadvantage is easily balanced with the better
numerical properties associated with B-splines. Moreover, most statistical programs
(e.g., R or STATA) offer built-in implementations for B-splines so that the user often
does not have to deal with such details. For equidistant knots B-splines can also be
easily computed from truncated polynomials; see Eilers and Marx (2010) for details.

We next summarize some of the basic characteristics of B-spline basis functions,
which can informally be derived from Figs. 8.11 and 8.12:
1. B-splines form a local basis. Each basis function is positive only in an interval

formed by lC2 adjacent knots. When using equidistant knots, all basis functions
have the same form and are only shifted along the z-axis. At any point z 2 Œa; b�,
l C 1 basis functions are positive.

2. Unity decomposition. For every point z 2 Œa; b�, we have:

dX

jD1
Bj .z/ D 1:
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3. Overlapping with 2l adjacent basis functions. Every basis function (within the
domain Œa; b�) overlaps with exactly 2l adjacent basis functions.

4. Bounded basis functions. The domain of the individual basis functions is
bounded upwards.

5. Derivatives. Since the individual basis functions are composed of polynomial
parts, it is straightforward to determine derivative formulae. For every single
basis function we have

@

@z
Bl
j .z/ D l �

�
1

�j � �j�l
Bl�1
j�1.z/ � 1

�jC1 � �jC1�l
Bl�1
j .z/

�
:

Therefore, we obtain the derivative for the entire polynomial spline as

@

@z

X

j

�jB
l
j .z/ D l �

X

j

�j � �j�1
�j � �j�l

Bl�1
j�1.z/: (8.1)

As a consequence, we are able to express the derivative of a polynomial spline in
terms of the differences of adjacent basis coefficients and B-spline basis functions
of one lower degree. Thus, by estimating the coefficients �j , we do not only
obtain an estimate for the function itself but also for its derivative. Analogously,
we can express higher-order derivatives using higher-order differences of the
coefficients and basis functions of lower order; see De Boor (2001), p. 115.
Similar to the TP basis, the estimation of a polynomial spline in B-spline

representation can be traced back to the estimation of a linear model with a large
number of parameters and design matrix

Z D

0

B@
Bl
1.z1/ : : : B

l
d .z1/

:::
:::

Bl
1.zn/ : : : B

l
d .zn/

1

CA :

Due to the properties of the B-spline basis, this design matrix has some special char-
acteristics. It is apparent that the matrix does not contain an explicit intercept term.
Since the rows of the design matrix sum to one, due to the unit decomposition of the
B-spline basis, the intercept is however implicitly contained in the span of the basis.
Specifying an additional intercept would lead to an unidentifiable model. Since the
B-spline basis is locally defined, Z has a special structure and mainly consists of
zeros. This results in a band matrix structure for Z 0Z with bandwidth l . We can use
this property to solve the normal equation Z 0Z� D Z 0y in a numerically efficient
way.

Figure 8.13 illustrates the estimation of a B-spline fit for the simulated data
example. First, we calculate a complete B-spline basis (in this case of degree 3)
for a given number of knots [panel (a)]. The least squares estimate O� then yields an
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Fig. 8.13 Schematic representation of a nonparametric fit with cubic B-splines. (a) B-spline basis
(b) Scaled B-spline basis (c) Sum of scaled B-spline basis functions

amplitude O�j for the scaling of every basis function [panel (b)]. When summing the
scaled basis functions, we obtain the final estimate [panel (c)].

8.1.2 Penalized Splines (P-Splines)

As we have seen in the previous section, the quality of a nonparametric function
estimated by polynomial splines crucially depends on the number of knots. There
are basically two strategies to overcome this problem:
• The adaptive choice of knots based on model choice strategies
• The regularization of the estimation problem through the introduction of rough-

ness penalties
We will mostly concentrate on approaches based on penalties and, as mentioned,
will only give a brief overview of adaptive methods in Sect. 8.1.10.

The main idea of penalized splines (P-splines) can be summarized as follows:
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• Approximate the function f .z/ with a polynomial spline that uses a generous
number of knots (usually about 20–40). This ensures that f .z/ can be approxi-
mated with enough flexibility to represent even highly complex functions.

• Introduce an additional penalty term that prevents overfitting and minimize
a penalized least squares (PLS) criterion instead of the usual least squares
criterion.

P-Splines Based on a TP Basis
We first consider P-splines based on the TP basis, i.e.,

f .z/ D �1 C �2z C : : :C �lC1zl C �lC2.z � �2/lC C : : :C �d .z � �m�1/lC:

This basis consists of two different parts: the first l C 1 basis functions, which
describe a global polynomial in z, and the truncated powers describing deviations
from this polynomial. Estimated functions will be rough when there is a lot of
variability in the second part of the model. Therefore, regularized function estimates
may be defined by introducing a penalty for the coefficients of the corresponding
basis functions. We can create such a penalty, e.g., using the sum of squared
coefficients

dX

jDlC2
�2j ;

so that large coefficients associated with the truncated powers are penalized. Instead
of the usual residual sum of squares that underlies the basis function approaches of
the previous section,

LS D
nX

iD1
.yi � f .zi //

2 D
nX

iD1

0

@yi �
dX

jD1
�jBj .zi /

1

A
2

;

we now minimize the penalized residual sum of squares

PLS.	/ D
nX

iD1

0

@yi �
dX

jD1
�jBj .zi /

1

A
2

C 	

dX

jDlC2
�2j :

The penalty is constructed to discourage estimated functions that are too rough,
thereby preventing overfitting to the data. The smoothing parameter 	 � 0 controls
the influence of the penalty. As 	 ! 0, the effect of the penalty disappears so that
the penalized residual sum of squares approximately corresponds to the standard
residual sum of squares and we have an estimate for � that is close to the least
squares estimate. As 	 ! 1, the estimation criterion is dominated by the penalty
such that O�j D 0 for j D l C 2; : : : ; d , and the estimate for f .z/ approaches a
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polynomial of degree l . Varying the value of the smoothing parameter allows us to
choose continuously between these two extremes.

The main advantage of the penalization is that the smoothness of the estimated
fit is no longer controlled by the number and the position of knots but rather by
one single real-valued parameter, namely the smoothing parameter. Since we use a
large number of knots, the exact positioning of these knots is of minor importance.
To simplify matters, equidistant knots are often used in practice, but knots based
on quantiles are used as well. Figure 8.14 shows that penalized function estimates
depend on the number of knots only very moderately (when an optimal value
is chosen for the smoothing parameter using one of the methods discussed in
Sect. 8.1.9). For a very small number of knots, the estimate may not be flexible
enough. However, once a sufficiently large number of knots are used, the estimated
function only slightly changes when the number of knots is increased further,
provided that the smoothing parameter is adapted appropriately.

All smoothing techniques presented in the following will depend on some kind of
smoothing parameter that works similarly as the smoothing parameter of penalized
splines. i.e., controls the trade-off between smoothness of the resulting estimate
and fidelity to the data. Of course, it will then be important to determine a suitable
value for the smoothing parameter from the given data. In Sect. 8.1.9, we will
discuss the choice of the smoothing parameter in more detail and will offer different
possibilities to estimate it along with the nonparametric function f .z/.

P-Splines Based on B-Splines
If we represent f .z/ using B-spline basis functions instead of a TP basis, an
appropriate penalty is less obvious since the decomposition in a parametric poly-
nomial part and a deviation from the polynomial part does not occur in the basis
function definition. In order to create a penalty for B-splines, we therefore take
a different approach. To characterize the smoothness of any type of function, the
use of (squared) derivatives is appropriate, since these represent measures for the
variability of a function. Penalties based on the second derivative, such as

	

Z
.f 00.z//2d z; (8.2)

are particularly attractive since they measure the curvature of a function. This type of
penalty forms the basis of the implementation of penalized splines in the R package
mgcv, see Wood (2006), and can also be used in more general approaches, see
Sect. 8.1.3. A simple approximation to the derivative is available for B-splines,
which we can use for the construction of specialized penalties. From Eq. (8.1),
we know that the first derivative of a B-spline can be written as a function of the
first differences of the corresponding coefficient vector. In order to obtain a smooth
function and to avoid too large values of the first derivative, we introduce penalties
that are based on exactly these differences. In the following, we will limit ourselves
to equidistant knots, since they result in very simple expressions for the difference
penalty.
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Fig. 8.14 Influence of the number of knots on estimated P-splines

Analogous to first-order differences, we can use differences of a higher order r
if we aim at a smooth function in terms of r th-order derivatives. This leads to the
penalized residual sum of squares

PLS.	/ D
nX

iD1

0

@yi �
dX

jD1
�jBj .zi /

1

A
2

C 	

dX

jDrC1
.
r�j /

2;

where
r denotes r th-order differences, which are recursively defined by


1�j D �j � �j�1;


2�j D 
1
1�j D 
1�j �
1�j�1 D �j � 2�j�1 C �j�2;
:::


r�j D 
r�1�j �
r�1�j�1:
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This type of smoother has been proposed in Eilers and Marx (1996) and is currently
one of the most popular smoothers. In order to obtain a better understanding
of the impact of the difference penalty on the resulting estimates, we visualize
penalized spline estimates for different values of the smoothing parameter, similar
as in Fig. 8.13. We will discuss in detail below exactly how these estimates can be
obtained. Figure 8.15 shows the results with a second-order difference penalty and
cubic B-splines. In most of our applications, second-order differences are chosen,
while other orders, e.g., first or third, are possible.

We find that, for a large value of the smoothing parameter (	 ! 1), the
function estimate for f .z/ is close to linear in case of second-order differences.
More generally, as 	 ! 1, the fit approaches a polynomial of degree r � 1 with
r-th order differences, provided that the degree of the spline is at least as large as
the order of the differences, i.e., l � r . For first-order differences, this can easily be
shown based on the formula for the first derivative of a B-spline in Eq. (8.1): The
first derivative is equal to zero and the corresponding function is a constant if and
only if all first-order differences of coefficients are zero. This can be achieved with
a large smoothing parameter that places a large weight on the penalty. For penalties
with a larger difference order, analogous results can be obtained from formulae for
higher-order derivatives.

In comparison to penalized splines that are based on the TP basis, we obtain
the additional freedom to separately choose the degree of the limiting polynomial
obtained with heavy penalization as 	 ! 1 and the degree of the splines to be
used for the modeling of f .z/. In contrast, the unpenalized polynomial is always
of degree l for the TP basis since only the coefficients of the truncated powers
are penalized. When using B-splines, we are able to choose the degree of the
polynomial that results with heavy penalization, through the choice of the difference
order k, which is independent of the degree l of the spline. This provides us with
additional flexibility in the modeling process and also with a clear separation of the
two different model features.

Penalized Least Squares Estimation
For the derivation of the PLS estimate, it is advantageous to write the penalty in
matrix notation. For the TP basis, this is simply achieved via

	

dX

jDlC2
�2j D 	� 0K�

with the vector � D .�1; : : : ; �d /
0 and the penalty matrix

K D diag.0; : : : ; 0„ ƒ‚ …
.lC1/

; 1; : : : ; 1„ ƒ‚ …
.m�2/

/:

For the B-spline penalty based on differences, we start by writing the vector of first
differences using the difference matrix
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Fig. 8.15 Malnutrition in Tanzania: impact of the smoothing parameter on estimated P-splines
with second-order difference penalty
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of dimension .d � 1/ � d , yielding

D1� D

0

B@
�2 � �1
:::

�d � �d�1

1

CA :

Higher differences can be expressed recursively with the help of difference matrices

Dr D D1Dr�1:

For example, with r D 2, we obtain the .d � 2/ � d -difference matrix

D2 D

0
BBB@

1 �2 1

1 �2 1
: : :

: : :
: : :

1 �2 1

1
CCCA :

This yields the penalty

	

dX

jDrC1
.
r�j /

2 D 	� 0D0
rDr� D 	� 0K r�;

with first- and second-order difference penalty matrices

K 1 D

0

BBBBB@

1 �1
�1 2 �1

: : :
: : :

: : :

�1 2 �1
�1 1

1

CCCCCA
; K 2 D

0

BBBBBBBBBB@

1 �2 1

�2 5 �4 1

1 �4 6 �4 1
: : :

: : :
: : :

: : :
: : :

1 �4 6 �4 1

1 �4 5 �2
1 �2 1

1

CCCCCCCCCCA

;

respectively.
If we define the penalty based on the integral of the squared second derivatives

as in Eq. (8.2), we obtain another quadratic penalty

Z
.f 00.z//2d z D

Z � dX

jD1
�jB

00
j .z/

�2
d z

D
Z dX

rD1

dX

jD1
�r�jB

00
r .z/B

00
j .z/d z
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8.3 Penalized Splines

Model

We approximate function f using polynomial splines so that we are able to
write the nonparametric regression model as a linear model

y D Z� C ":

Penalized Least Squares Criterion

Rather than using the standard residual sum of squares, we estimate � by
minimizing the PLS criterion

PLS.	/ D .y � Z�/0.y � Z�/C 	� 0K�:

The smoothing parameter 	 � 0 controls the compromise between fidelity
to the data and smoothness of the resulting function estimate. For splines
in a TP basis representation, we penalize the sum of squared coefficients
of the truncated powers. For B-splines, we construct the penalty based on
the sum of squared differences of neighboring coefficients or based on the
integral of the function’s squared second derivative.

Penalized Least Squares Estimation

In either case, the PLS estimate has the form

O� D .Z 0Z C 	K /�1Z 0y:

D
dX

rD1

dX

jD1
�r�j

Z
B 00
r .z/B

00
j .z/d z

D � 0K�;

with K Œr; j � D R
B 00
r .z/B

00
j .z/d z. The entries of the penalty matrix K result from

the integrated products of second derivatives of the B-spline basis functions.
In general, we can write the penalized residual sum of squares as

PLS.	/ D .y � Z�/0.y � Z�/C 	� 0K�

D y 0y � y 0Z� � � 0Z 0y C � 0Z 0Z� C 	� 0K�

D y 0y � 2� 0Z 0y C � 0.Z 0Z C 	K /�
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using an appropriate penalty matrix K . Taking the derivative with respect to �

(compare Theorem A.33 in Appendix A.8) and setting the derivative equal to zero
yields the system of equations

�2Z 0y C 2.Z 0Z C 	K /� D 0;

and, therefore, the PLS estimate

O� D .Z 0Z C 	K /�1Z 0y: (8.3)

Consequently, the vector of estimated function evaluations Of D . Of .z1/; : : : ; Of .zn//0
is calculated as

Of D Z O� D Z .Z 0Z C 	K /�1Z 0y:

Note that the form of the PLS estimate is very similar to the unpenalized least
squares estimate, as it only differs by the additional term 	K . This additional term
represents the influence of the penalty within the PLS criterion. For 	 D 0, we
again obtain the solution of the unpenalized optimization problem. Based on similar
considerations as presented for the least squares estimate in section “Statistical
Properties without Specific Distributional Assumptions” of Sect. 3.2.3, we obtain
the covariance matrix of the PLS estimate:

Cov. O�/ D �2.Z 0Z C 	K /�1Z 0Z .Z 0Z C 	K /�1:

In contrast to the covariance matrix of the least squares estimate, this covariance
matrix consists of three parts and has the form of a “sandwich” matrix (known from
Sects. 4.1.3, p. 190 and 7.3.3, p. 378). The two additional expressions containing
the penalty matrix are responsible for the stabilization of the PLS estimator and,
in comparison to the unpenalized least squares estimator, typically lead to smaller
variances. However, this achieved efficiency implies that the PLS estimator is no
longer unbiased. Provided that the smoothing parameter is chosen appropriately, the
PLS estimator generally yields a smaller mean squared error. Thus, from a statistical
point of view, the estimator has better properties than the unpenalized least squares
estimator.

We find very similar forms when comparing the PLS estimate with that of the
posterior expectation

E.� j y/ D .X 0X C M �1/�1X 0y

of a linear model with prior distribution � � N.0; �2M / (derived in Sect. 4.4,
pp. 225ff.). We can thus supplement penalized splines with a Bayesian interpretation
as detailed below. Additionally, penalized splines are closely related to models
containing random effects, as illustrated by a comparison with the estimating
equations in Box 7.3 on p. 375. We will use both the Bayesian interpretation and
the relation to mixed models in Sect. 8.1.9 when we elaborate on choosing the
smoothing parameter 	.
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Fig. 8.16 Malnutrition in Tanzania: P-spline estimates based on first (left panel) and second (right
panel) order differences and different smoothing parameters

Example 8.2 Malnutrition in Tanzania: P-Splines
Similar to Example 8.1, we compare several specifications for penalized splines using the
data on malnutrition in Tanzania. We focus on P-splines in B-spline representation with 20
inner knots, and examine several smoothing parameter choices as well as penalties that are
based on first and second differences. Figure 8.16 shows some of the corresponding results.
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In the first row, we can see the estimated function Of .z/, which results from choosing a
rather small smoothing parameter. As a consequence, the estimated functions are relatively
rough with somewhat smoother results in case of second-order differences. If we choose
a larger smoothing parameter (middle row in Fig. 8.16), we obtain very smooth fits. In
particular, first-order differences yield an almost constant fit, i.e., the estimated function is
close to the limiting case obtained with 	 ! 1. For second-order differences, we still find
some deviation from a linear fit. The bottom row shows estimates resulting from “optimal”
smoothing parameters, which were chosen with the help of one of the approaches presented
in Sect. 8.1.9. This results in a (at least visually) plausible compromise between fidelity to
the data and smoothness. The two aforementioned main features of the relationship between
age and malnutrition are easily seen with either penalty: a higher Z-score, which is a lower
risk for malnutrition of young children, and a local maximum of the Z-score at the age
of approximately 24 months, which is due to the change of the reference population. It
would be especially difficult to discover the effect of the change of the reference population
without an automatic and data-driven choice of the smoothing parameter. 4

Bayesian P-Splines
Besides their motivation based on a PLS criterion, penalized splines can also be
derived in a Bayesian framework. In particular, this allows us to employ Bayesian
approaches for the estimation of P-splines including the smoothing parameter;
see Sect. 8.1.9. We first focus on penalized splines that are based on B-splines,
followed by a brief presentation of Bayesian TP-splines.

For the Bayesian formulation, we start with the same observation model as in the
previous section, i.e.,

yi D f .zi /C "i D
dX

jD1
�jBj .zi /C "i ;

with B-spline basis functions Bj . Instead of imposing a penalty, we will now
develop an appropriate prior assumption for � that enforces a smooth function
estimation. The stochastic analogue for the difference penalty is random walks of
order k (RWk). A random walk of first order (RW1) is defined by

�j D �j�1 C uj ; uj � N.0; �2/; j D 2; : : : ; d;

or equivalently

�j � �j�1 D uj ; uj � N.0; �2/; j D 2; : : : ; d;

so that a connection to the first-order difference penalty is recognizable. We have to
make further assumptions for the prior of the starting value �1 and a noninformative
prior distribution; p.�1/ / const will be our standard option.

Our prior specification corresponds to the conditional distributions

�j j �j�1; : : : ; �1 � N.�j�1; �2/: (8.4)
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Fig. 8.17 Conditional distribution induced by a first-order random walk with a large (left panel)
and a small (right panel) variance

The RW1 has a special dependence structure such that the conditional distribution
of �j given all previous values is only dependent on the value lagged by one, i.e.,
�j�1. Therefore, the RW1 has the (first-order) Markov property.

We next take a closer look at the dependence structure of the parameter vector
� imposed by the random walk prior. According to Eq. (8.4), the conditional
expectation of �j is simply the lagged value �j�1 such that we obtain a constant
trend for the expected value. This is visualized in Fig. 8.17, which also shows
the effect of the variance �2 of the errors uj . The larger the variance, the larger
the possible deviation from the conditional expectation. As we know from the
discussion of P-splines in the previous section, a constant value of all B-spline
coefficients leads to a constant estimate for the function f .z/. This corresponds
to the case that the variance of the RW1 is (almost) zero, since only very little
deviation between �j and �j�1 is allowed in this situation resulting in a (near)
constant trend for the sequence �1; : : : ; �d . In contrast, when having a large variance
�2, neighboring coefficients are able to deviate from each other, which in turn leads
to a rough estimated function. Thus we can interpret the variance parameter �2 as an
inverse smoothing parameter. We will characterize the exact relationship between 	
and � in more detail below.

Although the definition of a random walk in Eq. (8.4) only determines the
conditional distributions �j j �j�1; : : : ; �1, we can actually use these distributions
to determine the joint multivariate prior distribution of the complete vector � under
an RW1:

p.� j �2/ D
dY

jD1
p.�j j �j�1; : : : ; �1/

D p.�1/

dY

jD2
p.�j j �j�1/
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/
dY

jD2

1p
2��2

exp

�
� 1

2�2
.�j � �j�1/2

�

D 1

.2��2/.d�1/=2 exp

0

@� 1

2�2

dX

jD2
.�j � �j�1/2

1

A

D 1

.2��2/.d�1/=2 exp

�
� 1

2�2
� 0K 1�

�
:

The first step is based on using the rule of total probability to factor the joint
density. Due to the Markov property, we then obtain simplified expressions for the
conditional distributions, so that we can insert the density of the normal distribution
that appears in the RW1 prior. The proportionality sign results from the flat prior for
the first regression coefficient �1, which we did not specify exactly but only up to a
proportionality constant. The joint distribution has the form of a multivariate normal
distribution with expectation 0 and precision matrix K 1=�

2, where K 1 D D0
1D1 is

defined by the first-order difference matrix D1 as in the previous section. However,
this precision matrix does not have full rank, since rows and columns sum to zero.
Consequently, we cannot obtain the inverse, and the covariance matrix “�2K�1

1 ”
of the prior distribution does not exist. Thus, we cannot normalize the density
of � , and the integral of the density diverges. Therefore, the joint prior of � is
an improper, singular normal distribution (see Appendix B.3.2). More precisely, we
call the distribution partially improper since the precision matrix is not of full rank,
but rk.K 1/ D d �1 > 0 holds. For a first-order random walk, the deterministic part
of the prior distribution (as defined in Appendix B.3.2) corresponds to a constant
vector representing the level of function f . With the partially improper prior, we
define a flat prior for this level. The stochastic part of the prior represents the
deviations from the constant. We will use similar ideas in Sect. 8.1.9 in order to
create a representation of penalization approaches as mixed models.

The multivariate prior distribution for the vector � also determines the undirected
forms of the conditional distribution (8.4). In this case, we condition on all
remaining parameters and not only on the preceding values �j�1; : : : ; �1. For the
RW1, we obtain

�j j � � N

�
1

2
.�j�1 C �jC1/;

�2

2

�
; j D 2; : : : ; d � 1

(with the exception of the boundary parameters �1 and �d ). We again recognize
the Markov property (this time, however, in undirected form), according to which
the conditional distribution of �j , given all remaining parameters, only depends
on the two immediate neighbors. More precisely, the conditional expectation is
the local average of the two adjacent regression coefficients. A more detailed
discussion of the random walk prior that also contains information about the
boundary parameters can be found in Lang and Brezger (2004).
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Although the joint prior distribution is partially improper, we obtain a proper
multivariate normal posterior distribution for � . The derivation is similar to the steps
to obtain the posterior in Bayesian linear model; see Sect. 4.4. In particular, we
obtain the following expressions for the posterior expectation and covariance matrix
of �:

E.� j y; �2; �2/ D
�

Z 0Z C �2

�2
K 1

��1
Z 0y ;

i.e., the PLS estimate with smoothing parameter 	 D �2=�2, and

Cov.� j y; �2; �2/ D �2.Z 0Z C 	K 1/
�1:

In contrast to the non-Bayesian results of the last section, we obtain a simpler
form for the covariance matrix. The reason is due to the stochastic formulation
of the Bayesian model: Whereas the frequentist approach considers the regression
coefficients � as fixed and unknown parameters, we now consider the regression
coefficients as random.

In the Bayesian formulation, the P-spline smoothing parameter 	 is given by the
ratio of the error variance and the variance of the RW1. This solidifies our previous
conjectures regarding the influence of the variance �2 of the random walk and further
leads to an interesting interpretation of the smoothing parameter 	: The larger the
variance of the prior distribution is relative to the variance of the residuals, the less
the estimation will be penalized. Consequently, we always have to interpret the value
of �2 relative to the variance �2 that is associated with the measurement error ". We
can then refer to 	 as the noise-to-signal ratio.

For random walks of a higher order, we can derive analogous results. We now
briefly consider the special case of the RW2. A RW2 prior for � is defined by

�j D 2�j�1 � �j�2 C uj ; uj � N.0; �2/; j D 3; : : : ; d;

usually in combination with noninformative prior distributions p.�1/ / const and
p.�2/ / const for the initial values. When reformulating the RW2 definition to

�j � 2�j�1 C �j�2 D uj ; uj � N.0; �2/; j D 3; : : : ; d;

we again can identify the similarity to the second-order difference penalty that was
presented in the previous section. If we specify the assumption of a RW2 in terms
of conditional distributions, we obtain

�j j �j�1; �j�2; : : : ; �1 � N.2�j�1 � �j�2; �2/

corresponding to a local linear extrapolation of the conditional expectation; see
Fig. 8.18. For the joint distribution of the entire vector � , we have



8.1 Univariate Smoothing 445

τ2

j−2 j−1 j

γj−1

γj−2

E(γj|γj−1,γj−2)

Fig. 8.18 Conditional distribution imposed by a second-order random walk

p.� j �2/ / 1

.�2/.d�2/=2 exp

�
� 1

2�2
� 0K 2�

�
;

with K 2 D D 0
2D2. Again, the precision matrix is not of full rank and the prior

distribution for the RW2 is partially improper with rk.K 2/ D d � 2.
Although we can obtain point estimates and covariance matrices for Bayesian

P-splines analytically when the smoothing parameter is given, we mainly use the
Bayesian formulation to develop a Bayesian inferential framework for penalized
splines and the more general penalization approaches in Sect. 8.1.9. This also opens
up the possibility to determine the smoothing parameter in a rather simple way.
In addition, it is easier to implement the additive extensions, within the scope of
Bayesian approaches, discussed in Chap. 9.

P-splines in TP basis representation can also be motivated in a Bayesian
framework. In fact, it is even easier to construct the prior distribution, since an
i.i.d. prior for the regression coefficients lends itself to the equivalence for the
ridge penalty described in the previous section. More precisely, we assume that
the coefficients �lC2; : : : ; �d of the truncated polynomials are independently and
identically N.0; �2/ distributed. For the coefficients of the global polynomials
�1; : : : ; �lC1, we consider noninformative prior distributions, i.e., p.�j / / const ,
j D 1; : : : ; lC 1. Similar to the frequentist penalization approach, the two different
types of prior distributions reflect a distinction between parameters to be estimated
in a restricted and an unrestricted way. The Bayesian formulation of TP-splines
also introduces a connection between nonparametric regression models and mixed
models since the distributional assumptions cannot only be interpreted as prior
information, but also distinguish between fixed and random effects in a mixed
model. Such a connection will also help us to derive an estimation approach for
the smoothing parameter.

Similar to P-splines based on B-splines, we can now derive the posterior
expectation and covariance matrix for TP-splines. In particular, the PLS estimator
is obtained as the posterior expectation.
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8.1.3 General Penalization Approaches

Prior to discussing further models of nonparametric regression, we collect some
properties of penalized splines that also apply to a number of general penalization
approaches. In fact, many of the univariate and bivariate smoothing methods that we
discuss in Sects. 8.1 and 8.2 can be included in such a general framework.

Representing polynomial splines with basis functions as in

f .z/ D
dX

jD1
�jBj .z/ (8.5)

resulted in a “large” linear model of the form

y D Z� C "; (8.6)

in which the design matrix was defined by the evaluations of the basis functions.
However, in Eq. (8.5), we are of course not limited to TP-splines or B-splines,
but we can rather use any type of functions for the approximation of f .z/. The
choice of the basis functions Bj then determines the class of functions we employ
to describe f .z/. For example, either the TP or the B-spline basis results in the
space of all polynomial splines for the given knot configuration and degree l . In the
following sections we will learn about other models of the form (8.6) that are useful
in nonparametric regression. The concept of penalized residual sums of squares used
to derive P-splines can also be implemented more generally. Assuming that Eq. (8.5)
holds, we can always define a suitable penalty via the integral of the squared second
derivative (as shown on p. 437):

Z
.f 00.z//2d z D

dX

iD1

dX

jD1
�i�j

Z
B 00
i .z/B

00
j .z/d z D � 0K� :

We again find a quadratic penalty for � where the entries of the penalty matrix K

are determined by the second derivatives of the basis functions. As with P-splines,
alternative construction mechanisms for penalties may exist for more general types
of basis functions, but these often lead to quadratic penalties 	� 0K� as well.

As an optimization criterion, we always obtain a PLS criterion of the form

PLS.	/ D .y � Z�/0.y � Z�/C 	� 0K�;

differing only in the specification of the design matrix Z and the penalty matrix K .
Minimization of the PLS criterion yields the PLS estimate

O� D .Z 0Z C 	K /�1Z 0y:
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8.4 General Penalization Approaches

Model

The function f is represented through a large linear model, such that

y D Z� C ":

Often this is achieved by approximating the function f .z/ using basis
functions, i.e.,

f .z/ D
dX

jD1
�jBj .z/:

Penalization

To regularize estimation, we assume a quadratic penalty of the form

	� 0K�

or the normal prior distribution

p.� j �2/ /
�

1

2��2

�rk.K /=2
exp

�
� 1

2�2
� 0K�

�

for � . This leads to the PLS criterion

.y � Z�/0.y � Z�/C 	� 0K�

and the PLS estimate

O� D .Z 0Z C 	K /�1Z 0y:

We can also consider penalty approaches with quadratic penalties in a Bayesian
context. Penalties of the form	� 0K� correspond to the assumption of a multivariate
normal prior with density

p.� j �2/ /
�

1

2��2

�rk.K /=2
exp

�
� 1

2�2
� 0K�

�
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for the coefficient vector � . However, we should keep in mind that the penalty matrix
K may not be of full rank. In such cases, the density cannot be normalized and is
only defined upon proportionality.

Two of the approaches that we will discuss in Sect. 8.1.9 to determine the optimal
smoothing parameter will be explicitly tailored to models using general penalty
approaches.

At this point, we also want to briefly discuss the possibility to model non-
normally distributed response variables within the nonparametric regression frame-
work (which will be discussed in more detail in Chap. 9). Transferring the ideas
of nonparametric regression to response variables from exponential families, as
considered in Chap. 5, we obtain models of the form

E.yi j �i / D h.�i /; �i D f .zi /;

for the expectation of the response variables. As in Chap. 5, h.�/ defines a known
response function, e.g., the logistic cumulative distribution function in the logit
model or the exponential function associated with log-linear Poisson models. If we
use basis functions for approximating the function f , we obtain the vector of linear
predictors as � D Z� . Instead of imposing a penalty on the least squares criterion
as we did in nonparametric regression for normally distributed responses, we now
consider the penalized log-likelihood criterion

lpen.�/ D l.�/� 	

2
� 0K� (8.7)

for the estimation of the regression coefficients. We denote by l.�/ the usual log-
likelihood function of a generalized linear model; see Sect. 5.4.1. The smoothing
parameter has to be divided by 2 to make the likelihood-based approach equivalent
to the PLS approach discussed so far. In fact, Eq. (8.7) is equivalent to the PLS
criterion in case of normally distributed responses.

In order to determine the penalized ML estimate, we amend the Fisher scoring
approach, discussed in Sect. 5.4.2, with the penalty. In particular, the estimated O�
can be determined using iteratively weighted PLS estimation; see Chap. 9 for details.
To keep our discussion of further modeling alternatives in nonparametric regression
models as simple as possible, we will restrict ourselves to normally distributed
responses in this chapter but will return to the more general setting in Chap. 9.

8.1.4 Smoothing Splines

When working with penalized splines, we limit ourselves, right from the start, to a
function space spanned by the spline basis functions. However, we can also work
with more general function spaces, as we will demonstrate with the example of
smoothing splines. Here we only assume that the function f .z/ is twice continuously
differentiable, so that we can use the PLS criterion
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nX

iD1
.yi � f .zi //

2 C 	

Z
.f 00.z//2d z (8.8)

to determine an estimate of f . In this setting, we define the penalty to be
the integrated squared second derivative, which yields a measure for the overall
curvature of the function. Surprisingly, a very special class of functions emerges
as the solution for the optimization problem, despite the generality of the approach
taken. This class of functions are the so-called natural cubic splines, a special subset
of cubic polynomial splines.

8.5 Natural Cubic Splines

The function f .z/ is a natural cubic spline based on the knots, a � �1 < : : : <

�m � b, if:
(i) f .z/ is a cubic polynomial spline for the given knots.

(ii) f .z/ satisfies the boundary conditions f 00.a/ D f 00.b/ D 0, i.e., f .z/ is
linear in the intervals Œa; �2� and Œ�m�1; b�.

Clearly, every natural cubic spline is also a cubic polynomial spline. However,
due to the boundary conditions, we have additional restrictions such that m basis
functions are sufficient to represent a natural cubic spline (in comparison to themC2
basis functions for standard cubic polynomial splines). The boundary conditions are
also the motivation for the name “natural cubic spline.” Originally, the word “spline”
designated a curve template, which means a flexible ruler that allows one to draw a
smooth function that interpolates a given set of points. In our example, these points
would be the function values evaluated at the knots. Outside of the knot set, the ruler
then again takes its “natural,” linear form.

The optimal solution for Eq. (8.8) is now given by a natural cubic spline with
knots at the d ordered and unique covariate values z.1/ < : : : < z.d/. Such a spline
is then also called a smoothing spline.

Since natural cubic splines are special polynomial splines, we can represent them
using the basis functions already discussed in previous sections. Note, however, that
d basis functions are sufficient for describing a natural cubic spline, and therefore
the representation through common cubic polynomial spline functions contains two
redundant basis functions. We obtain a “real” basis for natural cubic splines by
introducing suitable modifications of the polynomial spline basis functions at the
boundary of the domain. In the representation

f .z/ D
dX

jD1
�jBj .z/;

the basis functions B3; : : : ; Bd�2 remain unchanged, while the basis functions
B1, B2, Bd�1, and Bd are adjusted such that the natural boundary conditions are
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Fig. 8.19 Basis of a natural cubic spline with equidistant knots (left panel) and with unevenly
distributed knots (right panel)

fulfilled. We restrain from an explicit derivation of the resulting basis functions, and
rather provide a visualization in Fig. 8.19, using the same knot configuration that
was used for constructing the B-spline basis in Fig. 8.12 (p. 428). We find that the
basis functions are indeed the same in the interior, whereas the outer basis functions
are modified to fulfill the boundary conditions of the natural cubic spline.

For minimizing the PLS criterion (8.8), we need an expression for the penalty
based on the integrated squared second derivative. With natural cubic splines using
the basis functions presented in Fig. 8.19, we again have

Z
.f 00.z//2d z D

dX

iD1

dX

jD1
�i�j

Z
B 00
i .z/B

00
j .z/d z D � 0K� :

Thus the PLS criterion to be minimized is

.y � Z�/0.y � Z�/C 	� 0K�;

where Z contains the basis functions evaluated at the observed z values. We find that
the form of the expression to be minimized corresponds exactly to the PLS criterion
discussed in the previous sections of this chapter. Therefore, the PLS estimate is
again given by

O� D .Z 0Z C 	K /�1Z 0y:

Alternatively, we can directly write the smoothing spline minimization problem
in terms of the function evaluations f .z.j //. If we collect the function evaluations in
the vector f D .f .z.1//; : : : ; f .z.d///0, and define the respective design matrix Zf

as an incidence matrix with entries
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8.6 Smoothing Splines

We seek the function f , which minimizes the least squares criterion

nX

iD1
.yi � f .zi //

2 C 	

Z
.f 00.z//2d z;

among all twice continuously differentiable functions. The solution for this
optimality criterion is a natural cubic spline with knots located at the observed
covariate values. We represent natural cubic splines using a modified B-spline
basis, so that the PLS estimate can be calculated in the same way as for
P-splines, i.e.,

O� D .Z 0Z C 	K /�1Z 0y:

Zf Œi; j � D
(
1 if zi D z.j /;

0 otherwise;

we obtain the PLS criterion

.y � Z f f /0.y � Zf f /C 	f 0K f f ;

where the penalty matrix can be constructed based on the distances ıj D z.jC1/�z.j /
(see, e.g., Fahrmeir and Tutz (2001), p. 179–180). Minimizing the PLS criterion for
f results in

Of D .Z 0
f Zf C 	Kf /

�1Z 0
f y ;

which corresponds to the PLS estimate O� .
Smoothing splines are typically based on a high-dimensional basis so that a

large set of parameters needs to be estimated. In particular, the basis usually grows
with the sample size so that for large data sets the practical calculations become
demanding. Consequently, a reduced basis is used in many implementations of
smoothing splines. A naive approach, implemented, for example, in PROC GAM
in SAS, is to simply use a subset of the distinct covariate values to determine
the set of knots. However, for this reduced basis, the optimality property that led
us to the consideration of smoothing splines is no longer fulfilled. An alternative,
corresponding to the default smoother in the mgcv package in R, is to determine a
reduced basis in terms of an optimal approximation of the original basis utilizing
a spectral decomposition of the design matrix. We will discuss this possibility in
somewhat more detail in Sect. 8.2.2 on thin plate splines in the context of bivariate
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smoothing and utilizing a different basis since smoothing splines are a special case
of thin plate splines.

8.1.5 Random Walks

Random walks are not only used for the construction of prior distributions in
Bayesian regression models but can also be employed to directly model nonlinear
effects. In particular, random walks provide a univariate counterpart to Markov
random fields that we will discuss in the context of spatial smoothing in Sect. 8.2.4.

Random walk models are especially useful when analyzing time series data,
i.e., we are assuming a temporal trend function f .t/ that is to be modeled
nonparametrically, similarly as with function f .z/:

yt D f .t/C "t ; t D 1; : : : ; T:

In a random walk approach, we identify every function evaluation f .t/ with the
parameter �t and then assume a random walk prior for these parameters, i.e.,

f .t/ D �t D �t�1 C ut ; ut � N.0; �2/;

or
f .t/ D �t D 2�t�1 � �t�2 C ut ; ut � N.0; �2/;

with random walks of first and second order, respectively. Random walks can also
be considered as special P-splines if we use a B-spline basis of degree zero (l D 0)
and if we further identify the knots with the observed time points. As with Bayesian
P-splines, a PLS criterion results from this setting, which we can explicitly write for
the RW2 as

PLS.	/ D
TX

tD1
.yt � �t /

2 C 	

TX

tD3
.�t � 2�t�1 C �t�2/2:

In econometrics, the solution of the respective minimization problem is also known
as the Hodrick–Prescott filter (see Hodrick & Prescott, 1997), but actually dates
back to Whittaker (1923). In Hodrick and Prescott (1997), rules of thumb for
the choice of the smoothing parameter are motivated by theoretical considerations
regarding the signal-to-noise ratio. In contrast to this, embedding random walks
into the general context of nonparametric regression offers the opportunity to use
the approaches for an optimal choice of smoothing parameters as discussed in
Sect. 8.1.9.

While in time series the assumption of equally spaced time intervals is often
satisfied, this is usually not the case when transferring the random walk approach to
nonparametric smoothing of general covariate effects f .z/. In this case, a weighted
random walk definition is often considered with the weights derived from the
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distances between covariate values. We will not discuss this case further here. A
detailed discussion can be found in Rue and Held (2005) within the scope of more
general Gauß–Markov random fields.

8.1.6 Kriging

In this section, we discuss a smoothing approach, which was not directly developed
for univariate smoothing, but which has its origin in spatial statistics. The method is
referred to as kriging, named after the South African mining engineer D. G. Krige,
who used the approach when modeling the course of stone cores based on depth
drillings. Even though kriging is rarely used for univariate smoothing, we introduce
it at this point to discuss the general idea and its close relationship to basis function
smoothing.

Classical Kriging
The main idea of kriging is to express (originally spatial) correlations among
the data using parametric correlation functions and to employ this information
when fitting a regression model. This can be achieved through a stationary and
multivariate normally distributed stochastic process, which induces the desired
correlations analogous to random effects models. Therefore kriging is often thought
of as synonymous to the inclusion of a stationary Gaussian process (or stationary
Gaussian field in spatial statistics) in the regression model. Since we focus for the
moment on univariate smoothing methods, we consider time series data instead of
spatially aligned data, which will be discussed in more detail in Sect. 8.2.3.

We assume that a time series in continuous time t 2 R,

yt D x0
tˇ C �t

is given. In contrast to the classical linear model, the assumption of uncorrelated
errors is usually violated in this situation, and it seems plausible to rather consider
temporally correlated errors. Therefore we assume that the error � is multivariate
normal with expectation 0 and covariance matrix �2I C �2R. The matrix R is a
correlation matrix, described in terms of a parametric correlation function , leading
to the elements

RŒt; s� D Corr.�t ; �s/ D .t; s/:

Hence, the covariance matrix is composed of an uncorrelated part �2I and a
correlated part �2R. The former part corresponds to the usual covariance matrix
in the classical linear model, while the later part models temporal dependencies. If
the parameters �2 and �2, as well as the correlation function , are fully known, we
obtain a general linear model with covariance matrix Cov.y/ D V D �2I C �2R,
which can be estimated as outlined in Sect. 4.1. In particular, the weighted least
squares estimate for ˇ results as

Ǒ D .X 0V �1X/�1X 0V �1y :
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Similar as in Chap. 7, we can estimate the variance parameters �2 and �2 (and
also possibly additional parameters for the correlation function), by maximizing
the profile likelihood or the corresponding restricted likelihood function.

Most commonly, stationary error distributions are assumed, i.e., .t; s/ only
depends on the time difference t�s, and not on the exact locations of the time points
t and s. This yields correlation functions .h/ with scalar argument h D t � s.

Clearly, we have .0/ D 1 and .h/ D .�h/ for a valid correlation function.
Moreover, some further properties are often assumed:
• As h ! 1, we have .h/ ! 0, i.e., for observations having large temporal

distance, the correlation becomes negligible.
• The correlation function .h/ decreases monotonically. This corresponds to the

intuitive idea that observations that are temporally close to each other should
always show a higher correlation than observations that are more distant apart in
time.
Some frequently used parametric correlation functions belong to one of the

following classes:
The family of spherical correlation functions is defined by

.hI�/ D
(
1� 3

2
jh=�j C 1

2
jh=�j3 0 � h � �;

0 h > �:

The only parameter of the spherical correlation function is given by � > 0,
which controls the distance at which the correlation decreases to 0. See Fig. 8.20a
which shows spherical correlation functions for different values of �. Due to this
interpretation, � is also called the range of the correlation function. The non-
differentiability of the spherical correlation function in h D � can be problematic
when considering maximum likelihood estimation of the parameter �. Obviously,
the change from positive correlations to non-existent correlations occurs in a
continuous but not differentiable form.

The power exponential family is defined by

.hI�; �/ D exp .�jh=�j�/

with parameters � > 0 and 0 < � � 2. The basic exponential correlation
function results for � D 1. The Gaussian correlation function, which resembles
the normal density, follows for � D 2. Figure 8.20b shows the power exponential
family for various values of � (and fixed � D 1). In contrast to the spherical
correlation function, the power exponential correlation between two points remains
positive regardless of their distance, i.e., the range is unlimited. Therefore, one often
considers the effective range instead, i.e., the distance where the correlation function
falls below a predetermined small value (e.g., 0.01). In applications, correlations
between points that are farther apart than the effective range are then usually
considered negligible and are therefore set to zero to achieve a sparser correlation
matrix R. The effective range of the power exponential family is mostly determined
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Fig. 8.20 Examples of parametric correlation functions: Panel (a) shows spherical correlation
functions for � D 1 (—), � D 1:75 (- - -), and � D 2:5 (� � � ); panel (b) visualizes exponential
correlation functions (with fixed � D 1) for � D 0:5 (—), � D 1 (- - -) and � D 2 (� � � ); and
panel (c) shows Matérn correlation functions (with fixed � D 1) for � D 1:5 (—), � D 2:5 (- - -),
and � D 3:5 (� � � ). Note that the range of the correlation functions varies over the different panels,
i.e., the range of the horizontal axis is adapted to facilitate the comparison of correlation functions
within one panel

by the parameter �, which controls the scaling of the time axis, but also varies
depending on the specific value of �.

The basic exponential correlation function also has an interesting connection
with linear models having autocorrelated errors; see also Sect. 4.1.4. In this case, the
time index t and also the observed time difference h are assumed to be discrete. In
this setting, the simplest and the most frequently used model to account for temporal
correlations is an AR(1)-process, which assumes

�t D �t�1 C ut ; ut � N.0; �2/; (8.9)

for the errors. The parameter  controls the influence of the lagged values �t�1 on
�t , so that positively correlated errors result for  > 0, with correlation function

Corr.�t ; �tCh/ D h; h D 1; 2; : : : :
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Hence, the correlation decays exponentially in the time distance h similar to the
time-continuous exponential correlation function. If we define the parameter  D
exp.�1=�/, we can rewrite the exponential correlation function as

.h/ D exp.�h=�/ D exp.�1=�/h D h:

Therefore, the autoregressive error process Eq. (8.9) can also be interpreted as
a discretized version of a continuous-time process with exponential correlation
function.

One of the most flexible families of correlation functions, which in practice
became the standard of spatial statistics, is the Matérn family .hI�; �/ with
� > 0, � > 0. The general representation of correlation functions from this
family is, however, only possible with the help of modified Bessel functions of the
order �, which can only be evaluated numerically, but cannot be derived explicitly.
Consequently, one often restricts the attention to a subset of the Matérn correlation
functions with � D 0:5; 1:5; 2:5; : : :. For these cases, the correlation function can be
derived analytically and, for example, takes the form

.hI�; � D 0:5/ D exp.�jh=�j/;
.hI�; � D 1:5/ D exp.�jh=�j/.1C jh=�j/;
.hI�; � D 2:5/ D exp.�jh=�j/.1C jh=�j C 1

3
jh=�j2/;

.hI�; � D 3:5/ D exp.�jh=�j/.1C jh=�j C 2
5
jh=�j2 C 1

15
jh=�j3/:

For � D 0:5, the Matérn correlation function again simplifies to the basic
exponential correlation function. Figure 8.20c shows the remaining three examples.
Larger values of � evidently lead to correlation functions with a larger effective
range, and thus stronger correlations for points in time with large temporal distance.
If we let � go to infinity, we obtain the Gaussian correlation function as the limiting
case, i.e., yet another special case of the power exponential correlation function.

Kriging as Time Series Smoother
In order to motivate the use of correlation functions and stationary Gaussian
processes in nonparametric function estimation, we decompose the error �t into a
temporally correlated component �t and the remaining independent and identically
distributed component "t :

yt D x0
tˇ C �t C "t ; t 2 ft.1/; : : : ; t.d/g:

With adequate distributional specifications for �t and "t , we obtain exactly the
covariance structure for the response variable y considered above in the previous
paragraph.

In matrix notation, the model can be represented as

y D Xˇ C Z� C ";
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where � D .�1; : : : ; �d /
0 defines the vector of the d unique and temporally ordered

errors �t and Z D Id is the d -dimensional identity matrix. In a second step, we
further reparameterize the model to

y D Xˇ C ZR � R�1� C " D Xˇ C QZ Q� C "

with QZ D ZR D R and Q� D R�1� .
This reparameterization evidently leads to the same distribution of y and, thus, to

an equivalent model formulation. However, the interpretation of the design matrix
QZ changes. Due to the special structure of Z , we obtain

QZ Œi; j � D .t.i/; t.j //

for the individual entries. If we compare this definition with the construction of the
design matrix for B-splines or TP-splines, we find that the correlation function  has
the role of a basis function, and that the observed time points t.j / adopt the role of
knots. Thus, for the temporal trend, we have

f .t/ D �t D
dX

jD1
Q�j .t; t.j //:

The joint distribution of the temporally correlated effects Q� is

Q� � N.0; �2R�1/

and therefore has a density of the form

p. Q� j �2/ / exp

�
� 1

2�2
Q� 0R Q�

�
:

This form exactly corresponds to the smoothing prior that we discussed in con-
nection with the Bayesian formulation of penalty approaches. It also yields an
equivalent PLS criterion defined as

.y � Xˇ � QZ Q�/0.y � Xˇ � QZ Q�/C �2

�2
Q� 0R Q�:

In this interpretation, we assume that all parameters and in particular the range
parameter � in the correlation function are either given or determined before
estimating the regression coefficients Q� so that the basis functions (and also the
penalty matrix) do no longer contain any unknown parameters. In Example 8.3
below, we will provide a simple data-driven rule to determine the range parameter
when applying kriging as a smoothing approach.
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In summary, even though the kriging method was derived from a purely stochas-
tic model to describe correlated data, the method is formally equivalent to a basis
function approach with basis functions  and penalty matrix R. This explains why
the simultaneous modeling of a temporal trend through a nonparametric approach
(or a simple polynomial), together with temporally correlated errors, can lead to
identification problems. Due to the temporally correlated errors, a nonparametric
trend function is also implicitly estimated, so that the additional assumption of
a further trend leads to a nearly non-identifiable model. The representation of
kriging as a basis function approach also illustrates that the estimate of the temporal
effects inherits the smoothness properties of the correlation function . When the
correlation function is differentiable or continuous, the same holds for the estimated
function.

Kriging as a Nonparametric Smoothing Procedure
In order to use kriging to estimate nonlinear covariate effects, we return to the model

yi D f .zi /C "i :

If z.1/ < : : : < z.d/ are the ordered covariate values, we define the parameters
�j D f .z.j // and assume a stationary Gaussian process prior, with expectation 0,
variance �2, and correlation function

.�j ; �r / D .jz.j / � z.r/j/:

Accordingly, we can also view the correlation function as a basis function, and, as
with smoothing splines, we can identify the knot positions as the covariate locations
z.j /. We thus obtain the representation

y D QZ Q� C "

with Z Œi; j � D .jzi � z.j /j/ and � D .�1; : : : ; �d /
0: We then have to optimize the

penalized residual sum of squares

PLS.	/ D .y � QZ Q�/0.y � QZ Q�/C 	 Q� 0K Q�

with K Œj; r� D .jz.j / � z.r/j/ and smoothing parameter 	 D �2=�2. Hence, the
usual results for PLS estimation carry over to kriging and, in particular, we obtain
the known form of the PLS estimate.

Example 8.3 Malnutrition in Tanzania: Kriging
Figure 8.21 shows several kriging estimates for the effect of age on the malnutrition score.
These estimates are obtained with the four previously presented special Matérn correlation
functions, with scale parameter determined via

O� D max
j;r

jz.j / � z.r/j=c: (8.10)
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8.7 Kriging as a Nonparametric Smoothing Procedure

The function f is expanded in terms of basis functions resulting from a
parametric correlation function .h/. This yields the PLS criterion

PLS.	/ D .y � QZ Q�/0.y � QZ Q�/C 	 Q� 0K Q�;

with QZ Œi; j � D .jzi � z.j /j/ and K Œj; r� D .jz.j / � z.r/j/: Smoothing
properties of the chosen correlation function carry over to the estimate Of .z/.
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Fig. 8.21 Malnutrition in Tanzania: kriging estimates

The value of the constant c is chosen such that .cI� D 1/ is small, i.e., in essence,
c determines the effective range of the correlation function. Choosing c in this manner
ensures that the correlation functions are well distributed across the covariate domain. For
polynomial splines, the choice of knots automatically guarantees such a distribution while
in the case of kriging an effective range that is too small can result in non-overlapping
correlation functions. This would in turn induce unstable estimation of the nonparametric
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effects in the corresponding regions. Moreover, Eq. (8.10) guarantees scale invariance of the
resulting estimates, i.e., when scaling the covariates zi with a constant factor, this scaling
is compensated by rescaling the range parameter �. The variance �2 (and, thus, also the
smoothing parameter 	) is determined using REML estimation as already introduced in the
context of linear mixed models in Sect. 7.3.2. Section 8.1.9 will show that indeed REML
estimation can also be used to determine smoothing parameters in penalized basis function
approaches or more generally in nonparametric regression models.

The estimated age effects Of .z/ also show the impact of specific properties of the chosen
correlation function: For � D 0:5 we obtain a rather rough, non-differentiable function
estimate, while for larger values of �, the function is estimated much smoother. Moreover,
the differences between the estimates decrease as the correlation function varies beyond
� D 0:5. 4

8.1.7 Local Smoothing Procedures

We next examine another class of smoothers, which, in general, cannot be derived
from a global regression formulation but are defined locally. Many of these
estimates are extremely intuitive and easy to understand, and thus are often used
in explorative analyses.

Nearest Neighbor Estimates
A widely used method for the (descriptive) smoothing of time series is running
means. For a time series yt , t D 1; : : : ; T , running means of order 3 are, for
example, defined by

Oyt D 1

3
.yt�1 C yt C ytC1/;

with appropriate modifications at the boundaries. Obviously, taking averages of
observed values in time generally smooths the random fluctuations of a time series
and gives a first impression of the underlying trend.

Nearest neighbor estimates extend the concept of running means into a more
general framework, and also enable the application in nonparametric regression
models. In general, a nearest neighbor estimate is defined by

Of .z/ D Ave
j2N.z/

yj ;

where Ave defines some averaging operator and N.z/ is an appropriate neighbor-
hood of z. In the example of running means of order 3, the averaging operator is
the arithmetic mean and the two (temporally) adjacent values t � 1 and t C 1 (as
well as t itself) form the neighborhood of time point t . In general, observations are
considered to be their own neighbors, so that zi 2 N.zi / holds.

The following averaging operators are often used for the determination of nearest
neighbor estimates:
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8.8 Nearest Neighbor Estimates

The general form of a nearest neighbor estimate is

Of .z/ D Ave
j2N.z/

yj ;

with a user-defined averaging operator Ave and a local neighborhood N.z/.
As averaging operator, we often use the arithmetic mean, the median, or the
linear regression. Neighborhoods can either be defined symmetrically around
z or can be based on the k-nearest neighbors.

1. Arithmetic mean (running mean): Determine the arithmetic mean of the response
variable in the neighborhood of z, i.e.,

Of .z/ D 1

jN.z/j
X

j2N.z/
yj ;

where jN.z/j is the number of neighbors of z.
2. Median (running median): Determine the median of the response variables in the

neighborhood of z, i.e.,

Of .z/ D Medianfyj ; j 2 N.z/g:

3. Linear regression (running line): Estimate a linear regression based on the
observations in the neighborhood of z and use the prediction from this model
as the estimate, i.e.,

Of .z/ D O�0;z C O�1;zz;
where O�0;z and O�1;z are the least squares estimates using the data f.yj ; zj /; j 2
N.z/g.
To completely determine a nearest neighbor estimate, we also need an adequate

neighborhood definition. Commonly used variants are the following:
1. Symmetric neighborhoods of order k
2. Neighborhoods that consist of k-nearest neighbors

Running means of order 3 provide a simple example for a symmetric neigh-
borhood. When defining symmetric neighborhoods (with an uneven order k), we
generally proceed as follows: When estimating f .zi /, we use the nearest .k � 1/=2
observations to the right and to the left from zi (in addition to zi itself) as the
neighborhood. Hence, the order is divided symmetrically to the area left and right
of zi , yielding a justification for the term symmetric neighborhood. If, for the sake
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of simplicity, we assume ordered observations with z1 � : : : � zn, the symmetric
neighborhood is given by

N.zi / D fmax.1; i � .k � 1/=2/; : : : ; i � 1; i; i C 1; : : : ;min.n; i C .k � 1/=2/g :

This definition already includes the necessary corrections at the boundaries of the
defined domain, as there are not enough observations available to apply the standard
definition. Note that the neighborhood at the boundaries is no longer symmetric and
also does not contain k observations.

Instead of using the order k, symmetric neighborhoods can also be defined based
on the fraction ! 2 .0; 1/ of observations contained in the neighborhood (also
referred to as the bandwidth). The corresponding order k is then given by !n,
where some rounding scheme has to be applied for non-integer values of !n. The
order k, as well as the fraction !, can be interpreted as smoothing parameters of the
nearest neighbor estimate. Figure 8.22 demonstrates the effect of varying ! for the
Tanzania data set using local arithmetic means. The closer the bandwidth ! is to 1,
the more neighbors are included in the estimate, leading to smoother functions. As
! gets smaller and finally approaches 0, the estimate Of .zi / is based on only very
few observations, resulting in a very rough estimate.

The definition of a neighborhood based on k-nearest neighbors generally leads
to asymmetric neighborhoods. In this case, the neighborhoodN.z/ is given by

N.z/ D fi W di 2 fd.1/; : : : ; d.k/gg;

where d.1/; : : : ; d.n/ represents the ordered distances, di D jzi � zj. In this setting,
the same number of neighbors is used, even at the boundaries, i.e., modifications
at the boundaries are not necessary. Similar to the symmetric neighborhoods, we
can interpret the number of neighbors k as a smoothing parameters. If k is small, a
rough estimate results while, on the other hand, a very smooth estimate is obtained
with k chosen close to the sample size n. In the latter case, we end up with the value
of the averaging operator applied to the complete data set.

Local Polynomial Regression and the Nadaraya–Watson Estimator
Although, at the beginning of this chapter, we already discussed the difficulties aris-
ing from the global approximation of nonlinear functions f .z/, it is often possible
to locally approximate f .z) with polynomials (as already illustrated in Fig. 2.12
on p. 46 for a local linear approximation). To motivate such an approximation,
we consider the (local) approximation of an l-times continuously differentiable
function f .zi / using a Taylor series expansion around z, yielding

f .zi / � f .z/C .zi � z/f 0.z/C .zi � z/2
f 00.z/
2Š

C : : :C .zi � z/l
f .l/.z/

lŠ
:
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Fig. 8.22 Malnutrition in Tanzania: running mean with different bandwidths

Hence, we approximate the function f .zi / with polynomials of the form .zi � z/j in
a neighborhood of zi . The polynomials are weighted by the derivatives f .j /.z/=j Š
evaluated at the expansion point z. Note that f .z/ is considered as the zero derivative
of f . In practice, l D 1, i.e., local linear regression is used most frequently.

If we apply the Taylor series approximation to the problem of nonparametric
function estimation for f .z/ at a given point z, we obtain

yi D f .zi /C "i

� f .z/C .zi � z/f 0.z/C .zi � z/2
f 00.z/
2Š

C : : :C .zi � z/l
f .l/.z/

lŠ
C "i

D �0 C .zi � z/�1 C .zi � z/2�2 C : : :C .zi � z/l�l C "i ;

for each observation .yi ; zi / with expansion point z. Therefore, a polynomial
regression model for yi results, which is based on polynomials of the form .zi � z/j

and regression coefficients �j D f .j /.z/=j Š. If we now estimate the regression
parameters from this model, we obtain an implicit estimate for the function value



464 8 Nonparametric Regression

f .z/ through O�0 D Of .z/, and more generally, we even obtain estimates for the
derivatives through j Š O�j D Of .j /.z/.

Hence, an estimate for f .z/ can in principle be determined by fitting a specific
linear model. However, since the Taylor series approximation is only valid locally,
i.e., close to the expansion point z, estimation is usually based on a weighted version
of the residual sum of squares. This results in a weighted least squares criterion of
the form

nX

iD1

0

@yi �
lX

jD0
�j .zi � z/j

1

A
2

w	.z; zi /

with weights w	.z; zi /. These are typically constructed based on the distances jzi �zj
such that larger weights result for observations with a small distance. A general class
of such weights results with the use of kernel functionsK in

w	.z; zi / D K
� zi � z

	

�
: (8.11)

Typical examples of kernel functions include

K.u/ D
(
1
2

�1 � u � 1

0 otherwise
Uniform kernel,

K.u/ D
(
3
4
.1 � u2/ �1 � u � 1

0 otherwise
Epanechnikov kernel,

K.u/ D 1p
2�

exp

�
�1
2

u2
�

Gaussian kernel;

see Fig. 8.23. The Epanechnikov kernel, as well as the uniform kernel, set all weights
outside the interval Œ�1; 1� to zero, whereas the Gaussian kernel maintains positive
weights for observations of arbitrary distance. The additional parameter 	 (the
bandwidth of the kernel) controls how quickly the weights approach zero and can be
viewed as the smoothing parameter of local polynomial regression. Kernel functions
are also commonly applied in nonparametric density estimation (see Fahrmeir,
Künstler, Pigeot, & Tutz, 2007 or Härdle, 1990) and are therefore also densities
themselves. Most commonly, kernel functions are assumed to be symmetric about
zero.

In order to determine the weighted least squares estimate in local polynomial
regression modeling, we first write the weighted residual sum of squares in matrix
notation as

.y � Z�/0W .y � Z�/
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Fig. 8.23 Examples of kernel functions. (a) Rectangular kernel, (b) Epanechnikov kernel, (c)
Gaussian kernel

with design matrix

Z D

0

B@
1 .z1 � z/ : : : .z1 � z/l

:::
:::

:::

1 .zn � z/ : : : .zn � z/l

1

CA ;

vector of the regression coefficients � D .�0; : : : ; �l /
0, and weight matrix

W D diag.w	.z; z1/; : : : ;w	.z; zn//:

Minimizing this residual sum of squares corresponds to the estimation of a general
linear model as discussed in Sect. 4.1. Therefore, we obtain the weighted least
squares estimate

O� D .Z 0W Z /�1Z 0W y and Of .z/ D O�0: (8.12)
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8.9 Local Polynomial Regression

Based on the Taylor series expansion around the point z, we obtain a local
representation

yi � �0 C .zi � z/�1 C .zi � z/2�2 C : : :C .zi � z/l�l C "i

with regression coefficients �j D f .j /.z/=j Š. To determine the corresponding
estimate, we minimize the weighted least squares criterion,

nX

iD1

0

@yi �
lX

jD0
�j .zi � z/j

1

A
2

w	.z; zi /;

where the weights w	.z; zi / are defined based on a kernel function. From
the resulting weighted least squares estimate, we obtain Of .z/ D O�0. The
Nadaraya–Watson estimate results as a special case with l D 0.

Since both the design matrix Z and the weight matrix W depend on the location of z
where we aim to estimate f , each point requires a separate model fit. In practice,
one usually considers estimates at an equidistant grid of covariate values.

An interesting special case of local polynomial regression results for the local
constant polynomial model. In this case, we obtain the weighted residual sum of
squares

nX

iD1
.yi � �0/

2 w	.z; zi /;

and the estimate Of .z/ has the explicit representation

Of .z/ D
P

i w	.z; zi /yiP
i w	.z; zi /

: (8.13)

Alternatively, we can also derive the same estimate from nonparametric density
estimation ideas. The estimate is then called the Nadaraya–Watson estimator; see,
for example, Fahrmeir and Tutz (2001, Chap. 5) or Härdle (1990).

Loess
Nearest neighbor estimates often result in relatively rough function estimates, even
if the chosen smoothing parameter is based on a suitable optimality criterion. This
is due to the definition of local estimates based on neighborhoods: While the
observations within the neighborhood have relatively large impact on the estimates,
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8.10 Loess Estimation

1. Determine N.z/, the set of the k-nearest neighbors of z.
2. Determine the largest distance between any two data points within the

neighborhood

.z/ D max

i;j2N.z/
jzi � zj j:

3. Define weights

w
.z/.z; zi / D K

� jz � zi j

.z/

�

with the tri-cubic kernel function

K.u/ D
(
.1 � juj3/3 �1 � u � 1;

0 otherwise.

4. Determine Of .z/ using weighted linear regression based on the data points
in the neighborhoodN.z/.

all of the other observations are completely neglected. If we combine the use
of weights as introduced for local polynomial regression with nearest neighbor
estimates, we may expect smoother estimates due to the smoothly decaying weights
instead of weights dropping to zero outside the neighborhood. This combination
leads to locally weighted regression (loess), originally proposed by Cleveland
(1979) and summarized in Box 8.10. The term loess is derived both from an
abbreviation of LOcal regrESSion as well as from the German word Löß. In
geology, the term Löß defines sediment that resulted from the erosion of rocks
and that was accumulated by the wind. Levels of Löß form a smooth surface,
a fact that has led to the corresponding term for the smooth function estimates
resulting from the loess procedure. The term lowess is also often used instead of
loess, being an abbreviation of LOcally WEighted Scatter plot Smoothing. This
highlights that loess is a weighted estimate for nonparametric regression. In the
original loess proposal, asymptotic considerations motivated the use of the tri-cubic
kernel function but of course other kernel functions can be used as well. In statistical
software packages, different loess variants are available either under the name loess
or lowess. Even though they differ from each other in detail, their main approach
corresponds to the algorithm provided in Box 8.10.

Sometimes, a robustified version of loess is also applied where the definition of
weights is iterated to reduce the influence of observations with large residuals. More
precisely, in each iteration, new weights are computed as

w
.z/.z; zi / D ıiK

� jz � zi j

.z/

�
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where ıi is derived from the residuals of the previous iterations such that ıi is small
for large residuals. For example, ıi D exp.�jO"i j/ is a possible choice.

8.1.8 General Scatter Plot Smoothing

To enable a thorough comparison of different smoothing procedures, this section
introduces a general formulation of scatter plot smoothers, followed by the presen-
tation of properties derived from this formulation.

Linear Smoothers
When reviewing the various smoothing procedures discussed so far, we find, with
very few exceptions, that most of the approaches can be represented as

Of .z/ D
nX

iD1
s.z; zi /yi ; (8.14)

with weights s.z; zi /. Accordingly, we obtain the estimate Of .z/ as a weighted sum
of the observations yi , where the weights depend on the location z, as well as on the
observed values of the covariates z1; : : : ; zn. Since Of .z/ can be expressed as a linear
combination of the observed response values, we also refer to smoothing procedures
with property (8.14) as linear smoothing procedures.

It is particularly straightforward to verify property (8.14) for nearest neighbor
estimates (see p. 460ff). The estimated function Of .z/ was, in this case, defined as a
local average of all observed dependent variables within the neighborhood of z. If
we use a linear averaging operator, we also obtain a linear smoother. This implies
that both the local arithmetic mean and local linear regression are linear smoothers.
For the local arithmetic mean, we have

s.z; zi / D
(

1
jN.z/j if i 2 N.z/;
0 otherwise:

Since the median is a nonlinear averaging operator, it is not possible to determine
the weights required in sum (8.14) and, thus the local median is an example of a
nonlinear smoother.

Linear smoothers can also be written in matrix notation as

Of .z/ D s.z/0y ;

with vector s.z/ D .s.z; z1/; : : : ; s.z; zn//0. In particular, we have Of .zi / D s.zi /0y
for the observed covariate values. If we apply this equation to the n covariate values,
we obtain the linear smoother

Of D Sy ;
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with Of D . Of .z1/; : : : ; Of .zn//0 and the n � n- smoother matrix S consisting of the
row vectors s.zi /0. The smoother matrix will form the basis for many of the tools to
characterize nonparametric smoothers; see below.

The linear model discussed in Chap. 3, as well as the general linear model
introduced in Sect. 4.1, can actually be viewed as linear smoothers. In these cases,
the smoother matrix coincides with the prediction or hat matrix H (see p. 107) and
is therefore given by

S D H D Z .Z 0Z /�1Z 0

for the classical linear model and by

S D Z .Z 0W Z /�1Z 0W

for the general linear model. As a consequence, polynomial splines and any other
basis function approach (without penalization) are linear smoothers. In order to
estimate the function f at a specific (possibly unobserved) covariate value z, we
obtain

s.z/0 D z0.Z 0Z /�1Z 0;

where z is the vector of basis functions evaluated at z (see p. 423).
For any roughness penalty approach derived from a model of the form

y D Z� C "

with penalty matrix K and smoothing parameter 	, we only have to replace the
least squares estimate with the PLS estimate O� ; see formula (8.3) on p. 439. Thus,
we obtain

S D Z .Z 0Z C 	K /�1Z 0

and

s.z/0 D z0.Z 0Z C 	K /�1Z 0:

It follows that all penalization approaches derived from polynomial splines, but also
smoothing splines, random walks, and kriging methods are linear smoothers.

Moreover, the two remaining methods (local polynomial regression and loess)
can also be cast in the framework of linear smoothing methods. For local polynomial
regression, the function estimate Of .z/ was derived as the weighted least squares
estimate (8.12). Thus, we obtain the corresponding weight vector s.z/ as

Of .z/ D O�0 D e0
1.Z

0W Z /�1Z 0W y ;D s.z/0y

with e1 D .1; 0; 0; : : :/0. The vector e1 extracts the first component of the weighted
least squares estimate that corresponds to the function estimate and drops all values
corresponding to derivatives. The linearity of the loess estimate directly follows
from its construction as a weighted nearest neighbor estimate.
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8.11 Confidence Intervals and Confidence Bands for Linear
Smoothers

1. Pointwise confidence intervals with level ˛:

Of .z/˙ z1�˛=2�
p

s.z/0s.z/;

where z1�˛=2 is the .1 � ˛=2/-quantile of the standard normal distribution.
2. Simultaneous confidence bands at fz1; : : : ; zj ; : : : ; zrg with Bonferroni

correction:
Of .zj /˙ z1�˛=.2r/�

q
s.zj /0s.zj /:

3. Simultaneous confidence bands at fz1; : : : ; zj ; : : : ; zrg based on the joint
distribution of .f .z1/; : : : ; f .zr //0:

Of .zj /˙m1�˛�
q

s.zj /0s.zj /;

where the quantilem1�˛ of Eq. (8.18) is determined via simulation.
The same formulae can be used when replacing �2 with a consistent estimate
O�2.

We can summarize as follows: With the exception of the local median, all
smoothing methods discussed thus far are in fact linear smoothers. In the following,
we will therefore focus on linear smoothers and derive properties for this general
class.

Confidence Intervals and Confidence Bands
In addition to point estimates for f .z/, information on the variability of the
estimate or corresponding confidence intervals is typically required in practice.
Considering the case of the function estimate at a fixed covariate value z, it is
rather straightforward to derive a variance formula for linear smoothers. Since
Of .z/ D s.z/0y and Var."/ D �2I , it directly follows

Var. Of .z// D �2s.z/0s.z/:

If we additionally assume normally distributed errors, a .1� ˛/-confidence interval
is given by

Of .z/˙ z1�˛=2�
p

s.z/0s.z/; (8.15)

where z1�˛=2 is the .1 � ˛=2/-quantile of the standard normal distribution. This
construction is based on the assumption



8.1 Univariate Smoothing 471

Of .z/ � f .z/ a� N.0; �2s.z/0s.z//:

While both the variance of the estimate Of .z/ and the normal distribution follow
from the distributional assumptions for the error terms, we also have to assume that
Of .z/ is (approximately) unbiased. In general, this property will only be fulfilled

asymptotically and therefore the coverage probability of the constructed confidence
intervals is also asymptotic in nature. If the error terms are not assumed to be
normally distributed, the normal distribution for the estimates will also hold only
asymptotically.

One often uses the confidence intervals (8.15) to provide an impression about the
variability of the estimated function in graphical representations. In addition to the
estimated function, we also plot the lower and upper limit of the confidence interval,
as functions of the covariate value z; see Fig. 8.24. However, when interpreting such
figures, we need to keep in mind that the confidence intervals have been constructed
for a single covariate value z and therefore the coverage probability is only valid
pointwise and not simultaneously for the complete function. More specifically, for
a pointwise level .1 � ˛/-confidence interval ŒL.z/; U.z/�, we have

P
�
L.z/ � f .z/ � U.z/

�
� 1 � ˛;

i.e., the probability that the (random) interval covers the (fixed) true function value
at the prespecified covariate value z is at least 1� ˛. It is critical that the expression
only applies for a fixed value z, and not for several covariate values z1; : : : ; zr at the
same time. However, often such simultaneous expressions are of interest, and thus
the construction of (simultaneous) confidence bands is necessary.

Such a simultaneous confidence band ŒL.z/; U.z/� of level 1 � ˛ should fulfill

P
�
L.z/ � f .z/ � U.z/ for all z 2 fz1; : : : ; zrg

�
� 1 � ˛: (8.16)

In this case, the coverage probability does not apply pointwise but rather simulta-
neously for all covariate values in fz1; : : : ; zrg. A simple option to derive such a
simultaneous confidence band is given by the Bonferroni correction of the level ˛.
The Bonferroni correction is motivated by the fact that, for the simultaneous
occurrence of events A1, . . . , Ar , we have

P.A1 \ : : : \ Ar/ �
rX

jD1
P.Aj /:

In our case, Aj corresponds to the event “the function evaluation f .zj / is not
contained in the interval ŒL.zj /; U.zj /�.” Now the aim is to limit the probability
that (at least) one of these events occurs by ˛. This can be achieved by combining
pointwise confidence intervals with levels ˛1; : : : ; ˛r , such that

P
j ˛j � ˛. The
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most common approach for determining such levels ˛j is to uniformly distribute
the confidence level as ˛j D ˛=r .

In summary, the Bonferroni correction provides a simple way to define simulta-
neous confidence bands. However, despite maintaining the desired confidence level,
these confidence bands are often rather wide, and therefore the information provided
by the confidence bands may be imprecise. We therefore explore a second option for
constructing confidence bands, which is numerically more complex, but provides
more exact results translating into narrower confidence bands. First, we determine
the covariance matrix of the vector Of r D . Of .z1/; : : : ; Of .zr //0, which can be written
as a linear smoother Of r D S ry, where S r consists of the vectors s.z1/; : : : ; s.zr /.
The covariance matrix can then be expressed as

Cov. Of r / D �2S rS
0
r

and therefore
Of r � f r

a� N.0; �2S rS
0
r /: (8.17)

From this joint distribution we obtain a simultaneous confidence band with level
1 � ˛ as

Of .zj /˙m1�˛�
q

s.zj /0s.zj /;

wherem1�˛ defines the .1 � ˛/-quantile of the distribution of the random variable

max
1�j�r

ˇ̌
ˇ̌
ˇ

Of .zj / � f .zj /
�
p

s.zj /0s.zj /

ˇ̌
ˇ̌
ˇ : (8.18)

In Eq. (8.18), we consider the maximum absolute standardized deviation between
the true function value and the estimate. Since the distribution of this random vari-
able and corresponding quantiles are difficult to obtain analytically, we approximate
the distribution using simulation. To do so, we first draw N random vectors from
the asymptotic distribution (8.17) and then calculate the respective N realizations
from Eq. (8.18). If N is chosen large enough, we obtain an estimate form1�˛ based
on the corresponding empirical .1 � ˛/-quantile.

In order to determine any of the three different confidence intervals or bands,
we need the error variance �2, which in practice is generally unknown and thus an
estimate is needed. Since the coverage probability is only valid asymptotically, we
can, however, replace �2 with a consistent estimate O�2. In the next section, we will
present a possible estimate for �2.

Example 8.4 Malnutrition in Tanzania—Confidence Bands for the Age
Effect

To clarify the differences between pointwise confidence intervals and simultaneous confi-
dence bands, we consider the age effect in the Tanzania data set. For estimation, we use a
cubic P-spline with 20 interior knots and a second-order difference penalty, while fixing the
smoothing parameter at 	 D 20 and choosing a level of ˛ D 0:05. The goal is to construct a
confidence band for the entire function, and thus we base our calculations of the confidence
bands on all 60 observed distinct covariate values.
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Fig. 8.24 Malnutrition in Tanzania: pointwise confidence intervals (– – –), simultaneous confi-
dence band based on the joint distribution (- - -), and simultaneous confidence band based on the
Bonferroni correction (� � � ) for the age effect

Figure 8.24 shows the resulting estimated function, together with the three confidence
areas. The pointwise confidence intervals correspond to the narrowest confidence region,
since they only consider uncertainty in estimation at one given point. The other extreme
results from the use of the Bonferroni correction, which leads to the widest confidence
region. In this case, we distributed the level equally on all 60 observed covariate settings,
yielding a level of ˛j D 0:0008333. Hence, the Bonferroni confidence bands are based
on the 0.9995833-quantile of the standard normal distribution, which results in a value of
3.34. In comparison the pointwise confidence intervals are based on the 0.975-quantile of
the standard normal distribution given by z0:975 � 1:96. The result is nearly a 1.7 times
wider confidence area for the Bonferroni correction.

For the construction of a confidence region based on the joint distribution of the 60
estimated function values, we need to derive the corresponding quantile of the distribution
in Eq. (8.18). A simulation with N D 100; 000 repetitions provides m0:95 D 2:66 so that
(as expected) the result is a confidence band in between the pointwise confidence intervals
and the confidence band obtained with the Bonferroni correction. 4

Equivalent Degrees of Freedom (Effective Number of Parameters)
Thus far, all smoothing methods that we have discussed have in common that the
smoothness of the estimated function is controlled by (at least) one smoothing
parameter. For basis function methods without penalty, smoothness is mostly
determined by the number of basis functions. For penalization procedures, an
additional parameter was included to explicitly determine the impact of the penalty
on the model fit. For nearest neighbor estimates, the number of the nearest neighbors
or the order of the symmetric neighborhood determined the smoothness of the
estimated function. Clearly, the smoothing parameters of different approaches are
not directly comparable despite their common nature. Consequently, it would be
desirable to have a general measure to evaluate the approximate dimension of the
smoothness for an estimated function.

The derivation of such a measure is easiest by considering analogies to the linear
model. The complexity of a linear model is provided by the number of regression
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coefficients in the model. The number of parameters can, for example, be recovered
by the trace of the prediction matrix H D X.X 0X/�1X 0 since trace.H / D p.
Since the prediction matrix of the linear model corresponds to the smoothing matrix
S of a linear smoother, the equivalent degrees of freedom are analogously defined as

df.S / D trace.S /: (8.19)

The equivalent degrees of freedom are also often interpreted as the effective number
of parameters of a smoother. In fact, we reproduce the number of parameters in
the model for basis function approaches without penalization, while in the case of
penalization, the penalty effectively reduces the number of parameters.

Figure 8.25 shows the connection between the original smoothing parameter and
the resulting effective degrees of freedom for a selection of smoothing approaches
and the simulated data example. For the running mean, a larger neighborhood leads
to a smoother estimate and, hence, to a smaller effective number of parameters.
As a limiting case, we obtain only one parameter, when the neighborhood contains
all observations. For polynomial splines, the effective number of parameters
corresponds exactly to the number of basis functions, so that a linear relationship
results. When considering penalized splines, the effective number of parameters
decreases with an increasing smoothing parameter (note that a logarithmic scale for
the smoothing parameter is used to facilitate presentation). For 	 D 0, we default
back to the unpenalized case, so that the number of parameters corresponds to the
number of basis functions used. For a very large smoothing parameter, the effective
number of parameters apparently approaches a limiting value, which depends on the
order of differences used when constructing the penalty. We saw in Sect. 8.1.2 that
a polynomial of degree k � 1 results as 	 ! 1 when using a kth order difference
penalty. Such a polynomial is described by k parameters so that we obtain one or
two parameters as limiting cases in Fig. 8.25.

If we want to determine the smoothing parameter corresponding to given
effective degrees of freedom, we can in principle simply read them from Fig. 8.25.
However, for polynomial splines and running means, the smoothing parameter is
discrete and can only adopt a limited number of values. Thus, not every value of the
effective degrees of freedom is actually achievable. For P-splines, however, we are
able to choose every value for the effective degrees of freedom that lies between the
difference order k and the number of basis functions used.

The equivalent degrees of freedom in Eq. (8.19) are of course not the only
possibility to quantify the complexity of nonparametric function estimates. At least
two further propositions exist, which can also be derived from analogies to the linear
model but are less commonly used in practice. They are given by

dfvar.S / D 1

�2

nX

iD1
Var. Of .zi // D trace.SS 0/
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Fig. 8.25 Equivalent degrees of freedom as a function of the smoothing parameter. For P-splines,
the log-transformed smoothing parameter is presented. The dashed lines indicate limiting values
of the equivalent degrees of freedom

and

dfres.S / D trace.2S � S S 0/;

and result from considerations regarding the sum of variances of predicted values
and the expected value of the mean squared error, respectively; see Hastie and
Tibshirani (1990), Sect. 3.5 for a detailed derivation. If the smoothing matrix S

is symmetric and idempotent (i.e., S D S 0 and S 2 D S ), the definitions of df,
dfvar, and dfres coincide. This is, for example, the case for simple basis function
approaches, but does not apply for procedures involving penalization.

The simplicity of the calculation for the first definition of effective degrees
of freedom usually makes it favored in practice. In particular, we can avoid the
calculation of the complete n � n-matrix S , since the trace operator is invariant to
cyclical permutations of matrix products (see Theorem A.18 in Appendix A.4). For
example, we obtain

df.S / D trace.Z .Z 0Z C 	K /�1Z 0/ D trace.Z 0Z .Z 0Z C 	K /�1/



476 8 Nonparametric Regression

in case of P-splines so that the trace can be computed from the product of two
matrices with dimension given by the number of basis functions.

Estimates for the Error Variance
In the linear model, an unbiased estimate for the error variance �2 was given by

O�2 D 1

n � p
nX

iD1
.yi � Oyi /2:

In nonparametric regression, it seems plausible to replace the number of parameters
p with the equivalent degrees of freedom, as outlined in the previous section. In
fact, when assuming that at least the two first moments of the model are correctly
specified, one can show that the expected value of the residual sum of squares can
be written as

E

 
nX

iD1
.yi � Of .zi //2

!
D .n � tr.2S � S S 0//�2 C

nX

iD1
b2i ;

where bi defines the bias of the function estimate at the point zi . If we can neglect
the bias, i.e., if the smoother is approximately unbiased, we obtain an unbiased error
variance estimate as

O�2 D 1

n � dfres

nX

iD1
.yi � Of .zi //2:

Even though unbiasedness for O�2 is only assured when using dfres, the simpler
definition df is typically used in practice for the estimation of the error variance.

Bias–Variance Trade-Off
In this section, we will more closely examine how varying specific parameters of
a smoother affects the mean squared error of the function estimate. For the sake of
simplicity, we first discuss the running mean estimate

Of .zi / D 1

k

X

j2N.zi /
yj

that is based on the k-nearest neighbors. For this estimate, the expected value and
the variance can be easily calculated as

E. Of .zi // D 1

k

X

j2N.zi /
f .zj /

and

Var. Of .zi // D �2

k
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with k D jN.z/j. Since MSE is additively composed of both the squared bias and
the variance, we could try to choose the smoothing parameter k in such a way that
bias and variance are simultaneously minimized. The formulae above, however,
show that this approach is not feasible, since the variation of k has an opposite
effect on the bias relative to the variance. If we increase the neighborhood, the
variance clearly decreases. On the other hand, a larger bias results as more and more
terms are contained in the expected value of Of .zi /, which are different from f .zi /.
A neighborhood of k D 1 with N.zi / D fig results in an unbiased estimate which,
however, has the highest possible variance. We found a similar dilemma in Sect. 3.4
within the context of model choice in linear models and identified it as a classical
example of the bias–variance trade-off.

In general, smoother function estimates resulting from the choice of a smaller
number of effective degrees of freedom usually lead to reduced variability, but
increasing bias. On the other hand, a more complex model with a larger number
of effective degrees of freedom typically reduces the bias, while at the same time
resulting in larger variability. We can also empirically identify this effect when
revisiting the plots (e.g., Figs. 8.10 on p. 425, 8.16 on p. 440 or 8.22 on p. 463)
that illustrate the impact of the smoothing parameter. In contrast to the running
mean estimate, the explicit derivation of the expected value and the variance of most
scatter plot smoothers are actually more complicated. Hence, we will only examine
local polynomial models as a further example for the bias–variance trade-off, where
at least asymptotic results are available; see Fahrmeir and Tutz (2001), Sect. 5.1.3,
or Fan and Gijbels (1996).

The smoothness in local polynomial regression is mainly controlled by the
bandwidth 	 of the kernel function. As a consequence, we examine the influence
of 	 on bias and variance of the resulting estimate. We limit ourselves to asymptotic
results, i.e., we will examine the behavior of the estimate for a large sample size,
n ! 1. Note that in order to obtain meaningful asymptotic expressions, we have
to impose conditions not only on the sample size itself but also on the smoothing
parameter. The underlying reason is that an increasing sample size also yields more
precise estimates and therefore requires a smaller bandwidth. More specifically,
we examine the limiting case 	 ! 0 and n	 ! 1, i.e. even though we let the
bandwidth approach zero, the sample size increases at a rate such that n	 still
diverges to infinity. Under these conditions, we obtain

E. Of .z/ � f .z// � 	lC1f .lC1/.z/
.l C 1/Š

�lC1.K/

as an approximation for the asymptotic bias with odd polynomial degree l and

E. Of .z/ � f .z// �
 
	lC2f .lC1/.z/d 0

z.z/

.l C 1/Šdz.z/
C 	lC2f .lC2/.z/

.l C 2/Š

!
�lC2.K/
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in case of an even polynomial degree. In the latter case, dz.z/ and d 0
z.z/ define the

density of the distribution of z and its first derivative, respectively, and �q.K/ DR
uqK.u/du is the q-th moment for the chosen kernel. For the variance, we obtain

the asymptotic approximation

Var. Of .z// � �2

n	dz.z/

Z
K2.u/du:

These two results, provide us with very interesting and useful information, which
again illustrate the mentioned trade-off between bias and variance associated
with nonparametric regression estimates. Regarding the bias, we can identify the
following main points:
• The bias of Of .z/ decreases with decreasing bandwidth 	.
• For even l , the bias depends on the distribution of z (expressed through the

density dz.z/). The bias decreases when dz.z/ is large, i.e., when a large number
of observations are expected in the neighborhood of z. On the contrary, the bias
increases in regions with a lower expected number of observations (i.e., a lower
density dz.z/).

• For odd l , the bias is independent of the distribution of the covariates.
• For l D 0, the bias depends on the first and second derivative of the function
f .z/. A larger bias results in regions with a steep gradient f 0.z/. Since the second
derivative is a measure for the curvature of the function, we additionally obtain
more bias in regions having large f 00.z/. More precisely, we find underestimation
(a negative bias) in local maxima and overestimation (a positive bias) in local
minima.

• For even l , we get an additional term in the bias formula. This generally yields a
preference for an odd polynomial degree.

For the variance, we have the following main results:
• An increase of the smoothing parameter leads to reduced variability in estima-

tion.
• For both even or odd l , the variance depends on the distribution of the covariates.

Analogous to the bias, we observe a decrease in the variance for large dz.z/, and
an increase for small dz.z/. However, the precise form of the effect differs for
bias and variance.
In summary, it is again not possible to decrease both variance and bias simulta-

neously. The use of the mean squared error is an appropriate compromise, which
especially could be used to choose an optimal smoothing parameter. However, since
the MSE generally depends on the unknown true function f .z/, this approach is
typically not feasible. Nevertheless it provides the basis for strategies that rely on an
approximation of the mean squared error.

8.1.9 Choosing the Smoothing Parameter

Our considerations of nonparametric regression models thus far yield one important
remaining question: How do we “optimally” choose the smoothing parameter to
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properly describe the data? Based on our findings related to the bias–variance trade-
off presented in the previous section, we can equivalently formulate this question as
the problem of how to obtain an appropriate compromise between bias and variance
of the function estimate. The mean squared error offers an immediate option, and
we will first focus on this criterion in choosing smoothing parameters. Moreover,
we will briefly discuss the use of AIC to determine optimal smoothing parameters.
The second and third part of this section focus on penalization approaches and
derive general possibilities to estimate the smoothing parameter in this context.
Specifically, on the one hand, we will rely on the close connection between
penalization approaches and mixed models, and on the other hand, we will derive
Bayesian Markov chain Monte Carlo simulation procedures.

Choosing the Smoothing Parameter Based on Optimality Criteria
Our first option for choosing the smoothing parameter results from our considera-
tions on the bias–variance trade-off. We discovered that both the bias and variance
associated with a fitted smooth function depend on the smoothing parameter, and
that both cannot be simultaneously decreased. Thus, an appropriate compromise
has to be found, for example, based on the mean squared error

MSE. Of .z// D E
�
. Of .z/ � f .z//2

�
D
�

E. Of .z/ � f .z//
�2 C Var. Of .z//;

which consists of both the squared bias and variance. From the pointwise MSE, we
obtain a measure for the quality of the entire estimated function by averaging over
the observed covariate values, i.e.,

1

n
E

 
nX

iD1
. Of .zi /� f .zi //

2

!
:

A naive approximation is the residual sum of squares

1

n

nX

iD1
.yi � Of .zi //2:

However, this choice is not useful to determine an optimal smoothing parameter, as
it can be minimized by Of .zi / D yi . The optimization of the residual sum of squares
would therefore lead to nothing more than a trivially interpolating estimate; see also
Sect. 3.4.

Consequently, the squared prediction error for new observations y	 is preferred
when choosing the smoothing parameter. Typically, such new data are not available,
and we therefore resort to a squared error approximation that results from cross
validation. The procedure is as follows: We first fix the smoothing parameter,
remove one of the observations from the data, and estimate the smooth function
using the remaining n � 1 observations. Using this estimated function, we next
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predict the function value f .zi / at the location of the eliminated observation. Let
Of .�i /.z/ denote the estimated function obtained when removing observation .yi ; zi /.

Cycling over all the observation, we then obtain the cross validation criterion

CV D 1

n

nX

iD1
.yi � Of .�i /.zi //2:

Note that the cross validation criterion depends on the chosen smoothing parameter
and therefore choosing the smoothing parameter to minimize the cross validation
criterion provides a way to determine an optimal smoothing parameter minimizing
the prediction error. Furthermore, the use of the cross validation criterion is also
theoretically justified due to the fact that

E.CV/ � 1

n

nX

iD1
.ynCi � Of .zi //2;

where ynCi define new observations at the points zi . Hence, the mean squared
prediction error results as the expectation of the CV criterion.

At first glance, it appears that for computation of the cross validation criterion,
we have to perform n separate nonparametric regression model fits (for each value
of the smoothing parameter). However, we can actually obtain the CV score by only
performing one fit using all the data (similar as in the linear model in Sect. 3.4).
Utilizing the diagonal elements si i of the smoother matrix S , CV can in fact be
calculated via

CV D 1

n

nX

iD1

 
yi � Of .zi /
1 � si i

!2
:

Although this statement does not hold in full generality for all types of smoothers,
it is still routinely used to determine an approximation to CV. The calculation of
the smoothing matrix and its diagonal elements can, however, still be numerically
complex (especially for large data sets). For this reason one often replaces the
diagonal elements with their average, yielding the generalized cross validation
criterion (GCV):

GCV D 1

n

nX

iD1

 
yi � Of .zi /
1 � tr.S /=n

!2
:

The sum of the diagonal elements exactly corresponds to our first definition of the
equivalent degrees of freedom, namely the trace of the smoothing matrix. As we saw
for P-splines, it is straightforward to calculate this trace, since products of matrices
can be cyclically permuted without affecting the trace (see p. 475). In addition to a
simpler calculation, the GCV criterion, in comparison to the CV criterion, also has
the theoretical advantage to be invariant under orthogonal transformations of the
data; compare Wood (2006), Sect. 4.5.2.

As an alternative to the generalized cross validation criterion, we can also use
other criteria developed in the context of model choice for the determination of
smoothing parameters. A typical example is Akaike’s information criterion AIC,
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which was discussed in Sect. 3.4. The AIC includes the number of parameters
as a form of penalization to correct the likelihood for the model complexity; see
also Sect. B.4.5. In nonparametric regression, the effective number of parameters
replaces the actual number of parameters leading to the criterion

AIC D n log. O�2/C 2.df C 1/;

which needs to be minimized with respect to the smoothing parameter. As in the
linear model, O�2 D P

.yi � Of .zi //2=n refers to the ML estimate for the error
variance.

Figure 8.26 shows GCV and AIC as functions of the smoothing parameter for a
cubic P-spline with 20 inner knots and a second-order difference penalty, using the
Tanzania data together with the resulting optimal estimated functions. To improve
readability of the GCV and AIC plots, the minimal value of AIC or GCV was set to
zero so that the curves reflect differences relative to the optimal model. It appears
that GCV and AIC show a very similar relationship with the smoothing parameter
	. In fact, both criteria are actually asymptotically equivalent although in specific
applications clear differences may be observed. For the Tanzania data, both criteria
provide similar, although not identical, optimal smoothing parameters and therefore
also yield very similar function estimates.

How can we concretely determine the optimal smoothing parameter for a given
criterion? So far, we only examined the simplest case, i.e., univariate nonparametric
regression. Thus it is possible to directly optimize the criterion of interest, for
example, using a grid search over 	 (or using more efficient methods for numerical
minimization). To do so, we generate a grid of candidate smoothing parameters,
calculate the criterion for each of these candidates, and then choose the value
corresponding to the minimal criterion. It can also be useful to iteratively refine the
grid based on a first rough discretization to assure that the optimal value is obtained
precisely.

In more complex problems, as the ones that we will examine in Chap. 9, direct
optimization is no longer possible or at least very time consuming, since several
smoothing parameters have to be determined simultaneously. However, even in
these settings, algorithms exist for an efficient minimization of the GCV or the AIC.
Such approaches are based on the Newton method, i.e., rely on the derivative of
the criterion with respect to the smoothing parameters. Since these methods are
mathematically and algorithmically complex, we do not discuss them here in detail
but rather refer to the corresponding literature, especially Wood (2000, 2004, 2006,
2008). The R package mgcv provides implementations.

Mixed Model Representation of Penalization Approaches
The methods based on model choice criteria that we discussed in the previous
section can be generally used for the choice of smoothing parameters for any scatter
plot smoother. In the following two paragraphs, we rather focus on penalization
approaches, with penalties

	� 0K� :
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Fig. 8.26 Malnutrition in Tanzania: GCV and AIC (left panel) and cubic P-splines fits resulting
with the corresponding optimal smoothing parameters (right panel)

As seen, the penalty is a quadratic form in the parameters and depends on a
(symmetric, positive semidefinite) penalty matrix K . This limitation is, however,
not very restrictive, because it includes all methods examined in Sects. 8.1.2–8.1.6,
especially penalized splines, smoothing splines, random walks, and kriging.

We start our considerations with P-splines in truncated power series representa-
tion. In this case, the PLS criterion is given by

PLS.	/ D .y � Z�/0.y � Z�/C 	

dX

jDlC2
�2j

(see p. 432). To establish a connection to the mixed models of Chap. 7, we first
partition the parameter vector � into ˇ D .�1; : : : ; �lC1/0 and Q� D .�lC2; : : : ; �d /0.
The vector ˇ, thus, consists of the non-penalized parameters corresponding to
the global polynomial, whereas Q� contains the parameters of the truncated power
functions that are included as squared values in the penalty. If we split the design
matrix accordingly into X and U so that Z D ŒX U �, the PLS criterion can be
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reexpressed as

.y � Xˇ � U Q�/0.y � Xˇ � U Q�/C 	 Q� 0 Q� : (8.20)

In Sect. 7.3.1, we found that in the mixed model formulation,

y D Xˇ C U Q� C "; " � N.0; �2I/; Q� � N.0; �2I/;

estimates for the regression coefficients can also be obtained by minimizing the PLS
criterion

.y � Xˇ � U Q�/0.y � Xˇ � U Q�/C �2

�2
Q� 0 Q�:

If we now compare the penalized least squares criterion arising from mixed models
with Eq. (8.20), we find that ˇ can be interpreted as a vector of fixed effects while
Q� corresponds to a vector of random effects. The variance of the random effects is
then defined by �2 D �2=	 and, as a consequence, we can interpret the smoothing
parameter 	 as the ratio of error variance and random effects variance similar to our
considerations regarding Bayesian P-splines (p. 441ff).

Embedding P-splines in the scope of mixed models has the advantage that we
can use the estimation procedures discussed in Chap. 7 to determine estimates of
�2 and �2 and therefore also the smoothing parameter 	. Specifically, we can
use either maximum likelihood or restricted maximum likelihood estimation as
introduced in Sect. 7.3.2. Based on the estimates O�2 and O�2, we obtain the optimal
smoothing parameter O	 D O�2= O�2. Although smoothing parameter selection via
restricted maximum likelihood is usually done in the context of mixed models a
direct approach without resorting to the connection with mixed models is possible;
see Wood (2011).

In summary, a close connection exists between P-splines in TP-representation
and mixed models yielding an alternative perspective on P-splines. We next examine
this connection more generally for arbitrary penalization approaches. Starting with
the penalized sum of squared residuals

PLS.	/ D .y � Z�/0.y � Z�/C 	� 0K�;

it may be tempting to define the corresponding mixed model as

y D Z� C "; " � N.0; �2I/; � � N.0; �2K �1/ (8.21)

with 	 D �2=�2. However, in this direct approach, we encounter the problem that
the inverse K�1 generally does not exist, since the penalty matrix K often does
not have full rank (e.g., in case of P-splines based on B-splines). For kriging, the
formulation in Eq. (8.21) is immediately applicable since the penalty matrix has full
rank.

To relate arbitrary penalization approaches to mixed models, we therefore have
to proceed differently than we did for P-splines with a TP basis. The basic problem
is that the density of the random effects resulting from representation (8.21),
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p.�/ / exp

�
� 1

2�2
� 0K�

�

cannot be normalized. Such a density is also called improper. More precisely, we
obtain a partially improper density, since rk.K / > 0, yet rk.K / ¤ dim.�/. In a
mixed model, this partial impropriety is avoided by separating the density into a
noninformative distribution for fixed effects and a nonsingular normal distribution
with a normalized density for the random effects. It is our goal to derive such a
separation for any penalization approach (see also Sect. B.3.2 in Appendix B).

To do so, we need to split � into two subvectors ˇ and Q� with dimensionalities
depending on the rank deficiency of K . Let r D rk.K / denote the rank of the
penalty matrix and d D dim.�/ the dimension of the coefficient vectors. We then
consider reparameterizations

� D QXˇ C QU Q�

with d�.d�r/- and d�r-dimensional design matrices QX and QU and corresponding
.d � r/ and r-dimensional parameter vectors ˇ and Q� . Our aim is to choose the
design matrices QX and QU so that we can rewrite the penalty 	� 0K� as 	 Q� 0 Q� . As
such ˇ can be considered a vector of fixed effects while Q� corresponds to a vector of
independent and identically distributed (i.i.d.) random effects. More precisely, this
requires the following properties of the design matrices:
1. The composite matrix Œ QX ; QU � should have full rank to yield a one-to-one

transformation.
2. QX 0

K D 0, so that K does not penalize ˇ.
3. QU 0

K QU D I , so that Q� consists of i.i.d. random effects.
For the penalty, we then have

� 0K� D . QXˇ C QU Q�/0K . QXˇ C QU Q�/
D ˇ0 QX 0

K„ƒ‚…
D0

QXˇ C 2ˇ0 QX 0
K„ƒ‚…

D0

QU Q� C Q� 0 QU 0
K QU„ ƒ‚ …
DI

Q�

D Q� 0 Q�:

The model can therefore be rewritten as a mixed model, yielding

y D Z� C " D Z . QXˇ C QU Q�/C " D Xˇ C U Q� C "

with design matrices X D Z QX and U D Z QU , as well as fixed effects ˇ and random
effects Q� � N.0; �2I r /. As for P-splines in a TP-representation, we are now able to
use mixed models methodology to determine the variance parameters, and thus the
smoothing parameter.

The remaining question is the construction of design matrices QX and QU that
actually fulfill conditions (1) and (2) listed above. For the design matrix of the
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fixed effects, we can easily obtain the desired orthogonality to the penalty matrix
by using a basis of the null space of K for the columns of QX ; see Definition A.16
in Appendix A.2). For P-splines with a B-spline basis, this null space can also be
easily characterized, since polynomials of degree k � 1 remain unpenalized by the
difference penalty. Thus, we can define QX as

QX D

0
B@
1 �1 : : : �

k�1
1

:::
:::

:::

1 �d : : : �
k�1
d

1
CA ;

where �1; : : : ; �d are the knots of the spline basis.
The design matrix of the random effects can be derived from the spectral

decomposition of the penalty matrix (see Theorem A.25 in Appendix A). Using the
decomposition K D 	 ˝C	 0, where ˝C is the matrix of the positive eigenvalues
and 	 is the corresponding orthonormal matrix of eigenvectors, we can define an
appropriate QU by QU D L.L0L/�1 with L D 	 ˝

1=2
C . It follows then that

QU 0
K QU D .L0L/�1L0LL0L.L0L/�1 D I :

In some specific situations, we can avoid the use of the spectral decomposition. For
P-splines based on a B-spline basis, for example, we can also choose L D D0 with
difference matrix D. This also indicates that the mixed model decomposition of �

is not unique.
In summary, we have found a possibility to transfer basically any penalization

approach into a mixed model and, in doing so, to obtain an optimal smoothing
parameter using ML or REML estimation. In the following Sect. 8.2, we will further
apply this knowledge to more penalization methods in the context of bivariate
smoothing. A further advantage of the representation as a mixed model that is often
claimed is that standard mixed model software can be used. We must, however, be
aware of the fact that mixed models derived from penalization approaches differ
significantly in structure from most of the mixed models discussed in Chap. 7, even
though they can formally be written in the same way. The mixed models arising
in the context of smoothing do not have any grouping structure, which is one
reason why numerical problems may occur when using standard software. Thus,
generally speaking, estimation using specialized software that is based on the mixed
model representation should be preferred. This is especially the case with the more
complex models that will be discussed in Chap. 9.

Finally, we will now consider a methodological problem that arises when
estimating the smoothing parameter using mixed models. From a frequentist
perspective, the parameters � to be estimated in a penalization approach are fixed,
unknown coefficients. In the reformulation as a mixed model, one part of the
vector � will be converted into random effects and does, consequently, no longer
formally represent a fixed parameter, but rather a random variable. According to
the frequentist interpretation, however, Q� should not be interpreted as random.
Strictly speaking, any representation as a mixed model is then to be understood
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as an algorithmic trick and not as an actual reformulation of the model. From a
Bayesian perspective, this problem does not occur, since all parameters are viewed
as random anyway and either representation defines an equivalent formulation of the
same prior assumption. According to the distinction made in Sect. 7.4, the estimates
resulting from the Bayesian interpretation of mixed model-based smoothing have to
be interpreted as empirical Bayes estimates since � is viewed as random while the
variance parameters are estimated from a likelihood and therefore in a frequentist
setting.

The difference between the Bayesian and the frequentist understanding of
penalization methods is also evident in the covariance matrix of the estimates; see
also the different covariance matrices that were obtained in Sect. 7.3.3 (p. 378) for
general mixed models. Inserting the specific quantities

R D �2I ; G D �2I ; C D .X ;U /; B D
 

0 0

0 1=�2I

!
;

in Eq. (7.30) of Sect. 7.3.3, we obtain the Bayesian covariance matrix

Cov

 Ǒ
OQ�

!
D �2H �1;

with

H D
�

X 0X X 0U
U 0X U 0U C 	I

�
:

Note that H is required for the estimation of the regression coefficients anyway. The
frequentist version (7.32) of the covariance is given by

Cov

 Ǒ
OQ�

!
D H �1

�
X 0
U 0
�

Cov.y/.X U /H �1 D �2H �1H 1H
�1;

with Cov.y/ D �2I and the cross product matrix

H 1 D
�

X 0X X 0U
U 0X U 0U

�
:

In the frequentist approach, we obtain the “sandwich” form for the covariance
estimate that was already discussed in Sect. 7.3.3. In contrast, a simpler covariance
matrix results from the Bayesian approach, which leads to somewhat wider confi-
dence intervals.

Bayesian Smoothing Parameter Choice Based on MCMC
After defining empirical Bayes estimates for the smoothing parameter based on
mixed models, we now discuss a fully Bayesian alternative relying on MCMC
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simulations. We again restrict ourselves to penalization approaches with quadratic
penalties. For Bayesian P-splines, we already found that such a penalty can be
derived equivalently by specifying an appropriate smoothness prior. More generally,
the following equivalence holds: Frequentist regression models of the form y D
Z� C " with quadratic penalty

�2

�2
� 0K�

correspond to Bayesian regression models of the same structure with multivariate
normal prior distribution

p.� j �2/ /
�
1

�2

�rk.K/=2
exp

�
� 1

2�2
� 0K�

�

for the regression coefficients. Note that, in general, this density cannot be normal-
ized, since K is often not of full rank and therefore p.� j �2/ is partially improper.
Taking the logarithm of the density shows that it is equivalent (up to a change in
the sign and an additive constant) to the penalty in the PLS criterion. Therefore, the
posterior mode O� is equivalent to the PLS estimate for given smoothing parameter
(as was the case with Bayesian P-splines). In analogy to the penalization of certain
function types, we can interpret the prior distribution as a smoothness prior, which
enforces prior beliefs regarding the smoothness of the function to be estimated.

Rather than examining the posterior mode estimate, we will now use MCMC
simulation techniques to determine the posterior mean. Therefore we require a
fully Bayesian formulation of the nonparametric regression problem where adequate
prior distributions are provided for all unknown parameters. This includes the
variance parameters, which were estimated with ML or REML in the empirical
Bayes approach. Since the inverse gamma distribution IG.a; b/ is the conjugate
prior distribution in the normal setting, the choice of IG priors for �2 and �2 yields
feasible models; see also Sect. 4.4 on Bayesian linear models. More specifically, we
assume

�2 � IG.a; b/ and �2 � IG.a1; b1/:

Assuming (conditional) independence a priori, the joint posterior distribution is
given by

p.�; �2; �2 j y/ / p.y j �; �2/p.� j �2/p.�2/p.�2/

/ .�2/�
n
2 exp

�
� 1

2�2
.y � Z�/0.y � Z�/

�

�.�2/� rk.K/
2 exp

�
� 1

2�2
� 0K�

�

� 1

.�2/aC1 exp

�
� b

�2

�
1

.�2/a1C1
exp

�
�b1
�2

�
:
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Due to the conjugate IG priors, we obtain known distributions for all full conditional
distributions so that a Gibbs sampler can be used for estimation. More precisely, we
obtain a normal distribution

� j y; �2; �2 � N.�� ;˙ �/;

for � with expected value and covariance matrix

�� D E.� j �/ D
�
1

�2
Z 0Z C 1

�2
K

��1
1

�2
Z 0y

˙ � D Cov.� j �/ D
�
1

�2
Z 0Z C 1

�2
K

��1
:

For the variance parameters, the full conditional distributions are of the inverse
gamma type, and we find

�2 j y;� ; �2 � IG.a1 C 0:5rk.K /; b1 C 0:5� 0K�/;

�2 j y;�; �2 � IG.aC 0:5n; b C 0:5.y � Z�/0.y � Z�//:

Based on these full conditionals, we can now derive an MCMC sampler by
iteratively drawing random numbers with current parameters inserted. However, �

may be of relatively high dimension in nonparametric regression models; a naive
implementation can be rather time-consuming as we have to solve high-dimensional
systems of equations in every iteration to sample from � j y; �2; �2. To considerably
shorten the computing times, efficient algorithms for drawing multivariate normal
random numbers can be used. These are based on the fact that both the penalty
matrix K and the cross product of the design matrix Z 0Z have a very specific and
typically sparse structure that can be exploited in the calculations; see Lang, Umlauf,
Wechselberger, Harttgen, and Kneib (2012) for details.

Besides point estimates Of .z/ obtained as the median or mean of the samples

f .t/.z/ D
dX

jD1
�
.t/
j Bj .z/;

the MCMC samples also form the basis for defining appropriate credible regions,
i.e., the Bayesian analogues to confidence intervals. Pointwise credible intervals
are typically computed by taking empirical quantiles of the samples, e.g., for
obtaining a 95 % pointwise credible interval for f .z/, the 2.5 % and the 97.5 %
quantile of the samples f .t/.z/, t D 1; : : : ; T; define the boundaries of the interval.
Simultaneous credible bands as discussed on p. 471 in the frequentist context are
more difficult to obtain since there is no common ordering of the samples for a
vector of function evaluations f r D .f .z1/; : : : ; f .zr //0, where z1; : : : ; zr are a
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representative selection of covariate values (e.g., the subset of all distinct covariate
values or a grid of equidistant values).

An early suggestion for constructing simultaneous credible bands has been
made by Besag, Green, Higdon, and Mengersen (1995) credible bands based on
the order statistics of the samples. An alternative approach based on assuming
posterior normality has been proposed by Crainiceanu, Ruppert, Carroll, Adarsh,
and Goodner (2007). Let Of r denote the posterior mean and Osi , i D 1; : : : ; r; the
posterior standard deviation for each element of f r computed from the samples.
Then after assuming approximate posterior normality and deriving the (1 � ˛)
sample quantilem1�˛ of

max
iD1;:::;r

ˇ̌
ˇ̌
ˇ
f .zi /.t/ � Of .zi /

Osi

ˇ̌
ˇ̌
ˇ ; t D 1; : : : ; T; (8.22)

a simultaneous credible band for f r is given by the hyperrectangular

h Of .zi /� Osim1�˛; Of .zi /C Osim1�˛
i
; i D 1; : : : ; r:

In fact, this credible band is the sampling-based analogue to the simultaneous
confidence band derived from Eq. (8.18) on p. 472. It implicitly depends on the
assumption of posterior normality and uses the posterior standard deviation as a
measure of uncertainty (also assuming symmetry of the posterior distribution) and
the posterior mean as a point estimate. As a consequence, the posterior information
contained in the samples is not fully utilized but reduced to measures of location
and scale.

Krivobokova, Kneib, and Claeskens (2010) propose another alternative definition
of simultaneous Bayesian credible bands that form a kind of compromise between
the approaches by Besag et al. (1995) and Crainiceanu et al. (2007) and thereby
avoids their disadvantages. As a starting point, the pointwise credible intervals
derived from the ˛=2 and 1 � ˛=2 quantiles of the samples f .z1/.t/; : : : ; f .zr /.t/,
t D 1; : : : ; T , are used to measure pointwise uncertainty in the estimated function
instead of using the pointwise standard deviation as in Crainiceanu et al. (2007).
Then these pointwise credible intervals are scaled with a constant factor until a
fraction of .1 � ˛/ of all sampled curves is contained in the credible band. This
can be achieved by monitoring for each of the sampled curves whether it is already
contained in the credible band and by modifying the scaling factor until the desired
confidence level 1 � ˛ is achieved. By construction, this new credible band is still
based on pointwise measures of uncertainty (reflected by the pointwise credible
intervals) but avoids the assumption of posterior normality and in particular the
assumption of symmetry for the posterior distribution.

Krivobokova et al. (2010) also perform a simulation study comparing the three
suggested credible bands. It turns out that the approach of Besag et al. (1995)
often does not yield the desired coverage properties but understates uncertainty
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and therefore yields coverages below the nominal level. In contrast, both the
approaches by Crainiceanu et al. (2007) and Krivobokova et al. (2010) work well
in case of normally distributed responses. Since this is the ideal situation for the
credible intervals based on posterior normality, the similar performance is not too
surprising. However, in general, the approach by Krivobokova et al. (2010) requires
less assumptions and is therefore probably preferable in practice. It also has the
advantage that no additional computations for deriving the quantiles in Eq. (8.22)
are required.

Example 8.5 Malnutrition in Tanzania—Credible Bands for the Age
Effect

We demonstrate the difference between pointwise credible intervals and simultaneous
credible bands by analyzing the age effect in the Tanzania example, providing a Bayesian
supplement to the frequentist results achieved in Example 8.4 (p. 472). Figure 8.27 shows
the posterior mean together with a pointwise 95 % credible interval and a simultaneous 95 %
credible band computed according to the approach of Krivobokova et al. (2010). The scaling
factor required to move from the pointwise to the simultaneous credible band is about 1.6,
which seems to be a common value in many analyses. As can be seen, the simultaneous
band picks up local variability in the pointwise bands but scales them to a larger magnitude
to cover the overall variability of the curve samples. 4

8.1.10 Adaptive Smoothing Approaches

In Sect. 8.1.1, we first introduced polynomial splines without penalization and
then motivated the need of appropriate regularization implemented via different
penalization approaches. Alternatively, algorithms can be constructed for estimating
polynomial splines without penalty but with optimally selected number and position
of the knots. In this setting, regularization is achieved directly through model
choice strategies, rather than indirectly through the addition of a penalty term. Such
approaches are then often referred to as adaptive procedures, since the construction
of the polynomial spline is adaptively controlled by the observed response values.
Note that with penalization approaches, the number and position of the knots are
chosen based on either the covariate values alone or some partition of the covariate
domain.

Various different adaptive procedures exist in both Bayesian and frequentist
formulations, and we will not be able to explain all of them in detail here. Instead,
we restrict the presentation to a broad overview and develop the main ideas while
providing additional references in Sect. 8.4.

Multivariate Adaptive Regression Splines
Many frequentist approaches for adaptive nonparametric regression can be de-
veloped analogously to the variable selection ideas that have been discussed
in Sect. 3.4. As a representative example, we describe a variant of the popular
Multivariate Adaptive Regression Splines (MARS) algorithm. The basis function



8.1 Univariate Smoothing 491

−150

−50

50

150

250

350

f(
ag

e)

0 20 40 60

age in months

pointwise vs. simultaneous credible intervals

Fig. 8.27 Malnutrition in Tanzania: pointwise credible intervals (– – –) and simultaneous
confidence band (- - -) for the age effect

representation

yi D f .zi /C "i D
dX

jD1
�jBj .zi /C "i ;

serves as the foundation for the MARS algorithm. However, the basis functions are
no longer fixed but are rather selected from a large set of possible candidates. The
model fit is then evaluated using one of the model choice criteria already discussed,
such as GCV or AIC. A possible search strategy for determining the optimal model
is presented in the following algorithm:
1. Start with the minimal model, i.e., the smallest basis to be considered.
2. Iteratively extend the model until the full model is reached:

• For all basis functions Bj that are not yet included in the model, calculate
the score statistic for the test on �j D 0 and add the basis function with the
highest score statistic.

• Estimate the new model and save the respective model fit criterion.
3. Based on the full model, iteratively eliminate basis functions until the minimal

model is reached:
• For each basis function Bj still included in the model, calculate the Wald

statistic for the test on �j D 0 and remove the basis function with the smallest
Wald statistic from the model.

• Estimate the new model and save the respective model fit criterion.
4. From the resulting sequence of models choose the one which optimizes the model

fit criterion as the best model.
The algorithm mainly consists of two steps in which a forward selection and

a backward elimination are conducted through the space of possible models. In
doing so, different criteria are used for the inclusion of new terms and for the
elimination of terms already included in the model so that two different sequences
of models result. The test criteria are chosen to ease calculation: While the score
statistic for the inclusion of a new basis function can be determined without actually
estimating the extended model, the Wald statistic can be calculated without having
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to estimate the reduced model. Thus, the execution of the algorithm is feasible even
for a large number of basis functions.

For demonstration purposes, we analyze the simulated data example using a
MARS implementation available in function polymars from the R package
polspline. The implementation uses a linear TP basis and starts with the
intercept as the minimal model. All observed covariate values are candidate knot
positions resulting in a maximum number of 17 basis functions. To evaluate the
model fit, we chose the GCV criterion. Figure 8.28 (left) shows the resulting GCV
for the sequence of selected models. Large values appear at both the beginning and
the end of the model sequence corresponding to simple models with a small number
of basis functions that clearly fit the data poorly. A similar statement holds for very
complex models that overfit the data and therefore also yield larger values for the
GCV. In addition, the GCV sequence shows that the forward and backward search
actually result in different model sequences and, as a consequence, the GCV curve
is not completely symmetric. In more complex models with a larger number of
regressor variables, even stronger deviations from symmetry are to be expected.
Figure 8.28 (right) shows the optimal function estimate with eight basis functions
obtained from the MARS algorithm. In the example, a satisfactory model fit results
even with linear splines. In general, a basis of higher degree will be recommended
to ensure smoother fits, but such basis functions are not available in polymars.

Regression Trees
As a second example for adaptive smoothing, we examine a procedure that
approximates f .z/ using piecewise constant functions. In this approach, the domain
of the covariate z is partitioned in such a way that the observations within the
resulting groups are as homogeneous as possible (with respect to the response
variable) while the groups themselves are as heterogeneous as possible. Within the
scope of nonparametric regression, this problem can be formulated as follows: The
function f .z/ is expressed as

f .z/ D
dX

jD1
�j I.�j�1 < z � �j /;

i.e., the domain of z will be divided into intervals Rj D .�j�1; �j � based on the
cut points �0 < �1 < : : : < �d , and the function f takes the constant value �j
on such an interval. The cut points �0; : : : ; �d , as well as the function values �j ,
are then to be chosen to minimize the residual sum of squares

P
i .yi � f .zi //2.

Without further restrictions, this will lead to a perfect fit, in which every observation
is represented by one individual group. As a consequence, additional constraints are
usually imposed on f .z/, as we will discuss in more detail in the rest of this section.

For a piecewise constant function, the residual sum of squares can be written as

dX

jD1

X

i Wzi2Rj
.yi � �j /2; (8.23)
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Fig. 8.28 MARS estimates for the simulated data: GCV criterion as a function of the number of
basis functions (left) and corresponding optimal estimate with eight basis functions (right)

and therefore estimates for the function values �j are simply given by the local
means of the response variable for zi 2 Rj , i.e., O�j D Ny.Rj /. The optimal
determination of the cut points is, however, more difficult and not directly attainable.
Thus, one often resorts to recursive algorithms, which successively split the
covariate domain into intervals. Figure 8.29 illustrates this approach using the
malnutrition example (and also motivates the notion regression tree). In a first step,
a split of the observations is performed based on a single cut point � so that the
variability within the resulting two groups is minimized. In our example, we obtain
an optimal cut point of � D 7:5, as denoted in the top branch of Fig. 8.29. The same
splitting principle is then iteratively applied to the resulting subgroups and finally
yields a decomposition of the covariate domain. The resulting structure can then be
represented as a binary tree, in which every branch corresponds to a specific cut
point. In Fig. 8.29, the cut points are provided on top of each branch. In addition,
the lower part of the tree provides information about the number of observations in
the final leafs of the tree and the estimated function value O�j D Ny.Rj / assigned
to the group.

We now define regression trees in a more formal way: The tree is initialized based
on a decomposition in the intervals

R1 D fz W z � �g; R2 D fz W z > �g;

where � is chosen to minimize the criterion

X

fi Wzi2R1g
.yi � Ny.R1//2 C

X

fi Wzi2R2g
.yi � Ny.R2//2:
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Fig. 8.29 Malnutrition in Tanzania: regression tree. No further splits were performed once a leaf
of the tree contained less than 20 observations

Since we only need to determine one single split, the numerical determination of �
is rather simple. We can choose from all unique observed covariate levels zi so that
a direct search is possible. In the next step, the same principle is applied to the two
resulting intervalsR1 andR2 and proceeding iteratively through the intervals finally
yields a decomposition of the form (8.23).

The specification of a regression tree is completed by defining a stopping
criterion that determines whether or not additional branches are to be included. Two
simple strategies to do so are as follows:
1. The given interval is only eligible for a further split if it contains at least a pre-

specified number of observations.
2. The given interval is only eligible for a further split if a certain (absolute or

relative) reduction of the residual sum of squares can be achieved.
We used the first criterion with a minimal number of 20 observations for the example
in Fig. 8.29.

In general, regression trees that result from these simple breakdown criteria have
too many branches, so that it is necessary to use an additional strategy to reduce
model complexity. To do so, we first define a complex tree with a large number of
branches, and then, with the help of a complexity measure, we eliminate superfluous
branches (pruning). A complexity-adjusted model fit criterion is given by

PLS	.T / D LS.T /C 	jT j;
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Fig. 8.30 Malnutrition in Tanzania: cross validation criterion as a function of the number of splits

where LS.T / defines the residual sum of squares of tree T , and jT j is the number of
branches in the tree. This construction corresponds to our previous considerations
regarding penalization methods and, in particular, 	 can be interpreted as a
smoothing or complexity parameter. In varying 	, we obtain trees of different
complexity with increasing complexity resulting from smaller values of 	. The
optimal value for 	 can then be determined using cross validation criteria.

Figure 8.30 plots the cross validation criterion for the Tanzania data set against
the number of branches in the tree. Note that the value of the smoothing parameter
	 implicitly defines the number of branches. In fact, not all numbers of branches
are actually observed since a change in 	 may lead to a model with more than
just one additional branch. It appears that four splits are optimal while one split
also leads to relatively small value of the cross validation criterion, with a slight
preference towards the more complex model. Figure 8.31 provides a visualization
of this model with four splits. We again recognize the main features of the data,
namely a higher Z-score, i.e., a lower malnutrition risk for younger children, and
a pronounced increase in f after the 24th month when the reference population is
changing.

One of the main advantages of regression trees is their rather simple interpreta-
tion arising from the piecewise constant approximation. In more complex models,
regression trees also allow to detect interactions fairly easily. The assumption of
a piecewise constant function, however, can be problematic in many applications.
Moreover, regression trees are unstable, i.e., a slight change of the data set can lead
to an entirely different optimal tree. In addition, such an instability can also strongly
influence the choice of an optimal smoothing parameter determined through cross
validation when considering small variations in the cross validation folds. Modern
extensions of tree-based models rectify this problem by using resampling methods
in combination with weighted averaging (random forests). Further comments on
such approaches are given in Sect. 8.4.
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Fig. 8.31 Malnutrition in Tanzania: pruned regression tree and corresponding piecewise constant
function estimate

Bayesian Adaptive Smoothing I: Model Averaging
To motivate Bayesian adaptive smoothing approaches, we start with the basis
function formulation

yi D f .zi /C "i D
dX

jD1
�jBj .zi /C "i ;

using a large number of candidate basis functions, from which an adequate subset
shall be chosen. In other words, we are interested in determining which of the
coefficients �j differ from zero and are therefore associated with basis functions
that have non-negligible impact on the response. Exactly the same question has
already been discussed in Sect. 4.4.3 where we developed Bayesian linear models
with built-in variable selection. In fact, the same models can be used for adaptive
knot selection (with minor modifications). In the following, we briefly review some
of the main ideas of Sect. 4.4.3 in the context of basis function selection.

In a Bayesian approach, the question of basis function selection can be
approached by inserting indicator variables ı D .ı1; : : : ; ıd /

0, such that

ıj D
(
1 if �j ¤ 0;

0 if �j D 0:

When no prior information regarding the plausibility of the models exists, a uniform
prior is a straightforward choice. In our example, every possible indicator vector ı

would then obtain the prior probability 1=2d . Compare, however, the remarks in
Sect. 4.4.3 regarding the prior expected model size and the difficulties arising from
this (naive) prior specification.
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The original model can be rewritten as

f .z/ D
dX

jD1
ıj �jBj .zi /:

For a given vector of indicators, define �ı as the regression coefficient vector,
containing only the components that remain after eliminating coefficients associated
with zero indicators. Similarly, let Z ı denote the corresponding design matrix
resulting from the basis functions with ıj D 1. In matrix notation, we now obtain
the vector of function evaluations f ı D Zı�ı that is based on the model defined
by ı.

If we neglect the error variance �2 for the moment, the posterior distribution for
the vector f (without conditioning on a specific model) can be written as

p.f j y/ D
X

ı2f0;1gd
p.f ı j ı;y/ p.ı j y/; (8.24)

i.e., we obtain a mixture of all possible configurations of the indicator vector ı,
where the posterior distributions p.f ı j ı;y/ are weighted by the posterior prob-
abilities p.ı j y/. In particular, the marginal posterior expectation of f is also a
mixture of the conditional posterior expected values:

E.f j y/ D
X

ı2f0;1gd
E.f ı j ı;y/ p.ı j y/: (8.25)

This is a special example of the concept of model averaging; see Appendix B.5.5
for an introduction and Sect. 4.4.3 for details in the context of variable selection in
linear models.

In our model choice problem, we obtain normal posterior distributions for �ı and
the function evaluations f ı when using normal prior distributions. Direct access
through Eq. (8.24) is, however, limited by another difficulty. For a given number of
basis functions, we have to consider 2d models so that, in practice, the determination
of all posterior probabilities cannot be realized, even for a modest number of basis
functions. This is the reason why we generally do not use the explicit formulae for
model averaging, but an approximation based on MCMC simulations. To do so,
first, the indicators ı are updated to obtain a current model, at each iteration. Based
on this current model, we are able to simulate f ı . More precisely, we obtain the
following algorithm, which also contains the estimation of the error variance:
1. Choose adequate starting values ı.0/, �.0/, and �2.0/ as well as a maximal number

of iterations T and set t D 1.
2. For j D 1; : : : ; d generate ı.t/j from the marginal full conditional density

p.ıj j ı
.t�1/
�j ;y/, where
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ı
.t�1/
�j D .ı

.t/
1 ; : : : ; ıj�1.t/; ı.t�1/jC1 ; : : : ; ı

.t�1/
d /

is the current index vector without the j th entry.
3. Simulate f

.t/
ı according to the full conditional density p.f ı j ı.t/; �2.t�1/;y/.

4. Simulate �2.t/ from the full conditional density p.�2 j ı.t/;f
.t/

ı ;y/.
5. If t < T , set t D t C 1 and go back to 2.
The use of the marginal full conditional densities for the simulation of ıj (and
therefore a distribution that is independent from �ı and �2) generally leads to
a more favorable behavior of the generated Markov chain. If we use conjugate
prior distributions, i.e., a normal prior for the regression parameters and an inverse
gamma prior for �2, steps 3 and 4 can be realized with the help of Gibbs sampling.
A more detailed discussion of adequate prior distributions and a description of
the resulting MCMC algorithm can be found in Smith and Kohn (1996). Note
also that the algorithm differs from the MC3 algorithm of Box 4.8 (p. 247). In
contrast to the work by Smith and Kohn (1996) an accessible implementation of the
MC3 algorithm in form of the R package BMS is available. The implementation is,
however, not specialized to nonparametric regression. Hence the use in the context
of basis function selection is tedious.

Based on realizations of the MCMC algorithm, the posterior expected value
(8.25) can be approximated through

1

T

TX

tD1
f
.t/
ı :

Since models with a high posterior probability are visited more often within the
run of the MCMC algorithm, the weighting of the mean value corresponds (at least
approximately) to the theoretical weighting in Eq. (8.25). The empirical frequencies

1

T

TX

tD1
ı.t/

also provide estimates for the posterior probabilities P.ıj D 1 j y/, i.e., for the
posterior inclusion probabilities for the individual basis functions. If we apply a
threshold to these probabilities, we also gain the possibility to choose an adequate
individual model based on the MCMC output, which does only contain basis
function important in terms of their posterior probabilities.

Bayesian Adaptive Smoothing II: Reversible Jump MCMC
A second Bayesian approach yielding adaptive smoothing in nonparametric
regression results from including the number and the location of the knots as
additional parameters to be estimated. Therefore, we first need to find adequate prior
distributions for these new parameters. The number of knots m can, for example,
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be assigned to a Poisson distribution with parameter 	, which represents prior
information on the model size. For a large parameter 	, more complex models are
preferred while a small parameter favors simpler models with a smaller number of
knots. In practice, the Poisson distribution is often truncated at an upper limit mmax,
i.e., the maximal number of basis functions is bounded upwards so that m � mmax.
A uniform distribution on f0; : : : ; mmaxg is an alternative to the Poisson distribution.
The prior distribution for the position of knots is often defined on a large number
of candidate knots, from which a selection is made during the model definition.
All knot positions can be assigned equal prior probability. An alternative prior
distribution is obtained from the distribution of the order statistic of an i.i.d. sample
from the uniform distribution on the domain of z.

The resulting model formulation, enhanced by the new parameters corresponding
to the number and location of the knots, can now again be transformed into an
MCMC algorithm. However, the construction of such an algorithm is complicated
by the fact that the dimension of the parameter vector to be estimated varies from
iteration to iteration. Therefore standard MCMC methods have to be extended to
so-called reversible jump MCMC (RJMCMC) approaches that include new steps
for simulating the number and the position of knots in addition to the steps already
known to be necessary when simulating the regression coefficients and the error
variance at a given knot configuration. In an RJMCMC algorithm, this simulation is
achieved indirectly, by adequately modifying the current values instead of directly
proposing new values. There are three possibilities to do so:
1. Creation of a new knot (birth step): Randomly choose a knot that so far has not

been included in the model and add this knot to the knot set.
2. Elimination of an existing knot (death step): Randomly choose a knot currently

included in the model and eliminate it from the knot set.
3. Relocation of a present knot: Randomly choose a knot currently in the model and

relocate it within the range defined by the two adjacent knots.
While the first two approaches modify the number of knots, the third approach
allows for variation in the knot positions without actually changing their number.
Within the RJMCMC algorithm, we have to randomly decide, at each iteration,
whether we simulate new coefficients from the current model specification or
whether to vary the knot configuration using one of the three available options.
When modifying the knot configuration, the probability of acceptance must also
be adjusted. We will not discuss this in further detail, but refer to the appropriate
literature (Green, 1995) for the basic RJMCMC algorithm, as well as Biller (2000)
and Denison, Mallick, and Smith (1998) for applications within the scope of
Bayesian adaptive smoothing.

Similar to Bayesian model averaging, a sample of possible models results from
the RJMCMC simulation, weighted according to their posterior probabilities. In
addition, we obtain the posterior distribution for the number and position of knots
so that these can be analyzed using standard approaches for MCMC algorithms.



500 8 Nonparametric Regression

5

10

15

20

20 55 90 125 160

area in sqm

grouping by year of construction

10

12

14

16

18

20

1918 1938 1958 1978 1998

year of construction

grouping by area

Fig. 8.32 Munich rent index: separate estimates for the effect of living area grouped according
to year of construction (left) and separate estimates for the effect of year of construction grouped
according to living area (right). The grouping structure has been determined as follows: yearc �
1938 (—), 1938 < yearc � 1958 (- - -), 1958 < yearc � 1978 (� � � ), yearc > 1978 (- � - �);
area � 55 (—), 55 < area � 90 (- - -), 90 < area � 135 (� � � ), area > 135 (- � - �)

8.2 Bivariate and Spatial Smoothing

Thus far, we investigated the effect of one single continuous regressor in nonpara-
metric regression. In this section, we examine approaches for bivariate smoothing
(i.e., models with two continuous regressors) and for modeling spatial effects. To
get an impression of the different possible problems and data situations, we start
with various representative examples.

Example 8.6 Munich Rent Index—Interaction Between Living Area and
Year of Construction

In Chap. 3 (Example 3.5), we saw that the year of construction and the living area have
possibly nonlinear effects on the net rent per square meter. With the methods discussed in
Sect. 8.1, we would only be able to examine each nonparametric effect of the two variables
separately. However, when doing so, we assume that no interaction exists between the two
effects. To evaluate this assumption, we grouped the data according to year of construction
and living area, respectively, and estimated the effects in the corresponding groups using
nonparametric methods. The results shown in Fig. 8.32 suggest that interaction effects
occur between the two covariates, since the effects differ clearly for the individual groups.
A flexible model for the description of such interaction effects has the form

rentsqmi D f .areai ; yearci /C "i ;

where f is a smooth function that, as in Sect. 8.1, is to be estimated flexibly from the given
data, but now depending on two covariates. Since the interaction between living area and
year of construction is modeled by a surface, we also refer to such a model as an interaction
surface. 4
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Fig. 8.33 Forest health status: Left panel, open circles indicate locations with known calcium
concentration while predictions for the calcium concentration are required at locations represented
as solid circles. Right panel, local averages based on a division in regular rectangles

Example 8.7 Forest Health Status—Spatial Smoothing of Chemical
Concentration

This example shows an analysis of forest health in Baden–Württemberg, one of the federal
states of Germany. The health status of trees is to be related to the concentration of different
chemicals in the soil. However, the chemical concentrations have not been determined at
all locations where the forest condition was measured. Figure 8.33 illustrates this situation
with the concentration of calcium. In the left panel, every point represents a location
where the forest condition was evaluated. Open circles indicate locations where calcium
concentrations were also determined, whereas solid circles represent locations where
calcium concentrations were not measured. To consider all observations in the analysis,
we use the model

Cai D f .xi ; yi /C "i

to predict the calcium concentration even at locations where it was not determined. In this
model, Ca denotes the measured calcium concentration, whereas x and y correspond to the
locations of the measurements in terms of longitude and latitude. In fact, we are then in the
same situation as in Example 8.6, i.e., a continuous response variable is flexibly modeled
in relation to two continuous explanatory variables. However, the problem differs from
Example 8.6 for two reasons: First, the covariates now represent spatial information so that
special methodology of spatial statistics can be used. Secondly, we need a representation
of f , which can be evaluated at arbitrary locations. The latter is difficult to achieve,
e.g., through data grouping in a regular grid and local averaging, because the data show
relatively large gaps (again see Fig. 8.33). However, the figure illustrates that the calcium
concentration changes continuously, and thus a smooth surface seems to be an appropriate
model. 4

Example 8.8 Human Brain Mapping
Human brain mapping aims at identifying areas within the brain that are associated
with specific tasks such as processing a visual stimulus. Therefore, a number of subjects
were examined in an experiment using functional magnetic resonance imaging (fMRI), in
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which periods of visual stimulation are alternated with rest periods. Figure 8.34 shows a
single layer of the brain at two different time points of visual stimulation (and therefore
a very similar spatial activation structure). Regions with an increased activation are
represented by the lighter colored pixels. We note that these light pixels are primarily
located towards the back portion of the brain, i.e., the location of the visual cortex, which
is responsible for processing visual stimuli. With the help of spatial smoothing methods,
we aim at filtering the noise out of the data in an effort to more clearly differentiate
between activated and deactivated areas. Hence, we again find a spatial smoothing problem
where a bivariate (or spatial) function is to be estimated. Although, in a strict sense, spatial
information in the human brain mapping example is only available discretely, the large
number of pixels allows us to disregard the discreteness and to identify every pixel with the
coordinates at its center. 4
In the examples presented thus far, the covariates or spatial coordinates were

always measured on a continuous scale or could at least be interpreted on a quasi-
continuous scale. Within the scope of spatial statistics, we will also refer to these
coordinates as continuous location variables. With other typical spatial statistics
data, only discrete information is actually provided, and in such cases we refer to
the covariates as discrete location variables. An example of such discrete spatial
information could be the location of a household or residence, e.g., at a county
level. It is then our goal to use the spatial allocation of the counties in order to
estimate a spatially smooth function. We already encountered similar situations
in Sect. 2.8. We next consider another spatial example using the rent index in
Munich.

Example 8.9 Munich Rent Index—Examining Spatial Dependence
The rent index data also contain information regarding the subquarters in Munich in which
the apartments are located. Figure 8.35 shows the average net rent per square meter for each
of these subquarters separately. For example, the graphical presentation reveals somewhat
reduced rents in the northern part of Munich. The goal of a spatial analysis in this context
is to more clearly show such spatially structured effects by taking into account the spatial
proximity of the subquarters in a smoothing approach. 4
Generally speaking, we can distinguish two different problems:

• Estimation of two-dimensional surfaces to model interactions or spatial effects
of location variables measured on a continuous scale.

• Estimation of spatial effects based on discrete spatial information, represented,
for example, in form of regions or spatial locations on a discrete grid.

Sections 8.2.1–8.2.3 focus on the former problem. We first extend the univariate
penalization approaches discussed in Sect. 8.1 to the bivariate setting, especially
penalized splines and the kriging method. Approaches for modeling discrete
spatial information, which actually can be viewed as extensions of the random
walk models discussed in Sect. 8.1.5, will be further investigated in Sect. 8.2.4.
In Sect. 8.2.6, we briefly discuss some bivariate extensions of local and adaptive
methods.
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Fig. 8.34 Human brain mapping: pixelwise activity as a response to visual stimulation. The left
panel shows the activity at time point t D 18 while the right panel refers to activity at time point
t D 38
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Fig. 8.35 Munich rent
index: average net rent per
square meter per subquarter.
Striped regions correspond to
subquarters without any
observations (such as parks or
industrial areas)

8.2.1 Tensor Product P-Splines

Tensor Product Bases
In Sect. 3.1.3, we have been modeling interactions between covariates as products
of the corresponding design vectors. When using basis functions in nonparametric
regression, this idea can be extended to bivariate interaction surfaces through the
use of tensor product bases. Such a bivariate basis is obtained by considering all
pairwise products of two univariate bases constructed for univariate smooths.

More specifically, we consider the following situation: The response variable y
is to be described in terms of a two-dimensional surface f .z1; z2/, where z1 and z2
can be continuous covariates, as well as coordinates in the case of a spatial model.
We then first construct the univariate bases for z1 and z2, yielding the basis functions
B
.1/
j .z1/, j D 1; : : : ; d1, and B.2/

r .z2/, r D 1; : : : ; d2. The tensor product basis then
consists of all basis functions of the form
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Bjr.z1; z2/ D B
.1/
j .z1/ � B.2/

r .z2/; j D 1; : : : ; d1; r D 1; : : : ; d2;

so that we obtain the following representation for f .z1; z2/:

f .z1; z2/ D
d1X

jD1

d2X

rD1
�jrBjr .z1; z2/:

For the case of polynomial splines, we refer to the tensor product basis as tensor
product splines or bivariate polynomial splines. To illustrate the construction of
a tensor product basis, Fig. 8.36 shows linear tensor product splines based on the
univariate TP basis functions

B
.1/
1 .z1/ D 1; B

.1/
2 .z1/ D z1; B

.1/
3 .z1/ D .z1 � �1/C

and
B
.2/
1 .z2/ D 1; B

.2/
2 .z2/ D z2; B

.2/
3 .z2/ D .z2 � �2/C:

The constant function on the upper left results from the product of the two univariate
constant basis functions B.1/

1 and B
.2/
1 . The first row and the first column are

then obtained by multiplying the constant basis function in z1-direction with the
basis functions in z2-direction or vice versa. The remaining four basis functions
correspond to the products of the remaining univariate basis functions.

For regularizing tensor product TP-splines, we again use penalties derived from
squared coefficients, similar as in the univariate setting discussed in Sect. 8.1.3.
However, the numerical difficulties discussed there are even more pronounced in the
bivariate setting, and we will therefore resort to tensor products of the numerically
more stable B-spline basis. Figure 8.37 shows individual tensor product B-splines
for the degrees l D 0; 1; 2, and 3. We again notice that a higher spline degree
leads to more smoothness. In particular, tensor product splines of degree l D 0

are not continuous, while tensor product splines of degree l D 1 are continuous
but not differentiable (see the definition of bivariate polynomial splines in Dierckx
(1993) for a more detailed description of continuity and differentiability properties
of tensor product splines). Figure 8.38 shows a larger number of cubic B-spline basis
functions. In order to get a clearer picture, not all basis functions of a complete basis
are mapped, as a considerably strong overlapping would occur, similar to what we
saw for univariate B-splines in Sect. 8.1.1.

If we look at the contour plots (i.e., a graphical representation of the contour
lines) of tensor product B-splines (Fig. 8.39), we find that the contour lines clearly
deviate from circles, especially for the lower spline degrees. Consequently, tensor
product B-splines are not radial. Radial basis functions will be discussed in
Sects. 8.2.2 and 8.2.3.

Although at first sight, tensor product approaches appear to be much more
complex than univariate basis function approaches, it is nevertheless straightforward
to represent them in the form of large linear models. To do so, we define the design
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Fig. 8.36 Tensor product basis obtained from univariate linear TP bases

matrix Z with rows

z0
i D .B11.zi1; zi2/; : : : ; Bd11.zi1; zi2/; : : : ; B1d2 .zi1; zi2/; : : : ; Bd1d2.zi1; zi2//

and express the vector of the corresponding regression coefficients as

� D .�11; : : : ; �d11; : : : ; �1d2 ; : : : ; �d1d2/
0:

We finally obtain the standard regression equation

y D Z� C ": (8.26)

In principle, bivariate smoothing approaches can therefore also be estimated within
the scope of linear models. However, in comparison to the univariate case, the
number of the parameters to be estimated is typically much larger. Numerically
efficient computation of O� is thus even more important, which can be implemented
utilizing the sparse structure of the design matrix for tensor product B-splines (see
also the comments on p. 430 and p. 488).
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Fig. 8.37 Tensor product basis functions obtained from univariate B-splines of degrees l D
0; 1; 2, and 3

Fig. 8.38 A partial tensor product basis obtained from cubic univariate B-splines

As with univariate polynomial splines, we need to determine the optimal number
and position of knots to construct tensor product splines. Moreover, we often
encounter the problem that certain data regions may not have any observations.
In such cases, it is impossible to estimate the coefficients of the basis functions
associated with these regions. This is the case in the human brain mapping example.
With tensor product splines, we construct basis functions over the entire area,
Œmin.z1/;max.z1/� � Œmin.z2/;max.z2/�. However, due to the shape of the brain,
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Fig. 8.39 Contour plots of tensor product B-splines of degree l D 1; 2, and 3

γjk γjk γjk

Fig. 8.40 Spatial neighborhoods on a regular lattice: The neighbors of �jk are marked as filled
dots

no observations can be made in the corners of the resulting rectangle. Consequently,
we are not able to estimate the corresponding regression coefficients. The same
problems can occur, in principle, for univariate B-splines, e.g., when the covariate
data has large gaps. Such problems are not quite as common in the univariate
setting compared to the two-dimensional case. Both the problem of determining
the number and position of the knots and the non-identifiability resulting from gaps
in the data can be eliminated by adding a penalty for regularizing the estimation
problem.

2D Penalties
Even though we could choose a ridge-type penalty for the tensor product TP basis,
the spatial alignment of the basis functions and the associated regression coefficients
may need to be incorporated appropriately when using tensor product B-splines. For
univariate B-splines, penalties have been constructed based on squared differences
of coefficients associated with neighboring basis functions. To transfer this concept
to the two-dimensional case, we first define appropriate spatial neighborhoods.
Figure 8.40 shows possible neighborhood definitions for four, eight, and twelve
neighbors, respectively. We will now introduce several penalties that are based on
these neighborhoods.
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We start with the simplest case of a neighborhood consisting of four neighbors.
A reasonable choice of the penalty is based on the squared differences between �jk
and these four neighbors. Therefore, let D1 and D2 denote the univariate difference
matrices of first order in z1- and z2-direction, respectively. Row-wise first-order
differences are then obtained by applying the expanded difference matrix Id2 ˝ D1

to the vector � , where Id is the d -dimensional identity matrix and ˝ denotes the
Kronecker product (see Definition A.10 in Appendix A.1). In fact, applying this
difference matrix to the vector of regression coefficients yields

� 0.Id2 ˝ D1/
0.Id2 ˝ D1/� D

d2X

rD1

d1X

jD2
.�jr � �j�1;r /2;

which is the sum of all squared row-wise differences. Analogously, we obtain the
squared column-wise differences

� 0.D2 ˝ Id1/
0.D2 ˝ Id1 /� D

d1X

jD1

d2X

rD2
.�jr � �j;r�1/2:

Summing up all squared row-wise and column-wise differences then finally yields
the penalty

	� 0K� D 	� 0 	.Id2 ˝ D1/
0.Id2 ˝ D1/C .D2 ˝ Id1/

0.D2 ˝ Id1/



�: (8.27)

Based on properties of Kronecker products (see Theorem A.4 in Appendix A.1),
one can show that the penalty can equivalently be defined as

	� 0K� D 	� 0 ŒId2 ˝ K 1 C K 2 ˝ Id1 ��;

with the univariate penalty matrices K 1 D D0
1D1 and K 2 D D0

2D2.
A Bayesian derivation of this penalty can be given as follows: As in the univariate

case, we can define the difference penalties that were constructed row by row
or column by column by using first-order random walks. Consequently, we can
interpret K as the precision matrix of the entire distribution of the vector � when
assuming a two-dimensional random walk of first order. More precisely, we obtain
the prior distribution for � as

p.� j �2/ /
�
1

�2

�rk.K /=2
exp

�
� 1

2�2
� 0K�

�
: (8.28)
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Based on this joint prior, we can calculate the conditional distribution of �jr given
all other coefficients as

�jr j � � N

�
1

4
.�j�1;r C �jC1;r C �j;r�1 C �j;rC1/;

�2

4

�

(apart from points at the boundary of the coefficient space). Thus, a spatial form of
the Markov property holds for the vector � , since the conditional distribution of �jr
only depends on the four nearest (spatial) neighbors. For the expected value of
the conditional distribution, we obtain the local mean computed from the four
nearest neighbors. Hence, the penalty for two-dimensional surfaces generalizes the
properties that we discussed in Sect. 8.1.2, p. 441ff for univariate P-splines.

The principle for building two-dimensional penalties, based on row-wise or
column-wise differences, can also be applied to difference matrices of a higher
order. We then obtain penalties of the form

	� 0K� D 	� 0 hId2 ˝ K
.k1/
1 C K

.k2/
2 ˝ Id1

i
�

with univariate penalty matrices K
.k1/
1 and K

.k2/
2 of orders k1 and k2. For example,

with k1 D k2 D 2, we obtain a penalty based on squared second-order differences
whose neighborhood structure consists of the eight nearest neighbors along the
coordinate axis (see Fig. 8.40).

In conclusion, we find that the approaches discussed in this section for bivariate
penalties (and also some extensions) in combination with tensor product B-splines
can be expressed in the general form seen in Sect. 8.1: The vector of function
evaluations can be represented as a large linear model Z� with a quadratic penalty
	� 0K� or an equivalent Gaussian prior for � with density (8.28). It follows that
the estimation procedures discussed in Sect. 8.1.9 are again applicable. Since the
number of parameters in the two-dimensional model is, however, much larger than
in the univariate case, numerically efficient implementations are even more crucial,
especially when considering MCMC algorithms.

For mixed model-based inference, we also need a partition of the regression
coefficients as

� D QXˇ C QU Q�:
Recall from Sect. 8.1.9 that QX results from a basis of the null space of the matrix K .
The null space is determined by the space of functions that remains unpenalized by
the penalty matrix K . When using a Kronecker product penalty based on first-order
differences, the addition of a constant term does not affect either the row-wise or
the column-wise penalty. One can actually show that indeed rk.K / D d1d2 � 1

still holds, so that it is only the constant term that remains unpenalized, and the null
space of the matrix K is given by a d1d2-dimensional vector of ones. In general, the
null space of a Kronecker product penalty matrix K is given by the tensor product
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8.12 Tensor Product P-Splines

The goal is to estimate the bivariate function f in the model

y D f .z1; z2/C "

based on continuous covariates z1 and z2. Tensor product splines are con-
structed through forming all pairwise products of univariate polynomial
splines for z1 and z2, i.e.,

Bjr.z1; z2/ D B
.1/
j .z1/ � B.2/

r .z2/; j D 1; : : : ; d1; r D 1; : : : ; d2:

This yields the representation

f .z1; z2/ D
d1X

jD1

d2X

rD1
�jrBjr .z1; z2/

and therefore the model
y D Z� C ";

where Z consists of the evaluated basis functions and � are the corresponding
regression coefficients.
Penalties can be constructed from Kronecker products of univariate penalty
matrices:

K D Id2 ˝ K 1 C K 2 ˝ Id1 :

This results in the quadratic penalty

	� 0K�;

and therefore the methods discussed in Sect. 8.1.9 can be used for estimat-
ing 	.

of the null spaces of the univariate penalty matrices. Thus, second-order differences
lead to a four-dimensional null space, containing the constant, linear effects in z1-
and z2-direction, and the interaction z1 � z2. This null space basis can be represented
based on the univariate knots �.1/1 ; : : : ; �

.1/

d1
and �.2/1 ; : : : ; �

.2/

d2
, leading to
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For the construction of QU , we can proceed as in Sect. 8.1.9, i.e., we define QU
based on the spectral decomposition of K . Note that we actually need to use the
spectral decomposition in this case, since it is not possible to represent K as K D
D0D.

Example 8.10 Munich Rent Index—Interaction Between Year
of Construction and Living Area

We use tensor product splines with different penalties to examine the interaction effect
between year of construction and living area (see Example 8.6, p. 500) while neglecting all
other covariate information and in particular the spatial information on the location of the
flats in specific subquarters of Munich. Figure 8.41 shows such estimates based on cubic
B-splines with 20 inner knots, using first- and second-order differences.

Both estimates basically reflect the same structure, i.e., higher estimated net rents per
square meter for new and small apartments. It is rather clear that an interaction effect exists,
and thus estimation based on univariate functions of year of construction and living area
would be insufficient. If we compare the smoothness of the estimated surfaces, the use of
higher differences in the penalty, as already seen in the univariate case, tends to lead to
smoother functions. 4

Example 8.11 Forest Health Status—Spatial Smoothing of Chemicals
As a second example, we analyze the spatial distribution of calcium concentrations in
Baden–Württemberg; see Example 8.7. Figure 8.42 shows the estimated surface using cubic
tensor product B-splines with 15 inner knots for each of the longitudinal and latitudinal
coordinates, and a penalty based on first-order differences. The estimated surface does
reproduce the regional trend found in the descriptive analysis very well (Fig. 8.33 on p. 501)
but does have the particular advantage that it can be visualized in a very high resolution,
and it can also be extrapolated into regions without observations. Augustin, Lang, Musio,
and von Wilpert (2007) use these extrapolated values in their analysis of forest health in
Baden–Württemberg. Note, however, that with tensor product splines, we always estimate
the unknown surface over a rectangular domain which in case of the calcium concentrations
means that we are sometimes extrapolating very far from the observed data (e.g., in the
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Fig. 8.41 Munich rent index: estimated interaction surface between living area in square meters
and year of construction based on cubic B-splines with 20 inner knots and first (left) and second
(right) order difference penalty
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Fig. 8.42 Forest health status: estimated spatial calcium concentration based on cubic tensor
product B-splines with 15 inner knots and first-order difference penalty

upper left corner of the right panel in Fig. 8.42). In these cases, information on the estimated
surface is very scarce, which will typically be reflected by very wide confidence intervals.4

8.2.2 Radial Basis Functions and Thin Plate Splines

An alternative way of constructing bivariate basis functions is obtained with radial
bases. Generally speaking, a radial basis function is defined as a function of the
Euclidian distance between a knot 
 D .�1; �2/ and an observation point z D
.z1; z2/, i.e.,

B
.z/ D B.jjz � 
jj/ D B.r/;
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with a suitably chosen scalar function B and Euclidean distance r D jjz � 
jj D
..z1 � �1/

2 C .z2 � �2/
2/0:5. The term radial basis function results from the fact

that, due to their construction, the contour plots of radial basis functions consist of
circular contour lines.

All radial basis functions have the same functional form and, in contrast to tensor
product B-splines, are attributed to one specific knot. Typically, the knots of a radial
basis are a subset of the observation points, i.e., f
1; : : : ;
d g 
 fz1; : : : ; zng. Thus,
the distribution of the radial basis functions adapts automatically to the distribution
of the data, whereas for tensor product bases, a large number of basis functions
can be placed in regions in which no observations were made. For example, in
case of the Baden–Württemberg forest health data, a large number of knots were
actually placed outside the region of interest when using tensor products, since the
knots are equally distributed over Œmin.z1/;max.z1/�� Œmin.z2/;max.z2/�. However,
this extended knot set also provides us with the possibility to extrapolate into these
regions, whereas the extrapolation region for radial basis functions is more limited.

The most well-known example of radial basis functions can be obtained through
optimizing the criterion

nX

iD1
.yi�f .zi //2C	

Z Z ��
@2

@2z1
C 2

@2

@z1@z2
C @2

@2z2

�
f .z1; z2/

�2
d z1d z2 ! min

f

(8.29)
over the class of all twice continuously differentiable functions f .z/. In this case,

Z Z ��
@2

@2z1
C 2

@2

@z1@z2
C @2

@2z2

�
f .z1; z2/

�2
d z1d z2 (8.30)

is the bivariate analogue of the integrated squared second derivative, which we
discussed in the context of smoothing splines. Hence, this approach aims at
generalizing smoothing splines to bivariate surface smoothing. As a solution, we
obtain the thin plate splines, a generalization of natural cubic splines that also fulfills
the natural boundary conditions, i.e., it behaves linearly outside of the observation
domain. A thin plate spline can be represented as

f .z1; z2/ D ˇ0 C ˇ1z1 C ˇ2z2 C
nX

jD1
�jBj .z1; z2/

with
Bj .z1; z2/ D B.jjz � zj jj/ D jjz � zj jj2 log.jjz � zj jj/

and subject to an identifiability restriction on the coefficients �j that we will work
out below. Thus, the thin plate spline relies on linear effects in the directions z1 and
z2 and radial basis functions

B.r/ D r2 log.r/
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centered at the n covariate values; see Green and Silverman (1993) for more details
on thin plate splines and a proof of their optimality property. In summary, the thin
plate spline is a bivariate generalization of the smoothing spline which would result
as a special case when restricting the surface to a univariate regression function.

In matrix notation, the above representation of the thin plate spline induces the
model equation

y D Xˇ C Z� C ";

where X is the design matrix containing a constant as well as the linear effects of z1
and z2, ˇ D .ˇ0; ˇ1; ˇ2/

0 collects the corresponding regression coefficients,

Z Œi; j � D Bj .zi1; zi2/

contains the radial basis functions evaluated at the observed covariate values, and
� is the vector of the basis coefficients. When counting the number of regression
coefficients in this model, we obtain n C 3 parameters and therefore the model is
overspecified. To obtain an identifiable version, the restriction X 0� D 0 has to be
imposed, basically ensuring that the linear part of the model is orthogonal to the
part represented by the radial basis functions. In addition, it can be shown that the
integral penalty (8.30) can equivalently be represented as

� 0Z�;

where the penalty matrix coincides with the design matrix. Hence, the overall
estimation problem (8.29) can be rewritten as

.y � Xˇ � Z�/0.y � Xˇ � Z�/C 	� 0Z� ! min
ˇ;�

subject to the constraint X 0� D 0.
Similar as in the context of smoothing splines, the number of regression

coefficients associated with thin plate splines is often too large in practice since
.nC 3/ � .nC 3/ systems of equations have to be solved. It is therefore of interest
to obtain low rank approximations to the thin plate spline while still remaining
as close to the optimal solution as possible. While simple rules for choosing a
subset of observations as knots may often also produce sensible solutions, Wood
(2003) proposed an optimal approximation based on a spectral decomposition of
the design matrix Z that is also implemented in the R package mgcv. Basically, we
first compute the spectral decomposition

Z D 	 ˝	 0;

where 	 is an orthonormal matrix of eigenvectors and ˝ contains the correspond-
ing (nonnegative) eigenvalues in descending order. It can then be shown that

Zd D 	 d˝d	 0
d ;
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where 	 d and ˝d are the submatrices of 	 and ˝ associated with the d largest
eigenvalues, is the best rank d approximation to Z in the sense of the spectral norm
jjZ � Z d jj (with jjAjj corresponding to the square root of the largest eigenvalue of
the positive semidefinite matrix A). The idea is now to replace Z with Zd which
basically projects the original estimation problem into the optimal d -dimensional
subspace where d can be chosen such that the approximation error is small. In fact,
fast numerical algorithms for truncated spectral decompositions exist that avoid the
need to compute the full spectral decomposition.

Other commonly used radial basis functions are, for example,

B.r/ D rl ; l odd,

or
B.r/ D

p
r2 C c2 for a constant c > 0:

In this case, the penalty matrix results from the integrated squared second derivatives
of the basis functions, similar to those in the univariate case. In the following
section, we will see that the stationary Gaussian fields that we previously discussed
in Sect. 8.1.6 can also be interpreted as radial basis function approaches.

8.2.3 Kriging: Spatial Smoothing with Continuous Location
Variables

In Sect. 8.1.6 we already discovered that temporal correlations can be described
using stationary Gaussian processes and parametric correlation functions. We will
now transfer this approach to spatial correlations using Gaussian random fields. In
contrast to the previously discussed approaches for modeling interaction surfaces
based on basis functions, we now consider a probabilistic modeling framework,
i.e., spatial effects are described in terms of stochastic processes. However, as in
the univariate case, we will see that the probabilistic model formulation is in fact
equivalent to a special basis function approach.

In general, a Gaussian field f�.s/; s 2 R2g is characterized by the expectation
function �.s/ D E.�.s//, the variance function �2.s/ D Var.�.s//, and the cor-
relation function .s; t/ D Corr.�.s/; �.t//. For stationary Gaussian fields, the
expected value and variance are spatially constant (�.s/ 	 � and �2.s/ 	 �2),
and the correlation function only depends on the difference s � t . Thus, we obtain
.s; t/ D .s � t/ D .h/ with h D s � t . When analyzing spatial correlations, we
often limit ourselves to the special case of isotropic correlation functions, where

.s; t/ D .jjs � t jj/ D .r/

with r D jjs � t jj. It follows that the correlation between two points s and t only
depends on their Euclidean distance but not on the exact position of the points or
on the direction of the vector between the two points. When assuming isotropy, we
can use all parametric classes discussed in Sect. 8.1.6 (p. 453) for the correlation
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function , since the actual bivariate spatial correlation function only depends on
the scalar r .

An easy way to incorporate anisotropy is to replace the Euclidean distance

jjs � t jj D p
.s � t/0.s � t/

with p
.s � t/0R. /0D.ı/R. /.s � t/; (8.31)

where R. / defines a rotation matrix

R. / D
�

cos. / sin. /
� sin. / cos. /

�
;

with anisotropy angle  2 Œ0; 2�� andD.ı/ defines a prolongation matrix

D.ı/ D
�
ı�1 0
0 1

�

with anisotropy ratio ı � 1. Figure 8.43 shows the resulting contour lines for
various combinations of  and ı. Note that Eq. (8.31) can only be used to produce
correlation functions with elliptic contour lines. More general approaches to the
construction of anisotropic correlation functions also allow other deviations from
radial contour lines.

Classical Geostatistics
In spatial statistics, kriging was developed for smoothing or interpolating spatial
phenomena. The classical geostatistical model is defined as

y.s/ D x.s/0ˇ C �.s/C ".s/;

where

x.s/0ˇ is the spatial trend parameterized by covariates x;

�.s/ is a stationary Gaussian process with expected value 0, variance �2, and

correlation function .h/, and

".s/ is the usual i.i.d. error ".s/ � N.0; �2/ (independent of �.s/):

If the spatial trend is constant, i.e., x.s/0ˇ 	 ˇ0, the model simplifies to the case of
ordinary kriging, whereas the general case is referred to as universal kriging.

In matrix notation, the kriging model can be written as

y D Xˇ C Z� C ";
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δ=2 δ=2ψ=π/8 ψ=π/4

Fig. 8.43 Contour lines of anisotropic correlation functions constructed based on the distance
measure (8.31)

where � D .�.s.1//; : : : ;�.s.d///
0 defines the values of the stationary Gaussian

process at the d unique observed spatial locations s.1/; : : : ; s.d/. The matrix Z

corresponds to an incidence matrix with

Z Œi; j � D
(
1 if yi is observed at point s.j / (i.e., si D s.j /),

0 otherwise.

Based on the model specification, the covariance matrix of the response vector y

becomes
Cov.y/ D �2ZRZ 0 C �2In;

where the correlation matrix of the spatial effects � ,

R D .Corr.�.s.i//; �.s.j /// D ..s.i/ � s.j ///;

introduces spatial correlation and is embedded in Cov.y/.
The goal of classical geostatistics is to obtain optimal predictions for �.s0/ or

�.s0/ D x.s0/
0ˇ C �.s0/ at new locations s0. Using the definitions r D ..s1 �

s0/; : : : ; .sn � s0//
0, �0 D �.s0/ and �0 D x.s0/

0ˇ, the optimal prediction can be
derived from the joint normal distribution

�
y

�0

�
� N

��
Xˇ

�0

�
;

�
�2ZRZ 0 C �2In �2r 0

�2r �2

��

(see Theorem B.6 in Appendix B.3). The mean squared error optimal prediction is
simply the conditional expectation of �0 given y , i.e.,

O�0 D E.�0 j y/ D �0 C �2r 0.�2ZRZ 0 C �2In/
�1.y � Xˇ/:

The conditional variance of O�0 can also be derived from the joint normal distribution,
yielding

Var.�0 j y/ D �2 � �2r 0.�2ZRZ 0 C �2In/
�1r�2:
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Even without the explicit assumption of normality, one can show that O�0 still fulfills
certain optimality properties. Similar to the estimates of random effects presented
in Sect. 7.3.1 (p. 371), O�0 is the best linear unbiased predictor.

Kriging as a Basis Function Approach
With the use of classical geostatistics, we obtain optimal predictions of the spatial ef-
fects at arbitrary locations s0. However, in contrast to the basis function approaches
discussed thus far, we do not obtain a compact representation for such predictions.
A possible scenario arises from the developments presented in Sect. 8.1.6 (p. 453),
where we reexpressed the stochastic kriging approach using basis functions derived
from the correlation function .�/. This reparameterization can also be used for the
spatial kriging model, so that the classical geostatistics model can be expressed as

y D Xˇ C QZ Q� C ";

with design matrix
QZ Œi; j � D .si ; s.j //:

For a single observation, this yields the model specification

y.s/ D x.s/0ˇ C fgeo.s/C ".s/

with spatial effect

fgeo.s/ D
dX

jD1
Q�jBj .s/

and basis functions
Bj .s/ D .s; s.j //;

obtained from the correlation function.
For isotropic correlation functions, we obtain the special case of radial basis

functions Bj .s/ D .jjs � s.j /jj/. Similar to Sect. 8.1.6, the penalty for Q� results
from the correlation matrix R as

	 Q� 0K Q� D �2

�2
Q� 0R Q�:

If we choose Matérn correlation functions, we obtain the class of Matérn splines.
Figure 8.44 shows two isotropic Matérn spline basis functions, which result from the
hyperparameters � D 0:5 and � D 1:5. Contour plots, which illustrate the radiality
of the basis functions, are provided as well.

From a Bayesian point of view, the kriging approach in the basis function
representation is equivalent to a certain smoothing prior, which is given by

Q� � N.0; �2R�1/: (8.32)
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Fig. 8.44 Perspective plots and contour lines of Matérn spline basis functions with � D 0:5 (left)
and � D 1:5 (right)

In contrast to the tensor product methods that we discussed for polynomial
splines, the knots for the kriging approach are determined from the observed
data locations. As the number of knots is usually close to the sample size, there
are typically a large number of coefficients to estimate. Therefore, to alleviate
computing demands, one therefore often considers only a subset of the observed
locations as knots, i.e.,

D D f�1; : : : ; �mg 
 C D fs.1/; : : : ; s.d/g:

Based on adequate criteria, this subset can be determined as representative for the
original observations; see Johnson, Moore, and Ylvisaker (1990) and Nychka and
Saltzman (1998) for details. Through QZ Q� , we have an approximate kriging surface,
where the design matrix is defined by

QZ Œi; j � D .si � �j /; (8.33)

and the m-dimensional coefficient vector has the distribution

Q� � N.0; �2R�1/ with RŒi; j � D .�i ; �j /: (8.34)
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8.13 Kriging

Classical Geostatistics Model

y.s/ D �.s/C �.s/C ".s/; s 2 R2;

where �.s/ D x.s/0ˇ defines the spatial trend and �.s/ is a (stationary)
Gaussian field with expectation 0, variance �2, and parametric correlation
function .h/.

Estimation

For given variances, the best linear unbiased predictions for �0 D x.s0/
0ˇC

�.s0/ result from the joint normal distribution of y and �0. Since �.s/
corresponds to a spatially correlated random effect, estimation can be
approached more generally using the mixed model methods discussed in
Chap. 7.

Basis Function Representation

As with the univariate kriging method, we also obtain a bivariate basis
function representation with basis functions

Bj .s/ D .s; s.j // or Bj .s/ D .jjs � s.j /jj/:

This yields the model specification

y D Xˇ C QZ Q� C ";

with QZ Œi; j � D .si ; s.j // or QZ Œi; j � D .jjsi � s.j /jj/. The penalty for
Q� is determined by the correlation matrix R with elements RŒi; j � D
.s.i/; s.j // yielding

	 Q� 0K Q� D �2

�2
Q� 0R Q�:

An alternative would be to use a low rank approximation based on the spectral
decomposition of Z similar as discussed for thin plate splines.

Estimation of Kriging Models
Estimation of kriging models can be achieved in one of two ways resulting from the
different perspectives on the geostatistical model. If we consider the geostatistical
model in the original stochastic interpretation, the assumption of a Gaussian field
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for the spatial effect basically corresponds to the assumption of a spatially correlated
random effect. The methods discussed in Chap. 7 can therefore be used to determine
ML or REML estimates of all parameters of the correlation function (including for
example the range parameter).

When interpreting kriging as a basis function method, all parameters of the
correlation function are typically fixed at prespecified values or chosen based on
simple rules (as done in Example 8.3). The variance �2 then remains as the only
unknown parameter, which acts as a smoothing parameter for the basis function
method, while the penalty matrix R is completely specified. To estimate �2,
we can use the methods discussed in Sect. 8.1.9, in particular the mixed model
representation or MCMC-based algorithms.

Example 8.12 Human Brain Mapping—Kriging
We next apply the spatial kriging method in the human brain mapping example with a visual
stimulus (see Example 8.8 on p. 501). Figure 8.45 shows two estimates for this activation
profile based on Matérn splines with parameter � D 1:5 using either 100 or 200 knots.
The range parameter of the correlation function was chosen according to the rule of thumb,
which we already used in Example 8.8.

For both 100 and 200 knots, strong activation is clearly visible within the visual cortex.
The basis function approach does not only allow for pixelwise identification of activation,
but in fact provides a continuous activation surface. Comparing the two knot sets (100 or
200 knots), we find that the higher knot density leads to a somewhat rougher estimate.
However, in general, the estimated function is not highly sensitive to the number of knots.4

8.2.4 Markov Random Fields: Spatial Smoothing with Discrete
Location Variables

To this point, we discussed spatial effects based on spatial coordinates, i.e., cases
where continuous spatial information is available. As we saw in Example 8.9
(p. 502), it is also possible to have discrete spatial information, e.g., spatial regions
s 2 f1; : : : ; d g. Discrete spatial information also arises naturally in case of data
arranged on a regular grid. Note that the human brain mapping example actually
consists of such gridded data. However, with a large number of grid points, it is also
possible to analyze such data using a continuous spatial model, identifying each
pixel with its respective coordinates.

Spatial Neighborhoods
Whereas in the case of continuous spatial information we can easily determine the
distance between two locations using, for example, the Euclidean distance, this is no
longer the case with discrete spatial data. Consequently, we use a different concept
to describe the spatial arrangement of the data, which relies on the definition of
adequate forms of neighborhoods. Such neighborhoods can actually be constructed
in different ways:
• For spatial data where the spatial covariate s defines the membership of an

observation to a particular region s, neighborhoods are usually defined by
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Fig. 8.45 Human brain mapping: kriging estimates for the activation at time point t D 38

obtained from Matérn splines with � D 1:5 and 100 (left) or 200 (right) knots

common boundaries (see Fig. 8.46). Modifications of this definition may be
necessary when some regions are islands, or when the observation domain is
divided into separate subdomains.

• On regular grids, one often uses nearest neighbors on the grid, e.g., the four or
eight nearest neighbors. In this case, it is also possible to define neighborhoods
of a higher order, as we have already seen when discussing bivariate polynomial
splines. However, in the following, we limit ourselves to simple, direct neighbor-
hoods.

In the following we will use the notation s � r to denote that regions s and r are
neighbors.

Similarly, as we proceeded in the case of random walks in Sect. 8.1.5, every
region s is assigned its own regression coefficient fgeo.s/ D �s , s D 1; : : : ; d .
Due to the large number of coefficients that usually results from this approach, we
need an appropriate structure to regain smooth spatial effects and thus to reduce the
effective number of parameters. In obtaining smooth spatial effects, the coefficients
of nearby regions should not divert too strongly from each other. Thus, we create
a penalty that is based on squared differences between the parameters of nearby
regions. Consider the PLS criterion

PLS.	/ D
nX

iD1

�
yi � fgeo.si /

�2 C 	

dX

sD2

X

r2N.s/;r<s
.�r � �s/2; (8.35)

where N.s/ defines the set of neighbors for region s. The penalty consists of
squared differences of all possible combinations of neighboring regions, where each
combination is considered only once. This in fact yields a penalty that discourages
large deviations of effects associated with neighboring regions.

To include this approach within the scope of general penalization methods, we
first rewrite the PLS criterion in matrix notation. To do so, we define the design
matrix Z with the entries
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Fig. 8.46 First-order neighborhoods on a regular grid (left) and for irregular regional data (right).
The neighbors of the black region are shaded in grey

Z Œi; s� D
(
1 if yi was observed in region s (i.e., si D s) and

0 otherwise:

With this definition, we can express the vector of the function evaluations f geo D
.fgeo.s1/; : : : ; fgeo.sn//

0 as a linear model Z� . In turn, the penalty consists of
squared differences and can be compactly written as the quadratic form 	� 0K�

with

K Œs; r� D

8
ˆ̂<

ˆ̂:

�1 s ¤ r; s � r;

0 s ¤ r; s œ r;

jN.s/j s D r:

By minimizing the PLS criterion, we then again obtain the PLS estimate O� D
.Z 0Z C 	K /�1Z 0y.

According to its definition, the penalty matrix K has the structure of an adjacency
matrix, since the entries K Œs; r� only differ from zero when s and r are neighbors.
Efficient numerical methods for storing and processing K can be used since K is
a sparse matrix. However, we should be aware that the order of the regions within
the vector � plays a crucial role for the structure of K . Figure 8.47 illustrates this
phenomenon for a large number of regions in two different orderings. In the left
panel, the regions are simply arranged according to their number, whereas in the
right panel, the arrangement results from the attempt to reorder the regions such
that the nonzero elements are as close as possible to the diagonal, yielding a matrix
that is close to a band matrix with small bandwidth. This ordering was achieved with
the Cuthill–McKee algorithm; see, for example, George and Liu (1981), who also
offer further details regarding numerically efficient algorithms for sparse matrices.
Rue and Held (2005) also discuss some of these algorithms from a statistical point
of view.
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Fig. 8.47 Adjacency matrix for a large set of regions in two different orderings

Bayesian Model Formulation
As with the other penalization approaches discussed thus far, the above model
formulation can also be interpreted in a Bayesian context. This yields so-called
Markov random fields, which we will now introduce in a somewhat more general
context. In the literature, penalization methods for discrete spatial locations are
commonly motivated in this Bayesian framework.

We start with a general definition of Markov random fields (MRF) that generalize
the temporal Markov property to the spatial situation that we discussed for random
walks in Sect. 8.1.5 (p. 452). LetD D f1; : : : ; s; : : : ; d g denote the set of all regions.
Then, � D f�s; s 2 Dg follows an MRF if the conditional distribution of �s
given all other effects �r , r ¤ s, depends only on its neighbors. The corresponding
(conditional) density can then be written as

p.�s j �r ; r ¤ s/ D p.�s j �r ; r 2 N.s//:

If we consider the model specification

yi D fgeo.si /C "i ; "i � N.0; �2/;

the aim is to assign an MRF to the distribution of fgeo.s/ D �s . Gauß–Markov
random fields (GMRF), i.e., MRF where the conditional distributions (and also the
joint distribution) are normal, provide an adequate class of latent MRF to describe
such spatial effects. One then often proceeds as follows: Start by specifying the
conditional distributions �s j �r , r 2 N.s/ and then derive the joint distribution of
the entire vector � D .�1; : : : ; �d /

0 from these conditional distributions. However,
we must be aware that not all specifications of conditional distributions are actually
allowed to obtain a valid joint distribution. At this point, however, we do not intend
to discuss the theoretical considerations that are necessary for the formulation of
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adequate classes of conditional distributions, since we are able to derive a valid
specification directly from the PLS criterion.

This particular class has the form

�s j �r ; r 2 N.s/ � N

 
1

jN.s/j
X

r Wr�s
�r ;

�2

jN.s/j

!
; (8.36)

where jN.s/j is the number of neighbors for region s. According to this speci-
fication, the conditional expectation of the spatial effect in region s is given by
the arithmetic mean of the neighboring regional effects. The variance �2 controls
how much the spatial effect �s can deviate from this expectation. Thus, we obtain
a stochastic formulation of the desired property that neighboring regions show a
similar spatial effect. The joint distribution of all spatial effects can now be derived
from the conditional distributions (which in this case actually define a system of
consistent distributions) yielding the density

p.� j �2/ /
�
1

�2

�.d�1/=2
exp

�
� 1

2�2
� 0K�

�
: (8.37)

This density is only defined upon proportionality since, in fact, the joint distribution
is partially improper. The precision matrix K exactly corresponds to the penalty
matrix from the previously given PLS criterion (8.35), and thus the Bayesian for-
mulation (8.36) in fact leads to an equivalent model. In the literature, GMRFs with
a partially improper distribution are also referred to as intrinsic GMRF (IGMRF).
It is, however, also possible to define MRF with a proper joint distribution; see, for
example, Banerjee, Carlin, and Gelfand (2003, Chap. 3).

Thus far, we have only used the spatial neighborhood information when con-
structing an MRF. It can also be meaningful to generalize this definition to some
extent and appropriately weigh the influence of the neighbors. Therefore we extend
Eq. (8.36) to

�s j �r ; r 2 N.s/ � N

 
X

r Wr�s

wsr
wsC

�r ;
�2

wsC

!
;

with symmetric weights wsr D wrs and wsC D P
r Wr�s wsr . Now, the conditional

expectation of �s is given by the weighted average of the neighboring coefficients.
The following strategies are commonly used to define weights wsr :
• Use the same weight for all neighbors, i.e., wsr D 1. This specification yields our

original MRF definition.
• Use weights that are inversely proportional to the distance of the centroids, e.g.,

wsr / exp.�d.s; r//, where d.s; r/ defines the Euclidean distance between the
centroids of the regions s and r .

• Use weights proportional to the length of the common boundary of regions s
and r .
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If weights are to be considered, then the penalty or precision matrix K has to be
modified, taking the form

K Œs; r� D

8
ˆ̂<

ˆ̂:

�wsr s ¤ r; s � r;

0 s ¤ r; s œ r;

wsC s D r:

Example 8.13 Munich Rent Index—Analysis of Spatial Dependence
Figure 8.48 shows the MCMC-based estimate of an unweighted IGMRF for the Munich
rent index data. If we compare the estimated effect with the separate means obtained in
Fig. 8.35 (p. 503), we clearly recognize the smoothing effect that is introduced by the
IGMRF assumption. This approach has the advantage that, for districts where only a few
apartments were sampled, the estimated net rent is stabilized and less variable due to the
integration of neighborhood information. Moreover, the classification of subquarters into
areas with rent above or below average is more sensible based on smoothed effects.

Surprisingly, the results shown in Fig. 8.48 also indicate that the rent per square meter
for apartments in the city center is smaller than for those in the suburbs. This demonstrates
that the sole use of a regional effect can lead to results that are difficult to interpret due to
the fact that other important explanatory variables are not taken into consideration. In our
example, the reason for the surprising result is that the apartments in the city center are
typically older than those in the suburbs. If we take this effect into consideration, as we
will in some examples of Chap. 9, the effect changes and the apartments in the city center
will actually turn out to be more expensive than those in the suburbs after adjusting for
year of construction. This shows that the simultaneous consideration of covariate effects
and regional effects is necessary to obtain improved estimates. 4

Spatially Autoregressive Processes
In econometrics, MRFs are widely applied in a variety of models other than the one
we have considered thus far. In applications, autoregressive processes in time are
generalized such that the MRF is assumed for the response variable y instead of a
latent spatial process. This leads to spatially autoregressive processes (SAR), with
the simplest special case given by

ys D ˛
X

r2N.s/
wsryr C "s; "s � N.0; �2/;

with autoregressive parameter ˛ 2 Œ0; 1/ and symmetric weights wsr fulfilling
wss D 0. We then obtain the conditional distributions

ys j yr ; r ¤ s � N

0

@˛
X

r2N.s/
wsryr ; �

2

1

A ;

such that the vector of the response variable y D fys; s D 1; : : : ; d g appears to
follow an MRF. If covariate effects are to be included in a SAR model, this is
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10.0 20.0

Fig. 8.48 Munich rent index: spatial effect obtained with an IGMRF without weights estimated
with MCMC in a fully Bayesian framework

typically achieved by applying the SAR specification to the residuals ys � x0
sˇ.

Alternatively, it is also possible to add covariate effects directly to the SAR model,
yielding

ys D x0
sˇ C ˛

X

r2N.s/
wsryr C "s; "s � N.0; �2/:

However, the interpretation of covariate effects differs greatly between the two
model specifications: The covariates either effect the response adjusted by the
regional effects or the response variable directly.

Since SAR models do not fit into the general scope of penalization methods that
we are considering, we will not discuss them in further detail (see, e.g., Anselin
(1988) or Banerjee et al. (2003), Chap. 3, for more information).

8.2.5 Summary of Roughness Penalty Approaches

We now provide a brief summary of the bivariate smoothing methods that have been
discussed thus far. As we have seen, bivariate basis function methods, stationary
Gaussian fields, and GMRFs can all be subsumed in the general framework
introduced in Sect. 8.1.3. In every case, we obtained a linear model of the form

y D Z� C ";

with a large number of regression coefficients, representing either the coeffi-
cients of the basis functions or the spatial effects. To regularize estimation of � ,
we introduced quadratic penalties

	� 0K� :

Depending on the method, the penalties were constructed based on either differences
of coefficients, derivative operators, correlations, or neighborhood structures. Due to
the general formulation we can use the methods discussed in Sect. 8.1.9 to determine
a data-driven choice for the smoothing parameter.
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8.14 Gauß–Markov Random Fields

Model
y D Z� C "

with

Z Œi; s� D
(
1 if yi was observed in region s (i.e., si D s) and

0 otherwise

and � D .fgeo.s1/; : : : ; fgeo.sd //
0.

IGMRF for the Spatial Effect

�s j �r ; r 2 N.s/ � N

 
X

r Wr�s

wsr
wsC

�r ;
�2

wsC

!

with �s D fgeo.s/ and wsr D wrs . The (partially improper) joint distribution
is

p.� j �2/ /
�
1

�2

�.d�1/=2
exp

�
� 1

2�2
� 0K�

�

with

K Œs; r� D

8
ˆ̂<

ˆ̂:

�wsr s ¤ r; s � r;

0 s ¤ r; s œ r;

wsC s D r:

In the bivariate case, differences between the approaches are more apparent than
in the univariate case. First of all, we generally distinguish between continuous and
discrete regional information, where specific approaches were developed in either
context. In our case, these are basis function approaches and stationary Gaussian
fields on the one hand, and Markov random fields on the other hand. However, the
distinction is not as obvious as it might seem. Methods which require continuous
spatial information can be used, e.g., for regional data, where the centroids of the
regions are used as the locations in the analysis. Models that require discrete spatial
information can also be used in the continuous case, for example, by discretizing
the observation domain on a regular grid.

Secondly, if we compare the different approaches regarding their numerical
properties, the results vary depending on which inferential concept is used. If we use
MCMC methods, it is necessary to solve a high-dimensional system of equations
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for the simulation of � in every iteration. With the help of sophisticated methods
for sparse matrices, these calculations can be performed efficiently. Sparse cross
product matrices Z 0Z and penalty matrices K result, in particular, for Gauß–
Markov random fields and bivariate P-splines. However, if stationary Gaussian fields
or radial bases are used, then Z 0Z and K are typically dense. Recently, Lang et al.
(2012) proposed a highly efficient Gibbs sampler even in the case of dense matrices.
The alternative sampling scheme works with a transformed parameterization such
that the cross product of the design matrix and the penalty matrix are diagonal
resulting in a diagonal posterior precision matrix.

If inference is based on a mixed model representation, then the structure of the
penalty matrix K is less important since the penalty matrix only needs to be eval-
uated once during the reparameterization. Rather, the dimension of the parameter
vector � is more important. This is the reason why radial basis function approaches
and stationary Gaussian fields, without an adequate strategy for choosing a small set
of knots, are less useful for this method than bivariate P-splines and Gauß–Markov
random fields. If we, however, use a strategy for reducing the number of knots, it
is often possible to reduce the dimension of � such that every estimation method
shows a similar level of complexity.

8.2.6 Local and Adaptive Smoothing

Local smoothers are also often used for the analysis of interactions and spatial
effects, relying on extensions of the methods discussed in Sect. 8.1.7. This extension
is particularly straightforward for nearest neighbor estimates, since the k-nearest
neighbors can also be determined in bivariate problems using, for example, the
Euclidean distance. Consequently, it is also possible to generalize the loess pro-
cedure, as well as the Nadaraya–Watson estimate that is based on kernel density
estimates, to bivariate smoothing. The choice of an optimal smoothing parameter
can be chosen either via a grid search or with the help of adequate numerical
procedures; see, for example, Kauermann and Opsomer (2004). However, the use of
local smoothing procedures as building blocks in more complex models is difficult
when combining, for example, nonparametric effects and random effects. This is
the reason why we will not discuss local methods in detail, but instead refer to the
literature listed in Sect. 8.4.

Adaptive procedures can also be efficiently used for bivariate smoothing and
more complex models. These procedures have the particular advantage that not only
are they able to determine how to model the joint effect of z1 and z2 but they also
are able to detect whether or not an interaction effect is in fact present. This can
be especially useful for the extensions presented in Chap. 9, where potentially even
more than two effects need to be determined simultaneously.

For the MARS algorithm, we obtain a bivariate extension by examining, in every
iteration, the univariate basis functions for z1 and z2, as well as their corresponding
interactions for potential improvements of the model fit. This results in a sequence
of models, which can comprise complex interaction models, as well as simple
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models containing only univariate covariate effects. With the help of the model
choice criterion, we adaptively decide which of the models is the most adequate
for modeling the effects of the covariates.

For regression trees, extensions for more complex models result when consider-
ing, in every iteration, partitions in all variables. Hence, in each iteration step, we
optimally choose both the variable to be split and the split point for this variable.
Thus, we obtain adaptive splits of the data into homogeneous sets of similar response
values, which correspond to a piecewise constant function estimate for f .z1; z2/.

In a similar way, we can also generalize the Bayesian adaptive procedures. Since
we will concentrate on penalization methods in Chap. 9, we will not discuss adaptive
methods in more detail at this point. Further information about adaptive procedures
will be provided at the end of this chapter in Sect. 8.4.

8.3 Higher-Dimensional Smoothing

In principle, the ideas developed in Sect. 8.2 can also be applied for modeling
higher-dimensional surfaces, i.e., in models of the form

y D f .z1; : : : ; zq/C ":

For example, higher-dimensional tensor product splines result from considering
all possible interactions of univariate splines for z1; : : : ; zq . The respective penalty
matrices can then be constructed analogous to those in Sect. 8.2.1 based on
Kronecker products leading to

Id3 ˝ Id2 ˝ K 1 C Id3 ˝ K 2 ˝ Id1 C K 3 ˝ Id2 ˝ Id1 ;

in the special case of q D 3, where K 1, K 2, and K 3 denote univariate penalty
matrices and Id are identity matrices of appropriate dimension. For radial bases
and kriging terms that are based on isotropic correlation functions, the construction
of higher-dimensional surfaces is even simpler. In such cases, the basis functions
rely only on the Euclidean distance between two points, which is defined in Rq , as
well as in the special case of R2. By extending the concept of neighborhoods, the
construction of Markov random fields can also immediately be applied to problems
in higher dimensions.

Nevertheless, regardless of the chosen approach, problems occur when esti-
mating higher-dimensional functions nonparametrically. In general, such functions
rely on a large number of parameters and the respective estimation procedures are
computationally expensive. For example, a tensor product spline described by a
20-dimensional basis in each dimension has already 203 D 8; 000 parameters in
R3. Even though a penalty reduces the effective number of parameters, we are still
required to solve an 8,000-dimensional system of equations (often multiple times)
for obtaining the estimates.
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Another difficulty arising in higher-dimensional approaches, is the “curse of
dimensionality.” Consider the following problem: Suppose we are given a q-
dimensional unit cube (i.e., a cube with edges of length 1), where all data are
uniformly distributed within this cube. What will be the edge length l of a partial
cube that contains a fraction r of the data? For q D 1, we obviously have l D r ,
whereas for q D 2, we have l D p

r . In general, it follows that

l D r
1
q ;

and therefore for r D 0:1
q D 1 l D 0:1

q D 2 l � 0:3

q D 3 l � 0:47
:::

:::

q D 10 l � 0:8:

For a three-dimensional estimation problem, this implies that the partial cube must
already have an edge length of about 0.5 to contain 10 % of the data. Obviously,
our intuition of “localness” no longer works in higher dimensions. Moreover, the
curse of dimensionality suggests that in higher-dimensional smoothing problems,
we only obtain a good coverage of the observation domain when the number of
parameters for each dimension is actually greater than what we used in univariate
smoothing problems. Consequently, we again face the problem that a large number
of parameters need to be estimated.

This is the reason why, in practice, we rarely consider surfaces that have a
dimension higher than q D 2. Rather, we assume an additive structure for the
function f .z1; : : : ; zq/, leading to

f .z1; : : : ; zq/ D f1.z1/C : : :C fq.zq/:

This yields the class of additive models and their extensions, which we will examine
in detail in Chap. 9.

8.4 Bibliographic Notes

In the following, we give an overview of selected literature, which will provide
either more detailed or more general information regarding some aspects of Chap. 8.
Many of the references listed will also be of interest for the extensions to be
discussed in Chap. 9.

Hastie and Tibshirani (1990) introduce and systematically examine univariate
smoothing procedures within the scope of additive models and, in particular, discuss
general questions regarding linear smoothing procedures in detail. Fahrmeir and
Tutz (2001, Chap. 5) provide a good overview of modern extensions. The overview
by Wand (2000) compares some univariate smoothing procedures via simulation,
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and also includes adaptive procedures. Wood (2006) describes nonparametric
regression models based on penalization approaches and splines, along with an
introduction to the R package mgcv. Mathematical properties of splines are
discussed in De Boor (2001) and Dierckx (1993); see also Eilers and Marx (2010)
for a nice (and for most practical purposes sufficient) introduction to splines.
Detailed descriptions of local regression models are given in Härdle (1990), Fan and
Gijbels (1996), Loader (1999), and Härdle, Müller, Sperlich, and Werwatz (2004).

Extensive discussions of the connection between penalized splines and mixed
models used in Sect. 8.1.9 can be found in Ruppert et al. (2003), Wand (2003), or
Kauermann (2006). Fahrmeir, Kneib, and Lang (2004) describe this connection for
general penalization approaches and in particular for smoothing procedures devel-
oped in spatial statistics. Extensions for survival models are discussed in Kauermann
and Khomski (2006) or Kneib and Fahrmeir (2007). Bayesian approaches for
the selection of smoothing parameters that are based on MCMC simulations are
discussed in detail in Lang and Brezger (2004), Brezger and Lang (2006), and Lang
et al. (2012).

Friedman (1991), Stone, Hansen, Kooperberg, and Truong (1997), and Hansen
and Kooperberg (2002) discuss adaptive approaches that are based on frequentist
model choice strategies. The articles by Biller and Fahrmeir (2001), Biller (2000),
Yau, Kohn, and Wood (2003), Denison et al. (1998), or DiMatteo, Genovese,
and Kass (2001) describe corresponding Bayesian approaches. An introduction
to regression trees is provided in Tutz (2011, Chap. 9); the classical reference in
the field of regression and classification trees is Breiman, Friedman, Stone, and
Olshen (1984). A conceptually powerful extension of regression trees is proposed
in Hothorn, Hornik, and Zeileis (2006). Here the leaves of a tree are not constant
but full linear or generalized linear models. As already mentioned in Sect. 8.1.10,
regression trees are unstable due to the fact that even small changes within the data
structure can result in completely different trees. Resampling methods, which build
not only one but an entire ensemble of regression trees, mitigate this instability.
Examples are bagging (Breiman, 1996) or random forests (Breiman, 2001). We
can actually employ similar methods in regression and smoothing procedures based
on extensions of boosting algorithms; see, for example, Bühlmann and Yu (2003,
2006), Tutz and Binder (2006), or Bühlmann and Hothorn (2007).

Finally, we want to refer to some approaches which we were unable to discuss
in detail in this chapter. Wavelets are a smoothing procedure similar in spirit to
Fourier analysis, which can be used especially for the representation of functions
with pronounced (local) variability. In principle, we can also understand wavelets
as a basis function approach, but estimation relies on efficient algorithms, which
employ special properties of wavelet basis functions, and therefore differ greatly
from the methods that we discussed. Wavelets are especially interesting from a
numerical point of view but have the disadvantage that complex mathematical
tools are required. Hastie et al. (2009) offer a brief introduction to wavelets, while
Ogden (1997) or Gençay, Selçuk, and Whitcher (2002) provide more challenging
descriptions.
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Another class of nonparametric regression models is considered in the context
of functional data analysis. In such a setting, the parameters and/or the response
variable are viewed as functions, and methods are used that are especially designed
for this situation. Ramsay and Silverman (2005) provide a detailed introduction
while Ramsay and Silverman (2002) describe functional data analysis within the
scope of some case studies.

Banerjee et al. (2003) and Schabenberger and Gotway (2005) are introductory
textbooks on spatial statistics, i.e., the methods discussed in Sect. 8.2. Rue and
Held (2005), as well as Chiles and Delfiner (1999) and Stein (1999), elaborate on
aspects of Gauß–Markov random fields and kriging, respectively. Ecker and Gelfand
(2003) and Zimmermann (1993) discuss possibilities as how to consider anisotropy
in geostatistical models. Nychka (2000) offers a rigorous mathematical access to
the relationship between kriging and smoothing procedures that are based on radial
basis functions, while Eilers and Marx (2003) and Dierckx (1993) discuss bivariate
polynomial splines in more detail.
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In the previous chapter, we illustrated how to flexibly model and estimate the
effect of a continuous covariate z on the response variable y without specifying
a restrictive functional form of the effect f .z/. We also showed how to extend the
concepts for two continuous covariates z1 and z2 or for a location variable s. As
shown in Chap. 3 through various examples, a linear effect was reasonable for a
considerable number of the available covariates. However, there are often one or
more continuous covariates z1; : : : ; zq , whose effects cannot, at least not a priori,
be described with a simple functional form. Hence, we are generally interested in
flexibly modeling the effect of these covariates in form of a function f .z1; : : : ; zq/.
As seen in Sect. 8.3, estimation of these high-dimensional functions is problematic
and requires a very large sample size (to circumvent the curse of dimensionality).
Therefore, we often assume a more restrictive additive structure for the effect of the
covariates, i.e.,

f .z1; : : : ; zq/ D f1.z1/C : : :C fq.zq/:

Moreover, models with nonlinear interaction effects or geoadditive models, which
consider spatial information in form of a location variable, or models with random
effects are also of interest. Sections 9.1–9.4 discuss these models for standard
regression problems with continuous responses and approximately normally dis-
tributed errors. The models can be formulated in a unified framework as structured
additive regression models and can be generalized for non-normal and discrete
response variables; compare Sects. 9.5 and 9.6. We will primarily concentrate on the
penalization methods and the corresponding Bayesian approaches that were outlined
in Sects. 8.1 and 8.2, as they allow for unified estimation of the model parameters,
but will also consider boosting in Sect. 9.7. Section 9.8 presents an extensive case
study to summarize various aspects of regression modeling in general and structured
additive regression in particular.

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9 9,
© Springer-Verlag Berlin Heidelberg 2013
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9.1 Additive Models

We assume a data setting which is similar to that of linear regression. Consider
observations .yi ; xi1; : : : ; xik/, i D 1; : : : ; n, of a continuous response variable y
and covariates x1; : : : ; xk , whose effect on y can be modeled through a linear pre-
dictor. Additionally, we have observations .zi1; : : : ; ziq/, i D 1; : : : ; n, of continuous
covariates z1; : : : ; zq whose effects are to be modeled and analyzed nonparametri-
cally. For instance in the rent index application, y represents the net rent per square
meter, z1 the living area, z2 the year of construction, and the covariates x1; : : : ; xk
the binary coded specific characteristics of the apartment, as well as the experts’
assessment of the location in three categories: average, good, and top location.

Additive models are defined by

yi D f1 .zi1/C : : :C fq
�
ziq
�C ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i

D f1 .zi1/C : : :C fq
�
ziq
�C �lini C "i

D �addi C "i

(9.1)

with

�lini D ˇ0 C ˇ1xi1 C : : :C ˇkxik; �addi D f1 .zi1/C : : :C fq
�
ziq
�C �lini :

The functions f1.z1/; : : : ; fq.zq/ are nonlinear smooth effects of the covariates
z1, : : :, zq , and are modeled and estimated in a nonparametric way (see Sect. 9.6).
In principle, all scatter plot smoothers from Sect. 8.1 can be used as building
blocks. At this point, however, we limit ourselves to penalization methods and their
corresponding Bayesian approaches.

As already mentioned in Sect. 2.6, additive models have an identification prob-
lem. More specifically, if we add a constant a 6D 0 to the function f1.z1/ and subtract
at the same time a from a second function f2.z2/, the sum

f1.z1/C f2.z2/ D f1.z1/C aC f2.z2/� a

remains the same, i.e., the predictor � does not change if f1.z1/ changes to Qf1.z1/ D
f1.z1/ C a and f2.z2/ changes to Qf2.z2/ D f2.z2/ � a. Although the functional
form of f1.z1/ and Qf1.z1/ or f2.z2/ and Qf2.z2/ is unchanged, the overall level of the
functions is arbitrary without imposing further restrictions. Hence it is necessary to
fix the level of the functions. This is usually obtained by “centering the functions
around zero,” such that

nX

iD1
f1.zi1/ D : : : D

nX

iD1
fq.ziq/ D 0

holds.
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9.1 Standard Additive Regression Model

Data

.yi ; zi1; : : : ; ziq; xi1; : : : ; xik/; i D 1; : : : ; n, with y and x1; : : : ; xk as in the
linear regression model and additional continuous covariates z1; : : : ; zq .

Model

yi D f1 .zi1/C : : :C fq
�
ziq
�C ˇ0 C ˇ1xi1 C : : :C ˇkxik C "i :

The functions f1.z1/, : : :, fq.zq/ are assumed to be smooth nonlinear effects
of the continuous covariates z1; : : : ; zq . The same assumptions are made for
the errors "i as with the classical linear model.

For the standard additive model, the same error assumptions are made as in the
classical linear model, i.e., the errors "i are i.i.d. and normally distributed with
E."i / D 0, Var."i / D �2. As with the linear model, the assumptions regarding
the error variables "i carry over to the response variables yi , i.e., the yi are
(conditionally) independent with

E.yi / D �i D f1.zi1/C : : :C fq.ziq/C ˇ0 C ˇ1xi1 C : : :C ˇkxik;

Var.yi / D �2

and, if applicable, normally distributed with

yi � N.�i ; �2/:

Analogous to linear models, more general assumptions, e.g., heteroscedastic errors,
are possible. However, we do not pursue these extensions here.

The literature often refers the special case

yi D f1.zi1/C : : :C fq.ziq/C "i ; (9.2)

without the additional linear predictor �lini as the additive model. The model (9.1)
is then called partial linear model or semiparametric model.

In either case, additive models (9.1) or (9.2) do not contain interactions between
covariates. Models with interactions will be discussed in Sect. 9.3.

The nonlinear and linear effects can be interpreted as described already in
Sect. 2.6. Further illustration is provided with the rent index data, as we will see
in Example 9.1 below.
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For modeling and estimation of nonlinear functions, this chapter primarily
focuses on penalization and Bayesian methods with basis functions as summarized
in Sect. 8.1.3. Hence, the functions fj , j D 1; : : : ; q, will be approximated by

fj .zj / D
djX

lD1
�jlBl .zj /;

where the basis functions Bl represent TP- or B-spline bases of polynomial
splines, smoothing splines, or even kriging methods. In principle, it is possible
to choose different types of basis functions for the different functions fj , e.g.,
polynomial splines of different order. For simplicity in presentation, such variations
are notationally suppressed. The vector f j D .fj .z1j /; : : : ; fj .znj //0 of function
values evaluated at the observed covariate values z1j ; : : : ; znj can then be expressed
as

f j D Z j�j ;

where �j D .�j1; : : : ; �jdj /
0 is the vector of regression coefficients. The design

matrix Z j consists of the basis functions evaluated at the observed covariate values,
i.e., Z j Œi; l � D Bl.zij /.

As in the linear model, y D .y1; : : : ; yn/
0 defines the vector of the response

values, " D ."1; : : : ; "n/
0 the vector of the error values, ˇ D .ˇ0; : : : ; ˇk/

0 the
vector of regression coefficients for the linear part of the predictor, and X the
corresponding design matrix. The additive model can then be written in matrix
notation in the form

y D Z 1�1 C : : :C Z q�q C Xˇ C ": (9.3)

At first glance, Eq. (9.3) appears to be a large linear model. In fact, this would
be the case if the coefficient vectors �1; : : : ;�q of basis functions are estimated,
unrestrictedly, using (ordinary) least squares. In general, however, estimation is
regularized by penalties of the form 	j� 0

jK j�j (or corresponding smoothness
priors), as described for a single function f in Sect. 8.1.3, to enforce specific
smoothness properties of the estimates and to achieve regularization. The form of
the penalty matrix depends on the specific choice of basis functions. Details on how
to estimate the model will be provided in Sect. 9.6.

As in the example to follow, we will use penalized splines (Sect. 8.1.2) or
the corresponding Bayesian version, in which the Gaussian prior p.�j j �2j / /
exp.�0:5� 0

jK j�j =�
2
j / replaces the penalty function.

Example 9.1 Munich Rent Index—Additive Model
We choose the net rent per square meter as the response variable. As covariates we include
the living area (area), the year of construction (yearc), and the location (location). This
leads to the additive model

rentsqm D f1.area/C f2.yearc/C ˇ0 C ˇ1glocation C ˇ2tlocation C ":
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9.2 Basis Function Approach to Additive Regression

The functions fj are approximated using basis functions of the form

fj .zj / D
djX

lD1
�jlBl.zj /:

Regardless of the chosen basis, we obtain the additive model

y D Z 1�1 C : : :C Z q�q C Xˇ C ";

where the design matrices Z 1; : : : ;Z q consist of the basis functions evaluated
at the given covariate values. The design matrix X is constructed as in the
linear model.

The functions f1 and f2 are modeled by P-splines with 20 interior knots and second-order
difference penalties. For the location, the model includes the dummy variables glocation for
good locations and tlocation for top location. The average location serves as the reference
category. Note that the model is a pure main effects model, i.e., we do not consider possible
interactions, e.g., between living area and location. As mentioned, such interaction models
are discussed in Sect. 9.3.

Figure 9.1 shows the estimated nonlinear effects of living area and year of construction.
The results are obtained using remlreg objects of the software BayesX. In the
left panels the partial residuals are additionally included. Their calculation is completely
analogous to partial residuals in linear models described in section “Statistical Properties of
Residuals” of Sect. 3.2.3. For example, the partial residuals with regard to the apartment’s
living area are defined by

O"area;i D O"i C Of1.areai /:

Also see Sect. 9.5 for further details regarding partial residuals in additive models.
As expected, the estimated function of the living area shows a nonlinear decreasing

effect on rent with increasing area. For living area greater than about 110 sqm, the width
of pointwise confidence intervals increases due to fewer larger apartments. Consequently,
we should not over-interpret the slightly increasing effect at the right margin: A horizontal
trend, from about 110 sqm onward, easily fits within the confidence limits. Initially, the
estimated effect for the year of construction is almost constant. However, from 1945
onward, the effect is almost linearly increasing. All in all, the estimated nonlinear effects
are very similar to those found in the parametric model of Example 3.5 (p. 90) in Chap. 3.
Nevertheless, the fit to the data is better with the additive model used here. If we rather
use the transformation 1=area for the living area and a cubic polynomial for modeling
the effect of the year of construction, as presented in Example 3.5, we obtain an AIC of
7,380.3. With the nonparametric model, we obtain a lower AIC of 7,362.6 such that the
nonparametric model is preferable. The calculation of the AIC and other goodness-of-fit
measures for additive models are detailed in Sect. 9.5. In contrast to the parametric model
of Example 3.5, the nonparametric approach has yet another distinct advantage: Nonlinear
effects are obtained in an automatic way, i.e., it is not necessary to reflect upon, e.g., the
type of variable transformation or the order of the polynomial.



540 9 Structured Additive Regression

−10

−5

0

5

10

ef
fe

ct
 a

re
a 

/ p
ar

t. 
re

si
du

al
s

20 40 60 80 100 120 140 160

effect of area incl. part. residuals

−1.5

−.5

.5

1.5

2.5

3.5

4.5

ef
fe

ct
 a

re
a

20 40 60 80 100 120 140 160

effect of area incl. pointwise CI

area in sqm area in sqm

−7

−5

−3

−1

1

3

5

7

9

ef
fe

ct
 y

ea
r 

of
 c

on
st

r.
 / 

pa
rt

. r
es

id
ua

ls

1920 1940 1960 1980 2000

effect of year of construction incl. part. residuals

−1.5

−.5

.5

1.5

2.5
ef

fe
ct

 y
ea

r 
of

 c
on

st
r.

1918 1938 1958 1978 1998

year of construction year of construction

effect of year of construction incl. pointwise CI

Fig. 9.1 Munich rent index: estimated nonlinear effects of area and year of construction

Table 9.1 Munich rent index: estimated effects of location

Variable Coefficient Standard error p-value 95 % confidence interval

intercept 7.083 0.120 <0:001 6.848 7.317
glocation 0.633 0.076 <0:001 0.484 0.783
tlocation 1.503 0.233 <0:001 1.046 1.961

Finally, we observe comparably strong and highly significant additional charge of
approximately 0.63 Euro for a good location and of approximately 1.5 Euro for top location,
compared to average location (see Table 9.1). 4

9.2 Geoadditive Regression

In addition to the three-categorical expert assessment of location, the rent index
data also contain information in which of the 336 districts in Munich the apartment
is located. If we want to use the more precise location variable district rather than
the expert assessment, we arrive at the geoadditive model
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rentsqm D ˇ0 C f1.area/C f2.yearc/C fgeo.district/C ":

It is also possible to additionally include the expert assessment in the model. In this
case, we obtain the modified geoadditive model

rentsqm D f1.area/C f2.yearc/C fgeo.district/C ˇ0 C ˇ1 glocation

Cˇ2 tlocation C ":

In general, the data for geoadditive models are given through observations
.yi ;xi ; zi /, i D 1; : : : ; n, for the response variable y and the covariates x; z (as in
the additive model), plus the additional values si , i D 1; : : : ; n, associated with a
geographic location index s. As already outlined in Sect. 8.2, the variable s is either
discrete, taking the values s 2 f1; : : : ; d g (see Sect. 8.2.4), or varies continuously in
a subset of R2 (see Sects. 8.2.1–8.2.3). In the discrete case, si defines a specific
region, in which the individual or the unit i was observed, e.g., the district in
Munich, districts in Zambia, counties, and area code districts in Germany. In the
continuous case, s is usually given by the coordinates of R2, i.e., the location si of
the unit i is (almost) exactly known. In the original sample of the Munich rent index,
the exact address of the apartment is provided. However, due to data confidentiality,
we are only given the district in which the apartment is located. Data derived from
insurance policies are handled in a similar way. The insurance companies know the
exact address of the apartment, but due to data confidentiality, this data is aggregated
to a discrete location variable, for example, for counties or licensing districts.

In geoadditive models, the predictor is extended by the spatial effect fgeo.s/ of
the location variable s, and we obtain

yi D �addi C fgeo.si /C "i

D f1.zi1/C : : :C fq.ziq/C fgeo.si /C x0
iˇ C "i ; (9.4)

with x0
iˇ D ˇ0Cˇ1xi1C: : :Cˇkxik . For the covariates xi ; zi and the error variables

"i , the same assumptions apply as for the additive model.
The spatial effect fgeo.s/ can be understood as a surrogate for unobserved spatial

variables not included in the data. The approaches presented in Sect. 8.2 can be used
as building blocks for the modeling and estimation of fgeo.s/. Markov random fields
(see Sect. 8.2.4) are especially useful for discrete s 2 f1; : : : ; d g. It is also possible
to apply smoothers for continuous s, in particular kriging (see Sect. 8.2.3), e.g., by
using the region centroids as coordinates.

For discrete locations, si D s denotes that the i th observation belongs to region s,
with s 2 f1; : : : ; d g, then fgeo.si / is the spatial effect of region s D si . Similar to
the basis function approaches discussed in the previous section, we can represent
the vector f geo D .fgeo.s1/; : : : ; fgeo.sn//

0 of the spatial effect for the observed
units i D 1; : : : ; n; as

f geo D Zgeo�geo: (9.5)
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Here, �geo D .�geo;1; : : : ; �geo;d /
0 is the vector of regression coefficients and the

n � d design matrix Zgeo is an incidence matrix, i.e., with ZgeoŒi; s� D 1 for the
sth element of the i th row if si D s, and 0 otherwise. For a continuous s, f geo can
also be written in the form (9.5). The specific forms of Zgeo and �geo can be found
in Sects. 8.2.1–8.2.3. When using kriging, we usually work with a representative
number of knots (see p. 518).

We can now write geoadditive models in matrix notation as

y D Z 1�1 C : : :C Z q�q C Zgeo�geo C Xˇ C "; (9.6)

extending the additive model (9.3) by the spatial effect Z geo�geo.
Similar as for the coefficient vectors �1; : : : ;�q , estimation of �geo is again regu-

larized using quadratic penalties of the form	geo�
0
geoKgeo�geo or with the Gaussian

smoothness priors as described in Sect. 8.2. See Sect. 9.6 for further details.

Example 9.2 Munich Rent Index—Geoadditive Model
We consider the two geoadditive models

rentsqm D f1.area/C f2.yearc/C fgeo.district/C ˇ0 C " (9.7)

and

rentsqm D f1.area/C f2.yearc/C fgeo.district/C ˇ0 C ˇ1 glocation C ˇ2 tlocation C "

(9.8)
with the spatial effect fgeo.district/ of the districts in Munich.

Whereas model (9.7) does not consider the dummies for the expert assessment level of
location, they are included within the predictor of model (9.8). In both cases, we choose
to use kriging with the district centroids as coordinates for modeling the spatial effect
fgeo.district/. Comparing the estimates Ofgeo of the two models allows us to evaluate
the expert assessment of location. If the experts assessment regarding the apartment’s
location is valid the location dummies glocation and tlocation should absorb most of the
spatial heterogeneity and the estimated spatial effect Ofgeo should be much weaker than in
model (9.7).

Figure 9.2 displays the estimated spatial effects. The results are again obtained using
remlreg objects of BayesX. The left panel very well reflects the spatial variation
of the rent market in the city of Munich, adjusted to the effects of living area and year of
construction. Districts in the southern part of Munich, e.g., Grünwald and Menterschwaige,
or those that are close to the Nymphenburg Park and the English Garden, show a rent index
that is much higher than the average. Northern districts close to or north of the Frankfurter
Ring show a rent index that is much lower than the average. Overall the effect varies between
�1 and 1. An effect of, e.g., 0.5 implies that apartments in this particular subquarter are on
average 50 cents more expensive than apartments in subquarters with zero effect (keeping
all other covariates constant).

If the location dummies, according to the expert assessment, are additionally included
in the predictor, the spatially smooth district effect clearly diminishes. The kernel density
estimators of the smooth district effects, illustrated in Fig. 9.3, provide a good impression
of the decreased variability. Considering the expert assessment, the kernel density estimator
of the district effect shows a higher concentration around zero, but a visible variability still
remains. Although we find that the expert assessment absorbs a considerable portion of the
spatial heterogeneity, there appears to be opportunity for improvement in expert assessment.
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Fig. 9.2 Munich rent index: spatial effect based on kriging. Left: expert assessment of location
omitted. Right: expert assessment of location included
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Fig. 9.3 Munich rent index: kernel density estimators for the spatial effect. Solid line: model with
expert assessment of location included. Dashed line: model with expert assessment of location
excluded

The quality of the expert assessment of the location can also be seen from the goodness-
of-fit measured by the AIC. For model (9.7) we obtain AIC D 7; 359, while the second
model (9.8), yields AIC D 7; 336. Compared to the model in Example 9.1, where the spatial
effect was modeled parametrically with two location dummy variables, the value of the AIC
in model (9.7) is only smaller by approximately three units. Only by combining the experts
assessment and the nonparametric spatial effect the AIC value significantly decreases by
almost 30 units. 4

9.3 Models with Interactions

Section 3.1.3 (p. 98) already illustrated how (pairwise) covariate interactions, along
with main effects, can be considered in a linear model. The additive and geoadditive
models of the previous sections are purely main effect models with respect to the
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nonparametric components f1; : : : ; fq and the spatial effect fgeo. In this section, we
will show how these models can be further extended using (pairwise) nonparametric
interaction terms. At first, we will consider the case of a continuous covariate z and
a binary or categorical covariate x. Due to the specific type of interaction, we also
speak of models with varying coefficients. Models of this type can also be modified
in a way that an interaction between a location variable s and x is possible. Finally,
we will address pairwise interactions between two continuous covariates z1 and z2.
We use the rent index data for illustration.

9.3.1 Models with Varying Coefficient Terms

In additive models, the interaction between a continuous variable z1 and a binary
variable x1 can be considered by including the interaction term fz1jx1.z1/ � x1. Here,
fz1jx1.z1/ is a nonparametric smooth function, which similar to the main effect
f1.z1/ needs to be estimated from the data. This results in the model

y1 D f1.zi1/C : : :C fq.ziq/C fz1jx1 .zi1/ xi1 C x0
iˇ C "i ; (9.9)

where the same assumptions apply as for the additive model (9.1). Since the
model (9.9) also contains the main effects f1.z1/ and ˇ1x1, the function fz1jx1
must be centered around zero in the same way as the other functions f1; : : : ; fq .
Otherwise, the transformations Qfz1jx1 D fz1jx1.z1/ C a and Q̌

1 D ˇ1 � a would
result in the same predictor, i.e., the model would not be identifiable. If the main
effect ˇ1x1 is excluded from the model, then centering of fz1jx1 around zero is not
necessary. The varying coefficients model can be interpreted as follows:
• f1.z1/ is the nonlinear effect of z1 if x1 D 0.
• f1.z1/C fz1jx1 .z1/C ˇ1 is the nonlinear effect of z1 if x1 D 1.
• fz1jx1 .z1/ C ˇ1 is a varying effect for x1 D 1 (relative to x1 D 0) depending

on z1. The variable z1 is also called an effect modifier of x1, and x1 is called the
interaction variable.

Instead of the conventional fixed coefficient ˇ1 for x1, we rather obtain a varying
coefficient fz1jx1 .z1/C ˇ1 depending on z1. To get an intuitive understanding about
the effects, it is useful to visualize both effects f1.z1/ and f1.z1/Cfz1jx1.z1/Cˇ1 in
a combined graph. Additionally, the varying effect fz1jx1.z1/C ˇ1 of x1, depending
on z1, can be plotted in a separate graph.

Similarly, we can define an interaction between z1 and a three-level categorical
variable x 2 f1; 2; 3g, where x is coded by the dummy variables x1 and x2, with the
last value 3 as the reference category. This leads to the model

yi D f1.zi1/C : : :Cfz1jx1.zi1/ xi1Cfz1jx2.zi1/ xi2Cˇ0Cˇ1xi1Cˇ2xi2C : : :C "i :

Interpretation and visualization extends similarly: f1.z1/C fz1jx1.z1/C ˇ1 is the
effect of z1 if x D 1, and f1.z1/Cfz1jx2.z1/Cˇ2 is the effect of z1 if x D 2, whereas
f1.z/ is the nonlinear effect of z1 if x D 3. For interpretation, it is again advisable
to visualize the effects.
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Fig. 9.4 Munich rent index: left, effect of area in average (solid line) and top location (dashed
line). The dots show the distribution of the observations in average (dark dots) and top location
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Fig. 9.5 Munich rent index: estimated functions f1 and f2 including pointwise confidence
intervals in the model (9.10)

Example 9.3 Munich Rent Index—Interaction Between Living Area and
Location

This example can be viewed as the nonparametric extension to the strictly parametric
Example 3.8 (p. 102). As in Example 3.8, we use only the data for apartments in average
location (reference category) and top location and estimate the model

rentsqm D f1.area/C f2.area/ tlocation C ˇ0 C ˇ1 tlocation C ": (9.10)

The function f1.area/ can be interpreted as the nonlinear effect of the living area in average
location (tlocation D 0), and the term f1.area/C f2.area/C ˇ1 can be interpreted as the
nonlinear effect of the living area in top location (tlocation D 1). The term f2.area/ C
ˇ1 represents the varying effect of living area in top location. Figures 9.4 and 9.5 show
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the estimated effects, as well as the functions Of1, Of2. The results are based on remlreg
objects of BayesX.

In the left panel of Fig. 9.4, the estimated effects of the living area for average and top
location show the extent of interaction. If the functions are parallel, no interaction is present,
and the function f2.area/ (Fig. 9.5, right) should then be (almost) zero. In our case, we
do find a relatively strong interaction. For apartments with a small living area, the effect
of average and top location is nearly the same. The larger the living area, the more the
effects drift apart, i.e., the greater the difference in rent per square meter in average and top
locations.

The right panel of Fig. 9.4 shows that the effect of top location is at first small, but then
strongly increases as living area increases. From 70 sqm living area onward, the effect
remains relatively constant, with an increase of rent of approximately 2 Euro. Hence, the
effect of living area clearly depends on location, which can be interpreted as an interaction
effect between living area and location.

As mentioned, the model was already estimated with strictly parametric terms in
Example 3.8 (p. 102). Recall that the interaction effect was modeled in a linear way. In
comparison to this parametric model, we find differences for apartments larger than 70 sqm
regarding the varying effect of top location. The AIC is 4,656 in the parametric model and
4,658 in the nonparametric model. Thus the parametric model performs equally well or
even slightly better than the nonparametric model.

4
In the case that a basis function approach is used for modeling the functions

f1; : : : ; fq and fz1jx1 (and fz2jx2 ), we obtain

fz1jx1 .z1/ D
dX

lD1
�int;lBl .z1/ and fz1jx1 .z1/ � x1 D

dX

lD1
�int;lBl .z1/ x1:

The vector of the interaction term f int D .fz1jx1.z11/ x11; : : : ; fz1jx1 .zn1/ xn1/0
can be represented with the vector � int D .�int;1; : : : ; �int;d /

0 of the regression
coefficients using

f int D Z int� int:

The design matrix now contains the values of the basis functions multiplied with the
respective x1 values, i.e., Z intŒi; l � D Bl.zi1/ xi1. Thus, we can write model (9.9) in
matrix notation in the form of a large linear model

y D Z 1�1 C : : :C Z q�q C Z int� int C Xˇ C ":

This also applies if several interaction or varying coefficient terms are included in
the model.

The concept also remains the same, if, instead of z1, an interaction fgeojx.s/ �
x between the location variable s and a binary (or multicategorical) variable x is
included in geoadditive models. In this case, we speak of models with spatially
varying coefficients or geographically weighted regression.
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9.3.2 Interactions Between Two Continuous Covariates

For two continuous covariates z1 and z2, nonparametric interactions can be con-
sidered by adding a smooth two-dimensional function f1j2.z1; z2/ to the predictor.
There are principally two alternatives to do so:
• Two-dimensional function without main effects: The effect of z1 and z2 is modeled

by the two-dimensional surface f1j2.z1; z2/. One-dimensional main effects f1.z1/
and f2.z2/ are not included in the model. This results in the model

yi D f1j2.z1; z2/C f3 .zi3/C : : :C fq
�
ziq
�C �lini C "i ;

where once again the level of the function f1j2.z1; z2/ is not identified. Thus, the
surface needs to be centered around zero, i.e.,

nX

iD1
f1j2.zi1; zi2/ D 0:

The interpretation of the results is more involved than in models with pure
main effects. In the following Example 9.4 we will show how an appropriate
presentation of results can help with interpretation.

Prior to estimating a two-dimensional interaction, we should be sure that we
have enough data combinations of z1 and z2; a simple scatter plot between z1
and z2 can be useful to help determine if this is the case. If there are data gaps
in subareas, then the results from these areas should be interpreted carefully. It
may be possible that the existing data set is not sufficient to estimate a two-
dimensional surface between z1 and z2. Then the specification of a pure main
effects model may be preferable.

• Two-dimensional function with main effects: In this case, we include the two-
dimensional function f1j2.z1; z2/ in addition to the one-dimensional main effects
f1.z1/ and f2.z2/ into the model. We then obtain

yi D f1 .zi1/C f2 .zi2/C f1j2.z1; z2/C f3 .zi3/C : : :C fq
�
ziq
�C �lini C "i :

With the inclusion of the main effects, the problem of identifiability becomes
more complicated. The type of constraints for f1j2 depends on the choice of
basis functions used for the main effects and the interaction and also depends on
penalization. In general, identifiability is guaranteed if (in addition to centering
all functions around zero) also all slices of the interaction f1j2.z1; z2/, i.e., all
one-dimensional smooths with fixed value of z1 or z2, are centered around
zero. This approach also facilitates interpretation. The interaction f1j2.z1; z2/ can
then be interpreted as a deviation from the main effects. This modeling variant
requires an even larger sample size in order to obtain reliable results. Moreover,
a meaningful interpretation of the interaction surface requires some experience.
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For modeling f1j2, we generally use tensor product-P-splines, radial basis
functions, or kriging approaches as described in Sects. 8.2.1–8.2.3. As stated there,
the vector

f 1j2 D .f1j2.z11; z12/; : : : ; f1j2.zn1; zn2//0

of function evaluations can be written as

f 1j2 D Z 1j2�1j2;

using an appropriately defined design matrix Z 1j2 and with corresponding coeffi-
cient vector �1j2. We again obtain a large linear model

y D Z 1�1 C : : :C Z q�q C Z 1j2�1j2 C Xˇ C ";

where the coefficients �1; : : : ;�q;�1j2 need to be estimated while considering the
penalty restrictions; refer to Sect. 9.6.

Example 9.4 Munich Rent Index—Interaction Between Living Area and
Year of Construction

In the geoadditive model of Example 9.2, we replace the two main effects of the living area
and the year of construction with a two-dimensional surface f1j2.area; yearc/ and obtain
the model

rentsqm D f1j2.area; yearc/C fgeo.district/C ˇ0 C ˇ1 glocation C ˇ2 tlocation C ":

As in Example 8.6 (p. 500), the two-dimensional function f1j2 is modeled using tensor
product P-splines. First- and second-order differences were considered for penalization.
Estimates were carried out using remlreg objects of BayesX. With first differences,
we obtain an AIC of 7,317, whereas second-order differences yield an AIC of 7,304. In
either case, we find that the AIC is lower than what was found in the geoadditive model
of Example 9.2 (AIC D 7; 336). In the following, we limit our comparison to the models
based on second-order difference penalties.

Before we interpret the results, we first have a look at the distribution of the observations
across the living area and year of construction, as seen in the left panel of Fig. 9.6. The
plot illustrates the potential difficulties when estimating two-dimensional covariate effects.
It appears that we do not have enough observations for apartments with a living area smaller
than 30 or greater than 110 sqm to make reliable statements. In these regions, poorly
interpretable effects would not be surprising. For apartments with a living space between 30
and 110 sqm, the amount of data appears to be sufficient (Fig. 9.6, right). Consequently, we
limit the interpretation to this interval. In practice we mainly have the choice between four
alternatives: The collection of additional data, the consideration of additional data from
previous studies, limiting the validity of the rent index to apartments with a living area
between 30 and 110 sqm, or the use of models with less complexity (in particular models
with only main effects). Perhaps the last choice is one of our best alternatives.

We limit the presentation of results to the interaction between the living area and year of
construction. In comparison to Example 9.2, the spatial effects remained almost unchanged.
Figure 9.7 (left) shows the estimated two-dimensional surface of the living area and the
year of construction. The interpretation of two-dimensional surfaces can be quite involved.
A helpful device is often to plot slices of the two-dimensional function. The right panel of
Fig. 9.7 shows various slices of the living area for the year of construction in 1918, 1957,
1972, and 1991, respectively. The slices show whether or not an interaction is necessary.
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Fig. 9.6 Munich rent index: distribution of area and year of construction. Left, complete dataset.
Right, only observations with area between 30 and 110 square meters
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Fig. 9.7 Munich rent index: estimated two-dimensional function Of1j2.area; yearc/ (left) and slices
for various years of construction (right)

If the slices run nearly parallel to each other, a noteworthy interaction does not exist, and
a model with the two main effects may be sufficient. In our case, the slices do not run
parallel to each other and the inclusion of an interaction seems justified. The lower AIC
values for the interaction models compared to that of the main effects model also support
our conclusion. The slices nicely show that smaller apartments have a larger interaction
effect. The decrease of the average rent per sqm is much weaker for older and more modern
apartments than for apartments intermediate in age. It is interesting to note that for very old
apartments the effect of the living area is almost linear. 4

9.4 Models with Random Effects

In Chap. 7, we discussed random intercept and slope models for longitudinal and
cluster data. In this section we show how the semiparametric models considered thus
far can be extended in a straightforward way by random coefficient terms. We will
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show that such terms have the same structure as nonlinear functions of continuous
covariates or spatial effects in a geoadditive model.

Suppose we have longitudinal data for individuals i D 1; : : : ; m at observed
times ti1 < : : : < tij < : : : < tini or cluster data for subjects j D 1; : : : ; ni in
clusters i D 1; : : : ; m as in Chap. 7.

Consider the simple random coefficient model

yij D �0i C �1ixij C ˇ0 C ˇ1xij C "ij ; i D 1; : : : ; m; j D 1; : : : ; ni ;

with fixed intercept ˇ0 and slope ˇ1 of covariate x, cluster-specific random intercept
�0i , and random slope �1i . We restrict ourselves to a priori independent random
intercepts �0i � N.0; �20 / and slopes �1i � N.0; �21 /. Similarly as in Chap. 7 we
express the model in matrix notation in the form

y i D 1i �0i C xi �1i C 1iˇ0 C xiˇ1 C "i ;

where y i D .yi1; : : : ; yini /
0, 1i D .1; : : : ; 1/0 is a ni -dimensional vector of ones,

xi D .xi1; : : : ; xini /
0, "i D ."i1; : : : ; "ini /

0. Defining �0 D .�01; : : : ; �0i ; : : : ; �0m/
0

and �1 D .�11; : : : ; �1i ; : : : ; �1m/
0 as the vectors of random intercepts and random

slopes, respectively, ˇ D .ˇ0; ˇ1/
0, and the design matrices

Z 0 D

0
BBBBBB@

11 0

: : :

1i
: : :

1m

1
CCCCCCA

Z 1 D

0
BBBBBB@

x1 0

: : :

xi
: : :

xm

1
CCCCCCA

as well as

X D

0

BBBBBB@

11 x1
:::

:::

1i xi
:::

:::

1m xm

1

CCCCCCA
y D

0

BBBBBB@

y1
:::

y i
:::

ym

1

CCCCCCA
" D

0

BBBBBB@

"1
:::

"i
:::

"m

1

CCCCCCA
;

we obtain
y D Z 0�0 C Z 1�1 C Xˇ C ":

Note the close relationship of random slopes with varying coefficient terms. The
effect of x varies with respect to the clusters i D 1; : : : ; m as the effect modifier.
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As pointed out in Sect. 7.1.1 on p. 354, random coefficient models have an
alternative penalized least squares view. Specifically, for fixed variance parameters
�20 and �21 , the parameters of the model can be estimated by minimizing the penalized
least squares criterion

PLS.�0;�1;ˇ/ D .y � Z 0�0 � Z 1�1 � Xˇ/0.y � Z 0�0 � Z 1�1 � Xˇ/

C	0� 0
0K 0�0 C 	1�

0
1K 1�1;

where K 0 D K 1 D I .
Summarizing, we can express random intercepts and slopes in exactly the

same form as nonlinear functions of continuous covariates or the spatial effects
in geoadditive models. They can be expressed in the form Z� with specific
penalty � 0K� D � 0I� or in a Bayesian approach with prior p.� j �2/ /
exp.�0:5� 0K�=�2/ D exp.�0:5� 0I�=�2/. In contrast to most other smoothing
priors, the random effects priors are not rank deficient.

The next example shows how nonlinear covariate effects and random coefficients
can be combined quite naturally in a single regression model with an additive
predictor. Such models are often called additive mixed models.

Example 9.5 Sales of Orange Juice—Additive Price Effects
This example continues the case study on linear mixed models in Sect. 7.7 (p. 401). There,
we estimated the linear mixed model

yij D ˇ0 C ˇ1 � logpij C ˇ2 � logpc1ij C ˇ3 � logpc2ij C ˇ4 � logpc3ij
C�0i C �1i � logpij C �2i � logpc1ij C �3i � logpc2ij C �4i � logpc3ij C "ij

(9.11)

with fixed effects for the (centered) log own-item price and the log-cross prices of
competitors, a store-specific random intercept �1i and random slopes �2i � �4i of the log
prices for them D 81 stores, i D 1; : : : ; 81.

A somewhat unsatisfactory aspect of this model is that the type of nonlinearity of the
price effects is determined in advance using a log-transformation of prices. To investigate
whether the log-transformation is really appropriate, we can replace the linear fixed effects
in Eq. (9.11) by P-splines leading to the model

yij D f1.logpij /C f2.logpc1ij /C f3.logpc2ij /C f4.logpc3ij /

C�0i C �1i logpij C �2i logpc1ij C �3i logpc2ij C �4i logpc3ij C ˇ0 C "ij :

(9.12)

This is a model that combines nonlinear covariate effects with random coefficients. Since
models with nonlinear covariate effects and additional random effects are well suited for
a Bayesian approach using MCMC for inference, we use a fully Bayesian approach and
bayesreg objects of BayesX for estimation. See Sects. 8.1.9 (p. 486) and 9.6.3
below for details. We assume a priori a monotonically decreasing effect of the own price
and monotonically increasing effects of cross prices. Imposing monotonicity constraints
is relatively straightforward in a Bayesian approach; see Brezger and Steiner (2008) for
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Fig. 9.8 Sales of orange juice: estimated price effects in the model (9.12). Shown is the posterior
mean together with 80 % and 95 % pointwise credible intervals

details. If the log-transformation is sufficient to capture the nonlinearity, the estimated
curves Of1; : : : ; Of4 should be approximately linear.

In matrix notation model (9.12) can be expressed in additive form as

y D Z 1�1 C : : :C Z 9�9 C Xˇ C ";

where Z 1�1 to Z 4�4 correspond to the P-spline smooth terms of the own-item price and
cross prices, Z 5�5 corresponds to the random intercept, Z 6�6 to Z 9�9 correspond to the
random slopes of the price effects, and Xˇ corresponds to the fixed effects. The matrices
Z 1 to Z 4 are the standard P-spline design matrices, as outlined in Sect. 8.1.2.

Figure 9.8 shows the estimated price effects. Although considerable additional nonlin-
earity remains, the plots reveal that the log-transformation is a reasonable approximation to
the nonlinear effects. The size of the random effects measured through the random effects
variances is in the same range as in the parametric model of Sect. 7.7.

To demonstrate the outlet-specific heterogeneity, Fig. 9.9 shows some outlet-specific log-
sales own-price curves which are now additively composed of the random intercept, the
nonlinear log-price effect f1, and the linear log-price random effect �1i logpij . 4
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Fig. 9.9 Sales of orange juice: log-sales versus (centered) log-price curves in model (9.12) for
four different outlets, together with corresponding partial residuals

9.5 Structured Additive Regression

The various terms within the model classes considered thus far can be combined
arbitrarily. For example, a particular model could include all main effects, a spatial
effect, and one or more terms with varying coefficients for modeling interactions.
As shown in the previous section, it is also possible that additional random effects
can be included as in mixed models. The resulting models can be described in a
unified and general form as structured additive regression (STAR) models,

y D f1.v1/C : : :C fq.vq/C ˇ0 C ˇ1x1 C : : :C ˇkxk C "; (9.13)

where v1; : : : ; vq are one- or multidimensional covariates of different types con-
structed from the original variables. The functions can also be of different structure.
Specific types of covariates and functions yield the following special cases:

f1.v1/ D f1.z1/; v1 D z1; nonlinear effect of z1;

f2.v2/ D fgeo.s/; v2 D s; spatial effect of location variable s;

f3.v3/ D f .z/ x; v3 D .z; x/; varying effect of x with z;

f4.v4/ D f1j2.z1; z2/; v4 D .z1; z2/; nonlinear interaction between z1 and z2;

f5.v5/ D �i ; v5 D i individual-specific random intercept,

f6.v6/ D �iu; v6 D .u; i /; individual-specific random slope of u:

Recall that it is also possible to express the linear part ˇ0Cˇ1x1C: : :Cˇkxk D x0ˇ
of the predictor as the function f0.v0/ D x0ˇ, where v0 D .1; x1; : : : ; xk/

0. Since
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Table 9.2 Overview of commonly used model terms in STAR models

Term type Design matrix V Penalty matrix K Section

P-spline Basis functions evaluated at
the observations

K D D0

rDr , with Dr a r th
order difference matrix

8.1.2

General basis
functions
approach

Basis functions evaluated at
the observations

Based on the integral of
squared second
derivatives

8.1.3

Varying coefficient
term

Basis functions multiplied
with the interaction
variable

K D D0

rDr as for
P-splines

9.3.1

2D-P-spline 2D-basis functions
evaluated at the
observations

K D I ˝ K 1 C K 2 ˝ I

with identity matrix I

and penalty matrices K 1

and K 2 as for univariate
P-splines

8.2.1

Kriging Basis functions based on
the correlation function

K D R, with correlation
matrix R

8.1.6, 8.2.3

Markov random field 0/1-incidence matrix, that
links observations and
regions

K D neighborhood matrix 8.2.4

Random intercept 0/1-incidence matrix, that
links observations and
clusters

K D I , with identity
matrix I

Chap. 7, 9.4

the linear part, or at least the constant ˇ0, is always part of the model, it is explicitly
listed in Eq. (9.13).

If the functions f1; : : : ; fq are modeled and estimated with basis functions, we
obtain a large linear model, which is in the spirit of Eilers and Marx (2002). Using
the vectors f 1; : : : ;f q of functions evaluated at the observations of the covariates
v1; : : : ; vq , we obtain

y D f 1 C : : :C f q C Xˇ C " D V 1�1 C : : :C V q�q C Xˇ C ";

with appropriately defined design matrixes V j and coefficient vectors �j .
The smoothness of the functions will be regularized with penalties of the form
	j� 0

jK j�j , with smoothing parameter 	j and penalty matrix K j . In a fully
Bayesian approach, each penalty corresponds to a smoothness prior of the form

p.�j j�2j / /
�
1

�2

�rk.K j /=2

exp

 
� 1

2�2j
� 0
jK j�j

!
:

Thus every model term in STAR models is characterized by the form of the design
matrix V j and the penalty matrix K j . Table 9.2 gives an overview of commonly
used terms. Details of parameter estimation will be provided in the next section.
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The unified concept of STAR models can also be extended to non-normal
regression settings, in particular binary, discrete, and categorical responses. As
with generalized linear models, we assume that the response variables yi are
(conditionally) independent given the predictor �i . The structured additive predictor

�struct
i D f .vi1/C : : :C f .viq/C x0

iˇ

is linked to the (conditional) mean E.yi / D �i through

E.yi / D �i D h.�struct
i /;

with the response function h. We refer to the resulting model class as generalized
STAR models.

This generalized model class comprises all model classes discussed so far as
special cases. For example, choosing

�struct
i D �addi D f1.zi1/C � � � C fq.ziq/C x0

iˇ

results in a generalized additive model (GAM). With

�struct
i D �addi C fgeo.si /;

we obtain generalized geoadditive models, and so on.

Example 9.6 Vehicle Insurance—Claim Frequency
We have already discussed examples of generalized STAR models in Chap. 2, as seen in the
Examples 2.12, 2.13, and 2.15. In Example 2.15 (p. 57), we modeled the claim frequency
of a vehicle insurance policy using a structured additive Poisson model with the predictor

�struct D f1.age/Cf2.age v/Cf3.hp/Cf4.bm/Cf5.district/Cˇ0 Cˇ1genderC : : : :

In a case study, Denuit and Lang (2005) modeled an additional interaction between gender
and policyholder’s age in form of an age-varying gender effect. This yields the extended
structured additive predictor

�struct D f1.age/C f2.age v/C f3.hp/C f4.bm/C f5.district/

Cf6.age; gender/C ˇ0 C ˇ1gender C : : : ;

where the interaction f6 has the form f6.age; gender/ D f .age/ � gender of a varying
coefficient term with a nonparametric function f of age. All nonlinear functions are
modeled as P-splines with 20 interior knots and second-order difference penalty. The district
effect is based on a Markov random field. All results are based on mixed model technology
as will be outlined in Sect. 9.6.2. We used relmreg objects of BayesX for estimation.

Figure 9.10 (left panel) shows the estimated age effect Of1 for women and the age effect
Of1C Of6C Ǒ

1 for men (gender D 1). The right panel of Fig. 9.10 displays the effect Of6C Ǒ
1

of men compared to women varying with respect to age.
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Fig. 9.10 Vehicle insurance: The left panel shows the effect of the policyholders age for females
(solid line) and males (dashed line). The right panel shows the effect of males in comparison to
females varying with respect to age

As women get older, the average damage frequency decreases linearly. For men we obtain
the nonlinear form that was already discussed in the examples of Chap. 2. Younger and very
old men show a strongly increased tendency towards having accidents. Men between the
ages of 30 and 80 years cause less damage than women of the same age group. Overall, the
interaction effect is quite pronounced. Further discussion of the other results do not differ
much from those outlined in Chap. 2. 4
In the next example we will show how to extend the STAR approach to structured

additive categorical regression models. The example also shows that care has to
be taken when modeling spatial effects, especially if some covariates (e.g., in
ecological applications) are location-specific. It is then possible that the spatial
heterogeneity effect and the influence of these variables cannot be separated.
Problems of this kind have only been recently resolved in the literature. See
Lawson and Liu (2007), Hodges and Reich (2010), and Paciorek (2010) for various
investigations and possible solutions.

Example 9.7 Forest Health Status—Ordinal Logit Model
We revisit the Examples 1.4 (p. 9) and 6.5 (p. 337) of Chaps. 1 and 6 and extend the
linear predictors �itr D �0r C x0

i tˇ, r D 1; 2 of the three-categorical ordinal logit model
P.Yit D r/ for tree i in year t to the additive predictors

�itr D �0r C f1.agei t /C f2.gradienti /C f3.canopydi t /C f4.t/C f5.alti /C x0

i tˇ:

In comparison to Example 6.5, the parametric effects of most of the continuous covariates
are replaced by possibly nonlinear functions. Only the effect of soil depth (depth) and
pH-value (ph) are still modeled linearly, since previous nonparametric analyses resulted
in linear effects for these variables. The nonlinear effects f1 through f5 are based on
cubic P-splines with 20 interior knots and second-order difference penalties. The covariate
vector xi t contains the remaining regressors with linear effects ˇ, as listed in Table 9.3.
Figure 9.11 contains the estimated nonlinear effects f1 through f5 (estimated using a mixed
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9.3 Generalized STAR Models

Model

The response variables are (conditionally) independent and the (condi-
tional) density of yi belongs to an exponential family. The (conditional)
mean �i is connected to the structured additive predictor

�struct
i D f .vi1/C : : :C f .viq/C x0

iˇ

through
�i D h.�struct

i / or �struct
i D g.�i /:

The v1; : : : ; vq are one- or multidimensional covariates of differing types
constructed from the original variables. See Table 9.2 for an overview of
the various model terms.

Software

• R package mgcv: See Wood (2006) for details. The package provides
various uni- and multidimensional smoothers to estimate univariate
STAR models. Smoothing parameter estimation is based on minimizing
GCV or REML estimation. A similar class of models is available in the
package amer.

• Software package BayesX and R package R2BayesX: Estimation is
carried out either using mixed model methodology (remlreg objects),
fully Bayesian inference based on MCMC (bayesreg and mcmcreg
objects), or penalized likelihood in combination with variable selec-
tion techniques for smoothing parameter selection and model choice
(stepwisereg objects). The software also provides methodology for
categorical responses.

• R package gamlss: The package even allows the specification of
additive predictors for other parameters associated with the response
distribution (e.g., the mean and the variance for Gaussian responses).
The software is limited to pure additive predictors.

• R packages: mboost and gamboostLSS for estimating STAR models
with boosting.

model representation, see Sect. 9.6.2). All results are based on relmreg objects of the
software BayesX.

We obtain an AIC of 1,682.8, which indicates a clear improvement in goodness of fit
compared to the parametric model with an AIC of 2,029.16 (see Example 6.5 on p. 337).

The covariate effects do, however, show some surprising results:
• As in the parametric model, younger trees appear to be less damaged than older trees.

However, we observe a decreasing effect for very old trees which contradicts our
expectations on a monotonically increasing relationship.
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Table 9.3 Forest health status: estimated linear effects in the
model without spatial effects (left) and in the model with spatial
effects (right)

Coefficient p-value Coefficient p-value

�1 �4:000 0:009 �1:515 0:453

�2 1:107 0:470 4:846 0:019

depth �0:048 <0:001 �0:006 0:838

ph �0:718 0:018 �0:249 0:491

type �0:644 <0:001 �0:202 0:373

fert �0:571 0:004 �0:570 0:253

humus0 �0:419 0:008 �0:453 0:014

humus2 0:413 0:002 0:279 0:057

humus3 0:087 0:573 0:218 0:223

humus4 �0:032 0:879 0:192 0:443

watermoisture1 �0:801 <0:001 �0:762 0:167

watermoisture3 0:483 0:001 0:812 0:031

alkali1 1:165 <0:001 0:920 0:144

alkali3 �0:966 <0:001 �0:359 0:523

alkali4 0:195 0:507 �0:201 0:798

• The effect of the gradient of slope is extremely rough and not interpretable.
• Trees in a lower and higher altitude appear to be less damaged than trees in moderate

altitude. This effect is somewhat unexpected, as we might expect a monotonically
increasing effect.

• Compared to the results obtained from Example 6.5, the effects of the linear covariates
are relatively unstable; see, for example, the effect of the alkalinity.

How can we explain these somewhat peculiar results? As a first step, we extend the
regression model by an additional spatial effect using a two-dimensional P-spline. Table 9.3
again shows the resulting linear effects. Figure 9.12 shows the resulting nonlinear effects,
which dramatically change with the inclusion of the spatial effect. Figure 9.13 displays the
spatial effect fgeo.s/. We observe the following:
• The decrease of the age effect for very old trees disappears.
• The effects of soil depth (depth), pH-value (ph), type of forest (type), alkalinity (alkali),

gradient (gradient), and altitude (alt) either disappear, or are at least considerably
reduced. All these variables are location-specific covariates whose value either does not
change at all or very little over time.

In particular, the last observation provides essential information towards explaining
the surprising results found with our initial estimates. In the first model without spa-
tial effects, spatial heterogeneity was entirely captured by location-specific covariates.
However, the location-specific effects appear to be rather complicated in this application.
Apparently, the gradient and the altitude do absorb the effect of further, unobserved
or unrecognized, covariates. As a result, their effects are difficult to interpret as they
are confounded with other effects. In the second model, the flexibly modeled spatial
heterogeneity effect covers the effects of the location-specific covariates and to a large
extent absorbs their influences. However, this is not desirable, since the spatial effect is
included to absorb the effects of unobserved covariates, but not the effects of observed
covariates.

Which conclusion can we draw from this? It seems that in this application it is not
possible or at least very difficult to separate the different effects. A possible solution
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Fig. 9.11 Forest health status: estimated nonlinear effects in the model excluding spatial effects.
Additionally included are pointwise 80 % and 95 % confidence intervals

would be the estimation of a model with spatial effects, but without location-specific
covariates. By carefully examining the properties of the locations with especially large
(or small) spatial effects, we could then try to extract the relevant location-specific
covariates. The definition of new covariates, e.g., well-chosen linear combinations, could
be useful. Again we defer to the review of recent literature on spatial confounding provided
above. 4
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9.6 Inference

We restrict ourselves to the estimation of STAR models that are based on basis
functions approaches. We will consider four different inferential concepts:
• Penalized least squares or likelihood estimates in combination with the mini-

mization of a model choice criterion for the choice of smoothing parameters
(Sect. 9.6.1)

• Inference based on a mixed model representation (Sect. 9.6.2)
• Fully Bayesian inference based on MCMC simulation techniques (Sect. 9.6.3)
• Boosting for structured additive regression models (Sect. 9.7)

9.6.1 Penalized Least Squares or Likelihood Estimation

We first consider STAR models

y D f 1 C : : :C f q C Xˇ C " D V 1�1 C : : :C V q�q C Xˇ C " (9.14)

with a continuous response variable y. Extending the penalized least squares
criterion of Chap. 8, we minimize the criterion

LSpen.�1; : : : ;�q;ˇ/ D LS.�1; : : : ;�q;ˇ/C
qX

jD1
	j� 0

jK j�j (9.15)

with respect to �1; : : : ;�q;ˇ. In this setting, the least squares criterion is defined
as

LS.�1; : : : ;�q;ˇ/ D .y�V 1�1�: : :�V q�q�Xˇ/0.y�V 1�1�: : :�V q�q�Xˇ/:

As in Chap. 8, the form of the penalty matrix K j depends on the specific type of fj
and also on the chosen penalty. An overview is provided in Table 9.2. The smoothing
parameter 	j governs the trade-off between fidelity to the data and smoothness
controlled by the penalty � 0

jK j�j . We first assume that 	j is known.
To minimize Eq. (9.15), we can choose between two alternatives: iterative

minimization using the backfitting algorithm or direct minimization of the penalized
least squares criterion. The backfitting algorithm has the advantage that estimation
of complex models can be traced back to one- or two-dimensional smoothing as
described in Chap. 8. In addition, the backfitting algorithm allows any combination
of smoothers as building blocks for the estimation of STAR models. This implies
that basis function approaches as well as local smoothers can be used as building
blocks or combinations thereof.
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9.4 Backfitting Algorithm

1. Initialization: set, for example, Of 1 D : : : D Of q D 0; Ǒ D 0.
2. Obtain updated estimates Of j ; j D 1; : : : ; q, through

Of j D S j .y �
X

l 6Dj
Of l � X Ǒ/:

3. Obtain updated estimates Ǒ , through

Ǒ D .X 0X/�1X 0.y � Of 1 � : : : � Of q/:

4. Iterate the steps 2–3 until the estimated functions do not deviate more than
a small given increment in two subsequent iterations.

Backfitting
The idea of backfitting is to obtain estimates Of 1; : : : ; Of q; Ǒ iteratively by the
smoothing of partial residuals. Neglecting the errors " in Eq. (9.14), the following
approximately holds:

f j � y � f 1 � : : : � f j�1 � f jC1 � : : : � f q � Xˇ:

In the case that we already have estimates for Ǒ and Of l , l 6D j , we can view
y �Pl 6Dj Of l � X Ǒ as a (partial) residual vector (without f j ). In order to estimate
f j , we apply the scatter plot or bivariate smoother S j associated with f j to this
residual vector. We obtain

Of j D S j .y �
X

l 6Dj
Of l � X Ǒ/:

All estimators that are based on basis function approaches have the form

Of j D V j .V
0
jV j C 	jK j /

�1V 0
j .y �

X

l 6Dj
Of l � X Ǒ/:

The particular form of V j and K j depends on the type of smoother used, as
outlined in Table 9.2. Given starting values for Ǒ; Of 1; : : : ; Of q , this concept is
applied iteratively and results in the backfitting algorithm of Box 9.4.

Note that we have deliberately ignored the dependence of the smoothers S j on
the unknown smoothing parameters. The choice of the smoothing parameters will
be further discussed below.
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Direct Minimization of the Penalized Least Squares Criterion
In many cases, it is possible to compute the penalized least squares estimator
through direct minimization of Eq. (9.15) with a non-iterative procedure. For
instance the mgcv package of R works with direct optimization. Minimization can
be achieved by computing the first derivatives of the criterion with respect to the
unknown parameters, setting the derivatives to zero and finally solving the resulting
system of equations.

Setting the first derivatives to zero results in the system of equations

0

BBB@

V 0
1V 1 C 	1K 1 � � � V 0

1V q V 0
1X

:::
: : :

V 0
qV 1 V 0

qV q C 	qK q V 0
qX

X 0V 1 � � � X 0V q X 0X

1

CCCA

0

BBB@

�1
:::

�q

ˇ

1

CCCA D

0

BBB@

V 0
1y
:::

V 0
qy

X 0y

1

CCCA : (9.16)

The direct (non-iterative) solution of the system of equations works well with a
comparably small number of regression coefficients, e.g., if q is small and the
functions f1; : : : ; fq are specified by P-splines having a relatively modest number
of knots. For high-dimensional �1; : : : ;�q , the numerical solution of the system of
Eq. (9.16) can be obtained through the iterative Gauß–Seidel algorithm, which in
turn is identical to the backfitting algorithm described above; see Buja, Hastie, and
Tibshirani (1989).

Similar to linear models, we can estimate the (conditional) mean E.y/ of
the response by Oy D H y using the estimated regression coefficients. The hat
(prediction) matrix or smoother matrix H is given by

H D .V 1 V 2 : : :V q X/

0

BBB@

V 0
1V 1 C 	1K 1 � � � V 0

1V q V 0
1X

:::
: : :

V 0
qV 1 V 0

qV q C 	qK q V 0
qX

X 0V 1 � � � X 0V q X 0X

1

CCCA

�10

BBB@

V 0
1
:::

V 0
q

X 0

1

CCCA :

Generalized STAR Models
For generalized structured additive models with non-normally distributed response
and the predictor �struct D V 1�1 C : : : C V q�q C Xˇ, estimation is achieved by
maximizing the penalized log-likelihood criterion

lpen.�1; : : : ;�q;ˇ/ D l.�1; : : : ;�q;ˇ/� 1

2

qX

jD1
	j� 0

jK j�j

with respect to �1; : : : ;�q;ˇ. Thereby l.�1; : : : ;�q;ˇ/ denotes the usual log-
likelihood of generalized linear models but with the linear predictor �lin replaced
by �struct. Setting the first derivatives to zero leads to the high-dimensional system
of equations



564 9 Structured Additive Regression

spen;0.�1; : : : ;�q;ˇ/ D s0.�1; : : : ;�q;ˇ/ D 0

spen;j .�1; : : : ;�q;ˇ/ D sj .�1; : : : ;�q;ˇ/ � 	jK j�j D 0; j D 1; : : : ; q:

The functions s0.�1; : : : ;�q;ˇ/ D @ l=@ˇ, sj .�1; : : : ;�q;ˇ/ D @ l=@�j have
the form of the score function in generalized linear models. The structure of the
system of equations is similar to that of Eq. (9.16). However, similar to generalized
linear models, the equations depend on working weights and working observations.
As presented in Chap. 5, the system of equations can be solved with the Fisher
scoring algorithm or in combination with backfitting; see, for example, Fahrmeir
and Tutz (2001, Chap. 5), Tutz (2011, Chap. 8), Eilers and Marx (2002), and Marx
and Eilers (1998).

Choice of the Smoothing Parameters
The smoothing parameters are estimated by optimizing an appropriate model choice
criterion, e.g., AIC or GCV.

To minimize AIC, we have to take the effective dimension of the model
or effective number of parameters into consideration. The effective number of
parameters can be defined in a generalized way, as outlined in Sect. 8.1.8 (p. 473),
with the trace of the full STAR model smoother matrix H . For Gaussian responses,
the smoother matrix projects the vector y into Oy D H y . For non-Gaussian
response, we use the corresponding matrix from the working model. For STAR
models with Gaussian errors, the AIC criterion is then given by

AIC D n log. O�2/C 2.tr.H /C 1/;

where O�2 D P
.yi � O�struct

i /2=n is the ML estimator of the error variance.
For the generalized cross validation score GCV, we obtain

GCV D 1

n

nX

iD1

�
yi � O�struct

i

1 � tr.H /=n

�2
:

If we use the iterative backfitting algorithm to estimate the regression coeffi-
cients, we do not obtain the full smoother matrix and (exact) computation of the
criteria is, thus, not possible. In practice, the trace of the full smoother matrix is often
approximated via the sum of the traces of individual smoother matrices. Provided
that the correlation among individual terms is not too strong, this approximation
works well in practice.

Until approximately the year 2000, a simple but not very effective grid search was
widely used to minimize AIC or GCV, and thus problems with more than, say four or
five smoothing parameters, were barely manageable. Currently, much more efficient
(albeit technically complex) algorithms for the optimization of model choice criteria
are available. The monograph by Wood (2006) offers a detailed description of the
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9.5 Residuals in STAR Models with Continuous Response

Ordinary Residuals

O"i D yi � O�struct
i D yi � Of1.vi1/� : : : � Ofq.viq/ � x0

i
Ǒ :

Standardized Residuals

The i th standardized residual is given by

ri D yi � O�struct
i

O�p
1 � hii

;

where hii is the i th diagonal element of the full smoother matrix H .

Partial Residuals

Partial residuals regarding vj are defined by

O"vj ;i D yi � Of1.vi1/� : : :� Ofj�1.vi;j�1/� OfjC1.vi;jC1/� : : :� Ofq.viq/� x0
i
Ǒ

D yi � O�struct
i C Ofj .vij /:

methodological background; see also Wood (2000, 2004, 2008). An implementation
can be found in the R package mgcv.

Model Choice and Diagnosis
Relatively little literature exists about model choice and diagnosis for nonparametric
and semiparametric models, and user-friendly software is even rarer. However, some
of the concepts regarding model choice in linear models, discussed in Sect. 3.4,
easily carry over to STAR models. For instance, competing models can be compared
via standard model choice criteria such as AIC or GCV, even though there are some
restrictions to be considered when the model has been estimated using the mixed
model representation of penalized regression; see the next section.

Model diagnostics centrally relies on the various types of residuals. Ordinary,
standardized, and partial residuals can be defined analogously to those of the
linear model. Refer to Box 9.5 for continuous responses. However, an analogue to
studentized residuals does not exist. In the case of generalized models, see the books
of McCullagh and Nelder (1989), Tutz (2011), and Collett (1991) for the definition
of appropriate residuals. In principle, influence measures and outlier analysis, as
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well as Cook’s distance, are also available. However, to date, they have not been
thoroughly examined and are not part of common software packages.

There is a contemporary approach for automatic variable selection and model
choice in generalized STAR models using goodness-of-fit criteria such as AIC or
cross validation, as developed in Belitz and Lang (2008). The proposed algorithms
are able to:
• Determine whether or not a particular covariate is to be included in the model
• Determine whether a continuous covariate enters the model linearly or nonlin-

early
• Determine whether or not a spatial effect enters the model
• Determine whether or not a unit- or cluster-specific heterogeneity effect is

included in the model
• select complex interaction effects (two-dimensional surfaces, varying coefficient

terms)
• Select the degree of smoothness of nonlinear covariate, spatial, or cluster-specific

heterogeneity effects
Particular emphasis is devoted to modeling and the selection of interaction terms.
The approach is included in the software package BayesX (stepwisereg
objects); also see the R interface R2BayesX described in Umlauf, Kneib, Lang,
and Zeileis (2012). For automatic estimation and model selection in STAR models,
also see Sect. 9.7 on boosting.

9.6.2 Inference Based on Mixed Model Representation

A second approach for estimating STAR models is based on their representation
as mixed models. In Sect. 8.1.9, we already discussed the close relationship
between penalization approaches and mixed models. We now briefly discuss the
generalization to STAR models.

For every model component f j D V j�j the vector �j can be decomposed as

�j D QX jˇj C QU j Q�j :

Through appropriate choices of the design matrices QX and QU , we obtain a vector
ˇj of fixed effects and a vector Q�j � N.0; �2j I/ of independent and identically
distributed random effects. Analogously, the vector of function evaluations can be
expressed as

f j D V j . QX jˇj C QU j Q�j / D X jˇj C U Q�j ;
with X j D V j

QX j and U j D V j
QU j . Applying this decomposition to all model

components, we obtain a large mixed model whose fixed effects consist of the
original parametric effects ˇ and the fixed effects ˇj , j D 1; : : : ; q; resulting
from the reparameterization. The random effects are composed of the vectors
Q�j , j D 1; : : : ; q; with joint distribution N.0; diag.�21 I ; : : : ; �2qI//. Thus, the
resulting mixed model is a variance components model. To estimate the model,
in particular the variance or smoothing parameters, we can use the methodology
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presented in Sect. 8.1.9. Note that the reparameterization generally causes redundant
columns in the design matrix of the fixed effects. The reason for the redundancy
is the identification problem of additive models. Every nonparametric model term
has its own level corresponding to a constant in the fixed effects part of the
reparameterization. After the reparameterization, the model then has these further
constants, in addition to the intercept in ˇ, so that the joint design matrix is no longer
of full rank. In order to obtain an identifiable model, redundant columns need to be
eliminated from the design matrix. For the constants, this mainly corresponds to the
previously discussed centering conditions on fj .

For additive and geoadditive models, inference based on mixed models is
extensively discussed in Ruppert, Wand, and Carroll (2003). Mixed model inference
in generalized STAR models is proposed in Fahrmeir, Kneib, and Lang (2004).
Corresponding extensions to categorical responses are given in Kneib and Fahrmeir
(2006). A detailed presentation can also be found in Kneib (2005).

Model Choice and Diagnosis
The remarks mentioned above regarding model choice and diagnosis mostly remain
valid with inference based on mixed models.

To verify whether or not the flexible nonparametric modeling of the individual
covariates effects is necessary, we can in principle apply statistical tests regarding
the variance parameters. If we want to test, e.g., a P-spline with a second-order
difference penalty against a linear effect, then this corresponds to the hypothesis

H0 W �2 D 0 versus H1 W �2 > 0:

At first thought, the likelihood ratio statistic that compares the likelihoods under
H0 and H1 may be used to perform the test. However, the parameter to be
tested is on the boundary of the parameter space under the null hypotheses. This
contradicts the usual regularization conditions which are used when deriving the
asymptotic �2-distribution of the likelihood ratio test statistic. Thus, the likelihood
ratio test statistic does not follow a �2-distribution in this case. Currently, the
exact distribution of the likelihood ratio statistic can only be derived in relatively
simple special cases with Gaussian responses. Further information can be found,
for example, in Crainiceanu and Ruppert (2004) or Crainiceanu et al. (2005).
A simulation-based approach for obtaining p-values that works also for models with
more than one variance parameter has been proposed in Scheipl et al. (2008) and is
implemented in the R package RLRsim; see also Sect. 7.3.4, p. 381.

Similar problems with violated regularity conditions occur when considering
the AIC for comparing models with estimated smoothing variance and the simpler
model obtained when setting the variance equal to zero. This includes the important
case of comparing a simple linear model for a specific covariate with a model
comprising a P-spline with second-order difference penalty with smoothing variance
estimated from the mixed model representation. More specifically, Greven and
Kneib (2010) considered two variants of the AIC derived from the marginal and
the conditional perspective on mixed models (compare Sect. 7.1.4) and investigated
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their properties in this situation. The marginal AIC is obtained when integrating out
the random effects and relying on the marginal normal distribution with correlations
between the responses for deriving the likelihood involved in the AIC. It turns
out that basic regularity conditions of the AIC are violated in this situation and
therefore the marginal AIC cannot be used to compare models with estimated
variance components and models where the variances are set to zero. Nevertheless,
the marginal AIC is routinely returned by several mixed model implementations in
statistical software such as the nlme package in R.

The AIC we have used so far in this book is the conditional AIC that is specified
as

�2l.�/C 2tr.H /

where l.�/ denotes the log-likelihood of the estimated model (conditional on the
random effects) and H is the corresponding hat matrix. While this standard
definition is valid in case of given smoothing variances, it has a bias towards
the more complex model in case of estimated smoothing variances. In fact, the
conditional AIC always decides for the model with nonparametric effect when the
smoothing variance is estimated to be non-zero. This defect results from the fact that
uncertainty due to the estimation of smoothing variances is not taken into account
in the conditional AIC. As a consequence, the conditional AIC in its standard
form also does not enable proper model choice in situations where the decision
problem corresponds to differentiating between estimated smoothing variances and
smoothing variances set to zero. Greven and Kneib (2010) therefore introduce a
corrected conditional AIC that circumvents this problem, but this corrected AIC is
not yet available in standard software packages and is also restricted to models with
Gaussian responses. We therefore give the following recommendations for practical
work with the conditional AIC:
• If there is strong evidence for one model in the model comparison (i.e., if one

model has significantly lower AIC), then the standard conditional AIC should
be reliable enough since the problems described above mostly occur when the
smoothing variance is close to zero.

• The standard conditional AIC can still be used to compare models that only differ
in the specification for the parametric effect or that compare different structures
for the random effect (e.g., an i.i.d. random effect versus a Markov random field
for a spatial effect based on geographical regions).

In that sense, the model comparisons made so far in this chapter should be valid. The
only borderline case appeared in Example 9.3. However, since we found a prefer-
ence for the simpler model in this example anyway, the decision should still be fine.

9.6.3 Bayesian Inference Based on MCMC

Gaussian Response
We first assume Gaussian responses, i.e.,

y j �1; : : : ;�q;ˇ; �
2 � N.�struct; �2I/:
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The density of the observation model is then proportional to the likelihood and is
given by

p.y j �1; : : : ;�q;ˇ; �
2/ / 1

.�2/
n
2

exp

�
� 1

2�2

�
y � �struct

�0 �
y � �struct

��
:

Bayesian inference is based on the smoothness prior

p.�j j �2j / /
 
1

�2j

!rk.K j /=2

exp

 
� 1

2�2j
� 0
jK j�j

!
; (9.17)

introduced in the Box given in Sect. 8.1.9 on p. 486 for the regression coefficients
�j of the j th term of the structured additive predictor. For the variance parameters
�2j , we specify an inverse gamma distribution with hyperparameters aj and bj , i.e.,

�2j � IG.aj ; bj /;

as the prior distribution. For the variance �2 of the error term, we similarly define an
inverse gamma distribution with hyperparameters a and b. In practice, small values
are often chosen for aj and bj , e.g., aj D bj D 0:001 or aj D bj D 0:0001. This
recommendation is only meaningful if the response values are in a specific range
that is obtained by dividing the original response observations by their empirical
standard deviation.

For the linear effects regression coefficients ˇ, in this chapter, we restrict
ourselves to noninformative priors, i.e., p.ˇ/ / const. A multivariate Gaussian
prior ˇ � N.m;M / could alternatively be used, as seen in Sect. 5.6.

The density of the prior distribution of all parameters can now be written as
the product of the densities in Eq. (9.17) and the densities of the inverse gamma
distributions for the variance parameters. The posterior distribution is proportional
to the product resulting from the likelihood with the prior distribution. We obtain

p.� j y/ / 1

.�2/
n
2

exp

�
� 1

2�2

�
y � �struct

�0 �
y � �struct

��

qY

jD1

1

.�2j /
rk.Kj /=2

exp

 
� 1

2�2j
� 0
jK j�j

!
qY

jD1
.�2j /

�aj�1 exp

 
�bj
�2j

!

.�2/�a�1 exp

�
� b

�2

�
;

where � is the vector of all model parameters (including the variance parameters).
We will next describe a Gibbs sampler (see Sect. B.5.3 in Appendix B) for drawing
random numbers from the posterior. To do so, the entire parameter vector is
decomposed into the blocks �1; : : : ;�q;ˇ; �

2
1 ; : : : ; �

2
q ; �

2. A requirement of the
Gibbs-sampler is that the full conditionals of the blocks must represent known
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distributions, from which sampling of random numbers is fast and easily available.
Similar to and as already described in Sect. 8.1.9, the conditional densities of the
regression parameters are multivariate normal distributions, and the conditional
densities of the variance parameters are inverse gamma distributions.

More precisely, we have

�j j � � N.mj ;˙ j /

with expectation and covariance matrix

mj D E.�j j �/ D
 
1

�2
V 0
jV j C 1

�2j
K j

!�1
1

�2
V 0
j .y � �struct�j /

˙ j D Cov.�j j �/ D
 
1

�2
V 0
jV j C 1

�2j
K j

!�1
:

The vector �struct�j D �struct � V j�j is the current predictor �struct without the j th
term. Similarly, for the vector ˇ, we obtain a multivariate normal distribution with
expectation and covariance matrix given by

mˇ D E.ˇ j �/ D �
X 0X

��1
X 0.y � Q�struct/

˙ ˇ D Cov.ˇ j �/ D 1

�2
.X 0X/�1;

where Q�struct D �struct � Xˇ is the predictor �struct without the linear effects. For the
variance parameters, we obtain

�2j j � � IG.aj C 0:5rk.K j /; bj C 0:5� 0
jK j�j /;

�2 j � � IG.aC 0:5n; b C 0:5.y � �struct/0.y � �struct//:

The derivation of all full conditionals is similar to the classical linear model in
Sect. 4.4. It is now straightforward to implement a Gibbs sampler that successively
draws samples from the full conditionals. Numerically efficient sampling of random
numbers from the high-dimensional Gaussian distributions is guaranteed with
methodology for banded or sparse matrices. More details can be found in Rue and
Held (2005), Lang and Brezger (2004), and Lang et al. (2012).

MCMC-Based Inference Using Data Augmentation
As already discussed in Sect. 5.6.3 (p. 316), the Gibbs sampler for Gaussian
responses can be often modified for MCMC inference with non-Gaussian responses.
Applying the data augmentation schemes of Sect. 5.6.3 to STAR models is straight-
forward; its description would be identical to Chap. 5 and is therefore omitted.
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Non-Gaussian Responses
For some distributions, e.g., gamma-distributed responses, a Gibbs sampler can no
longer be derived. In this case, MCMC inference can be based on MH algorithms
with IWLS proposals as described for generalized linear models in Sect. 5.6. Details
for generalized STAR models can be found in Brezger and Lang (2006) and Lang
et al. (2012).

Model Choice and Diagnosis
For comparing competing models, we can use the DIC (see Sect. B.5.4 in
Appendix B) as a global goodness-of-fit measure. The DIC can be computed as
a by-product of the MCMC sampler. However, the DIC is subject to sampling
variation and therefore shows (slightly) different values in each MCMC run. In the
case that two competing models have very different DIC values, problems due to the
sampling variability of the DIC should not be an issue. Some care has to be taken
if DIC values are close to each other. In such a case, comparison is only possible
by means of several (possibly time intensive) MCMC runs (at least 20) and then
averaging the DIC values.

For model diagnosis, we can again use the various forms of residuals. With
Bayesian inference based on MCMC methods, some additional diagnostic checks
regarding convergence of the samplers are necessary. The literature provides a huge
variety of diagnostic tools; refer to Cowles and Carlin (1996) and Mengersen,
Robert, and Guihenneuc-Jouyaux (1999) for an overview. Their use is, however,
restricted to relatively simple models with only a few parameters. In any case,
including complex models with many parameters, it is extremely important to
examine the sampling paths and autocorrelation functions of all samples. Striking
features, especially non-convergence, low acceptance rates, and high autocorrela-
tions, become apparent with these tools; see Example B.10 in Appendix B. When
using the MCMC algorithms described in this chapter, problems usually only occur
when the models that are being estimated are too complex for the data at hand.

Another important diagnostic step for Bayesian models is to perform a sensitivity
analysis regarding the effect of slight changes in the priors (particularly the
hyperparameters) on the posterior. In the case of STAR models, this requires
examining the sensitivity of results on the choice of the hyperparameters aj and bj
of the inverse gamma prior distribution for the variance parameters �2j . Depending
on the choice of hyperparameters, it is possible that the estimated results differ
considerably. This is especially the case if we do not have sufficient information,
i.e., a limited number of observations in subdomains of the covariate range. In most
cases, however, the results are relatively stable. The possible dependence on the
choice of hyperparameters is not a disadvantage of Bayesian inference for STAR
models. On the contrary, the Bayesian approach allows a careful sensitivity analysis
when examining the stability of the chosen model.

Recently, a Bayesian approach based on spike and slab priors for STAR models,
with built-in model and variable selection options, has been proposed; see Scheipl,
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Fig. 9.14 Patent opposition: The left panel shows the estimated nonlinear effect of the number of
designated states for the patent. The right panel shows the estimated effect of ncountry based on
four different combinations of the hyperparameters a and b for the prior of the variance parameter

Fahrmeir, and Kneib (2012) for details. Software is provided in the R package
spikeSlabGAM, outlined in Scheipl (2011).

Lastly, we want to mention that there are some extensions for the Bayesian adap-
tive procedures described in Sect. 8.1.10, which allow for simultaneous estimation
and model choice. Since generally usable software for this methods is not available
we restrain from presenting detailed algorithms but rather point to the references
given in Sect. 8.1.10 for details.

Example 9.8 Patent Opposition—Additive Model
In the Examples 2.8 (p. 35), 5.1 (p. 275) and 5.4 (p. 288), we modeled the effect of the
covariate ncountry on the binary response opp using a cubic polynomial. For comparison,
we now estimate the effect f .ncountry/ nonparametrically. This leads to the additive logit
model

P.oppi D 1/ D exp.�addi /

1C exp.�addi /

with the predictor

�addi D f .ncountryi /C ˇ0 C ˇ1 yearci C ˇ2 nciti C ˇ3 nclaimsi C ˇ4 ustwini

Cˇ5 patusi C ˇ6patgsgri :

The (possibly) nonlinear function f .ncountry/ is modeled by cubic P-splines and estimated
using MCMC. We included the centered year (variable yearc) rather than the original
variable year because otherwise the intercept and the effect of year would be highly
correlated. We used bayesreg objects of the software BayesX. Figure 9.14 (left)
shows the posterior mean together with 80 % and 95 % (pointwise) confidence bands.
Clearly, the function does not greatly differ from a straight line. We obtain DIC D 2; 993.
Modeling the effect of ncountry linearly or with a polynomial, we obtain DIC D 2; 993 and
DIC D 2; 995, respectively. Thus, a linear effect is apparently sufficient. This also confirms
the result of the statistical test conducted in Example 5.4.
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The right panel of Fig. 9.14 shows the result of a sensitivity analysis, in which different
hyperparameters a and b of the prior for the variance parameter �2 were tested. We used the
combinations .a D 0:001; b D 0:001/, .a D 0:0001; b D 0:0001/, .a D 0:00001; b D
0:00001/, and .a D 1; b D 0:001/. We find that estimated results do not differ much from
each other. Moreover, the figure once again confirms the linearity assumption for the effect
of ncountry. 4

9.7 Boosting STAR Models

In Sect. 4.3, we introduced boosting as a regularized estimation technique that had
the particular advantage to combine model estimation with automatic model choice
and variable selection. Such a combination would be very desirable in the context of
STAR models, especially since several competing modeling possibilities and model
formulations are available. We will therefore extend boosting approaches to STAR
models.

In the context of linear regression models, boosting estimates were obtained
by repeatedly applying simple ordinary least squares fits to iteratively updated
residuals. In componentwise boosting, only the best-fitting covariate was updated in
each iteration of the boosting process. To generalize this componentwise approach
to STAR models, we basically have to replace the least squares base-learners with
penalized least squares base-learners.

Therefore, we assume a structured additive regression model with predictor

�i D f1.vi1/C : : :C fq.viq/C ˇ0 C ˇ1xi1 C : : :C ˇkxik;

where as before the functions fj may represent different types of nonlinear
regression effects. In matrix notation, the model can be reexpressed as

� D V 1�1 C : : :C V q�q C X 1ˇ1 C : : :C XLˇL;

where we have grouped covariates with parametric effects in L � k C 1 suitable
blocks of coefficients. This grouping may result, for example, from considering
dummy or effect coding of categorical covariates where all dummy variables should
be assigned to a common block, such that when performing model choice, either
the complete block is selected or the complete block is deselected from the model.
A similar situation arises when considering a polynomial expansion of a continuous
covariate. In this case, it may be useful to combine all polynomials in one coefficient
block. However, in the simplest situation, each block will only comprise exactly one
covariate and therefore L D k C 1.

We further assume that the estimation problem at hand is described in terms of a
suitable loss function . Typically, this will be the least squares criterion in case of
Gaussian responses or the negative log-likelihood for exponential family regression.
More general situations are also conceivable, for example, to cast median or robust
regression in the context of boosting.
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Similar to the presentation in Sect. 4.3, the base-learning procedure for estimating
parametric linear effects for the blocks X lˇl is given by ordinary least squares fits
and can therefore be characterized by the corresponding hat matrices

H l D X l .X
0
lX l /

�1X 0
l ; l D 1; : : : ; L:

Analogously, all base-learning procedures for nonlinear effects V j�j can be
described in terms of penalized least squares fits as characterized by the hat matrices

H j D V j .V
0
jV j C 	jK j /

�1V 0
j ; j D 1; : : : ; q;

with smoothing parameters 	j � 0. Note that the smoothing parameters are now no
longer part of the estimation process but will be specified a priori to assign a certain
flexibility to the base-learners.

Based on these definitions, a generic boosting algorithm for structured additive
regression models is given in Box 9.6.

In each iteration of the algorithm, all base-learning procedures are fitted to the
current negative gradient vector u, but only the best-fitting base-learner is actually
updated. Note that this decision is always based on the L2 loss (as indicated in
Box 9.6) regardless of the specific loss function describing the estimation problem
since the negative gradient vectors is treated as a continuous response in the base-
learner. Updating only the best fitting base-learner allows us to implement model
choice by setting an optimal, data-driven stopping iteration mstop. Typically, the
important and influential covariates will be selected first, while those covariates
that are only weakly associated with the response will be selected only in very
late boosting iterations. Hence, when stopping early enough, such covariates will
effectively drop out of the estimated model. An optimal stopping iteration will
usually be determined based on cross validation techniques.

Note that the model choice possibilities of boosting can be further improved
when considering competing modeling alternatives for the same covariate. For
example, a continuous covariate can be included linearly and nonlinearly in the
candidate model such that in each iteration the algorithm compares the performance
of the linear and the nonlinear modeling alternative and decides for the better
fitting alternative. However, care has to be taken when actually implementing
this approach since the nonlinear effect naturally contains the linear effect as a
special case and therefore has a greater chance to be selected simply because the
corresponding base-learner is more flexible. It is therefore important to make the
base-learners comparable in terms of their complexity. This can be achieved by
a suitable choice of the smoothing parameter in the penalized least squares base-
learners. Note that these are no longer hyperparameters to be estimated but rather
constitute the flexibility of the base-learner. Typically, user-specified degrees of
freedom will be assigned to each base-learner and the corresponding smoothing
parameter will be numerically determined accordingly. Assigning the same degrees
of freedom to each base-learner yields a comparable complexity for all model terms.
This may also require an assignment of ridge-type base-learners to the parametric
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9.6 Boosting in STAR Models

(i) Initialize all parameter blocks ˇl and vectors of function evaluations f j

with suitable starting values Ǒ .0/
l and Of .0/

j and set the predictor �.0/ D
offset with a suitable offset (such as the population minimizer of the
loss function). Choose a maximum number of iterations mstop and set the
iteration index to m D 1.

(ii) Compute the negative gradients (i.e., partial derivatives of the loss function)

ui D � @

@�
.yi ; �/

ˇ̌
ˇ̌
�DO�.m�1/

i

; i D 1; : : : ; n;

that will serve as working responses for the base-learning procedures.
(iii) Fit all base-learning procedures to the negative gradients to obtain esti-

mates Ob.m/l and Og.m/j and find the best-fitting base-learning procedure, i.e.,
the one that minimizes the L2 loss

.u � Ou/0.u � Ou/;

inserting either X l
Ob.m/l or Og.m/j for Ou.

(iv) If the best-fitting base-learner is the linear effect with index l	, update the
corresponding coefficient vector as

Ǒ .m/
l� D Ǒ .m�1/

l� C � Ob.m/l� ;

where � 2 .0; 1� is a given step size, and keep all other effects constant,
i.e.,

Ǒ .m/
l D Ǒ .m�1/

l ; l ¤ l	 and Of .m/

j D Of .m�1/
j ; j D 1; : : : ; q:

Correspondingly, if the best-fitting base-learner is the nonlinear effect with
index j 	, update the vector of function evaluations as

Of .m/

j� D Of .m�1/
j� C � Og.m/j�

and keep all other effects constant, i.e.,

Ǒ .m/
l D Ǒ .m�1/

l ; l D 1; : : : ; L; and Of .m/

j D Of .m�1/
j ; j ¤ j 	:

(v) Unless m D mstop, increase m by one and go back to (ii).
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effects of categorical covariates with a large number of levels to prevent a preference
for coefficient blocks having a larger number of coefficients and therefore more
flexibility.

A further improvement of the model choice capabilities of boosting can be
achieved when decomposing certain types of effects. For example, a nonlinear effect
f .z/ of a continuous covariate z may be represented as

zˇ C Qf .z/;

i.e., as the sum of its linear effect zˇ and the deviation from the linear effect Qf .z/ D
f .z/ � ˇz. This has the advantage that the boosting algorithm can automatically
differentiate between no effect of z (neither the linear nor the nonlinear effect are
selected), linear effect of z (only the linear part is selected), and nonlinear effect
of z (the nonlinear part is also selected). Technically, such a decomposition can be
accomplished based on the mixed model representation of penalized least squares
estimates introduced in Sect. 8.1.9.

We will illustrate these extended model choice abilities of boosting, as well as
the general principles of the algorithm for structured additive regression models in
the following case study on malnutrition in Zambia.

9.8 Case Study: Malnutrition in Zambia

Using the data on malnutrition in Zambia this section illustrates how the methods
presented in this book can be applied in practice. In the next section, we first provide
some general guidelines on how to carry out a regression analysis. We then present
the case study on malnutrition in Zambia.

9.8.1 General Guidelines

Regression problems can be generally divided into the following main steps:

Descriptive Analysis of Raw Data
The first important step in every statistical application is the careful analysis of
the raw data. We first need to get an overview of the (univariate) distribution of
all variables in the data set. Useful tools are the graphical devices and summary
statistics outlined in Sect. 1.2.1. The following goals are pursued in this first
analysis:
• Description of the distribution of all variables in the data set.
• Discovery of data anomalies. This includes incorrect coding, implausible and

extreme data values. In regression problems, the inspection of the covariate
domain is especially important. For some continuous covariates the observed data
are often sparse, particularly near the boundaries. With such limited information
in some regions, it is often difficult to make valid statements regarding the effect
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of a covariate on the response. Sometimes it is even appropriate to exclude
extreme observations from further analysis. A typical example was the analysis of
the data on patent opposition in Example 2.8 (p. 35), where we could observe an
extremely positively skewed distribution for the covariate nclaims. The majority
of observations lie in the region 0–60. However, some observations were much
larger, with the maximum value of 355. Due to the fact that very little information
is available in the interval 61–355, all observations with ncountry > 60 were
excluded from further analysis.

The problem of unequally distributed values can also exist with categorical
covariates. For some categories, absolute or relative frequencies are often very
low. In the extreme case, a covariate may be useless for regression analysis.
This is, for example, the case with binary covariates when one of the two
categories is not populated at all, or perhaps only very sparsely. The missing or
limited variability of the covariate then precludes examination of the effect on the
response variable. In many cases, the problem of sparsely populated categories
can be solved by combining individual categories (when meaningful).

Data Preparation
After the initial analysis of the raw data, the data must be prepared for the
regression analysis. This means that some extreme observations, possibly even some
covariates, may be excluded from further analysis. Outlier analysis and plausibility
checks are useful tools to assist in this regard. Furthermore, existing data errors need
to be corrected, and possibly new covariates derived from existing covariates need
to be created (e.g., orthogonal polynomials or other transformations).

Finally, we must ensure that the raw data does not get lost during data prepara-
tion. This may sound rather trivial, but lost raw data are a frequent phenomenon in
practice. It is strongly recommended to create a new data set out of the raw data
containing the prepared observations and variables ready for regression analysis.
Also, the necessary steps for data preparation should be recorded and documented.

Graphical Two-Dimensional Correlation Analysis
In the case of continuous responses, two-dimensional graphical correlation analyses
between the response values and each covariate can provide important information
about the type and strength of the relationship. However, any interpretation should
be taken with care, since at this stage we are only investigating two-way correlations,
and we are generally not controlling for the effect of other covariates. Hence, it is
absolutely possible that the further regression analysis provides different results.
Useful devices for the correlation analysis are the graphical tools outlined in
Sect. 1.2.2 (scatter plots, box plots). We should also take care to find possible out-
liers (see Sect. 3.4.4). Often—but not always—such observations can be identified
with the help of scatter plots.

In the case of discrete responses, in particular categorical variables, graphical
exploratory tools can be of rather limited use.



578 9 Structured Additive Regression

Estimation of Preliminary Working Models
The semiparametric regression models discussed above and in the previous chapter
are particularly useful for exploratory data analysis and for getting a first working
model. With these models, nonlinear covariate effects, as well as spatial and cluster-
specific heterogeneity, can be detected quickly and automatically. Usually, the
starting point is a pure main effects model. Interactions can be considered in subse-
quent steps. In addition to the results from the univariate and bivariate exploratory
analyses, expertise knowledge and knowledge from former examinations should be
considered in the model building process. It is generally not advisable to include all
available variables in an unreflected way into the regression model.

Generally, a number of competing model specifications will be available. For
example, it is possible to have models with and without spatial components or
perhaps the effect of a variable is doubtful, so we may estimate models with and
without the covariate of concern. We can then compare the competing models
with a goodness-of-fit or model choice criterion. Based on this criterion, model
specifications with little impact on the fit can then be excluded from further
analysis.

In the end, there is generally not the one perfect model which dominates the other
models in all aspects. Rather there are several competing models which fit the data
(almost) equally well.

Model Diagnostics, Model Evaluation, and Improvement
of the Working Models
The main goal of this step is to improve or to refine the models of the previous step.
The following steps can be taken:

Reduce to a Simple Parametric Model
In a number of cases, the covariate effects, which were discovered through the
semiparametric analysis, can be nearly linear or rather simple nonlinear functions.
In such a case, parts of the model can be replaced by simple parametric terms, even
using piecewise linear or constant terms.

Exploratory Analysis of the Spatial or Cluster-Specific Effects
The spatial or cluster effects can be interpreted as surrogates for unobserved or
unavailable covariate effects. In some cases, a careful analysis of the heterogeneity
effects provides information about new covariates or aspects, which thus far had not
been taken into consideration. For example, when analyzing the claim frequency of
the vehicle insurance data (see Example 2.12, p. 52), we discovered that the claim
frequency is higher in urban than in rural areas. In such a case, we might be able
to replace the nonparametric spatial effect with a binary dummy variable, which
identifies the urban areas. The ideal outcome is, in any case, the replacement or at
least the decrease of the spatial or cluster-specific effects. This can be achieved by
including new and reasonably interpretable covariates derived by investigating the
heterogeneity effects.
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As Example 9.7 (p. 556) shows, the inclusion of spatial or cluster-specific effects
can lead to identifiability problems. In particular, the effects of other covariates can
be concealed by the spatial or cluster effects. Hence, it is advisable to carefully
examine the differences in results of models with and without spatial or cluster-
specific components. As mentioned, this problem is subject to growing research;
see the references given on p. 556.

Model Diagnostics
Model diagnostic tools aim at checking the adequacy of a working model and
whether certain assumptions, such as homoscedasticity of the error terms, are
fulfilled. This may ultimately lead to the consideration of alternative model for-
mulations and appropriate refinements of the working model. For parametric
linear models, there are many useful model diagnostic tools; see Sect. 3.4.4. For
semiparametric models, many of the tools, in particular residual analysis, can be
easily adapted. Some diagnostics for outlier analysis are, however, either not at all
or methodologically less developed or not included in software packages. In models
with discrete responses, the use of residual plots is also limited.

In the case of continuous responses, residual plots provide information about
omitted or misspecified covariate effects, outliers, and heteroscedastic or correlated
errors. Depending on the findings, different alternatives are conceivable:
• Misspecified covariate effect. In case of misspecified covariate effects, we have

the following options:
– Nonlinear effect. The effect of a continuous covariate, initially modeled as

linear, proves to be nonlinear. In this case, more flexible modeling of the effect,
e.g., using spline-based methods is in order.

– Missing covariates. Available covariates that were initially not incorporated
can be included in the model at any time. The situation is more difficult with
unobserved covariates. In this case, spatial or cluster-specific effects can be
used for modeling unobserved heterogeneity.

– Missing interactions. Complex interactions can be estimated either with
the parametric approaches discussed in Sect. 3.4, or with the nonparametric
alternatives discussed in Sect. 9.3. However, interactions should not be unnec-
essarily used, as they can greatly increase the complexity of the model.

• Heteroscedastic errors. In the presence of heteroscedastic errors, we can gener-
ally use the alternatives discussed in Sect. 4.1.3 (p. 186), i.e., variance stabilizing
transformation of the response, two-step estimation, or simultaneous estimation
using, e.g., the R package gamlss. The latter is restricted to purely additive
models. In parametric linear models, we can also use the corrected covariance
matrix of White presented in Sect. 4.1.3 on p. 190.

• Correlated errors. As discussed in Sects. 3.1.2 and 4.1.4, the existence of
autocorrelation in the residuals indicates model misspecification. The primary
goal should be to eliminate the misspecification as much as possible. The use of
semiparametric models with correlated error terms is still in the development
phase. For instance, identifiability problems are to be expected, e.g., when a
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nonparametric time trend and correlated errors are simultaneously modeled; see
Fahrmeir and Kneib (2008).

• Outliers. In case of outliers, we refer to the guidelines discussed in the context
of linear models, see Sect. 3.4.4, p. 163. However, the use of robust procedures is
limited with semiparametric models as the methodology is much less developed
for this model class. A notable exception is median regression as a special case
of quantile regression which in turn has undergone rapid development in recent
years. Apart from the search for input data errors and/or possible explanations,
probably the most important measure in the context of outliers is to refit the model
without the outlying observations and to describe the differences in model fit.

Check Stability of Estimates Under Different Estimation Concepts
In many cases the models under consideration can be estimated using alternative
estimation concepts. For instance, variable selection in the linear model can be
performed by minimizing a model choice criterion (Sect. 3.4), with the LASSO
(Sect. 4.2.3), using boosting (Sect. 4.3) or based on Bayesian model averaging
(Sect. 4.4). (Generalized) linear mixed models can be estimated using maximum
likelihood (Sect. 7.3), or fully Bayesian inference (Sect. 7.4). In structured additive
regression models estimation may be based on either penalized likelihood in
combination with the optimization of a model choice criterion (Sect. 9.6.1), a
mixed model representation (Sect. 9.6.2), a fully Bayesian approach (Sect. 9.6.3),
or boosting (Sect. 9.7). We generally recommend to estimate the models under
consideration with as many estimation concepts as possible to check the stability
of estimation results.

Presentation of Results
As already mentioned, the result of a regression analysis is generally not the one
“best” model which dominates the other models in all aspects. Rather there are a few
models which fit the data (almost) equally well. Usually, these models only differ
in some minor aspects, which often are not relevant to the problem. When outlining
and describing the results, the common core of all models should be pointed out. On
the other hand, the differences between the competing models should also be pre-
sented. Regarding these differences, we face uncertainty about our final conclusions.

Finally we want to point out that any analysis should be comprehensible and
reproducible for those who did not participate in the investigation. It is also essential
that the software, in particular the code implemented for data analysis, is archived
and well documented. Compare also Koenker and Zeileis (2009) who propose
software tools that may be helpful for reproducible research.

9.8.2 Descriptive Analysis

When presenting the malnutrition data in Chap. 1, we already provided summary
statistics and graphical visualization for the variables in the data set; see Table 1.3
(p. 7) and Fig. 1.4 (p. 14). The results can be interpreted as follows:
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Fig. 9.15 Malnutrition in Zambia: scatter plot between the age of the child and the duration of
breast-feeding. Observation below the main diagonal are implausible

• Z-score: The Z-score has a nearly symmetric distribution with values between
�600 and 503, with the majority of the observations between �600 and 300.
The average Z-score is �171:19, i.e., on average the children in Zambia are
much smaller compared to children of the same age in the reference population.
Implausible or extreme values cannot be found.

• Child’s age and duration of breast-feeding: Since the duration of breast-feeding
cannot last longer than the age of the child, these two variables are related and
should be considered together.

A preliminary univariate analysis reveals that age is nearly uniformly dis-
tributed. There are only slightly fewer older children than younger ones in the
data set. The unusually rough form of the histogram appears to be more of an
artifact, as is confirmed by a closer look at the frequency table or through refitted
histograms based on different bandwidths.

Duration of breast-feeding varies in the data set from 0 to 46 months. The
distribution is clearly bimodal with modes at 0 and 18 months. Almost 25 %
of the children were never breastfed. It is very rare that the duration of breast-
feeding lasts longer than 30 months (only 24 observations).

As a plausibility check, Fig. 9.15 includes a scatter plot between the age of the
child and the duration of breast-feeding. As the duration of breast-feeding cannot
last longer than the child’s age, all observations below the bisecting line are
implausible and thus are excluded from further analysis. The observations with
c breastf > 30 are also excluded for the following two reasons: First, breast-
feeding rarely lasts longer than 30 months; secondly, two-dimensional smoothers
are used for modeling the effect of age and duration of breast-feeding. Plausible
results with two-dimensional smoothers are obtained only with a solid data base.

• Mother’s age at birth: The mother’s age varies from 13 to 48 years, with a mean
value of 26.40 years. The distribution is clearly skewed to the right. Some very
small and large values are unusual, but not impossible.
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• Mother’s height: The mother’s height varies between 134 and 185 cm, with a
mean value of 158.06 cm. The distribution is almost symmetric, without any
apparent data anomalies.

• Mother’s BMI : The body mass index is a known (but somewhat controversial)
measure for the nutritional status of adults. A BMI between 18.5 and 25 is
considered to be normal. A BMI less than 18.5 is an indication of underweight.
A BMI between 25 and 30 is an indication of (some) overweight. A BMI of
30 is an indication of extreme overweight or obesity. In our data set, the BMI
values vary from 13.15 to 39.29, with a mean value of 21.99. The majority of
mothers are in the range of normal weight to minor overweight. A percentage
that should not be neglected is that of underweighted mothers (nearly 10 %).
A smaller percentage of mothers are extremely overweight (about 2.6 %). No
particularly implausible or striking values are found in these data.

• Mother’s education and work status: The predominant majority of the mothers
(about 80 %) have not completed their education. About 17 % have completed
primary education, and only 1.75 % have a higher school degree. Slightly more
than half of the mothers work, about 45 % of the mothers do not work. In both
variables, all categories have sufficient data, so that it is neither necessary to
combine, nor exclude, categories.

In Chap. 1, we also performed graphical correlation analyses, as seen in Figs. 1.8
(p. 17) and 1.9 (p. 18). The plots can be interpreted as follows:
• Child’s age: Initially the average Z-score decreases linearly and then remains

almost constant for children of age higher than about 15–20 months. The
observed relationship is postulated similarly in the malnutrition literature. It is
assumed that the nutritional status is best during the first 6 months after birth
since the child is well nourished first in the womb, and then after birth through the
mother’s milk. From this point a deterioration in the nutritional status is expected,
as the child is more and more exposed to insufficient, qualitatively inferior, and
more unsanitary food. Some stabilization is expected during the child’s second
year, but on a very low level.

• Duration of breast-feeding: The WHO recommends to breast-feed newborns for
at least 12 months, since the mother’s milk is the best form of nutrition for the
baby during the first year. The literature about malnutrition, thus, assumes a
generally positive effect of breast-feeding. If children are breast-fed longer than
for 1 year, it is assumed that the effect decreases or may even become negative.
Breast-feeding for a long time is then understood as an indicator for insufficient
food supply.

In the scatter plot a relation between the Z-score and the duration of breast-
feeding is barely detectable. There is a slight tendency towards a linearly
decreasing relationship, i.e., with an increase in duration of breast-feeding, the
average Z-score decreases. This would, however, contradict the literature. In any
case, we should be careful when evaluating the effect of the duration of breast-
feeding as we have to expect an interaction with the child’s age. The effect of
1 month of breast-feeding for a 1-month-old child should differ from the same
effect on a child of 3 years. In the first case, the duration of breast-feeding for
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1 month is absolutely normal. In the second case, breast-feeding was stopped
very early. We will therefore model the effect of child’s age and duration of
breast-feeding with a two-dimensional surface.

• Mother’s BMI: The literature suggests an inverse U-form for the effect of the
nutritional status of the mother, i.e., children of mothers with underweight or
extreme overweight show a worse nutritional status than children of mothers who
are of normal weight. The scatter plot shows largely a linear relationship with the
Z-score, i.e., on average the Z-score increases linearly with BMI. From a BMI
of 30–35 upward, i.e., in the case of obese mothers, the average effect seems to
decrease, so that the postulated inverse U-form is reflected to some extent.

• Mother’s age at birth: It seems as if the age of the mother has a weakly linear
effect, i.e., the older the mother at the time of birth, the better the average
nutritional status. In fact, the literature assumes that older mothers may take
better care of a child than younger ones. These women have a greater chance
of having completed vocational education, and they have in general more work
experience leading to a higher income.

• Mother’s height: It is well known that the height of the parents has an effect on
the height of the children. Since the age-standardized height is used as a measure
for the nutritional status, it is not surprising that we find a linearly increasing
effect for the height of the mother in the scatter plot.

• Education and work status: We find a better nutritional status for children of
better educated mothers. A relationship with the employment status cannot be
observed.

• Sex: Gender-specific differences are not detectable (plot is not provided).

9.8.3 Modeling Variants

Based on the formulated hypotheses for the effect of the explanatory variables
and the results of the descriptive analysis, the following modeling variants were
examined. In order to be able to present the results in a compact way, we differentiate
between different aspects of the models using the corresponding symbols:
• Spatial effect: Possible spatial heterogeneity was modeled either by a Markov

random field (modeling variant M), by i.i.d. random effects (R), or parametrically
using dummy variables for variable region (P).

• Child’s age and duration of breast-feeding: As stated, the effect of the duration
of breastfeeding interacts with the child’s age. Therefore, the effect of both
variables was estimated by a two-dimensional surface based on kriging (mod-
eling variant I). We preferred kriging over other two-dimensional smoothers, for
example, two-dimensional P-splines, as kriging appears to be most appropriate
for the non-rectangular range of values associated with these two variables;
see Fig. 9.15. Besides the two-dimensional modeling approach, also a pure
nonparametric effect of age excluding the effect of the duration of breast-feeding
was considered (modeling variant N). We used a P-spline with 20 interior knots
based on a second-order difference penalty.



584 9 Structured Additive Regression

• Mother’s age at birth, height, and BMI: The effects of the remaining continuous
variables were modeled in four different ways:
– All effects in a nonparametric way with P-splines (model variant N)
– Nonparametric effect for the mother’s body mass index and linear effects for

the two other variables (B)
– Assuming a quadratic polynomial for the body mass index and a linear effect

for the two other variables (Q)
– Assuming all effects to be of simple linear, parametric form (P)

• Categorical covariates: Every model includes the categorical variables c gender,
m education, and m work using appropriate dummy variables
The examined models can be uniquely characterized by a combination of three

letters. For instance, the combination (MIN) denotes the model with a Markov
random field for the spatial effect, a kriging approach for the two-dimensional
interaction effect of age with the duration of breast-feeding, and nonparametrically
modeled effects of the remaining continuous covariates. The model (RNQ) consists
of i.i.d. random effects for the spatial effect, a nonparametric effect of the child’s
age, a quadratic effect for the mother’s body mass index, and a linear effect for the
remaining covariates.

9.8.4 Estimation Results and Model Evaluation

All models under consideration were estimated using mixed model technology and
with remlreg objects of the software BayesX. Refer to Sects. 8.1.9 and 9.6.2.
Also, we use the (conditional) AIC to assess the goodness of fit. For comparison,
the models were also estimated with a fully Bayesian approach using MCMC
techniques and bayesreg objects of the software BayesX. The differences
in the resulting estimates are relatively small, so that the following presentation of
results is restricted mostly to mixed model based inference. We will point out cases
with noteworthy differences.

Of all examined models, the model (MIB), based on a Markov random field for
the spatial effect, two-dimensional kriging for the effect of the child’s age and the
duration of breast-feeding, a nonlinear BMI effect, and otherwise linear effects, has
minimal AIC. For all models, Fig. 9.16 shows AIC differences relative to the AIC
of this “best” model. The models are sorted in ascending order according to their
AIC values, so that models performing better in terms of AIC appear on the left.
For the sake of comparison, a strictly parametric model was fitted as well. In this
model, the age effect was modeled through a linear spline with one interior knot at
k age D 23:5. For this model, we obtain an AIC difference of 308, which is by far
the worst fitting model.

Figure 9.16 reveals the following conclusions:
• The models which include a two-dimensional kriging effect of age and the dura-

tion of breast-feeding are superior to the models with only a nonparametric effect
of the child’s age. The differences in AIC are large between these two types of
models so that we can safely decide for the model comprising an interaction term.
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Fig. 9.16 Malnutrition in Zambia: AIC-differences to the best model for various model specifica-
tions

• Regarding the spatial effect, we obtain the best results when using a Markov
random field. The use of i.i.d. random effects provides slightly higher AIC values
of approximately 2:5 points. The parametric approach based on region dummies
is not competitive. Therefore we can conclude that a more detailed spatial effect
than the one based on dummy variables is indeed needed, but that the correlation
structure specified for the spatial effect does not make too much of a difference.

• As Fig. 2.15 (p. 51) shows, the effects of the remaining three continuous variables
are very smooth and do not differ much from a straight line. Therefore the four
modeling variants for these variables have approximately the same AIC values.
In all cases, the estimated effects are more or less indistinguishable. Only for
the mother’s BMI there is uncertainty whether a linear or a weakly nonlinear
effect is more appropriate. In this situation, the restrictions of the conditional
AIC in Sect. 9.6.2 (p. 567) have to be taken into account when interpreting the
results. There is a bias in the conditional AIC towards more complex models and
therefore we would probably decide for linear effects in case of age and height
of the mother due to the very small difference in the AICs between linear and
nonlinear models. For the effect of the BMI of the mother, the situation is less
clear and the detected minor nonlinearity should only be interpreted with care. It
can then be useful to consider alternative estimation approaches or model choice
techniques to validate the results from the AIC (and we will do so in the following
section).
Figures 9.17 and 9.18 show the estimated effects of the continuous covariates and

the spatial effect for the model (MIN), where the effects of all continuous variables
were modeled in a nonparametric way. This is the model with the second best AIC
value. Table 9.4 shows the results for the categorical covariates. We finally point out
that Fig. 2.15 (p. 51) illustrates the results for the model (MNN), which differs from
model (MIN) in that it does not consider the duration of breast-feeding.

The results can be interpreted as follows:
• Child’s age and duration of breast-feeding: Initially the average Z-score

decreases linearly as age increases. For children older than 18 months, the
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Table 9.4 Estimated parametric effects in the model (MIN)

Variable Coefficient Standard-error 95 % confidence-interval

intercept �186.926 22.685 �231.398 �142.454
c gender �15.144 3.606 �22.213 �8.075
m education1 �11.043 5.042 �20.927 �1.158
m education3 21.774 5.055 11.863 31.684
m education4 80.814 14.184 53.008 108.620
m work �4.420 3.807 �11.883 3.044
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Fig. 9.19 Malnutrition in Zambia: estimated effect of the mother’s BMI for some alternative
model specifications. The graph displays a nonlinear estimator (including 80 % and 95 % credible
intervals) based on a fully Bayesian approach estimated with MCMC techniques. Additionally
included is a quadratic polynomial (dashed line) in the model (MIB)

nutritional status stabilizes at a low level. For children older than 3 years, a
slight improvement can be observed. The curve for children who were never
breast-fed is clearly below that of children who were breast-fed for 8, 16,
and 24 months. We, thus, observe a positive effect of breast-feeding. However,
differences regarding the duration of breast-feeding are not visible. Overall, the
hypotheses formulated above can be mostly confirmed.

• Mother’s BMI: The estimated effect demonstrates that the nutritional status
of children with underweight mothers is worse when compared to children of
mothers who are of normal weight or mothers who are slightly overweight. For
children of obese mothers, the strong linear effect diminishes. Based on these
results, the average nutritional status is not decreasing with obese mothers as
was initially postulated with the inverse U-form of the effect.

However, within the range of obese women, we find much wider confidence
intervals caused by a small sample size. In this situation, it can be useful to
take a look at the results of alternative models. In the model (MIQ), with AIC
value almost equal to the best model, the BMI effect is modeled by a quadratic
polynomial. Here, a tendency towards the postulated inverse U-form is visible
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and the average Z-score slightly decreases for extremely overweight women, as
provided in Fig. 9.19. For the effect of mother’s BMI, we also find the most
visible differences compared to fully Bayesian estimation based on MCMC
methods (Fig. 9.19): We obtain an even more pronounced U-form compared to
the quadratic polynomial.
What conclusions can be drawn from these contradictory results? It is common

practice to present the results that are closest to the initially formulated hypotheses
(in our case the results from the Bayesian approach) and to dismiss all other
results. This is of course not correct. We recommend to point out the common
core of the various results and then to describe the differences among them. In
our case study, we observe an almost linear effect for mothers with underweight,
normal weight, and slight overweight. For obese mothers, the BMI effect is less
clear. The linear effect diminishes or even reverses and slightly decreases. For an
effect of inverse U-form effect postulated in the literature, we have some evidence
but no compelling proof. To obtain more precise results, we could, for example,
overrepresent extremely overweight mothers in subsequent studies. If this is not
possible, we could further examine data from other countries. We will reiterate the
question on the precise form of the effect of mother’s BMI in the next section when
discussing approaches for automatic function selection.
• Mother’s height: This effect is clearly linear. The taller the mother, the taller the

child is, on average, and so is the Z-score. This effect, however, does not provide
any conclusions about the nutritional status. On the contrary, this relatively large
effect, that is mostly onset through heredity, questions the Z-score as (the only)
measure for chronic malnutrition.

• Mother’s age at birth: This effect is essentially linear as well. On average, older
mothers have better nourished children. For this variable, we also found slight
differences in results for the alternative Bayesian approach, which finds a steep
increase of the average Z-score for mothers older than about 40 years of age.
Thus, the positive effect would increase for very old mothers. Hence, our results
are consistent with the hypotheses formulated in the previous section.

• Spatial effect: We notice a pronounced north–south gradient, i.e., the nutritional
situation is much better in the north relative to the south. One reason for these
pronounced differences could be that the climatic conditions are worse in the
south, as these regions show a lower altitude than those in the north.

• Categorical covariates: The estimated parameters associated with the education
dummies demonstrate a strong education effect. The more educated the mother,
the better is the nutritional status of the child. The difference in Z-score between
children whose mothers have completed primary education, compared to those
whose mothers have not completed education, is on average only 11 points.
The differences for children, whose mothers have been further educated are
much more pronounced. Children whose mothers have higher education show
on average a Z-score that is 90 points higher compared to children whose mother
has not completed primary education.

The employment status of the mother does not seem to be of great importance.
The effect is clearly nonsignificant.
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Fig. 9.20 Malnutrition in Zambia: standardized residuals versus predicted values (left) and a QQ-
plot of standardized residuals (right) in the base model

As often stated in the literature, girls seem to be more robust than boys. Boys
have a Z-score which on average is 15.14 points lower than girls.
Taking a look at the standardized residuals against the predicted Z-scores

provides evidence about existing heteroscedasticity (left panel of Fig. 9.20). A two-
step estimation approach that considers heteroscedasticity does not provide any
noteworthy differences in results. The QQ-plot of the residuals provides clear
evidence about departures from the normality assumption, especially for very large
residuals with values greater than 2. This finding mainly concerns children with a
positive Z-score, i.e., children with a very good nutritional status. Generally, minor
violations of the normality assumption are not problematic since estimators are
often relatively robust against such departures from normality. Possible alternatives
for further analysis could be approaches that allow for simultaneous modeling
of the mean and the skewness of the distributions; see our sketch of additive
models for location, scale, and shape (GAMLSS) in Sect. 2.9. More details can be
found in Rigby and Stasinopoulos (2005), Rigby and Stasinopoulos (2009), and the
GAMLSS homepage http://gamlss.org/.

9.8.5 Automatic Function Selection

In the previous section, we have manually implemented function selection based
on the comparison of different model specifications using AIC. However, recent
developments in function selection also allow for the simultaneous determination
of the unknown effects in a structured additive regression model combined with
automatic function selection. In the following, we will illustrate such an approach
relying on boosting utilizing function gamboost from the R package mboost.
The approach proposed in Belitz and Lang (2008) yields comparable results.

For the boosting approach, we make use of the penalized least squares base-
learners approach described in Sect. 9.7. Therefore, we define a model of maximum

http://gamlss.org/
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complexity that comprises all candidate terms that should be considered in the
component-wise fits during each boosting iterations. More specifically, we include
the following effects:
• All categorical covariates (gender of the child, education, and work status of the

mother) are represented as dummy-coded variables, where the complete block of
dummies for each variable is treated as one term that can be selected or deselected
in each boosting iteration.

• The interaction between age of the child and duration of breast-feeding is
modeled in a kriging specification exactly as specified in the previous section.

• All remaining continuous covariates (mother’s age at birth, height, and BMI) are
modeled as potentially nonlinear effects based on penalized splines. To allow for
a more detailed investigation of the nonlinear effects, we apply a decomposition
into a linear model component and the nonlinear deviation from the linear
model for each effect based on the mixed model representation as discussed in
Sect. 8.1.9. This has the advantage that the boosting algorithms compares linear
and nonlinear effects of a continuous covariate in each iteration and only selects
the nonlinear effect if it is really required. Note that the nonlinear effect should
be defined as the deviation from the linear effect such that it does not comprise
the linear effect as a special case. This allows for a proper discrimination, while
using a naive penalized spline specification would always select the nonlinear
effect since it contains additional flexibility as compared to the linear effect.

• For the spatial effect, we simultaneously included the dummy-coded regional
variable, a Markov random field for the districts, and i.i.d. random effects
for the districts as competitors within the same model. Since boosting will
include function selection along with estimation, this allows us to determine
automatically whether only one of the three types of spatial effects is required
or whether a combination of two or even all three types of spatial effects is
preferable. This is in contrast to the analyses in the previous section, where we
exclusively considered one spatial modeling possibility at a time.

To further improve the selection properties, we chose the smoothing parameters
in the penalized least squares base-learners such that each base-learner is assigned
exactly one degree of freedom. This effectively makes each base-learner comparable
to a linear effect of one single covariate. Note that we also have to use a ridge-
penalized base-learner for categorical covariates with more than two categories. See
Hofner, Hothorn, Schmid, and Kneib (2012) for details.

Figure 9.21 shows the cross-validated prediction error for this model specifica-
tion for 10-fold cross validation. The minimum is reached within 7,563 iterations
based on a total of 10,000 initial iterations. Note, however, that the risk is already
very flat much earlier, and therefore the prediction performance seems to be rather
insensitive to the exact values of the boosting iterations. In the following, we will
present all results based on the model restricted to the optimal 7,563 iterations.

The main advantage of the boosting approach is its automated variable and
function selection ability. Table 9.5 therefore shows the selection frequencies over
the boosting iterations (second column) obtained for the different model terms. Any
term not included in the table has never been selected during the first 7,563 iterations
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Fig. 9.21 Malnutrition in Zambia: cross validation criterion (black line) as a function of the
boosting iterations. The grey lines indicate the prediction error obtained within a single cross
validation fold. The dashed vertical line shows the optimal boosting iteration, i.e., the minimal
cross validation criterion

Table 9.5 Selection frequencies in the boosting iter-
ations and in 50-fold cross validation for the model
comprising Markov random field and random effects

Variable / Term Iterations CV folds

f .c age; c breastf / 0.452 1.00
random effects 0.333 1.00
m education 0.073 1.00
Markov random field 0.038 0.74
region 0.033 1.00
f .m bmi/ 0.028 1.00
f .m agebirth/ 0.014 0.06
c gender 0.008 1.00
f .m height/ 0.007 0.54
m agebirth 0.007 1.00
m work 0.002 0.74
m height 0.002 1.00
m bmi 0.001 1.00

and is therefore dropped from the model. We can summarize the main findings from
this table as follows:
• All three types of spatial effects are selected by the boosting algorithm. Hence,

none of the three effects seems to be able to represent the spatial correlations
present in the data to a satisfactory extent when being considered as the sole
representative for the spatial effect.

• All three continuous covariates are included with both linear and nonlinear effects.
This seems to indicate that nonlinear modeling is required in all three cases, which
is in contrast to our findings from the previous paragraph, where at least mother’s
age at birth and height of the mother were identified to be adequately represented
by linear effects. However, the selection frequencies of both these covariates are
rather small and the estimated effects are still very close to linear (not shown).
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Fig. 9.22 Malnutrition in Zambia: interaction of the child’s age and duration of breast-feeding
obtained with boosting (left). The right panel shows the age effect for various durations of breast-
feeding

• The interaction between age of the child and duration of breast-feeding
(visualized in Fig. 9.22) is clearly identified with rather high selection frequency.
The estimated function is much smoother than in the previous section, but still
recovers the same general structure.

• Both categorical covariates are included in the model.
We close the discussion of Table 9.5 with a word of caution: though it is

tempting to interpret the selection frequencies as a measure of importance for
the corresponding term, this is not formally justifiable. The reason is that early
inclusions typically contribute more strongly to the reduction of the risk, while later
inclusions often only marginally improve the risk. Correspondingly, a variable may
be selected very often in late boosting iterations and may still contribute only a
negligible part to the overall estimated predictor. On the other hand, an important
covariate may be selected in a relatively small number of early iterations and may
still be very important for the complete model fit. As a consequence, a combination
of the selection frequencies and the estimated effects should be interpreted to get an
impression of the importance of the various estimated effects. As a further indication
of a variable’s importance, we computed 50-fold cross validation results with a
small number of only 2,000 boosting iterations and included the frequencies for
inclusion of an effect in the 50 folds in column three of Table 9.5. While we do not
try to optimize the number of boosting iterations but rather use a small number of
iterations, we will be able to identify those variables that are selected early in the
boosting algorithm and are therefore important for predicting the nutritional status.
In fact, most of the effects selected by the boosting iteration are also selected in all
of the 50 folds but some variables seem to be of somewhat minor importance. In
particular, the nonlinear effects of age at birth and height of the mother are ranked
lower, which is in accordance with the selection results from the previous section. In
addition, the Markov random field has smaller selection frequency then the random
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Table 9.6 Malnutrition in Zambia: selection fre-
quencies in the boosting iterations and in 50-fold
cross validation for the model comprising only i.i.d.
random effects for the spatial effect

Variable / Term Iterations CV folds

Random effects 0.504 1.00
f .c age; c breastf / 0.270 1.00
m education 0.123 1.00
region 0.068 1.00
c gender 0.015 1.00
m agebirth 0.007 1.00
m height 0.007 1.00
m bmi 0.003 1.00
m work 0.003 0.74
f .m bmi/ 0.001 1.00
f .m height/ – 0.54
f .m agebirth/ – 0.06

-40.0 0 40.0 -40.0 0 40.0

-40.0 0 40.0

Fig. 9.23 Malnutrition in Zambia: estimated spatial effects obtained with boosting for the three
different model specifications comprising Markov random field and random effect (top left),
Markov random field only (top right), and random effects only (bottom)



594 9 Structured Additive Regression

effects term which may give some indication that an unstructured spatial effect is
more important than a structured effect.

As a variation of our initial model we re-estimated two more models with
different specifications for the spatial effect. More precisely, we include only the
Markov and random field or the i.i.d. district-specific random effects for the district-
level spatial information and not the combination of the two. For the two resulting
models, the optimal boosting iterations were determined as 21,823 (Markov random
fields) and 2,723 (i.i.d. random effects) via 10-fold cross validation. Especially in
the latter case, a much simpler model specification arises as shown by the selection
frequencies in Table 9.6. In this case, the chosen model no longer comprises
nonlinear effects of mother’s height and age at birth, while a slightly nonlinear effect
remains for the body mass index of the mother. This model is therefore even closer
to the one identified in the previous section. When considering selection frequencies
from a 50-fold cross validation again, we find a similar picture. While most effects
identified by the boosting algorithm are included in all 50 folds, the nonlinear effects
of age at birth and height of the mother are only selected in only a relatively small
number of folds.

Figure 9.23 shows the estimated spatial effects on district level for the three
different model variants. In case of the first model comprising the Markov random
field and i.i.d. random effects, the sum of both effects is shown to facilitate the
comparison between the models. Obviously, all models identify the same spatial
structure especially when comparing the combined model with the model consisting
of only the Markov random field. The model containing only i.i.d. random effects
also shows a similar spatial distribution of the estimated effects, but the magnitude
of the effects is somewhat lower (which most probably will also be related to the
much smaller number of boosting iterations identified for this model).

9.9 Bibliographic Notes

The literature references about nonparametric regression provided in Sect. 8.4 of
Chap. 8 remain valid for this chapter. We will only briefly summarize the key
references which specifically treat additive models and their extensions.

The classical textbook about GAMs (which is still worth reading) is that of
Hastie and Tibshirani (1990). Marx and Eilers (1998) developed P-spline strategies
to directly fit GAMs (without backfitting), while Eilers and Marx (2002) presented
P-spline variants of STAR models, referred to as generalized linear additive smooth
structures (GLASS). Wood (2006) describes GAMs based on P-splines and their ap-
plication using the R package package mgcv. Ruppert et al. (2003) describe GAMs
and their extensions in a unified approach as mixed models. Estimation is based on
methods and software for this model framework. Fahrmeir and Kneib (2011) pro-
vide a recent overview on Bayesian smoothing approaches for longitudinal, spatial,
and event history data comprising both fully Bayes and empirical Bayes methods.

Fan and Gijbels (1996), Loader (1999), and Härdle et al. (2004) propose
approaches based on local smoothers. The monograph by Fotheringham, Brunsdon,
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and Charlton (2002) describes models with spatially varying coefficients where
estimation is also based on local smoothers. The book by Yatchew (2003) describes
the use of additive models in econometrics. The mathematically demanding mono-
graph by Gu (2002) imbeds additive models into the theory of reproducing Hilbert
spaces. Finally, Denison, Holmes, Mallick, and Smith (2002) describe Bayesian
adaptive regression splines as building blocks for GAMs and their extensions. The
book by Hastie et al. (2009) on “The Elements of Statistical Learning” provides a
lucid presentation of contemporary statistical techniques, including boosting.



10Quantile Regression

Essentially all regression models that we have dealt with thus far have been mean
regression models since they relate the predictor � of a regression model to only one
specific quantity of the response y, namely the expected value. For example, in case
of a generalized linear model (or its extensions) with predictor �, we have

E.y/ D h.�/;

where h is a known response function. The distribution of the response was then,
depending on this mean parameter, completely characterized (sometimes up to a
scale parameter common to all observations and potentially with some prespecified
weights) by the regression model. In case of Gaussian responses y � N.�; �2/,
we have already discussed in Sects. 2.9 and 4.1.3 that it can be useful to not only
model the expectation �, but also the variance �2 in terms of covariates to deal with
heteroscedastic errors. We next develop a regression approach that is completely
distribution-free to estimate the effect of a regressor on the quantiles of the response
distribution. As such, we will also relax a number of assumptions of usual normal
regression.

As an example to illustrate the utility of such regression models, consider the
effects of living area and year of construction on the monthly net rent in the Munich
rent index data. Figure 10.1 shows the corresponding scatter plots together with
parametric least squares fits (for a linear model in case of living area and a quadratic
fit in case of year of construction). Note that we are not dealing with the rent
per square meter that we have previously used for most analyses in this book,
but rather with the rent itself since this variable is better suited to illustrate the
usefulness of quantile regression. Figure 10.1 clearly indicates that a simple mean
regression line obtained from least squares is not sufficient to completely describe
the dependency between rent and the covariates. In particular, the variance of the
response is changing with the covariate values, at least in case of the living area
where we find increased variability for larger apartments. This could be taken into
account in a location-scale model

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9 10,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 10.1 Munich rent index: scatter plots of rents in Euro versus living area (left panel) and year
of construction (right panel) together with a linear (left panel) and a quadratic (right panel) least
squares fit

y D x0ˇ C exp.z0˛/ "; " � N.0; 1/; (10.1)

where not only the mean E.y/ D x0ˇ, but also the variance Var.y/ D exp.z0˛/2
depends on covariates. We have already discussed similar approaches in Sect. 4.1.3
(including estimation procedures) although we have modeled the variance there
instead of the standard deviation. In any case, this model still may not be flexible
enough, e.g., if in addition to the variance, the skewness of the response also depends
on covariates. Instead of explicitly modeling the variance of the response in addition
to the mean, our aim in this chapter is to introduce a regression tool to portray
essentially all of the characteristics of the response in terms of covariates at once.

We therefore focus on the quantiles of the response distribution and relate these
quantiles to covariate effects. The basic idea is that a dense set of quantiles com-
pletely describes any given distribution. Hence, when computing enough quantile
regression results, we will be able to analyze virtually any property of the response
distribution based on these results. Prior to introducing the details corresponding to
estimation, we outline some of the advantages of quantile regression:
• Quantile regression allows investigation of covariate effects, not only on the mean

of a response variable but on the complete conditional distribution of the response
given covariates.

• Quantile regression avoids some of the restrictive assumptions of the linear
model (or more generally mean regression models). More specifically, we will
not require homoscedasticity or a specific type of distribution for the responses
(or equivalently the error terms).

• In applications, there often is a genuine interest in regression quantiles that
describe “extreme” observations in terms of covariates. For example, in case of
the Munich rent index, one is often interested in interval estimates that cover
a range of “usual” rents for a given set of covariates. While such a prediction
interval can also be computed from mean regression results (under certain
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assumptions on the error variance), it may be more strategic to directly aim at
the estimation of the interval boundaries based on regression quantiles.

To illustrate the last point, it is important to note that, in fact, any regression model
can also determine estimates for the quantiles of the response. For example, in
case of a normally distributed response as in the location-scale model (10.1), the
�-quantile, � 2 .0; 1/, is given by

x0ˇ C z� exp.z0˛/; (10.2)

where z� denotes the �-quantile of the standard normal distribution. However, the
normal distribution for the error terms implies that the quantiles are symmetric
around x0ˇ, i.e., x0ˇ C z� exp.z0˛/ D x0ˇ � z1�� exp.z0˛/. If, in addition, the
variance is in fact constant and does not depend on covariates such that exp.z0˛/ D
�2 D const, the quantile curves for varying covariates are parallel to each other
and only shifted according to the standard normal quantiles. Consequently, more
flexible approaches that aim at the direct estimation of quantiles appear to be more
appropriate than first starting with a parametric regression model.

10.1 Quantiles

Before actually introducing quantile regression models, we recall the definition of
quantiles, both theoretically for distributions and for observed random samples,
and discuss some properties that are useful to understand quantile regression. The
theoretical quantiles q� , � 2 .0; 1/; of a random variable y are commonly and
implicitly defined by the equations

P.y � q� / � � and P.y � q� / � 1 � �;
i.e., the probability of observing a value below (or equal to) q� should be (at least) �
while the probability of observing a value above (or equal to) q� should be (at least)
1 � � . For quantile regression, it is useful to reformulate this implicit definition as
the optimization problem

q� D arg min
q

E .w� .y; q/jy � qj/ (10.3)

with weights

w� .y; q/ D

8
ˆ̂<

ˆ̂:

1 � � y < q;

0 y D q;

� y > q:

Such weights define q� as the minimizer of an asymmetrically weighted absolute
deviations criterion; see the appendix for a proof of the equivalence. Note that the
weights w� .y; q/ are defined differently for values above and below q and thus
effectively shift the solution upwards or downwards depending on the choice of � .
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If y is continuous with strictly increasing cumulative distribution function F.y/ and
density f .y/, the theoretical quantile is unique and is simply given by the inverse
of the cumulative distribution function evaluated at � , i.e.,

q� D F�1.�/ and F.q� / D �:

The function Q.�/ D F�1.�/ D q� is also called the quantile function of the
distribution of y. Note that the assumption of a strictly increasing cumulative distri-
bution function is not very restrictive since it basically implies that the distribution
is continuous and that there are no gaps in the domain of the response where the
density is zero.

Empirical quantiles correspond to the estimated quantiles Oq� determined from
an i.i.d. sample y1; : : : ; yn of observations from the corresponding distribution. An
implicit definition can again be given as follows: At least a fraction of � observations
should be smaller or equal than Oq� and at least a fraction of 1�� observations should
be larger or equal than Oq� , i.e.,

1

n

nX

iD1
I.yi � Oq� / � � and

1

n

nX

iD1
I.yi � Oq� / � 1 � �;

where I.�/ denotes the indicator function. For estimation purposes and in particular
the generalization to the regression context, it is again better to use the equivalent
definition as the solution of an optimization criterion, where

Oq� D arg min
q

nX

iD1
w� .yi ; q/jyi � qj (10.4)

is the empirical analogue to Eq. (10.3).
An interesting quantity that is associated with the estimation of quantiles is the

influence function I.y/, given by the weights associated with a specific value of y
in the estimating equations for determining a quantile:

I.y/ D

8
ˆ̂<

ˆ̂:

1 � � y < q� ;

0 y D q� ;

� y > q� :

The influence function is studied in detail in the area of robust statistics, since it
measures the impact of an observation y on the determination of a quantity of
interest, the �-quantile in our case. The influence function related to the quantile
function can be interpreted as follows: The distance between y and q� does not affect
the influence function, which only depends on the sign of the deviation between y
and q� . This gives a theoretical justification for the robustness of quantiles with
respect to outliers since, regardless of the size of an observation, the impact is
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limited to max.�; 1 � �/. For comparison, the influence function for the arithmetic
mean is given by

I.y/ D jy � �j;
where �D E.y/ and therefore the impact of values further away from the expecta-
tion is much larger than the impact of values that are close to �.

10.2 Linear Quantile Regression

10.2.1 Classical Quantile Regression

Estimation
We will now transfer regression techniques from mean regression to regression for
quantiles. Recall that the standard linear regression model takes the form

y D x0ˇ C "

and (in addition to further properties of the error terms) assumes that E."/ D 0. This
implies that the regression coefficients impact the expectation of the response since

E.y/ D x0ˇ C E."/ D x0ˇ:

Hence, the assumption on the expectation of the error term implies a specific
interpretation of the regression coefficients. For quantile regression, we also assume
the model

y D x0ˇ� C "�

but will now make specific assumptions on the error term for the quantile � of
interest to determine quantile-specific regression coefficients ˇ� and therefore also
explicitly add a � subscript to both quantities. If we assume that the cumulative
distribution function F"� of the error term "� fulfills F"� .0/ D � or equivalently that
the �-quantile of the error term is zero, then this implies

� D F"� .0/ D P."� � 0/ D P.x0ˇ� C "� � x0ˇ� / D P.y � x0ˇ� / D Fy.x
0ˇ� /

and therefore the �-quantile of the response is given by the predictor x0ˇ� .
Estimation of the quantile-specific regression coefficients ˇ� is then achieved by
generalizing the asymmetrically weighted absolute error criterion (10.4) to

Ǒ
� D arg min

ˇ

nX

iD1
w� .yi ; �i� /jyi � �i� j; (10.5)
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10.1 Quantile Regression

Model
yi D x0

iˇ� C "i� ; i D 1; : : : ; n;

with assumptions
1. F"i� .0/ D � .
2. "1� ; : : : ; "n� are independent.

Estimation of Regression Coefficients

The regression coefficients ˇ� are determined by minimizing

nX

iD1
w� .yi ; �i� /jyi � �i� j;

where �i� D x0
iˇ� .

Software
• R package quantreg: Implements linear programming for determin-

ing Ǒ
� . See Koenker (2005) for details.

• R package mboost: Implements functional gradient descent boosting
for determining Ǒ

� . See Fenske, Kneib, and Hothorn (2011) for details.

where �i� D x0
iˇ� and

w� .yi ; �i� / D

8
ˆ̂<

ˆ̂:

1 � � yi < �i� ;

0 yi D �i� ;

� yi > �i� :

Basically, instead of assuming that the average error in the regression model is zero,
we assume that the weighted “average” of the errors with weights defined as above
is zero. A summary of the quantile regression setup is given in Box 10.1.

The most important feature of quantile regression to be noted here is its generality
with respect to the error distribution. Apart from independence of the error terms
between individual observations and the quantile restriction, there are no further
assumptions on the corresponding distribution. In particular, the error terms may
even follow different types of distributions and further, are not assumed to be
homoscedastic. While usual least squares estimation in mean regression can also
be accomplished without assuming specific types of distributions for the error
terms, it always requires constant variances across the errors (unless generalized
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to weighted least squares with weights specified in advance). Such generality of
quantile regression is one of its specific strengths and essentially leads us to a
distribution-free regression approach.

To minimize the asymmetrically weighted absolute error criterion (10.5), we
would like to proceed as in the case of mean regression, i.e., taking partial
derivatives with respect to the regression coefficients and setting the derivatives to
zero. Unfortunately, this is no longer possible since Eq. (10.5) is not differentiable in
the origin. We therefore expand the estimation problem by introducing 2n auxiliary
variables

ui� D .yi � x0
iˇ� /C;

vi� D .x0
iˇ� � yi /C;

where .x/C D min.x; 0/ and therefore "i� D ui� � vi� . The minimization
problem (10.5) can then be rewritten as

nX

iD1
w� .yi ; �i� /jyi � �i� j D

nX

iD1
�ui� C

nX

iD1
.1 � �/vi� D �10u� C .1 � �/10v� ;

given the constraint that

yi D �i� C "i� D x0
iˇ� C ui� � vi� ;

or in matrix notation
y D Xˇ� C u� C v� ;

with u� D .u1� ; : : : ; un� /0, v� D .v1� ; : : : ; vn�/0, and 1 D .1; : : : ; 1/0. In summary,
the optimization problem after introducing the auxiliary variables is now given by

min
ˇ� ;u� ;v�

f�10u� C .1 � �/10v� j Xˇ� C u� � v� D yg:

This is a constrained minimization problem with polyhedric constraints, i.e., the
constraint defines a geometric object with flat faces and straight edges, such that the
constrained problem corresponds to the original quantile restriction, but written in
terms of the auxiliary variables. After augmenting the auxiliary variables and given
the constraints, the minimization problem is now linear in the parameters and can
therefore be tackled with linear programming techniques that allow to incorporate
the polyhedric constraints. Refer to Lange (2000) for a brief introduction to linear
programming with a focus on statistics-related applications and Lange (2004) for a
detailed exposition.

An alternative estimation approach for minimizing the asymmetrically weighted
absolute deviations criterion (10.5), which utilizes the boosting approach developed
in Sect. 4.3, has been proposed in Fenske et al. (2011). This approach only requires
the following modification: substitute the residuals that have served as working
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responses in (linear model) boosting with the corresponding negative gradients of
the loss function

.y; �/ D w� .y; �/jy � �j;
which define the individual contributions to Eq. (10.5). These specific negative
gradients are given by

u D @

@�
.y; �/ D

8
ˆ̂<

ˆ̂:

� � 1 y < �;

0 y D �;

� y > �:

(10.6)

The case y D � occurs with probability zero, and therefore the non-differentiability
of Eq. (10.5) does not cause a problem. Apart from that minor change, the rest of the
boosting approach, and also the extensions discussed in Sect. 9.7, can immediately
be used.

It is interesting to compare quantile regression estimation and least squares esti-
mation in somewhat more detail. For the latter, we are considering the optimization
problem

min
ˇ
.y � Xˇ/0.y � Xˇ/

and the solution Ǒ is characterized by the normal equations

X 0.y � Xˇ/
ŠD 0:

For quantile regression, the derivative of the optimization criterion

R.ˇ� / D
nX

iD1
w� .yi ; �i� /jyi � �i� j

only exists at points with yi � �i� ¤ 0, i D 1 : : : ; n, since the absolute value
function is differentiable everywhere except in the origin. However, we can always
define direction-specific derivatives in direction w 2 Rp

@

@t
R.ˇ� C tw/

ˇ̌
ˇ̌
tD0

D �
nX

iD1
 � .yi � x0

iˇ;�x0
iw/x

0
iw;

where

 �.u; v/ D
(
� � I.u < 0/ if u ¤ 0

� � I.v < 0/ if u D 0:

The optimal solution then is the value Ǒ
� where all direction-specific derivatives

are positive, indicating that whenever we move from Ǒ
� towards any alternative

candidate solution, the optimization criterion will increase.
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Properties
One important property of the quantile regression estimate, inherited from estimated
quantiles (determined from an i.i.d. sample), is its invariance under monotonic
transformations. More specifically, if x0 Ǒ

� is an estimate for the �-quantile of
the distribution of the response y, given covariates x, then for any monotonically
increasing transformation h the transformed estimate h.x0 Ǒ

� / is an estimate for
the �-quantile of the distribution of h.y/. This simply follows from the fact that
quantiles are invariant under monotonically increasing transformations, as the order
of the data are preserved.

It is also possible to derive asymptotic results for the distribution of quantile
regression coefficients under different assumptions for the error terms that may
then form the basis for statistical inference. For example, in case of i.i.d. errors,
the asymptotic distribution of Ǒ

� is given by

Ǒ
�

a� N

�
ˇ� ;

�.1 � �/
f"� .0/

2
.X 0X/�1

�
:

Although the asymptotic covariance matrix seems to suggest that estimation of
regression quantiles becomes increasingly more precise when very small (� ! 0) or
large (� ! 1) quantiles are considered (due to the product �.1��/ in the numerator),
in fact this effect is typically dominated by the error f"� .0/ which will usually be
close to zero for such values of � . Hence, the estimation of interior quantiles close
to the median will be more precise for most of the standard distributions, while
estimation of outer quantiles is associated with larger uncertainty. The asymptotic
normality result can also be generalized to non i.i.d. situations (which typically fit
better to situations where quantile regression is of interest). For more information,
see Chap. 3 in Koenker (2005). While the asymptotic normal distribution provides
one possibility for performing inferences on the estimated regression coefficients
Ǒ
� , there are also alternatives based on the relationship between quantiles and ranks.

These rank-based inferential procedures are typically preferred in practice and also
allow the construction of confidence intervals by inverting rank-based tests. Again,
see Chap. 3 in Koenker (2005).

In theory, the quantiles of the distribution of a response should be ordered such
that

x0ˇ�1 � x0ˇ�2 for �1 � �2

holds for any covariate vector x. It can be shown that the ordering is preserved for
the average covariate vector

Nx D 1

n

nX

iD1
xi ;

when replacing the theoretical quantiles with estimated quantiles, i.e.,

Nx0 Ǒ
�1

� Nx0 Ǒ
�2

for �1 � �2:
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However, in general these results will not transfer to arbitrary vectors x and will
not even hold for all observed covariate vectors. This is due to the fact that each
estimate is obtained separately for each specific choice of the quantile � . In fact, the
phenomenon of crossing quantiles will always occur when the regression lines for
two quantiles are not exactly parallel. Note that parallel quantile curves can only
occur when the error terms are independent and identically distributed, and as such
the quantile of interest merely induces a shift in the intercept parameter. While in
this case no quantile-crossing will be observed, the results of quantile regressions are
then only mildly interesting (since the covariate is independent of the quantile). Yet,
the result for the average covariate vector is reassuring and indicates that quantile-
crossing will most likely occur at the boundaries of the covariate space, where the
data may be sparse.

Example 10.1 Munich Rent Index—Quantile Regression
To illustrate some simple quantile regression models, we use the data from the Munich rent
index shown in Fig. 10.1. We fit three different linear models for the effect of living area and
three different quadratic models for the effect of the year of construction, in each case to
determine the 11 quantiles � D 0:01; 0:1; 0:2; : : : ; 0:8; 0:9; 0:99 of the net rent distribution.
The three different approaches are summarized as:
• Quantile regression: y D x0ˇ� C "� as introduced in this chapter
• Homoscedastic linear model with i.i.d. Gaussian error terms: y D x0ˇC", " � N.0; �2/
• Heteroscedastic linear model with independent Gaussian error terms: y D x0ˇ C

exp.x0˛/", " � N.0; 1/
For the quadratic effect of the year of construction, we use an orthonormal polynomial.
For both linear models, the regression quantiles are determined according to Eq. (10.2).
The heteroscedastic linear model is fitted within the GAMLSS framework of Rigby and
Stasinopoulos (2005).

The resulting estimates are shown in Fig. 10.2. For the quantile regression approach,
we find a clear dependency of the specified quantile on the covariate effects, and that the
quantiles correspond very well to the structure in the scatter plots. In particular, the effect of
the living area almost disappears for apartments in the lower price segment (corresponding
to a small value for the quantile � ), while the slope steadily increases when moving toward
higher price segments (corresponding to large quantiles � ). For the year of construction, the
effect is very close to linear for the lower quantiles, while it gets more and more U-shaped
when moving towards higher quantiles. In this analysis, quantile-crossing does not occur,
since we do not consider quantiles that are very close to each other and since the data set is
relatively large (with approximately 3000 observations).

When comparing these results with those from a homoscedastic linear model, we find
distinct differences. In particular, since we are assuming i.i.d. errors here, all quantile curves
are exactly parallel to each other and only shifted according to the quantiles of a normal
distribution. In contrast, results obtained in the heteroscedastic case are closer to the ones
from the quantile regression. Note that the formula for the variance of the errors involves
the exponential function and therefore induces nonlinear quantile curves, even in case of a
linear model as for the living area. While the fit for living area seems to be sufficient for
both the quantile regression model and the heteroscedastic linear model, the latter seems
to be inadequate for describing the effect of the year of construction (at least for extreme
quantiles). While large quantiles are underestimated, the curve for the lowest quantile seems
to be much too low. This may be seen as an indication that, in addition to heteroscedasticity,
there is also a dependence of skewness and/or kurtosis on the covariates. For these data, it
appears to pays off to use a completely distribution-free approach that does not assume any
specific form for the error distribution.
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Fig. 10.2 Munich rent index: scatter plots of the rents in Euro versus living area (left column)
and year of construction (right panel) together with linear/quadratic quantile regression fits for 11
quantiles (top row), quantiles determined from a homoscedastic linear model (middle row), and
quantiles determined from a heteroscedastic linear model (bottom row)

While thus far we have only considered models consisting of one covariate with either
linear or quadratic impact on the quantiles of the response, we will now consider a
multiple regression model containing both effects simultaneously. This does not cause any
difficulties with respect to the estimation of the regression coefficients, but the presentation
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Fig. 10.3 Munich rent index: estimated effects of year of construction together with partial
residuals for different quantiles

of the results is more involved. One problem is that we can no longer simply draw a scatter
plot of the data along with the fits for the different quantiles, since we now must adjust for
the effects of the other covariates. In the linear model, we used partial residuals to achieve
this (see Sect. 3.2.3, p. 126), where all effects apart from those associated with the covariate
of interest are subtracted from the response. This can also be done in quantile regression but
yields different partial residuals for each value of � . Therefore, we can no longer visualize
all estimated effects simultaneously in one scatter plot. Figure 10.3 shows the estimated
effect of the year of construction for three different quantiles along with the corresponding
partial residuals. In all three cases, the fit appears to be quite satisfactory but with somewhat
reduced curvature as compared to the results from the univariate model.

Figure 10.4 illustrates an alternative way to graphically present the results of quantile
regressions, where the estimated coefficients and confidence intervals are plotted against
the quantiles. The variation over the quantiles then gives indication for the necessity of
quantile regression. If some or all of the estimated coefficients are almost constant, then
they are independent of the quantile, and therefore only the mean but not the quantiles
seem to depend on the covariate of interest. In addition, the figure shows the estimates from
mean regression as a reference. Note that the magnitude of the estimated coefficients for
living area and year of construction is very different since living area enters the model in
untransformed linear fashion while year of construction is represented as an orthonormal
polynomial. 4
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Fig. 10.4 Munich rent index: paths of estimated coefficients (solid line) together with 95 % con-
fidence intervals (dashed lines) obtained from inverting a rank-based test for various quantiles � .
The horizontal dotted line corresponds to the least squares estimate

10.2.2 Bayesian Quantile Regression

Bayesian quantile regression has been developed utilizing the equivalence between
posterior mode and maximum likelihood estimation under noninformative priors
ˇ� / const (Yu & Moyeed, 2001; Yue & Rue, 2011). Therefore we have to define a
specific distributional assumption for the error terms (or equivalently the responses)
to make the Bayesian standard machinery work. If we start with the model

yi D x0
iˇ� C "i� ; i D 1; : : : ; n;

we will assume independent and identically distributed errors following an asym-
metric Laplace distribution, i.e., "i� j �2 i.i.d. ALD.0; �2; �/ with density

p."i� j �2/ D �.1 � �/
�2

exp

�
�w� ."i� ; 0/

j"i� j
�2

�
:
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For the responses, the error distribution induces yi j ˇ� ; �
2 � ALD.x0

iˇ� ; �
2; �/,

such that the density of the responses is given by

p.yi j ˇ� ; �
2/ D �.1 � �/

�2
exp

�
�w� .yi ;x

0
iˇ� /

jyi � x0
iˇ� j

�2

�
:

It then turns out that maximizing the corresponding posterior (for fixed �2)

p.ˇ� j y; �2/ /
nY

iD1
p.yi j ˇ� ; �

2/

/ exp

 
�

nX

iD1
w� .yi ;x

0
iˇ� /

jyi � x0
iˇ� j

�2

!
;

with respect to ˇ� , is equivalent to minimizing the optimization criterion (10.5).
While the asymmetric Laplace distribution allows to conveniently express quan-

tile regression in a Bayesian framework, it complicates inference based on Markov
chain Monte Carlo simulations due to the absolute value contained in its definition.
It is therefore advantageous to represent the asymmetric Laplace distribution as
a scale mixture of normal distributions as suggested in Yue and Rue (2011): Let
zi j �2 � Expo.1=�2/, i D 1; : : : ; n, be i.i.d. exponentially distributed with rate
parameter �2 and

yi j zi ;ˇ� ; �
2 � N.x0

iˇ� C �zi ; �
2=wi /

with

� D 1 � 2�
�.1 � �/ ; wi D 1

ı2zi
; ı2 D 2

�.1 � �/ :

Then the marginal distribution yi j ˇ� ; �
2 is obtained by integrating out zi and is

indeed an asymmetric Laplace distribution, i.e.,

yi j ˇ� ; �
2 � ALD.x0

iˇ� ; �
2; �/:

Bayesian inference can now efficiently be implemented after imputing the scale
variables zi as additional unknowns, similar to the approach that was outlined
for binary regression models in Sect. 5.6.3. Basically, the resulting model is a
conditionally Gaussian regression model with offsets �zi and weights wi . Box 10.2
summarizes the Bayesian model and provides the full conditionals required for the
Gibbs sampler. We thereby assume noninformative priors ˇ� / const and the usual
inverse gamma priori for �2, i.e., �2 � IG.a; b/ with hyperparameters a and b.
A derivation of the full conditionals can be found at the end of this chapter on p. 618.

When comparing these results with the ones from the basic Bayesian linear
model in Sect. 4.4, the only change in the full conditional for the regression
coefficients is that the classical linear model is replaced by a general linear model
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10.2 Bayesian Linear Quantile Regression Based on the ALD
Distribution

Observation Model

The observations yi , i D 1; : : : ; n, are conditionally independent following
an asymmetric Laplace distribution, i.e., yi i.i.d. ALD.x0

iˇ� ; �
2; �/. The

scale mixture representation of the asymmetric Laplace distribution yields

yi j zi ;ˇ� ; �
2 � N.x0

iˇ� C �zi ; �
2=wi /;

where

� D 1 � 2�

�.1 � �/ ; wi D 1

ı2zi
; ı2 D 2

�.1 � �/ :

Priors

ˇ� / const

zi j �2 � Expo.1=�2/

�2 � IG.a; b/

All priors are mutually independent.

Full Conditionals Required for the Gibbs Sampler

• Full conditional for the regression coefficients: ˇ� j � N.�ˇ� ;˙ ˇ� / with

˙ ˇ� D �2.X 0W X/�1; �ˇ� D .X 0W X/�1X 0W .y � �z/;

where W D diag.w1; : : : ;wn/ and z D .z1; : : : ; zn/0.
• Full conditional for the scale parameters:

z�1
i j � � InvGauss

 s
�2 C 2ı2

.yi � x0
iˇ� /

2
;
�2 C 2ı2

�2ı2

!
;

refer to Definition B.7 in Appendix B.1 for the inverse Gaussian
distribution.

• Full conditional for the error variance:

�2 j � � IG

 
a C 3n

2
; b C 1

2

nX

iD1
wi .yi � x0

iˇ� � �zi /
2 C

nX

iD1
zi

!
:

Software

Software package BayesX (see also the R interface R2BayesX)
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with weights wi and offset �zi . This also indicates that it is easy to extend the
Bayesian quantile regression model beyond linear regression specifications, as
outlined in the following section by including, for example, Bayesian P-splines or
spatial effects. The full conditional for the error variance also changes since the
exponential prior of the weights depends on �2.

The presented Bayesian quantile regression approach relies on the asymmetric
Laplace distribution as an auxiliary error distribution that yields a formal equiva-
lence between posterior modes and usual quantile regression estimates. However,
in a strict sense, this auxiliary error distribution can never be simultaneously true
for all quantiles since only one quantile of the error distribution can in fact be
zero. Consequently, the resulting point estimates are often close to those from
frequentist analyses, while the corresponding credible intervals may be misleading
when the error distribution is (greatly) misspecified. However, the Bayesian quantile
regression approach still has considerable advantages with respect to generalized
model specifications as will be discussed in the next section. Other Bayesian
quantile regression approaches try to circumvent the auxiliary error distribution
problem by including the error distribution as a part of the estimation problem and to
determine quantiles from the estimated error distribution. See, for example, Reich,
Bondell, and Wang (2010) and Kottas and Krnjajic (2009) for approaches based on
mixtures of Gaussians and Dirichlet process mixtures, respectively.

10.3 Additive Quantile Regression

Additive quantile regression models result when replacing the assumed linear effects
of covariates thus far, with potentially nonlinear effects, similar to those found in
Chaps. 8 and 9. An approach for estimating nonlinear quantile functions f�.zi / of
continuous covariates zi in the scatter plot smoothing model

yi D f�.zi /C "i�

that still fits into the framework of linear programming (which is usually employed
for estimating linear quantile regression models) has been suggested by Koenker,
Ng, and Portnoy (1994). Such an approach relies on the fitting criterion

arg min
f�

nX

iD1
w� .yi ; f� .zi //jyi � f� .zi /j C 	V.f 0

� /: (10.7)

This criterion is inspired by the penalized least squares criterion employed in the
derivation of smoothing splines (Sect. 8.1.4, p. 448) but relies on asymmetrically
weighted absolute errors instead of least squares. Additionally it considers a
somewhat different penalty that fits well with the absolute value criterion. More
specifically, V.f 0

� / denotes the total variation of the derivative f 0
� defined as

V.f 0
� / D sup

nX

iD1
jf 0
� .ziC1/ � f 0

� .zi /j;
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where the sup is taken over all partitions a � z1 < : : : < zn < b. For twice
continuously differentiable functions f� , the total variation penalty can be written as

V.f 0
� / D

Z
jf 00
� .z/jd z

indicating that the penalty results from replacing the squared second derivative
(applied in the context of smoothing splines) with the absolute second derivative.
Utilizing the squared second derivative would inhibit the use of linear programming
techniques since it would lead to a combination of an L1 norm for the error terms
and an L2 norm for the penalty. In contrast, Koenker et al. (1994) showed that the
solution to Eq. (10.7) can still be obtained by linear programming when considering
a somewhat larger function space that also comprises functions with derivatives
existing almost everywhere. Within this function space, the minimizer of Eq. (10.7)
is a piecewise linear spline function with knots at the observations zi , similar to those
found with the natural cubic spline resulting in the context of smoothing splines.

This approach can also be extended to additive models that consist of more
than one nonparametric function or the estimation of surfaces based on triograms
Koenker and Mizera (2004). However, it is typically difficult to determine the
smoothing parameters along with the estimated functions in an automatic and data-
driven way. As a consequence, alternative approaches based on boosting or the
Bayesian approach to quantile regression have been suggested, for example, in
Fenske et al. (2011), Yue and Rue (2011), or Waldmann, Kneib, Lang, and Yue
(2012).

For the boosting approach, we basically have to combine the penalized least
squares base-learners that were introduced for structured additive regression in
Sect. 9.7, with the loss function defining quantile regression estimates. Hence,
the only change relates to different negative gradients employed in the boosting
algorithm. More specifically, in the algorithm summarized in Box 9.6, the negative
gradients are replaced by Eq. (10.6) where � can now be any structured additive
predictor. All the remaining parts of the algorithm can be reused without any
modifications.

For Bayesian additive quantile regression, we can extend the Gibbs-sampler
outlined in the previous section in a similar spirit as in Sect. 9.6.3 for structured
additive regression, relying on Markov chain Monte Carlo simulation techniques.
Most importantly, the full conditionals for nonparametric effects represented as
V j�j are now given by

�j j � � N.mj ;˙ j /;

with expectation and covariance matrix

mj D E.�j j �/ D
 

V 0
jW V j C �2

�2j
K j

!�1
V jW 0.y � �struct�j � �z/

˙ j D Cov.�j j �/ D �2

 
V 0
jW V j C �2

�2j
K j

!�1
;
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Fig. 10.5 Malnutrition in Zambia: interaction of the child’s age and duration of breast-feeding
obtained in a geoadditive Bayesian quantile regression model for � D 0:2 (top left), � D 0:5 (top
right), and � D 0:8 (bottom)

where W D diag.w1; : : : ;wn/ and z D .z1; : : : ; zn/0 as in Box 10.2. Similarly, the
full conditional for the error variance has to be adjusted while the full conditionals
for the smoothing variances remain unchanged.

Example 10.2 Childhood Malnutrition in Zambia—Geoadditive Bayesian
Quantile Regression

We illustrate the results acquired from a Bayesian geoadditive quantile regression model
based on the asymmetric Laplace distribution as auxiliary error distribution by extending
the case study presented in Sect. 9.8. Therefore, we estimate a quantile regression model

zscorei D f1� .m agebirthi /C f2� .m heighti /C f3� .m bmii /

Cf4� .c breastf i ; c agei /C fspat� .si /C x0

iˇ� C "i�

comprising a kriging term f4� .c breastf ; c age/ for the interaction of duration of breast-
feeding and age of the child, penalized splines f1� .m agebirth/, f2� .m height/, and
f3� .m bmi/ for the nonlinear effects of the body mass index, height, and age of the mother,
a Markov random field fspat� .s/ for the spatial effects of the districts s, and parametric
effects x0

iˇ� for the remaining (categorical) covariates. All hyperparameter settings (such
as number of knots and degrees of the spline) have been chosen analogously to those in the
case study in the previous chapter.
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Fig. 10.6 Malnutrition in Zambia: spatial effect obtained in a geoadditive Bayesian quantile
regression model for � D 0:2 (top left), � D 0:5 (top right), and � D 0:8 (bottom)

To implement the Bayesian approach, we make use of the latent Gaussian representation
for the asymmetric Laplace distribution as introduced in Sect. 10.2.2. Refer to Waldmann
et al. (2012) for details. In the following, we discuss only some exemplary results for the
20 %, 50 %, and 80 % quantiles.

Figure 10.5 shows estimates for the interaction effect between the age of the child and
the duration of breast-feeding. While the principal form of the effect is not too different
between the quantiles, and it also matches closely with the results from the mean regression
model presented in the last chapter, the magnitude of the effects is much larger for the 20 %
and the 80 % quantile as compared to the median regression results. Similarly, the 20 %
quantile estimates for the spatial effect (Fig. 10.6) closely resemble the form of the spatial
effect for the median but again show a larger magnitude. In contrast, the 80 % quantile
also shows a different spatial pattern, indicating that the spatial distribution in case of
well-nourished children is different from the one for malnourished children and children
with average nutritional status. Finally, Fig. 10.7 shows estimates for the effect of the body
mass index of the mother. There seems to be a slight indication for a nonlinear effect but
with some uncertainty, especially for large and small values of the body mass index. Note,
however, that the estimated credible intervals have to be treated with caution since they rely
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Fig. 10.7 Malnutrition in Zambia: nonparametric effect of the body mass index of the mother
obtained in a geoadditive Bayesian quantile regression model for � D 0:2 (top left), � D 0:5 (top
right), and � D 0:8 (bottom)

on the assumption of an asymmetric Laplace distribution for the errors which will usually
not be fulfilled in practice. 4

10.4 Bibliographic Notes and Proofs

10.4.1 Bibliographic Notes

Non-crossing Quantiles
Approaches that circumvent the problem of crossing quantiles are typically based
on joint estimation for several quantiles. The simplest example is the location-scale
model

yi D x0
iˇ C exp.z0

i˛/"i ; Var."i / D 1;
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where not only the mean but also the standard deviation of the response variable
depend on covariates. This model basically reflects the situation of heteroscedas-
ticity, but is less suited when more general effects of the covariates, e.g., on the
skewness or kurtosis, are present as well. Estimation of the location-scale model can
either be based on a distributional assumption for "i (such as a normal distribution)
or include an additional estimation step for fitting the quantile curves to the data as
suggested in different variants in He (1997) and Schnabel and Eilers (2012). A more
sophisticated approach is quantile regression sheets where the regression coefficient
ˇ� corresponding to a specific covariate is treated as a functionˇ.�/ that is estimated
as a penalized spline with penalization along the quantile-domain; see Schnabel and
Eilers (2012).

Expectile Regression
Some of the difficulties associated with extending linear quantile regression to more
complex settings and developing completely data-driven estimation approaches
for these settings can be attributed to the fact that the absolute deviation crite-
rion (10.5) is not differentiable and therefore requires more specialized optimiza-
tion approaches, such as linear programming or boosting. As a computationally
attractive alternative, Newey and Powell (1987) have proposed expectiles that
replace asymmetrically weighted absolute deviations with asymmetrically weighted
squared deviations yielding the optimality criterion

Ǒ
� D arg min

ˇ�

nX

iD1
w� .yi ; �i� /.yi � �i� /2:

This approach has recently gained considerable interest since the solutions can be
computed by simple iteratively weighted least squares updates

Ǒ .tC1/
� D .X 0W .t/

� X/�1X 0W .t/
� y;

with iteratively recomputed weights

W .t/
� D diag.w� .y1; �1� /

.t/; : : : ;w� .yn; �n� /
.t//:

This has particular advantages when considering complex models defined, for
example, in terms of several nonlinear functions and quadratic penalties, as in the
context of structured additive regression. In particular, the smoothing parameters
can then still be automatically computed, for example, utilizing the mixed model
representation of structured additive regression models; see Sobotka and Kneib
(2012) for details. Although expectiles do not enjoy the intuitive interpretation of
quantiles, they still provide a possibility to characterize the conditional distribution
of a response distribution and therefore contain similar information as a set of
quantile regressions. An implementation of structured additive expectile regression
models is provided in the R package expectreg.
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10.4.2 Proofs

Optimality Criterion for Quantiles (p. 599)
We show the equivalence of the implicit definition of quantiles and the optimality
criterion (10.5) for a continuous random variable y with strictly increasing cumu-
lative distribution function F.y/ and density f .y/ such that the �-quantile q� is
unique. Therefore, we first rewrite the expectation of the minimization criterion in
terms of the density f .y/ as

E .w� .y/jy � qj/ D
Z 1

�1
w� .y/jy � qjf .y/dy

D
Z q

�1
.1 � �/.y � q/f .y/dy C

Z 1

q

�.y � q/f .y/dy:

The minimum can then be found by differentiating with respect to q and setting the
derivative to zero. As the limits of integration depend on q, we have to apply Leibniz
integral rule, yielding

@

@q
E .w� .y/jy � qj/ D �.1 � �/

Z q�

�1
f .y/dy C �

Z 1

q�

f .y/dy

D �
Z q�

�1
f .y/dy C �

Z 1

�1
f .y/dy

D �
Z q�

�1
f .y/dy C �:

Setting this expression equal to zero, we obtain

� D
Z q�

�1
f .y/dy D F.q� / D P.y � �/:

Since we assumed that the �-quantile is unique, this also implies P.y � q� / D 1��
and therefore proofs the equivalence between both definitions.

Derivation of the Full Conditionals in the Bayesian Linear Quantile
Regression Model of Box 10.2 on p. 611
We derive the full conditionals for the model

y j z;ˇ� ; �2 � N.Xˇ� C �z; �2W �1/; W D diag.w1; : : : ;wn/; z D .z1; : : : ; zn/
0

with

� D 1� 2�

�.1 � �/
; wi D 1

ı2zi
; ı2 D 2

�.1 � �/
;
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and the priors

ˇ� / const; zi j �2 � Expo.1=�2/; �2 � IG.a; b/:

Using ˙ ˇ� D �2.X 0W X/�1 and �ˇ� D .X 0W X/�1X 0W .y � �z/, we obtain

p.ˇ� j �/ / p.y j z;ˇ� ; �2/

/ expf� 1

2�2
.Xˇ� C �z � y/0W .Xˇ� C �z � y/g

/ expf�1
2

ˇ0
�

1

�2
X 0W Xˇ� C 1

�2
ˇ0
�X

0W .y � �z/g

D expf�1
2

ˇ0
�˙

�1
ˇ�

ˇ� C ˇ0
�˙

�1
ˇ�
.X 0W X/�1X 0W .y � �z/g

D expf�1
2

ˇ0
�˙

�1
ˇ�

ˇ� C ˇ0
�˙

�1
ˇ�

�ˇ� g

for the full conditional of ˇ� . According to Definition B.20 in Appendix B.3.1 this
is a multivariate normal distribution with mean �ˇ� and covariance matrix ˙ ˇ� .

The full conditional for �2 is given by

p.�2 j �/ / p.y j z;ˇ� ; �2/ p.z j �2/ p.�2/

/
�
1

�2

� n
2

exp

�
� 1

�2
1

2
.Xˇ� C �z � y/0W .Xˇ� C �z � y/



nY

iD1

1

�2
exp

�
� 1

�2
zi

�

�
1

�2

�a�1

exp

�
� 1

�2
b

�

D
�
1

�2

�nC
n
2 Ca�1

expf� 1

�2
.b C 1

2
.Xˇ� C �z � y/0W .Xˇ� C �z � y/C

nX

iD1

zi /g:

This is the density of an inverse gamma distribution with parameters

a0 D a C 3n

2
and b0 D b C 1

2
.Xˇ� C �z � y/0W .Xˇ� C �z � y/:

Finally the full conditionals for the latent variables zi are obtained as
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p.zi j �/ / p.yi j zi ;ˇ� ; �
2/ p.zi j �2/

/ 1p
zi

exp

�
�1
2

.yi � x0
iˇ� � �zi /2

ı2zi �2


exp

�
� 1

�2
zi

�

D 1p
zi

exp

�
�1
2

.yi � x0
iˇ� /

2 � 2.yi � x0
iˇ� /�zi C z2i .�

2 C 2ı2/

ı2zi �2



D 1p
zi

exp

8
<

:� .yi � x0
iˇ� /

2

2�2ı2
�
1 � 2�zi

yi�x0

iˇ�
C z2i

�2C2ı2
.yi�x0

iˇ� /
2

zi

9
=

;

D 1p
zi

exp

8
<

:� .yi � x0
iˇ� /

2

2�2ı2
�
.z�1
i /

2 � 2�

.yi�x0

iˇ� /
z�1
i C �2i

z�1
i

9
=

;

D 1p
zi

exp

8
<

:� .yi � x0
iˇ� /

2.�2 C 2ı2/

2�2ı2.�2 C 2ı2/
�
.z�1
i /

2 � 2�

.yi�x0

iˇ� /
z�1
i C �2i

z�1
i

9
=

;

D 1p
zi

exp

�
� 	

2�2i
zi �

�
1

z2i
� 2�

.yi � x0
iˇ� /

1

zi
C �2i

�

/ 1p
zi

exp

�
� 	

2�2i
zi �

�
1

z2i
� 2�i

1

zi
C �2i

�

D 1p
zi

exp

(
� 	

2�2i
zi �

�
1

zi
� �i

�2)

where

�i D
�

�2 C 2ı2

.yi � x0
iˇ� /

2

�1=2
and 	 D �2 C 2ı2

�2ı2
:

This is not a standard distribution. However, it turns out that the distribution of 1=zi
is inverse Gaussian with location parameter �i and scale parameter 	. Updating of
zi is then obtained by first sampling 1=zi from the inverse Gaussian distribution and
then inverting the result to obtain zi .

To derive the distribution of 1=zi we apply the change of variables Theorem B.1
of Appendix B.1. With g.zi / D 1=zi , g�1.zi / D zi and g0.zi / D �1=z2i , we obtain

p.1=zi j �/ /
�

1

.1=zi /3

�1=2
exp

�
� 	

2�i .1=zi /
.1=zi � �i /2

�

which has the form of the proposed inverse Gaussian distribution.



AMatrix Algebra

This appendix gives a summary of basic definitions and results in matrix algebra
which are used in this book. The presentation is restricted to important definitions
and theorems, without examples or proofs. There are many books that have an
appendix on matrix algebra; see, for instance, Mardia, Kent, and Bibby (1999)
or Rao, Toutenburg, Shalabh, and Heumann (2008). More detailed expositions,
including proofs, are in Graybill (1961), Magnus and Neudecker (2002), Schott
(2005), and Searle (2006).

A.1 Definition and Elementary Matrix Operations

Definition A.1 Matrix

A real matrix of order n � p (short: n � p-matrix) is a rectangular array

A D

0

BBBB@

a11 a12 � � � a1p
a21

: : :
:::

:::
: : :

:::

an1 an2 � � � anp

1

CCCCA

of n � p real numbers aij , arranged in n rows and p columns. We often write A D
.aij /, i D 1; : : : ; n, j D 1; : : : ; p.

Definition A.2 The Transpose of a Matrix

The transpose A0 of a matrix A is formed by interchanging rows and columns:

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9,
© Springer-Verlag Berlin Heidelberg 2013
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A0 D

0

BBBB@

a11 a21 � � � an1
a12

: : :
:::

:::
: : :

:::

a1p a2p � � � anp

1

CCCCA
:

By definition, we have .A0/0 D A.

Definition A.3 Column Vector, Row Vector

A matrix with column order p D 1 is called a column vector. Thus,

a D

0

BBB@

a1
a2
:::

an

1

CCCA

is a column vector with n components a1; a2; : : : ; an.
Row vectors are written as column vectors transposed, i.e.,

a0 D .a1; a2; : : : ; an/ :

Thus, an n � p-matrix has n row vectors and p column vectors.

Definition A.4 Square Matrix

A matrix A is a square matrix if it is of order n � n. Its diagonal, with elements
a11; : : : ; ann, is sometimes called main diagonal.

Definition A.5 Diagonal Matrix

A square matrix D is a diagonal matrix if the elements below and above the main
diagonal are zero. Thus,

D D

0

BBBB@

d1 0 : : : 0
:::
: : :

:::
:::

: : :
:::

0 : : : : : : dn

1

CCCCA

or D D diag.d1; : : : ; dn/ in short notation.

Definition A.6 Identity Matrix

The n � n-diagonal matrix
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In D diag.1; : : : ; 1/ D

0

BBBB@

1 0 : : : 0
:::
: : :

:::
:::

: : :
:::

0 : : : : : : 1

1

CCCCA

is called the identity matrix of order n � n. In situations where no confusion can
arise, we also drop the index n and simply write I .

Definition A.7 Symmetric Matrix

A square matrix A is called symmetric if A D A0.

Definition A.8 Sums and Scalar Multiplication of Matrices

The sum A C B of two n � p-matrices A D .aij / and B D .bij / is defined as

A C B D .aij C bij /:

The multiplication of A with a scalar 	 2 R is defined as

	A D .	 aij /:

Theorem A.1 Rules for Sums and Scalar Multiplication

Let A;B;C be n � p-matrices, and let r; k 2 R be scalars. We then have the
following rules:
1. A C .B C C / D .A C B/C C

2. A C B D B C A

3. .k C r/A D kA C rA and k.A C B/ D kA C kB

4. .kr/A D k.rA/

5. .kA/0 D kA0
6. .A C B/0 D A0 C B 0

Definition A.9 Multiplication of Matrices

The product of the n� p-matrix A D .aij / with the p �m-matrix B D .bij / is the
n �m-matrix

AB D C D .cik/ where cik D
pX

jD1
aij bjk:
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Thus,

A � B D

0
BBBBBBB@

pX

jD1
a1j bj1 � � �

pX

jD1
a1j bjm

:::
: : :

:::
pX

jD1
anj bj1 � � �

pX

jD1
anj bjm

1
CCCCCCCA

:

Note that two matrices A and B can only be multiplied if the number of columns
of A equals the number of rows of B. In general, multiplication of two matrices is
not commutative, i.e., in general B � A ¤ A � B.

Theorem A.2 Representing Sums as Products of Vectors

Let x;y 2 Rn be column vectors and let 1 be the n� 1-(column) vector .1; : : : ; 1/0.
It follows:

1.
nX

iD1
xi D 10x D x01

2. Scalar product of x and y :
nX

iD1
xiyi D x0y D y 0x

3. Squared Euclidean length of x:
nX

iD1
x2i D x0x

Theorem A.3 Rules for Multiplication of Matrices

Let A, B, and C be matrices of appropriate dimensions. We then have the following
rules:
1. A.B C C / D AB C AC

2. .AB/C D A.BC /

3. .AB/0 D B 0A0
4. AI D A and IA D A

Definition A.10 Kronecker Product

The Kronecker product A ˝ B of the n � p-matrix A and the r � q-matrix B is
defined as the nr � pq-matrix

C D A ˝ B D

0

B@
a11B a12B � � � a1pB
:::

:::
:::

an1B an2B � � � anpB

1

CA :
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Theorem A.4 Rules for the Kronecker Product

Let A, B, C , and D be matrices of appropriate order and let k be a scalar. We then
have the following rules:
1. k.A ˝ B/ D .kA/˝ B D A ˝ .kB/

2. A ˝ .B ˝ C / D .A ˝ B/˝ C

3. A ˝ .B C C / D .A ˝ B/C .A ˝ C /

4. .A ˝ B/0 D A0 ˝ B 0
5. .AB/˝ .C D/ D .A ˝ C /.B ˝ D/

Definition A.11 Orthogonal Matrices

A square matrix A is called orthogonal if AA0 D A0A D I .

Theorem A.5 Properties of Orthogonal Matrices

Let A be orthogonal. We then have:
1. Row and column vectors span an orthonormal basis, i.e., the vectors have

(Euclidean) length 1 and are pairwise orthogonal.
2. If A and B are orthogonal, then AB is orthogonal.

Definition A.12 Idempotent Matrices

A square matrix A is called idempotent if AA D A2 D A.
The n � n-matrix

C WD In � 1

n
110;

a special idempotent matrix, is often used in statistics. The following holds:
1. Multiplication of C with an n � 1-vector a gives

Ca D

0

B@
a1 � Na
:::

an � Na

1

CA ;

i.e., one obtains the vector centered about the mean Na of its elements.
2. Multiplication of C with an n � p-matrix A gives

CA D

0

B@
a11 � Na1 � � � a1p � Nap

:::
:::

an1 � Na1 � � � anp � Nap

1

CA ;

where Na1; : : : ; Nap are the means of the columns of A.
3. C 1 D 0.
4. 10C D 00.
5. 110C D C 110 D 0.

6.
nX

iD1
.xi � Nx/2 D x0C x where x D .x1; : : : ; xn/

0.
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Theorem A.6 Properties of Idempotent Matrices

If A and B are idempotent, then:
1. AB D BA, and AB is also idempotent.
2. I � A is idempotent.
3. A.I � A/ D .I � A/A D 0.

A.2 Rank of a Matrix

Definition A.13 Row Rank, Column Rank

Let A be of order n � p. The column rank rkc.A/ of A is defined as the maximum
number of linearly independent columns of A. Correspondingly, the row rank
rkr.A/ is the maximum number of linearly independent rows of A.

Theorem A.7

The column rank equals the row rank, i.e.,

rkc.A/ D rkr.A/:

Definition A.14 Rank of a Matrix

The rank of an n � p-matrix is defined as

rk.A/ WD rkc.A/ D rkr.A/ � minfn; pg:

We denote rk.A/ also by r.A/.
If rk.A/ D minfn; pg, then A has full rank and is called regular.

Theorem A.8 Properties of Ranks

Let A, B, and C be matrices of appropriate order. It follows:
1. rk.A/ D rk.�A/

2. rk.A0/ D rk.A/
3. rk.A C B/ � rk.A/C rk.B/
4. rk.AB/ � min frk.A/; rk.B/g
5. rk.In/ D n

Definition A.15 Row Space, Column Space

The row space R.A/ of an n� p-matrix is the subspace of Rn spanned by the rows
of A, i.e.,
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R.A/ WD fx 2 Rn W x D Ay for some y 2 Rpg:
The column space is defined correspondingly.

Definition A.16 Null Space

The null space N.A/ of an n � p-matrix A is defined as the set

N.A/ WD fx 2 Rp W Ax D 0g:

Theorem A.9 Properties of the Null Space

Let A be an n � p-matrix. We then have:
1. The null space is a subspace of Rp.
2. rk.A/C dim.N.A// D p.
3. N.A0A/ D N.A/.

Definition A.17 Inverse of a Matrix

Let A be a square matrix. A matrix A�1 is called the inverse of A if

AA�1 D A�1A D I :

Theorem A.10 Existence and Uniqueness of the Inverse

The inverse A�1 of a square n�n-matrix A exists if and only if rk.A/ D n, i.e., if A

is regular. The inverse is unique, and A is called invertible, regular, or nonsingular.
If no inverse of A exists, it is called singular.

Theorem A.11 Rules for Inverses

Let A, B, and C be invertible matrices of the same order, and let k ¤ 0 be a scalar.
The following rules then hold:
1. .A�1/�1 D A

2. .kA/�1 D k�1A�1 D 1

k
A�1

3. .A0/�1 D .A�1/0
4. .AB/�1 D B�1A�1
5. .ABC /�1 D C �1B�1A�1
6. If A is symmetric, A�1 is also symmetric.
7. The inverse of a diagonal matrix A D diag.a1; : : : ; an/ is

A�1 D diag.a�1
1 ; : : : ; a

�1
n /:

8. If A is orthogonal, then A�1 D A0.
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A.3 Block Matrices and the Matrix Inversion Lemma

Definition A.18 Block Matrix, Block-Diagonal Matrix

A matrix A is called a block (or partitioned) matrix if it is partitioned into

A D

2
6664

A1 A12 : : : A1p

A21 A2 : : : A2p

:::
:::
: : :

:::

Ap1 : : : : : : Ap

3
7775 ;

where A1; : : : ;Ap;A12; : : : ;Ap1; : : : are (non-overlapping) matrix sub-blocks of
suitable dimensions. A special case, appearing several times in this book, is block-
diagonal matrices

A D

2

6664

A1 0 : : : 0

0 A2 : : : 0
:::

:::
: : :

:::

0 : : : : : : Ap

3

7775 ;

where all off-diagonal matrices are 0. We often denote such block-diagonal
matrices by

A D blockdiag.A1;A2; : : : ;Ap/:

Theorem A.12 Sums and Products of Block Matrices

Rules for sums and products of matrices can be generalized to block matrices. For
example,

�
A B

C D

�
C
�

E F

G H

�
D
�

A C E B C F

C C G D C H

�

and �
A B

C D

�
�
�

E F

G H

�
D
�

AE C BG AF C BH

C E C DG C F C DH

�
;

assuming that all dimensions of submatrices fit together appropriately.

Theorem A.13 Inversion of Block-Diagonal Matrices

Matrices can also be inverted blockwise. If all sub-blocks A1;A2; : : : ;Ap in
a block-diagonal matrix A D blockdiag.A1;A2; : : : ;Ap/ are quadratic and
invertible, then
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A�1 D

2
6664

A�1
1 0 : : : 0

0 A�1
2 : : : 0

:::
:::
: : :

:::

0 : : : : : : A�1
p

3
7775 D blockdiag.A�1

1 ;A
�1
2 ; : : : ;A

�1
p /:

Theorem A.14 Matrix Inversion Lemma

In general, blockwise inversion can be based on the following analytic inversion
formula:

"
A B

C D

#�1
D
"

A�1 C A�1B.D � C A�1B/�1C A�1 �A�1B.D � C A�1B/�1
�.D � C A�1B/�1C A�1 .D � C A�1B/�1

#
;

where A and D are square matrices and A and .D � C A�1B/�1 are nonsingular.
Exchanging the roles of A, B and C , D, an analogous formula is

"
A B

C D

#
�1

D
"

.A � BD�1C /�1 �.A � BD�1C /�1BD�1

�D�1C .A � BD�1C /�1 D�1 C D�1C .A � BD�1C /�1BD�1

#
:

Equating the left upper blocks gives

.A � BD�1C /�1 D A�1 C A�1B.D � C A�1B/�1C A�1

which is the matrix inversion lemma. It appears in several variants in the literature.
One of them is the expression

.A C B/�1 D A�1 � A�1B.B C BA�1B/�1BA�1

for the inverse of the sum of two matrices, where B is not necessarily nonsingular.

A.4 Determinant and Trace of a Matrix

Definition A.19 Determinant

The determinant of a square matrix A of order n � n is defined as

jAj D
nX

iD1
.�1/iCj aij jA�ij j;
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where A�ij is the ..n�1/� .n�1//-matrix obtained by deleting row i and column
j from A. For scalar matrices A D .a11/ we get jAj D a11. For a 2 � 2-matrix,
jAj D a11a22 � a12a21.

Theorem A.15 Determinant of the Transpose

Let A be a square matrix, then jA0j D jAj.

Theorem A.16 Determinants of Some Matrices

Let A be a square matrix. It follows:
1. If a row (or column) of A consists of zeros only, then jAj D 0.
2. If A has two identical rows (columns), then jAj D 0.
3. Let A be a triangular matrix, i.e., all elements above or all elements below the

main diagonal are zero. It follows that jAj is then the product of all diagonal
elements.

4. jI j D 1:

Theorem A.17 Properties of Determinants

1. jkAj D knjAj
2. jAj ¤ 0 ” rk.A/ D n

3. jABj D jAj � jBj
4. jA�1j D 1

jAj
5. If A is orthogonal, then jAj D ˙1
6. Sylvester’s theorem: jA C BC j D jAjjI C C A�1Bj

Definition A.20 Trace of a Matrix

Let A D .aij / be an n � n-matrix. The sum of the diagonal elements is then called
trace of A, i.e.,

tr.A/ D
nX

iD1
ai i :

Theorem A.18 Properties of the Trace

The trace has the following properties:
1. tr.A C B/ D tr.A/C tr.B/.
2. tr.A/ D tr.A0/.
3. tr.kA/ D k � tr.A/.
4. tr.AB/ D tr.BA/. This remains valid if A is of order n � p and B is of order
p � n.

5. Let x;y be vectors 2 Rn. It follows that tr.xy 0/ D tr.yx0/ D tr.x0y/ D x0y.
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A.5 Generalized Inverse

Definition A.21 Generalized Inverse

Let A be an n�p-matrix with n � p. Thep�n-matrix A� is then called generalized
inverse (or g-inverse) of A if

AA�A D A:

Theorem A.19 Existence of a Generalized Inverse

A generalized inverse always exists, but it is not unique in general.

Theorem A.20 Properties of the Generalized Inverse

For any n � p-matrix A and any p � n-generalized inverse, we have
1. rk.A/ D rk.AA�/ D rk.A�A/.
2. rk.A/ � rk.A�/.
3. If A is regular, then A� D A�1, and A�1 is unique.
4. A�A and AA� are idempotent.

A.6 Eigenvalues and Eigenvectors

Definition A.22 Eigenvalue and Eigenvector

Let A be an n � n-square matrix. The (possibly complex) number 	 2 C is called
an eigenvalue of A, if there exists a nonzero vector x 2 Cn (with possibly complex
elements) such that

Ax D 	x

or equivalently

.A � 	I/x D 0:

The vector x is then called a (right) eigenvector for the eigenvalues 	.

Definition A.23 Characteristic Polynomials

Let A be an n � n-square matrix; then

q.	/ WD jA � 	I j

is called the characteristic polynomial of A.
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Definition A.19 of the determinant of a matrix shows that q.	/ is indeed a
polynomial of order n. Therefore, q.	/ has the form

q.	/ D .�	/n C ˛m�1.�	/m�1 C � � � C ˛1.�	/C ˛0; (A.1)

where the scalar coefficients are unspecified. The polynomial can always be
written as

q.	/ D jA � 	I j D
nY

iD1
.	i � 	/; (A.2)

where 	1; : : : ; 	n are the n roots of the characteristic equation q.	/ D jA�	I j D 0.
The fundamental theorem of algebra states that q.	/ D 0 has exactly n roots, which
are not necessarily different and may be complex numbers.

Theorem A.21 Computation of Eigenvalues via the Characteristic
Polynomial

The eigenvalues 	1; : : : ; 	n of a square matrix A are the roots of the characteristic
equation jA � 	I j D 0:

Theorem A.22 Properties of the Eigenvalues

The eigenvalues of an n � n-matrix have the following properties:

1. jAj D
nY

iD1
	i .

2. tr.A/ D
nX

iD1
	i .

3. A is regular if and only if all eigenvalues are nonzero.
4. The matrices A and A0 have the same eigenvalues.

5. If 	 is an eigenvalue of a regular matrix A, then
1

	
is an eigenvalue of A�1.

6. The eigenvalues of a diagonal matrix are the elements of the diagonal.
7. The eigenvalues of an orthogonal matrix A are either 1 or �1.
8. The eigenvalues of an idempotent matrix A are either 1 or 0.

Definition A.24 Eigenspace

Let 	 be an eigenvalue of a square matrix A. The set

A	 WD fx 2 Cnjx eigenvector for 	g [ f0g
is called eigenspace for 	.

Definition A.25 Similar Matrices

The matrices A and B are called similar (denoted as A � B), if there exists a
regular matrix C such that B D C AC �1.
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Theorem A.23 Eigenvalues of Similar Matrices

Let A and B be similar, then it follows:
1. A and B have the same characteristic polynomial and the same eigenvalues.
2. If x is an eigenvector of A for the eigenvalue 	, then C x is an eigenvector of

B D C AC �1.
Theorem A.24 Eigenvalues and Eigenvectors of Symmetric Matrices

Let A be a symmetric n � n-matrix, then it follows:
1. All eigenvalues are real numbers.
2. Eigenvectors for different eigenvalues are pairwise orthogonal.

Theorem A.25 Spectral Decomposition Theorem

Let A be a symmetric n � n-matrix with rank rk.A/ D r ; then A can be written as

A D Pdiag.	1; : : : ; 	r /P 0;

where 	1; : : : ; 	r are the nonzero eigenvalues of A and P is an orthogonal
n � r-matrix whose columns are the corresponding orthonormal eigenvectors.
Equivalently,

P 0AP D diag.	1; : : : ; 	r /:

Theorem A.26 Spectral Decomposition of an Idempotent Matrix

Let the n � n-matrix A be symmetric and idempotent with rk.A/ D r ; then

P 0AP D I r ;

and rk.A/ D tr.A/.

A.7 Quadratic Forms

Definition A.26 Quadratic Form

Let A be a symmetric n � n-matrix. A quadratic form in the vector x is a function
of the form

Q.x/ D x0Ax D
nX

iD1

nX

jD1
aij xixj D

nX

iD1
ai ix

2
i C 2

nX

iD1

X

j>i

aij xixj :

Definition A.27 Definite Matrices

The quadratic form x0Ax and the matrix A are called:
1. Positive definite (p.d.), if x0Ax > 0 for all x ¤ 0, notation: A > 0

2. Positive semidefinite (p.s.d.), if x0Ax � 0 and x0Ax D 0 for at least one x ¤ 0
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3. Nonnegative definite, if x0Ax and A are either p.d. or p.s.d., notation: A � 0

4. Negative definite (n.d.), if �A is positive definite
5. Negative semidefinite (n.s.d.), if �A is p.s.d.
6. Indefinite in all other cases

Theorem A.27 Criteria for Definite Matrices

Let A be a symmetric matrix with real eigenvalues 	1; : : : ; 	n. It then follows that
A is:
1. Positive definite, if and only if 	i > 0 for i D 1; : : : ; n

2. Positive semidefinite, if and only if 	i � 0 for i D 1; : : : ; n and 	i D 0 for at
least one eigenvalue

3. Negative definite, if and only if 	i < 0 for i D 1 : : : ; n

4. Negative semidefinite, if and only if 	i � 0 for i D 1; : : : ; n and at least one
	i D 0

5. Indefinite, if and only if A has at least one positive and one negative eigenvalue

Theorem A.28 Properties of Positive Definite Matrices

For any positive definite matrix A the following properties hold:
1. A is regular and, thus, invertible.
2. A�1 is positive definite.
3. The diagonal elements aii , i D 1; : : : ; n, are positive, i.e. aii > 0.
4. tr.A/ > 0.
5. If B is positive semidefinite, then A C B is positive definite.

Theorem A.29

Let A be an n � n-matrix and Q an n �m-matrix. The following then holds:
1. If A is nonnegative definite, then Q0AQ is nonnegative definite.
2. If A is positive definite and if rk.Q/ D m, then Q0AQ is positive definite.

Theorem A.30

Let B be an n � p-matrix. The matrix B 0B is then symmetric and nonnegative
definite. If rk.B/ D p, then B 0B is positive definite.

Theorem A.31 Eigenvalues of B 0B and BB 0

Let B be an n � p-matrix with rk.B/ D r . It follows that:
1. BB 0 and B 0B have the same r positive eigenvalues 	j , j D 1; : : : ; r .
2. If v is an eigenvector of B 0B for the eigenvalue 	, then

u WD 1p
	

Bv

is an eigenvector of BB 0 for 	.
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Theorem A.32 Cholesky Decomposition

Any symmetric and positive definite n � n-matrix A can be uniquely decomposed
into

A D LL0;

where L is a lower triangular matrix with positive diagonal elements. L is called
Cholesky factor of A.

A.8 Differentiation of Matrix Functions

Definition A.28 Differentiation with Respect to a Vector

Let x D .x1; : : : ; xn/
0 be a n�1-vector and f .x/ a real function differentiable with

respect to the elements xi of x.
The n � 1-vector

@f

@x
D

0

BBBBBBBB@

@f

@x1
@f

@x2
:::
@f

@xn

1

CCCCCCCCA

is then called differential of f with respect to x. We denote by

@f

@x0 D
�
@f

@x1
; : : : ;

@f

@xn

�

the transpose of @f

@x
.

To give an example, suppose that

f .x/ D y 0x D
nX

iD1
yixi ;

where y D .y1; : : : ; yn/
0 is constant. Then we have

@f

@x
D @y 0x

@x
D

0
BBBBBBBBB@

@ .
P
yixi /

@x1
@ .
P
yixi /

@x2
:::

@ .
P
yixi /

@xn

1
CCCCCCCCCA

D

0

BBBBBB@

y1

y2

:::

yn

1

CCCCCCA
D y:
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Definition A.29 Differentiation of a Vector Function with Respect
to a Vector

Let x D .x1; : : : ; xn/
0 be a n � 1-vector and f .x/ D .f1.x/; : : : ; fm.x//

0 a m � 1
vector function differentiable with respect to the elements xi of x.

The n �m-matrix

@f

@x
D
�
@fj

@xi

�
D

0
BBBBB@

@f1

@x1
: : :

@fm

@x1
:::

:::
@f1

@xn
: : :

@fm

@xn

1
CCCCCA

is then called differential of f with respect to x. We denote by

@f

@x0 D
�
@f

@x

�0
D

0

BBBBB@

@f1

@x1
: : :

@f1

@xn
:::

:::
@fm

@x1
: : :

@fm

@xn

1

CCCCCA

the transpose of @f

@x
.

Theorem A.33 Differentiation Rules

Assume that A is a matrix and a, x, and y are vectors. Furthermore, we assume
that the following expressions exist and all matrices and vectors are of appropriate
order. The following rules then hold:

1.
@y 0x
@x

D y .

2.
@x0Ax

@x
D .A C A0/x.

3. If A is symmetric, then

@x0Ax

@x
D 2Ax D 2A0x.

4.
@Ax

@x
D A0.

5.
@Ax

@x0 D A.

Theorem A.34 Local Extremes

Let x D .x1; : : : ; xn/
0 be a .n � 1/-vector and f .x/ a real function differentiable

with respect to the elements xi of x. Define the vector
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s.x/ D @f .x/

@x

of first derivatives and the matrix

H .x/ D @s.x/

@x0 D

0

BBBB@

@s1.x/

@x1
� � � @s1.x/

@xn
:::

:::
@sn.x/

@x1
� � � @sn.x/

@xn

1

CCCCA
D

0

BBBBB@

@2f .x/

@x1@x1
� � � @

2f .x/

@x1@xn
:::

:::

@2f .x/

@xn@x1
� � � @

2f .x/

@xn@xn

1

CCCCCA

of second derivatives. H .x/ is also called Hessian matrix or simply the Hessian.
A necessary condition for x D x0 being a local extreme of f is

s.x0/ D 0: (A.3)

If Eq. (A.3) is true, the following sufficient condition holds:
• If H .x0/ is positive definite x0 is a local minimum.
• If H .x0/ is negative definite x0 is a local maximum.



BProbability Calculus and Statistical Inference

This appendix contains (in concise form) parts of probability calculus and statistical
inference that are used in this book but may not be sufficiently covered in
introductory courses or textbooks. Apart from some univariate distributions, this
appendix mainly considers multivariate random variables, as well as likelihood and
Bayesian inference for multidimensional parameters.

B.1 Some Univariate Distributions

Definition B.1 Binomial Distribution

A discrete random variableX is said to have a binomial distribution with parameters
n 2 f1; 2; : : :g and � 2 Œ0; 1� if it has (discrete) probability function

f .x/ D
 
n

x

!
�x .1 � �/x; x D 0; 1; : : : ; n:

The mean and variance are given by

E.X/ D n�;

Var.X/ D n� .1 � �/:
We write X � B.n; �/. For n D 1 we also speak of a Bernoulli distribution.

A binomial distributed random variable results as the sum of independent and
identically distributed binary random variables X1; : : : ; Xn with P.Xi D 1/ D �

and P.Xi D 0/ D 1 � � . Then

X D X1 C : : :CXn � B.n; �/:

Note that the independence of the Xi is crucial for this result.

L. Fahrmeir et al., Regression, DOI 10.1007/978-3-642-34333-9,
© Springer-Verlag Berlin Heidelberg 2013
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Definition B.2 Beta Distribution

A continuous random variable X is said to have a beta distribution with parameters
a > 0 and b > 0 if it has probability function

f .x/ D � .aC b/

� .a/� .b/
xa�1.1 � x/b�1; x 2 .0; 1/;

where � .�/ is the gamma function. The mean and the variance are given by

E.X/ D a

aC b
;

Var.X/ D ab

.aC b/2.aC b C 1/
:

We write X � Beta.a; b/. For a D b D 1, we obtain a uniform distribution in the
interval .0; 1/.

Definition B.3 Beta-Binomial Distribution

A discrete random variable X is said to have a beta-binomial distribution with
parameters n 2 f1; 2; : : :g, a > 0, b > 0 if it has probability function

f .x/ D � .aC b/

� .a/� .b/� .a C b C n/

 
n

x

!
� .a C x/� .a C n � x/ x D 0; 1; 2; : : : ; n:

The mean and the variance are given by

E.X/ D n
a

a C b
;

Var.X/ D n
ab

.a C b/2
a C b C n

a C b C 1
:

We write X � BetaB.n; a; b/. For a D b D 1, the beta-binomial distribution
corresponds to a discrete uniform distribution on 0; 1; : : : ; n, i.e., f .x/ D 1=.nC1/.

The beta-binomial distribution arises as a mixture distribution. Suppose X j� �
B.n; �/ and � � Beta.a; b/, then X � BetaB.n; a; b/.

Definition B.4 Poisson Distribution

A discrete random variable X is said to have a Poisson distribution with parameter
	 > 0 if it has probability function

f .x/ D 	x

xŠ
exp.�	/; x D 0; 1; 2 : : : :
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The mean and the variance are given by

E.X/ D 	;

Var.X/ D 	:

We write X � Po.	/.

Definition B.5 Normal Distribution and Truncated Normal Distribution

A continuous random variableX is said to have a normal (or Gaussian) distribution
if it has probability density function (p.d.f)

f .x/ D 1

�
p
2�

exp

�
� .x � �/2

2�2

�
:

The mean and variance are given by

E.X/ D �;

Var.X/ D �2:

We writeX � N.�; �2/. If � D 0, �2 D 1, thenX is said to have a standard normal
distribution.

If X is restricted to a � X � b, then it is said to have a truncated normal
distribution. We write X � TNa;b.�; �

2/. Its p.d.f. is given by

g.x/ D
8
<

:

f .x/

P.a � X � b/
; a � x � b;

0; else:

The support of X is restricted to the interval Œa; b� and the density has to be
renormalized. For a D �1 or b D 1, X is said to be left or right truncated.

Definition B.6 Lognormal Distribution

A continuous nonnegative random variable X is said to have a lognormal distribu-
tion if Y D log.X/ follows a N.�; �2/ distribution. Its p.d.f. is

f .x/ D 1p
2��

1

x
exp

��.log.x/ � �/2=2�2� ; x > 0:

The mean and variance are given by

E.X/ D exp.�C �2=2/;

Var.X/ D exp.2�C �2/ � .exp.�2/ � 1/:

We write X � LN.�; �2/.
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Definition B.7 Inverse Gaussian Distribution

A continuous nonnegative random variable X is said to have an inverse Gaussian
distribution with parameters � > 0 and 	 > 0 if it has p.d.f.

f .x/ D
�

	

2�x3

� 1
2

exp

�
�	.x � �/2

2�2x

�
x > 0:

The mean and variance are given by

E.X/ D �;

Var.X/ D �3=	:

We write X � invGauss.�; 	/.

Definition B.8 Laplace Distribution

A continuous random variable X is said to have a Laplace distribution (or double
exponential distribution) with location parameter � and scale parameter s > 0 if it
has p.d.f.

f .x/ D 1

2s
exp

�
�jx � �j

s

�
:

The mean and variance are given by

E.X/ D �;

Var.X/ D 2s2:

We write X � La.�; s/.

Definition B.9 Gamma Distribution

A continuous nonnegative random variable X is said to have a gamma distribution
with parameters a > 0 and b > 0 if it has p.d.f.

f .x/ D ba

� .a/
xa�1 exp .�bx/ ; x > 0:

The mean and variance are given by

E.X/ D a=b;

Var.X/ D a=b2:

The mode is .a � 1/=b (for a > 1). We write X � G.a; b/.
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An alternative parameterization of the p.d.f., depending on� D E.X/ and a scale
parameter � > 0, is

f .x/ D 1

� .�/

�
�

�

��
x��1 exp

�
� �
�
x

�
; x > 0:

This alternative p.d.f. is used, for example, in Chap. 5 for gamma regression models.

Definition B.10 Exponential Distribution

A continuous nonnegative random variable X is said to have an exponential
distribution with parameter 	 > 0 if it has p.d.f.

f .x/ D 	 exp.�	x/; x > 0:

The mean and variance are given by

E.X/ D 1=	;

Var.X/ D 1=	2:

We write X � Expo.	/. The exponential distribution is a special gamma distribu-
tion with a D 1, b D 	.

Definition B.11 Chi-Squared Distribution

A continuous nonnegative random variable X is said to have a chi-squared
distribution with n degrees of freedom if it has p.d.f.

f .x/ D 1

2
n
2 � .n

2
/
x
n
2 �1 exp

�
�1
2
x

�
; x > 0:

The mean and variance are given by

E.X/ D n;

Var.X/ D 2n:

We writeX � �2n. The chi-squared distribution is a special gamma distribution with
a D n=2 and b D 1=2.

If X1; : : : ; Xn are i.i.d. N.0; 1/ variables, then

Yn D
nX

iD1
X2
i

is �2n-distributed. By the (strong) law of large numbers, this representation implies
Yn=n ! 1 for n ! 1 (almost surely).
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Definition B.12 Inverse Gamma Distribution

If Y � G.a; b/, then X D 1=Y has an inverse gamma distribution with p.d.f.

f .x/ D ba

� .a/
x�.aC1/ exp .�b=x/ ; x > 0:

The mean and variance are given by

E.X/ D b=.a � 1/; a > 1;

Var.X/ D b2=..a � 1/2.a � 2//; a > 2:

We write X � IG.a; b/.

Definition B.13 t-Distribution

A continuous random variable X is said to have a t-distribution with n degrees of
freedom if it has p.d.f.

f .x/ D � .nC 1/=2p
n�� .n=2/.1C x2=n/.nC1/=2 :

The mean and variance are given by

E.X/ D 0; n > 1;

Var.X/ D n=.n� 2/; n > 2:

We write X � tn. The t1-distribution is also called Cauchy distribution.
If X � N.0; 1/ and Y � �2n are independent, then

T D X
q

Y
n

� tn: (B.1)

If X1; : : : ; Xn are i.i.d. N.�; �2/ random variables, then

NX � �

S

p
n � tn�1

with

S D 1

n � 1

nX

iD1
.Xi � NX/2 and NX D 1

n

nX

iD1
Xi :
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Definition B.14 F-Distribution

A continuous random variable X is said to have a F-distribution with n and m
degrees of freedom if it has p.d.f.

f .x/ D nn=2mm=2 � .n=2Cm=2/

� .n=2/� .m=2/

xn=2�1

.nx Cm/.nCm/=2 ; x � 0:

We write F � Fn;m.
If X1 � �2n and X2 � �2m are independent, then

X D X1=n

X2=m

has an F-distribution with n andm degrees of freedom.
If Y is t-distributed with m degrees of freedom then X D Y 2 � F1;m.

Theorem B.1 Change of Variables

Let X be a continuous random variable with p.d.f. fX.x/ and Y D g.X/ a
monotonic transformation of X . It follows that Y has p.d.f.

fY .y/ D fX.g
�1.y//

jg0.g�1.y//j :

B.2 Random Vectors

Definition B.15 Random Vector

The p-dimensional vector X D .X1; : : : ; Xp/
0 is called random vector or

p-dimensional random variable if the componentsX1; : : : ; Xp are univariate (scalar)
random variables. The random vector X is called continuous if there is a function
f .x/ D f .x1; : : : ; xp/ � 0 such that

P.a1 � X1 � b1; : : : ; ap � Xp � bp/ D
Z bp

ap

: : :

Z b1

a1

f .x1; : : : ; xp/ dx1 : : : dxp:

The function f is called (joint) probability density function (p.d.f.) of X .
The random vector X is called discrete, if X has only values in a finite or

countable set fx1;x2; : : :g 
 Rp . The function f with

f .x/ D
�

P.X D x/ x 2 fx1;x2; : : :g
0 else

is called probability function or discrete p.d.f. of X .
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Definition B.16 Marginal and Conditional Distributions

Let the p-dimensional random vector X D .X1; : : : ; Xp/
0 be partitioned into the

p1-dimensional vector X 1 and the p2-dimensional vector X 2, i.e., X D .X 0
1;X

0
2/

0.
The p1-dimensional p.d.f. or probability function fX 1 .x1/ of X 1 is then called
marginal p.d.f. or marginal probability function of X . It is given by

fX 1 .x1/ D
Z 1

�1
: : :

Z 1

�1
f .x1;x2/ dxp1C1 : : : dxp

for continuous random vectors and

fX 1
.x1/ D P

x2
f .x1;x2/

for discrete random vectors. The conditional p.d.f. or probability function of X 1

given X 2 D x2 is defined as

f .x1jx2/ D

8
<̂

:̂

f .x1;x2/

fX2
.x2/

for fX 2
.x2/ > 0

0 else.

The marginal and conditional p.d.f.’s or probability functions for X 2 are defined in
complete analogy.

Definition B.17 Mean Vector

Let X D .X1; : : : ; Xp/
0 be a p-dimensional random vector. Then

E.X/ D � D .�1; : : : ; �p/
0 D .E.X1/; : : : ;E.Xp//0

is called mean vector of X .

Definition B.18 Covariance Matrix, Correlation Matrix, and Precision
Matrix

The covariance matrix Cov.X/ D ˙ of a p-dimensional random vector X is
defined as

Cov.X/ D ˙ D E.X � �/.X � �/0 D

0
B@
�11 : : : �1p
:::

:::

�p1 : : : �pp

1
CA ;

where �ij D Cov.Xi ; Xj /, i ¤ j , is the covariance between Xi and Xj , and �ii D
�2i D Var.Xi / is the variance of Xi .
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The correlation matrix R of X is defined as

R D

0
B@
1 12 : : : 1p
:::

:::

p1 p2 : : : 1

1
CA ;

where

ij D Cov.Xi ; Xj /p
Var.Xi / � Var.Xj /

:

The covariance matrix ˙ as well as the correlation matrix R are symmetric and
positive semidefinite. They are positive definite if the components X 1; : : : ;Xp are
linearly independent, i.e., no component can be expressed as a linear combination
of remaining components. If ˙ is positive definite, then the inverse P D ˙ �1 is
called precision matrix. In case that ˙ is only positive semidefinite and therefore
not invertible, the precision matrix is a generalized inverse, i.e., P D ˙ �.

Theorem B.2 Rules for Mean Vectors and Covariance Matrices

Let X , Y , and Z be random vectors; A;B; a;b matrices or vectors of appropriate
order; and E.X/ D �, Cov.X/ D ˙ . The following rules then hold:
1. E.X C Y / D E.X/C E.Y /
2. E.AX C b/ D A � E.X/C b

3. Cov.X/ D E.XX 0/ � E.X/E.X/0

4. Var.a0X/ D a0Cov.X/a D
pX

iD1

pX

jD1
aiaj �ij

5. Cov.AX C b/ D ACov.X/A0
6. Cov.X C Y / D Cov.X/C Cov.Y / provided that X and Y are uncorrelated
7. Cov.X C Y ;Z / D Cov.X ;Z /C Cov.Y ;Z /
8. E.X 0AX/ D tr.A˙ /C �0A�

9. Law of total (or iterated) expectation: E.X/ D E.E.X j Y //

10. Law of total covariance: Cov.X/ D E.Cov.X j Y //C Cov.E.X j Y //

11. Law of total variance for scalar random variablesX : Var.X/ D E.Var.X j Y //C
Var.E.X j Y //

Definition B.19 Empirical Means, Covariance, and Correlation Matrices

Let x1; : : :xn be realizations of i.i.d. random vectors X 1; : : : ;Xn from the distribu-
tion of X . The mean vector then can be estimated by the empirical mean

O� D . O�1; : : : ; O�p/0 D . Nx1; : : : ; Nxp/0 D Nx;

where

O�j D 1

n

nX

iD1
xij D Nxj :
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Correspondingly, the empirical covariance matrix Ȯ is defined by estimating
variances and covariances in ˙ through the empirical variances

O�2j D 1

n � 1
nX

iD1
.xij � Nxj /2

and the empirical covariances

O�jk D 1

n� 1

nX

iD1
.xij � Nxj /.xik � Nxk/:

The empirical correlation matrix OR is defined analogously through the empirical
correlation coefficients.

B.3 Multivariate Normal Distribution

B.3.1 Definition and Properties

Definition B.20 Multivariate Normal Distribution

A continuous p-dimensional random vector X D .X1;X2; : : : ; Xp/
0 is said to have

a multivariate normal (or Gaussian) distribution if it has p.d.f.

f .x/ D .2�/�
p
2 j˙ j� 1

2 exp
	� 1

2
.x � �/0˙ �1.x � �/



(B.2)

with � 2 Rp and positive definite .p � p/-matrix ˙ .
For deriving posterior distributions in Bayesian models it is often convenient to

rewrite the p.d.f. in alternative form. Omitting all factors in Eq. (B.2) that do not
depend on x, we obtain

f .x/ / exp
�� 1

2
.x � �/0˙ �1.x � �/

�

D exp
�� 1

2
x0˙ �1x C x0˙ �1� � 1

2
�0˙ �1�

�

/ exp
�� 1

2
x0˙ �1x C x0˙ �1�

�
:

(B.3)

If X is multivariate normal, then its p.d.f. is always proportional to Eq. (B.3).

Theorem B.3 Mean and Covariance Matrix

It can be shown that E.X/ D � and Cov.X/ D ˙ . We write

X � Np.�;˙ /;
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analogous to the univariate normal distribution. The index p is often suppressed if
the dimension p is obvious from the context. The special case � D 0 and ˙ D I is
called the (multivariate) standard normal distribution.

Theorem B.4 Product of Two Normal Densities

Suppose that the density of a random vector X is given by

f .x/ / exp.�1
2
.x � a/0A.x � a// exp.�1

2
.x � b/0B.x � b//:

X is then multivariate normal with covariance matrix and mean

˙ D .A C B/�1 � D ˙ .Aa C Bb/:

Theorem B.5 Linear Transformation

Let X � Np.�;˙ /, d 2 Rq , and D a .q � p/-matrix with rk.D/ D q � p; then

Y D d C DX � Nq.d C D�;D˙D 0/:

Theorem B.6 Marginal and Conditional Distributions

Let the multivariate normal random variable X � N.�;˙ / be partitioned into the
subvectors Y D .X1; : : : ; Xr/

0 and Z D .XrC1; : : : ; Xp/0, i.e.,

X D
�

Y

Z

�
; � D

�
�Y

�Z

�
; ˙ D

�
˙ Y ˙ YZ

˙ZY ˙Z

�
:

Then Y has an r-dimensional normal distribution Y � N.�Y ;˙ Y /.
The conditional distribution of Y given Z is again multivariate normal with mean

�Y jZ D �Y C ˙ YZ � ˙ �1
Z .Z � �Z/

and covariance matrix

˙ Y jZ D ˙ Y � ˙ YZ˙ �1
Z ˙ZY :

Furthermore, Y and Z are independent if and only if Y and Z are uncorrelated,
i.e., if ˙ YZ D ˙ZY D 0. This equivalence is generally not true for non-normal
random vectors: If Y and Z are independent they are also uncorrelated, but in
general ˙ZY D 0 does not imply independence.
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B.3.2 The Singular Multivariate Normal Distribution

Up to now, we have assumed that rk.˙ / D p so that ˙ is positive definite and ˙ �1
exists. In the following, we consider the case rk.˙ / < p.

Definition B.21 Singular Multivariate Normal Distribution

Let X � Np.�;˙ /. Then X follows a singular multivariate normal distribution if
rk.˙ / D r < p. The distribution of a singular normal distribution is often expressed
in terms of the precision matrix P with rk.P/ D r < p. The density is then given
by

f .x/ / exp

�
�1
2
.x � �/0P.x � �/

�
:

The precision matrix P may be chosen as a generalized inverse ˙ � of ˙ . This form
of the singular normal distribution will be used frequently in the book, in particular
in Chaps. 8 and 9.

The virtue of specifying in statistical models the precision matrix rather than the
covariance matrix is that the elements of the precision matrix can be interpreted as
conditional correlations. More specifically, for multivariate normal distributions we
have

Corr.Xi ; Xj j X�ij / D � pijp
piipjj

;

where X�ij is the vector X with the i th and j th element excluded and pij is the
element of P in the i th row and j th column. Thus, pij D 0 in the precision matrix
implies that Xi and Xj are conditionally uncorrelated and (in case of the normal
distribution) also conditionally independent. Note that conditional independence
does not imply (unconditional) independence.

Theorem B.7 Characterization of the Singular Normal Distribution

Let X be a singular normal random vector, i.e., X � Np.�;˙ /, with rk.˙ / D
rk.P/ D r < p. Assume that (G H ) is an orthogonal matrix, where the columns
of the .p � r/-matrix G are a basis for the column space of ˙ and the columns of
H are a basis of the null space of ˙ . Consider the transformation

�
Y 1

Y 2

�
D �

G H
�0

X D
�

G 0X
H 0X

�
:

It follows that Y 1 is the stochastic part of X and is nonsingular normal with

Y 1 � N.G 0�;G 0˙G /:

Y 2 is the deterministic part of X with

E.Y 2/ D H 0�; Var.Y 2/ D 0:



B.3 Multivariate Normal Distribution 651

Here, Var.Y 2/ is the vector of variances of Y 2. The p.d.f. of the stochastic part
Y 1 D G 0X has the form

f .y1/ D 1

.2�/
r
2 .
Qr
iD1 	i /

1
2

exp

�
�1
2
.y1 � G 0�/0.G 0˙ G /�1.y1 � G 0�/

�
;

(B.4)
where 	1; : : : ; 	r are the r nonzero eigenvalues of ˙ .

B.3.3 Distributions of Quadratic Forms

Quadratic forms of normal random vectors appear in tests of linear hypotheses.
Refer to Sect. 3.3 in Chap. 3.

Theorem B.8 Distributions of Quadratic Forms

1. Let X � Np.�;˙ / with ˙ > 0. It follows that

Y D .X � �/0˙ �1.X � �/ � �2p:

2. Let X � Np.0; I/, B an .n�p/-matrix (n � p/ and, R a symmetric idempotent
.p � p/-matrix with rk.R/ D r ; then
• X 0RX � �2r .
• BR D 0 implies independence of X 0RX and BX .

3. Assume that X1; : : : ; Xn are i.i.d. � N.�; �2/ variables and

S2 D 1

n � 1
nX

iD1
.Xi � NX/2:

It then follows that:

•
n � 1
�2

S2 � �2n�1.
• S2 and NX are independent.

4. Assume that X � Nn.0; I/, and let R and S be symmetric and idempotent n�n
matrices with rk.R/ D r , rk.S / D s, and RS D 0. It follows that
• X 0RX and X 0SX are independent.

•
s

r

X 0RX

X 0SX
� Fr;s .

B.3.4 Multivariate t-Distribution

A continuous p-dimensional random vector X D .X1; : : : ; Xp/
0 is said to have

a multivariate t-distribution with � degrees of freedom, location parameter �, and
(positive definite) dispersion matrix ˙ , if it has p.d.f.
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f .x/ D j˙ j� 1
2 .��/�

p
2
� ..� C p/=2/

� .�=2/

�
1C .x � �/0˙ �1.x � �/

�

��.�Cp/=2
:

We write X � t.�;�;˙ /. The expectation is � (provided that � > 1) and the
covariance matrix is �=.� � 2/˙ (provided that � > 2). Note that a diagonal
dispersion matrix ˙ corresponds to uncorrelated components of the random
vector X . In contrast to the multivariate normal distribution the components are,
however, not stochastically independent.

Any subvector of X has a (multivariate) t-distribution with � degrees of freedom
and the corresponding subvector of � and the submatrix of ˙ as location parameter
and dispersion matrix, respectively.

In analogy to the constructive definition (B.1) of the univariate t-distribution,
the multivariate t-distribution can be defined constructively, based on a multivariate
normal random vector and a chi-squared distributed random variable.

B.3.5 Normal-Inverse Gamma Distribution

Let Y be a p � 1 dimensional random vector and S be a random variable. The
random vector X D .Y ; S/0 is said to have a normal-inverse gamma distribution
with parameters �, ˙ , a, and b if

Y jS � N.�; S˙ /;

S � IG.a; b/:

We write X D .Y ; S/0 � NIG.�;˙ ; a; b/. The density of the distribution is given
by

f .y ; s/ D 1

.2�/
p
2 j˙ j 12

exp

�
�1
2
.y � �/0˙ �1.y � �/

�

ba

� .a/

1

.�2/aC1 exp

�
� b

�2

�
:

The NIG.�;˙ ; a; b/-distribution has the following properties:
1. E.Y / D �

2. Cov.Y / D b=.a � 1/˙

3. E.S/ D b=.a � 1/ provided that a > 1
4. Var.S/ D b2=Œ.a � 1/2.a � 2/� provided that a > 2
5. Y � t.2a;�; b=a˙ /
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B.4 Likelihood Inference

This section describes the method of maximum likelihood (ML) for estimation
of unknown parameters in statistical models and likelihood-based tests for linear
hypotheses about these parameters. More detailed introductions can be found, for
example, in Migon and Gamerman (1999) and Held and Sabanés Bové (2012).

B.4.1 Maximum Likelihood Estimation

Let Y1; : : : ; Yn be a random sample with realizations y1; : : : ; yn. Let the joint
probability (for discrete Y1; : : : ; Yn)

P.Y1 D y1; : : : ; Yn D yn j �/

or the joint p.d.f. (for continuous Y1; : : : ; Yn)

f .Y1 D y1; : : : ; Yn D yn j �/

depend on an unknown vector � D .�1; : : : ; �p/
0 2 � that has to be estimated.

For given realizations y1; : : : ; yn this joint probability or the value of the p.d.f. is
considered as a function of � and is called likelihood, denoted by L.�/:

L.�/ D P.Y1 D y1; : : : ; Yn D yn j �/;

L.�/ D f .Y1 D y1; : : : ; Yn D yn j �/:

The principle of maximum likelihood postulates the maximum likelihood estimator
(MLE) O� for � as the value O� which maximizes the likelihood L.�/.

In the discrete case, this principle says: Determine the MLE O� such that the
probability of observing the realized sample y1; : : : ; yn assumes its maximum for
� D O� and, therefore, this sample becomes as likely as possible. In analogy,
the p.d.f. assumes its maximum for � D O� , making the sample as plausible as
possible. In most cases, in particular for almost all models in this book (excluding
quantile regression), the likelihood L.�/ is differentiable with respect to � , and
the maximum can be determined by setting the first derivatives to zero and solving
the resulting system of equations for � D O� . For technical reasons, maximization
is usually not carried out for the likelihood but for the log-likelihood l.�/ D
log.L.�//, obtained by taking the logarithm of the likelihood. Since the logarithm
is a strictly increasing function, l.�/ attains its maximum at the same value � D O�
as L.�/.

In the most simple situation, Y1; : : : ; Yn are an i.i.d. sample from f .y j �/, i.e.,
they are independent and identically distributed as the typical random variable Y �
f .yj�/. To unify notation, we denote probability functions (Y discrete) and p.d.f.’s
(Y continuous) with f .yj�/. Because Y1; : : : ; Yn are independent, their joint density
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is the product of the densities f .yi j �/. Therefore the likelihood is

L.�/ D f .y1 j �/ � : : : � f .yn j �/

and the log-likelihood is the sum

l.�/ D logf .y1 j �/C : : :C logf .yn j �/ D
nX

iD1
li .�/

with the log-likelihood contributions li .�/ D logf .yi j �/. The following example
illustrates this situation.

Example B.1 Poisson Distribution: MLE
Let Y � Po.	/ follow a Poisson distribution with unknown parameter 	. To estimate 	, we
assume an i.i.d. sample Y1; : : : ; Yn with Yi � Po.	/ and a realized sample y1; : : : ; yn. The
MLE for 	 is obtained in the following steps:
1. Likelihood

Because Y1; : : : ; Yn are independent, the joint probability for the realized sample
factorizes into the product of the separate marginal probabilities, and we obtain the
likelihood

L.	/ D P.Y1 D y1; : : : ; Yn D yn j	/
D P.Y1 D y1 j	/ � : : : � P.Yn D yn j	/
D 	y1

y1Š
exp.�	/ � : : : � 	

yn

ynŠ
exp.�	/:

The factors 1=y1Š; : : : ; 1=ynŠ do not depend on 	 and can therefore be omitted when
maximizing the likelihood. Therefore

L.	/ / exp.�n	/ � 	y1 � : : : � 	yn :

Often the right-hand side, after omitting constant factors, is also called likelihood, and
we write

L.	/ D exp.�n	/ � 	y1 � : : : � 	yn :
2. Log-likelihood

Taking logarithms, we get

l.	/ D �n	C
nX

iD1

yi log.	/:

3. First derivative and setting it to zero

@ l.	/

@	
D �nC

nX

iD1

yi
1

	

ŠD 0:

The first derivative s.	/ D @ l.	/=@ 	 is called score function.
Solving for the unknown parameter gives the MLE:



B.4 Likelihood Inference 655

O	 D 1

n

nX

iD1

yi D Ny:

4. Second derivative to check for a maximum
The second derivative of the log-likelihood is

@2 l.	/

@	2
D �

nX

iD1

yi
1

	2
< 0:

Therefore the estimator of step 3 is indeed a maximizer of the log-likelihood (and the
likelihood). The negative second derivative is called observed Fisher information. 4

The score function and the Fisher information appearing in this example play an
important role in likelihood theory. Generally, the score function is defined as the
vector

s.�/ D �
s1.�/; : : : ; sp.�/

�0 D
�
@l.�/

@�1
; : : : ;

@l.�/

@�p

�0
D @l.�/

@�

of partial first derivatives of the log-likelihood. The observed Fisher information
(matrix) is defined as

H .�/ D �

0

BBBBB@

@2l.�/

@�1@�1
� � � @

2l.�/

@�1@�p
:::

:::

@2l.�/

@�p@�1
� � � @

2l.�/

@�p@�p

1

CCCCCA
D �

0

BBBBB@

@s1.�/

@�1
� � � @s1.�/

@�p
:::

:::
@sp.�/

@�1
� � � @sp.�/

@�p

1

CCCCCA
;

i.e., the negative matrix of second derivatives of the log-likelihood. In more compact
notation we obtain

H .�/ D �
�
@s.�/

@�

�0
D �@s.�/

@� 0 D �@
2l.�/

@�@� 0 ;

thereby using Definition A.29 (p. 636) in Appendix A.8. As the name already
indicates, the observed Fisher information matrix can be considered as a (local)
measure of the information that the likelihood contains about the unknown parame-
ter. The second derivative of a function is a measure of the curvature of the function
at � . The higher the curvature of the log-likelihood near its maximum, the more
information is provided by the likelihood about the unknown parameter. Since the
second derivative is negative at or near a maximum, the Fisher information is defined
as the negative second derivative, i.e., it is positive at or near a maximum.

Since the likelihood (as well as the log-likelihood) depends on the realized values
of the sample variables Y1; : : : ; Yn, the likelihood function will have different values
when samples are repeatedly drawn from the (joint) distribution of the sample.
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Therefore, the likelihood as well as the log-likelihood and its derivatives can be
interpreted as random variables, having mean, variance, etc. Under mild regularity
conditions that are fulfilled for all examples and models in this book, the score
function has mean 0, i.e.,

E.s.�// D 0:

The mean is taken with respect to the sample variables Y1; : : : ; Yn. The mean of the
observed Fisher information (matrix)

F .�/ D �

0

BBBBBBB@

E

 
@2l.�/

@�1@�1

!
� � � E

 
@2l.�/

@�1@�p

!

:::
:::

E

 
@2l.�/

@�p@�1

!
� � � E

 
@2l.�/

@�p@�p

!

1

CCCCCCCA

D �

0

BBBBB@

E

�
@s1.�/

@�1

�
� � � E

�
@s1.�/

@�p

�

:::
:::

E
�
@sp.�/

@�1

�
� � � E

�
@sp.�/

@�p

�

1

CCCCCA

is of particular interest and is called expected Fisher information. It can be
considered as a global measure of information which can be determined prior to
and independent from realized samples. Under mild regularity conditions fulfilled
for all models throughout this book it can be shown that

F .�/ D Cov.s.�// D E.s.�/s.�/0/:

The latter equality holds because E.s.�// D 0.
For independent sample variables information is additive: Let H Yi .�/ and

F Yi .�/ denote the observed and expected Fisher information with respect to the
sample variable Yi , i.e., the information contributed by Yi alone; then the complete
information provided by the sample is

H Y .�/ D
nX

iD1
H Yi .�/ , F Y .�/ D

nX

iD1
F Yi .�/:

Similarly, the score function is additive and composed of the individual score
contributions:

s.�/ D
nX

iD1
si .�/:

Example B.2 Poisson Distribution: Score Function and Fisher
Information

Let Y1; : : : ; Yn be an i.i.d. sample for a Poisson variable Y � Po.	/ with unknown
parameter 	. The log-likelihood and score function contribution of yi are (refer to
Example B.1)

li .	/ D yi log.	/� log.yi Š/� 	 and si .	/ D yi

	
� 1:

It is easy to see that E.s.	// D 0: Since
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E.si .	// D E

�
Yi

	
� 1

�
D 1

	
E.Yi /� 1 D 1

	
	� 1 D 0;

we have

E.s.	// D E

 
nX

iD1

si .	/

!
D

nX

iD1

E.si .	// D 0:

The observed Fisher information contributed by yi is

Hyi .	/ D �@
2li .	/

@2	
D �@si .	/

@	
D �

�
� yi

	2

�
D yi

	2
:

Due to additivity of information, we obtain the observed information

HY .	/ D 1

	2

nX

iD1

yi

for the entire sample. The expected Fisher information contributed by Yi , with E.Yi / D 	, is

FYi .	/ D E

�
Yi

	2

�
D 	

	2
D 1

	
;

and we can verify additivity, i.e.,

FY .	/ D n

	

for the entire sample. This shows that expected information grows linearly with sample
size n. Furthermore, it is inversely proportional to 	 which is plausible because the variance
of the MLE NY is Var. NY / D 1

n
	, i.e., the inverse of the expected information increases

linearly with 	. 4
In this book, we mostly consider regression situations with response variables

Y1; : : : ; Yn and with observed responses y1; : : : ; yn, as well as additional covariate
values x1; : : : ;xn as the realized sample. The vector � is then often the vector
ˇ of regression coefficients. Given x1; : : : ;xn, the response variables Y1; : : : ; Yn
are no longer identically distributed, but they are still assumed to be conditionally
independent given the covariates. The densities of the Yi depend on xi and,
therefore, on i , i.e., Yi � fi .yi j �/ D f .yi j xi I ˇ/ with � D ˇ. Due to
independence of the sample variables, the likelihood is again the product

L.�/ D f1.y1 j �/ � � � : : : � fn.yn j �/

of individual densities, and the log-likelihood is the sum

l.�/ D
nX

iD1
li .�/ D

nX

iD1
logfi .yi j �/

of the log-likelihood contributions li .�/ D logfi .yi j �/. This also implies that
the score function and the Fisher information remain additive in terms of the
observations as before.
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Example B.3 Poisson Regression
We consider the following Poisson regression model:

Yi � Po.	i / i D 1; : : : ; n;

	i D exp.ˇ0 C ˇ1xi / D exp.�i /;

�i D ˇ0 C ˇ1xi :

Our aim is to compute the MLEs for ˇ0 and ˇ1. It will turn out that an analytical solution
in closed form as in Example B.1 is no longer available. Therefore, computation has to be
based on numerical optimization methods, as seen in the following section. The other steps
for determining the MLE are conceptually the same as before:
1. Likelihood

Omitting factors that do not depend on ˇ0 and ˇ1, the likelihood contribution of
observation i is

Li .ˇ0; ˇ1/ D 	
yi
i exp.�	i /:

The likelihood of the sample is the product

L.ˇ0; ˇ1/ D
nY

iD1

Li .ˇ0; ˇ1/

of individual likelihood contributions.
2. Log-likelihood

Taking logarithms, we obtain the individual log-likelihood contributions

li .ˇ0; ˇ1/ D yi log.	i /� 	i D yi .ˇ0 C ˇ1xi /� exp.ˇ0 C ˇ1xi /

and, summing up,

l.ˇ0; ˇ1/ D
nX

iD1

.yi .ˇ0 C ˇ1xi /� exp.ˇ0 C ˇ1xi //:

3. Score function
The partial first derivatives of individual log-likelihoods are

@ li .ˇ0; ˇ1/

@ˇ0
D yi � exp.ˇ0 C ˇ1xi / D yi � 	i ;

@ li .ˇ0; ˇ1/

@ˇ1
D yixi � exp.ˇ0 C ˇ1xi / � xi D xi .yi � 	i/:

Defining the vectors y D .y1; : : : ; yn/
0, x D .x1; : : : ; xn/

0, � D .	1; : : : ; 	n/
0,

1 D .1; : : : ; 1/0 and the design matrix X D .1 x/, we obtain the score function

s.ˇ0; ˇ1/ D

0

BBBB@

nX

iD1

.yi � 	i /

nX

iD1

xi .yi � 	i /

1

CCCCA
D
�

10.y � �/

x0.y � �/

�
D X 0.y � �/:
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Setting the score function to zero, we obtain a nonlinear system of equations that has to
be solved numerically, as seen in the following section. The Fisher information matrix,
determined in the next step, is an important component of the numerical algorithm.

4. Fisher information matrix
The second partial derivatives of the individual log-likelihoods are

@2 li .ˇ0; ˇ1/

@ˇ20
D � exp.ˇ0 C ˇ1xi / D �	i ;

@2 li .ˇ0; ˇ1/

@ˇ21
D � exp.ˇ0 C ˇ1xi /x

2
i D �	ix2i ;

@2 li .ˇ0; ˇ1/

@ˇ0@ˇ1
D � exp.ˇ0 C ˇ1xi /xi D �	ixi :

Summing up and changing signs, we obtain the observed information matrix

H .ˇ/ D �@
2 l.ˇ0; ˇ1/

@ˇ@ˇ0
D �

nX

iD1

@2 li .ˇ0; ˇ1/

@ˇ@ˇ0
D

0

BBBB@

nX

iD1

	i

nX

iD1

	ixi

nX

iD1

	ixi

nX

iD1

	ix
2
i

1

CCCCA
:

Defining the diagonal matrix W D diag.	1; : : : ; 	n/, we can write

H .ˇ/ D X 0W X

in matrix notation. As H .ˇ/ does not depend on y , the observed information matrix is
equal to the expected information matrix in this example, i.e.,

F .ˇ/ D Ey .H .ˇ// D H .ˇ/:

In general, however, F .ˇ/ 6D H .ˇ/.
5. Iterative numerical computation of the MLE Ǒ

Ǒ is computed iteratively as the solution of the nonlinear system of equations

s. Ǒ/ ŠD 0

using the Newton or Fisher scoring algorithm sketched in the following section. 4
We finally remark that the likelihood principle can also be applied if the variables

Y1; : : : ; Yn are not independent. Such a situation appears, for example, in Sect. 7.3.2.
There, the response vector Y D .Y1; : : : ; Yn/

0 follows a multivariate normal
distribution

Y � N.�.ˇ/;˙ .˛//;

where the mean vector �.ˇ/ depends on ˇ and the (non-diagonal) covariance matrix
˙ .˛/ depends on an unknown parameter vector ˛. The likelihoodL.ˇ;˛/ D L.�/,
� D .˛;ˇ/ is then given by the p.d.f. of the multivariate normal distribution for Y .
It can no longer be factorized in the product of separate univariate p.d.f.’s for the
variables Y1; : : : ; Yn.
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B.4.2 Numerical Computation of the MLE

In most applications, the MLE cannot be determined analytically: the system of
equations, obtained from setting the score function to zero, is usually nonlinear and
cannot be solved for the unknown parameters in closed form; see Example B.3.
Therefore, numerical methods for computing the roots of the score function are
required. Various such methods have been developed; see, for example, Lange
(2000) for a survey. Here we only sketch the two most popular algorithms: the
Newton (or Newton–Raphson) method and the Fisher scoring algorithm.

We first illustrate the Newton–Raphson method for a scalar parameter. The aim
is to numerically compute the root of the score function, i.e., the solution of the
generally nonlinear score equation

s.�/ D 0:

Beginning with an initial value �.0/, an (approximate) solution is computed itera-
tively as follows (see Fig. B.1): At �.0/ the score function is approximated through
a straight line, the tangent. An improved approximate solution �.1/ is then obtained
as the root of the tangent. The tangent is given by

g.�/ D s
�
�.0/

�C s0 ��.0/
� � �� � �.0/

�
;

obtained through a first-order Taylor expansion of s.�/ at �.0/. The root of the
tangent provides the improved iterate

�.1/ D �.0/ � 1

s0 ��.0/
� � s ��.0/� :

Since �s0.�/ is the observed Fisher informationH.�/, we can also write

�.1/ D �.0/ CH
�
�.0/

��1
s
�
�.0/

�
:

Starting from �.1/ we get the next improved approximate solution �.2/ by
constructing another tangent of s.�/ at �.1/ and computing its root �.2/. This
algorithm continues iteratively until successive iterates do practically not change
any more.

The extension of the algorithm to a multivariate parameter � D .�1; : : : ; �p/
0 is

as follows: Let �.t/ be the current iterate of the approximate solution of s.�/ D 0.
An improved iterate is

�.tC1/ D � .t/ �
 
@s
�
� .t/

�

@� 0

!�1
s
�
� .t/

� D � .t/ C H
�
� .t/

��1
s
�
� .t/

�
:
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Fig. B.1 Illustration of the Newton method

The Fisher scoring method is obtained if the observed information matrix is
replaced by the expected information matrix F .�.t//. As an advantage, the expres-
sion for the expected information matrix is often simpler and faster to compute.

Example B.4 Poisson Regression
Continuing the Poisson regression example, the Newton–Raphson method for computing
the MLE Ǒ D . Ǒ

0; Ǒ
1/

0 works as follows:
1. Define the initial values Ǒ.0/, e.g., Ǒ.0/ D .0; 0/0. Set t D 0.
2. Compute improved estimates Ǒ.t/ through

Ǒ.tC1/ D Ǒ.t/ C H

� Ǒ .t/��1

s

� Ǒ .t/� D Ǒ.t/ C .X 0W X /�1X 0.y � �/;

where W D W

�
Ǒ.t/
�

and � D �

�
Ǒ.t/
�

depend on the current iterate Ǒ.t/.
3. Stop if

jj Ǒ.tC1/ � Ǒ.t/jj
jj Ǒ.t/jj � "

for a (very) small value " > 0. Otherwise set t D t C 1 and go to step 2. 4
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B.4.3 Asymptotic Properties of the MLE

Under certain regularity assumptions, depending in detail on the specific model
f .y1; : : : ; yn j �/, the following asymptotic properties hold: For n ! 1, or practi-
cally for large sample size, the MLE is consistent, asymptotically (or approximately)
unbiased, and asymptotically (or approximately) multivariate normal:

O� a� N.� ; OV /:

The (estimated) covariance matrix bCov. O�/ D OV is obtained as the inverse of the
observed or expected information matrix, i.e.,

OV D H �1. O�/ or OV D F �1. O�/;

evaluated at the MLE � D O� . These inverses are computed in the final iteration step
of the Newton or Fisher scoring algorithm. The diagonal elements Ovjj of OV are the

estimated variances cVar. O�j / of the j th component of O� , and
pOvjj is the estimated

standard deviation or standard error: sej D pOvjj .
Finally, MLEs are also asymptotically efficient, i.e., for large sample sizes their

variance is smaller or at least not larger than the variance of other asymptotically
unbiased estimators.

How large should the sample size n be so that these asymptotic properties
hold sufficiently well? It is not possible to give a general definitive answer to this
question. Basically, it depends on the quality of the approximation of the likelihood
or the log-likelihood in a neighborhood of O� through a normal distribution or a
quadratic function, respectively. As a rule of thumb, the sample size n has to be
much larger (about a factor of 10–20) than the number p of unknown parameters. If
in doubt, simulation studies are useful.

B.4.4 Likelihood-Based Tests of Linear Hypotheses

We consider testing linear hypotheses about � D .�1; : : : ; �p/
0 2 � of the form

H0 W C � D d versus H1 W C � 6D d ;

where the .r � p/-matrix C has full row rank r � p. In this book � is mostly the
vector ˇ of regression coefficients. An important special case are hypotheses about
an r-dimensional subvector �1 of � of the form

H0 W �1 D d versus H1 W �1 6D d :
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If �1 D ˇ1 is a subvector of regression coefficients and d D 0, this is a test about
significance of corresponding covariates. The three commonly used test statistics
are the (log-)likelihood ratio statistic, the Wald statistic, and the score statistic.

The (log-)likelihood ratio statistic

lr D 2fl. O�/� l. Q�/g D �2fl. Q�/� l. O�/g

compares the unrestricted maximum l. O�/ of the log-likelihood with the maximum
obtained for the restricted MLE l. Q�/, computed under the restriction C � D d of
H0. Since l. O�/ � l. Q�/, we have lr � 0. If the unrestricted maximum l. O�/ is
significantly larger than l. Q�/, implying that lr is large, H0 will be rejected in favor
of H1. The test statistic can also be motivated by considering the likelihood ratio

LR D L. O�/
L. Q�/ ;

where L. O�/ and L. Q�/ are the maximum of the likelihood without and under H0,
respectively. Now LR � 1, and H0 will be rejected if LR is significantly
larger than 1. Taking logarithms and multiplying by the factor 2, one obtains the
(log-)likelihood ratio test statistic.

To compute lr , the log-likelihood l.�/ has to be maximized under the restriction
of H0, which can require considerable effort for the general form C � D d of the
null restriction. This can be avoided with the Wald statistic

w D .C O� � d/0.C OV C 0/�1.C O� � d/:

It measures the weighted distance between the unrestricted estimate C O� of C �

and its hypothetical value d under H0. The weight is the inverse of the (estimated)
covariance matrix C OV C 0 of C O� � d , where OV is the (estimated) covariance matrix
of O� . If H0 is true, this weighted distance should be small, whereas H0 should be
rejected if w is large. For the special hypothesis H0 W �1 D d , the Wald statistic
simplifies to

w D . O�1 � d/0 OV �1
1 .

O�1 � d/;

where OV 1 D bCov. O�1/ is (the estimated) covariance matrix of O�1.
The score statistic

u D s0. Q�/ QV s. Q�/
measures the weighted distance between the value 0 D s. O�/ of the score function
at the MLE O� and the value s. Q�/ at the restricted MLE Q� , where QV is the estimated
covariance matrix of Q� .

Wald tests are computationally advantageous in cases when H0 defines a
submodel that has to be tested against a larger model (without the H0 restriction)
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that has been estimated already. Additionally, score tests are advantageous if an
already fitted model has to be tested against a larger model. Therefore, numerically
efficient forward and backward variable selection may be based on Wald and score
tests.

Under H0, the three test statistics are asymptotically equivalent and asymptoti-
cally (or approximately) chi-squared distributed with r degrees of freedom:

lr;w; s
a� �2r :

Critical values or p-values are computed using the limiting �2r -distribution. For
medium and large sample sizes, this approximation is usually sufficient. For smaller
sample sizes, the three test statistics may be comparably different from each other.
Note that the Wald test is not restricted to genuine likelihood inference. It is
applicable whenever an estimator O� is asymptotically normal, as, for example,
in least squares inference without normality assumption or in quasi-likelihood
inference.

B.4.5 Model Choice

For comparing and choosing between several competing statistical models with
different predictors and parameters, we need a compromise between good fit to
the data and model complexity, i.e., a (too) high effective number of parameters.
In linear regression models, for example, the goodness-of-fit measure R2 will be
increased by including additional covariates, interactions, etc. However, this usually
results in overfitting the (training) data and worsens predictive capabilities and
generalization to new data. Therefore, criteria for goodness of fit, such as R2 and,
for likelihood inference, the deviance or the log-likelihood, have to be modified
such that overfitting the data is avoided by penalizing high model complexity, i.e.,
a high effective number of parameters. For likelihood inference with p-dimensional
parameter � D .�1; : : : ; �p/

0, Akaike’s information criterion AIC is defined as

AIC D �2 l. O�/C 2 p;

where the term 2 p penalizes overly complex models. For model choice, models
with small AIC value (and not with large log-likelihood l. O�/!) are favored. Instead
of the AIC, also AIC=n, where n is the sample size, is used.

For non- and semiparametric models as in Chaps. 8 and 9, the fixed dimension p
is replaced by the “effective” dimension

df D tr.S /;

where S is the smoother matrix (see Sect. 8.1.8, p. 473). Alternative penalty terms,
for example, the adjusted AICcorr ,
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AICcorr D �2 l. O�/C 2n.df C 1/

n � df � 2 ;

are also suggested. Burnham and Anderson (2002) give a nice justification of the
AIC.

B.5 Bayesian Inference

Due to the development of computer intensive and simulation-based Markov chain
Monte Carlo (MCMC) methods, Bayesian inference has become an attractive
approach for analyzing complex statistical models. We first introduce concepts of
Bayesian inference and then describe MCMC methods. More detailed introductions
can be found, e.g., in Migon and Gamerman (1999) and Held and Sabanés Bové
(2012).

B.5.1 Basic Concepts of Bayesian Inference

The fundamental difference to likelihood-based inference is that the unknown
parameters � D .�1; : : : ; �p/

0 are not considered as fixed, deterministic quantities
but as random variables with a prior distribution. A Bayesian model therefore
consists of two parts:
• Prior distribution: Any (subjective) information about the unknown parameter

� is expressed by specifying a probability distribution for � . This distribution
is called prior (distribution) of � . The specification of a prior for � does not
necessarily mean that the unknown parameters are actually stochastic quantities.
Rather the prior describes the degree of uncertainty about the unknown parame-
ters prior to the statistical analysis. The p.d.f. or probability function of the prior
distribution will be denoted by p.�/.

• Observation model: The observation model specifies the conditional distribution
of observable quantities, that is, the random sample variables Y D .Y1; : : : ; Yn/

0,
given the parameters. The p.d.f. or probability function of this conditional
distribution is proportional to the likelihood L.�/ and will be denoted by
p.y j �/.
Based on the prior and the observation model, Bayes’ theorem determines the

distribution of � after the data are known through the statistical experiment, that
is the conditional distribution of � given the observations y D .y1; : : : ; yn/

0. We
obtain

p.� j y/ D p.y j �/ p.�/R
p.y j �/ p.�/ d�

D c � p.y j �/ p.�/;

with the normalizing constant c D Œ
R
p.y j �/p.�/ d���1. This conditional

distribution is called posterior (distribution).
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Example B.5 Poisson Distribution
Consider an i.i.d. sample Y1; : : : ; Yn from a Poisson distribution, i.e., Yi � Po.	/. The
unknown parameter is to be estimated using Bayesian inference. As in Example B.1, the
joint probability for the observed sample y D .y1; : : : ; yn/

0 is

p.y j	/ D 1

y1Š � � � ynŠ 	
Pn

iD1 yi exp.�n	/:

We specify a gamma distribution with parameters a and b for 	, i.e., 	 � G.a; b/. A
justification for the choice of this prior will be given later. It follows that 	 has p.d.f.

p.	/ D k 	a�1 exp.�b	/
with k D ba

� .a/
. The posterior is obtained as

p.	 j y/ D p.y j	/p.	/R
p.y j	/p.	/ d	 D c

1

y1Š � � � ynŠ 	
Pn

iD1 yi exp.�n	/ k	a�1 exp.�b	/:

To determine the type of this distribution, we can ignore all factors that do not depend on 	.
This gives

p.	 j y/ / 	

Pn
iD1 yi exp.�n	/ 	a�1 exp.�b	/ D 	aC

Pn
iD1 yi � 1 exp.�.b C n/	/:

This has the form of a gamma distribution with parameters a0 D a C Pn
iD1 yi and b0 D

b C n, i.e.,

	 j y � G

 
aC

nX

iD1

yi ; b C n

!
;

and the posterior has the same type of distribution as the prior. This desirable case appears
in many other simple Bayesian models. We call the prior as conjugate to the Poisson model
because the posterior is of the same type as the prior. 4
The next example discusses a situation where we have rather limited prior

knowledge about the unknown parameters. In this case we are confronted with the
question how to specify a prior in the absence of prior knowledge. We call such
priors noninformative.

Example B.6 Bayesian Logit Model—Diffuse Prior
We consider a logit model with a single covariate x:

Yi D B.1; �i /; �i D exp.�i /

1C exp.�i /
; �i D ˇ0 C ˇ1xi ; i D 1; : : : ; n:

Assuming, as usual, (conditionally) independent response variables, the observation model
is given by

p.y j ˇ/ / L.ˇ/ D
nY

iD1

�
yi
i .1� �i /

1�yi ;

where ˇ D .ˇ0; ˇ1/
0 is the vector of regression coefficients. To fully specify the

Bayesian model, we have to supplement the observation model by a prior for ˇ0 and ˇ1.
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Since estimated regression coefficients are often approximately normally distributed, it is
reasonable to assume a two-dimensional normal prior. Therefore, we specify the prior

p.ˇ/ � N.m;M /

with prior mean m and prior covariance matrix M . If, for example, results from a previous
statistical analysis are available, we could choose the previous point estimate as m and its
estimated covariance matrix as M . If the previous analysis has been carried out some time
ago, we may also multiply M with a factor a > 1 to express increased uncertainty.

In many situations, however, we may have no information about the regression coeffi-
cients. Increasing the variances in M , the normal prior becomes very flat and approximates
a uniform distribution. In the limiting case the prior becomes proportional to a constant, i.e.,

p.ˇ/ / const:

Often we also write p.ˇ/ / 1. The integral of this flat prior over R2 is not finite, so
that p.ˇ/ is not a density in the usual sense. Such a prior is called improper or diffuse.
Nonetheless such diffuse priors are admissible as long as the posterior, resulting from
Bayes’ theorem, is a proper distribution, i.e., its integral over R2 is finite. In a Bayesian
logit model this is the case if a finite MLE exists. With a flat, diffuse prior the posterior
density is

p.ˇ j y/ D p.ˇ/p.y j ˇ/R
p.ˇ/p.y j ˇ/d ˇ

/ p.y j ˇ/ D
nY

iD1

�
yi
i .1� �i /

1�yi :

Although the posterior is proper, it has no known distributional type. This causes problems
for statistical inference because characteristics of the posterior, such as the mean, are not
available in closed analytical form. However inference based on MCMC simulation is
possible. See Sect. B.5.3 and in particular, Example B.10. 4
The previous example suggests to assume a uniform prior distribution for the

parameters if there is no prior knowledge. The next example, however, shows that
the construction of noninformative priors is a bit more subtle.

Example B.7 Normal Distribution
Consider an i.i.d. sample Y1; : : : ; Yn from a normal distribution, i.e., Yi � N.�; �2/. We
first assume the expectation � to be known. In the absence of any prior knowledge regarding
the unknown parameter �2 one is tempted to assume a diffuse uniform prior over RC. It
follows that p.�2/ is improper and proportional to a constant, i.e., p.�2/ / 1. Suppose
now, that we had parameterized the normal distribution in terms of the standard deviation
� rather than the variance. According to our recipe for a noninformative prior we would
then assign a uniform distribution for � , i.e., p.�/ / 1. From this assumption, we can
derive the corresponding distribution of the variance �2 using the change of variables
theorem of continuous random variables (Theorem B.1 in Appendix B.1). We now obtain
p.�2/ / .�2/�1=2, which is no longer a uniform distribution over RC. Thus, if we
parameterize the normal distribution with the variance our noninformative prior for �2 is
a uniform distribution. If we parameterize in terms of the standard deviation we come out
with a nonuniform distribution for �2. This means that the prior is not invariant with respect
to the specific parameterization. 4
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A class of priors that help to circumvent the invariance problem mentioned in the
example are Jeffreys’ priors. Jeffreys’ prior for a scalar parameter � is defined to be
proportional to the square root of the expected Fisher information, i.e.,

p.�/ / p
F.�/ D p

E.�l 00.�//:

Jeffreys’ prior solves the invariance problem as it is indeed invariant with respect to
one-to-one transformations of the parameter. The remaining question is if Jeffreys’
prior is also noninformative in some sense. The answer is yes, as Jeffreys’ prior
for a scalar parameter can be characterized as a reference prior. The concept of a
reference prior has been introduced in Bernardo (1979). Informally, the reference
prior can be characterized as the distribution that maximizes the influence of the
data on the posterior. More specifically, the reference prior maximizes the expected
Kullback–Leibler distance of the posterior relative to the prior. In this sense the
reference prior is noninformative as the data get maximal weight and the influence
of the prior is minimized.

In situations with vector-valued parameter � , Jeffreys’ prior generalizes to

p.�/ /
p

jF.�/j:

This prior is still translation invariant, but is in general not the reference prior.
This is one of the reasons why Jeffreys’ prior is usually not accepted as a valid
noninformative prior for vector valued parameters. See, e.g., Held and Sabanés Bové
(2012) for a discussion of the deficiencies of Jeffreys’ prior in the multiparameter
case. Instead, we can still base the choice of noninformative priors on the reference
prior concept. However, it would be beyond the scope of this book to fully introduce
this technically difficult concept; see, e.g., Held and Sabanés Bové (2012) for
details.

Example B.8 Normal Distribution—Jeffreys’ Prior—Reference Prior
We continue the previous Example B.7 and derive the Jeffreys’ or reference prior. In the
case of a normal distribution with known expectation �, Jeffreys’ prior or the reference
prior for �2 is easily obtained as

p.�2/ / 1

�2
:

Now the distribution of the standard deviation can be derived to be p.�/ / 1=� which is
the same distribution as for �2.

If both parameters � and �2 are unknown we obtain a noninformative prior in the form
of the reference prior. This reference prior is given by

p.�; �2/ / 1

�2

implying a priori independence of � and �2 with distributions p.�/ / 1 and p.�2/ /
1=�2 . 4
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B.5.2 Point and Interval Estimation

Point Estimation
The usual point estimators in Bayesian inference are the posterior mean, the
posterior median, and the posterior mode. These three estimators can be discussed
and justified from a decision theoretic perspective. We do not describe this here in
detail; rather we only introduce the estimators.

The posterior mean is given by

O� D E.� j y/ D
Z

� p.� j y/ d� D c �
Z

� p.y j �/ p.�/ d�:

Thus, the analytical or numerical determination of the posterior mean requires
the computation of (possibly high-dimensional) integrals. The resulting difficulties
have been a main obstacle for applying Bayesian methods in practice. Simulation-
based methods, in particular modern MCMC methods, have greatly reduced these
problems. Refer to Sect. B.5.3.

The posterior mode is the value O� that (globally) maximizes the posterior density,
i.e.,

O� D arg max
�

p.� j y/ D arg max
�

p.y j �/p.�/:

The second expression shows that no integration is necessary to compute the
posterior mode, because the normalizing constant is not needed.

The posterior median, that is, the median of the posterior distribution, is
sometimes preferred to the posterior mean because it is more robust against outliers.

Example B.9 Poisson Distribution
In Example B.5 we obtained a gamma distribution with parameters a0 D aCPn

iD1 yi and
b0 D b C n as the posterior for 	. The posterior mean is

E.	 j y/ D
aC

nX

iD1

yi

b C n
:

The smaller a (in relation to
P
yi ) and b (in relation to n), the closer the posterior mean is

to the usual MLE O	 D Ny. The larger the prior information, that is, the larger a and b are,
the more the posterior mean and the MLE differ from each other. 4

Interval Estimation
Point estimators reduce the information of the posterior to a single number. In par-
ticular, it is not possible to see how precise these estimates are. Usual quantities for
measuring variability of a random variable are also natural measures for assessing
how precise, or imprecise, the estimators are. For the posterior mean, a natural
measure is the posterior variance; for the posterior median, the interquartile distance
seems to be appropriate to measure its variability. In case of the posterior mode, the
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curvature of the posterior at the mode, i.e., the observed Fisher information, is a
natural choice.

Another popular way of assessing uncertainty is Bayesian confidence intervals
or credible intervals or, more generally, credible regions:

A region C 
 � of the parameter space is said to be a .1 � ˛/-credible region
for � if

P.� 2 C j y/ D 1 � ˛:

IfC � R is an interval it is called credible interval. In other words, a credible region
contains (at least) a probability mass 1�˛ of the posterior. Note that credible regions
and classical confidence regions have rather different interpretations: The classical
confidence interval does not provide a probability statement about � , which is a
deterministic quantity in the classical inferential concept. Rather, it is related with a
probability statement about the random sample y D .y1; : : : ; yn/

0: The confidence
region C.y/ contains the unknown true parameter � with probability 1 � ˛. The
frequentist interpretation is that confidence intervals cover the true parameter with
a percentage of about .1 � ˛/ � 100% if the estimation procedure is repeated for
many samples. In contrast, Bayesian credible intervals allow a probability statement
about the random parameter �: The credible region contains .1 � ˛/ � 100% of the
probability mass of the posterior, i.e., a random number � drawn from the posterior
is within the credible region with probability 1 � ˛.

Bayesian credible intervals are often difficult to determine analytically. However,
they can be easily computed with MCMC algorithms for drawing random numbers
from the posterior.

B.5.3 MCMC Methods

Historically, the main difficulty in applying Bayesian methods has been that in many
situations the posterior is not available analytically or even numerically. Basically,
MCMC is Monte Carlo integration using Markov chains. Although MCMC was
known in physics very early (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,
1953), it took nearly 40 years to enter mainstream statistical practice (Gelfand &
Smith, 1990), in particular for Bayesian inference. Since then, MCMC has had
an enormous effect on Bayesian statistics, and it allows to solve complex and
high-dimensional inferential problems. Good introductions are, for example, Gilks,
Richardson, and Spiegelhalter (1996) and Green (2001). Here we only describe the
basic idea and the most important algorithms.

MCMC methods allow to draw samples from posterior distributions (and, in
principle, from any distribution) that are usually not available analytically and to
estimate characteristics of the posterior such as the mean, the variance or quantiles,
or the posterior density itself. The most important advantage compared to more tra-
ditional methods of drawing a sample from a distribution, for example, importance
or rejection sampling, is that samples can be drawn from high-dimensional densities,
even for dimensions in the thousands. Another advantage is that the normalizing
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constant, often a high-dimensional integral that cannot be computed with traditional
numerical methods, does not have to be known.

The basic idea of MCMC methods is comparably simple. Let � be the unknown
vector of parameters in a Bayesian model and p.� j y/ the posterior density (we
assume here that � is continuous). Instead of directly drawing an i.i.d. sample from
p.� j y/, a Markov chain is generated such that the iterations of the transition kernel
converge to the posterior of interest. In this way random numbers are generated that
can be considered as a (correlated) sample from the posterior after some time of
convergence, the burn-in phase. Before describing some algorithms in detail, we
point out that MCMC may be used for drawing random numbers from any complex
distribution, not only from posterior distributions. The posterior p.� j y/ then has
to be replaced by such a density in the following.

Metropolis–Hastings Algorithm
The basic algorithm, from which all other algorithms can be derived, works as
follows: First, a starting value � .0/ is chosen. Instead of drawing directly from the
posterior p.� j y/, a new random number �	 is drawn from a proposal density q
in each iteration. Usually, the proposal density depends on the current iterate (or
state) �.t�1/, i.e., q D q.�	 j �.t�1//. In principle, the choice of the proposal density
is arbitrary. However, it should be comparably easy to draw random numbers from
this density. Since the proposal density differs from the posterior, a proposed random
number �	 cannot always be accepted as the new current state �.t/ but only with
some acceptance probability ˛. Basically, this is the ratio of the posterior and the
proposal density, evaluated at the current state �.t�1/ and the proposed value �	.
More specifically, the acceptance probability is defined as

˛.�	 j � .t�1// D min

�
p.�	 j y/ q.� .t�1/ j �	/
p.� .t�1/ j y/ q.�	 j �.t�1//

; 1


:

If the proposed �	 is accepted, then the next state is �.t/ D �	; otherwise
�.t/ D � .t�1/. The density p.� j y/ does appear directly, not only in ˛.�	 j �.t�1//,
but also in the ratio p.�	 j y/=p.�.t�1/ j y/. Therefore, all expressions in p.� j y/

that are constant can be omitted. In particular, the normalizing constant of the
posterior is not needed. This is one of the big advantages of MCMC methods
compared to conventional methods for drawing random numbers. A summary of
the MH algorithm is given in Box 2.1.

The Metropolis–Hastings algorithm simplifies for symmetric proposals with
q.�	 j � .t�1// D q.� .t�1/ j �	/. The acceptance probability then becomes

˛.�	 j � .t�1// D min

�
p.�	 j y/

p.� .t�1/ j y/
; 1


:

This is the original Metropolis algorithm, published in 1953, and generalized to
nonsymmetric proposal densities by Hastings (1970).
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2.1 Metropolis–Hastings Algorithm

To draw random numbers from the density p.� j y/, the Metropolis–Hastings
algorithm proceeds as follows:
1. Initialize � .0/ and the number T of iterations. Set t D 1.
2. Draw a random number �	 from the proposal density q.�	 j � .t�1// and

accept it as the new state �.t/ with probability ˛.�	 j � .t�1//; otherwise set
�.t/ D � .t�1/.

3. Stop if t D T ; otherwise set t D t C 1 and go to 2.
After a burn-in phase t0, the random numbers �.t0C1/; : : : ;� .T / can be
considered as a (correlated) sample from p.� j y/.

Note that numerical computation of ˛ is usually problematic in practice because
the densities contain exponential functions. It is therefore more favorable to base
acceptance/rejection on log.˛/. Then in practice we generate a random number u �
U.0; 1/ (uniform on .0; 1/) and accept �	 if log.u/ � log.˛/ thereby avoiding the
evaluation of exponential functions.

Although any proposal density will ultimately deliver samples from the posterior,
it is important to choose appropriate proposal densities. In particular, acceptance
probabilities should be large enough and correlation between successive iterates
should be small. The smaller the correlation, the smaller is the required sample
size to estimate characteristics of the posterior. We illustrate the construction of a
Metropolis–Hastings algorithm for a Bayesian logit model.

Example B.10 Bayesian Logit Model
We consider the following simulated logit model with two covariates x1 and x2:

Yi D B.1; �i / i D 1; : : : ; 500;

�i D exp.�i /

1C exp.�i /
;

�i D �0:5C 0:6 xi1 � 0:3 xi2:

The covariates x1 and x2 are drawn independently from a standard normal distribution.
We want to construct a Metropolis–Hastings algorithm to estimate the parameter ˇ D
.�0:5; 0:6;�0:3/0 given this simulated data.

We specify independent diffuse priors p.ˇj / / const. The posterior is then proportional
to the likelihood:

p.ˇ j y/ /
500Y

iD1

�
yi
i .1� �i /

1�yi :

As a proposal density for the Metropolis–Hastings algorithm we choose a three-dimensional
normal distribution, with the current state ˇ.t�1/ as its mean. For its covariance matrix,
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(a) Sampler with IWLS proposals

Fig. B.2 Sampling paths for ˇ0 and ˇ1 for different MH algorithms. The third column shows the
respective autocorrelation functions for ˇ1

we start with the diagonal matrix ˙ D diag.0:42; 0:42; 0:42/. Figure B.2 (first row) shows
the first 2,000 random numbers for ˇ0 and ˇ1 drawn with this proposal density. Since we
have specified diffuse priors, Bayes estimates for the regression coefficients should not
differ too much from the MLEs. Therefore, the MLEs are displayed as horizontal lines
in the plots. Clearly, only a few of the proposed random numbers are accepted with this first
algorithm; sometimes the state remains unchanged for more than 100 iterations. Thus, the
acceptance probabilities are far too small. We obtain larger acceptance probabilities if the
variances of the proposal density are decreased to ˙ D diag.0:12; 0:12; 0:12/. The second
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row in Fig. B.2 shows the first 2,000 random numbers for ˇ0 and ˇ1 resulting from this
second MH algorithm. We recognize a short burn-in phase of about 50 iterations, followed
by reasonable iterations with relatively large acceptance rates. If we further decrease the
variance to ˙ D diag.0:022; 0:022; 0:022/, acceptance rates are further increased, but
successive draws remain almost in the same state; see the third row in Fig. B.2.

A useful and important tool for assessing the quality of MCMC algorithms is the auto-
correlation function of the sample [see section “First Order Autocorrelation” of Sect. 4.1.4
(p. 192), for the autocorrelation function]. Ideally, autocorrelations should rapidly converge
to zero with increasing lags. The smaller the autocorrelation of successive parameters,
the better the characteristics of the posterior can be estimated, based on the same length
T of the sample. As an example, the right column of Fig. B.2 shows the autocorrelation
functions for ˇ1, corresponding to the three MH algorithms. Obviously, correlations for
the first and third algorithm are extremely large, even for a lag of 40. On the other hand,
autocorrelation for lags larger than 20 are almost zero for the second algorithm. For practical
work, “thinning” is carried out for the original sample, i.e., only every kth random number
is kept in the sample, so that the remaining random numbers are almost uncorrelated. In
this way, memory space can be saved without worsening estimation results. To generate an
approximately uncorrelated sample of size 1,000 with our second MH algorithm, we would
have to generate about 20,000 random numbers after a short burn-in phase and then keep
only every 20th random number in the thinned sample.

We can conclude the following: Small variances of the proposal density lead to high
acceptance rates. In contrast, acceptance rates become small for large variances. For very
large or very small variances autocorrelations of successive random numbers are high.
The art of designing good MH algorithms is therefore the choice of appropriate proposal
densities that combine high acceptance rates with low autocorrelations. Furthermore,
automated methods are desirable that do not require subjective tuning of parameters of
the proposal density.

An algorithm with these desirable properties is the MH algorithm described in detail in
Sect. 5.6 (p. 311). The last row of Fig. B.2 displays the sampling paths for ˇ0 and ˇ1 and
the autocorrelation function for ˇ1. Obviously, this algorithm has the best properties among
the four algorithms suggested so far. Autocorrelations are practically zero for lags about 13
and larger. Variances in the proposal density are chosen automatically and correlation of
parameters is taken into account.

Using this algorithm a Markov chain was generated and, after the burn-in phase, 20; 000
random numbers were drawn. Saving every 20th random number led to a thinned sample
of size 1,000. Based on this thinned sample all characteristics of interest of the posterior
can be approximated. To approximate the posterior mean we compute the arithmetic means
for the sample, resulting in Ǒ D .�0:64; 0:65;�0:38/0 . This estimate is very close to the
MLEs. Estimation of credible intervals can be based on the quantiles of the sampled random
numbers. For example, we obtain 95 % credible intervals by choosing the 2.5 % quantiles
as lower and 97.5 % quantiles as upper bounds. This results in the intervals Œ�0:87;�0:42�,
Œ0:52; 0:78�, and Œ�0:52;�0:26� for the sample generated in our example. They are also
quite close to the confidence intervals of the regression coefficients obtained by likelihood
inference (but have to be interpreted differently).

A further advantage of simulation-based inference is that inference is also easily possible
for (complicated) nonlinear transformations of the original parameters. If, for example, we
are interested in a credible interval for exp.ˇ0 C ˇ1 C ˇ2/, then we simply compute the
transformed quantity for the random numbers from the original sample. A 95 % credible
interval for the transformed parameter is simply given by corresponding 2.5 % and 97.5 %
quantiles. 4
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2.2 Gibbs Sampler

Let p.� j y/ be the posterior and assume that � is partitioned into S blocks
�1; : : : ;�S . The Gibbs sampler generates random numbers as follows:
1. Specify initial values �

.0/
1 ; : : : ;�

.0/
S and the number T of iterations. Set

t D 1.
2. For s D 1; : : : ; S , draw random numbers from the full conditionals

p.� s j �
.t/
1 ; : : : ;�

.t/
s�1;�

.t�1/
sC1 ; : : : ;�

.t�1/
S ;y/:

Note that the most actual states are used in the conditioning set of parameter
blocks.

3. Stop if t D T ; otherwise set t D t C 1 and go to 2.

Gibbs Sampler and Hybrid Algorithms
In many practical applications the parameter vector is high-dimensional. The
acceptance rates then become rather small even for well-designed MH algorithms,
because a high-dimensional random number has to be accepted or not. So-called
hybrid algorithms provide a solution to this problem, using a “divide and conquer”
strategy. The high-dimensional parameter vector � is partitioned into smaller blocks
�1;�2; : : : ;�S . Separate MH steps are then constructed for these subvectors.

The Gibbs sampler is the simplest special case of this strategy. In most cases no
(simple) methods for directly drawing random numbers from the density p.� j y/

of the entire parameter vector are available. Often, however, random numbers can
be directly drawn from the conditional densities p.�1 j �/; p.�2 j �/; : : : ; p.�S j �/,
where p.�s j �/ denotes the conditional density of �s given all other blocks
�1; : : : ;�s�1;�sC1; : : : ;�S and the data y. These densities are called full condi-
tionals. Gibbs sampling consists in successively drawing random numbers from the
full conditionals in each iteration and accepting them (with probability one) as the
next state of the Markov chain; see Box 2.2 for a summary. After a burn-in phase
the sampled random numbers can be considered as realizations from the marginal
posteriors p.�1 j y/; p.�2 j y/; : : : ; p.�S j y/.

If it is not possible to directly draw random numbers from some of the full
conditionals, then an MH step is included instead. For the corresponding block �s ,
a proposal density

qs.�
	
s j �

.t/
1 ; : : : ;�

.t/
s�1;�

.t�1/
s ; : : : ;�

.t�1/
S /

is chosen and random numbers �	
s are drawn from it. They are accepted as new

states of the Markov chain with probability



676 B Probability Calculus and Statistical Inference

˛.�	
s j �

.t�1/
s / D min

(
p.�	

s j �
.t�1/�s /qs.�

.t�1/
s j �

.t/
1 ; : : : ;�

.t/
s�1;�	

s ; : : : ;�
.t�1/
S /

p.�
.t�1/
s j �

.t�1/�s /qs.�	
s j �

.t/
1 ; : : : ;�

.t/
s�1; �

.t�1/
s ; : : : ;�

.t�1/
S /

; 1

)
;

where p.�s j �
.t�1/�s / D p.�s j �

.t/
1 ; : : : ;�

.t/
s�1;�

.t�1/
sC1 ; : : : ;�

.t�1/
S ;y/ denotes the full

conditional of �s . Otherwise, �
.t/
s D �

.t�1/
s as in the original MH algorithm. In

summary, step 2 of the Gibbs sampler is replaced by:
2:	 For s D 1; : : : ; S , draw random numbers �	

s from the proposal densities
qs.�

	
s j �/ and accept them with probability ˛.�	

s j �
.t�1/
s /; otherwise set �

.t/
s D

�
.t�1/
s .

Note that MH and Gibbs steps in 2:	 can be used in combination. Formally,
the corresponding full conditional is directly chosen as proposal density. The
acceptance probability then becomes ˛.�	

s j �
.t�1/
s / D 1, so that all proposed values

are accepted.

B.5.4 Model Selection

The classical approach for Bayesian model choice is to compare competing models
through the posterior probabilities of the models. Suppose we are given K com-
peting models M1; : : : ;MK with associated parameters �1; : : : ;�K . By a “model”
we mean a set of probability distributions. For instance Mj , j D 1; : : : ; K , could
denote the regression models y j �j ;Mj � N.X j�j ; �

2I/ (with known variance
�2 for simplicity). For each model Mj let p.y j �j ;Mj / denote the observation
model and p.�j jMj/ be the prior for the model parameters �j . The posterior for
�j under modelMj is then given by

p.�j j y;Mj / D p.y j �j ;Mj / p.�j jMj/

p.y jMj/
;

where

p.y jMj/ D
Z
p.y j �j ;Mj / p.�j jMj/ d�j (B.5)

is the marginal likelihood. For model selection, we additionally have to assign prior
probabilities p.Mj / associated with each model Mj . Now the competing models
can be compared through the posterior model probabilities given by

p.Mj j y/ D p.y jMj/p.Mj /

p.y/
/ p.y jMj/p.Mj /

with

p.y/ D
KX

kD1
p.y jMk/p.Mk/:
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We prefer model Mj against model Ms if p.Mj j y/ > p.Ms j y/ or the posterior
ratio

p.Mj j y/

p.Ms j y/
D p.Mj /

p.Ms/

p.y jMj/

p.y jMs/

is larger than 1. In cases of equal priors p.M1/ D p.M2/ D : : : D p.MK/ D 1=K

the posterior ratio simplifies to the Bayes factor

BFjs.y/ D p.y jMj/

p.y jMs/
:

If none of the competing models is favored prior to analysis of the data, model
choice is based on Bayes factors.

Care has to be taken when using the Bayes factor in combination with improper
priors. Suppose, we assume improper priors

p.�j jMj/ / cj ; p.�s jMs/ / cs

for the model parameters �j and �s of models Mj and Ms. Here cj and cs are
arbitrary constants. The Bayes factor then becomes

BFjs.y/ D cj

cs

R
p.y j �j ;Mj / d�jR
p.y j �s;Ms/ d�s

;

where cj =cs is an arbitrary constant. This in turn implies that the Bayes factor is not
uniquely defined. Thus, improper priors cannot be used in the context of Bayesian
model choice, at least if Bayes factors or in other words marginal likelihoods are
involved. Improper priors may be appropriate only if the parameter � is the “same”
under all models under consideration.

In many applications the exact computation of Bayes factors is difficult because
computation of the marginal model likelihoods p.y jMj/ causes problems. An
approximation (after multiplying with �2) is

�2p.y jMj/ � �2 � log.p.y j O�j ;Mj //C log.n/ pj ;

where pj is the dimension of the parameter vector �j and O�j is the posterior mode.
The approximation can be derived through a Laplace approximation of the integral
in Eq. (B.5) and leads to the Bayesian information criterion (BIC). For a model with
parameter � , log-likelihood l.�/, and MLE O� the BIC is defined as

BIC D �2l. O�/C log.n/ p:

Among a set of competing models, the model with the smallest BIC will be selected.
Formally, the BIC is similar to the AIC: the factor 2 multiplying the number or
parameters in the AIC is replaced by log.n/. Derivation of the two criteria is quite
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different, however. In general, the BIC selects less complex models than the AIC
because penalization of the number of parameters is stronger.

Although derived from a Bayesian perspective, the BIC is not very popular in
Bayesian inference. The main reasons are: First, the assumptions underlying the
derivation of the BIC as an approximation of marginal log-likelihoods are not
sufficiently well fulfilled in complex high-dimensional models. Related to this is
the problem of determining n in the factor logn. It is not always the data sample
size: For example, in mixed models n is the number of individuals. Second, when
more complex Bayesian models are fitted with MCMC methods, the BIC is not
directly available anyway.

A more recent criterion for model choice that has become quite popular in
connection with MCMC inference is the deviance information criterion (DIC). Refer
to Spiegelhalter, Best, Carlin, and van der Linde (2002). Its popularity is due to the
fact that it can be easily computed from MCMC output. Let �.1/; : : : ;� .T / denote an
MCMC sample from the posterior of the model. Computation of the DIC is based
on two quantities: The first is the (unstandardized) deviance

D.�/ D �2 log.p.y j �//

of the model. The second is the effective number pD of parameters in the model. It
can be estimated through

pD D D.�/ �D. N�/;
where

D.�/ D 1

T

TX

tD1
D.� .t//

is the average posterior deviance and D. N�/ is the deviance evaluated at N� D
1
T

PT
tD1 � .t/: The DIC is then defined as

DIC D D.�/C pD D 2D.�/�D. N�/:

As a disadvantage, the DIC value changes for different MCMC random samples.
Therefore it may happen that model choice by DIC can lead to selecting different
models with different MCMC samples. This will be only the case, however, if the
DIC values of the models are quite close. It then will be better to keep both (or
several) competing models under consideration.

Example B.11 Bayesian Logit Model—DIC
We illustrate the use of DIC with the simulated data from Example B.10. If we mistakenly
omit the covariate x2 and fit a logit model with x1 only, then we obtain the (estimated) values
pD D 1:99 and DIC D 571:6. The effective number of parameters of about 2 is plausible,
because we have estimated exactly two parameters ˇ0 and ˇ1. Fitting the correctly specified
model, we obtain pD D 2:93 and DIC D 540:3. The effective number of parameters is now
about 3, as had to be expected. The DIC is now considerably smaller than for the wrong
model so that the more complex, true model is selected.
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For illustration, we fit the correct model with five further MCMC runs. For pD we obtain
the values 3.05, 2.99, 3.15, 2.87, and 3.23 and for the DIC 540.56, 540.42, 540.73, 540.19,
and 540.91, respectively. We see that the DIC varies between the different MCMC runs, but
variability is usually quite low. 4

B.5.5 Model Averaging

If the focus of the analysis is not necessarily on selecting a single best model, model
averaging could be a promising alternative. Suppose we are interested in inference
regarding a quantity
. If we perform model selection, we first determine the model
M	 with highest posterior probability. The inference is then based on the posterior
p.
 j y;M	/ of 
 conditional on the “best” model M	. Alternatively, inference
could be based on the unconditional posterior p.
 j y/ which is given by

p.
 j y/ D
KX

kD1
p.
 j y;Mk/ p.Mk j y/:

Hence, p.
 j y/ is obtained as a simple average of the posteriors p.
 j y;Mk/

under model Mk weighted by the posterior model probabilities p.Mk j y/. Model
averaging might be particularly favorable (in terms of predictive power) compared
to selecting a single best model if the posterior probability mass is not concentrated
on a particular model.
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Härdle, W. (1990). Smoothing techniques. New York: Springer.
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nonparametric regression, 481
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BMA. See Bayesian model averaging
Bonferroni correction, 471
Boosting, 217, 319, 603

additive models, 573
componentwise, 226
GLM, 319
linear models, 217
structured additive regression models, 573
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Breusch-Pagan test, 184
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Canonical link function, 304
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Case study

Malnutrition in Zambia, 576
prices of used cars, 152, 156, 158, 162, 166
sales of orange juice, 403, 551
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Categorical regression, 325
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ordinal models, 334
testing linear hypotheses, 346
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Characteristic polynomial, 631
Cholesky decomposition, 635
Classical linear model, 73

Bayesian, 225
confidence ellipsoids, 136
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estimation of error variance, 108
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maximum likelihood, 107
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prediction interval, 136
prediction quality, 144
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Clustered scatter plots, 16
Cluster-specific effect, 360
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dummy, 26, 94
effect, 97
indicator, 26, 94
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CV. See Cross validation
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Identity matrix, 622
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Independent variable, 21
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Inversion of block matrices, 628
Irreducible prediction error, 146
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Iteratively weighted least squares, 283, 306,
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Kernel function, 464
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Kriging, 453, 515

ordinary, 516
universal, 516

Kronecker product, 624

Laplace distribution, 642
LASSO, 208

Bayesian, 239
geometric properties, 211

Latent linear model, 274
Least Absolute Shrinkage and Selection

Operator. See LASSO
Least squares estimator
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covariance matrix, 116
distribution, 118
expected value, 116

geometric properties, 112
irrelevant variables, 143
missing variables, 143
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penalized, 371
properties, 119

Leave one out cross validation, 149
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Likelihood ratio test, 663
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Linear mixed model. See Mixed model
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Bayesian model averaging, 243
Bayesian model choice, 243
case study, 152, 156, 158, 162, 166
categorical covariates, 26
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definition, 73
estimation of error variance, 108
hypthesis testing, 125
interactions between covariates, 30, 98
maximum likelihood, 107
model choice, 139
multiple, 26
nonlinear covariate effects, 28
parameter estimation, 104
polynomial regression, 89
prediction interval, 136
prediction quality, 144
simple, 22
variable selection, 139
variable transformation, 28, 87

Linear Poisson model, 293
Linear predictor, 270
Linear probability model, 270
Linear programming, 603
Linear smoothing procedures, 468
Link function, 270, 301

canonical, 304
natural, 304

Locally weighted regression, 466
Local polynomial regression, 462
Local smoothing, 460, 529
Location-scale model, 597
Loess, 466, 467, 529
Logit model, 33, 271
Log-linear Poisson model, 293
Log-normal distribution, 641
Log-normal model, 299
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Longitudinal data, 38
LS method. See Least squares estimator

Main diagonal, 622
Mallow’s Cp , 148
Malnutrition in Zambia, 5

case study, 576
Marginal distribution, 646
Marginal likelihood, 676
Markov-Chain-Monte-Carlo-methods. See

MCMC
Markov property, 442, 509
MARS, 490, 530
Matérn correlation function, 456
Matérn splines, 518
Matrix, 621

definiteness, 633
diagonal, 622
idempotent, 625
inverse, 627
orthogonal, 625
regular, 626
similar, 632
square, 622
symmetric, 623
trace, 630
transpose, 621

Matrix inversion lemma, 629
Matrix multiplication, 623
Maximum likelihood estimation, 653

asymptotic properties, 662
equations, 281, 343
numerical computation, 660
testing, 662

MC3 algorithm, 247
MCMC, 670

data augmentation, 316
Mean vector, 646
Median regression, 105
Method of least squares. See Least squares

estimator
Metropolis–Hastings algorithm, 671
Missing variables, 143
Mixed logit model, 390
Mixed model, 38, 349

Bayesian, 383
Bayesian covariance matrix, 378
case study, 403, 551
categorical responses, 392
conditional formulation, 365, 392
frequentist covariance matrix, 379
hypothesis testing, 380
likelihood inference, 371

marginal formulation, 365, 392
matrix notation, 361
ML estimator, 372
penalized least squares view, 355
REML estimator, 373
stochastic covariates, 366
testing fixed effects, 380
testing random effects, 381

Mixed model equations, 372
Mixed model for categorical responses, 392
Mixed model representation, 481, 566
Mixed Poisson model, 391
Mixed probit model, 390
Mixture distribution, 351
ML estimation. See also Maximum likelihood

estimation
numerical computation, 660
testing, 662

Model choice, 139
additive model, 565
Bayesian, 676
binary regression, 287
generalized linear model, 308
likelihood inference, 664
linear model, 139
Poisson regression, 297
structured additive regression, 565

Model choice criteria, 664, 676
generalized linear model, 308
linear model, 146

Model diagnostics, 155
Models for location, scale and shape, 62
MRF, 521
Multi-categorical logit model, 330
Multilevel models, 369
Multinomial distribution, 327
Multinomial logit model, 330
Multiple linear regression model, 26
Multiplicative errors, 83
Multivariate adaptive regression splines, 490,

529
Multivariate normal distribution, 648

conditional distributions, 649
covariance matrix, 648
linear transformations, 649
marginal distributions, 649
mean, 648

Multivariate t-distribution, 651
Munich rent index, 5

Nadaraya-Watson estimator, 462, 466, 529
Natural link function, 304
Natural parameter, 301
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Nearest neighbor estimator, 45, 460, 529
Negative definite matrix, 633
Neighborhoods, 521
Newton method, 660
Newton-Raphson algorithm, 660
Nominal response, 325
Noninformative prior, 231, 667
Nonlinear covariate effects via polynomials,

95
Nonlinear covariate effects via variable

transformation, 94
Nonparametric regression, 44, 413
Normal distribution

multivariate, 648
singular, 650
truncated, 641
univariate, 641

Normal-inverse Gamma distribution, 227
Normal-inverse Gamma prior, 227
Null space of a matrix, 627

Observation model, 665
Observed information matrix, 655
OLS. See Least squares estimator
Order of a matrix, 621
Ordinal model, 334

cumulative, 334
sequential, 337

Ordinal response, 325
Ordinary kriging, 516
Orthogonal design, 111
Orthogonal matrix, 625
Orthogonal polynomials, 92
Outlier, 160
Overdispersion, 279, 294

estimation, 292, 307
Poisson regression, 294

Partial autocorrelation function, 192
Partial linear model, 537
Partial residuals, 78, 126, 565
Partitioned matrix, 628
Patent opposition, 8
Patients suffering from leukemia, 57
Pearson statistic, 287
Penalized least squares estimator, 202, 371,

432, 435, 561
Penalized log-likelihood, 313, 395, 448

criterion, 371
Penalized residual sum of squares, 432
Penalized splines. See P-splines
Poisson distribution, 640

Polynomial regression, 89
Polynomial splines, 415, 418

bivariate, 504
Population effect, 42, 360
Positive definite matrix, 633
Posterior distribution, 665
Posterior mode estimator, 669
Posterior probabilities, 676
Power exponential family, 454
Precision matrix, 646
Prediction error

expected quadratic, 145
irreducible, 146

Prediction interval, 136
Prediction matrix, 469, 474
Prediction quality, 144
Prices of used cars, 152
Principal component regression, 159
Prior distribution, 665
Probit model, 271
Probit normal model, 393
Product of block matrices, 628
Profile likelihood, 373
Prolongation matrix, 516
Proportional odds model, 336
P-splines, 48, 431

Bayesian, 441
Pulmonary function, 326

Quadratic form, 633
Quantile regression, 66, 105
Quasi-likelihood, 309, 410

Radial basis functions, 512, 530
Random coefficient, 357, 549
Random effects, 39, 349

testing, 381
Random intercept, 350, 549
Random slope, 357, 549
Random variable, 639

multidimensional, 645
Random vector, 645

conditional distribution, 646
continuous, 645
discrete, 645
marginal distribution, 646

Random walk, 452
kth order, 441

Range, 454
Rank of a matrix, 626
Reference prior, 667
Regression splines, 415
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Regression trees, 492, 530
Regressor, 21
Regular inverse, 627
Regularization priors, 237

Gibbs sampler, 240, 242
Regular matrix, 626
REML, 109, 373
Residual plots, 183
Residuals, 77, 126

matrix notation, 108
partial, 78, 126, 565
properties, 122
standardized, 126, 565
studentized, 126

Response function, 270, 301, 304
Response variable, 21
Restricted Maximum Likelihood. See REML
Reversible jump MCMC, 498
Ridge regression, 203

Bayesian, 238
geometric properties, 211

Rotation matrix, 516
Row rank, 626
Row regular, 626
Row space of a matrix, 626
Row vector, 621
Running means, 460
Running median, 461

Sales of orange juice
case study, 403, 551

Sandwich matrix, 379, 486
SAR, 526
Scatter plot, 13

clustered, 16
Scatter plot smoothing, 468
Score function, 655
Score test, 663
Semidefinite matrix, 633
Semiparametric model, 537
Sequential logistic model, 340
Sequential model, 337

extreme value, 340
logistic, 340

Similar matrices, 632
Simple linear model, 22
Singular normal distribution, 650
Sir Francis Galton, 1
Smoother matrix, 469, 563
Smoothing, 44, 413
Smoothing parameter, 432, 444, 473, 478, 564

choice, 478, 564

Smoothing splines, 448
SMSE, 145
Spatially autoregressive process, 526
Spatially varying coefficients, 546
Spectral decomposition, 633
Spherical correlation functions, 454
Spike and slab priors, 253
Splines, 415, 418
Square matrix, 622
Standardized residuals, 126, 565
Standard normal distribution, 641
STAR. See Structured additive regression
Stationary Gaussian process, 453
Stepwise selection, 151
Structured additive regression, 553

Bayesian inference, 568
boosting, 573
case study, 576
categorical, 556
estimation, 561
MCMC, 568

Studentized residuals, 126
Sum of block matrices, 628
Supermarket scanner data, 86
Survival analysis, 57
Symmetric matrix, 623

t-distribution, 644
multivariate, 651

Tensor product bases, 503
Tensor product P-splines, 510
Tensor product splines, 503
Testing fixed effects, 380
Testing linear hypotheses, 135, 662

categorical regression, 346
GLM, 308

Testing random effects, 381
Test sample, 146
Thin plate spline, 513
Threshold value mechanism, 334
TP-splines, 418
Trace of a matrix, 630
Transpose of a matrix, 621
Truncated normal distribution, 641
Truncated power functions, 418
Truncated power series, 418
t-test, 131

Uniform kernel, 464
Univariate normal distribution, 641
Universal kriging, 516
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Validation sample, 146
Variable coding

dummy, 94
effect, 97
indicator, 26, 94

Variable selection, 139
Variable transformation, 87
Variance components model, 362, 566
Variance function, 307
Variance inflation factor, 158

Varying coefficients models, 544
Vehicle insurance, 52

Wald test, 663
Weighted least squares estimator, 180, 181
White-estimator, 190
Within-cluster effect, 353

Zellner’s g-prior, 230
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