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Preface

This book was conceived as an intermediate epidemiology textbook. Similarly to the 
first and second editions, the third edition explores and discusses key epidemiologic 
concepts and basic methods in more depth than that found in basic textbooks on 
epidemiology. For the third edition, new examples and exercises have been added to all 
chapters. In Chapters 7 and 10, respectively, we included discussions of  novel epidemi-
ologic strategies for handling confounding (i.e., instrumental variables and propensity 
scores) and of  decision tree as a decision-making tool.

As an intermediate methods text, this book is expected to have a heterogeneous 
readership. Epidemiology students may wish to use it as a bridge between basic and 
more advanced epidemiologic methods. Other readers may desire to advance their 
knowledge beyond basic epidemiologic principles and methods but are not statistically 
minded and are thus reluctant to tackle the many excellent textbooks that strongly focus 
on epidemiology’s quantitative aspects. The demonstration of  several epidemiologic 
concepts and methods needs to rely on statistical formulations, and this text exten-
sively supports these formulations with real-life examples, hopefully making their logic 
intuitively easier to follow. The practicing epidemiologist may find selected portions of  
this book useful for an understanding of  concepts beyond the basics. Thus, the common 
denominators for the intended readers are familiarity with the basic strategies of  
analytic epidemiology and a desire to increase their level of  understanding of  several 
notions that are insufficiently covered (and naturally so) in many basic textbooks. The 
way in which this textbook is organized makes this readily apparent.

In Chapter 1, the basic observational epidemiologic research strategies are reviewed, 
including those based on studies of  both groups and individuals. Although descriptive 
epidemiology is not the focus of  this book, birth cohort analysis is discussed in 
some depth in this chapter because this approach is rarely covered in detail in basic 
textbooks. Another topic in the interface between descriptive and analytical epidemi-
ology—namely, ecological studies—is also discussed, with a view toward extending 
its discussion beyond the possibility of  inferential (ecological) bias. Next, the chapter 
reviews observational studies based on individuals as units of  observation—that is, 
cohort and case-control studies. Different types of  case-control design are reviewed. 
The strategy of  matching as an approach by which to achieve comparability prior to 
data collection is also briefly discussed.

Chapters 2 and 3 cover issues of  measurement of  outcome frequency and measures 
of  association. In Chapter 2, absolute measures of  outcome frequency and their calcu-
lation methods are reviewed, including the person-time approach for the calculation 
of  incidence density, and both the classic life table and the Kaplan-Meier method for 
the calculation of  cumulative incidence. Chapter 3 deals with measures of  association, 
including those based on relative (e.g., relative risk, odds ratio) and absolute (attrib-
utable risk) differences. The connections between measures of  association obtained in 
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cohort and case-control studies are emphasized. In particular, a description is given of  
the different measures of  association (i.e., odds ratio, relative risk, rate ratio) that can 
be obtained in case-control studies as a function of  the control selection strategies that 
were introduced in Chapter 1.

Chapters 4 and 5 are devoted to threats to the validity of  epidemiologic studies, 
namely bias and confounding. In Chapter 4, the most common types of  bias are 
discussed, including selection bias and information bias. In the discussion of  
information bias, simple examples are given to improve the understanding of  the 
phenomenon of  misclassification resulting from less-than-perfect sensitivity and speci-
ficity of  the approaches used for ascertaining exposure, outcome, and/or confounding 
variables. This chapter also provides a discussion of  cross-sectional biases and biases 
associated with evaluation of  screening procedures; for the latter, a simple approach 
to estimate lead time bias is given, which may be useful for those involved in evalu-
ative studies of  this sort. In Chapter 5, the concept of  confounding is introduced, 
and approaches to evaluate confounding are reviewed. Special issues related to 
confounding are discussed, including the distinction between confounders and inter-
mediate variables, residual confounding, and the role of  statistical significance in the 
evaluation of  confounding effects.

Interaction (effect modification) is discussed in Chapter 6. The chapter presents the 
concept of  interaction, emphasizing its pragmatic application as well as the strategies 
used to evaluate the presence of  additive and multiplicative interactions. Practical 
issues discussed in this chapter include whether to adjust when interaction is suspected 
and the importance of  the additive model in public health.

The next three chapters are devoted to the approaches used to handle threats to 
the validity of  epidemiologic results. In Chapter 7, strategies for the adjustment of  
confounding factors are presented, including the more parsimonious approaches (e.g., 
direct adjustment, Mantel-Haenszel) and the more complex (i.e., multiple regression, 
instrumental variables, Mendelian randomization, and propensity scores). Emphasis is 
placed on the selection of  the method that is most appropriate for the study design used 
(e.g., Cox proportional hazards for the analysis of  survival data or Poisson regression 
for the analysis of  rates per person-time). Chapter 8 reviews the basic quality-control 
strategies for the prevention and control of  measurement error and bias. Both quali-
tative and quantitative approaches used in quality control are discussed. The most-
often used analytic strategies for estimating validity and reliability of  data obtained in 
epidemiologic studies are reviewed (e.g., unweighted and weighted kappa, correlation 
coefficients) in this chapter. In Chapter 9, the key issue of  communication of  results 
of  epidemiologic studies is discussed. Examples of  common mistakes made when 
reporting epidemiologic data are given as a way to stress the importance of  clarity in 
such reports. 

Chapter 10 discusses—from the epidemiologist’s viewpoint—issues relevant to the 
interface between epidemiology, health policy, and public health, such as Rothman’s 
causality model, proximal and distal causes, and Hill’s guidelines. This chapter also 
includes brief  discussions of  three topics pertinent to causal inference: sensitivity 
analysis, meta-analysis, and publication bias; and consideration of  the decision tree as 
a tool to evaluate interventions. As in the previous editions, Appendices A, B, C, and 
E describe selected statistical procedures (e.g., standard errors and confidence levels, 
trend test, test of  heterogeneity of  effects, intraclass correlation) to help the reader 
to more thoroughly evaluate the measures of  risk and association discussed in the 
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text and to expose him or her to procedures that, although relatively simple, are not 
available in many statistical packages used by epidemiology students and practitioners. 
Appendix D includes two sections on quality assurance and control procedures taken 
from the corresponding manual of  the Atherosclerosis Risk in Communities (ARIC) 
Study as examples of  real-life applications of  some of  the procedures discussed in 
Chapter 8. Finally, Appendix F provides the answers to the exercises.

We encourage readers to advise us of  any errors or unclear passages, and to suggest 
improvements. Please email any such suggestions or comments to: info@jblearning.com.

All significant contributions will be acknowledged in the next edition.
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1
CHAPTERBasic Study Designs in 

Analytical Epidemiology

1.1 INTRODUCTION: DESCRIPTIVE AND 
ANALYTICAL EPIDEMIOLOGY

Epidemiology is traditionally defined as the study of  the distribution and determinants 
of  health-related states or events in specified populations and the application of  this 
study to control health problems.1 Epidemiology can be classified as either “descriptive” 
or “analytic.” In general terms, descriptive epidemiology makes use of  available data to 
examine how rates (e.g., mortality) vary according to demographic variables (e.g., those 
obtained from census data). When the distribution of  rates is not uniform according 
to person, time, and place, the epidemiologist is able to define high-risk groups for 
prevention purposes—e.g., hypertension is more prevalent in US blacks than in US 
whites, thus defining blacks as a high-risk group. In addition, disparities in the distri-
bution of  rates serve to generate causal hypotheses based on the classic agent–host–
environment paradigm—e.g., the hypothesis that environmental factors to which blacks 
are exposed, such as excessive salt intake or psychosocial stress, are responsible for their 
higher risk of  hypertension. 

A thorough review of  descriptive epidemiologic approaches can be readily found in 
numerous sources.2,3 For this reason and given the overall scope of  this book, this chapter 
focuses on study designs that are relevant to analytical epidemiology; that is, designs that 
allow assessment of  hypotheses of  associations of  suspected risk factor exposures with 
health outcomes. Moreover, the main focus of  this textbook is observational epidemiology, 
even though many of  the concepts discussed in subsequent chapters, such as measures 
of  risk, measures of  association, interaction/effect modification and quality assurance/
control, are also relevant to experimental studies (randomized clinical trials).

In this chapter, the two general strategies used for the assessment of  associations in 
observational studies are discussed: (1) studies using populations or groups of  individuals 
as units of  observation—the so-called ecologic studies; and (2) studies using individuals 
as observation units, which include the prospective (or cohort), the case-control, and the 
cross-sectional study designs.

Before that, however, the next section briefly discusses the analysis of  birth cohorts. 
The reason for including this descriptive technique here is that it often requires the 
application of  an analytical approach with a level of  complexity usually not found in 
descriptive epidemiology; furthermore, this type of  analysis is frequently important for 
understanding the patterns of  association between age (a key determinant of  health 
status) and disease in cross-sectional analyses. (An additional, more pragmatic reason 
for including a discussion of  birth cohort analysis here is that it is usually not discussed 
in detail in basic textbooks.)
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1.2 ANALYSIS OF AGE, BIRTH COHORT, AND PERIOD EFFECTS

Health surveys conducted in population samples usually include participants over 
a broad age range. Age is a strong risk factor for many health outcomes and is also 
frequently associated with numerous exposures. Thus, even if  the effect of  age is not 
among the primary objectives of  the study, given its potential confounding effects, it is 
often important to assess its relationship with exposures and outcomes.

Table 1-1 shows the results of  a hypothetical cross-sectional study conducted in 2005 
to assess the prevalence rates of  a disease Y according to age. (A more strict use of  the 
term “rate” as a measure of  the occurrence of  incident events is defined in Section 2.2.2. 
This term is also widely used in a less precise sense to refer to proportions such as preva-
lence.1 It is in this more general sense that the term is used here and in other parts of  
the book.) 

In Figure 1-1, these results are plotted at the midpoints of  10-year age groups (e.g., for 
ages 30–39, at 35 years; for ages 40–49, at 45 years; and so on). These data show that 
the prevalence of  Y in this population decreases with age. Does this mean that the preva-
lence rates of  Y decrease as individuals age? Not necessarily. For many disease processes, 

Table 1-1 Hypothetical data from a cross-sectional study of prevalence of disease Y in a 
population, by age, 2005.

Age group (years) Midpoint (years) 2005 Prevalence (per 1000)

30–39 35 45

40–49 45 40

50–59 55 36

60–69 65 31

70–79 75 27
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Figure 1-1 Hypothetical data from a cross-sectional study of prevalence of disease Y in a 
population, by age, 2005 (based on data from Table 1-1).



1
Basic Study D

esigns in 
Analytical Epidem

iology

 1.2 Analysis of Age, Birth Cohort, and Period Effects 5

exposures have cumulative effects that are expressed over long periods of  time. Long 
latency periods and cumulative effects characterize, for example, numerous exposure/
disease associations, including smoking-lung cancer, radiation-thyroid cancer, and 
saturated fat intake-atherosclerotic disease. Thus, the health status of  a person who is 
50 years old at the time of  the survey may be partially dependent on this person’s past 
exposures (e.g., smoking during early adulthood). Variability of  past exposures across 
successive generations (birth cohorts*) can distort the apparent associations between 
age and health outcomes that are observed at any given point in time. This concept can 
be illustrated as follows.

Suppose that the same investigator who collected the data shown in Table 1-1 is able 
to recover data from previous surveys conducted in the same population in 1975, 1985, 
and 1995. The resulting data, presented in Table 1-2 and Figure 1-2, show consistent 
trends of  decreasing prevalence of  Y with age in each of  these surveys. Consider now 
plotting these data using a different approach, as shown in Figure 1-3. The dots in 
Figure 1-3 are at the same places as in Figure 1-2, except that the lines are connected by 
birth cohort (the 2005 survey data are also plotted in Figure 1-3). Each of  the dotted lines 
represents a birth cohort converging to the 2005 survey. For example, the “youngest” 
age point in the 2005 cross-sectional curve represents the rate of  disease Y for individuals 
aged 30 to 39 years (average of  35 years) who were born between 1965 and 1974—
that is, in 1970 on average (the “1970 birth cohort”). Individuals in this 1970 birth 
cohort were on average 10 years younger—that is, 25 years of  age at the time of  the 
1995 survey and 15 years of  age at the time of  the 1985 survey. The line for the 1970 
birth cohort thus represents how the prevalence of  Y changes with increasing age for 
individuals born, on average, in 1970. Evidently, the cohort pattern shown in Figure 1-3 
is very different from that suggested by the cross-sectional data and is consistent for all 
birth cohorts shown in Figure 1-3 in that it suggests that the prevalence of  Y actually 

*Birth cohort: From Latin cohors, warriors, the 10th part of  a legion. The component of  the population born 
during a particular period and identified by period of  birth so that its characteristics (e.g., causes of  death and 
numbers still living) can be ascertained as it enters successive time and age periods.1

Table 1-2 Hypothetical data from a series of cross-sectional studies of prevalence of disease Y in 
a population, by age and survey date (calendar time), 1975–2005.

Age group 
(years)

Midpoint 
(years)

Survey date

1975 1985 1995 2005

Prevalence (per 1000)

10–19 15 17 28

20–29 25 14 23 35

30–39 35 12 19 30 45

40–49 45 10 18 26 40

50–59 55 15 22 36

60–69 65 20 31

70–79 75  27
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increases as people age. The fact that the inverse trend is observed in the cross-sectional 
data is due to a strong “cohort effect” in this example; that is, the prevalence of  Y is 
strongly determined by the year of  birth of  the person. For any given age, the prevalence 
rate is higher in younger (more recent) than in older cohorts. Thus, in the 2005 cross-
sectional survey (Figure 1-1), the older subjects come from birth cohorts with relatively 
lower rates, whereas the youngest come from the cohorts with higher rates. This can be 
seen clearly in Figure 1-3 by selecting one age (e.g., 45 years) and observing that the rate 
is lowest for the 1930 birth cohort, and increases for each subsequent birth cohort (i.e., 
the 1940, 1950, and 1960 cohorts, respectively).
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Figure 1-2 Hypothetical data from a series of cross-sectional studies of prevalence of disease 
Y (per 1000) in a population, by age, and survey date (calendar time), 1975, 1985, 1995, and 2005 
(based on data from Table 1-2).

Figure 1-3 Plotting of the data in Figure 1-2 by birth cohort (see also Table 1-3). The dotted 
lines represent the different birth cohorts (from 1930 to 1970) as they converge to the 2005 cross-
sectional survey (solid line, as in Figure 1-1).
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Although the cross-sectional analysis of  prevalence rates in this example gives a 
distorted view of  the disease behavior as a birth cohort ages, it is still useful for planning 
purposes; this is because, regardless of  the mix of  birth cohorts, cross-sectional data 
inform the public health authorities about the burden of  disease as it exists currently 
(e.g., the age distribution of  disease Y in 2005).

An alternative display of  the data from Table 1-2 is shown in Figure 1-4. Instead of  
age (as in Figures 1-1 to 1-3), the scale in the abscissa (x axis) corresponds to the birth 
cohort and each line to an age group; thus, the slope of  the lines represents the change 
across birth cohorts for a given age group. 

Often the choice among these alternative graphical representations is a matter of  
personal preference (i.e., which pattern the investigator wishes to emphasize). Whereas 
Figure 1-4 shows trends according to birth cohorts more explicitly (e.g., for any given 
age group, there is an increasing prevalence from older to more recent cohorts), 
Figure 1-3 has an intuitive appeal in that each line represents a birth cohort as it ages. 
As long as one pays careful attention to the labeling of  the graph, any of  these displays 
is  appropriate to identify age and birth cohort patterns. The same patterns displayed 
in Figures 1-3 and 1-4 can be seen in Table 1-2, moving downward to examine cross-
sectional trends and diagonally from left to right to examine birth cohort trends. An 
alternative and somewhat more readable display of  the same data for the purpose 
of  detecting trends according to birth cohort is shown in Table 1-3, which allows 
the examination of  trends according to age (“age effect”) within each birth cohort 
(horizontal lines in Table 1-3). Additionally, and in agreement with Figure 1-4, Table 
1-3 shows how prevalence rates increase from older to more recent cohorts (cohort 
effect)—readily visualized by moving one’s eyes from the top to the bottom of  each age 
group column in Table 1-3.

Thus, the data in the previous example are simultaneously affected by two strong 
effects: “cohort effect” and “age effect” (for definitions, see Exhibit 1-1). These two trends 
are jointly responsible for the seemingly paradoxical trend observed in the cross-sectional 
analyses in this hypothetical example (Figures 1-1 and 1-2), in which the rates seem 
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Figure 1-4 Alternative display of the data in Figures 1-2 and 1-3. Birth cohorts are represented 
in the x axis. The lines represent age groups (labeled using the midpoints, in years).
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to decrease with age. The fact that more recent cohorts have substantially higher rates 
(cohort effect) overwhelms the increase in prevalence associated with age and explains 
the observed cross-sectional pattern.

In addition to cohort and age effects, patterns of  rates can be influenced by the 
so-called “period effect.” The term period effect is frequently used to refer to a global 
shift or change in trends that affect the rates across birth cohorts and age groups 
(Exhibit 1-1). Any phenomenon occurring at a specific point in time (or during a specific 
period) that affects an entire population (or a significant segment of  it), such as a war, a 
new treatment, or massive migration, can produce this change independently of  age and 
birth cohort effects. A hypothetical example is shown in Figure 1-5. This figure shows 
data similar to those used in the previous example (Figure 1-3), except that in this case 
the rates level off  in 1995 for all cohorts (i.e., when the 1970 cohort is 25 years old on 
the average, when the 1960 cohort is 35 years old, and so on).

Period effects on prevalence rates can occur, for example, when new medications or 
preventive interventions are introduced for diseases that previously had poor prognoses, 
as in the case of  the introduction of  insulin, antibiotics, and the polio vaccine.

It is important to understand that the so-called birth cohort effects may have little to 
do with the circumstances surrounding the time of  birth of  a given cohort of  individuals. 
Rather, cohort effects may result from the lifetime experience (including, but not 
limited to, those surrounding birth) of  the individuals born at a given point in time that 
influence the disease or outcome of  interest. For example, currently observed patterns 
of  association between age and coronary heart disease (CHD) may have resulted from 
cohort effects related to changes in diet (e.g., fat intake) or smoking habits of  adolescent 
and young adults over time. It is well known that coronary atherosclerotic markers, 

Age group (midpoint, in years)

Birth cohort range Midpoint 15 25 35 45 55 65 75

Prevalence (per 1000)

1925–1934 1930 10 15 20 27

1935–1944 1940 12 18 22  31

1945–1954 1950 14 19  26 36

1955–1964 1960 17 23 30 40

1965–1974 1970 28 35 45

Table 1-3 Rearrangement of the data shown in Table 1-2 by birth cohort.

Age effect:  Change in the rate of  a condition according to age, irrespective of  birth cohort and 
calendar time

Cohort effect:  Change in the rate of  a condition according to year of  birth, irrespective of  age and 
calendar time

Period effect:  Change in the rate of  a condition affecting an entire population at some point in time, 
irrespective of  age and birth cohort

exhibiT 1-1 Definitions of age, cohort, and period effects.
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such as thickening of  the arterial intima, frequently develop early in life.4 In middle and 
older ages, some of  these early intimal changes may evolve into raised atherosclerotic 
lesions, eventually leading to thrombosis, lumen occlusion, and the resulting clinically 
manifest acute ischemic events. Thus, a young adult’s dietary and/or smoking habits 
may influence atherosclerosis development and subsequent coronary risk. If  changes in 
these habits occur in the population over time, successive birth cohorts will be subjected 
to changing degrees of  exposure to early atherogenic factors, which will determine in 
part future cross-sectional patterns of  the association of  age with CHD.

Another way to understand the concept of  cohort effects is as the result of  an inter-
action between age and calendar time. The concept of  interaction is discussed in detail 
in Chapter 6 of  this book. In simple terms, it means that a given variable (e.g., calendar 
time in the case of  a cohort effect) modifies the strength or the nature of  an associ-
ation between another variable (e.g., age) and an outcome (e.g., coronary atheroscle-
rosis). In the previous example, it means that the way age relates to the development 
of  atherosclerosis changes over time as a result of  changes in the population preva-
lence of  key risk factors (e.g., dietary/smoking habits of  young adults). In other words, 
calendar time-related changes in risk factors modify the association between age and 
atherosclerosis.

Cohort–age–period analyses can be applied not only to prevalence data but also 
to incidence and mortality data. A classic example is Wade Hampton Frost’s study of  
age patterns of  tuberculosis mortality.5 Figure 1-6 presents two graphs from Frost’s 
landmark paper. With regard to Figure 1-6A, Frost5(p.94) noted that “looking at the 
1930 curve, the impression given is that nowadays an individual encounters his 
greatest risk of  death from tuberculosis between the ages of  50 and 60. But this is 
not really so; the people making up the 1930 age group 30 to 60 have, in earlier life, 
passed through greater mortality risk” (emphasis in original). This is demonstrated in 
Figure 1-6B, aptly used by Frost to show how the risk of  tuberculosis death after the 
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Figure 1-5 Hypothetical example of period effect: an event happened in 1995 that affected 
all birth cohorts (1930–1970) in a similar way and slowed down the rate of increase with age. 
The solid line represents the observed cross-sectional age pattern in 2005.



10 CHAPTER 1 | Basic Study Designs in Analytical Epidemiology

first few years of  life is actually highest at ages 20 to 30 years for cohorts born in 1870 
through 1890.

Another, more recent, example is shown in Figure 1-7, based on an analysis of  age, 
cohort, and period effects on the incidence of  colorectal cancer in a region of  Spain.6 
In these figures, birth cohorts are placed on the x axis (as in Figure 1-4). These figures 
show strong cohort effects: for each age group, the incidence rates of  colorectal cancer 
tend to increase from older to more recent birth cohorts. An age effect is also evident, 
as for each birth cohort (for any given year-of-birth value in the horizontal axis) the 
rates are higher for older than for younger individuals. Note that a logarithmic scale 
was used in the ordinate in this figure, in part because of  the wide range of  rates needed 
to be plotted. (For further discussion of  the use of  logarithmic vs arithmetic scales, see 
Chapter 9, Section 9.3.5.)

Source: Reprinted with permission from WH Frost, The Age-Selection of  Tuberculosis Mortality in Successive Decades. 
American Journal of  Hygiene, Vol 30, pp. 91–96, © 1939.

Figure 1-6 Frost’s analysis of age in relation to tuberculosis mortality (males only). 
(A) Massachusetts death rates from tuberculosis, by age, 1880, 1910, 1930. (B) Massachusetts 
death rates from tuberculosis, by age, in successive 10-year cohorts.
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An additional example of  age and birth cohort analysis of  incidence data is shown in 
Figure 1-8. This figure shows the incidence of  ovarian cancer in Mumbai, India, by age 
and year of  birth cohort.7 This is an example in which there is a strong age effect, partic-
ularly for the cohorts born from 1940 through 1970—that is, rates increase dramati-
cally with age through age 52 years—but virtually no cohort effect, as indicated by the 
approximate flat pattern for the successive birth cohorts for each age group (the figure 
shows the midpoint of  each age group). It should be manifest that, with very little cohort 
effect, the same age patterns for rates are found in cross-sectional and cohort curves 
(Figure 1-8B).

Period effects associated with incidence rates tend to be more prominent for diseases 
for which the cumulative effects of  previous exposures are relatively unimportant, such 
as infectious diseases and injuries. Conversely, in chronic diseases such as cancer and 
cardiovascular disease, cumulative effects are usually important, and thus, cohort 
effects tend to affect incidence rates to a greater extent than period effects.

These methods can also be used to study variables other than disease rates. An example 
is the analysis of  age-related changes in serum cholesterol levels shown in Figure 1-9, 
based on data from the Florida Geriatric Research Program, an ongoing program 
designed to provide free medical screening for older people.8 This figure reveals a slight 
cohort effect, in that serum cholesterol levels tend to be lower in older than in more 

Source: Reprinted with permission from G. López-Abente et al., Age-Period-Cohort Modeling of  Colorectal Cancer Incidence and 
Mortality in Spain. Cancer Epidemiology, Biomarkers, and Prevention, Vol 6, pp. 999–1005, © 1997.

Figure 1-7 Trends in age-specific incidence rates of colorectal cancer in Navarra and Zaragoza (Spain). 
The number next to each line represents the initial year of the corresponding 5-year age group.
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Source: Adapted from PK Dhillon et al., Trends in Breast, Ovarian and Cervical Cancer Incidence in Mumbai, India Over a 
30-Year Period, 1976–2005: An Age-Period-Cohort Analysis. British Journal of  Cancer, Vol 105, No 5, pp. 723–730, © 2011.
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Figure 1-8 Incidence rates of ovarian cancer per 100,000 person-years, by birth cohort (A) and 
by age (B).
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recent birth cohorts for most age groups. A J- or U-shaped age pattern is also seen; that 
is, for each birth cohort, serum cholesterol tends to first decrease or remain stable with 
increasing age and then increase to achieve its maximum value in the oldest members 
of  the cohort. Although at first glance this pattern might be considered an “age effect,” 
for each cohort the maximum cholesterol values in the oldest age group coincide with a 
single point in calendar time: 1985 through 1987 (i.e., for the 1909–1911 birth cohort 
at 76 years of  age, for the 1906–1908 cohort at 79 years of  age, and so on), leading 
Newschaffer et al. to observe that “a period effect is suggested by a consistent change 
in curve height at a given time point over all cohorts. . . . Therefore, based on simple 
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Source: Reprinted with permission from CJ Newschaffer, TL Bush, and WE Hale, Aging and Total Cholesterol Levels: Cohort, 
Period, and Survivorship Effects. American Journal of  Epidemiology, Vol 136, pp. 23–34, © 1992.

Figure 1-9 Sex-specific mean serum cholesterol levels by age and birth cohort: longitudinal 
data from the Florida Geriatric Research Program, Dunedin County, Florida, 1976 to 1987.
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visual inspection of  the curves, it is not possible to attribute the consistent U-shaped 
increase in cholesterol to aging, since some of  this shape may be accounted for by period 
effects.”8(p.26)

In complex situations, it may be difficult to clearly differentiate age, cohort, and 
period effects. In these situations, such as that illustrated in the preceding discussion, 
multiple regression techniques can be used to disentangle these effects. Describing these 
techniques in detail is beyond the scope of  this book. (A general discussion of  multiple 
regression methods is presented in Chapter 7, Section 7.4.) The interested reader can 
find examples and further references in the original papers from the previously cited 
examples (e.g., López-Abente et al.6 and Newschaffer et al.8).

Finally, it should be emphasized that birth cohort effects may affect associations 
between disease outcomes and variables other than age. Consider, for example, a case-
control study (see Section 1.4.2) in which cases and controls are closely matched by age 
(see Section 1.4.5). Assume that, in this study, cases are identified over a 10-year span 
(e.g., from 1960 through 1969) and controls at the end of  the accrual of  cases. In this 
study, age per se does not act as a confounder, as cases and controls are matched on age 
(see Section 5.2.2); however, the fact that cases and controls are identified from different 
birth cohorts may affect the assessment of  variables, such as educational level, that may 
have changed rapidly across birth cohorts. In this case, birth cohort, but not age, would 
confound the association between education and the disease of  interest.

1.3 ECOLOGIC STUDIES

The units of  observation in an ecologic study are usually geographically defined popula-
tions (such as countries or regions within a country) or the same geographically defined 
population at different points in time. Mean values* for both a given postulated risk 
factor and the outcome of  interest are obtained for each observation unit for comparison 
purposes. Typically, the analysis of  ecologic data involves plotting the risk factor and 
outcome values for all observation units to assess whether a relationship is evident. For 
example, Figure 1-10 displays the death rates for CHD in men from 16 cohorts included 
in the Seven Countries Study plotted against the corresponding estimates of  mean fat 
intake (percent calories from fat).9 A positive relationship between these two variables 
is suggested by these data, as there is a tendency for the death rates to be higher in 
countries having higher average saturated fat intakes. 

Different types of  variables can be used in ecologic studies,10 which are briefly 
 summarized as follows:

•	 Aggregate measures that summarize the characteristics of  individuals within a group 
as the mean value of  a certain parameter or the proportion of  the population or 
group of  interest with a certain characteristic. Examples include the prevalence of  
a given disease, average amount of  fat intake (Figure 1-10), proportion of  smokers, 
and median income.

•	 Environmental measures that represent physical characteristics of  the geographic 
location for the group of  interest. Individuals within the group may have different 
degrees of  exposure to a given characteristic, which could theoretically be 
measured. Examples include air pollution intensity and hours of  sunlight.

*A mean value can be calculated for both continuous and discrete (e.g., binary) variables. A proportion is a mean 
of  individual binary values (e.g., 1 for presence of  a certain characteristic, 0 if  the characteristic is absent).
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•	 Global measures that represent characteristics of  the group that are not reducible 
to characteristics of  individuals (i.e., that do not have analogues at the individual 
level). Examples include the type of  political or healthcare system in a given 
region, a certain regulation or law, and the presence and magnitude of  health 
inequalities.

In a traditional ecologic study, two ecologic variables are contrasted to examine 
their possible association. Typically, an ecologic measure of  exposure and an aggregate 
measure of  disease or mortality are compared (Figure 1-10). These ecologic measures 
can also be used in studies of  individuals (see Section 1.4) in which the investigator 
chooses to define exposure using an ecologic criterion on the basis of  its expected superior 
construct validity.* For example, in a cross-sectional study of  the relationship between 
socioeconomic status and prevalent cardiovascular disease, the investigator may choose 
to define study participants’ socioeconomic status using an aggregate indicator (e.g., 
median family income in the neighborhood) rather than, for example, his or her own 
(individual) educational level or income. Furthermore, both individual and aggregate 
measures can be simultaneously considered in multilevel analyses, as when examining 

*Construct validity is the extent to which an operational variable (e.g., body weight) accurately represents the 
phenomenon it purports to represent (e.g., nutritional status).

Source: Reprinted with permission from Seven Countries: A Multivariate Analysis of  Death and Coronary Heart Disease, 
by A Keys, Cambridge, Mass: Harvard University Press, © 1980.

Figure 1-10 Example of an ecologic study. Ten-year coronary death rates of the cohorts from the 
Seven Countries Study plotted against the percentage of dietary calories supplied by saturated fatty 
acids. Cohorts: B, Belgrade; C, Crevalcore; D, Dalmatia; E, East Finland; G, Corfu; J, Ushibuka; K, Crete; 
M, Montegiorgio; N, Zuphen; R, Rome railroad; S, Slavonia; T, Tanushimaru; U, American railroad; 
V, Velika Krsna; W, West Finland; Z, Zrenjanin. Shown in the figure are the correlation coefficient r and 
the linear regression coefficients (see Chapter 7, Section 7.4.1) corresponding to this plot. 
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the joint role of  individuals’ and aggregate levels of  income and education in relation to 
prevalent cardiovascular disease.11

An ecologic association may accurately reflect a causal connection between a 
suspected risk factor and a disease (e.g., the positive association between fat intake and 
CHD depicted in Figure 1-10). However, the phenomenon of  ecologic fallacy is often 
invoked as an important limitation for the use of  ecologic correlations as bona fide tests 
of  etiologic hypotheses. The ecologic fallacy (or aggregation bias) has been defined as “the 
bias that may occur because an association observed between variables on an aggregate 
level does not necessarily represent the association that exists at an individual level.”1 
The phenomenon of  ecologic fallacy is schematically illustrated in Figure 1-11, based 
on an example proposed by Diez-Roux.12 In a hypothetical ecologic study examining the 
relationship between per capita income and the risk of  motor vehicle injuries in three 
populations composed of  seven individuals each, a positive correlation between mean 
income and risk of  injuries is observed; however, a close inspection of  individual values 
reveals that cases occur exclusively in persons with low income (less than US $20,000). 
In this extreme example of  ecologic fallacy, the association detected when using popula-
tions as observation units—for example, higher mean income relates to a higher risk 
of  motor vehicle injuries—has a direction diametrically opposed to the relationship 
between income and motor vehicle injuries in individuals—in whom higher individual 
income relates to a lower injury risk. Thus, the conclusion from the ecologic analysis that 
a higher income is a risk factor for motor vehicle injuries may be fallacious (discussed 
later in this section).

Another example of  a situation in which this type of  fallacy may have occurred is 
given by an ecologic study that showed a direct correlation between the percentage 
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Mean income:  $23,940 Traffic injuries:  4/7 = 57%

$17.5K$12.2K$10.5K $45.6K$28.5K$34.5K

Population A
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Mean income:  $22,430 Traffic injuries:  3/7 = 43%

$38.0K$10.0K$12.5K $14.3K$24.3K$32.5K
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Mean income:  $21,410 Traffic injuries:  2/7 = 29%

$22.7K$23.5K$28.7K $10.8K$13.5K$30.2K
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Figure 1-11 Schematic representation of a hypothetical study in which ecologic fallacy occurs. 
Boxes represent hypothetical individuals; thicker boxes represent incident cases of motor vehicle 
(MV) injuries; the numbers inside the boxes indicate individuals’ annual incomes (in thousands of 
US dollars). Ecologically, the correlation is positive: population A has the highest values of both 
mean income and incidence of MV injuries; population B has intermediate values of both mean 
income and incidence of MV injuries; and population C has the lowest values of both mean income 
and incidence of MV injuries. In individuals, however, the relationship is negative: for all three 
populations combined, mean income is US $13,230 for cases and US $32,310 for noncases.
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of  the population that was Protestant and suicide rates in a number of  Prussian 
communities in the late 19th century.10,13 Concluding from this observation that being 
Protestant is a risk factor for suicide may well be wrong (i.e., may result from an ecologic 
fallacy). For example, it is possible that most of  the suicides within these communities 
were committed by Catholic individuals who, when in the minority (i.e., in communities 
predominantly Protestant), tended to be more socially isolated and therefore at a higher 
risk of  suicide.

As illustrated in these examples, errors associated with ecologic studies are the result 
of  cross-level inference, which occurs when aggregate data are used to make inferences at 
the individual level.10 The mistake in the example just discussed is to use the correlation 
between the proportion of  Protestants (which is an aggregate measure) and suicide 
rate to infer that the risk of  suicide is higher in Protestant than in Catholic individuals. 
If  one were to make an inference at the population level, however, the conclusion that 
predominantly Protestant communities with Catholic minorities have higher rates of  
suicide would still be valid (provided that other biases and confounding factors were 
not present). Similarly, in the income/injuries example, the inference from the ecologic 
analysis is only wrong if  intended for the understanding of  determinants at the level of  
the individual. The ecologic information may be valuable if  the investigator’s purpose is 
to understand fully the complex web of  causality14 involved in motor vehicle injuries, as 
it may yield clues regarding the causes of  motor vehicle injuries that are not provided by 
individual-level data. In the previous example (Figure 1-11), higher mean population 
income may truly be associated with increased traffic volume and, consequently, with 
higher rates of  motor vehicle injuries. At the individual level, however, the inverse 
association between income and motor vehicle injuries may result from the higher 
frequency of  use of  unsafe vehicles among low-income individuals, particularly in the 
context of  high traffic volume.

Because of  the prevalent view that inference at the individual level is the “gold 
standard” when studying disease causation,15 as well as the possibility of  ecologic 
fallacy, ecologic studies are often considered imperfect surrogates for studies in which 
individuals are the observation units. Essentially, ecologic studies are seen as prelim-
inary studies that “can suggest avenues of  research that may be promising in casting 
light on etiological relationships.”3(p.206) That this is often but not always true has been 
underscored by the examples discussed previously here. Furthermore, the following two 
situations demonstrate that an ecologic analysis may on occasion lead to more accurate 
conclusions than an analysis using individual-level data—even if  the level of  inference 
in the ecologic study is at the individual level.

 1. The first situation is when the within-population variability of  the exposure of  
interest is low, but the between-population variability is high. For example, if  salt 
intake of  individuals in a given population were above the threshold needed to 
cause hypertension, a relationship between salt and hypertension might not be 
apparent in an observational study of  individuals in this population, but it could 
be seen in an ecologic study including populations with diverse dietary habits.16 
(A similar phenomenon has been postulated to explain why ecologic correlations, 
but not studies of  individuals, have detected a relationship between fat intake and 
risk of  breast cancer.17)

 2. The second situation is when, even if  the intended level of  inference is the 
individual, the implications for prevention or intervention are at the population level. 
Some examples of  the latter situation are as follows:
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•	 In the classic studies on pellagra, Goldberger et al.18 assessed not only 
individual indicators of  income but also food availability in the area markets. 
They found that, independently of  individual socioeconomic indicators, food 
availability in local markets in the villages was strongly related to the occur-
rence of  pellagra, leading these authors to conclude the following:

The most potent factors influencing pellagra incidence in the villages studied 
were (a) low family income, and (b) unfavorable conditions regarding the avail-
ability of  food supplies, suggesting that under conditions obtaining [sic] in some 
of  these villages in the spring of  1916 many families were without sufficient 
income to enable them to procure an adequate diet, and that improvement in 
food availability (particularly of  milk and fresh meat) is urgently needed in such 
localities.18(p.2712)

 It should be readily apparent in this example that an important (and poten-
tially modifiable) link in the causal chain of  pellagra occurrence—namely, 
food availability—may have been missed if  the investigators had focused 
exclusively on individual income measures.

•	 Studies of  risk factors for smoking initiation and/or smoking cessation may 
focus on community-level cigarette taxes or regulation of  cigarette advertising. 
Although individual factors may influence the individual’s predisposition to 
smoking (e.g., psychological profile, smoking habits of  relatives or friends), 
regulatory “ecologic” factors may be strong determinants and modifiers of  
the individual behaviors. Thus, an investigator may choose to focus on these 
global factors rather than (or in addition to) individual behaviors.

•	 When studying the determinants of  transmission of  certain infectious diseases 
with complex nonlinear infection dynamics (e.g., attenuated exposure-
infection relationship at the individual level), ecologic studies may be more 
appropriate than studies using individuals as observation units.19

Because ultimately all risk factors must operate at the individual level, the quint-
essential reductionistic* approach would focus only on the causal pathways at the 
biochemical or intracellular level. For example, the study of  the carcinogenic effects 
of  tobacco smoking could focus on the effects of  tobacco byproducts at the cellular 
level—that is, alteration of  the cell’s DNA. However, will that make the study of  
smoking habits irrelevant? Obviously not. Indeed, from a public health perspective, 
the use of  a comprehensive theoretical model of  causality—one that considers all 
factors influencing the occurrence of  disease—often requires taking into account 
the role of  upstream and ecologic factors (including environmental, sociopolitical, 
and cultural) in the causal chain (see also Chapter 10, Sections 10.2.2 and 10.2.3). 
As stated at the beginning of  this chapter, the ultimate goal of  epidemiology is to be 
effectively used as a tool to improve the health conditions of  the public; in this context, 
the factors that operate at a global level may represent important links in the chain 
of  causation, particularly when they are amenable to intervention (e.g., improving 
access to fresh foods in villages or establishing laws that limit cigarette advertising). As 
a result, studies focusing on factors at the individual level may be insufficient in that 
they fail to address these ecologic links in the causal chain. This important concept 

*Reductionism is a theory that postulates that all complex systems can be completely understood in terms of  
their components, basically ignoring interactions between these components.
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can be illustrated using the previously discussed example of  religion and suicide. A 
study based on individuals would “correctly” find that the risk of  suicide is higher in 
Catholics than in Protestants.10 This finding would logically suggest explanations of  
why the suicide rate differs between these religious groups. For example, is the higher 
rate in Catholics caused by Catholicism per se? Alternatively, is it because of  some ethnic 
difference between Catholics and Protestants? If  so, is it due to some genetic component 
that distinguishes these ethnic groups? The problem is that these questions, which 
attempt to characterize risk at the individual level, although important, are insufficient 
to explain fully the “web of  causality,”14 for they fail to consider the ecologic dimension 
of  whether minority status explains and determines the increased risk of  suicide. This 
example underscores the concept that both individual and ecologic studies are often 
necessary to study the complex causal determination not only of  suicide but also of  
many other health and disease processes.12 The combination of  individual and ecologic 
levels of  analysis poses analytical challenges for which statistical models (hierarchical 
models) have been developed. Difficult conceptual challenges remain, however, such as 
the development of  causal models that include all relevant risk factors operating from 
the social to the biological level and that take into consideration their possible multi-
level interaction.12

1.4 STUDIES BASED ON INDIVIDUALS AS OBSERVATION UNITS

There are three basic types of  nonexperimental (observational) study designs in which 
individuals are the units of  observation: the cohort or prospective study, the case-control 
study, and the cross-sectional study. In this section, key aspects of  these study designs 
are reviewed. The case-crossover study, a special type of  case-control study, is also 
briefly discussed. For a more comprehensive discussion of  the operational and analytic 
issues related to observational epidemiologic studies, the reader is referred to specialized 
texts.20–24

From a conceptual standpoint, the fundamental study design in observational epide-
miology—that is, the design from which the others derive and that can be considered 
as the “gold standard”—is the cohort or prospective study. Cohort data, if  unbiased, 
reflect the “real-life” cause–effect temporal sequence of  events, a sine qua non criterion to 
establish causality (see Section 10.2.4). From this point of  view, the case-control and the 
cross-sectional designs are mere variations of  the cohort study design and are primarily 
justified by feasibility, logistical ease, and efficiency.

1.4.1 Cohort Study
In a cohort study, a group of  healthy people or a cohort* is identified and followed up for 
a certain time period to ascertain the occurrence of  health-related events (Figure 1-12). 
The usual objective of  a cohort study is to investigate whether the incidence of  an event 
is related to a suspected exposure.

Study populations in cohort studies can be quite diverse and may include a sample of  
the general population of  a certain geographical area (e.g., the Framingham Study25); 
an occupational cohort, typically defined as a group of  workers in a given occupation or 
industry who are classified according to exposure to agents thought to be occupational 

*A definition of  the term cohort broader than that found in the footnote in Section 1.2 is any designated and 
defined group of  individuals who are followed or traced over a given time period.1
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hazards; or a group of  people who, because of  certain characteristics, are at an 
unusually high risk for a given disease (e.g., the cohort of  homosexual men who are 
followed in the Multicenter AIDS Cohort Study26). Alternatively, cohorts can be formed 
by “convenience” samples, or groups gathered because of  their willingness to participate 
or because of  other logistical advantages, such as ease of  follow-up; examples include 
the Nurses Health Study cohort,27 the Health Professionals Study cohort,28 and the 
American Cancer Society cohort studies of  volunteers.29

After the cohort is defined and the participants are selected, a critical element in a 
cohort study is the ascertainment of  events during the follow-up time (when the event 
of  interest is a newly developed disease, prevalent cases are excluded from the cohort 
at baseline). This is the reason why these studies are also known as prospective studies.30 
A schematic depiction of  a cohort of  1000 individuals is shown in Figure 1-13. In this 
hypothetical example, cohort members are followed for a given time period during 

Figure 1-12 Basic components of a cohort study: exposure, time, and outcome.
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Figure 1-13 Diagram of a hypothetical cohort of 1000 subjects. During the follow-up, four 
disease events (—•) and seven losses to follow-up (arrows) occur, so that the number of subjects 
under observation at the end of the follow-up is 989.
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which four events such as incident disease cases or deaths (which appear in Figure 1-13 
as lines ending with a dot) occur. In addition to these four events, seven individuals are 
lost to follow-up during the study period. These losses (represented in Figure 1-13 as 
arrows) are usually designated as censored observations or withdrawals. As described in 
Chapter 2, these losses to follow-up need to be taken into account for the calculation 
of  incidence. Using the actuarial life-table approach as an example (see Chapter 2, 
Section 2.2.1), incidence can be estimated as the number of  events occurring during 
the follow-up period divided by the number of  subjects in the cohort at baseline minus 
one-half  of  the losses. Thus, for the hypothetical cohort in Figure 1-13, the incidence 
of  disease is 4/[1000 – (1/2 3 7)] 5 4.01/1000.

In the cohort study’s most representative format, a defined population is identified. 
Its subjects are classified according to exposure status, and the incidence of  the disease 
(or any other health outcome of  interest) is ascertained and compared across exposure 
categories (Figure 1-14). For example, based on the hypothetical cohort schematically 
represented in Figure 1-13 and assuming that the prevalence of  the exposure of  interest is 
50%, Figure 1-15 outlines the follow-up separately for exposed (n 5 500) and unexposed 
(n 5 500) individuals. Data analysis in this simple situation is straightforward, involving 
a comparison of  the incidence of  disease between exposed and unexposed persons, using 
as the denominator the “population at risk.” For example, using the actuarial life table 
approach previously mentioned for the hypothetical cohort study depicted in Figure 1-15, 
the incidence of  disease in exposed individuals is 3/[500 – (1/2 3 4)] 5 6.02/1000, and in 
unexposed, 1/[500 – (1/2 3 3)] 5 2.01/1000. After obtaining incidence in exposed and 
unexposed, typically the relative risk is estimated (Chapter 3, Section 3.2.1); that is, these 
results would suggest that exposed individuals in this cohort have a risk approximately 
three times higher than that of  unexposed individuals (relative risk 5 6.02/2.01 5 3.0).

As discussed in Chapter 2, an important assumption for the calculation of  incidence 
in a cohort study is that individuals who are lost to follow-up (the arrows in Figures 1-13 
and 1-15) are similar to those who remain under observation with regard to charac-
teristics affecting the outcome of  interest. The reason is that even though techniques 
to “correct” the denominator for the number (and timing) of  losses are available (see 
Section 2.2), if  the average risk of  those who are lost differs from that of  those remaining 

Figure 1-14 Basic analytical approach in a cohort study.
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in the cohort, the incidence based on the latter will not represent accurately the true 
incidence in the initial cohort (see Section 2.2.1). If, however, the objective of  the study 
is an internal comparison of  the incidence between exposed and unexposed subjects, 
even if  those lost to follow-up differ from the remaining cohort members, as long as the 
biases caused by losses are similar in the exposed and the unexposed, they will cancel out 
when the relative risk is calculated (see Chapter 4, Section 4.2). Thus, a biased relative 
risk caused by losses to follow-up is present only when losses are differential in exposed 
and unexposed subjects with regard to the characteristics influencing the outcome of  
interest—in other words, when losses are affected by both exposure and disease status.

Cohort studies are defined as concurrent3 (or truly “prospective”30) when the cohort is 
assembled at the present time—that is, the calendar time when the study starts—and is 
followed up toward the future (Figure 1-16). The main advantage of  concurrent cohort 
studies is that the baseline exam, methods of  follow-up, and ascertainment of  events are 
planned and implemented for the purposes of  the study, thus best fitting the study objec-
tives; in addition, quality control measures can be implemented as needed (see Chapter 8). 
The disadvantages of  concurrent studies relate to the amount of  time needed to conduct 
them (results are available only after a sufficient number of  events is accumulated) and 
their usually elevated costs. Alternatively, in nonconcurrent cohort studies (also known 
as historical or retrospective cohort studies), a cohort is identified and assembled in the 
past on the basis of  existing records and is “followed” to the present time (i.e., the time 
when the study is conducted) (Figure 1-16). An example of  this type of  design is a 1992 
study in which the relationship between childhood body weight and subsequent adult 

Figure 1-15 Same cohort study as in Figure 1-13, but the ascertainment of events and losses 
to follow-up is done separately among those exposed and unexposed.
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mortality was examined nonconcurrently on the basis of  existing records of  weight 
and height values obtained from 1933 through 1945 in school-age children that were 
linked to adult death records.31 The nonconcurrent design is also useful in occupational 
epidemiology, as occupational records can be linked to mortality or cancer registries: for 
example, a cohort of  all electricians working in Norway in 1960 was followed noncon-
currently through 1990 to study the relationship of  electromagnetic radiation to cancer 
incidence.32 Mixed designs with both nonconcurrent and concurrent follow-up compo-
nents are also possible (Figure 1-16). Nonconcurrent cohort studies are obviously less 
expensive and can be done more expeditiously than concurrent studies. Their main 
disadvantage is an obligatory reliance on available information; as a result, the type or 
quality of  exposure or outcome data may not be well suited to fulfill the study objectives.

1.4.2  Case-Control Study
As demonstrated by Cornfield33 and discussed in basic epidemiology textbooks (e.g., 
Gordis3), the case-control design is an alternative to the cohort study for investigating 
exposure-disease associations. In contrast to a cohort study, in which exposed and 
unexposed individuals are compared in relationship with the disease incidence (or some 
other mean value for the outcome) (Figure 1-14), a case-control study compares cases 
(usually, diseased individuals) and controls (e.g., nondiseased individuals) with respect 
to their level of  exposure to a suspected risk factor. When the risk factor of  interest is a 
binary characteristic (present/absent), the typical analytical approach in case-control 
studies is to compare the odds of  exposure in cases with that in controls by calculating the 
exposure odds ratio (Figure 1-17), which is often an appropriate estimate of  the relative 
risk (see Chapter 3, Section 3.2.1). When the exposure of  interest is a continuous trait, 
its mean levels (e.g., mean blood pressure) can be compared in cases and controls.

The case-control study design has important advantages over the cohort design, 
particularly over the concurrent cohort study, as the need for a follow-up time is avoided, 
thus optimizing speed and efficiency.3

Figure 1-16 Types of cohort studies.
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Case-Based Case-Control Study
In the simplest strategy for the selection of  groups in a case-control study, cases 
occurring over a specified time period and noncases are identified. An example of  this 
strategy, sometimes called case-based case-control study, is a study in which incident 
cases are identified as the individuals in whom the disease of  interest was diagnosed 
(e.g., breast cancer) in a certain hospital during a given year and controls are selected 
from among members of  the community served by this hospital who did not have a 
diagnosis of  the disease of  interest by the end of  that same year. If  exposure data are 
obtained through interviews, it is necessary to assume that recall or other biases will 
not distort the findings (see Chapter 4). If  only living cases are included in the study, it 
must be also assumed that cases that survive through the time when the study is done 
are representative of  all cases with regard to the exposure experience (Figure 1-18). 
Furthermore, to validly compare cases and controls regarding their exposure status, it 
is necessary to assume that they originate from the same reference population—that 
is, from a more or less explicitly identified cohort, as depicted in Figure 1-18. In other 
words, for a case-control comparison to represent a valid alternative to a cohort study 
analysis, cases and controls are expected to belong to a common reference population 
(or to a similar reference population or study base; discussed later in this chapter). It is, 
however, frequently difficult to define the source cohort in a case-control study, as, for 
example, in a case-based study in which the cases are ascertained in a single hospital 
A but controls are selected from a population sample. In this example, it is important 
to consider the correspondence between the patient population of  hospital A and the 
population of  the geographic area from which controls are sampled. Thus, for example, 
if  hospital A is the only institution to which area residents can be admitted and all cases 
are hospitalized, a sample of  the same area population represents a valid control group. 
If, however, residents use hospitals outside of  the area and hospital A admits patients 
from other areas, alternative strategies have to be considered to select controls who are 
representative of  the theoretical population from which cases originate (e.g., matching 
controls to cases by neighborhood of  residency).

Figure 1-17 Basic analytical approach in a case-control study.
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The assumption that cases and controls originate from the same hypothetical source 
cohort (even if  undefined) is critical when judging the internal validity of  case-control 
data. Ideally, controls should have been eligible to be included in the case group had they 
developed the disease of  interest. Pragmatically, although it is not strictly necessary that 
cases and controls be chosen from exactly the same reference population, both groups 
must originate from populations having similar relevant characteristics. Under these 
circumstances, the control group can be regarded as a reasonably representative sample 
of  the case reference population.

When cases and controls are not selected from the same (or similar) reference 
population(s), selection bias may ensue, as discussed in detail in Chapter 4. Selection bias 
may occur even if  cases and controls are from the same “hypothetical” cohort; this happens 
when “losses” occurring before the study groups are selected affect their comparability. For 
example, if  losses among potential controls include a higher proportion of  individuals with 
low socioeconomic status than losses among cases, biased associations may be found with 
exposures related to socioeconomic status. This example underscores the close relationship 
between selection bias in case-control studies and differential losses to follow-up in cohort 
studies. In this context, consider the similarity between Figures 1-18 and 1-13, in that 
the validity of  the comparisons made in both cohort (Figure 1-13) and case-control 
(Figure 1-18) studies depends on whether the losses (represented by diagonal arrows in both 

Hypothetical
cohort

Time

Time of
the study

Cases

Controls

Figure 1-18 Hypothetical case-based case-control study, assuming that cases and controls are 
selected from a hypothetical cohort, as in Figure 1-13. The case group is assumed to include all cases 
that occurred in that hypothetical cohort up to the time when the study is conducted (dots with 
horizontal arrows ending at the “case” bar): that is, they are assumed to be all alive and available 
to participate in the study; controls are selected from among those without the disease of interest 
(noncases) at the time when the cases are identified and assembled. Broken diagonal lines with 
arrows represent losses to follow-up.
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figures) affect the representativeness of  the baseline cohort (well defined in Figure 1-13, 
hypothetical in Figure 1-18) with regard to both exposure and outcome variables.

Deaths caused by either other diseases or the disease of  interest comprise a particular 
type of  (prior) “loss” that may affect comparability of  cases and controls. For the type 
of  design represented in Figure 1-18, characterized by cross-sectional ascertainment 
of  study subjects, those who die before they can be included in the study may have 
a different exposure experience compared to the rest of  the source population. In 
addition, this design identifies primarily cases that are prevalent at the time of  the 
study (i.e., those with the longest survival) (Figure 1-19). These types of  selection bias 
constitute generic problems affecting cross-sectional ascertainment of  study partici-
pants; another problem is recall bias, which results from obtaining past exposure data 
long after disease onset. (For a detailed discussion of  these and other biases in case-
control studies, see Chapter 4.)

It should be emphasized that although cross-sectional ascertainment of  cases and 
controls is often carried out, it is not a sine qua non feature of  case-based case-control 
studies. An alternative strategy, which aims at minimizing selection and recall biases 
and which should be used whenever possible, is to ascertain cases concurrently (i.e., 
to identify [and obtain exposure information on] cases as soon as possible after disease 
onset). An example of  this strategy is a study of  risk factors for oral clefts conducted in 
Denmark.34 In this study, case mothers were women who were hospitalized and gave 

Figure 1-19 Survival bias in a case-based case-control study carried out cross-sectionally: 
only cases with long survival after diagnosis (best prognosis) are included in the case group. In 
this hypothetical example, the horizontal lines starting in the cases’ dot symbols represent survival 
times; note that only two of the four cases are included in the study. Broken diagonal lines with 
arrows represent losses to follow-up.
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birth to a live child with cleft lip and/or palate (without other malformations) between 
1991 and 1994. Controls were the mothers of  the two preceding births in the hospital 
where the case mother had given birth. Both case and control mothers were concur-
rently interviewed by trained nurses with regard to previous pregnancies, medications, 
smoking, diet, and other environmental and occupational exposures.

Case-Control Studies Within a Defined Cohort
When cases are identified within a well-defined cohort, it is possible to carry out nested 
case-control or case-cohort studies. These designs have received considerable attention 
in recent years,35–37 in part because of  the increasing number of  well-established large 
cohort studies that have been initiated and continued during the last few decades and in 
part because of  recent methodological and analytical advances.

Case-control studies within a cohort are also known as hybrid or ambidirectional 
designs35 because they combine some of  the features and advantages of  both cohort and 
case-control designs. In these studies, although the selection of  the participants is carried 
out using a case-control approach (Figure 1-17), it takes place within a  well-defined 
cohort. The case group consists of  all (or a representative sample of) individuals with 
the outcome of  interest occurring in the defined cohort over a specified follow-up period 
(diagonal lines ending with a dot in Figure 1-13). The control group can be selected 
either from individuals at risk at the time each case occurs or from the baseline cohort. 
These two alternatives, respectively known as nested case-control and case-cohort designs, 
are described in the next paragraphs.

•	 Controls are a random sample of  the individuals remaining in the cohort at the time 
each case occurs (Figure 1-20). This nested case-control design is based on a sampling 

Time

Controls

Cases

Figure 1-20 Nested case-control study in which the controls are selected at each time when a 
case occurs (incidence density sampling). Cases are represented by a dot connected to a horizontal 
arrow. Broken diagonal lines with arrows represent losses to follow-up.
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approach known as incidence density sampling35,38 or risk-set sampling.21 Cases are 
compared with a subset (a sample) of  the “risk set,” that is, the cohort members 
who are at risk (i.e., that could become a case) at the time when each case occurs. By 
using this strategy, cases occurring later in the follow-up are eligible to be controls 
for earlier cases. Incidence density sampling is the equivalent of  matching cases and 
controls on duration of  follow-up (see Section 1.4.5) and permits the use of  straight-
forward statistical analysis techniques (e.g., standard multiple regression proce-
dures for the analysis of  matched and survival data; see Chapter 7, Section 7.4.6).

•	 Controls are selected as a random sample of  the total cohort at baseline 
(Figure 1-21). In this design, known as case-cohort, the control group may include 
individuals who become cases during the follow-up (diagonal lines ending with a 
dot in Figure 1-21). Because of  the potential overlap between the case and the cohort 
random sample (control) groups, special techniques are needed for the analysis 
of  this type of  study (see Section 7.4.6).37 An important advantage of  the case-
cohort design is that a sample of  the baseline cohort can serve as a control group 
for different sets of  cases occurring in the same cohort. For example, in a report 
from the Atherosclerosis Risk in Communities (ARIC) Study, Dekker et al.39 used a 
case-cohort approach to analyze the relationship between heart rate variability (a 
marker of  autonomic nervous system function) and several outcomes. ARIC is a 
cohort study of  approximately 15,800 men and women aged 45 to 64 years at the 
study’s outset (1986–1989). During a 6-year follow-up period, 443 deaths from all 
causes, 140 cardiovascular deaths, 173 cancer deaths, and 395 incident CHD cases 
were identified. As a comparison group for all of  these four case groups, a single 
sample of  900 baseline cohort participants was identified. Heart rate variability was 

Time

Controls
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Figure 1-21 Case-control study in which the controls are selected from the baseline cohort 
(case-cohort study). Cases are represented by a dot connected to a horizontal arrow. Broken 
diagonal lines with arrows represent losses to follow-up.
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thus measured in electrocardiography (ECG) records of  these 900 controls and on 
the records of  the individuals in each of  the four case groups. (An incidence density-
type nested case-control design would have required that, for each case group, a 
separate control group be selected, for a total of  four different control groups.)

  An additional practical advantage of  the case-cohort approach is that if  the 
baseline cohort sample is representative of  the source population, risk factor distri-
butions and prevalence rates needed for population attributable risk estimates 
(Chapter 3, Section 3.2.2) can be obtained.

Another consideration in these types of  designs is whether to include or exclude the 
cases from the pool of  eligible controls, that is, the baseline cohort sample or the risk sets 
in case-cohort and nested case-control designs, respectively. The analytical implications 
of  this choice are discussed in Section 3.4.1. 

In general, and regardless of  which of  the previously mentioned control selection 
strategies is used (e.g., nested case-control or case-cohort), the likelihood of  selection 
bias tends to be diminished in comparison with the traditional case-based case-control 
study. This is because cases and controls are selected from the same (defined) source 
cohort and because (as in any traditional cohort study) exposures are assessed before the 
disease occurs. 

When Should a Case-Control Study Within a Cohort Be Used Instead of  a Comparison 
of  Exposed and Unexposed in the Full Cohort? If  a well-defined cohort with prospec-
tively collected follow-up data is available, why not simply analyze the data from the 
entire cohort (as in Figure 1-15)? What would be the advantage of  limiting the study 
to a comparison of  incident cases and a subset of  the cohort (controls)? The answer 
is that the nested case-control or the case-cohort designs are fundamentally efficient 
when additional information that was not obtained or measured for the whole cohort is 
needed. A typical situation is a concurrent cohort study in which biological (e.g., serum) 
samples are collected at baseline and stored in freezers. After a sufficient number of  cases 
are accrued during the follow-up, the frozen serum samples for cases and for a sample 
of  controls can be thawed and analyzed. This strategy not only reduces the cost that 
would have been incurred if  the analyte(s) of  interest had been assayed in the entire 
cohort, but in addition preserves serum samples for future analyses. A similar situation 
arises when the assessment of  key exposures or confounding variables (see Chapter 5) 
requires labor-intensive data collection activities, such as data abstraction from medical 
or occupational records. Collecting this additional information in cases and a sample 
of  the total cohort (or of  the noncases) is a cost-effective alternative to using the entire 
cohort. Thus, case-control studies within a cohort combine and take advantage of  both 
the methodological soundness of  the cohort design (i.e., limiting selection bias) and the 
efficiency of  the case-control approach. Some examples follow:

•	 A study was conducted to examine the relationship of  military rank and radiation 
exposure to brain tumor risk within a cohort of  male members of  the US Air 
Force who had had at least one year of  service between 1970 and 1989.40 In this 
study, for each of  the 230 cases of  brain tumor identified in that 20-year period, 
four race- and year-of-birth-matched controls (noncases) were randomly selected 
among Air Force employees that were active at the time the case was diagnosed (for 
a total of  920 controls). The reason for choosing a nested case-control design (i.e., 
a design based on incidence density sampling; see Figure 1-20) instead of  using 
the entire cohort of  880,000 US Air Force members in this study was that labor-
intensive abstraction of  occupational records was required to obtain accurate data 
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on electromagnetic radiation exposure as well as other relevant information on 
potentially confounding variables. An alternative strategy would have been not to 
exclude cases from the eligible control sampling frame (discussed previously). Yet 
another strategy would have been to use a case-cohort design whereby controls 
would have been sampled from among Air Force cohort members at the beginning 
of  their employment (i.e., at baseline; see Figure 1-21).

•	 Dekker et al.’s39 study on heart rate variability in relation to mortality and CHD 
incidence in the ARIC study (discussed previously) is an example of  the appli-
cation of  a case-cohort design (Figure 1-21). In this study, an elaborate and time-
consuming coding of  the participant’s ECG was required to characterize heart 
rate variability. Conducting such coding in the entire cohort (approximately 
15,800 subjects) would have been prohibitively expensive. By using a case-cohort 
design, the authors were able to limit the ECG coding to only 900 controls and the 
individuals in the four case groups.

•	 Another example of  sampling controls from the total baseline cohort (i.e., a 
case-cohort design) (Figure 1-21) is given by a study conducted by Nieto et al.41 
assessing the relationship of  Chlamydia pneumoniae antibodies in serum collected 
at baseline to incident CHD in the ARIC study. Over a 5-year follow-up period, a 
total of  246 cases of  incident CHD (myocardial infarctions or coronary deaths) 
were identified. The comparison group in this study consisted of  a sample of  550 
participants of  the total baseline cohort, which actually included 10 of  the 246 
individuals who later developed CHD (incident cases), a fact that needs to be taken 
into account in the statistical analyses of  these data (also see Section 7.4.6). For 
this study, C. pneumoniae IgG antibody levels were determined only in sera of  the 
cases and cohort sample, that is, in only approximately 800 individuals rather than 
in the approximately 15,800 cohort participants required for a full cohort analysis. 
In addition to the estimation of  risk ratios expressing the relationship between C. 
pneumoniae antibodies and incident CHD, the selection of  a random sample of  
the cohort in Nieto et al.’s study has the advantage over the incidence density 
nested case-control approach of  allowing the estimation of  the prevalence of  C. 
pneumoniae infection in the cohort (and, by extension, in the reference population) 
and thus also of  population attributable risk (Chapter 3, Section 3.2.2). As in the 
previous example, the control group could have been used for the assessment of  the 
role of  C. pneumoniae for a different outcome. For example, after a sufficient number 
of  stroke cases were accrued, a study of  the relationship between C. pneumoniae 
infection and stroke incidence could have been conducted; the only additional costs 
would have been those related to measuring C. pneumoniae antibodies in the stroke 
cases, as the measurements would have been already available in the control group.

1.4.3  Cross-Sectional Studies
In a cross-sectional study design, a sample of  (or the total) reference population is 
examined at a given point in time. Like the case-control study, the cross-sectional study 
can be conceptualized as a way to analyze cohort data, albeit an often flawed one, in 
that it consists of  taking a “snapshot” of  a cohort by recording information on disease 
outcomes and exposures at a single point in time (Figure 1-22).* Accordingly, the 

*Cross-sectional studies can also be done periodically for the purpose of  monitoring trends in prevalence of  
diseases, or prevalence or distributions of  risk factors, as in the case of  the US National Health Surveys.42,43
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 case-based case-control study represented schematically in Figure 1-19 can also be 
regarded as a cross-sectional study, as it includes cross-sectionally ascertained prevalent 
cases and noncases (i.e., cohort participants who survived long enough to be alive at the 
time of  the study). It follows that when cross-sectional data are obtained from a defined 
reference population or cohort, the analytical approach may consist of  either comparing 
point prevalence rates for the outcome of  interest between exposed and unexposed 
individuals or using a “case-control” strategy, in which prevalent cases and noncases 
are compared with regard to odds of  exposure (see Chapters 2 and 3).

Even though any population-based cross-sectional morbidity survey could (at least 
theoretically) offer the opportunity to examine exposure/outcome associations,44 cross-
sectional analyses of  baseline information in cohort studies are especially advantageous. 
This is particularly the case when examining subclinical outcomes less amenable to 
survival bias. In the context of  baseline data from a cohort study, it may be of  interest 
to verify whether results from cross-sectional analyses are consistent with subsequent 
analyses of  longitudinal data. For example, in the ARIC study, the cross-sectional associ-
ations found at baseline of  both active and passive smoking with asymptomatic carotid 
artery atherosclerosis (defined by B-mode ultrasound)45 were subsequently confirmed by 
assessing progression of  atherosclerosis.46

The conditions influencing the validity of  associations inferred from cross-sectional 
data are discussed in detail in Chapter 4 (Section 4.4.2).

Figure 1-22 Schematic representation of a cross-sectional study, conceptually and 
methodologically analogous to the case-based case-control study represented in Figure 1-19, 
except that instead of explicitly selecting cases and controls, it selects a sample of the entire 
population. Broken diagonal lines with arrows represent losses to follow-up. Cases are represented 
by dots connected to horizontal arrows.

Hypothetical
cohort

Time of
the study

: Survival time

Time
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1.4.4  Case-Crossover Design
Initially proposed by Maclure,47 the case-crossover study design consists of  comparing 
the exposure status of  a case immediately before its occurrence with that of  the same 
case at some other prior time (e.g., the average level of  exposure during the previous 
year). It is especially appropriate to study acute (brief) exposures that vary over time 
and that produce a transient change in risk of  an acute condition within a short latency 
(incubation) period. For example, this design has been used to study acute triggers of  
intracranial aneurysms, such as vigorous physical exercise,48 and of  asthma, such as 
traffic-related air pollution.49

The case-crossover design represents a special type of  matching (see Section 1.4.5) in 
that individuals serve as their own controls. Thus, the analytical unit is time: the time just 
preceding the acute event (“case” time) is compared with some other time (“control” time). 
In this design, all fixed individual characteristics that might confound the association (e.g., 
gender and genetic susceptibility) are controlled for. This design, however, must assume 
that the disease does not have an undiagnosed stage that could inadvertently affect the 
exposure of  interest. It also assumes that the exposure does not have a cumulative effect, 
as its strategy is to focus on its acute effect on the suspected outcome. Provided that data 
are available, other time-related differences that could confound the comparison between 
the case-control times (e.g., differences in the weather or in other varying environmental 
conditions) could be controlled for in the analyses (see Chapters 5 and 7). 

Information on exposures in case-crossover studies are obtained either objectively—
as for example in studies of  environmental exposures such as particulate matter50—or 
rely on participants’ recall, thus being subject to recall bias (see Section 4.3.1).

An example of  a case-crossover design is given by a study conducted by Valent et al.,51 in 
which the association between sleep (and wakefulness) duration and childhood uninten-
tional injury was examined in 292 children. The “case” and “control” periods were 
designated as the 24 and the 25–48 hours preceding the injury, respectively. Table 1-4 
presents results of  the matched-paired analysis, in which the association of  the exposure 
(sleeping less than 10 hours/day) with unintentional injury was found to be present only 
in boys, thus suggesting the presence of  qualitative interaction with gender (see Section 
6.7.1). In addition to analyzing data using the ratio of  discrepant pairs to estimate the 
odds ratio (Table 1-4), analysis of  case-crossover study data can also be done by means 
of  conditional logistic regression (see Section 7.4.6)—as done by these authors, with 
additional adjustment for day of  the week when injury occurred (weekend vs weekday) 
and the activity risk level of  the child (higher vs lower level of  energy).

Table 1-4 Odds ratios and 95% confidence intervals (CI) for sleeping less than 10 hours/day in 
relation to unintentional injuries in children.

Study 
subjects n Ca, Co Ca, Co2 Ca2, Co Ca2, Co2 Odds ratio* (95% CI)

All children 292 62 26 14 190 1.86 (0.97, 3.55)

Boys 181 40 21   9 111 2.33 (1.07, 5.09)

Girls 111 22   5   5  79 1.00 (0.29, 3.45)

*Ratio of  number of  pairs in which Ca1, Co2 to the number of  pairs in which Ca2, Co1 (See Section 3.4.1).
Source: Data from F Valent et al., A Case-Crossover Study of  Sleep and Childhood Injury. Pediatrics, Vol 10, p. E23, © 2001.
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1.4.5  Matching
In observational epidemiology, an important concern is that study groups may not be 
comparable with regard to characteristics that may distort (“confound”) the associa-
tions of  interest. The issue of  confounding is key in epidemiologic inference and practice 
and is discussed in detail in Chapter 5. Briefly, this issue arises when spurious factors 
(confounding variables) influence the direction and magnitude of  the association of  
interest. For example, if  a case-control study shows an association between hypertension 
(exposure) and coronary disease (outcome), it can be argued that this association may 
(at least in part) be due to the fact that coronary disease cases tend to be older than 
controls: because hypertension is more frequently seen in older people, the difference 
in age between cases and controls may produce the observed association (or exaggerate 
its magnitude). Thus, if  the question of  interest is to assess the net relationship between 
hypertension and coronary disease (independently of  age), it makes intuitive sense to 
select cases and controls with the same or similar ages (i.e., matched on age). Similarly, a 
putative association between serum markers of  inflammation (e.g., C-reactive protein) 
and the risk of  CHD may result from confounding by smoking (as smoking increases 
both the risk of  CHD and the levels of  inflammatory markers). Recognizing this possi-
bility, researchers matched cases and controls according to smoking status (current, 
former, or never smoker) in a nested case-control study showing an association between 
C-reactive protein levels and CHD.52

Matching in Case-Control and in Cohort Studies
The practice of  matching is particularly common and useful in the context of  case-
control studies when trying to make cases and controls as similar as possible with regard 
to potential confounding factors. In addition to the two examples just cited, another 
example is the previously mentioned study of  risk factors for oral clefts, in which cases 
and controls were matched according to place of  birth (by selecting controls from the 
same hospital where the case mother had given birth) and time (by selecting for each 
case the two preceding births as controls). A special example of  matching is given by 
the nested case-control study design based on incidence density sampling (Section 
1.4.2, Figure 1-20). As discussed previously, this strategy results in matching cases and 
controls on follow-up time. In addition to time in the study, controls may be matched 
to cases according to other variables that may confound the association of  interest. For 
example, in the US Air Force study of  brain tumors mentioned previously,40 controls 
sampled from the risk sets at the time of  occurrence of  each case were additionally 
matched on birth year and race.

In contrast, in cohort studies, matching on potentially confounding variables is not 
common. Cohort studies are often large and examine a multitude of  exposures and 
outcomes. Thus, alternative means to control for confounding are usually preferred (e.g., 
adjustment—see Chapter 7). Among the relatively rare instances in which matching is 
used in cohort studies are studies of  prognostic factors for survival after cancer diagnosis 
in certain settings. For example, in a study examining age (the “exposure” of  interest) as 
a prognostic factor in multiple myeloma patients following an autologous transplant,53 
older individuals (≥ 65 years old) were matched to younger individuals (< 65 years old) 
with regard to other factors that affect prognosis and that could thus confound the 
age-survival association (levels of  b2-microglobulin, albumin, creatinine, C-reactive 
protein, and the presence/absence of  chromosomal abnormalities); the results of  this 
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study suggested that after controlling for these variables, age is not a “biologically 
adverse” prognostic parameter in these patients.

Types of Matching
Previous examples concerned studies in which cases and controls were individually 
matched: that is, for each case, one or more controls with the relevant characteristics 
matching those of  the cases were selected from the pool of  eligible individuals. Individual 
matching according to naturally categorical variables (e.g., gender) is straightforward. 
When matching is conducted according to continuous variables (e.g., age), a matching 
range is usually defined (e.g., the matched control’s age should be equal to the index 
case’s age plus or minus 5 years). In this situation, as well as when continuous or ordinal 
variables are arbitrarily categorized (e.g., hypertensive/normotensive or current/former/
never smoker), differences between cases and controls may remain, resulting in residual 
confounding (see Sections 5.5.4 and 7.5).

Individual matching may be logistically difficult in certain situations, particularly 
when there is a limited number of  potentially eligible controls and/or if  matching is 
based on multiple variables. An alternative strategy is to carry out frequency matching, 
which consists of  selecting a control group to balance the distributions of  the matching 
variable (or variables) in cases and controls, but without doing a case-by-case individual 
matching. To carry out frequency matching, advance knowledge of  the distribution 
of  the case group according to the matching variable(s) is usually needed so that the 
necessary sampling fractions within each stratum of  the reference population for 
the selection of  the control group can be estimated. For example, if  matching is to be 
done according to gender and age (classified in two age groups, < 45 years and ≥ 45 
years), four strata would be defined: females younger than 45 years, females aged 45 
years or older, males younger than 45 years, and males aged 45 years or older. After the 
proportion of  cases in each of  these four groups is obtained, the number of  controls to 
be selected from each gender-age stratum is chosen so that it is proportional to the distri-
bution in the case group. If  the controls are to be selected from a large population frame 
from which information on the matching variables is available, this can be easily done 
by stratified random sampling with the desirable stratum-specific sampling fractions. On 
the other hand, if  this information is not available in advance (e.g., when controls are 
chosen from among persons attending a certain outpatient clinic), control selection can 
be done by systematic sampling and by successively adding the selected individuals to 
each stratum until the desired sample size is reached for that stratum. Another strategy, 
if  the distribution of  cases according to matching variables is not known in advance 
but the investigators wish to select and obtain information on cases and controls more 
or less concurrently, is to obtain (and periodically update) provisional distributions of  
cases, thus allowing control selection to be carried out before all cases are identified.

When matching for several variables, and particularly when matching for 
continuous variables is desired, the so-called minimum Euclidean distance measure 
method is a useful alternative.54 For example, in the study of  age as a prognostic factor 
after transplantation in multiple myeloma patients described previously, older and 
younger individuals were matched according to five prognostic factors (four of  them 
continuous variables). Matching according to categorical definitions of  all of  those 
variables would have been rather cumbersome; furthermore, for some “exposed” 
individuals, it might have been difficult to find matches among “unexposed” persons. 
Thus, the authors of  this study carried out matching using the minimum Euclidean 
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distance measure method, as schematically illustrated in Figure 1-23. For the purpose 
of  simplification, only two matching factors are considered in the figure. For each 
exposed case, the closest eligible person (e.g., unexposed patient) in this bidimensional 
space defined by albumin and creatinine levels is chosen as a control. In Siegel et al.’s 
study,53 the authors used this method to match on more than two variables (levels 
of  βb2-microglobulin, albumin, creatinine, and C-reactive protein and the presence/
absence of  chromosomal abnormalities), which would be hard to represent in a 
diagram. This method can also be used in the context of  either case-based case-control 
studies and case-control studies within the cohort, as in the original application by 
Smith et al.,54 representing a convenient and efficient alternative form of  matching on 
multiple and/or continuous variables.

In situations in which there is a limited pool of  cases, it might be desirable to select 
more than one matched control for each case in order to increase sample size and thus 
statistical power. For example, in the US Air Force study of  brain tumor risk factors cited 
previously,40 each case was individually matched to four controls. In general, however, 
little statistical power is gained beyond four or five controls per case.55

Advantages and Disadvantages of Matching
Although there is little doubt that matching is a useful strategy to control for 
confounding, it is far from being the only one. Chapter 7 is entirely devoted to describing 
alternative approaches that can be used at the analytical stage to address the problem of  
confounding—namely, stratification and adjustment. Whether investigators choose to 
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Source: The authors, based on a study by DS Siegel et al. Age Is Not a Prognostic Variable with Autotransplants for Multiple 
Myeloma. Blood, Vol 93, pp. 51–54, © 1999.

Figure 1-23 Matching according to minimal Euclidean distance measure method. Hypothetical 
example of a cohort study of survival after transplantation in multiple myeloma patients in which 
exposed individuals (e.g., older individuals) are matched to unexposed (younger) patients according 
to two prognostic factors: serum albumin and creatinine levels. For each case, the closest unexposed 
individual in the bidimensional space defined by the two matching variables is chosen as control.
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deal with confounding before data collection by matching during the recruitment phase 
of  the study rather than by stratification or adjustment at the analysis stage depends on 
a number of  considerations.

The advantages of  matching include the following:

 1. In addition to being easy to understand and describe, matching may be the only 
way to guarantee some degree of  control for confounding in certain situations. 
This may be particularly important in studies in which a potentially strong 
confounding variable may produce such an imbalance in the composition of  
the study groups that adjustment is difficult or outright impossible. For example, 
in a case-control study of  risk factors for prostate cancer, it would make sense 
to match controls to cases according to age; at the very least, given that most 
prostate cancer cases are in the older age brackets, the investigator should 
consider restricting the eligibility of  the control group to a certain age range. 
(Restriction is a somewhat “loose” form of  matching.) Otherwise, if  controls were 
to be sampled from the general population, the age range could be so broad that 
there might not be enough overlap with the restricted age range of  cases, particu-
larly if  the sample size were small (i.e., not enough older subjects in the control 
sample), to allow for adjustment.

 2. If  done according to strong confounders (variables that are related to both 
exposure and outcome; see Chapter 5), matching tends to increase the statistical 
power (efficiency) of  the study.56,57

 3. Matching (especially individual matching) is a logistically straightforward way to 
obtain a comparable control group when cases and controls are identified from 
a reference population for which there is no available sampling frame listing. 
For example, in a case-control study using cases of  diabetes identified in an out–
patient clinic, each case can be matched to the next nondiabetic person attending 
the clinic who has the same characteristics as the index case (e.g., similar age, 
gender).

Potential disadvantages of  matching should also be considered. They include the 
following:

 1. In certain situations, particularly when multiple variables are being matched for, it 
may be difficult or impossible to find a matched control— or controls— for a given 
case, particularly when sampling from a limited source population, when matching 
on multiple variables, or when the ratio of  controls to cases is greater than 1:1. 
Furthermore, even if  matched controls are available, the process of  identifying 
them may be cumbersome and may add costs to the study’s recruitment phase. 

 2. When matching is done, the association between the matching variable(s) and 
the outcome cannot be assessed; the reason for this is that, after matching on a 
certain variable is carried out, the study groups (e.g., cases and controls) are set 
by design to be equal (or similar) with regard to this variable or set of  variables.

 3. It follows from number 2 that it is not possible to assess additive interaction 
in matched case-control studies between the matching variable(s) and the 
exposure(s) of  interest. As discussed in Chapter 6 (Section 6.4.2), the assessment 
of  additive interaction in a case-control study relies on the formula for the joint 
expected relative risk (RR) of  two variables A and Z, RRA1Z1

 5 RRA1Z– 1 RRA–Z1
 – 1.0  

(using the odds ratios as estimates of  the relative risks). Assuming that A is the 
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matching variable, its independent effect (RRA1Z–) cannot be estimated, as it has 
been set to 1.0 by design (see number 2). Therefore, this formula cannot be applied.

 4. Matching implies some kind of  tailoring of  the selection of  the study groups to 
make them as comparable as possible; this increased “internal validity” (compa-
rability) may, however, result in a reduced “external validity” (representa-
tiveness). For example a control group that is made identical to the cases with 
regard to sociodemographic characteristics and other confounding variables 
may no longer constitute a representative sample of  the reference population. 
For example, in studies that examine the association between novel risk factors 
and disease, a secondary, yet important, objective may be to study the distribution 
or correlates of  these factors in the reference population. If  controls are matched 
to cases, it may be a complicated task to use the observed distributions in the 
control group to make inferences applicable to the population at large (complex 
weighted analyses taking into account the sampling fractions associated with the 
matching process would be required). On the other hand, if  a random sample 
of  the reference population is chosen (as is done in case-cohort studies), it will 
be appropriate to generalize the distributions of  risk factors in the control group 
to the reference population. Obtaining these distributions (e.g., the prevalence 
of  exposure in the population) is particularly important for the estimation of  
the population attributable risk (see Chapter 3, Section 3.4.2). In addition, as 
mentioned previously in this chapter, a control group that is selected as a random 
sample of  the source population can be used as a comparison group for another 
case group selected from the same cohort or reference population.

 5. Because when matching is done it cannot be “undone,” it is important that 
the matching variables not be strongly correlated with the variable of  interest; 
otherwise, the phenomenon of  “overmatching” may ensue. For example, 
matching cases and controls on ethnic background may to a great extent make 
them very similar with regard to variables of  interest related to socioeconomic 
status. For further discussion of  this topic and additional examples, see Chapter 5 
(Section 5.5.3).

 6. Finally, no statistical power is gained if  the matching variables are weak 
confounders. If  the matching variables are weakly related to exposure, even if  
these variables are related to the outcome, the gain in efficiency may be very small. 
Moreover, if  the matching variables are weakly or not related to the outcome of  
interest, matching can result in a loss of  power.56,57

When matching is conducted according to categorical definitions of  continuous or 
ordinal variables, residual differences between cases and controls may remain (residual 
confounding; see Chapter 5, Section 5.5.4, and Chapter 7, Section 7.6). In these situa-
tions, it may be necessary to adjust for the variable in question in the analyses to eliminate 
variation within the matching categories. For example, in a study on the relationship 
between cytomegalovirus antibodies in serum samples collected in 1974 (and retro-
spectively analyzed) and the presence of  carotid atherosclerosis measured by B-mode 
ultrasound of  the carotid arteries about 15 years later (1987–1989),58 150 controls 
(selected among individuals with normal carotid arteries) were frequency matched to 
150 carotid atherosclerosis cases according to gender and two relatively broad age groups 
(45–54 years and 55–64 years). Thus, by design, both the case and control groups 
had an identical number of  individuals in all four gender-age groups; however, cases in 
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this study were 58.2 years of  age on average, whereas the average age in controls was  
56.2 years. Therefore, even though the study groups were matched on two age categories, 
the residual age difference prompted the authors to adjust for age as a continuous variable 
in the multivariate logistic regression analyses (see Chapter 7, Section 7.4.3).

The same residual differences may remain even in individually matched studies if  
the matching categories are broadly categorized. The reason for this phenomenon is 
illustrated in Figure 1-24. Even though the cases and controls are equally represented 
in both age groups, within each age group cases tend to be older, thus resulting in an 
overall difference.

In summary, investigators should always consider carefully whether to match. Unlike 
post hoc means to control for confounding (e.g., stratification and adjustment), matching 
is irreversible after implemented. Although it may be the strategy of  choice in studies with 
limited sample size and a clear-cut set of  objectives, it should be avoided in most situa-
tions in which a reasonable overlap on potential confounding variables is expected to exist 
(thus allowing adjustment). If  matching is used, the investigators must keep in mind that 
ignoring the matching during the analysis of  the data can lead to bias59 and that special 
statistical techniques for analyses of  matched data are available (Chapter 7, Section 7.4.6).

Figure 1-24 Schematic representation of a hypothetical situation where matching cases and 
controls according to broad age categories (45–54 years; 55–64 years) results in a residual mean 
age difference (residual confounding). Within age categories, cases are skewed toward older ages, 
but the age distribution of controls is flat. As a result, the mean age within each age group is 
higher in cases than in controls, resulting in an overall mean age of 58.2 years in cases and 56.2 
years in controls.
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EXERCISES

 1. The table shows a series of  cross-sectional incidence rates of  cancer Y per 
100,000 by age and calendar year.

  

Calendar year

Age 1950 1955 1960 1965 1970 1975 1980 1985

20–24 10 15 22 30 33 37 41 44

25–29  8 17 20 24 29 38 40 43

30–34  5 12 22 25 28 35 42 45

35–39  3 12 15 26 30 32 39 42

40–44  2 10 17 19 28 32 39 42

45–49  2 12 15 18 21 33 40 42

50–54  2 10 16 20 25 32 42 44

55–59  2 15 17 19 22 27 43 44

  a.  After observing the incidence rates by age at any given year, it is concluded 
that “aging is not related to an increase in the incidence of  Y and may even 
be related to a decrease in the incidence.” Do you agree with this observation? 
Justify your answer.

  b.  What are the purposes of  examining birth cohort vis-à-vis cross-sectional rates?

 2. Chang et al. carried out a birth cohort analysis of  epilepsy mortality in Taiwan 
from 1971 through 2005.* The figure shows the epilepsy mortality rates per 

*Chang Y, Li C, Tung T, et al. Age-period-cohort analysis of  mortality from epilepsy in Taiwan, 1971–2005. 
Seizure. 2011;20:240 –243.

Secular trend in the age-specific epilepsy mortality rate in Taiwan, 1971–2005.
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million person-years by calendar year for two of  the three age groups examined 
by the authors. 

  Assume that year of  death for people dying in each calendar year category is 
the midpoint for that period, e.g., for the calendar year category of  1971–1975, 
the assumed year of  death is 1973; for the category 1976–1980, it is 1978, and 
so on. The same should be assumed for the age groupings, e.g., for ages 0–19, 
assume that the age of  death is 10 years, for the age group 20–69 years it is 45 
years, and so on.

  a.  Is the use of  the midpoint value a reasonable approach to analyzing birth 
cohorts?

  b.  To which cohort do individuals dying in 1973 at ages 0–19 years belong?
  c. Is there a birth cohort effect?
  d. Is there an age effect?

 3. The figure shows the incidence of  dementia and Alzheimer’s disease per 100,000 
person-years by age and birth cohort, both sexes combined, in residents of  
Rochester, Minnesota, from 1975 through 1984.†

  a. Are age effects apparent in the figure? Justify your answer.
    Yes    No
  b. Are cohort effects apparent in the figure? Justify your answer.
    Yes    No
  c.  From your answer to question (b), would you expect age patterns to be similar 

in cross-sectional and cohort analyses? Justify your answer.
    Yes    No

Source: Reprinted with permission from WA Rocca et al., Incidence of  Dementia and Alzheimer’s Disease: A Reanalysis 
of  the Rochester, Minnesota 1975–1984 Data. American Journal of  Epidemiology, Vol 148, No 1, pp. 51–62, © 1998. 
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Five-year average incidence rates of dementia (new cases per 100,000 person-years) by age 
and birth cohort, both sexes combined, Rochester, Minnesota. For each birth cohort, two points 
are represented corresponding to the incidence in 1975 to 1979 and 1980 to 1984, respectively. 

†Rocca WA, Cha RH, Waring SC, et al. Incidence of  dementia and Alzheimer’s disease: A reanalysis of  data 
from Rochester, Minnesota, 1975–1984. Am J Epidemiol. 1998;148:51–62.
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 4. A case-control study is conducted within a well-defined cohort. The reason for 
this is that expensive additional data collection is needed, and the budget is not 
sufficient to obtain these data from all cohort participants.

  a.  What type of  case-control study within this cohort would be ideal to study 
multiple outcomes, and why is the alternative case-control design not 
recommended?

  b.  In this cohort study, prevalent cases were not excluded at baseline and, thus, 
the investigators chose to use baseline data to examine associations between 
suspected risk factors and prevalent disease. What type of  approach is this, 
and what are its main advantages and disadvantages?

 5. In planning an individually matched case-based case-control study to test the 
hypothesis that air pollution (measured by individually placed monitors) is 
related to a certain type of  respiratory cancer, the investigators decide to match 
cases and controls on age, gender, ethnic background, and smoking (yes or no).

  a.  In addition to general logistical difficulties usually associated with matching, 
what is the main undesirable consequence that may result from matching 
cases and controls in this study?

  b.  Because the disease of  interest is rare, the investigators decide to individually 
match 10 controls for each case. Is this a reasonable strategy, considering the 
additional costs involved and the tight budget to conduct this study?
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2
CHAPTER 

Measuring Disease Occurrence

2.1  INTRODUCTION

The outcomes of  epidemiologic research have been traditionally defined in terms of  disease, 
although the growing application of  epidemiology to public health and preventive medicine 
increasingly requires the use of  outcomes measuring health in general (e.g., outcome 
measures of  functional status in epidemiologic studies related to aging). Outcomes can be 
expressed as either discrete (e.g., disease occurrence or severity) or continuous variables.

Continuous variables, such as blood pressure and glucose levels, are commonly 
used as outcomes in epidemiology. The main statistical tools used to analyze corre-
lates or predictors of  these types of  outcomes are the correlation coefficients, analysis 
of  variance, and linear regression analysis, which are discussed in numerous statis-
tical textbooks. Linear regression is briefly reviewed in Chapter 7 (Section 7.4.1) as a 
background for the introduction to multivariate regression analysis techniques in epide-
miology. Other methodological issues regarding the analysis of  continuous variables in 
epidemiology, specifically as they relate to quality control and reliability measures, are 
covered in Chapter 8.

Most of  the present chapter deals with categorical dichotomous outcome variables, 
which are the most often used in epidemiologic studies. The frequency of  this type of  
outcome can be generically defined as the number of  individuals with the outcome (the 
numerator) divided by the number of  individuals at risk for that outcome (the denomi-
nator). There are two types of  absolute measures of  outcome frequency: incidence and 
prevalence (Table 2-1).

Although the term incidence has been traditionally used to indicate a proportion of  
newly developed (incident) cases of  a disease, in fact, it encompasses the frequency of  
any new health- or disease-related event, including death, recurrent disease among 

Measure Expresses Types of  events

Incidence Frequency of  a new event Newly developed disease
Death in the total population at risk (mortality)
Death in patients (case fatality)
Recurrence of  a disease
Development of  a side effect of  a drug

Prevalence Frequency of  an existing event Point prevalence: cases at a given point in time
Period prevalence: cases during a given period 
  (e.g., 1 year)
Cumulative (lifetime) prevalence: cases at any 
  time in the past (up to present time)

Table 2-1 Absolute measures of disease frequency.
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patients, disease remission, menopause, and so forth. Incidence is a particularly 
important measure for analytical epidemiologic research, as it allows the estimation of  
risk necessary to assess causal associations (Chapter 10, Section 10.2.4).

Prevalence, on the other hand, measures the frequency of  an existing outcome either 
at one point in time—point prevalence, or during a given period—period prevalence. 
A special type of  period prevalence is the lifetime prevalence, which measures the 
cumulative lifetime frequency of  an outcome up to the present time (i.e., the proportion 
of  people who have had the event at any time in the past).

For both prevalence and incidence, it is necessary to have a clear definition of  the 
outcome as an event (a “noteworthy happening,” as defined in an English dictionary1). 
In epidemiology, an event is typically defined as the occurrence of  any phenomenon of  
disease or health that can be discretely characterized. For incidence (see Section 2.2), 
this characterization needs to include a precise definition of  the time of  occurrence 
of  the event in question. Some events are easily defined and time of  occurrence easily 
located in time, such as “birth,” “death,” “surgery,” and “trauma.” Others are not 
easily defined and require some more or less arbitrary operational definition for study, 
such as “menopause,” “recovery,” “dementia,” or cytomegalovirus (CMV) disease 
(Table 2-2). An example of  the complexity of  defining certain clinical events is given 
by the widely adopted definition of  a case of  AIDS, which uses a number of  clinical and 
laboratory criteria.2

The next two sections of  this chapter describe the different alternatives for the calcu-
lation of  incidence and prevalence. The last section describes the odds, another measure of  
disease frequency that is the basis for a measure of  association often used in epidemiology, 

Event Definition Reference

Natural menopause Date of  last menstrual period after a woman has 
stopped menstruating for 12 months

Bromberger et al. 1997*

Remission of  diarrhea At least two days free of  diarrhea 
(diarrhea 5 passage of  ≥ 3 liquid or semisolid 
stools in a day)

Mirza et al. 1997†

Dementia A hospital discharge, institutionalization or 
admission to a day care center in a nursing 
home or psychiatric hospital with a diagnosis of  
dementia (ICD-9-CM codes 290.0–290.4, 294.0, 
294.1, 331.0–331.2)

Breteler et al. 1995‡

CMV disease Evidence of  CMV infection (CMV antigen on 
white blood cells, CMV culture, or seroconversion) 
accompanied by otherwise unexplained spiking 
fever over 48 hours and either malaise or a fall in 
neutrophil count over 3 consecutive days.

Gane et al. 1997§

*JT Bromberger, KA Matthews, KA Kuller, et al. Prospective Study of  the Determinants of  Age at Menopause. American 
Journal of  Epidemiology, Vol 145, pp. 124–133, © 1997.
†NM Mirza, LE Caulfield, RE Black, et al. Risk Factors for Diarrheal Duration. American Journal of  Epidemiology, Vol 146, 
pp. 776–785, © 1997.
‡MMB Breteler, RRM de Groot, LKJ van Romunde, and A Hofman. Risk of  Dementia in Patients with Parkinson’s Disease, 
Epilepsy, and Severe Head Trauma: A Register-Based Follow-up Study. American Journal of  Epidemiology, Vol 142, 
pp. 1300–1305, © 1995.
§E Gane, F Salilba, JC Valdecasas, et al. Randomised Trial of  Efficacy and Safety or Oral Ganciclovir in the Prevention of  
Cytomegalovirus Disease in Liver-Transplant Recipients. Lancet, Vol 350, pp. 1729–1333, © 1997.

Table 2-2 Examples of operational definitions of events in epidemiologic studies.
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particularly in case-based case-control studies (Chapter 1, Section 1.4.2)—namely, the 
odds ratio (Chapter 3, Section 3.4.1).

2.2  MEASURES OF INCIDENCE

Incidence is best understood in the context of  prospective (cohort) studies (Chapter 1, 
Section 1.4.1). The basic structure of  any incidence indicator is represented by the number 
of  events occurring in a defined population over a specified period of  time (numerator), 
divided by the population at risk for that event over that time (denominator). There are 
two types of  measures of  incidence defined by the type of  denominator: (1) incidence 
based on persons at risk and (2) incidence based on person-time units at risk.

2.2.1  Incidence Based on Individuals at Risk
This is an index defined in terms of  the probability of  the event, also known as cumulative 
incidence (or incidence proportion3), which is the basis for the statistical techniques collec-
tively known as survival analysis.

If  follow-up is complete on every individual in the cohort, the estimation of  the 
cumulative incidence is simply the number of  events occurring during the follow-up 
time divided by the initial population. Often in epidemiologic studies, however, the 
follow-up is incomplete for many or all individuals in the study. In a typical cohort 
study, there are individuals lost to follow-up, those dying from causes other than the 
outcome of  interest, and those whose follow-up is shorter because they are recruited 
later in the accrual period for the study; the latter are all called censored observations, 
and they require special analytical approaches. The traditional techniques for the 
estimation of  cumulative incidence (or its complement, cumulative survival or survival 
function) in the presence of  censored observations are the life table of  the actuarial type 
(interchangeably referred to in this chapter as the classic, actuarial, or interval-based life 
table) and the Kaplan-Meier method.4

As an example, Figure 2-1 provides a schematic representation of  a study for which 
the outcome of  interest is death, in which 10 individuals are followed for up to 2 years 
(2010–2011). Each horizontal line in the figure represents the follow-up time of  a unique 
individual. Follow-up can be terminated either by the event (D) or by a loss (withdrawal) 
from the study, also referred to as censored observation (denoted in the figure as an arrow 
ending at the time when follow-up ended). Individuals are recruited at different points 
in time and also leave the study (because of  either death or censoring) at different times. 
For example, individual 1 is recruited in November 2010 and dies in December 2010, 
after only 1 month of  follow-up, and individual 5 lives throughout the entire follow-up 
period (2 years). Figure 2-2 shows a reorganization of  the data in Figure 2-1, where the 
time scale has been changed to reflect follow-up time rather than calendar time. Thus, 
time 0 now represents the beginning of  the follow-up for each individual (regardless of  
the actual date of  the start of  follow-up). Much of  the discussion of  incidence indexes 
that follows is based on Figure 2-2.

Cumulative Incidence Based on the Life Table Interval Approach (Classic Life Table)
The cumulative probability of  the event during a given interval (lasting m units of  time 
and beginning at time x) is the proportion of  new events during that period of  time (with 
events noted as mdx), in which the denominator is the initial population (lx) corrected 
for losses (mcx). In the classic life table, this measure corresponds to the interval-based 
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probability of  the event mqx.5 Its calculation is straightforward. As seen in Figure 2-2, 
six deaths occurred among the 10 individuals who were alive at the beginning of  the 
follow-up. If  no individual had been lost to observation, 2q0 (with times specified in 
years) would be simply the number of  deaths over this 2-year interval (2d0) divided by 
the number of  individuals at the beginning of  the interval (l0): that is, 6 4 10 5 0.60, 
or 60%. Because the three individuals lost to observation (censored, 2c0) were not at risk 
during the entire duration of  the follow-up, however, their limited participation must be 
accounted for in the denominator of  the cumulative probability. By convention, half  of  
these individuals are subtracted from the denominator, and the probability estimate is 
then calculated as follows:

 2q0 =
2d0

l0 - 0.5 * 2c0
=

6
10 - 0.5 * 3

= 0.71 (Eq. 2.1)

The conventional approach of  subtracting one-half  of  the total number of  censored 
observations from the denominator is based on the assumption that censoring occurred 
uniformly throughout that period and thus, on average, these individuals were at risk for 
only one-half  of  the follow-up period.

Figure 2-1 Hypothetical cohort of 10 persons followed for up to 24 months from January 2010 
through December 2012. D, death; arrow, censored observation; ( ), duration of follow-up in months 
(all assumed to be exact whole numbers).
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The complement of  this cumulative probability of  the event (q) is the cumulative 
probability of  survival (p), that is,

2p0 = 1 - 2q0 = 0.29

It is important to note that the cumulative probability of  an event (or the cumulative 
survival) has no time period intrinsically attached to it: time must be specified. Thus, in 
this example, one has to describe q as the “2-year cumulative probability of  death.” 

Usually, the classic life table uses multiple intervals—for example, five intervals of  
2 years for a total follow-up of  10 years. Within each interval, the probability of  survival 
is calculated using as denominator the number of  individuals under observation at the 
beginning of  the interval corrected for losses during the interval as described previously. 
In order to be part of  the denominator for the calculation of  the survival probability 
in the second interval (2p2), for example, one has to survive through the first interval; 
likewise, the survival probability for the third interval (starting at year 4, or 2p4) is calcu-
lated only among those who survived both the first and second time interval. This is 
the reason why these interval-specific probabilities are technically called “conditional 
probabilities.” A cumulative probability of  survival over more than one interval—for 
example, the full 10-year follow-up with five 2-year intervals—is obtained by multi-
plying the conditional survival probabilities over all the intervals:

10p0 = 2p0 * 2p2 * 2p4 * 2p6 * 2p8 

Figure 2-2 Same cohort as in Figure 2-1, with person-time represented according to time 
since the beginning of the study. D, death; arrow, censored observation; ( ), duration of follow-up in 
months (all assumed to be exact whole numbers).
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The cumulative probability of  having the event is the complement of  this joint proba-
bility of  survival:

 10q0 = 1 - 10p0 = 1 - (2p0 * 2p2 * 2p4 * 2p6 * 2p8) (Eq. 2.2)

This is analogous to the calculation of  the cumulative survival function using the 
Kaplan-Meier method illustrated in the section that follows.

It is not necessary that the intervals in a classic (interval-based) life table be of  the 
same duration. The length of  the interval should be determined by the pace at which 
incidence changes over time so that, within any given interval, events and withdrawals 
occur at an approximately uniform rate (discussed later). For example, to study survival 
after an acute myocardial infarction, the intervals should be very short soon after onset 
of  symptoms, when the probability of  death is high and rapidly changing. Subsequent 
intervals could be longer, however, as the probability of  a recurrent event and death 
tends to stabilize.

Examples of  the use of  the actuarial life table method can be found in reports from 
classic epidemiologic studies (e.g., Pooling Project Research Group6). More details and 
additional examples can be found in other epidemiology textbooks (e.g., Gordis7 and 
Kahn and Sempos8).

Cumulative Incidence Based on the Kaplan-Meier (Exact Event Times) Approach
The Kaplan-Meier approach involves the calculation of  the probability of  each event 
at the time it occurs. The denominator for this calculation is the population at risk at 
the time of  each event’s occurrence.4 As for the actuarial life table, these are “condi-
tional probabilities”; in other words, they are conditioned on being at risk (alive and not 
censored) at each event time. If  each event (first, second, etc.) is designated by its time of  
occurrence i, then the formula for the conditional probability is simply

qi =
di

ni

where di is the number of  deaths (or other type of  event) occurring at time i, and ni is the 
number of  individuals still under observation (i.e., at risk of  the event) at time i. (Usually 
di 5 1, unless more than one event is occurring simultaneously—something that will 
only occur when nonexact discrete measures of  time are used.)

In order to facilitate the calculations, Figure 2-3 shows the same data as in Figures 
2-1 and 2-2 but with the individuals’ follow-up times arranged from shortest to longest. 
When the first death occurs exactly at the end of  the first month (person 1), there are 10 
individuals at risk; the conditional probability is then

q1 =
1

10

When the second death occurs after 3 months of  follow-up (person 10), there are 
only eight persons at risk; this is because in addition to the one previous death (D), one 
individual had been lost to observation after 2 months (person 7) and therefore was not 
at risk when the second death occurred. Thus, the conditional probability at the time of  
the second death is estimated as follows:

q3 =
1
8

= 0.125
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These calculations are repeated for all the event times. For example, for the fifth event, 
when person 2 dies at 17 months of  follow-up, there were three individuals still under 
observation (Figure 2-3) and thus the conditional probability of  the death at month 17 
can be estimated as:

q17 =
1
3

= 0.333

Table 2-3 (column 4) shows the calculation of  these conditional probabilities for 
each and every six event times in this example. The censored observations are skipped in 
these calculations, as they do not represent an identified event. Censored observations, 
however, are counted in the denominator for the calculation of  conditional probabilities 
corresponding to events occurring up to the time when the censoring occurs. This repre-
sents the most efficient use of  the available information.4

Figure 2-3 Same cohort as in Figures 2-1 and 2-2, with individuals sorted according to 
follow-up time from shortest to longest. D, death; arrow, censored observation; ( ), duration of 
follow-up in months (all assumed to be exact whole numbers). As examples, the vertical arrows 
mark the individuals who were at risk for the calculations of the conditional probabilities of death 
at three of the event times: 1 month, 3 months, and 17 months (see text).
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Column 5 in Table 2-3 shows the complements of  the conditional probabilities of  
the event at each time—that is, the conditional probabilities of  survival (pi) which, as 
in the classic life table method, represent the probability of  surviving beyond time i 
among those who were still under observation at that time (i.e., conditioned on having 
survived up to time i). Column 6, also shown graphically in Figure 2-4, presents the 
cumulative probabilities of  survival—that is, the so-called Kaplan-Meier survival function 
(usually notated as Si). This represents the probability of  surviving beyond time i for all 

Table 2-3 Calculation of Kaplan-Meier survival estimates for the example in Figure 2-3.

Time 
(months) 

(1) 
i

Number  
of  individuals 

at risk 
(2) 
ni

Number  
of  events  

(3) 
di

Conditional  
probability  

of  the event  
(4) 

qi 5 di/ni

Conditional 
probability  
of  survival  

(5)  
pi 5 1 – qi

Cumulative  
probability  
of  survival*  

(6)  
Si

1  10† 1 1/10 5 0.100 9/10 5 0.900 0.900

3  8† 1 1/8 5 0.125 7/8 5 0.875 0.788

9 7 1 1/7 5 0.143 6/7 5 0.857 0.675

13 5 1 1/5 5 0.200 4/5 5 0.800 0.540

17  3† 1 1/3 5 0.333 2/3 5 0.667 0.360

20 2 1 1/2 5 0.500 1/2 5 0.500 0.180

*Obtained by multiplying the conditional probabilities in column (5)—see text.
†Examples of  how to determine how many individuals were at risk at three of  the event times (1, 3, and 17) are shown with 
vertical arrows in Figure 2-3.

Figure 2-4 Kaplan-Meier curve corresponding to the data in Table 2-3, column 6.
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of  those present at the beginning of  follow-up, calculated as the product of  all condi-
tional survival probabilities up to time i. In the example, the cumulative probability of  
surviving beyond the end of  the follow-up period of  2 years (Si, where i 5 24 months) is

S24 =
9

10
*

7
8

*
6
7

*
4
5

*
2
3

*
1
2

= 0.180

Thus, the estimate of  the cumulative probability of  the event (1 – Si) is

1 - S24 = 1 - 0.18 = 0.82

As for the cumulative probability based on the actuarial life table approach 
(Equation 2.2), the time interval for the cumulative probability using the Kaplan-
Meier approach also needs to be specified (in this example, 24 months or 2 years). For a 
method to calculate confidence limits for a cumulative survival probability estimate, see 
Appendix A, Section A.1.

Regardless of  the method used in the calculation (actuarial or Kaplan-Meier), the 
cumulative incidence is a proportion in the strict sense of  the term. It is unitless, and its 
values can range from 0 to 1 (or 100%).

Assumptions in the Estimation of Cumulative Incidence Based on Survival Analysis
The following assumptions must be met when conducting survival analysis:

Uniformity of  Events and Losses Within Each Interval (Classic Life Table). Implicit in the 
classic life table calculation (discussed previously) is the generic assumption that events 
and losses are approximately uniform during each defined interval. If  risk changes 
rapidly within a given interval, then calculating an average risk over the interval is not 
very informative. The rationale underlying the method to correct for losses—that is, 
subtracting one-half  of  the losses from the denominator (Equation 2.1)—also depends 
on the assumption that losses occur uniformly. The assumption of  uniformity of  events 
and losses within a given interval is entirely related to the way the life table is defined and 
can be met by adjusting the interval definitions to appropriately uniform risk intervals 
(i.e., by shortening them). Furthermore, this assumption does not apply to the Kaplan-
Meier calculation, where intervals are not defined a priori.

Whereas this interval-based assumption applies only to classic life table estimates, the 
two following assumptions apply to both classic life table and Kaplan-Meier estimates, 
and are key to survival analysis techniques and analyses of  cohort data in general: 
(1) independence between censoring and survival; and (2) lack of  secular trends during 
the study’s accrual period.

Independence Between Censoring and Survival. For the calculations of  the condi-
tional and cumulative incidences using the previously described methods, censored 
individuals are included in the denominator during the entire time when they are 
under observation; after censored, they are ignored in subsequent calculations. Thus, 
if  one wants to infer that the estimated overall cumulative survival (e.g., S24 5 18%, as 
in Figure 2-4) is generalizable to the entire population present at the study’s outset (at 
time 0), one needs to assume that the censored observations have the same probability of  
the event after censoring as those remaining under observation. In other words, censoring 
needs to be independent of  survival; otherwise, bias will ensue. For example, if  the 
risk were higher for censored than for noncensored observations (e.g., study subjects 
withdrew because they were sicker) over time, the study population would include a 
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progressively greater proportion of  lower risk subjects; as a result, the (true) overall 
cumulative incidence would be underestimated (i.e., survival would be overestimated). 
The opposite bias would occur if  censored observations tended to include healthier 
individuals. The likely direction of  the bias according to the reason why censoring 
occurred is summarized in Table 2-4. With regard to censored observations caused by 
death from other causes in cause-specific outcome studies, if  the disease of  interest shares 
strong risk factors with other diseases that are associated with mortality, censoring 
may not be independent of  survival. An example is a study in which the outcome of  
interest is coronary heart disease death, and participants dying from other causes, 
including respiratory diseases (such as lung cancer and emphysema), are censored at 
the time of  their death (as they are no longer at risk of  dying from coronary heart 
disease). Because coronary heart disease and respiratory diseases share an important 
risk factor (smoking) and because, in addition, respiratory disease deaths are common 
in smokers, individuals dying from respiratory diseases may have had a higher risk of  
coronary heart disease if  they had not died from respiratory diseases, resulting in a 
violation of  the assumption of  independence between censoring and survival.

Other frequent reasons for censoring include refusal of  study participants to allow 
subsequent follow-up contacts (in a study where assessment of  the outcome events 
depends on such contacts), and inability to contact participants due to migration out 
of  the study area. Individuals who refuse follow-up contacts may have a less healthy 
lifestyle than individuals who agree to continuing participation in a prospective study; 
if  that were the case, censoring for this reason may lead to an underestimation of  the 
cumulative incidence. The direction of  the bias resulting from the loss to follow-up of  
individuals because of  migration is a function of  the sociodemographic context in which 
the migration occurs—for example, whether the individuals who migrate are of  higher 
or lower socioeconomic status (SES). If  losses occurred mainly among those in the upper 
SES, who tend to be healthier, those remaining in the study would tend to have poorer 
survival. On the other hand, if  the losses occurred primarily among individuals with a 
lower SES, and thus poorer health, the survival of  those remaining in the study would be 
overestimated. For the so-called administrative losses, defined as those that occur because 
the follow-up ends (e.g., persons 7 and 9 in Figure 2-1), the assumption of  independence 
between censoring and survival is regarded as more justified, as these losses are usually 

Type of  censoring

May violate assumption of  
independence of  censoring/

survival

If  assumption is violated, likely 
direction of  bias on the 

cumulative incidence estimate

Deaths from other causes when 
there are common risk factors*

Yes Underestimation

Participants’ refusal to follow up 
contacts

Yes Underestimation

Migration Yes Variable

Administrative censoring Unlikely† Variable

*In cause-specific incidence or mortality studies.
†More likely in studies with a prolonged accrual period in the presence of  secular trends.

Table 2-4 Relationship between reason for censoring and the assumption of independence 
between censoring and survival in survival analysis.
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thought to be independent of  the characteristics of  the individuals per se. (Administrative 
losses are, however, amenable to temporal changes occurring during the accrual period; 
see the following section “Lack of  Secular Trends.”)

In summary, whether the key assumption of  independence between censoring and 
survival for the calculation of  cumulative incidence/survival estimates is met depends 
on the reasons why censoring occurred (Table 2-4). This assumption is particularly 
relevant when the magnitude of  the absolute incidence estimate is the focus of  the study; 
it may be less important if  the investigator is primarily interested in a relative estimate 
(e.g., when comparing incidence/survival in two groups defined by exposure levels in a 
cohort study), provided that biases resulting from losses are reasonably similar in the 
groups being compared. (For a discussion of  a related bias, the so-called compensating 
bias, see “Selection Bias” in Chapter 4, Section 4.2.) Finally, this assumption can often 
be verified. For example, it is usually possible to compare baseline characteristics related 
to the outcome of  interest between individuals lost and those not lost to observation. In 
addition, if  relevant study participant identifying information is available, linkage to the 
National Death Index can be used to compare the mortality experience of  those lost and 
those not lost to follow-up.

Lack of  Secular Trends. In studies in which the accrual of  study participants occurs 
over an extended time period, the decision to pool all individuals at time 0 (as in 
Figure 2-2) assumes a lack of  secular trends with regard to the characteristics of  these 
individuals that affect the outcome of  interest. This, however, may not be the case in 
the presence of  birth cohort and period (calendar time) effects (see Chapter 1, Section 
1.2). Changes over time in the characteristics of  recruited participants as well as signif-
icant secular changes in relevant exposures and/or treatments may introduce bias in 
the cumulative incidence/survival estimates, the direction and magnitude of  which 
depend on the characteristics of  these cohort or period effects. Thus, for example, it 
would not have been appropriate to estimate survival from diagnosis of  all patients 
identified with insulin-dependent diabetes from 1915 through 1935 as a single group, 
as this extended accrual period would inappropriately combine two very heterogeneous 
patient cohorts: those diagnosed before and those diagnosed after the introduction of  
insulin. Similarly, it would not be appropriate to carry out a survival analysis pooling 
at time 0 all HIV-seropositive individuals recruited into a cohort accrued between 1995 
and 1999—that is, both before and after a new effective treatment (protease inhibitors) 
became available.

2.2.2  Incidence Rate Based on Person-Time
Rather than individuals, the denominator for the incidence rate is formed by time units 
(t) contributed to the follow-up period by the individuals at risk (n). For example, consider 
a hypothetical cohort in which 12 events occur and the total amount of  follow-up 
time for all individuals is 500 days. The incidence rate in this example is 12 4 500 5 
0.024 per person-day or 2.4 per 100 person-days. The number of  individuals who were 
followed up with is not provided; thus, the “person-time” estimate in the example could 
have originated from 50 individuals seen during 10 days each (50 3 10), 5 individuals 
observed for 100 days (5 3 100), and so on.

Incidence rates are not proportions. They are obtained by dividing the number of  
events by the amount of  time at risk (pooling all study participants) and are measured 
in units of  time–1. As a result, a rate can range from 0 to infinity, depending on the 
unit of  time being used. For example, the previously mentioned incidence rate could 
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be expressed in a number of  ways: 12 4 500 person-days 5 12 4 1.37 person-years 
5 8.76 per person-year (or 876 per 100 person-years). The latter value exceeds 1 (or 
100%) only because of  the arbitrary choice of  the time unit used in the denominator. 
If  a person has the event of  interest after a follow-up of  6 months and the investigator 
chooses to express the rate per person-years, the rate will be 1 4 0.5 or 200 per 100 
person-years.

The time unit used is at the discretion of  the investigator and is usually selected on the 
basis of  the frequency of  the event under study. The main reason that many epidemio-
logic studies use person-years as the unit of  analysis is because it is a convenient way to 
express rare events. On the other hand, when one is studying relatively frequent health 
or disease events, it may be more convenient to use some other unit of  time (Table 2-5). 
The choice is entirely arbitrary and will not affect the inferences derived from the study.

Rather than a unitless proportion of  individuals who develop the event among those 
at risk (see cumulative incidence described previously in this chapter), incidence based 
on person-time expresses the “rate” at which the events occur in the population at risk 
at any given point in time. This type of  rate is also called incidence density, a concept 
analogous to that of  velocity: the instantaneous rate of  change or the “speed” at which 
individuals develop the event (disease, death, etc.) in the population. This concept 
is the basis for some of  the mathematic modeling techniques used for the analysis of  
incidence rates (e.g., Poisson regression models; see Chapter 7, Section 7.4.5). Because 
the  instantaneous rate for each individual cannot be directly calculated, however, the 
average incidence over a period of  time for a population is usually used as a proxy. 
The average incidence can be calculated based on individual or aggregate follow-up 
data, as is discussed later in this chapter. Epidemiologists often use the terms rate and 
density interchangeably; however, in the discussion that follows, the term rate will be 
primarily used in the context of  grouped data, whereas density will denote a rate based 
on data obtained from each individual in the study.

Incidence Rate Based on Aggregate Data
This type of  incidence is typically obtained for a geographic location by using as the 
denominator the average population estimated for a certain time period. Provided that 
this period is not excessively long and that the population and its demographic compo-
sition in the area of  interest are relatively stable, the average population can be estimated 

Population Event studied
Person-time unit  
typically used

General Incident breast cancer Person-years

General Incident myocardial infarction Person-years

Malnourished children Incident diarrhea Person-months

Lung cancer cases Death Person-months

Influenza epidemic Incident influenza Person-weeks

Children with acute diarrhea Recovery Person-days

Table 2-5 Examples of person-time units according to the frequency of events under 
investigation.
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as the population at the middle of  the period (e.g., July 1 for a 1-year period). In a cohort 
study, the average of  the population at the beginning and at the end of  the period can be 
obtained for a given follow-up interval. Thus, for a given time interval,

Incidence rate =
Number of events

Average population

In Figure 2-2 for example, 10 individuals are alive and present in the study at the 
beginning of  the follow-up period (“point zero”). Only one person is alive and present in 
the study when the 2-year follow-up ends (person 5). Thus, the average population (n) 
for the total 2-year follow-up period is

n =
10 + 1

2
= 5.5

The average population n can be also calculated by subtracting one-half  of  the events 
(d  ) and losses (c) from the initial population:

n = 10 -
1
2

 (6 + 3) = 5.5

As for all mean values, the underlying assumption when using this approach is that, 
on the average, there were 5.5 persons for the duration of  the study (2 years). For this 
assumption to be met, events and withdrawals must occur uniformly throughout the 
follow-up period. The rate of  new events in relationship to the average population is then 
calculated as follows:

Incidence rate =
6

5.5
= 1.09 per person-  2 years

In this example, the rate is based on a time unit of  2 years and not on the number of  
individuals. The assumption underlying the use of  the average population is that the 
same rate would have been obtained if  5.5 individuals had been followed for the entire 
2-year period, during which six events were observed. This example again highlights the 
fact that this type of  incidence is not a proportion and, thus, is not bound to be 1 (100%) 
or less. In this particular instance, the seemingly counterintuitive rate of  109 per 100 
person-time obviously resulted from the fact that “2 years” is being used as the time 
unit; if  a “person-year” unit had been used instead, the rate would have been 1.09 4 2 
years 5 0.545 per person-year (or 54.5 per 100 person-years).

This example illustrates the estimation of  the incidence rate using the average 
population of  a defined cohort (i.e., the hypothetical cohort represented in Figure 2-2); 
however, this is not its usual application. Instead, the calculation of  incidence based on 
grouped data is typically used to estimate mortality based on vital statistics information 
or incidence of  newly diagnosed disease based on population-based registries (e.g., 
cancer registries); in other words, when incidence needs to be estimated for a population 
or an aggregate defined by residence in a given geographic area over some time period. 
These aggregates are called open or dynamic cohorts because they include individuals 
who are added or withdrawn from the pool of  the population at risk as they migrate in 
or out of  the area (i.e., a situation more clearly represented by the diagram in Figure 2-1 
than that in Figure 2-2).
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Incidence Density Based on Individual Data
When relatively precise data on the timing of  events or losses are available for each 
individual from a defined cohort, it is possible to estimate incidence density. The total 
person-time for the study period is simply the sum of  the person-time contributed by 
each individual. The average incidence density is then calculated as follows:

Incidence density =
Number of events
Total person-time

For each individual in the example shown in Figures 2-1, 2-2, and 2-3, the length of  
the horizontal line represents the length of  time between the beginning of  the follow-up 
and the point when the individual either had the event, which in this hypothetical 
example is death (D) or was lost to observation. For example, for individual 1, death 
occurred after exactly 1 month. Thus, this individual’s contribution to the total number 
of  person-years in the first follow-up year (see Figure 2-3) would be 1 4 12 5 0.083; 
obviously, this person made no contribution to the follow-up during the second year. On 
the other hand, individual 2 died after remaining in the study for 17 months, or 1 year 
and 5 months. Thus, his or her contribution to the first follow-up year was 12 4 12 and 
to the second year was 5 4 12, for a total of  1.417 person-years.

The contribution of  censored individuals is calculated in an identical fashion. For 
example, the contribution of  individual 6 to the total number of  person-years was equiv-
alent to 16 months, or 1 full person-year in the first year and 4 4 12 person-years in the 
second year, for a total of  1.333 person-years. The calculation of  person-years for all 10 
study participants is shown in Table 2-6. In this example, the incidence density appli-
cable to the total follow-up period is, therefore, 6 4 9.583 5 0.63 per person-year (or 
63 per 100 person-years). Alternatively, the incidence density could be expressed as 6 4 
(9.583 3 12 months) 5 0.052 per person-month (or 5.2 per 100 person-months). For 
a method to estimate confidence limits of  incidence rates, see Appendix A, Section A.2.

Assumptions in the Estimation of Incidence Based on Person-Time
The assumptions of  independence between censoring and survival and of  lack of  
secular trends discussed in Section 2.2.1 are also relevant in the context of  person-
time analysis. The former assumption relates to absence of  selection bias resulting 
from losses to follow-up. Both assumptions actually apply to any type of  cohort study 
analysis. Furthermore, as for incidence based on the actuarial life table (Equation 2.1), 
an important assumption when using the person-time approach is that the risk of  the 
event remains approximately constant over time during the interval of  interest or, in 
other words, that the estimated rate should apply equally to any point in time within the 
interval. This means that n persons followed during t units of  time are equivalent to 
t persons observed during n units of  time; for example, the risk of  an individual living 
five units of  time within the interval is equivalent to that of  five individuals living one 
unit each (Figure 2-5). When individuals are exposed to a given risk factor, another 
interpretation of  this assumption is that the effect resulting from the exposure is not 
cumulative within the follow-up interval of  interest. Often this assumption is difficult to 
accept, as, for example, when doing studies of  chronic respiratory disease in smokers: 
the risk of  chronic bronchitis for 1 smoker followed for 30 years is certainly not the same 
as that of  30 smokers followed for 1 year, in view of  the strong cumulative effect of  
smoking and the latency period needed for disease initiation. To decrease the dependency 
of  the person-time approach on this assumption, the follow-up period can be divided 
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Table 2-6 Calculation of the number of person-years based on Figure 2-2.

Contribution to the total number of  person-years by 
participants in:

Person no.
Total follow-up  

(in months) 1st Year of  follow-up 2nd Year of  follow-up
Total follow-up 

period

1 1 1/12 5 0.083 0 0.083

2 17 12/12 5 1.000 5/12 5 0.417 1.417

3 20 12/12 5 1.000 8/12 5 0.667 1.667

4 9 9/12 5 0.750 0 0.750

5 24 12/12 5 1.000 12/12 5 1.000 2.000

6 16 12/12 5 1.000 4/12 5 0.333 1.333

7 2 2/12 5 0.167 0 0.167

8 13 12/12 5 1.000 1/12 5 0.083 1.083

9 10 10/12 5 0.833 0 0.833

10 3 3/12 5 0.250 0 0.250

Total 115 months 7.083 years 2.500 years 9.583 years

Figure 2-5 Follow-up time for eight individuals in a hypothetical study. It is assumed that the 
sum of the person-time units for individuals no. 1 to 5 (with a short follow-up time of 1 year  
each) is equivalent to the sum for individuals no. 6 and 7 (with follow-up times of 2 and 3 years,  
respectively) and to the total time for individual no. 8 (who has the longest follow-up time, 
5 years). For each group of individuals (no. 1–5, 6 and 7, and 8) the total number of person-years 
of observation is 5.

Individual
no. Year 1 Year 2 Year 3 Year 4 Year 5

1

2

3

4

5

6

7

8
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into smaller intervals and incidence densities calculated for each interval. For example, 
using data from Table 2-6 and Figure 2-3, it is possible to calculate densities separately 
for the first and the second years of  follow-up, as follows:

First follow-up year: 3 4 7.083 5 42.4 per 100 person-years 
(or 3 4 85 5 3.5 per 100  person-months)

Second follow-up year: 3 4 2.500 5 120 per 100 person-years 
(or 3 4 30 5 10 per 100 person-months)

The fact that the densities differ markedly between the first and second follow-up 
years in this example strongly implies that it would not be reasonable to estimate an 
incidence density for the overall 2-year period.

Relationship Between Density (Based on Individual Data) and Rate (Based on  
Grouped Data)
It is of  practical interest that when withdrawals (and additions in an open population or 
dynamic cohort) and events occur uniformly, rate (based on grouped data) and density 
(based on individual data) are virtually the same. The following equation demonstrates 
the equivalence between the rate per average population and the density (per person-
time), when the former is averaged with regard to the corresponding time unit (e.g., 
yearly average).

Rate =

No. events (x)
average population (n)

time (t)
=

x
n * t

= Density

This idea can be understood intuitively. For a given time unit, such as 1 year, the 
denominator of  the rate (the average population) is analogous to the total number of  
time units lived by all of  the individuals in the population in that given time period. An 
example is given in Table 2-7, based on data for four persons followed for a maximum 
of  2 years. One individual is lost to follow-up (censored) after 1 year; two individuals 
die, one after 0.5 years and the other after 1.5 years, and the fourth individual survives 
through the end of  the study. There is, therefore, perfect symmetry in the distribution 
of  withdrawals or events, which occurred after 0.5, 1, 1.5, and 2 years after the onset 
of  the study. Summing the contribution to the follow-up time made by each participant 
yields a total of  5 person-years. Density is thus two deaths per 5 person-years, or 0.40.

The average population (n) in this example can be estimated as [(initial population 1 
final population) 4 2], or [(4 1 1) 4 2 5 2.5]. The rate for the total time (t 5 2 years) is 
then 2 4 2.5. The average yearly rate is thus equivalent to the density using person-time 
as the denominator:

Yearly rate =

x
n

t
=

x
n * t

=
x

person-years

         = Density =
2

2.5 * 2
 =

2
5

 = 0.40

On the other hand, when losses and events do not occur in an approximate uniform 
fashion, the incidence rate based on the average study population and the incidence 
density for a given population and time period may be discrepant. For example, based on 
the hypothetical data in Figure 2-3, the estimate of  the mean yearly incidence based on 
the average population was 54.5/100 person-years, whereas that based on the incidence 
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density was 63/100 person-years. In real life, when the sample size is large and provided 
that the time interval is reasonably short, the assumption of  uniformity of  events/losses 
is likely to be met.

The notion that the average population is equivalent to the total number of  person-
time when events and withdrawals are uniform is analogous to the assumption 
regarding uniformity of  events and withdrawals in the actuarial life table (see Section 
2.2.1, Equation 2.1). When it is not known exactly when the events occurred in a 
given time period, each person in whom the event occurs or who enters or withdraws 
from the study is assumed to contribute one-half  the follow-up time of  the interval. 
(It is expected that this will be the average across a large number of  individuals 
entering/exiting at different times throughout each time period for which person-time 
is estimated.)

The correspondence between rate (based on grouped data) and density (based on 
individual person-time) is conceptually appealing as it allows the comparison of  an 
average yearly rate based on an average population—which, in vital statistics, is usually 
the midpoint, or July 1, population estimate—with a density based on person-years. It 
is, for example, a common practice in occupational epidemiology studies to obtain an 
expected number of  events needed for the calculation of  the standardized mortality ratio 
by applying population vital statistics age-specific rates to the age-specific number of  
person-years accumulated by an exposed cohort (see Chapter 7, Section 7.3.2).

Stratifying Person-Time and Rates According to Follow-up Time and Covariates
The calculation of  person-time contributed by a given population or group is simply the 
sum of  the person-time contributed by each individual in the group during the follow-up 
period. In most analytical prospective studies relevant to epidemiology, the risk of  the 
event changes with time. For example, the incidence of  fatal or nonfatal events may 
increase with time, as when healthy individuals are followed up with as they age. In 
other situations, risk diminishes as follow-up progresses, as in a study of  complications 
after surgery or of  case fatality after an acute myocardial infarction. Because calculating 
an overall average rate over a long time period when the incidence is not uniform violates 
the assumptions discussed previously in this chapter (and ultimately does not make a 
lot of  sense), it is necessary to estimate the event rate for time intervals within which 
homogeneity of  risk can be assumed. Thus, it is often important to stratify the follow-up 
time and calculate the incidence rate for each time stratum (as seen in the example based 
on the data in Table 2-6). Furthermore, in a cohort study, one may additionally wish to 

Table 2-7 Hypothetical data for four individuals followed for a maximum of 2 years.

Individual 
no. Outcome Timing of  event/loss No. of  person-years

1 Death At 6 months 0.5

2 Loss to observation At 1 year 1.0

3 Death At 18 months 1.5

4 Administrative censoring At 2 years 2.0

Total no. of  person years: 5.0
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control for potentially confounding variables (see Chapter 5). Time and confounders can 
be taken into account by stratifying the follow-up time for each individual according to 
other time variables (e.g., age) and categories of  the confounder(s), and then summing 
up the person-time within each stratum.

The following examples illustrate the calculation of  person-time and the corre-
sponding incidence rates based on the data shown in Table 2-8, from a hypothetical 
study of  four postmenopausal women followed for mortality after breast cancer surgery 
(2000 to 2010). Table 2-8 provides the dates of  surgery (“entry”), the date of  the event 
(death or censoring), ages at surgery and at menopause, and smoking status.

One Time Scale. Based on the data from Table 2-8, the follow-up of  these four women is 
displayed in Figure 2-6. The top panel of  Figure 2-6 displays the follow-up according to 
calendar time for each of  the four women; the bottom panel displays the follow-up time 
after surgery. In Figure 2-6 (top), because the precise dates of  surgery and events are not 
known, it is assumed that these occur in the middle of  the corresponding year (discussed 
previously in this chapter).

If  it could be assumed that the risk of  the event was approximately uniform within 
5-year intervals, it would be justified to calculate person-time separately for the first and 
the second 5-year calendar period (Figure 2-6, top); the calculation of  the rates is shown 
in Table 2-9. Individuals whose follow-up starts or ends sometime during a given year 
are assigned one-half  of  a person-year: for example, a contribution of  0.5 person-year is 
made by woman 1 in 2003, as her surgery was carried out at some time in 2003. Thus, 
the total person-time for the period 2000 to 2004 is 1.5 years (woman 1) 1 4.5 years 
(woman 3) 1 2 years (woman 4) 5 8 person-years.

Alternatively, one might be interested in examining the rates in this study according 
to follow-up time, as shown in Table 2-10. For example, because woman 1 was followed 
from 2003.5 to 2009.5, she can be assumed to have a full 6-year follow-up (Figure 2-6, 
bottom).

Two or More Time Scales. Epidemiologic cohorts are often constituted by free-living 
individuals who interact and are the subject of  multiple and varying biological and 
environmental circumstances. Thus, it is frequently important to take into consideration 
more than one time scale; the choice of  time scales used for the stratification of  follow-up 
time varies according to the characteristics and goals of  the study (Table 2-11).

Woman 
no. 1

Woman 
no. 2

Woman 
no. 3

Woman 
no. 4

Date of  surgery 2003 2005 2000 2002

Age at surgery 58 50 48 54

Age at menopause 54 46 47 48

Smoking at time of  surgery Yes No Yes No

Change in smoking status (year) Quits (2006) No No Starts (2003)

Type of  event Death Loss Withdrawal alive Death

Date of  event 2009 2008 2010 2004

Table 2-8 Hypothetical data for four postmenopausal women followed for mortality after breast 
cancer surgery.
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In Figure 2-7, the person-time and outcomes of  the four women from Table 2-8 are 
represented according to two time scales, age and calendar time. In this type of  graphic 
representation (known as a Lexis diagram), each individual’s trajectory is represented by 
diagonals across the two time scales. As in the previous example and given that the time 
data are approximate (in whole years), it is assumed that entry, censoring, and event of  
interest occur at the midpoint of  the 1-year interval.

Table 2-12 shows the corresponding estimates of  total person-time in each 
two-dimensional stratum. These are obtained by adding up the total time lived by the 
individuals in the study in each age/calendar time stratum represented by eight squares 

Calendar time Person-years Events Incidence rate

2000–2004 8 1 0.125

2005–2009 12.5 1 0.080

(2010–2014) (0.5) (0) (0)

Table 2-9 Stratification of person-time and rates according to calendar time, based on  
Table 2-8 and Figure 2-6, top.

Figure 2-6 Schematic representation of person-time for the hypothetical data in Table 2-8, according 
to one time scale: calendar time (top) and follow-up time (bottom) (censored observations are shown with 
arrows; D 5 death).
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in Figure 2-7; for example, for those 55 to 59 years old between 2000 and 2004, it is 
the sum of  the 1.5 years lived by woman 4 (between age 55 and age 56.5 years, the 
assumed age of  her death) and the 1.5 years lived by woman 1 in that stratum. The 
relevant events (deaths) are also assigned to each corresponding stratum, thus allowing 
the calculation of  calendar- and age-specific incidence rates, also shown in Table 2-12.

Other time scales may be of  interest. In occupational epidemiology, for example, it may 
be of  interest to obtain incidence rates of  certain outcomes taking into account three 
time scales simultaneously; for example, age (if  the incidence depends on age), calendar 
time (if  there have been secular changes in exposure doses), and time since employment 
(so as to consider a possible cumulative effect). For this situation, one could conceive a 
tridimensional analogue to Figure 2-7: cubes defined by strata of  the three time scales 
and each individual’s person-time displayed across the tridimensional diagonals.

The layout for the calculation of  person-time and associated incidence rates described 
in this section can be used for the internal or external comparison of  stratified rates by 
means of  standardized mortality or incidence ratios (see Chapter 7, Section 7.3.2).

Time and Fixed or Time-Dependent Covariates. Stratification according to other vari ables, 
in addition to time, may be necessary in certain situations. For example, the data in 
Table 2-8 could be further stratified according to an additional time scale (e.g., time 
since menopause) and additional covariates (e.g., smoking status at the time of  
surgery). Thus, instead of  eight strata, as in Figure 2-7 and Table 2-12, one would need 
to stratify the person-time into 32 strata defined by the combination of  all four variables 
(calendar time, age, time since menopause, and smoking). Individuals under obser-
vation would shift from stratum to stratum as their status changes. For example, woman 
1 (Table 2-8) is a smoker who enters the study in 2003 at the age of  58 years (that is 
assumed to be 2003.5 and 58.5 years, respectively; discussed previously), 4 years after 
menopause. Thus, as she enters the study in stratum “2000–2004/55–59 years of  

Time since surgery Person-years Events Rate

0–4 years 15 1 0.0667

5–9 years 6 1 0.1667

Table 2-10 Stratification of person-time and rates according to follow-up time (time since 
surgery), based on Table 2-8 and Figure 2-6, bottom.

Time scale Type of  study

Follow-up time (time since recruitment) All studies

Age All studies

Calendar time All studies (especially if  recruitment is done over an 
extended period)

Time since employment Occupational studies

Time since menarche Studies of  reproductive outcomes

Time since seroconversion Follow-up of  patients with HIV infection

Table 2-11 Examples of time scales frequently relevant in the context of cohort studies.
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age/smoker-at-baseline/menopause < 5 years,” after contributing 1 person-year to this 
stratum (i.e., in 2004.5 at age 59.5 years), she becomes “  5 years after menopause” 
and thus shifts to a new stratum: “2000–2004/55–59 years of  age/smoker-at- 
baseline/menopause  5 years.” Half  a year later, she turns 60 and enters a new 
stratum (“2005–2009/60–64 years of  age/smoker-at-baseline/menopause  5 years”) 
to contribute her last 4.5 person-years of  observation before her death in 2009.5.

In the preceding example, smoking is treated as a fixed covariate, as only baseline 
status is considered; however, information on smoking status change is available in 

Calendar time Age (years) Person-years Events Rate

2000–2004 45–49 1.5 0 0

50–54 3.5 0 0

55–59 3 1 0.3333

60–64 0 - -

2005–2009 45–49 0 - -

50–54 5 0 0

55–59 3 0 0

60–64 4.5 1 0.2222

Table 2-12 Stratification of person-time and rates according to calendar time and age 
(see Figure 2-7).

Figure 2-7 Schematic representation of person-time for the four women in Table 2-8 according 
to two time scales, age and calendar time, categorized in 5-year intervals. Because time data are 
given in whole years, entry, events, and withdrawals are assumed to occur exactly at the middle 
of the year. Censored observations are represented by an arrow. The total time within each time 
stratum for all four women is shown in parentheses. The entry and exit times for woman no. 1 are 
given in italics; D 5 death.
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the hypothetical study data shown in Table 2-8. Changes in exposure status for certain 
covariates can easily be taken into account when using the person-time strategy. For 
example, using the information at baseline and change in smoking status shown in 
Table 2-8, assignment of  person-time according to smoking as a time-dependent 
covariate can be represented as illustrated in Figure 2-8. Using this approach, each 
relevant event is assigned to the exposure status at the time of  the event. Thus, woman 
1’s death is assigned to the “nonsmoking” group, whereas that of  woman 4 is assigned 
to the “smoking” group. (The latter assignments are opposite to those based on smoking 
status at baseline described in the preceding paragraph.)

To use the person-time approach to take into account changing exposures involves 
an assumption akin to that used in crossover clinical trials: that after the exposure status 
changes, so does the associated risk. This is merely another way to state that there is 
no accumulation of  risk and thus that the effect of  a given exposure is “instantaneous.” 
Whether this assumption is valid depends on the specific exposure or outcome being 
considered. For example, for smoking, the assumption may be reasonable when studying 
thromboembolic events likely to result from the acute effects of  smoking (e.g., those 
leading to sudden cardiac death). On the other hand, given the well-known latency and 
cumulative effects leading to smoking-related lung cancer, the assumption of  an “instan-
taneous” effect would be unwarranted if  lung cancer were the outcome of  interest. (The 
cumulative effect of  smoking on lung cancer risk can be easily inferred from the fact that 
the risk in smokers who quit decreases yet never becomes the same as that in people who 
have never smoked.) If  there is cumulative effect, the approach illustrated in Figure 2-8 
(e.g., assigning the event in woman 1 to the nonsmoking category) will result in misclas-
sification of  exposure status (see Chapter 4, Section 4.3).

The cumulative effects of  exposure can be taken into account with more complex 
exposure definitions; for example, total pack-years of  smoking could be considered even 
among former smokers. Moreover, lag or latency times could also be introduced in the 
definition of  person-time in relation to events, a frequent practice in occupational or 
environmental epidemiology studies.9(pp.150–155) Obviously, when the study requires strati-
fication according to more than one time scale and several covariates, person-time and 
rates will need to be calculated for dozens or hundreds of  multidimensional strata, which 
will require the use of  computer programs.10–12

Figure 2-8 Schematic representation of person-time for the four women in Table 2-8, according 
to time-dependent smoking status. Solid lines represent smoking status; broken lines represent 
nonsmoking status.
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2.2.3  Comparison Between Measures of Incidence
For the estimation of  the different incidence measures, the numerator (number of  
deaths) is constant; the differentiation between the measures is given by the way the 
denominator is calculated. The main features that distinguish cumulative probability 
on the one hand and density or rate on the other are shown in Exhibit 2-1. As discussed 
previously, the upper limit of  values for a rate or a density may exceed 100%, whereas 
values for probabilities cannot be greater than 100%.

Rates are often calculated as yearly average rates or, for example, as rates per 
1000 person-years, the latter implying a rate per 1000 persons per year, which under-
scores the correspondence between a vital statistics-derived rate and a rate per person-
time, as discussed previously. On the other hand, no time unit whatsoever is attached 
to a cumulative incidence (a probability), thus requiring that the relevant time period 
always be specified (e.g., “the cumulative probability for the initial 3 years of  follow-up”).

Another practical difference between the two types of  incidence measures is that, 
although it is possible to calculate a cumulative incidence over time (using any of  the 
survival analysis techniques described in Section 2.2.1), it is obviously not possible to 
obtain an overall cumulative rate over several time intervals (using either an average 
population or a person-time approach); this is, of  course, a consequence of  the “instan-
taneous” character of  rate estimates.

With regard to their numerical value, a cumulative incidence and a rate can only be 
compared if  they are based on the same time unit (e.g., cumulative incidence over a 1-year 
period and rate per person-year). Under this circumstance, the general rule is that, in 
absolute value, the rate will always be larger than the cumulative incidence. The rationale for 
this rule is best explained when comparing a rate with a cumulative incidence based on 
the classic life table, as illustrated in Exhibit 2-2. Although losses because of  censoring are 
similarly taken into account in the denominator of  both cumulative incidence and rate, 
the observation time “lost” by the cases is subtracted from the denominator of  the rate 
but not from the probability-based cumulative incidence (which uses number of  observa-
tions at the start of  the interval corrected for losses, regardless of  how many cases occur 
subsequently). As a result, the denominator for the rate will always tend to be smaller than 

Cumulative incidence Incidence rate

If  follow-up is  
complete

If  follow-up is 
incomplete

Individual  
data (cohort)

Grouped  
data (area)

Numerator Number of  cases Classic life  
table

Kaplan-Meier

Number of  cases Number of  cases

Denominator Initial population Person-time Average  
population*

Units Unitless Time21

Range 0 to 1 0 to infinity

Synonyms Proportion  
Probability

Incidence density†

*Equivalent to person-time when events and losses (or additions) are homogeneously distributed over the time interval of  
interest.
†In the text, the term density is used to refer to the situation in which the exact follow-up time for each individual is 
available; in real life, however, the terms rate and density are often used interchangeably.

exhibiT 2-1 Comparing measures of incidence: cumulative incidence vs incidence rate.
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that of  the cumulative incidence and thus the larger absolute value of  the former when 
compared with the latter. When events are relatively rare, the discrepancy is very small 
(e.g., example in Exhibit 2-2); as the frequency of  the event increases, so will the numerical 
discrepancy between cumulative incidence and rate pertaining to the same time unit.

Finally, regarding assumptions, all methods for the calculation of  incidence share the 
fundamental assumptions in the analysis of  cohort data that were discussed in previous 
sections and are summarized in Exhibit 2-3: independence between censoring and 
survival, and lack of  secular trends. Additional assumptions are needed depending on 
the specific requirements of  the method (e.g., uniformity of  risk across defined interval 
in classic life table and/or person-time-based analyses).

Experienced epidemiologists have learned that whereas each approach has advan-
tages and disadvantages, the ultimate choice on how to present incidence data is 
dictated by pragmatism (and/or personal preference). Thus, in a cohort study without 
an “internal” unexposed group—as may be the case in occupational epidemiology 
research—estimation of  densities, rather than probabilities, allows using available 
population rates as control rates. On the other hand, probabilities are typically estimated 
in studies with a focus on the temporal behavior (or “natural history”) of  a disease, as in 
studies of  survival after diagnosis of  disease.

2.2.4  The Hazard Rate
An alternative definition of  an instantaneous incidence rate (density) is the so-called 
hazard rate or instantaneous conditional incidence or force of  morbidity (or mortality). 
In the context of  a cohort study, the hazard rate is defined as each individual’s 
instantaneous probability of  the event at precisely time t (or at a small interval  

Cumulative 
incidence

(q) is calcu-
lated based 
on number 
of  individuals 
at risk at the 
beginning of  
the interval 
(N)

In the absence  
of  censoring

q =
x
N

In the presence  
of  censoring (C)

q =
x

N - 1/2C

Example: N51000 individuals 
followed for 1 year, x550 events, 
C530 censored observations

=
50

1000 - 1/230

=
50

985
= .0508

Rate is calcu-
lated based on 
person-time 
of  obser-
vation over 
the follow-up, 
subtracting 
person-time 
lost by the 
cases (x)

Rate =
x

N - 1/2x
Rate =

x

N - 1/2C - 1/2x

=
50

1000 - 1/250 - 1/230

=
50

960
= .0521

exhibiT 2-2 Comparing absolute numerical values of cumulative incidence based on the actuarial life 
table and rate (assuming that follow-up interval equals person-time unit). Notice that (as long as x > 0) 
the denominator of the rate will always be smaller than that of the cumulative incidence (960 vs 985 in the 
example), thus explaining the larger absolute value of the rate.
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[t, t1t]), given (or “conditioned” on) the fact that the individual was at risk at time 
t. The hazard rate is defined for each particular point in time during the follow-up. In 
mathematical terms, this is defined for a small time interval (t close to zero) as follows:

h(t) =
P(event in interval between t and [t + t]|alive at t)

t

The hazard is analogous to the conditional probability of  the event that is calculated 
at each event time using Kaplan-Meier’s approach (Table 2-3, column 4); however, 
because its denominator is “time-at-risk,” it is a rate measured in units of  time–1. Another 
important difference is that, in contrast with the Kaplan-Meier’s conditional proba-
bility, the hazard rate cannot be directly calculated, as it is defined for an infinitely small 
time interval; however, the hazard function over time can be estimated using available 
parametric survival analysis techniques.13

The hazard rate is a useful concept when trying to understand some of  the statis-
tical techniques used in survival analysis, particularly those pertaining to propor-
tional hazards regression (see Chapter 7, Section 7.4.4). It is outside of  the scope of  this 
textbook, however, to discuss the complex mathematical properties of  the hazard rate; the 
interested reader should consult more advanced statistical textbooks such as Collett’s.13

2.3  MEASURES OF PREVALENCE

Prevalence is defined as the frequency of  existing cases of  a disease or other condition in a 
given population at a certain time or period. Depending on how “time” is defined, there 
are two kinds of  prevalence, point prevalence and period prevalence (Table 2-1). Point 
prevalence is the frequency of  a disease or condition at a point in time; it is the measure 
estimated in the so-called prevalence or cross-sectional surveys, such as the National 
Health and Nutrition Examination Surveys conducted by the US National Center for 
Health Statistics. For the calculation of  point prevalence, it is important to emphasize that 
all existing cases at a given point in time are considered prevalent, regardless of  whether 

Survival analysis Person-time

If  there are losses  
to follow-up:

Censored observations have an outcome  
probability that is similar to that of  individuals  

remaining under observation.

If  intervals are  
used, and there  
are losses during  
a given interval:

Losses are uniform over the interval.

If  risk is calculated  
over intervals:

Risk is uniform  
during the interval.

N individuals followed  
for T units of  time  

have the same risks as  
T individuals followed  

for N units of  time.

If  accrual of  study 
subjects is done 
over a relatively  
long time period:

There are no secular trends over the calendar  
period covered by the accrual.

exhibiT 2-3 Assumptions necessary for survival and person-time analyses.
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they are old or more recent. Period prevalence is less commonly used and is defined as the 
frequency of  an existing disease or condition during a defined time period. For example, 
the period prevalence of  condition Y in year 2010 includes all existing cases on January 
1, 2010, plus the new (incident) cases occurring during the year. A special type of  period 
prevalence is the cumulative lifetime prevalence, which provides an estimate of  the occur-
rence of  a condition at any time during an individual’s past (up to the present time). For 
example, the US-based 2003 National Youth Risk Behavior Survey estimated the lifetime 
prevalence of  asthma among high school students to be 18.9%, whereas the estimated 
point prevalence at the time of  the survey was estimated to be 16.1%.14

In the case of  period prevalence, the denominator is defined as the average reference 
population over the period. In general, when the term prevalence is not specified, it can 
be taken to mean point prevalence. As a descriptive measure, point prevalence is a useful 
index of  the magnitude of  current health problems and is particularly relevant to 
public health and health policy (Chapter 10). In addition, prevalence is often used as 
the basis for the calculation of  the point prevalence rate ratio, a measure of  association 
in cross-sectional studies or in cohort studies using baseline data. Because the point 
prevalence rate ratio is often used as a “surrogate” of  the incidence ratio in the absence 
of  prospective cohort data (see Chapter 3, Section 3.3), it is important to understand 
prevalence’s dependence on both incidence and duration of  the disease after onset—
duration is, in turn, determined by either survival for fatal diseases or recovery for 
nonfatal diseases. In a population in a steady-state situation (i.e., no major migra-
tions or changes over time in incidence/prevalence of  the condition of  interest), the 
relationship between prevalence and disease incidence and duration can be expressed 
by the following formula:*

 
Point prevalence
(1 - Prevalence)

= Incidence * Duration (Eq. 2.3)

The term [Point prevalence 4 (1 – Point prevalence)] is the odds of  point preva-
lence (see Section 2.4). Also, in this equation and those derived from it, the time unit 
for incidence and duration should be the same: that is, if  incidence is given as a yearly 
average, duration should be given using year(s) or a fraction thereof. Equation 2.3 can 
be rewritten as follows:

  Point prevalence = Incidence * Duration * (1 - Point prevalence) (Eq. 2.4)

As discussed in Chapters 3 and 4, Equation 2.4 underscores the two elements of  a 
disease that are responsible for the difference between incidence and point prevalence: 

*The derivation of  this formula is fairly straightforward. Under the assumption that the disease is in steady state, 
the incidence and the number of  existing cases at any given point (e.g., X) are approximately constant. For an 
incurable disease, this implies that the number of  new cases during any given time period is approximately equal 
to the number of  deaths among the cases. If  N is the population size, I is the incidence, and F is the case fatality 
rate, the number of  new cases can be estimated by multiplying the incidence times the number of  potentially 
“susceptible” (N – X); in turn, the number of  deaths can be estimated by multiplying the case fatality rate 
(F) times the number of  prevalent cases. Thus, the above assumption can be formulated as follows: I 3 (N – X) 
≈ F 3 X. If  there is no immigration, the case fatality rate is the inverse of  the duration (D).3 Thus, after a little 
arithmetical manipulation and dividing numerator and denominator of  the right-hand side term by N:

I * D �
X

(N - X)
=

Prevalence
(1 - Prevalence)

An analogous reasoning can be applied to nonfatal diseases, for which F is the proportion cured.
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its duration and the magnitude of  its point prevalence. When the point prevalence is 
relatively low (e.g., 0.05 or less), the term (1 2 Point prevalence) is almost equal to 1.0, 
and the following well-known simplified formula defining the relationship between 
prevalence and incidence is obtained:

Point prevalence � Incidence * Duration

For example, if  the incidence of  a disease that has remained stable over the years (e.g., 
diabetes) is 1% per year, and its approximate duration (survival after diagnosis) is 15 
years, its point prevalence will be approximately 15%.

2.4  ODDS

Odds are the ratio of  the probability of  the event of  interest to that of  the nonevent. This 
can be defined both for incidence and for prevalence. For example, when dealing with 
incidence probabilities, the odds are

Incidence odds =
q

1 - q

(Alternatively, knowing the odds allows the calculation of  probability: q 5 Odds 4  
[1 1 Odds].)

The point prevalence odds are as follows (see also Equation 2.3):

Point prevalence odds =
Point prevalence

1 - Point prevalence

Both odds and proportions can be used to express “frequency” of  the disease. An odds 
approximates a proportion when the latter is small (e.g., less than 0.1). For example,

Proportion = 0.05
Odds = 0.05/(1 - 0.05) = 0.05/0.95 = 0.0526

It is easier to grasp the intuitive meaning of  the proportion than that of  the odds, 
perhaps because in a description of  odds, the nature of  the latter as a ratio is often not 
clearly conveyed. For example, if  the proportion of  smokers in a population is 0.20, the 
odds are

Odds =
Proportion of smokers

1 - Proportion of smokers
=

Proportion of smokers
Proportion of nonsmokers

or 0.20 4 (1 – 0.20) 5 0.20 4 0.80 5 1:4 5 0.25.

Thus, there are two alternative ways to describe an odds estimate: either as an isolated 
number, 0.25, implying that the reader understands that it intrinsically expresses a 
ratio, 0.25:1.0, or clearly as a ratio—in the example, 1:4—conveying more explicitly 
the message that, in the study population, for every smoker there are four nonsmokers.

As an isolated absolute measure of  disease occurrence, the odds are rarely if  ever 
used by epidemiologists; however, the ratio of  two odds (the odds ratio) is a very popular 
measure of  association both because the logistic regression adjustment method is widely 
used and because the odds ratio allows the estimation of  the easier-to-grasp relative risk 
in case-based case-control studies (see Chapter 1, Section 1.4.2; Chapter 3, Sections 
3.2.1 and 3.4.1; and Chapter 7, Section 7.4.3).
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EXERCISES

 1. A prospective study with a 2-year (24-month) follow-up was conducted. Results 
are shown in the table for individuals who either died or were censored before the 
end of  the follow-up period.

  a.  Using the data from the table, calculate for all deaths: (a) the probability of  
death at the exact time when each death occurred, (b) the probability of  
survival beyond the time when each death occurred, and (c) the cumulative 
probabilities of  survival.

   b. What is the cumulative survival probability at the end of  the follow-up period?
     c. Using an arithmetic graph paper, plot the cumulative probabilities of  survival.
  d.  What is the simple proportion of  individuals apparently surviving (i.e., not 

observed to die) through the end of  the study’s observation period?
   e.  Why are the simple proportion surviving and the cumulative probability of  

survival different?
    f.  Using the same data, calculate the overall death rate per 100 person-years. (To 

facilitate your calculations, you may wish to calculate the number of  person-
months and then convert it to the number of  person-years.)

  g.  Calculate the rates separately for the first and the second years of  follow-up. 
(For this calculation, assume that the individual who withdrew at month 12 
did it just after midnight on the last day of  the month.)

  h.  Assuming that there was no random variability, was it appropriate to calculate 
the rate per person-year for the total 2-year duration of  follow-up?

    i.  What is the most important assumption underlying the use of  both survival 
analysis and the person-time approach?

    j.  Now assume that the length of  follow-up was the same for all individuals 
(except those who died). Calculate the proportion dying and the odds of  death 
in this cohort.

  k. Why are these figures so different in this study?

Follow-up time (months) Event

 2 Death

4 Censored

7 Censored

8 Death

12 Censored

15 Death

17 Death

19 Death

20 Censored

23 Death

Survival data for 20 participants of a hypothetical prospective study.
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 2. In a cohort study of  individuals aged 65 years and older and free of  dementia 
at baseline,* the associations of  age and APOE 4 with the risk of  incidence 
Alzheimer’s disease (AD) were investigated. The table shows the number of  
individuals, person-years, and probable cases of  AD, overall and according to age 
(< 80 and ≥ 80 years old) and, separately, to presence of  APOE 4.

  a.  Calculate the densities of  AD per 100 person-years, and the average durations 
of  follow-up for all subjects and for each subgroup.

  b.  Why is it important that the follow-up durations be similar for the “exposed” 
and “unexposed” categories, particularly in this study?

  c.  When calculating a density for a given long follow-up period, the assumption 
is that the risk remains the same throughout the duration of  follow-up. Is this 
a good assumption in the case of  Alzheimer’s Disease? Why or why not?

 3. In a case-based case-control study of  risk factors for uterine leiomyoma, the 
authors assessed a history of  hypertension in cases and controls, as shown in the 
table here.

  a.  Using the absolute numbers of  cases and controls with and without a history 
of  hypertension, calculate the absolute odds of  history of  hypertension 
separately in cases and in controls.

  b.  Now calculate the odds of  hypertension using the percentages of  cases and 
controls with a history of  hypertension.

*Li G, Shofer JB, Rhew IC, et al. Age-varying association between statin use and incident Alzheimer’s disease. 
J Am Geriatr Soc 2010; 58:1311–1317.

Cases Controls

History of  
hypertension Number Percentage Number Percentage

Absent 248  78.0 363  92.4

Present  70  22.0  30   7.6

Total 318 100.0 393 100.0

Number of  
individuals

Number with 
probable  

AD/person-years

Density of  
AD per 100 

person-years

Average 
duration of  

follow-up

All subjects 3,099 263/18,933

<80 years 2,343 157/15,529

80 years   756 106/3,404

APOE  4(1)   702 94/4,200

APOE  4(2) 2,053 137/12,894

Probable Alzheimer’s disease (AD) by age and APOE  4.



 Exercises 77

2

M
easuring D

isease 
O

ccurrence

  c.  What can you conclude from comparing the response to question 2a to the 
response to question 2b?

  d.  Why are the odds of  a history of  hypertension more similar to the proportion 
of  individuals with a history of  hypertension in controls than in cases?

 4. The baseline point prevalence of  hypertension in African-American women aged 
45–64 years included in the Atherosclerosis Risk in Communities (ARIC) cohort 
study was found to be 56%.† In this study, over a follow-up period of  6 years, 
the average yearly incidence of  hypertension in African-American women was 
estimated to be about 5% and stable over the years.‡ Using these data, estimate the 
average duration of  hypertension in African American women in the ARIC study.

†Harris MM, Stevens J, Thomas N, et al. Associations of  fat distribution and obesity with hypertension in a 
biethnic population: The ARIC study. Obesity Res. 2000;8:516–524.
‡Fuchs FD, Chambless LE, Whelton PK, et al. Alcohol consumption and the incidence of  hypertension: The 
Atherosclerosis Risk in Communities Study. Hypertension 2001;37:1242–1250.
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3.1 INTRODUCTION

Epidemiologists are often interested in assessing the presence of  associations expressed by 
differences in disease frequency. Measures of  association can be based on either absolute 
differences between measures of  disease frequency in groups being compared (e.g., exposed 
vs unexposed) or relative differences or ratios (Table 3-1). Measures based on absolute differ-
ences are often preferred when public health or preventive activities are contemplated, as 
their main goal is often an absolute reduction in the risk of  an undesirable outcome. In 
contrast, etiologic studies that are searching disease determinants (causes) usually rely on 
relative differences in the occurrence of  discrete outcomes, with the possible exception of  
instances in which the outcome of  interest is continuous; in this situation, the assessment 
of  mean absolute differences between exposed and unexposed individuals is also a 
frequently used method for evaluating an association (Table 3-1).

3.2 MEASURING ASSOCIATIONS IN A COHORT STUDY

In traditional prospective or cohort studies, study participants are selected in one of  two 
ways: (1) a defined population or population sample is included in the study and classified 
according to level of  exposure; or (2) exposed and unexposed individuals are specifically 
identified and included in the study. These individuals are then followed concurrently or 
nonconcurrently1,2 for ascertainment of  the outcome(s), allowing for the estimation of  
an incidence measure in each group (see also Chapters 1 and 2).

To simplify the concepts described in this chapter, only two levels of  exposure are 
considered in most of  the examples that follow—exposed and unexposed. Furthermore, 

Measuring Associations 
Between Exposures and 
Outcomes 3

CHAPTER

Type Examples Usual application

Absolute difference Attributable risk in exposed Primary prevention impact; search 
for causes

Population attributable risk Primary prevention impact

Effectiveness, efficacy Impact of  intervention on 
 recurrences, case fatality, etc.

Mean differences (continuous 
outcomes)

Search for causes

Relative difference Relative risk/rate Search for causes

Relative odds Search for causes

Table 3-1 Types of measures of association used in analytical epidemiologic studies.
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the length of  follow-up is assumed to be complete in all individuals in the cohort (i.e., no 
censoring occurs). (The discussion that follows, however, also generally applies to risk and 
rate estimates that take into account incomplete follow-up and censoring, described in the 
previous chapter; Section 2.2.) For simplification purposes, this chapter focuses almost 
exclusively on the ratio of  two simple incidence probabilities (proportions/risks) or odds 
(which are generically referred to in this chapter as relative risk and odds ratio, respec-
tively) or on the absolute difference between two incidence probabilities (i.e., the attrib-
utable risk); however, concepts described in relationship to these measures also apply to a 
great extent to the other related association measures, such as the rate ratio and the hazard 
ratio. Finally, for the purposes of  simplifying the description of  measures of  association, it 
is generally assumed that the estimates are not affected by either confounding or bias.

3.2.1 Relative Risk (Risk Ratio) and Odds Ratio
A classic two-by-two cross-tabulation of  exposure and disease in a cohort study is shown 
in Table 3-2. Of  a total of  (a 1 b) exposed and (c 1 d ) unexposed individuals, a exposed 
and c unexposed develop the disease of  interest during the follow-up time. The corre-
sponding risk and odds estimates are shown in the last two columns of  Table 3-2. The 
probability odds of  the disease (the ratio of  the probability of  disease to the probability 
of  no disease) arithmetically reduces to the ratio of  the number of  cases divided by the 
number of  individuals who do not develop the disease for each exposure category.

The relative risk of  developing the disease is expressed as the ratio of  the risk (incidence) 
in exposed individuals (q

1
) to that in unexposed (q

2
):

 Relative risk (RR) =
q+

q-

=

a
a + b

c
c + d

 (Eq. 3.1)

For methods on estimating confidence limits and p values for a relative risk, see 
Appendix A, Section A.3.

The odds ratio (or relative odds) of  disease development is the ratio of  the odds of   developing 
the disease in exposed individuals divided by that in unexposed individuals. In Table 3-2, the 
odds of  disease are based on incidence proportions or probabilities; thus, it is occasionally 
designated probability odds ratio. The ratio of  the probability odds of  disease is equivalent to 
the cross-product ratio, (a 3 d )/(b 3 c). Using the notation in Table 3-2:

Exposure Diseased Nondiseased

Disease incidence 

(risk)

Probability odds 

of  disease

Present a b q+ =
a

a + b

q+

1 - q+

=

a
a + b

1 - a a
a + b

b
=

a
b

Absent c d q- =
c

c + d
q-

1 - q-

=

c
c + d

1 - a c
c + d

b
=

c
d

Table 3-2 Cross-tabulation of exposure and disease in a cohort study.
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 Probability odds ratio (OR) =

q+

1 - q+

q-

1 - q-

=

a
a + b

1 - a a
a + b

b
c

c + d

1 - a c
c + d

b

=

a
a + b

b
a + b

c
c + d

d
c + d

=

a
b
c
d

 

Thus,

 OR =
a * d
b * c

 (Eq. 3.2)

For methods on obtaining confidence limits and p values for an odds ratio, see 
Appendix A, Section A.4.

In the hypothetical example shown in Table 3-3, severe hypertension and acute 
myocardial infarction are the exposure and the outcome of  interest, respectively. The 
sample size for each level of  exposure was arbitrarily set at 10,000 to facilitate the calcu-
lations. For these data, because the probability (risk, incidence) of  myocardial infarction 
is low for both the exposed and the unexposed groups, the probability odds of  developing 
the disease approximate the probabilities; as a result, the probability odds ratio of  disease 
(exposed vs unexposed) approximates the relative risk:

 RR =

180
10,000

30
10,000

=
0.018
0.003

= 6.00 

 Probability OR =

180
9820

30
9970

=
0.01833
0.00301

= 6.09 

A different situation emerges when the probabilities of  developing the outcome are 
high in exposed and unexposed individuals. For example, Seltser et al.3 examined the 
incidence of  local reactions in individuals assigned randomly to either an injectable 

Table 3-3 Hypothetical cohort study of the 1-year incidence of acute myocardial infarction in 
individuals with severe systolic hypertension ( 180 mm Hg) and normal systolic blood pressure 
(< 120 mm Hg).

Blood pressure 
status 

Myocardial infarction

Number Present Absent Probability Probability oddsdis

Severe 
hypertension

10,000 180 9820 180/10,000 5 0.018 180/(10,000 − 180)  
5 180/9820 5 0.01833

Normal 10,000  30 9970 30/10,000 5 0.003 30/(10,000 − 30)  
5 30/9970 5 0.00301
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influenza vaccine or a placebo group. Table 3-4, based on this study, shows that as the 
probability (incidence) of  local reactions is high, the probability odds estimates of  local 
reactions do not approximate the probabilities (particularly in the group assigned to the 
vaccine). Thus, the probability odds ratio of  local reactions (vaccine vs placebo) is fairly 
different from the relative risk:

 RR =

650
2570
170

2410

=
0.2529
0.0705

= 3.59               OR =

650
1920
170

2240

=
0.3385
0.0759

= 4.46 

When the condition of  interest has a high incidence and when prospective data are 
available, as was the case in this vaccination trial, the common practice is to report the 
relative risk because it is a more easily understood measure of  association between the 
risk factor and the outcome.

Although, as discussed later, the odds ratio is a valid measure of  association in its own 
right, it is often used as an approximation of  the relative risk in situations when the latter 
cannot be calculated (i.e., case-control studies, see Section 3.4.1). 

In any case, when used as an estimate of  the relative risk, the odds ratio is biased 
in a direction opposite to the null hypothesis. In other words, when compared to the 
relative risk, the numerical value of  the odds ratio tends to exaggerate the magnitude of  
the association. When the disease is relatively rare, this “built-in” bias is negligible, as 
in the previous example from Table 3-3. When the incidence is high, however, as in the 
vaccine trial example (Table 3-4), the bias can be substantial.

An expression of  the mathematical relationship between the odds ratio on the one 
hand and the relative risk on the other can be derived as follows. Assume that q

1
 is the 

incidence (probability) in exposed (e.g., vaccinated) and q
2

 the incidence in unexposed 
individuals. The odds ratio is then

 OR =

a q+

1 - q+

b

a q-

1 - q-

b
=

q+

1 - q+

*
1 - q-

q-

=
q+

q-

* a1 - q-

1 - q+

b  (Eq. 3.3)

 Table 3-4 Incidence of local reactions in the vaccinated and placebo groups, influenza 
vaccination trial.

Group

Local reaction

Number Present Absent Probability Probability oddsdis

Vaccine 2570 650 1920 650/2570 5 0.2529 650/(2570 − 650)  
5 650/1920 5 0.3385

Placebo 2410 170 2240 170/2410 5 0.0705 170/(2410 − 170) 
5 170/2240 5 0.0759

Note: Based on data for individuals 40 years old or older in Seltser et al.3 To avoid rounding ambiguities in subsequent 
examples based on these data (Figure 3-4, Tables 3-7 and 3-9), the original sample sizes in Seltser et al.’s study (257 
vaccinees and 241 placebo recipients) were multiplied by 10.
Source: Data from R Seltser, PE Sartwell, and JA Bell, A Controlled Test of  Asian Influenza Vaccine in Population of  Families. 
American Journal of  Hygiene, Vol 75, pp. 112–135, © 1962.
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The term q
1

/q
2

 in Equation 3.3 is the relative risk. Thus, the term

 a1 - q-

1 - q+

b  

defines the bias responsible for the discrepancy between the relative risk and the odds 
ratio estimates (built-in bias). If  the association between the exposure and the outcome is 
positive, q

2
 , q

1
, thus (1 2 q

2
) . (1 2 q

1
). The bias term will therefore be greater than 1.0, 

leading to an overestimation of  the relative risk by the odds ratio. By analogy, if  the factor 
is related to a decrease in risk, the opposite occurs (i.e., [1 2 q

2
] , [1 2 q

1
]), and the odds 

ratio will again overestimate the strength of  the association (in this case, by being smaller 
than the relative risk in absolute value). In general, the odds ratio tends to yield an estimate 
further away from 1.0 than the relative risk on both sides of  the scale (above or below 1.0).

In the hypertension/myocardial infarction example (Table 3-3), the bias factor is of  
a small magnitude, and the odds ratio estimate, albeit a bit more distant from 1.0, still 
approximates the relative risk; using Equation 3.3:

 OR = RR * ;built-in bias< = 6.0 *
1 - 0.003
1 - 0.018

= 6.0 * 1.015 = 6.09

In the example of  local reactions to the influenza vaccine (Table 3-4), however, there 
is a considerable bias when using the odds ratio to estimate the relative risk:

 OR = 3.59 *
1 - 0.0705
1 - 0.2529

= 3.59 * 1.244 = 4.46 

Regardless of  whether the odds ratio can properly estimate the relative risk, it is, as 
mentioned previously, a bona fide measure of  association. Thus, a built-in bias can only 
be said to exist when the odds ratio is used as an estimate of  the relative risk. The odds 
ratio is especially valuable because it can be measured in case-control (case–noncase) 
studies and because it is directly derived from logistic regression models (see Chapter 7, 
Section 7.4.3). In addition, unlike the relative risk, the odds ratio of  an event is the exact 
reciprocal of  the odds ratio of  the nonevent. For example, in the study of  local reactions 
to the influenza vaccine discussed previously,3 the odds ratio of  a local reaction

 ORlocal reaction ( + ) =

650
1920
170

2240

= 4.46 

is the exact reciprocal of  the odds ratio of  not having a local reaction

 ORlocal reaction ( - ) =

1920
650

2240
170

= 0.224 =
1

4.46
 

This feature is not shared by the relative risk: using the same example

 RRlocal reaction ( + ) =

650
2570
170

2410

= 3.59 
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and

 RRlocal reaction ( - ) =

1920
2570
2240
2410

= 0.8 �
1

3.59
 

This seemingly paradoxical finding results from the sensitivity of  the relative risk to 
the absolute frequency of  the condition of  interest, with relative risks associated with 
very common endpoints approaching 1.0. This is easily appreciated when studying 
the complement of  rare outcomes. For example, if  the case fatality rates of  patients 
undergoing surgery using a standard surgical technique and a new technique were 
0.02 and 0.01, respectively, the relative risk for the relatively rare outcome “death” 
would be 0.02/0.01 5 2.0. The relative risk for survival (a common outcome), 
however, would be 0.98/0.99, which is virtually equal to 1.0, suggesting that the 
new surgical technique did not affect survival. On the other hand, the odds ratio of  
death would be

 ORdeath =

0.02
1.0 - 0.02

0.01
1.0 - 0.01

= 2.02 

and that of  survival would be

 ORsurvival =

0.98
1.0 - 0.98

0.99
1.0 - 0.99

= 0.495 =
1

2.02
 

3.2.2 Attributable Risk
The attributable risk is a measure of  association based on the absolute difference 
between two risk estimates. Thus, the attributable risk estimates the absolute excess 
risk associated with a given exposure. Because the attributable risk is often used to 
imply a cause–effect relationship, it should be interpreted as a true etiologic fraction 
only when there is reasonable certainty of  a causal connection between exposure and 
outcome.4,5 The term excess fraction has been suggested as an alternative term when 
causality has not been firmly established.4 Also, although the formulas and examples 
in this section generally refer to attributable “risks,” they are also applicable to  
attributable rates or densities; that is, if  incidence data based on person-time are 
used, an attributable rate among the exposed can be calculated in units of  rate per 
person-time.

As extensively discussed by Gordis,2 the attributable risk assumes the following 
different formats.

Attributable Risk in Exposed Individuals
The attributable risk in the exposed is merely the difference between the risk estimates 
of  different exposure levels and a reference exposure level; the latter is usually formed 
by the unexposed (or the lowest exposure level) category. Assuming a binary exposure 
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variable and letting risk in exposed equal q
1

 and risk in unexposed equal q
2

, the attrib-
utable risk in the exposed (ARexp) is simply

 ARexp = q+ - q-  (Eq. 3.4)

The attributable risk in the exposed measures the excess risk associated with a given 
exposure category. For example, based on the example in Table 3-3, the cumulative 
incidence of  myocardial infarction among the severely hypertensive individuals (q

1
) is 

0.018 (or 1.8%), and that for normotensives (reference or unexposed category) (q
2

) is 
0.003 (or 0.3%); thus, the excess risk associated with exposure to severe  hypertension is 
0.018 2 0.003 5 0.015 (or 1.5%). That is, assuming a causal association (and thus, no 
confounding or bias—see Chapters 4 and 5) and if  the excess incidence were completely 
reversible, the cessation of  the exposure (severe systolic hypertension) would lower the 
risk in the exposed group from 0.018 to 0.003. In Figure 3-1, the two bars represent the 
cumulative incidence in exposed and unexposed individuals; thus, the attributable risk 
in the exposed (Equation 3.4) is the difference in height between these bars. Because it 
is the difference between two incidence measures, the attributable risk in the exposed 
is also an absolute incidence magnitude and therefore is measured using the same 
units. The estimated attributable risk in the exposed of  1.5% in the previous example 
represents the absolute excess incidence that would be prevented by eliminating severe 
hypertension.

Because most exposure effects are cumulative, cessation of  exposure (even if  causally 
related to the disease) usually does not reduce the risk in exposed individuals to the level 
found in those who were never exposed. Thus, the maximum risk reduction is usually 
achieved only through prevention of  exposure rather than its cessation.

Percent Attributable Risk in Exposed Individuals
A percent attributable risk in the exposed (%ARexp) is merely the ARexp expressed as a 
percentage of  the q

1
 (i.e., the percentage of  the total q

1
 that can be attributed to the 

exposure). For a binary exposure variable, it is calculated as follows:

 %ARexp = a q+ - q-

q+

b * 100 (Eq. 3.5)

Figure 3-1 Attributable risk in the exposed.
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In the example shown in Table 3-3, the percent attributable risk in the exposed is

 %ARexp =
0.018 - 0.003

0.018
* 100 = 83.3% 

If  causality had been established, this measure can be interpreted as the percentage 
of  the total risk of  myocardial infarction among hypertensives that is attributable to 
hypertension. 

It may be useful to express Equation 3.5 in terms of  the relative risk:

 %ARexp = a q+ - q-

q+

b * 100 = a1 -
1

RR
b * 100 = aRR - 1.0

RR
b * 100 

Thus, in the previous example, using the relative risk (0.018/0.003 5 6.0) in this 
formula produces the same result as when applying Equation 3.5:

 %ARexp = a6.0 - 1.0
6.0

b * 100 = 83.3% 

The obvious advantage of  the formula

 %ARexp = aRR - 1.0
RR

b * 100 (Eq. 3.6)

is that it can be used in case-control studies, in which incidence data (i.e., q
1

 or q
2

) are 
unavailable, but the odds ratio can be used as an estimate of  the relative risk if  the disease 
is relatively rare (see Section 3.2.1).

The percent attributable risk in the exposed is analogous to percentage efficacy 
when assessing an intervention such as a vaccine. The usual formula for efficacy is 
equivalent to the formula for percent attributable risk in the exposed (Equation 3.5) 
when q

1
 is replaced by qcont (risk in the control group, e.g., the group receiving a 

placebo) and q
2

 is replaced by qinterv (risk in those undergoing intervention):

 Efficacy = a qcont - qinterv

qcont
b * 100 (Eq. 3.7)

For example, in a randomized trial to evaluate the efficacy of  a vaccine, the risks 
in persons receiving the vaccine and the placebo are 5% and 15%, respectively. Using 
Equation 3.7, efficacy is found to be 66.7%:

 Efficacy = a15% - 5%
15%

b * 100 = 66.7% 

Alternatively, Equation 3.6 can be used to estimate efficacy. In the previous example, 
the relative risk (placebo/vaccine) is 15% 4 5% 5 3.0. Thus,

 Efficacy = a3.0 - 1.0
3.0

b * 100 = 66.7% 

The use of  Equation 3.6 for the calculation of  efficacy requires that, when cal cu-
lat ing the relative risk, the group not receiving the intervention (e.g., placebo) be  
regarded as “exposed” and the group receiving the active intervention (e.g., vaccine) 
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be regarded as “unexposed.” A mathematically equivalent approach would consist of  
first obtaining the relative risk, but this time with the risk of  those receiving the active 
intervention (e.g., vaccine) in the numerator and those not receiving it in the denomi-
nator (e.g., placebo). In this case, efficacy is calculated as the complement of  the relative 
risk, that is, (1.0 2 RR) 3 100. In the previous example, using this approach, the vaccine 
efficacy would be

 Efficacy = c1.0 - a 5%
15%

b d * 100 = 66.7% 

As for percent attributable risk, the correspondence between the relative risk and the 
odds ratio in most practical situations allows the estimation of  efficacy in case-control 
studies using Equation 3.6.

Levin’s Population Attributable Risk
Levin’s population attributable risk estimates the proportion of  the disease risk in the 
total population associated with the exposure.6 For example, let the exposure prevalence 
in the target population (pe) be 0.40 (and, thus, prevalence of  nonexposure, [1 2 pe], be 
0.60), and the risks in exposed and unexposed be q

1
 5 0.20 and q

2
 5 0.15, respectively. 

Thus, the risk in the total population (qpop) is as follows:

 qpop = [q+ * pe] + [q- * (1 - pe)] (Eq. 3.8)

representing the weighted sum of  the risks in the exposed and unexposed individuals in 
the population. In the example

 qpop = (0.20 * 0.40) + (0.15 * 0.60) = 0.17 

The population attributable risk (Pop AR) is the difference between the risk in the 
total population and that in unexposed subjects:

 Pop     AR = qpop - q-  

Thus, in the example, the population attributable risk is 0.17 2 0.15 5 0.02. That is, if  
the relationship were causal and if  the effect of  the exposure were completely reversible, 
exposure cessation would be expected to result in a decrease in total population risk (qpop) 
from 0.17 to 0.15 (i.e., to the level of  risk of  the unexposed group).

The Pop AR is usually expressed as the percent population attributable risk (%Pop AR):

 %Pop AR =
(qpop - q-)

qpop
* 100 (Eq. 3.9)

In the previous example, the percent population attributable risk is (0.02/0.17) 3 
100, or approximately 12%.

As seen in Equation 3.8, the incidence in the total population is the sum of  the 
incidence in the exposed and that in the unexposed, weighted for the proportions of  
exposed and unexposed individuals in the population. Thus, when the exposure preva-
lence is low, the population incidence will be closer to the incidence among the unexposed 
(Figure 3-2A). On the other hand, if  the exposure is highly prevalent (Figure 3-2B), the 
population incidence will be closer to the incidence among the exposed. As a result, the 
population attributable risk approximates the attributable risk in exposed individuals 
when exposure prevalence is high.
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After simple arithmetical manipulation,* Equation 3.9 can be expressed as a function of  
the exposure prevalence in the population and the relative risk, as first described by Levin:6

 %Pop AR =
pe * (RR - 1)

pe * (RR - 1) + 1
* 100 (Eq. 3.10)

Using the same example of  a population with an exposure prevalence of  0.40 and 
a relative risk 5 0.20/0.15 5 1.33, Equation 3.10 yields the same percent population 
attributable risk estimated previously:

 %Pop AR =
0.40 * (1.33 - 1.0)

0.40 * (1.33 - 1.0) + 1.0
* 100 =

0.40 * 0.33
0.40 * 0.33 + 1.0

= 12%

*Using Equation 3.8, Equation 3.9 can be rewritten as a function of  the prevalence of  exposure (pe) and the 
incidence in exposed (q

1
) individuals as follows

 %Pop AR =
[q+ * pe] + [q- * (1 - pe)] - q-

[q+ * pe] + [q- * (1 - pe)]
* 100

 =
[q+ * pe] - [q- * pe]

[q+ * pe] - [q- * pe] + q-

* 100

This expression can be further simplified by dividing all the terms in numerator and denominator by q
2

 %Pop AR =

q+

q-

* pe - pe

q+

q-

* pe - pe + 1
* 100 =

pe * a q+

q-

- 1b

pe * a q+

q-

- 1b + 1

* 100

 =
pe * (RR - 1)

pe * (RR - 1) + 1
* 100

Figure 3-2 Population attributable risk and its dependence on the population prevalence of the exposure. 
As the population is composed of exposed and unexposed individuals, the incidence in the population is 
similar to the incidence in the unexposed when the exposure is rare (A) and is closer to that in the exposed 
when the exposure is common (B). Thus, for a fixed relative risk (eg, RR  2 in the figure) the population 
attributable risk is heavily dependent on the prevalence of exposure. 
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For a method of  calculating the confidence limits of  the population attributable risk, 
see Appendix A, Section A.5.

Levin’s formula underscores the importance of  the two critical elements contributing 
to the magnitude of  the population attributable risk: the relative risk and the prevalence 
of  exposure. The dependence of  the population attributable risk on the exposure preva-
lence is further illustrated in Figure 3-3, which shows that for all values of  the relative risk, 
the population attributable risk increases markedly as the exposure prevalence increases. 

The application of  Levin’s formula in case-control studies requires using the odds 
ratio as an estimate of  the relative risk and obtaining an estimate of  exposure prevalence 
in the reference population, as discussed in more detail in Section 3.4.2.

All of  the preceding discussion relates to a binary exposure variable (i.e., exposed vs 
unexposed). When the exposure has more than two categories, an extension of  Levin’s 
formula has been derived by Walter.7

 %Pop AR =
pi * (RRi - 1)

1 + a
k

i = 0
pi * (RRi - 1)

* 100 

The subscript i denotes each exposure level; pi is the proportion of  the study population 
in the exposure level i, and “RRi” is the relative risk for the exposure level i compared 
with the unexposed (reference) level.

It is important to emphasize that both Levin’s formula and Walter’s extension for 
multilevel exposures assume that there is no confounding (see Chapter 5). If  confounding 
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Figure 3-3 Population attributable risk: dependence on prevalence of exposure and relative risk.
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is present, it is not appropriate to calculate the adjusted relative risk (using any of  the 
approaches described in Chapter 7) and plug it into Levin’s or Walter’s formulas in 
order to obtain an “adjusted” population attributable risk.8 Detailed discussions on the 
estimation of  the population attributable risk in the presence of  confounding can be 
found elsewhere.7,9

3.3 CROSS-SECTIONAL STUDIES: POINT 
PREVALENCE RATE RATIO

When cross-sectional data are available, often associations are assessed using the 
point prevalence rate ratio. The ability of  the point prevalence ratio to estimate the relative 
risk is a function of  the relationship between incidence and point prevalence, as discussed 
previously in Chapter 2 (Section 2.3, Equation 2.4):

Point prevalence 5 Incidence 3 Duration 3 (1 2 Point prevalence)

Using the notations “Prev” for point prevalence, “q” for incidence, and “Dur” for 
duration and denoting presence or absence of  a given exposure by “1” or “2,” the point 
prevalence rate ratio (PRR) can be formulated as follows:

 PRR =
Prev+

Prev-

=
q+ * Dur+ * [1.0 - Prev+]
q- * Dur- * [1.0 - Prev-]

 

Because one of  the components of  this formula (q
1

/q
2

) is the relative risk, this 
equation can be written as

 PRR = RR * aDur+

Dur-

b * a1 - Prev+

1 - Prev-

b  (Eq. 3.11)

Thus, if  the point prevalence rate ratio is used to estimate the relative risk (e.g., in a 
cross-sectional study), two types of  potential bias will differentiate these two measures: 
the ratio of  the disease durations (Dur

1
/Dur

2 ), and the ratio of  the complements of  
the point prevalence estimates in the exposed and unexposed groups:

(1 - Prev+)
(1 - Prev-)

Chapter 4 (Section 4.4.2) provides a discussion and examples of  these biases.

3.4  MEASURING ASSOCIATIONS IN CASE-CONTROL STUDIES

3.4.1  Odds Ratio
One of  the major advances in risk estimation in epidemiology occurred in 1951 when 
Cornfield pointed out that the odds ratio of  disease and the odds ratio of  exposure are mathe-
matically equivalent.10 This is a simple concept, yet with important implications for the 
epidemiologist, as it is the basis for estimating the odds ratio of  disease in case-control 
studies.

As seen previously in Equation 3.2, the ratio of  the odds of  disease development in 
exposed and unexposed individuals results in the cross-product ratio, (a 3 d)/(b 3 c). 
Using the hypothetical prospective data shown in Table 3-3, now reorganized as shown 
in Table 3-5, and assuming that the cells in the table represent the distribution of  cohort 
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participants during a 1-year follow-up, it is possible to carry out a case-control analysis 
comparing the 210 individuals who developed a myocardial infarction (cases) with 
the 19,790 individuals who remained free of  clinical coronary heart disease during 
the follow-up (controls). The absolute odds of  exposure (Oddsexp) among cases and the 
analogous odds of  exposure among controls are estimated as the ratio of  the proportion 
of  individuals exposed to the proportion of  individuals unexposed:

 Oddsexp cases =

a
a + c

1 - a a
a + c

b
=

a
c

 

 Oddsexp controls =

b
b + d

1 - a b
b + d

b
=

b
d

 

The following derivation demonstrates that the odds ratio of  exposure (ORexp) is 
identical to the odds ratio of  disease (ORdis), i.e., the ratio of  odds of  disease in exposed 
(a/b) to that in unexposed (c/d):

 ORexp =

a
c

b
d

=
a * d
b * c

=

a
b
c
d

= ORdis (Eq. 3.12)

For the example shown in Table 3-5, the odds ratio of  exposure is

 ORexp =

180
30

9820
9970

=
180 * 9970
9820 * 30

= 6.09 = ORdis

In this example based on prospective data, all cases and noncases (controls) have 
been used for the estimation of  the odds ratio; however, case-control studies are typically 
based on samples. If  the total number of  cases is small, as in the example shown in 
Table 3-5, the investigator may attempt to include all cases and a sample of  controls. 
For example, if  100% of  cases and a sample of  approximately 10% of  the noncases were 

Table 3-5 Hypothetical case-control study of myocardial infarction in relation to systolic 
hypertension, based on a 1-year complete follow-up of the study population from Table 3-3.

Systolic blood pressure status*

Myocardial infarction

Present Absent

Severe hypertension 180 (a) 9820 (b)

Normal 30 (c) 9970 (d )

Total 210 (a 1 c) 19,790 (b 1 d)

*Severe systolic hypertension  180 mm Hg, and normal systolic blood pressure < 120 mm Hg.



92 CHAPTER 3 | Measuring Associations Between Exposures and Outcomes

studied (Table 3-6), assuming no random variability, results would be identical to those 
obtained when including all noncases, as in Table 3-5:

 ORexp =

180
30

982
997

=
180 * 997
982 * 30

= 6.09 = ORdis 

This example underscores the notion that the sampling fractions do not have to be 
the same in cases and controls. To obtain unbiased estimates of  the absolute odds of  
exposure for cases and controls, however, sampling fractions must be independent of  
exposure: that is, they should apply equally to cells (a) and (c) for cases and cells (b) and 
(d) for controls. (Chapter 4, Section 4.2, presents a more detailed discussion of  the 
validity implications for the OR estimate resulting from differential sampling fractions 
according to case and exposure status.)

In the example of  local reactions to vaccination (Table 3-4), a case-control study could 
have been carried out including, for example, 80% of  the cases that had local reactions 
and 50% of  the controls. Assuming no random variability, data would be obtained as 
outlined in Figure 3-4 and shown in Table 3-7. If  the sampling fractions apply equally to 
exposed (vaccinated) and unexposed (unvaccinated) cases and controls, the results are 
again identical to those seen in the total population, in which the (true) odds ratio is 4.46:

 ORexp =

520
136
960

1120

= 4.46 = ORdis 

The fact that the odds ratio of  exposure is identical to the odds ratio of  disease permits 
a “prospective” interpretation of  the odds ratio in case-control studies (i.e., as a disease 
odds ratio—which, in turn, is an approximation of  the relative risk, as discussed later 
in this chapter). Thus, in the previous example based on a case-control strategy (and 
assuming that the study is unbiased and free of  confounding), the interpretation of  
results is that for individuals who received the vaccine, the odds of  developing local 
reactions is 4.46 times greater than the odds for those who received the placebo.

The use of  the ratio of  the odds of  exposure for cases to that for controls,

 ORexp =
Oddsexp cases

Oddsexp controls
 

Table 3-6 Case-control study of the relationship of myocardial infarction to presence of 
severe systolic hypertension including all cases and a 10% sample of noncases from Table 3-5.

Systolic blood pressure status*

Myocardial infarction

Present Absent

Severe hypertension 180 (a) 982 (b)

Normal 30 (c) 997 (d )

Total 210 (a 1 c) 1979 (b 1 d)

*Severe systolic hypertension  180 mm Hg, and normal systolic blood pressure < 120 mm Hg.
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is strongly recommended for the calculation of  the odds ratio of  exposure, rather 
than the cross-products ratio, so as to avoid confusion over different arrangements 
of  the table, as, for example, when placing control data on the left and case data on 
the right:

Exposure Controls Cases
 Yes “a” “b”
 No “c” “d”

In this example, the mechanical application of  the cross-product ratio, (a 3 d )/c 3 d), 
would result in an incorrect estimate of  the odds ratio—actually, the exact inverse of  the 

Source: Data from R Seltser, PE Sartwell, and JA Bell, A Controlled Test of  Asian Influenza Vaccine in a Population of  Families, 
American Journal of  Hygiene, Vol 75, pp. 112–135, © 1962.

Table 3-7 Case-control study of the relationship between occurrence of local reaction and 
previous influenza immunization.

Vaccination Cases of  local reaction Controls without local reaction

Yes 520 960

No 136 1120

Total 820 3 0.8 5 656 4160 3 0.5 5 2080

Note: Based on a perfectly representative sample of  80% of  the cases and 50% of  the controls from the study population 
shown in Table 3-4 (see Figure 3-4).
Source: Data from R Seltser, PE Sartwell, and JA Bell, A Controlled Test of  Asian Influenza Vaccine in a Population of  
Families. American Journal of  Hygiene, Vol 75, pp. 112–135, © 1962.

Figure 3-4 Selection of 80% of total cases and 50% of noncases in a case-control study from 
the study population shown in Table 3-4. Expected composition assumes no random variability.

2240 × 0.5 = 1120
1920 × 0.5 = 960Vaccinated:

Placebo:

Investigator selects samples of 80% of cases
50% of noncases

Expected composition of these samples if the
distribution of vaccinated/placebo is unbiased

Total cases:
820 × 0.8 = 656 4160 × 0.5 = 2080

Cases:

170 × 0.8 = 136
650 × 0.8 = 520Vaccinated:

Placebo:

Noncases:

Total noncases:
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true relative odds. On the other hand, making sure that one divides the exposure odds in 
cases (b/d ) by that in controls (a/c) results in the correct odds ratio. 

Odds Ratio in Matched Case-Control Studies
In a matched paired case-control study in which the ratio of  controls to cases is 1:1, an 
unbiased estimate of  the odds ratio is obtained by dividing the number of  pairs in which 
the case, but not the matched control, is exposed (case [1], control [2]), by the number 
of  pairs in which the control, but not the case, is exposed (case [2], control [1]). The 
underlying logic for this calculation and an example of  this approach are discussed in 
Chapter 7, Section 7.3.3.

Odds Ratio as an Estimate of the Relative Risk in Case-Control Studies:  
The Rarity Assumption
In a case-control study, the use of  the odds ratio to estimate the relative risk is based 
on the assumption that the disease under study has a low incidence, thus resulting in 
a small built-in bias (Equation 3.3). As a corollary to the discussion in Section 3.2.1, 
it follows that when the disease that defines case status in a case-control study is suffi-
ciently rare, the estimated odds ratio will likely be a good approximation to the relative 
risk. On the other hand, when studying relatively common conditions, the built-in bias 
might be large, and case-control studies may yield odds ratios that substantially overes-
timate the strength of  the association vis-à-vis the relative risk. Based on Equation 3.3, 
the following expression of  the relative risk value as a function of  the odds ratio can be 
derived:

 RR =
OR

1 - [q- - (OR * q-)]
 (Eq. 3.13)

It is evident from this equation that the relationship between the relative risk and odds 
ratio depends on the incidence of  the outcome of  interest (specifically q

2
, i.e., the incidence 

in the unexposed, in this particular formulation). As a corollary of  this, Equation 3.13 
also implies that, in order to estimate the actual value of  the relative risk from an odds 
ratio obtained in a case-control study, an estimate of  incidence obtained from prospective 
data will be necessary. This could be available from outside sources (e.g., published data 
from another cohort study judged to be comparable to the source population for the 
study in question); if  the study is nested within a cohort, incidence data may be available 
from the parent cohort from which the case and comparison groups were drawn (see 
examples later in this chapter). Table 3-8 illustrates examples of  this relationship for a 
range of  incidence and odds ratio values. For outcomes with incidence in the range of  
less than 1% or 1 per 1000 (e.g., the majority of  chronic or infectious diseases), the value 
of  the relative risk is very close to that of  the odds ratio. Even for fairly common outcomes 
with frequency ranging between 1% and 5%, the values of  the relative risk and odds 
ratio are reasonably similar.

Table 3-8, however, shows that when the condition of  interest (that defining case 
status) is more common (e.g., incidence > 10% to 20%), the numerical value of  the 
odds ratio obtained in a case-control study will be substantially different than that of  
the relative risk. This is not a limitation of  the case-control design per se, but rather, 
it is a result of  the mathematical relation between the odds ratio and the relative risk, 
irrespective of  study design. Nevertheless, this should be kept in mind when interpreting 
odds ratio values in studies of  highly frequent conditions such as, for example, 5-year 
mortality among lung cancer cases or smoking relapse in a smoking cessation study. 
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Additional examples of  case-control studies assessing relatively common events in situa-
tions in which incidence data were also available are as follows:

•	 In a nested case-control study of  predictors of  surgical site infections after 
breast cancer surgery, 76 cases of  infection were compared with 154 controls 
(no infection) with regard to obesity and other variables.11 Data were available on 
the incidence of  infection in the nonobese group (q

2
), which was estimated to be 

approximately 30%. The study reported that the odds ratio of  infection associated 
with obesity was 2.5. Thus, using Equation 3.13, the corresponding relative risk of  
infection comparing obese and nonobese can be estimated as 1.72.

•	 A case-control study investigated the relationship between genetic changes and 
prostate cancer progression.12 Cases were individuals with a biochemical marker 
of  cancer progression (prostate-specific agent, PSA > 0.4 ng/mL, n 5 26) and were 
compared with 26 controls without biochemical progression. Loss of  heterozy-
gosity (LOH) was associated with an odds ratio of  5.54. Based on data from the 
study report, the approximate incidence of  progression among the non-LOH group 
was 60%; as a result, it is estimated that the 5.54 odds ratio obtained in the study 
corresponds to a relative risk of  approximately 1.5.

•	 In a case-control study conducted among nondiabetic and otherwise healthy 
obese adults,13 the odds ratio of  hypertension comparing male subjects 
whose waist circumference was  102 cm to those with waist circumference  
< 94 cm was 3.04. Assuming that the overall prevalence of  hypertension among 
obese adults in the US is around 40%,14 that odds ratio translates into a relative risk 
of  approximately 1.7.

As in prospective studies (see Section 3.2.1), the rare-disease assumption applies only 
to situations in which the odds ratio is used to estimate the relative risk. When the odds ratio 
is used as a measure of  association in itself, this assumption is obviously not needed. 
In the previous examples, there is nothing intrinsically incorrect about the odds ratio 
estimates; assuming no bias or random error, LOH is indeed associated with an odds ratio 

Table 3-8 Relative risk equivalency to a given odds ratio as a function of the incidence of the 
condition that defined case status in a case-control study.

Incidence in the 
unexposed population

Odds ratio 
5 0.5

Odds ratio 
5 1.5

Odds ratio 
5 2.0

Odds ratio 
5 3.0

Relative risk equivalent

0.001 0.50 1.50 2.00 2.99

0.01 0.50 1.49 1.98 2.94

0.05 0.51 1.46 1.90 2.73

0.1 0.53 1.43 1.82 2.50

0.2 0.56 1.36 1.67 2.14

0.3 0.59 1.30 1.54 1.88

0.4 0.63 1.25 1.43 1.67*

*Example of  calculation: if  OR 5 3 and q
2

 5 0.4, and using Equation 3.13, the relative risk is: 

RR =
3

1 - (0.4 - 3 * 0.4)
= 1.67
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of  biochemical prostate cancer progression of  5.54. Although it would be a mistake to 
interpret this estimate as a relative risk, it is perfectly correct to conclude that, compared 
with non-LOH, LOH multiplies the odds of  biochemical progression by 5.54; this is as 
accurate as concluding the LOH multiplies the risk (incidence) of  biochemical progression 
by 1.5. 

When the Rarity Assumption Is Not Necessary: Selecting Population Controls
The rare-disease assumption is irrelevant in situations in which the control group is 
a sample of  the total population,15 which is the usual strategy in case-control studies 
within a defined cohort (Chapter 1, Section 1.4.2). In this situation, the odds ratio 
is a direct estimate of  the relative risk, irrespective of  the frequency of  the outcome of  
interest.

The irrelevance of  the rare-disease assumption when the control group is a sample 
of  the total reference population can be demonstrated by comparing the calculation of  
the odds ratio using different types of  control groups. Referring to the cross-tabulation, 
including all cases and all noncases in a defined population shown in Table 3-9, when 
noncases are used as the control group, as seen previously (Equation 3.12), the odds 
ratio of  exposure is used to estimate the odds ratio of  disease by dividing the odds of  
exposure in cases by that in controls:

 ORexp =
Oddsexp cases

Oddsexp noncases
=

a
c

b
d

= ORdis 

Another option is to use as a control group the total study population at baseline 
(last column in Table 3-9), rather than only the noncases. If  this is done in the context 
of  a cohort study, the case-control study is usually called a case-cohort study (Chapter 1, 
Section 1.4.2), and the division of  the odds of  exposure in cases by that in controls  
(i.e., the total population) yields the relative risk:

 ORexp =
Oddsexp cases

Oddsexp total population
=

a a
c
b

a a + b
c + d

b
=

a a
a + b

b

a c
c + d

b
= RR (Eq. 3.14)

Using again the local reaction/influenza vaccination investigation as an example 
(Table 3-4), a case-cohort study could be conducted using all cases and the total study 
population as the control group. The ratio of  the exposure odds in cases (Oddsexp cases) to 
the exposure odds in the total study population (Oddsexp pop) yields the relative risk:

Table 3-9 Cross-tabulation of a defined population by exposure and disease development.

Exposure Cases Noncases
Total population 

(cases 1 noncases)

Present a b a 1 b

Absent c d c 1 d
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 ORexp =
Oddsexp cases

Oddsexp pop
=

a650
170

b

a2570
2410

b
=

a 650
2570

b

a 170
2410

b
=

q+

q-

= 3.59 = RR

where q
1

 is the incidence in exposed and q
2

 the incidence in unexposed individuals.
In the estimation of  the relative risk in the previous example, all cases and the total 

study population were included. Because unbiased sample estimates of  Oddsexp cases 
and Oddsexp pop provide an unbiased estimate of  the relative risk, a sample of  cases 
and a sample of  the total study population can be compared in a case-cohort study. 
For example, assuming no random variability, unbiased samples of  40% of  the cases 
and 20% of  the total population would produce the results shown in Table 3-10; the 
product of  the division of  the odds of  exposure in the sample of  cases by that in the study 
population sample can be shown to be identical to the relative risk obtained prospectively 
for the total cohort, as follows:

 ORexp =

260
68

514
482

= 3.59 = RR 

Again, more commonly, because the number of  cases is usually small relative to the 
study population size, case-cohort studies try to include all cases and a sample of  the 
reference population.

One of  the advantages of  the case-cohort approach is that it allows direct estimation 
of  the relative risk and thus does not have to rely on the rarity assumption. Another 
advantage is that because the control group is a sample of  the total reference population, 
an unbiased estimate of  the exposure prevalence (or distribution) needed for the 
estimation of  Levin’s population attributable risk (Equation 3.10) can be obtained. A 
control group formed by an unbiased sample of  the cohort also allows the assessment of  
relationships between different exposures or even between exposures and outcomes other 
than the outcome of  interest in the cohort sample. To these analytical advantages can be 
added the practical advantage of  the case-cohort design discussed in Chapter 1, Section 
1.4.2, namely, the efficiency of  selecting a single control group that can be compared 
with different types of  cases identified on follow-up (e.g., myocardial infarction, stroke, 
and low-extremity arterial disease).

Table 3-10 Case-cohort study of the relationship of previous vaccination to local reaction.

Previous vaccination Cases of  local reaction Cohort sample

Yes 260 514

No 68 482

Total 328 996

Note: Based on a random sample of  the study population in Table 3-4, with sampling fractions of  40% for the cases and 
20% for the cohort.
Source: Data from R Seltser, PE Sartwell, and JA Bell, A Controlled Test of  Asian Influenza Vaccine in a Population of  
Families. American Journal of  Hygiene, Vol 75, pp. 112–135, © 1962.
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In addition to these advantages connected with the choice of  a sample of  the cohort 
as the control group, there are other reasons why the traditional approach of  selecting 
noncases as controls may not always be the best option. There are occasions when 
excluding cases from the control group is logistically difficult and can add costs and 
burden participants. For example, in diseases with a high proportion of  a subclinical 
phase (e.g., chronic cholecystitis, prostate cancer), excluding cases from the pool of  
eligible controls (e.g., apparently healthy individuals) would require conducting more or 
less invasive and expensive examinations (e.g., contrasted X-rays, biopsy). Thus, in these 
instances, a case-cohort approach will be more convenient: i.e., selecting “controls” 
from the reference population irrespective of  (i.e., ignoring) the possible presence of  the 
disease (clinical or subclinical).

It is appropriate to conduct a case-cohort study only when a defined population (study 
base) from which the study cases originated can be identified, as when dealing with 
a defined cohort in the context of  a prospective study. On the other hand, conducting 
case-cohort studies when dealing with “open” cohorts or populations at large requires 
assuming that these represented the source populations from which the cases originated 
(see Chapter 1, Section 1.4.2).

It should also be emphasized that when the disease is rare, the strategy of  ignoring 
disease status when selecting controls would most likely result in few, if  any, cases 
being actually included in the control group; thus, in practice, Equation 3.14 will be 
almost identical to Equation 3.12 because (a 1 b) ≈ b and (c 1 d ) ≈ d. For example, in 
the myocardial infarction/hypertension example shown in Table 3-3, the “case-cohort” 
strategy selecting, for example, a 50% sample of  cases and a 10% sample of  total cohort 
as controls, would result in the following estimate of  the odds ratio:

 ORexp =
Oddsexp cases

Oddsexp pop
=

90
15

1000
1000

= 6.00 = RR 

In this same example, a case–noncase strategy would result in the following estimate:

 ORexp =
Oddsexp cases

Oddsexp noncases
=

90
15

982
997

= 6.09 = ORdis 

That is, a situation analogous to that discussed in Section 3.2.1 with regard to the 
similarity of  the odds ratio and the relative risk when the disease is rare.

Influence of the Sampling Frame for Control Selection on the Parameter Estimated by the 
Odds Ratio of Exposure: Cumulative Incidence Vs Density Sampling
In addition to considering whether controls are selected from either noncases or the 
total study population, it is important to specify further the sampling frame for control 
selection. As discussed in Chapter 1 (Section 1.4.2), when controls are selected from a 
defined total cohort, sampling frames may consist of  either (1) individuals at risk when 
cases occur during the follow-up period (density or risk-set sampling) or (2) the baseline 
cohort. The first alternative has been designated nested case-control design and the latter 
(exemplified by the “local reaction/influenza vaccination” analysis discussed previously) 
case-cohort design.16 As demonstrated next, the nested case-control study and case-cohort 
designs allow the estimation of  the rate ratio and the relative risk, respectively. An intuitive 
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way to conceptualize which of  these two parameters is being estimated by the odds ratio 
of  exposure (i.e., rate ratio or relative risk) is to think of  cases as the “numerator” and 
controls as the “denominator” of  the absolute measure of  disease frequency to which the 
parameter relates (see Chapter 2).

Density Sampling: The Nested Case-Control Design. As described previously (Section 1.4.2), 
the nested case-control design is based on incidence density sampling (also known as risk-set 
sampling). It consists of  selecting a control group that represents the sum of  the subsamples 
of  the cohort selected during the follow-up at the approximate times when cases occur (risk 
sets) (Figure 1-20). These controls can also be regarded as a population sample “averaged” 
over all points in time when the events happen (see Chapter 2, Section 2.2.2) and could 
potentially include the case that defined the risk set, or cases that develop in a given risk set 
after its selection. Therefore, the odds ratio of  exposure thus obtained represents an estimate 
of  the rate or density ratio (or relative rate or relative density). This strategy explicitly recog-
nizes that there are losses (censored observations) during the follow-up of  the cohort, in 
that cases and controls are chosen from the same reference populations excluding previous 
losses, thus matching cases and controls on duration of  follow-up. When cases are excluded 
from the sampling frame of  controls for each corresponding risk set, the odds ratio of  
exposure estimates the density odds ratio.

Selecting Controls From the Cohort at Baseline: The Case-Cohort Design. In the case-cohort 
design (also described in Chapter 1, Section 1.4.2), the case group is composed of  cases 
identified during the follow-up period, and the control group is a sample of  the total cohort 
at baseline (Figure 1-21). The cases and the sampling frame for controls can be regarded, 
respectively, as the type of  numerator and denominator that would have been selected to 
calculate a probability of  the event based on the initial population, q. Thus, when these 
controls are selected, the odds ratio of  exposure yields a ratio of  the probability of  the 
outcome in exposed (q

1
) to that in unexposed (q

2
) individuals (i.e., the cumulative incidence 

ratio or relative risk) (Equation 3.14). Because the distribution of  follow-up times in the 
sample of  the initial cohort—which by definition includes those not lost as well as those 
subsequently lost to observation during follow-up—will be different from that of  cases 
(whose “risk sets” by definition exclude previous losses), it is necessary to use survival 
analysis techniques to correct for losses that occur during the follow-up in a case-cohort 
study (see Section 2.2.1).

It is also possible to exclude cases from the control group when sampling the cohort at 
baseline: that is, the sampling frame for controls would be formed by individuals who have 
remained disease-free through the duration of  the follow-up. These are the persons who 
would have been selected as the denominator of  the odds based on the initial population:

a q
1 - q

b

Thus, the calculation of  the odds ratio of  exposure when carrying out this strategy 
yields an estimate of  the odds ratio of  disease (i.e., the ratio of  the odds of  developing the 
disease during the follow-up in individuals exposed and unexposed at baseline).

A summary of  the effect of  the specific sampling frame for control selection on the 
parameter estimated by the odds ratio of  exposure is shown in Table 3-11.

Calculation of the Odds Ratio When There Are More Than Two Exposure Categories
Although the examples given so far in this chapter have referred to only two exposure 
categories, often more than two levels of  exposure are assessed. Among the advantages 
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of  studying multiple exposure categories is the assessment of  different exposure dimen-
sions (e.g., “past” vs “current”) and of  graded (“dose-response”) patterns.

In the example shown in Table 3-12, children with craniosynostosis undergoing 
craniectomy were compared with normal children in regard to maternal age.17 To 
calculate the odds ratio for the different maternal age categories, the youngest maternal 
age was chosen as the reference category. Next, for cases and controls separately, the 
odds for each maternal age category (vis-à-vis the reference category) were calculated 
(columns 4 and 5). The odds ratio is calculated as the ratio of  the odds of  each maternal 
age category in cases to the odds in controls (column 6). In this study, a graded and 
positive (direct) relationship was observed between maternal age and the odds of  cranio-
synostosis. Note that the odds ratio for each category can also be calculated as the odds 
of  “caseness” for a given category divided by the odds of  “caseness” for the reference 
category. For example in Table 3-12, the odds ratio for the age category 25–29 would be 
(56/255)/(12/89) 5 1.63, i.e., the same as in Table 3-12.

When the multilevel exposure variable is ordinal (e.g., age categories in Table 3-12), it 
may be of  interest to perform a trend test (see Appendix B).

Table 3-11 Summary of the influence of control selection on the parameter estimated by the 
odds ratio of exposure in case-control studies within a defined cohort.

Design 
Population frame for 

control selection 
Exposure odds ratio 

estimates

Nested case-control Population at approximate 
times when cases occur during 
follow-up 

Rate (density) ratio

(Population during follow-up 
minus cases)

(Density odds ratio)

Case-cohort Total cohort at baseline Cumulative incidence ratio 
(relative risk)

(Total cohort at baseline minus 
cases that develop during 
follow-up) 

(Probability odds ratio)

Table 3-12 Distribution of cases of craniosynostosis and normal controls according to 
maternal age.

Maternal 
age (years)

(1)
Cases  

(2)
Controls  

(3)

Odds of  specified 
maternal age vs 

reference in cases  
(4)

Odds of  specified 
maternal age vs 

reference in controls 
(5)

Odds ratio 
(6) 5 (4)/(5)

< 20* 12 89 12/12 89/89 1.00*

20–24 47 242 47/12 242/89 1.44

25–29 56 255 56/12 255/89 1.63

> 29 58 173 58/12 173/89 2.49

*Reference category.
Source: Data from BW Alderman et al., An Epidemiologic Study of  Craniosynostosis: Risk Indicators for the Occurrence of  
Craniosynostosis in Colorado. American Journal of  Epidemiology, Vol 128, pp. 431–438, © 1988.
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3.4.2 Attributable Risk in Case-Control Studies
As noted previously (Section 3.2.2), percent attributable risk in the exposed can be obtained 
in traditional case-control (case–noncase) studies when the odds ratio is a reasonable 
estimate of  the relative risk by replacing its corresponding value in Equation 3.6:

 %ARexp = aOR - 1.0
OR

b * 100 (Eq. 3.15)

In studies dealing with preventive interventions, the analogous measure is efficacy 
(see Section 3.2.2, Equation 3.7). The fact that the odds ratio is usually a good estimate 
of  the relative risk makes it possible to use Equation 3.15 in case-control studies of  the 
efficacy of  an intervention such as screening.18

The same reasoning applies to the use of  case-control studies to estimate the 
population attributable risk using a variation of  Levin’s formula:

 %Pop AR =
p*e * (OR - 1)

p*e * (OR - 1) + 1
* 100 (Eq. 3.16)

In Equation 3.16, the proportion of  exposed subjects in the reference population  
(pe in Equation 3.10) is represented as pe

* because in the context of  a case-control study 
this is often estimated by the exposure prevalence among controls. Such an assumption 
is appropriate as long as the disease is rare and the control group is reasonably repre-
sentative of  all noncases in the reference population. Obviously, if  a case-cohort study is 
conducted, the rarity assumption is not needed (Section 3.4.1), as both the relative risk 
and the exposure prevalence can be directly estimated.

As shown by Levin and Bertell,19 if  the odds ratio is used as the relative risk estimate, 
Equation 3.16 reduces to a simpler equation:

 %Pop AR =
pe case - pe control

1.0 - pe control
* 100 

where pe case represents the prevalence of  exposure among cases—that is, a/(a 1 c) in 
Table 3-9—and pe control represents the prevalence of  exposure among controls—that is, 
b/(b 1 d ) in Table 3-9.

3.5 ASSESSING THE STRENGTH OF ASSOCIATIONS

The values of  the measures of  association discussed in this chapter are often used to 
rank the relative importance of  risk factors. However, because risk factors vary in terms 
of  their physiological modus operandi as well as their exposure levels and units, such 
comparisons are often unwarranted. Consider, for example, the absurdity of  saying that 
systolic blood pressure is a more important risk factor for myocardial infarction than total 
cholesterol, based on comparing the odds ratio associated with a 50-mm/Hg increase 
in systolic blood pressure with that associated with a 1-mg/dL increase in total serum 
cholesterol. In addition, regardless of  the size of  the units used, it is hard to compare 
association strengths, given the unique nature of  each risk factor.

An alternative way to assess the strength of  the association of  a given risk factor with 
an outcome is to estimate the exposure intensity necessary for that factor to produce an 
association of  the same magnitude as that of  well-established risk factors or vice-versa. 
For example, Tverdal et al.20 evaluated the level of  exposure of  four well-known risk 
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factors for coronary heart disease mortality necessary to replicate the relative risk of  
2.2 associated with a coffee intake of  nine or more cups per day. As seen in Exhibit 3-1, 
a relative risk of  2.2 corresponds to smoking about 4.3 cigarettes per day or having an 
increase in systolic blood pressure of  about 6.9 mm Hg, and so on.

Another example comes from a study by Howard et al.,21 who evaluated the cross-
sectional association between passive smoking and subclinical atherosclerosis measured 
by B-mode ultrasound-determined intimal-medial thickness of  the carotid artery walls. 
Because passive smoking had not been studied previously in connection with directly 
visualized atherosclerosis, its importance as a risk factor was contrasted with that of  
a known atherosclerosis determinant, age (Exhibit 3-2). As seen in the exhibit, the 
cross-sectional association between passive smoking and atherosclerosis is equivalent 
to an age difference of  1 year. That is, assuming that the cross-sectional association 
adequately represents the prospective relationship between age and atherosclerosis and 
that the data are valid, precise, and free of  confounding, the average thickness of  the 
carotid arteries of  passive smokers looks like that of  never smokers who are 1 year older. 
This inference was extended by Kawachi and Colditz,22 who, on the basis of  data from 
Howard et al.’s study, estimated that the change in intimal-medial thickness related to 
passive smoking would result in an increase in the risk of  clinical cardiovascular events 
equivalent to an increment of  7 mm/Hg of  systolic blood pressure, or 0.7 mmol/L of  
total cholesterol—thus, not negligible.

Passive smoking status in 
never-active smokers

Absent Present Estimated increase by

Mean IMT (mm) →
(n = 1,774)

0.700

(n = 3,358)

0.711

year of age

0.011

Age-equivalent excess attributable to passive smoking: 
(0.711 –   0.700)/0.011 5 1 year

Source: Data from G Howard et al., Active and Passive Smoking are Associated with Increased Carotid Wall Thickness. 
The Atherosclerosis Risk in Communities Study. Archives of  Internal Medicine, Vol. 154, pp. 1277–1282, © 1994.

exhibiT 3–2 Cross-sectionally determined mean intimal-medial thickness (IMT) of the carotid 
arteries (mm) by passive smoking status in never active smokers, the Atherosclerosis Risk in 
Communities Study, 1987–1989.

A relative risk of  2.2 for coronary heart disease mortality comparing men drinking 91 or more cups of  
coffee per day vs < one cup per day corresponds to:

Smoking:     4.3 cigarettes/day
Systolic blood pressure:     6.9 mm/Hg
Total serum cholesterol:     0.47 mmol/L
Serum high-density lipoprotein: −0.24 mmol/L

Source: Data from A Tverdal et al., Coffee Consumption and Death From Coronary Heart Disease in Middle-Aged 
Norwegian Men and Women. British Medical Journal, Vol 300, pp. 566–569, © 1990.

exhibiT 3-1 A possible way to describe the strength of an association between a risk factor 
and an outcome.
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Using a somewhat similar approach, Sharrett et al. examined low-density choles-
terol (LDL) equivalents when comparing the roles of  diabetes and smoking in athero-
sclerosis progression in participants of  the Multi-Ethnic Study of  Atherosclerosis.23 
Because lipids are a necessary component of  atherosclerosis, these authors defined 
LDL equivalent as the concentration of  LDL necessary to replicate the magnitudes 
of  the associations of  smoking and diabetes with each phase of  the natural history 
of  atherosclerosis. They defined as minimal atherosclerosis a carotid intimal-medial 
thickness below the 75th percentile of  the total cohort distribution with no clinical 
manifestations; moderate atherosclerosis as intimal-medial thickness equal to or 
greater than the 75th percentile without clinical manifestations; and severe athero-
sclerosis as the presence of  peripheral arterial disease (ankle-brachial index < 0.90). 
These authors observed that the level of  serum LDL concentration that replicated 
the strength of  the associations of  both diabetes and smoking with atherosclerosis 
increased as the natural history progressed from minimal to moderate to severe phases. 
For minimal and moderate atherosclerosis (as defined), the LDL equivalent seems to 
be greater for diabetes than for smoking (115 and 117 mg/dL vs 40 and 85 mg/dL, 
respectively (Figure 3-5). However, for severe atherosclerosis, the LDL concentration 
that replicated the association with smoking was greater than that with diabetes 
(238 vs 178 mg/dL, respectively). It can be concluded that, while diabetes seems to be 
more important in minimal and moderate atherosclerosis, peripheral vascular disease 
(defined as severe atherosclerosis) appeared to be more strongly related to smoking 
than to diabetes.

*LDL equivalent: serum LDL concentration that replicates the strength of  the association of  diabetes or smoking with 
atherosclerosis.
Source: Data from Sharrett AR, et al., Smoking, Diabetes and Blood Cholesterol Differ in Their Associations with 
Subclinical Atherosclerosis: The Multiethnic Study of  Atherosclerosis (MESA). Atherosclerosis, Vol 186, p. 443 © 2006.

Figure 3-5 Low-density lipoprotein equivalent* according to atherosclerosis severity level, 
adjusted for age, gender, center/ethnic background, LDL-cholesterol, diabetes, and blood pressure. 
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EXERCISES

 1. The following results were obtained in an occupational cohort study of  the risk of  
cancer associated with exposure to radiation.

  a.  Fill in the empty cells in this table. For the calculation of  relative risks and odds 
ratios, use the lowest radiation category as the reference category.

  b.  How do you explain the difference (or the similarity) between each of  the two 
types of  odds ratios calculated here and the corresponding relative risks?

  c.  Assuming that an association between exposure and disease is actually 
present, which of  the following statements is true? Why?

   (1) The odds ratio is always smaller in absolute value than the relative risk.
   (2) The odds ratio is always bigger in absolute value than the relative risk.
   (3) The odds ratio is always closer to 1 than the relative risk.
   (4) The odds ratio is always farther away from 1 than the relative risk.
  d.  Progressively higher relative risks (or odds ratios) with increasing radiation 

dose are observed. Which traditional causality criterion is met when progres-
sively higher relative risks (or odds ratios) are observed?

 2. A cohort study to examine the relationships of  inflammatory markers (such as 
interleukin-6 and C-reactive protein) to incident dementia was conducted within 
the Rotterdam Study cohort (n 5 6713).* A random sample of  the total cohort at 
baseline (n 5 727) and the 188 individuals who developed dementia on follow-up 
were compared. Serum inflammatory markers were measured in cases and in the 
random sample.

  a.  Which type of  study have the authors conducted? 
  b.  If  the authors wished to study the relationship of  inflammatory markers to 

stroke, could they use the same control group? Why or why not?
  c.  The relative risk of  dementia associated with an interleukin-6 value in the 

highest quintile compared with that in the lowest quintile was found to be 
about 1.9. Assume that there is no random variability; that the relationship 
is causal; and that the relative risks of  the second, third, and fourth quintiles 
compared with the lowest quintile are all 1.0. Calculate the percentage of  
dementia incidence in the population that might be explained by the values in 
the highest quintile.

*Engelhart MJ, Geerlings MJ, Meijer J, et al. Inflammatory proteins in plasma and risk of  dementia: 
The Rotterdam Study. Arch Neurol. 2004;61:668–672.

Radiation 
dose (rem)

Total  
population 
(baseline)

Cancer 
cases

Cumulative* 
incidence

Relative 
risk

Odds ratio 
(comparing 

cases to 
noncases)

Odds ratio 
(comparing 

cases to total 
population)

0–0.99 3642 390

1–4.99 1504 181

51 1320 222

*Assume no losses to follow-up.
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 3. A recent case-control study assessed the relationship of  hepatitis C virus (HCV) 
infection to B-cell non-Hodgkin lymphomas (B-NHL).† Cases of  B-NHL were 
identified in the hematology department wards of  10 hospitals located in different 
cities throughout Italy. The control group consisted of  non-B-NHL patients 
admitted to other departments of  the same hospitals (e.g., ophthalmology, 
general surgery, internal medicine). For both cases and controls, only patients 
with newly diagnosed diseases were included in the study. Testing for HCV was 
done after cases and controls were hospitalized.

  a.  What type of  case-control study have the authors conducted?

  The numbers of  cases and controls as well as the numbers who tested positive for 
HCV by age (55 or less, and more than 55 years old) are seen in this table:

  

Cases Controls

Age (years) Number HCV positive Number HCV positive

 55 163 18 231  6

. 55 237 52 165 16

  b.  Calculate the exposure odds ratio reflecting the HCV/B-NHL association for 
each age group.

  c.  Describe in words the meaning of  the odds ratio for age group >55 years.
  d.  What is an important shortcoming of  this study?

 4. Melkonian et al. conducted a cohort study of  the synergistic association of  
arsenic exposure with selected environmental factors, including sun exposure 
and fertilizer use.‡ As part of  their preliminary analyses, they examined the 
unadjusted relationship of  body mass index to skin lesions, as shown in the table:

  a.  For each category of  BMI, calculate the incidence proportions and odds of  
developing skin lesions as well as odds ratios and relative risks. For the calcu-
lation of  odds ratios and relative risk, use  25 as the reference category.

  b.  Considering the magnitude of  the incidence of  skin lesions, what can be 
inferred with regard to the assumption that the odds ratio is a good estimate of  
the relative risk when the disease is rare?

Body mass 
index 

(kg/m2)

Developed 
skin lesions  

(n 5 613)

Did not develop 
skin lesions  
(n 5 3378)

Incidence 
proportion* Odds

Odds  
ratio

Relative 
risk

, 18.5 285 1451

18.5 – 24.9 304 1684

 25 21 231 1.0 1.0

*Assume no losses to follow-up.

†Mele A, Pulsoni A, Bianco E, et al. Hepatitis C virus and B-cell non-Hodgkin lymphomas: An Italian multi-
center case-control study. Blood. 2003;102:996–999.
‡Melkonian S, Argos M, Pierce BL, et al. A prospective study of  the synergistic effects of  arsenic exposure and 
smoking, sun exposure, fertilizer use, and pesticide use on risk of  premalignant skin lesions in Bangladeshi 
men. Am J Epidemiol. 2011;173:183–191.
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CHAPTERUnderstanding Lack of 

Validity: Bias

4.1  OVERVIEW

Bias can be defined as the result of  a systematic error in the design or conduct of  a study. 
This systematic error results from flaws either in the method of  selection of  study partici-
pants or in the procedures for gathering relevant exposure and/or disease information; 
as a consequence, the observed study results will tend to be different from the true results. 
This tendency toward erroneous results is called bias. As discussed in this chapter, many 
types of  bias can affect the study results. The possibility of  bias, in addition to that of  
confounding (see Chapter 5), is an important consideration and is often a major limitation 
in the interpretation of  results from observational epidemiologic studies. Systematic 
error (bias) needs to be distinguished from error due to random variability (sampling 
error), which results from the use of  a population sample to estimate the study param-
eters in the reference population. The sample estimates may differ substantially from the 
true  parameters because of  random error, especially when the study sample is small.

The definition of  bias relates to the process—that is, the design and procedures—
and not the results of  any particular study. If  the design and procedures of  a study are 
unbiased, the study is considered to be valid because, on average, its results will tend to 
be correct. A faulty study design is considered to be biased (or invalid ) because it will 
produce an erroneous result on average. Because of  sampling variability, however, a 
given study using “biased” methods can produce a result close to the truth (Figure 4-1). 
Conversely, an unbiased study can produce results that are substantially different from 
the truth because of  random sampling variability.

Studies with results
close to the truth

Bias

Truth

Study results

Average of  results

Fr
eq

u
en

cy

Figure 4-1 Hypothetical distribution of results from a biased study design. 
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Bias is said to exist when, on average, the results of  a hypothetically infinite number 
of  studies (related to a specific association and reference population) differ from the true 
result—for example, when the average relative odds of  a large (theoretically infinite) 
number of  case-control studies on a certain association in a given population is 2.0 
but in fact there is no association (Figure 4-1). This definition of  bias, however, is of  
little use to the epidemiologist who must infer from the results of  his or her only study. 
Even when the epidemiologist carries out an overview or meta-analysis, the available 
published studies are but a fraction of  what, by any definition, can be regarded as “an 
infinite number of  studies.” (A related problem is publication bias—e.g., the tendency 
to publish studies in which results are “positive”; see Chapter 10, Section 10.5.) Bias, 
therefore, has to be assessed in the context of  a careful evaluation of  the specific study 
design, methods, and procedures.

Prevention and control of  bias are accomplished on three levels: (1) ensuring that 
the study design—including the procedures for selection of  the study sample—is appro-
priate for addressing the study hypotheses; (2) establishing and carefully monitoring 
procedures of  data collection that are valid and reliable; and (3) using appropriate 
analytic procedures.

Many types of  bias have been described in the epidemiologic literature (see, e.g., 
Sackett1). However, most biases related to the study design and procedures can be 
classified in two basic categories: selection and information.

Selection bias is present when individuals have different probabilities of  being included 
in the study sample according to relevant study characteristics—namely, the exposure 
and the outcome of  interest. Figure 4-2 illustrates a general situation where exposed 
cases have a higher probability of  being selected for the study than other categories 
of  individuals. An instance of  this type of  bias is medical surveillance bias, which one 
might encounter, for example, when conducting a case-control study to examine 
the relationship of  the use of  oral contraceptives to any disease with an important 
subclinical component, such as diabetes. Because oral contraceptive use is likely to be 
related to a higher average frequency of  medical encounters, any subclinical disease is 

Figure 4-2 Selection bias: one relevant group in the population (exposed cases in the 
example) has a higher probability of being included in the study sample. 
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more likely to be diagnosed in oral contraceptive users than in nonusers. As a result, in a 
study comparing cases of  diabetes and controls without diabetes, a spurious association 
with oral contraceptive use may ensue. The effect of  selection bias on the direction of  
the measure of  association is, of  course, a function of  which cell(s) in an n  k table (e.g., 
a 2  2 table such as that shown in Figure 4-2) is subject to a spuriously higher or lower 
probability of  selection.

Information bias results from a systematic tendency for individuals selected for inclusion 
in the study to be erroneously placed in different exposure/outcome categories, thus 
leading to misclassification. The classic example of  information bias leading to misclas-
sification is recall bias, in which the ability to recall past exposures may be dependent on 
case-control status. In the hypothetical example sketched in Figure 4-3, cases are more 
likely than controls to overstate past exposure.

What follows is a discussion of  the most common selection and information biases 
affecting exposure—outcome associations in observational epidemiologic studies. 
Inevitably, because different types of  bias overlap, any attempt to classify bias entails 
some duplication; as will be readily noted, some types of  bias may be categorized as 
either selection or information bias(or as both). The classification of  the different types 
of  biases discussed in the following sections is thus mainly set up for didactic purposes 
and is by no means intended to be a rigid and mutually exclusive taxonomy.

4.2  SELECTION BIAS

Selection bias occurs when a systematic error in the recruitment or retention of  study 
subjects—cases or controls in case-control studies, or exposed or unexposed subjects 
in cohort studies—results in a tendency toward distorting the measure expressing the 
 association between exposure and outcome. When this bias occurs in case-control 
studies of   hospitalized patients, it is often referred to as Berksonian bias.2,3

Figure 4-3 Misclassification (information) bias: some degree of misclassification of the 
exposure information exists in both cases and controls, but unexposed cases in this example 
tend to mistakenly report past exposure to a greater extent than do controls.
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A hypothetical depiction of  selection bias in the context of  a case-control study is 
seen in Tables 4-1 through 4-4. In these tables, for ease of  understanding, it is assumed 
that confounding is absent and that there is neither random variability nor information 
bias (i.e., that there is no misclassification of  either exposure or case-control status; see 
Section 4.3).

In Table 4-1, all true cases and true noncases in a reference population of  10,000 
subjects are included in a case-control study assessing the relationship of  risk factor 
A with disease Y. Table 4-1 thus shows the “true” results that can be used as the 
“gold standard” for assessing the results shown in Tables 4-2 through 4-4.

Table 4-1 Hypothetical case-control study including all cases and all noncases of a defined 
population; assume no confounding effects and no information bias.

Total population

Risk factor A Cases Noncases (controls)

Present 500 1800

Absent 500 7200

Total 1000 9000

Exposure odds 500:500  1.0:1.0 1800:7200  1.0:4.0

Odds ratio

a500
500

b

a1800
7200

b
= 4.0

Note: The results in this table represent the “gold standard” against which results in Tables 4-2, 4-3, and 4-4 are compared.

Table 4-2 Hypothetical case-control study including a 50% unbiased sample of cases and 
a 10% unbiased sample of noncases of the reference population shown in Table 4-1.

Sample of  the total population

Risk factor A 50% of  Cases 10% of  Noncases (controls)

Present 250 180

Absent 250 720

Total 1000  0.50  500 9000  0.10  900

Exposure odds 250:250  1.0:1.0 180:720  1.0:4.0

Odds ratio
a250

250
b

a180
720

b
= 4.0

Consequences Unbiased exposure odds in cases and controls
Unbiased odds ratio
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In Table 4-2, a 50% unbiased sample of  cases and a 10% unbiased sample of  controls 
are chosen from the total population shown in Table 4-1. The use of  a larger sampling 
fraction for cases than for controls in Table 4-2 is typical of  many case-control studies 
for which a limited pool of  cases is available (see Chapter 3, Section 3.4.1); however, 
as long as the sampling fraction within the group of  cases and that within the group of  
controls are unaffected by exposure, selection bias does not occur, and this sampling 
strategy yields unbiased exposure odds in cases and controls and, thus, an unbiased 
odds ratio.

In contrast to the unbiased approach shown in Table 4-2, Table 4-3 provides an 
example of  selection bias, whereby, unintended and unbeknownst to the investigator, 
selection of  cases, but not that of  controls, is biased in that it varies according to 
exposure status. In the hypothetical example shown in Table 4-3, the investigator 
decides to select 50% of  cases and 10% of  controls, as done in Table 4-2; however, 
the selection of  cases is not independent of  exposure status. As a consequence, even 
though the overall sampling fraction for cases is the intended 50%, a greater sampling 
fraction is applied to exposed than to unexposed cases, biasing the exposure odds 
in cases but not in controls, and thus yielding a biased odds ratio. It is important to 
emphasize that the erroneous dependence of  the selection of  cases on their exposure 
status is unintended by the investigator, who is under the impression that both exposed 
and unexposed cases are subjected to the same preestablished sampling fraction of  50% 
applied to the total case pool. The examples shown in Tables 4-1 through 4-3 apply 
to a hypothetical situation in which there is a defined reference population list from 
which to sample cases and noncases. Often, population listings are unavailable, and 
thus epidemiologists use convenience samples of  cases and controls, making the occur-
rence of  selection bias more likely.

Table 4-3 Example of selection bias in choosing cases in a hypothetical case-control study 
including a 50% sample of cases and a 10% sample of noncases of the reference population 
shown in Table 4-1.

Total population

Risk factor A Cases Noncases (controls)

Present 500  0.60*  300 180

Absent 500  0.40*  200 720

Total 1000  0.50  500 9000  0.10  900

Exposure odds 300:200  1.5:1.0 180:720  1.0:4.0

Odds ratio
a300

200
b

a180
720

b
= 6.0

Consequences Biased exposure odds in cases
Unbiased exposure in controls

Biased odds ratio

*Differential sampling fractions unintended by, and unknown to, the investigator.
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A hypothetical example of  selection bias is a study of  aplastic anemia in which cases 
are identified in a major referral hospital and controls are patients with nonmalignant, 
nonhematologic disorders identified in the same hospital. Because aplastic anemia 
patients may often be referred to this hospital for a bone marrow transplant, some of  their 
characteristics will differ from those of  other patients—for example, these patients may 
be more likely both to come from large families (as they often have a genetically matched 
sibling donor) and to have health insurance or a higher income in order to defray the 
considerable costs involved in this procedure. As a result, exposures related to having 
a large family and/or a higher socioeconomic status might be differentially distributed 
between cases and controls, leading to a distortion of  the exposure-disease association.

Because differential bias of  the type exemplified in Table 4-3 distorts the nature or 
magnitude of  an association, investigators often attempt to “equalize” bias between the 
groups under comparison. In retrospective studies, for example, attempts are often made 
to obtain samples of  cases and controls undergoing the same selection processes. Thus, 
for cases identified only in hospitals H1 and H2 out of  several hospitals serving a given 
population A, an appropriate control group would be a sample of  the population subset 
that, if  diseased, would have chosen or been referred to hospitals H1 and H2. (This 
strategy is occasionally called case-based, clinic-based, or hospital-based control selection.4,5) 
Choice of  controls ignoring the selection process that made study cases seek hospitals 
H1 and H2 (e.g., selecting controls from total population A) may produce selection bias 
if, for example, the two hospitals where cases are identified cater to patients having 
characteristics related to the exposure being evaluated.

Possibly the best example of  successful equalization of  selection processes is given 
by case-control studies in which both cases and controls are identified from among 
women attending a screening program.6 Women participating in a screening program 
of  breast cancer are more likely to have higher prevalence rates of  known breast cancer 
risk factors, such as family history. Thus, if  cases diagnosed by screening were compared 
with a sample of  noncases drawn from the general population, overestimation of  the 
magnitude of  the association with certain risk factors might occur. Selecting both case 
and control groups from among screened women, however, makes both groups equally 
prone to the higher likelihood of  exposure to known risk factors. This process is schemat-
ically illustrated in the hypothetical example shown in Table 4-4. In this table, bias of  
the same magnitude resulted in the inclusion of  higher proportions of  exposed subjects 
in both the case and the control groups. As a consequence, although exposure odds are 
biased in both cases and controls vis-à-vis the true exposure odds shown in Tables 4-1 
and 4-2, the odds ratio is unbiased.

The magnitude of  bias in the selection of  cases is the same as for controls in Table 4-4, 
leading to what Schlesselman4(p128) has defined as “compensating bias”:

Bias =
Observed oddscases

True oddscases
=

1.5
1.0
1.0
1.0

=
Observed oddscontrols

True oddscontrols
=

1.0
2.67
1.0
4.0

= 1.5

For compensating bias to occur, the same bias factor (in this example, “ 1.5”) needs 
to be present in both the numerator (exposure odds of  cases, Oddsexp/cases) and the denom-
inator (exposure odds of  controls, Oddsexp/controls) of  the odds ratio so as to be canceled out: 

Oddsexp/cases * [bias] 

Oddsexp/controls * [bias]
=

Oddsexp/cases

Oddsexp/controls
= True odds ratio (OR)
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In the example,

OR =

a1.0
1.0

b * 1.5

a1.0
4.0

b * 1.5
=

a1.5
1.0

b

a 1.0
2.67

b
= 4.0

In practice, it is usually difficult to know for sure that the same bias applies to the 
exposure odds of  both cases and controls, and attempts to introduce a compensating bias 
may even backfire, such as in the study examining the association of  coffee intake and 
pancreatic cancer by MacMahon et al.,7 in which controls were selected from a group of  
patients seen by the same physicians who had diagnosed the cases’ disease. In addition 
to ease of  logistics, the likely reason why the investigators chose this design was to make 
the selection process (including attending biases) of  cases and controls similar. As the 
exposure of  interest was coffee intake and as patients seen by physicians who diagnose 
pancreatic cancer often have gastrointestinal disorders and are thus advised not to drink 
coffee, however, the investigators’ attempt to introduce a compensating bias led to the 
selection of  controls with an unusually low odds of  exposure. This resulted in a (spurious) 
positive association between coffee intake and cancer of  the pancreas that could not be 
subsequently confirmed.8

Whenever possible, study subjects should be chosen from defined reference populations. 
In case-control studies, a sample of  the defined population from which cases originated 
(as when doing a case-cohort study) constitutes the best type of  control group. Efforts 
to introduce a compensating bias when the control group selection is driven by the case 
characteristics may or may not be successful, although they underscore the possibility of  
obtaining valid measures of  association even in situations when it is not possible to obtain 
valid absolute measures of  exposure frequency (odds).

Table 4-4 Example of the same level of selection bias in choosing cases and controls in a 
hypothetical case-control study including a 50% sample of cases and a 10% sample of noncases 
of the defined population shown in Table 4-1.

Total population

Risk factor A Cases Noncases (controls)

Present 500  0.60*  300 1800  0.136*  245

Absent 500  0.40*  200 7200  0.091*  655

Total 1000  0.50  500 9000  0.10  900

Exposure odds 300:200  1.5:1.0 245:655  1.0:2.67

Odds ratio
a300

200
b

a245
655

b
= 4.0

Consequences Exposure odds biased to the same
extent in cases and controls

Unbiased odds ratio

*Differential sampling fractions unknown to the investigator.
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All of  the preceding examples are from case-control studies because these studies 
(along with cross-sectional studies) provide the most likely setting in which the sampling 
probabilities of  the different disease-exposure groups may turn out to be differential 
(Figure 4-2). In a cohort study, because study participants (exposed or unexposed) are 
selected before the disease actually occurs, differential selection according to disease 
status is less likely to occur. Nevertheless, selection bias may occur at the outset of  a 
cohort study when, for example, a group of  persons exposed to an occupational hazard 
is compared with a sample of  the general population (healthy worker effect).9

The more significant analogue of  selection bias in the context of  most cohort studies, 
however, relates to differential losses to follow-up, that is, whether individuals who are 
lost to follow-up over the course of  the study are different from those who remain under 
observation up to the event occurrence or termination of  the study. This analogy was 
discussed in Section 1.4.2, and Figures 1-13 and 1-18 underscore the theoretical 
equivalence between issues of  selection of  cases and controls (from a defined or a 
hypothetical cohort) and those related to differential losses in a cohort study. The biases 
on the estimates of  incidence that can occur as a consequence of  losses were discussed 
in Section 2.2. Individuals who are lost to follow-up (particularly when losses are due 
to mortality from causes other than the outcome of  interest, refusal, or migration—see 
Table 2-4) tend to have different probabilities of  the outcome than those who remain in 
the cohort over the entire span of  the study. Thus, incidence estimates tend to be biased. 
However, as in the case-control study situation (Table 4-4), relative measures of  associ-
ation (relative risk, rate ratio) will be unbiased if  the bias on the incidence estimates is of  
similar magnitude in exposed and unexposed individuals (compensating bias). In other 
words, a biased relative risk or rate ratio estimate will only ensue if  losses to follow-up are 
biased according to both outcome and exposure.

4.3  INFORMATION BIAS

Information bias in epidemiologic studies results from either imperfect definitions 
of  study variables or flawed data collection procedures. These errors may result in 
misclassification of  exposure and/or outcome status for a significant proportion of  
study participants. Throughout this section, the terms validity, sensitivity, specificity, 
and reliability are frequently used. These concepts are defined in basic epidemiology 
texts (Exhibit 4-1) and are also frequently used in Chapter 8, which is closely related 
to this chapter.

exhibiT 4-1 Definitions of terms related to the classification of individuals in 
epidemiologic studies.

•  Validity: the ability of  a test to distinguish between who has a disease (or other  characteristic) and who 
does not.

–  Sensitivity:  the ability of  a test to identify correctly those who have the disease (or  characteristic) 
of  interest.

–  Specificity:  the ability of  a test to identify correctly those who do not have the disease (or character-
istic) of  interest.

•  Reliability (repeatability): the extent to which the results obtained by a test are  replicated if  the test 
is repeated.

Source: Adapted from L. Gordis, Epidemiology, © 2008, Philadelphia: Elsevier Saunders.
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A valid study is equivalent to an “unbiased” study—a study that, based on its design, 
methods, and procedures, will produce (on average) overall results that are close to the 
truth. Sensitivity and specificity are defined as the two main components of  validity. 
In basic textbooks or chapters discussing issues related to diagnosis and screening (e.g., 
Gordis10), these terms typically refer to the correct classification of  disease status (i.e., 
diagnosis). In this chapter (as well as in Chapter 8), however, sensitivity and specificity 
also refer to the classification of  exposure status. In addition to the main exposure variable 
(e.g., the main risk factor of  interest in the study), misclassification of  other variables, 
such as confounders, may also occur (see Chapter 7, Section 7.6).

4.3.1  Exposure Identification Bias
Problems in the collection of  exposure data or an imperfect definition of  the level of  
exposure may lead to bias. Exposure identification bias can affect cohort studies (e.g., 
when there are technical or other sorts of  errors in the baseline measurements of  
exposure). However, because exposure in a cohort study is usually ascertained before the 
outcome (disease) of  interest occurs, such errors tend to be similar with regard to disease 
status and thus result in the so-called nondifferential misclassification with somewhat 
predictable consequences (see Section 4.3.3). Potentially more serious exposure identi-
fication biases may occur in case-control studies, where exposure is assessed after case 
(disease) status is ascertained and thus may vary according to case-control status. 
Depending on the circumstances of  each particular study, this can result in nondiffer-
ential or in differential misclassification, leading to less predictable results (see Section 
4.3.3). Thus, most examples dealing with this type of  information bias come from case-
control studies. Two of  the main subcategories of  exposure identification bias are recall 
bias and interviewer bias.

Recall Bias
Recall bias resulting from inaccurate recall of  past exposure is perhaps the most often 
cited type of  exposure identification bias. It is a concern especially in the context of  case-
control studies, when cases and controls are asked about exposures in the past. Errors 
in recall of  these past exposures result in misclassification of  exposure status, thus 
biasing the results of  the study. An empirical example of  recall bias was documented 
by Weinstock et al.,11 who collected information on hair color and tanning ability both 
at baseline and after the occurrence of  melanoma in cohort participants of  the Nurses’ 
Health Study. In this study, cases of  melanoma tended to over report “low tanning 
ability” in the postmelanoma diagnosis interview, as compared with the interview 
carried out before the occurrence of  the disease, a difference that was not seen among 
controls (results from this study are discussed in detail in Section 4.3.3).

Methods used to prevent recall bias include verification of  responses from study 
subjects, use of  diseased controls in case-control studies, use of  objective markers 
of  exposure, and the conduct of  case-control studies within the cohort (Chapter 1, 
Section 1.4.2).

Verification of  exposure information obtained from participants by review of  pharmacy or 
hospital charts (or other sources), is occasionally done in case-control studies. Examples 
include the studies examining the relationship of  past use of  estrogens to breast cancer,12 
in which responses from samples of  cases and controls were verified by contacting physi-
cians. In cohort studies, a similar strategy can be used to confirm participant information 
pertaining to event outcomes (e.g., myocardial infarction) or to identify and exclude 



118 CHAPTER 4 | Understanding Lack of Validity: Bias

prevalent cases from the baseline cohort in order to estimate incidence on follow-up. As 
an example, in the Atherosclerosis Risk in Communities Study and in the Multi-ethnic 
Study of  Atherosclerosis, information provided by cohort members during the periodic 
telephone interviews on admissions for the main outcomes (e.g., myocardial infarction) 
has been systematically verified by review of  relevant medical charts.13,14

Because, on occasion in case-control studies, recall bias may be caused by “rumination” 
by cases regarding the causes of  their disease, a control group formed by diseased subjects 
is sometimes selected as an attempt to introduce a similar bias in the exposure odds of  
controls. An example is a study by Mele et al.15 in which cases of  leukemia were compared 
with a control group formed by symptomatic patients who, after evaluation in the same 
hematology clinics as the cases, were not found to have hematological disorders. The 
problem with using a diseased control group, however, is that it is often unclear whether 
the “rumination” process related to the controls’ diseases is equivalent to that of  cases 
with regard to the magnitude of  recall bias.

Compared with subjective markers, objective markers of  exposure or susceptibility are 
less prone to recall bias from study subjects, which, however, may still occur. In one of  the 
earliest studies addressing the issue of  information bias, Lilienfeld and Graham compared 
information on circumcision obtained by physical examination with that provided by 
the participants (Table 4-5).16 In this study, of  84 truly circumcised participants, only 
37 said that they had been circumcised; of  the 108 noncircumcised participants, 89 
mentioned that they had not been circumcised. Thus, in this study, the sensitivity and 
specificity of  participants’ statements on whether they had been circumcised were 
44% and 82.4%, respectively. On the other hand, an example in which a reasonably 
objective exposure (hair color) resulted in the virtual absence of  information bias can 
be found in the study of  melanoma risk factors cited previously.11 In contrast to the bias 
in reporting “tanning ability” after the disease diagnosis, the responses of  cases and 
controls regarding hair color did not show any significant change when the responses 
to the questionnaires applied before and after the disease diagnosis were compared (see 
Section 4.3.3). A likely reason for this is that hair color is more objectively assessed than 
tanning ability.

Certain genetic markers constitute “exposures” that are not time-dependent and 
can be measured even after the disease has occurred, thus possibly being less prone to 
bias (assuming that the genetic marker is not related to survival; see Section 4.3.3). An 
example is the assessment of  DNA repair capabilities as a genetic marker for susceptibility 

Table 4-5 Patients’ statements and examination findings regarding circumcision status, 
Roswell Park Memorial Institute, Buffalo, New York.

Participants’ 
statements on 
circumcision

Physical examination finding

Circumcised Noncircumcised

Number % Number %

Yes 37 44.0 19 17.6

No 47 56.0 89 82.4

Total 84 100.0 108 100.0

Adapted from: AM Lilienfeld and S Graham. Validity of  Determining Circumcision Status by Questionnaire as Related to 
Epidemiological Studies of  Cancer of  the Cervix. Journal of  the National Cancer Institute. Vol 21, pp. 713–720, © 1958.
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to ultraviolet light-induced nonmelanoma skin cancer in young cases and controls.17 
Regrettably, however, most environmental exposures that can be assessed by means of  
objective biologic markers represent current or very recent, rather than past, exposures, 
such as the levels of  serum cotinine to indicate exposure to cigarette smoking, and are 
thus of  limited usefulness.18

When a well-defined cohort is available, nested case-control or case-cohort studies (see 
Section 1.4.2) allow the evaluation of  certain hypotheses free of  recall bias (or temporal 
bias; see Section 4.3.3). Typically, in these case-control studies, information on exposure 
and confounders is collected at baseline (i.e., before the incident cases occur), thus 
reducing the likelihood of  systematic recall differences between cases and controls. The 
study discussed previously examining the relationship of  tanning ability to melanoma11 
(see previously here and Section 4.3.3) is an example of  a case-control study within a 
cohort (the Nurses Health Study cohort); the application of  the premelanoma diagnosis 
questionnaire avoids the recall bias that was observed when the analysis was based on 
information obtained from the postmelanoma questionnaire.11 

Although exposure recall bias is typically a problem of  case-control studies, it may 
also occur in cohort studies. In the latter type of  study, it may be present at the outset of  
the study when categorization of  individuals by level of  exposure relies on recalled infor-
mation from the distant or recent past, as when attempts are made to classify cohort 
participants at baseline by duration of  exposure.

Interviewer Bias
When data collection in a case-control study is not masked with regard to the disease 
status of  study participants, observer bias in ascertaining exposure, such as interviewer 
bias, may occur. Interviewer bias may be a consequence of  trying to “clarify” questions 
when such clarifications are not part of  the study protocol, failing to follow either the 
protocol-determined probing or skipping rules of  questionnaires. Although it is often 
difficult to recognize interviewer bias, it is important to be aware of  it and to implement 
procedures to minimize the likelihood of  its occurrence. Attempts to prevent interviewer 
bias involve the careful design and conduct of  quality assurance and control activities 
(see Chapter 8), including development of  a detailed manual of  operations, training of  
staff, standardization of  data collection procedures, and monitoring of  data collection 
activities. Even when these methods are in place, however, subtle deviations from the 
protocol (e.g., emphasizing certain words when carrying out the case, but not the 
control, interviews—or vice versa) might be difficult to identify. Additional measures 
to recognize and prevent this bias are the performance of  reliability/validity sub-studies 
and the masking of  interviewers with regard to case-control status.

Reliability and validity sub-studies in samples are described in more detail in Chapter 8, 
Section 8.3. They constitute an important strategy that needs to be carried out system-
atically, with quick feedback to interviewers who do not follow the protocol or who have 
encountered problems. Reliability sub-studies of  interviews are not as straightforward as 
those aimed at assessing the reproducibility of  laboratory measurements, such as those 
described in many of  the examples in Chapter 8. Assessing the reliability of  interview 
data is difficult because of  intraparticipant variability and because when interviews 
are done at separate points in time, interviewees or interviewers may recall previous 
responses, with the resultant tendency to provide/record the same, albeit mistaken, 
responses.

As for recall bias, validity studies using independent sources (e.g., medical charts) can 
be conducted to assess accuracy of  data collection by interviewers.
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Masking of  interviewers with regard to case-control status of  study participants is 
difficult, but when feasible, it may remove an important source of  bias, particularly 
when the interviewer is familiar with the study hypothesis. On occasion, by including 
a health question for which a frequent affirmative response is expected from both cases 
and controls, it is possible to mask the interviewers with regard to the main study 
hypothesis and have them believe that the hypothesis pertains to the “misleading” 
question. Such a strategy was employed in a case-control study of  psychosocial factors 
and myocardial infarction in women, in which questions about hysterectomy, which 
were often answered positively in view of  the high frequency of  this intervention in 
the United States, led the interviewers to believe that the study was testing a hormonal 
hypothesis.19

A mistake made in an early study of  lung cancer and smoking conducted by Doll and 
Hill,20 in which some controls were erroneously classified as cases, suggests an additional 
strategy for assessing occurrence of  interviewer bias. In this study, the odds of  exposure 
to smoking in the misclassified controls was very similar to that of  the nonmisclassified 
controls and much lower than that of  cases, thus confirming the absence of  interviewer 
bias. This example suggests the possibility of  using “phantom” cases and controls and/or 
purposely misleading interviewers to believe that some cases are controls and vice versa 
in order to assess interviewer bias.

4.3.2  Outcome Identification Bias
Outcome (e.g., disease) identification bias may occur in both case-control and cohort 
studies. This bias may result from either differential or nondifferential misclassification 
of  disease status, which in turn may be due to an imperfect definition of  the outcome or 
to errors at the data collection stage.

Observer Bias
In a cohort study, the decision as to whether the outcome is present may be affected by 
knowledge of  the exposure status of  the study participant. This may happen particularly 
when the outcome is “soft,” such as, for example, when reporting migraine episodes or 
psychiatric symptoms. There may be observer bias at different stages of  the ascertainment 
of  the outcome, including at the stage of  applying pathologic or clinical criteria. A fairly 
crude example of  observer bias is the assignment of  a histologic specimen to a diagnosis 
of  “alcoholic cirrhosis” when the pathologist knows that the patient is an alcoholic. A 
documented example of  observer bias is the effect of  the patient’s race on the diagnosis 
of  hypertensive end-stage renal disease (ESRD). In a study conducted by Perneger et al.,21 
a sample of  nephrologists were sent case histories of  seven patients with ESRD. For each 
case history, the simulated race of  each patient was randomly assigned to be “black” or 
“white.” Case histories that identified the patient’s race as “black” were twice as likely to 
result in a diagnosis of  hypertensive ESRD as case histories in which the patient’s race 
was said to be “white.”

This type of  observer bias occurs when the ascertainment of  outcome is not 
independent from the knowledge of  the exposure status and results in differential misclas-
sification of  the outcome. Thus, measures aimed at masking observers in charge of  deciding 
whether the outcome is present by exposure status would theoretically prevent observer 
bias. When masking of  observers by exposure status is not practical, observer bias 
can be assessed by stratifying on certainty of  diagnosis. For example, exposure levels can 
be assessed in relationship to incidence of  “possible,” “probable,” or “definite” disease. 
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Observer bias should be suspected if  an association is seen only for the “softer” categories 
(e.g., “possible” disease).

Another strategy to prevent observer bias is to perform diagnostic classification with 
multiple observers. For example, two observers could independently classify an event, 
and if  disagreement occurred, a third observer would adjudicate; that is, decision on the 
presence or absence of  the outcome would have to be agreed on by at least two of  three 
observers. 

Respondent Bias
Recall and other informant biases are usually associated with identification of  exposure 
in case-control studies; however, outcome ascertainment bias may occur during 
follow-up of  a cohort when information on the outcome is obtained by participant 
response; for example, when collecting information on events for which it is difficult to 
obtain objective confirmation, such as episodes of  migraine headaches.

Whenever possible, information given by a participant on the possible occurrence of  
the outcome of  interest should be confirmed by more objective means, such as hospital 
chart review. Objective confirmation may, however, not be possible—for example, for 
nonhospitalized events or for events in which laboratory verification is impossible, such 
as pain or acute panic attacks. For these types of  outcomes, detailed information not 
only on presence versus absence of  a given event, but also on related symptoms that 
may be part of  a diagnostic constellation, may be of  help in preventing respondent bias. 
For example, the questionnaire on the occurrence of  an episode of  migraine headaches 
in a study by Stewart et al.22 included questions not only on whether a severe headache 
had occurred but also on the presence of  aura, nausea, and fatigue accompanying 
the headache. This strategy allowed more objectivity in classifying migraines than the 
simple determination of  the presence or absence of  pain. For several outcomes, such 
as angina pectoris and chronic bronchitis, standardized questionnaires are available 
(see Chapter 8). The validity and limitations of  some of  these instruments, such as, 
for example, the Rose questionnaire for the diagnosis of  angina pectoris,23 have been 
assessed.24–26

4.3.3  The Result of Information Bias: Misclassification
Information bias leads to misclassification of  exposure and/or outcome status. For 
example, when there is recall bias in a case-control study, some exposed subjects are 
classified as unexposed and vice versa. In a cohort study, a positive outcome may be 
missed. Alternatively, a pseudo-event may be mistakenly classified as an outcome (a 
“false positive”). The examples of  both differential and nondifferential misclassifi-
cation in this section refer to exposure levels in case-control studies. Misclassification 
of  case-control status in case-control studies and of  exposure and outcome in cohort 
studies can be readily inferred, although they are not specifically discussed so as to 
avoid repetition.

There are two types of  misclassification bias: nondifferential and differential.

Nondifferential Misclassification
In a case-control study, nondifferential misclassification occurs when the degree of  
 misclassification of  exposure is independent of  case-control status (or vice versa). 

Nondifferential Misclassification When There Are Two Categories. A simplistic 
hypothetical example of  nondifferential misclassification of  (dichotomous) exposure 
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in a case-control study is shown in Exhibit 4-2. In this example, misclassification of  
exposed subjects as unexposed occurs in 30% of  cases and 30% of  controls. In this 
simpler situation when there are only two exposure categories (for instance, “yes” or 
“no”), nondifferential misclassification tends to bias the association toward the null 
hypothesis.

In the hypothetical example shown in Exhibit 4-2, misclassification occurs in only one 
direction: exposed individuals are misclassified as unexposed. Often, however, misclassi-
fication occurs in both directions: that is, exposed individuals are classified as unexposed 
or “false negatives” (i.e., the correct classification of  the truly exposed, or sensitivity, is 
less than 100%), and unexposed individuals are classified as exposed or “false positives” 
(i.e., the correct classification of  the unexposed, or specificity, is less than 100%). In a 
case-control study, nondifferential misclassification occurs when the both sensitivity and 
specificity of  the classification of  exposure are the same for cases and controls but either 
(or both) is less than 100%. Estimation of  the total numbers of  individuals classified as 
“exposed” or “unexposed” by using a study’s data collection procedures and exposure 
level definitions is akin to the estimation of  “test-positive” and “test-negative” individuals 
when applying a screening test. Thus, the notions of  sensitivity and specificity, schemati-
cally represented in Figure 4-4, can be used to explore the issue of  misclassification in 
more depth.

A hypothetical example showing nondifferential misclassification of  exposure in 
a case-control study in both directions—that is, when exposed subjects are misclas-
sified as unexposed and unexposed subjects are misclassified as exposed—is presented 

No misclassification

Exposure
  Yes
  No

OR =

a50
50

b

a20
80

b
= 4.0

  Cases
   50
   50

 Controls
   20
   80

30% Exposure misclassification in each group

Exposure
  Yes
  No

OR =

a35
65

b

a14
86

b
= 3.3

  Cases
50  15  35
50  15  65

 Controls
20  6  14
80  6  86

Effect of  nondifferential misclassification with two exposure categories: to bias the OR toward the null value 
of  1.0. (It “dilutes” the association.)

Note: Bold numbers represent misclassified individuals.

exhibiT 4-2 Hypothetical example of the effect of nondifferential misclassification of two 
categories of exposure, with 30% of both exposed cases and exposed controls misclassified as 
unexposed.
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in Exhibit 4-3. The exhibit shows the effects of  nondifferential misclassification resulting 
from an exposure ascertainment with a sensitivity of  90% and a specificity of  80%. 
The fact that these sensitivity and specificity values are the same for cases and controls 
identifies this type of  misclassification as nondifferential.

Note: Exp: Exposed; Unexp: Unexposed; Se: Sensitivity; Sp: Specificity; OR: Odds ratio

Unexposed

Exposed

Controls

Study
cases

Study
controls

50

76

24

55

45

50

Cases

True
distribution

Observed
distribution

72

8

45

80/20

50/50

5

10

40

4

16

True OR:

= 4.0

76/24

55/45
= 2.6

Exp UnexpExp Unexp

Se = 0.90 Sp = 0.80

80 20

Se = 0.90 Sp = 0.80

Misclassified
OR:

(I) (II) (III) (IV) (V) (VI)

exhibiT 4-3 Effects of nondifferential misclassification on the odds ratio (sensitivity  0.90; 
specificity  0.80).

Note: Exp: Exposure; TP: True positive; FP: False positive; FN: False negative; TN: True negative

True
results

Cases Controls

Study
results

TP + FP = a

FN + TN = c

Misclassified
OR:

True OR:

Total study
cases

Total study
controls

TP + FP =  b

FN + TN = d

A C B D

Exp Unexp UnexpExp

A/C ÷ B/D

a/c ÷ b/d

TP FP

FN TN

TP FP

FN TN

Exposed

Unexposed

Figure 4-4 Application of sensitivity/specificity concepts in misclassification of exposure: 
schematic representation of true and misclassified relative odds. Sensitivity of exposure 
ascertainment  TP  (TP  FN); specificity of exposure ascertainment  TN  (TN  FP).
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The net effect of  misclassifying cases at a sensitivity of  90% and a specificity of  80% 
is shown in column (III) of  Exhibit 4-3. The totals in column (III) indicate the numbers 
of  cases classified as “exposed” or “unexposed” in the study and reflect the misclas-
sification due to the less-than-perfect sensitivity and specificity values. Thus, cases 
classified as “exposed” include both the 72 persons truly exposed (“true positives”) and 
the 4 cases which, although unexposed, are misclassified as exposed (“false positives”) 
due to a specificity less than 100% (see also Figure 4-4). Similarly, cases classified in 
the study as “unexposed” include both the 16 truly unexposed cases (“true negatives”) 
and the 8 exposed cases misclassified as unexposed (“false negatives”) because the 
sensitivity is less than 100%. Exhibit 4-3 also shows similar data for controls. The 
net effect of  the classification of  controls by exposure at the same sensitivity (90%) 
and specificity (80%) levels as those of  cases is shown in column (VI). The observed 
(biased) odds ratio of  2.6 in the study underestimates the true odds ratio of  4.0, as 
expected when misclassification of  a dichotomous exposure is  nondifferential between 
cases and controls.

In the example shown in Exhibit 4-3, nondifferential misclassification of  a 
 dichotomous exposure is shown to be affected by sensitivity and specificity levels, such 
that the net effect is to bias the odds ratio toward 1.0. In addition to reflecting sensi-
tivity and specificity of  the procedures for exposure definition and ascertainment, 
the magnitude of  the bias also depends on the exposure prevalence, particularly in 
the presence of  a large control group. For example, Exhibit 4-4 shows a hypothetical 
situation where the true strength of  the association between exposure and disease is 
identical to that in Exhibit 4-3 (odds ratio = 4.0) as are the sensitivity and specificity of  
exposure measurement (90% and 80%, respectively). However, because of  the lower 
prevalence of  exposure (i.e., 20/820 or 2.4% among controls, compared to 50% in 
Exhibit 4-3), the bias is substantially more pronounced (biased odds ratio = 1.3 versus 

Notes: Exp: Exposed; Unexp: Unexposed; Se: Sensitivity; Sp: Specificity; OR: Odds ratio

exhibiT 4-4 Effects of nondifferential misclassification on the odds ratio when the exposure 
prevalence in controls is low and the sample size is much greater in controls than in cases.

Unexposed

Exposed

Controls

Study
cases

Study
controls

20

145

405

178

642

800

Cases

True
distribution

Observed
distribution

45

5

18

50/500
20/800

2

160

640

100

400

True OR:

= 4.0

145/405
178/642

= 1.3

Exp UnexpExp Unexp

Se = 0.90 Sp = 0.80

50 500

Se = 0.90 Sp = 0.80

Misclassified
OR:

(I) (II) (III) (IV) (V) (VI)
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2.6 in Exhibit 4-3). In general, low exposure prevalence tends to be associated with a 
higher degree of  bias when the specificity is low. If  specificity is high but sensitivity is 
low, however, a higher degree of  bias will result from a situation in which exposure is 
common. The complex relationships between bias, sensitivity/specificity of  exposure 
definition, and its prevalence is illustrated in Table 4-6, showing examples of  the 
effects of  sensitivity, specificity, and exposure prevalence in controls on the observed 
odds ratio in several hypothetical situations where the true odds ratio is 4.0.

Nondifferential Misclassification When There Are More Than Two Exposure Categories. 
The rule that the direction of  a nondifferential misclassification bias dilutes the strength 
of  the association may not hold in certain nondifferential misclassification situations 
involving more than two exposure categories. A hypothetical example involving three 
exposure levels in a case-control study (“none,” “low,” and “high”) is discussed by 
Dosemeci et al.27 (Table 4-7). In this example, 40% of  both cases and controls in the 
“high” exposure category were misclassified as belonging to the adjacent category, “low”; 
the net effect was an increase in the odds ratio for the “low” category without a change 
for the “high.” Misclassification for nonadjacent categories of  exposure in the example—
that is, between “high” and “none”—resulted in the disappearance of  the truly graded 
relationship and, assuming no random error, the emergence of  a J-shaped pattern. 
Additionally, as shown by Dosemeci et al.,27 misclassification of  nonadjacent exposure 
categories may invert the direction of  the graded relationship.

Differential Misclassification
Differential misclassification occurs when the degree of  misclassification differs between 
the groups being compared; for example, in a case-control study, the sensitivity and/
or the specificity of  the classification of  exposure status are different between cases 
and controls. (Note that differential misclassification may occur even when only 
one of  these validity indices differ.) Whereas the general tendency of  nondifferential 
misclassification of  a dichotomous exposure factor is to weaken a true association, 
differential misclassification may bias the association either toward or away from the 

Sensitivity* Specificity† Prevalence of  exposure in controls Observed odds ratio

0.90 0.85 0.200 2.6

0.60 0.85 0.200 1.9

0.90 0.95 0.200 3.2

0.90 0.60 0.200 1.9

0.90 0.90 0.368 3.0

0.90 0.90 0.200 2.8

0.90 0.90 0.077 2.2

Note: Bold figures represent the factor (sensitivity, specificity, or exposure prevalence) that is allowed to vary, for fixed 
values of  the other two factors.
*Sensitivity of  the exposure identification is defined as the proportion of  all truly exposed correctly classified by the study.
†Specificity of  the exposure identification is defined as the proportion of  all truly unexposed correctly classified by the study.

Table 4-6 Nondifferential misclassification: hypothetical examples of the effects of sensitivity 
and specificity of exposure identification and of exposure prevalence in controls on a study’s odds 
ratio when the true odds ratio is 4.0.
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null hypothesis. Thus, it is difficult to predict the direction of  the bias when differential 
misclassification occurs, as it is the result of  a complex interplay involving differences 
between cases and controls in sensitivity, specificity, and prevalence of  exposure.

A hypothetical example of  differential misclassification is given in Exhibit 4-5, in 
which the sensitivity of  capturing the exposure in cases is 96% and that in controls is 
only 70%. Specificity in the example is 100% for both cases and controls. The better 
sensitivity among cases leads to a higher proportion of  truly exposed subjects being 
identified in cases than in controls, yielding a biased odds ratio further away from 1.0 
than the true odds ratio (true odds ratio  4.0, biased odds ratio  5.7). To underscore 
the difficulties in predicting results when there is differential misclassification, if  the 
same calculations are done using a higher specificity in cases (100%) than in controls 
(80%), the odds ratio is biased toward the null hypothesis (Exhibit 4-6), as a poorer speci-
ficity in controls offsets the higher sensitivity in cases. 

Exhibit 4-7 shows a hypothetical example that illustrates a shortcut to the  calculation 
of  misclassified odds ratios. The table shows the complements to sensitivity and  specificity 
values, and their application to the relevant cells in cases and controls. In this example, 
misclassification is differential and yet the misclassified odds ratio is biased toward the 
null hypothesis.

True exposure status

Case-control 
status None Low High

Cases 100 200 600

Controls 100 100 100

Odds ratio 1.00 2.00 6.00

Misclassified exposure status (in situations A and B)

A. Adjacent categories: 40% of  cases and controls in “high” misclassified as “low”

Cases 100 200 CC  240 MC  440 600 CC  240 MC  360

Controls 100 100 CC  40 MC  140 100 CC  40 MC  60

Odds ratio 1.00 3.14 6.00

B. Nonadjacent categories: 40% of  cases and controls in “high” misclassified as “none”

Cases 100 CC  240 MC  340 200 600 CC  240 MC  360

Controls 100 CC  40 MC  140 100 100 CC  40 MC  60

Odds ratio 1.00 0.82 2.47

Note: CC: correctly classified; MC: misclassified.
Source: Data from M Dosemeci, S Wacholder, and JH Lubin, Does Nondifferential Misclassification of  Exposure Always 
Bias a True Effect Toward the Null Value? American Journal of  Epidemiology, Vol 132, pp. 746–748, © 1990.

Table 4-7 Examples of the effects of nondifferential misclassification involving three exposure 
categories; misclassification of 40% between “high” and “low” (A) and between “high” and 
“none” (B).
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Note: Exp: Exposed; Unexp: Unexposed; Se: Sensitivity; Sp: Specificity; OR: Odds ratio

exhibiT 4-5 Hypothetical example of the effects of differential misclassification on the odds 
ratio, in which, for sensitivity, cases  controls, and for specificity, cases  controls.

Exp UnexpExp Unexp

Observed
distribution

Unexposed

Exposed

Controls

Study
cases

Study
controls

20

48

52

14

86

80

Cases

True
distribution

48

2

14

50/50

20/80

6

0

80

0

50

True OR:

= 4.0

48/52

14/86
= 5.7

Se = 0.70 Sp = 1.0

50 50

Se = 0.96 Sp = 1.0

Misclassified
OR:

(I) (II) (III) (IV) (V) (VI)

Note: Exp: Exposed; Unexp: Unexposed; Se: Sensitivity; Sp: Specificity; OR: Odds ratio

exhibiT 4-6 Hypothetical example of the effects of differential misclassification on the 
odds ratio, in which for both sensitivity and specificity, cases  controls.
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Examples of  the isolated effects of  sensitivity (for a specificity of  100%) or specificity 
(for a sensitivity of  100%) on the odds ratio in a hypothetical case-control study with 
differential misclassification of  exposure and a control exposure prevalence of  10% are 
shown in Table 4-8. 

An example of  differential misclassification of  exposure was documented by 
Weinstock et al.11 This example was used previously here to illustrate the concept of  
recall bias (see Section 4.3.1). In this study, melanoma cases and controls selected from 
participants of  the Nurses Health Study cohort and matched for duration of  follow-up 
were compared with regard to their report of  “hair color” and “tanning ability” both 
at baseline and after the case was diagnosed. In this example, the differential misclas-
sification in the postdiagnosis interview probably occurred because the disease status 
was known to the case and had the potential to affect recall of  exposure. Therefore, the 
premelanoma diagnosis interview is assumed to accurately reflect the true association. 
The main results of  the study are summarized in Table 4-9. For the discussion that 
follows, the categories associated with an increase in odds using the case-control data 
obtained after the occurrence of  melanoma were regarded as “exposed” (“red or blond” 
and “no tan or light tan” for hair color and tanning ability, respectively).

Compared with the predisease development data, the odds for hair color among 
cases did not change when the postmelanoma interview data were used (11:23 in 
both interviews) and increased only slightly among controls (from 37:197 to 41:193); 
as a result, the odds ratio changed relatively little (prediagnosis odds ratio  2.5;  
postdiagnosis odds ratio  2.3). The effect of  differential misclassification of  tanning 

exhibiT 4-7 Shortcut calculation of misclassified odds ratios in a case-control study. Exposure 
information sensitivity: cases  0.96; controls  0.85; specificity: cases  0.80; controls  0.70. Application 
of complements of sensitivity and specificity values estimates the number of false negatives and false 
positives in each exposure category. For example, 1 – sensitivity (0.04) for cases results in 2 exposed cases 
being misclassified as unexposed (false negatives); 1 – specificity for cases (0.20) results in 10 unexposed 
cases being misclassified as exposed (false positives). Similar calculations are done for controls. 

Exposed

Cases (n = 100) Controls (n = 100)

1 - Se
True

distribution
True

distribution
0.04 0.150.20 0.30Total

misclassified

50 20 41

50 80 59

–2 –3

+2 +3

+10 +24

–24

58

42–10

(FP) (FP)

(FN) (FN)

1 - Sp 1 - Se 1 - Sp

Unexposed

Total
misclassified

Note: Se: Sensitivity; Sp: Specificity; FN: False negative; FP: False positive 

This differential misclassification biases the odds ratios toward the null hypothesis.

True odds ratio : 
50>50

20>80
 =  4.0

Misclassified odds ratio: 
58>42

41>59
 =  1.98
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Exposure ascertainment

Sensitivity* Specificity†

Cases Controls Cases Controls Odds ratio

0.90 0.60 1.00 1.00 5.79

0.60 0.90 1.00 1.00 2.22

1.00 1.00 0.90 0.70 1.00

1.00 1.00 0.70 0.90 4.43

*Sensitivity of  the exposure identification is defined as the proportion of  all truly exposed correctly classified by the study.
†Specificity of  the exposure identification is defined as the proportion of  all truly unexposed correctly classified by the study.

Table 4-8 Examples of the effects of differential sensitivity and specificity of exposure 
ascertainment on the odds ratio (OR) for a true OR of 3.86 and a control exposure  
prevalence of 0.10.

Premelanoma diagnosis 
information 

(“gold standard”)
Postmelanoma diagnosis 

information

Cases Controls Cases Controls

Hair color

Red or blond (exposed) 11 37 11 41

Brown or black (unexposed) 23 197 23 193

Odds ratio 2.5 2.3

Tanning ability

N o tan, practically no tan, or light 
tan (exposed) 9 79 15 77

M edium, average, deep, or dark 
tan (unexposed) 25 155 19 157

Odds ratio 0.7 1.6

Source: Data from MA Weinstock et al., Recall (Report) Bias and Reliability in the Retrospective Assessment of  
Melanoma Risk. American Journal of Epidemiology, Vol 133, pp. 240–245, © 1991.

Table 4-9 Reported hair color and tanning ability among incident cases and controls in a 
case-control study of melanoma within the Nurses Health Study cohort.

ability, however, was severe, leading to a reversal of  the direction of  the association. 
Assuming no random variability, the true association (i.e., that detected using the 
premelanoma diagnosis information) suggests a protective effect (odds ratio  0.7),  
whereas the observed postdiagnosis association (odds ratio  1.6) indicates a 
greater melanoma odds associated with a low tanning ability. It is of  interest that the 
misclassification of  exposure as measured by tanning ability seems to have resulted 
in only a slight change in odds of  exposure in controls (from 79:155 to 77:157). 
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In cases, however, the misclassification effect was substantial, with the number of  
individuals classified as “exposed” increasing from 9 to 15 between the first and the 
second interviews.

The cross-tabulation of  the premelanoma and postmelanoma diagnosis data 
enables a more detailed analysis of  this situation by the calculation of  sensitivity 
and specificity of  tanning ability ascertainment in cases.* As shown in Table 4-10, 
the sensitivity of  89% of  the postmelanoma diagnosis interviews resulted in the 
correct classification of  eight of  the nine truly exposed cases. However, a speci-
ficity of  only 72% led to a relatively large number of  unexposed persons in the 
“false-positive” cell and thus to a marked increase in the postdiagnosis exposure 
odds (true exposure odds in cases, 9:25 or 0.36:1.0; biased exposure odds, 15:19 
or 0.79:1.0). Such change resulted in an odds ratio in the  postdiagnosis study in a 
direction opposite to that of  the true value. As mentioned previously (Section 4.3.1), 
differential misclassification in the study by Weinstock et al.11 probably occurred 
because of  recall bias. Additional misclassification may have occurred because the 
questions on hair color and tanning ability were not exactly the same in the inter-
views conducted before and after diagnosis. The latter, however, would be expected 
to result in nondifferential misclassification (equally affecting cases and controls). 
(In addition, if  the misclassification had been  nondifferential, that is, if  the sensi-
tivity and specificity values observed among the cases had been the same in controls, 
the odds ratio would have changed from the true [premelanoma diagnosis] value of  
0.7 to a  misclassified value of  0.83—that is, an estimate of  the association biased 
toward the null value.)

*In the paper by Weinstock et al.,11 sensitivity and specificity of  postdiagnosis responses on tanning ability 
were provided only for cases.

Premelanoma diagnosis information 
(“gold standard”)

Postmelanoma diagnosis 
information

No tan, practically 
no tan, or light tan 

(“exposed”)

Medium, average, 
deep, or dark tan 

(“unexposed”)

Total  
(case-control 
classification)

N o tan, practically no tan, or 
light tan (“exposed”)

 
8 (TP)

 
7 (FP)

 
15

M edium, average, deep, or dark 
tan (“unexposed”) 1 (FN) 18 (TN) 19

Total (“true classification”) 9
Sensitivity:
8/9  89%

25
Specificity:

18/25  72%

34

Note: TP: True positives; FP: False positives; FN: False negatives; TN: True negatives.
Source: Data from MA Weinstock et al., Recall (Report) Bias and Reliability in the Retrospective Assessment of  
Melanoma Risk. American Journal of  Epidemiology, Vol 133, pp. 240–245, © 1991.

Table 4-10 Distribution of incident cases in the Nurses Health Study cohort, 1976 to 1984, 
according to responses given with regard to tanning ability prior to the development of melanoma 
and after diagnosis was made.
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An example of  both differential and nondifferential misclassification is given by a 
case-control study of  childhood acute lymphoblastic leukemia conducted by Infante-
Rivard and Jacques.28 Four hundred and ninety-one cases and two sets of  age-, sex- 
and broad geographical area-matched controls were chosen, one set from a population 
sample and the other from among hospital patients. For each individual in the study, the 
authors measured the actual distance between the residence and the nearest power line 
and compared this distance with the parent’s answer to the question, “Within a radius 
of  1 km of  your house, was there a high-voltage power line?” The authors classified cases 
into those living in a geographic area where people were concerned about an excess 
of  the disease (“GA” cases) and “other” cases. When comparing GA cases with either 
population or hospital controls, substantial differential misclassification was detected, 
with a higher sensitivity, but lower specificity was seen for GA cases (Table 4-11). If—to 
calculate the odds ratio—analyses were limited to “other” cases versus hospital controls, 
however, nondifferential misclassification would have resulted, as their sensitivity and 
specificity values were found to be almost the same.

Effect of Misclassification of a Confounding Variable
Misclassification also affects the efficiency of  adjustment for confounding effects. 
Whereas a nondifferential misclassification of  a potential risk factor tends to bias the 
measure of  association toward the null hypothesis, nondifferential misclassification of  a 
confounding variable results in an imperfect adjustment when that variable is matched 
or controlled for in the analyses (see Chapters 5 and 7).29 This imperfect adjustment 
results in residual confounding (see Sections 5.5.4 and 7.6).

Prevention of Misclassification
Misclassification has been extensively discussed in the epidemiological literature,30–33 
reflecting its importance in epidemiologic studies. As seen in the examples described 
in this section, misclassification may severely distort the magnitude of  an association 
between a risk factor and a disease. If  the true relative risk or odds ratio is close to 1.0, 
a nondifferential misclassification may completely mask the association. For example, 
for an exposure with a prevalence as high as 16% (i.e., in a range not unlike that of  

Sensitivity (%)* Specificity (%)*

GA cases† 61.9 54.4

Other cases 34.9 90.6

Population controls 22.2 89.4

Hospital controls 35.8 90.2

*Gold standard: measured distance.
†Cases living in a geographic area where people were concerned about an excess of  acute lymphoblastic leukemia cases.
Source: Data from C Infante-Rivera and L Jacques, Empirical Study of  Parental Recall Bias. American Journal of  Epidemiology, 
Vol 152, pp. 480–486, © 2000.

Table 4-11 Sensitivity and specificity of response by parent of childhood (age 9 years or less) 
acute lymphoblastic leukemia cases to question, “Within a radius of 1 km (1000 m) of your house, 
was there a high-voltage power line?” Montreal Island, Quebec, Canada, 1980–1993.
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many risk factors), if  the true odds ratio is approximately 1.3, the observed odds ratio 
may be virtually 1.0 if  a nondifferential misclassification resulted from a measurement 
procedure with both sensitivity and specificity levels of  approximately 70%. Differential 
misclassification of  a confounding variable, on the other hand, may either dilute 
or strengthen an association, or even produce a spurious one. When the exposure is 
common, failing to demonstrate a real relationship or inferring that an association exists 
when it is spurious may have serious public health consequences (see Chapter 10).

Data are usually not available to allow a comparison between correctly classified and 
misclassified individuals in terms of  available characteristics (e.g., educational level), 
but when they are, they may be informative. As seen in Table 4-10, of  the 34 incident 
cases included in the case-control study on melanoma nested in the Nurses’ Health 
Study cohort, 26 were correctly classified (8 true positives and 18 true negatives),11 
and 8 were misclassified (7 false positives and 1 false negative). A comparison could 
be made, for example, between the false positives and true negatives on the one hand 
(addressing the issue of  specificity) and between the false negatives and true positives on 
the other (addressing the issue of  sensitivity). In the Nurses’ Health Study, the authors 
reported no important differences between the correctly and the incorrectly classified 
cases. (When studying tanning ability, it would not be unreasonable to postulate that 
recall of  tanning ability could be influenced by factors such as family history of  skin 
diseases or involvement in outdoor activities.) Similarity in pertinent characteristics of  
correctly classified and misclassified persons may perhaps indicate that recall bias is not 
a probable explanation for the misclassification and raises the possibility that the infor-
mation bias originated from problems related to the instrument or the observer. Thus, 
the comparison between misclassified and nonmisclassified subjects need not be limited 
to respondent characteristics and should also include aspects of  the data collection 
procedures. When interviews are taped, adherence to the protocol by interviewers can 
be compared. Additionally, information should be obtained on the reliability and validity 
of  the instrument (e.g., a questionnaire), as discussed in Chapter 8.

A more general approach to assess information bias is based on the evaluation of  
the odds of  “inaccurate self-reporting” as the outcome of  interest (i.e., without speci-
fication of  sensitivity or specificity). An example is given by a study of  the validity of  
self-reported AIDS-specific diagnoses (such as esophageal candidiasis) vis-à-vis AIDS 
diagnoses documented by AIDS surveillance registries—with the latter used as the 
“gold standard.”34 In this study, when compared with former smoking and no smoking, 
current smoking was found to be strongly related to “inaccurate self-reporting” of  any 
AIDS-specific diagnoses, as expressed by an odds ratio of  2.6 (95% confidence interval, 
1.2, 5.6). On the other hand, the odds of  inaccurate self-reporting in this study did not 
appear to be related to age, ethnic background, education, or time since the patient had 
first tested positive for the human immunodeficiency virus (HIV).

Prevention of  misclassification of  exposure and outcome is a function of  the “state- 
of-the-art” measurement techniques that can be safely applied to the large number of  
subjects participating in epidemiologic studies. The use of  objective (e.g., biological) 
markers of  exposure and more accurate diagnostic techniques for ascertainment of  
outcomes, such as the use of  ultrasound to diagnose asymptomatic atherosclerosis,13 
constitutes the most efficient approach for ameliorating the problems related to misclas-
sification bias. In the meantime, if  sensitivity and specificity of  outcome or exposure 
measurements are known, it is possible to correct for misclassification; for example, in a 
case-control study, this can be done by using available formulas that estimate a “corrected 
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odds ratio” as a function of  the “observed odds ratio” and the estimated sensitivity and 
specificity of  the exposure classification.31–34,35 Furthermore, correction methods that 
can be applied to situations in which measurement errors affect both exposure variables 
and covariates (either categorical or continuous variables) have been described.36 When 
misclassification parameters are unknown, sensitivity analysis could be used to obtain a 
range of  plausible “corrected” estimates under different assumptions about the levels of  
misclassification (see Chapter 10, Section 10.3).

4.4  COMBINED SELECTION/INFORMATION BIASES

This section discusses biases that have both selection and information components. These 
include biases related to medical surveillance, cross-sectional studies, and evaluation of  
screening. The sections on cross-sectional and screening evaluation biases may seem 
somewhat repetitious vis-à-vis previous discussions on selection and information biases 
in this chapter. They have, however, been included here because they include examples 
specific to these areas and thus may be of  special value to those especially interested in 
cross-sectional and screening intervention studies.

4.4.1  Medical Surveillance (or Detection) Bias
Medical surveillance bias occurs when a presumably medically relevant exposure leads 
to a closer surveillance for study outcomes that may result in a higher probability of  
detection in exposed individuals (i.e., when the identification of  the outcome is not 
independent of  the knowledge of  the exposure). This type of  bias is particularly likely 
when the exposure is a medical condition or therapy—such as diabetes or use of  oral 
contraceptives—that leads to frequent and thorough checkups and the outcome is a 
disease that is characterized by a high proportion of  subclinical cases and thus likely to 
be diagnosed during the frequent medical encounters resulting from the need to monitor 
the “exposure.” For example, although there may be no basis to believe that oral contra-
ceptive use can lead to renal failure, a spurious association would be observed if  women 
taking oral contraceptives were more likely than other women to have medical checkups 
that included repeated measurements of  serum creatinine concentration.

Depending on the study design, medical surveillance bias can be regarded as a type of  
either selection bias or information bias. In the context of  a case-control study, medical 
surveillance bias can occur if  cases are more likely to be identified (or selected into the 
study) if  they are exposed (see Figure 4-2). In a cohort study, medical surveillance bias 
may be akin to information bias if, for example, the exposed individuals undergo a more 
thorough examination than the unexposed individuals. 

Medical surveillance bias is more likely to occur when the outcome is ascertained 
through regular healthcare channels (e.g., electronic health records). Alternatively, when 
the outcome is assessed systematically, regardless of  exposure in a concurrent cohort design, 
medical surveillance bias is less likely to occur.3 Thus, meticulously standardized methods 
of  outcome ascertainment are routinely used in most major cohort studies, such as the 
classic Framingham Study37 or the Atherosclerosis Risk in Communities Study.13 Another 
strategy to prevent medical surveillance bias that can be used when conducting cohort 
studies is to mask exposure status when ascertaining the presence of  the outcome.

The strategies mentioned heretofore may not be feasible, however, when carrying 
out a case-control study in which the case diagnosis may have already been affected 
by the presence of  the exposure. When this occurs, for analytical purposes, information 
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should be obtained on the frequency, intensity, and quality of  medical care received by study 
 participants. For example, to assess the relationship between use of  hormone replacement 
therapy and a given disease with a subclinical component (e.g., non–insulin-dependent 
diabetes) using a traditional case-control design, it is important to take into consider-
ation medical care indicators, such as the frequency of  medical visits in the past and 
whether the individual has medical insurance. Because education and socioeconomic 
status are usually related to availability and use of  medical care, they too should be taken 
into consideration when trying to assess surveillance bias. 

It is also possible to obtain information on variables that indicate awareness of  health 
problems, such as compliance with screening exams and knowledge of  subclinical 
disease or of  results of  blood measurements. For example, in a prospective study of  the 
relationship of  vasectomy to the risk of  clinically diagnosed prostatic cancer (that is, 
not through systematic examination), the possibility of  surveillance bias was assessed 
by examining variables that might reflect greater utilization of  medical care.38 In this 
study, no differences were found between subjects who had and those who had not had 
vasectomy with regard to their knowledge of  their blood pressure or serum cholesterol 
levels. The proportions of  study participants who had had screening sigmoidoscopy were 
also similar, leading the authors to conclude that vasectomized men were not under a 
greater degree of  medical surveillance than those who had not been vasectomized. In 
addition, the frequency of  digital rectal examinations was similar between the vasecto-
mized (exposed) and the nonvasectomized (unexposed) groups, implying equal access to 
a procedure that may lead to the diagnosis of  the study outcome (prostate cancer)

Finally, when medical surveillance bias occurs, the disease tends to be diagnosed earlier 
in exposed than in unexposed individuals; as a result, the proportion of  less advanced 
disease in a cohort study is higher in the exposed group. In a case-control study, the bias 
is denoted by the fact that the association is found to be stronger or present only for the 
less advanced cases. In the cohort study discussed previously, Giovannucci et al.38 found 
that the histologic severity staging of  prostate cancer was similar for vasectomized and 
nonvasectomized men, a finding inconsistent with what would be expected if  medical 
surveillance had been more intensive in the vasectomized group. Stratification by disease 
severity at diagnosis is thus an additional strategy to examine and take into consideration 
the possibility of  surveillance bias.

4.4.2  Cross-Sectional Biases
Cross-sectional biases can be classified as incidence–prevalence bias and temporal bias. 
The former is a type of  selection bias, whereas the latter can be regarded as an infor-
mation bias.

Incidence–Prevalence Bias
Incidence–prevalence bias may result from the inclusion of  prevalent cases in a study 
when the goal is to make inferences in relation to disease risk. As discussed in Chapter 3 
(Section 3.3), the strength of  an association is sometimes estimated using the prevalence 
rate ratio rather than the relative risk, as when analyzing data from a cross-sectional 
survey or when assessing cross-sectional associations at baseline in a cohort study. If  
the investigator is interested in assessing potentially causal associations, the use of  the 
prevalence rate ratio as an estimate of  the incidence ratio is subject to bias. Equation 2.3, 
described in Chapter 2 (Section 2.3), shows the dependence of  the point prevalence 
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odds [Prev/(1.0 – Prev)] on incidence (Inc) and disease duration (Dur), assuming that 
incidence and duration are approximately constant:

 
Prev

1.0 - Prev
= Inc * Dur

Equation 2.3 can be rewritten as Equation 2.4: 

Prev = Inc * Dur * (1.0 - Prev)

thus demonstrating that, in addition to incidence and duration, prevalence is a function 
of  the term (1.0 – Prev) (which, in turn, obviously depends on the magnitude of  the 
point prevalence rate).

As a corollary of  Equation 2.4, the point prevalence rate ratio comparing exposed 
(denoted by subscript “”) and unexposed (denoted by subscript “”) individuals, 
obtained in cross-sectional studies, will be a function of  (1) the relative risk, (2) the ratio 
of  the disease duration in exposed individuals to that in unexposed individuals, and (3) 
the ratio of  the term (1.0 – Prev) in exposed individuals to the same term in unexposed 
individuals. Ratios 2 and 3 represent two types of  incidence–prevalence bias, that is, the 
duration ratio bias and the point prevalence complement ratio bias, respectively, when the 
prevalence rate ratio (PRR) is used to estimate the relative risk (see Section 3.3):

PRR = a q+

q-

b * aDur+

Dur-

b * a1.0 - Prev+

1.0 - Prev-

b

Where q and q are the incidence values for exposed and unexposed individuals, 
respectively.

Duration Ratio Bias. This type of  bias (which can be thought of  as a type of  selection 
bias) occurs when the prevalence rate ratio is used as a measure of  association and 
the duration of  the disease after its onset is different between exposed and unexposed 
persons. (Because duration of  a chronic disease is so often related to survival, this type 
of  bias may also be designated as survival bias.) For diseases of  low prevalence, when the 
duration (or prognosis) of  the disease is independent of  the exposure (i.e., the same in 
exposed and unexposed), the prevalence rate ratio is a virtually unbiased estimate of  the 
relative risk. On the other hand, when the exposure of  interest affects the prognosis of  
the disease, bias will be present, as shown in the examples later in this chapter.

Point Prevalence Complement Ratio Bias. Even if  duration is independent of  exposure, 
regardless of  the direction of  the effect of  the factor on the outcome, the prevalence rate 
ratio tends to underestimate the strength of  the association between the exposure and the 
outcome (i.e., it biases the relative risk toward 1.0). The magnitude of  this bias depends 
on both the prevalence rate ratio and the absolute magnitude of  the point prevalence 
rates. When the point prevalence rate is higher in exposed than in unexposed individuals 
(prevalence rate ratio  1.0), the point prevalence complement ratio [or (1.0 – Prev)/
(1.0 – Prev)] is less than 1.0. It is close to 1.0 when the point prevalence rates are 
low in both exposed and unexposed, even if  the prevalence rate ratio is relatively high. 
For example, if  the prevalence of  the disease in exposed subjects is 0.04 and that in 
unexposed subjects is 0.01, the prevalence rate ratio is high (0.04/0.01  4.0), but the 
bias resulting from the point prevalence complement ratio is merely 0.96/0.99  0.97; 
i.e., still  1.0, but close enough to 1.0, so as to result in a practically negligible bias. On 
the other hand, when the prevalence is relatively high in exposed individuals, the point 
prevalence complement ratio can be markedly less than 1.0, thus resulting in important 
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bias. For example, if  the prevalence of  the disease in exposed subjects is 0.40 and that 
in unexposed subjects is 0.10, the prevalence rate ratio is the same as in the previous 
example (4.0); however, the point prevalence complement ratio is 0.6/0.90  0.67 (i.e., 
the prevalence rate ratio underestimates the relative risk by 33%—even in the absence 
of  duration ratio bias). The influence of  the magnitude of  prevalence is sometimes felt 
even for a low prevalence rate ratio. For example, if  the point prevalence rates are 0.40 
in exposed and 0.25 in unexposed subjects, the prevalence rate ratio is fairly small (1.6), 
but the bias factor is 0.80 (i.e., the prevalence rate ratio underestimates the relative risk 
by at least 20%—and more if  there is also duration ratio bias). Obviously, the bias will 
be greatest when both the prevalence rate ratio and the prevalence rate in one of  the 
groups (exposed or unexposed) are high. For studies of  factors that decrease the preva-
lence of  the disease (i.e., prevalence rate ratio  1.0), the reciprocal reasoning applies; 
that is, (1.0 – Prev)/(1 – Prev) will be greater than 1.0, and the magnitude of  the bias 
will also be affected by the absolute rates.

Examples of  Incidence–Prevalence Biases. In the examples that follow, it is assumed that 
the incidence and duration according to the exposure have remained stable over time.

•	 Gender and acute myocardial infarction in US whites: White US males have a much 
higher risk of  myocardial infarction than white females. Some studies, however, 
have shown that, even after careful age adjustment, females have a shorter average 
survival than males.39 Thus, the ratio (Durmales/Durfemales) tends to be greater than 
1.0, and as a consequence, the prevalence rate ratio expressing the relationship of  
sex to myocardial infarction overestimates the relative risk.

•	 Current smoking and emphysema: Smoking substantially increases the risk of  
emphysema. In addition, survival (and thus duration of  the disease) in emphysema 
patients who continue to smoke after diagnosis is shorter than in those who quit 
smoking. As a result, prevalence rate ratios estimated in cross-sectional studies 
evaluating the association between current smoking and emphysema tend to 
underestimate the relative risk.

•	 Tuberculin purified protein derivative (PPD) reaction and clinical tuberculosis: In assess-
ments of  the relationship between the size of  the PPD skin test reaction and clinical 
tuberculosis, prevalence rate ratios were shown to underestimate relative risks in a 
population-based study carried out by G Comstock et al. (unpublished observations) 
a few decades ago (Figure 4-5). This underestimation was likely due to the relatively 
high prevalence of  clinical tuberculosis in this population at the time the study was 
carried out and thus to the occurrence of  prevalence complement ratio bias.

Prevention of  Incidence–Prevalence Bias. If  the goal is to evaluate potential disease 
determinants, whenever possible, incident cases should be used in order to avoid 
incidence–prevalence bias. Incidence–prevalence bias, although more easily concep-
tualized by comparing incidence with prevalence (cross-sectional) rate ratio data, may 
also occur in case-control studies when prevalent rather than only newly developed 
(incident) cases are used. For example, if  smoking decreases survival after diagnosis, 
thereby decreasing the disease’s duration (as in myocardial infarction), a case-control 
study based on prevalent cases may include a higher proportion of  nonsmoking cases 
(as smokers would have been selected out by death) than would a study based on incident 
cases, thus diluting the strength of  the association (see Chapter 1, Figure 1-19).

Another problem in case-control studies is that newly diagnosed cases are used as proxies 
for newly developed cases. Thus, for diseases that may evolve subclinically for many years 
before diagnosis, such as chronic lymphocytic leukemia, diabetes, or renal insufficiency, 
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presumed incident cases are, in fact, a mix of  incident and prevalent cases, and incidence–
prevalence bias may occur unbeknownst to the investigator. A cohort study efficiently 
prevents incidence–prevalence bias if  its procedures include careful ascertainment and 
exclusion of  all prevalent cases at baseline (clinical and subclinical) as well as a systematic 
and periodic search of  newly developed clinical and subclinical outcomes.

Temporal Bias
In cross-sectional studies, the proper temporal sequence needed to establish causality, 
risk factor → disease, cannot be firmly established. In other words, it is difficult to know 
which came first, the exposure to the potential risk factor or the disease. Temporal bias 
occurs when the inference about the proper temporal sequence of  cause and effect is 
erroneous. For example, results from a prevalence survey may establish a statistical 
association between high serum creatinine levels and the occurrence of  high blood 
pressure. Because the time sequence cannot be established, however, a cross-sectional 
association between these variables may mean either that high serum creatinine (a 
marker of  kidney failure) leads to hypertension or vice versa. A prospective study in 
which blood pressure levels are measured in persons with normal serum creatinine 
levels, who are then followed over time for ascertainment of  hypercreatininemia can 
obviously identify the proper temporal sequence and thus lend support to the conclusion 
that high blood pressure predicts incipient renal insufficiency.40

Temporal bias may also occur in case-control studies—even those including only 
newly developed (incident) cases—when the suspected exposure is measured after 
disease diagnosis in cases. For example, because hepatitis B virus (HBV) is myelotoxic, 
it has been suggested that HBV may be an etiologic factor for the so-called idiopathic 
aplastic anemia (AA).41 Temporal bias, however, could explain the relationship between 
HBV and AA in a case-control study if  serum samples for determination of  HBV antibody 

Figure 4-5 Schematic representation of the results of the study by Comstock et al. 
(unpublished) evaluating the relationship of size of PPD reaction to clinical tuberculosis. After 
an initial cross-sectional survey conducted in 1946, the cohort was followed over time for 
determination of incidence rates. 
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and antigen levels had been collected after AA onset, as individuals with AA may receive 
transfusions of  blood contaminated with HBV even before a diagnosis is made. Thus, the 
erroneously inferred sequence is:

HBV → AA, 

but the true sequence is: 

undiagnosed AA → blood transfusion → diagnosed AA.

An example of  the reasoning underlying the possibility of  temporal bias is given by 
the association between estrogen replacement therapy (ERT) in postmenopausal women 
and endometrial cancer.42 Although the causal nature of  this association is currently 
well established, it was initially disputed on the grounds that a higher likelihood of  using 
ERT resulted from symptoms occurring as a consequence of  incipient, undiagnosed 
endometrial cancer.43 Thus, instead of  the sequence: 

ERT → endometrial cancer, 

the true sequence would be: 

undiagnosed endometrial cancer → symptoms → ERT → diagnosed endometrial cancer.

Another example of  temporal bias is given by a cross-sectional study of  Dutch children, 
in which negative associations were found of  pet ownership with allergy, respiratory 
symptoms, and asthma.44 As aptly postulated by the study’s investigators, these results 
may have resulted from the fact that families are likely to remove from the home (or not 
acquire) pets after such manifestations occur. This study also underscores why the term 
“reverse causality” is occasionally used in connection with a temporal bias of  this sort.

A further example of  this type of  bias was suggested by Nieto et al.,45 who found that 
the relationship of  current smoking to prevalent clinical atherosclerosis (defined by self-
reported physician-diagnosed heart attack or cardiac surgery) was much stronger when 
using longitudinal data than when using cross-sectional data (in contrast to the associ-
ation between smoking and subclinical atherosclerosis, which was of  similar strength 
for the longitudinal and the cross-sectional data). One possible explanation for these 
findings was that the occurrence of  a heart attack (but not the presence of  subclinical 
atherosclerosis) may lead to smoking cessation and thus to a dilution of  the association 
when using prevalent cases.* This type of  bias may occur even in prospective analyses 
when the outcome of  interest is mortality. For example, the short-term mortality from 
lung cancer can be higher in individuals who stopped smoking recently than in current 
smokers because of  the tendency of  symptomatic individuals or those for whom a 
diagnosis has been made to quit smoking.46 Epidemiologists usually handle this bias 
by excluding from the analysis the deaths that occur within a specified period after the 
beginning of  the study.

To prevent temporal bias in a cross-sectional survey, it is occasionally possible to 
improve the information on temporality when obtaining data through questionnaires. 
Temporality pertaining to potential risk factors such as smoking, physical activity, and 
occupational exposures can be ascertained in cross-sectional samples by means of  
questions such as, “When were you first exposed to . . . ?” For some chronic diseases, 
such as angina pectoris, it is also possible to obtain information on the date of  onset. 

*Survival bias is, of  course, another explanation, resulting from a poor prognosis of  myocardial infarction in 
smokers.
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The investigators can then establish the temporal sequence between risk factor and 
disease—assuming, of  course, that the information from surveyed individuals is 
accurate. (Obviously, even if  temporality can be established in a cross-sectional study, 
the investigator will still have the incidence–prevalence bias to contend with.) When the 
date of  the beginning of  the exposure is unknown, as in the example of  viral hepatitis 
and AA the only solution is to use prospective data on exposure and outcome (a formi-
dable challenge in this example, given the rarity of  AA).

Finally, it may be possible to assess temporal bias occurring because the presumed 
exposure is a consequence of  undiagnosed disease—as in the example of  ERT and endome-
trial cancer mentioned previously in this chapter—by considering why the exposure 
occurred. In the study of  Antunes et al.,42 for instance, data can be stratified according to 
indication for ERT use, such as bleeding; if  temporal bias is not a likely explanation for the 
relationship of  estrogen to endometrial cancer, the association will be observed both for 
individuals who were prescribed estrogens because they were bleeding and for those who 
were given estrogens for other reasons (e.g., prevention of  osteoporosis).

4.4.3  Biases Related to the Evaluation of Screening Interventions
Like any other epidemiologic study, studies of  the evaluation of  screening interventions 
are also prone to biases, of  which five types are particularly relevant: selection bias, 
incidence–prevalence bias, length bias, lead time bias, and over diagnosis bias. (For a 
better understanding of  these types of  biases, the reader should review the concepts 
underlying the natural history of  disease; see, e.g., Gordis.10)

Selection Bias
Selection bias stems from the fact that when the evaluation of  screening relies on an 
observational design, the screened group may differ substantially from the nonscreened 
group. Thus, for example, persons who attend a screening program may be of  a higher 
socioeconomic status than those who do not and may therefore have a better prognosis 
regardless of  the effectiveness of  the screening program. Prevention of  this type of  
selection bias is best carried out by using an experimental design (i.e., by randomly 
assigning screening status to study participants). While improving internal validity, 
however, experimental studies to evaluate screening programs are typically conducted 
in selected populations, thus potentially limiting their external validity.

Incidence–Prevalence Bias
Survival bias results from comparing prognosis in prevalent cases detected in the first 
screen, which is akin to a cross-sectional survey, with that in incident cases detected 
in subsequent screenings. This bias occurs because prevalent cases include long-term 
survivors, who have a better average survival than that of  incident cases, in whom 
the full spectrum of  severity is represented. This type of  bias may occur in “pre–post” 
studies, as when comparing a screening strategy used in the first screening exam (“pre”) 
that identifies prevalent cases with a different strategy used in subsequent screens identi-
fying incident cases (“post”).

A related bias is the so-called length bias, which occurs when a better prognosis for 
cases detected directly by the screening procedure (e.g., occult blood test for colorectal 
cancer) than for cases diagnosed between screening exams is used as evidence that the 
screening program is effective. To understand this type of  bias, it is important to briefly 
review some key concepts related to the natural history of  a disease and screening.
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The effectiveness of  screening is positively related to the length of  the detectable 
preclinical phase (DPCP; see Figure 4-6 and, for definitions, Table 4-12), which in turn 
reflects the rate at which the disease progresses. This means that for diseases with a rapid 
progression, it is difficult, if  not outright impossible, to improve prognosis by means 
of  early detection. For example, a short average DPCP and its attending poor survival 
characterize most cases of  lung cancer, for which screening generally is not effective. 
On the other hand, the long DPCP of  in situ cervical cancer (or high-grade squamous 
intraepithelial lesions) explains why treatment after an abnormal Pap smear is related to 
a cure rate of  virtually 100%.

Even for the same disease, regardless of  screening, it can be shown that patients whose 
disease has a longer DPCP have a better prognosis than those whose disease has a shorter 
DPCP (e.g., postmenopausal versus premenopausal breast cancer, respectively). For 
example, in the Health Insurance Plan Study of  the effectiveness of  screening for breast 
cancer, the so-called interval cases—that is, cases who were clinically diagnosed during 
the interval between the screening exams—had, on average, a higher case fatality rate 
than subclinical cases diagnosed as a result of  the screening exam.47 Although some 
of  these cases may have been false negatives missed by the previous screening exam 
and therefore not true interval cases, many were probably characterized by rapidly 
growing tumors—that is, by a short DPCP (Figure 4-7). It follows that when evalu-
ating a screening program, one must take into careful consideration the fact that cases 
detected by the screening procedure (e.g., mammography), which thus tend to have a 
longer DPCP, have an inherently better prognosis than the “interval” cases, regardless 
of  the effectiveness of  screening. Failure to do so results in length bias, which occurs when 
a better prognosis for “screening-detected” than for “interval” cases is used as evidence 
that the screening program is effective, when in reality it may be due to the longer DPCP 
of  the former cases, reflecting a slower growing disease than that of  interval cases.

Prevention of  length bias can be accomplished by using an experimental approach 
and comparing the prognosis of  all cases—which include cases with both short and long 
DPCPs—occurring in individuals randomly assigned to a screening program with that 

Figure 4-6 Natural history of a disease.
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of  all cases occurring in randomly assigned controls that do not undergo the screening 
exams. (The distribution of  patients with long DPCPs versus those with short DPCPs is 
expected to be the same in the randomly assigned screening and control groups.)

Lead Time Bias
Lead time is the time by which diagnosis can be advanced by screening. It is the time between 
early diagnosis (Figure 4-6, point C) and the usual time when diagnosis would have been 
made if  an early diagnostic test(s) had not been applied to the patient (Figure 4-6, point E; 
see also Table 4-12). The lead time, therefore, is contained within the DPCP.

When evaluating effectiveness of  screening, lead time bias occurs when survival (or 
recurrence-free time) is counted from the point in time when early diagnosis was made. 
Thus, even if  screening is ineffective, the early diagnosis adds lead time to the survival 
counted from the time of  usual diagnosis. Survival may then be increased from time of  
early diagnosis but not from the biological onset of  the disease (Figure 4-8).48

Lead time bias occurs only when estimating survival (or time-to-event) from time 
of  diagnosis. Thus, lead time bias can be avoided by calculating the mortality risk or 
rate among all screened and control subjects rather than the cumulative probability 
of  survival (or its complement, the cumulative case fatality probability) from diagnosis 
among cases.10 If  survival from diagnosis is chosen as the strategy to describe the results 
of  the evaluation of  a screening approach, the average duration of  lead time must be 
estimated and taken into account when comparing survival after diagnosis between 
screened and nonscreened groups. For survival to be regarded as increased from 
the biological onset, it must be greater than the survival after usual diagnosis plus lead 
time (Figure 4-9). It is, thus, important to estimate average lead time.

Figure 4-7 Schematic representation of the length of the detectable preclinical phase (DPCP) 
in cases occurring during a screening program. Cases with a longer DPCP (cases no. 1, 3, and 8) 
have a higher probability of identification at each screening exam. Cases with a shorter DPCP 
occurring between screening exams are the “interval” cases (cases no. 2, 4, 6, and 7). Case no. 5 
is a false negative (missed by the first exam).
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If  the disease for a given individual is identified through screening, it is impossible to 
know when “usual” diagnosis would have been made if  screening had not been carried 
out. Thus, it is not possible to estimate the lead time for individual patients, only an 
average lead time. What follows is a simplified description of  the basic approach used to 
estimate average lead time. A more detailed account of  lead time estimation is beyond 
the scope of  this intermediate methods text and can be found elsewhere.48

Component
Represented in 

Figure 4-6 as . . . Definition

Detectable 
preclinical phase

The interval between 
points B and E

Phase that starts when early diagnosis becomes 
possible and ends with the point in time when usual 
diagnosis based on symptomatic disease would have 
been made.

Critical points D1, D2, and D3 Points beyond which early detection and treatment 
are less and less effective vis-à-vis treatment following 
usual diagnosis. Treatment is totally ineffective after 
the last critical point (point D3 in the figure).

Lead time The interval between 
points C and E

Period between the point in time when early 
diagnosis was made and the point in time when the 
usual diagnosis (based on symptoms) would have 
been made.

Source: Adapted from L. Gordis, Epidemiology, 4th Edition © 2008, Elsevier Saunders.

Table 4-12 Natural history of a disease: definitions of components represented in Figure 4-6.

Source: Adapted from L Gordis, Epidemiology, © 2008, Elsevier Saunders.

Figure 4-8 Schematic representation of lead time bias: in spite of the early diagnosis by 
screening, survival of patient A is the same as survival of patient B, whose disease was diagnosed 
because of clinical symptoms, because survival (A)  (1) lead time  (2) survival (B). 
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As mentioned previously, the lead time is a component of  the DPCP. Thus, to estimate 
the average lead time, it is first necessary to estimate the average duration of  the DPCP 
(DurDPCP) using the known relationship between prevalence (PrevDPCP) and incidence 
(IncDPCP) of  preclinical cases: that is, cases in the DPCP (see also Chapter 2, Section 2.3, 
Equation 2.4): 

PrevDPCP = IncDPCP * DurDPCP * (1.0 - PrevDPCP)

The duration of  the DPCP can then be easily derived as 

DurDPCP =
PrevDPCP

IncDPCP * (1.0 - PrevDPCP)

If  the prevalence of  the disease is not too high (e.g., no greater than about 5%),  
1.0 – PrevDPCP will be close to 1.0, and thus, this equation can be simplified:

DurDPCP 
PrevDPCP

IncDPCP

To apply this formula, the PrevDPCP is estimated using data from the first screening exam 
of  the target population, which is equivalent to a cross-sectional survey. The IncDPCP can 
be estimated in successive screening exams among screenees found to be disease-free at 
the time of  the first screening. An alternative way to estimate IncDPCP, and one that does 
not require follow-up with the screenees, is to use the incidence of  clinical disease in the 
reference population, if  available. The rationale for this procedure, and an important 
assumption justifying screening, is that, if  left untreated, preclinical cases would neces-
sarily become clinical cases; thus, there should not be a difference between the incidence 
of  clinical and that of  preclinical disease. When using available clinical disease incidence 

Figure 4-9 Schematic representation of lead time bias: survival of patient A from early diagnosis 
is better than survival of patient B, because survival (A)  (1) lead time  (2) survival (B). 

Source: Adapted from L Gordis, Epidemiology, © 2008, Elsevier Saunders.
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(e.g., based on cancer registry data), however, it is important to adjust for differences in 
risk factor prevalence, expected to be higher in screenees than in the reference population 
from which clinical incidence is obtained. Thus, for example, a family history of  breast 
cancer is likely to be more prevalent in individuals screened for breast cancer than in the 
female population at large.

Next, using the duration of  the DPCP estimate, the estimation of  the average lead 
time needs to take into account whether early diagnosis by screening is made at the first 
or in subsequent screening exams.

The estimation of  the lead time of  point prevalent preclinical cases detected at the 
first screening exam relies on certain assumptions regarding the distribution of  times 
of  early diagnosis during the DPCP. For example, if  the distribution of  early diagnosis 
by screening can be assumed to be homogeneous throughout the DPCP—that is, if  the 
sensitivity of  the screening test is independent of  time within the DPCP (Figure 4-10A)—
the lead time of  point prevalent preclinical cases can be simply estimated as

Lead time =
DPCP

2

The latter assumption, however, may not be justified in many situations. For most 
dis e ases amenable to screening (e.g., breast cancer), the sensitivity of  the screening 
test, and thus the probability of  early diagnosis, is likely to increase during the 
DPCP (Figure 4-10B) as a result of  the progression of  the disease as it gets closer to 
its symptomatic (clinical) phase. If  this is the case, a more reasonable assumption 
would be that the average lead time is less than one-half  of  the DPCP. Obviously, the 
longer the DPCP, the longer the lead time under any distributional assumption. 
Also, because the DPCP and thus the average lead time are dependent on the validity of  
the screening exam, they become longer as more sensitive screening tests are developed.

Figure 4-10 Estimation of lead time as a function of the variability of the sensitivity of the screening 
exam during the detectable preclinical phase. 

A. Sensitivity of  screening exam is same 
throughout the detectable preclinical 
phase (DPCP): average lead time = ½ DPCP

B. Sensitivity of  screening exam increases 
during the detectable preclinical phase 
(DPCP) as a result of  the progression of  
the disease: average lead time < ½ DPCP

DPCP Clinical phase

DPCP Clinical phase
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The duration of  the lead time for incident preclinical cases identified in a program in 
which repeated screening exams are carried out is a function of  how often the screenings 
are done (i.e., the length of  the interval between successive screenings). The closer in time 
the screening exams are, the greater the probability that early diagnosis will occur closer 
to the onset of  the DPCP—and thus, the more the lead time will approximate the DPCP.

Figure 4-11 schematically illustrates short and long between-screening intervals and 
their effects on the lead time. Assuming two persons with similar DPCPs whose diseases 
start soon after the previous screening, the person with the shorter between-screening 
interval (a to b, patient A) has his or her newly developed preclinical disease diagnosed 
nearer the beginning of  the DPCP than the person with the longer between-screening 
interval (a to c, patient B). Thus, the duration of  the lead time is closer to the duration of  
the DPCP for patient A than for patient B. The maximum lead time obviously cannot be 
longer than the DPCP.49

Over-Diagnosis bias
Over-diagnosis bias occurs when screening identifies patients whose early subclinical 
disease does not evolve to more advanced stages. Results of  two recent trials of  screening 
for prostate cancer with prostate-specific antigen (PSA) illustrate a potential over-
diagnosis bias. In the US-based trial,50 the cumulative hazards of  death for individuals 
tested with PSA and for the control group were virtually the same for most of  the 

Figure 4-11 Relationship between frequency of screening and duration of lead time. 
Horizontal lines represent duration of detectable preclinical phase (DPCP). In patient A, the second 
screening exam is carried out soon after the first screening exam: lead time  DPCP. In patient B, 
the between-screening interval is longer: lead time  (0.5)  DPCP. 
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follow-up and at the end of  the trial. In the European trial,51 a significant difference in 
mortality could not be found between the screened and nonscreened groups. Because 
PSA is a reasonably sensitive test for the early diagnosis of  prostate cancer, these results 
seem to be fairly surprising. A possible explanation for the results of  these two studies 
is that as many as one-third of  men younger than 70 years and between two-thirds 
to 100% of  older men may have prostate cancer, but often in a microscopic, nonin-
vasive form (see Table 4-13).52 Thus, it is likely that many individuals—particularly 
as they age—die with prostate cancer, rather than from prostate cancer. Because it is 
not currently possible to identify cases that would not evolve to more invasive stages 
leading to death, if  they represent a relative high proportion of  all cases, the efficiency 
of  screening would be diluted by their inclusion, when evaluating PSA. For example, in 
a population of  10,000, there are 2000 potential lethal cases that, without screening, 
would all die. With screening, and assuming that the effectiveness of  the treatment 
is very high, 97.5%, only 50 deaths would occur. If  the potentially lethal cases could 
be identified and screened, the number needed to screen to prevent one death would 
be 40 (i.e., 2000/50). On the other hand, if  these potentially lethal cases could not be 
identified, the whole target population would have to be screened, and the number 
needed to screen to prevent one death would be 200 (i.e., 10,000/50). Thus, screening 
of  only the “lethal” subgroup (those who would have died without screening) would be 
much more efficient than screening the whole target population. 

Unfortunately, it is currently impossible to identify patients with prostate cancer who, 
if  left unscreened, would result in death. A similar problem may exist with regard to 
in situ breast cancer.53

Age (years) Prevalence ranges of  prostate cancer (%)

50–59 10–42%

60–69 17–38%

70–79 25–66%

    80 18–100%

Source: Adapted from: Franks, J Pathol Bacteriol. 1954;68:603–616; Bostwick et al., Cancer. 1992;70:291–301; 
Breslow et al., Int J Cancer. 1977;20:680–688; Baron & Angrist, Arch Pathol. 1941;32:787–793; Edwards et al., Cancer. 
1953;6:531–554; Halpert & Schamlhorst, Cancer. 1966;695–698; Scott et al., J Urol. 1969;101:602–607.

Table 4-13 Range of prevalence rates (%) of prostate cancer by age.
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EXERCISES

 1. In a case-control study of  risk factors of  colon cancer, 430 cases were compared 
with 551 controls. The investigators used a questionnaire to obtain information 
about demographic variables, socioeconomic variables (e.g., education), weight, 
and height, among other variables. Using the self-reported weight and height 
information, body mass index [BMI, weight (kg)/height (m)2] values were calcu-
lated. Participants with BMI  30 kg/m2 were considered “obese.” The  association 
between obesity and colon cancer in this study is shown in the table.

Cases Controls

Obese 162 133

Nonobese 268 418

a. Calculate the odds ratio relating obesity and colon cancer in this study.

    Subsequently, the investigators obtained additional funds to conduct a validation 
ancillary study of  some of  the information obtained from the  participants’ inter-
views. For the validation study, 100 participants (50 cases and 50 controls) were 
randomly selected and invited to attend a clinic, where diverse objective physical 
measurements and more extensive questionnaires were used in an attempt 
to estimate the validity of  the self-reported information in the study. Despite 
intensive efforts for recruitment, only 60 of  the 100 participants invited for the 
validation study agreed to the clinic visit. The participants who agreed to attend 
included a larger proportion of  females and individuals of  a higher educational 
level than those who declined.

    Using objectively measured weight and height, BMI was recalculated in 
the 60 individuals in the validation study. Among the individuals who were 
classified as obese using measured weight and height, 90% of  the cases and 95% 
of  the controls had also been classified as obese by the BMI based on self-reported 
information; 100% of  those classified as nonobese using measured weight and 
height had been classified as such by the self-reported information.

  b.  Assuming that weight and height values did not change between the times of  
the interviews and the validation study, calculate the “corrected” odds ratio 
based on the estimates obtained from the validation study. That is, estimate 
the odds ratio that would have been obtained if  no misclassification of  obese 
status based on self-reported weight and height information had occurred.

  c.  How do you explain the difference between the observed and the “corrected” 
odds ratio obtained in this study?

  d.  In addition to the need to assume no change in weight and height between 
interviews and validation assessment, what are, in your judgment, other 
important limitations of  the use of  the ancillary validation study (vis-à-vis 
the whole study) to estimate a “corrected” odds ratio, as you did in answer to 
Question 1b?
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 2. It is estimated that about one-third of  prostate cancer cases can be present in 
men in their fourth or fifth decade of  life without any clinical symptoms or signs.* 
Several observational studies (including cohort studies) have suggested that 
vasectomy may be related to prostate cancer risk. For example, in a  meta-analysis 
of  5 cohort studies and 17 case-control studies, the pooled relative risk estimate 
was found to be 1.37 (95% confidence interval, 1.15, 1.62).† In these studies, 
prostate cancer was not systematically evaluated; rather, usual clinical diagnosis 
was the diagnostic strategy. Describe the possible threats to validity when 
inferring that this association is causal.

 3. Two clinical trials have examined the association of  PSA testing with mortality 
from prostate cancer‡,§). In one trial (Schröder et al.‡), the cumulative hazards of  
death for those tested for PSA and for the control groups were virtually the same 
for most of  the follow-up and at the end of  the trial. In the other trial (Andriole 
GL, et al.§), a significant difference could not be found between the groups. Why 
have the authors examined mortality rather than survival (or case fatality)?

 4. A breast cancer screening program based on repeat free clinical breast exami-
nations is implemented in a developing country for women aged 50–59 years. 
The program is open to all eligible women, but it is not compulsory.

  a.  Do you expect the incidence among the women who take advantage of  the 
program to be the same as for the total eligible population? Why?

    In women who choose to take advantage of  the program, the average annual 
incidence of  previously undetected breast cancer is found to be about 100 per 
100,000 on follow-up. In the first exam, point prevalence is found to be 
approximately 200 per 100,000. Assume that, after cases are confirmed by 
biopsy, no false negatives go undetected.

  b.  What is the average duration of  the detectable preclinical phase in cases of  
breast cancer detected at the first exam?

  c.  Define lead time bias in the context of  evaluation of  a screening program or 
 procedure.

  d. How does lead time bias affect estimation of  average survival time?
  e.  Estimate the average lead time for prevalent cases in this example, and state 

the assumption underlying this estimation.
  f.  As the interval between screening exams becomes shorter, what is the tendency 

of  the average lead time value for incident cases that are detected after the 
initial screening? 

*Stamey TA, McNeal JE, Yemoto CM, et al. Biological determinants of  cancer progression in men with prostatic 
cancer. J Am Med Assoc. 1999;281:1395–1400.
†Dennis LK, Dawson DV, Resnick MI. Vasectomy and the risk of  prostate cancer: A meta-analysis examining 
vasectomy status, age at vasectomy, and time since vasectomy. Prostate Cancer Prostatic Dis. 2002;5:193–203.
‡Schröder FH, et al. Screening and prostate-cancer mortality in a randomized European study. New Engl J Med. 
2009;360:1320–1328.
§Andriole GL, et al. Mortality results from a randomized prostate-cancer screening trial. New Engl J Med. 
2009;360:1310–1319.
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5
CHAPTERIdentifying Noncausal 

Associations: Confounding

5.1  INTRODUCTION

The term confounding refers to a situation in which a noncausal association between a 
given exposure and an outcome is observed as a result of  the influence of  a third variable 
(or group of  variables), usually designated as a confounding variable, or merely a confounder. 
As discussed later in this chapter, the confounding variable must be related to both the 
putative risk factor and the outcome under study. In an observational cohort study, for 
example, a confounding variable would differ between exposed and unexposed subjects 
and would also be associated with the outcome of  interest. As shown in the examples that 
follow, this may result either in the appearance or strengthening of  an association not due 
to direct causal effect or in the apparent absence or weakening of  a true causal association.

From the epidemiologic standpoint, it is useful to conceptualize confounding as distinct 
from bias in that a confounded association, although not causal, is real (for further 
discussion of  this concept, see Section 5.5.8). This distinction has obvious practical 
implications with respect to the relevance of  exposures as markers of  the presence or risk 
of  disease for screening purposes (secondary prevention). If, on the other hand, the goal 
of  the researcher is to carry out primary prevention, it becomes crucial to distinguish a 
causal from a noncausal association, the latter resulting from either bias or confounding. 
A number of  statistical techniques are available to control for confounding; as described 
in detail in Chapter 7, the basic idea underlying adjustment is to use some statistical 
model to estimate what the association between the exposure and the outcome would be, 
given a constant value or level of  the suspected confounding variable(s).

Confounding is more likely to occur in observational than in experimental epide-
miology studies. In an experimental study (e.g., a clinical trial), the use of  random-
ization reduces the likelihood that the groups under comparison (e.g., exposed/treated 
and unexposed/untreated) differ with regard to both known and unknown confounding 
variables. This is particularly true when large sample sizes are involved. Even if  the 
randomization approach is unbiased and the samples are large, however, there may be 
random differences between the experimental (e.g., vaccinated) and the control (e.g., those 
receiving placebo) groups, possibly leading to confounding (Exhibit 5-1). In an obser-
vational prospective study, in addition to random differences between the comparison 
groups, factors related to the exposure may confound the association under study, as 
illustrated in the examples that follow and as further discussed in the next section.

•	 Example 1. The overall crude mortality rates in 1986 for six countries in the 
Americas1 were as follows:

 Costa Rica: 3.8 per 1000 Cuba: 6.7 per 1000
 Venezuela: 4.4 per 1000 Canada: 7.3 per 1000
 Mexico: 4.9 per 1000 United States: 8.7 per 1000
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   Assuming that these crude mortality rates are accurate, the literal (and correct) 
interpretation of  these data is that the United States and Canada had the highest 
rates of  death during 1986. Although this interpretation of  crude data is useful 
for public health planning purposes, it may be misleading when using mortality 
rates as indicators of  health status, as it fails to take into consideration interpopu-
lation age differences. In this example, the higher mortality rates in Canada and 
the United States reflect the fact that there is a much higher proportion of  older 
individuals in these populations; because age is a very strong “risk factor” for 
mortality, these differences in age distribution result in these countries having the 
highest mortality rates. Inspection of  age-specific mortality rates (see Chapter 7, 
Section 7.2) results in a very different picture, with the lowest mortality rates 
observed in Canada, the United States, and Costa Rica for every age group. With 
adjustment for age (e.g., using the direct method and the 1960 population of  Latin 
America as the standard, see Chapter 7, Section 7.3.1), the relative rankings of  
the United States and Canada are reversed (mortality per 1000: Costa Rica: 3.7; 
Venezuela: 4.6; Mexico: 5.0; Cuba: 4.0; Canada: 3.2; United States: 3.6). Age is, 
therefore, a confounder of  the observed association between country and mortality.

•	 Example 2. In a cohort study conducted in England,2 participants who reported 
a higher frequency of  sexual activity at baseline (as indicated by their reported 
frequency of  orgasm) were found to have a decreased risk of  10-year mortality 
compared with those who reported lower sexual activity. Does sexual activity cause 
lower mortality? Or are people with higher levels of  sexual activity (or capacity 
to have orgasms) healthier in general and thus, by definition, at lower risk of  
mortality? Although the authors of  this study, aware of  this problem, attempted 
to control for confounding by adjusting for a number of  health-related surrogate 
variables (see Chapter 7), the possibility of  a “residual confounding” effect remains 
open to question (see Section 5.5.4 and Chapter 7, Section 7.6).

Exhibit 5-1 Confounding in experimental and nonexperimental epidemiologic studies.

Study design
Experimental:
randomized
clinical trial

Observational:
prospective study

Approach Random allocation Nonrandom allocation

Example
A = vaccine
B = placebo

A = smokers
B = nonsmokers

Source of
confounding
(difference[s]
between groups)

Random difference(s)

Random difference(s)
and factors associated
with the exposure of
interest

A B A B
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•	 Example 3. It has been reported that certain medical or tertiary prevention interven-
tions in patients with chronic obstructive pulmonary disease (COPD) are associated 
with unfavorable health outcomes.3 For example, long-term oxygen therapy is 
associated with increased rates of  readmission to a hospital; similarly, readmission 
rates are higher in patients taking anticholinergic drugs, given influenza vacci-
nation, or undergoing respiratory rehabilitation. In evaluating these associations, 
however, it is important to consider the possibility of  confounding by severity, as 
all of  these interventions tend to be more often prescribed in the most severe COPD 
cases.3 This phenomenon, known in the clinical epidemiology field as confounding 
by severity or confounding by indication,4 frequently complicates the interpretation 
of  results from observational studies of  outcomes of  clinical or pharmacologic 
interventions.

•	 Example 4. In a nested case-control study among Japanese-American men, low 
dietary vitamin C has been found to be related to colon cancer risk.5 Although it is 
possible that this relationship is causal, an alternative explanation is that individuals 
who consume more vitamin C tend to have a healthier lifestyle in general and thus 
are exposed to true protective factors acting as confounders (e.g., other dietary 
items, physical exercise).

A way to explain confounding, which is found with increasing frequency in the 
epidemiology literature, is based on the counterfactual model.6,7 This explanation relies 
on the notion that the attribution of  causation to a particular exposure is based on the 
concept that the risk of  the outcome observed among individuals exposed would have 
been different in these same individuals had exposure been absent. Because the latter group 
is, by definition, unobservable (“counterfactual”), epidemiologists are forced instead to 
use a different group (the unexposed) as comparison; thus, the essence of  epidemio-
logic analysis rests on the assumption that a separate unexposed group is comparable 
to exposed individuals if  they had not been exposed. Confounding is said to be present if  
this assumption is not correct; that is, if  the risk in the unexposed group is not the same 
as that of  the unobserved (counterfactual) exposed group had its members not been 
exposed. Using an alternative terminology, confounding is described as present when 
the exposed–unexposed groups are nonexchangeable.8,9 Extending this concept to a case-
control study, confounding will be present if  controls are not equivalent with regard 
to exposure odds to a hypothetical (counterfactual) case-group where the disease of  
interest was absent.

Referring to the example on sexual activity and mortality described previously,2 
confounding is said to occur when the “low sexual activity” and the “high sexual 
activity” groups are “nonexchangeable”; that is, the former has a different mortality 
risk than the group with “high sexual activity” would have had if  its members did not 
have such a high orgasm frequency (and vice versa).

To conceptualize confounding in terms of  “nonexchangeability” has an intrinsic 
appeal in that it underscores the old notion that the groups under comparison should 
be selected from the same study base—a requirement that is optimally met in large trials 
with random allocation. This definition is also useful in the context of  a formal mathe-
matical modeling of  confounding.8 In view of  its “counterfactual” nature, however, it 
is of  limited practical value when analyzing epidemiologic data. Thus, the following 
paragraphs are based on the more traditional explanation of  the confounding effect.
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5.2  THE NATURE OF THE ASSOCIATION BETWEEN THE 
CONFOUNDER, THE EXPOSURE, AND THE OUTCOME

5.2.1 General Rule
The common theme with regard to confounding is that the association between an 
exposure and a given outcome is induced, strengthened, weakened, or eliminated 
by a third variable or group of  variables (confounders). The essential nature of  this 
phenomenon can be stated as follows:

The confounding variable is causally associated with the outcome

and

noncausally or causally associated with the exposure

but

is not an intermediate variable in the causal pathway between 
exposure and outcome

This general rule is schematically represented in Figure 5-1. In this figure and 
throughout all of  the figures in this chapter, the association of  interest (i.e., whether 
a given exposure is causally related to the outcome) is represented by shaded boxes 
connected by a dotted arrow and a question mark; this arrow is pointing to the 
outcome, as the question of  interest is whether the exposure causes the outcome. (An 
association between exposure and outcome can also occur because the “outcome” 
causes changes in “exposure”: i.e., reverse causality, a situation that is discussed in 
Chapter 4, Section 4.4.2.)

Some exceptions to the previous general rule for the presence of  confounding are 
discussed in Section 5.2.3; its components are dissected in the next section (5.2.2) 

FigurE 5-1 General definition of confounding. The confounder is causally associated with 
the outcome of interest and either causally or noncausally associated with the exposure; these 
associations may distort the association of interest: whether exposure causes the outcome. 
A unidirectional arrow indicates that the association is causal; a bidirectional arrow indicates 
a noncausal association. 

Confounder

Exposure

Outcome

?
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using the previously discussed examples as illustrations (Figure 5-2). The confounding 
variables in Figure 5-2A and 5-2B are denoted as simple, and possibly oversimplified, 
characteristics (“age distribution” and “general health,” respectively). In Figure 5-2C 
and Figure 5-2D, the postulated “confounding variables” are represented by more or less 
complex sets of  variables. In Figure 5-2C, “severity” relates to the clinical status of  the 
COPD patients; that is, disease stage, the presence of  comorbidities, etc. In Figure 5-2D, 
the “confounder” is a constellation of  variables related to general socioeconomic status 
(SES) and lifestyle characteristics that have their own interrelations. There is usually a 
trade-off  in choosing simplicity over complexity in the characterization of  these variables 
and in the conceptualization of  their interrelations; this trade-off  is directly relevant to 
the art of  statistical “modeling” and is the core of  the science of  multivariate analysis, a 
key tool in analytical epidemiology (see Chapter 7, Sections 7.4 and 7.8).

5.2.2  Elements of the General Rule for Defining 
the Presence of Confounding
“The Confounding Variable Is Causally Associated with the Outcome”
In all of  the examples illustrated in Figure 5-2, the confounding variables (age distri-
bution, general health, severity of  COPD, and SES/other lifestyle characteristics) 
determine the likelihood of  the outcome (mortality rate, risk of  death, readmission for 
COPD, and risk of  colon cancer, respectively) to a certain degree.

FigurE 5-2 Schematic representation of the hypothetical relations of confounders, exposures 
of interest, and outcomes, based on the examples in the text. A unidirectional arrow indicates 
that the association is causal; a bidirectional arrow indicates a noncausal association. The main 
exposure and outcome are represented in shaded boxes; a dotted arrow with a question mark 
indicates the research question of interest. 
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“And Noncausally or Causally Associated with the Exposure”
The examples in Figure 5-2 illustrate the different forms assumed by the relationships 
between the postulated confounders and the respective exposures of  interest (country, 
sexual activity, long-term oxygen therapy, and vitamin C intake). For instance, in 
Figure 5-2A, in addition to a causal relationship with the outcome, the confounding 
variable (age) is related to the “exposure of  interest” (country) in a noncausal fashion. 
In this example, the relationship between age distribution and country is postulated to 
be contextual rather than causal—that is, determined by a set of  historical and social 
circumstances that are not unique to any given country.

The confounding variables may be also related to the exposure in a causal fashion, as 
in the case of  the postulated relationship between “severity” and prescription of  oxygen 
therapy in COPD patients (Figure 5-2C) and that of  “good health” with sexual activity 
exemplified in Figure 5-2B. Finally, the example in Figure 5-2D shows the different types 
of  relationship of  the exposure of  interest to the constellation of  factors included in the 
“confounding complex”: for example, lower SES may be causally related to vitamin C 
intake to the extent that it determines degree of  access to food products that are rich in 
vitamin C. On the other hand, some other lifestyle characteristics related to SES (e.g., 
physical exercise) may be related to vitamin intake in a noncausal fashion.

An additional illustration of  the rule that confounding may result when the 
confounding variable is causally related to the exposure of  interest (not represented 
in Figure 5-2) is given by smoking and high-density lipoprotein (HDL) cholesterol in 
relationship to lung cancer. Smoking is known to cause a decrease in HDL levels,10 thus 
explaining the apparent relationship of  low HDL and lung cancer.

“But Is Not an Intermediate Variable in the Causal Pathway Between 
Exposure and Outcome”
The general rule defining a confounding variable excludes the situation in which the 
exposure determines the presence or level of  the presumed confounder. In the previous 
examples, the assumption that this type of  situation does not exist may not be entirely 
justified. For instance, in the example illustrated in Figure 5-2B, increased sexual activity 
may cause an improvement in general health (e.g., by leading to psychological well-being 
that may have an impact on physical health), which in turn results in a decrease in 
mortality (Figure 5-3). If  this hypothesized mechanistic model is true, “general health” 
is the link in the causal pathway between sexual activity and mortality and should thus 
not be considered a confounder. Another example relates to the hypothesized causal 

FigurE 5-3 Alternative hypothesized model for the relationships in Figure 5-2B: “general 
health” is in the causal pathway of the relationship between sexual activity and mortality. 
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relationship between obesity and increased risk of  mortality. Although it could be argued 
that this association is due to the “confounding” effect of  hypertension, an alternative 
explanation is that hypertension is a mediator of  the association between obesity and 
mortality rather than a confounder.11

5.2.3  Exceptions to the General Rule for the Presence of Confounding
“Confounding” Due to Random Associations
Although the general rule is that the confounding variable must be causally associated 
with the outcome (Figure 5-1), sometimes a random (statistical) association results in 
confounding. Thus, for example, in a case-control study, sampling (random) variability 
may create an imbalance between cases and controls with regard to a given variable related 
to the exposure, even though there is no such imbalance in the total reference population.

It is important to understand that this phenomenon is not exclusive to observa-
tional studies. The notion that randomized clinical trials are free of  confounding is an 
average concept, akin to that of  unbiased designs discussed in Chapter 4 (Section 4.1). 
Randomization does not exclude the possibility of  confounding in a given clinical trial, as 
random differences with regard to important prognostic factors can also occur between 
randomly allocated groups, especially when the sample sizes are small. This is the reason 
why investigators analyzing results from randomized clinical trials assess imbalances in 
confounding factors between the study groups that, if  present, are adjusted for using 
one of  the available statistical techniques (see Chapter 7).

The “Confounder” Does Not Cause the Outcome but It Is a Marker of Another  
Unmeasured Causal Factor
Variables treated as confounders are occasionally surrogates of  the true confounding 
variable(s). For example, educational level is often used as a surrogate for the consid-
erably more complex SES construct (Figure 5-2D). Another example is gender; although 
sometimes treated as a confounder in the true sense of  the word (i.e., as reflecting distinct 
sexual or hormonal differences that affect the risk of  the outcome), it can be used as 
a marker of  attitudes, behaviors, or exposures that are associated with gender due to 
contextual or cultural circumstances.

For further discussion of  the importance of  a solid theoretical foundation when 
considering complex relationships between risk factors, confounders, and their surro-
gates, see Section 5.3.

The “Confounder” as an Intermediate Variable in the Causal Pathway of the 
Relationship Between Exposure and Outcome
As discussed previously, the potential confounder should not be an intermediate variable 
in the causal pathway between the suspected risk factor and the outcome. It follows that 
it is inappropriate to adjust for such a variable. Although this rule is generally sound, 
exceptions to it occur when the investigator deliberately explores alternative mechanisms 
that could explain the association between the exposure and the outcome of  interest.

The association of  maternal smoking during the index pregnancy with an increased 
risk of  perinatal death provides an example of  a situation in which it may be appropriate to 
adjust for an intermediate variable. Low birth weight is known to be an important link in the 
causal chain between smoking and perinatal death (Figure 5-4). Thus, if  the study question 
is, “Does smoking cause perinatal death?” (which does not address a specific mechanism, 
as may be the case when first examining a hypothesis), it is clearly inappropriate to adjust 
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for a possible mechanism, particularly a key mechanism such as low birth weight. After the 
principal link in the causality chain (low birth weight) is established, however, a different 
question may be asked: “Does smoking cause perinatal death through mechanism(s) other 
than low birth weight?” (Figure 5-5). In this situation, to treat birth weight as a “confounder” 
(at least in the sense of  controlling for it) is appropriate; the presence of  a residual (birth 
weight-adjusted) effect of  smoking on perinatal mortality would indicate that, in addition 
to lowering birth weight, smoking may have a direct toxic effect.12

Similarly, in the previously mentioned obesity–hypertension example, even if  the 
main mechanism whereby obesity increases mortality is an increase in blood pressure 
levels, it may be of  interest to examine the blood pressure-adjusted association between 
obesity and mortality with the purpose of  exploring the possibility that other mecha-
nisms could explain the hypothesized relationship.

Another example is provided by a study of  the causal pathways explaining why a 
genetic variation in the chemokine (C-C motif) receptor 5 (CCR5) is associated with slow 
progression of  HIV infection among participants of  the Multicenter AIDS Cohort Study.13 
The authors of  this study examined the protective effect of  CCR5 heterozygosity before 
and after controlling for CD4 count and viral load. Based on their findings, the authors 
concluded that “the protective effect [of  CCR5 heterozygosity] on the occurrence of  AIDS 
was completely mediated through an effect on the CD4 marker . . . Additional adjustment 
for the effect of  an initial viral load measurement indicates that CCR5 heterozygosity did 
not have predictive value for either CD4 progression or the development of  AIDS beyond 
its association with early viral load.”13(p.160)

FigurE 5-4 Schematic representation of low birth weight as the only mechanism for the 
relationship between maternal smoking and perinatal death.
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FigurE 5-5 Schematic representation of mechanism(s) other than low birth weight to explain 
the relationship between maternal smoking and perinatal death. 
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The degree to which a given mechanism (or confounding variable) explains the 
relationship of  interest is given by the comparison of  adjusted (A) and unadjusted (U) 
measures of  association (e.g., a relative risk [RR]). This comparison can be made using 
the ratio of  the unadjusted to the adjusted relative risks, RRU/RRA, or the percentage 
excess risk explained by the variable(s) adjusted for*

 % Excess Risk Explained =
RRU - RRA

RRU - 1.0
* 100 (Eq. 5.1)

For example, in a study of  the relationship between SES, health behaviors, and 
mortality in the Americans’ Changing Lives longitudinal survey,14 the age- and 
demographics-adjusted mortality rate ratio comparing those in the lowest income group 
with those in the highest income group was 3.2; trying to identify behavioral factors that 
might explain (mediate) the increased risk of  mortality associated with low income, the 
authors further adjusted for smoking, alcohol drinking, sedentary lifestyle, and relative 
body weight, resulting in a reduction of  the mortality rate ratio for low income to 2.8. 
Applying Equation 5.1, these data would suggest that these four behaviors explain 
approximately 18% of  the predicted effect of  income on mortality (i.e., [3.2 – 2.8]/
[3.2 – 1]). Because the influence of  major health risk behaviors explains only a “modest 
proportion of  social inequalities in overall mortality,” the authors concluded that “public 
health policies and interventions that exclusively focus on individual risk behaviors 
have limited potential for reducing socioeconomic disparities in mortality” and argued 
for the consideration of  a “broader range of  structural elements of  inequality in our 
society.”14(pp.1707–1708)

It is important to keep in mind, however, that if  a residual association persists after 
a potentially intermediate variable is controlled for, this does not necessarily mean 
that there must be other causal pathways or mechanisms; the residual association 
may be due to residual confounding (see Section 5.5.4 and Chapter 7, Section 7.6). For 
example, even if  hypertension were an important mechanism, a residual association 
between obesity and mortality could still be observed after controlling (adjusting) for 
blood pressure levels because of  measurement error (e.g., random error due to within-
individual variability in blood pressure). Under these circumstances, controlling for an 
imperfectly measured blood pressure will lead to incomplete adjustment and residual 
confounding. Likewise, when interpreting the results from the Americans’ Changing 
Lives study on income, health behaviors, and mortality described previously here, Lantz 

*Equation 5.1 examines the percentage excess risk explained in an additive scale. Alternatively, one may be 
interested in calculating the percentage excess risk explained in a multiplicative scale by using logarithmic 
transformations of  the relative risks in the formula:

% Excess multiplicative risk explained =
log RRU - log RRA

log RRU
* 100

 = a1 -
log RRA

log RRU
b * 100

The resulting percentage will be different from that obtained using Equation 5.1, reflecting the inherent 
difference in the two scales. One consideration when using the additive version of  Equation 5.1 is that, 
because of  the asymmetry of  the relative risks in an additive scale, it cannot be applied in situations where 
the relative risks are below 1.0 (i.e., when the variable of  interest is a protective factor). The recommended 
approach in this case is to calculate the “% excess risk explained” associated with the absence of  the protective 
factor, i.e., using the inverted relative risks (e.g., 1/RRU and 1/RRA) before applying Equation 5.1.
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et al.14 aptly acknowledged that errors in the reporting of  these behaviors could have 
resulted in an underestimation of  the mediating effects of  individual behaviors on the 
income–mortality association.

It is also important to emphasize that any conclusion regarding direct and indirect 
effects based on the previous considerations should be based on solid theoretical under-
standing of  the mechanisms underlying the associations under investigation. As discussed 
in more detail in the next section, the concept of  proportion of  effect explained by a putative 
mechanism (Equation 5.1) relies on the assumption that the relationship between the 
suspected intermediary variable and the outcome is free of  confounding.15,16 Because this 
assumption is often difficult to evaluate empirically, caution should be exercised when 
interpreting results of  these analyses; at the very least, the proportion of  risk estimated 
using Equation 5.1 should be interpreted as an approximate indication of  the degree to 
which the hypothesized mechanism could explain the association of  interest.

The importance of  solid and explicit conceptual models when analyzing confounders 
and potential mechanisms cannot be overemphasized. These issues, as well as additional 
methodological tools that could help in the process of  formulating such conceptual 
models, are discussed in the following section.

5.3  THEORETICAL AND GRAPHICAL AIDS TO  
FRAME CONFOUNDING

As suggested by the preceding discussion, confounding is a complex phenomenon; its 
proper conceptualization requires a clear understanding of  the relationships between 
all variables involved as the basis for a well-defined theoretical model. The importance of  
selecting the proper statistical model when analyzing epidemiologic data is discussed in 
detail in Chapter 7 (Section 7.7). In this section, the issues are the conceptual definition of  
the variables involved as well as the directionality of  the causal associations being inves-
tigated. For this purpose, some level of  understanding (even if  hypothetical) is necessary 
of  the underlying pathophysiologic (or psychosocial) pathways representing the 
relationships between the suspected risk factor(s), confounder(s), and outcome(s). The 
more explicit this mechanistic model, the more straightforward the analytical approach 
and data interpretation will be.

A potentially useful analytical aid for this purpose is the directed acyclic graph (DAG). 
Originally developed in the field of  artificial intelligence, this technique has been more 
recently used in the social science fields, including epidemiology.15–18   The DAG (also known 
as a “causal diagram”) is a formal and more elaborate extension of  traditional graphs 
to represent confounding, such as shown in Figure 5-2; in these graphs, the direction 
of  the association between the variables of  interests and other unknown confounders is 
explicitly displayed to facilitate and guide the casual inference process. In DAG’s jargon, the 
confounding effect is called a “backdoor path”; in the situation illustrated by the DAG in 
Figure 5-2B, for example, controlling for general health will effectively close the backdoor 
path that distorts the observed association between sexual activity and mortality.

DAGs can thus be used to make more explicit the relations between suspected risk factors 
and outcomes when confounding is suspected; they are particularly useful for the identifi-
cation of  pitfalls in the analyses of  direct and indirect (confounded) effects discussed previ-
ously in this chapter, which could potentially lead to erroneous conclusions pertaining to 
the presence of  causal relationships. Figures 5-6 and 5-7 show two examples, which have 
been used in previous publications, to illustrate the application of  this technique.16,17



5

Identifying N
oncausal 

Associations: Confounding

 5.3  Theoretical and Graphical Aids to Frame Confounding 163

The DAG in Figure 5-6A illustrates the hypothesis that aspirin reduces the risk of  
coronary heart disease (CHD) through a decrease in platelet aggregation; based on 
this hypothesis, and in order to evaluate the mediating effect of  platelet function and 
the possibility of  additional mechanisms, the relationship between aspirin intake and 
CHD risk before and after controlling for platelet aggregation can be assessed by means 
of  Equation 5.1. Alternatively, in the DAG in Figure 5-6B, an additional unidentified 
factor, a genetic variant, is hypothesized to be causally related to the suspected inter-
mediate variable (platelet aggregation) and the outcome (CHD). In this situation, the 
relationship between the intermediate variable and the outcome is confounded by the 

FigurE 5-6 Directed acyclic graphs (DAGs) illustrating alternative hypothesis on the relationship 
between aspirin intake and risk of coronary heart disease (CHD). According to the DAG in (A), the 
association is mediated (at least partially) by platelet aggregation. In (B), platelet aggregation acts 
as a collider as its relationship with CHD is confounded by an unmeasured genetic variant (see text). 
The unmeasured variable is represented with faded font and in a dotted box. 
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Source: Based on an example from SE Cole and MA Hernán, Fallibility in Estimating Direct Effects. International Journal of  
Epidemiology, Vol 31, pp. 163–165, © 2002.

FigurE 5-7 Directed acyclic graphs (DAGs) illustrating alternative hypothesis on the relationship 
between periodontal disease and risk of coronary heart disease (CHD). In (A), baseline periodontal disease 
and tooth loss (both observed variables in a study) are assumed to be caused by past periodontal disease. 
Through its relationship to diet, tooth loss is hypothesized to be an intermediary variable in the association 
between periodontal infection and risk of CHD. In (B), socioeconomic status (SES) is hypothesized to be a 
confounder of the association between tooth loss and CHD, thus making the latter a collider. Unmeasured 
variables are represented with faded font and in a dotted box.
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Source: Based on an example from AT Merchant and W Pitiphat, Directed Acyclic Graphs (DAGs) An Aid to Assess Confounding in 
Dental Research. Community Dentistry and Oral Epidemiology, Vol 30, pp. 399–404, © 2002.
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genetic variant. Notably, the two causal pathways—[aspirin → platelet aggregation 
→ CHD] and [genetic variant → platelet aggregation → CHD]—converge (“collide”) at 
the suspected intermediary variable (platelet aggregation), that is said to be a collider. 
Using simulated data, Cole and Hernán16 demonstrated that under certain assumptions 
regarding the strength and direction of  the associations between the unknown genetic 
variant with CHD and platelet aggregation, adjusting for the latter may introduce bias; 
that is, may result in spurious estimates of  the association between aspirin and CHD.

The example in Figure 5-7A and Figure 5-7B shows DAGs corresponding to alter-
native assumptions regarding mechanisms surrounding the putative relationship 
between periodontal disease and CHD. In a hypothetical cohort study, the associ-
ation between periodontal disease and incidence of  CHD is assessed.17 Baseline 
periodontal disease is measured by clinical detachment loss, as a marker of  
lifetime periodontal disease; in addition, tooth loss is also recorded as a marker of  
past periodontal disease. Identification of  a relationship between periodontal disease 
and CHD would support the infectious hypothesis of  atherosclerosis;19,20 on the other 
hand, this association could also be explained by the mediating effect of  tooth loss 
(e.g., through its relationship with unhealthy diet). Thus, the investigator might study 
the relationship between periodontal disease and CHD incidence while controlling 
for tooth loss (and for diet, if  information were available) (Figure 5-7A); however, the 
relationship between tooth loss/diet and CHD may be further confounded by another 
variable; for example, SES may be causally related to both CHD and to tooth loss (e.g., 
through poor dental care access; Figure 5-7B). In the latter situation, tooth loss acts 
as a collider, and controlling for it could result in spurious estimates of  the “adjusted” 
periodontal disease–CHD association.

Additional examples of  the application and interpretation of  DAGs in the fields of  
neighborhood health effects and perinatal epidemiology have been provided by Fleisher 
and Diez Roux18 and Hernán et al.,21 respectively.

For the understanding of  DAGs, the directionality of  the arrows is critical. Those 
converging at platelet aggregation and tooth loss in Figures 5-6B and 5-7B, respectively, 
are unidirectional (i.e., they represent causal associations, defining these variables as 
colliders).

Of  course, deciding which variables are involved and the directionality of  their 
connections relies on knowledge of  the subject matter and on the existence of  a 
theoretical model. Framing confounding through the use of  DAGs provides a foundation 
that facilitates the proper use of  analytical tools described in the following section 
and in Chapter 7. For example, the application of  this methodology for instrumental 
variable analysis is described in Section 7.5.

It is important to point out, however, that, although helpful, the use of  DAGs is limited 
by their inability to handle effect modification and a large number of  variables, among 
other limitations.18

5.4  ASSESSING THE PRESENCE OF CONFOUNDING

After properly framed, the existence of  confounding can be assessed empirically. In an 
observational study, assessment of  confounding effects is carried out for variables that 
are known or suspected confounders. The identification of  potential confounders is 
usually based on a priori knowledge of  the dual association of  the possible confounder 
with the exposure and the outcome, the two poles of  the study hypothesis. In addition 



5

Identifying N
oncausal 

Associations: Confounding

 5.4  Assessing the Presence of Confounding 165

to the a priori knowledge about these associations, it is important to verify whether 
confounding is present in the study. There are several approaches to assess the presence 
of  confounding, which are related to the following questions:

 1. Is the confounding variable related to both the exposure and the outcome in the 
study?

 2. Does the exposure–outcome association seen in the crude analysis have the same 
direction and similar magnitude as the associations seen within strata of  the 
confounding variable?

 3. Does the exposure–outcome association seen in the crude analysis have the same 
direction and similar magnitude as that seen after controlling (adjusting) for the 
confounding variable?

These different approaches to assess the presence and magnitude of  confounding effects 
are illustrated using an example based on a hypothetical case-control study of  male gender 
as a possible risk factor for malaria infection. The crude analysis shown in Exhibit 5-2 
suggests that males are at a higher risk of  malaria than females (odds ratio = 1.7; 95% 
confidence limits, 1.1–2.7). A “real” association between male gender and malaria can be 
inferred if  these results are free of  random (sampling) and systematic (bias) errors: that 
is, males do have a higher risk of  malaria in this particular population setting. The next 
question is whether the association is causal—that is, whether there is something inherent 
to gender that would render males more susceptible to the disease than females (e.g., a 
hormonal factor). Alternatively, a characteristic that is associated with both gender and 
an increased risk of  malaria may be responsible for the association. One such character-
istic is work environment, in the sense that individuals who primarily work outdoors (e.g., 
in agriculture) are more likely to be exposed to the mosquito bite that results in the disease 
than those who work indoors (Figure 5-8). Thus, if  the proportion of  individuals with 
mostly outdoor occupations were higher in males than in females, working environment 
might explain the observed association between gender and malaria.

5.4.1  Is the Confounding Variable Related to Both the 
Exposure and the Outcome?
The associations of  the confounder with both the exposure and work environment in 
this hypothetical example are shown in Exhibit 5-3, from which the following points 
should be highlighted.

•	 Compared with only 9% (13/144) of  females, 43.6% (68/156) of  males have 
mostly outdoor occupations, yielding an odds ratio of  7.8.

•	 Forty-two percent (63/150) of  the malaria cases, but only 12% (18/150) of  
controls, have mostly outdoor occupations, yielding an odds ratio of  5.3.

Cases Controls Total

Males 88 68 156

Females 62 82 144

Total 150 150 300

Exhibit 5-2 Example of confounding: hypothetical study of male gender as a risk factor for 
malaria infection.

Odds ratio = 1.71
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Confounder 
versus exposure

Mostly  
outdoor

Mostly 
indoor Total

Males 68 88 156

Females 13 131 144

300

Confounder 
versus outcome

Cases Controls

Mostly outdoor 63 18

Mostly indoor 87 132

Total 150 150 300

Exhibit 5-3 Association of the putative confounder (mostly outdoor occupation) with the 
exposure of interest (male gender) and the outcome (malaria) in the hypothetical study in 
Exhibit 5-2 and Figure 5-8.

Odds ratio  7.8

Odds ratio  5.3

The strong positive associations of  the confounder (work environment) with both the 
risk factor of  interest (male gender) and the outcome (“malaria status”) suggest that 
work environment may indeed have a strong confounding effect.

5.4.2  Does the Exposure–Outcome Association Seen in the 
Crude Analysis Have the Same Direction and Similar Magnitude as 
Associations Seen Within Strata of the Confounding Variable?
Stratification according to the confounder represents one of  the strategies to control for 
its effect (see Chapter 7, Section 7.2). When there is a confounding effect, the associa-
tions seen across strata of  the potentially confounding variable are of  similar magnitude 
to each other but are all different from the crude estimate. In the previous example, 
the data can be stratified by the confounder (work environment) to verify whether the 
association between the exposure (male gender) and the outcome (malaria) is present 
within the relevant strata (mostly outdoors or mostly indoors). As shown in Exhibit 
5-4, the estimated odds ratios in both strata are very close to one and are different 
from the crude value (1.71), thus suggesting that work environment is a confounder 

FigurE 5-8 Work environment as a possible confounder of the association between male 
gender and malaria risk.

Outdoor
occupation

Male
gender

Malaria

?
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that explains virtually all of  the associations between male gender and the presence 
of  malaria. If  the association seen in the unadjusted analysis had persisted within 
strata of  the suspected confounder, it would have been appropriate to conclude that 
a confounding effect of  work environment did not explain the association observed 
between male gender and malaria.

With regard to using stratification as a means to verify presence of  confounding, it 
must be emphasized that, as demonstrated by Miettinen and Cook22 for odds ratios (and 
subsequently by Greenland23 for rate ratios and absolute differences between rates), 
the crude odds ratio is sometimes different from the stratum-specific odds ratios even if  
confounding is absent. Because of  the occasional “noncollapsibility” of  stratum-specific 
estimates, the strategy of  comparing stratum-specific odds ratios with the crude (pooled/
unadjusted) odds ratio for the assessment of  confounding should be confirmed through 
the use of  the previous strategy and that which follows.

5.4.3  Does the Exposure–Outcome Association Seen in the Crude 
Analysis Have the Same Direction and Magnitude as That Seen 
after Controlling (Adjusting) for the Confounding Variable?
Perhaps the most persuasive approach to determine whether there is a confounding 
effect is the comparison between adjusted and crude associations. The gender-malaria 
infection example is also used in Chapter 7, Section 7.3.3, to illustrate the use of  the 
Mantel-Haenszel approach to calculate an adjusted odds ratio. As described in that 
section, the Mantel-Haenszel adjusted odds ratio in this example is 1.01. (This odds ratio 
is merely a weighted average of  the stratum-specific odds ratios shown in Exhibit 5-4.) 
The comparison between the crude (1.71) and the work environment–adjusted (1.01) 
odds ratios is consistent with and confirms the inference based on the previous strat-
egies illustrated in Exhibits 5-3 and 5-4 that the increased risk of  malaria in males (odds 
increased by 71%) resulted from their being more likely to work outdoors.

As another example of  the comparison between crude and adjusted associa-
tions, Table 5-1 shows results from the same cohort study that served as the basis 
for the example described in Section 5.1 (Figure 5-2C). In this study, the presence of  
confounding by indication was assessed as a way to explain the adverse outcomes 

Mostly outdoor 
occupation 

Cases Controls

Males 53 15

Females 10 3

Total 63 18

Mostly indoor 
occupation

Cases Controls

Males 35 53

Females 52 79

Total 87 132

Exhibit 5-4 Stratified analyses of the association between gender and malaria (from 
Exhibit 5-2), according to whether individuals work mainly outdoors or indoors.

Odds ratio  1.06

Odds ratio  1.00
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of  long-term oxygen therapy and other medical interventions in chronic obstructive 
pulmonary disease (COPD) patients.3 The authors of  this study used Equation 5.1* to 
estimate that three markers of  disease severity (forced expiratory volume in 1 second 
[FEV1], partial pressure of  oxygen [PO2], and previous admission) explained about 
72% ([2.36 – 1.38]/[2.36 – 1]) of  the excess risk associated with long-term oxygen 
therapy in these patients; as shown in Table 5-1, the paradoxical detrimental effects 
of  other medical interventions (respiratory rehabilitation, treatment with anticholin-
ergics) and being under the care of  a pulmonologist could also be partially explained 
by disease severity.

A further example serves to illustrate the different approaches to assess confounding 
in a cohort study of  employed middle-aged men (Western Electric Company study) that 
examined the relationship of  vitamin C and beta carotene intakes to risk of  death.24 
For the tables that follow, the suspected risk factor is defined on the basis of  a summary 
index that takes both vitamin C and beta carotene intakes into consideration. For simpli-
fication purposes, this intake index defining the exposure of  interest is classified as “low,” 
“moderate,” or “high.” The potential confounder for these examples is current smoking, 
categorized as absent or present. In this example, the question of  interest is whether 
there is an inverse relationship between intake index and the outcome, all-cause death 
rate, and if  so, whether it can be partly or totally explained by the confounding effect 
of  smoking.

The first approach to assess whether confounding can explain the graded unadjusted 
relationship found in this study (Table 5-2)—that is, whether the confounder is 
associated with both exposure and outcome—is illustrated in Tables 5-3 and 5-4. An 
inverse relationship between current smoking and the exposure, intake index, was 

*Equation 5.1 was presented as a tool to evaluate the proportion of  the association explained by a poten-
tially mediating variable. As this example illustrates, however, it may also be used to assess the proportion 
of  the association explained by confounding; as with the previous application, the importance of  a proper 
theoretical basis and required assumptions need to be carefully considered (see Sections 5.3 and 5.4).

Crude hazard 
ratio 

Adjusted 
hazard ratio* 

Excess risk 
explained by 
covariates†

Long-term oxygen therapy 2.36‡ 1.38 72%

Respiratory rehabilitation 1.77‡ 1.28 64%

Anticholinergics 3.52‡  2.10‡ 56%

Under the care of  pulmonologist§ 2.16‡  1.73‡ 37%

*Adjusted for FEV1, PO2, and previous admission, using Cox Proportional Hazards Regression (see Chapter 7, Section 
7.4.4).
†Calculated using Equation 5.1 (see text).
‡p < 0.05
§versus internist
Source: Data from García-Aymerich et al., Paradoxical Results in the Study of  Risk Factors of  Chronic Obstructive 
Pulmonary Disease (COPD) Re-admission. Respiratory Medicine, Vol 98, pp. 851–857, © 2004.

tablE 5-1 Association between medical interventions and risk of readmission to a hospital in 
chronic COPD patients: estimating the proportion of risk explained by markers of COPD severity 
(FEV1, PO2, and previous admission to a hospital).
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Intake index
No. of  person-years of  

observation No. of  deaths
Mortality/1000 

person-years Rate ratio

Low 10,707 195 18.2 1.00

Moderate 10,852 163 15.0 0.82

High 11,376 164 14.4 0.79

Source: Data from DK Pandey et al., Dietary Vitamin C and -Carotene and Risk of  Death in Middle-Aged Men, 
The Western Electric Study. American Journal of  Epidemiology, Vol 142, pp. 1269–1278, © 1995.

tablE 5-2 Unadjusted mortality rates and corresponding rate ratios in the Western Electric 
Company Study population according to intake index.

observed in this study, with a higher percentage of  the low-intake and a slightly lower 
percentage of  the high-intake categories seen in current smokers than in nonsmokers 
(Table 5-3). Current smoking was also found to be associated with a 72% increase 
in all-cause mortality (Table 5-4). Because of  its dual association with both intake 
index (exposure) and mortality (outcome), smoking can be regarded as a potential 
confounder of  the association of  the composite vitamin C-beta carotene intake index 
with all-cause mortality.

Percentage distribution

Intake index

Current smoking No. of  individuals Person-years Low Moderate High

No 657 14,534 (100.0%) 29.3 35.3 35.4

Yes 899 18,401 (100.0%) 35.0 31.1 33.9

Source: Data from DK Pandey et al., Dietary Vitamin C and -Carotene and Risk of  Death in Middle-Aged Men, 
The Western Electric Study. American Journal of  Epidemiology, Vol 142, pp. 1269–1278, © 1995.

tablE 5-3 Percentage distribution of person-years of observation in the Western Electric 
Company Study population, according to vitamin C/beta carotene intake index and current 
smoking.

Current smoking No. of  person-years No. of  deaths 
Mortality/1000 

person-years Rate ratio

No 14,534 165 11.3 1.00

Yes 18,401 357 19.4 1.72

Source: Data from DK Pandey et al., Dietary Vitamin C and -Carotene and Risk of  Death in Middle-Aged Men, 
The Western Electric Study. American Journal of  Epidemiology, Vol 142, pp. 1269–1278, © 1995.

tablE 5-4 Mortality rates and corresponding rate ratios in the Western Electric Company 
Study population by current smoking.
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The second approach to examine confounding (stratification according to 
categories of  the suspected confounder) is illustrated in Table 5-5, which shows that 
the rate ratios in the strata formed by current smoking categories are similar to the 
unadjusted rate ratios. The results of  the third approach (adjustment) are presented in 
Table 5-6, which show the rate ratios adjusted using the direct method (see Chapter 7, 
Section 7.3.1). Although slightly weakened, the inverse graded relationship of  intake 
index with all-cause mortality remained after adjustment for current smoking. Thus, 
it can be concluded that although current smoking (categorized dichotomously 
as “no” or “yes”) fulfilled strategy 1 criteria needed to define it as a confounder 
(Tables 5-3 and 5-4), it acted only as an extremely weak confounder in this study. 
This weak confounding effect may be explained by the relatively weak relationship 

Current smoking
Vitamin C/beta 

carotene intake index
No. of  

person-years 
Mortality/1000 

person-years Rate ratio

No Low 4260 13.4 1.0

Moderate 5131 10.7 0.80

High 5143 10.3 0.77

Yes Low 6447 21.4 1.0

Moderate 5721 18.9 0.88

High 6233 17.8 0.83

Total (unadjusted) Low 10,707 18.2 1.0

Moderate 10,852 15.0 0.82

High 11,376 14.4 0.79

Source: Data from DK Pandey et al., Dietary Vitamin C and -Carotene and Risk of  Death in Middle-Aged Men, 
The Western Electric Study. American Journal of  Epidemiology, Vol 142, pp. 1269–1278, © 1995.

tablE 5-5 Mortality rates and corresponding rate ratios associated with vitamin C/beta carotene 
intake index, according to current smoking, Western Electric Company Study.

Vitamin C/beta carotene intake index rate ratios

Rate ratios Low Moderate High

Unadjusted 1.00 0.82 0.79

Adjusted* 1.00 0.85 0.81

*Adjusted using the direct method and the total cohort (sum of  the person-years of  observation for the three intake index 
categories) as standard population (see Chapter 7, Section 7.3.1).
Source: Data from DK Pandey et al., Dietary Vitamin C and -Carotene and Risk of  Death in Middle-Aged Men, 
The Western Electric Study. American Journal of  Epidemiology, Vol 142, pp. 1269–1278, © 1995.

tablE 5-6 Unadjusted and smoking-adjusted all-cause mortality ratios rate in the Western 
Electric Company Study.
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between smoking and intake index (Table 5-3) coupled with a total mortality rate 
ratio for the current smoking category of  only 1.72 (Table 5-4). This may be due in 
part to the lack of  specificity of  the outcome, which included both smoking-related 
and nonsmoking-related deaths. (It could also be argued that adjustment for only  
two categories of  smoking, which does not take into account either duration  
or amount of  smoking, leaves room for substantial residual confounding;  
see Section 5.5.4.)

5.5  ADDITIONAL ISSUES RELATED TO CONFOUNDING

5.5.1  The Importance of Using Different Strategies to Assess Confounding
Although, as discussed previously in this chapter, the most persuasive evidence 
supporting presence of  confounding is the demonstration that the crude and the 
adjusted estimates differ, it is useful to consider the other strategies discussed to 
evaluate confounding. For example, observation of  the directions of  the associations 
of  the confounder with the exposure and the outcome permits an a priori expectation 
as to whether removal of  confounding would lead to an increase or a decrease in 
the strength of  the association (see Section 5.5.5). Should the adjusted estimate be 
inconsistent with the expectation, the adjustment procedure must be verified for 
a possible error. For example, in a case-control study in which cases are younger 
than controls and age is directly (positively) related to the exposure of  interest, 
confounding is expected to result in an unadjusted relative risk estimate closer to 1.0. 
Thus, it would be against expectation and consequently requiring verification if  the 
unadjusted estimate was found to be further away from the null hypothesis than the 
adjusted estimate.

Stratification is also a useful step when analyzing epidemiologic data, as it also 
allows the formulation of  an a priori expectation of  the effects of  confounding on the 
association, and thus of  the effects of  adjustment on the association (notwithstanding 
the noncollapsibility caveat, previously referred to, that even when confounding is 
absent the pooled measure of  association may be different from the stratum-specific 
ones). For example, when the estimates in the strata formed by the confounder are 
closer to the null hypothesis than the pooled unadjusted value, the relative risk 
should be closer to 1.0 after adjustment. (Exceptions include certain situations in 
which multiple variables confound each other.) Another reason why stratification 
is a useful analytical strategy is that, in addition to assessing confounding, it allows 
the  examination of  the presence of  interaction, as discussed in more detail in 
Chapters  6 and 7.

5.5.2  Confounding Is Not an “All-or-None” Phenomenon
In the example illustrated in Exhibits 5-2 through 5-4, the confounding variable (work 
environment) appears to be responsible for the entirety of  the relationship between the 
exposure of  interest (male gender) and the outcome (malaria). Likewise, the relationship 
between long-term oxygen therapy or respiratory rehabilitation and risk of  readmission 
among COPD patients could be almost entirely explained by the confounding effect of  
severity (Table 5-1).3 In other instances, however, the confounding effect is only partial. 
In the example shown in Table 5-1, the increased risk of  readmission associated with 
anticholinergic therapy or being under the care of  a pulmonologist diminished somewhat 
after controlling for markers of  severity; however, a relatively strong and statistically 
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significant relative risk was still observed—which, in addition to resulting from residual 
confounding, could also mean that these markers confound part, but not all, of  the 
entirety of  the observed associations. Similarly, in the example shown in Tables 5-2 
through 5-6, adjustment for smoking had only a slight effect on the  association between 
vitamin C/beta carotene intake index and mortality.

5.5.3  Excessive Correlation Between the Confounder and 
the Exposure of Interest
Although, by definition, a confounding variable is correlated with the exposure of  interest 
(Figure 5-1), on occasion, the correlation is so strong that adjustment becomes difficult, 
if  not impossible. This is a problem analogous to the situation known in biostatistics 
as collinearity. Consider, for example, the exposure “air pollution” and the suspected 
confounder “area of  residence.” Given the high degree of  correlation between these 
variables, it would be difficult (if  not impossible) to control for the effect of  residence 
when assessing the effect of  air pollution on respiratory symptoms. Figure 5-9 schemati-
cally represents a perfect correlation between dichotomous exposure and confounding 
variables, which makes adjustment for the confounder impossible. The ideal situation for 
effective control of  confounding is that in which there is a clear-cut correlation between 
exposure and confounder but the variability is sufficient to allow adequate represen-
tation of  all cross-tabulated cells shown in Figure 5-10.

An example of  the difficulty posed by excessive correlations among variables is given 
by the assessment of  the role of  dietary components as risk factors. When examining the 
observational association between dietary animal protein intake and a given outcome, 
it may be difficult to control for the possible confounding role of  dietary fat, given the 
strong correlation between animal protein and fat intake.25 Other examples of  collin-
earity include education-income, serum HDL cholesterol-triglycerides, and race-SES. A 
similar situation occurs when components of  the same exposure variable are strongly 
correlated, making it difficult to adjust for one while looking at the “independent” contri-
bution of  the other. For example, it may be difficult, if  not impossible, to examine smoking 
duration while simultaneously and finely controlling for age of  smoking initiation.

FigurE 5-9 Perfect correlation between dichotomous exposure of interest and confounding factor: 
there are no cells in which the exposure is present and the confounder is absent, and vice versa.
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As a corollary of  the preceding discussion, it is important to underscore that it 
is only possible to adjust for a confounder while examining the relationship between 
exposure and outcome when levels of  the confounder and those of  the exposure overlap, 
a situation not always encountered in observational epidemiology studies. For example, 
it would be impossible to adjust for age if  there were no overlap in ages between exposed 
and unexposed individuals (e.g., if  all of  those exposed were over 45 years old and all of  
those unexposed were less than 45 years old).

A related issue is over-adjustment (or overmatching), which occurs when adjustment (or 
matching, see Chapter 1, Section 1.4.5) is carried out for a variable so closely related to the 
variable of  interest that no variability in the latter remains (see Chapter 7, Section 7.7). 
For example, in a case-control study, making the case and control groups very similar or 
identical regarding the confounder may result in their also being very similar or identical 
regarding the exposure, thereby resulting in an apparent null association. In general, 
it must be kept in mind that when adjustment is carried out for a given confounding 
variable, it is also carried out for all variables related to it. For example, when adjusting 
for area of  residence, adjustment is also carried out to a greater or lesser extent for factors 
related to residence, such as ethnic background, income, religion, and dietary habits.

5.5.4  Residual Confounding
Residual confounding, which is discussed in more detail in Chapter 7 (Section 7.6), 
occurs when either the categories of  the confounder controlled for are too broad, 
resulting in an imperfect adjustment, or when some confounding variables remain 
unaccounted for. Thus, in one of  the examples discussed previously (Table 5-6), the use 
of  only two categories of  smoking (“present” or “absent”) may explain the similarity 
between the crude and the smoking-adjusted relative risks expressing the relationship 
between vitamin C/beta carotene intake index and mortality. If  the confounding effect 
of  smoking were a function of  other exposure components, such as amount, duration, or 
time since quitting, marked residual confounding might have remained after adjusting 
for only two smoking categories.

FigurE 5-10 Correlation between an exposure of interest and a confounding factor: all 
four cells for a cross-tabulation of dichotomous categories are represented. In this schematic 
representation, the larger sizes of cells A and D denote the magnitude of the positive correlation 
between the exposure and the confounder. 
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Another example is the study of  the association between sexual activity and 
mortality discussed previously.2 Aware of  the possibility of  confounding, the authors 
of  this study used multiple logistic regression (see Chapter 7, Section 7.4.3) to 
adjust for several health-related variables. Data on these variables were collected at 
the baseline examination, including presence of  prevalent coronary heart disease, 
total serum cholesterol, smoking, systolic blood pressure, and occupation (manual 
vs nonmanual). The lower mortality of  study participants with a higher frequency 
of  sexual intercourse persisted when these variables were adjusted for. The authors, 
nevertheless, aptly concluded that “despite this, confounding may well account for 
our findings,” pointing out that in an observational study, variables unaccounted for 
may confound the observed association even after adjustment has been attempted. 
For example, in this study, other diseases affecting both sexual activity and mortality 
(e.g., diabetes, psychiatric conditions) were not taken into account. Furthermore, 
subtle health status differences that are not captured by the presence or absence of  
known diseases and risk factors (e.g., psychological profile or general “well-being”) 
remained unaccounted for, thus underscoring the difficulties of  fully taking into 
consideration the confounding effects of  general health status in observational epide-
miologic studies.

Another type of  residual confounding occurs when the construct validity of  the 
variable used for adjustment is not ideal; that is, the variable is an imperfect marker of  
the true variable one wishes to adjust for. Thus, the appropriateness of  educational level 
as a proxy for social class has been questioned, particularly when comparing whites and 
blacks in the United States.26 Likewise, in the COPD readmission example, the relative risk 
estimates after controlling for FEV1, PO2, and previous hospital admission, might be still 
subject to residual confounding by indication if  these variables are imperfect markers 
of  COPD severity, as suggested by the authors when they stated that “possible explana-
tions for residual confounding in our study are: the existence of  other confounders in the 
associations between medical care related factors and COPD re-admission, measurement 
error in questionnaires and lung function testing, and the lack of  information on longi-
tudinal changes of  the relevant variables.”3(p.855)

The different causes of  residual confounding are discussed in more detail in Chapter 7, 
Section 7.6.

5.5.5  Types of Confounding Effects: Negative, Positive, and 
“Qualitative” Confounding
Confounding may lead to an overestimation of  the true strength of  the association 
(positive confounding) or its underestimation (negative confounding). In other words, 
in positive confounding, the magnitude of  the unadjusted (vis-à-vis the adjusted) 
association is exaggerated; in negative confounding, it is attenuated. The terms 
overestimation and underestimation are used in reference to the null hypothesis. Thus, 
for example, an adjusted odds ratio of  0.7 is (in absolute terms) “greater” than an 
unadjusted odds ratio of  0.3; however, the fact that the former is closer than the latter 
to the odds ratio denoting lack of  association (1.0) defines the confounding effect as 
“positive.”

In Table 5-7, hypothetical examples showing relative risk estimates illustrate the 
effect of  confounding. The first three examples show unadjusted associations, which 
either disappear or become weaker when confounding is adjusted for. Examples of  
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positive confounding are abundant, including most of  the examples used previously in 
this chapter (e.g., gender/malaria vis-à-vis occupation, which would be analogous to 
example 1 in Table 5-7 or the example of  vitamin C intake/colon cancer vis-à-vis healthy 
lifestyle, possibly comparable to example 3 in Table 5-7).

Examples 4 through 6 in Table 5-7 show the reverse situation—namely, negative 
confounding, in which the unadjusted is an “underestimate” of  the adjusted relative 
risk (vis-à-vis the null hypothesis). Adjustment reveals or strengthens an association 
that was rendered either absent (example 4) or weakened (examples 5 and 6) because 
of  confounding. An example of  negative confounding, in which the adjusted relative 
risk is further away from 1.0 when compared with the unadjusted value, is a study by 
Barefoot et al.27 Using the Cook-Medley Hostility scale, a subscale of  the widely used 
Minnesota Multiphasic Personality Inventory to measure psychological constructs, 
the authors examined the relationship of  hostility to the incidence of  acute myocardial 
infarction. Although the completely unadjusted results were not given, the relative 
risk was reported to change from 1.2 when only age and sex were adjusted for to 
about 1.5 when systolic blood pressure, smoking, triglycerides, sedentary work, and 
sedentary leisure were also included in the Cox proportional hazard regression model 
(see Chapter 7, Section 7.4.4). Thus, it can be concluded that one or more of  these 
additional covariates (blood pressure, smoking, triglycerides, sedentary lifestyle) 
were negative confounders of  the association between hostility and myocardial 
infarction incidence.

An extreme case of  confounding is when the confounding effect results in 
an inversion of  the direction of  the association (Table 5-7, examples 7 and 8), 
a phenomenon that can be properly designated as qualitative confounding. For 
instance, in example 1 in Section 5.1, the US/Venezuela ratio of  crude mortality 
rates is 8.7/4.4 = 1.98; however, when the age-adjusted rates are used, it becomes 
3.6/4.6 = 0.78. The opposite patterns of  the adjusted and crude rate ratios can 
be explained by the striking difference in the age distribution between these  
two countries.

Example no. Type of  confounding Unadjusted relative risk Adjusted relative risk

1 Positive 3.5 1.0

2 Positive 3.5 2.1

3 Positive 0.3 0.7

4 Negative 1.0 3.2

5 Negative 1.5 3.2

6 Negative 0.8 0.2

7 Qualitative 2.0 0.7

8 Qualitative 0.6 1.8

tablE 5-7 Hypothetical examples of unadjusted and adjusted relative risks according to type 
of confounding (positive or negative).
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As a summary, Figure 5-11 shows schematic representations of  negative, positive, 
and qualitative confounding effects.

The direction of  the confounding effect (positive or negative) can be inferred from the 
directions of  the associations of  the confounder with exposure and outcome, if  known. 
The expectations of  the changes brought about by the adjustment, resulting from the 
directions of  these associations are summarized in Table 5-8. Thus, positive confounding 
is to be expected when the confounder–exposure association is in the same direction as 
the confounder–outcome association. When these associations are in divergent direc-
tions, there will be negative confounding (or qualitative confounding in extreme cases). 
(Not shown in Table 5-8, when exposure and disease are inversely associated,28 negative 
confounding will be expected if  the associations of  confounder is in the same direction 
for both exposure and outcome and positive when these go in divergent directions.)

5.5.6  Statistical Significance in Assessing Confounding
It is inappropriate to rely on statistical significance to identify confounding, especially 

when either the exposure (in case-control studies) or the outcome (in cohort studies) 
varies markedly according to the confounding variable. For example, in a hypothetical 
case-control study examining the relationship of  the occurrence of  menopause to disease 
Y in women aged 45 to 54 years old, small, statistically nonsignificant differences in age 
between cases and controls may cause an important confounding effect in view of  the 
strong relationship between age and presence of  menopause in this age range. Thus, even 
if  there is no association whatsoever between occurrence of  menopause and disease, if  for 
each year of  age the odds of  menopause hypothetically increased from 1:1 to 1.5:1 (e.g., 
for an increase in menopause prevalence from 50% to 60%), a case-control age difference 
as small as 1 year (which might not be statistically significant if  the study sample were 
not large) would result in an age-unadjusted menopause relative odds of  1.5.

FigurE 5-11 Unadjusted and adjusted relative risks (RR): negative confounding is seen in 
examples no. 1 and 3 (adjusted RRs are further away from the null value of 1.0 than unadjusted 
RRs); positive confounding is seen in examples no. 2 and 4 (adjusted RRs are closer to the null 
value of 1.0 than unadjusted RRs). Example no. 5 denotes confounding in which the direction of 
the association changes (qualitative confounding). 
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For those who insist on using the p value as a criterion to identify confounding, it 
may be wiser to use more “lenient” (conservative) p values as a guide to identify possible 
confounders—for example, 0.20. Doing so decreases the beta error and, thus, increases 
the probability of  accepting the presence of  confounding even when there are small 
differences between cases and controls in case-control studies or between exposed and 
unexposed subjects in cohort studies. This strategy, however, should not replace the inves-
tigator’s consideration of  the strength of  the associations of  the suspected confounder(s) 
with the exposure and outcome as a means to identify confounding.

5.5.7  Conditional Confounding
A presumed confounding variable may be confounded by other variables. Thus, 
univariate evaluation may suggest that a given variable Z is a confounder, but the same 
variable may not act as a confounder when other variables are adjusted for. Similarly, Z 
may not appear to be a confounder univariately because it is negatively confounded by 
other variables, in which case a confounding effect of  Z may become evident only after 
adjustment.

5.5.8  Confounding and Bias
Should confounding be regarded as a type of  selection bias? Some epidemiology textbooks 
suggest that confounding is one more type of  bias (e.g., Rothman and Greenland29), 
essentially because a confounded association can be considered as a “biased estimate” 
of  the causal association (that which is expressed by the adjusted estimate—assuming 
that the adjustment procedure is appropriate and not subject to residual confounding). 
In contrast, other textbooks (e.g., Lilienfeld and Stolley30 and Gordis31) differentiate 
between “spurious” associations due to bias and “indirect” (or “statistical”) associations 
due to confounding, thus suggesting that confounding is distinct from bias.

The rationale for keeping confounding conceptually distinct from bias can be 
described as follows. Assuming no random variability, schematic representations of  
confounding and bias are shown in Figure 5-12A and Figure 5-12B, respectively. In 

Association of  
confounder with 

exposure is 

Association of  
confounder with 

outcome is
Type of   

confounding

Expectation of  change  
from unadjusted to  
adjusted estimate

Direct* Direct* Positive‡ Unadjusted  Adjusted

Direct* Inverse† Negative§ Unadjusted  Adjusted

Inverse† Inverse† Positive‡ Unadjusted  Adjusted

Inverse† Direct* Negative§ Unadjusted  Adjusted

*Direct association: presence of  the confounder is related to an increased probability of  the exposure or the outcome.
†Inverse association: presence of  the confounder is related to a decreased probability of  the exposure or the outcome.
‡Positive confounding: when the confounding effect results in an unadjusted measure of  association (e.g., relative risk) 
further away from the null hypothesis than the adjusted estimate.
§Negative confounding: when the confounding effect results in an unadjusted measure of  association closer to the null 
hypothesis than the adjusted estimate.

tablE 5-8 Directions of the associations of the confounder with the exposure and the outcome, 
and expectation of change of estimate with adjustment (assume a direct relationship between 
exposure and outcome, i.e., for exposed/unexposed, relative risk, or odds ratio  1.0).
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FigurE 5-12 Schematic representation of positive confounding and selection bias. In the total 
reference population, confounding factor C is more common in cases than in controls; assuming 
no random variability, the study samples of cases and controls reflect the higher frequency of 
C in cases than in controls (A). In selection bias (B), the frequency of factor S is the same in 
cases and controls; however, through the selection process, it becomes more common in cases 
than in controls. Thus, confounding exists “in nature,” whereas selection bias is a result of the 
sampling process.

Cases

A. Confounding

Total
reference

population

Sampling

Controls Cases Controls

SS

SS

C C

CC

Study
population

B. Selection bias

these figures, circles represent cases or controls, with larger and smaller circles denoting 
the reference population and study sample subsets, respectively. In Figure 5-12A, repre-
senting confounding, the proportion of  confounder C (e.g., smoking) in the reference 
population is truly greater in cases than in controls; thus, any factors related to C 
(e.g., alcohol intake) are more frequent in cases. Assuming no random variability, in 
confounding, the study samples accurately reflect the fact that C is more common in 
cases than in controls. On the other hand, in Figure 5-12B, the proportion of  cases 
and controls in whom a certain selection factor S is present is the same in the reference 
population; however, in the study samples, selection bias has resulted in cases having a 
(spuriously) higher proportion of  S than controls. Consider, for example, a case-control 
study in which cases are ascertained in hospitals that preferentially admit upper SES 
patients; on the other hand, controls are sampled from noncases from the population at 
large. As a result of  this type of  selection bias, positive associations will be observed in 
this study for exposures related to high SES.

This conceptual distinction between confounding and bias may be of  only 
 intellectual interest when assessing causal relationships (because for accepting a 
relationship as causal, both confounding and bias must be deemed unlikely explana-
tions). However, it becomes important when epidemiologic findings are considered in the 
context of  public health practice. Whether confounding is labeled as a bias or not, there 
is a clear-cut role for true, yet confounded associations, as they allow identification of  
markers that may be useful to define high-risk groups for secondary prevention.

As summarized in Exhibit 5–5, for primary prevention purposes, a causal association 
between the risk factor and the disease outcome must exist; otherwise, modification of  
the former will not lead to a reduction of  the risk of  the latter. However, a (true) statis-
tical association between a confounding factor and the disease allows the identification 
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of  high-risk groups, which should be the main focus of  secondary prevention (screening) 
and of  primary prevention based on established causes, if  known and if  amenable to 
intervention. An example is given by the known fact that, in the United States, African 
Americans have a much greater risk of  hypertension than whites. This association is 
almost certainly not causal (due to a genetic factor predominantly found in African 
Americans, for example); on the other hand, it is clearly confounded by poverty-related 
lifestyle risk factors for hypertension, such as obesity and an unhealthy diet, known to 
be more common in African Americans. Such a confounded relationship—referred to by 
Lilienfeld and Stolley as indirect30—nevertheless serves to identify African Americans as 
a high-risk group for hypertension, in whom both screening for hypertension and inter-
vention on known hypertension risk factors (e.g., obesity) should be pursued vigorously. 
Thus, unlike a spurious relationship resulting from bias, a confounded, yet true statis-
tical relationship allows identification of  individuals with a higher likelihood of  disease 
occurrence and is therefore useful for public health purposes.

5.6  CONCLUSION

Confounding, along with bias, constitutes a formidable threat to the evaluation of  causal 
relationships. In this chapter, issues related to the definition of  confounding effects as 
well as some approaches to verify the presence of  confounding were discussed. The 
assessment of  confounding being done before carrying out statistical adjustment was 
underscored as a means of  predicting the magnitude and direction of  possible changes (if  
any) in the measure of  association brought about by adjustment. The concept of  residual 
confounding (which is also discussed in Chapter 7) was introduced in this chapter, as 
was the notion that statistical significance testing should not be used as a criterion to 
evaluate confounding. Finally, the rationale for not classifying confounding as a type of  
bias was discussed in the context of  the public health usefulness of  confounded, yet true 
associations, as a way to identify high-risk groups.

Goal Type of  evidence needed

Primary prevention: prevention or cessation 
of  risk factor exposure (eg, saturated fat 
intake and atherosclerosis).

Causal association must be present; otherwise, intervention 
on risk factor will not affect disease outcome. For example, 
if  fat did not cause atherosclerosis, a lower fat intake would 
not affect atherosclerosis risk.

Secondary prevention: early diagnosis via 
selective screening of  “high-risk” subjects 
(e.g., identification of  individuals with high 
triglyceride levels).

Association may be either causal or statistical (the latter 
must not be biased): that is, the association may be 
confounded. For example, even if  hypertriglyceridemic 
individuals had a higher probability of  developing athero-
sclerotic disease because of  the confounding effect of  low 
high-density lipoprotein levels, atherosclerosis is truly 
more common in these individuals.

Exhibit 5-5 The relationship between type of evidence needed in epidemiologic studies and 
type of prevention carried out (primary or secondary).
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EXERCISES

 1. A case-control study was carried out to examine the relationship between alcohol 
drinking and lung cancer.

  a.  In general, which conditions must be met for a variable to be a confounding 
variable?

  b.  Indicate with a blank 2 × 2 table (or tables) how the possible confounding 
effect of  smoking in this study can be assessed in a straightforward manner 
(assume that both alcohol drinking and smoking are defined as binary, yes/no 
variables).

 2. In a study of  serum dioxin levels and risk of  diabetes among Air Force veterans,* 
the odds ratio of  diabetes comparing those with high serum dioxin with those 
with low serum dioxin levels was found to be 1.71. After adjustment for serum 
triglyceride levels, however, the estimated odds ratio for high serum dioxin 
decreased to 1.56.

  a.  Assuming that triglyceride levels are not in the causal pathway of  the suspected 
dioxin → diabetes association and that there is no random or measurement 
error, what is the best explanation for this finding?

  b.  Assuming, instead, that triglyceride level is in the causal pathway of  the 
dioxin → diabetes association, how do you explain the fact that the association 
remained positive even after adjustment for triglyceride levels? To answer this 
question, assume that there is no random or measurement error.

 3. By examining the exhibit below, indicate whether, in a case control study, positive 
or negative confounding has occurred:

Situation no.
Confounder associated 

with exposure
Confounder more 
common in cases

Confounder more 
common in controls

1 Positively Yes

2 Negatively Yes

3 Positively Yes

4 Negatively Yes

* Longnecker MP, Michalek JE. Serum dioxin level in relation to diabetes mellitus among Air Force veterans 
with background levels of  exposure, Epidemiology 2000: 11(1): 44–48.
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 4. Severe restrictions on the transfer of  mentally disturbed prisoners to psychiatric 
hospitals were introduced in Auckland in 1983, whereas the policy in other parts 
of  New Zealand remained unchanged.† The data to support the contention that 
this policy resulted in an increase in suicides are shown here.

Auckland
Other areas in 
New Zealand

1973–1982 1983–1987 1973–1982 1983–1987

Number of  suicides 2 18 5 6

Number of  prisoner-years 5396 3277 20,059 9815

Suicide rates (per 100,000)

Crude 37.1 549.3 24.9 61.1

Adjusted for sentence length* 26.8 367.9 27.1 54.4

*Because longer sentences (years to be spent in prison) are associated with an increased risk of  suicide, the 
suicide rates were adjusted for the effect of  sentence length.

  a.  In areas of  New Zealand other than Auckland, adjustments for sentence 
length caused only a small increase in the rate for 1973–1982 but a marked 
decrease in the rate for 1983–1987. What do these data tell you about what 
happened to average length of  sentences from the earlier to the later period?

  b.  What else would you like to know before inferring that the temporal difference 
in the Auckland suicide rates resulted from the changes in policy?

 5. In a hypothetical case-control study examining the relationship of  exposure 
X to disease Y, the unadjusted odds ratio was found to be 1.5 ( p < 0.05). The 
authors examined the possibility that current smoking could be a confounding 
factor. The percentages of  current smokers were found to be 32% in cases and 
37% in controls ( p = 0.25). The relative risk for the association of  smoking with 
the exposure in this study was found to be very strong (OR = 20.0, p < 0.001). 
Based on the small difference in current smoking percentage between cases and 
controls, would you conclude that current smoking is not a confounder? Why?

† Skegg K, Cox B. Impact of  psychiatric services on prison suicide, Lancet 1991, Dec 7; 338(8780): 1436–1438.





185

6
CHAPTER

Defining and Assessing 
Heterogeneity of Effects: 
Interaction

6.1 INTRODUCTION

The term interaction is used in epidemiology to describe a situation in which two or more 
risk factors modify the effect of  each other with regard to the occurrence or level of  a 
given outcome. This phenomenon is also known as effect modification and needs to be 
distinguished from the phenomenon of  confounding. As discussed in detail in Chapter 5,  
confounding refers to a situation in which a variable that is associated with both the 
exposure and the outcome of  interest is responsible for the entirety or part of  the statis-
tical association between the exposure and the outcome. Interaction between a given 
variable (effect modifier) and a given exposure is a different phenomenon, as detailed in the 
following sections. The clear distinction between confounding and interaction notwith-
standing, it is important to recognize that, as discussed later in this chapter, under certain 
circumstances, interaction might cause confounding (see Section 6.8) and the presence 
of  confounding might cause the appearance of  an interaction effect (Section 6.10.2). 

For dichotomous variables, interaction means that the effect of  the exposure on the 
outcome differs depending on whether or not another variable (the effect modifier) is 
present. If  interaction exists and the presence of  the effect modifier strengthens (accen-
tuates) the effect of  the exposure of  interest, this variable and the exposure are said to 
be synergistic ( positive interaction); if  the presence of  the effect modifier diminishes or 
eliminates the effect of  the exposure of  interest, it can be said that the effect modifier and 
the exposure are antagonistic (negative interaction). Likewise, in the case of  continuous 
variables, interaction means that the effect of  exposure on outcome (e.g., expressed by 
the regression coefficient; see Chapter 7, Section 7.4.1) depends on the level of  another 
variable (rather than on its presence/absence).

A minimum of  three factors is needed for the phenomenon of  interaction to occur. 
For this chapter, the main putative risk factor is designated as factor A, the outcome 
variable as Y, and the third factor (potential effect modifier) as Z. In addition, although 
it is recognized that there are differences between absolute or relative differences in risk, 
rate, and odds, the generic terms risk, attributable risk, and relative risk are mostly used.  
In this chapter, the term homogeneity indicates that the effects of  a risk factor A are 
homogeneous or similar in strata formed by factor Z. Heterogeneity of  effects, therefore, 
implies that these effects are dissimilar.

The discussion that follows is largely based on the simplest situation involving  
interaction between two independent variables with two categories each and a discrete 
outcome (e.g., disease present or absent). Other types of  interaction, which can be 
assessed but are not discussed in detail in this textbook, include those based on more 
than two “independent” variables, or on continuous variables.

Interaction can be defined in two different yet compatible ways. Each definition leads 
to a specific strategy for the evaluation of  interaction, both of  which are discussed in 
detail in the following section.
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 1. Definition based on homogeneity or heterogeneity of  effects: Interaction occurs when 
the effect of  a risk factor A on the risk of  an outcome Y is not homogeneous in 
strata formed by a third variable Z. When this definition is used, variable Z is often 
referred to as an effect modifier.

 2. Definition based on the comparison between observed and expected joint effects of  risk 
factor A and third variable Z: Interaction occurs when the observed joint effect of  
A and Z differs from that expected on the basis of  their independent effects.

6.2 DEFINING AND MEASURING EFFECT

As discussed by Petitti,1 the term “effect” needs to be used with caution when inferring 
etiologic relationships from observational studies. A more appropriate term to define 
interaction would be perhaps “association modification,” but as the expression “effect 
modification” is widely used in the literature regardless of  the soundness of  the causal 
inference, we use it in a somewhat nonspecific sense, i.e., expressing both causal and 
noncausal interactions.

An important issue in the evaluation of  interaction is how to measure “effect.” 
Effect can be measured either by the attributable risk (additive model) or by a relative 
difference—for example, the relative risk (multiplicative model). The conceptual basis for 
the evaluation of  interaction is the same for both models.

6.3 STRATEGIES TO EVALUATE INTERACTION

6.3.1 Assessment of Homogeneity of Effects
Variability in susceptibility to an outcome given exposure to a risk factor is reflected by 
the between-individual heterogeneity of  the effect of  the risk factor. This is virtually a 
universal phenomenon for both infectious and noninfectious diseases. For example, 
even for a strong association, such as that between smoking and lung cancer, not every 
exposed person develops the disease. Assuming that chance does not play a role in deter-
mining which smokers develop lung cancer, this suggests that smoking by itself  is not a 
sufficient cause. Thus, smokers who develop lung cancer are likely to differ from smokers 
who do not, in that another component cause2 must be present in smokers who develop 
lung cancer. This component risk factor may act by either completing the multicausal 
constellation needed to cause lung cancer or by increasing susceptibility to smoking-
induced lung cancer (see also Chapter 10, section 10.2.1). In the latter situation, this 
component cause can be thought of  generically as a susceptibility factor, which could be 
either genetically or environmentally determined.

A simplistic representation of  the conceptual framework for interaction defined as 
heterogeneity of  effects is shown in Figure 6-1. After it is observed that a statistical 
association exists between a risk factor A and a disease outcome Y, and it is reasonably 
certain that the association is not due to confounding, bias, or chance, the key question 
in evaluating interaction is this: Does the magnitude or direction of  the effect of  A on 
Y vary according to the occurrence of  some other variable Z in the study population? 
A positive answer suggests the presence of  interaction. For example, because diabetes 
is a stronger risk factor for coronary heart disease (CHD) in women than in men, it can 
be concluded that there is interaction (i.e., that gender modifies the effect of  diabetes on 
CHD risk).3
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The conceptualization of  interaction as the occurrence of  heterogeneous effects of  
A (e.g., asbestos exposure) according to the presence or absence of Z (e.g., smoking) 
explains why the expression “effect modification” is used as a synonym for interaction. For 
example, appropriate language when describing the interaction between smoking and 
asbestos in regard to the risk of  respiratory cancer is that “the effect of  asbestos exposure 
on respiratory cancer risk is modified by cigarette smoking in that it is stronger in smokers 
than in nonsmokers.” The expression effect modifier suggests that the investigator has 
decided to consider A as the “main” variable of  interest, and Z as the effect modifier. From 
the preventive standpoint, the variable not amenable to intervention (e.g., a gene) is 
usually regarded as the effect modifier, in contrast to an exposure that can be prevented 
or eliminated. Thus, for example, in a prospective study conducted in Eastern Finland, 
apolipoprotein e4 was shown to modify the effect of  frequent drinking on dementia, in 
that a strong positive association was only present for carriers of  the e4 allele.4 Another 
example is that recessive mutant alleles can be said to modify the effect of  dietary phenyl-
alanine on risk of  clinical hyperphenylalaninemias, as diet-induced disease will only 
occur if  these alleles are present. In both these examples, the choice of  which variables 
are the effect modifiers (apolipoprotein e4 allele, recessive mutant alleles for hyperphenyl-
alaninemia), although somewhat arbitrary, underscores the fact that these modifiers are 
immutable, whereas, on the other hand, both frequent drinking and diet can be altered. 
Another common strategy is to choose a variable with a known effect on the outcome as 
effect modifier and a novel potential risk factor as the independent variable of  interest.

Figure 6-1 Conceptual framework for the definition of interaction based on the homogeneity 
concept.
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As mentioned previously, a key issue in the evaluation of  interaction is that it involves 
at least three variables: the main factor of  interest A (e.g., diabetes), the potential effect 
modifier Z (e.g., gender), and a given outcome Y (e.g., coronary heart disease). There 
may, however, be more than two interacting independent variables—e.g., if  diabetes 
were a more important risk factor for women than for men only among older subjects. In 
this hypothetical example, the simultaneous presence of  two variables would be needed 
to modify the effect of  diabetes: gender and age.

Detection of Additive Interaction: The Absolute Difference or Attributable Risk Model
Additive interaction is considered to be present when the attributable risk in those exposed 
to factor A (ARexp, i.e., the absolute difference in risks between those exposed and those 
not exposed to A; see Chapter 3, Equation 3.4) varies (is heterogeneous) as a function of  
a third variable Z. 

The easiest way to evaluate interaction in this instance is to calculate the attributable 
risks for those exposed to risk factor A for each stratum defined by levels of  the potential 
effect modifier Z. Hypothetical examples of  this strategy to evaluate additive interaction 
are shown in Tables 6-1 and 6-2. In Table 6-1, the absolute excess risks of  Y attributable 
to A do not differ according to exposure to Z. In Table 6-2, the attributable risk for A is 
larger for those exposed than for those not exposed to Z, denoting heterogeneity of  the 
absolute effects of  A. In these tables, there are two different reference categories for the 
attributable risks associated with A: for the stratum in which Z is absent, the reference 
category is Z absent, A absent; for the stratum in which Z is present, the reference category 
is Z present, A absent.

The patterns shown in Tables 6-1 and 6-2 can be examined graphically (Figure 6-2A). 
A graph using an arithmetic scale to plot risks is used to assess additive interaction. The 
risks or rates for each category of  the risk factor A are plotted separately for individuals 

Z A Incidence rate (per 1000) Attributable risk (per 1000)*

No No 10.0 0

Yes 20.0  10.0

Yes No 30.0 0

Yes 40.0  10.0

*Attributable risk for A within strata of  Z.

Table 6-1 Hypothetical example of absence of additive interaction.

Z A Incidence rate (per 1000) Attributable risk (per 1000)*

No No  5.0 0

Yes 10.0   5.0

Yes No 10.0 0

Yes 30.0  20.0

*Attributable risk for A within strata of  Z.

Table 6-2 Hypothetical example of presence of additive interaction.
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exposed and those not exposed to the third variable Z. In this type of  graph (with an 
arithmetic scale in the ordinate), the steepness of  the slopes is a function of  the absolute 
differences. Thus, when the absolute difference in risk of  the outcome according to A 
(attributable risk in those exposed to A) is the same regardless of  exposure to Z, the two 
lines are parallel. When the absolute differences differ, denoting additive interaction, the 
lines are not parallel. 

Detection of Multiplicative Interaction: The Relative Difference or Ratio Model
Multiplicative interaction is considered to be present when the relative difference 
(ratio) in the risk of  an outcome Y between subjects exposed and those not exposed 
to a putative risk factor A differs (is heterogeneous) as a function of  a third variable 
Z. Hypothetical examples of  the evaluation of  multiplicative interaction are shown 

Figure 6-2 Assessment of interaction by means of graphs. For additive interaction (A), an 
arithmetic scale should be used on the ordinate (slopes represent absolute differences). Interaction 
is absent on the left panel because the absolute difference between A1 and A2 is the same 
regardless of the presence of Z (60 2 30 5 40 2 10 5 30 per 1000). Interaction is present on 
the right panel because the absolute difference between A1 and A2 is greater when Z is present 
(90 2 30 5 60 per 1000) than when Z is absent (40 2 10 5 30 per 1000). For multiplicative 
interaction (B), a logarithmic scale should be used on the ordinate (slopes represent relative 
differences). Interaction is absent on the left panel because the relative difference between A1 
and A2 is the same regardless of the presence of Z (30/15 5 20/10 5 2). Interaction is present 
on the right panel because the relative difference between A1 and A2 is higher when Z is 
present (90/15 5 6) than when Z is absent (20/10 5 2).
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in Tables 6-3 and 6-4. (Consistent with Tables 6-1 and 6-2, there are two different 
reference categories for the relative risks associated with A: for the stratum in which Z is 
absent, the reference category is Z absent, A absent; for the stratum in which Z is present, 
the reference category is Z present, A absent.) In Table 6-3, the relative risk for A is the 
same for those exposed and those not exposed to Z. In Table 6-4, the relative risk for A is 
larger for those exposed than for those not exposed to Z, indicating that the effects of  A 
measured by the relative risk are heterogeneous according to Z.

As for additive interaction, multiplicative interaction can be evaluated graphically by 
plotting the rates for each category of  A according to the strata defined by Z (Figure 6-2B). 
For multiplicative interaction assessment, however, a log scale is used in the ordinate. 
Thus, the steepness of  the slopes is a function of  the relative differences: when the risk 
ratios for A are the same in those exposed and in those not exposed to Z, the Z-specific 
curves are parallel, indicating absence of  multiplicative interaction. Nonparallel lines 
suggest the presence of  multiplicative interaction.

6.3.2  Comparing Observed and Expected Joint Effects
As discussed previously, an alternative definition of  interaction is when the observed 
joint effect of  A and Z differs from the expected joint effect. The expected joint effect can 
be estimated by assuming that the effects of  A and Z are independent. Thus, to compare 
observed and expected joint effects of  A and Z, it is first necessary to estimate their 
independent effects.

As in the evaluation of  homogeneity, the strategy of  comparing the observed 
with the expected joint effects is based on a common conceptual framework for 
both additive and multiplicative models; the only difference between these models 
is whether absolute or relative differences are used in the evaluation of  interaction.  

Z A Incidence rate (per 1000) Relative risk (per 1000)*

No No 10.0 1.0

Yes 20.0 2.0

Yes No 25.0 1.0

Yes 50.0 2.0

*Relative risk for A within strata of  Z.

Table 6-3 Hypothetical example of absence of multiplicative interaction.

Z A Incidence rate (per 1000) Relative risk (per 1000)*

No No  10.0 1.0

Yes  20.0 2.0

Yes No  25.0 1.0

Yes 125.0 5.0

*Relative risk for A within strata of  Z.

Table 6-4 Hypothetical example of multiplicative interaction.
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The conceptual framework underlying this strategy is shown schematically in 
Exhibit 6-1. In the exhibit, the areas of  the rectangles designated A and Z represent 
the independent effects of  the potential risk factor A and effect modifier Z. If  there is 
no interaction, when exposure occurs to both these factors, the observed joint effect is 
expected to be merely the sum of  their independent effects, as denoted by the area of  
the rectangle A 1 Z in Exhibit 6-1A. (The term sum is not used here in the context of  a 
simple [arithmetic] sum, which would make it limited to the additive model; rather, it 
implies the combined effects of  A and Z either in absolute or in relative terms.) In Exhibit 
6-1B, the observed joint effect exceeds the expected joint effect. The area to the right of  
the dotted line represents the excess caused by interaction. As the observed joint effect 
is greater than expected, there is positive interaction or synergism. If  the observed joint 
effect of  A and Z is smaller than that expected, however, there is negative interaction or 
antagonism (Exhibit 6-1C).

Detection of Additive Interaction: The Absolute Difference or Attributable Risk Model
When evaluating the presence of  additive interaction by comparing observed and 
expected joint effects, the joint effect of  A and Z is estimated as the arithmetic sum of  
the independent effects measured by the attributable risks in exposed individuals (ARexp). 
Exhibit 6-2 presents two hypothetical examples showing the absence (A) and presence 
(B) of  additive interaction. The first step is to calculate incidence rates for each of  the 
four table cells defined by the two factors A and Z. The cell representing the absence of  
both exposures (–/–) is designated as the single reference category. The observed attrib-
utable risks in Exhibit 6-2 represent the observed absolute incidence differences between 
each category and the reference category. In this manner, it is possible to separate the 
observed independent effects of  A and Z and thus to estimate their joint effect. The 
meanings of  the different categories in Exhibit 6-2 are described in Table 6-5.

Estimation of  the expected (Expd) joint effect of  A and Z measured by the attributable 
risk is carried out by a simple sum of  their independent observed (Obs) attributable risks, 
as follows:

                         Expd ARA1Z1 5 Obs ARA1Z2 1 Obs ARA2Z1 (Eq. 6.1)

Thus, the expected joint attributable risk in the example shown in Exhibit 6-2A 
is (20.0 1 10.0 5 30.0)/1000. This expected joint effect is identical to the observed 
joint effect, thus indicating the absence of  additive interaction. On the other hand, the 
observed joint attributable risk shown in Exhibit 6-2B of  50.0/1000 is higher than the 
expected joint AR of  30.0/1000, denoting positive additive interaction.

The expected joint effect can also be estimated by an expected (Expd) joint incidence 
(Inc), as follows:

Expd IncA1Z1 5 Obs IncA2Z2 1 (Obs IncA1Z2 2 Obs IncA2Z2)

      1 (Obs IncA2Z1 2 Obs IncA2Z2)

      5 Obs IncA2Z2 1 Obs ARA1Z1 2 Obs ARA2Z1) (Eq. 6.2)

For example, for Exhibit 6-2B,

Expd IncA1Z1
 =  [10.0 + (30.0 - 10.0) + (20.0 - 10.0) = 40.0]/1000

which is less than the observed joint incidence of  60.0/1000, thus again denoting 
positive additive interaction.
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exhibiT 6-1 Conceptual framework of the definition of interaction based on comparing 
expected and observed joint effects.

+ =A Z

Expected

Observed

+ =A Z

Expected

Observed

*

+ =A Z

A + Z

†

Expected

Observed

A. When there is no interaction, the observed joint effect of  risk
factors A and     equals the sum of  their independent effects:

B. When there is positive interaction (synergism), the observed
joint effect of  risk factors A and     is greater than the expected
on the basis of  summing their independent effects:

C. When there is negative interaction (antagonism), the
observed joint effect of  risk factors A and     is smaller than  the
expected on the basis of  summing their independent effects:

† “Deficit” due to negative interaction

Note: The rectangle areas denote the magnitude of  the effects.

* Excess due to positive interaction

A + Z

A + Z

A + Z

Z

Z
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Detection of Multiplicative Interaction: The Relative Difference or Ratio Model
The strategy for detecting multiplicative interaction is analogous to that for 
detecting additive interaction; however, in the evaluation of  multiplicative interaction, 
the expected joint effect is estimated by multiplying the independent relative effects of  
A and Z:

       Expd RRA1Z1 5 Obs RRA1Z2 3 ObsA2Z1 (Eq. 6.3)

A. No additive interaction

Observed
incidence

rates/1000

Observed
attributable
risks*/1000

A A

Z 2 1 Z 2 1

2 10.0 30.0 2 0.0 20.0

1 20.0 40.0 1 10.0 30.0

Joint expected AR 5 10.0 1 20.0 5 30.0
Joint observed AR 5 30.0

B. Additive interaction present

Observed
incidence

rates/1000

Observed
attributable
risks*/1000

A A

Z 2 1 Z 2 1

2 10.0 30.0 2 0.0 20.0

1 20.0 60.0 1 10.0 50.0

Joint expected AR 5 10.0 1 20.0 5 30.0
Joint observed AR 5 50.0

*In the exposed.

exhibiT 6-2 Detection of interaction through the comparison of expected and observed joint 
effects: additive interaction.

Factor Z Factor A Observed attributable risks represent

Absent Absent Reference category 5 0.0

Absent Present Independent effect of  A (i.e., in the absence of  Z)
  (e.g., in Exhibit 6-2A, 30.0 2 10.0 5 20.0)

Present Absent Independent effect of  Z (i.e., in the absence of  A)
  (e.g., in Exhibit 6-2A, 20.0 2 10.0 5 10.0)

Present Present Joint effect of  A and Z
  (e.g., in Exhibit 6-2A, 40.0 2 10.0 5 30.0

Table 6-5 Assessment of interaction: additive model.
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Independent and joint effects expressed by relative risks are shown in Exhibit 6-3, 
with interpretations akin to those for additive interaction based on Exhibit 6-2. In 
Exhibit 6-3A, the expected (3.0 3 2.0 5 6.0) and the observed joint effects are equal, 
suggesting no multiplicative interaction. In Exhibit 6-3B, the expected joint relative risk 
is also 6.0, but the observed joint relative risk is 9.0, denoting positive multiplicative 
interaction.

6.3.3 Examples of Interaction Assessment in a Cohort Study
Data from a cohort study conducted in Washington County, Maryland, allow  evaluation 
of  additive and multiplicative interactions between father’s educational level and 
maternal smoking on the risks of  neonatal and postneonatal deaths5 (Tables 6-6 and 
6-7). As shown in Table 6-6A, both the relative risks and the attributable risks for 
the maternal smoking/neonatal mortality associations are heterogeneous according 
to the educational level of  the father, thus denoting both multiplicative and additive 
 interactions, which express the magnification of  the smoking effect on neonatal 
mortality when father’s educational level is low. (The heterogeneity in Table 6-6, 
however, may be due to residual confounding resulting from the use of  broad educa-
tional and smoking categories; see Chapter 5, Section 5.4.3 and Chapter 7, Section 7.6. 
For the purposes of  this example, however, it is assumed that the heterogeneity is not 
due to residual confounding.) The interaction on both scales is confirmed when the 

A. No multiplicative interaction

Observed
incidence

rates/1000

Observed
relative

risks

A A

Z 2 1 Z 2 1

2 10.0 30.0 2 1.0 3.0

1 20.0 60.0 1 2.0 6.0

Joint expected RR 5 2.0 3 3.0 5 6.0
Joint observed RR 5 6.0

B. Multiplicative interaction present

Observed
incidence

rates/1000

Observed
relative

risks

A A

Z 2 1 Z 2 1

2 10.0 30.0 2 1.0 3.0

1 20.0 90.0 1 2.0 9.0

Joint expected RR 5 2.0 3 3.0 5 6.0
Joint observed RR 5 9.0

exhibiT 6-3 Detection of interaction through the comparison of expected and observed joint 
effects: multiplicative interaction.
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joint observed and expected effects are compared in Table 6-6B. For the additive model, 
the observed joint attributable risk is 31.2/1000 live births, whereas the expected is 
only 3.7/1000 (i.e., 1.5 + 2.2). For the multiplicative model, observed and expected 
joint relative risks are 3.1 and 1.2, respectively. Little or no interaction on either scale is 
apparent when assessing the association of  maternal smoking and father’s education 
with postneonatal mortality (Tables 6-7A and 6-7B). The small differences between 
observed and expected joint effects (or the slight heterogeneity of  effects) are probably 
due to random variability. 

The study by Ndrepepa et al.6 on the interaction between gender and diabetes in the 
prognosis of  4460 patients who underwent coronary stenting for stable or unstable 
angina is another example of  how to assess interaction in a cohort (prognostic) study. 
The 1-year mortality after the procedure is shown in Table 6-8. In those exposed to 
diabetes, both the attributable risk and the relative risk are much higher in women than 
in men. When comparing the joint observed with the joint expected measures of  associ-
ation (Table 6-8B), the former is higher than the latter in both models, thus confirming 
the heterogeneity seen in Table 6-8A.

A. Homogeneity strategy

Father’s 
education

Mother’s 
smoking

Estimated no.  
of  live births

Rate/1000 live  
births

AR†/1000 live  
births RR*

91 grades No 5967 14.9 0 1.0

Yes 3833 17.1   2.2 1.1

0–8 grades No 1967 16.4 0 1.0

Yes 767 46.1  29.7 2.8

B. Comparison of  joint observed and expected effects

Incidence/1000 live births 
mother’s smoking

AR*/1000 live births 
mother’s smoking

RR†

mother’s smoking

Father’s 
education No Yes No Yes No Yes

91 grades 
(unexposed) 14.9 17.1 0 2.2 1.0 1.1

0–8 grades 
(exposed) 16.4 46.1 1.5 31.2 1.1 3.1

Expected joint effects:
 Additive → AR 5 1.5 1 2.2 5 3.7/1000 live births
 Multiplicative → RR 5 1.1 3 1.1 5 1.2

Observed joint effects:
 Additive → AR 5 31.2/1000 live births
 Multiplicative → RR 5 3.1

*Attributable risk in the exposed.
†Relative risk.
Source: Data from GW Comstock and FE Lundin, Parental Smoking and Perinatal Mortality. American Journal of  Obstetrics 
and Gynecology, Vol 98, pp. 708–718, © 1967.

Table 6-6 Neonatal death rates per 1000 live births according to smoking status of the mother 
and education of the father, Washington County, MD, 1953–1963.
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6.4 ASSESSMENT OF INTERACTION IN CASE-CONTROL STUDIES

The preceding discussion of  the assessment of  interaction has relied on absolute and 
relative measures of  risk (incidence rates, attributable risks, and relative risks) obtained 
in cohort studies. What follows is a discussion of  the same concepts and strategies 
applied to the analysis of  case-control data. Because case-control studies provide an 
efficient approach to frame and analyze cohort data (see Chapter 1, Section 1.4.2), the 
concept of  interaction does not have a distinct or special meaning in these studies. Thus, 
the discussion that follows merely aims at facilitating the application of  the concept of  
interaction to the analysis of  case-control data. The formulas presented in the following 
section are equally applicable to cohort and case-control studies.

6.4.1 Assessment of Homogeneity of Effects
In a case-control study, the homogeneity strategy can be used only to assess multipli-
cative interaction. The reason for this is that absolute measures of  disease risk are usually 

A. Homogeneity strategy

Father’s 
education

Mother’s 
smoking

Estimated no. 
of  live births

Rate/1000 live  
births

AR†/1000 live  
births RR*

91 grades No 5967 6.1 0 1.0

Yes 3833 11.1 5.0 1.8

0–8 grades No 1967 12.3 0 1.0

Yes 767 19.8 7.5 1.6

B. Comparison of  joint observed and expected effects

Incidence/1000 live births 
mother’s smoking

AR*/1000 live births 
mother’s smoking

RR†

mother’s smoking

Father’s 
education No Yes No Yes No Yes

91 grades 
(unexposed) 6.1 11.1 0 5.0 1.0 1.8

0–8 grades 
(exposed) 12.3 19.8 6.2 13.7 2.0 3.2

Expected joint effects:
 Additive → AR 5 6.2 1 5.0 5 11.2/1000 live births
 Multiplicative → RR 5 2.0 3 1.8 5 3.6

Observed joint effects:
 Additive → AR 5 13.7/1000 live births
 Multiplicative → RR 5 3.2

*Attributable risk in the exposed.
†Relative risk.
Source: Data from GW Comstock and FE Lundin, Parental Smoking and Perinatal Mortality. American Journal of  Obstetrics 
and Gynecology, Vol 98, pp. 708–718, © 1967.

Table 6-7 Postneonatal death rates per 1000 live births according to smoking status of the 
mother and education of the father, Washington County, MD, 1953–1963.
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not available in case-control studies; thus, it is not possible to measure the absolute 
difference between exposed and unexposed—that is, the attributable risk (absolute 
excess risk) in those exposed to the main risk factor. As a result, the homogeneity of  
attributable risks (in exposed subjects) in strata formed by the potential effect modifier 
Z cannot be assessed in case-control studies. As shown in the next section, however, it 
is possible to assess additive interaction in a case-control study by using the strategy of  
comparing observed and expected joint effects.

In case-control studies, the assessment of  the homogeneity of  effects is typically 
based on the odds ratio. This assessment, as illustrated in Table 6-9, is analogous to the 
assessment of  the homogeneity of  relative risks. In Table 6-9, cases and controls are 
stratified according to categories of  both the putative risk factor of  interest, A, and the 
potential effect modifier, Z. Different reference categories are used for the comparison 
of  the odds ratios associated with A in the strata formed by Z: when Z is absent, the 
reference category—denoted by an odds ratio of  1.0—is that in which A is also absent. 
On the other hand, for the individuals exposed to Z, the reference category with an odds 
ratio of  1.0 is formed by subjects exposed to Z but unexposed to A. Thus, each odds ratio 
derived in Table 6-9 refers to the effect of  A, first in the absence (upper half) and then in 
the presence (lower half) of  Z.

A. Homogeneity strategy

Gender Diabetes Mortality/100 patients AR†/100 RR*

Men Absent 4.1 0 1.0

Present 6.1 2.0 1.5

Women Absent 3.4 0 1.0

Present 10.3 6.9 3.0

B. Comparison of  joint observed and expected effects

Mortality/100 patients AR*/100 RR†

Gender Diabetes 
absent

Diabetes 
present

Diabetes 
absent

Diabetes 
present

Diabetes 
absent

Diabetes 
present

Men (“unexposed”) 4.1 6.1 0 2.0 1.0 1.5

Women (“exposed”) 3.4 10.3 20.7 6.2 0.83 2.5

Expected joint effects:
 Additive → AR 5 20.7 1 2.0 5 1.3/100 patients
 Multiplicative → RR 5 0.83 3 1.5 5 1.2

Observed joint effects:
 Additive → AR 5 6.2/100 patients
 Multiplicative → RR 5 2.5

*Attributable risk in the exposed.
†Relative risk.
Source: Data from G Ndrepepa, J Mehilli, H Bollwein, et al., Sex-Associated Differences in Clinical Outcomes after Coronary 
Stenting in Patients with Diabetes Mellitus. American Journal of  Medicine, Vol 117, pp. 830–836, © 2004.

Table 6-8 Mortality rate per 100 patients after one year following coronary stenting for stable 
or unstable angina, according to gender and presence of diabetes, January 1995–July 2000.
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It is important to emphasize that the independent effect of  Z cannot be estimated 
when this strategy is used. This point should be kept in mind when contrasting this 
strategy with that described in the section that follows, of  comparing observed and 
expected joint effects.

The interpretation of  results in Table 6-9 is straightforward: when multiplicative 
interaction is present, odds ratios will be dissimilar; when absent, they will be similar. 
For example, in the study by Shapiro et al.7 examining the interaction between use of  
oral contraceptives and heavy smoking on the odds of  myocardial infarction (Table 
6-10), the odds ratios were only somewhat heterogeneous (4.5 vs 5.6), indicating that 
multiplicative interaction, if  present, was not strong. (Shapiro et al. examined three 
smoking categories: none, 1 to 24 cigarettes/day, and  25 cigarettes/day. For simpli-
fication purposes, however, only the nonsmoking and heavy smoking categories are 
discussed in this and subsequent sections.) In contrast, in the study by Coughlin8 on 
the relationship between asthma and idiopathic dilated cardiomyopathy (Table 6-11), 
notwithstanding small numbers, the odds ratios appeared to be fairly heterogeneous 
according to the presence of  hypertension, thus suggesting the presence of  multipli-
cative interaction.

Another example of  multiplicative interaction comes from the study by Honein et 
al.9 of  the relationships of  isolated clubfoot in the offspring with maternal smoking 
and a family history of  clubfoot (Table 6-12). In this study, the odds ratio related to 
maternal smoking was higher if  a family history of  clubfoot was also present than if  
it was absent.

It has been pointed out by Morabia et al.10 that the odds ratios may be heterogeneous 
when relative risks are not, a phenomenon that these authors designated as interaction 
fallacy. Morabia et al. argued that although the likelihood of  this “fallacy” is usually 
negligible in most real-life instances in chronic disease epidemiology, it may increase 
when the risk of  the outcome is expected to be high (e.g., in an acute epidemic situation, 
or when studying population groups in which there is a strong genetic susceptibility to 
the risk factor-induced disease).

6.4.2 Comparing Observed and Expected Joint Effects
The strategy of  comparing observed and expected joint effects in case-control studies is 
similar to the technique used when incidence data are available. That is, the independent 
effects of  A and Z are estimated in order to compute the expected joint effect, which is 
then compared with the observed joint effect. When the expected and observed joint 
effects differ, interaction is said to be present.

Table 6-13 shows schematically how assessment of  both additive and multiplicative 
interactions can be carried out in case-control studies using this strategy. In Table 6-13, 

Exposed to A? Cases Controls Odds ratio What does it mean?

Z absent No
Yes

1.0 Reference category 5  
Effect of  A in the absence of  Z

Z present No
Yes

1.0 Reference category 5  
Effect of  A in the presence of  Z

Table 6-9 Outline of table illustrating the homogeneity strategy for assessing multiplicative 
interaction in case-control studies.



6
D

efining and Assessing 
Heterogeneity of 

Effects: Interaction
 6.4 Assessment of Interaction In Case-Control Studies 199

independent effects (measured by odds ratios) of  A and Z can be estimated by using a 
single reference category formed by individuals unexposed to both A and Z. The effect 
of  A alone (i.e., the independent effect of  A in absence of  Z) is estimated by the odds 
of  the category A1Z2 relative to that of  the reference category, A2Z2. Similarly, the 
independent effect of  Z is estimated by the ratio of  the odds of  the category A2Z1 to that 
of  the reference category.

Detection of Additive Interaction
As mentioned previously, in case-control studies it is not possible to use Equations 6.1 
or 6.2 (Section 6.3.2), as they require incidence data that are usually not available 
when using this design. Thus, it is important to rewrite these equations in terms of  
relative risks or odds ratios so that they can be applied to the case-control data shown 

Heavy smoking* OC use Odds ratio What does it mean?

No No
Yes

1.0
4.5

Reference category
Effect of  OC in nonsmokers

Yes No
Yes

1.0
5.6

Reference category
Effect of  OC in heavy smokers

* 25 cigarettes/day.
Source: Data from S Shapiro et al., Oral-Contraceptive Use in Relation to Myocardial Infarction. Lancet, Vol 1, 
pp. 743–747, © 1979.

Table 6-10 The relationship of smoking and oral contraceptive (OC) use to the odds of 
myocardial infarction in women.

Hypertension Asthma Odds ratio What does it mean?

No No
Yes

1.0
2.4

Reference category
Effect of  asthma in normotensives

Yes No
Yes

1.0
13.4

Reference category
Effect of  asthma in hypertensives

Source: Data from SS Coughlin, A Case-Control Study of  Dilated Cardiomyopathy. Doctoral Dissertation, p. 109, © 1987.

Table 6-11 Relationship of hypertension and asthma to idiopathic dilated cardiomyopathy.

Family history of  
clubfoot

Maternal 
smoking Cases (no.) Controls (no.) Odds ratio

Absent Absent
Present

203
118

2143
859

1.00
1.45

Present Absent
Present

11
14

20
7

1.00
3.64

Source: MA Honein, LJ Paulozzi, CA Moore, Family History, Maternal Smoking, and Clubfoot: An Indication of  a 
Gene-Environment Interaction. American Journal of  Epidemiology, Vol 152, pp. 658–665, © 2000.

Table 6-12 Odds ratios for the association between maternal smoking and isolated clubfoot, 
according to family history of clubfoot.
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schematically in Table 6-13. Figure 6-3 allows an intuitive derivation of  a formula 
based on odds ratios that is equivalent to Equations 6.1 and 6.2.* In the figure, the 
baseline value (odds ratio = 1.0) shown in column 1 represents the odds for individuals 
unexposed to both A and Z. The absolute excesses due to A (column 2) and Z (column 3)  
are depicted by the parts of  the columns above the baseline. The expected joint effect 
(column 4) is then the baseline odds ratio plus the independent excess due to A plus the 
independent excess due to Z, as follows:

         Expd ORA1Z1 5 1.0 1 (Obs ORA1Z2 2 1.0) 1 (Obs ORA2Z1 2 1.0) (Eq. 6.4)

      5 Obs ORA1Z2 1 Obs ORA2Z1 2 1.0

*It is inappropriate to use an arithmetic scale on the ordinate as well as a baseline of  zero to plot odds ratios 
when evaluating multiplicative interaction (see Chapter 9, Section 9.3.5). Figure 6-3 uses an arithmetic 
(additive) scale in order to facilitate an intuitive understanding of  the formula for estimating the expected 
joint odds ratios when assessing additive interaction.

What is measured Exp. to Z ? Exp. to A? Cases Controls Odds ratio

Reference category No No ORA2Z2 5 1.0

Indep. effect of  A No Yes ORA1Z2

Indep. effect of  Z Yes No ORA2Z1

Observed joint effect Yes Yes ORA1Z1

Table 6-13 Outline of table to assess both additive and multiplicative interaction in case-control 
studies using the strategy of comparing expected and observed joint effects.

Figure 6-3 Schematic representation of the meaning of the formula, Expected ORA1Z1 5 
Observed ORA1Z2 1 Observed ORA2Z1 2 1.0. Note that when the independent relative odds 
for A and Z are added, the baseline is added twice; thus it is necessary to subtract 1.0 from the 
expected joint OR: that is, Expected ORA1Z1 5 (Excess due to A 1 baseline) 1 (Excess due to  
Z 1 baseline) 2 baseline 5 ORA1Z2 1 ORA2Z1 2 1.0.

(1) OR = 1.0

(2) OR = 2.0
(3) OR = 3.0

(4) OR = 4.0

(5) OR = 7.0

Baseline Baseline
+ excess
due to A

Baseline
+ excess
due to    

Expected
joint OR
based on
adding
absolute
independent
excesses due
to  A and    

Observed joint OR >
expected OR. Excess
due to I (interaction)
is not explainable on
the basis of  excess due
to A and    
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Because two baselines are added up in the equation, it is necessary to subtract 1.0 
from the sum of  the independent odds ratios. The formal derivation of  Equation 6.4 is 
demonstrated as follows. Starting with Equation 6.2, in which Expd Inc and Obs Inc 
denote expected incidence and observed incidence, respectively (Section 6.3.2),

Expd IncA1Z1 5 Obs IncA2Z2 1 (Obs IncA1Z2 2 Obs IncA2Z2)

     1(Obs IncA2Z1 2 Obs IncA2Z2)

and dividing every term by IncA–Z–, this equation can be expressed in terms of  relative 
risk as

Expd RRA1Z1 5 1.01 (Obs RRA1Z2 2 1.0) 1 (Obs RRA2Z1 2 1.0)

and thus,

      Expd RRA1Z1 5 Obs RRA1Z2 1 Obs RRA2Z1 2 1.0 (Eq. 6.5)

In a typical case-control study, the relative risks are estimated by the odds ratios, and 
thus, in Equation 6.5, relative risks can be replaced with odds ratios. Equations 6.4 and 
6.5, although using odds ratio or relative risks, are based on absolute excesses (attrib-
utable risks in exposed) and thus estimate expected joint additive effects. An example is 
shown in Table 6-14, based on the same study used as an example in Table 6-10. The data 
in the table suggest that there is a strong additive interaction, as Obs ORA1Z1 5 39.0 and 
Expd ORA1Z1 5 10.5.

Similarly, using the example shown in Table 6-12, when setting the odds ratio for the 
combined category of  absent family history and absent maternal smoking at 1.0, the 
independent effects of  these variables on isolated clubfoot in the offspring are expressed 
by odds ratios of  5.81 and 1.45, respectively (see Table 6-15). Thus, the expected joint 
odds ratio is estimated at 5.81 1 1.45 2 1.0 5 6.26. As the observed joint odds ratio is 
21.1, it can be concluded that strong additive interaction is present. 

Note that Equation 6.5 cannot be used to assess additive interaction when one of  the 
variables (A or Z) has been matched for, as its odds ratio has been set at 1.0 by design (see 
Chapter 1, Section 1.4.5); in other words, the independent effect of  a variable for which 
cases and controls have been matched cannot be determined. Because the homogeneity 
strategy cannot be used to examine additive interaction in case-control studies either, it 
follows that it is not possible to evaluate additive interaction between a matched factor 
and other factors in (matched) case-control studies.

Detection of Multiplicative Interaction
In case-control studies, the evaluation of  multiplicative interaction based 

on comparing observed and expected joint effects is analogous to the strategy used 
in the context of  a cohort study. Evaluation of  multiplicative interaction comparing 
expected and observed joint effects is based on the same type of  table as that 
used for assessing additive interaction (e.g., Table 6-14). The expected joint odds 
ratio is estimated as merely the product of  the multiplication of  the independent 
odds ratios.

       Expd ORA1Z1 5 Obs ORA1Z2 3 Obs ORA2Z1  (Eq. 6.6)

which is the analogue of  Equation 6.3. (These equations also can be used to assess 
multiplicative interaction when the odds ratio/relative risks are below 1.0.) Using 
Table 6-14’s findings, it is possible to estimate the expected joint odds ratio as  
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Expd ORA1Z1 5 4.5 3 7.0 5 31.5. As the expected joint odds ratio (31.5) is fairly close 
to the observed (39.0), interaction, if  present, is weak on the multiplicative scale, 
which is the same conclusion derived previously from using the homogeneity strategy 
(Section 6.4.1, Table 6-10). On the other hand, multiplication of  the independent odds 
ratios in the family history of  clubfoot/maternal smoking example results in a joint 
expected odds ratio of  8.42 (5.81 3 1.45)—which is much lower than the joint observed 
odds ratio of  21.1 (Table 6-15). Thus, in addition to a strong additive interaction, there 
is also a strong multiplicative interaction of  these variables with regard to the outcome, 
isolated clubfoot in the offspring–a finding that is consistent with the heterogeneity seen 
in Table 6-12.

As for additive interaction, this strategy cannot be used to evaluate multiplicative 
 interaction between a matched variable and another factor, as the independent effect 
of  the former cannot be measured. The homogeneity strategy, however, can be applied 
to assess multiplicative interaction in matched case-control studies. This is done by 
stratifying the matched sets according to the levels of  the matched variables and 

Heavy smoking (Z)* OC use (A) Odds ratio

No No  1.0

No Yes  4.5

Yes No  7.0

Yes Yes 39.0

Observed ORA1Z1: 39.0
Expected ORA1Z1:
 Additive model: 4.5 1 7.0 2 1.0 5 10.5
 Multiplicative model: 4.5 3 7.0 5 31.5

* 25 cigarettes/day.
Source: Data from S Shapiro et al., Oral-Contraceptive Use in Relation to Myocardial Infarction. Lancet, Vol 1 (8119) 
pp. 743–747, © 1979.

Table 6-14 Example of how to assess interaction on both scales in a case-control study 
using the formulas Expd ORA1Z1 5 Obs ORA1Z2 1 Obs ORA2Z1 2 1.0 (additive) and Expd Obs 
ORA1Z1 5 Obs ORA1Z2 3 Obs ORA2Z1 (multiplicative): the relationship of heavy smoking and oral 
contraceptive (OC) use to the odds of myocardial infarction in women.

Family 
history of  
clubfoot

Maternal 
smoking Cases (no.) Controls (no.) Odds ratio

Absent Absent 203 2143 1.0

Present 118 859 (118/203) 4 (859/2143) 5 1.45

Present Absent 11 20 (11/203) 4 (20/2143) 5 5.81

Present 14 7 (14/203) 4 (7/2143) 5 21.11

Source: MA Honein, LJ Paulozzi, CA Moore, Family History, Maternal Smoking, and Clubfoot: An Indication of  a 
 Gene-Environment Interaction. American Journal of  Epidemiology, Vol 152, pp. 658–665, © 2000.

Table 6-15 Odds ratios for the association between maternal smoking and isolated clubfoot, 
according to family history of clubfoot.
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evaluating homogeneity of  the odds ratios across the strata. Thus, in the schematic 
example shown in Table 6-16, the heterogeneity of  odds ratios for alcohol use (based 
on discrepant case-control pairs; see Chapter 3, Section 3.4.1) in strata formed by the 
matched variable, smoking (yes vs no), suggests the presence of  multiplicative inter-
action. A summary of  the issues related to the evaluation of  interaction between 
the matched variable and another factor in matched case-control studies is given  
in Table 6-17.

As stated at the beginning of  this section, Equations 6.5 and 6.6 can also be 
used when assessing interaction in cohort studies. For example, using the relative 
risks from Table 6-6, it is possible to construct a table similar to Table 6-13 (that is, 
Table 6-18). In Tables 6-6 and 6-18, the father’s educational level of  0 to 8 grades was 
categorized as “exposed.” The expected joint effects are expressed by relative risks of  
(1.1 1 1.1 2 1.0) 5 1.2 in an additive scale and (1.1 3 1.1) 5 1.2 in a multiplicative 
scale. The difference between these expected values and the observed joint relative 
risk of  3.1 leads to the same conclusion reached previously using incidence rates to 
calculate attributable risks and relative risks (Table 6-6): that there is interaction in 
both scales.

6.5 MORE ON THE INTERCHANGEABILITY OF 
THE DEFINITIONS OF INTERACTION

It can be easily shown mathematically that the two definitions of  interaction (i.e., based 
on homogeneity of  effects or on the comparison between observed and expected joint 
effects) are completely interchangeable: that is, if  the effects are heterogeneous, then the 
observed is different from the expected joint effect and vice versa. Consider, for example, 

Pair no. Smoking Cases Control
Odds ratio for alcohol  

use by smoking*

1 No 1 2

ORalc|nonsmok 5 2/1 5 2.0

2 No 2 1

3 No 2 2

4 No 1 2

5 No 1 1

6 Yes 1 2

ORalc|smok 5 4/1 5 4.0

7 Yes 1 2

8 Yes 2 1

9 Yes 1 2

10 Yes 1 2

Note: The signs (1) and (2) denote alcohol users and nonusers, respectively.
*Using the ratio of  discrepant pairs.

Table 6-16 Hypothetical example of evaluation of interaction in a case-control study between 
smoking and alcohol use, in which cases and controls are matched by current smoking (“yes” 
versus “no”)
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two variables, A and Z, and their potential effects with regard to a given outcome. 
To evaluate joint additive effects, under the hypothesis of  no interaction:

   Expd RRA1Z1 5 Obs RRA1Z1 5 Obs RRA1Z2 1 Obs RRA2Z1 2 1.0 (Eq. 6.7)

The equation can be rewritten as

                  Obs RRA1Z1 2 Obs RRA2Z1 5 Obs RRA1Z2 2 1.0 (Eq. 6.8)

As shown previously (Section 6.4.2), to derive relative risks from the formula for 
assessing the expected joint additive effect, all incidence terms in the equation are 
divided by the incidence when both factors are absent (i.e., IncA2Z2). Working backward, 
the incidence when both factors are absent times the relative risk for a given exposed 
category equals the incidence in that exposed category (e.g., IncA1Z2 5 IncA2Z2 3 RRA1Z2). 
Thus, Equation 6.8 is equivalent to

                                  IncA1Z1 2 IncA2Z1 5 IncA1Z2 2 IncA2Z2 (Eq. 6.9)

Therefore, when the observed joint additive effect of  A and Z is the same as the 
expected effect (Equation 6.7), the effect of  A in the presence of  Z will be the same as 
the effect of  A in the absence of  Z (Equation 6.9). Alternatively, when the observed joint 
effects are different from the expected joint effects (i.e., interaction is present), the effects 
of  A will vary according to the presence or absence of  Z.

The same reasoning applies to the assessment of  multiplicative interaction. For 
example, under the assumption of  no interaction on a multiplicative scale,

Expd RRA1Z1 5 Obs RRA1Z1 5 Obs RRA1Z2 3 Obs RRA2Z1 (Eq. 6.10)

Scale Strategy
Information  

needed
Is this strategy 

feasible? Why?

Additive Homogeneity 
of  effects

ARs for alcohol 
use according to 
smoking

No Because incidence rates 
for alcohol according to 
smoking are unavailable in 
case-control studies.

Additive Observed vs 
expected joint 
effects

ORs expressing 
independent 
effects of  
smoking and of  
alcohol use

No The OR expressing the 
independent effect of  
smoking is unavailable 
because cases and controls 
have been matched for 
smoking.

Multiplicative Homogeneity 
of  effects

ORs for alcohol 
use according to 
smoking

Yes ORs for alcohol use are 
available for case-control 
pairs according to smoking.

Multiplicative Observed vs 
expected joint 
effects

ORs expressing 
independent 
effects of  
smoking and 
alcohol use 

No The OR expressing the 
independent effect of  
smoking is unavailable 
because cases and controls 
have been matched for 
smoking.

Note: AR: attributable risks in exposed subjects; OR: odds ratio.

Table 6-17 Summary of issues related to the evaluation of interaction in matched  
case-control studies using as an example smoking as the matched variable and alcohol as 
the exposure of interest.
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Father’s education (grades) Mother’s smoking Rate/1000 live births Relative risk

Higher (91) (unexposed) No 14.9 1.0

Higher (91) (unexposed) Yes 17.1 1.1

Lower (0–8) (exposed) No 16.4 1.1

Lower (0–8) (exposed) Yes 46.1 3.1

Source: Data from GW Comstock and FE Lundin, Parental Smoking and Perinatal Mortality. American Journal of  Obstetrics 
and Gynecology, Vol 98, pp. 708–718, © 1967.

Table 6-18 Neonatal death rates per 1000 live births according to smoking status of the 
mother and education of the father, Washington County, MD, 1953–1963.

Equation 6.10 can be rewritten as

 
Obs RRA +  +

Obs RRA -  +

=
Obs RRA +  -

1.0
 (Eq. 6.11)

The equivalence of  Equations 6.10 and 6.11 means that when the observed joint 
effects are equal to the multiplication of  the independent effects (Equation 6.10), then 
the relative risk for one factor does not vary as a function of  the level of  the other factor 
(Equation 6.11) and vice versa.

6.6  WHICH IS THE RELEVANT MODEL?  
ADDITIVE VERSUS MULTIPLICATIVE INTERACTION

The popularity of  the Mantel-Haenszel adjustment approach (Chapter 7, Section 7.3.3) 
and of  multiple regression methods based on multiplicative models (Chapter 7, Sections 
7.4.3 through 7.4.6) has often led to equating interaction almost exclusively with multi-
plicative interaction when studying dichotomous outcomes. If  the odds ratios or relative 
risks are homogeneous across strata of  a potential effect modifier, it may be erroneously 
concluded that there is no interaction in general, even though this conclusion applies 
exclusively to multiplicative interaction. Yet, as discussed later in this chapter, additive 
interaction may be of  greater interest if  disease prevention is being contemplated. Thus, 
even when using the odds ratio or the relative risk to describe study data, it is often 
important to also explore the presence of  additive interaction. Evaluation of  additive 
interaction can be carried out even in the context of  inherently multiplicative models, 
such as the logistic regression and Cox models.11,12

In the biological sciences, the notion of  interaction has been closely related to the 
mechanisms underlying a causal relationship. A discussion of  the limits of  inferring 
biologic mechanisms from the observation of  interactions in epidemiologic studies can be 
found in the literature13 and is beyond the scope of  this textbook. Thompson14 has pointed 
out that epidemiology can detect mostly macro associations and that its sensitivity to 
identify intermediate variables tends to be limited, thus making it difficult to interpret 
interactions using results of  epidemiologic research. Usually, interaction detected in 
epidemiologic studies may merely represent the joint effect of  exposures occurring 
within a short period before the development of  clinical disease (Figure 6-4). An inter-
action detected by epidemiologic observation often does not take into account the usually 
long causal chain that characterizes chronic disease processes such as atherosclerosis or 

Z Z

Z
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neoplasms. This chain could be characterized by either multiplicative or additive joint 
effects of  other causal components, which are needed to create causal constellations2 
responsible for the earlier progression of  the disease from one phase (e.g., metabolically 
altered cells) to another (e.g., abnormal cell multiplication). The inability to identify and 
describe the physiologic and anatomic cell abnormalities in the pathogenetic sequence 
leading to the disease endpoint severely limits epidemiology’s ability to select the best 
model(s) for interaction. As a consequence, choice of  a model by epidemiologists is 
usually dictated by pragmatism—for example, when selecting the statistical model for 
adjustment purposes or when considering the possible application of  findings in setting 
up public health policy (see also Chapter 10).

From the viewpoint of  translating epidemiologic findings into public health practice, 
presence of  additive interaction is important, even if  multiplicative interaction is absent.15 
A hypothetical example is given in Table 6-19, which examines the relationship of  familial 
history of  disease Y and smoking to the incidence of  Y. Although relative risks describing 
the relationship between smoking and incidence are homogeneous in those with and 
without a family history, the attributable risks differ markedly according to family history: 
20/100 in those with and only 5/100 in those without a positive family history. Thus, 
there is strong additive interaction but no multiplicative interaction. Depending on the 
prevalence of  the combination of  family history and smoking in the target population, 

A1 + A2 A3 × A4 A5 × A6

Normal
Metabolic
changes in
target cells

Multiplication
of abnormal
cells

Disease

Usual domain of epidemiologic studies

Figure 6-4 Schematic representation of a causal chain in which both additive and multiplicative 
interactive effects occur. Causal components A1 and A2 interact in an additive fashion to produce 
metabolic changes in the target cells. For multiplication of abnormal cells and progression to 
clinical disease, additional causal components are required (A3 and A4, A5 and A6, respectively), 
which interact in a multiplicative fashion. 

Family history Smoking Incidence/100 Attributable risk (exposed) Relative risk

Absent No 5.0 Reference 1.0

Yes 10.0 5.0 2.0

Present No 20.0 Reference 1.0

Yes 40.0 20.0 2.0

Table 6-19 Hypothetical example of additive interaction (public health interaction) without 
multiplicative interaction: incidence of disease Y  by smoking and family history of Y.
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prevention or elimination of  smoking in those with a positive, compared with those with a 
negative, family history could lead to a greater reduction in the number of  incident cases 
in the reference population.* Positive additive interaction may even occur in the presence 
of  negative multiplicative interaction (Table 6-20) and takes precedence over the latter in 
terms of  defining high-risk groups which should be the target of  preventive action.

6.7 THE NATURE AND RECIPROCITY OF INTERACTION

6.7.1 Quantitative Versus Qualitative Interaction
When the association between factor A and outcome Y exists and is of  the same 
direction in each stratum formed by Z, but the strength of  the association varies across 
strata, quantitative interaction is said to exist. On the other hand, qualitative interaction 
is regarded as present either when the effects of  A on the outcome Y are in opposite 
directions (crossover) according to the presence of  the third variable Z or when there is 
an association in one of  the strata formed by Z but not in the other (Figure 6-5). In other 
words, the nature of  A is dependent on the presence of  the effect modifier Z. 

An example of  qualitative interaction is given in a study by Stanton and Gray.16 
To examine the effects of  caffeine consumption on waiting time to conception, the 
authors obtained information retrospectively on pregnancies occurring from 1980 
through 1990 in 1430 noncontracepting women who had been pregnant at least once. 
The main exposure of  interest was daily caffeine intake, estimated from the consumption 
of  caffeinated beverages during the first month of  pregnancy. Whereas relative risks of  
delayed conception (> 1 year) were below 1 for caffeine consumption among smoking 
women, an increase in delayed conception risk was seen in nonsmoking women with a 
high ( 300 mg/day) caffeine consumption (Table 6-21). According to the authors, the 
qualitative interaction found in their study supports the notion that smoking increases 
the rate of  caffeine clearance and that, in contrast, cessation of  smoking results in slower 
caffeine elimination.

In the example shown in Table 6-21, the point estimates of  the effects of  high caffeine 
consumption appear to cross over as a function of  smoking (i.e., there is a positive 
association of  high caffeine intake with delayed conception in nonsmokers and a 
negative association in smokers). Qualitative interaction can be expressed either by this 
type of  crossover (Figure 6-5A) or by an association between the factor of  interest and 

*The impact of  the elimination of  smoking in those with a family history is best estimated by means of  the 
population attributable risk, which takes into account the strength of  the association between smoking and 
disease in each stratum of  family history, as well as the prevalence of  the joint presence of  these factors (see 
Chapter 3, Section 3.2.2).

Family history Smoking Incidence/100 Attributable risk (exposed) Relative risk

Absent No 10 Reference 1.0

Yes 40 30/100 4.0

Present No 40 Reference 1.0

Yes 100 60/100 2.5

Table 6-20 Hypothetical example of negative multiplicative and positive additive interactions: 
incidence of disease Y  by family history of Y and smoking.
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the outcome in the presence but not in the absence of  an effect modifier (or vice versa) 
(Figure 6-5B). Examples of  the latter type of  qualitative interaction are as follows:

•	 The results of  the Health Insurance Plan randomized clinical trial of  the effec-
tiveness of  mammography showed that menopausal status seemed to modify the 
effect of  mammography.17 Specifically, in this study a lower breast cancer death 
rate in the group undergoing mammography compared with the control group was 
seen only in postmenopausal women. In premenopausal women, no difference in 
rates was found between the experimental and the control groups. 

•	 In a large population-based cohort study conducted in Sweden on the relationship of  
paternal age to schizophrenia,18 the hazard ratio was found to be 1.60 for individuals 
without a family history and close to 1.0 for those with a family history (p for  
interaction 5 0.04; see section 6.9). (The authors interpreted this finding as 
supportive of  the notion that accumulating de novo mutations in germ cells of  older 
fathers might result in an increased risk of  schizophrenia in their offspring.) 

•	 In a study by Williams et al.,19 although high anger proneness score was associated 
with an increased coronary heart disease (CHD) risk in normotensive individuals, 
no association was seen for hypertensive patients (Figure 6-6). This pattern, if  true, 
denotes a negative interaction; that is, antagonism between hypertension and high 
anger score with regard to the outcome. 

•	 In a cohort study conducted by Shanmugham JR et al.,20 a strong heterogeneity 
was seen for the association of  alcohol and oral cancer across strata formed by 
folate intake in women: the relative risk for alcohol intake equal to  30 g/day in 
those with a low folate intake ( 350 µg/day) was 3.36, but it was only 0.98 for 
those with a high folate intake ( 350 µg/day).

These examples underscore the notion that when qualitative interaction is 
present it is always present in both the additive and the multiplicative models and is thus 
independent of  the measurement scale (Figure 6-5). Consider, for example, the data 
shown in Table 6-21: because the relative risk in nonsmoking women with a caffeine 

Figure 6-5 Qualitative interaction is always seen in both scales (additive and multiplicative) 
because when the relative risk (RR)  1.0, the attributable risk (AR)  0; when RR  1.0, the 
AR  0; and when RR 5 1.0, the AR 5 0. In (A), there is crossover: that is, RRA1/A  1.0 and 
ARA1/A  0 when Z (effect modifier) is present, and RR  1.0 and AR  0 when Z is absent.  
In (B), RR  1.0 and AR  0 when Z is present, and RR 5 1.0 and AR 5 0 when Z is absent. 

A– A+ A+A–

Y Y

   + (RR > 1.0, AR > 0)

   – (RR < 1.0, AR < 0)

   + (RR > 1.0, AR > 0)

   – (RR = 1.0, AR = 0)

A = exposure of  interest
    = effect modifier
Y = risk of  outcome

BA

Z

Z Z

Z

Z
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consumption of   300 mg/day is greater than 1.0, the attributable risk by definition 
must be greater than 0; in smokers, on the other hand, the relative risk for caffeine 
consumption of   300 mg/day is less than 1.0; thus, by definition, the attributable risk 
has to be less than 0. Although Table 6-21 presents only relative risks and therefore, on 
a first glance, may be regarded as particularly suitable for assessing multiplicative inter-
action, the occurrence of  qualitative interaction indicates that interaction is present in 
both scales; in other words, when there is qualitative interaction, the scale does not need 
to be specified. A similar inference can be drawn from the study of  paternal age and 
schizophrenia mentioned previously: as the relative risk in those without a family history 
is 1.60, the attributable risk by definition has to be greater than zero. On the other hand, 
as the relative risk in those with a family history is close to 1.0, the attributable risk 
will be close to zero. Similarly, because it is based on absolute differences in cumulative 
incidence (or event-free survival)—denoted by the fact that the scale on the ordinate is 
arithmetic—the data in Figure 6-6 imply the presence of  an additive interaction between 
hypertension status and anger proneness in relation to risk of  CHD; however, because 
this interaction is qualitative (a difference was shown in normotensives but not among 
hypertensives), it must also be present in a multiplicative scale; indeed, the age-adjusted 
relative hazard comparing individuals with high and low anger scores reported by 
Williams et al.18 was 2.97 among normotensives and 1.05 among hypertensives.

6.7.2 Reciprocity of Interaction
Interaction is completely reciprocal, in that if  Z modifies the effect of  A, then A modifies 
the effect of  Z. As mentioned previously, the choice of  A as the suspected risk factor of  
interest and Z as the potential effect modifier is arbitrary and a function of  the hypothesis 
being evaluated. For example, because the effect of  cigarette smoking on lung cancer is 
strong and has been firmly established, it may be of  interest to explore its role as an effect 
modifier when assessing other potential lung cancer risk factors. Factors that cannot be 
modified (e.g., genes, gender) are often treated as effect modifiers.

The concept of  interaction reciprocity is illustrated in Table 6-22, which rearranges 
the data from Table 6-21 such that smoking becomes the risk factor of  interest and 
caffeine consumption becomes the effect modifier (for simplification purposes, only two 

Nonsmoking women Smoking women

Caffeine 
consumption 

(mg/Day) Pregnancies
Delayed 

conception RR Pregnancies
Delayed 

conception RR

None 575 47 1.0 76 15 1.0

1–150 975 69 0.9 233 33 0.7

151–300 290 26 1.1 166 18 0.5

 300 89 17 2.3 83 11 0.7

Note: RR: Relative risk.
Source: Data from CK Stanton and RH Gray, The Effects of  Caffeine Consumption on Delayed Conception. American Journal 
of  Epidemiology, Vol 142, pp. 1322–1329, © 1995.

Table 6-21 Relationship between caffeine consumption and risk of delayed conception  
(> 1 year) according to smoking among 2465 pregnancies occurring in noncontracepting women 
between 1980 and 1990.
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caffeine consumption categories are used). As seen, smoking is positively associated with 
delayed conception in mothers who consume no caffeine, but it seems to be a protective 
factor in those with a high level of  consumption. This pattern is the mirror image of  the 
pattern shown in Table 6-21, again emphasizing that there is no intrinsic hierarchical 
value when deciding which variable should be treated as the effect modifier and which 
as the factor of  primary interest.

6.8 INTERACTION, CONFOUNDING EFFECT, AND ADJUSTMENT

Although on occasion the same variable may be both a confounder and an effect modifier, 
confounding and interaction are generally distinct phenomena. Confounding effects are 
undesirable, as they make it difficult to evaluate whether a statistical association is also 
causal. Interaction, on the other hand, if  true, is part of  the web of  causation21 and may 
have important implications for prevention, as in the example of  anger and CHD shown 
in Figure 6-6.

When a variable is found to be both a confounding variable and an effect modifier, 
adjustment for this variable is contraindicated. When additive interaction is found, it 
is not appropriate to adjust for the effect modifier to obtain an adjusted attributable 
risk, and when there is multiplicative interaction, it is inappropriate to obtain an effect 
modifier-adjusted relative risk or odds ratio. This is because when there is interaction the 
notion of  an overall adjusted (weighted) mean value (main effect) makes little sense. For 
example, if  odds ratios are found to be 2.0 for men and 25.0 for women, an “average” that 
summarizes the increase in odds for all individuals regardless of  gender is meaningless. 
This notion is even more important in qualitative interaction; if  the odds ratios for a 
given exposure are 0.3 for men and 3.5 for women, an “average, gender-adjusted” odds 
ratio may denote no association whatsoever—an illogical inference given that strong 
associations, albeit in opposite directions, exist in both sexes (for additional examples, 
see Chapter 7, Section 7.3.1).

Because some heterogeneity is usually found, the epidemiologist is often faced with 
the dilemma as to whether to adjust for the possible effect modifier. One solution is 
to carry out statistical testing and not to adjust if  the homogeneity null hypothesis is 
rejected (see Section 6.9 and Appendix C). If, for example, the two odds ratios are 2.3 and 
2.6, however, it is probably appropriate to adjust and obtain an average adjusted effect, 
regardless of  the p value. (If  the sample size is very large, a small degree of  heterogeneity 
may be statistically significant even if  devoid of  medical or public health significance.) 

No caffeine consumption Caffeine consumption  300 mg/day

Smoking Pregnancies
Delayed 

conception RR Pregnancies
Delayed 

conception RR

No 575 47 1.0 90 17 1.0

Yes 76 15 2.4 83 11 0.7

Note: RR: Relative risk.
Source: Data from CK Stanton and RH Gray, The Effects of  Caffeine Consumption on Delayed Conception, American Journal 
of  Epidemiology, Vol 142, pp. 1322–1329, © 1995.

Table 6-22 Relationship between maternal smoking and risk of delayed conception (> 1 year) 
according to heavy caffeine consumption ( 300 mg/day) among 824 pregnancies occurring in 
noncontracepting women between 1980 and 1990.
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On the other hand, if  the odds ratios are 12.0 and 1.5, even if  the heterogeneity is not 
found to be statistically significant, adjustment may be contraindicated. Although no 
clear-cut rule exists regarding whether to adjust in the presence of  heterogeneity, consid-
eration of  the following question may be helpful: “Given heterogeneity of  this magnitude, 
am I willing to report an average (adjusted) effect that is reasonably representative of  all 
strata of  the study population formed on the basis of  the suspected effect modifier?” Some 
examples and possible answers to this question are shown in Table 6-23 and may help 
in the pragmatic evaluation of  this issue. Regardless of  whether a “Z-adjusted” effect is 
reported, it is often informative to report the stratum-specific values as well.

6.8.1 Joint Presence of Two Factors that Interact as a Confounding Variable
When there is interaction, the joint presence of  variables that interact may produce a 
confounding effect, even if  each individual variable is not identified as a confounder. In 
the interaction example shown in Table 6-24, the incidence of  the outcome is the same 
in individuals exposed and unexposed to factor A when data are stratified by factors B 
and C and their joint presence. However, because the prevalence of  the joint presence 
of  B and C is higher in those exposed to A and because, in addition, there is strong inter-
action between B and C, the crude incidence is greater in the individuals exposed to A 
than in the unexposed. Note that the risk factor distributions are the same in exposed and 
unexposed when their joint presence is ignored. Thus, the joint presence of   interacting 
risk factors should always be considered when evaluating confounding effects. 

6.9 STATISTICAL MODELING AND STATISTICAL TESTS  
FOR INTERACTION

The examples given in this chapter refer to risk of  disease as the outcome, but  interaction 
may be studied in relationship to any outcome (e.g., the mean value of  a  physiologic 
variable such as glucose level). As mentioned previously, it is also possible to examine 
interaction for continuous variables, as when assessing homogeneity of  effects of  
continuous blood pressure levels on stroke between men and women or between 
blacks and whites. In this situation, the investigator often uses more complex statistical 
approaches to evaluate interaction—for example, by including “interaction terms” in 
the regression equation (see Chapter 7, Section 7.4.2). These models can also be used to 
evaluate interaction between categorical variables as an alternative to the stratification 
methods presented in the previous sections. 

Another question with important practical implications is whether the observed 
heterogeneity is produced by chance. When using regression models to evaluate inter-
action, the answer to this question is simply indicated by the statistical significance of  the 
interaction term in the regression equation (see Chapter 7, Section 7.4.8, and Appendix A, 
Section A.9). When evaluating interaction using the stratification techniques described 
in the previous sections, formal statistical tests are available to assess whether an 
observed heterogeneity is statistically significant. These tests, including tests for additive 
interaction in case-control studies, have been described in detail in other textbooks (see, 
e.g., Schlesselman22 or Selvin23) and are illustrated in Appendix C.

It should be emphasized again that statistical tests of  homogeneity, although 
helpful, are not sufficient to evaluate interaction fully. When sample sizes are 
large, as in multicenter studies, even a slight heterogeneity of  no practical value or 
biologic importance may be statistically significant. On the other hand, although not 
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Suspected effect modifier (Z) Given a heterogeneity of  this magnitude, should a weighted average 
(Z-adjusted) effect that applies to all Z strata of  the study population 
be reported?

Absent Present

2.3 2.6 Yes. Even if  the difference in RRs is statistically significant, it makes 
sense to say that, on the average—that is regardless of  Z—the relative 
risk has a value somewhere between 2.3 and 2.6.

2.0 20.0 Even if  this difference is not statistically significant, presentation of  a 
Z-adjusted, “average” RR may not be appropriate in view of  the great 
difference in the magnitude of  the RRs. It is recommended that Z-specific 
RRs be presented.

0.5 3.0 No. When there is a suggestion of  qualitative interaction, Z-specific RRs 
should be presented.

3.0 4.5 Perhaps. Although this quantitative interaction may be of  interest, 
effects are in the same direction, and it may be appropriate to present a 
Z-adjusted RR. In addition, it is wise to present Z-specific RRs as well.

Table 6-23 Relative risks (RR) for factor A in relation to outcome Y, stratified by potential 
effect modifier Z.

statistically significant, relative risk point estimates that are markedly different from 
each other suggest the possibility of  true heterogeneity. Ideally, such nonstatistically 
significant, yet marked, heterogeneity should be confirmed by a study with sufficient 
statistical power to detect it.

Table 6-24 Hypothetical example of interaction as a confounding variable. Assume the 
incidence of the outcome in the absence of factors B and C to be zero in both individuals exposed 
to A and those unexposed to A. When stratified by the isolated presence of each factor (B and C  ) 
and by the interaction term, there is no association between B and C or their interaction term with 
the incidence of the outcome. However, as the interaction term is related to a higher incidence and 
is more common in the exposed group, the total incidence in the exposed group is substantially 
greater than that in the unexposed group.

Factor
Prevalence of  factor among exposed 

and among unexposed to A (%)
Incidence of  

outcome (per 1000)

Exposed to factor A

B alone 18 10

C alone 20 15

B 1 C present 15 50

Unexposed to factor A

B alone 18 10

C alone 20 15

B 1 C present 3 50

Total incidence in exposed to A 5 
[(0.010 3 0.18) 1 (0.015 3 0.20) 1 (0.050 3 0.15)] 3 1000 5 12.3 (per 1,000)

Total incidence in unexposed to A 5 
[(0.010 3 0.18) 1 (0.015 3 0.20) 1 (0.050 3 0.03)] 3 1000 5 6.3 (per 1,000)
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6.10 INTERPRETING INTERACTION

There are many reasons why an observed effect of  an exposure may differ according to 
the level or the presence of  a third variable. The apparent heterogeneity may be due to 
chance, selective confounding, or bias. It could, in addition, result from a heterogeneous 
exposure dose (often unbeknownst to the investigator). Differential susceptibility at 
different levels in the pathogenesis of  the disease in question is yet another explanation 
for heterogeneity of  effects. A succinct practical guide to the main issues involved in 
interpreting an observed interaction follows.

6.10.1 Heterogeneity Due to Random Variability
Heterogeneity may result from random variability produced by the stratification by a 
suspected effect modifier. Random variability may occur in spite of  an a priori specifi-
cation of  interaction in the context of  the hypothesis to be evaluated. A more common 
situation, however, is when interaction is not specified a priori but the investigator 
decides to carry out subgroup analysis. The decision to examine subgroups is often 
motivated by overall null study findings. The investigator may decide to pursue more 
specific hypotheses once the original postulated association was not observed. Post hoc 
questions posed by the frustrated epidemiologist may, for example, include the following: 
“Since I cannot find an association when studying all study participants, will I be able 
to find it in men only? In older men? In older men with a high educational level?” And 
so on.

Sample size inevitably decreases as more strata are created in subgroup analysis, 
making it likely that heterogeneity would occur by chance alone. Thus, subgroup 
analysis should be regarded as an exploratory strategy. The detection of  heterogeneity 
should be assessed vis-à-vis its plausibility. An example is provided by the Multiple Risk 
Factor Intervention Trial study, a randomized clinical trial that assessed the effectiveness 
of  multiple cardiovascular risk factor cessation strategies. An increased mortality was 
found in hypertensive participants with electrocardiographic changes undergoing the 
experimental interventions.24 Although not predicted when the study was planned, the 
harmful effect of  the intervention limited to this subset of  study participants led to the 
biologically plausible hypothesis that potassium-depleting drugs may be contraindicated 
in hypertensive patients with cardiac abnormalities. After observed by means of  subgroup 
analysis, interaction has to be confirmed in a study especially designed to evaluate it.

6.10.2 Heterogeneity Due to Confounding
When associations between A and Y in strata formed by Z are being explored, differential 
confounding effects across strata may be responsible for the heterogeneity of  effects. As a 
hypothetical example, consider a case-control study assessing the relationship between 
coffee intake and cancer Y (Table 6-25). The investigator wishes to assess gender as an 
effect modifier and accordingly stratifies cases and controls by gender and coffee intake 
(yes/no). In this hypothetical example, smoking is a cause of  cancer Y, female cases 
and controls include only nonsmokers, smoking is associated with coffee drinking, and 
male cases include a higher proportion of  smokers than controls. As smoking is related 
to coffee intake and cancer Y, it acts as a positive confounder in males. Assuming that 
coffee intake is not causally related to cancer Y, in females (who are all nonsmokers) a 
relative odds of  1.0 is found. The confounding effect of  smoking in males, on the other 
hand, results in male cases having a higher odds of  coffee intake than controls, and as 
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a consequence, the relative odds are found to be markedly higher than 1.0. There is, 
therefore, heterogeneity due to confounding by smoking limited to males.

The possibility that interaction may be explained partially or entirely by a confounding 
effect makes it essential to adjust for potential confounders when assessing interaction. 
In the example shown in Table 6-25, the confounding effect of  smoking explains the 
entire apparent gender heterogeneity of  the relationship of  coffee intake to cancer Y. In 
most real-life instances, confounding may either exaggerate or decrease heterogeneity. 
An example is given by Yu et al.,25 who examined the interaction of  cigarette smoking 
and alcohol drinking in chronic hepatitis B surface antigen (HBsAg) carriers with regard 
to the risk of  liver cirrhosis (Table 6-26). An unadjusted heterogeneity for smoking 
according to drinking could be detected, which became more marked for heavy smokers 
( 20 cigarettes/day) versus nonsmokers (but less so for moderate smokers) when the 
relative risk was simultaneously adjusted for confounding factors using a Cox propor-
tional hazards model (see Chapter 7, Section 7.4.4).

6.10.3 Heterogeneity Due to Bias
As for confounding, the observed heterogeneity may also result from differential bias 
across strata. For example, in a study of  the incidence of  medically treated miscarriage 
in a county in North Carolina, Savitz et al.26 found that, overall, blacks appeared to have 
a lower risk of  miscarriage than whites. The authors interpreted this finding as probably 
resulting from bias due to underascertainment of  miscarriage among blacks. As shown 
in Table 6-27, when stratification according to educational status was undertaken, the 
apparent decreased risk of  miscarriage in blacks was seen only in the lower educational 
strata. This pattern of  an apparent modification of  the race effect by educational level 
is probably due to the underascertainment bias operating only in less educated blacks.

Another example of  possible misclassification resulting in apparent interaction is 
given by Bryson et al.’s27 population-based case-control study of  the relationship of  
gestational diabetes to eclampsia or severe preeclampsia. As seen in Table 6-28, these 
authors found a marked heterogeneity when the data on the association of  gestational 

Gender/smoking Coffee intake Cases Controls Odds ratio

Female/nonsmoker Yes
No

Total

10
90

100

10
90

100
1.0

Male/total Yes
No

Total

38
62

100

22
78

100
2.2

Male/smoker Yes
No

Total

35
35
70

15
15
30

 
1.0

Male/nonsmoker Yes
No

Total

3
27
30

7
63
70

1.0

Note: Assume that smoking causes cancer Y; 50% of  smokers but only 10% of  nonsmokers drink coffee; coffee intake 
is not independently related to cancer Y; all females are nonsmokers; and 70% of  male cases and 30% of  male controls 
are smokers.

Table 6-25 Apparent interaction due to confounding (hypothetical example).
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diabetes with eclampsia were stratified by level of  prenatal care, as ascertained by using 
a dichotomized Kotelchuck index.28 In this study, the difference in odds ratios by level 
of  care seemed to occur mainly for severe eclampsia (test for interaction, p = 0.02). As 
expected, an earlier, aggressive treatment of  preeclampsia in those with “high” prenatal 
care may be the explanation for the lesser increase in gestational diabetes-related odds of  
severe eclampsia; on the other hand, the authors also suggested that, in those with a low 
level of  care, preexisting diabetes may have been misclassified as gestational, which may 
have artificially increased the strength of  the association in these individuals.

Variable Total no.
No. of  incident 

cases

Relative risk

Without 
adjustment

With multivariate 
adjustment*

Nondrinker

 Nonsmoker 744 31 1.0 1.0

 < 20 cigarettes/day 267 19 1.7 1.5

  20 cigarettes/day 167 14 2.0 1.9

Drinker

 Nonsmoker 111 1 1.0 1.0

 < 20 cigarettes/day 100 6 6.7 3.9

  20 cigarettes/day 105 7 7.4 9.3

*Simultaneously adjusted for age, HBsAg carrier status at recruitment, elevation of  serum aminotransferase concen-
tration for at least 6 months, educational level, and blood type, using a Cox proportional hazards model (see Chapter 7, 
Section 7.4.4).
Source: Data from MW Yu et al., A Prospective Study of  Liver Cirrhosis in Asymptomatic Chronic Hepatitis B Virus 
Carriers. American Journal of  Epidemiology, Vol 145, pp. 1039–1047, © 1997.

Table 6-26 Relative risks of liver cirrhosis according to alcohol drinking and cigarette smoking 
in chronic HBsAg carriers.

White Black Black/white 
ratio

No. Risk/100 No. Risk/100

Total 325 7.7 93 5.5 0.7

Mother’s years of  education:

 9 12 10.4 0 – –

10–11 52 8.0 15 4.5 0.6

12 111 6.3 44 4.7 0.7

 13 150 9.2 33 9.5 1.0

Source: Data from DA Savitz et al., Medically Treated Miscarriage in Alamance County, North Carolina, 1988–1991. 
American Journal of  Epidemiology, Vol 139, pp. 1100–1106, © 1994.

Table 6-27 Risk of miscarriage per 100 pregnancies, corrected for induced abortions in 
relation to maternal years of education: Alamance County, North Carolina, 1988–1991.
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An illustration of  how information bias can result in an apparent heterogeneity of  
effects is presented in Figure 6-7, which shows results of  a hypothetical case-control 
study on the potential effect modification of  the relationship between overweight and 
disease Y by smoking. In this study, the misclassification of  overweight within each 
stratum formed by smokers or nonsmokers is nondifferential–that is, the levels of  sensi-
tivity and specificity are the same for cases and controls. However, these validity levels 
differ between smokers and nonsmokers. Even though the true odds ratios for overweight 
are the same for smokers and nonsmokers (2.25), different levels of  sensitivity and 
specificity levels across strata result in an apparent heterogeneity (see Chapter 4,  
Section 4.3.3, and Figure 4-4 and Exhibits 4-3 and 4-4 for similar calculations). 

6.10.4  Heterogeneity Due to Differential Intensity of Exposure
An apparent interaction can occur when there is heterogeneity in the levels of  exposure 
to the risk factor of  interest according to the alleged effect modifier. For example, 
in a study of  epidemic asthma in New Orleans, White et al.29 investigated the role of  
airborne soy dust originating from vessel cargo from the New Orleans harbor. The 
association was stronger when the maximum wind speed was below 12 miles per hour  
(relative odds 5 4.4) than when wind speeds were higher (relative odds 5 1.7). This 
heterogeneity was probably due to a heavier exposure to soy dust resulting from slower 
wind speeds and would thus not represent “true” interaction using the narrow criterion 
of  differential biological susceptibility to the same environmental exposure level. For 
practical purposes, however, there may be important public health implications of  
identifying this kind of  heterogeneity. Another example is the potential effect modifi-
cation by gender of  the relationship of  smoking to respiratory diseases, which may be 
created or exaggerated by the fact that the level of  exposure to smoking is higher in men 
than in women.

6.10.5 Interaction and Host Factors
Facilitation and, ultimately, level of  exposure are also the result of  anatomical or 
 pathophysiological characteristics of  the host. For example, a qualitative interaction has 
been found in a case-control study by Reif  et al.30 between the shape of  the skull in pet dogs 

Level of  care p value for 
interactionHigh* Low*

Case status Odds ratio (95% confidence interval)

Eclampsia  0.61 (0.15, 2.49) 4.16 (1.24, 13.96) 0.07

  Severe eclampsia 1.25 (0.88, 1.79) 3.13 (1.76, 5.52) 0.02

  Mild preeclampsia 1.45 (1.22, 1.73) 1.72 (1.20, 2.44) NS

Gestational hypertension 1.35 (1.17, 1.55) 1.61 (1.20, 2.15) NS

* “High” and “Low” correspond to “adequate/adequate plus,” and “inadequate/intermediate” in the dichotomized 
Kotelchuck index. 
Source: CL Bryson, GN Iannou, SJ Rulyak, et al. Association Between Gestational Diabetes and Pregnancy-Induced 
Hypertension. American Journal of  Epidemiology, Vol 158, pp. 1148–1153, © 2003.

Table 6-28 Odds ratios for the association of gestational diabetes to eclampsia stratified by 
level of prenatal care.
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and passive smoking in relationship to lung cancer: the increase in odds of  lung cancer was 
limited to dogs with a short nose (brachycephalic and mesocephalic), presumably because 
of  the absence of  a mechanical barrier to carcinogenic particles represented by the ciliae 
of  the long-nosed (dolichocephalic) dogs. (An alternative explanation is that there are 
genetic differences in susceptibility to smoking-induced lung cancer between these types 
of  dogs.) In a subsequent study by the same authors, a qualitative interaction was again 
found between passive smoking and skull shape with regard to nasal cancer, except that 
a higher odds of  cancer was found for the long-nosed than for the shorter-nosed dogs,31 
leading the authors to speculate that “an increased risk of  nasal cancer among long-nosed 
dogs may be explained by enhanced filtration, and impaction of  particles in the mucosa.”

These examples underscore the importance of  considering the intensity and/or facili-
tation of  exposure when attempting to explain heterogeneity of  effects. Effective exposure 
dose is obviously a function of  the net result of  the amount of  “exposure” in the individ-
ual’s environment (the example of  soy dust), the dose absorbed into the organism, and 
the dose that reaches the cellular levels (the examples of  canine lung and nasal cancers).

From the host viewpoint, effect modifiers can act on different portals of  entry (skin, 
gastrointestinal, respiratory). For example, it is well known that exposure to the same 
intensity of  a skin pathogen (e.g., streptococcus) is related to a higher probability of  
infection in individuals with an existing skin rash than in those with a normal skin. 
Thus, factors that produce skin lesions (e.g., skin allergens, mechanical trauma) interact 
with infectious agents in increasing risk of  infection.

The biological mechanism of  effect modification can also vary at the metabolic or 
cellular level. Interaction between metabolic pathways and exposure to risk factors is 
exemplified by genetic disorders such as phenylketonuria. In this disorder, the inability 
to oxidize a metabolic product of  phenylalanine found in many food items may result 
in severe mental deficiency. Another example is that, judging from experiments in 
mice, it is possible that humans, too, have a differential genetic susceptibility to salt-
induced hypertension.32 At the immunological level, the interactions between certain 
drugs (e.g., steroids, immunosuppressants) and infectious agents in relationship to risk 
and/or severity of  infections are well known. The relatively low risk of  coronary heart 
disease in white women at similar levels of  exposure to traditional cardiovascular risk 
factors as men in the United States suggests that endogenous hormones may play a role 
in modifying the effects of  these risk factors,33 notwithstanding the lack of  a protective 
effect of  estrogen therapy shown in recent clinical trials.34,35 

6.11  INTERACTION AND SEARCH FOR NEW RISK FACTORS  
IN LOW-RISK GROUPS

The strength of  an association measured by a relative difference (e.g., a relative risk) is a 
function of  the relative prevalence of  other risk factors.22,36 This concept seems to have 
been first recognized by Cornfield et al.,37(p.194) who stated this:

If  two uncorrelated agents, A and B, each increases the risk of  a disease, and if  
the risk of  the disease in the absence of  either agent is small . . . then the apparent 
relative risk for A . . . is less than the (relative) risk for A in the absence of  B.

This notion is readily understood when considering a situation in which a risk factor 
is strongly associated with the disease, as in the case of  smoking and lung cancer: to 
examine the role of  a weaker factor A, it would be intuitively logical to study nonsmokers, 
as otherwise the vast majority of  cases would be explained by smoking. In other words, a 
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magnification of  the relative risk for A in those unexposed to smoking (vis-à-vis smokers) 
is expected (i.e., a negative multiplicative interaction).22 The tendency toward a negative 
multiplicative interaction when examining the joint effect of  a strong risk factor Z and 
a weak risk factor A can be intuitively understood by considering two facts: (1) the 
maximum absolute risk associated with the exposure to any risk factor cannot surpass 
100%, and (2) the higher the independent relative risk associated with exposure to Z, 
the more the risk in those exposed to Z approximates 100%.

For illustration purposes, let us assume a simple hypothetical example involving risk 
factors Z and A, shown in Table 6-29, in which the baseline incidence of  the disease 
(i.e., the incidence in those unexposed to both risk factors) is about 10% and the 
independent relative risk for Z (i.e., in the absence of  A) is 9.0 (reflecting an incidence 
in those unexposed to A but exposed to Z of  90%). As the incidence in those exposed to 
A in the stratum exposed to Z cannot surpass the 100% mark, the maximum possible 
relative risk for A if  Z is present is 100% 4 90% 5 1.1. A similar absolute difference in 
incidence of  10% due to exposure to A in those unexposed to Z would result in a relative 
risk of  20% 4 10% 5 2.0. A similar reasoning can be applied to a situation in which Z is 
a constellation of  risk factors, rather than a single variable: for example, when studying 
cardiovascular disease outcomes, Z can be defined as the simultaneous presence of  the 
traditional cardiovascular risk factors (hypertension, hypercholesterolemia, smoking, 
and diabetes). 

An example is given by the known gender difference with regard to the prevalence 
of  gallstones. It is estimated that in the population at large, 80% of  women and 8% of  
men have gallbladder disease.38 Thus, the relative risks for risk factors other than gender 
would have a tendency to be larger in men than in women.

Because of  its intuitive appeal, the idea of  studying “emergent” risk factors in 
individuals with no known risk factors is on occasion considered in the design of  a study. 
For example, in a study of  the putative protective effect of  antibiotics on CHD, Meier  
et al.39 compared prior antibiotic use (obtained from pharmacy records) in CHD cases and 
controls; in selecting these groups, the authors excluded all individuals with a known prior 
history of  CHD or other cardiovascular diseases, as well as individuals with evidence of  
hypertension, hypercholesterolemia, or diabetes. It is important to realize, however, that 
the use of  this strategy may limit the generalizability of  the study findings to the general 
population, which includes both low- and high-risk individuals. Furthermore, associa-
tions that rely on synergism between risk factors may be missed altogether. For example, 
if  infections are neither sufficient nor necessary causes for atherosclerosis but rather 
are involved in atherogenesis because of  their synergism with other cardiovascular risk 

Factor Z Factor A
Population 

size
Incidence 

/100
Attributable 

risk for A/100
Relative 

risk for A
Relative 

risk for Z

Absent Absent 1000 10.0 0 1.0 1.0

Present 1000 20.0 10.0 2.0 1.0

Present Absent 1000 90.0 0 1.0 9.0*

Present 1000 100.0 10.0 1.1 5.0†

*Relative risk of  Z in persons unexposed to A.
†Relative risk of  Z in persons exposed to A.

Table 6-29 Example of negative interaction between a stronger and a weaker risk factor.
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factors (e.g., hypercholesterolemia, diabetes), as suggested elsewhere,40 the “low-risk” 
approach may underestimate the potential impact of   infections (or, by analogy, antibi-
otics) on atherosclerosis.

6.12 INTERACTION AND “REPRESENTATIVENESS” 
OF ASSOCIATIONS

An important assumption when generalizing results from a study is that the study 
population should have an “average” susceptibility to the exposure under study with 
regard to a given outcome. When susceptibility is unusual, results cannot be easily 
generalized. For example, results of  a study on the effectiveness of  a vaccine in African 
children may not be applicable to Swiss children, as inadequate nutrition in the former 
may significantly alter the immune system and thus the production of  antibodies to the 
killed or inactivated agent.

Consider, for example, the findings in Table 6-11, with regard to the influence of  
interaction on the ability to generalize. Assuming that hypertensive individuals are 
indeed more susceptible to asthma-induced cardiomyopathy than normotensives, 
the large odds ratio (13.4) found in hypertensives is obviously not generalizable to 
nonhypertensives, whose odds ratio for asthma pertaining to cardiomyopathy is much 
smaller (2.4). It follows that the so-called average effect of  asthma on cardiomyopathy 
is a function of  the prevalence of  hypertension in the population to which one wishes 
to generalize results. Assuming that the relative odds from Coughlin’s study8 (Table 
6-11) represented the true estimates, in populations in which most individuals are 
hypertensive, the odds ratio would approximate 13.4; on the other hand, in popula-
tions with a low proportion of  hypertensives the relative odds would be closer to 2.4. 
Whereas the example of  hypertension and asthma is based on an easily measurable 
effect modifier (hypertension), differences in the strength of  an association from 
population to population may also be due to between-population differences in the 
prevalence of  unmeasured environmental or genetic effect modifiers.

Although it is difficult to establish to which extent the susceptibility of  a given study 
population differs from an “average” susceptibility, the assessment of  its epidemiological 
profile (based on well-known risk factors) may indicate how “usual” or “unusual” that 
population is. Thus, in studies of  breast cancer, assuming no bias, a study population 
in which the well-known association with age at first pregnancy were not found would 
suggest that it might not be a population of  “average” susceptibility. This strategy, 
however, is limited because level of  susceptibility to a known risk factor may not be 
representative of  the level of  susceptibility regarding the exposure under study (see also 
Chapter 10, Section 10.2.4).
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EXERCISES

 1. In a prospective study of  the relationship of  hepatitis B and C viruses to newly 
developed hepatocellular carcinoma, the authors examined the interaction 
between alcohol and hepatitis C virus (HCV). The following table is based on this 
study’s results:

Alcohol drinking Anti-HCV* Number of  persons Incidence rates/100,000

Absent Negative 8968 78.7

Absent Positive 2352 127.1

Present Negative 461 309.7

Present Positive 90 384.9

*Anti-HCV: antibodies against hepatitis C virus.

  a.  Using the category “absent–negative” as the reference, calculate the relative 
risks and the attributable risks (in the exposed) for those with positive antibodies 
to HCV only, for those exposed to alcohol only, and for those exposed to both.

  b.  Calculate the expected joint relative risk (multiplicative model) and the 
expected joint attributable risk in the exposed (additive model).

  c.  Assuming no random variability, is there multiplicative or additive interaction?  
If  so, is it positive or negative?

  d.  Using the homogeneity strategy and alcohol as the effect modifier, confirm 
your answers to the previous questions.

 2. Haffner et al. examined coronary heart disease risk according to presence of  
type 2 diabetes, stratified by whether individuals had had a prior myocardial 
infarction.* The results of  the study are shown in the table.

  Cumulative incidence (%), relative risks, and exposure attributable risks (%) of 
myocardial infarction (MI) during a 7-year follow-up, according to previous myocardial 
infarction history and presence of type 2 diabetes.

Diabetes Previous MI Incidence (%)* Relative risk
Attributable risk in those 

with previous MI (%)

Present Yes 45.0 2.2 24.8

No 20.2 1.0 Reference

Absent Yes 18.8 5.4 15.3

No 3.5 1.0 Reference

*In those with a previous MI, incidence refers to incidence of  a recurrent MI.

  a. What types of  interaction can be inferred by inspection of  the table?

  b.  Is it appropriate to merely show a diabetes-adjusted measure of  association? Why?

  c.  Can you speculate as to why the relative risk for a previous MI is closer to one 
in the stratum with diabetes present than in the stratum with diabetes absent?

*Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes 
and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229–234.
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 3. A case-control study was conducted by Gustavsson et al.† to examine the joint 
associations of  asbestos exposure and smoking with lung cancer odds. Results 
are shown in the table for exposure to asbestos of   2.5 fiber-years and smoking 
of  more than 20 cigarettes.

Odds ratios* of lung cancer according to exposure to asbestos for 2.5 fiber-years or more 
and smoking of more than 20 cigarettes/day.

Never smokers Smoking > 20 cigarettes/day

Unexposed to asbestos 1.0 45.4

 2.5 fiber-years 10.2 80.6

*Odd ratios adjusted for age, inclusion year, residential radon, environmental nitrogen oxide, diesel exhaust, 
and combustion products.

  a.  What is the value of  the odds ratio expressing the independent association of  
smoking  20 cigarettes/day with lung cancer?

  b.  What is the value of  the odds ratio expressing the independent association of  
exposure of   2.5 fiber-years of  asbestos with lung cancer?

  c.  What is the joint expected odds ratio for each of  the two models (additive and 
multiplicative)?

  d.  Assuming no bias or confounding, what are your conclusions resulting from 
the comparison of  the joint expected with the joint observed odds ratios?

 4. Using a case-control design, the interaction between urine pH and cigarette 
smoking was examined by Alguacil et al., with regard to bladder cancer odds.‡ 
Results of  this study are shown in the table. (In the original table, data for a 
category of  former smokers are also shown. For simplification purposes, results 
are only shown for nonsmokers and current smokers.) 

Distribution of  cases and controls according to ph of  the urine and smoking status.

Smoking  
status Urine pH

Number 
of  cases

Number of  
controls

Unadjusted  
odds ratio

Adjusted odds 
ratio (95% CI)*

Nonsmokers  6.0 67 114 1.0 1.0

 6.0 39 67 1.0 1.0 (0.6, 1.8)

Current smokers  6.0 144 84 1.0 1.0

 6.0 158 54 1.6 2.1 (1.3, 3.2)

*Adjusted for age (5 categories), study region, gender, cigarettes per day and duration of  smoking. 

†Gustavsson P, Nyberg F, Pershagen G, et al. Low-dose exposure to asbestos and lung cancer: dose-response 
relations and interaction with smoking in a population-based case-referent study in Stockholm, Sweden. 
Am J Epidemiol. 2002;155:1016–1022
‡Alguacil J, Kogevinas M, Silverman D, et al. Urinary pH, cigarette smoking and bladder cancer risk. 
Carcinogenesis 2011;32;843–7.
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  a.  The heterogeneity of  the odds ratios across strata of  the potential effect 
modifier (presence or absence of  current smoking) suggests the presence of  
interaction. Assuming no random error or bias, is the interaction additive or 
multiplicative?

  b.  With adjustment, the odds ratio for the pH-bladder cancer association in the 
stratum of  nonsmokers did not change. However, for smokers, the odds ratio 
increased from 1.6 to 2.1. What do these findings suggest?
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Stratification and Adjustment: 
Multivariate Analysis in 
Epidemiology

7.1 INTRODUCTION

Analytic epidemiologic studies are designed to evaluate the association between environ-
mental exposures or other subject characteristics (e.g., demographic variables, genetic 
polymorphisms) and disease risk. Even if  the epidemiologist’s interest is focused on a 
single exposure, there are usually several other factors that need to be considered in the 
analysis, either because they may distort (confound) the exposure–disease relationship 
(see Chapter 5) or because the magnitude of  the association between exposure and 
disease may vary across levels of  these variables (effect modification; see Chapter 6). 
Stratification and multivariate analysis (modeling) are the analytical tools that are used 
to control for confounding effects, to assess effect modification, and to summarize the 
associations of  several predictor variables with disease risk in an efficient fashion.

The simplest method to analyze the possible presence of  confounding is stratification, 
which is frequently a very informative method because: (1) it allows a straightforward 
and simultaneous examination of  the possible presence of  both confounding and effect 
modification; and (2) because examining stratified results is often useful when choosing 
the appropriate statistical technique for adjustment.

Multivariate analysis refers to a series of  analytical techniques, each based on a more 
or less complex mathematical model, which are used to carry out statistical adjustment—
that is, the estimation of  a certain measure of  association between an exposure and an 
outcome while controlling for one or more possible confounding variables. Effect modifi-
cation can also be assessed in the context of  multivariate analysis. The next section 
presents an example to illustrate the basic idea of  stratification and adjustment as two 
often-complementary alternatives to discern and control for confounding variables. The 
following sections discuss in more detail some of  the adjustment techniques frequently 
used in epidemiology. Because it can be seen as both an “adjustment” technique and 
a study design feature, matching (including individual and frequency matching) has 
been previously addressed in Chapter 1 of  this book, in which the main observational 
design strategies were discussed (Section 1.4.5). In this chapter, the issue of  individual 
matching is taken up again, but only insofar as it relates to the application of  this strategy 
in adjusting for follow-up length in cohort studies (Section 7.4.6), and to demonstrate 
its analytic convergence with the Mantel-Haenszel approach when matched sets are 
treated as strata for the adjustment of  the odds ratio (Section 7.3.3).

The chapter ends with a section describing alternative approaches to stratification 
and adjustment that might be useful to control for confounding in specific circum-
stances: propensity scores, instrumental variables, and Mendelian randomization.
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7.2 STRATIFICATION AND ADJUSTMENT 
TECHNIQUES TO DISENTANGLE CONFOUNDING

Table 7-1 shows a hypothetical example of  a case-control study of  male gender as 
a possible risk factor for malaria infection. This example was used in Chapter 5 to  
illustrate how to assess whether a variable is a confounder (Section 5.4). The crude 
analysis shown at the top of  the table suggests that males are at higher risk of  malaria 
(odds ratio 5 1.71). If  random and systematic errors (bias) are deemed to be unlikely 
explanations for the observed association, the possibility of  confounding needs to be 
considered (i.e., whether the association may be explained by characteristics related 
to both gender and increased odds of  malaria). One such characteristic is occupation: 
individuals who work mostly outdoors (e.g., agricultural workers) are more likely to be 
exposed to mosquito bites than those who work indoors and are therefore at a higher 
risk of  malaria. Thus, the observed association could be explained if  the likelihood of  
working outdoors differed between genders. In Section 5.4.1, occupation was shown to 
be related to both gender (the “exposure”) and malaria (the “outcome”) (strategy 1 for 
the assessment of  confounding; see Exhibit 5-3); it was also shown that when the data 
were stratified by type of  occupation (strategy 2 to assess confounding), the stratified 
estimates were different from the pooled (crude) estimate. These results are presented 
in the lower part of  Table 7-1. By stratifying the study results according to the potential 

Crude analysis

All cases and controls

Cases Controls Total

Males 88 68 156 OR 5 1.71

Females 62 82 144

Total 150 150 300

Stratified analysis by occupation

Cases and controls with mostly  
outdoor occupations

Cases Controls Total

Males 53 15 68 OR 5 1.06

Females 10 3 13

Total 63 18 81

Cases and controls with mostly  
indoor occupations

Cases Controls Total

Males 35 53 88 OR 5 1.00

Females 52 79 131

Total 87 132 219

Table 7-1 Example of stratified analysis: hypothetical study of male gender as a risk factor for 
malaria infection.
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confounder, it is possible to control for its effect; that is, it is possible to assess the 
association between the risk factor of  interest (male gender) and the disease (malaria) 
separately for those whose work is mostly outdoors (odds ratio 5 1.06) and for those 
who work mostly indoors (odds ratio 5 1.00). Because these stratum-specific odds 
ratios are similar to each other and fairly different from the crude estimate (odds ratio 5 

1.71), it can be concluded that occupation is a confounder of  the association between 
male gender and the presence of  malaria. The fact that the stratified odds ratios are very 
close to 1.0 suggests that, after occupation is taken into account, there is no association 
between gender and the presence of  malaria—in other words, that the crude association 
can be “explained” by the confounding effect of  occupation. (As discussed in Chapter 5,  
Section 5.5.1, unadjusted odds ratios, rate ratios, and absolute differences can be 
different from the stratum-specific estimates even if  confounding is not present.1,2 Thus, 
the assessment of  potential confounding effects by means of  stratification must be 
confirmed by the use of  the other strategies discussed in Chapter 5 and in this chapter.)

The stratified data shown in the two-by-two tables in the lower part of  Table 7-1 allow 
a closer examination of  why occupation is a confounder in this hypothetical example: (1) 
43.6% (68 of  156) of  males have mostly outdoor occupations, compared with only 9% 
(13 of  144) of  females (odds ratio 5 7.8) and (2) 42% (63 of  150) of  the malaria cases 
have mostly outdoor occupations compared with 12% (18 of  150) of  controls (odds 
ratio 55.3). The strong positive associations of  the confounder (occupation) with both 
the risk factor of  interest (male gender) and case-control status explain the (positive) 
confounding effect.

The stratified analysis also allows the assessment of  the possible presence of  inter-
action (see Chapter 6). In the previous example (Table 7-1), the fact that stratum-specific 
odds ratios are very similar (homogeneous) indicates that no interaction is present, 
and thus, an overall occupation-adjusted odds ratio can be calculated. As described 
later in this chapter, this can be done by calculating a weighted average of  the stratum-
specific estimates, for example, using the Mantel-Haenszel weighted odds ratio, ORMH, 
which turns out to be 1.01 in this particular example (see Section 7.3.3). Compared 
with the examination of  the stratum-specific results, the calculation of  this weighted 
average (i.e., the “adjusted” odds ratio) requires the assumption that the association is 
homogeneous across strata. On the other hand, when the odds ratios are not too similar  
(e.g., 1.4 and 2.0), it may be difficult to decide whether the observed heterogeneity is 
real—that is, whether there is actual effect modification, as opposed to its being the 
result of  random variability caused by the small size of  the strata (see Chapter 6, Section 
6.10.1), in which case it can be ignored. In other words, the issue is whether presence of  
interaction should be accepted by the investigator. As discussed in Chapter 6, Section 6.9, 
in addition to the statistical significance of  the observed heterogeneity, its magnitude 
should be considered when deciding whether interaction is present; thus, stratum-
specific odds ratios of  1.4 and 20.0 are more likely to reflect a true interaction than odds 
ratios of  1.4 and 2.0. Other factors that should be considered are whether the interaction 
is quantitative (e.g., stratum-specific odds ratios of  1.4 and 2.0) or qualitative (e.g., odds 
ratios of  1.4 and 0.3) and, most importantly, its perceived biological plausibility.

If  interaction is judged to be present, adjustment (e.g., obtaining a combined odds 
ratio) is unwarranted, for in this case, the “adjusted” odds ratio has no relevance, as 
it will be a weighted average of  heterogeneous stratum-specific odds ratios. Consider, 
for example, the study by Reif  et al.,3 cited in Chapter 6, showing that an association 
between environmental tobacco smoke and lung cancer in pet dogs was present in short-
nosed dogs (odds ratio 5 2.4) and virtually absent (odds ratio 5 0.9) in long-nosed dogs. 
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The biological plausibility of  this possible qualitative interaction was discussed in Section 
6.10.5. Assuming that this interaction is real, adjustment for skull shape (nose length) is 
obviously not warranted, as an adjusted odds ratio, representing the weighted average of  
the stratum-specific odds ratios of  2.4 and 0.9, has no useful interpretation.

Another example is provided in Table 7-2, which summarizes the results from a case-
control study of  oral contraceptive use as a possible risk factor for myocardial infarction 
among women of  reproductive ages.4 As shown in the upper part of  Table 7-2, the odds 
of  disease among women who used oral contraceptives was estimated to be about 70% 
higher than the odds in those who did not use oral contraceptives. The possibility of  
confounding by age, however, was considered by the authors of  this study. Because 
age was known to be directly related to the outcome (risk of  myocardial infarction) 
and inversely related to the exposure (increased oral contraceptive use among younger 
women), it could act as a negative confounder (see Chapter 5, Section 5.5.5).

In a stratified analysis by age, also shown in Table 7-2, all but one of  the strata had 
estimated odds ratios further away from 1.0 than the overall crude estimate, confirming 
the expectation of  negative confounding (i.e., age driving the estimated crude association 

Crude analysis

Stratified by analysis: by age

Age 25–29 Age 30–34

Cases Controls Cases Controls

OC 4 62 OR 5 7.2 OC 9 33 OR 5 8.9

No OC 2 224 No OC 12 390

Age 35–39 Age 40 – 44

Cases Controls Cases Controls

OC   4 26 OR 5 1.5 OC 6 9 OR 5 3.7

No OC 33 330 No OC 65 362

Age 45–  49

Cases Controls

OC 6 5 OR 5 3.9

No OC 93 301

Source: Data from S Shapiro et al., Oral-Contraceptive Use in Relation to Myocardial Infarction. Lancet, 
Vol 1 pp. 743–747, © 1979.

Table 7-2 Example of stratified analysis: Case-control study of oral contraceptives (OC) and 
myocardial infarction in women.

All cases and controls

Cases Controls

OC     29    135 OR 5 1.7

No OC 205 1607

234 1742
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toward the null). The adjusted odds ratio (see Section 7.3.3) for the data in Table 7-2 
was found to be 3.97, thus more than twice the crude estimate. As mentioned previ-
ously, implicit when calculating any average, this adjusted odds ratio estimate requires 
assuming that the associations are homogeneous (i.e., that the observed between-
strata differences in odds ratios result from random variation). In this example, this 
assumption is probably reasonable, given the small number of  cases in some of  the cells 
and the fact that all odds ratios are in the same direction (denoting absence of  qualitative 
interaction; see Chapter 6, Section 6.7.1). On the other hand, it could be argued that 
the quantitative differences among odds ratios in Table 7-2 are too large and thus that 
the estimation of  a single average (adjusted) estimate supposedly “representative” of  all 
age strata is not warranted. For example, one could argue that the association seems to 
be stronger in women younger than 35 years (odds ratios of  7.2 and 8.9) than in older 
women (odds ratios ranging from 1.5 to 3.9). Acceptance of  this heterogeneity of  the 
values of  odds ratios suggests an alternative approach that consists of  calculating two 
age-adjusted odds ratios: one for women 25 to 34 years old (i.e., the weighted average 
odds ratio for the two younger groups) and another for women 35 to 49 years old (i.e., 
the weighted average odds ratio for the three older groups). (These calculations yield 
ORMH values of  8.3 and 2.7, respectively; see Section 7.3.3.) This example illustrates 
the advantages of  stratification for assessing the presence of  confounding and/or inter-
action and for deciding when adjustment is appropriate and how it should be carried 
out. It also illustrates a common situation in epidemiologic analysis: the exposure of  
interest seems to have heterogeneous effects according to a certain grouping of  a third 
variable, sometimes not considered before the analysis of  the data. Given the large 
number of  possibilities for grouping variables when conducting stratified analysis and 
the potential random variability of  apparent subgroup effects (Section 6.10.1), this 
type of  analysis, if  not based on biologically plausible a priori hypotheses, should be 
considered as exploratory.

Because the previous examples were based on the assessment of  stratified odds ratios, 
they were used to illustrate the evaluation of  multiplicative interaction. It is, however, 
important to bear in mind that if  the measure of  association of  interest is the attributable 
risk (Section 3.2.2), it is additive interaction that should be considered (see Section 6.6), 
as discussed in the context of  the direct method of  adjustment in Section 7.3.1.

7.2.1 Stratification and Adjustment: Assumptions
Compared with adjustment, stratification is virtually (but not completely) assumption 
free. Note that stratification is akin to frequency matching (discussed in Chapter 1, Section 
1.4.5) in that it requires assuming that the strata are meaningful and properly defined. 
This means that there should be homogeneity within each stratum. For example, for the 
strata in Table 7-1, it must be implicitly assumed that there is uniformity regarding the 
association of  gender with malaria in each of  the two occupational strata (mostly outdoors 
or mostly indoors); similarly, in Table 7-2, it is assumed that the association of  oral contra-
ceptives with myocardial infarction is homogeneous within each 5-year age group. If  this 
assumption were not appropriate in each of  these examples, other more precisely defined 
categories (e.g., more specific occupational categories, or finer age intervals, respectively) 
would have to be chosen for the stratified analysis. This assumption is equivalent to the 
assumption of  lack of  residual confounding, described later in this chapter (Section 7.6)

For adjustment, further assumptions must be met. As described in the next section, 
all adjustment techniques are based on assuming some kind of  statistical model that 
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summarizes the association between the variables under investigation. Sometimes the 
statistical model is a simple one, as in the case of  adjustment methods based on stratifi-
cation, namely direct and indirect adjustment (Sections 7.3.1 and 7.3.2) or the Mantel-
Haenszel method (Section 7.3.3). As discussed previously, for the calculation of  a 
(weighted) mean of  a number of  stratum-specific odds ratios, it is assumed that these 
are homogeneous across strata (i.e., that there is no [multiplicative] interaction). These 
simpler stratification-based adjustment methods are most often used when controlling 
for a limited number of  potential confounders that are categorical or that can be catego-
rized (see Section 7.3.4). On the other hand, more mathematically complex models are 
the basis for multivariate adjustment methods based on regression methods.* As described 
more extensively in Section 7.4, these more complex models are used as tools for epide-
miologic inferences about the relationships between a number of  factors and a disease, 
while simultaneously controlling (or adjusting) for the potentially mutual confounding 
effects of  all these factors. These multiple-regression methods can also handle continuous 
covariates.

In the following paragraphs, some of  the most frequently used techniques for 
adjustment and multivariate analysis of  epidemiologic data are briefly described. 
Sections 7.3 and 7.4 describe the techniques based on stratification and those based on 
multiple-regression methods, respectively. Section 7.5 describes alternative methods 
to control for confounding that are applicable in certain situations. Each of  these 
analytical techniques is based on both a conceptual and a mathematical model (i.e., 
something we could refer to as a “statistical model”). Sections 7.6 and 7.7 discuss some 
potential limitations of  multivariate adjustment (residual confounding and overad-
justment), and the final section of  this chapter (Section 7.7) presents a summary and 
overview of  common uses of  multivariate statistical modeling techniques in epidemio-
logic practice.

7.3 ADJUSTMENT METHODS BASED ON STRATIFICATION

7.3.1 Direct Adjustment
Direct adjustment has been traditionally used for age adjustment when comparing 
morbidity and mortality rates across countries or regions or across different time 
periods, although age adjustment is by no means its only application. The popularity of  
more mathematically sophisticated statistical methods (such as those presented in the 
following sections) has limited the use of  direct adjustment in epidemiology research in 
recent years, but the method remains a straightforward technique that is particularly 
useful to illustrate the basic principles of  statistical adjustment.

The direct method is described in most introductory epidemiologic textbooks (e.g., 
Gordis5). Table 7-3 outlines the procedure when comparing incidence rates between 
two groups, A and B (e.g., exposed and unexposed), stratified according to the suspected 
confounding variable (strata i 5 1 to k).

*The term multivariate analysis, commonly used in the epidemiology literature, is in contrast with “crude” 
analysis, which assesses the relationship between one variable and one outcome. Most often, the term multi-
variate is used when simultaneously controlling for more than one variable (in contrast to bivariate analysis). It 
is, however, used in a different way in the field of  biostatistics, where multivariate analysis usually refers to the 
multiple-regression techniques involving more than one dependent variable.
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 Briefly:

 1. For each stratum of  the suspected confounding variable, the incidence is calcu-
lated in the two study groups (columns 4 and 7).

 2. A standard population with a specific number of  individuals in each stratum is 
identified (column 8).

 3. The expected number of  cases in each stratum of  the standard population 
(expected under the assumption that the age-specific incidence rates in the 
standard population are equal to those of  either study group A or B, respectively) 
is calculated by multiplying each of  the corresponding stratum-specific rates 
observed in study group A (column 9) and in study group B (column 10) times 
the number of  subjects in the equivalent standard population stratum.

 4. The overall sums of  expected cases in the standard population (based on the rates 
of  A and B) divided by the total number of  individuals in the standard population 
are the adjusted or standardized incidence rates I *

A and I *
B —that is, the incidence 

rates that would be observed in groups A and B if  these populations had exactly 
the same age distribution as the standard population or, conversely, the incidence 
that would be observed in the standard population if  it had the stratum-specific 
rates of  study group A or the stratum-specific rates of  study group B.

It should be evident from looking at the formula for the calculation of  the adjusted 
rates that these are weighted averages of  the stratum-specific rates in each study group, 
using as weights the corresponding number of  subjects in each stratum of  the standard 
population. The fact that both averages are calculated using the same weights allows 
their comparison. The resulting adjusted rates can then be used to calculate either the 
adjusted attributable risk (AR) in those exposed (for standard error of  this estimate, see 
Appendix A, Section A.6) or the relative risk (RR):

 Adjusted AR = I *
A - I *

B

 Adjusted RR =
I *

A

I *
B

 As discussed in the previous section, the main assumption implicit in the calculation  
of  adjusted attributable risks or relative risks obtained by direct adjustment is that 
these measures of  association are homogeneous across the strata of  the confounding 
variable(s)—that is, if  an overall summary measure of  association across strata of  a 
given variable is calculated, it is assumed that this average is reasonably representative 
of  each and all the involved strata. Further specification of  this assumption is necessary, 
namely whether the homogeneity refers to an absolute scale (additive model) or a relative 
scale (multiplicative model). This concept is simplistically illustrated by the hypothetical 
situations shown in Tables 7-4 and 7-5, in which there is strong confounding by age: 
that is, the outcome is more frequent in older than in younger subjects, and the study 
groups are quite different with regard to their age distributions.

In Table 7-4, the attributable risks are homogeneous across the two age strata 
(stratum-specific attributable risks 5 10%), and both are different from the crude overall 
attributable risk (20%), denoting a confounding effect by age. Because the stratum-
specific attributable risks are homogeneous (identical in this hypothetical example), 
the weighted average of  these differences (i.e., the adjusted attributable risk) does not 
vary with the choice of  the standard population (lower half  of  Table 7-4). The same is 
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not true, however, when calculating an adjusted relative risk in this example: because 
relative risks vary by age, the adjusted relative risk (i.e., the weighted average of  the 
non-homogeneous age-specific relative risks) depends on which stratum is given more 
weight when choosing the standard population. For example, because the relative risk 
is higher in the younger (2.0) than in the older (1.25) stratum, the use of  a younger 
standard population results in a higher age-adjusted relative risk (1.67) than that 
obtained when using an older standard population (1.29). In conclusion, because there 
is homogeneity of  attributable risks (i.e., no additive interaction), it is appropriate to use 
directly adjusted rates for the purpose of  calculating an age-adjusted attributable risk. 
Given the heterogeneity of  relative risks by age, however, it is not appropriate to estimate 
an age-adjusted relative risk in this case. In this situation, the adjusted relative risk may 
vary depending on the standard chosen. This is a matter of  special concern in situations 
in which there is qualitative or strong quantitative interaction.

A situation opposite to that depicted in Table 7-4 is shown in Table 7-5. In the 
hypothetical example given in Table 7-5, the stratum-specific relative risks are homoge-
neous; however, the same is not true for the attributable risks. Thus, the adjusted relative 
risks are identical regardless of  the choice of  the standard population, but the value of  the 
adjusted attributable risk estimate depends on which stratum is given more weight. For 
instance, the older standard population yields a higher adjusted attributable risk because 
the attributable risk is greater for the older (15%) than for the younger (3%) stratum. 
Thus, given the heterogeneity of  stratum-specific attributable risks, it is not appropriate 

Study group A Study group B

Age (yrs) N Cases Rate (%) N Cases Rate (%) AR (%) RR

 40 100 20 20 400 40 10 10 2.00

 40 200 100 50 200 80 40 10 1.25

Total 300 120 40 600 120 20 20 2.00

Calculation of  the adjusted estimates:

Younger standard population Older standard population

Age (yrs) N

Expected 
cases if  
A rates

Expected 
cases if  
B rates N

Expected 
cases if  
A rates

Expected 
cases if  
B rates

 40 500 100 50 100 20 10

 40 100 50 40 500 250 200

Total 600 150 90 600 270 210

Adjusted  
rate (%) 25 15 45 35

AR 10% 10%

RR 1.67 1.29

Note: AR: attributable risk; RR: relative risk.

Table 7-4 Hypothetical example of direct adjustment when stratum-specific absolute 
differences (attributable risks) are homogeneous.
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to calculate an age-adjusted attributable risk. On the other hand, an age-adjusted relative 
risk accurately reflects the homogeneity of  multiplicative effects by age when comparing 
groups A and B.

Other practical considerations about the direct method of  adjustment are as follows:

•	 This method is used for the comparison of  rates in two or more study groups; the 
absolute value of  an adjusted rate is usually not the main focus because it depends 
on the choice of  the standard population, which is often arbitrary.

•	 Several options are available for the choice of  the standard population, including 
the following:

1. An entirely artificial population (e.g., 1000 subjects in each stratum).

2. One of  the study groups. This will make calculations simpler and save time, 
for the observed rate in the group chosen to be the standard population is, by 
definition, “standardized.” When one of  the study groups is particularly small, 
it should be used as the standard so as to minimize random variability. This is 
because when the smaller group is used as the standard, there is no need to use 
its statistically unstable stratum-specific rates to estimate expected numbers 
of  events, as its total observed rate is the adjusted rate. The more precise 
age-specific rates of  the other (larger) group(s) produce a more stable expected 
number of  events and thus more precise adjusted rate(s).

3. The sum of  the study populations or groups.

Study group A Study group B

Age (yrs) N Cases Rate (%) N Cases Rate (%) AR (%) RR

 40 100    6   6 400 12 3 3 2.00

 40 200 60 30 200 30 15 15 2.00

Total 300 66 22 600 42 7 15 3.14

Calculation of  the adjusted estimates:

Younger standard population Older standard population

Age (yrs) N

Expected 
cases if  
A rates

Expected 
cases if  
B rates N

Expected 
cases if  
A rates

Expected 
cases if  
B rates

 40 500 30 15 100 6 3

 40 100 30 15 500 150 75

Total 600 60 30 600 156 78

Adjusted  
rate (%) 10

5 26 13

AR 5% 13%

RR 2.00 2.00

Note: AR: attributable risk; RR: relative risk.

Table 7-5 Hypothetical example of direct adjustment when stratum-specific relative 
differences (relative risks) are homogeneous.
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4. A population that may be either a reference population or the population from 
which the study groups originate (e.g. the population of  the state, province or 
country where the study is conducted—or the whole world when the focus is 
on comparing several countries). When comparing occupational groups in 
residents of  a metropolitan area, for example, it would be reasonable to select 
the total metropolitan area working population as the standard. Although this 
choice is still arbitrary, the resulting adjusted rates will be at least somewhat 
representative of  the “true” study group rates.

5. The so-called minimum-variance standard population, which produces the 
most statistically stable adjusted estimates and is thus particularly useful when 
sample sizes are small. When two groups are compared using the same notation 
as in Table 7-3, for each stratum (i), the stratum-specific minimum-variance 
standard population is calculated as

Wi =
1

1
nAi

+
1

nBi

=
nAi * nBi

nAi + nBi
  (Eq. 7.1)

For the example shown in Table 7-4, the minimum-variance standard population 
would therefore be

Stratum age under 40 years:

 Standard population =
100 * 400
100 + 400

= 80

Stratum age greater than or equal to 40 years:

 Standard population =
200 * 200
200 + 200

= 100

 If  one of  the groups (e.g., population A) is much smaller than the other—that is, 
if  nAi  nBi —then (1/nAi)  (1/nBi), and thus, Equation 7.1 reduces to Wi  nAi,  
which  formally supports the recommendation mentioned previously that when one of  
the groups is small, it should be used as the standard.

•	 As mentioned previously, although the direct method of  adjustment has been tradi-
tionally used for age-adjusted comparisons of  mortality and morbidity rates by time 
or place, it is an appropriate method to carry out adjustment for any categorical 
variables. It can also be used to simultaneously adjust for more than one variable 
(see layout in Table 7-6). Obviously, the latter application will be limited if  there are 
too many strata and data are sparse.

•	 The direct method can be used for the adjustment of  any rate or proportion 
(mortality, case fatality rate, incidence per person–time, prevalence). Thus, this 
method can also be used in the context of  a case-control study to obtain the adjusted 
proportions of  exposed cases and controls, which in turn could be used to calculate 
an adjusted odds ratio.

7.3.2 Indirect Adjustment
Like the direct adjustment method, indirect adjustment has been traditionally used for 
age adjustment of  mortality and morbidity data. In the indirect method of  adjustment, 
which has been particularly popular in the field of  occupational epidemiology, the expected 
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number of  events (e.g., deaths) in a study group (e.g., an occupational cohort) is calculated 
by applying reference rates (“standard” rates) to the number of  individuals in each stratum 
of  the study group(s). For each study group, the ratio of  the total number of  observed events 
to the number of  expected events (if  the rates in the study group were the “standard” rates) 
provides an estimate of  the factor-adjusted relative risk or rate ratio comparing the study 
group with the population that served as the source of  the reference rates (Table 7-7). When used 
in the context of  mortality data, this ratio is known as the standardized mortality ratio (SMR), 
with similar terms used for morbidity data, such as standardized incidence ratio (SIR) and 
standardized prevalence ratio (SPR). For simplification purposes, the remaining discussion will 
use the acronym, SMR, even though it also applies to SIR and SPR.

The so-called indirect method is considered to be particularly useful either when 
stratum-specific risks or rates are missing in one of  the groups under comparison or 
when the study group(s) is (are) small so that the stratum-specific rates are too unstable, 
thus resulting in statistically unreliable expected numbers when using the direct method 
(columns 9 and 10 in Table 7-3).

When carrying out indirect adjustment, it is not appropriate to define the population 
serving as the source of  the rates as a “standard population,” the reason being that the 
true standard population is actually the study group(s) to which the external reference 
(“standard”) rates are applied. The calculation of  the SMRs is based on applying the 
rates of  a reference population to each study group’s distribution. Thus, when comparing 
more than one study group to the source of  reference rates, the SMRs are in fact adjusted to 
different standards (i.e., the study groups themselves). As a corollary, the comparison of  
SMRs for different study groups may be inappropriate, as illustrated in the hypothetical 
example in Table 7-8. In this example, the two study groups have identical age-specific 
rates; however, because of  their different age distributions, crude overall rates are 
different (18.3% and 11.7%). Application of  the “standard” (reference) rates to each of  
these study groups results in expected numbers that are unevenly weighted and, conse-
quently, in different SMRs (0.42 and 0.64). As discussed in detail by Armstrong,6 this 
situation arises when the ratios of  rates in study groups and in the reference population 
are not homogeneous across strata.

Thus, although the use of  SMRs to compare study groups is a relatively common 
practice in the epidemiologic literature, it is not always appropriate. SMRs are obviously 

Gender Race
Education  

(yrs)
Stratum  

(i)
Study group 

A rate
Study group 

B rate
Standard population 

(weights)

Male Black  12 1 – – –

 12 2 – – –

White  12 3 – – –

 12 4 – – –

Female Black  12 5 – – –

 12 6 – – –

White  12 7 – – – 

 12 8 – – –

Table 7-6 Example of layout for using the direct method for simultaneous adjustment for 
gender, race, and education (categorically defined).
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appropriate when the comparison of  interest is that between each study group and 
the reference population. It is interesting to note that when the goal is to compare two 
populations (e.g., an occupational group vs the total area population serving as the 
source of  “standard” rates, or any study group vs a reference population), the direct 
and indirect methods converge: in this situation, the calculation of  the SMR can also 

Study population A Reference population

Suspected 
confounding 

variable  
(1)

No.  
(2)

Observed 
deaths  

(3)

 Mortality  
rate  
(4)

Expected deaths in A if  
it had rates of  reference 

population (5) 5 (4) 3 (2)

Stratum 1 nA1 xA1 M1 M1 3 nA1

Stratum 2 nA2 xA2 M2 M2 3 nA2

Stratum 3 nA3 xA3 M3 M3 3 nA3

. . . . . . . . . . . . . . .

Stratum k nAk xAk Mk Mk 3 nAk

Total a
i

xAi a
i

[Mi * nAi]

Standardized mortality ratio

SMR =
Observed deaths
Expected deaths

=

a
i

xAi

a
i

[Mi * nAi]

Table 7-7 Indirect adjustment: comparing the observed mortality in a study population with 
that of an external reference population.

Expected no. of  deaths obtained by applying 
the reference rates to groups A and B

Age (yrs) Study group A Study group B

 40 12% 3 100 5 12 12% 3 500 5 60

 40 50% 3 500 5 250 50% 3 100 5 50

Total number expected 262 110

SMR (observed/expected) 110/262 5 0.42 70/110 5 0.64

Study group A Study group B External  
reference  

ratesAge (yrs) N Deaths Rate N Deaths Rate 

 40 100 10 10% 500 50 10% 12%

 40 500 100 20% 100 20 20% 50%

Total 600 110 18.3% 600 70 11.7%

Table 7-8 Hypothetical example of two study groups with identical age-specific rates but 
different age distributions: use of the indirect method using external reference rates results in 
different SMRs.
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be thought of  as a direct method, with one of  the groups under comparison (e.g., an 
occupational group) serving as the “standard population” (Figure 7-1).

7.3.3  Mantel-Haenszel Method for Estimating 
an Adjusted Measure of Association
When the measure of  association of  interest is the odds ratio (e.g., when one is analyzing 
results of  a case-control study), the method described by Mantel and Haenszel7 to 
calculate an overall adjusted odds ratio is frequently used for adjusting for one or more 
categorically defined potential confounders. Table 7-9 shows the notation for the formu-
lation of  the Mantel-Haenszel adjusted odds ratio for data stratified into k strata:

 ORMH =

a
i

aidi

Ni

a
i

bici

Ni

which is equivalent to a weighted average of  the stratum-specific odds ratios.* For standard 
error and confidence interval estimate, see Appendix A, Section A.8.

The calculation of  the ORMH is straightforward, as illustrated by the following 
examples. In Table 7-1 the crude association between the presence of  malaria and gender 

* This formula is algebraically identical to the following formula:

ORMH =

a
i
a bici

Ni
*

aidi

bici
b

a
i

bici

Ni

=

a
i

wi ORi

a
i

wi

Thus, the ORMH is a weighted average of  the stratum-specific odds ratio (ORi), with weights equal to each 
stratum’s (bici/Ni).

Figure 7-1 When only two populations are compared, the direct and indirect methods 
converge. The approach can be regarded as a direct method in which one of the populations 
(A ) is the standard or as an indirect method using the other population (B ) as the source of the 
reference (“standard”) rates. 
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suggested that males were at a higher odds of  the disease; however, when the association 
was examined by strata of  occupation, no association with gender was observed in either 
occupational category. In addition to inspecting the occupation-specific odds ratios, a 
summary odds ratio can be calculated, expressing the occupation-adjusted association 
between gender and malaria. The adjusted ORMH (the weighted average of  the occupa-
tional stratum-specific odds ratio) is calculated as follows:

ORMH =

a
i

aidi

Ni

a
i

bici

Ni

=

53 * 3
81

+
35 * 79

219
10 * 15

81
+

52 * 53
219

= 1.01

The estimate of  ORMH lies between the stratum-specific estimates (1.06 and 1.00). 
It is, however, closer to the stratum “mostly indoor occupation” because of  the larger 
sample size in that stratum, for which the estimate is consequently given more “weight” 
(bici/Ni) when calculating the average adjusted ORMH.

In the example in Table 7-2, the age-adjusted estimate of  the ORMH is

ORMH =

a
i

aidi

Ni

a
i

bici

Ni

=   

4 * 224
292

+
9 * 390

444
+

4 * 330
393

+
6 * 362

442
+

6 * 301
405

2 * 62
292

+
12 * 33

444
+

33 * 26
393

+
65 * 9

442
+

93 * 5
405

= 3.97

The assumption implicit in the Mantel-Haenszel procedure for the calculation of  an 
adjusted odds ratio is that there is homogeneity of  effects (expressed by odds ratios in this 
case) across the categories of  the stratifying variable. In other words, it is assumed that 
there is no multiplicative interaction between the exposure and the stratifying variable (see 
Section 6.3.1). For example, when calculating an overall adjusted odds ratio for the data 
shown in Table 7-2, it is implicitly assumed that the odds ratio of  myocardial infarction 
in relation to oral contraceptive use is approximately 4 (the calculated weighted average 
being 3.97) for all age strata. As discussed previously (Section 7.2), in this example, the 
observed differences in the stratum-specific odds ratio values are assumed to result from 
random variation; if  the observed heterogeneity is considered excessive, an option is to 
calculate separate age-adjusted odds ratios for younger and older women, as follows:

 ORMH, 25 - 34 y =

4 * 224
292

+
9 * 390

444
2 * 62

292
+

12 * 33
444

= 8.3

Stratum i Cases Controls Total

Exposed ai bi m1i

Unexposed ci di m2i

Total n1i n2i Ni

Table 7-9 Notation for the calculation of the Mantel-Haenszel adjusted odds ratio in a 
case-control study, stratified according to a potential confounding variable.
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 ORMH, 35 - 49 y =

4 * 330
393

+
6 * 362

442
+

6 * 301
405

33 * 26
393

+
65 * 9

442
+

93 * 5
405

= 2.7

Mantel-Haenszel Adjusted Rate Ratio
The Mantel-Haenszel method has been extended to the calculation of  an adjusted rate 
ratio in the context of  a cohort study with incidence data based on person-time.7(pp.219–221) 
Table 7-10 shows the general layout of  the data from each of  the stratum-specific tables. 
Based on the notation in this table, the Mantel-Haenszel estimate of  the adjusted rate 
ratio is calculated as

 RRMH =

a
i

a1i y0i

Ti

a
i

a0i y1i

Ti

An example of  the application of  this formula is presented in Table 7-11, based on 
data8 from one of  the examples used in Chapter 5 to illustrate the techniques for the 
assessment of  confounding (Section 5.4). The estimated RRMH comparing “high” versus 
“low” vitamin index intake obtained in Table 7-11 is identical to the corresponding 
smoking status-adjusted rate ratio when using the direct method of  adjustment based 
on data  presented in Table 5-5. 

Mantel-Haenszel Method and the Odds Ratio for Paired Case-Control Data
As presented in basic textbooks (e.g., Gordis5) and briefly discussed in Section 3.4.1, in 
matched paired case-control studies, the odds ratio is calculated by dividing the number 
of  pairs in which the case is exposed and the control is not by the number of  pairs in 
which the case is unexposed and the control is exposed. In Table 7-12, each cell repre-
sents the number of  pairs for the corresponding category defined by case-control and 
exposure status. Thus, in the two-by-two cross-tabulation shown on the left-hand side of  
Table 7-12, the odds ratio is estimated as the ratio of  discordant pairs, b/c. An example 
is provided on the right-hand side of  the table, from a report from the Atherosclerosis 
Risk in Communities (ARIC) study on the association between chronic cytomegalo-
virus (CMV) infection and carotid atherosclerosis (measured by B-mode ultrasound).9 

In this study, atherosclerosis cases and controls were individually matched by age, sex, 
ethnicity, field center, and date of  examination; the paired odds ratio (i.e., the odds ratio 
controlling for all matching variables) is estimated as 65/42 5 1.55. The rationale for 

Stratum i Cases Person-time

Exposed a1i y1i

Unexposed a0i y0i

Total Ti

Table 7-10 Notation for the calculation of the Mantel-Haenszel adjusted rate ratio in a 
prospective study based on person-time incidence rates stratified according to a potential 
confounding variable.
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estimating the odds ratio as the ratio of  discordant pairs in a matched case-control study 
is readily grasped by the application of  the Mantel-Haenszel method for averaging strat-
ified odds ratios.

The data in Table 7-12 can be rearranged as in Table 7-13, where each of  the 
340 pairs in this study is now a stratum with a size n of  2. The resulting 340 two-by-
two tables can be arranged as in Table 7-13 because the pairs can only be one of  four 
possible types (each of  the cells in Table 7-12): for example, for the first type of  pair in 
which both case and control are CMV1 (cell “a” on the left panel of  Table 7-12), there 

Vitamin C/beta carotene 
intake index

No. of   
deaths Person-years

Stratified  
RRs

Nonsmokers High 53 5143 RR 5 0.77

Low 57 4260

Total 9403

smokers High 111 6233 RR 5 0.83

Low 138 6447

Total 12,680

RRMH =

a
i

a1i y0i

Ti

a
i

a0i y1i

Ti

=

53 * 4260
9403

+
111 * 6447

12,680
57 * 5143

9403
+

138 * 6233
12,680

= 0.81

Note: The “moderate” vitamin intake index category in Table 5-4 has been omitted for simplicity.  All rates ratios in 
the table compare those with “high” with those with “low” vitamin intake index.
Source: Data from DK Pandey et al., Dietary Vitamin C and -Carotene and Risk of  Death in Middle-Aged Men, 
The Western Electric Study. American Journal of  Epidemiology, Vol 142, pp. 1269–1278, © 1995.

Table 7-11 Example for the calculation of the Mantel-Haenszel adjusted rate ratio (RRMH): 
data on mortality in individuals with high and low vitamin C/beta-carotene intake index, by 
smoking status, Western Electric Company Study.

Notation Example*

Controls Controls

Exposed Unexposed CMV1 CMV2

Cases
Exposed a b

Cases
CMV1 214 65

Unexposed c d CMV2 42 19

Paired OR =
b
c

Paired OR =
65
42

= 1.55

Note: Each cell represents the number of  pairs for each category defined by case-control and exposure status.
*Cases represent individuals with carotid atherosclerosis defined by B-mode ultrasound; controls are individuals without 
atherosclerosis, individually match-paired to cases by age group, sex, ethnicity, field center, and date of  examination. 
Cytomegalovirus (CMV) infection status is defined according to the presence or absence of  IgG serum antibodies.
Source: Data from PD Sorlie et al., Cytomegalovirus/Herpesvirus and Carotid Atherosclerosis: The ARIC Study. Journal of  
Medical Virology, Vol 42, pp. 33–37, © 1994.

Table 7-12 Layout of a two-by-two table for the calculation of a paired odds ratio and an 
example.
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would be a total of  214 identical tables; for the second type (the “b” cell, discordant, with 
case exposed and control unexposed), there would be 65 tables; and so on. In the last 
two columns of  Table 7-13, the contribution to the numerator and denominator of  the 
ORMH of  each of  the 340 pairs is indicated. The contribution (to either the numerator or 
the denominator) from all the strata based on concordant pairs is always 0, whereas the 
discordant pairs contribute to either the numerator (“b”-type pairs) or the denominator 
(“c”-type pairs). All of  these contributions, which are always ½—that is, (1 3 1)/2—
cancel out, with the actual number of  discordant pairs in the numerator and the denom-
inator resulting in the well-known formula ORMH 5 b/c. Thus, this formula represents a 
weighted average odds ratio for stratified data (using the Mantel-Haenszel weighing approach), 
where the strata are defined on the basis of  matched pairs.

When there is more than one control per case, the ratio of  discrepant pairs, by 
definition, cannot be used, but the use of  the Mantel-Haenszel approach allows the 
estimation of  the odds ratio, adjusted for the matching variables. Table 7-14 shows a 
hypothetical example of  the application of  this approach in a case-control study with 
two controls individually matched to each case.

7.3.4 Limitations of Stratification-Based Methods of Adjustment
The techniques described in the previous sections (direct and indirect adjustment, 
Mantel-Haenszel odds ratio or rate ratio) can be used for multivariate analysis; that is, 
for simultaneously controlling for more than one covariate. This can be done simply by 
constructing the strata based on all possible combinations of  the adjustment variables 
(e.g., see Table 7-6). These stratification-based methods, however, have practical limita-
tions for multivariate adjustment, as follows:

Each pair contributes to ORMH

Four possible 
pair types: Exp Case Cont Total

No. of  pairs  
in Table 7-12

Numerator

a a * d
N

b
Denominator

a b * c
N

b

Type 1 Concordant 1 1 1

2 0 0 2 a 5 214 0 0

Type 2 Discordant 1 1 0

2 0 1 2 b 5 65 ½ 0

Type 3 Discordant 1 0 1

2 1 0 2 c 5 42 0 ½

Type 4 Concordant 1 0 0

2 1 1 2 d 5 19 0 0

ORMH =
(214 * 0) + (65 * 1/2) + (42 * 0) + (19 * 0)

(214 * 0) + (65 * 0) + (42 * 1/2) + (19 * 0)
=

65 * 1/2
42 * 1/2

=
65
42

=
b
c

Note: Exp: exposure status; Cont: controls; OR: odds ratio.

Table 7-13 Calculation of the paired odds ratio for the data in Table 7-12, based on the 
Mantel-Haenszel estimation approach.
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 1. Although they can be used to adjust for several covariates simultaneously, 
adjustment is carried out only for the association between one independent 
variable and an outcome at a time. For example, to assess the association of  oral 
contraceptives with myocardial infarction while controlling for age and educa-
tional level, it would be necessary to create one two-by-two table for oral contra-
ceptives vis-à-vis myocardial infarction for each stratum defined by combining 
age groups and educational levels. If  the exposure of  interest were educational 
level and the covariates to be adjusted for were age and oral contraceptive use, 
however, a new set of  two-by-two tables would have to be created (representing 
education vs myocardial infarction for each stratum defined by categories of  age 
and oral contraceptive use).

 2. These methods allow adjustment only for categorical covariates (e.g., gender); 
continuous covariates need to be categorized, as age was in the example 
shown in Table 7-2. Residual differences within these more or less arbitrarily 
defined categories may in turn result in residual confounding (Section 7.6 and  
Chapter 5, Section 5.5.4).

 3. Finally, data become sparse when the strata are too numerous. For the direct 
method, for example, if  the sample size of  a given stratum is 0, no corresponding 
stratum-specific rate is available for application to the standard population in that 
stratum; as a result, the adjusted rate becomes undefined.

Each pair contributes to ORMH

Exposed Case Control Total No. of  Pairs

Numerator

a a * d
N

b
Denominator

a b * c
N

b

Yes 1 0
No 0 2 3 200 0.67 0

Yes 1 1

No 0 1 3 100 0.33 0

Yes 0 1

No 1 1 3 50 0 0.33

Yes 0 2

No 1 0 3 30 0 0.67

Yes 0 0

No 1 2 3 120 0 0

Yes 1 2

No 0 0 3 40 0 0

ORMH =
(200 * 0.67) + (100 * 0.33) + (50 * 0) +(30 * 0) + (120 * 0) + (40 * 0)

(200 * 0) + (100 * 0) + (50 * 0.33) + (30 * 0.67) + (120 * 0) + (40 * 0)
=

167.0
36.6

= 4.56

Note: OR: odds ratio.

Table 7-14 Example of the use of the Mantel-Haenszel approach in a matched case-control 
study with two controls per case.
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Thus, in practice, stratification methods are usually limited to simultaneous adjustment 
for few categorical confounders (usually one or two), with a small number of  categories 
each. When simultaneous adjustment for multiple covariates (including continuous 
variables) is needed, methods based on multiple-regression techniques are typically used.

7.4 MULTIPLE REGRESSION TECHNIQUES FOR ADJUSTMENT

Multiple-regression techniques are better suited to address the limitations of  the simpler 
techniques discussed heretofore, as they allow the examination of  the effects of  all 
exposure variables reciprocally and simultaneously adjusting for all the other variables 
in the model. In addition, they allow adjusting for continuous covariates, and within 
reasonable limits, they are generally more efficient than stratification-based methods 
when data are sparse. Moreover, in addition to multivariate adjustment, multiple-
regression techniques are useful for prediction (that is, for estimating the predicted value 
of  a certain outcome as a function of  given values of  independent variables, as in the case 
of  the prediction equations of  coronary risk that were developed from the Framingham 
study using logistic regression)10 (see Section 7.4.3).

The sections that follow describe four of  the most frequently used regression models for 
multivariate adjustment in epidemiology: (1) linear regression, used when the outcome 
is continuous (e.g., blood pressure); (2) logistic regression, preferentially used when the 
outcome is categorical (cumulative incidence, prevalence); (3) proportional hazards 
(Cox) regression, used in survival analysis; and (4) Poisson regression, used when 
incidence rate (based on person-time) is the outcome of  interest. It is beyond the scope 
of  this chapter to discuss these techniques in detail; for this, the reader is referred to a 
general statistics textbook (e.g., Armitage et al.11) and to the specific references given in 
each section. Instead, the discussion focuses on the applied aspects of  multiple regression.

In spite of  their different applications and even though only one of  the models 
is specifically defined as “linear,” the fundamental underpinning of  all regression 
techniques discussed in this chapter is a linear function. This can be clearly seen 
in Table 7-15, in which the right-hand side of  all models is exactly the same 
(b0 + b1x1 + b2x2 + .  .  . + bkxk), thus explaining why they are collectively termed 
generalized linear models. The models listed in the table differ only with regard to the 

Model Interpretation of  b1

Linear y 5 b0 1 b1x1 1 b2x2 1 . . . 1 bkxk
Increase in outcome y mean value 
(continuous variable) per unit increase in x1, 
adjusted for all other variables in the model

Logistic log (odds) 5 b0 1 b1x1 1 b2x2 1 . . . 1 bkxk
Increase in the log odds of  the outcome per 
unit increase in x1, adjusted for all other 
variables in the model

Cox log (hazard) 5 b0 1 b1x1 1 b2x2 1 . . . 1 bkxk
Increase in the log hazard of  the outcome 
per unit increase in x1, adjusted for all other 
variables in the model

Poisson log (rate) 5 b0 1 b1x1 1 b2x2 1 . . . 1 bkxk
Increase in the log rate of  the outcome per 
unit increase in x1, adjusted for all other 
variables in the model

Table 7-15 Multiple regression models and interpretation of the regression coefficients.
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type of  dependent variable or outcome postulated to be related to predictors in a linear 
fashion. Consequently, and as underscored in the sections that follow, the interpre-
tation of  the multiple-regression coefficients is similar for all these models, varying 
only with regard to the outcome variable.

In the next section, the concept of  linear regression is reviewed in the context of  the 
simplest situation, namely that involving only one predictor variable (one x). The four 
sections that follow briefly review the basic features of  the regression models listed in Table 
7-15. Finally, Sections 7.4.6 to 7.4.8 cover issues regarding the application of  these models 
to matched and nested studies and to situations when a “linear” model is not reasonable, 
as well as issues related to statistical inference based on the parameter estimates.

7.4.1 Linear Regression: General Concepts
Simple linear regression is a statistical technique usually employed to assess the associ-
ation between two continuous variables. Figure 7-2, for example, shows a plot of  the 
cross-sectional values of  systolic blood pressure (SBP) and the carotid intimal-medial 
thickness (IMT), a measure of  atherosclerosis obtained by B-mode ultrasound imaging, 
in a subset of  1410 participants from the ARIC study.12 Each dot in the scatter of  points 
represents an individual, with corresponding SBP and IMT values in the abscissa and 
ordinate, respectively. It can be seen that although there is a wide scatter, there is 
a tendency for the IMT values to be higher when SBP is also higher, and vice versa. 
This pattern warrants the assessment of  whether SBP and IMT are linearly associated. 
The hypothesis regarding a possible linear association between these two continuous 
variables can be expressed as the following questions:

 1. Is the average increase in IMT levels associated with a given increase in SBP 
approximately constant throughout the entire range of  SBP values?

 2. Can the association between SBP and IMT be assumed to follow a straight-line 
pattern (the statistical model) with the scatter around the line being the conse-
quence of  random error?
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Figure 7-2 Relation between systolic blood pressure (SBP) and carotid intimal-medial 
thickness (IMT) in a subset of participants in the ARIC study (N 5 1410). 

Note: IMT: intimal-medial thickness; SBP: systolic blood pressure.
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In addition to inspecting the scatter plot visually (e.g., Figure 7-2), assessing whether 
the relationship between two continuous variables (e.g., SBP and IMT) is statistically 
compatible with a perfect straight line can be done by calculating the Pearson linear 
correlation coefficient (r) (see, e.g., Armitage et al.,11(pp195–197) as well as an application in 
Chapter 8, Section 8.4.2). The correlation coefficient values range from –1.0 (when 
there is a perfect negative correlation—i.e., when all the points form a perfect straight 
line with a negative slope) to 11.0 (when there is a perfect positive correlation—i.e., 
when the points form a straight line with a positive slope). A value of  0 indicates no 
linear correlation. In the example in Figure 7-2, the value of  the Pearson correlation 
coefficient is 0.21, with a corresponding p value of  0.0001. The small p value in this 
example suggests that there is some kind of  linear correlation between SBP and IMT not 
likely to be explained by chance, even though the magnitude of  the coefficient implies 
that the correlation is only moderate. This conclusion fits the graphical display in Figure 
7-2: although there is an average tendency for higher SBP values to be associated with 
higher IMT values, there is a substantial dispersion of  values around this hypothetical 
linear relationship.

The correlation coefficient value contains no information about the strength of  the 
association between the two variables that is represented by the slope of  the hypothetical 
line, such as the amount of  increase to be expected in IMT per unit increase in SBP. To 
estimate the strength of  the linear association, it is necessary to find the formula for 
the regression line that best fits the observed data. This line can be formulated in terms 
of  two parameters (b0 and b1), which relate the mean (expected) value of  the dependent 
variable (conventionally noted as E(y) and placed in the ordinate of  the plot) as a function 
of  the independent or predictor variable (conventionally noted as x, in the abscissa). The 
general formula for the regression line is

E(y) = b0 + b1x

“E(y)” is also known as the “predicted” value of  y as a function of  x. Heretofore, it is 
denoted as “y” to simplify the notation.

Figure 7-3 shows the graphic representation of  this general regression line. Inspection 
of  this formula and the figure underscores the straightforward interpretation of  the two 
parameters, b0 and b1 as follows:

•	 b0 is the intercept—that is, the estimated value of  y when x 5 0.
•	 b1 is the regression coefficient—that is, the estimated increase in the dependent 

variable (y) per unit increase in the predictor variable (x). Thus, when x 5 1, then 
y 5 b0 1 b1 ; for x 5β2, then y 5 b0 1 b1 3 2, and so on. This regression coefficient 
corresponds to the slope of  the regression line; it reflects the strength of  the associ-
ation between the two variables—that is, how much increase (or decrease, in the 
case of  a descending line) in y is to be expected (or predicted) as x increases. The 
absolute value of  b1 depends on the units of  measurement for both x and y.

After this statistical model is formulated, the practical question is how to estimate the 
regression line that best fits a given set of  data, such as the data in Figure 7-2. (In linear 
regression, the method often used to estimate the values of  the regression coefficients [or 
“parameters”] is the least-squares method. This consists in finding the parameter values 
that minimize the sum of  the squares of  the vertical distances between each of  the 
observed points and the line. (For details on the methods to estimate the regression line, 
see any general statistics textbook, e.g., Armitage et al.11 or Kleinbaum et al.,13 or a more 
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specialized text, e.g., Draper and Smith.14). For example, Figure 7-4 shows the regression 
line that best fits the observed data shown in Figure 7-2. The notation traditionally used 
to represent the estimated linear regression line is as follows:

y 5 b0 1 b1x 1 e

That is, the symbols for the parameters denoted by the Greek letter beta (b) are 
replaced by the letter b to denote that these are estimates. The error term, e, represents 
the difference between each observed y value and the corresponding predicted value 
(e.g., the vertical distance between each point in the scatter in Figure 7-4 and the y value 
at the line). (For the sake of  simplicity, the error term will be omitted from the remaining 

y

y = x +

x

β1

β0

β0 β1

1 unit0

Figure 7-3 Graphical and mathematical representation of a linear model.
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Figure 7-4 Regression line that best fits the data (least squares estimate) to the scatter points 
in Figure 7-2 (see text).

Note: IMT: intimal-medial thickness; SBP: systolic blood pressure.
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formulas in this chapter.) Returning to Figure 7-4, the mathematical formula for the 
estimated regression line shown in the figure is

 IMT (mm) 5 0.4533 1 0.0025 3 SBP (mm Hg) (Eq. 7.2)

The value of  the intercept (0.4533 mm in this example) is purely theoretical; it does not 
have any real biological relevance in this case. It corresponds to the estimated IMT when 
SBP 5 0 (i.e., when the previous equation reduces to IMT [mm] 5 0.4533). The fact that 
the intercept is biologically meaningless is a common occurrence in many applications 
of  linear regression in biomedical research because the value of  0 for many variables 
is not biologically viable or has no practical relevance. This is illustrated in Figure 7-4 
and schematically in Figure 7-5, which shows how the intercept value is often a mere 
extrapolation of  the regression line to meet the ordinate (y axis), well beyond the range of  
biologically plausible values.* 

More relevant in most circumstances is the value of  the regression coefficient. In the 
previous example, the estimate of  the regression coefficient for SBP implies that, in these 
cross-sectional data, an SBP increase of  1 mm Hg is associated with an average IMT 
increase of  0.0025 mm. This regression coefficient is the slope of  the line in Figure 7-4, 
expressing the strength of  the association between SBP and IMT, in contrast with the 

* The value of  the intercept is useful if  the investigator’s intention is to use the regression results to predict the 
expected value of  the dependent variable, given certain characteristics. To solve the equation, one needs to 
use the values of  all the coefficients, including the intercept (see examples in the context of  logistic regression 
in Section 7.4.3).
There are ways to improve the interpretability of  the intercept by using transformations of  the original 
continuous variables in the regression. For example, the mean systolic blood pressure could be subtracted 
from each individual’s blood pressure value in the study population in Figure 7-4. This new variable (i.e., 
the difference between each individual’s blood pressure and the mean) could then be used in the regression, 
instead of  the actual blood pressure value. In this case, even though the intercept is still defined as the estimated 
IMT for an individual with a value of  0 for the independent variables (x), it can be interpreted as the  estimated 
IMT for an individual with the average blood pressure value in the study population.
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Figure 7-5 Observed data and extrapolation of regression line toward the axis (intercept).

Note: IMT: intimal-medial thickness; SBP: systolic blood pressure.
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correlation coefficient, which only evaluates the degree to which a given set of  quanti-
tative data fits a straight line.

The previous model assumes that the increase is linear (i.e., that the increase in IMT as 
a function of  the increase in SBP is constant). This assumption is obviously implicit in the 
fact that one single regression coefficient was given in the previous equation (0.0025 mm 
increase in IMT per mm Hg increase in SBP), which is assumed to apply to the entire range 
of  SBP values. Whether this simple model is appropriate will depend on each particular 
circumstance, as discussed in more detail in Section 7.4.7.

Another important issue when interpreting the “slope” (regression coefficient) 
of  a regression function is the unit to which it corresponds. For example, it may be 
expressed as the increase in IMT per 5 mm Hg increase in SBP, rather than per 1 mm 
Hg, which would then be translated as a value of  5 3 0.0025 5 0.0125 mm in this 
example. The importance of  specifying the units of  variables x and y when reporting 
and interpreting the magnitude of  the regression coefficient (slope) cannot be suffi-
ciently emphasized.

It is important to keep in mind, however, that comparison of  the strength of  the associ-
ation between different variables (particularly continuous variables) based on the size 
of  the regression coefficients should generally be avoided. This is related to the general 
problem of  comparing the strength of  the associations across different variables that 
was discussed in Chapter 3 (Section 3.5); further discussion of  this issue is presented in 
Chapter 9, Section 9.3.4.

The regression coefficient (b1) estimates the average increase in the dependent 
variable (e.g., IMT) per unit increase in the independent variable (e.g., SBP), and like 
any other statistical estimate, it is subject to uncertainty and random error. Thus, it is 
important to estimate the standard error of  the regression coefficient to evaluate its 
statistical significance and to calculate the confidence limits around its point estimate 
(see Section 7.4.8 and Appendix A). The standard error (SE) estimate is readily provided 
by most statistical packages performing linear regression; for the regression coefficient  
b1 5 0.0025 in the previous example, it was estimated as SE(b1) 5 0.00032.

Both the line in Figure 7-4 and the corresponding mathematical formula (Equation 
7.2) can be seen as a way to summarize data (a sort of  “sketch”) that tries to capture the 
“essence” of  the relationship of  interest, while avoiding unnecessary and cumbersome 
details subject to random variability and measurement error (see Section 7.8). The 
attractiveness of  the model proposed in the example—that the relationship between SBP 
and IMT is linear—lies in its simplicity and the fact that the regression coefficient has a 
very straightforward and easy interpretation: it is the slope of  the regression function, 
or the average increase in IMT (in mm) per mm Hg increase in SBP. This model, however, 
may not be either appropriate or the best to describe the data. It is, for example, possible 
that additional parameters describing more complex relationships (e.g., a curve) may 
better describe the data. Adding new parameters to the model (e.g., a square term to 
take into account a curvilinear relationship) may improve its predictive capabilities 
(see Section 7.4.7); however, this often results in a more complex interpretation of  the 
regression coefficient(s). There is usually a trade-off  between simplicity (interpretability) 
and completeness (predictive power, statistical fit) of  any statistical model. In the last 
section of  this chapter (Section 7.8), conceptual issues related to the art and science of  
statistical modeling are briefly discussed.

An additional example of  the use of  linear regression is based on the ecological 
analysis discussed in Chapter 1. Figure 1-10 displays the death rates for coronary heart 
disease (CHD) in men from 16 cohorts included in the Seven Countries Study vs an 
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estimate of  the mean fat intake in each study site.15 That figure also shows the value 
of  the correlation coefficient (r 5 0.84), which indicates to which extent the scatter of  
points fits a straight line; the corresponding regression equation is

y 5 283 1 (25.1 3 x)

where y is the 10-year rate of  coronary mortality (per 10,000) and x is the percentage 
of  calories from fat in the diet. The regression estimates can be interpreted as follows:

•	 The intercept (–83) has a basically meaningless “real-life” interpretation, as it 
represents the theoretical rate in a country where there is no consumption of  fat 
whatsoever. Its negative value underscores its merely theoretical interpretation.

•	 The regression coefficient (25.1) represents the estimated average increase in 
the 10-year coronary mortality (per 10,000) associated with a 1% increase in 
the proportion of  calories from fat in the diet. In other words, according to this 
model, an increment of  1% in the proportion of  calories from fat is related to an 
increase of  0.00251 (or 2.51 per thousand) in coronary mortality over 10 years. 
(Obviously, any causal inference from data such as these must take into consid-
eration the possibility of  ecologic fallacy or other biases.) As in the preceding 
example, the previous model also assumes that the increase is linear: i.e., that the 
increase in mortality as a function of  the increase in dietary fat is constant so 
that it is as harmful for the level of  fat in the diet to change from 10% to 11% as 
it is to change from 40% to 41%. On the other hand, careful inspection of  the 
data in the figure suggests that the increase in mortality may be nonlinear: that 
the relationship may be curvilinear, with sharper increases in mortality at higher 
than at lower levels of  dietary fat intake. To examine this alternative hypothesis, 
it would be necessary to test nonlinear models by including quadratic terms or 
dummy variables (see Section 7.4.7).

•	 Finally, it is beyond the scope of  this text to discuss statistical properties and 
assumptions related to the use of  linear regression. Detailed discussions of  these 
topics can be found in general statistics textbooks (e.g., Armitage et al.11) as well as 
more specialized textbooks (e.g., Draper and Smith14).

7.4.2 Multiple Linear Regression
The extension of  the simple linear regression model (see previous section) to a multivariate 
situation is based on the so-called multiple-linear regression models. Multiple-linear 
regression models are typically used for adjustment when the outcome (the y or dependent 
variable) is a continuous variable, although an application for a binary outcome is briefly 
discussed at the end of  this section. The question is whether a given variable (x1) is linearly 
associated with the outcome (y), after controlling for a number of  other covariates (e.g., x2 
and x3). The corresponding linear regression model is written as follows:

y 5 0 1 1x1 1 2x2 1 3x3

The postulated risk factors (x’s or independent variables) can be either continuous or 
categorical (e.g., dichotomous), as shown in the example later. Categorical variables can 
have multiple levels, which can be either treated as ordinal or transformed in a set of  
binary (indicator) variables (see Section 7.4.7).

As an example of  the use of  multiple linear regression, it may be of  interest to know 
whether SBP is linearly associated with carotid IMT (as a proxy for atherosclerosis) and 
whether this association is independent of  age, gender, and body weight. The results 
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of  a series of  multiple regression analyses to answer this question, using the subset of  
individuals from the ARIC study that was used in the example in the preceding section 
are shown in Table 7-16.

The first model is based on the same example discussed previously and includes 
only SBP as the independent variable (Figure 7-4 and Equation 7.2). Model 2 adds the 
variable age and can be written as follows:

IMT(mm) 5 0 1 1 3 SBP(mm Hg) 1 2 3 Age (years)

The estimated values of  the regression coefficients, obtained by the least squares 
method (see previous section), are displayed in Table 7-16 (model 2). Using these values, 
the equation can be rewritten as a function of  the estimates: that is, b0, b1, and b2 (again 
omitting the error term, e, for simplicity):

IMT(mm) 5 20.0080 1 0.0016 3 SBP(mm Hg) 1 0.0104 3 Age (years) (Eq. 7.3)

To represent this model graphically, a three-dimensional plot is needed: one dimension 
for SBP, one for age, and one for IMT. The scatter of  points will be a three-dimensional 
cloud of  points in this three-axis space and the model in Equation 7.3 expresses the 
formula of  a plane that is supposed to fit this three-dimensional scatter (i.e., of  the linear 
relations between the three variables). Each of  the regression coefficients in model 2 can 
be interpreted as follows:

•	 The intercept (b0 5 20.008) corresponds to the estimated IMT of  a 0-year-old 
individual with SBP 5 0 mm Hg; as in the preceding example, this repre-
sents an extrapolation with no practical use or meaningful interpretation (see  
Section 7.4.1).

•	 The regression coefficient for SBP (b1 5 0.0016 mm) represents the estimated 
average increase in IMT per mm Hg increase in SBP while controlling for age effects 
(i.e., after the associations of  age with both SBP and IMT have been removed).

•	 Similarly, the regression coefficient for age (b2 5 0.0104 mm) represents the 
estimated average increase in IMT per year increase in age while controlling for SBP 
(i.e., after removing the associations of  SBP with both age and IMT).

Linear regression coefficient

Model 1 Model 2 Model 3 Model 4

Intercept 0.4533 20.0080 0.0107 20.0680

Systolic blood pressure  
(1 mm Hg) 0.0025     0.0016 0.0014    0.0012

Age (1 yr) Not included     0.0104 0.0096    0.0099

Gender 
(1 5 male, 0 5 female) Not included Not included 0.0970    0.0981

Body mass index  
(1 kg/m2) Not included Not included Not included    0.0033

Note: IMT: intimal-medial thickness of  the carotid arteries (measured in millimeters): average of  B-mode ultrasound 
measurements taken at six sites of  the carotid arteries in both sides of  the neck.

Table 7-16  Multiple-linear regression analyses of the cross-sectional association between 
systolic blood pressure and carotid IMT (mm) in a subset of participants of the Washington County 
cohort of the Atherosclerosis Risk in Communities (ARIC) Study, ages 45  –  64 years, 1987–1989.



256 CHAPTER 7 | Stratification and Adjustment: Multivariate Analysis in Epidemiology

(For a succinct derivation and additional interpretation of  the adjusted regression 
coefficients in multiple linear regression, the reader should consult Kahn and Sempos.16 
More detailed discussions of  multiple regression can be found in the statistical textbooks 
referred to previously.)

The estimated coefficient for SBP (b1 5 0.0016 mm) in model 2 is smaller than the 
corresponding coefficient in model 1 (0.0025 mm). This is because age is a confounder of  
the relationship between SBP and IMT. In other words, some of  the apparent relationship 
between SBP and IMT observed in the crude analysis (model 1) appears to be due to 
the fact that people with higher SBP tend to be older, and older people tend to have a 
higher degree of  atherosclerosis. In model 2, the strength of  the association between 
SBP and IMT is reduced because the (positive) confounding effect of  age is removed, at 
least partially (see Section 7.6).

An important assumption in the model represented in Equation 7.3 is that there is 
no interaction between SBP and age, the two variables included in the model. In other 
words, implicit in the formulation of  this statistical model (y 5βb0 5 b1x1 1 βb2x2) 
is the fact that the change in y associated with a unit change in x1 is assumed to be 
constant for the entire range of  x2, and vice versa. In the previous example, the increase 
in IMT per unit increase in SBP, the estimate b1 5 0.0016 mm, is not only adjusted for 
age but also should be applicable to individuals of  all ages (and the converse is true for 
b2). If  interaction is present—that is, for example, if  the association of  SBP with IMT 
is deemed to be different between older and younger individuals—the previous model 
(Equation 7.3) will not be appropriate. As discussed in Chapter 6, when a given factor 
(in this example, age) modifies the effect of  the variable of  interest (in this example, 
SBP), it is recommended that the association between the variable of  interest and the 
outcome be assessed in strata formed by the effect modifier categories. Thus, rather 
than age adjustment, age-stratified models (i.e., separate models for each age group) 
should be used, a situation that is analogous to the examples discussed in Section 7.2. 
An alternative analytical technique to deal with interaction in the context of  multiple-
regression analyses is to include interaction terms (also known as product terms) in the 
regression equation. For instance, in the present example, if  an interaction between 
SBP and age is suspected, the following model can be used:

 IMT 5 0 1 (1 3 SBP) 1 (2 3 age) 1 [3 3 (SBP 3 age)] (Eq. 7.4)

where (SBP 3 age) represents a new variable that is obtained by multiplying the values 
of  SBP and age in each individual. If  SBP and age were binary variables, the previous 
model would be analogous to stratified models. In comparison with stratified analyses, 
the use of  interaction terms increases the statistical efficiency and has the advantage 
of  allowing the evaluation of  interaction between continuous variables. The inter-
action term can be conceptualized as the excess change not explained by the sum of  
the individual independent effects of  two independent (x) variables; it is schematically 
represented in Figure 6-3 of  Chapter 6 (Interaction) by the excess, “I,” on the joint-effect 
column (right-hand side). If  interaction is present, the inclusion of  the interaction term 
in the model is important for prediction, as it increases the amount of  the variability in 
the outcome explained by the full model vis-à-vis the sum of  the isolated effects of  the 
individual predictors in the model.

When two variables x2 and x3 interact and the effect of  another variable x1 is of  interest, 
it is important to adjust x1 for x2, x3 and the interaction term (x2 3 x3). Adjusting for the 
interaction term is important because the distributions of  x2 or x3 (when examined individ-
ually) may be the same for the different categories of  x1 (say, exposed vs unexposed), but the 
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distributions of  the joint presence of  x2 and x3 (x2 3 x3) may be different, and thus the inter-
action term may act as a confounding variable. (See Chapter 6, Section 6.8. and Table 6-24) 
In addition, as interaction itself  is amenable to confounding effects (see Chapter 6, Section 
6.10.2), it is obviously important to adjust the interaction term for the other variables in 
the model. For more details, refer to biostatistics textbooks (e.g., Armitage et al.11)

Model 3 in Table 7-16 adds a new variable, gender. This is a dichotomous variable, 
arbitrarily assigned a value of  1 for males and 0 for females. As with any other variable, 
the coefficient b3 5 0.097 is interpreted as the adjusted increase in IMT (mm) per “unit 
increase in gender,” only that what this actually means in this case is the average 
difference in IMT between males and females, adjusted for the other variables in the 
model (SBP and age) (Figure 7-6). (If  the variable gender had been coded as 1 for females 
and 0 for males, the results would have been identical to those shown in Table 7-16, 
except that the sign of  the coefficient would have been negative—i.e., b3 5 20.097, 
representing the difference, females minus males, in IMT.)

The interpretation of  the coefficients in model 4, shown in Table 7-16, is consistent 
with that of  models 2 and 3, except that there is additional adjustment for body mass 
index (BMI). As seen in the table, the magnitude of  the coefficient for SBP decreased in 
models 3 and 4, thus implying that not only age but also gender and BMI were (positive) 
confounders of  the observed relationship between SBP and IMT. The increase in IMT per 
mm Hg increase in SBP after simultaneously controlling for age, gender, and BMI (model 
4; 0.0012 mm) is about one-half  of  the estimated value when none of  these variables was 
adjusted for (model 1; 0.0025 mm). For inferential purposes, it is important to consider 

Figure 7-6 Graphical interpretation of the regression coefficient for a dichotomous variable, 
such as gender (as in models 3 and 4 in Table 7-16). For analogy with the regression situation 
with a continuous independent variable (e.g., Figure 7-4), the regression line is plotted between 
the two clusters, even though no values are possible between x 5 0 and x 5 1. Note that 
intercept (b0) corresponds to the mean IMT value in females (x 5 0), while the regression 
coefficient (b1) represents the average difference between males and females. 
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the possibility that confounders not included in the model and residual confounding 
due, for example, to misclassification of  covariates such as BMI, may be responsible for 
at least part of  the apparent residual “effect” of  SBP, denoted by a regression coefficient 
of  0.0012 mm (see Section 7.6).

As indicated in Figure 7-4, a model with one independent variable (model 1) can 
be easily represented in a graph; so can model 2, although it would require a three-
dimensional graph. In contrast, models 3 and 4 (i.e., regression models with more 
than three dimensions—with one y variable and more than two x variables) cannot 
be represented in a simple graph; however, the interpretation of  the regression coeffi-
cients of  models 3 and 4 remains analogous to that of  models 1 and 2: these coeffi-
cients still represent the average estimated increase in the y variable per unit increase 
in the corresponding x variable, simultaneously adjusted for all other x variables in 
the model. As an extension of  the previous discussion regarding model 2, the formula-
tions for models 3 and 4 also imply lack of  interaction between the independent variables 
included in the model: in other words, the effect of  each variable (each estimated b) is 
assumed to be constant across all levels of  the other variables. The presence of  interac-
tions would require conducting stratified analysis or including “interaction terms” in 
the model as previously described.

A further example of  multiple-linear regression results taken from a study assessing 
correlates of  leukocyte count in middle-aged adults17 is shown in Table 7-17. In inter-
preting the findings in the table, the following points must be emphasized: (1) all 
coefficients refer to units of  the dependent variable (i.e., 1000 leukocytes/mm3), and 
(2) each linear regression coefficient represents the expected change in the mean 
leukocyte count for a given unit change of  the independent variable, while simul-
taneously adjusting for all other variables included in the regression model. To be 
interpretable, the units of  the regression coefficients must be specified (e.g., for age, a 
5-year increment) (see Section 7.4.1). The negative sign of  a coefficient means that, on 
average, the leukocyte count decreases as the corresponding x variable increases.

Variable (increment for b) Linear regression coefficient* Standard error of  b

Age (5 years) 20.066 0.019

Sex (1 5 male, 0 5 female) 0.478 0.065

Race (1 5 white, 0 5 black) 0.495 0.122

Work activity score (1 unit) 20.065 0.021

Subscapular skinfold (10 mm) 0.232 0.018

Systolic blood pressure (10 mm Hg) 0.040 0.011

FEV1 (1 L) 20.208 0.047

Heart rate (10 beats/min) 0.206 0.020

* All regression coefficients are statistically significant (Wald statistic; see Section 7.4.8), P  0.01.
Source: Data from FJ Nieto et al., Leukocyte Count Correlates in Middle-Aged Adults: The Atherosclerosis Risk in 
Communities (ARIC) Study. American Journal of  Epidemiology, Vol 136, pp. 525–537, © 1992.

Table 7-17 Multiple-linear regression analysis of demographic and constitutional correlates of 
leukocyte count (in thousands per mm3) among never-smokers (n 5 5,392) in the Atherosclerosis 
Risk in Communities (ARIC) Study cohort, 1987–1989.
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Examples of  how to interpret data from Table 7-17 are as follows:

•	 The mean leukocyte count decreases by (0.066 3 1000)/mm3 (or 66 cells/mm3) 
per unit increase in age (i.e., 5 years), after controlling for the other variables in the 
table. This is equivalent to an average adjusted decrease of  13.2 cells/mm3 per year 
of  age (i.e., 66/5 years), or 132 cells/mm3 per 10 years of  age, and so on.

•	 Because the variable sex is categorical, the “unit increase” actually represents the 
average difference between males and females. The regression coefficient estimate 
(b 5 0.478) can thus be interpreted as males having on average 478 more leuko-
cytes per cubic millimeter than females, after adjusting for the other variables listed 
in the table.

The value of  the intercept was omitted from Table 7-17, as it has no practical value 
or meaningful interpretation in this example. (Its interpretation would be the expected 
leukocyte count value for a person with a 0 value in all the independent variables—
i.e., a newborn black woman, with zero systolic blood pressure (SBP), zero FEV1, no 
heartbeat, etc.)

In this and the previous sections, linear regression methods have been described in 
the context of  their usual application (i.e., the assessment of  predictors of  a continuous 
outcome variable) (e.g., intimal-medial thickness). It is, however, possible to extend 
this method to the evaluation of  binary (dichotomous) variables, such as the presence 
of  carotid atherosclerosis defined as a categorical variable (present or absent), or the 
occurrence of  an incident event (e.g., disease, death), using the approach proposed by 
Feldstein.18 In Feldstein’s model, the regression coefficients are interpreted as the predicted 
increase in the probability (prevalence or incidence) of  the outcome of  interest in relationship 
to a given increase or change in the value of  the independent variable(s), while simul-
taneously adjusting for all the other variables in the model.16(pp144–147) One theoretical 
caveat of  this method relates to the violation of  some of  the basic assumptions of  linear 
regression (e.g., that the errors e are normally distributed; see Armitage et al.11). Another 
important problem is related to extrapolations to extreme values, which can, at least 
theoretically, result in absurd estimates of  the predicted probability (e.g.,  0 or  1). As 
a consequence of  these problems, Feldstein’s binary linear regression model has fallen 
into disuse, particularly in the presence of  alternatives resulting from the increasing 
availability and power of  computational resources, such as the logistic regression 
model and related methods (see the following sections). The approach, however, tends 
to provide adjusted estimates in line with those obtained by other regression strategies.

7.4.3 Multiple Logistic Regression
For binary outcome variables such as the occurrence of  death, disease, or recovery, 
the logistic regression model offers a more robust alternative to binary multiple linear 
regression. The logistic regression model assumes that the relationship between a given 
value of  a variable x and the probability of  a binary outcome follows the so-called logistic 
function:

 P(y  x) =
1

1 + e- (b0 + b1x)  (Eq. 7.5)

where P(y  x) denotes the probability (P) of  the binary outcome (y) for a given value of  
x. The outcome of  this equation, a probability, is constrained to values within the 0 to 1 
range.
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Figure 7-7A shows a graphical depiction of  this function in the case of  a continuous 
variable x. It is noteworthy to point out that this function’s shape seems to be biologi-
cally plausible for the kinds of  dose–response relationships observed in toxicology and 
risk assessment—that is, situations where low doses of  x induce a weak response up 
to a certain threshold, after which the response increases markedly up to a certain 
level of  x; beyond that level, a saturation effect occurs (when the probability of  the 
outcome becomes close to 1). Biological plausibility, however, is not the main reason 
for the popularity of  the logistic regression for the multivariate analysis of  predictors 
of  a binary outcome. Rather, the reasons why this is one of  the most popular methods 
for multivariate analysis of  epidemiologic data are the convenience and interpretability 
of  its regression estimates, which are easily translated into odds ratio estimates; this is 
readily apparent when Equation 7.5 is expressed in the following mathematically equiv-
alent form:

  loga P
1 - P

b = log(odds) = b0 + b1x (Eq. 7.6)

where P is the short notation for P(y  x) in Equation 7.5.
This expression is analogous to the simple linear regression function (Section 7.4.1), 

except that the ordinate is now the logarithm of  the odds (log odds, also known as logit), 
rather than the usual mean value of  a continuous variable. Thus, if  the relationship 
between exposure (x) and the occurrence of  the outcome is assumed to fit the logistic 
regression model, that implies that the log odds of  the outcome increases linearly with x 
(Figure 7-7B).

In the context of  a cohort study (in which data on the incidence of  the outcome are 
obtained), the interpretation of  the parameters from the logistic regression equation is 
analogous to that of  the parameters of  the linear regression model (Section 7.4.1), as 
follows:
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•	 The intercept (b0) is an estimate of  the log odds of  the outcome when x 5 0. As in 
linear regression, this value may not have a useful interpretation in itself  if  x 5 0 is 
a mere extrapolation of  the realistic (possible) range of  the exposure values.

•	 The logistic regression coefficient (b1) is the estimated increase in the log odds of  the 
outcome per unit increase in the value of  x; or, in other words, e(b1) is the odds ratio 
associated with a one-unit increase in x.

As an illustration of  the meaning of  b1 in a logistic function, consider a situation 
where x is the dichotomous variable, sex, for which values of  1 and 0 are assigned to 
males and females, respectively. After the value of  the regression coefficient is estimated, 
the predicted logistic regression equations can be formulated for each gender as follows:

For males: log(odds)males 5 b0 1 b1 3 1 5 b0 1 b1

For females: log(odds)females 5 b0 1 b1 3 0 5 b0

Thus, b1 is the difference in log odds between males and females, which, as a result of  
the arithmetic properties of  logarithms, is also the log odds ratio comparing males and 
females:

 b1 = log(odds)males - log(odds)females = log c (odds)males

(odds)females d = log(OR)

Similarly, if  the variable x in Equation 7.6 is continuous, the regression coefficient, b1, 
representing the increase in log odds per unit increase in x, can be translated into the log 
odds ratio when comparing any value of  x with a value (x 2 1).

It follows that the odds ratio corresponding to a unit increase in the independent 
variable (e.g., when comparing males to females in the example above) is the antiloga-
rithm (i.e., the exponential function) of  the regression coefficient, b1:

 OR 5 eb1

For example, Table 7-18 shows the logistic regression coefficients corresponding 
to the associations between several risk factors and coronary heart disease (CHD) 
incidence in a subset of  participants from the ARIC study.19 These analyses are based 
on the cumulative incidence of  CHD between the baseline examination (1987–1989) 

Variable Logistic regression coefficient Odds ratio

Intercept 28.9502 —

Gender (male 5 1, female 5 0) 1.3075 3.70

Smoking (yes 5 1, no 5 0) 0.7413 2.10

Age (1 yr) 0.0114 1.011

Systolic blood pressure (1 mm Hg) 0.0167 1.017

Serum cholesterol (1 mg/dL) 0.0074 1.007

Body mass index (1 kg/m2) 0.0240 1.024

Table 7-18 Results from a logistic regression analysis of binary and continuous predictors of 
coronary heart disease (CHD) incidence in the Washington County cohort of the Atherosclerosis 
Risk in Communities (ARIC) Study, ages 45  –  64 years at baseline, 1987–1994.
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and December 1994, among 3597 Washington County participants who were free of  
clinical CHD at baseline. A total of  171 incident CHD events (myocardial infarction, 
CHD death, or coronary bypass surgery) were identified by the end of  the follow-up. (For 
more details on methods and results from the follow-up study in the full ARIC cohort, see 
Chambless et al.20) The column labeled “Logistic Regression Coefficient” in Table 7-18 
presents the intercept as well as the adjusted regression coefficients for each assessed 
independent variable. Each regression coefficient shown in Table 7-18 is adjusted for all 
the other variables in the model (listed in the table) and can be converted to an adjusted 
odds ratio (shown in the last column). For example, for gender, the adjusted odds ratio of  
incident CHD comparing males to females is

ORmales/females 5 e1.3075 5 3.70

Taking an example of  a continuous variable, SBP, the adjusted odds ratio for a one-unit 
increase (1 mm Hg) is

OR1 mm Hg SBP 5 e0.0167 5 1.017

The odds ratio for SBP is very small because it is calculated for a very small increase 
in the independent variable (1 mm Hg). An odds ratio related to a more clinically 
meaningful SBP unit, such as a 10-mm Hg increase, can, however, be easily obtained by 
transforming the value of  the coefficient into this SBP unit and then recalculating the 
corresponding odds ratio:

OR10 mm Hg SBP 5 e10 3 0.0167 5 1.18

The odds ratios for age, serum cholesterol, and body mass index in Table 7-18 also 
correspond to small changes (1 year, 1 mg/dL, and 1 kg/m2, respectively) and can 
similarly be converted to more meaningful units. For serum cholesterol, for example, the 
odds ratio corresponding to a 20-mg/dL increase in serum cholesterol is

OR20 mg/dL chol 5 e20 3 0.0074 5 1.16

For age, the odds ratio corresponding to a 5-year increase in age is

OR5 years age 5 e5 3 0.0114 5 1.06

The validity of  these calculations depends on one of  the main assumptions underlying 
the use of  continuous variables in multiple-regression methods (see also Sections 7.4.1 
and 7.4.7): that the relationships are linear (in the log odds scale, in this particular case) 
across the entire range of  the data (e.g., for age, that the increase in the log odds of  CHD 
incidence associated with an age unit increase is the same throughout the age range 
of  study participants). This assumption, however, will not apply if  continuous variables 
are categorized into binary exposure variables, such as, “older” versus “younger” age 
categories, or “hypertension present” versus “hypertension absent,” as illustrated in 
Table 7-19.

It is interesting to compare the values of  the estimates shown in Table 7-19 with 
those in Table 7-18. The definitions of  gender and smoking did not change, but because 
those of  the adjusting covariates (all the other variables) did, the “adjusted” regression 
coefficients and corresponding odds ratios for gender and smoking are slightly different; 
however, the estimates for the other predictors obviously changed more markedly, as 
a result of  their transformation from continuous (Table 7-18) to categorical (Table 
7-19) variables. For example, the adjusted odds ratio for hypertension (1.67) in Table 
7-19 is interpreted as the ratio of  the CHD incidence odds for individuals meeting 
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the criteria used to define hypertension (blood pressure  140 mm Hg systolic or 
 90mm Hg diastolic or antihypertensive therapy) to the odds of  those not meeting 
any of  these hypertension criteria. This is very different from the estimate for SBP in 
Table 7-18, both in value and in interpretation. It is important to recognize that the 
dichotomous definition of  hypertension (or that of  any other intrinsically continuous 
variable), while avoiding the assumption of  linearity inherent to the continuous 
definition, is not assumption free, as it implies that the risk of  CHD is homogeneous 
within categories of  hypertension. If  there is a gradient of  risk within the hypertension 
categories, this information is lost in the model and this loss of  information may result 
in residual confounding (Section 7.6). Consider, for example, the assessment of  the 
association between smoking and CHD odds, with adjustment for hypertension (and 
other variables), as depicted in Table 7-19: because the relationship between blood 
pressure and CHD follows a dose–response (graded) pattern, residual confounding may 
have occurred if  hypertensives among smokers had higher blood pressure values than 
hypertensives among nonsmokers. Notwithstanding the possible loss of  information, 
unlike some of  the examples discussed previously, the use of  dichotomous variables as 
shown in Table 7-19 allows an interpretation of  the intercept in logistic regression that 
may be useful in a couple of  ways.

First, in the context of  data from a prospective study and on the basis of  Equation 7.6, 
the intercept can be interpreted as the log (odds) for individuals with values of  0 for all 
the independent variables. For example, according to the results presented in Table 7-19, 
the intercept represents the log (odds) of  incident CHD for nonsmoking females who are 
aged 45 to 54 years, nonhypertensive, nonhypercholesterolemic, and nonobese. This 
value is calculated as 24.567 1 0, or, transformed to the corresponding value in an 
arithmetic scale, odds 5 e24.567 5 0.0104.

For predictive purposes, this result can be translated into the more readily interpretable 
cumulative incidence (probability, p) estimate (see Chapter 2, Section 2.4) as follows:

P =
Odds

1 + Odds
=

0.0104
1 + 0.0104

= 0.0103, or 1.03%

Variable Logistic regression coefficient Odds ratio

Intercept 24.5670 —

Gender (male 5 1, female 5 0) 1.3106 3.71

Current smoking (yes 5 1, no 5 0) 0.7030 2.02

Older age* (yes 5 1, no 5 0) 0.1444 1.16

Hypertension† (yes 5 1, no 5 0) 0.5103 1.67

Hypercholesterolemia‡ (yes 5 1, no 5 0) 0.4916 1.63

Obesity§ (yes 5 1, no 5 0) 0.1916 1.21

*Age  55 yr.
†Blood pressure  140 mm Hg systolic or  90 mm Hg diastolic or antihypertensive therapy.
‡Total serum cholesterol  240 mg/dL or lipid-lowering treatment.
§Body mass index  27.8 kg/m2 in males and  27.3 kg/m2 in females.

Table 7-19 Results from a logistic regression analysis of binary predictors of coronary 
heart disease (CHD) incidence in the Washington County cohort of the Atherosclerosis Risk in 
Communities (ARIC) Study, ages 45  –  64 years at baseline, 1987–1994.
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This example underscores the utility of  the intercept when the assigned values of  
0 fall within biologically plausible ranges of  values of  the independent variables. In 
contrast, interpretation of  the intercept per se is meaningless when using results such as 
those from Table 7-18.

Second, as for regression models in general, the intercept is needed in logistic regression 
for obtaining the predicted probability (cumulative incidence) of  the outcome for an 
individual with a given set of  characteristics. For example, based on the results in Table 
7-19, the probability of  CHD for a male smoker who is younger than 55 years, hyper-
tensive, nonhypercholesterolemic, and obese can be estimated simply by substituting the 
values of  each x variable in an equation of  the form shown in Equation 7.5, as follows:

P =
1

1 + e- [ - 4.567+ (1.3106 * 1) + (0.703 * 1) + (0.1444 * 0) + (0.5103 * 1) + (0.4916 * 0) + (0.1916 * 1)]

 =
1

1 + e- ( - 4.567+ 1.3106 + 0.703 + 0.5103 + 0.1916) 5 0.1357 5 13.57%

Similarly, the results from Table 7-18 can be used to estimate the probability of  CHD 
in an individual with specific values of  each of  the physiologic parameters measured. 
This could be done for an individual with average values for all the covariates. For 
example, the average values of  the covariates presented in Table 7-18 for the individuals 
in this ARIC cohort were as follows (the average value of  dichotomous covariates is the 
proportion of  individuals with the value that was coded as 1): male gender 5 0.469; 
smoking 5 0.229; age 5 54.7 years; SBP 5 119.1 mm Hg; cholesterol 5 217.7 mg/dL; 
BMI 5 27.8 kg/m2. Thus, using the results from Table 7-18, the predicted probability of  
incident CHD for an “average individual” in the cohort will be

P =
1

1+ e- [- 8.9502+(1.3075*0.469)+(0.7413*0.229)+(0.0114 *54.7)+(0.0167 *119.1)+(0.0074 * 217.7)+(0.024*27.8)]

 =
1

1 + e- ( - 3.27649948)

 5 0.0364 5 3.63%

(The concept of  an “average individual” is an abstract one, particularly with respect 
to the average of  binary variables. For example, in this case, it means an individual 
who is “0.469 male” and “0.229 smoker” and who has the mean value of  all the other 
continuous covariates.)

As another example of  the application of  the logistic model for prediction, Framingham 
study investigators produced the so-called Framingham multiple-logistic risk equation, 
which can be used to estimate the risk of  cardiovascular disease over time for a person 
with a given set of  values for a number of  relevant variables (gender, age, serum 
cholesterol, systolic blood pressure, cigarette smoking, left ventricular  hypertrophy by 
 electrocardiogram, and glucose intolerance).10

The use of  these models for prediction purposes assumes, of  course, that the model fits 
the data reasonably well. Furthermore, the previous discussion about the interpretation 
of  the intercept and the calculation of  predicted probabilities of  the event is relevant 
when the data are prospective. The use of  the logistic regression model for the analyses 
of  cohort data, however, is limited in that the model uses cumulative incidence data and 
therefore has to rely on two important assumptions: that follow-up of  study participants 
is complete and that consideration of  time to event is not important. These assumptions, 
however, are often not met because of  staggered entries in many cohort studies in which 
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recruitment is carried out over a more or less extended time period, subsequent losses of  
follow-up, and because of  the variability of  latency periods for most outcomes of  interest 
(see Chapter 2, Section 2.2). For the analysis of  cohort data with incomplete follow-up 
for some observations, more appropriate multivariate analysis tools are available, as 
discussed in the following two sections.

The most frequent application of  the logistic regression model is in the context of  
case-control studies, where it constitutes the primary analytical tool for multivariate 
analyses.21,22 In a case-control study, the interpretation of  regression coefficients is 
identical to that of  the cohort study (i.e., the log of  the odds ratio), as shown in the 
following examples. On the other hand, when the data come from a case-control study, 
the intercept is not readily interpretable, as the sampling fractions for cases and controls 
are arbitrarily selected by the investigator (for a more technical discussion of  this issue, 
see Schlesselman22). 

An example of  the use of  multiple regression in a case-control study is based on a 
study of  the seroprevalence of  hepatitis B virus in health care workers in Boston in 
the late 1970s and early 1980s (i.e., before the introduction of  the hepatitis B virus 
vaccine).23 Some findings of  this study are presented in Table 7-20, which shows the 
results of  a multiple-logistic regression analysis aimed at identifying variables associated 
with the odds of  positivity for hepatitis B serum antibodies. Table 7-20 shows both the 
logistic regression coefficients and the corresponding odds ratios (as well as their 95% 
confidence interval; see Section 7.4.8 and Appendix A, Section A.9). The intercept was 
omitted because of  its irrelevance (discussed previously). The first three variables are 
dichotomous; thus, the regression coefficient for each of  these variables represents the 
difference in the log odds between the two corresponding categories (in other words, the 
antilog of  the regression coefficient represents the odds ratio comparing the “exposure” 
category—coded as 1—with the reference category—coded as 0). For example, for the 
variable “recent needlestick,” the value 0.8459 is the estimated difference in the log odds 
of  positive antibodies to hepatitis B between those with and those without a history of  a 
recent needlestick, after adjusting for all the other variables in the table. Consequently, 
the odds ratio associated with recent needlestick is estimated as e0.8459 5 2.33. The two 
bottom variables in Table 7-20 (age and years in occupation) were entered in the model 

Characteristics
Logistic regression 

coefficient
Odds ratio 

(95% confidence interval)

Occupational/blood 
exposure (yes/no) 0.7747 2.17 (1.31–3.58)

Recent needlestick (yes/no) 0.8459 2.33 (1.19–4.57)

Hepatitis A virus positive 
serology (yes/no) 0.6931 2.00 (1.13–3.54)

Age (1 yr) 0.0296 1.03 (0.99–1.06)

Years in occupation (1 yr) 0.0198 1.02 (0.97–1.08)

Source: Data from A Gibas et al., Prevalence and Incidence of  Viral Hepatitis in Health Workers in the Prehepatitis B 
Vaccination Era. American Journal of  Epidemiology. Vol 136, pp. 603–610, © 1992.

Table 7-20 Multivariate logistic regression analysis in a case-control study of risk factors 
for the presence of hepatitis B virus serum antibodies in health workers, Boston, Massachusetts, 
1977–1982.
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as continuous, and the regression coefficients and corresponding odds ratios are given 
for increments of  1 year. For example, for “Years in Occupation,” the value 0.0198 
represents the adjusted estimated increase in log odds of  positive antibodies per year 
increase in length of  employment as a health worker. In other words, the adjusted odds 
ratio corresponding to an increase in 1 year of  occupation is estimated as e0.0198 5 1.02.

It should be reemphasized that the logistic regression model is a linear model in the log 
odds scale, as was seen in Equation 7.6. What this means in practical terms is that when a 
continuous variable is entered as such, the resulting coefficient (and corresponding odds 
ratio) is assumed to represent the linear increase in log odds (or the exponential increase 
in odds) per unit increase in the independent variable across the entire range of  x values. 
For example, the estimated increase in the odds of  positive hepatitis B antibodies per year 
of  occupation (i.e., odds ratio 5 1.02) shown in Table 7-20 is assumed to be the same 
when comparing 3 with 2 years as it is when comparing 40 with 39 years of  occupation. 
Again, as discussed in Sections 7.4.1 and 7.4.7, if  this assumption is not justified (e.g., if  
the increase in the odds of  infection associated with a 1-year change in the occupation 
is higher in more recently hired, less experienced workers), the previous model will be 
incorrect, and alternative models using categorical definitions of  the variable (dummy 
variables) or other forms of  parameterization (e.g., quadratic terms) must be used.

Finally, a word of  caution is necessary on the use (or abuse) of  the logistic regression 
model for the analysis of  cohort or cross-sectional data. The adjusted odds ratio resulting 
from the exponentiation of  the logistic regression coefficient obtained in these studies 
is often used as a surrogate of  the relative risk or prevalence rate ratio, respectively. As 
discussed in detail in Chapter 3, this interpretation is justified only for the analyses of  
rare outcomes, but when the frequency of  the outcome of  interest is high (e.g., 10% or 
20%), the odds ratio is a biased estimate of  the relative risk (or the prevalence rate ratio) 
as it tends to exaggerate the magnitude of  the association. The investigator choosing 
to use logistic regression in these types of  studies (often because of  its ease and conve-
nient features) should always keep in mind the built-in bias associated with the odds ratio 
as an estimate of  the incidence or prevalence rate ratio when the outcome is common 
(see Chapter 3, Section 3.4.1). Alternatively, investigators might consider using other 
regression procedures, such as the log-binomial regression model, which result in direct 
estimates of  the incidence or prevalence rate ratio.24

7.4.4  Cox Proportional Hazards Model
When the analysis is based on time-to-event (or survival) data, one of  the options is to 
model the data using the hazard (or instantaneous force of  morbidity or mortality) scale 
(see Chapter 2, Section 2.2.4). The assumption underlying this approach is that exposure 
to a certain risk factor (or the presence of  a certain characteristic) is associated with a 
fixed relative increase in the instantaneous risk of  the outcome of  interest compared 
with a baseline or reference hazard (e.g., the hazard in the unexposed). In other words, it 
is assumed that at any given time (t), the hazard in those exposed to a certain risk factor 
[h1(t)] is a multiple of  some underlying hazard [h0(t)]. Figure 7-8 illustrates this model, 
which can be mathematically formulated as follows:

 h1(t) 5 h0(t) 3 B (Eq. 7.7)

That is, at any given point in time, the hazard among those exposed to the risk factor of  
interest is the hazard among those not exposed to it, multiplied by a constant factor (B). 
The hazards in both the exposed and the reference groups may be approximately constant 
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or may increase over time (see Figure 7-8A; e.g., the instantaneous risk of  mortality as 
individuals age) or fluctuate over time (see the hypothetical example in Figure 7-8B; e.g., 
the risk of  an accident as the driving speed changes). In both examples in Figure 7-8, it 
is assumed that at any given point in time, the hazard among those exposed (e.g., car 
wearing old tires) is multiplied by 2 regardless of  the baseline hazard (e.g., wearing new 
tires): in other words, that the hazard ratio (or relative hazard) comparing exposed and 
unexposed is constant throughout the observation period.

For estimating B—that is, the constant multiplication factor in Equation 7.7—it is 
convenient to define it in terms of  an exponential function: B 5 eb, i.e., by reformulating 
Equation 7.7 as

 h1(t) 5 h0(t) 3 eb (Eq. 7.8)

If  h0(t) represents the hazard in the unexposed group at any given point in time, then 
the hazard ratio (HR) comparing the exposed and the unexposed is

HR =
h1(t)
h0(t)

= eb

Or taking logarithms

log(HR) 5 b

Like the odds ratio, the hazard ratio is a multiplicative measure of  association; conse-
quently, many of  the issues related to the logistic regression coefficients (log odds ratio) 
apply as well to the regression coefficients from the Cox model (log hazard ratio). Thus, 
for example, the issues related to the type of  independent variable included in the model 
(continuous, ordinal, categorical) are similar in the Cox and logistic regression models.

Table 7-21 shows the results of  two alternative analyses using Cox proportional 
regression (models 1 and 2) to assess predictors of  incident CHD in the Washington 
County cohort of  the ARIC study. In Table 7-21, the independent variables included 
as predictors are the same as those used previously to illustrate the logistic regression 
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Exposed

Unexposed

h
(t

)

h
(t

)

Time Time

A B
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Figure 7-8 Hazard over time in two hypothetical situations in which exposed individuals 
have twice the hazard of those unexposed. A represents a situation with a relatively stable hazard 
that slowly increases over time, such as hazard of death as adult individuals age; B represents 
a situation in which the hazard fluctuates with time, such as the hazard of a car accident that 
increases or decreases as a function of the car’s velocity at any given point in time, with the 
presence of the exposure (e.g., having worn-out tires) doubling the risk of having an accident, 
compared with its absence (having new tires). 
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model (Tables 7-18 and 7-19). Here, the outcome of  interest is also incident CHD, but in 
contrast with the logistic regression analysis (which assumes that all participants had 
complete follow-up and the cumulative incidence odds were obtained), the regression 
coefficients in Table 7-21 take into account the time of  occurrence of  each event, as well as 
the time of  censoring for the participants who were not observed for the entire follow-up 
(see Chapter 2, Section 2.2). Thus, also in contrast with the logistic regression, where 
the regression coefficients antilogs were interpreted as odds ratios, exponentiation of  
the regression (beta) coefficients in Table 7-21 results in hazards ratios (analogous to 
relative risks).

There is a remarkable similarity between the estimates obtained from logistic 
regression in Tables 7-18 and 7-19 (cumulative incidence odds ratio; time to event and 
censoring not considered) and the Cox estimates in Table 7-21 (hazard ratio; time to 
event and censoring taken into account). This similarity is probably due to the following 
facts: (1) CHD is relatively rare, and thus the odds ratio estimated from logistic regression 
approximates the hazard ratio (akin to a relative risk) estimated by Cox’s regression; 
(2) losses to follow-up and time to events are likely to be non-differential between the 
exposure groups, and thus, the biases resulting from time-related factors tend to cancel 
out, which represents a phenomenon comparable to “compensating bias,” described in 
Section 4.2.

It should be underscored that, unlike the output obtained from logistic regression, 
there is no intercept in the Cox model. Cox’s important contribution was to devise a 
method for estimating the regression parameters in the proportional hazards model 

Model Variable
Cox regression 

coefficient Hazard ratio

1 Gender (male 5 1, female 5 0) 1.2569 3.52

Smoking (yes 5 1, no 5 0) 0.7045 2.02

Age (1 yr) 0.0120 1.012

Systolic blood pressure (1 mm Hg) 0.0152 1.015

Serum cholesterol (1 mg/dL) 0.0067 1.007

Body mass index (1 kg/m2) 0.0237 1.024

2 Gender (male 5 1, female 5 0) 1.2669 3.55

Smoking (yes 5 1, no 5 0) 0.6803 1.97

Older age* (yes 5 1, no 5 0) 0.1391 1.15

Hypertension† (yes 5 1, no 5 0) 0.5030 1.65

Hypercholesterolemia‡ (yes 5 1, no 5 0) 0.4552 1.58

Obesity§ (yes 5 1, no 5 0) 0.1876 1.21

*Age  55 yr.
†Blood pressure  140 mm Hg systolic or  90 mm Hg diastolic or antihypertensive therapy.
‡Total serum cholesterol  240 mg/dL or lipid-lowering treatment.
§Body mass index  27.8 kg/m2 in males and  27.3 kg/m2 in females.

Table 7-21 Results of Cox proportional regression analysis of binary and continuous 
predictors of coronary heart disease (CHD) incidence in the Washington County cohort of the 
Atherosclerosis Risk in Communities (ARIC) Study, ages 45  –  64 years at baseline, 1987–1994.
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without the need to specify the value or the shape of  the baseline hazard (h0), which is 
the equivalent of  the intercept.25 Methods have been devised that permit the estimation 
of  the underlying survival function based on the results of  a multivariate Cox regression 
analysis; details on this and other applications of  the Cox model can be found in the 
growing literature and textbooks on survival analysis.26,27

The Cox model is also called the proportional hazards model. This term emphasizes 
the “proportionality assumption” (i.e., the assumption that the exposure of  interest 
 multiplies the baseline hazards [the hazards in those unexposed] by a constant factor, 
eb [see Equation 7.8], at any given point during follow-up). As illustrated in Figure 7-8, 
this implies that regardless of  the value of  the baseline hazard at any given point in time, 
those exposed have a hazard equal to the baseline hazard multiplied by eb. The need for 
this assumption is implicit in the fact that one hazard ratio is estimated for the entire 
follow-up. If  the hazards are not proportional over time (i.e., if  the hazard ratio changes 
during the follow-up), the model needs to account for this by stratifying according to 
follow-up time. This situation could be properly described as a case of  “time 3 exposure” 
 interaction (i.e., effect modification [see Chapter 6]) in which time modifies the 
relationship between exposure and outcome. For a more detailed description of  methods 
to assess the proportionality assumption when applying the Cox model as well as 
approaches to account for time 3 exposure interactions, the reader is referred to a more 
specialized text (e.g., Collett26 or Parmar and Machin27).

7.4.5  Poisson Regression
The Poisson regression model is another method for multiple-regression analysis 
of  cohort data with a dichotomous outcome and one or more categorically defined 
predictors. It is mostly used in situations in which the outcomes of  interest are rates 
(and rate ratios); it is especially suitable for studying rare diseases in large populations. 
The model specifies that the magnitude of  the rate is an exponential function of  a linear 
combination of  covariates and unknown parameters:

Rate = e(b0 + b1x1 + b2x2 +  . . . + bkxk)

This equation can be rewritten as the log of  the rate being the dependent variable of  
a linear function:

 log(rate) 5 b0 1 b1x1 1 b2x2 1 . . . 1 bkxk (Eq. 7.9)

Equation 7.9 is also called a log-linear model, reflecting the fact that it is simply a log 
transformation of  an outcome variable (a rate in this case) related to a linear equation 
of  predictors. If  the “rate” is decomposed into its two components (number of  events in 
the numerator and person-time in the denominator), Equation 7.9 can be rewritten in 
the following ways:

log(events/person-time) 5  b0 1 b1x1 1 b2x2 1 . . . 1 bkxk

log(events) 2 log(person-time) 5 b0 1 b1x1 1 b2x2 1 . . . 1 bkxk

log(events) 5 [log(person-time)] 1 b0 1 b1x1 1 b2x2 1 . . . 1 bkxk

log(events) 5 b*
0 1 b1x1 1 b2x2 1 . . . 1 bkxk

In this equation, the log (person-time) is incorporated (“offset” in statistical terms) 
into the intercept (now noted as b*

0) of  the multiple linear predictor, and the outcome 
variable is now a count, the number of  events (log transformed). For this type of  outcome 
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variable (a count) and for reasonably rare events (as it is the case in most epidemiologic 
studies), it is assumed that the most appropriate basis for the statistical procedure of  
estimation of  the parameters in the previous model is the Poisson distribution. (Several 
statistical textbooks provide additional details regarding the statistical properties and 
uses of  the Poisson distribution; see, for example Armitage et al.11)

Again, the interpretation of  the Poisson regression coefficients is analogous to those 
in logistic regression and Cox models, except that where in the latter models the odds 
ratio and the hazard ratio were, respectively, obtained, in the Poisson regression the rate 
ratio is estimated. For example, when comparing exposed (e.g., x1 5 1) and unexposed  
(x1 5 0) groups, Equation 7.9 will reduce to the following:

For the exposed: log(rateexp ) 5 b0 1 b1 3 1 1 b2x2 1 . . . 1 bkxk

For the unexposed: log(rateunexp ) 5 b0 1 b1 3 0 1 b2x2 1 . . . 1 bkxk

Subtracting these equations:

log(rateexp ) 2 log(rateunexp ) 5 b1

And thus, 

loga rateexp

rateunexp
b = log(rate ratio) = b1

Consequently, the antilog of  the regression coefficient estimate (eb1)corresponds to 
the rate ratio comparing exposed and unexposed, adjusted for all the other variables 
included in the model (x2, . . . xk).

As pointed out previously, all independent (x) variables in the Poisson regression 
model need to be categorical, as the method is set to use the total amount of  person-time 
and the total number of  events per category or cell (representing each unique combi-
nation of  the predictors). For example, the application of  the Poisson regression method 
to the analysis of  CHD incidence in the ARIC study and including the same variables 
as in model 2 of  the Cox regression example (Table 7-21) results in the data shown in 
Table 7-22. The exponentiation of  the Poisson regression coefficients provides estimates 
of  the adjusted rate ratios comparing exposed (i.e., those with the characteristic coded 
as 1) and unexposed individuals.

To carry out the Poisson regression analyses in Table 7-22, each unique combi-
nation of  the six independent variables had to be identified (total 26 5 64 cells), the 
total person-time contributed to by all individuals in each cell had to be added up, and 
the total number of  events among these individuals had to be identified. The cell-specific 
data look as shown in Table 7-23, in which 8 of  the 64 cells are shown, each with its 
corresponding total person-years (PY; LogPY is the logarithm of  that value) and number 
of  CHD events. The calculation of  the regression coefficients shown in Table 7-22 was 
based on these data.

7.4.6  A Note on Models for the Multivariate Analyses 
of Data from Matched Case-Control Studies and Case-
Control Studies Within a Defined Cohort
In matched case-control studies (see Section 1.4.5), the multivariate analysis technique 
most frequently used is conditional logistic regression. This model is analogous to 
the logistic regression model presented previously (Section 7.4.3), except that the 
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 parameters (the intercept and regression coefficients) are estimated taking into account 
(“conditioned on”) the pairing or matching of  cases and controls with respect to the 
variables that determined the matching. The interpretation of  the coefficients in condi-
tional logistic regression is the same as in ordinary logistic regression, except that these 
coefficients are to be considered “adjusted” not only for the variables included in the 
model but also for the matching variables. Details on the statistical properties and appli-
cations of  the  conditional logistic regression model can be found elsewhere (e.g., Hosmer 
and Lemeshow,21 Breslow and Day28). This model is particularly useful for the analyses 
of  studies in which cases and controls are individually matched sets (case-control pairs or 
triplets, etc.—when more than one control is matched to each case). An example is given 
by the cross-sectional examination of  variables associated with carotid atherosclerosis 
in the ARIC study.29 For this analysis, cases (n 5 386) were defined as individuals with 
elevated carotid artery intimal-medial thickness (IMT) based on B-mode ultrasound 

Variable Poisson regression coefficient Rate ratio

Intercept 26.3473 —

Gender (male 5 1, female 5 0) 1.1852 3.27

Smoking (yes 5 1, no 5 0) 0.6384 1.89

Older age* (yes 5 1, no 5 0) 0.2947 1.34

Hypertension† (yes 5 1, no 5 0) 0.5137 1.67

Hypercholesterolemia‡ (yes 5 1, no 5 0) 0.6795 1.97

Obesity§ (yes 5 1, no 5 0) 0.2656 1.30

*Age  55 yr.
† Blood pressure  140 mm Hg systolic or  90 mm Hg diastolic or antihypertensive therapy.
‡Total serum cholesterol  240 mg/dL or lipid-lowering treatment.
§Body mass index  27.8 kg/m2 in males and  27.3 kg/m2 in females.

Table 7-22 Results from a Poisson regression analysis of binary predictors of coronary 
heart disease (CHD) incidence in the Washington County cohort of the Atherosclerosis Risk in 
Communities (ARIC) study, ages 45 –  64 years at baseline, 1987–1994.

Cell Male Smok Old age Hyperten Hypercho Obese PY CHD LogPY

1 0 0 0 0 0 0 1740.85 1 7.46213

2 0 0 0 0 0 1 1181.40 2 7.07446

3 0 0 0 0 1 0 539.97 0 6.29152

4 0 0 0 0 1 1 521.93 1 6.25754

. . . / . . .

61 1 1 1 1 0 0 24.48 1 3.19804

62 1 1 1 1 0 1 37.41 0 3.62208

63 1 1 1 1 1 0 171.41 1 5.14405

64 1 1 1 1 1 1 85.37 5 4.44701

Table 7-23 Data used for calculating the results shown in Table 7-21.
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imaging measurements (see preceding examples in this chapter). Controls in this study 
were selected among individuals with low IMT and were individually matched to each case 
on sex, race, age group (45–54 or 55–64 years), study center, and date of   examination. 
Selected results from this study are presented in Table 7-24. Each of  the odds ratios in 
this table was obtained by exponentiating the regression coefficient estimate (eb) obtained 
from a logistic regression model conditioned on the matching variables. Although the 
estimates in Table 7-24 are adjusted for age (and for other matching variables), residual 
confounding could result from the use of  broad age-matching categories. This is the 
reason why the study investigators also adjusted for age as a continuous variable (see 
Section 1.4.5, Figure 1-24, and Section 7.6). 

In studies in which cases and controls are frequency matched (see Section 1.4.5), 
a more efficient strategy is simply to use ordinary logistic regression and include the 
matching variables in the model. An example of  a frequency-matched study, cited 
in Chapter 1, is the examination of  the relationship between CMV antibodies and 
atherosclerosis.30 Table 7-25 shows the association between CMV antibody levels in 
serum samples collected in 1974 and the presence of  carotid atherosclerosis in the 
ARIC study’s first two examinations (1987–1992).30 These odds ratios were obtained 
from the estimated coefficients in logistic regression models that contained the 
matching variables (matched odds ratio) and additional variables adjusted for (adjusted 
odds ratio).

Nested case-control studies, in which the controls are selected among the members 
of  the “risk set,” that is, among the cohort members at risk at the time when the case 
occurs (see Chapter 1, Section 1.4.2), can be considered and analyzed as “matched 
case-control studies” in which cases and controls are matched by length of  follow-up 
(Figure 1-20). Thus, as in other matched case-control studies, the multivariate analysis 
technique most frequently indicated is the conditional logistic regression, in which the 
conditional variable is length of  follow-up. This type of  conditional logistic regression 
model is analogous to the Cox proportional hazards regression model.31 In addition to 
its inherent logistical advantages (see Chapter 1, Section 1.4.2), the nested case-control 

Variable and reference 
category

Age-adjusted odds ratio  
(95% confidence interval)

Multivariate-adjusted‡ odds 
ratio (95% confidence interval)

Current smoker vs ex- and 
never-smoker 3.3 (2.3–4.7) 3.9 (2.6–5.9)

Ever smoker vs never-smoker 2.8 (2.0–4.0) 3.1 (2.1–4.6)

Hypertensive vs normotensive 2.7 (1.9–3.8) 2.9 (1.9–4.3)

LDL cholesterol 
   160 vs  100 mg/dL 
  100–159 vs  100 mg/dL

2.6 (1.6–4.4)
1.6 (1.0–2.6)

2.0 (1.1–3.7)
1.4 (0.8–2.4)

*Obtained by conditional logistic regression.
† Matched on sex, race, age group (45–54 or 55–64 yr), study center, and date of  examination.
‡ Adjusted for age (as a continuous variable) and all the other variables listed in the table, in addition to matching 
variables.

Source: Data from G Heiss et al., Carotid Atherosclerosis Measured by B-Mode Ultrasound in Populations: Associations 
with Cardiovascular Risk Factors in the ARIC Study. American Journal of  Epidemiology, Vol 134, pp. 250–256, © 1991.

Table 7-24 Adjusted odds ratios* for carotid atherosclerosis in relation to selected 
cardiovascular risk factors in 386 matched pairs† from the Atherosclerosis Risk in Communities 
(ARIC) study cohort examined between 1987 and 1989.
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study has become a popular study design as a result of  the wide availability in recent 
years of  statistical packages that can carry out this type of  conditional analysis. 

In the alternative design for case-control studies within a well-defined cohort, the 
so-called case-cohort study, cases occurring in the cohort during follow-up are compared 
with a random sample of  the baseline cohort (subcohort) (see Chapter 1, Section 1.4.2). 
The analytical approach to these data must consider the design’s peculiar sampling 
scheme, namely, that a fraction of  the cases may have been included in the subcohort. 
Fortunately, as described elsewhere,32,33 the Cox model can be adapted to this situation 
by allowing for staggered entries (for the cases outside the subcohort).

As an example of  this approach, Table 7-26 shows results from a study described at 
the end of  Section 1.4.2. This is a case-cohort study conducted within the ARIC cohort 
looking at the association between serum antibodies against Chlamydia pneumoniae 

CMV antibody 
levels* Cases Controls

Matched OR† (95% 
 confidence interval)

Adjusted OR‡ (95% 
 confidence interval)

Low 31 51 1.0§ 1.0§

Moderate 104 94 1.9 (1.1–3.2) 1.5 (0.8–2.9)

High 15 5 5.2 (1.7–16.0) 5.3 (1.5–18.0)

* Low: positive/negative ratio  4; moderate: positive/negative ratio 4 to 19; high: positive/negative ratio  20.
† Odds ratios obtained by multiple-logistic regression analysis including the frequency-matching variables age  
(10-year categories) and gender.

‡ Odds ratios obtained by multiple-logistic regression analysis including the frequency-matching variables age  
(10-year categories and gender) plus continuous age, cigarette smoking (current/former vs never), years of  education  
( 12 vs  12), hypercholesterolemia, hypertension, diabetes, and overweight.

§Reference category.
Source: Data from FJ Nieto et al., Cohort Study of  Cytomegalovirus Infection as a Risk Factor for Carotid Intimal-Medial 
Thickening, a Measure of  Subclinical Atherosclerosis, Circulation. Vol 94, pp. 922–927, © 1996.

Table 7-25 Intimal-medial thickness case-control status in the Atherosclerosis Risk in 
Communities (ARIC) study (1987–1992) in relation to high or moderate versus low positive/negative 
values for cytomegalovirus (CMV) antibodies in serum samples collected in 1974.

C. pneumoniae IgG antibody titers

Negative 1:8–1:32 1:64

Adjusted for demographics† 1.0 1.2 (0.7–2.1) 1.6 (1.0–2.5)

Adjusted for demographics† 
and risk factors‡ 1.0 1.1 (0.6–2.3) 1.2 (0.7–2.1)

*Estimated using weighted proportional hazards regression models with staggered entries for cases outside the subcohort 
and Barlow’s robust variance estimates.32

†Age (continuous), gender, race, and center.
‡Smoking, hypercholesterolemia, hypertension, diabetes, and educational level.
Source: Data from FJ Nieto et al., Chlamydia Pneumoniae Infection and Incident Coronary Heart Disease: The 
Atherosclerosis Risk in Communities (ARIC) Study. American Journal of  Epidemiology. Vol 150, pp. 149–156, © 1999.

Table 7-26 Estimated crude and adjusted hazard ratios of incident coronary heart 
disease (and 95% confidence intervals) by level of C. pneumoniae antibody titers at baseline, 
1987–1991:* A case-cohort study within the Atherosclerosis Risk in Communities cohort study.
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and incident CHD over a follow-up of  3 to 5 years.34 The 246 incident CHD cases were 
compared with a stratified random sample of  550 participants from the original cohort 
using a Cox regression analysis, which takes into consideration time-to-event and allows 
for staggered entries to handle the case-cohort sampling design. As in the previous 
examples, each of  the hazard ratios shown in the table was obtained by exponentiating 
the corresponding regression coefficient from the Cox regression model. The results 
shown in Table 7-26 suggest that the apparent increased hazard of  CHD in those with 
high levels of  C. pneumoniae antibodies at baseline can be largely explained by positive 
confounding effects by other risk factors.

7.4.7  Modeling Nonlinear Relationships with Linear Regression Models
Epidemiologic studies often use continuous variables to measure physiologic parameters 
or other characteristics, such as those in the examples discussed in previous sections. 
Two different definitions of  such variables were used to illustrate the application of  a 
number of  adjustment models: continuous (e.g., systolic blood pressure levels; Tables 
7-16, 7-18, and 7-21, model 1) or dichotomous (e.g., hypertension; Tables 7-19, 7-21, 
model 2, and 7–22). In this section, the possible limitations of  these models and some 
alternative approaches are briefly discussed.

To illustrate the problems related to the selection of  the modeling approach, 
Figure 7-9A shows a hypothetical observed (assumed to be true) “J-shape” relationship 
between a given continuous predictor (x) and an outcome variable (y); y here could be 
any of  the dependent variables in the models summarized in Table 7-15—for example, 
a continuous variable such as the carotid intimal-medial thickness when using linear 
regression or the log (odds) of  carotid atherosclerosis (defined as a binary variable) when 
using logistic regression. This type of  relationship has been found, for example, in epide-
miologic studies of  body weight and mortality,35,36 in which a higher risk of  mortality 
has been observed in low-weight individuals (possibly because of  underlying chronic 
morbidity), the lowest risk in individuals of  “normal” weight, and a steady increase in 
mortality in overweight and obese individuals. (Other examples of  such J- or U-type 
relationships are those between serum cholesterol and mortality37 and between alcohol 
intake and coronary heart disease.38)

Figure 7-9B illustrates the problems of  using a linear regression model to explain the 
observed relationship between x and y. In Figure 7-9B, an estimate of  the regression 
coefficient, b, would represent the average linear increase of  y (e.g., mortality) per unit 
increase in the continuous variable x (e.g., body weight) (i.e., the slope of  the straight 
line in Figure 7-9B). Obviously, the estimation of  an overall linear regression coefficient, 
corresponding to the straight line shown in Figure 7-9B, ignores the fact that there is 
actually a decrease in y in the lower x range, a slow increase in y in the mid x range, and 
a pronounced increase in y in the upper x range. Because the latter is more pronounced 
than the former, the average value of  b will come out positive; however, as readily 
inferred from Figure 7-9B, this estimate misrepresents the true relationship of  x to y, to 
the extent that it falsely “reverses” the observed negative association for lower values of  
x and underestimates the strong positive association seen for higher x values.

For the model represented in Figure 7-9C, x is defined as a dichotomous variable, with 
the categories 0 and 1 represented in the abscissa of  the graph. By so modeling x, the 
model assumes that there is a “threshold” phenomenon: that is, that the relationship 
between x and y is flat for the lower range of  x values and that there is a sudden increase 
in y at a certain x threshold (which is the cutoff  point used to define x as a categorical 
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Figure 7-9 Hypothetical example of an observed (true) J-shape relationship between x and 
an outcome variable y (A); B through D illustrate the observed relationship (broken line) with 
alternative models superimposed: continuous x (B), dichotomous x (C), and dummy variables for 
x quintiles (D). 

variable), after which there is no further increase in y as x increases. The estimated 
regression coefficient in this case represents the difference in the average y value between 
the higher and the lower x range categories (see Figure 7-6)—that is, the vertical distance 
(in y units) between the two horizontal bars depicted in Figure 7-9C. As for the model 
shown in Figure 7-9B, this one also neglects an important feature of  the relationship 
between x and y, namely that y decreases as x increases for low values of  x, whereas the 
opposite is true for higher values.

Use of Indicator (“Dummy”) Variables
To take into account these patterns, more elaborate and complex models are necessary. 
One option, often used in epidemiology, consists of  breaking down the continuous 
independent variable x into multiple categories (based, e.g., on quartiles or quintiles) 
and then using one dummy variable as an indicator for each category while allowing 
the “slope” (the change in y) to vary from category to category. Examples of  the use of  
dummy variables for modeling multilevel categories of  an independent variable that is 
not linearly related to the outcome follow. Consider the model illustrated in Figure 7-9D. 
In this panel, the range of  x values has been divided in fifths—that is, in five groups 
defined by the quintiles, each containing 20% of  the individuals ordered according to 
the value of  x from lowest to highest. A set of  dummy or indicator variables (categories) 
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can be then defined, as many as the number of  categories for the independent variable 
minus 1 (4 in this example). One of  the categories is chosen as the “reference,” and each 
of  the remaining categories is assigned a value of  1 for one of  the dummy variables and 
0 for the others (Table 7-27). For the category arbitrarily chosen as reference (the lowest 
fifth in this case), all four dummy variables have 0 values. Each of  the dummies repre-
sents the remaining fifths. Thus, the model corresponding to Figure 7-9D can be written 
as follows:
 y 5 b0 1 b1x1 1 b2x2 1 b3x3 1 b4x4  (Eq. 7.10)

These four dummy variables correspond to different categories of  a single variable, x. 
In fact, because of  the complete lack of  overlap between these “variables” (no one 
individual can have a value of  1 for more than one such “variable,” simply because no 
individual can belong to more than one of  these mutually exclusive fifths), the model in 
Equation 7.10 can be reduced to the following equations for each of  the fifths:

•	 For the individuals in the bottom fifth, all dummies have a value of  0, and thus y 5 b0

•	 For individuals in the second fifth, where only x1 is equal to 1, y 5 b0 1 b1x1

•	 For individuals in the third fifth, y 5 b0 1 b2x2

•	 For individuals in the fourth fifth, y 5 b0 1 b3x3

•	 For individuals in the top fifth, y 5 b0 1 b4x4

Thus, the regression coefficients have the following interpretation:

•	 b0 5 the average value of  y among individuals in the reference category (bottom 
fifth).

•	 b1 5 the average difference in the value of  y between individuals in the second fifth 
and those in the bottom fifth.

•	 b2 5 the average difference in the value of  y between individuals in the third fifth 
and those in the bottom fifth.

•	 b3 5 the average difference in the value of  y between individuals in the fourth fifth 
and those in the bottom fifth.

•	 b4 5 the average difference in the value of  y between individuals in the top fifth and 
those in the bottom fifth.

The difference between each fifth and a different fifth other than the reference is 
easily obtained by subtraction of  the regression coefficients. For example, the difference 
between the top fifth and the second fifth can be calculated as b4 2 b1.

Dummy variables

Fifth of  x x1 x2 x3 x4

1 (reference) 0 0 0 0

2 1 0 0 0

3 0 1 0 0

4 0 0 1 0

5 0 0 0 1

Table 7-27 Definitions of dummy variables for the model in Figure 7-9D.
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In Figure 7-9D, b0 represents the y value corresponding to the horizontal bar for 
the “reference” category, and each of  the other b’s represents the vertical distance 
(in y units) between the horizontal bars for each of  the fifths and the reference fifth. In 
the hypothetical example shown in Figure 7-9D, the values of  b1 and b2 will be negative 
(because the average y values in subjects in the second and third fifth are lower than the 
average y value in the bottom fifth), whereas the values of  b3 and of  b4 will be positive. 
The choice of  the reference category is purely arbitrary and largely inconsequential. 
For example, because the second fifth is the category with the lowest y value and thus 
might be considered the “normal” range for x, it could have been chosen as the reference 
category in the preceding example. If  this had been the case, b0 would have represented 
the average value of  the individuals in this new reference category, and the remaining 
b's (all positive in this situation) would have been the average differences between each 
of  the other fifths and the second fifth. If, in addition, the model in Equation 7.10 had 
included other variables, each of  the estimates for the difference between each category 
and the reference category would have been adjusted for these other variables.

A real-life example of  breaking down continuous independent variables into several 
categories when using the multiple-logistic regression model is presented in Table 7-28, 
which shows results pertaining to the examination of  the cross-sectional associations 
between socio demographic characteristics and the prevalence of  depressive symptoms 
among Mexican Americans participating in the US Hispanic Health and Nutrition 
Examination Survey.39 In Table 7-28, logistic regression coefficients and corresponding 
odds ratios (and the attached p values—see Wald statistic, Appendix A, Section A.9) are 
presented side by side. All variables were entered in the model as categorical variables, 
including variables that could have been entered as continuous (e.g., age, annual 
household income). With the exception of  sex and employment status, all variables 
in Table 7-28 have more than two categories. For each of  these variables, one of  the 
categories is used as the reference (i.e., it has no regression coefficient), with the value of  
its odds ratio being, by definition, 1.0. All other categories have been modeled as dummy 
variables. For each of  these categories, a logistic regression coefficient is estimated; 
exponentiation of  this coefficient results in an estimate of  the odds ratio that compares 
this category with the reference category. For example, for age, the younger age group 
(20–24 years) was chosen as reference. The coefficient for “25 to 34 years” is 0.1866, 
corresponding to an odds ratio of  e0.1866, or 1.2; for the next age group (“35–44 years”), 
the coefficient is negative (20.1112), thus indicating that the log odds in this category 
is lower than that in the reference, which translates into an odds ratio below 1.0 (OR 
5 e- 0.1112 5 0.89), and so forth. For years of  education and income, the highest 
categories were chosen as reference; if  the authors had chosen the lowest instead, the 
results would have been the reciprocals of  those shown in the table. Very importantly, 
as discussed previously in this section, by breaking down the continuous variables into 
dummy variables (categories), it is possible to model adequately the nonlinear relation-
ships observed in these data by using a linear model. For example, the use of  five dummy 
variables (plus a reference category) for age in Table 7-28 suggests the presence of  an 
inverse “J-shape” pattern, as the odds ratio is higher for the category 25 to 34 years than 
for the reference category (20–24 years), but consistently and increasingly lower for the 
older age categories.

The use of  dummy variables is sometimes mandatory, as when modeling nonordinal 
polychotomous categorical variables such as “marital status” and “place of  birth/accul-
turation” in Table 7-28. For example, one potentially important finding of  this analysis 
is that compared with US-born/Anglo-oriented, the prevalence of  depressive state seems 
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Characteristic Logistic regression coefficient Odds ratio p Value

Intercept 23.1187

Sex (female vs male) 0.8263 2.28 0.0001

Age (years)

20–24 — 1.00

25–34 0.1866 1.20 0.11

35–44 20.1112 0.89 0.60

45–54 20.1264 0.88 0.52

55–64 20.1581 0.85 0.32

65–74 20.3555 0.70 0.19

Marital status

Married — 1.00

Disrupted marriage 0.2999 1.35 0.18

Never married 0.7599 2.14 0.004

Years of  education

0–6 0.8408 2.32 0.002

7–11 0.4470 1.56 0.014

12 0.2443 1.28 0.21

 13 — 1.00

Annual household income (US$)

0–4,999 0.7055 2.02 0.019

5,000–9,999 0.7395 2.09 0.009

10,000–19,999 0.4192 1.52 0.08

 20,000 — 1.00

Employment

Unemployed vs employed 0.2668 1.31 0.20

Place of  birth/acculturation

US-born/Anglo oriented — 1.00

US-born/bicultural 20.3667 0.69 0.004

Foreign-born/bicultural 20.6356 0.53 0.026

Foreign-born/Mexican oriented 20.8729 0.42 0.0003

Source: Data from EK Moscicki et al., Depressive Symptoms Among Mexican-Americans: The Hispanic Health and 
Nutrition Examination Survey. American Journal of  Epidemiology. Vol 130, pp. 348–360, © 1989.

Table 7-28 Logistic regression analysis of the association between various sociodemographic 
characteristics and prevalence of depressive state, Hispanic Health and Nutrition Examination 
Survey, Mexican Americans aged 20–74 years, 1982–1984.
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to be significantly lower among the foreign born, particularly those who are Mexican 
oriented. Again, it is important to bear in mind that the estimate for each variable is 
adjusted for all other variables shown in Table 7-28. Variables not included in the model, 
however, could still confound these associations (see Section 7.6); furthermore, causal 
inferences based on the data shown in Table 7-28 may be affected by their cross-sectional 
nature and its related biases (see Chapter 4, Section 4.4.2).

With respect to continuous or ordinal categorical variables, dummy variables can 
serve as an intermediary or exploratory step to evaluate whether a straight linear 
model is appropriate or whether several categories have to be redefined or regrouped. 
For example, after seeing the results shown in Table 7-28, one could simplify the 
definition for the variable “income” by grouping the two categories of  less than US 
$10,000 into one, in view of  their seemingly homogeneous odds of  depression. 
Furthermore, because of  the appearance of  an approximately linear increase in the 
odds of  depression according to decreasing levels of  education, the authors could have 
further simplified the model by replacing the three dummy variables for education with 
a single ordinal variable (coded 1 to 4, or 0 to 3); in this example, the value of  the 
coefficient in the latter case would be interpreted as the decrease in the log odds per 
unit increase in the level of  education. In other words, the antilog of  this coefficient 
would be the estimate of  the odds ratio comparing any one pair of  adjacent ordinal 
categories of  education (i.e., comparing those with  13 years versus those with 12 
years; or those with 12 years versus those with 7–11 years; or those with 7–11 years 
versus those with 0–6 years).

The latter approach, frequently used in the analysis of  epidemiologic data (as when 
redefining the levels of  certain serum parameters, nutrients, etc., according to quartiles, 
quintiles, etc.) is essentially equivalent to using a continuous variable, except that the 
possible values of  x are now restricted to the integer values from 1 to 4 or 1 to 5 and so 
on. The advantages of  this approach as compared with a more complex model including 
a number of  dummy variables are that (1) the resulting model is more parsimonious and 
simpler to explain (see Section 7.7) and (2) the statistical testing of  the corresponding 
regression coefficient (see next section and Appendix A, Section A.9) is the multivariate 
adjusted analogue of  the test for dose response described in Appendix B. It is important 
to bear in mind, however, the risks of  using these ordinal definitions of  the independent 
variables without consideration of  the possible presence of  patterns such as those 
schematically represented in Figure 7-9A.

Alternative Modeling Techniques for Nonlinear Associations
The use of  more complex mathematical functions constitutes another approach 
to modeling associations for which a simple linear function (e.g., a straight line) 
does not seem to represent a proper fit. Examples of  these alternative models include 
the use of  quadratic terms (which can model simple curve relationships) or more 
complex polynomial or other types of  functions to model U- or J-shape relationships 
(e.g., Figure 7-9A). Although a discussion of  these models is outside the purview of  this 
book (see, e.g., Armitage et al.11), two examples are displayed in Figures 7-10 and 7-11.

Figure 7-10 is based on a study that examined the relationship between BMI and 
percent body fat in several populations of  African descent.40 Figure 7-10A shows the 
scatter diagram for the combined male and female subjects from the Nigeria subset 
in that study, whereas Figures 7-10B and 7-10C show the estimated regression lines 
separately for males and females. After evaluating different modeling options, the 
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Figure 7-10 Relations between body mass index and percentage of body fat among men 
and women in Nigeria, 1994–1995. A, scatter diagram of raw data (men, 1 ; women, ). B and C, 
estimated regression lines for males and females, respectively.

Source: Reprinted with permission from A Luke et al., Relation Between Body Mass Index and Body Fat in Black Population 
Samples from Nigeria, Jamaica, and the United States. American Journal of  Epidemiology, Vol 145, pp. 620–628, © 1997. 

authors concluded that the relationship between BMI and body fat was well described by 
a simple linear model in men.

% body fat 5 221.37 1 1.51(BMI)

whereas a curvilinear model (quadratic term) was needed for women:

% body fat 5 244.24 1 4.01(BMI) – 0.043(BMI)2

Figure 7-11 is from a simulation study of  the spread of  two sexually transmitted 
diseases (gonorrhea and Chlamydia trachomatis) based on different assumptions regarding 
transmission patterns.41 Specifically, Figure 7-11 shows the prevalence of  these diseases 
according to the effective contact rate (a function of  the mean and variance of  the 
number of  sexual partners); shown in the figure are the estimated (observed) prevalence 
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in each of  the simulations (the dots) and the estimated statistical models that best fit 
the observed data for either disease. As previously discussed, these complex hyperbolic 
functions are useful for prediction. On the other hand, none of  the parameters from 
these models (e.g., b1 5 1.89) has a clear interpretation in terms of  summarizing the 
association between the variables of  interest (e.g., effective contact rate and prevalence 
of  gonorrhea). The trade-off  between simplicity and interpretability on the one hand 
and proper fit on the other is at the core of  the art and science of  statistical modeling, as 
briefly discussed in the summary section of  this chapter (Section 7.7).

7.4.8  Statistical Testing and Confidence Intervals of Regression Estimates
The values of  the regression parameters in linear regression, whether simple 
(Section 7.4.1) or multiple (Section 7.4.2) linear regression, are estimated using the 
ordinary least-squares method. This method of  estimation is fairly simple and, in the case 
of  simple linear regression, can be carried out with a simple pocket calculator; for multi-
variate linear regression, however, matrix algebra is required. On the other hand, the 
simple least-squares method cannot be applied to the other three regression methods 
described in the previous sections. Logistic regression, Cox regression, and Poisson 
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 Strategies for Gonorrhea and Chlamydia Using Stochastic Network Simulations. American Journal of  Epidemiology, 
Vol 144, pp. 306–317, © 1996. 

Figure 7-11 Simulation models for the spread of gonorrhea and Chlamydia trachomatis: 
the prevalence rates of gonorrhea and chlamydia (as percentages of the model population) as a 
function of the effective contact rates. Each data point represents one simulation run. The solid 
lines represent hyperbolic functions of the form y 5 [b0(x 2 b1)]/[b2 1 (x 2 b1)], which were 
fitted to the data points with a nonlinear curve-fitting program. In this equation, y is prevalence 
and x is the effective contact rate; the resulting parameter value estimates were for gonorrhea, 
b0 5 10.08, b1 5 1.89, b2 5 3.18, and for chlamydia, b0 5 11.12, b1 5 1.85, b2 5 2.0. 



282 CHAPTER 7 | Stratification and Adjustment: Multivariate Analysis in Epidemiology

regression methods require an iterative estimation process based on the maximum 
likelihood method (MLE), a task that is greatly facilitated by using modern computers and 
statistical software. (For a general introduction to the principles of  likelihood and MLE, 
see Clayton and Hills.42)

As with any other statistical estimate, the regression parameters obtained using 
ordinary-least squares or MLE for the regression methods presented in the previous 
sections are subject to uncertainty because of  sampling variability. Thus, in addition 
to the regression coefficient, the estimation algorithm provides the standard error 
associated with that parameter estimate (see, e.g., Table 7-17). With the point estimate 
of  the regression coefficient and its standard error (in any of  the regression methods 
described in the preceding sections), hypothesis testing can be performed to assess 
whether the regression coefficient in question is statistically significant: that is, whether 
the null hypothesis (Ho: b 5 0) can be rejected at a certain significance (alpha error) level. 
This test, called the Wald statistic, is briefly described with some examples in Appendix A, 
Section A.9. Similarly, a confidence interval for the value of  a regression coefficient can 
be estimated using the point estimate and the standard error of  that regression coeffi-
cient (see Appendix A). As shown in the examples in the appendix, for multiplicative 
models (e.g., logistic, Cox, Poisson), the exponentiation of  the lower and upper confidence 
interval for the regression coefficients provides the corresponding confidence limits for 
the multiplicative measures of  association (e.g., odds ratio, hazards ratio, rate ratio).

In addition to the Wald statistic and confidence limits to evaluate the statistical 
relevance of  each regression parameter estimated, other statistical parameters or tests 
are useful for the comparison of  different models; these include the value of  the R2 in the 
context of  linear regression, which gives an estimate of  the proportion of  the variance 
of  the dependent variable explained by the independent variables, and the likelihood ratio 
test, a significance test comparing models based on MLE-based regression methods. In 
addition, a number of  numerical and graphical techniques can be used to evaluate the 
statistical assumptions and fit of  the data to a particular model or set of  independent 
variables. For more details on these methods, the reader is referred to more advanced 
textbooks, such as Armitage et al.,11 Kleinbaum et al.,13 or Clayton and Hills.42

7.5 ALTERNATIVE APPROACHES FOR THE 
CONTROL OF CONFOUNDING

The preceding sections cover the traditional approaches to control for confounding in 
epidemiologic studies (either in the design phase of  the study—such as matching, or 
during the analysis—such as stratification and regression). In addition to these tradi-
tional methods, new approaches have been proposed in recent years. These include the 
use of  instrumental variables—of  which the Mendelian randomization method is a special 
case, and the propensity score method. In this section, the rationale, methodology, and 
application examples of  these methods as well as their potential caveats are discussed.

7.5.1  Instrumental Variable Method
The instrumental variable method originated in the fields of  econometrics and social 
sciences, and has recently been applied in health services and epidemiologic research. 
The approach uses directed acyclic graphs techniques (see Section 5.3) to identify the 
existence of  a variable (the so-called instrument) that is causally related to the exposure 
of  interest and is not related to the outcome other than through the exposure. Under such 
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circumstances, by studying the relation between the instrument and the outcome—or 
more specifically, by regressing the exposure on the instrument and then regressing the 
outcome on the predicted value of  the exposure (as a function of  the instrument—see 
below), one can make causal inferences with regard to the relation between the exposure 
and the outcome that are not affected by the presence of  unmeasured confounding.43–46

As illustrated in Figure 7-12, an instrumental variable must meet the following 
conditions:

 1. it is causally associated with the exposure;

 2. it affects the outcome only through the exposure; and

 3. it is not associated with any confounders (known or unknown) of  the association 
between the exposure and the outcome.

An example of  the application of  the instrumental variable approach has been 
provided by Glymour et al.47 These authors were interested in examining the associ-
ation between childhood schooling (number of  years in school) and memory in older 
age. They used individual-level data on education, mental status, and other covariates 
from participants in the Health and Retirement Study. The authors were concerned 
about potential confounding, e.g., by intelligence quotient (IQ) or socioeconomic status 
that could be related to both childhood education and cognitive function in older 
age (including memory)—see Figure 7-13A. In order to control for these and other 
unknown confounders, the authors used an instrumental variable approach. They 
used compulsory state schooling laws at the time of  the study participants’ birth as the 
instrument (Figure 7-13B) based on the following rationale: since there are states that 
require more years of  schooling (by regulating mandatory enrollment age and minimum 
drop out age), if  a relation between the existence of  these compulsory schooling regula-
tions during childhood and memory in older age is observed, this finding will strengthen 
the inference of  a causal relationship between schooling and cognitive function later 
in life. The key assumption for this inference to be valid (condition number 3 above) is 

Exposure

Outcome

Confounders

Instrumental
variable

?

Figure 7-12 Instrumental variable analysis. The instrumental variable is causally associated 
with the outcome only through its causal association with the exposure, independently of any 
other confounding relationships between exposure and outcome.
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that state regulations are not related to the individual-level confounding factors that 
affect the traditional observational study assessing the relation between individual 
schooling and the old age memory (i.e., IQ, SES and other unmeasured confounders in 
this example). 

The implementation of  the instrumental variable approach is not as straightforward 
as Figure 7-13B would imply, however. The naïve analysis would simply replace the 
exposure (schooling) with the instrumental variable (state laws) in the regression on 
the outcome (old age memory). However, while the existence of  an association in this 
analysis would be suggestive, its results will not provide a correct inference with regard to 
the magnitude of  the association of  interest (childhood schooling—old age memory). The 

Source: Based on MM Glymour, I Kawachi, CS Jencks, LF Berkman, Does Childhood Schooling Affect Old Age Memory 
or Mental Status? Using State Schooling Laws as Natural Experiments, Journal of  Epidemiology and Community Health. 
2008;62:532–537.

IQ, SES

Compulsory
state law

??

Childhood
schooling

Old age
memory

A

B

IQ, SES ??

Childhood
schooling

Old age
memory

Figure 7-13 Example of the application of instrumental variable analysis. When studying the 
relation between childhood schooling and memory in old age, other factors such as intelligence 
quotient (IQ) and socioeconomic status (SES) can act as confounders (A). By studying the relation 
between previous existence of compulsory minimum schooling state laws (the instrument) and 
epidemiologic data on memory of older people (B), an inference can be made with regard to the 
relation between schooling and cognitive function in older age independently of measured or 
unmeasured confounders.
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reason is that childhood schooling depends on many other variables aside from state laws; 
simply ignoring these other determinants of  schooling will tend to dilute the association. 

As described in detail elsewhere,45,47,48 the correct analysis involves a two-step 
approach as follows: (1) a regression of  the instrument on the exposure to obtain 
“predicted values” of  the exposure (years of  schooling in this example) as a function of  
the instrumental variable (see Section 7.4.1); and (2) a regression of  the predicted years 
of  schooling (exposure) on the outcome (old age memory). The regression coefficient 
estimated for predicted years of  schooling in the second step thus represents an unbiased 
estimate of  the association between schooling and memory in old age.

In another example, Leigh and Schembri48 used cigarette price as an instrument to 
try to estimate the causal association between smoking and general health. Whereas 
the relation between smoking and health can be subject to confounding (e.g., by other 
unhealthy behaviors), one can assume that the price of  cigarettes in the locality where 
an individual lives is not directly associated with his or her health. The authors of  this 
study conducted a cross-sectional analysis of  data from more than 34,000 adult partici-
pants in a national survey to study how number cigarettes smoked per day, as predicted 
by the average cigarette price for the state in which the subject resided, correlated with 
functional status measured using the SF-12 instrument. The main findings of  this study 
where that higher average cigarette price in each state was associated with lower cigarette 
consumption and that predicted cigarettes per day (based on cigarette price—the 
instrument) was strongly and negatively associated with physical functioning; moreover, 
the latter association was stronger than that for observed cigarette consumption, 
implying that the true effect of  smoking on health may be larger than conventional 
methods have estimated.48 The assumption is that, by using a modified estimate of  the 
exposure (predicted by the instrument) that is less prone to confounding, this approach 
offers a more accurate estimate of  the true causal relation between smoking and physical 
functioning than a standard outcome-exposure regression analysis.

When the instrument is an ecological variable such as in the preceding examples 
(e.g., compulsory schooling law; price of  cigarettes) the instrumental variable approach 
can be thought of  as emulating a “natural experiment.”5 In general, the usefulness of  
this approach relies on the degree to which it mimics an experimental randomization 
approach. As illustrated in Figure 7-14, the randomization model is essentially an 
analogue of  the instrumental variable model (Figure 7-12); the variable “treatment 
assignment” (as determined by randomization) meets the three conditions that define 
an instrument as described above: (1) it determines who receives what treatment (who 
is exposed); (2) it affects the outcome through its effect on what treatment is actually 
received; and (3) it is unrelated to confounders of  the treatment-outcome association. 
A randomized trial, using an intention-to-treat approach to study the relation between 
randomization (treatment allocation) and an outcome, provides an unbiased estimate 
of  the causal effect of  treatment on the outcome.5 Thus, in the preceding examples, 
compulsory schooling laws or cigarette pricing are considered analogues to randomized 
treatment assignment to the extent that they can be assumed to be independent of  
confounding factors that could affect the associations of  interest (schooling and 
cognitive function in older age; smoking and physical functioning) and have an effect on 
the outcome only through their effects on the exposures of  interest.

Conversely, the randomization analogy offers a framework to understand the 
possible limitations of  the instrumental variable approach. Inasmuch as the instrument 
fails to mimic a randomized treatment assignment, it will be unwarranted to use the 
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instrumental variable strategy to make valid causal inferences. This could be the case in 
any one of  these two circumstances:

1.  When the instrument is only weakly associated with the exposure. This would be 
the case, for example, if  cigarette pricing was only weakly associated with cigarette 
consumption—e.g., because of  people’s mobility, the pricing on the current state 
of  residence might not truly reflect long-term smoking habits;48 or if  the level of  
schooling varies according to other variables other than compulsory schooling 
law (Figure 7-15A). If  this is the case, studying the association between the 
instrument and the outcome may lead to an incorrect conclusion regarding the 
true causal nature of  the exposure-outcome association, as it will be affected by 
confounding (or even bias, e.g., dilution bias, ecological bias). Note that this is 
analogous to the shortcomings of  an intention-to-treat analysis of  a clinical trial 
when randomization does not effectively separate the treatment groups—e.g., 
because of  poor compliance or because of  crossover, leading to biased estimates 
of  the effects of  treatment.

2.  When the relationship between the instrument and the outcome is affected by 
confounding (e.g., when condition no. 3 above is not fulfilled). For example, it is 
conceivable that states that have more stringent schooling regulations might also 
have different average SES and a different political environment (e.g., health care 
and public health programs), which, in turn, would affect health throughout the 
life-course, including cognitive function in older age (Figure 7-15B).47 If  that were 
the case, the instrumental variable approach illustrated in Figure 7-13B, would 
not lead to the correct inferences regarding the association between childhood 
schooling and old age memory (see Chapter 5).

Because of  these potential biases, instrumental variable approaches should be used 
and interpreted cautiously.49 In addition to these potential interpretation caveats, 
another important practical limitation of  the instrumental variable method is that 
it is only applicable when a suitable instrument is available. Like the randomized 

Confounders

Treatment assignment
(randomization)

?

Treatment
received

Outcome

Figure 7-14 Randomization as an analogue of the instrumental variable approach. When 
compared to Figure 7-12, randomized treatment assignment could be described as an instrumental 
variable used to assess the causal relation between treatment received (exposure) and outcome. 
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trial approach—which is often not feasible or applicable to address many epidemiologic 
questions—there are instances when there is no identifiable or measurable instrumental 
variable that could be used in the analysis.

Mendelian Randomization
Mendelian randomization is a special application of  the instrumental variable approach 
when the instrument is a genetic polymorphism known to affect the presence or the 
level of  the exposure of  interest (the phenotype).50 Because chromosomes and genes 
are randomly segregated during gamete formation and recombined at conception, the 
association between the suspected genetic polymorphism and the disease will be free of  
confounding (e.g., by other genetic, behavioral, or environmental characteristics) and 
thus reflect the true causal exposure–disease association. 

? ?

Childhood
schooling

Old age
memory

IQ, SES

Compulsory
state law

Other
variables

A

B

? ?

Childhood
schooling

Old age
memory

Compulsory
state law

SES, political
environment

Other health
factors

IQ, SES

Figure 7-15 Limitations of the instrumental variable approach. (A): when the instrument 
(e.g., compulsory state law) is only weakly associated with the exposure (childhood schooling); 
(B): when the instrument is associated with other variables that are in turn related to the outcome 
(old age memory).



288 CHAPTER 7 | Stratification and Adjustment: Multivariate Analysis in Epidemiology

One example is the study of  the association between plasma homocysteine levels and 
cardiovascular disease. Observational studies have suggested that high levels of  homocys-
teine (an aminoacid that is a by-product of  methionine’s metabolism) are associated with 
both subclinical and clinical atherosclerosis.51,52 However, because high homocysteine 
levels might be the result of  low folate and vitamin B12 dietary intake,54,55 this association 
might be affected by confounding (e.g., poor diet resulting from unhealthy lifestyle, low 
socioeconomic status or other factors). Homocysteine metabolism and its blood levels are 
also affected by a functional polymorphism of  the gene encoding the enzyme methylene 
tetrahydrofolate reductase (MTHFR).50 A substitution of  cytosine (C) for thyamine (T) 
at the 677  T allele results in a decreased activity of  this enzyme; individuals who are 
homozygous for this polymorphism (MTHFR 677T TT) tend to have higher plasma 
homocysteine levels. The MTHFR 677T TT genetic variant thus mimics the effect of  low 
folate but is theoretically not subject to the potential confounding from factors affecting 
dietary intake of  vitamins. If  an association between the MTHFR 677T TT genotype 
and cardiovascular disease is observed, this will support the notion that homocysteine is 
causally related to cardiovascular disease (Figure 7-16) in view of  the association between 
this genotype and homocysteine levels. Note that this situation is analogous to the instru-
mental variable approach described above (Figure 7-12) and that the MTHFR 677T TT 
trait meets all required conditions that characterize an instrument: (1) it is associated 
with a higher level of  the exposure (homocysteine level); (2) it affects the outcome (cardio-
vascular disease) only through its association with the exposure; and (3) it is not affected 
by confounders of  the exposure-outcome association (diet, other lifestyle factors). 

Casas et al. used the Mendelian randomization approach represented in Figure 7-16 
to test the hypothesis that homocysteine is causally related to stroke.55 A meta-analysis 

?
?

High
homocysteine

levels

Cardiovascular
disease

Unhealthy
lifestyle,
low SES

MTHFR 677T TT
genotype

Low folate
intake

Figure 7-16 Example of Mendelian randomization. High levels of plasma homocysteine occur 
as a result of low dietary intake of folate. Because the association between low folate intake with 
other unhealthy behaviors or low socioeconomic status, an association between high homocysteine 
levels and cardiovascular disease could be due to confounding. But high homocysteine is also 
present in individuals homozygous for the T allele of the methylene tetrahydrofolate reductase 
677T polymorphism (MTHFR 677T TT). If an association between MTHFR 677T TT genotype (the 
instrumental variable) and cardiovascular disease is observed, this will suggest that high levels of 
homocysteine are associated with increase cardiovascular risk (see text).
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of  111 observational studies (see Section 10.4) found that the pooled mean difference 
in homocysteine concentration between MTHFR C677T TT and CC homozygous 
individuals was 1.93 micromol/L. The pooled odds ratio of  stroke was 1.26 (95% confi-
dence limits 1.14–1.40) for TT versus CC homozygotes—which was very similar to the 
pooled odds ratio estimate corresponding to a 1.93 micromol/L difference in homocys-
teine concentration from these same studies (pooled OR 5 1.20). The similarity in the 
strength of  the association of  the instrument with the outcome, and that of  the exposure 
with the outcome, can be regarded as evidence supporting causality. Taken overall, these 
results are consistent with a causal relation between homocysteine concentration and 
risk of  stroke.

In another example, Elliott et al. used Mendelian randomization to investigate whether 
C-reactive protein (CRP, a maker of  inflammation) is causally associated with coronary 
heart disease (CHD).56 The authors identified single-nucleotide polymorphisms (SNPs) 
that were associated with increased CRP but that were not related to risk of  CHD in a 
meta-analysis of  observational studies. These findings argue against a causal association 
between CRP and CHD and imply that the widely observed association between high 
CRP levels and cardiovascular outcomes might be explained by confounding or reverse 
causation (e.g., rather than a causal factor, high CRP may be a consequence of  athero-
sclerosis—the underlying pathological process in CHD).

It is important to note that Mendelian randomization is not limited to the study of  
biochemical markers such as homocysteine and CRP levels. It could be applied to any 
other characteristics (including other physical, mental, or behavioral) for which a genetic 
polymorphism can be causally linked. For example, this approach was used to assess 
the hypothesis that alcohol intake is causally related to risk of  esophageal cancer.57 This 
association has been well established in numerous observational studies and it has been 
attributed to the carcinogenic effects of  acetaldehyde, the principal alcohol metabolite. 
The ability to metabolize acetaldehyde is encoded by the ALDH2 gene; a single point 
mutation in ALDH2 results in the ALDH2*2 allele, which produces an inactive protein 
that is unable to metabolize acetaldehyde. Individuals who are ALDH2*2*2 homozygotes 
have unpleasant symptoms after consumption of  alcohol (including nausea, headaches, 
drowsiness) that prevent them from heavy drinking; heterozygotes have a limited ability 
to metabolize acetaldehyde but don’t have such an adverse physical reaction following 
alcohol intake. Lewis and Davey Smith57 found that, relative to ALDH2*1*1 homozy-
gotes, the risk of  esophageal cancer was reduced among *2*2 homozygotes (odds ratio 
5 0.36) and increased among *1*2 heterozygotes (OR 5 3.19). These results not only 
provide strong evidence in support of  the notion that the relation between alcohol intake 
and esophageal cancer is causal in nature; but they also validate the hypothesis that 
acetaldehyde plays a carcinogenic role.

Like instrumental variable analysis in general, Mendelian randomization is not free of  
limitations.58 The method can’t be used unless a genetic trait that is strongly associated 
with the exposure of  interest needs has been identified. Furthermore, the analysis might 
be confounded by linkage disequilibrium, i.e., if  the genetic polymorphism under study is 
associated (linked) with other genetic variants that increase or decrease the risk of  the 
outcome. This phenomenon is known as “population stratification” in the field of  genetic 
epidemiology and would constitute a violation of  the  third condition for an instrumental 
variable discussed above. Other possible limitations of  Mendelian randomization might 
occur as a result of  phenomena such as pleiotropy and developmental  compensation 
(“canalization”), as discussed in more specialized literature.58
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7.5.2 Propensity Scores
A propensity score is the predicted probability (“propensity”) of  exposure in a particular 
individual based on a set of  relevant characteristics.59 As originally proposed by 
Rosenbaum and Rubin,60 the propensity scores can be used to control for confounding 
in observational cohort studies using one of  several different approaches briefly 
described below. The idea is to try to mimic randomization by making the exposed and 
the unexposed groups as comparable as possible with respect to relevant confounding 
variables. Historically, these methods have been particularly popular in cohort studies 
assessing the effectiveness of  drugs or other therapies when random allocation was not 
done; but they can be equally applied to any other type of  exposure (see examples below). 
These methods have the intuitive appeal of  trying to emulate randomization and under 
certain circumstances provide a more efficient control of  confounding, which makes 
them particularly useful for the study of  rare outcomes.

The application of  this method involves two steps. In the first step, the exposure variable 
(e.g., treated or not treated) is modeled as the dependent variable in a multiple regression 
(typically a logistic regression) including as predictors covariates that are considered 
as possible confounders of  the exposure-outcome association. As described in Section 
7.4.3, the intercept and the regression coefficients from this multiple regression can then 
be used to calculate the predictive probability of  exposure as a function of  this multi-
variate set of  possible confounding variables. These predicted probabilities of  exposure 
(“propensity scores”) can then be applied either to generate a new dataset of  matched 
exposed and unexposed based on propensity score. Because these two groups are similar 
with respect to an overall set of  (known) covariates, this approach (described below) 
could be thought of  as analogous to a simulated randomization. An alternative approach, 
also briefly described below, is to use the propensity score as an overall covariate score in 
a multivariate regression model.

Propensity Score Matching
For this method, a new dataset is created that includes exposed and unexposed individuals 
matched with respect to the propensity score. This dataset is typically smaller than the 
original dataset as it only includes exposed and unexposed individuals whose scores 
matched (i.e., individuals in the extreme ranges of  the propensity score in either group 
for whom a match was not found are excluded.) 

An example of  this approach is a study of  the association between in-hospital 
smoking cessation counseling and 3-year mortality among 2,342 survivors of  a 
myocardial infarction at 103 acute care hospitals in Ontario, Canada.61 Of  these, 1,588 
patients received smoking cessation counseling (treated) before discharge and 754 did 
not (untreated). This intervention was not randomized and the two groups were quite 
different with regard to several characteristics that could strongly influence prognosis 
(Table 7-29, “Overall” columns). The smoking cessation counseling propensity scores 
were calculated using a set of  33 relevant characteristics (including demographic 
variables, risk factors, comorbidities, other treatments, etc.). To be considered a match, 
treated and untreated subjects had to be within 0.2 standard deviation units of  the logit 
of  the propensity score. Six hundred and forty-six treated and untreated propensity score-
matched pairs were identified. As shown on the right-hand side columns, these matched 
treated and untreated individuals were very similar with respect to the characteristics 
shown in Table 7-29, albeit not exactly identical for most of  them, as the matching 
was done on the overall propensity score. (Note that this is the same situation with 
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randomization: the randomized groups tend to be similar, but not necessarily identical 
with respect to most characteristics.) In this analysis, the 3-year probability of  death in 
the propensity matched treated and untreated groups were 0.14 and 0.16, respectively 
(relative risk 5 0.88; 95% confidence limits, 0.69–1.13). 

In another example, propensity score matching was used to explore whether female 
gender were at higher risk of  mortality following coronary bypass surgery.62 In this 
historical cohort study, the in-hospital mortality of  9848 males and 3267 females 
who underwent bypass surgery at a Texas hospital between 1995 and 2009 was 
compared. Because of  the potential for confounding according to differential severity 
and co-morbidity profiles between males and females, propensity scores for being female 
were calculated based on a logistic regression model including 20 potentially relevant 
clinical covariates. Based on these propensity scores, 1800 males were matched to the 

Overall Propensity score matched*

Smoking 
cessation 

counseling  
(n 5 1,588)

No 
counseling  
(n 5 754) p value

Smoking 
cessation 

counseling  
(n 5 646)

No 
counseling  
(n 5 646)

Age (mean years) 56.2 60.5  0.001 58.7 59.1

Female (%) 25.0 29.2 0.032 27.1 27.6

Diabetes (%) 16.4 23.7  0.001 21.7 20.1

Hyperlipidemia (%) 33.9 31.6 0.254 33.1 33.4

Hypertension (%) 34.1 39.1 0.017 38.2 38.2

Family history CHD (%) 47.5 33.6  0.001 36.4 33.7

Comorbid 

Stroke/TIA (%) 4.2 8.2  0.001 7.1 6.0

Cancer (%) 1.3 2.9 0.005 2.0 2.3

Depression (%) 8.2 10.1 0.145 9.8 9.8

CHF (%) 1.5 3.2 0.008 2.2 2.0

White cell count (in 1000) 10.8 11 0.17 10.7 10.9

Prescriptions

Statin 40.1 25.6  0.001 28.6 29.3

Beta-blocker 75.1 61.0  0.001 66.1 65.6

Aspirin 84.4 72.1  0.001 75.5 73.7

*Matching according to a total of  33 variables, including the variables shown in the table and the following variables: 
acute pulmonary edema, systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, angina, dementia, 
previous myocardial infarction, asthma, peptic ulcer disease, peripheral vascular disease, previous coronary revascular-
ization, hemoglobin, glucose, sodium, potassium, creatinine, angiotensin converting enzyme inhibitor, Plavix.  

CHD: coronary hearth disease; CHF: congestive heart failure.

Source: Data from PC Austin, A Tutorial and Case Study in Propensity Score Analysis: An Application to Estimating the Effect 
of  In-Hospital Smoking Cessation Counseling on Mortality. Multivariate Behavioral Research. Vol 46, pp. 119–151, © 2011.

Table 7-29 Example of propensity score matching: characteristics of myocardial infarction 
survivors who were given smoking cessation counseling and those who were not, overall and 
after propensity score matching.
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same number of  females. The odds ratio of  in-hospital mortality comparing females to 
males was 1.84 (95% confidence limits, 1.22–2.78). In comparison, a regular logistic 
regression analysis that included gender and the other 20 variables that were used in the 
propensity score calculation as covariates, the odds ratio associated with female gender 
was 1.67 (95% confidence limits, 1.35–2.05).

Covariate Adjustment Using the Propensity Score
For this approach, a multiple regression analysis (e.g., linear, logistic, or Cox regression) 
is conducted using the propensity score as a covariate—other covariates can also been 
added if  necessary.

For example, in the same smoking cessation counseling study described above,61 a 
logistic regression analysis with smoking cessation counseling as the main independent 
variable and the propensity score added to the model as a covariate, resulted in an 
estimated adjusted odds ratio of  3-year mortality associated with treatment of  0.79 
(95% confidence limits, 0.60–1.05). A logistic regression analysis including treatment 
and all the 33 covariates that were used in the propensity score calculation resulted in an 
odds ratio of  0.77 (95% confidence limits, 0.56–1.05) comparing treated to untreated 
patients. 

Propensity score covariate adjustment was also the approach used in a study of  the 
risk of  diabetes mellitus associated with statin use.63 A total of  153,840 participants in 
the Women’s Health Initiative without diabetes at baseline (7% of  whom were taking 
statins) were followed for a total of  1,004,466 person-years. Statin propensity score was 
estimated based on a logistic regression that included age, body mass index, self-report 
of  hypertension, self-report of  cardiovascular disease, family history of  diabetes, and 
smoking. In unadjusted analysis using Cox proportional hazards regression (Section 
7.4.4), statin use was associated with a relative hazard of  incident diabetes mellitus of  
1.71 (95% confidence limits, 1.61–1.83); after adjustment using the propensity score, 
the estimated relative hazard was attenuated but remained statistically significant 
(1.38, 95% confidence limits, 1.29–1.47). In adjusted analyses introducing all the same 
covariates used to construct the propensity score as separate terms in the Cox regression 
(instead of  the propensity score as such), the corresponding hazard ratio was 1.48 (95% 
confidence limits, 1.38–1.59). 

The approaches described in the preceding paragraphs are two of  the possible ways 
propensity scores can be used to control for confounding. Other alternative approaches 
also based on the propensity scores (not described here) are stratification on the propensity 
score and weighting by the inverse of  the propensity score.62,64

Partly because of  their intuitive appeal in their ability to handle a large number of  
covariates, propensity score-based methods are becoming increasingly popular and 
widely used.59 Compared to traditional regression methods for control of  confounding 
that include all known relevant covariates, the propensity score methods have the disad-
vantage of  losing useful information about predictors of  outcomes59—i.e., not explicitly 
examining the association between single covariates and the outcome. In any event, 
as shown in the above examples and elsewhere,59,61,64,65 the results of  analyses using 
these methods tend to be very similar to those using conventional multiple regression 
methods. Finally, propensity scores-based methods are fundamentally limited to the 
control of  known confounders on which information is available and, thus, like all the 
other methods described in this chapter, subject to potential residual confounding by 
unknown or misspecified confounding variables (see next section).
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7.6 INCOMPLETE ADJUSTMENT: RESIDUAL CONFOUNDING

The issue of  residual confounding, which occurs when adjustment does not completely 
remove the confounding effect due to a given variable or set of  variables, has been 
introduced in Chapter 5, Section 5.5.4. The sources for incomplete adjustment and/or 
residual confounding are diverse, and some of  the most important ones are discussed 
here.

 1. Improper definition of  the categories of  the confounding variable. This occurs, for 
example, when attempting to adjust for a continuous variable using categories 
that are too broad. For example, Table 7-30 shows the results of  different alterna-
tives for age adjustment when exploring the cross-sectional relationship between 
menopausal status and prevalent coronary heart disease (CHD) using unpub-
lished data from the ARIC study. The decrease in odds ratio when adjusting for 
age as a continuous variable indicates that the “age-adjusted” estimates using 
categorical definitions of  age did not completely remove its confounding effect. 
The inference that the best alternative for the age adjustment in Table 7-30 is 
the model using age as a continuous variable obviously requires assuming that 
CHD prevalence increases linearly with age throughout the entire age range of  
study participants. This is an approximately correct assumption in this particular 
example, given the relatively narrow age range of  the study population (middle-
aged women). This may not be the case, however, in other situations. For example, 
if  the age range of  individuals in the study covered the entire life span, a linear 
model would not be reasonable, as the rate at which the increase in CHD risk 
varies by age is different between younger and older individuals. In this situation, 
a model similar to model 3 in Table 7-30 (defining age categorically) might have 
been the most appropriate. Another example of  potential residual confounding 
relates to the adjustment for smoking using categorical definitions such as 
“current,” “former,” or “never.” The variability in cumulative dose within the first 
two categories (i.e., in average number of  cigarettes per day, pack-years, and time 
since quitting) may be large, thus resulting in important residual confounding 
when evaluating relationships between variables confounded by smoking.

 2. The variable used for adjustment is an imperfect surrogate of  the condition or  characteristic 
the investigator wishes to adjust for. When using a given variable in an epidemiologic 

Model OR 95% Confidence interval

1 Crude 4.54 2.67–7.85

2 Adjusted for age using two categories: 45–54 
and 55–64 years (Mantel-Haenszel) 3.35 1.60–6.01

3 Adjusted for age using four categories: 
45–49, 50–54, 55–59, and 60–64 years 
(Mantel-Haenszel) 3.04 1.37–6.11

4 Adjusted for age as a continuous variable 
(logistic regression) 2.47 1.31–4.63

Table 7-30 Cross-sectional relationship between natural menopause and prevalent coronary 
heart disease (CHD), Atherosclerosis Risk in Communities (ARIC) Study, ages 45 – 64, 1987–1989.
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study, it is important to consider the issue of  its construct validity (i.e., the extent 
to which it represents the exposure or the outcome it purports to represent).66 A 
typical example leading to residual confounding is the use of  education to adjust 
for social class when evaluating ethnic differences (e.g., black–white differences) 
in a given outcome, as residual differences in access to goods and income level may 
exist between ethnic/racial groups, even within each educational-level category.67

 3. Other important confounders are not included in the model. If  some of  the confounding 
variables are left out of  the model, the adjusted estimates will obviously still be 
confounded. The results in the first row of  Table 7-26, for example, are adjusted for 
demographic variables; if  these had been the only results provided (either because 
of  missing data on the additional possible confounders considered in the second 
model or because these data, although available, had been deemed unimportant 
by the investigators), their interpretation would have been that a high level of  
C. pneumoniae antibodies was associated with a 60% increase in the “adjusted” 
hazard ratio of  CHD. Even the second model, which implies that the association 
is either weak or nonexistent, may be subject to residual confounding, because of  
the failure to include additional (unmeasured or unknown) confounders. Another 
example is the study showing an association between frequent sexual activity and 
lower mortality68 that was discussed in Chapter 5, Section 5.5.4. As mentioned 
in that section, the lower mortality of  study participants with a higher frequency 
of  sexual intercourse persisted when a number of  putative confounding variables 
were adjusted for using multiple logistic regression. In their discussion, the 
authors of  that study speculated that unknown confounders might account for 
the results. Although they did not discuss which specific variables might account 
for residual confounding, at least two possibilities can be suggested. First, social 
class, an important determinant of  both disease and mortality, has been taken 
into consideration in only a very crude manner by a dichotomous occupational 
variable (“manual” and “nonmanual” occupations); thus, substantial residual 
confounding may have remained. In addition, the only prevalent disease adjusted 
for was CHD; other diseases affecting both sexual activity and mortality (e.g., 
diabetes, perhaps psychiatric conditions) apparently were not considered and 
could result in residual confounding of  the reported results.

 4. Misclassification of  confounding variables. Another source of  residual confounding 
is misclassification of  confounders, which results in imperfect adjustment.69 Thus, 
for example, if  there is no causal association between exposure and outcome, but 
the confounded association is reflected by a risk ratio or odds ratio greater than 
1.0, adjustment for misclassified confounders may not result in an adjusted risk 
ratio or odds ratio of  1.0. An example of  this phenomenon, based on hypothetical 
data, is presented in Table 7-31. The left hand side of  this table shows the same 
data from Table 7-1; in this example, although the crude odds ratio suggested 
that males were at a 71% higher risk of  malaria than females, this association 
all but vanished in occupation-stratified analyses; the occupation-adjusted ORMH 
was 1.01 (see Sections 7.2 and 7.3.3). When misclassification of  the confounder 
occurs (right-hand side of  the table), the resulting “adjusted” ORMH (1.30) is 
affected by residual confounding and fails to remove the confounding effect of  
occupation completely. The example in Table 7-31 is one of  the simplest cases 
of  misclassification: non-differential and only in one direction. More complex 
patterns of  misclassification (e.g., bidirectional and/or differential) may lead 
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to unpredictable consequences with respect to the magnitude of  bias in the 
“adjusted” estimates.

Methods to assess the impact of  residual confounding resulting from confounder 
misclassification have been described.70 These methods allow the estimation of  how 
much confounding is likely to remain based on the change in estimates after adjusting 
for the imperfect confounding measure. 

7.7 OVER-ADJUSTMENT

As mentioned in Chapter 5 (Section 5.5.3), adjustment for a given variable implies an 
adjustment, at least partially, for other variables related to it. Thus, when adjusting 
for educational level, adjustment for income is to a certain extent also carried out. As 
mentioned previously, depending on the specific characteristics of  the study population, 
adjustment for residence will result in adjustment for related variables, such as 

Table 7-31 Hypothetical data showing residual confounding resulting from nondifferential 
misclassification of a confounder (occupational status).

Correctly classified 
occupational status*

Misclassified  
occupational status†

Mostly outdoor occupations

Cases Controls Total Cases Controls Total

Males 53 15 68 OR 5 1.06 35† 10 45 OR 5 1.00

Females 10 3 13 7 2 9

Total 63 18 81 42 12 54

Mostly indoor occupations

Cases Controls Total Cases Controls Total

Males 35 53 88 OR 5 1.00 53† 58 111 OR 5 1.33

Females 52 79 131 55 80 135

Total 87 132 219 108 138 246

“Correct” ORMH 5 1.01 “Misclassified” ORMH 5 1.30

*See Table 7-1.
†Nondifferential misclassification: one-third of  all individuals with mostly outdoor occupation (regardless of  case-control 
or gender status) are misclassified to mostly indoor occupation. (All the misclassified numbers are rounded to the nearest 
integer.) For example, of  the 53 male cases in outdoor occupations, 18 ( 53 3 0.333) are  misclassified to mostly indoor, 
which leaves 35 subjects in that cell; in turn, as many as 53 male cases (35 correctly classified 1 18 misclassified) are 
now included in the  corresponding indoor occupation stratum.

All cases and controls

Cases Controls Total

Males 88 68 156 OR 5 1.71

Females 62 82 144

Total 150 150 300
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socioeconomic status or ethnic background. Over-adjustment (or overmatching, for a 
variable adjusted for by matching) is said to occur when adjustment is inadvertently 
carried out for a variable that is either in the causal pathway between the exposure and 
the outcome (thus being an “intermediate” cause) or so strongly related to either the 
exposure or the outcome that their true relationship is distorted.71 Over-adjustment can, 
therefore, obscure a true effect or create an apparent effect when none exists.72

An example is given by the adjustment for hypertension when examining the 
association between overweight and hemorrhagic stroke. As hypertension is likely to 
be an important mechanism explaining this association, adjustment for it may lead to 
obscuring the obesity–stroke relationship. As discussed in Chapter 5 (Section 5.2.3), it 
would nevertheless be appropriate to adjust for an intermediate cause or a mechanistic 
link when assessing the presence of  residual effects due to alternative mechanisms.

Over-adjustment may also occur when adjusting for a variable closely related to 
the exposure of  interest. An example that epitomizes gross over-adjustment is the 
adjustment for residence when studying the relationship of  air pollution to respi-
ratory disease. Other examples include situations when different variables representing 
overlapping constructs are simultaneously adjusted, as when including education, 
income, occupation, and aggregate (ecologic) measures of  income or other socio-
economic indicators in the same regression model. Because all of  these variables are 
markers of  “social class,” their collinearity would render the corresponding regression 
coefficients hard to interpret, or even meaningless.

The issue of  over-adjustment underscores the need to consider the biologic under-
pinnings of  a postulated relationship, as well as to carry out a thorough assessment of  
the relationships between the postulated confounding variable on the one hand and the 
exposure and outcome variables on the other (see Chapter 5, Section 5.3).

7.8 CONCLUSION

Our aim is to discover and ascertain the nature and substance of  
the soul, and, in the next place, all the accidents belonging to it.

Aristotle (quoted in Durrant73(p.15))

Statistical models are conceptual and mathematical summaries that are meant to 
express the presence of  a certain pattern or association between the elements of  a system 
(e.g., suspected risk factors and disease outcome). The epidemiologist uses statistical models 
“to concisely summarize broad patterns in data and to interpret the degree of  evidence in 
a data set relevant to a particular hypothesis.”74 (p.1064) When trying to identify patterns of  
associations between exposures and outcomes in epidemiology, the goal of  the modeling 
process is usually to find the most parsimonious statistical model (i.e., the simplest model 
that satisfactorily describes the data). One simple way to understand this idea is to conceive 
the statistical model as a sketch or a caricature of  the association under investigation. Thus, 
statistical modeling could be seen as a process analogous to that of  a cartoonist trying to 
find the few lines that capture the essence of  the character being portrayed, as illustrated in 
Figure 7-17. The four panels in this figure can be conceived as four “models” of  former US 
president William J. Clinton. The model in Figure 7-17A is the simplest but fails to represent 
effectively the person that it is trying to portray (most people would not recognize President 
Clinton if  shown only this picture). Some, but not all people, would recognize Clinton if  
shown Figure 7-17B, and probably almost everyone would recognize him in the sketch 
in Figure 7-17C. Thus, when looking for a succinct, parsimonious model to describe the 
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essence of  Clinton’s portrait, those shown in Figures 7-17B or 7-17C would be the best 
choices. The “model” in Figure 7-17D fits “the data” better, but at the expense of  making 
each of  the elements in the sketch less useful in portraying the essence of  the character.

This process is similar when using statistical modeling in epidemiologic analysis. 
As discussed by Zeger,74 statistical models should be considered as “tools for science” 
rather than “laws of  nature”: “Statistical models for data are never true. The question of  
whether a model is true is irrelevant. A more appropriate question is whether we obtain 
the correct scientific conclusion if  we pretend that that process under study behaves 
according to a particular statistical model.”74(p.1064)

Figure 7-16 Building a “model” of President Clinton. 

Source: Copyright © Kevin “KAL” Kallaugher, 1986, Baltimore Sun, Cartoonists and Writers Syndicate.
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Thus, the key question is whether the model fits the data reasonably well in order 
to help the investigator to derive appropriate inferences. This means that whether the 
estimated value of  the parameter (e.g., b1 5 0.0025 mm in Table 7-16, model 1) is a 
perfect estimate of  the “true” relationship between systolic blood pressure (SBP) and 
carotid intimal-medial thickness (IMT) or whether the true relationship between these 
two variables is exactly linear (e.g., Figure 7-4) is not that important. Often, the relevant 
questions are whether there is a more or less linear increment and what the approximate 
average increment is on y per unit of  x after controlling for certain covariates. It should 
be again emphasized, however, that, as in the example in Figure 7-9, a model should 
never be adopted just because it is simple if  it does not describe the association of  interest 
properly (e.g., Figures 7-9B or 7-9C).

The attractiveness of  simple linear models is precisely their simplicity and the inter-
pretability of  the parameters, such as the straight line that expresses the expected 
increase in carotid IMT for a given increase in SBP (Figure 7-4). Assuming that the model 
is appropriate (i.e., that the association is linear), it is possible to calculate the param-
eters (intercept and linear regression coefficient of  the line—the model) that would best 
fit the data (Equation 7.2). Thus, the assumption is that the line in Figure 7-4 reflects the 
true essence of  the relationship between SBP and IMT and that the scatter around the 
line (the observed data) is just noise (i.e., within-individual variability or random error).

The same logic applies to situations that incorporate the mutual relations among 
different correlates of  both “exposure” (e.g., SBP) and “outcome” (e.g., IMT), such as 
models 2 to 4 in Table 7-16. These multivariate or multiple-regression models, while still 
assuming that the relationship between these variables is linear, define a multidimen-
sional space where the mutual correlations between the independent and dependent 
variables can be accounted for. Thus, each estimate from these multiple-regression 
models (each regression coefficient) is said to be adjusted for all of  the other variables 
in the model, although it is important to always consider the potential limitations of  
this kind of  inference, as discussed in Sections 7.6 and 7.7. This discussion applies to 
all generalized linear models that were presented in preceding sections in this chapter 
(see Table 7-15), which differ only with regard to the type of  dependent variable and, 
consequently, the interpretation of  the corresponding regression coefficient.

It may, of  course, be found that the data do not fit one of  these simple “linear” models. 
For example, if  the type of  scatter in Figures 7-9, 7-10, or 7-11 is observed, it would 
probably be necessary to use some of  the more complex modeling approaches that were 
discussed in Section 7.4.7 (dummy variables, quadratic terms, etc.). Furthermore, if  it 
is suspected that two or more of  the covariates in the model interact (i.e., if  one modifies 
the effect of  the other), stratification or inclusion of  interaction terms will be needed to 
account for such interactions.

Again, the investigator has to take a stand in the trade-off  between fit and simplicity 
(interpretability) of  the model. Ignoring the possibility that a linear association may not 
be a good way to describe the association of  interest may lead to seriously misleading 
conclusions. The need to examine the data carefully cannot be sufficiently emphasized. 
The use of  dummy variables to examine patterns of  associations across the range of  
values of  continuous variables was discussed briefly in Section 7.4.7. More advanced 
statistical textbooks cover in great detail other statistical tools to assess the goodness of  fit 
of  the models described previously here (see, for example, Draper and Smith14 for linear 
models, Hosmer and Lemeshow21 for logistic models, and Collett26 for Cox regression). 
If  a straight line is not an appropriate model, more complex models need to be adopted, 
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such as those seen in Figures 7-10 and 7–11, a process that could be seen as analogous 
to going from B to C or D in Figure 7-9.

The preceding discussion pertains to the use of  statistical models in identifying and 
describing associations between exposures and outcomes in epidemiology; however, 
statistical models can also be used for prediction, as discussed with examples in the 
logistic regression section in this chapter (Section 7.4.3). In this case, obtaining a model 
as parsimonious as possible is no longer the primary goal. In fact, to obtain an accurate 
prediction of  the expected value of  a dependent variable, the more complex the model, 
the better. Because the interpretation of  the parameters in themselves is not the goal, 
complex models (e.g., Figures 7-10 and 7-11) are perfectly suitable for prediction. Again, 
using the analogy of  the cartoonist (Figure 7-17), if  the goal was to identify the subject 
accurately (e.g., if  the cartoonist was working for the police in creating—predicting—a 
suspect’s portrait), the most complex “model” of  the type shown in Figure 7-9D would 
be a more appropriate choice—an actual photograph would be even better. 

7.8.1  Selecting the Right Statistical Model
So far, this discussion has focused mainly on modeling issues with respect to the shape 
of  the relationship between a certain independent variable and a dependent variable. 
Obviously, however, this is not the only issue in statistical modeling. Other fundamental 
decisions in any multivariate or multiple-regression analysis are (1) the choice of  the 

Type of  study
Type of  dependent  
variable (outcome)

Multivariate  
technique

Adjusted measure 
of  association

Any Continuous biological 
 parameter

ANOVA
Linear regression

Difference in means
Linear regression 
 coefficient

Cross-sectional Diseased/nondiseased Direct adjustment
Indirect adjustment

Mantel-Haenszel
Logistic regression

Prevalence rate ratio
Standardized  
 prevalence ratio
Odds ratio
Odds ratio

Case-control Diseased/nondiseased Mantel-Haenszel
Logistic regression

Odds ratio
Odds ratio

Cohort Cumulative incidence (by 
 the end of  follow-up)

Cumulative incidence 
 (Time-to-event data) 
Incidence rate (per 
 person-time)

Direct adjustment
Indirect adjustment

Mantel-Haenszel
Logistic regression
Cox model

Mantel-Haenszel
Poisson regression

Relative risk
Standardized 
 incidence ratio
Odds ratio
Odds ratio
Hazard ratio

Rate ratio
Rate ratio

Nested 
 Case-control 
 Case-cohort

Time-dependent disease 
 status  
(Time-to-event data)

Conditional logistic 
 regression
Cox model with 
 staggered entries

Hazard ratio

Table 7-32 Commonly used analytic techniques available to the epidemiologist for the 
assessment of relationships between exposures and outcomes.
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specific regression/stratification-based technique and (2) the choice of  the variables to 
be included in the multivariate equation or stratification scheme.

The choice of  the adjustment technique (stratification or regression based) is often a matter 
of  convenience and personal preference. The choice of  a particular adjustment technique 
over all others described in the preceding sections of  this chapter (and others not covered 
here) is often based on the type of  study design, the type of  variables (dependent and 
independent) under investigation, and the type of  measure of  association that one 
wishes to obtain. Table 7-32 summarizes how the adjustment techniques described in 
this chapter relate to the main study designs, variable types, and measures of  association.

Analysis of  variance methods (not discussed here) and linear regression models are 
indicated when the outcome variable is continuous. When the outcome is a binary 
variable (as is often the case in epidemiology), the adjustment techniques based on the 
popular multiplicative models described previously (e.g., Mantel-Haenszel summary odds 
ratio or rate ratio, logistic regression, Cox regression, Poisson regression) tend to provide 
similar results. This is illustrated by the similarity of  results obtained in Tables 7-16, 
7-18, 7-19, 7-21, and 7-22. A similar example can be found in Kahn and Sempos,16 
where different stratification-based and multiple-regression-based adjustment methods 
were used to obtain the adjusted estimates of  the associations of  three risk factors 
( hypertension, age, and male sex) with coronary heart disease in a subset of  partici-
pants from the Framingham Heart Study. All methods resulted in comparable estimates 
leading to similar conclusions. As discussed by Greenland,75 many of  these methods often 
used in epidemiology (e.g., Mantel-Haenszel, logistic, Poisson, Cox) are based on similar 
assumptions (i.e., multiplicative relationships between risk factors and disease) and have 
similar epidemiologic meanings. Thus, it is not surprising that, with the exception of  
unusually extreme circumstances (e.g., gross violations of  the basic assumptions of  the 
model, extreme outliers), these methods will often produce similar results.

The issue of  which independent variables (confounders) ought to be included in the model 
is at the core of  the discussion on the topic of  confounding in general (Chapter 5) and of  
residual confounding in particular (Section 7.6). A detailed discussion of  the statistical 
techniques which could be helpful in choosing a particular set of  variables for a model 
is outside of  the scope of  this textbook. A useful overview was provided by Greenland.75

Finally, an important recommendation when choosing a particular statistical model 
is to conduct a sensitivity analysis (i.e., to check whether similar results are obtained 
when different models or assumptions are used for the analysis).75,76

Because of  the increased ease and availability of  computers and computer software, 
the last few years have seen a flourishing of  the options for and frequency of  use of  multi-
variate analysis in the biomedical literature. These highly sophisticated mathematical 
models, however, rarely eliminate the need to examine carefully the raw data by means 
of  scatter diagrams, simple n 3 k tables, and stratified analyses.
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EXERCISES

 1. The association between activities of  daily living and the prevalence of  low 
back pain was studied cross-sectionally in a sample of  middle aged and 
older adult residents in a suburban area. One of  the activities of  interest 
was “gardening.” Current prevalent low back pain was defined based on the 
reporting of  at least one episode of  low back pain during the last month. The 
following table shows the distribution of  individuals according to the preva-
lence of  low back pain (“outcome”) and whether they frequently engaged 
in gardening activities (“exposure”). Because the authors of  the study were 
concerned with the possible confounding effect of  age, the data were stratified 
by age as follows:

  

Frequent gardening Low back pain

Yes No

Age  65 years Yes 70 299

No 20 198

Age  65 years Yes 55 15

No 40 25

  a.  Use the data presented in this stratified table to assess whether age meets each 
of  the criteria to be a confounder, and justify your answers. 

   1st criteria: Age is related to the “exposure.”

   2nd criteria: Age is related to the “outcome.”

   3rd criteria: (Describe) 

  b.  Use the data shown in the previous table to calculate the crude odds ratio of  
low back pain (i.e., not considering age), comparing those who do frequent 
gardening with those who do not.

  c.  Based on the data shown in the previous table, use the Mantel-Haenszel 
method to calculate the age-adjusted odds ratio of  low back pain comparing 
those who do frequent gardening with those who do not.

  d.  Was it appropriate to carry out this adjustment?

  e. Which of  the following statements best describe the preceding data?

      Ag e is a negative confounder of  the association between gardening and low 
back pain.

      Ag e is a positive confounder of  the association between gardening and low 
back pain.

      Ag e is an effect modifier of  the association between gardening and low back 
pain.

      Ag e is both a confounder and an effect modifier of  the association between 
gardening and low back pain.

   Justify your answer.
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 2. Fukushima et al. conducted a case-control study of  the relationship of  peak (as 
opposed to average) alcohol drinking and risk of  Parkinson’s disease. The 124 cases 
were patients within 6 years of  the onset of  the disease and were recruited from 11 
collaborating Japanese hospitals. Controls were inpatients and outpatients without 
neurodegenerative diseases, and numbered 327. The odds ratios expressing the 
relationship of  peak alcohol drinking to Parkinson’s disease are shown in the table:

Odds ratios for Parkinson’s disease in relation to alcohol drinking during peak period

No. (%) No. (%)

Frequency of  
alcohol drinking 
during peak period

Cases  
(N 5 124)

Controls  
(N 5 327)

Crude OR* (95% CI) Adjusted† OR

Nondrinker 115 (53.7) 181 (55.4) 1.00 1.00

 6 days/week 63 (29.4) 77 (23.6) 1.29 (0.86, 1.93) 1.29 (0.78, 2.13)

 6 days/week 36 (16.8) 69 (21.1) 0.82 (0.51, 1.30) 0.96 (0.50, 1.81)

P for trend 0.70 0.96

*Odds ratio
†Adjusted for sex, age, region of  residence, pack-years of  smoking, years of  education, body mass index, alcohol 
flushing status, and medication history for hypertension, hypercholesterolemia, and diabetes.
(Modified from W Fukushima, Y Miyake, K Tanaka, et al. BMC Neurology. 2010;10:111–119)

  a.  Examining only the point estimates of  OR, what can be inferred when 
comparing the crude with the adjusted ORs?

  b.  Examining the point estimates for both the crude and the adjusted ORs, was it 
appropriate to do a linear trend test?

 3.  The table shows the relationship of  smoking to coronary heart disease incidence 
rates in the Atherosclerosis Risk in Communities (ARIC) Study.‡

      

Age, field center- and race-adjusted average coronary heart disease incidence 
rates/1000 person-years, ARIC

Rate

Smoking Women Men

Current 5.3 11.5

Never 1.3 4.7

‡Modified from: LE Chambless, G Heiss, AR Folsom, et al. Association of  coronary heart disease incidence with carotid arterial 
wall thickness and major risk factors. Am J Epidemiol. 1997;146:483–494.
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  a.  Using the direct method and a standard population of  5000 current smokers 
and 2000 never smokers, calculate the smoking-adjusted rates/1000 person-
years, the smoking-adjusted rate ratio and absolute difference in rates. For 
these calculations, assume that women represent the “unexposed” category.

     

Standard population Expected number of  cases

Smoking Women Men

 Current 5000

 Never 2000

Total 7000

Smoking adjusted rate

Rate ratio 1.0

Absolute difference in rates 0

  b.  Using the data in the first table, calculate the smoking stratum specific rate 
ratios and absolute differences between men and women.

  c.  Assuming that men are the “exposed” category and women the “unexposed” 
category, and further assuming that these relative and absolute differences are 
valid (i.e, free of  additional confounding and bias), how do you interpret the 
first table’s findings?

  d.  Now repeat all these calculations using a standard population formed 
by 10,000 never smokers and 500 current smokers. 

     

Standard population Expected number of  cases

Smoking Women Men

 Current  500

 Never 10, 000

Total 10, 500

Smoking adjusted rate

Rate ratio 1.0

Absolute difference in rates 0

  e.  How do you explain the differences/similarities between this table and the 
previous table?

  f.  From the comparison between the results in this table and the previous table, 
what can be inferred about the use of  standard populations?



308 CHAPTER 7 | Stratification and Adjustment: Multivariate Analysis in Epidemiology

 4. The questions that follow are based on the data below. 

  a.  Using the data below, calculate “age-standardized” incidence rate ratios 
in populations A and B. For this calculations, an external study population 
should be used as the source of  the “standard rates.” Note that the age-specific 
incidence rates are exactly the same in these two study populations.

  

Expected numbers 
of  incident cases

Age

Population 

A

Population 

B

Incidence 

rates/1000 

in A and B

“Standard” 

rates/1000

Population 

A

Population 

B

45–54 2000 400 10.0 5.0

55–64 800 600 15.0 7.0

65–74 400 2500 25.0 20.0

Total 
population 3200 3500 12/1000

Total number 
of  cases

Standardized 
incidence  
ratio

  b. What is the interpretation of  the standardized incidence (or mortality) ratio?

  c.  Why, in spite of  having the same age-specific incidence rates, there was such  
a fairly large difference in the standardized incidence ratio between popula-
tions A and B?

 5. Gallagher et al. conducted a clinical trial of  458 children to assess the effec-
tiveness of  a sun protective cream (“sunscreen”) with regard to the development 
of  new nevi during a 3-year follow-up.§ Parents of  children assigned to the 
intervention group were told to apply sunscreen (SPF) 30 when sun exposure 
was expected to last 30 minutes or longer. Parents of  control children were not 
given any advice pertaining to use of  sunscreen. The table shows data based on 
Gallagher et al.’s study.

    

Sunscreen group Control group

Sunburn 
score No. (%)

Mean  
no. of   

new nevi No. (%)

Mean  
no. of  

new nevi

[Control – 
sunscreen]  

mean difference

Low 50 (22.5) 20 180 (76.0) 50 30

High 172 (77.5) 60 56 (24.0) 40 30

Total 222 (100.0) 51 136 (100.0) 59.5 8.5

§Gallagher RP, Jason K, Rivers JK, et al. Broad-spectrum sunscreen use and the development of  new nevi in white children: a 
randomized controlled trial. JAMA 2000;283:2955–2960.
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  a.  By mere inspection of  the table would you conclude that sunburn score is a 
confounding variable? Why?

    Yes

    No

  b.  Using the data in this table, and as standard weights (“standard population”) 
the sum of  the sunscreen and control groups shown in the table, calculate the 
sunburn score-adjusted difference in mean number of  new nevi between the 
sunscreen and the control groups.

  c.  If  another set of  standard weights had been used, would the same sunburn 
score-adjusted difference be observed? Why?

    Yes

    No

  The authors also examined the development of  new nevi according to the percent 
of  the childrens’ faces covered by freckles. The results are shown in the table.

   

Number of  new nevi in the sunscreen and control group

No. of  new nevi

Freckles % Sunscreen Control Difference 

10 24 24 0

20 20 28 28

30 20 30 210

40 16 30 214

  d.  What important information would be lost if  only freckle-adjusted mean 
differences in the development of  new nevi had been reported by the authors?
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 6. In the hypothetical results of  an individually matched case-control study shown 
in the table, the authors selected three controls per case. Calculate the odds ratio 
using the Mantel-Haenszel method to adjust for matching variables.

    

Exposed? Case Cont Total
No. of  

matched sets Num Den

Yes 1 0 4 40

No 0 3

Yes 1 1 4 60

No 0 2

Yes 1 2 4 12

No 0 1

Yes 1 3 4 10

No 0 0

Yes 0 0 4 30

No 1 3

Yes 0 1 4  5

No 1 2

Yes 0 2 4  7

No 1 1

Yes 0 3 4 20

No 1 0

  Numerator 5 

  Denominator 5 

  ORMH 5

 7. In a study of  the determinants of  serum glucose levels in a population of  women, 
four variables were found to be significantly associated in multiple logistic regression 
analyses with impaired glucose tolerance (serum glucose ≥7.8 mmol/L). The 
following results were obtained when four variables were simultaneously included 
in the model with impaired glucose tolerance as the dependent variable:

  

Variable Logistic regression coefficient Standard error

Body mass index (kg/m2) 0.077 0.032

Waist/hip ratio (ratio increase of  1.0) 3.625 1.670

Diabetogenic drugs: yes 5 1; no 5 0 0.599 0.302

Regular exercise: no 5 1; yes 5 0 1.664 0.740

  a.  State in words the meaning (interpretation) of  the logistic regression  
coefficients for waist/hip ratio (3.625) and regular exercise (1.664).
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  b.  Based on the information in the table, calculate the odds ratios and their corre-
sponding 95% confidence limits for each of  the variables, as indicated in the 
following table:

   

Variable Odds ratio 95% CL

Body mass index (kg/m2) ………………… …………………

Waist/hip ratio ………………… …………………

Diabetogenic drugs: yes 5 1; no 5 0 ………………… …………………

Regular exercise: no 5 1; yes 5 0 ………………… …………………

  c.  State in words the meaning of  the odds ratio for waist-to-hip ratio and for 
regular exercise.

  d.  Based on the data previously described, the investigators concluded, “In our 
study, waist/hip ratio was more strongly associated with impaired glucose 
tolerance than with body mass index.” Do you agree with this conclusion? 
Why?

  e.  Calculate the odds ratio and the 95% confidence limits for an increase in 0.01 
in the waist/hip ratio. (It is suggested that you use the answer to this question 
to reconsider your answer to the previous question.)

 8. Plasma fibrinogen concentration has been shown to be a predictor of  incident 
clinical atherosclerotic disease. In a study looking at correlates of  plasma 
fibrinogen levels in a group of  middle-age adults, multiple linear regression 
methods were used to explore what other risk factors may be associated with 
plasma fibrinogen levels. The following table shows some of  the results from this 
study. In the analyses under “Model 1,” only demographic variables (age, sex, and 
race) were included. In model 2, cigarette smoking was added. In model 3, body 
mass index was added.

  

Multiple linear regression analyses of  predictors of  plasma fibrinogen levels (in mg/dL)

Characteristic Label Model 1 Model 2 Model 3

Estimated regression coefficient

Age (1 year) b1 0.019 0.020 0.018

Sex (women 5 1, men 5 0) b2 29.1 28.4 29.0

Race (blacks 5 1, whites 5 0) b3 15.8 15.9 6.8

Cigarettes per day** 1–19 b4 — 11.3 12.2

20 b5 — 18.5 17.3

Body mass index (1 kg/m2) b6 — — 4.7

**Reference category: nonsmokers.

  a.  State in words the interpretation of  b1 (the coefficient for age) and b4 (the  
coefficient for 1–20 cigarettes/day) in model 3.

  b. Which of  the corresponding statements best corresponds to these results?
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     Bo dy mass index but not cigarette smoking is an effect modifier of  the 
 association between race and plasma fibrinogen levels.

    Bo th body mass index and smoking are positive confounders of  the  association 
between race and plasma fibrinogen levels.

    Bo dy mass index but not cigarette smoking is a positive confounder of  the 
association between race and plasma fibrinogen levels.

    Bo dy mass index but not cigarette smoking is a negative confounder of  the 
association between race and plasma fibrinogen levels.

    Th ere is evidence of  an interaction between body mass index and cigarette 
smoking in relationship to plasma fibrinogen levels.
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8.1 INTRODUCTION

As with other types of  empirical research, the validity of  the inferences made from results 
of  epidemiologic research depends on the accuracy of  its methods and procedures. In 
epidemiologic jargon, the term validity (or accuracy) refers to absence of  bias. The most 
common biases and some approaches to prevent their occurrence so as to maximize the 
validity of  the study’s results and inferences were discussed in Chapter 4. This chapter 
extends the discussion of  issues related to the accuracy of  data collection and data 
processing that should be considered when designing and conducting epidemiologic 
studies. In addition to validity or lack of  bias, this chapter also addresses issues related to 
assessing and ensuring reliability (precision, reproducibility) of  the data collected.

The terms quality assurance and quality control are sometimes used interchangeably or, 
even more often, lumped together under a common term, quality control. However, for 
systematization purposes in this chapter, the activities to ensure quality of  the data before 
data collection are regarded as quality assurance, and the efforts to monitor and maintain 
the quality of  the data during the conduct of  the study are regarded as quality control.

Quality assurance and quality control activities are key components of  epidemiologic 
research and are best understood in the context of  the key features of  an epidemiologic 
study design. The important features of  a study design, aptly described in Kahn and 
Sempos’s textbook,1 provide the background for further elaboration in the context of  this 
chapter (Table 8-1). Most components of  a study can be said to relate to quality assurance 
or quality control in one way or another in the broad context of  validity and reliability 
of  epidemiologic research. This chapter, however, focuses on the activities more tradi-
tionally regarded as belonging to the realms of  quality assurance or control (i.e., items 7 
and 8 in Table 8-1). For an additional systematic review on this topic, see Whitney et al.2

To illustrate some of  the issues covered in the discussion that follows, Appendix 
D includes a verbatim transcription of  the quality assurance and control manual 
for two procedures carried out in a multicenter cohort study of  atherosclerosis, the 
Atherosclerosis Risk in Communities (ARIC) study:3 blood pressure and venipuncture.

8.2 QUALITY ASSURANCE

Quality assurance activities before data collection relate to standardizing procedures 
and thus preventing or at least minimizing systematic or random errors in collecting 
and analyzing data. Traditionally, these activities have comprised detailed protocol 
preparation, development of  data collection instruments and procedures and their 
manuals of  operation, and training and certification of  staff. (The development 
of  manuals specifying quality control activities can also be regarded as a quality 
assurance activity.) 
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Activity (quality assurance, QA,  

or quality control, QC ) Comments

1.  Formulation of  study’s main hypothesis/
hypotheses (QA)

The hypothesis should specify the independent 
(e.g., risk factor) and the dependent (e.g., disease 
outcome) variables. If  the investigators plan to 
analyze interaction, the study’s hypothesis should 
specify the potential effect modifier(s).

2.  A priori specification of  potential confounding 
variables (QA)

A review of  the pertinent literature may assist the 
investigators in identifying the main confounding 
variables, and thus help in choosing the most 
appropriate study design (e.g., matched vs 
unmatched case-control) and in selecting the data 
that need to be collected.

3.  Definition of  the characteristics of  the study 
population for external validity (generalizability) 
purposes (QA)

The ability to generalize results to other popula-
tions is conditional on several circumstances, 
including differences in the distribution of  effect 
modifiers and the characteristics of  the study 
population. A detailed characterization of  the 
study participants allows data “consumers” to 
decide whether findings are applicable to their 
target population.

4.  Definition of  the design strategy  
(e.g., cohort, case-control, case-cohort) and of  
the groups to be compared, and specification 
of  selection procedures for internal validity 
(comparability) purposes (QA)

Selection of  groups to be compared relates to 
prevention of  selection bias and the level of  
confounding to be expected. The strategy for 
the search of  confounders in addition to those 
suggested by previous studies should be specified.

5.  Definition of  the design strategy and samples for 
studies of  reliability and validity (QA/QC)

The approach for selection of  samples for studies 
of  repeat measurements (reliability) of  comparison 
with “gold standards” (validity) should be 
specified.

6.  Specification of  the study power necessary to 
detect the hypothesized association(s) at a given 
level of  significance (QA)

The estimation of  sample size is an important 
guidepost to decide whether the study has 
sufficient power at a given alpha error level, 
and it should take into account the potential 
interaction(s), if  specified in the study hypothesis.

7. Standardization of  procedures (QA) This includes preparation of  written manuals that 
contain a detailed description of  the procedures 
for selection of  the study population and data 
collection, as well as training and certification of  
staff.

8.  Activities during data collection, including 
analysis of  quality control data and remedial 
actions (QC)

These include ongoing monitoring of  data 
collection procedures, as well as conducting 
studies on samples to assess validity and reliability 
of  measurements, which may result in retraining 
and recertification of  study staff.

(continues)

Table 8-1 Key features of the design of an epidemiologic study.
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Activity (quality assurance, QA,  
or quality control, QC ) Comments

9. Data analysis Data analysis should be done according to a prees-
tablished plan. Efforts should be made to establish 
analytic strategies in advance (e.g., the choice of  
“cutoff ” points when using continuous or ordinal 
data to create discrete categories). Analysis should 
proceed from the more parsimonious strategies 
(description of  data, stratification, calculation 
of  unadjusted measures of  association, simple 
adjustment approaches) to the more complex 
models (e.g., Cox, logistic regression). Investigators 
should also specify analytic strategies to evaluate 
validity and reliability of  procedures.

10.  Reporting of  data Findings should be reported as soon as possible 
after data collection activities are finished so as to 
preserve the timeliness of  the study. To avoid publi-
cation bias, data should be reported regardless 
of  the direction of  findings (see Chapter 10, 
Section 10.5). The study instruments and quality 
control data should be available to the scientific 
community on request.

Table 8-1 Key features of the design of an epidemiologic study (continued).

The design of  quality assurance activities should be followed by pretesting and 
 pilot-studying these activities. Results of  pretests and pilot studies, in turn, assist in 
modifying and/or making adjustments to these procedures so as to make them more 
efficient, valid, and reliable.

8.2.1 Study Protocol and Manuals of Operation
The study protocol consists of  a description of  the general components of  the  investigation, 
including those shown in Table 8-1. It provides a global picture of  the  strategies leading 
to the development of  more detailed manuals of  operation. The protocol describes the 
general design and procedures used in the study (including those related to sampling 
and recruiting study participants) and assists the staff  in understanding the context in 
which their specific activities are carried out.

Manuals of  operation should contain detailed descriptions of  exactly how the proce-
dures specific to each data collection activity are to be carried out so as to maximize the 
likelihood that tasks will be performed as uniformly as possible. For example, the description 
of  the procedures for blood pressure measurements should include the calibration of  the 
sphygmomanometer, the position of  the participant, the amount of  resting time before 
and between measurements, the size of  the cuff, and the position of  the cuff  on the arm. 
With regard to interviews, the manual of   operations should contain instructions as to 

Source: Data from HA Kahn and CT Sempos, Statistical Methods in Epidemiology, © 1989.
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exactly how each question should be asked during the course of  the interview (“question-
by-question” instructions or, to use epidemiologic jargon, “q by q’s”). Standardization of  
procedures is particularly critical in multicenter studies in which several technicians 
carry out the same exams or administer the same questionnaires to study participants 
recruited and examined at different clinics or locations. Detailed manuals of  operation 
are important to achieve the highest possible level of  uniformity and standardization of  
data collection procedures in the entire study population.

In large studies involving different measurements, the manuals of  operation may be 
activity  -specific: that is, separate manuals of  operation may be prepared for different 
data-related activities, such as interviews, collection and processing of  blood samples, 
and pulmonary function testing. Manuals of  operation must also be developed for 
reading and classifying data, as when coding electrocardiographic findings using 
the Minnesota Code4 or assigning a disease to different diagnostic categories, such as 
“definite,” “probable,” or “absent” myocardial infarction.5 A manual may also have 
to be developed specifying how “derived” variables are created for the purposes of  the 
study, that is, analytical variables based on combinations of  “raw” variables obtained 
during data collection. An example is the definition of  hypertension (present or absent) 
based on measured blood pressure levels or a participant’s report of  physician-diagnosed 
 hypertension or use of  antihypertensive medications.

8.2.2 Data Collection Instruments
Development (or choice) of  data collection instruments and their corresponding 
operation manuals is a key step in the study design and should be carried out according 
to well-established rules, as in the case of  designing a questionnaire.6,7

Whenever possible, it is advisable to choose data collection instruments and 
 procedures that have been used effectively in previous studies to measure both suspected 
risk factors and disease outcomes. Examples include the questionnaire to identify angina 
pectoris developed by Rose8 (the so-called “Rose questionnaire”), the American Thoracic 
Society questionnaire to assess respiratory symptoms,9 the blood pressure measurement 
procedures followed by the National Health Examination Surveys,10 and the food 
frequency questionnaires designed by Block et al.11 or Willett et al.12 to assess dietary 
habits. Validity and reliability of  such previously tested instruments and procedures are 
sometimes known,12 allowing to some extent the assessment of, and even correction for, 
possible bias and misclassification (discussed later). (Note, however, that reliability and 
validity values are often dependent on the specific study population for which they have 
been estimated, and thus may not be generalizable to populations distinct from the study 
population [e.g., populations with different educational levels].) 

In addition, the use of  established instruments and procedures permits comparing 
findings of  the study with those of  previous studies, thus facilitating the preparation of  
systematic reviews.13

On occasion, a well-established instrument is modified to suit a study’s purposes. 
For example, modification of  a questionnaire may be done either to include or exclude 
variables or to reduce interview time. The extent to which the modified version maintains 
the reliability and validity of  the original instrument can be assessed by comparing 
results using the two instruments in the same sample. Such assessment, however, may be 
affected by the lack of  independence between the two instruments when they are applied 
to the same individuals (i.e., responses to the questionnaire administered last may be 



8

Q
uality Assurance 

and Control

 8.2 Quality Assurance 317

influenced by the study participants’ recall of  the responses to the first questionnaire). 
Sometimes, a questionnaire designed in English has to be translated to another language 
(e.g., Chinese, Spanish) for application to a minority subgroup.14 When that is the case, 
reverse translation to English is helpful to establish the accuracy of  the translation.15,16 
When instruments effectively used in the past are not available, making it necessary to 
create special instruments to suit the purposes of  the study, pilot studies of  the validity 
and reliability of  the instruments and related measurement procedures should be carried 
out, preferably before data collection activities begin (Section 8.2.4).

8.2.3 Training of Staff
Training of  each staff  person should aim at making him or her thoroughly familiar 
with the procedures under his or her responsibility. These procedures include not only 
data collection and processing procedures but also setting up appointments for inter-
views or visits to study clinics, preparing materials for the interviewers and other data 
collectors, calibrating instruments, and assigning interviewers to study participants. 
Training should also involve laboratory technicians and those in charge of  reading and 
classifying data obtained from exams such as electrocardiograms and imaging studies. 
In multicenter studies, training of  technicians from all field centers is usually done at 
a central location. Training culminates with the certification of  the staff  member to 
perform the specific procedure. Particularly in studies with a relatively long duration 
(such as concurrent prospective studies; see Gordis17), periodic recertification is carried 
out, with retraining of  any staff  member whose performance in conducting recertifi-
cation tasks is deemed to be inadequate. Because retraining and recertification are done 
when data collection activities are already ongoing, however, they are usually classified 
as quality control rather than quality assurance activities.

Careful training of  all study personnel involved in data collection is required for 
standardization of  data collection and classification procedures and should emphasize 
adherence to the procedures specified in the manuals of  operation (discussed previously). 
A thorough training of  data collectors is key to prevent misclassification, which may occur 
if  data collection procedures are not used in a standardized manner. Use of  standardized 
procedures is particularly important to ensure that, if  misclassification occurs, it will be 
nondifferential (Chapter 4, Section 4.3.3).

8.2.4 Pretesting and Pilot Studies
Verification of  the feasibility and efficiency of  the study procedures is carried out through 
pretests and pilot studies. Often, the terms pretesting and pilot testing are used inter-
changeably; however, a useful distinction is that the pretest involves assessing specific 
procedures on a “grab” or convenience sample (e.g., on staff  persons themselves or their 
friends or relatives) in order to detect major flaws, whereas the pilot study is a formal 
“rehearsal” of  study procedures that attempts to reproduce the entire flow of  opera-
tions in a sample as similar as possible to study participants. Results of  pretesting and 
pilot studies are used to assess participant recruitment and data collection procedures 
and, if  necessary, to correct these procedures before fieldwork begins. For example, after 
pretesting and carrying out a pilot study of  a questionnaire, the following elements can 
be assessed: flow of  questions (including skip patterns), presence of  sensitive questions, 
appropriateness of  categorization of  variables, clarity of  wording to the respondent and 
the interviewer, and clarity of  the “question-by-question” instructions to the interviewer.
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Pilot studies also allow evaluating alternative strategies for participant recruitment 
and data collection. For example, a pilot study can be carried out to assess whether 
telephone interviews are a good alternative to the more expensive and time-consuming 
in-person interviews.

A summary of  some of  the key quality assurance steps is shown in Exhibit 8-1.

8.3 QUALITY CONTROL

Quality control activities begin after data collection and processing start. Monitoring 
of  quality control data is the basis for possible remedial actions aimed at minimizing 
bias and reliability problems. Quality control strategies include observation of  proce-
dures performed by staff  members, which allows the identification of  obvious protocol 
deviations, and special studies of  validity and reliability usually carried out in samples 
of  study subjects at specified intervals throughout data collection and processing (see 
Appendix D). What follows is a summary of  the most common quality control strat-
egies and indices. The in-depth statistical discussion of  reliability and validity indices is 
beyond the scope of  this textbook; instead, the focus of  the following sections is on their 
applicability, interpretation, and limitations.

8.3.1 Observation Monitoring and Monitoring of Trends
To identify problems in the implementation of  study procedures by interviewers, techni-
cians, and data processors, supervisors can monitor the quality of  these procedures by 
“over-the-shoulder” observation of  staff. For example, observation monitoring of  the 
quality of  blood pressure measurements is often done by “double stethoscoping” (i.e., 
using a stethoscope that allows two observers to measure blood pressure levels simul-
taneously). Observation monitoring of  interviews to assess interviewers’ adherence to 
protocol and accuracy of  recorded responses can be done by taping all interviews and 
reviewing a random sample of  them.

Another monitoring technique routinely performed in epidemiologic studies, particu-
larly in multicenter studies in which participants are recruited and data collected over 
prolonged periods, is the statistical assessment of  trends over time in the performance of  
each observer (interviewer and clinic or laboratory technician).2 In the ARIC study, for 
example, the Coordinating Center routinely (quarterly) performs calculation of  statistics 
on blood pressure and other variables measured by each technician for all study partici-
pants. After adjustment for age, sex, and other relevant characteristics, the temporal 

1. Specify study hypothesis.

2.  Specify general design to test study hypothesis → Develop an overall study protocol.

3.  Choose or prepare specific instruments, and develop procedures for data collection and  
processing → Develop operation manuals.

4. Train staff  → Certify staff.

5.  Using certified staff, pretest and pilot-study data collection and processing, instruments and procedures; 
pilot-study alternative strategies for data collection (eg, telephone vs mail interviews).

6. If  necessary, modify 2 and 3, and retrain staff  on the basis of  results of  5.

exhibiT 8-1 Steps in quality assurance.
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trends in these statistics are analyzed for each technician (see Appendix D). If  drifts are 
detected which cannot be explained by changes in the demographic composition of  the 
participant pools, the corresponding clinic coordinator is notified, and a review of  the 
protocol adherence for the affected technician is conducted.

Each type of  measurement may require a special quality monitoring approach. For 
blood pressure and anthropometric measurements, for example, the routine assessment 
of  digit preference is carried out in a straightforward manner. For studies using specialized 
reading centers for the reading and scoring of  measurements performed at different field 
centers (e.g., ultrasound, magnetic resonance imaging, X-rays), monitoring data quality 
over time is more complicated because both field center data collection and centralized 
reading/scoring procedures can be sources of  errors and variability.2 Monitoring of  
laboratory data quality may require using external or internal standards (pools), as 
discussed later in this chapter.

8.3.2 Validity Studies
In epidemiologic studies, particularly those conducted on large numbers of  individuals, 
a compromise between accuracy on the one hand, and costs and participants’ burden 
on the other, is often necessary. Highly accurate diagnostic procedures are often too 
invasive and/or expensive for use in large samples of  healthy individuals; accurate 
information on complex lifestyle characteristics or habits usually requires the use of  
lengthy (and therefore time-consuming) questionnaires. Thus, epidemiologists must 
frequently settle for less invasive or less time-consuming instruments or procedures that, 
although cheaper and more acceptable to study participants, may result in errors in the 
assessment of  the variables of  interest. Validity studies in subsamples of   participants 
who undergo both the study-wide procedure and a more accurate procedure serving 
as a “gold standard” allow assessing the impact of  these errors on the study estimates.

Some of  the approaches applicable to the evaluation of  validity in the context of   
epidemiologic studies are described next. In Section 8.4, the most commonly used indices 
of  validity are described.

Standardized Pools for Laboratory Measurements
When using blood or other biological specimens, a possible approach for conducting a 
validity study is to take advantage of  a well-established external quality control program 
conducted in a masked fashion. This approach consists of  using the same biological (e.g., 
serum) pool to compare measurements obtained from applying study procedures with 
those resulting from the application of  the “gold standard” procedures. The reference 
values serving as the “gold standard” may be measured in a pool external to the study—
such as a pool provided by the Centers for Disease Control and Prevention [CDC] serum 
cholesterol standardization program.18 Alternatively, an internal pool can be created 
by combining specimens obtained from study participants and tested by a “standard” 
laboratory outside the study. Usually, each sample unit in the pool is formed by biologic 
specimens contributed to by several participants so as to use as small an amount of  
specimen of  each study individual as possible (see Figure 8-1). Ideally, deviations, if  any, 
of  the study measurements from the “true” (standard) results should be random during 
data collection and measurement activities; importantly, these deviations should not 
vary by presence and level of  key variables, such as the main exposure and outcome 
of  interest and participant accrual or follow-up time, lest differential misclassification 
occur (Chapter 4, Section 4.3.3). An example of  the use of  an “internal” pool is a 
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validity study based on a mass serum cholesterol screening program involving 1880 
Washington County, Maryland, residents. Screening measurements were done on blood 
obtained by the fingerstick method in a nonfasting state. In a subset of  49 screenees 
who also participated in a major cardiovascular study, serum cholesterol could also be 
assayed in a nationally recognized standard laboratory (Comstock, personal communi-
cation, 1991). The standard measurements were done in fasting state under carefully 
controlled conditions. The validity (i.e., sensitivity and specificity; see Section 8.4.1) 
of  the screening measurements resulting in a classification according to presence 
of   hypercholesterolemia (yes or no) could thus be evaluated by using the standard 
laboratory values as the “gold standard.”

An example of  a study that participated in the CDC serum cholesterol standardization 
program is the study by Burke et al.19 of  time trends in mean cholesterol levels in partici-
pants in the Minnesota Heart Survey (MHS). In this study, values obtained from applying 
MHS procedures were compared with those obtained from applying “gold standard” (CDC) 
procedures. MHS values were found to be lower than CDC values, and the difference was 
found to be greater at the beginning than at the end of  the study. This phenomenon of  

Aliquot 1:
measurement in
study laboratory

Aliquot 2:
measurement in

gold standard
laboratory

Study participants’ blood samples

Phantom sample

Figure 8-1 Phantom (quality control) sample based on an internal pool: a small sample of 
blood is obtained from each of several participants in order to obtain the phantom sample, which 
is divided into two aliquots, so that measurements can be conducted both in the study laboratory 
and in the “gold standard” laboratory.
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differential bias over time, generically referred to as a temporal “drift,” is schematically 
shown in Figure 8-2. After the magnitude of  the “drift” is estimated using the standard, 
statistical techniques can be used to estimate “corrected” values. Thus, with correction for 
the temporal drift, the temporal decrease in serum cholesterol over time in the MHS was 
estimated to be even larger than that observed without the correction.19

Other Approaches to Examine Validity
The approach of  comparing study-wide data with “gold standard” results in samples of  
study participants is not limited to laboratory measurements; it applies to  questionnaire 
data as well. For example, in a case-control study assessing the relationship of  hormone 
replacement therapy to breast cancer, information given by study  participants was 
verified by contacting the physicians who had written these prescriptions.20 Another 
example is given by a study that assessed the validity of  Willett’s food frequency question-
naire in a sample of  173 women selected from among the over 90,000 participants in the 
Nurses’ Health Study.12 All study participants responded to the 61-item food frequency 
questionnaire, which is relatively simple and easy to administer and that measures the 
approximate average frequency of  intake of  selected food items. In addition, the women 
in the sample kept a 1-week diet diary, which was then used as the “gold standard” to 
assess the validity of  the food frequency questionnaire applied to the entire cohort. (This 
sample was also given the same food frequency questionnaire twice over a 1-year period 
to assess its reliability; see Section 8.3.3.)

In some studies, “validation” is sought only for “positive” responses given by study 
participants. Assessing samples of  both “positive” and “negative” answers is important, 
however, because it allows estimation of  both sensitivity and specificity of  the study’s data 
collection strategy (see Section 8.4.1)—as, for example, when confirming interview data 
given by both participants who report and those who do not report oral contraceptive 
pill use. In addition, information should be collected separately for the groups being 
compared (e.g., cases and controls or exposed and unexposed) to assess whether misclas-
sification, if  present, is non-differential or differential (see Chapter 4, Section 4.3.3).

Time

“True” values

B
ia

s

Observed values

Mean serum
cholesterol

Figure 8-2 Difference between “true” and observed values in an epidemiologic study with 
follow-up over time. True values are those determined by the gold standard laboratory, and 
observed values are those determined by the study laboratory. 
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Availability of Validity Data from Previous Studies
On occasion, data on validity of  a given procedure are available from previous studies. 
For example, data have been published on self-reported hypertension ever diagnosed by 
a health professional in approximately 8400 participants of  the National Health and 
Nutrition Examination Survey III (NHANES III), a nationwide inquiry conducted in the 
United States between 1988 and 1991.21 Availability of  “gold standard” data comprising 
the actual blood pressure levels measured in these participants makes it possible to 
estimate the sensitivity and specificity of  the participants’ self-reports both for the total 
sample and according to sociodemographic characteristics (see Section 8.4.1).

Similarly, a study of  the validity of  self-reported anthropometric variables was 
conducted in participants of  the Lipid Research Clinics (LRC) Family Study, whose 
weights and heights were both self-reported and measured.22 As in the previous example, 
the authors of  this study examined the validity of  self-reported weight and height infor-
mation according to the participant’s age and gender and identified important  differences 
(see Section 8.4.1).

Studies that rely on self-reported information, such as that on hypertension or weight/
height, may use the estimates of  validity of  previous studies to evaluate the possible 
misclassification resulting from the use of  such information in their own study population. 
In this case, it is necessary to judge whether the estimates of  validity obtained in these 
previous studies (e.g., NHANES III or the LRC Family Study) are relevant and applicable 
to the study population in question, as briefly discussed in the following paragraphs.

Importance and Limitations of Validity Studies
As extensively illustrated in Chapter 4, the presence and strength of  associations 
observed in epidemiologic studies are a function of  the validity (and reliability) of  key 
study variables, which in turn determines the presence and degree of  misclassification 
(see Chapter 4, Section 4.3.3). Thus, an important element in the causal inferential 
process is the knowledge of  the validity of  exposure, outcome, main confounding 
variables, and effect modifiers. That many variables, even those considered as fairly 
“objective,” have a relatively poor validity has been clearly shown (Table 8-2).23 Consider, 
for example, a case-control study in which information on smoking is obtained from 
next of  kin, rather than directly from cases and controls. In this study, assume that the 
prevalence of  smoking in controls is 10%. Assume, in addition, that the “true” odds 
ratio associated with smoking (2.25) can be obtained by using data from direct personal 
interviews with the cases and controls themselves. Using the sensitivity and specificity 
figures for smoking shown in Table 8-2 (bottom row), if  misclassification were nondif-
ferential, the study’s observed (biased) relative odds would be almost 30% closer to the 
null hypothesis (i.e., 1.63) than would the true value. (For the calculation of  biased 
estimates based on sensitivity and specificity figures, see Chapter 4, Section 4.3.3.) A 
weaker association might have been missed altogether with these same levels of  sensi-
tivity and  specificity–even though the sensitivity (94%) and specificity (88%) levels 
are reasonably high! As also mentioned in Chapter 4, Section 4.3.3, knowledge of  the 
sensitivity and  specificity levels of  misclassified variables (as shown in Table 8-2) allows 
the correction of  a biased estimate. When sensitivity and specificity values of  a certain 
procedure are not known, sensitivity analysis* can be carried out whereby certain values 

*Note that “sensitivity analysis” in this context is distinct from examination of  sensitivity in validity studies 
(Chapter 10, Section 10.3).
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are assumed, and their impact on the measure of  association is evaluated (see Chapter 
10, Section 10.3). It should be emphasized that assessment of  validity levels is crucial to 
the continuous efforts to develop ever more accurate data collection procedures without 
sacrificing their efficiency.

Notwithstanding the importance of  carrying out validity studies, it should be empha-
sized that these studies, especially (but not exclusively) those dealing with questionnaire 
data, may have important limitations. Thus, their results should be interpreted with 
caution. First, the “gold standard” itself  may not be entirely valid. In validation studies 
of  dietary information, for example, diary data, often used as gold standard, may have 
its own limitations with regard to measuring food intake.24 Similarly, the use of  infor-
mation from medical charts, which are not primarily collected for research purposes, 
to “validate” data collected by interview may be problematic; as these records are not 
tightly standardized, they often lack relevant information. As a consequence, even 
important data from medical records regarding the patients’ medical history may have 
limited accuracy. For information on habits or behaviors (e.g., past history of  smoking) 
that are not routinely collected and recorded in medical records, self-reports from partic-
ipants may well be more accurate.

Another problem related to validity studies is that although these studies are usually 
attempted on a random sample of  participants, the study sample frequently constitutes 
a selected group of  especially willing individuals. Because the “gold standard” procedure 
tends to be more invasive and burdensome—which, in addition to its cost, may be 
precisely why it has not been used as the primary means of  study-wide data collection 
in the first place—often validity studies primarily include compliant volunteers. As a 

Test Validation approach*
Sensitivity  

(%) 
Specificity  

(%)

Cohort

Glucose tolerance by 
 University Group  
 Diabetes Project Criteria

World Health Organization 
 criteria 91 94

Pap smear Biopsy 86 91

Peptic ulcer by questionnaire Radiologic diagnosis 50 98

Protoporphyrin 
 assay-microhematocrit Blood lead concentration 95 73

Rose questionnaire Clinical interview 44 93

Case-control

Circumcision status by 
 questionnaire Physician’s examination 83 44

Smoking status by next 
 of  kin Personal questionnaire 94 88

Table 8-2 Examples of reported sensitivities and specificities of tests used in 
epidemiologic studies.

*For bibliographic sources of  original validation studies, see Copeland et al. (source).
Source: Data from KT Copeland et al., Bias Due to Misclassification in the Estimation of  Relative Risk. American Journal of  
Epidemiology, Vol 105, pp. 488–495, © 1977.
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result, validity levels estimated in these participants may not be representative of  the 
true validity levels in the entire study population, particularly for questionnaire data. 
For example, in the validation study of  Willett’s dietary questionnaire described previ-
ously, 224 female nurses randomly selected among the Boston participants were invited 
to participate (participants from other locations were excluded for logistical reasons); 
of  these, 51 declined, dropped out, or had missing information on key items for the 
validation study. Thus, the 173 women on whom the validity and reproducibility were 
eventually assessed (77% of  those originally invited from the Boston subset) may be 
unrepresentative of  all study participants.

An additional concern is that the usually small sample size and resulting statistical 
imprecision of  validity studies limit the applicability of  their findings. This is especially 
problematic if  the derived estimates of  sensitivity and specificity are used to “correct” the 
study’s observed estimate of  the measure of  association. A correction based on validation 
estimates that are markedly affected by random error may do more harm than good: in 
other words, the “corrected” estimate may be even less “correct” than the original one. 
A related problem is that, although it is usually assumed that the estimates obtained in 
a validation study apply equally to the whole study population, this may not be the case 
if  sensitivity and specificity of  the procedure varied according to certain characteristics 
of  the study population (e.g., the accuracy of  self-reports of  weight may be affected by 
the participants’ true weight). Yet, the sample size for a validation study that allowed 
for stratification for all possible relevant variables would likely be too large and, thus, 
not practical vis-à-vis the resources available to most studies. Similarly, caution should 
be used when extrapolating the results of  a validation study from one population to 
another, particularly if  the data collection instrument is a questionnaire. For example, 
the validity of  Willett’s food frequency questionnaire, even if  estimated accurately and 
precisely in a cohort of  nurses, may not be generalizable to other study populations with 
different sociodemographic characteristics and health-related attitudes and awareness. 
Particularly problematic is the application to different cultures of  validity figures for 
interview instruments obtained from a given study population. Often, culture-specific 
instruments need to be developed: an example is the food frequency questionnaire 
developed by Martin-Moreno et al.25 for use in the Spanish population.

8.3.3 Reliability Studies
In contrast with validity studies, reliability studies assess the extent to which results 
agree when obtained by different observers, study instruments or procedures, or by 
the same observer, study instrument, or procedure at different points in time. To assess 
reliability, it is important to consider all sources of  variability in an epidemiological study. 
Ideally, the only source of  variability in a study should be that between study participants. 
Unfortunately, other sources of  variability also influence any given measurement in 
most real-life situations; these include

•	 Variability due to imprecision of  the observer or the method, which can be classified in 
two types:

1. Within-observer (or intra-observer) or within-method variability, such as the 
variability of  a laboratory determination conducted twice on the same sample 
by the same technician using the same technique. Within-observer variability 
also pertains to the variability of  a response to a question by the same study 
participants when the same interview is conducted at different points in time by 
the same interviewer (assuming that the response is not time dependent).
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2. Between-observer (or inter-observer) or between-method variability, such as the 
variability of  a laboratory determination conducted on the same sample by 
two (or more) different technicians using the same assay or the variability of  a 
laboratory determination done on the same individuals by the same technician 
using different assays.

•	 Variability within study participants, such as variability in habits and behaviors 
(e.g., day-to-day dietary intake variability) or physiologic variability in hormone or 
blood pressure levels. For example, Figure 8-3 shows systolic blood pressure values 
of  two individuals over time. In this hypothetical example, one of  the individuals 
is hypertensive, and the other is not (i.e., their average blood pressure levels are 
respectively equal or above, and below the cutoff  level for the definition of  systolic 
hypertension, 140 mm Hg). Because of  the physiologic within-individual blood 
pressure variability, however, participant A’s blood pressure occasionally dips 
below the hypertension cutoff  level. If  the measurement turns out to be at one of  
those moments (and if  the participant does not have a hypertensive diastolic level 
and is not being medicated for hypertension), that participant will be erroneously 
classified as “normotensive.” In this example, the within-individual variability 
masks the between-individual variability, that is, the difference in “true” average 
values which distinguish participants A and B as hypertensive and normotensive, 
respectively. Unlike observer or method variability, within-individual variability 
is real; however, it has consequences similar to those resulting from variability 
due to measurement errors in that it introduces “noise” in detecting differences 
between study participants, the usual goal in epidemiologic research. Like errors 
due to the measurement method (originating from the observer, the participant, 
the instrument, or the procedure), intra-individual variability masks the true 
between-individual variability and by doing so also produces misclassification. 
Whereas quality assurance procedures attempt to prevent or minimize within- and 
between-observer or method variability, physiologic within-individual variability is 
not amenable to prevention. Its influence, however, can be minimized by standard-
izing the timing of  data collection for measures with known temporal fluctuations, 
such as physiologic measures that have circadian rhythms (e.g., levels of  salivary 
cortisol or blood pressure), or by standardizing measurement conditions for 
variables affected by stress or activity (e.g., blood pressure should be measured after 
a resting time in a quiet environment). If  possible, it is highly advisable to collect 
data at several points in time and use the average of  all values. This would tend to 
prevent the nondifferential misclassification also known as regression dilution bias 
resulting from random variation over time in the values of  a suspected risk factor 
or confounder (see Section 8.5). Statistical correction for this type of  bias is also 
possible under certain conditions.26

All of  these sources of  variability, if  present, tend to decrease the reliability of  the 
measured value of  a given variable; for any given measurement, they will add to the 
variability of  the “true value” for the individual in question when compared with the 
rest of  the individuals in the study population. 

Reliability studies during data collection and processing activities usually consist 
of  obtaining random repeat measurements, often referred to as “phantom” measure-
ments. Figure 8-4 schematically illustrates an approach to reliability studies in the case 
of  a biologic specimen.27 Reliability studies may include repeated measures in the same 
individual to assess within-individual variability. Measurements of   within-laboratory 



326 CHAPTER 8 |  Quality Assurance and Control

180

160

140

120

100

80

60

Sy
st

ol
ic

 b
lo

od
 p

re
ss

u
re

  (
m

m
 H

g)

Time of  measurement

Time

Participant B
average

Participant A
average

(or technician) reliability can be done by splitting a phantom sample into two aliquots, 
which are then measured by the same laboratory (or technician) on separate occasions 
(Figure 8-4, aliquots 1.1 and 1.2). An additional split aliquot (aliquot 1.3) can be 
sent to another laboratory (or technician) to assess between-laboratory reliability. It is 
important that all of  these repeat determinations in phantom samples be conducted in a 
masked fashion. Typically, phantoms are interspaced in the general pool of  samples that 
are sent to a given laboratory or technician so that masking can be achieved.

As for laboratory determinations, reliability studies of  other types of  measurements 
(e.g., radiological imaging, height) can be conducted by repeat exams or repeat readings. 
Within-individual variability for many of  these exams is limited or null (e.g., the short-
term variability of  a radiological image of  a tumor or of  height). Sources of  variability 
that should be assessed include the exam procedures (e.g., the participant’s positioning 
in the machine) and the reading (or interpretation of  the image)—see examples in  
Section 8.4.2 that illustrate the assessment of  reliability of  readers of  polysomnographic 
studies to determine the presence of  sleep-related breathing disorders.

Assessing the reliability of  each type of  measurement has its own singularities and 
challenges. Anthropometric determinations, such as adult height for example, have 
little (if  any) within-individual variability (at least in the short term); assessment of  
between-observer variability is fairly straightforward. On the other hand, assessment 
of  within-observer reliability of  such measurements may be challenging because it 
is difficult to “mask” the reader, as he or she may recognize the study participant as 

Figure 8-3 Hypothetical systolic blood pressure values of two individuals over time. Participant A 
is “hypertensive” (average or usual systolic blood pressure, 154 mm Hg – higher than standard cutoff, 
140 mm  Hg); participant B is “normotensive” (average systolic blood pressure, 115 mm Hg). If they 
are measured at the time indicated by the arrow, misclassification will result due to within-individual 
variability: participant A will be misclassified as “normotensive” (systolic blood pressure  140 mm Hg); 
moreover, participant B’s blood pressure will be considered higher than participant A’s blood pressure. 
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To measure within-individual variability:

Repeat blood collection X time later

Blood collected
(1st measurement)

Blood collected
(replicate measurement)

Aliquot 1.1: Study lab determination done at time t1

Aliquot 1.2
To examine within-lab variability

Aliquot 1.2: Lab
determination done
by same laboratory at
time t2

Aliquot 1.3: Lab
determination 
done by a different
laboratory

Time

To examine between-lab variability

Aliquot 1.3
Phantom

sample

a “repeat” measurement (and thus remember the previous reading and/or make an 
effort to be more “precise” than usual). Similarly, studying the reliability of  answers to 
questionnaires is difficult, as the participant’s recall of  his or her previous answers will 
influence the responses to the repeat questionnaire (whether it is administered by the 
same or by a different interviewer).

As with validity studies, if  the sample is of  sufficient size, it is important to assess 
whether reliability estimates obtained for a sample of  study participants differ according 
to relevant characteristics, which may result in differential levels of  misclassification. 
For example, the reliability of  Willett’s food frequency questionnaire was compared 
across subgroups of  participants in the Nurses’ Health Study, defined according to age, 
smoking and alcohol intake status, and tertiles of  relative body weight.28 In this study, 
no important differences in reproducibility of  nutrient intake estimates among these 
different categories were observed, suggesting that the measurement errors resulting 
from the imperfect reliability of  nutrient intake information were probably nondiffer-
ential (see Chapter 4, Section 4.3.3).

Finally, as with results of  validity studies, it is important to be cautious when general-
izing results from a reliability study of  a given instrument to another study population: 
like validity, reliability may be a function of  the characteristics of  the study population. 
Even though it is appropriate to use published reliability and validity estimates in the 

Figure 8-4 Design of a study to evaluate within-individual and within- and between-laboratory 
variability. Note that within-individual variability must be evaluated with samples of individuals, 
whereas the other sources of variability can be assessed using phantom samples. 

Source: Based on LE Chambless et al., Short-Term Intraindividual Variability in Lipoprotein Measurements: The Atherosclerosis 
Risk in Communities (ARIC) Study. American Journal of  Epidemiology, Vol 136, pp. 1069–1081, © 1992.
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planning stages of  the study, it is recommended that, whenever possible, reliability and 
validity of  key instruments, particularly questionnaires, be assessed in study partici-
pants. In addition, it is important to evaluate within-individual variability, as it may also 
differ according to certain population characteristics, thus further affecting the general-
izability of  reliability results. For example, the daily variability in levels of  serum gonadal 
hormones (e.g., estrogens) is much larger in premenopausal than in postmenopausal 
women; thus, regardless of  the measurement assays, reliability of  levels of  gonadal 
hormones for younger women is not applicable to older women.

8.4  INDICES OF VALIDITY AND RELIABILITY

In this section, some of  the most frequently used indices of  validity and reliability are 
briefly described, along with examples from published studies. Some of  these indices, 
such as sensitivity and specificity, relate to the assessment of  validity, whereas others, 
such as kappa or intraclass correlation, are usually applied in the evaluation of  reliability 
(Table 8-3); however, some of  these indices are used interchangeably to evaluate validity 
and reliability. For example, indices that are typically used as reliability indices, such 
as percent agreement or intraclass correlation coefficient (ICC), are sometimes used to 
report validity results. In real life, a true “gold standard” may not be available, thus 
sometimes making it difficult to distinguish between validity and reliability measures. 
When a “gold standard” is not clearly identified, “validity” results are often referred to 
as inter-method reliability estimates.

8.4.1  Indices of Validity/Reliability for Categorical Data
Sensitivity and Specificity
Sensitivity and specificity are the two traditional indices of  validity when the  definitions 
of  exposure and outcome variables are categorical. The study exposure or outcome 
categorization is contrasted with that of  a more accurate method (the “gold standard,” 
which is assumed to represent the “true” value and thus to be free of  error). Sensitivity 
and specificity are measures also frequently used in the context of  the evaluation of  
diagnostic and screening tools; in that context, basic epidemiology textbooks usually 
describe them in relationship to the assessment of  disease status (the “outcome”). As 
quality control measures in an analytic epidemiologic study, however, these indices 
apply to the evaluation of  both exposure and outcome variables.

The definitions of  the terms sensitivity and specificity were presented in Chapter 4, 
Exhibit 4-1. The calculation of  sensitivity and specificity for a binary variable is again 
schematically shown in Table 8-4. (Appendix A, Section A.10 shows the method for the 
calculation of  the confidence interval for estimates of  sensitivity and specificity.)

An example is shown in Table 8-5, based on a study done in Washington County, 
Maryland, and previously discussed in Section 8.3.2, in which fingerstick tests were 
compared with standard laboratory (“gold standard”) measurements of  serum  cholesterol. 
For Table 8-5, abnormal values are defined as those corresponding to 200 mg/dL or higher. 
Sensitivity and specificity for these data were found to be 18/19 5 0.95 and 11/30 5 
0.37, respectively. Although the screening test’s ability to identify truly hyper-cholester-
olemic individuals was quite acceptable, its ability to identify “normals” was poor (63% of  
normal—which represent the complement of  specificity—were false positives).

In the study of  the validity of  self-reported weight and height information among 
participants in the LRC Family Study mentioned previously,22 participants were classified 
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in four categories according to their body mass index (BMI), measured as kg/m2: “under-
weight” (BMI  20 kg/m2), “normal” (BMI 5 20–24.9 kg/m2), “overweight” (BMI 5 
25–29.9 kg/m2), and “obese” (BMI  30 kg/m2). BMI was calculated on the basis of  
either self-reported or measured weight and height. The cross-tabulation between self-
reported and measured BMI categories is presented in Table 8-6. Based on these data 
and using measured BMI as the “gold standard,” the validity of  binary definitions of  self-
reported overweight and obesity can be estimated by constructing the two-by-two tables 
shown in Table 8-7. The validity estimates differ according to the cutoff  adopted. For 
example, for definition A, overweight was defined as BMI  25 kg/m2, resulting in a sensi-
tivity of  3234/3741 5([2086 1280 1 59 1 809] 4 [2086 1 280 1 59 1 809 1 505 
1 2])5 0.86 and a specificity of  3580/3714 5 0.96. For definition B (right-hand side 
of  Table 8-7), “obesity” was defined as BMI  30 kg/m2, with  sensitivity and specificity 
estimates of  0.74 and 0.99, respectively. In this example, sensitivity is lower than speci-
ficity: that is, there is a lower proportion of  “false positives” than of  “false negatives,” 
probably as a consequence of  the stigma associated with obesity in our society, resulting 
in a higher proportion of  individuals underestimating than of  those overestimating 
their weight.

Other issues related to sensitivity and specificity that should be underscored include 
the following. First, the dependence of  sensitivity and specificity estimates on the 
cutoff  level used shows that there is a certain arbitrariness in assessing and reporting 
the validity of  binary definitions of  continuous exposure and outcome variables. This 
problem should not be confused, however, with the dependence of  “predictive values” 
on the prevalence of  the condition.* Unlike positive and negative predictive values, 

Table 8-3 Summary of indices or graphic approaches most frequently used for the assessment 
of validity and reliability.

Mostly used to assess . . .

Type of  variable Index or technique Validity Reliability

Categorical Sensitivity/specificity 1 1
Youden’s J statistic 1 1 1
Percent agreement 1 1 1
Percent positive agreement 1 1 1
Kappa statistic 1 1 1

Continuous Scatter plot (correlation graph) 1 1 1
Linear correlation coefficient 
 (Pearson)

1 1

Ordinal correlation coefficient 
 (Spearman)

1 1

Intraclass correlation coefficient 1 1 1
Mean within-pair difference 1 1 1
Coefficient of  variation 1 1
Bland-Altman plot 1 1 1 1

Note: 1 1, the index is indicated and used to measure the magnitude of  validity or reliability; 1, although the index is 
used to measure the magnitude of  either validity or reliability, its indication is somewhat questionable.
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sensitivity and specificity are conditioned on the table’s bottom totals (the “true” 
numbers of  positives and negatives) and thus are theoretically independent of  the 
prevalence of  the condition. However, the common belief  that sensitivity and speci-
ficity are inherent (fixed) properties of  the test (or diagnostic criteria or procedure) 
itself, regardless of  the characteristics of  the study population, may be an oversim-
plification. This is particularly true for conditions based on a continuous scale that 

Gold standard’s result

Study’s result Positive Negative Total

Positive a b a 1 b

Negative c d c 1 d

Total a 1 c b 1 d N

Sensitivity 5 a/(a 1 c)
Specificity 5 d/(b 1 d)

Table 8-4 Schematic representation of the calculation of sensitivity and specificity for 
a binary variable.

Standard laboratory values

Screening values Abnormal* Normal Total

Abnormal* 18 19 37

Normal 1 11 12

Total 19 30 49

Sensitivity 5 5 18/19 5 5 0.95
Specificity 5 5 11/30 5 5 0.37

Table 8-5 Comparison of screening values of serum cholesterol under field conditions and 
values done in a standard laboratory.

*Positive and negative predictive values are measures used in the context of  the evaluation of  screening and 
diagnostic procedures, in addition to sensitivity and specificity. Positive predictive value (PPV) is the proportion 
of  true positives among individuals who test positive (e.g., in Table 8-7, definition A, 3234/[3234 1 134] 
5 0.96). Negative predictive value (NPV) is the proportion of  true negatives out of  the total who test negative 
(e.g., in Table 8-7, definition A, 507/[507 + 3580] = 0.12). An important feature of  these indices is that, in 
addition to their dependence on the sensitivity/specificity of  the test in question, they are a function of  the 
prevalence of  the condition. For example, in Table 8-7, the prevalence of  overweight (definition A) is 50.2% 
(3741/7455); if  the prevalence had been 10% instead, even at the same self-reported weight and height sensi-
tivity and specificity levels as those from the LRC Family Study, the PPV would have been only 0.71. (This can 
be shown as follows: using the notation from Table 8-4, and assuming the same total N 5 7455, the expected 
value of  cell a would be 641.1 (7455 3 0.10 3 0.86) and that of  cell b would be 268.4 [7455 3 (1 2 0.10) 
3 (1 2 0.96)]; thus PPV 5 641.1/(641.1 1 268.4) 5 0.70.) 
 These indices have limited relevance in the context of  evaluating the influence of  validity on estimates of  
measures of  association and are thus not discussed here. A detailed discussion of  their interpretation and use, 
as well as a discussion of  the likelihood ratio and other validity issues more relevant to screening and clinical 
decision making, can be found in basic clinical epidemiology textbooks.29,30 

*Abnormal: serum cholesterol  200 mg/dL for screening and standard 
laboratory, respectively.
Source: Unpublished data from GW Comstock, 1991.
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is more or less arbitrarily changed into a binary one (e.g., obesity, hypertension).31,32 
For a continuous trait, the probability of  misclassifying a true positive as a negative 
(i.e., 1 – sensitivity, or cell c in Table 8-4) tends to be higher for individuals whose 
true values are near the chosen cutoff  value, such as hypertensives with systolic blood 
pressure values close to the traditional cutoff  point to define “high” values (e.g., 140 
mm Hg). Thus, even for the same test (or diagnostic procedure) and the same cutoff  
point, the degree of  misclassification will be larger if  the distribution of  values (i.e., 
the “spectrum of  severity” of  the condition) is closer to that of  the truly negative, as 
illustrated in Figure 8-5.

Thus, the sensitivity and specificity of  a given definition of  a condition (i.e., based 
on a cutoff  in a continuous distribution) depend on the distribution of  the severity of  
the condition. The validity of  a test can also vary from population to population when 

Measured BMI category

BMI based on 
self-reports Underweight Normal Overweight Obese Total

Underweight 462 178 0 0 640

Normal 72 2868 505 2 3447

Overweight 0 134 2086 280 2500

Obese 0 0 59 809 868

Total 534 3180 2650 1091 7455

Table 8-6 Cross-tabulation of self-reported and measured four body mass index (BMI) 
categories: 7455 adult participants of the Lipid Research Clinics Family Study, 1975–1978.

Definition A: overweight* Definition B: obese†

Measured BMI  
category

Measured BMI  
category

BMI based on 
self-report

Overweight Nonoverweight BMI based on 
self-report

Obese Nonobese

Overweight 3234    134 Obese  809     59

Nonoverweight     507 3580 Nonobese  282 6305

Total 3741 3714 Total 1091 6364

Table 8-7 Cross-tabulation of self-reported and measured binary body mass index (BMI) 
categories: 7455 adult participants of the Lipid Research Clinics Family Study, 1975–1978 
(see Table 8-6).

Note: Underweight, BMI  20 kg/m2; Normal, BMI 5 20 2 24.9 kg/m2; Overweight,  
BMI 5 25–29.9 kg/m2; Obese, BMI  30 kg/m2.
Source: Data from FJ Nieto-Garcia, TL Bush, and PM Keyl, Body Mass Definitions of  Obesity: Sensitivity and Specificity 
Using Self-Reported Weight and Height. Epidemiology, Vol 1, pp. 146–152, © 1990.

*Overweight: BMI  25 kg/m2 (that is, for the purposes of  this example, “overweight” also includes “obese”)
†Obese: BMI  30 kg/m2.
Source: Data from FJ Nieto-Garcia, TL Bush, and PM Keyl, Body Mass Definitions of  Obesity: Sensitivity and Specificity 
Using Self-Reported Weight and Height. Epidemiology, Vol 1, pp. 146–152, © 1990.
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the test is not a direct marker of  the condition. For example, the specificity of  positive 
occult blood in the stool for the diagnosis of  colon cancer varies according to the preva-
lence of  other conditions that also cause gastrointestinal bleeding, such as peptic ulcer 
or parasitic disorders. Similarly, the ability of  the purified protein derivative (PPD) test 
to diagnose human tuberculosis accurately is a function of  the prevalence of  atypical 
mycobacterial infections in the study population.

As discussed previously, another limitation of  sensitivity and specificity estimates 
obtained in validation studies, especially when the information is obtained by question-
naire, is that these measures can vary according to the characteristics of  the individuals 
in question. As a result, their external validity (generalizability) is limited. Examples are 
shown in Table 8-8. In Nieto-García’s et al. study,22 the validity of  the definition of  obesity 
(BMI  30 kg/m2) based on self-reported weight and height information varied substan-
tially according to age and gender. Sensitivity estimates using “measured” BMI as the 
gold standard (74% overall) ranged from more than 80% in young adults of  either sex to 
less than 40% in older males.

Table 8-8 also shows the marked differences in the sensitivity of  self-reported hyper-
tension depending on ethnicity and health care utilization (indicated by a doctor’s visit 
in the previous year) in the NHANES III survey. On the basis of  these data, the authors 
concluded that “use of  self-reported hypertension as a proxy for hypertension preva-
lence . . . is appropriate among non-Hispanic whites and non-Hispanic black women and 
persons who had a medical contact in the past 12 months. However, self-reported hyper-
tension is not appropriate . . . among Mexican-Americans and individuals without access 
to regular medical care.”21(p.684) These examples illustrate the influence of  key sociodemo-
graphic variables on estimates of  validity and serve as an empirical demonstration of  the 
problems related to the extrapolation of  validity estimates to populations with character-
istics different from those in which validity was assessed. In addition, the large variability 
of  validity estimates according to demographic variables, such as those shown in Table 
8-8, suggests that if  these variables represent the exposures of  interest (or are correlated 
with them), differential misclassification may arise (see Chapter 4, Section 4.3.3).

Finally, it is important to emphasize that, as discussed previously in Section 8.3.2, the 
validity of  some information items that are widely used in clinical settings or epidemio-
logic studies cannot be taken for granted. Table 8-2 shows some examples of  results from 
validation studies of  diverse clinical or medical history data, as summarized in a review 
by Copeland et al.23 Some of  the tests included in Table 8-2 suffer from poor sensitivity but 
have acceptable specificity, such as self-reported peptic ulcer and Rose’s questionnaire 
for angina pectoris. These miss 50% or more of  the cases identified by X-rays or clinical 
interviews, respectively, while correctly identifying almost all non-cases. On the other 
hand, other tests suffer from the opposite problem, such as the self-report of   circumcision 
status, which tends to identify more than 80% of  truly positive cases (according to a 
physician’s examination), while at the same time labeling a large proportion of  true 
negatives as (false) positives (1 – specificity 5 56%). The poor specificity of  self-reported 
circumcision status underscores the fact that even items of  information expected to be 
highly valid because of  their “objective” nature are subject to error. Further illustration 
is given by findings from a study by Fikree et al.33 on the validity of  husbands’ report of  
their wives’ pregnancy outcomes. In this study, carried out on a sample of  857 couples 
selected from a working population in Burlington, Vermont, the wives’ reports were used 
as the standard against which the husbands’ reports were evaluated. The sensitivity of  
men’s report of  low birth weight pregnancies was 74%. That of  spontaneous abortions 
was 71.2%, and that of  induced abortions was 35.1%. The validity was poorer among 
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the younger and lower-educated individuals. The authors of  this study concluded that 
it “would be prudent to avoid the use of  husbands as proxy informants of  their wives’ 
reproductive histories.”33(p.237)

Youden’s J Statistic
Described by Youden34 in 1950, the J statistic is a summary index of  validity that 
combines sensitivity and specificity. It is calculated as

J 5 Sensitivity 1 Specificity 2 1.0

For example, for the data shown in Table 8-5

J 5 (18/19) 1 (11/30) 2 1.0 5 0.947 1 0.367 2 1.0 5 0.314 (or 31.4%)

The value 1.0 is subtracted from the sum of  sensitivity and specificity so that 
the maximum value of  the index becomes 1 when there is perfect agreement. Although 
theoretically the value of  J can be negative, down to 21 (i.e., in the presence of  
perfect disagreement, when the test always disagrees with the “gold standard”), a more 
realistic minimum for the range of  J in real life is J 5 0, obtained when the test performs 
no better than chance alone (i.e., sensitivity and specificity 5 0.5). This index gives equal 
weight to sensitivity and specificity, thus assuming that both are equally important 
components of  validity. For example, for the data shown in Table 8-7, the values of  J for 
the self-reported information are 0.82 and 0.73 for “overweight” and “obese,” respec-
tively. (The latter is almost identical to the estimated sensitivity of  obesity based on self-
report [0.74] because of  the virtually perfect specificity [0.99]; in this case, a value that 
is essentially canceled out by subtracting 1.0 in the calculation.)

Fr
eq

u
en

cy
Fr

eq
u

en
cy

True
negatives

True
positives

Severity

Severity

Cutoff

Few
false negatives

High
sensitivity

Many
false negatives

Low
sensitivity

Wide spectrum of  severity
among true positives

Narrow spectrum of  severity
among true positives

Figure 8-5 Two hypothetical situations leading to different estimates of sensitivity depending 
on the spectrum of severity of a given condition (e.g., systolic blood pressure in the abscissa) even 
though the same test and cutoff (e.g., systolic blood pressure ≥ 140 mm Hg for the definition of 
hypertension) is used in both situations.
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The formulas for the calculation of  the confidence interval for a J statistic estimate are 
provided in Appendix A, Section A.11.

Because the J statistic assigns equal weight to sensitivity and specificity, alternative 
indices need to be used when these validity components are deemed not to be equally 
important in a given situation.

Percent Agreement
Percent agreement between two sets of  observations is obtained by dividing the number 
of  paired observations in the agreement cells by the total number of  paired observations 
(Figure 8-6). As an example of  calculation of  percent agreement, Table 8-9 shows results 
of  repeat readings of  B-mode ultrasound images of  the left carotid bifurcation, conducted 
to examine reliability of  atherosclerotic plaque identification in the ARIC study.35 When 
using a binary definition of  the variable (plaque or normal), as in the example shown in 
Table 8-9, the percent agreement can be calculated simply as

Percent agreement =
140 + 725

986
* 100 = 87.7%

Males Females

Study Category Sensitivity (%)

Nieto-García et al. “Obesity” 
based on self-reported weight 
and height*

Age (yr) 20–29 81 82

30–39 73 85

40–49 69 82

50–59 65 81

60–69 46 75

70–79 38 68

Vargas et al. “Hypertension” 
based on self-report†

White

Doctor visit last year Yes 71 73

No 43 57

Black

Doctor visit last year Yes 80 74

No 36 73

Mexican American

Doctor visit last year Yes 61 65

No 21 65

Table 8-8 Examples of results from subgroup analyses of sensitivity of information 
obtained by self-reports in two epidemiologic studies.

*Based on data from the Lipid Research Clinics Family Study (see text); true “obesity” defined as measured body mass 
index  30 kg/m2. 
Source: FJ Nieto-Garcia, et al., Body Mass Definitions of  Obesity: Sensitivity and Specificity Using Self-Reported Weight 
and Height. Epidemiology, Vol 1, pp. 146–152, 1990.
†Based on data from NHANES III (see text); true “hypertension” defined as measured systolic blood pressure  140 mm 
Hg, diastolic blood pressure  90 mm Hg, or use of  antihypertensive medication.
Source: CM Vargas, et al., Validity of  Self-Reported Hypertension in the National Health and Nutrition Survey III, 
1988-91. Preventive Medicine, Vol 26, pp. 678–685, © 1997.
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Not only is the percent agreement the simplest method of  summarizing agreement 
for categorical variables, but it has the added advantage that it can be calculated for any 
number of  categories, not just two, as in the preceding example. Thus, in the carotid 
ultrasound reading reliability study,35 readers who detected a carotid plaque were also 
asked to assess the presence of  acoustic shadowing (an attenuation of  echoes behind 
the plaque often reflecting the presence of  plaque calcification—i.e., an advanced 
 atherosclerotic plaque). The results of  the reproducibility readings of  the left carotid 
bifurcation in this study when the finer definition of  the plaque is used are shown in 
Table 8-10; the percent agreement in this case can be calculated as

Percent agreement =
17 + 104 + 725

986
* 100 = 85.8%

Test +

Test +

Test –

Concordant observations

× 100

Test –

ba

Observation No. 1

O
b

se
rv

at
io

n
 N

o.
 2

c d

Percent agreement:
(a + d)

(a + b + c + d)

Figure 8-6 Percent agreement for paired binary test results (positive vs negative) (e.g., those 
obtained by two different observers or methods or by the same observer at two different points in 
time): proportion of concordant results among all tested.

First reading

Plaque Normal Total

Second reading

Plaque 140 52 192

Normal 69 725 794

Total 209 777 986

Source: Data from R Li et al., Reproducibility of  Extracranial Carotid Atherosclerosis Lesions Assessed by B-Mode 
Ultrasound: The Atherosclerosis Risk in Communities. Ultrasound in Medicine & Biology, Vol 22, pp. 791–799, © 1996.

Table 8-9 Agreement between the first and the second readings to identify atherosclerosis 
plaque in the left carotid bifurcation by B-mode ultrasound examination in the Atherosclerosis 
Risk in Communities (ARIC) Study.
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Results from another reliability evaluation, based on data from a study of  the 
relationship between p53 protein overexpression and breast cancer risk factor profile, 
are shown in Table 8-11.36 As part of  the quality control procedures in this study, 49 
breast tumor sections were stained twice, and the resulting cross-tabulation of  the 
results after the first and second staining shows the percent agreement to be [(14 1 7 1 
21)/49] 3 100 5 85.7%.

Although the percent agreement is the epitome of  reliability indices for categorical 
variables, it can also be used to assess validity: that is, it can be used to examine the 
agreement between the test results and a presumed “gold standard”; when this is done, 
the calculation is obviously carried out without conditioning on the latter (as is the case 
with sensitivity/specificity calculations). For example, in Table 8-5, percent agreement 
is merely the percentage of  the observations falling in the agreement cells over the 
total, or [(18 1 11)/49] 3 100 5 59.2%. Likewise, in the validity study results shown 
in Table 8-6, the percent agreement between the weight categories based on self-
report and measured weight and height is [(462 1 2868 1 2086 1 809)/7455] 3  
100 5 83.5%.

First reading

P 1 S* Plaque only Normal Total

P 1 S* 17 14 6 37

Second reading
Plaque only 5 104 46 155

Normal 5 64 725 794

Total 27 182 777 986

Table 8-10 Agreement between the first and the second readings to identify atherosclerosis 
plaque with or without acoustic shadowing in the left carotid bifurcation by B-mode ultrasound 
examination in the Atherosclerosis Risk in Communities (ARIC) Study.

*Plaque plus (acoustic) shadowing.
Source: Data from R Li et al., Reproducibility of  Extracranial Carotid Atherosclerosis Lesions Assessed by B-Mode Ultrasound: 
The Atherosclerosis Risk in Communities Study. Ultrasound in Medicine & Biology, Vol 22, pp. 791–799, © 1996.

First staining

p531 p53 p532 Total

p531 14 1 15

Second staining
p53 7 2 9

p532 4 21 25

Total 14 12 23 49

Table 8-11 Reproducibility of the staining procedure for p53 overexpression in 49 breast 
cancer sections: Netherlands OC Study.

Note: p531, p53 overexpression; p536, weak overexpression; p532, no p53 overexpression.
Source: Data from K van der Kooy et al., p53 Protein Overexpression in Relation to Risk Factors for Breast Cancer. 
American Journal of  Epidemiology, Vol 144, pp. 924–933, © 1996
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A limitation of  the percent agreement approach is that its values tend to be high 
whenever the proportion of  negative–negative results is high (resulting from a low 
prevalence of  positivity in the study population), particularly when the specificity is 
high. For example, in Table 8-7, the percent agreement is higher for definition B (95.4%) 
than for definition A (91.4%), even though sensitivity was 12 points lower in B than in 
A (74% and 86%, respectively); this can be explained partly by the fact that the preva-
lence of  the condition is lower in B than in A, thus inflating the negative–negative cell, 
and partly by the fact that the specificity is higher in B than in A (it is close to 100% for 
the former). As further illustration, Table 8-12 shows the hypothetical situation of  a 
population in which the prevalence of  obesity was 20 times lower than that observed 
in the LRC population but the sensitivity and specificity levels were the same as those 
observed in Table 8-7, definition B (except for rounding). In this situation, the percent 
agreement will increase from 95.4% to about 99%; that is, it will be almost perfect 
solely as a result of  the decreased prevalence. In an analogous fashion, the percent 
agreement also tends to be high when the prevalence of  the condition is very high 
(resulting in a high proportion of  positive–positive observations), particularly when 
the sensitivity is high.

As for sensitivity and specificity, standard errors and confidence limits for percent 
agreement are calculated following standard procedures for an observed proportion (see 
Appendix A, Section A.10).

Percent Positive Agreement
In part to overcome the limitations of  the percent agreement as a reliability index when 
the prevalence of  the condition is either very low or very high, at least two measures of  
positive agreement (PPA) have been proposed:37

Measured BMI category

BMI based on self-report Obese Nonobese Total

Obese 41 69 110

Nonobese 14 7331 7345

Total 55 7400 7455

Percent agreement =
(41 + 7331)

7455
* 100 = 98.9%

PPA* =
2 * 41

(55 + 110)
* 100 = 49.7%

Chamberlain’s PPA* =
41

(41 + 69 + 14)
* 100 = 33.1%

*Percent positive agreement.

Table 8-12 Hypothetical results based on the example shown in Table 8-7 (Definition B), 
assuming the same validity figures but a prevalence of obesity approximately 20 times lower 
than that found in the Lipid Research Clinics population.
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 1. Percent positive agreement: the number of  occurrences for which both observers 
report a positive result, out of  the average number of  positives by either observer. 
Using the notation in Table 8-4, this is formulated as follows:

PPA =
a

a (a + c) + (a + b)
2

b
* 100 =

2a
[(a + c) + (a + b)]

* 100

 =
2a

(2a + b + c)
* 100

   (An intuitive understanding of  the PPA formula is that “2a” represents positives 
identified by both observers, whereas “b” and “c” are the positives identified by 
only one observer.)

 2. Chamberlain’s percent positive agreement: the number of  occurrences for which 
both observers report positive results out of  the total number of  observations for 
which at least one observer does so.38

Chamberlain’s PPA =
a

(a + b + c)
* 100

  The calculation of  these two indices is illustrated in the example shown in Table 
8-12. Notice that the two indices are closely related algebraically:

Chamberlain’s PPA =
PPA

(2 - PPA)

Kappa Statistic
The preceding measures of  agreement have an important limitation. They do not take 
into account the agreement that may occur by chance alone: that is, they do not take into 
consideration the fact that even if  both readings were completely unrelated (e.g., both 
observers scoring at random), they would occasionally agree just by chance. A measure 
that corrects for this chance agreement is the kappa statistic () defined as the fraction 
of  the observed agreement not due to chance in relation to the maximum non-chance 
agreement when using a categorical classification of  a variable.39–41 This definition is 
readily grasped by consideration of  the formula for the calculation of  ():

 k =
Po - Pe

1.0 - Pe

where Po is the proportion of  observed agreement and Pe is the chance agreement, that 
is, the proportion of  agreement expected to occur by chance alone. Their difference 
(the numerator of  kappa) is thus the non-chance observed agreement, whereas 1.0 – Pe 
(the denominator) is the maximum non-chance agreement. 

The kappa statistic is calculated from the cells shown in the diagonal of  a cross-
tabulation table, representing complete concordance between the two sets of  observa-
tions. The chance agreement is the agreement that would be expected if  both observers 
rated the responses at random. The total chance agreement is the sum of  the chance 
agreement for each cell on the diagonal. The number expected in each cell by chance 
alone is the product of  the corresponding marginal totals divided by the grand total. 
(This is the same method as that used for calculating the expected values under the 
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null hypothesis for a chi-square test in a contingency table.) For example, the chance 
agreement for the “plaque–plaque” cell in Table 8-9 is (209 3 192)/986, or 40.7, and 
that for the “normal–normal” cell is (777 3 794)/986, or 625.7.* The total expected 
chance agreement is thus (40.7 1 625.7)/986 5 0.676. A shortcut for the calculation of  
the proportion chance agreement for each cell is to divide the products of  the marginals 
by the square of  the total: that is, to combine both steps—calculation of  the expected 
number and that of  the expected proportion—into one. For example, for the data in Table 
8-9, the expected proportion for the “plaque–plaque” cell is [209 3 192]/9862, and 
that for the “normal–normal” cell is [777 3 794]/9862. The total chance agreement is 
therefore [209 3 192 1 777 3 794]/9862 5 0.676.) Because, as shown previously, the 
observed agreement for this table was 0.877,

k =
0.877 - 0.676

1.0 - 0.676
= 0.62

Formulas for the standard error and confidence interval of  kappa are given in 
Appendix A, Section A.12.

Possible values of  kappa range from 21 to 1, although values below 0 are not 
realistic in practice (the observed agreement would be worse than by chance alone). 
For the  interpretation of  a given value of  kappa, different classifications have been 
proposed40,42–44 (Figure 8-7). Of  these, probably the most widely used is that proposed 
by Landis and Koch.42 It is important to realize, however, that these classifications are 
arbitrary45; for any given value of  kappa, the degree of  misclassification/bias that would 
result from using the corresponding instrument/reader will depend on other circum-
stances, such as the prevalence of  the condition and the distribution of  the marginals 
(discussed later).

Like the percent agreement, the kappa can be estimated from 3 × 3, 4 × 4, or k × k 
tables. For example, the value of  kappa for the repeat readings of  the ultrasound exami-
nations of  the left carotid bifurcation in the ARIC study shown in Table 8-10 can be 
calculated as follows:

Observed agreement (see above) = 0.858

 Chance agreement =
[(27 * 37) + (182 * 155) + (777 * 794)]

(986)2 = 0.665

 k =
(0.858 - 0.665)

(1 - 0.665)
= 0.576

 Also like percent agreement, kappa is primarily used for the assessment of  reliability—
that is, when there is no clear-cut standard and it is appropriate to give equal weight to 
both sets of  readings. It is also occasionally used for the assessment of  validity, however, 
to compare the test results with those from a “gold standard.” As previously discussed, the 

*To understand better the probability that both readings would coincide by chance, it can be calculated for 
the “plaque–plaque” cell as follows (a similar calculation can be done for the “normal–normal” cell): the 
proportions of  plaque identified by the first and second readings in Table 8-9 are 209/986 5 0.212 and 
192/986 5 0.195. Thus, if  both readings were entirely independent (i.e., coinciding only by chance), the 
joint probability that both would identify plaque is 0.212 3 0.195 5 0.041, which translates into an expected 
chance agreement of  0.041 3 986 5 40.7 for plaque–plaque readings.
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observed agreement between BMI categories based on self-report and the “gold standard” 
(measured BMI) in Table 8-6 is 0.835. The expected chance agreement would be

 
[(534 * 640) + (3180 * 3447) + (2650 * 2500) + (1091 * 868)]

74552 = 0.340

Thus,

k =
(0.835 - 0.340)

(1 - 0.340)
= 0.75

Kappa is also frequently used in situations in which, although a “gold standard” 
exists, it is subject to non-negligible error, and thus, the investigator is reluctant to take 
it at face value (as assumed when sensitivity and specificity of  the “test” are calculated). 
(As mentioned previously, in this situation, it may be preferable to refer to the comparison 
between the “gold standard” and the test as an evaluation of  “inter-method reliability” 
rather than of  validity.) An example is a study using serum cotinine levels as the “gold 
standard” to assess the “validity” of  self-reported current smoking among pregnant 
women;46 because in this example the “gold standard” is also subject to errors stemming 
from both laboratory and within-individual variability, kappa was calculated and shown 
to be 0.83. In addition, to assess indirectly which method (self-report or serum cotinine) 
had better predictive validity (and reliability), the authors compared the magnitude of  
their correlation with an outcome known to be strongly related to maternal smoking: 
infant birthweight. The correlation between serum cotinine and birthweight (r 5 0.246) 
was only slightly higher than that observed between smoking self-report and birthweight 
(r 5 0.200), suggesting that, in this study population, serum cotinine and self-report are 
similarly adequate as markers of  current smoking exposure. (The limitations of  infer-
ences based on the value of  the correlation coefficient are discussed in Section 8.4.2.)
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Figure 8-7 Proposed classifications for the interpretation of a kappa value. 
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Figure 8-8 Reliability of diagnostic classification of emergency visits by diagnostic category: 
ratings by hospital database and six external raters. Saint John Regional Hospital emergency 
department database, Saint John, New Brunswick, Canada, 1994. Shaded symbols represent 
high-pollution days and open symbols represent low-pollution days.* P (high- vs low-pollution 
days) 5 0.0002. ●, asthma; ■, chronic obstructive pulmonary disease; ▲, respiratory infection; 
▼, cardiac diseases; ◆, other. 

Another example of  the application of  kappa to evaluate inter-method reliability is 
a study comparing performance-based and self-rated functional capacity in an older 
population of  Barcelona, Spain.47 Selected results from this study are shown in Table 
8-13. The authors reported measures of  both validity (sensitivity and specificity) and 
reliability (percent agreement and kappa), thus leaving to the reader the judgment 
as to whether performance evaluation at one point in time was an appropriate gold 
standard.

Extensions of  the kappa statistic to evaluate the agreement between multiple ratings 
(or multiple repeat measurements) are available.40 An example of  this application 
of  kappa can be found in a study assessing the reliability of  diagnostic classification 
of  emergency visits and its implications for studies of  air pollution.48 The agreement 
(kappa) between the diagnosis obtained from the hospital database and that made by six 
external raters (full-time emergency physicians) according to diagnostic category and 
day’s pollution level was efficiently displayed by the authors (as shown in Figure 8-8).

Weighted Kappa
When study results can be expressed by more than two categories, certain types of  
disagreement may be more serious than others; in this situation, consideration should be 
given to the use of  the weighted kappa. An example of  its application is the comparison 

Source: Reprinted with permission from DM Stieb et al., Assessing Diagnostic Classification in an Emergency Department: 
Implications for Daily Time Series Studies of  Air Pollution. American Journal of  Epidemiology, Vol 148, pp. 666–670, © 1998
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between self-reported and measured BMI, previously discussed (see Table 8-6). When 
the kappa statistic for these data was calculated above ( 5 0.75), it was assumed that 
only total agreement (the diagonal in Table 8-6) was worth considering: that is, any 
type of  disagreement, regardless of  its magnitude, was regarded as such. An alternative 
approach when calculating the value for kappa is to assign different weights to different 
levels of  disagreement and thus to assume that cells that are adjacent to the diagonal 
represent some sort of  “partial” agreement. For example, Table 8-14 shows the same 
data as in Table 8-6 but also indicates that full weight (1.0) was assigned to the diagonal 
cells representing perfect agreement, a weight of  0.75 to disagreement between adjacent 
categories, a weight of  0.5 for disagreement  corresponding to a “distance” of  two 
categories, and a weight of  0 for disagreement of  three categories. The calculation of  
the observed agreement in Table 8-14 is analogous to the calculation of  a weighted mean 
in that it consists of  merely multiplying the number in each cell by the corresponding 
weight, summing up all products, and dividing the sum by the grand total. Starting in 
the first row with the cell denoting “Underweight” for both assays, and proceeding from 
left to right in each row, the observed agreement (Pow, in which the letters o and w denote 
“observed” and “weighted,” respectively) is

 Pow = (462 * 1 + 178 * 0.75 + 0 + 0 + 72 * 0.75 + 2868 * 1

 + 505 * 0.75 + 2 * 0.5 + 0 + 134 * 0.75 + 2086 * 1 + 280

 * 0.75 + 0 + 0 + 59 * 0.75 + 809 * 1)/7455 = 0.959

The calculation of  Pow can be simplified by rearranging this equation, grouping the 
cells with equal weights (and omitting those with zeros):

 Pow = [(462 + 2868 + 2086 + 809) * 1 + (178 + 72 + 505

 + 134 + 280 + 59) * 0.75 + (2) * 0.5]/7455 = 0.959

The calculation of  the chance agreement (Pew, in which the letter e denotes “expected” 
by chance alone) in this example is done as follows: (1) multiply the marginal totals 
corresponding to cells showing a weight of  1.0; then sum these products, and multiply 
this sum by the weight of  1.0; (2) do the same for the cells with weights of  0.75 and for 
the cells with weights of  0.5 (i.e., including those with observed value of  0); and (3) sum 
all of  these, and divide the sum by the square of  the grand total, as follows:

 Pew = [(534 * 640 + 3180 * 3447 + c) * 1 + (534 * 3447 + c) * 0.75

 + (2650 * 640 + 1091 * 3447 + 534 * 2500 + 3180 * 868)

 * 868) * 0.5]/74552 = 0.776

After the weighted observed and chance agreement values are obtained, the formula 
for the weighted kappa (w) is identical to that for the unweighted kappa:

kw =
Pow - Pew

1.0 - Pew

Using this formula to calculate a weighted kappa for Table 8-14 yields

kw =
0.959 - 0.776

1.0 - 0.776
= 0.82
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In this example, the weight of  0.5 assigned to a disagreement of  two categories 
was used only as a hypothetical example for the calculation of  weighted kappa; in real 
life, one would be unlikely to assign any weight at all to disagreements between such 
extreme categories as “obese” versus “normal” or “overweight” versus “underweight.” 
In general, the weights assigned to cells, although somewhat arbitrary, should be 
chosen on the basis of  the investigators’ perception of  how serious the disagreement is 
in the context of  how the data will be used. For example, in a clinical setting where a confir-
matory breast cancer diagnosis from biopsy specimens may be followed by mastectomy, 
nothing short of  perfect agreement may be acceptable. (In practice, in this situation, 
disagreement between two observers is usually adjudicated by an additional observer 
or observers.) As a different example, the inclusion of  either “definite” or “probable” 
myocardial infarction cases in the numerator of  incidence rates for analyzing associa-
tions with risk factors in a cohort study (see, e.g., White et al.5) may well be acceptable, 
thus justifying the use of  a weighting score similar to that shown in Table 8-15 for the 
calculation of  kappa between two raters. In this example, the weighting scheme is set 
up recognizing that the disagreement between “probable” or “definite” on the one hand, 
and “absent” on the other, is deemed to be more serious than that between “definite” 
and “probable.” In the hypothetical example shown in Table 8-15, perfect agreement 
in myocardial infarction diagnoses between two observers was assigned a weight of  
1.0 (as in the calculation of  the unweighted kappa); the “definite” versus “probable” 

Observer no. 1

Observer no. 2 Definite Probable Absent

Definite 1.0 0.75 0

Probable 0.75 1.0 0

Absent 0 0 1.0

Table 8-15 Agreement weights for calculation of kappa: a hypothetical example of 
classification of myocardial infarction by certainty of diagnosis.

*Observed number (weight for the calculation of  kappa).

Measured BMI category

BMI based on 
self-reports Underweight Normal Overweight Obese Total

Underweight 462 (1.0)* 178 (0.75) 0 (0.5) 0 (0) 640

Normal 72 (0.75) 2868 (1.0) 505 (0.75) 2 (0.5) 3447

Overweight 0 (0.5) 134 (0.75) 2086 (1.0) 280 (0.75) 2500

Obese 0 (0) 0 (0.5) 59 (0.75) 809 (1.0) 868

Total 534 3180 2650 1091 7455

Table 8-14 Calculation of weighted kappa: cross-tabulation of self-reported and measured 
four body mass index (BMI) categories among 7455 adult participants of the Lipid Research 
Clinics Family Study, 1975–1978 (See Table 8-6).
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disagreement was arbitrarily assigned an “agreement” weight of  0.75, which recog-
nized its lesser seriousness vis-à-vis the weight of  0 assigned to the disagreement 
between the “absent” and the other categories. If  an additional and even “softer” 
diagnostic category, “possible,” was also used, the disagreement between, for example, 
“definite” and “possible” might be given a smaller weight (e.g., 0.5) than that assigned 
to the “definite-probable” cells. A similar approach could be used for the data shown in 
Table 8-10, in which the disagreement between the readings “plaque 1 shadowing” 
and “plaque” might not be considered as severe as that between either of  the two and 
“normal.”

In any event, the value of  weighted kappa will obviously depend on the weighting 
scheme that is chosen. This arbitrariness has been criticized and is one of  the weaknesses 
of  weighted kappa,49  particularly when continuous variables are grouped into multiple 
ordinal categories (e.g., the BMI categories in Table 8-6). In the latter case, it will be 
best to use certain weighting schemes for kappa* that are equivalent to the intraclass 
 correlation coefficient described in Section 8.4.2.

Dependence of Kappa on Prevalence
An important limitation of  kappa when comparing the reliability of  a diagnostic 
procedure (or exposure) in different populations is its dependence on the prevalence 
of  true “positivity” in each population. Following is an example that illustrates how 
 differences in prevalence affect the values of  kappa.

Consider a given condition Y, which is to be screened independently by two observers 
(A and B) in two different populations I and II, each with a size of  1000 individuals. 
Prevalence rates in these populations are 5% and 30%, respectively, such as can be 
found in younger and older target populations with regard to hypertension. Thus, 
the numbers of  true positives are 50 for population I and 300 for population II. The 
sensitivity and specificity of  each observer (assumed not to vary with the prevalence of  
Y) are, for observer A, 80% and 90%, respectively, and for observer B, 90% and 96%, 
respectively.

These sensitivity levels can be applied to the true positives in populations I and II to 
obtain the results shown in Table 8-16. For example, for population I, as seen in the row 
total, the sensitivity of  observer A being 0.80, 40 of  the 50 true positive subjects are 
correctly classified by him or her, whereas 10 are mistakenly classified as (false) negatives. 
For observer B, who has a sensitivity of  0.90, these numbers are, respectively, 45 and 5. 
The concordance cell—that is, the number of  persons who are classified as “positive” 
by both observers A and B—is merely the joint sensitivity applied to the total group of  
positive cases: for example, for population I, (0.80 3 0.90) 3 50 5 0.72 3 50 5 36. 
With three of  these numbers—that is, those classified as “positive” by A, those classified 
as “positive” by B, and those jointly classified as “positive”—it is possible to calculate the 
other cells in Table 8-16.

*It has been shown by Fleiss40 that for ordinal multilevel variables, when the weights, wij (i 5 1, . . . , k; j 5 1, . . . , k), are defined as

wy = 1 -
(i - j)2

(k - 1)2

where k is the number of  categories in the contingency table for the readers indexed by i and j, the value of  the weighted kappa is 
identical to that of  the intraclass correlation coefficient (see Section 8.4.2).
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In Table 8-17, similar calculations are done for the true negatives, using the  specificity 
values for observers A and B. Again, the number of  true negatives so classified by both 
observers is obtained by applying the joint probability of  both observers detecting a 
true negative (0.90 for A times 0.96 for B) to the total number of  true negatives in each 
population: for example, in population I (0.90 3 0.96) 3 950 5 821. (Some rounding 
is used.)

The total results shown in Table 8-18 are obtained by summing the data from Tables 
8-16 and 8-17. Kappa calculations for populations I and II, using the data shown in 
Table 8-18, yield the following values:

 Population I Population II

 k =
0.862 - 0.804

1.0 - 0.804
= 0.296 k =

0.830 - 0.577
1.0 - 0.577

= 0.598

Thus, for the same sensitivity and specificity of  the observers, the kappa value is 
greater (about twice in this example) in the population in which the prevalence of  
positivity is higher (population II) than in that in which it is lower (population I). A 
formula that expresses the value of  kappa as a function of  prevalence and the sensi-
tivity/specificity of  both observers has been developed,41 demonstrating that, for fixed 
sensitivity and  specificity levels, kappa tends toward 0 as the prevalence approaches 
either 0 or 1.

An additional problem is that, paradoxically, high values of  kappa can be obtained 
when the marginals of  the contingency table are unbalanced;50,51 thus, kappa tends to 
be higher when the observed positivity prevalence is different between observers A and 
B than when both observers report similar prevalence. Kappa therefore unduly rewards 
a differential assessment of  positivity between observers.

Population I 
(prevalence 5 5%)

Population II 
(prevalence 5 30%)

Observer A Observer A

Observer B Pos Neg Total Pos Neg Total

Positive 36‡ 9 45§ 216‡ 54 270§

Negative 4 1 5 24 6 30

Total    40** 10 50†     240** 60 300†

Table 8-16 Results of measurements conducted by observers A and B* in true positives in 
populations with different prevalence rates of the condition measured, each with a population 
size of 1000.

*Observer A has an 80% sensitivity and 90% specificity; observer B has a 90% sensitivity and a 96% specificity.
†Number of  true positives, obtained by multiplying the prevalence times the total population size: for example, for 
population I, 0.05 3 1000.
‡Obtained by applying the joint sensitivity of  observers A and B to the total number of  true positives: for example, for 
population I, (0.80 3 0.90) 3 50.
§Obtained by applying the sensitivity level of  observer B to the total number of  true positives in populations I and II: for 
example, for population I, 0.90 3 50.
**Obtained by applying the sensitivity level of  observer A to the total number of  true positives in populations I and II: for 
example, for population I, 0.80 3 50.
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The previous discussion suggests that comparisons of  kappa values among  populations 
or across different manifestations of  a condition (e.g., symptoms) may be unwarranted; it 
follows that using a specific kappa value obtained in a given target population to predict 
the value for another population is warranted only if  prevalence rates of  the condition(s) 
of  interest are similar in both populations and if  different raters (or repeat readings) provide 
reasonably similar prevalence estimates of  positivity. For example, in the ARIC carotid 
ultrasound reliability study,35 the authors assessed the reliability of  plaque identification 
(with or without shadowing) not only in the left carotid bifurcation (see Table 8-10) but 
also in the common and the internal carotid sites. The weighted kappa results for the 
three arterial segments are shown in Table 8-19. Both readings resulted in reasonably 
similar prevalence percentages of  plaque for each carotid artery site. For each reading, 
however, there are important differences in plaque  prevalence across sites. Thus, in 
comparing these kappa values across arterial segments, the authors aptly noted that “the 

Population I 
(prevalence 5 5%)

Population II 
(prevalence 5 30%)

Observer A Observer A

Observer B Pos Neg Total Pos Neg Total

Pos 40 43       83 219 79 298

Neg 95 822    917 91 611 702

Total 135 865 1000 310 690 1000

Table 8-18 Results of measurements by observers A and B for total populations I and II obtained 
by combining results from Tables 8-16 and 8-17.

Population I 
(prevalence 5 5%)

Population II 
(prevalence 5 30%)

Observer A Observer A

Observer B Pos Neg Total Pos Neg Total

Pos 4 34 38 3 25 28

Neg 91 821‡ 912§ 67 605‡ 672§

Total 95 855** 950† 70 630** 700†

Table 8-17 Results of measurements conducted by observers A and B* in true negatives in 
populations with different prevalence rates of the condition measured, each with a population 
size of 1000.

*Observer A has an 80% sensitivity and 90% specificity; observer B has a 90% sensitivity and a 96% specificity.
†Number of  true negatives, obtained by subtracting the number of  true positives (Table 8-16) from the total population size: for 
example, for population I, 1000 2 50.
‡Obtained by applying the joint specificity of  observers A and B to the total number of  true negatives: for example, for population I, 
(0.90 3 0.96) 3 950. (Results are rounded.)
§Obtained by applying the specificity level of  observer B to the total number of  true negatives in populations I and II: for example, for 
population I, 0.96 3 950.
**Obtained by applying the specificity level of  observer A to the total number of  true negatives in populations I and II: for example, 
for population I, 0.90 3 950.
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low weighted kappa coefficient . . . in the common carotid artery may be partially due to 
the low prevalence of  lesions in this segment.”35(pp.796,797) (On the other hand, although the 
prevalence is almost as low in the internal carotid as in the common carotid, the highest 
kappa is found in the former, probably as a function of  the fact that the actual images in 
the internal carotid were of  better quality than those in the other sites.)

Notwithstanding these limitations, kappa does provide a useful estimate of  the 
degree of  agreement between two observers or tests over and above the agreement 
that is expected to occur purely by chance, which explains its popularity. Furthermore, 
under certain conditions and partly because of  its dependence on prevalence, kappa 
may be useful as an index to predict the degree to which non-differential misclas-
sification attenuates the odds ratio:41 that is, it can be used to assess the validity of  
the value of  the measure of  association based on data obtained with a given instrument 
or test.

In summary, although clearly a useful measure of  reliability for categorical variables, 
kappa should be used and interpreted with caution. Most experts agree in recommending 
its use in conjunction with other measures of  agreement, such as the percent agreement 
indices described previously here. When using it, however, it is important to take into 
consideration its variability as a function of  the prevalence of  the condition and of  the 
degree of  similarity between observers with regard to the prevalence of  positivity.35,37,45,51

8.4.2 Indices of Validity/Reliability for Continuous Data
This section describes some of  the available methods to evaluate the validity and/or the 
reliability of  a given continuous measurement. The indices most frequently used for these 
purposes are listed in Table 8-3 and are briefly described later. As indicated in Table 8-3, 
some of  these indices can be used for the assessment of  validity (e.g., when measurements 
in serum samples done in a certain laboratory are compared with measurements in the 
same samples obtained at a reference laboratory; see Section 8.3.2), whereas others are 
more often used in reliability studies (e.g., for assessment of  within-observer, between-
observer, or within-individual repeated measurements of  a continuous parameter; see 
Section 8.3.3).

The data shown in Table 8-20 are used to illustrate the reliability measures discussed 
in this section. Shown in this table are partial data obtained during a reliability study 
of  polysomnography (PSG) scoring in the Sleep Heart Health Study (SHHS) project, 

Carotid segment

First reading  
prevalence of   

plaque %
Second reading  

prevalence of  plaque %
Weighted  

kappa

Common carotid 5.0 6.0 0.47

Carotid bifurcation* 21.2 19.5 0.60

Internal carotid 7.7 7.3 0.69

Table 8-19 Weighted kappa and prevalence of plaque (with or without shadowing) in two 
readings of B-mode ultrasound exams in three carotid artery segments, Atherosclerosis Risk in 
Communities (ARIC) Study.

*See data in Table 8-10. Note that this weighted kappa value is slightly greater than the unweighted value of  0.576 (see text).
Source: Data from R Li et al., Reproducibility of  Extracranial Carotid Atherosclerosis Lesions Assessed by B-Mode Ultrasound: 
The Atherosclerosis Risk in Communities Study. Ultrasound in Medicine & Biology, Vol 22, pp. 791–799, © 1996.
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Apnea-hypopnea index* Arousal index†

Scorer A Scorer B Scorer A Scorer B

Study 

no.

First  

reading

Second  

reading
First  

reading

Repeat reading

  1 1.25 0.99 1.38 7.08 7.65 8.56

  2 1.61 1.57 2.05 18.60 23.72 19.91

  3 5.64 5.60 5.50 20.39 39.18 25.17

  4 0.00 0.32 0.00 16.39 26.77 22.68

  5 12.51 11.84 11.03 27.95 22.64 17.21

  6 22.13 21.64 21.34 29.57 34.20 27.15

  7 2.68 1.77 2.39 13.50 14.31 18.66

  8 2.19 2.18 2.04 24.50 21.35 20.58

  9 8.52 8.67 8.64 14.63 13.42 15.61

10 0.33 0.16 0.16 11.15 13.12 13.10

11 0.00 0.00 19.52 19.05

12 2.70 2.46 18.91 18.59

13 3.03 2.11 17.98 10.78

14 3.49 3.30 15.78 12.64

15 1.12 0.98 0.00 7.04

16 4.94 4.09 8.15 10.75

17 9.52 8.47 20.36 20.61

18 27.90 25.47 36.62 34.90

19 5.58 5.21 18.31 20.84

20 6.59 6.94 17.56 24.28

21 1.08 1.32 8.14 22.94

22 5.46 5.16 17.30 19.38

23 0.00 0.00 16.39 22.68

24 2.32 1.64 29.29 65.09

25 1.93 1.38 18.80 18.75

26 17.68 18.74 10.92 20.97

27 2.54 1.70 12.53 13.38

28 6.50 6.34 24.94 43.92

29 2.09 2.35 18.66 18.02

30 11.09 9.25 12.50 23.25

Within scorer Within scorer

Between scorer Between scorer

Table 8-20 Data from a reliability study of sleep-breathing disorders variables obtained from home 
polysomnography recordings.

Note: Partial data obtained as part of  a formal reliability study in the Sleep Heart Health Study (SF Quan, et al., The Sleep Heart Health 
Study: Design, Rationale and Methods. Sleep, Vol 20, pp. 1077–1085, 1997; CW Whitney, et al., Reliability of  Scoring Disturbance 
Indices and Sleep Staging. Sleep, Vol 21, pp. 749–757, 1998).  These data, kindly provided by the SHHS investigators, are presented 
for didactic purposes.  Derived validity/reliability indices are not to be interpreted as an accurate and complete representation of  the 
reliability of  the scoring procedures in the SHHS, for which readers are referred to the original report (see Whitney, et al., above).
*Apnea-hypopnea index: average number of  apnea and hypopnea episodes per hour of  sleep (apnea, cessation of  airflow for 
 10 seconds; hypopnea, decrease in airflow or thoracoabdominal excursion of   30% for  10 seconds, accompanied  
by a  4% decrease in oxygen saturation).
†Arousal index: average number of  sleep arousals per hour of  sleep.
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a population-based study of  the cardiovascular consequences of  sleep-disordered 
breathing (e.g., sleep apnea).52 In the SHHS, the PSG recordings obtained from 6440 
participants in six field centers were sent to a central reading center for scoring (sleep 
staging and calculation of  indices of  sleep-disordered breathing). The design and results 
of  the reliability study conducted in the SHHS have been described in detail53 and have 
included both the within- and between-scorer reliability of  sleep-disordered breathing 
variables and sleep staging. For the purposes of  this example, Table 8-20 shows only 
data on two measures of  sleep-disordered breathing (apnea-hypopnea index [AHI] and 
arousal index [AI]) for 30 PSG studies that were read by two of  the scorers (scorers A and 
B) to assess between-scorer reliability, as well as 10 studies that were read twice by one of  
the scorers (scorer A) as part of  the within-scorer reliability study.

The validity/reliability measures described in the following paragraphs are one of  two 
types. The first type consists of  indices based on assessing the linear correlation between 
the two sets of  values being compared (correlation plot, correlation coefficients). The 
second type consists of  measures based on the pair-wise comparison of  the numerical 
values of  the two measures being compared (mean difference, coefficient of  variation, 
and Bland-Altman plot). 

Correlation Graph (Scatter Diagram)
The simplest way to compare two sets of  readings is merely to plot the values for each 
method and carefully examine the patterns observed in the scatter plot. For example, 
Figures 8-9A and 8-9B show the correlation between the AHI and AI values obtained 
by scorers A and B. Figures 8-9C and 8-9D correspond to the within-scorer reliability: 
that is, these charts show the AHI and AI values resulting from the 10 repeat readings 
done by scorer A. They show that AHI readings (Figures 8-9A and 8-9C) are strongly 
correlated (as expressed by their being almost perfectly superimposed to the 45° lines, 
which corresponds to a perfect agreement). For AI, although there appears to be a 
correlation, a significant scatter is seen around the ideal 45° lines. (The diagonals or 
identity lines in Figure 8-9 [going through the origin with a 45° slope] are equivalent 
to regression lines [see Chapter 7, Section 7.4.1] with intercept 5 0 and regression 
coefficient 5 1.0 unit.)

Although simple correlation graphs are useful to get a sense of  the degree of  
agreement between two measures, they are not as sensitive as alternative graphic 
techniques (see Bland-Altman plot later in this chapter) for the detection of  certain 
patterns in the data.

Linear Correlation Coefficient, Rank Correlation, Linear Regression
Pearson’s product-moment correlation coefficient (usually denoted by r) is a measure 
of  the degree to which a set of  paired observations in a scatter diagram approaches the 
situation in which every point falls exactly on a straight line.43,54 The possible range of  
values of  r is from 21 (when there is a perfect negative correlation between the two 
observers) to 11 (when there is a perfect positive correlation). The closer the r values 
are to 0, the weaker the correlation (either negative or positive) between the two sets of  
values. For example, the r values for the scatter diagrams in Figure 8-9 are:

  AHI: Between scorer (A), n 5 30: r 5 0.995
   Within scorer (C), n 5 10: r 5 0.999
  AI: Between scorer (B), n 5 30: r 5 0.655
   Within scorer (D), n 5 10: r 5 0.710 
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Calculation of  the Pearson correlation coefficient is fairly straightforward and can be 
done using most available statistical packages and even most pocket calculators carrying 
scientific functions. 

Although Pearson’s r is probably one of  the most frequently used measures of  
agreement for continuous variables in the biomedical literature (in both validity and 
reliability studies), it is also one of  the least appropriate.55–58 Its main limitations can be 
summarized as follows.

First, Pearson’s r is an index of  linear association, but it is not necessarily a good 
measure of  agreement. It is insensitive to systematic differences (bias) between two 
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Figure 8-9 Scatter diagrams for between- and within-scorer reliability for data shown in  
Table 8-20. A: between-scorer AHI values (scorers A and B); B: between-scorer AI values (scorers 
A and B); C: within-scorer AHI values for repeat readings by scorer A; D: within-scorer AI values 
for repeat readings by scorer A. The straight diagonal lines in these plots represent the identity 
lines, that is, where the points would be if agreement was perfect. AHI and AI are expressed as the 
average number of episodes per hour of sleep. 
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observers or readings, as illustrated in Figure 8-10. The values of  the correlation coeffi-
cients (r 5 1.0) in this figure indicate perfect linear correlation between the two observers 
in all three panels. However, perfect agreement of  values occurs only in Figure 8-10A, 
in which all the observations fall in the identity line (i.e., for each pair of  observations, 
observer B value 5 observer A value). In Figure 8-10B, the points fall in a perfect straight 
line, but the slope of  the line is different from 1.0: that is, compared with observer A, 
observer B tends to read the higher values at lower levels. The situation illustrated in 
Figure 8-10C also shows lack of  agreement due to systematic readings by observer B at 
higher levels across the entire range of  values (which results in a regression line with an 
intercept different from zero).

The latter situation (Figure 8-10C) is particularly likely in the presence of  systematic 
differences among readers, drifts over time in the readers’ ability to apply the study 
criteria, wearing out of  reagents used in certain laboratory techniques, and so forth. In 
these situations, the exclusive use of  Pearson’s r may produce a misleading assessment 
of  agreement. A real-life example relates to the LRC data (see Tables 8-6 and 8-7), in 
which the Pearson correlation coefficient between “self-reported” and “measured” 
BMI was found to be 0.96. Other studies have shown similarly strong correlations 
between these approaches of  measuring BMI and body weight, leading some authors 
to conclude that self-reported weights are remarkably accurate and may obviate the 
need for costly and time consuming anthropometric measurements in epidemiological 
investigations.59,60 This conclusion may be misleading, however, because even though 
the correlation is high, there is a systematic tendency of  individuals to underestimate 
their weights (usually paralleled by an overestimation of  their heights). As a result, in 
Table 8-6, there is a larger number of  individuals above (and to the right) of  the perfect 
agreement diagonal than below it. It follows that if  the BMI based on self-reports is used 
to define categorical adiposity variables, this systematic error will result in less than 
perfect agreement (and thus misclassification). For the data shown in Table 8-6, kappa 
was 0.75—notwithstanding, as mentioned previously, the almost perfect correlation 
between self-reports and measured weight and height (Pearson r 5 0.96). 

Second, the value of  r is very sensitive to the range of  values. The influence of  the 
range of  values on the Pearson’s r is illustrated in Figures 8-11A and 8-11B. In this 
hypothetical example, both readers are assumed to be similarly reliable. Nonetheless, 
because sample values have a broader distribution in Figure 8-11B than in Figure 8-11A, 
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B
r = 1.0
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r = 1.0

Figure 8-10 Correlation coefficients are equally high when both observers read the same value 
(A) and when there is a systematic difference between observers but readings vary simultaneously 
(B and C). 
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the correlation coefficients will be higher for the former. This can also be  illustrated using 
real data from Figure 8-9B. As mentioned previously, Pearson’s r for the total set of   
30 repeat readings of  AI by scorers A and B was 0.655. If, however, this set is split into 
two subsets, one including the studies in which scorer B read values of  AI  15 per hour 
(n 5 8) and another in which scorer B read values of  AI  15 per hour (n 5 22), the 
correlation coefficients are estimated at 0.59 and 0.51, respectively: that is, both r’s are 
smaller than the r based on the entire set of  30 observations, which does not make a lot 
of  intuitive sense.

As a corollary of  its dependence on the range of  values, Pearson’s correlation 
 coefficient is unduly sensitive to extreme values (outliers). Thus, for example, Figure 
8-11C is a repetition of  Figure 8-11B, but with one additional observation with an 
extreme value; this outlier has an enormous influence in defining the regression line 
and the value of  the correlation coefficient, which increases from 0.8 in Figure 8-11B to 
0.95 in Figure 8-11C.

Despite its undesirable properties, Pearson’s correlation coefficient is often used as 
the main, if  not the sole, measure of  reliability reported in biomedical or epidemio-
logic studies. This may have to do with tradition, pattern recognition, and imitation 
(“everybody uses it”).56 Some argue that r is an appropriate measure for reliability studies 
when the objective is to see whether two different sets of  readings would classify (order) 
subjects in the same manner; thus, if  Pearson’s r is high, it would be justified to use the 
distribution of  study values to classify subjects. If  that is the case, however, the Spearman 
correlation coefficient (also called “ordinal” or “rank correlation coefficient” and denoted 
by rs) is more appropriate. This coefficient takes the value of  11 when the paired ranks 
are exactly in the same order, a value of  21 when the ranks are exactly in an inverse 
order, and a value of  0 when there is no correlation between the ordering of  the two sets 
of  paired values. For example, the rs values for the scatter diagrams in Figure 8-9 are 
0.984 (AHI, between), 0.58 (AI, between), 0.976 (AHI, within), and 0.757 (AI, within). 
Although more congruous with the goal of  assessing consistency of  the ranking and less 
influenced by outlying values, the Spearman correlation coefficient does not address the 
other limitation of  Pearson’s r previously discussed, namely its insensitivity to lack of  
agreement due to systematic differences in values between the readers.

Finally, because of  its relatively frequent occurrence in the biomedical literature, it 
is worth discussing the use of  statistical significance testing to evaluate a correlation 
coefficient (Pearson’s or Spearman’s) in the context of  validity/reliability studies. The 
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Figure 8-11 Pearson’s correlation coefficient is very sensitive to the range of values and to the 
presence of outliers (extreme values). Hypothetical examples.
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calculation of  a p value for a correlation coefficient (i.e., evaluating the null hypothesis 
H0: r 5 0.0) is not useful in this context for both theoretical and practical reasons:  
(1) the null hypothesis—that there is no relationship between two tests (or two observers) 
supposedly measuring the same variable or construct is illogical and demonstrating that 
it can be rejected is not very informative; (2) even when the reliability is fairly poor (e.g., 
r  0.3 or 0.4), the corresponding p value may well be “significant” if  the sample size 
is reasonably large. Thus, a highly significant p value may be mistakenly interpreted as 
evidence of  “high reliability” when in fact its only interpretation is that it is relatively 
safe to reject a (meaningless, anyway) null hypothesis. Testing the hypothesis of  quasi-
perfect correlation (e.g., H0: r 5 0.95) has been proposed as an alternative and more 
useful approach.57 Another logical alternative is to calculate confidence limits for the 
value of  the correlation coefficient rather than its associated p value.

The preceding discussion suggests that the correlation coefficient should be used 
judiciously. More specifically, its interpretation is greatly enhanced by a consideration of  
possible systematic differences between measurements. The use of  a scatter diagram of  the 
data is helpful in detecting these systematic differences, the presence of  outlying values, 
and differences between variables with regard to the range of  their values. Other indices of  
reliability that avoid some of  the pitfalls inherent to Pearson’s r are discussed next.

An alternative to Pearson’s r is linear regression, which provides a measure of  the 
regression function’s intercept and slope (see Chapter 7, Section 7.4.1), thus allowing 
the assessment of  situations such as those illustrated in Figure 8-10B and Figure 8-10C, 
in which the intercept is not zero or in which there is a systematic difference between 
readers. Linear regression, however, is not problem free when used to analyze reliability 
data: for example (and importantly), it neglects the fact that measurement errors may 
occur for both dependent and independent variables.55 (In ordinal linear regression, the 
so-called independent variable, x, is assumed to be error free, and only errors [statistical 
variability] in the “dependent” variable are considered; see Chapter 7, Section 7.4.1.) 
Linear regression is more useful for “calibration” purposes than to assess reliability: that 
is, it is more useful to predict outcomes or to obtain “corrected” values once a systematic 
difference is identified and quantified.

Intraclass Correlation Coefficient
The intraclass correlation coefficient (ICC) or reliability coefficient (R) is an estimate 
of  the fraction of  the total measurement variability caused by variation among 
individuals.40,58 Ideally, an epidemiologic study should use highly standardized proce-
dures and data collection methods known to be valid and reliable. Under these optimal 
circumstances, most of  the variability can be attributed to differences among study 
participants (between-individual variability) (see Section 8.3.3).

The general formula for the ICC is thus

ICC =
Vb

VT
=

Vb

Vb + Ve

in which Vb 5 variance between individuals, VT 5 total variance, which includes both 
Vb and Ve, and Ve 5 unwanted variance (“error”). Ve will include different components 
depending on the design of  the study (see Figure 8-4). For example, in a within-laboratory 
reliability study, it will include the variance due to laboratory/method error. In a within-
individual reliability study (i.e., repeat readings or determinations by the same reader 
or technique obtained in the same individual), it will be the estimated variance within 
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individuals. It can also be combinations of  these, as, for example, in a study assessing 
both the laboratory and within-individual variability of  hemostasis and inflammation 
plasma parameters.61

The ICC is akin to the kappa statistic for continuous variables and has the same 
range of  possible values (from 21.0 or more realistically from 0 to 11.0, in case of  
perfect agreement). It has the advantage over the Pearson’s or Spearman’s correlation 
coefficient in that it is a true measure of  agreement, combining information on both 
the correlation and the systematic differences between readings.58 As in the case of  
Pearson’s correlation coefficient, however, ICC is affected by the range of  values in the 
study population. In the previous formula, when Vb is small, ICC also will be small. This 
is particularly important in studies within populations in which the exposure values 
are either very high or very low. For example, a high intake of  animal fat in some 
populations may result in uniformly high serum cholesterol levels. A low reliability 
coefficient resulting from a small variability of  the exposure levels may negatively 
influence the power of  an epidemiologic study and thus make it difficult to assess 
an association. Obviously, the ICC will also be low when there is substantial intra-
individual variability of  the factor of  interest, as in the case of  gonadal hormone levels 
in premenopausal women.

ICC can be calculated from an analysis of  variance (ANOVA) table, although a more 
simple formula based on the standard deviations of  the two sets of  observations, and 
the sum and the standard deviation of  the paired differences, has been provided58 
(see Appendix E). Based on this formula, for example, the ICC for the between-reader 
reliability study data shown in Table 8-20 can be estimated as 0.99 for AHI and 0.58 
for AI. Like kappa, the ICC can also be extended to calculate the reliability between more 
than two observers or readings. For example, in the actual (full) reliability study of  sleep 
scoring in the SHHS,53 the reported ICC between the three scorers was 0.99 for AHI and 
0.54 for AI.

As an additional example, Table 8-21 shows the ICC for three lipid measurements in a 
sample of  the ARIC study cohort baseline examination.27 The high ICC obtained for total 
cholesterol and total high-density lipoprotein (HDL) cholesterol in this study suggests 
that the proportion of  the variance due to within-individual variability or laboratory 
error for these analytes is small; on the other hand, the ICC for an HDL  cholesterol 
fraction (HDL2) was found to be much lower.

An additional reliability measure, which is closely related to the intraclass correlation 
coefficient, the Cronbach alpha, is widely used by researchers in the social sciences.62,63 

Analyte ICC CV (%)

Total cholesterol 0.94 5.1

HDL cholesterol 0.94 6.8

HDL2 0.77 24.8

Table 8-21 Intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) for 
selected analytes in the Atherosclerosis Risk in Communities (ARIC) Study.*  

*Includes both within-individual and laboratory variability.
Source: Data from LE Chambless et al., Short-Term Intraindividual Variability in Lipoprotein Measurements: The 
Atherosclerosis Risk in Communities (ARIC) Study. American Journal of  Epidemiology, Vol 136, pp. 1069–1081, © 1992
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Mean Difference and Paired t-Test
The average of  the differences between the two values of  the pairs of  observations is 
a measure of  the degree of  systematic differences between the two sets of  readings. 
A paired t-test statistic can be calculated simply by dividing the mean value of  all paired 
differences denoted by x– by its standard error (i.e., the standard deviation [s] over the 
square root of  the sample size):

t@ test =
�x(1 - 2)

s(1 - 2)/2n

This index is typically used when assessing validity, as it provides a direct estimate 
of  the degree of  bias for one of  the sets of  measurements when it is justified to use the 
other set as a gold standard. On the other hand, it can also be used in the context of  
paired reliability studies, as when assessing systematic differences between readers 
of  a test. For example, for the between-reader reliability study in Table 8-20, scorers 
A’s and B’s mean differences were 0.367 (standard deviation [SD] = 0.703) for AHI  
and –3.327 (SD 5 8.661) for AI. Although their magnitude is rather small, particularly 
for AHI, both differences were found to be statistically significant at conventional levels 
(p  0.05), thus suggesting the existence of  a systematic between-scorer variability. In 
Whitney et al.’s report,53 this index was used to assess within-scorer reliability.

Caution should be exercised when using the mean difference as a measure of  validity 
or reliability without a careful examination of  the data (e.g., looking at a scatter diagram 
or a Bland-Altman plot; see later in this Chapter), as its value can be heavily dependent 
on extreme values.

Coefficient of Variability
Another index of  reliability often used in epidemiologic studies is the coefficient 
of  variability (CV), which is the standard deviation expressed as a percentage of  the 
mean value of  two sets of  paired observations. In an analysis of  reliability data, it is 
calculated for each pair of  observations and then averaged over all pairs of  original and 
replicate measures. Its estimation is very straightforward. The variance of  each pair of  
measurements is

Vi = a
2

j = 1
(xij - �xi)

2

in which i is a given pair of  repeat measurements (indexed by j) on the same sample or 
individual, xi1 and xi2 are the values of  these two measurements, and x�i is their mean.

The standard deviation (SD) for each pair of  observations is the square root of  Vi; thus, 
for each pair of  measurements, the coefficient of  variability (expressed as a percentage) is

CVi =
SDi

�xi
* 100

 For example, for the last pair (pair 30) of  between-scorer readings of  AHI in Table 
8-20 (11.09 and 9.25, mean 10.17), these calculations are as follows:

V30 = (11.09 - 10.17)2 + (9.25 - 10.17)2 = 1.693

with the resulting coefficient of  variability for that pair

CV30 =
!1.693
10.17

* 100 = 12.8%



8

Q
uality Assurance 

and Control

 8.4 Indices of Validity and Reliability 357

This calculation would have to be repeated for all pairs of  measurements, and the overall 
coefficient of  variability would be the average of  all pair-wise coefficients of  variability. 
The lower the coefficient of  variability, the less variation there is between the replicate 
measurements. Obviously, if  there were no differences whatsoever between paired values 
(perfect agreement), the value of  the coefficient of  variability would be zero. The overall 
between-scorer coefficients of  variability for all 30 paired observations shown in Table 
8-20 are 10.1% for AHI and 22.8% for AI. In addition to the intraclass correlation coeffi-
cients discussed previously, Table 8-21 shows the coefficients of  variability for serum total 
cholesterol, HDL cholesterol, and HDL2 in the ARIC cohort reliability study.27 Consistently 
with the intraclass correlation coefficients, the coefficients of  variability are fairly low 
for total cholesterol and total HDL cholesterol but high for the HDL cholesterol fraction, 
HDL2, indicating substantial imprecision in the measurement of  the latter fraction.

Bland-Altman Plot
This is a very useful graphical technique that is a good complement to the ordinary scatter 
diagram (discussed previously ) for the examination of  patterns of  disagreement between 
repeated measurements (or between a given measurement and the “gold standard”). It 
consists of  a scatter plot where the difference between the paired measurements (A 2 
B in the ordinate) is plotted against their mean value [(A 1 B)/2, in the abscissa]. From 
this plot, it is much easier than in a regular scatter diagram to assess the magnitude of  
disagreement (including systematic differences), spot outliers, and to see whether there 
is any trend.55,56 For example, Figures 8-12A and 8-12B show the Bland-Altman plots 
for the between-scorer measurements of  AHI and AI data from Table 8-20. Compared 
with the corresponding scatter diagrams (Figures 8-9A and 8-9B), these pictures reveal 
more clearly some interesting features of  the data, as follows:

•	 There is a slight systematic difference between the two measurements, as 
 represented by the departure from zero of  the horizontal line corresponding to the 
mean difference.
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Figure 8-12 Bland-Altman plots for AHI and AI for the between-scorer reliability study data 
from Table 8-20. The horizontal lines represent the mean within-pair difference (0.367 and 23.327, 
for AHI and AI, respectively) and the mean 62 standard deviations (1 SD 5 0.703 for AHI and 8.661 
for AI). AHI and AI are expressed as the average number of episodes per hour of sleep. (Note that 
the scales in the ordinates of AHI and AI are different.) 
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•	 Outliers may be present: in Figure 8-12, there is one measurement with mean AHI 
greater than 25 and one with mean AI greater than 40 that are clearly outside the 
range of  mean difference 6 2 SD.

•	 The graphs provide a clearer idea of  the magnitude of  disagreement in comparison 
with the actual measurement. In Figure 8-12A, for example, all but one (or perhaps 
two or three) AHI mean differences are within the (mean 6 2 SD) range, which 
spans approximately three AHI units; the latter is a relatively low value in the range 
of  AHI values in the abscissa. In contrast, the (mean difference 6 SD) range for 
AI (Figure 8-12B), whereas containing also all but one observation, spans almost 
35 AI units, which is practically the entire range of  AI values observed in these 
individuals.

•	 The AHI plot in Figure 8-12A suggests that disagreement between the scorers 
increases as the actual value of  AHI increases. This pattern is not as evident for AI, 
however (Figure 8-12B).

If  this graphic approach is used when one of  the measurements can be considered a 
gold standard, one may want to represent the latter in the abscissa instead of  the mean 
of  both measurements. In this case, the vertical departure from zero will represent the 
magnitude of  bias of  the test value with respect to the gold standard.

An alternative to the Bland-Altman approach that allows the evaluation of  agreement 
between more than two sets of  observations and is based on an extension of  the Kaplan-
Meier method has been suggested by Luiz et al. and is described in detail elsewhere.64

8.5 REGRESSION TO THE MEAN

The phenomenon known as regression to the mean permeates many of  the problems and 
analytical approaches described in the previous sections and deserves a brief  discussion 
here. This is a well-known phenomenon, aptly discussed by Oldham in 1962,65 which 
expresses the tendency for high values of  continuous variables (e.g., blood pressure) 
measured at any given point in time to decrease and, for low values to increase, when 
repeated measurements are done. This tendency may result from either intra-individual 
variability (as illustrated in Figure 8-3) or random measurement errors. As an example, 
when measurements of  blood pressure levels in a group of  individuals are repeated, 
many values converge (regress) toward the mean. A corollary of  this is that caution is 
needed when analyzing data on repeated measurements over time and when analyzing 
correlation of  these data with baseline values.66 In addition, regression to the mean 
underscores the desirability of  using the average of  repeated measurements rather than 
single measurements for physiologic parameters that fluctuate (as is the case of  blood 
pressure, among many other examples). This is particularly important in studies in which 
a cutoff  point is used as a study inclusion criterion, such as the cutoff  to define hyper-
tension in clinical trials of  hypertension management. Many individuals eligible on the 
basis of  one measurement would not be eligible if  the mean of  repeated measurements 
of  blood pressure were used instead. When regression to the mean occurs, the initial 
follow-up phase of  a clinical trial aimed at examining the effectiveness of  an antihyper-
tensive medication may show a decrease in blood pressure levels in both the active inter-
vention and the placebo groups (Figure 8-13). An example is given by the Hypertension 
Detection and Follow-up Program, in which a decline in systolic blood pressure was seen 
in both the intervention and the control groups and in all four sex-ethnic groups (white 
men and women and African American men and women).67
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8.6 FINAL CONSIDERATIONS

It should be emphasized that validity and reliability are two entirely different issues. 
For example, poor validity may be consistent with an excellent reliability, i.e., every time the 
procedure is repeated, the same or very similar, albeit always inaccurate results are found. 

In addition, assessment of  the same summary measures, such as the kappa statistic, 
may not be sufficient to implement a specific corrective action. Consider, for example, 
a situation in which agreement between experienced readers in the interpretation of  
mammographic images results in a high kappa value (e.g.,  5 0.9), denoting that the 
agreement is “almost perfect” according to Landis and Koch’s classification (Figure 8-7).42 
However, the reviewers disagree with regard to ten observations. For quality control, it may 
be useful to ask why two experienced readers, using the same protocols, arrived at different 
results from ten study participants. Can the results be explained by these participants’ 
characteristics, e.g., obesity interfering with the quality of  the mammographic images? 
Were the discrepant results due to one or both of  the readers’ state of  mind when they 
were interpreting the results? And so on. This example underscores the contrast between 
reporting a summary measure (kappa) and the practical aspects of  conducting research, 
and suggests that, in addition to examining the actual reasons for the discrepant findings, 
strategies that allow a more complete examination of  data, such as Bland-Altman plot, 
should be favored over more concise summary measures, such as Kappa.
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Figure 8-13 Schematic representation of regression to the mean in a randomized clinical trial.  
In a clinical trial of an anti-hypertensive drug, individuals are selected on the basis of a blood pressure 
value above a certain cut-off point defining hypertension (e.g., systolic blood pressure 160 mm Hg, 
denoting severe hypertension). Some individuals are, thus, chosen when their blood pressure levels 
are above their average values.  As a result, in the initial phases of follow-up, blood pressure will 
decline in both intervention and placebo groups regardless of the effectiveness of the drug. 
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Activity
Quality  

assurance
Quality  
control

Preparation of  manuals of  operation . . . . . . . . . . . .

Over-the-shoulder observation of   interviews during 
the study’s data collection phase . . . . . . . . . . . .

Determination of  interobserver reliability during 
the study’s data collection phase . . . . . . . . . . . .

Certification of  interviewers . . . . . . . . . . . .

Recertification of  interviewers . . . . . . . . . . . .

Examination of  intralaboratory reliability using 
phantom (repeat) blood samples collected from the 
study participants . . . . . . . . . . . .

(continues)

EXERCISES

 1. The relationship between serum cholesterol and coronary heart disease seems to 
follow a “dose–response” (graded) pattern. A serum cholesterol concentration test 
based on blood obtained by finger-stick in nonfasting individuals was considered 
for use in a large cohort study of  risk factors for coronary heart disease. Also 
discussed in Section 8.3.2 of  this chapter, a pilot study was conducted comparing 
results from this test with those obtained by assaying serum cholesterol in a 
nationally recognized standard laboratory. The standard examinations were done 
in the fasting state on plasma under carefully controlled conditions. The results 
are shown in the table. In this table, “positive” values refer to a serum cholesterol 
concentration of   200 mg/dL.

  

Standard laboratory values

Finger-stick values Positive Negative Total

Positive 18 19 37

Negative 1 11 12

Total 19 30 49

  a.  Calculate the sensitivity, specificity, and predictive values of  the finger-stick 
test by using the standard laboratory values as the gold standard.

  b.  On the basis of  this pilot study, would you recommend the use of  the  finger-stick 
test in the study? State the reasons for your recommendation and the potential 
impact of  using this test on the study’s results.

  c.  Would you have analyzed the results of  this pilot study differently? Why and 
how?

 2. Define quality assurance and quality control, and next to each activity shown in 
the table check whether it should be regarded as a quality assurance or a quality  
control activity.
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 3. In  an ongoing epidemiologic study, the inter-observer reliability of  body mass index 
(BMI, measured in kg/m2) was examined, based on three categories: “normal” 
(BMI, 25), “overweight” (25–29.9), and “obese” (30). Two independent 
observers measured weight and height on the same day in 30 volunteers. The 
results are shown in the following table:

  

Observer A

Normal Overweight Obese Total

Observer B Normal 10 10

Overweight 12 2 14

Obese 1 5 6

Total 10 13 7 30

  a.  Calculate the unweighted as well as the weighted kappa values. For the latter, 
use weights of  1.0 for perfect agreement and 0.7 for a one-category difference.

  b. Given these kappa values, which additional action would you pursue?

  c. Under which circumstances would you use the weighted kappa?

 4. In a hypothetical study, two technicians used a stethoscope that allows two 
observers to measure levels of  blood pressure simultaneously to determine inter-
observer agreement of  systolic blood pressure measures.   Both technicians were 
trained using the same protocol and by the same experienced third technician. 
The results are as follows:

(continued)

Activity
Quality  

assurance
Quality  
control

Assessment of  the validity of  two data collection 
instruments to decide which instrument should be 
used in the study . . . . . . . . . . . .

Duplicate readings (with adjudication by a third 
reader) of  X-rays for confirmation of  an outcome in 
an ongoing cohort study . . . . . . . . . . . .

Training of  interviewers . . . . . . . . . . . .

Pretest of  a questionnaire . . . . . . . . . . . .
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Levels of  systolic blood pressure (mmHg)

Study  
participant no. Technician A Technician B

1 122 125

2 130 129

3 118 116

4 136 135

5 114 112

6 116 118

7 124 122

8 110 111

9 140 142

10 146 145

  a.  Calculate the coefficient of  variability for this set of  blood pressure 
measurements.

  b.  What can be concluded from your observation of  these values and from the 
coefficient of  variability?
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9.1  INTRODUCTION

Oral and written communication of  research results is not only frequently full of  
specialized jargon but is also often characterized by systematic mistakes that might 
properly be classified as biases. This chapter reviews some basic concepts and approaches 
that are relevant to the reporting of  epidemiologic results and discusses common 
mistakes made when communicating empirical findings. Although some of  these 
mistakes may be a function of  errors made during the design and conduct of  the study 
and are thus difficult, if  not impossible, to rectify, many can be prevented during the 
preparation of  the report of  study results. This chapter is not meant to be prescriptive 
but rather it attempts to cover some issues that should be considered when preparing a 
report of  epidemiologic findings.

9.2  WHAT TO REPORT

Notwithstanding the necessary flexibility in style and content of  reports of  epidemio-
logic studies, Exhibit 9-1 summarizes some of  the key issues that are worth considering 
when preparing such reports. Obviously, not all of  the items listed in Exhibit 9-1 are 
relevant to all reports of  empirical findings. In the following paragraphs, selected issues 
summarized in Exhibit 9-1 that are often neglected when describing the study rationale, 
design, and results are briefly discussed.

9.2.1  Study Objectives and/or Hypotheses
The study objectives and hypotheses that guided the conduct of  the study need to be 
explicitly stated, usually at the end of  the Introduction section. One common way to 
structure the Introduction section of  the paper is to link previous evidence on the subject 
(from epidemiologic and other studies, such as animal experiments) with the specific 
questions that justify the present study.

If  the study does not have specific hypotheses—that is, if  it is an exploratory study of  
multiple exposure–outcome relationships (i.e., a “fishing expedition” in the epidemiology 
jargon)—this too should be clearly stated in the Introduction. In many large epidemiologic 
studies and surveys, dozens or hundreds of  variables can be cross-tabulated in search of  
possible associations. For example, up to 1000 two-by-two tables showing pooled data 
can be generated from a survey with information on 100 two-level exposure variables 
and 10 possible binary outcomes (e.g., the prevalence rates of  10 different diseases). 
Theoretically, even if  none of  these exposure variables is truly associated with the outcomes, 
chance alone will determine that in approximately 50 of  the 1000 cross-tabulations a 
statistical association will be found to be significant at p ≤ 0.05 level. Selective publication of  
only these “significant” findings will lead to publication bias (see Chapter 10, Section 10.5).
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For example, Friedman et al.1 published a paper reporting for the first time a strong 
graded relationship between leukocyte count and risk of  myocardial infarction. In 
their discussion of  these findings, then unexpected, Friedman et al. aptly opened their 
Discussion section with the following statement: “Our finding that the leukocyte count 
is a predictor of  myocardial infarction should be viewed in the context of  the exploratory 
study that we have been carrying out. In searching through approximately 750 assorted 
variables for new predictors of  infarction. . . .”1(p.1278)

In fact, Friedman et al.’s results were subsequently replicated in a number of  other 
studies. Although the causal nature of  the association remains controversial,2 its biologic 
plausibility has been strengthened by studies showing a relationship between inflammatory 
markers and coronary heart disease.3,4 On the other hand, how many other findings in 
the medical/epidemiologic literature are just the product of  a chance finding in a “fishing 
expedition,” create a short lived uproar in the mass media, and are then never replicated?

This argument also applies to the reporting of  interactions. Because an apparent 
effect modification may occur by chance (see Chapter 6, Section 6.10), the reader 
needs to consider whether it was a chance event resulting from multiple stratified cross-
tabulations between the study variables, rather than an expected finding based on a 
previously established and plausible hypothesis.

1. Introduction
 a. Succintly review rationale for study:   • biologic plausibility* 

• what is new about study
 b. State hypothesis/hypotheses [specify interaction(s), if part of the hypothesis].
2. Methods
 a.  Describe study population characteristics (e.g., age, gender), setting (e.g., hospital patients, population-based 

sample), and time frame of the study.
 b. Describe inclusion and exclusion criteria.
 c.  Describe data collection procedures; give accuracy/reliability figures for these procedures, if known.
 d. Specify criterion/criteria for identification of confounding variables.
 e.  Describe statistical methods; explain criterion/criteria for categorization of study variables.
   f.  Give rationale for believing that the assumptions underlying the selected model are reasonable (e.g., for the 

use of the Cox model, that the hazard ratio is constant over the follow-up time).
3. Results
 a.  Present descriptive data with minimum modeling (frequency distributions, medians, means, unadjusted 

differences).
 b. Present stratified data.
 c.  Present data using more complex models, but use the most parsimonious model warranted by the data  

(e.g., Mantel-Haenszel-adjusted odds ratio if only one or two categorical variables need to be adjusted for).
 d.  When postulating interactions a priori (or exploring their presence a posteriori), consider assessing both 

multiplicative and additive interactions.
4. Discussion
 a.  Review main results of study, and emphasize similarities and dissimilarities with the literature.
 b.  Review strengths and limitations of study. Consider bias and confounding as alternative explanations for the 

results. Comment on possible misclassification of data in the context of the known or estimated validity and 
reliability of the data collection instruments and procedures used in the study.

 c.  Suggest specific ways to rectify some of the shortcomings of previous research and the present study, so as to 
help future investigators to address the same question(s).

 d.  If appropriate and warranted by the data, discuss the implications for public health policy or medical practice 
of the study results.

*“Biologic” if  the disease process investigated is biological or physiological in nature. For epidemiologic studies dealing with  
psychosocial aspects, for example, the relevant aspects will be based on the psychosocial theoretical model underlying the hypothesis 
under study.
Source: Based on HA Kahn and CT Sempos, Statistical Methods in Epidemiology, 2nd ed. © 1989.

Exhibit 9-1 Issues to be considered when preparing epidemiologic reports.
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9.2.2  Description of Validity and Reliability of Data Collection Instruments
When describing the data collection procedures, it is important to report the corre-
sponding measures of  validity and reliability whenever possible (see Chapter 8). Avoid 
statements such as “the validity/reliability of  [the questionnaire] has been reported 
elsewhere [Reference]” or “the instrument has been validated previously [Reference],” 
as such wording is not informative for the reader without time or access to the source 
article. Moreover, these statements may be interpreted as meaning that the instrument 
is “valid” and “reliable,” when in fact they may relate to a questionnaire with poor 
to moderate validity/reliability (e.g., Kappa or intraclass correlation coefficients of  
0.20–0.40, as seen in validation studies of  dietary data, for example). In the case of  
questionnaires, a special problem is that their validity and reliability may be a function 
of  the characteristics of  the study population (e.g., educational level)—that is, validity/
reliability figures obtained from a given population may not be applicable to another 
population (see Chapter 8, Sections 8.3.2 and 8.3.3). Similarly, as discussed in Chapter 8, 
the validity/reliability of  certain instruments or tests may be different between popula-
tions as a function of  the underlying distribution of  the trait. It is, therefore, important 
not only that results of  validity/ reliability studies be reported but also that a summary 
of  the characteristics of  the individuals who participated in these studies be provided. 
Obviously, reports of  study findings should also include internal results of  quality control 
sub-studies, if  available (see Chapter 8).

9.2.3  Rationale for the Choice of Confounders
Reports of  epidemiologic observational studies frequently fail to describe the criteria 
for selection of  confounding variables. For example, was the choice of  potentially 
confounding variables initially based on the literature and subsequently verified in the 
study data? Were new potential confounders explored in the study that had not been 
considered in previous studies? And if  so, which analytic approaches were used to 
examine confounding (see Chapter 5, Section 5.4.)?

Sometimes, direct acyclic graphs may help in framing the analysis of  confounding in 
the context of  a theoretical causal model and should be presented whenever appropriate 
(see Chapter 5, Section 5.3). Generally, authors should avoid selecting confounders on 
the basis of  results of  significance testing (see Chapter 5, Section 5.5.6).

9.2.4  Criteria for Selection of the Cutoff Points When 
Establishing Categories for Continuous or Ordinal Variables
Common approaches for categorizing continuous or ordinal variables are the use of  
either established standards (e.g., abnormal ST–T segment elevations observed in an 
electrocardiogram tracing to define myocardial ischemia) or study data distributions 
(e.g., use of  percentiles as cutoff  points). On occasion, investigators choose cutoff  points 
that have been widely used for clinical purposes or in previous epidemiologic research 
(e.g., defining hypertension as values of  ≥ 140 mm Hg systolic or ≥ 90 mm Hg diastolic 
blood pressure levels or defining hypercholesterolemia as serum cholesterol levels 
≥ 200 mg/dL). When no such cutoff  points exist and particularly when investigating 
novel risk factor-disease associations, the investigator may be interested in using explor-
atory techniques for optimizing and exploring the consequences of  different cutoff  
choices for categorical5 or ordinal6 regression analyses. In any case, the report should 
explicitly describe the criteria or method used for this purpose; failure to define criteria 
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clearly for selection of  categories of  the variables of  interest may suggest that data were 
regrouped over and over again until the results were to the investigator’s liking (e.g., 
until they achieved statistical significance).

9.2.5  Unmodeled and Parsimoniously Modeled Versus Fully Modeled Data
To provide adequate background information to put the study findings in proper 
perspective, unmodeled and parsimoniously modeled results should be presented, 
including the characteristics of  the study population and both univariate and stratified 
distributions of  key study variables and findings. Authors should avoid the temptation of  
reporting only the results of  full statistical modeling. Because unadjusted results undergo 
minimum modeling and are thus more “representative” of  the study population, it could 
even be argued that if  adjusted and unadjusted results are similar only the latter should be 
presented. Otherwise, it is advantageous to show unadjusted along with adjusted results; 
this strategy not only allows additional insight into the strength of  a possible confounding 
effect but may also help in elucidating underlying mechanisms. An illustration of  the 
advantage of  showing both unadjusted and adjusted measures of  association is given by a 
study of  the relationship of  social class to carotid atherosclerotic disease.7 The weakening 
of  the relationship resulting from adjustment for major cardiovascular risk factors (e.g., 
hypertension, smoking, and hypercholesterolemia) gives a measure of  the importance 
of  these factors as mediating factors. Because the relationship may indeed be explained 
(at least partly) by these risk factors, it is inappropriate to show only the adjusted results.

Another example is that, assuming no measurement errors, the difference in the 
magnitude of  birth weight-adjusted and unadjusted associations of  maternal smoking 
with perinatal mortality reflects the importance of  low birth weight as a mechanism 
explaining the association (Chapter 5, Figures 5-4 and 5-5). Ideally, the role of  each 
individual potential confounder should be assessed so as to pinpoint the exact source 
of  confounding and/or to assess the mechanism linking the risk factor to the outcome. 
Procedures and rationale for evaluating the influence of  a given variable reflecting a 
mechanism linking the risk factor of  interest to the outcome or the degree of  positive 
confounding were discussed in Chapter 5, Sections 5.2.3 and 5.3.

Another issue related to confounding is that, although logistic regression is often 
used in cross-sectional analysis of  prevalence,* prevalence odds ratio may be misinter-
preted as a prevalence ratio. For example, authors may describe a prevalence odds ratio 
of  3.0 as meaning that “the disease is three times more likely to be present in the exposed 
than in the unexposed.” Yet, studies of  associations based on prevalence rates usually 
deal with fairly common conditions, such as those encountered in cross-sectional 
surveys. Under these circumstances, the prevalence odds ratio is a biased estimate of  the 
prevalence ratio (See Chapter 3, Section 3.2.1). For example, in a cross-sectional study 
including individuals aged 65 years or older, hypertension was found to be prevalent in 
66% of  African American women and 52% of  white women.8 Thus, the prevalence of  
hypertension was approximately 1.3 times greater in African American women than 
in white women; the prevalence odds ratio, however, was estimated at 1.8, which may 
lead to the erroneous inference that the prevalence of  hypertension in this study was 
80% greater in African American than in white women. Regardless of  the accuracy 
of  the interpretation of  the odds ratio, prevalence ratios (and relative risks) are usually 
preferred, as they are easier to grasp by readers who are unfamiliar with epidemiology, 

*Or in prospective studies when incidence ratios are estimated without consideration of  time to event, or in case-based case-
control studies.
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such as practicing physicians to whom many epidemiologic papers are aimed. As also 
mentioned in Chapter 7, Section 7.4.3, an alternative to logistic regression for the calcu-
lation of  adjusted risk and prevalence ratios has been described.9

Finally, it should be emphasized that, from the public health viewpoint, reporting the 
unadjusted results may be of  greater interest. Consider, for example, a comparison of  
Alzheimer’s disease rates between two groups of  interest, the objective of  which is to assist 
in the planning of  health services. Would it be useful to the health planner to conclude 
that, after age adjustment, there is no difference between the groups? Obviously not, as the 
adjusted rates would not accurately express the differential disease burden in the two groups.

9.2.6  Assessment of Interaction
All too often, the widespread use of  logistic regression, Cox regression, and related 
models results in an almost exclusive focus on multiplicative interaction. As discussed in 
Chapter 6 (Section 6.6), however, the evaluation of  additive interaction is of  importance 
to public health practitioners10,11 and should be carried out regardless of  the statistical 
model used to analyze epidemiologic data. It is important to bear in mind that the use of  
logistic regression or other “multiplicative” models does not preclude the assessment of  
additive interaction.12

9.3  HOW TO REPORT

9.3.1  Avoiding Scientific Arrogance
When reporting results of  individual studies, particularly those of  observational studies, 
epidemiologists frequently do not sufficiently recognize that no study can stand alone and 
that replication is needed to minimize the effects of  chance, design, or analytic problems. 
One individual study supplies at best only one piece of  a huge, almost limitless puzzle. 
Thus, in general, it is advisable to avoid definitive statements, such as “this study unequiv-
ocally demonstrates that . . . ,” when interpreting the results of  a single observational 
study. In general, caution is called for when interpreting results of  observational research.

9.3.2  Avoiding Verbosity
As in all scientific communication, it is important to be as concise as possible when 
reporting results from epidemiologic studies. In an editorial written a few years ago, 
Friedman13 underscored the importance of  writing scientific reports in a manner as 
concise as possible without loss of  meaning or clarity. Consider the 73-word paragraph 
that follows; it comes from a paper submitted to an epidemiology journal:13

Other investigations exploring the association between multiparity and scleroderma 
have obtained information on multiparity using surrogate measures. The amount of  
money spent on diapers, without consideration of  inflation, has been used as a proxy 
by several groups of  investigators, and all have reported that no significant differences 
were observed once the data were stratified by age at last full time pregnancy. Similar 
results were found in the analysis reported here.

A significant reduction of  its length (to about 40 words) recommended by Friedman13 
not only preserved the paragraph’s meaning but may have improved its clarity:

Other investigators have used surrogate measures of  multiparity, such as the amount 
of  money spent on diapers, without consideration of  inflation. As with our study, all 
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revealed no significant differences once the data were stratified by age at last full time 
pregnancy.

Friedman has subsequently renewed his call for the avoidance of  verbosity14 and 
invited the readers to read a paper by Lewis et al.15 as an exemplar of  concise, yet clear 
writing.

9.3.3  Improving Readability
Another way to make communication of  epidemiologic findings more efficient, particu-
larly when it is expected that some of  the readers will lack familiarity with the terms 
used in the article, is to use as simple a language as possible. Several readability formulas 
are available to determine the educational grade level of  the intended readership.16,17 
Consider, for example, applying the SMOG grading formula for tailoring an English-
written report to the educational level of  the readers18—an approach that reminds us 
of  the need to keep the language simple when communicating with the public at large. 
The formula is easy to apply: (1) Select 30 sentences from the paper’s text—10 at the 
beginning of  the text, 10 in the middle, and 10 near the end; (2) count words with three 
or more syllables; (3) take the square root of  this count; and (4) add 3 to this square 
root to obtain the US-equivalent grade level needed for understanding the report. For 
example, if  there are 100 such words, the educational level needed will be

SMOG Index = !100 + 3 = 13

that is, at least completion of  high school. By applying this formula, Freimuth16 concluded 
that patients receiving educational pamphlets about mammography from the Fox Chase 
Cancer Center would need to have at least 2 years of  high school to be able to under-
stand them. Although there is an obvious difference in the educational level of  readers 
of  scientific papers and that of  the usual target readers of  health education pamphlets, 
the SMOG formula and related formulas may be useful to epidemiologists who need to 
interface with the lay public (e.g., to communicate with the press or to have their views 
understood in a court of  law).

In view of  their culture specificity and assuming that epidemiologic literature is read 
all over the world, jargon and abbreviations should be avoided or used sparingly only 
when they achieve a universal acceptance/permanence status, as in the case of  the terms 
DNA, IgG, or HIV. Widely used abbreviations such as CHD (for coronary heart disease) 
or SES (for socioeconomic status) may be acceptable, provided that they are properly 
spelled out at their first appearance in the article. Even the widespread use of  commonly 
recognized abbreviations may lead to some confusion, however; for example, in Spanish-
speaking countries, the abbreviation AIDS for “acquired immunodeficiency syndrome” 
becomes SIDA (síndrome de inmunodeficiencia adquirida), which in turn may be interpreted 
by English-speaking readers as a misspelling of  the abbreviation SIDS, denoting “sudden 
infant death syndrome.” In any case, authors should always be reminded that the abuse 
of  abbreviations, although shortening the length of  the manuscript, tends to decrease 
its readability, particularly for readers not entirely familiar with the specific research 
topic. Consider the following paragraph, taken from the (structured) abstract of  a paper 
published in a major medical journal,19 that the use of  abbreviations makes virtually 
incomprehensible to the average reader:

Methods and Results: Relative LV myocardial MMP activity was determined in the 
normal (n = 8) and idiopathic DCM (n = 7) human LV myocardium by substrate 
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zymography. Relative LV myocardial abundance of  interstitial collagenase (MMP-1), 
stromelysin (MMP-3), 72 kD gelatinase (MMP-2), 92 kD gelatinase (MMP-9), TIMP-1, 
and TIMP-2 were measured with quantitative immunoblotting. LV myocardial MMP 
zymographic activity increased with DCM compared with normal (984 ± 149 versus 
413 ± 64 pixels, P < .05). With DCM, LV myocardial abundance of  MMP-1 decreased 
to 16 ± 6% (P < .05), MMP-3 increased to 563 ± 212% (P < .05), MMP-9 increased 
to 422 ± 64% (P < .05), and MMP-2 was unchanged when compared with normal. 
LV myocardial abundance of  TIMP-1 and TIMP-2 increased by > 500% with DCM. 
A high-molecular-weight immunoreactive band for both TIMP-1 and TIMP-2, 
suggesting a TIMP/MMP complex, was increased > 600% with DCM.

9.3.4  Deriving Appropriate Inferences
Common inferential mistakes in epidemiologic reports include the implication that a 
statistical association can be automatically interpreted as causal, the use of  statistical 
significance as the main criterion to judge whether an association is present, and the 
comparison of  the “strength” of  associations for different risk factors using the size of  
the regression coefficients or derived risk estimates.

The Presence of an Association (Even If Statistically Significant) Does Not 
Necessarily Reflect Causality
The fact that statistical associations are not necessarily causal is extensively discussed 
in basic epidemiology and statistics textbooks (e.g., Gordis,20 Armitage and Berry21) and 
Chapters 4, 5, and 10 in this textbook. However, epidemiologists often use the word effect 
as a proxy/or association (or otherwise imply causality from statistical associations: e.g., 
“A decrease in X resulted in a decrease in Y”), even if  it is not warranted, given that most 
etiologic studies are observational in nature.22

Even more troubling because of  its frequent occurrence is the often implicit 
assumption that an adjusted estimate is free of  confounding. Caution about inferring 
that confounding has been eliminated is crucial because even if  multivariate models 
are used as an attempt to adjust for all known confounding variables, the possibility of  
residual confounding must almost always be explicitly considered (as discussed in detail 
in Chapter 7, Section 7.6).

Statistical Significance Is Not a Measure of the Strength of an Association
It is a common mistake to describe an association that is not statistically significant 
as nonexistent. For example, it may be correctly reported in a paper’s abstract that a 
 statistically significant association has not been found between depressed mood and subse-
quent breast cancer, as the estimated relative risk was 1.5, with the lower 95% confidence 
limit barely overlapping the null hypothesis.* Yet it would be erroneous if  this finding were 
subsequently interpreted by other authors as evidence of  lack of  association. Similarly, 
on the basis of  the hypothetical results shown in Table 9-1, particularly because of  the 
suggestion of  a graded association for every outcome examined, it would be a mistake 
to conclude (based on whether or not the lower confidence limit overlapped the null 
hypothesis) that smoking was related to mortality due to lung cancer and coronary heart 

*The 95% confidence interval is a statistic that estimates precision and not a test for the statistical significance of  a point estimate; 
however, when the 95% confidence interval of  an association measure, such as the relative risk, does not overlap the null value, 
it is often used as a proxy for the presence of  “statistical significance” (p < 0.05).
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tablE 9-1 Age-adjusted mortality rate ratios for current and former cigarette smokers versus 
nonsmokers, according to cause of death, hypothetical example.

Mortality rate ratio (95% confidence interval)

Cause of  death Current smokers Former smokers Nonsmokers

Lung cancer 8.0 (3.0, 21.3) 2.5 (0.9, 6.9) 1.0

Coronary heart disease 2.3 (1.6, 3.3) 1.5 (1.1, 2.0) 1.0

Stroke 2.1 (0.9, 4.9) 1.4 (0.8, 2.5) 1.0

disease but not to mortality from stroke. It is important to remember that statistical signifi-
cance and the width of  the confidence limits are strongly dependent on the sample size; a 
smaller number of  stroke deaths, compared with coronary disease deaths, could explain 
why the latter but not the former association was found to be statistically significant in a 
situation such as that shown in the hypothetical example in Table 9-1.

The inference that there is no association when the association is not statistically 
significant, or when the confidence interval overlaps the null hypothesis value, fails 
to consider the important fact that the likelihood of  the values within the confidence 
interval is maximum for the point estimate.23 It is our impression that many authors 
who publish in the medical (and even in the epidemiologic) literature view the 95% confi-
dence interval as some kind of  flat (and closed) range of  possible values of  the parameter 
of  interest. In other words, all of  these “possible values” included in the range are 
assumed to be equally likely (Figure 9-1A). Thus, in the previous hypothetical example 
(estimated relative risk for current smoking and stroke = 2.1; 95% confidence interval: 
0.9, 4.9), because the 95% confidence interval includes the null hypothesis (i.e., relative 
risk = 1.0), this result may be mistakenly interpreted as reflecting “lack of  association.” 
This is an erroneous interpretation because the likelihood of  any given value of  the true 
parameter being estimated is not uniform across the range of  values contained in the 
confidence interval. It is maximum at the point estimate (e.g., relative risk = 2.1 for current 
smokers in Table 9-1) and declines as the values move away from it (Figure 9-1B). The 
relative risk value of  0.9 (the lower bound of  the confidence interval) is very unlikely 
(as is the uppermost value—relative risk = 4.9). Moreover, values outside of  the 95% 
confidence limits are also plausible (albeit less likely). If  the sample size in the study had 
been larger, the same estimate of  the relative risk = 2.1 might have been associated with 
a 95% confidence interval not including the null hypothesis value (e.g., 1.1, 3.9). The 
confidence interval merely expresses the statistical uncertainty of  the point estimate 
and should not be mechanically and erroneously interpreted as a range of  equally likely 
possible values.

The Magnitude of the Association Estimates Across Variables May 
Not Be Directly Comparable
The issue of  comparing different variables with regard to the strength of  their associ-
ation with a given outcome has been introduced in Chapter 3, Section 3.5, to which the 
reader is referred. An extension of  that discussion follows. 

For an example of  a situation in which it is inappropriate to compare the values of  a 
measure of  association between variables, consider the results of  the logistic regression 
analysis shown in Chapter 7, Table 7-17: the inference that the association for gender 
is stronger than that for age, based on the fact that the odds ratio is higher for the 
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former (3.70) than for the latter (1.011) variable, is clearly unwarranted in view of  
the striking difference in the nature of  these variables and the width of  the units used 
(in the example shown in that table, male/female versus 1 year of  age). Although this 
example highlights the difficulties when comparing discrete with continuous variables, 
the comparison between continuous variables, too, is a function of  the width of  unit 
used for each variable; thus, in Table 7-17, it would be unwarranted to compare the 
increase in coronary heart disease odds related to a change in total serum cholesterol 
of  1 mg/dL (odds ratio = 1.007) with that related to a change of  1 kg/m2 in body mass 
index (odds ratio = 1.024), as these “units” (the “widths” for which the odds ratios in 
this example are calculated) are rather arbitrary. For example, if  instead of  1 mg/dL one 
were to adopt 10 mg/dL as the unit for serum cholesterol, the corresponding odds ratio 
(based on Table 7-17 results) would be e(10 × 0.0074) = 1.08—that is, larger than the odds 
ratio for 1 kg/m2 in body mass index.

On occasion, authors attempt to overcome this problem by calculating the so-called 
standardized regression coefficients for continuous variables. These are obtained by using 
one standard deviation as the unit for each variable (or simply multiplying each regression 
coefficient by the variable’s standard deviation); it is argued that this strategy permits 
comparing different variables within a study or the same variable across studies.24 This 
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FigurE 9-1 Incorrect and correct interpretation of the confidence limit (CL): the likelihood 
of any given value within the range is not uniform (as shown in A); it is maximum at the point 
estimate of the parameter being measured and declines as values move away from it (B). 
(Likelihood is a measure of the support provided by a body of data for a particular value of the 
parameter of a probability model. 

Note: For more details on this fundamental statistical concept, the reader should refer to more specialized textbooks (e.g., 
Clayton and Hills: D Clayton & M Hills, Statistical Models in Epidemiology, New York, NY: Oxford University Press, 1993). 
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approach, however, has serious problems,25 including the following: (1) when different 
variables in the same study are compared, smaller standard deviation units will result 
from variables with less variability than from those with more variability, and (2) when 
the same variable is compared across different studies, the standard deviation is heavily 
dependent on the characteristics of  the study population, the distribution of  the variable, 
and design characteristics of  each study; thus the regression coefficients may not be 
really “standardized” or comparable across studies. 

An additional and more fundamental problem is that these comparisons do not 
take the biologic nature of  each factor into consideration.26 As discussed in Chapter 3, 
Section 3.5, the unique biological nature of  each variable makes it difficult to compare 
its association strength with that of  other variables. Consider, for example, a study in 
which a 1 mg/dL change in total serum cholesterol is compared with a blood pressure 
change of  1 mm Hg with regard to coronary disease risk; because the mechanisms by 
which these variables produce both the underlying disease process (atherosclerosis) 
and its clinical manifestation (e.g., myocardial infarction) may be quite different, this 
comparison would be difficult, if  not impossible, to justify.

In Chapter 3, Section 3.5, an approach was suggested for comparing different variables 
that consisted of  estimating the exposure intensity necessary for each risk factor of  
interest to produce an association of  the same magnitude as that of  well-established 
risk factors. In addition, Greenland et al.27 have suggested a method that compares the 
increase in the level of  each factor needed to change the risk of  the outcome by a certain 
fixed amount, such as 50%. 

An additional example of  the application of  a similar type of  approach is the 
study by Sharrett et al.,28 who used cross-sectional data from the Multiethnic Study 
of  Atherosclerosis to compare the relative importance of  smoking (and diabetes) and 
low-density lipoprotein cholesterol (LDLc) in different phases of  the natural history of  
atherosclerosis. Based on the fact that LDLc is essential to the atherosclerotic process, 
these authors used LDLc to estimate the “LDL-equivalent” associations* of  smoking 
(and diabetes) with various manifestations of  atherosclerosis indicative of  its severity. 
They estimated, for example, that it would take a 238 mg/dL difference in LDLc value to 
replicate the association of  smoking with severe atherosclerotic disease (ankle-brachial 
index indicative of  lower extremity arterial disease). Notwithstanding the study’s cross-
sectional nature, based on these findings as well as previous literature, the authors 
suggested that, although LDL is key to the initiation of  atherosclerosis—and in this 
study, LDLc also seemed to have an important role in vulnerability to plaque rupture—
smoking is more strongly related to plaque progression to thicker, more fibrous lesions 
(see also Chapter 10, Section 10.2.4, under “Differences in the Stage of  the Natural 
History of  the Underlying Process”).

9.3.5  Tables and Figures
There is no standard way of  reporting findings in tables and figures, and the need to 
address different audiences (e.g., peers vs the lay public) and use different vehicles  
(e.g., scientific journals vs newsletters) calls for flexibility; however, there seem to be 
some simple rules that, if  not always followed, should be systematically considered.

*The LDL-equivalent calculation done by the authors is straightforward. For example, if  smoking doubled the odds of  lower 
extremity arterial disease (LEAD), the method calculates the amount of  LDLc associated with a doubling of  the smoking-LEAD 
odds ratio.
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Tables
The following are general guidelines concerning the presentation of  tables:

•	 Labels and headings. Tables should be clearly labeled, with self-explanatory titles. 
Optimally, readers should be able to understand the table even if  it is examined in 
isolation. Regrettably, however, to understand and interpret tables published in the 
literature, often the entire paper or at least the Methods section must be re-reviewed 
(e.g., the relevant subgroups are not well defined, or the outcome is not specified or 
defined in the table). Generous use of  footnotes to render the table self-explanatory 
is recommended.

•	 Units. Categories for discrete variables and units for continuous variables should 
be specified. For example, an odds ratio next to the variable “age” is meaningless 
unless it is also stated whether the unit is 1 year of  age or some other age grouping. 
Likewise, an odds ratio next to the variable “race” is not very informative unless the 
categories being compared are explicitly stated.

•	 Comparability with other reports. Often it is useful to present results in a way that 
would make them comparable with results of  most previous reports. For example, 
it may be more useful to present age using conventional (e.g., 25–34 and 35–44) 
than unconventional groupings (e.g., 23–32 and 33–42).

•	 Comparing statistics between groups. Another useful strategy, and one that facilitates 
grasping the meaning of  the results, is to present side by side the statistics that 
provide the main comparison(s) of  interest. For example, when one is presenting 
cohort study results, the ease of  comparing rate/person-years side by side makes 
the (blank) Table A below more “reader friendly” than Table B.

  The same principle applies to frequency distributions. Data on diabetes according 
to smoking status29 can be presented as shown on the right-hand side of  Table 9-2 
or in a less desirable format on the left.

•	 Avoidance of  redundancy. Although there is some controversy regarding the 
 advantages of  reporting statistical testing results vis-à-vis precision estimates (i.e., 
confidence intervals),30 avoidance of  redundancy is not controversial; thus, for 
example, it is usually undesirable to show in the same table values for chi-square, 
standard error, and p values. Another type of  redundancy is the text’s repetition 
of  all or most of  the table results, often including p values or confidence limits. 
Whereas some repetition of  this sort may be useful, the text ought to emphasize 
mainly the patterns of  associations, rather than repeating what is clearly seen in 
the tables.

tablE a Preferred presentation.

No. of  person-years Rate/person-years

Exposed Unexposed Exposed Unexposed

tablE b Less desirable presentation.

Exposed Unexposed

No. of  
person-years 

Rate/ 
person-years

No. of   
person-years 

Rate/ 
person-years
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•	 Shifting denominators. In most studies, the number of  individuals for whom infor-
mation is missing differs from variable to variable. When this situation occurs, 
totals should be given for each variable so as to allow the reader to judge whether 
the magnitude of  the loss is such as to cast doubt on the precision and accuracy of  
the information. A useful strategy is to add a “not stated” or “unknown” category 
for each variable; alternatively, the apparent inconsistencies in the denominators 
can be explained in footnotes.

•	 Presenting data parsimoniously. A choice often exists between presenting an “inter-
mediate” statistic or a more easily interpretable one. For example, given the choice 
of  presenting either a beta coefficient from a logistic regression model or the corre-
sponding odds ratio, the latter is usually preferable, particularly when the purpose 
of  the communication is to present an adjusted measure of  association rather than 
a formula needed for prediction. (Even in linear regression, a table heading along 
the lines of  “absolute differences in outcome Y [units] associated with changes 
in selected variables” with the units for the independent variables specified in the 
body of  the table is more informative than merely “linear regression coefficient.”) 
Another example is the customary reporting of  a beta coefficient for an “inter-
action term,” which is difficult to interpret outside of  the predictive context of  the 
regression formula (Table 9-3A). It is usually more useful to show stratified results 
(Table 9-3B).

Some of  the principles just discussed are illustrated in the hypothetical example shown 
in Table 9-4A and Table 9-4B (preferred). In Table 9-4A, beta coefficients rather than 
hazard ratios (relative risks) are given; no units for the variables are shown, and three 
somewhat redundant statistics are given (standard error, chi-square, and p values). In 
Table 9-4B, on the other hand, the units that correspond to the hazard ratios are given, 
and instead of  the three statistics, only 95% confidence intervals are shown.

Figures
The rules that guide presentation of  data in tabular form generally also apply to figures. 
Some of  the issues that should be considered specifically when preparing figures for 
presentation are discussed next.

tablE 9-2 Number and percent distributions of individuals with and without diabetes mellitus, 
according to smoking at baseline.

Less desirable  
presentation

Preferred  
presentation

Diabetes No diabetes No. %

Smoking No. % No. % Diabetes
No 

Diabetes Diabetes
No 

Diabetes

Current 90 19.6 2307 18.2 90 2307 19.6 18.2

Former 70 12.7 1136 9.1 70 1136 12.7 9.1

Never 155 27.0 2553 20.4 155 2553 27.0 20.4

Unknown 287 40.7 6566 52.3 287 6566 40.7 52.3

Source: Data from ES Ford and F DeStefano, Risk Factors for Mortality from All Causes and from Coronary Heart Disease 
among Persons with Diabetes. Findings from the National Health and Nutrition Examination Survey I. American Journal 
of  Epidemiology, Vol 133, pp. 1220–1230, © 1991.
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tablE 9-3 Colon cancer incidence rates per 1000 per 5 years among 1963 census participants 
45 to 64 years of age at baseline, by sex and residence, Washington County, Maryland, 1963–1975.

A

Colon cancer incidence rates/1000

Characteristic No. Crude Adjusted

Total 17,968 6.5 6.5

Sex
 Men
 Women

   8674
   9294

5.5
7.3

5.2
5.6

Residence
 Rural
 Urban

   8702
   9266

7.6
5.4

9.7
4.5

Interaction term 
(sex 3 residence) 24.6

B

Colon cancer incidence rates/1000

Crude Adjusted

Sex No. Rural Urban Rural Urban

Men 8674 5.5 5.6 5.9 5.6

Women 9294 9.7 5.2 10.1 5.2

Source: Unpublished data from GW Comstock.

tablE 9-4 Multiple risk equation for coronary artery disease: Cox regression model relating 
baseline risk factors to the incidence of coronary heart disease.

A

Variable Beta coefficient Standard error 2 p value

Age 0.149 0.027 29.97 0.0000

Cholesterol 0.013 0.003 15.36 0.0001

Smoking 0.380 0.125 9.28 0.0020

Parental history 
  of coronary 

heart disease 0.152 0.392 0.15 0.7000

B

Variable
Risk 

comparison
Hazard 

ratio
95% confidence 

interval

Age 10-year difference 4.5 2.6–7.6

Cholesterol 40 mg/dL difference 1.7 1.3–2.2

Smoking
20 cigarettes/day vs 

nonsmokers 2.1 1.3–3.5

Parental history 
 of coronary 
 heart disease Present vs absent 1.2 0.5–2.5
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•	 Use of  figure format. Avoid abusing figures and graphs—that is, displaying data in a 
graphical format when they could easily be reported in the text. An example of  this 
type of  superfluous graphical display is illustrated in Figure 9-2. The information in 
this figure obviously could be succinctly described in the text. Figure 9-2 exemplifies 
what Tufte31 has called a “low data–ink ratio”: too much ink for very little data.

•	 Titles and labels. As with tables, figure titles should be as self-explanatory as possible. 
Ordinates and abscissas should be labeled in their units. When the plot includes 
several lines, it is useful to organize and place the legends in a manner as closely 
related as possible to the order and place of  the corresponding categories in the 
actual figure. For example, in Figure 9-3A, the legend for each of  the curves is at 
the bottom of  the figure, and the reader has to go back and forth from the graph to 
the legend to relate each curve to the corresponding group. On the other hand, in 
Figure 9-3B, the legends are next to the curves, but the order in which the curves 
appear and the order for the sex/race legends are opposite. By placing the sex/race 
identification next to the actual curves, Figure 9-3C seems to be the most readily 
understandable. It should also be emphasized that the greater number of  curves in 
a figure the more difficult it is to decipher it. For example, in Figure 9-3, additional 
stratification by, for example, two age groups would render it difficult to understand 
without careful and time-consuming inspection, thus defeating the main purpose 
of  a figure: to allow data to be more readily grasped. In this situation, it would be 
preferable to present two different figures—one for each age group (or one for each 
gender or ethnic background, depending on the primary comparison of  interest).

•	 Ordinate scale. The scale in the ordinate should be consistent with the measure being 
plotted. For example, when the main interest is on measures expressing relative 
differences (e.g., relative risks or odds ratios) plotted with bar charts, a baseline value 
of  1.0 and a logarithmic scale should be used. An example is shown in Figure 9-4 in 
which three alternative ways to plot the relative risks corresponding to two different 
levels associated with a certain variable (relative risk = 0.5 and relative risk = 2.0) 
are compared. In Figure 9-4A, in which the baseline value is 0 (an “unreal” value in 
a relative scale), the visual impression conveyed by the bars is that the relative risk 
on the right-hand side is four times higher than that on the left-hand side, which is 
senseless in view of  the fact that these two relative risks go in opposite directions. 

7%

10%

Females Males

Prevalence
of  

diabetes
(%)

FigurE 9-2 Example of superfluous use of a figure. The only two data points (prevalence in 
males and prevalence in females) could easily be described in the text. 
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R
at

e

Age

Black males
Black females
White males
White females

R
at

e

B

C

A

Age

White females
White males
Black females
Black males

R
at

e

Age

Black males

Black females

White males

White females

FigurE 9-3 Examples of ways to label curves in a figure. 

The plot in Figure 9-4B, although an improvement over that shown in Figure 9-4A 
in that its baseline corresponds to the correct null relative risk value (relative risk 
= 1.0), is still a distorted representation of  the magnitude of  the relative risks, as 
it uses an arithmetic scale on the ordinate. The height of  the bar corresponding to 
the relative risk of  2.0 is twice that corresponding to a relative risk of  0.5, when in 
fact both relative differences are of  the same magnitude, albeit in opposite direc-
tions. The correct representation is seen in Figure 9-4C, in which a logarithmic 
scale is used in the ordinate. Even if  all relative risks are in the same direction, 



384 CHAPTER 9 | Communicating Results of Epidemiologic Studies

the use of  an arithmetic scale in the ordinate is generally inappropriate when the 
main focus is the assessment of  linear trends in relative differences (ratios). An 
example is given in Figure 9-5. In Figure 9-5A, in which an arithmetic scale is used, 
the visual impression is that the relative risk increases more rapidly at the higher 
levels of  the risk factor. When a logarithmic scale is used instead (Figure 9-5B), the 
correct impression is obtained: the relative risk increase is linear. The curvature in 
Figure 9-5A is the product of  the exponential nature of  all relative measures of  
effect. Although the trained eye may correctly infer that the pattern in Figure 9-5A 
is linear in an exponential scale, the use of  a logarithmic scale on the ordinate, as 
seen in Figure 9-5B, is less prone to misinterpretation. (An exception to the rule 
that relative risks or odds ratios are best represented using a log scale in a figure 
is when the authors wish to emphasize absolute differences, such as in studies of  
effectiveness—the formula of  which is akin to that of  percent attributable risk in the 
exposed. The focus on absolute—rather than relative—excesses justifying the use of  
an arithmetic scale also applies to the evaluation of  additive interactions by means 
of  plotting relative risks or odds ratios, as illustrated in Figure 6-3 of  Chapter 6.) 

Sometimes, the use of  a logarithmic ordinate scale may be pragmatically necessary 
so as to include all data in the graph, as illustrated in Figure 1-7, Chapter 1. The use of  
a logarithmic rather than an arithmetic scale in the ordinate allows plotting the wide 
range of  rates included in the analysis of  age, cohort, and period effects (from 2–3 per 
100,000 in those 40–44 years old from the 1920–1930 birth cohorts to 200–500 per 
100,000 in those ≥ 80 years old from the 1905–1910 birth cohorts). It must be empha-
sized that when a log scale is used, a given difference should be interpreted as a relative 
difference (ratio) between the rates; in the example shown in Figure 1-7, the fact that the 
slope of  each line tends to be steeper for the older than for the younger age groups in men 

2.0

1.0

0

0.5

RR

Risk factor
level

Arithmetic scale

A

2.0

1.0

0

0.5

RR

Arithmetic scale

B

Risk factor
level

2.0

1.0

0.5

RR

Logarithmic scale

C

FigurE 9-4 Graphic representation of relative risks (RR) with arithmetic scales (A, origin at 0; 
B, origin at 1.0) or logarithmic scale (C).  



9

Com
m

unicating Results 
of Epidem

iologic Studies

 9.4  Conclusion 385

2.0

4.0

8.0

16.0

1 2 3 4 5
Risk factor level

A
RR, arithmetic scale

2.0

4.0

8.0

16.0

1 2 3 4 5
Risk factor level

B
RR, logarithmic scale

FigurE 9-5 Comparison of a linear trend in relative risks (RR) using an arithmetic scale (A) 
and a logarithmic scale (B).

(perhaps with the exception of  the 40–44 age group) means that the relative increase 
(rate ratio, see Chapter 3) from older to recent birth cohorts tends to be larger in older 
than in younger men (the opposite seems to be true among women).

9.4  CONCLUSION

Epidemiologists must communicate results of  empirical research not only to their peers 
but also to other consumers of  epidemiologic data, including practicing physicians, 
public health personnel, law professionals, and the general public. Scientific journals 
with a readership traditionally formed by clinical practitioners, such as the New England 
Journal of  Medicine and the Journal of  the American Medical Association, are devoting more 
and more pages to reports of  epidemiologic studies. The use of  epidemiologic data by the 
legal profession is also on the increase. Christoffel and Teret,32 for example, found that 
the number of  times a word starting with epidemiol appeared in federal or state courts 
increased from close to 0 in 1970 to more than 80 in 1990. It is virtually certain that 
this increase has been continuing ever since. Thus, epidemiologists should concern 
themselves not only with the conduct of  scientifically valid studies but also with clearly 
expressing their results to audiences with varying degrees of  scientific sophistication. 
Epidemiologic papers using simple, unambiguous language are likely to be more easily 
understood by individuals both inside and outside the discipline and are thus more likely 
to perform their major function: to be used.
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EXERCISES

 1. The following table shows results of  a cohort study examining the relationship 
between alcohol and liver cancer:

  

Relationship between alcohol and liver cancer

Alcohol Number of  subjects
Number who develop liver cancer 

on follow-up
Relative 

risk

Yes 560 15 8.4

No 1575 5 1.0

  Identify and describe the flaws in this table.

 2. Rewrite the following sentence, which appeared in the Discussion section of  a 
paper, in fewer words:

   “As a result of  the confounding effect of  smoking, a relationship of  alcohol with 
respiratory cancer was observed. However, upon adjustment for smoking (treating 
smoking as an ordinal variable in terms of  number of  cigarettes smoked), the 
relationship disappeared entirely.” (40 words)

 3. High nevus density is a risk factor for cutaneous malignant melanoma. In 1993, 
Gallagher et al. conducted a clinical trial of  the effectiveness of  high-sun protection 
factor sunscreen in preventing the development of  new nevi in white children in 
grades 1 and 4 in Vancouver, British Columbia, Canada.* Children assigned to 
the control group received neither sunscreen nor advice about its use. The results 
pertaining to a 3-year follow-up (June 1993 through May 1996), stratified by 
the percentage of  the children’s face covered by freckles, were presented by the 
authors in table format, as follows:

  

Average number of  new 
nevi on follow-up

Freckles % Sunscreen Control

Difference in 
average number 

of  new nevi 
(sunscreen 

minus control)

Difference in average number 
of  new nevi as a percentage 
of  the number of  new nevi 

in controls

10 24 24 …… ……

20 20 28 …… ……

30 20 30 …… ……

40 16 30 …… ……

  a.  For each category of  percentage of  the face covered by freckles, calculate the 
difference in the average number of  new nevi between sunscreen and control 
children, as a percentage of  the average number of  new nevi in the control group.

*RP Gallagher, K Jason, JK Rivers et al. Broad spectrum sunscreen use and the development of  new nevi in white children. JAMA. 
2000;283:2955–2960.
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  b.  Using the data presented in the table, construct and label a graph to show the 
number of  nevi by group to which children were randomly allocated and by 
percentage of  the face covered with freckles. Assume no losses to follow-up. 
Also assume that the percentage of  face covered by freckles is a continuous 
variable, and the categories in the table represent the midpoint of  the interval. 
Do not forget the title.

  c.  Based on the table (and the figure), how would you report (in words) the 
joint associations of  high-sun protection factor sunscreen and freckling 
(with regard to the number of  new nevi) in a scientific meeting (assuming no 
random variability and no bias)?

 4. a.  For each category of  leisure activity status and separately for those with and 
those without chronic bronchitis in the table, plot the total mortality odds 
ratios and 95% confidence intervals found in the Whitehall study,† which was 
the basis for one of  the exercises in Chapter 6:

   

Leisure activity status Multiply adjusted rate ratio (95% confidence interval)

No chronic bronchitis

Inactive 1.21 (1.1, 1.3)

Moderate 1.06 (1.0, 1.2)

Active (reference) 1.0

Chronic bronchitis

Inactive 0.70 (0.3, 1.4)

Moderate 0.73 (0.3, 1.6)

Active (reference) 1.0

  b.  Assuming no bias and no confounding, what would you conclude about the 
possible association between moderate leisure activity status and mortality?

 5. The table shows results for selected variables in a case-control study conducted 
by Cox and Sneyd.‡ Variables were simultaneously and reciprocally adjusted for 
year of  age, sex, ethnicity, and family history of  colorectal cancer using logistic 
regression. When asked to describe the findings in this table, a hypothetical reader 
described them as follows: “No associations were found for history of  ulcerative 
colitis or Crohn’s disease (Odds Ratio, OR = 1.29; 95% confidence interval,  
CI: 0.56, 3.00, age (OR = 0.99, CI: 0.98, 1.01), sex (OR = 0.81, CI: 0.64, 
1.02) and smoking (past smoking OR = 1.06, CI: 0.82, 1.36; current smoking  
OR = 0.69, CI: 0.46, 1.03). Family history of  colorectal cancer was significantly 
related to colorectal cancer (OR = 1.46, CI: 1.08, 1.96).”

† GD Batty, MJ Shipley, MG Marmot, et al. Leisure time physical activity and disease-specific mortality among men with chronic 
bronchitis: Evidence from the Whitehall study. Am J Pub Health. 2003;93:817–821.

‡ B Cox, MJ Sneyd School milk and risk of  colorectal cancer: A national case-control study. Am J Epidemiol. 2011;173:394–403.
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Odds ratios for selected variables§

Characteristic Odds ratio 95% confidence interval

Age (individual years) 0.99 0.98, 1.01

Sex
 Male
 Female

1.00
0.81 0.64, 1.02

Family history of 
 colorectal cancer
 No
 Yes

 

1.00
1.46

 

1.08, 1.96

Smoking
 Never
 Past
 Current

1.00
1.06
0.69

0.82, 1.36
0.46, 1.03

History of ulcerative colitis 
 or Crohn’s disease
 No
 Yes

1.00
1.29 0.56, 3.00

  a.  Can you identify some problems with this description that render it less than 
ideal?

§Based on: B Cox, MJ Sneyd. School milk and risk of  colorectal cancer: A national case-control study. Am J Epidemiol. 
2011;173:394–403.
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CHAPTER

Epidemiologic Issues in 
the Interface with Public 
Health Policy

10.1  INTRODUCTION

Epidemiology has played a major role in shaping public health policy and prevention, 
with examples spanning from Snow’s classic 19th century cholera studies leading to 
the closing of  the Broad Street water pump1 to the United States Preventive Services 
Task Force recommendations for the primary prevention of  cardiovascular diseases by 
promotion of  physical activity and a healthful diet.2 The translation of  study findings 
into the practice of  public health, however, is not an easy task. Policy makers typically 
grade the quality of  the evidence to decide whether it is strong enough to support imple-
menting a program or service (Exhibit 10-1). Randomized clinical trials are considered 
as providing the best level of  evidence,3,4 but their application to study questions relevant 
to health policy is frequently limited by ethical or feasibility concerns. Moreover, even 
decisions based on results from such trials are often difficult, as underscored by the 
inconsistent results from large clinical trials on the effectiveness of  mammography as a 
screening tool for breast cancer.5,6

The problems associated with experimental evidence are compounded when nonex-
perimental study designs are used, as in these studies confounding and bias are more 

Grade Level of  
evidence

Description of  level 

A 1a
1b
1c

2a
2b

Systematic review (with homogeneity) of  randomized clinical trials
Individual RCT (with narrow confidence interval)
“Natural experiments,” i.e., interventions with dramatic effects  
(e.g., streptomycin for tuberculosis meningitis; insulin for diabetes)
Systematic review (with homogeneity) of  cohort studies
Individual cohort study or randomized clinical trial of  lesser quality  
(e.g., with < 80% follow-up)

B 2c
3a
3b

Outcomes research (based on existing records)
Systematic review (with homogeneity) of  case-control studies
Individual case-control study

C 4a

4b

 Temporal (before-after) series with controls, and cohort and case-
control studies of  lesser quality
Temporal (before-after) series without controls

D 5 Expert opinion without explicit critical appraisal, or not based on logical 
deduction

Source: Based on: The Canadian Task Force on the Periodic Health Examination. Canadian Guide to Clinical Preventive 
Health Care. Canada: Health Canada; 1994;  U.S. Preventive Services Task Force. Guide to Clinical Preventive Services. 
U.S. Department of  Health and Human Services, Office of  Disease Prevention and Health Promotion; 2003; M Bigby 
M Szklo  Evidence-Based Dermatology. In: IM Freedberg, AZ Eisen, K Wolff  et al. (eds). Fitzpatrick’s Dermatology in General 
Medicine, 6th ed. New York, NY: McGraw-Hill Medical Publishing Division; 2003, pp. 2302.

Exhibit 10-1 Levels of evidence
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likely to occur. Other challenges to the inferential process leading to policy recommen-
dations are common to both experimental and nonexperimental studies, such as lack of  
consistency across studies, particularly in the presence of  weak associations or modest 
effectiveness.

In this chapter, some epidemiologic issues related to the use of  exposure–outcome 
association data in the development of  policy recommendations are discussed. Descrip tions 
of  Rothman’s causality model7 and of  Hill’s guidelines to infer causality8 in the context 
of  their application to the decision-making process are also part of  this chapter. Other 
relevant topics, such as weak associations and homogeneity among studies, are discussed 
along with the causality guidelines. It should be emphasized that this chapter does not 
elaborate on many issues that are of  interest to health policy students and experts, such as 
the influence of  politics on policy, or the role of  public health or other agencies. Instead, it 
tries to emphasize the relevance to prevention of  topics that are largely of  specific concern 
to those involved in epidemiologic teaching and research. Although many of  the examples 
discussed in this chapter refer to primary prevention, several concepts discussed here are 
also applicable to secondary prevention and clinical practice.

10.2  CAUSALITY: APPLICATION TO PUBLIC 
HEALTH AND HEALTH POLICY

Inferring whether an association is causal is key to the use of  epidemiologic findings in 
primary prevention and other interventions that aim at modifying the probability of  the 
outcomes of  interest. An in-depth discussion of  the different models of  causal inference 
is beyond the scope of  this book and can be found elsewhere.9 For practical purposes, 
the inductive process of  prediction—which consists of  generalizing results obtained in 
one or more studies to different target or reference populations—remains the premier 
approach that public health professionals and policy makers use.

Criteria to define causality were pioneered by Koch as an effort to identify biologic 
agents responsible for infectious diseases.10,11 Koch’s postulates required that the organism 
had to be recovered from each case of  disease, that the organism had to be cultured in 
vitro from each case, that reinoculation of  the purified organism had to cause disease 
in another host, and that the organism had to be reisolated from the latter. The validity 
of  Koch’s paradigm, as expressed by his postulates, has been shown for several infec-
tious diseases. In contradistinction to Koch’s paradigm focusing on single causal agents, 
however, almost a century later, MacMahon, Pugh, and Ipsen12 proposed the concept of  
“web of  causation” as a way to emphasize the importance of  multiple causes of  disease. 
As stated persuasively by Gordis,13 risk factors in isolation are rarely either sufficient or 
necessary to cause disease. Even when necessary causes are present, they are usually 
not sufficient to produce disease—a fact that is particularly true for conditions, such as 
tuberculosis and stomach cancer, that in certain populations are rare manifestations of  
common exposures (Mycobacterium tuberculosis and Helicobacter pylori, respectively).

The web of  causality for stomach cancer sharply underscores the interconnections 
between multiple risk factors. Although H. pylori infection appears to be a necessary 
causal agent for noncardia gastric cancer,14 its high prevalence and the relative rarity 
of  this neoplasm strongly suggest involvement of  other factors, which may include, 
for example, smoking and exposure of  gastric mucosa to N-nitroso compounds. A 
possible chain of  causality may start with low socioeconomic status and household 
crowding resulting in exposure to H. pylori. A subsequent event may be the ingestion 
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of  nitrate-rich foods, such as cured meats; these, in turn, are reduced to nitrites by 
bacteria found in human saliva and in the stomach, the growth of  which is facilitated 
by a change in acidity brought about by smoking and excessive salt intake. Nitrites 
then react with secondary amines found in several ingested foods (such as pork-
based products) to form N-nitroso carcinogenic compounds. A potent inhibitor of  this 
reaction is vitamin C; thus, its deficiency may yet be another factor that contributes 
to the formation of  these carcinogens and, thus, to the web of  causation in non-cardia 
gastric cancer.15

10.2.1  Rothman’s Causality Model
The pathogenesis of  stomach cancer underscores the importance of  assessing a constel-
lation of  risk factors, or component causes, acting jointly to form what Rothman has 
named a sufficient cause, defined as “a set of  minimal conditions and events that inevi-
tably produce disease.”7(p.8) These conditions or events can act either simultaneously or 
sequentially, such as for example in the case of  initiators and promoters of  cancer.

On the basis of  Rothman’s model, several sufficient causes can be postulated for 
stomach cancer, which are represented in “pie” graphs of  component causes (Figure 
10-1). Each of  the complete circles in Figure 10-1 represents a sufficient cause composed 
of  a constellation of  component causes. Because the sum of  the known component 
causes of  stomach cancer used in these hypothetical examples may not be sufficient to 
complete a sufficient cause constellation, a variable XZ—which represents one or more 
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FigurE 10-1 Component causes and sufficient causes in stomach cancer. XZ represents one 
or more unknown component causes.
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unknown factors acting as component causes—has been added to each complete circle 
in the figure, as follows. 

 1. Sufficient Cause 1, formed by the component causes, H. pylori (a necessary 
component cause), diet rich in nitrates, high salt intake, and XZ (Figure 10-1a).

 2. Sufficient Cause 2, formed by H. pylori, smoking, high salt intake, and XZ  
(Figure 10-1b).

 3. Sufficient Cause 3, formed by H. pylori, vitamin C deficiency, smoking, diet rich in 
nitrates, and XZ (Figure 10-1c).

H. pylori, assumed to be a necessary cause, appears as a component cause in all suffi-
cient cause constellations.

When considering Rothman’s sufficient causes in the context of  preventive activities, 
the following two issues should be pointed out:

 1. Elimination of  even a single component cause in a given sufficient cause constel-
lation is useful for preventive purposes, as it will by definition remove the “set of  
minimal events and conditions,” which form that sufficient cause. Consider, for 
instance, Figure 10-1b: if  salt intake were not high, stomach cancer may not 
occur even if  the necessary cause (H. pylori) and the other component causes 
(smoking and XZ) were present. This notion is supported by the fact that, as 
pointed out previously, although the prevalence of  H. pylori is very common in 
certain populations (expressed as a percent), the incidence of  stomach cancer in 
these same populations is fairly rare (expressed as per 100,000).16 

 2. As aptly stated by MacMahon, Pugh, and Ipsen12(p.18) several decades ago, “to 
effect preventive measures, it is not necessary to understand causal mecha-
nisms in their entirety.” This important concept is exemplified by Snow’s recom-
mendations pertaining to London’s water supply many years before Pasteur’s 
discoveries and by Casal and Goldberger’s discovery of  the nutritional deficiency 
nature of  pellagra well before the actual vitamin involved was discovered.17,18 
Other examples of  instances in which identification of  an epidemiologic chain 
amenable to prevention interventions preceded the discovery of  the actual causal 
factor have been discussed by Wynder.17

10.2.2  Proximate, Intermediate, and Distal (Upstream) 
Causes, and Prevention
Several researchers19,20 have criticized epidemiology’s modern tendency toward reduc-
tionism, with a primary focus on proximate component causes, particularly those 
related to biologic markers of  risk. These reductionistic approaches tend to be in tune 
with clinically oriented, “high-risk” strategies for prevention. In contrast, the study of  
more upstream causes may provide clues for the development of  prevention strategies 
at the level of  the total target population. As argued by Rose,21,22 the population-wide 
approach based on distal causes—for example, those related to social determinants of  
disease—might be the most effective prevention strategy for the total population. An 
example is stroke prevention by either hypertension prevention or treatment. A model 
representing the chain of  causality for stroke is proposed in Figure 10-2. In addition to 
the distal and proximal sufficient causes, this model also recognizes that there may be 
an intermediate sufficient cause. In addition, it considers the time sequence of  distal, 



10

Epidem
iologic Issues 

in the Interface w
ith 

Public Health Policy
 10.2  Causality: Application to Public Health and Health Policy 395

intermediate, and proximal causes. In this example, the component causes, low social 
class and DZ, are conceptualized as a distal sufficient cause, which in turn results in the 
intermediate sufficient cause formed by obesity, excessive salt intake, stress, sedentary 
life, and XZ. This intermediate sufficient cause is responsible for a proximal component 
cause, hypertension, which along with genetic susceptibility, is part of  the proximal 
 sufficient cause of  stroke. As previously, the subscript Z represents component causes 
needed to complete each sufficient cause constellation above and beyond known 
component causes.

Using this example, the focus of  a typical “high-risk” preventive strategy could, for 
example, be one of  the most proximate causes—severe hypertension—that would be 
identified and treated. Although the relative risk of  stroke associated with severe hyper-
tension is high, the prevalence of  this type of  hypertension is much lower than that 
of  prehypertension plus moderate hypertension, which, notwithstanding its weaker 
association with stroke, is related to a much higher attributable risk in the population  
(Figure 10-3). Exhibit 10-2 shows that, although the relative risk of  stroke associated 
with stage 2 hypertension is very high (4.0), its attributable risk is less than that 
associated with prehypertension, notwithstanding the latter’s much lower relative risk 
(1.5); this is because the prevalence of  prehypertension (50%) is much higher than that 
of  stage-2 hypertension (approximately 5%).23 

The use of  a population-wide strategy, consisting of  primary prevention by intervention 
on the distal or intermediate component causes represented in Figure 10-2 could shift 
the entire blood pressure distribution curve to the left. Examples of  this strategy include 
an improvement in the socio economic status of  the target population, regulating salt 
content in processed foods, or promoting the development of  urban environments and 
public transportation options that encourage residents’ physical activity. As a result, 
the prevalence of  both prehypertension, moderate and severe hypertension in the total 
population would decrease (Figure 10-4), resulting in a decrease in stroke incidence of  
a much greater magnitude than that achieved by the “high-risk” approach. It has been 
estimated, for example, that a 33% decrease in average salt intake in the population at 
large would result in a 22% reduction in the incidence of  stroke; in comparison, even 
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FigurE 10-2 Component causes and sufficient causes in stroke. DZ represents one or more unknown 
distal component causes; XZ represents one or more unknown intermediate component causes.
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ARPOP =
PrevalenceRF (RR - 1.0)

PrevalenceRF (RR - 1.0) + 1.0

ARPOP =
0.05 (4.0 - 1.0)

0.05 (4.0 - 1.0) + 1.0
* 100 = 13%

ARPOP =
0.50 (1.5 - 1.0)

0.50 (1.5 - 1.0) + 1.0
* 100 = 20%

*Based on: AV Chobanian, GL Bakris, and HR Black, The Seventh Report of  the Joint National Committee on 
Prevention, Detection, Evaluation and Treatment of  High Blood Pressure: The JNC 7 Report. Journal of  the 
American Medical Association, 2003;289:2560–2572.

Exhibit 10-2 Relative risks and attributable risks for severe (stage 2) hypertension and 
prehypertension.

Prehypertension (SBP 120–139 or DBP 80–98 mmHg)* and stroke
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  - Prevalence ~ 50%
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FigurE 10-3 The “high risk” approach focuses on individuals with severe hypertension. 
Although the relative risk for stroke is high in individuals with severe hypertension (compared to 
those with normal blood pressure), the prevalence of severe hypertension in the total population 
is low, and thus the associated population attributable risk is low. Most cases of stroke originate 
among those with moderate hypertension, the prevalence of which is high.

Stage 2 hypertension (SBP = 160 + or DBP = 100+ mmHg)* and stroke

  - Relative risk ~4.0

  - Prevalence ~ 5%
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if  all hypertensive patients were identified and successfully treated, this would reduce 
stroke incidence by only 15%.24 Similar decreases in all other modifiable hypertension 
component causes would obviously be expected to have even a greater impact on stroke 
(and coronary heart disease [CHD]) incidence than salt reduction alone. Thus, when 
distal or even intermediate component causes are known, primary prevention based on 
these causes is generally more effective than intervention on proximal causes.

Because screening aims at identifying individuals who already have the disease, it 
can be regarded as the embodiment of  the “high-risk” approach. Taking this approach 
even further is selective screening, based on two or more steps.25 In a two-step screening, 
the first step is the identification of  “high-risk” individuals—for example, those with a 
given trait T—and the second, the application of  the screening test. In the example illus-
trated in Table 10-1, 100,000 women aged 50–64 years undergo selective screening 
for incident breast cancer based first on identification of  those with a family history 
(comprising 53% of  this population) who, in a second phase, are referred to a mammo-
graphic exam. Based on published data, the sensitivity and specificity for the discrimi-
nation of  incident breast cancer are assumed to be, respectively, 0.54 and 0.53 for family 
history,26 and 0.93 and 0.99 for mammography.27 At the end of  this two-step screening 
approach, the overall (“program”) sensitivity is estimated to be 0.50. If  mammography 
had been applied to the total population (and not just to those with a positive family 
history), approximately 11 true cases would have been missed (obtained by multiplying 
the total number of  true cases by the complement of  the sensitivity). With the two-step 
approach exemplified in the table, 64 additional cases are missed (i.e., 69 + 6 – 11), 
thus, underscoring the loss of  sensitivity resulting from this “high–high-risk” strategy. 
This example highlights the notion that the main reason for using a high-risk strategy is 
related to cost-effectiveness, rather than to effectiveness alone.

FigurE 10-4 Distribution of systolic blood pressure before and after the application of a 
population-wide approach. The prevalence of both moderate and severe hypertension decreases, 
resulting in a decrease of the Population Attributable Risk.
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10.2.3  Social Determinants
Epidemiology as a formal discipline started in 19th century Great Britain with a heavy 
emphasis on the importance of  the unequal distribution of  morbidity and mortality by 
social class. The recent renewed interest in the study of  social determinants of  health 
and disease—which had previously peaked in the 1960s and 1970s28,29—has focused 
on a multilevel causality framework, whereby the exclusive emphasis on proximate 
causes (e.g., smoking in relation to coronary thrombosis, hypertension as a cause of  
stroke) has been changed to reflect the interdependence between proximate and more 
distal or upstream (ecological) variables (e.g., high serum cholesterol levels resulting 
from difficult access to healthy foods, which, in turn, is at least partly determined by 
social class) (see Chapter 1, Section 1.3). The model subscribed to by social epidemiolo-
gists favors neither a reductionistic (“proximate cause-oriented”) nor a purely ecological, 
socially determined approach (based on upstream causes), but rather a consideration of  
both types of  component causes in the search for sufficient causes.20 

A growing methodologic interest in the interface between individual-level (usually 
proximate) and group-level (usually distal or intermediate) variables has led to the 

tablE 10-1 Program validity of a “high-risk” approach in incident breast cancer screening in 
a population of 100,000 women aged 50–64 years. “High-risk” is defined by presence of a family 
history of breast cancer with sensitivity 5 0.54 and specificity 5 0.53.* Those with a family history 
undergo mammography, with sensitivity 5 0.93 and specificity 5 0.99.† Yearly incidence of breast 
cancer is assumed to be about 150/100,000. 

Step 1. Identification of  individuals with a positive family history

Family history Disease present Disease absent Total

Present 81 52,920 53,001

Absent 69 46,930 46,999

Total 150 99,850 100,000

Sensitivity 5 0.54 Specificity 5 0.53

Step 2. Mammography in those with a positive family history

Test Disease present Disease absent Total

Positive 75 529 604

Negative 6 52,391 52,397

Total 81 52,920 53,001

Sensitivity 5 0.93 Specificity 5 0.99

Program’s sensitivity 5 75 4 150 5 0.50 
(also calculated as the product of  the two sensitivity values, or 0.54 3 0.93 5 0.50)

Program’s specificity 5 [46,930 1 52,391] 4 99,850 5 0.995 
(also calculated as the complement of  the product of  the complements of  the  specificities: 1 2 [1 2 0.53] 3 
[1 2 0.99] 5 0.995)

*LC Hartmann, TA Sellers, MH Frost, et al., Benign Breast Disease and the Risk of  Breast Cancer. New England Journal 
of  Medicine, 2005;353:229–237.
†AI Mushlin, RW Kouides, and DE Shapiro, Estimating the Accuracy of  Mammography: A  Meta-Analysis. American 
Journal of  Preventive Medicine, 1998;14:143–153.
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development of  analytical strategies that take into consideration both types of  variables. 
Excellent summaries of  these strategies can be found in the literature.30,31

10.2.4  Hill’s Guidelines
The so-called Hill’s criteria, which have been referred to more aptly by Gordis as 
“guidelines,”13 were originally published as part of  the first Surgeon General Report 
on Smoking and Health32 and comprise a series of  aspects of  a statistical association 
that, when present, may strengthen the inference that the statistical association is also 
causal;8 however, with the exception of  “temporality” (discussed later), failure to satisfy 
any or even most of  these guidelines does not necessarily constitute evidence that the 
association is not causal.13,33

Notwithstanding the renewed interest in models of  causality over the last few years 
(see, for example, Greenland and Brumback34), Hill’s guidelines remain as the corner-
stone of  causal inference for the practical epidemiologist and health policy expert. 
The overarching implicit questions that these guidelines seek to address are whether 
confounding and bias are reasonable alternative explanations for an observed statis-
tical association and, if  not, whether a cause–effect relationship can be inferred. What 
follows is an attempt to expand the discussion on Hill’s guidelines and its related issues of  
meta-analysis and publication bias, with a particular emphasis on consistency of  associ-
ations across studies. Another issue related to the process of  causal inference, sensitivity 
analysis, is also briefly discussed.  

 1. Experimental evidence: Because randomized trials in humans usually offer the best 
protection against confounding and bias, they are widely regarded as the “gold 
standard” for determining causal associations; thus, they are thought to provide 
the highest level of  evidence for developing recommendations pertaining to 
preventive and clinical interventions (Exhibit 10-1).3,4 In epidemiologic or public 
health research, however, random allocation is often either not feasible (e.g., 
when studying social class as a determinant) or ethically acceptable (e.g., when 
studying the consequences of  a potentially harmful environmental exposure); 
as a result, these trials are typically limited to assessing interventions that are 
expected to have a beneficial effect. Internal validity of  a randomized trial is 
optimal when single interventions (e.g., a drug or a vaccine) are studied; from this 
viewpoint, it may be considered as the epitome of  reductionism in epidemiology. 
In addition to the problems related to open trials of  effectiveness, such as poor 
compliance and “cross-overs,” when interventions pertain to only part of  the 
component causes of  sufficient cause constellations, results of  randomized trials 
can be erroneously generalized. A possible example is the Finnish trial of  smokers, 
which could not confirm experimentally the results of  observational studies 
suggesting that a diet rich in beta-carotene and alpha-tocopherol reduced lung 
cancer incidence.35 Although this trial’s results may have accurately expressed 
these nutrients’ lack of  efficacy, they may have alternatively reflected the fact that, 
without considering their complex relationships (including possible interactions) 
with other dietary components, intake of  beta-carotene or alpha-tocopherol may 
not be not enough to influence a sufficient cause of  lung cancer. In other words, 
the trial likely provided the response to the question asked by its authors (i.e., 
that using these nutrients as simple pills is not effective in preventing cancer in 
smokers); however, this response should not necessarily lead to the inference that 
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alpha-tocopherol and/or beta-carotene are not protective if  consumed in their 
natural states as part of  a healthy diet.

 2. Temporality: The presence of  the right temporal sequence, “possible cause → 
possible effect,” per se does not constitute proof  that the first event caused the 
second. Thus, for example, the fact that a given viral infection occurring in early 
life (e.g., measles) precedes a chronic disease (e.g., degenerative arthritis) cannot 
be said to constitute strong evidence of  the former causing the latter. On the other 
hand, of  all of  the guidelines by which to judge whether the relationship is causal, 
the demonstration that the exposure preceded the outcome under investigation 
is the only one that, if  not met, eliminates the possibility of  a causal connection. 
Yet, it is often difficult to establish temporality in epidemiologic studies, particu-
larly when assessing diseases with long subclinical phases and insidious onsets, 
such as chronic renal disease or chronic lymphocytic leukemia. A special type of  
temporal bias, discussed in Chapter 4, Section 4.4.2, is “reverse causality,” which 
occurs when the presumed outcome (disease) is responsible for the occurrence 
of  the exposure of  interest. Thus, for example, a chronic disease may go undiag-
nosed for years with a single symptom (e.g., a moderate loss of  appetite) that 
may result in the hypothesized exposure (e.g., an exposure related to a change in 
diet). Although case-control studies are more amenable to this bias, it may also 
occur in cohort studies when ascertainment of  the disease onset is difficult and 
the diagnosis is based on symptomatic disease, which may occur long after the 
subclinical onset of  the disease.

 3. Strength of  the association: The rationale for using strength of  the association 
as a guideline to infer causality is that it is more difficult to explain away a 
stronger than a weaker association on the basis of  confounding or bias. Thus, 
the relationship of  lung cancer to active smoking, expressed by a high relative 
risk, is more likely to be causal than that of  CHD to environmental tobacco 
smoking (passive smoking), for which the relative risk is estimated at between 
1.1 and 1.5.36 As for Hill’s guidelines in general (with the exception of  tempo-
rality), however, observation of  a weak association (e.g., those characterized by 
relative risks below 2.0) does not negate the possibility of  causality. For public 
health purposes, careful consideration of  whether a weak association is causal is 
justified by the possibility that it may result in a high population attributable risk 
if  the exposure prevalence is high (see Chapter 3, Section 3.2.2). As an example, 
a relative risk of  CHD related to environmental tobacco smoke of  1.2–1.3 and an 
exposure prevalence of  26%37 would result in a population attributable risk of  
about 13%, which given the very large absolute number of  new coronary events 
is far from negligible.38

   The importance of  considering the scale (relative versus absolute excess) when 
assessing the impact of  potentially causal—albeit weak—associations is partic-
ularly manifest when assessing interactions. With the widespread use of  ratio-
based models, assessment of  interaction has become virtually synonymous with 
assessment of  multiplicative interaction. Yet, as shown in Chapter 6, Section 6.6,  
evaluation of  additive interactions is crucial for public health purposes and can 
be readily done in the context of  ratio-based models.39,40 
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 4. Dose-response (graded pattern): The observation of  a straightforward monotonic 
relationship between exposure dose and risk of  an outcome is regarded as 
strong evidence that a cause–effect relationship exists (Figure 10-5A). There are 
numerous examples of  this type of  pattern in the epidemiologic literature (e.g., 
smoking and lung cancer, blood pressure and stroke). In a meta-analysis of  the 
relationship between birth weight and leukemia (discussed later), the authors used 
the observation of  consistent linear dose-response associations across studies as 
further evidence that the association was likely causal (Figure 10-6).41 Causal 
relationships, however, may also be characterized by other types of  patterns 
reflecting the biologic mechanisms underpinning these relationships. Thus, for 
example, the association between alcohol intake and cardiovascular mortality 
seems to follow a J-shaped relationship (Figure 10-5B) probably because at low 
intake levels alcohol may be protective against atherosclerotic disease through 
an increase in serum high-density lipoprotein concentration, platelet activation 
inhibition (and thus coagulation inhibition), and antioxidant activity; however, at 
higher levels its harmful effects on blood pressure may predominate.42 Another type 
of  pattern is that in which the excess risk only appears above a certain exposure 
level (i.e., a certain threshold) (Figure 10-5C). As an example, in early analyses of  
the Framingham study data, relative weight seemed to be related to an increased 
incidence of  atherothrombotic brain infarction in men aged 50–59 years only 
at high levels (Figure 10-7).43 An exposure-outcome association pattern may, in 
addition, be dose-independent, for example, that seen in allergic disorders to certain 
environmental exposures, such as medications, pollen, and others.

   Although confounding or bias are regarded as having less explanatory value 
when there is a linear dose-response pattern of  the type shown in Figure 10-5A, 
it must be emphasized that this may not be the case if  there is a correlation 
between the level of  the exposure of  interest and the level of  a confounder 
(or the level of  information bias). An example is the relationship of  excessive 
alcohol intake to lung cancer, which may show a graded pattern because of  

Disease risk

Exposure levelExposure level Exposure level

Monotonic
throughout range of
exposure levels (e.g.,
smoking and lung
cancer) 

A. B. J-shaped (e.g., alcohol
and cardiovascular
disease)

C. Threshold pattern (e.g.,
weight and coronary
disease sudden death)

FigurE 10-5 Some patterns of cause–effect relationship.
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FigurE 10-6 Dose-response in 8 studies of birthweight and leukemia included in a meta-analysis. 

Source: Data from LL Hjalgrim, T Westergaard, and K Rostgaard, Birth Weight as a Risk Factor for Childhood Leukemia:  
A Meta-Analysis of  18 Studies. American Journal of  Epidemiology, Vol 158, pp. 724–735, © 2003.
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the graded relationship between alcohol (the putative risk factor of  interest) 
and the confounder (smoking). In addition, as previously discussed (Chapter 4, 
Section 4.3.3), both nondifferential misclassification when there are more than 
two exposure categories and differential misclassification may produce a spuri-
ously graded relationship between exposure and outcome.

 5. Biologic plausibility: For an association to be causal, it has to be plausible (i.e., 
consistent with the laws of  biology). Biologic plausibility may well be one of  the 
most problematic guidelines supporting causality, however, as it is based on a 
priori evidence that may not stand the test of  time. Thus, for example, vis-à-vis the 
state-of-the-art scientific knowledge of  his time, Snow’s hypothesis that cholera 
was produced by a live organism lacked biologic plausibility altogether. Weed and 
Hursting44 go as far as to suggest the dispensability of  the biologic plausibility 
criterion and cite Schlesselman’s contention that it “may occasionally impede 
acceptance of  new facts.”45(p.201)

   Notwithstanding these limitations, biologic plausibility is a useful guideline 
when it is consistent with the epidemiologic patterns of  the exposure–outcome 
associations. Consider, for example, the J-shaped relationship of  alcohol to 
cardiovascular mortality mentioned previously. Its biologic plausibility is based 
on the known dose-dependent relationships of  alcohol to serum high-density 
lipoprotein, coagulation factors, and blood pressure, as well as on the knowledge 
of  the roles of  these factors in the causal pathways resulting in atherosclerosis.

 6. Consistency: Consistency of  results across epidemiologic studies gets at the heart 
of  inductive reasoning and is highly esteemed by epidemiologists as a guideline to 
infer causality in observational studies, particularly when ratio-based measures 
indicate weak associations. Observation of  consistent, albeit weak, associations 
provides the main rationale for the use of  meta-analytic techniques for policy 
decision making (see the next section).

   Consistency among studies, however, should be used as a means to infer causality 
cautiously, as it may merely reflect consistency of  confounding or bias across 
studies, particularly observational ones.45 In addition, apparently consistent 

FigurE 10-7 Risk of atherothrombotic brain infarction in relation to relative weight,* men aged 
50–59 years. The Framingham Study. 

*Relative weight was determined by comparing the weight of  the individual to the median for the age and sex group 
applicable.
Source: Courtesy of  the Harvard University Press. TR Dawber. The Framingham Study. The Epidemiology of  Atherosclerotic 
Disease. Cambridge, MA, Harvard University Press, 1980.
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results across studies may result from publication bias, whereby “positive” results 
are more likely to be published than null ones (see Section 10.5).

   Conversely, lack of  consistency does not necessarily constitute evidence against a 
causal association. The reasons why causal associations may not appear consistent 
have been described by some authors46–48 and are summarized as follows.

•	 Differences in the specific circumstances of  exposure. Several characteristics of  the 
exposure of  interest may cause differences between the results of  individual 
studies, including duration and level. For example, earlier studies of  the 
relationship of  estrogen replacement therapy to breast cancer did not take 
duration into account as accurately as more recent studies49 and were thus not 
able to establish firmly the presence of  the association.

•	 Differences in the timing of  the study with regard to the exposure’s latency (incubation) 
period. When studies are done at different points in time after introduction of  a 
given exposure, they may yield inconsistent results. Plotting the distribution of  
cases by time after exposure initiation (i.e., constructing an epidemic curve50,51) 
may assist in ascertaining at which point in the curve the study was done. 
When the minimum latency (incubation) period has not yet gone by in a given 
study population, investigation of  a recently introduced agent cannot detect 
associations between the agent and the outcome of  interest (Figure 10-8).

•	 Differences in design and analytic strategies. Inconsistent results between studies 
may also result from differences in the confounders included in the statistical 
models used in data analyses, the sensitivity and specificity of  the definitions 
of  exposure and outcome variables, the power of  the study, and the length of  
follow-up (in cohort studies). Use of  broad categories of  relevant variables is 
another problem, as it may hide differences in exposure levels between studies; 
for example, by using merely the categories “yes” and “no” for smoking, differ-
ences may occur in the level of  tobacco use from study to study, thus resulting 
in inconsistent values of  the measure of  association.

•	 Differences in the distribution of  a component cause. Differences in results across 
studies may also reflect differences in the presence of  component cause of  a 
sufficient cause constellation. This notion is best understood in the context of  
effect modification. For example, if  a susceptibility gene for salt-induced hyper-
tension varies from population to population, studies conducted in different 
populations will detect average (“main”) effects of  high salt intake on hyper-
tension of  different magnitudes. Assume the extreme example of  a qualitative 
interaction, in which the relative risk is 3.0 when the susceptibility gene (effect 
modifier) is present, but is null (1.0) when the gene is absent (Figure 10-9). 
In this hypothetical example, for the population in which everyone carries 
the susceptibility gene (a), the relative risk will be 3.0. On the other hand, for 
populations without the susceptibility gene, the relative risk for hypertension 
in heavy salt consumers will be 1.0 (b). The lower the prevalence of  gene 
carriers, the nearer the average (“main effect”) relative risk will be to 1.0, a 
phenomenon that has been coined “drowning of  susceptibles” (Correa A., 
personal communication). Consider, for example, the results of  the study by 
Yu et al.52 on the relationship between smoking and liver cirrhosis in chronic 
hepatitis B surface antigen carriers (see Section 6.10.2, Table 6-26). In this 
study, there was marked heterogeneity of  the association according to presence 
of  alcohol drinking. Thus, in drinking individuals, the adjusted relative risk for 
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FigurE 10-8 Epidemic curve: studies done prior to point A cannot detect an association 
between a causal agent and a disease.
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FigurE 10-9 Impact of variable proportions of the effect modifier in different populations. 
Assume qualitative interaction of exposure X with effect modifier Z: RRX/Z1 5 3.0; RRX/Z2 5 1.0.
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heavy smoking was about 9.0, whereas in nondrinkers, it was only 1.9. As a 
result (and assuming that these adjusted point estimates are the true values), 
it can be inferred that among hepatitis B surface antigen carriers with a high, 
compared with those with a low prevalence of  drinking, heavy smoking will be 
a much stronger risk factor for liver cirrhosis.

•	 Differences in the stage of  the natural history of  the underlying process. The natural 
history of  a given disease is often a lengthy process that starts many years before its 
clinical manifestations. An example is atherosclerosis, which may begin as early 
as the first or second decade of  life.53,54 Its clinical expression (e.g., myocardial 
infarction), however, is not common until the sixth and later decades. Traditional 
risk factors for clinical atherosclerotic disease include high serum cholesterol 
levels, hypertension, smoking and diabetes. The role of  smoking as a key risk 
factor had been established early on in the landmark Framingham study.55 Its 
association with CHD, however, was not of  uniform magnitude in all locations of  
the Seven Countries Study.56 In the latter study, the relationship of  heavy smoking 
(≥ 20 cigarettes/day) to CHD was clearly seen in the Northern European but 
not in the cohort from former Yugoslavia (Figure 10-10). This finding possibly 
reflects the fact that smoking appears to have a more important role in the devel-
opment of  later (rather than earlier) stages of  atherosclerosis (Figure 10-11),57 
which were more prevalent in Northern Europe than in the former Yugoslavia. 
Thus, when assessing differences in association strengths across populations, it is 
crucial to consider the natural history of  the disease and the fact that the role of  
each risk factor may be not be equally important in all of  its stages.

•	 Differences in the effectiveness of  interventions. The applied epidemiologist is often 
interested in studying the effectiveness of  a given preventive intervention, such 
as a smoking cessation program. A crucial issue usually ignored in evaluating 
consistency of  effectiveness values across studies is that this measure is more 

FigurE 10-10 Age-adjusted cumulative incidence rates of coronary heart disease (CHD) in 
two cohorts of the 7-Countries Study, after a 10-year follow-up. 

Source: Courtesy of  the Harvard University Press. A Keys, Seven Countries Study, Cambridge, MA, Harvard University 
Press, 1980.
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context  specific—and thus less generalizable—than efficacy. The use of  vaccines 
in the field underscores the sharp distinction between efficacy and effectiveness. 
The efficacy of  a vaccine may be high, but if  the field conditions are not ideal—
due, for example, to deterioration of  the vaccine because of  lack of  refrigeration or 
poor acceptance by the target population—its effectiveness will be compromised.

              Another key consideration is that, as persuasively demonstrated by 
Comstock,58 observational studies of  interventions yield effectiveness, not 
efficacy estimates. An example is given by an observational study that suggested 
a negative effectiveness of  a needle exchange program (NEP) for prevention 
of  HIV infection in the Montreal area.59 The explanation for this paradoxical 
finding, offered by the authors of  this study, was that “. . . because of  the avail-
ability of  clean equipment through pharmacies . . . needle exchange programs 
may have attracted existing core groups of  marginalized, high risk individuals 
. . .” and that “in view of  the high risk population NEPs, the number of  needles 
may have been less than the actual number needed,” which in turn may have 
led to the use of  contaminated needles.59(p.1001) An obvious conclusion is that 
a positive effectiveness may have been achieved under different circumstances 
than those encountered in this particular study population.

•	 Differences in the variability of  the risk factor. As aptly stated by Wynder and 
Stellman60 (p.459) with regard to case-control studies, “If  cases and controls are drawn 
from a population in which the range of  exposures is narrow, then a study may 
yield little information about potential health effects.” The issue of  little variability 
in the exposure levels is also applicable to cohort studies. For example, as discussed 
in Chapter 1, Section 1.3, observational studies using individuals as analytic units 
have been unable to show consistent relationships between salt intake and hyper-
tension (Figure 10-12A); on the other hand, because of  the marked interpopu-
lation variability in average salt intake, ecologic studies using country as the unit 
of  analysis have clearly demonstrated a correlation61 (Figure 10-12B). 

  Thus, the variability of  the risk factor level within a population is a key deter-
minant of  whether an association can be found in that population.

Readers might notice the absence of  three of  the original Hill’s guidelines, coherence, 
analogy, and specificity, of  an association from the preceding discussion; we, like others,13,33 
believe that these three guidelines are not too useful for the following reasons: coherence 

FigurE 10-11 Smoking seems to be particularly important in later stages of the natural history 
of atherosclerosis. In the former Yugoslavia, earlier atherosclerotic lesions seemed to predominate, 
and thus smoking appeared to be a less important risk factor than in Northern Europe, where more 
advanced lesions likely predominated.
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is hard to distinguish from biologic plausibility; specificity is inconsistent with state-of-
the art knowledge, as it erroneously postulates that a given agent is always associated 
with only one disease and that the agent can always be found for that disease; and finally, 
with regard to analogy, as aptly pointed out by Rothman and Greenland,33 “Whatever 
insight might be derived from analogy is handicapped by the inventive imagination of  
scientists who can find analogies everywhere.” 

In the next three sections, four topics closely related to the evaluation of  the previous 
guidelines are briefly discussed: decision tree, an approach that is useful when estimating 
overall effectiveness of  a program or intervention; sensitivity analysis, a technique to 
evaluate the impact of  errors on study results or of  alternative levels of  factors influ-
encing effectiveness; meta-analysis, an important tool for the evaluation of  strength of  
a given association and consistency across different studies; and publication bias, which 
may strongly affect results of  systematic reviews, including meta-analyses.

10.3  DECISION TREE AND SENSITIVITY ANALYSIS 

Epidemiologists consistently focus on the quantitative assessment of  the impact of  
random error on the precision (reliability) of  effect estimates (e.g., hypothesis testing 
and calculation of  confidence intervals). However, generally little attention is given 
to the quantitative analysis of  the impact of  errors—systematic or random—on the 
estimates’ validity. This is the focus of  sensitivity analysis. Broadly used in fields such as 
econometrics, environmental sciences, cybernetics, and statistics, sensitivity analysis 
is a tool to examine the changes in the output (results) of  a given model resulting 
from varying certain model parameters (or assumptions) over a reasonable range. In 
epidemiology, because of  its primary focus on validity, the term sensitivity analysis is 
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FigurE 10-12 Intracountry variability in salt intake is not sufficient to allow observation 
of an association between salt intake and systolic blood pressure. However, given intercountry 
variability, there is a strong correlation between average salt intake and systolic blood pressure 
(SBP) when “country” is used as the analytic unit. Small circles denote individuals within each 
country. Large circles denote countries.
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generally used to refer to the “quantitative assessment of  systematic error on an effect 
estimate.”62(p.451) It is, however, important to realize that random errors can also affect 
validity (e.g., regression dilution bias and nondifferential misclassification resulting in 
bias toward the null hypothesis; see Section 4.3.3); consequently, sensitivity analysis can 
also be used to assess the impact of  such errors on validity (see, e.g., Peppard et al.63).

Whether differential or nondifferential, misclassification is one of  the primary 
sources of  systematic error that complicates the validity of  epidemiologic inference. 
As discussed in Chapter 4 (Section 4.3.3), when the sensitivity/specificity of  exposure/
outcome measures are known, estimates of  the “corrected” (unbiased) relative risks (or 
any other measure of  association) can be obtained. Misclassification parameters are 
often unknown, however; in this situation, sensitivity analysis can be used to estimate 
the association measure under varying (more or less plausible) assumptions regarding 
these parameters, as illustrated in the following example.

The relative risk expressing the relationship of  passive smoking in nonactive smokers 
(second-hand smoking) to coronary heart disease (CHD) has been found to be around 
1.15 to 1.30.64,65 It could be hypothesized, however, that this excess risk is due to misclas-
sification resulting from the fact that some active smokers self-report as passive smokers. 
A sensitivity analysis could be based on the assumptions that 5% of  active smokers are 
classified as passive smokers and that all excess risk associated with self-reported passive 
smoking originate from active smokers misclassified as passive smokers. Under these 
assumptions, the relative risk for the relationship of  active smoking to CHD would have 
to be 7.0 in order to entirely explain an observed odds ratio of  1.3 for passive smoking.66 
As the relative risk for active smoking and CHD is around 2.0,67 it can be concluded that, 
under the stated assumptions, this type of  misclassification is unlikely to explain entirely 
an odds ratio of  1.3 reflecting the association of  passive smoking with CHD. (Similar 
calculations could be done using other reasonable assumptions, e.g., that 10% of  active 
smokers are misclassified as passive smokers.) 

In addition to etiologic studies, sensitivity analysis can also be readily applied to 
studies of  effectiveness. Using a hypothetical example, assume that a policy maker 
wishes to compare the effectiveness of  a new vaccine with that of  a standard vaccine. 
Vaccine New is less expensive than vaccine Standard, but clinical trials have shown that 
30% of  those who receive it develop serious adverse effects. The incidence of  adverse 
effects associated with vaccine Standard, which has been in use for some time, is 10%. 
Assuming that it is possible to identify in advance those in whom adverse effects will 
occur (e.g., pregnant women, individuals with poor nutritional status), only 70% and 
90% of  the target population are, therefore, eligible to receive vaccines New and Standard, 
respectively (Table 10-2, column I). Probabilities of  the event (E) that each vaccine is 
expected to prevent are as follows: for vaccine New, 0.08 and 0.40 for those who are 
and are not eligible to receive it, respectively; for vaccine Standard, 0.10 and 0.40 for 
those who are and are not eligible to receive it, respectively (Table 10-2, column II). 
The joint probability of  E can be estimated by multiplying the proportion of  the target 
population who can or cannot receive the vaccine times the incidence in each stratum 
(Table 10-2, column III). The sum of  these joint probabilities provides the total incidence 
of  E in the target population and is estimated at 17.5% for vaccine New and 13% for 
vaccine Standard, thus reflecting a greater effectiveness for Standard than for New in this 
example.

Assume that vaccine New is less expensive than vaccine Standard. Thus, policy makers 
may wish to know whether further efforts by the laboratory that developed New, aiming 
at achieving the same incidence of  adverse effects as that associated with Standard, 
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would make it as, or even more effective than Standard. Assuming this new incidence 
of  adverse effects for New, a sensitivity analysis (Table 10-2, bottom panel) indicates a 
slightly lower total incidence of  E for vaccine New in the target population than that seen 
for Standard (11.2% and 13%, respectively). It can, therefore, be concluded that at the 
imputed adverse effect levels, although vaccine New would be only slightly more effective 
than vaccine B, its lower cost would likely make it more cost-effective.

In the vaccine example, effectiveness was affected by only one general factor: adverse 
effects. In most situations, however, there are more than one factor influencing the level 
of  effectiveness. When this happens, a decision tree is a useful tool to estimate the overall 
effectiveness of  an intervention or program. A detailed description of  how to construct 
a decision tree is beyond the scope of  this textbook and can be found elsewhere.69(pp.19–28) 
Here, only a simple description and example will be given.

A decision tree, which is part of  a decision analysis, has 2 types of  nodes: decision 
nodes, which are under the investigator’s or policy maker’s control, and chance (or 
probability) nodes, which are not under the investigator’s or policy maker’s control. In 
the previous example, assignment of  the vaccine to participants is under the epide-
miologist’s or public health worker’s control (control node) whereas the adverse 
reactions are not (chance node). In the example that follows there is one control node 
–the decision to implement or not implement intervention A or B—and two chance 
nodes: tolerance to each intervention and social class. The outcome is mortality. 
Figure 10-13 displays the decision tree as well as its associated probabilities. Note that, 

tablE 10-2 Probability of event that vaccines Standard and New are expected to prevent, according to 
whether or not target population receives the vaccine, assuming a prevalence of eligibility associated with 
the Standard vaccine, New, and Improved new vaccines of 90%, 70%, and 90% respectively (see text).

Probability of  disease 
(E) that vaccine is 

expected to prevent

Joint probability of  the 
event that vaccine is 
expected to prevent

(I) (II) (III) 5 (I) 3 (II)

Eligible to receive  
Standard vaccine

Yes 0.90 0.10 0.90 3 0.10 5 0.09

No 0.10 0.40 0.10 3 0.40 5 0.04

Total 1.00 0.09 1 0.04 5 0.13 or 13.0%

Eligible to receive 
New vaccine

Yes 0.70 0.08 0.70 3 0.08 5 0.056

No 0.30 0.40 0.30 3 0.40 5 0.12

Total 1.00 0.056 1 0.12 5 0.176 or 17.6%

Effectiveness* of  New vs Standard: [(0.13 2 0.176) 4 0.13] 3 100 5 235.4%

Imputed values for vaccine New (sensitivity analysis)

Eligible to receive Improved 
New vaccine

Yes 0.90 0.08 0.90 3 0.08 5 0.072

No 0.10 0.40 0.10 3 0.40 5 0.04

Total 1.00 0.072 1 0.04 5 0.112 or 11.2%

Effectiveness* of  New (Improved) vs Standard: [(0.13 2 0.112) 4 0.13] 3 100 5 113.8%

*Effectiveness calculated using the formula for efficacy (Equation 3.7) applied to the total population that includes both vaccine 
recipients and nonrecipients.
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for those who tolerate the intervention, intervention B has a lower mortality than 
intervention A: for high social class, mortality rates are 0.10 for intervention A and 
0.05 for intervention B; for low social class, these rates are, respectively, 0.20 and 
0.10. A greater proportion of  participants, however, tolerate intervention A (70%) 
than B (30%). As a result, the overall probability of  death—calculated by multiplying 
the proportions in each pathway shown in Exhibit 10-3—is lower for intervention A 
than for intervention B: 28.3% vs. 37.85%, respectively. Thus, the effectiveness of  A 
compared with B can be calculated as,

{[(37.85% 2 28.30%)] 4 37.85%} 3 100 5 25.2%

Here, too, a sensitivity analysis can be done, assuming that tolerance to intervention 
B can be increased to, say, 50% (see Exercise No. 7).

An example of  a decision tree based on published results is given in Figure 10-14. 
In this example, the decision node is to offer drug therapy to hypertensive patients. 
Chance nodes include whether or not the patients accept the drug therapy, and hyper-
tension control. Incidence of  coronary heart disease (CHD) is the outcome of  interest. 
For the patients who do not accept the drug therapy, hypertension control is sometimes 
achieved by other means (e.g., weight loss or lowering salt intake). CHD incidence rates 
are identical for those in whom hypertension is controlled, regardless of  acceptance of  
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Mortality (0.50)

Mortality (0.50)

Mortality (0.05)
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FigurE 10-13 Example of decision tree with two chance nodes. Proportions and probabilities 
shown in parentheses. SC, social class (see text and Exhibit 10-3).
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*This example is based on real data, but from several studies with different population frames. Thus, it should not be 
applied to a given target population.
Source: Based on data from FJ Nieto, et al. Population Awareness and Control of  Hypertension and Hypercholesterolemia. 
Archives of  Internal Medicine, 1995;155:677–684; LE Chambless, et al. Association of  Coronary Heart Disease Incidence 
with Carotid Arterial Wall Thickness and Major Risk Factors. American Journal of  Epidemiology, 1997;146:483–494; 
J Moore, Hypertension Catching the Silent Killer. The Nurse Practitioner, 2005;30:16–35.

Hypertension
control

Hypertension
control

Acceptance
of drug
therapy

Drug therapy

Offered to pt.
Decision node

Yes (0.53)

No (0.47)

Yes (0.10)

No (0.90)

No (0.32)

Yes (0.68)
CHD incidence (0.005)

CHD incidence (0.005)

CHD incidence (0.011)

CHD incidence (0.011)

Overall incidence in target hypertensive population = (0.53 × 0.68 × 0.005) + (0.53 × 0.32 × 0.011) +
(0.47 × 0.10 × 0.005) + (0.47 × 0.90 × 0.011) = 0.00855 = 8.5/1000

Incidence according to acceptance of  drug therapy
Yes: (0.53 × 0.68 × 0.005) + (0.53 × 0.32 × 0.011) = 0.0037 = 3.7/1000
No: (0.47 × 0.10 × 0.005) + (0.47 × 0.90 × 0.011) = 0.0049 = 4.9/1000

FigurE 10-14 Decision tree of hypertension medication therapy with one decision node using 
average annual incidence of coronary heart disease (CHD) as outcome.*

Exhibit 10-3 Effectiveness of Intervention A Compared with Intervention B (Figure 10-13). 
Intervention B is more efficacious (i.e., those who tolerate the drug have a lower mortality than 
under Intervention A), but because tolerance to Intervention A is higher, its overall effectiveness is 
higher. Effectiveness of A (compared with B) 5 {[37.85% 2 28.30%] 4 37.85%} 3 100 5 25.2%.

Intervention A: less efficacious but 
better drug tolerance (70%)

Intervention B: more efficacious  
but less drug tolerance (30%)

Tolerance Joint probality of  death Tolerance Joint probality of  death

Yes 0.70 3 0.10 3 0.10 5 0.007 Yes 0.30 3 0.10 3 0.05 5 0.0015

0.70 3 0.90 3 0.20 5 0.126 0.30 3 0.90 3 0.10 5 0.027

No 0.30 3 0.10 3 0.50 5 0.015 No 0.70 3 0.10 3 0.50 5 0.035

0.30 3 0.90 3 0.50 5 0.135 0.70 3 0.90 3 0.50 5 0.315

0.007 1 0.126 1 0.015 1  
0.135  
5 0.283 (or 28.30%)

0.0015 1 0.027 1 0.035 1 
0.315  
5 0.3785 (or 37.85%)
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drug therapy (5/1000). However, the proportion of  patients achieving hypertension 
control is much higher in those who accept the drug therapy than in those who do 
not (68% vs. 10%). As a result, the overall incidence of  CHD is 3.7/1000 in the drug 
therapy acceptance group, and 4.9/1000 in the  nonacceptance group. Effectiveness 
associated with drug acceptance is, thus, (4.9 2 3.7) 4 4.9 5 24.5%. Note that, as 
the figures shown in Figure 10-14 come from different target populations, they must 
be confirmed. Ideally, the data on the outcome should come from a systematic review 
and meta-analysis. Thus, for the decision maker, the ideal sequence should be {[meta 
analysis] → [decision analysis] → [cost-effectiveness analysis]}. The two initial steps 
are in the realm of  epidemiology, whereas the last step (cost-effectiveness) requires the 
input of  health economists.69

By using different hypothetical levels of  tolerance to interventions, misclassification 
or other parameters of  interest over a reasonable range, an array of  plausible values 
of  the effect estimate can be obtained. As an alternative, automated methods to assess 
the impact of  misclassification and other sources of  systematic errors and confounding 
are available.62,69 These methods are based on multiple iterative reconstructions of  the 
data based on varying selection bias, misclassification, or confounding parameters (or 
combinations of  them), and provide estimates of  a distribution of  possible “corrected” 
effect estimates.

10.4  META-ANALYSIS

As aptly defined by Petitti,69(p.2) meta-analysis is a “quantitative approach for systemati-
cally assessing the results of  previous research in order to arrive at conclusions about the 
body of  research” on a given subject. Meta-analysis uses “study” as the unit of  analysis, 
rather than “individual.” Its steps include a thorough review of  the results of  studies 
dealing with the hypothesis of  interest, as well as the statistical analyses of  these results. 
An in-depth discussion of  the statistical approaches used by meta-analysts is beyond 
the scope of  this textbook and can be found elsewhere.68–72 The main features of  this 
technique, however, are briefly described later.

Meta-analysis may be considered as the epidemiologic study of  epidemiologic studies 
(Dr. Bruce Psaty, University of  Washington, personal communication). Studies included 
in a meta-analysis are subjected to predefined inclusion or exclusion criteria, a process 
that is analogous to that of  eligibility for inclusion of  individuals in a single study.

Results are typically presented as a summary pooled measure of  association that is 
displayed in a graphic form along with the individual estimates of  studies included in the 
analysis. As an example, Lorant et al.73 conducted a meta-analysis of  the relationship 
of  social class to major depression. When searching the literature addressing the 
topic, the authors found 743 studies that matched the selected search keywords (e.g., 
depression, socioeconomic status); however, after the eligibility criteria for inclusion 
were applied, only a fraction (less than 10%) of  these studies were used in the meta-
analysis. The results are presented in Figure 10-15 for 51 studies of  prevalence done 
after 1979. The horizontal and vertical axes in this graph correspond, respectively, to the 
odds ratios (plotted on a logarithmic scale) and the studies included in the meta-analysis. 
The odds ratio point estimates and their 95% confidence intervals (95% CI) are repre-
sented, respectively, by the square black boxes and corresponding horizontal lines. By 
convention, the area of  each black box showing the point estimate is proportional to the 
precision of  the estimate. The solid vertical line is set at the null value (odds ratio = 1.0), 
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denoting the hypothetical lack of  association between social class and depression (null 
hypothesis). When the horizontal lines do not cross this solid vertical line (i.e., when 
the 95% CIs interval do not include the null value), the odds ratios for those particular 
studies are statistically significant at an alpha level of  5%.

A diamond (or, in other meta-analyses, an open box or a circle) represents the summary 
(pooled) measure of  association. Meta-analysis can pool both absolute (e.g., attributable 
risk) and relative (e.g., odds ratio, hazards ratio) measures of  association. When a relative 
measure of  association is meta-analyzed, its pooled value can be estimated by using a 
stratified method akin to that used to estimate adjusted odds ratios or relative risks (see 
Chapter 7, Section 7.3.3). For example, the Mantel-Haenszel method can also be used 
to meta-analyze odds ratio data. The weighing scheme used when applying this method 
of  meta-analysis is the same as that used for adjustment of  odds ratio in individual case-
control studies (i.e., the inverse of  the variance of  each stratum). Thus, considering each 
study as a separate stratum and using the notations found in Table 7-9 (Chapter 7), 
the weight for each stratum is (bi × ci/Ni). The calculation is identical to that shown for 
individual case-control studies (see Section 7.3.3), providing a weighted pooled estimate 
of  the odds ratio (taking into account the statistical power of  each study), as well as 
allowing estimation of  its variance and confidence intervals.

In the example displayed in Figure 10-15, two pooled odds ratios are shown: one 
uses a random-effects model and another uses a fixed-effects model (akin to the Mantel-
Haenszel method just described). There is debate among statisticians as to which of  these 
two meta-analytic strategies is best.69,74,75 The difference between these models relates to 
the extent to which results can be generalized: only the specific study populations used in 
the meta-analysis for the fixed-effects model or a hypothetical “population of  studies” for 
the random-effects model. The latter is more conservative than the former from the statis-
tical precision viewpoint, as it takes into account not only the within-study variance but 
also the variance between studies.69 Like the pooling of  strata in single studies, the main 
assumption when pooling measures of  association is that results from different studies 
(the strata)—particularly their directions—are consistent (homogeneous). Homogeneity 
tests are available to evaluate consistency, and neither method (fixed- or random-effects) 
is advisable when there is substantial heterogeneity between studies.76

In the example shown in Figure 10-15, results are fairly consistent—with all but a 
handful of  the 51 studies showing odds of  major depression to be higher in the low than 
in the high socio economic status individuals (denoted as “favor the rich” in the figure).

In another example of  meta-analysis, Engel et al.77 examined the association of  
Glutathione S-Transferase M1 (GSTM1) null status with bladder cancer (Figure 
10-16). GSTM1 is the product of  the GSTM1 gene and is involved in the metabolism 
of  polycyclic aromatic hydrocarbons found in tobacco smoke. A null status is related 
to a reduced clearance of  smoking products. This meta-analysis included 17 case-
control studies, for a total of  about 2150 cases and 3650 controls, and used a random-
effects model to estimate the pooled odds ratio at 1.44 (95% confidence interval, 1.23, 
1.68). In Figure 10-16 the open circle and its corresponding vertical line represent the 
pooled odds ratio along with its 95% confidence interval. Note that both in the previous 
example (Figure 10-15) and in the example shown in Table 10-16, the 95% confidence 
intervals for the meta-analytic (pooled) odds ratios are very narrow, reflecting the large 
gain in statistical precision resulting from pooling study results.

Notwithstanding the appeal of  a quantitative approach to summarize data from 
several studies, numerous problems must be considered when conducting a meta-
analysis, including the difficulties related to the variable quality of  the studies and the 
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Source: Data from V Lorant, D Deliege, W Eaton, et al., Socioeconomic Inequalities in Depression: A Meta-Analysis. American 
Journal of  Epidemiology, Vol 157, pp. 98–112, © 2003.

FigurE 10-15 Odds ratios for major depression by socioeconomic status group in 51 prevalence studies 
published after 1979. Horizontal lines, 95% confidence intervals. Squares show original estimates; diamonds 
show meta-analyzed results. The expression “favor the rich” denotes a greater odds of depression in low SES 
than in high SES individuals. 

fact that different studies use different participant selection and data collection methods, 
which may result in bias. For these reasons, the use of  meta-analytic techniques has 
been criticized, particularly when applied to observational data. Used judiciously along 
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with qualitative reviews of  the literature, however, results of  meta-analysis may be 
helpful in decision analysis and analysis of  cost-effectiveness of  interventions.69

10.5  PUBLICATION BIAS

Some common problems that may influence the quality of  reporting of  epidemiologic 
studies and that could potentially create reporting biases are discussed in detail in 
Chapter 9. In this section, we focus on a special type of  reporting bias: publication bias.

Assessment of  consistency of  results of  multiple studies and the application of  meta-
analytic techniques rely heavily on published reports of  research results. If  papers that 
favor (or do not favor) a given hypothesis are more likely to be submitted and published, 
this results in an apparent (biased) consistency and a biased estimation of  the pooled 
measure of  association. 

Acceptance of  the validity of  published findings is conditional on two important 
assumptions: (1) that each published study used unbiased methods (see Chapter 4) and 
(2) that published studies constitute an unbiased sample of  a theoretical population of  
unbiased studies. When these assumptions are not met, a literature review based on 
either meta-analytic or conventional narrative approaches will give a distorted view 
of  the exposure–outcome association of  interest. Whether these assumptions are met 
depends on several factors, including the soundness of  the study designs and the quality 
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FigurE 10-16 Odds ratios and 95% confidence intervals for gluthatione S-transferase M1 
(GSTM1) null status and bladder cancer risk. Solid circles are proportional in area to the number 
of cases.  The vertical axis is on a log scale.
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of  peer reviews. Publication bias, as conventionally defined, occurs when assumption 
(2) cannot be met because, besides the quality of  the report, other factors dictate accept-
ability for publication. Direction of  findings is one such factor. For example, a study 
carried out a few decades ago78 demonstrated that 97% of  papers published in four 
psychology journals showed statistically significant results at the alpha level of  5%, thus 
strongly suggesting that results were more likely to be published if  they had reached this 
conventional significance level.

Subsequent research79–83 has confirmed the tendency to publish “positive” results. 
In a study comparing published randomized clinical trials with completed yet unpub-
lished randomized trials, 55% of  the published but only 15% of  the unpublished studies 
favored the new therapy being assessed.81

A possible reason for publication bias is the reluctance of  journal editors and reviewers 
to accept negative (“uninteresting”?) results. For example, in a study by Mahoney,84 a 
group of  75 reviewers were asked to assess different versions (randomly assigned) of  a 
fictitious manuscript. The “Introduction” and “Methods” sections in all versions were 
identical, whereas the “Results” and “Discussion” sections were different, with results 
ranging from “positive” to “ambiguous” to “negative.” Reviewers were asked to evaluate 
the methods, the data presentation, the scientific contribution, and the publication merit. 
Compared with negative or ambiguous results, the manuscripts with “positive” results 
systematically received higher average scores for all categories, including the category 
for evaluation of  methods, even though the “Methods” sections were identical in all sets.

Interestingly, however, editors and reviewers may not be the only or even the most 
important source of  publication bias. For example, in Dickersin et al.’s study,81 publication 
was intended by the authors for only 12% of  unpublished yet completed studies. Reasons 
given by the authors of  why publication was not intended for the remaining 88% included 
“negative results” (28%), “lack of  interest” (12%), and “sample size problems” (11%).

Even source of  support seems to interfere with the likelihood of  publication. 
Davidson,85 for example, found that clinical trials favoring a new over a traditional 
therapy funded by the pharmaceutical industry had a publication odds 5.2 times greater 
than that of  trials supported by other sources, such as the National Institutes of  Health. 
A similar finding was reported subsequently by Lexchin et al.86

Some forms of  publication bias are rather subtle, such as “language bias” (e.g., 
publication in an English language journal versus publication in a journal in another 
language). For example, Egger et al.87 compared randomized clinical trials published by 
German investigators in either German journals or English journals from 1985 through 
1994. When articles with the same first author were compared, no evidence of  differ-
ences in quality between the papers written in German or English was found. In contrast, 
a strong, statistically significant difference with regard to the significance of  findings 
was present: 63% of  the articles published in English reported a statistically significant 
result compared with only 35% of  articles published in German (odds ratio = 3.8; 95% 
confidence limits 1.3, 11.3). These results strongly suggest that using language as one 
of  the criteria to select studies to be included in a systematic literature review (a criterion 
that is frequently adopted because of  practical reasons or reasons related to access) can 
seriously undermine the representativeness of  published reviews, including those using 
meta-analytic methods.

Strategies suggested to prevent publication bias include the development of  study 
registers82,88 and advance publication of  study designs.89 The latter has increasingly 
found its niche in some peer-reviewed journals (see, e.g., Bild et al.90). Prevention of  
publication bias obviously requires efforts on the part of  the scientific community as a 
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whole, including researchers, peer reviewers, and journal editors. The latter should be 
aware that direction of  findings and absence of  statistically significant results should not 
be used as criteria for rejection or acceptance of  a paper.

An approach that has been proposed to evaluate the possible presence of  publication 
bias is the “funnel plot.”88,91 To construct the “funnel plot,” the values of  the measure 
of  association are plotted on one of  the graph’s axis and the study sample sizes or 
measures of  statistical precision (e.g., standard errors) on the other axis. When there is 
no publication bias, the graph should have the shape of  a funnel, reflecting the sampling 
variability of  studies. The larger, more precise studies will tend to appear close to the 
center of  the “funnel,” that is, close to the overall pooled (weighted) estimate; smaller, less 
precise studies will be expected to appear symmetrically distributed on both sides of  the 
average estimate, increasingly distant as their precision decreases (and, thus, the funnel 
shape). As an example, the funnel plot constructed by Engel et al. for the meta-analysis 
of  GSTM1 null status and bladder cancer is shown in Figure 10-17. Notwithstanding the 
relatively small number of   studies, their odds ratio logarithms (plotted on the vertical axis) 
fall both in the upper and the lower half  of  the “funnel” across the precision range of  the 
studies (measured by their standard errors); the plot is, thus, approximately symmetric, 
thus suggesting that publication bias is not a likely explanation for the findings shown in 
Figure 10-16.

In contrast, when there is a tendency toward favoring the publication of  “positive” 
results, an asymmetric funnel plot will result. For example, in a systematic review of  
studies of  the genetic epidemiology of  stroke, Flossmann et al.92 presented the funnel 

Source: Data from M Romkes. In LS Engel, E Taioli, R Pfeiffer, et al., Pooled Analysis and Meta-Analysis of  Glutathione 
S-Transferasa M1 and Bladder Cancer: A HuGE Review. American Journal of  Epidemiology, Vol 156, pp. 95–109, © 2002.

FigurE 10-17 Begg’s funnel plot for assessing publication bias in relation to gluthatione 
S-transferase M1 (GSTM1) null status and bladder cancer risk. The horizontal line corresponds to 
the meta-analysis pooled odds ratio estimate. 
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plot shown in Figure 10-18 where the odds ratios are plotted in a logarithmic scale, 
against a measure of  precision (1/standard error). The distribution of  odds ratios from 
the individual studies shows a clearly asymmetric plot, whereby the lower the precision, 
the more distant is the odds ratio from the null hypothesis. Because, in addition, most 
studies in this example show odds ratios higher than 1.0, the funnel plot strongly 
suggests that “negative” studies are not being published. The meta-analytic pooled odds 
ratio estimate based on this analysis was 1.76, and its 95% CI was 1.7, 1.9, denoting a 
highly significant result that is nonetheless called into question because of  the evidence 
of  publication biased illustrated in Figure 10-18.

Tests of  the null hypothesis that the distribution of  study results in a funnel plot is 
homogeneous are available.93

A special type of  publication bias, which is particularly relevant to clinical trial 
results, is the selective reporting of  outcomes, which occurs when the findings related to 
the primary endpoints are deemed by the investigators to be “uninteresting”; as a result, 
the report may address only results pertaining to secondary endpoints that conform to 
authors’ a priori expectations. As an example, Chan et al.94 recorded the number and 
characteristics of  both reported and unreported trial outcomes from protocols, journal 
articles, and a survey of  trialists. An outcome was considered by these authors as incom-
pletely reported if  published articles had insufficient information for carrying out a meta-
analysis. Overall, about one half  of  efficacy values and two thirds of  harm outcomes 
per trial were incompletely described. The odds ratios of  reporting statistically signif-
icant efficacy and harm endpoints (compared with reporting nonstatistically significant 
results) were, respectively, 2.4 (95% CI, 1.4, 4.0) and 4.7 (1.8, 12.0). More than 60% 
of  the trials had at least one primary endpoint changed, introduced, or omitted. Based 
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FigurE 10-18 Funnel plot of odds ratio (OR) of family history of stroke as a risk factor for 
stroke vs precision (i.e., inverse of the standard error of the OR) in case-control (full circles) and 
cohort studies (empty circles). Note the asymmetry of the plot due to lack of estimates when OR  
 1 (i.e., small negative studies).



420 CHAPTER 10 | Epidemiologic Issues in the Interface with Public Health Policy

on these findings, the authors concluded that reporting of  outcomes in clinical trials 
is incomplete, biased, and inconsistent with protocols, and recommended that trials be 
registered and protocols made available before trial completion.

10.6  SUMMARY

The process of  translating epidemiologic findings into policy involves careful consider-
ation of  issues such as bias and confounding as well as the ability to extrapolate results 
obtained in one or more study populations to other target populations. Although consid-
eration of  issues such as cost-effectiveness, and political and logistical problems in the 
implementation of  programs is a key step in the development of  health policy, they were 
not discussed in this chapter, which focused instead on epidemiologic issues that are 
routinely dealt with by the applied epidemiologist.

Translation to health policy is best made on the basis of  results of  experimental 
studies—in view of  their optimal control of  bias and confounding—but these studies are 
often not feasible for logistical and/or ethical reasons. In addition, the experimental design 
may not lend itself  to operationalizing and evaluating certain interventions related to 
complex component causes—particularly those related to the social milieu. In addition, 
effectiveness data, commonly obtained from experimental studies, are frequently not 
generalizable, in view of  the influence of  between-population differences in sociocultural, 
economic, and other characteristics.

The observation of  ratio-based (e.g., relative risk) weak associations poses another 
challenge to the policy expert, as even small increases in odds ratios or relative risks may 
translate into large absolute excesses of  incident disease if  the exposures are common. 
Consideration of  consistency across studies and the use of  meta-analysis to arrive at 
pooled estimates of  the measure of  association are useful strategies when weak associ-
ations are detected (e.g., those based on incidence ratios below 2.0). Caution must be 
exercised, however, when relying on consistency of  results, as bias and confounding 
may also be consistent across studies and be the real reasons why associations of  similar 
strengths and direction are observed in different populations. In addition, an apparent 
consistency among studies may be the result of  publication bias.

The type of  association—causal versus noncausal—should also be considered. The 
importance of  confounded (as opposed to biased) associations to prevention was empha-
sized in Chapter 5, Section 5.5.8. For primary prevention, a causal connection between 
the risk factor or trait and the outcome of  interest is a sine qua non condition. Given the 
purpose of  making this book as practical as possible, we focused on only one causality 
model (Rothman’s) and one set of  guidelines to infer causality (Hill’s). Although the latter 
remain as the main strategy to infer causality from epidemiologic studies, particularly 
observational ones, the policy expert must be cautious when considering these guide-
lines, as failure to meet them does not necessarily constitute evidence against causality.

Another issue of  great importance to the translation of  epidemiologic findings into 
public health practice and health policy is the choice of  the preventive strategy: high risk 
versus population based. In this chapter, examples were provided that illustrate why the 
population-based approach, when feasible, is the strategy of  choice to reduce disease 
incidence in the population as a whole. Whereas the population attributable risk is the 
ideal measure to assess the potential effectiveness of  a population-based prevention 
strategy, the high-risk strategy is better evaluated through the attributable risk in the 
exposed, as it usually focuses on the excess risk in individuals exposed to proximal causes 
(see Chapter 3, Section 3.2.2).
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As mentioned at the beginning of  this chapter, it focused on a discussion of  tradi-
tional epidemiologic themes that interface with health policy and public health. The 
reader with a specific interest on the health policy side of  the interface is referred to 
other textbooks dealing with the cultural, legal, and cost-effectiveness issues specifically 
relevant to health policy.95,96
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EXERCISES

 1. Women who report nausea sometimes or daily seem to be less likely to have a 
spontaneous abortion than those who do not. On the other hand, caffeine intake 
appears to be related to an increased risk of  spontaneous abortion, which is 
substantially attenuated when adjusting for occurrence of  nausea.* The relation-
ships between caffeine intake, nausea, and spontaneous abortion seem to be 
complex, but for the purposes of  this exercise, assume that many women in whom 
nausea occurs develop an aversion to coffee (and tea) intake and that nausea, not 
caffeine intake abstention, is causally related to a decrease in risk of  spontaneous 
abortion.

  How can the relationship between caffeine intake and spontaneous abortion be 
defined, and what is its practical application?

 2. In the study by Haffner et al.,† which was the basis for Exercise 2 in Chapter 6, 
histories of  diabetes and of  a prior episode of  myocardial infarction (MI) were 
assessed with regard to from CHD risk. Selected results from this study are shown 
in the table.

  

Type 2 
diabetes 
status Prior MI

Incidence 
(%)

Relative 
risk

Attributable risk in 
those reporting prior 

MI (%)

Present Yes 45.0 2.23 24.8

 No 20.2 Reference Reference

Absent Yes 18.8 5.37 15.3

 No 3.5 Reference Reference

Cumulative fatal or nonfatal myocardial infarction incidence (MI) (%) during a 7-year 
follow-up, according to a history of prior MI and presence of type 2 diabetes at baseline.

  If  you had very limited resources, and assuming a homogeneous distribution of  
the population among the four categories based on diabetes and a prior MI, would 
you favor the ‘diabetes present’ or the ‘diabetes absent’ group to focus your efforts 
aimed at reducing CHD risk? Justify your answer.

 3. The following histogram shows the distribution of  a hypothetical population 
according to levels of  a given risk factor (x). This distribution has the typical 
log-normal shape characteristic of  many biological parameters in populations. 
The number of  people in each category of x is shown in the second column of  the 
following table. This table also shows the relative risk of  disease y associated with 
each increasing category of x (in comparison with the lowest category).

*Cnattingius S, Signorello LB, Anneren G, et al. Caffeine intake and the risk of  first trimester spontaneous abortion. N Engl J Med. 
2000;343:1839–1845.
†Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic 
subjects with and without prior myocardial infarction. N Engl J Med. 1998;339: 229–234.
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1 2 3 4 5 6 7 8

Level of  x

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

Risk Factor 
x Level

Population Cases

No. of  
People % Relative risk Risk Number Excess Cases

 1 (lowest)  30,000 4.3 Reference 0.05 . . . . . . . . . Reference

 2 100,000 14.3 1.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 3 150,000 21.4 1.75 . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 4 160,000 22.9 2.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 5 130,000 18.6 2.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 6  80,000 11.4 3.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 7  40,000 5.7 4.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 8  10,000 1.4 5.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Total 700,000 100.0

  a.  Assuming that the risk of y in the lowest category of x is 5%, for each category 
of  x, calculate the total number of  cases as well as the excess number of  cases 
(i.e., the excess above the number that would be expected if  the risk in each 
category were equal to that in the lowest category) (complete the last three 
columns of  the table).

   Calculations: examples for category x 5 2

   Number of  cases: 100,000 3 (0.05 3 1.5) 5 7500

   Excess number of  cases: 100,000 3 (0.05 3 [1.5 2 1.0]) 5 2500

  b.  What proportion of  cases in the population occur in the high risk group (x 5 8)?

  c.  Assume that a high-risk strategy for the prevention of  those at the highest 
level of  risk factor x (category 8, associated with a RR = 5.0) were to be imple-
mented. A population-wide survey is implemented, and all individuals in that 
category of  exposure are identified and successfully “treated” (moved down 
to category 7). How many total number of  cases would be expected to be 
prevented with this strategy?

  d.  Assume that a population-based strategy for prevention is implemented. 
Measures to reduce exposure in the entire population are implemented and 
result in a shift to the left of  the entire distribution: 15% of  individuals in each 
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category are moved to the category immediately below (except for those in the 
bottom category). How many total number of  cases would be expected to be 
prevented with this strategy?

 4. The table shows average annual coronary heart disease incidence rates from the 
multicenter Atherosclerosis Risk in Communities (ARIC) cohort study.‡ 

  

Rate
Rate 
Ratio

Attributable risk in the 
exposed/1000 PYs

Smoking Women Men Women Men Women Men

Current 5.3 11.5 4.1 2.5 4.0 6.8

Former 1.6 5.8 1.2 1.2 0.3 1.1

Never 1.3 4.7 Reference Reference Reference Reference

Age, field center, and race-adjusted average coronary heart disease incidence  
rates/1000 person-years (PYs), ARIC.

  What can be inferred from these results, assuming that they are valid, free of  
confounding, and precise?

 5. Renehan et al. conducted a meta-analysis of  cohort studies to examine the 
relationship of  body mass index (measured as weight in kilograms divided by the 
square of  height in meters) to colon cancer. Results for men are shown in the 
following figure. The abscissa shows the relative risks.§

  a.  Are the results homogeneous across studies (please justify your answer)?

  b.  Are the summary risk ratios similar for North American, European and 
Australian, and Asia-Pacific cohorts?

  c.  To estimate the summary risk ratios shown in the figure, the authors used 
a random effects model. When they used a fixed effects model, results were 
virtually the same. Why?

  d.  What are the main threats to inferring that the association of  body mass index 
with colon cancer is true?

‡Chambless LE, Heiss G, Folson AR, et al. Association of  coronary heart disease incidence with caroid arterial wall thickness 
and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol. 1997; 146: 483–494.
§Renehan AG, Tyson M, Egger M, et al. Body mass index and incidence of  cancer: a systematic review and meta-analysis 
of  prospective observational studies. Lancet 2008;371:569–578.
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  The figure below shows a funnel plot for the papers included in Renehan et al.’s 
meta-analysis on the relation between BMI and colon cancer risk.
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Colon cancer, men
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  e. What is the usefulness of  a funnel plot?

  f. Interpret the funnel plot results shown in the figure.

 6. A trial was conducted in a specific study population to compare the effectiveness 
of  two interventions (A and B). The table shows the percentage distributions of  
compliance (yes vs. no) and socioeconomic status (SES, high or low) in the groups 
assigned to A or B as well as the mortality probabilities associated with the strata 
formed by these variables.

  

Intervention A

Compliance SES Mortality

Yes 5 0.95 High 5 0.20 0.10

Low 5 0.80 0.20

No 5 0.05 High 5 0.10 0.40

Low 5 0.90 0.60

Intervention B

Compliance SES Mortality

Yes 5 0.50 High 5 0.20 0.05

Low 5 0.80 0.10

No 5 0.50 High 5 0.10 0.40

Low 5 0.90 0.60

  a. Based on this table, construct a decision tree.

  b. How many decision and chance (probability) nodes are there in this setting?

  c. Calculate the overall mortality of  interventions A and B.

  e. Calculate the effectiveness of  intervention A vis-à-vis B.

 7. In the decision tree shown in Figure 10-13 and Exhibit 10-3, assume that the 
tolerance to  intervention B can be increased to 50%, and recalculate the effec-
tiveness of  intervention A when compared with intervention B.
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InTRoDUCTIon

In	this	appendix,	methods	for	calculating	confidence	intervals	for	selected	measures	of 	
risk and measures of  association presented in this textbook are described . For some of  
the measures, common methods for hypothesis testing are also presented .

This appendix is not intended to represent a comprehensive review of  all of  the statis-
tical inference methods used in epidemiology . Methods for only some of  the epidemio-
logic parameters are presented, and only one commonly used method for the calculation 
of  standard error is described for each—sometimes among other alternatives . Moreover, 
it is not our intention to discuss the methodological and conceptual limitations of  
these methods, which have been thoroughly discussed elsewhere .1,2 Our intention is 
pragmatic: to provide a brief  description of  the methods of  statistical inference that we 
believe are most commonly used in relation to the epidemiologic parameters presented 
in this textbook . 

It is assumed that the reader of  this appendix is familiar with basic biostatistical 
concepts, including standard normal distribution (z-score), t-test, standard deviation, 
standard	error,	confidence	intervals,	hypothesis	testing,	and	the	p value . (For a review of  
these basic concepts, the reader should refer to biostatistics books such as Armitage and 
Berry3 or Altman4) .
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The	general	purpose	for	the	calculation	of 	confidence	intervals	and	hypothesis	testing	
is to estimate the statistical uncertainty around the measure of  risk or association 
obtained in the study (the so-called point estimate) in relation to the (unknown) true value 
of  the parameter	in	the	reference	population.	Although	shortcuts	are	provided	in	specific	
cases, the general structure of  the presentation for most of  these measures is as follows:

 1 . The method for calculating the variance and/or its square root, the standard 
error, of  the estimate is presented in most instances . However, in cases where 
the calculation of  the standard error is more mathematically cumbersome (e .g ., 
for	regression	coefficients),	it	is	assumed	that	the	standard	error	can	be	obtained	
from a computer-assisted statistical analysis, and thus this step is skipped .

 2 . Based on the point estimate of  the parameter in question and its standard 
error	(SE),	the	formula	for	the	95%	confidence	interval	is	provided.	The	general	
structure of  this formula is as follows:

Point estimate 6 [1 .96 3 SE (estimate)]

  Notice that 1 .96 is the z-score (standard normal score) corresponding to the 95% 
confidence	 level	 (i.e.,	 an	 alpha	 error	 of 	 5%).	 Confidence	 intervals	 for	 different	
levels of  alpha error can be obtained by simply replacing this value with the 
corresponding z-score	 value	 (e.g.,	 1.64	 for	90%	confidence	 intervals,	 2.58	 for	
99%	confidence	intervals,	etc.).

 3 . The test of  the null hypothesis is presented for some of  the indices (depending on 
our assessment of  its relevance in each particular case and the frequency of  its 
use in the literature) . The logic and structure of  these tests of  hypothesis are also 
fairly homogeneous across different measures . The standard test of  hypothesis is 
designed to test the null hypothesis—that is, the absence of  a difference (absolute 
or relative) or a correlation . Thus, for absolute measures of  association (e .g ., a 
difference between two means or two rates), the null hypothesis is formulated as 
follows:

H0 : True parameter 5 0

  For relative measures of  association (e .g ., a relative risk, a rate ratio, an odds 
ratio), the null hypothesis is formulated as

H0 : True parameter 5 1

	 	 Specific	 formulations	 for	 statistical	 testing	 approaches	 are	 presented	 in	 a	 few	
cases . In others, the general approach for a test of  hypothesis is to calculate a 
z-score by dividing the point estimate by its standard error:

Point estimate
SE (estimate)

� z-score

  Or equivalently, the square of  the z-score has a distribution approximate to a 
chi-square with 1 degree of  freedom .

 4 . An example of  each of  the above calculations (usually based on one of  the 
examples in the textbook) is presented in most cases .

Finally, a note on “notation”: throughout this appendix, the symbol “log x” refers to 
the natural logarithm of  x—that is, the logarithm on base e . The corresponding antilog 
is the exponential function, which is denoted by either exp[x] or ex .
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A.1  CUMULATIVE SURVIVAL ESTIMATE

As described in Chapter 2, Section 2 .2 .1, the cumulative survival estimate is the product 
of  the conditional survival probabilities for all preceding intervals (in the case of  the 
classical actuarial life table) or for all preceding events (in the case of  the Kaplan-Meier 
method; see Chapter 2, Table 2-3) .

Variance and Standard Error (Greenwood Formula)
In 1926, Greenwood5 described the following formula, which approximates the variance 
of  a cumulative survival estimate at time i:

Var (Si) � (Si)
2 * a

i

j = 1
a dj

nj (nj - dj)
b

where j indexes all the previous event times (or intervals) up to and including time i, d is 
the number of  deaths at each time (typically 1 in the Kaplan-Meier method, any number 
in the classical life table), and n is the denominator—that is, the number of  individuals 
at risk at each time (or the “corrected” denominator in the life table—see Equation 2 .1 
in Chapter 2, Section 2 .2 .1) .

The standard error (SE) can be obtained as the square root of  the variance:

SE (Si) � Si * Ba
i

j = 1
a dj

nj (nj - dj)
b

95% Confidence Interval
This can be obtained from the point estimate (Si) and the SE (Si) as follows:

Si 6 [1 .96 3 SE(Si)]

Example
To calculate the standard error for the cumulative survival estimate at time 9 months in 
Chapter 2, Table 2-3, we need the estimate of  S9 from the table (0 .675) and the number of  
events and individuals at risk at all previous times up to 9 months (i .e ., 1, 3, and 9 months):

SE (S9) � 0 .675 * Ba 1
10(10 - 1)

+
1

8(8 - 1)
+

1
7(7 - 1)

b = 0 .155

Thus,	the	95%	confidence	interval	can	be	obtained	as	follows:

0 .675 6 (1 .96 3 0 .155) 5 0 .675 6 0 .304

or 0 .371 to 0 .979 .

A.2  InCIDEnCE RATE (PER PERSon-TIME)

A person-time incidence rate is obtained by dividing the number of  events by the sum 
of  person-time units contributed to by all individuals in the study population over the 
time interval of  interest . Because rates are usually calculated for rare events (i .e ., the 
numerator is usually a small number compared to the denominator), the number of  
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events can be assumed to follow a Poisson distribution .3 Procedures to calculate variance 
and standard error of  the rate are based on this assumption .

95% Confidence Interval
A	simple	way	to	calculate	the	confidence	limits	for	a	rate	is	based	on	the	table	provided	
by Haenszel et al .6 (see also Breslow and Day7(p .70)):

The process involves two steps:

	 1.	 Estimate	a	confidence	 interval	 for	the	number	of 	events	(the	numerator	of 	 the	
rate): multiply the number of  observed events times the lower and upper limit 
factors shown in the table . (Note that, for large numbers, an approximate inter-
polation can be made—e .g ., if  the number of  events is 95, the limit factors would 
be approximately 0 .813 and 1 .23 .)

Tabulated values of 95% confidence limit factors for a Poisson-distributed variable.

Observed 
no. of  
events 

on which 
estimate 
is based

Lower 
limit 

factor

Upper 
limit 

factor

Observed  
no. of   

events on  
which  

estimate  
is based

Lower 
limit 

factor

Upper  
limit  

factor

Observed  
no. of   

events on  
which  

estimate  
is based

Lower 
limit 

factor

Upper 
limit 

factor

1  .0253 5 .57 21  .619 1 .53 120  .833 1 .200

2  .121 3 .61 22  .627 1 .51 140  .844 1 .184

3  .206 2 .92 23  .634 1 .50 160  .854 1 .171

4  .272 2 .56 24  .641 1 .49 180  .862 1 .160

5  .324 2 .33 25  .647 1 .48 200  .868 1 .151

6  .367 2 .18 26  .653 1 .47 250  .882 1 .134

7  .401 2 .06 27  .659 1 .46 300  .892 1 .121

8  .431 1 .97 28  .665 1 .45 350  .899 1 .112

9  .458 1 .90 29  .670 1 .44 400  .906 1 .104

10  .480 1 .84 30  .675 1 .43 450  .911 1 .098

11  .499 1 .79 35  .697 1 .39 500  .915 1 .093

12  .517 1 .75 40  .714 1 .36 600  .922 1 .084

13  .532 1 .71 45  .729 1 .34 700  .928 1 .078

14  .546 1 .68 50  .742 1 .32 800  .932 1 .072

15  .560 1 .65 60  .770 1 .30 900  .936 1 .068

16  .572 1 .62 70  .785 1 .27 1000  .939 1 .064

17  .583 1 .60 80  .798 1 .25

18  .593 1 .58 90  .809 1 .24

19  .602 1 .56 100  .818 1 .22

20  .611 1 .54

Source: Data are from W Haenszel, DB Loveland, and MG Sirken . Lung Cancer Mortality as Related to Residence and Smoking 
Histories I . White males . Journal of  the National Cancer Institute. 1962;28:947–1001 .
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 2 . Use these lower and upper limits of  the number of  events to calculate the 
confidence	 limits	 of 	 the	 rate,	 using	 the	 number	 of 	 person-time	 units	 as	 the	
denominator .

Example
In the hypothetical example cited in Chapter 2, at the beginning of  Section 2 .2 .2,  
12 events are observed for a total follow-up time of  500 days . The incidence rate in this 
example is 12/500 5	0.024	per	person-day,	or	2.4	per	100	person-days.	The	95%	confi-
dence interval for that count, assuming a Poisson distribution, is

Lower Limit 5 12 3 0 .517 5 6 .2

Upper Limit 5 12 3 1 .75 5 21 .0

Thus,	the	95%	confidence	interval	for	the	rate	is	then	calculated	as	follows:

Lower Limit 5 6 .2/500 5 0 .0124 per person-day

Upper Limit 5 21/500 5 0 .042 per person-day

That	is,	the	95%	confidence	interval	for	the	observed	rate	(2.4	per	100	person-days)	is	
1 .24 to 4 .2 per 100 person-days .

A.3  RELATIVE RISK AnD RATE RATIo

Relative Risk (Ratio of Probabilities)
The relative risk is the ratio of  two incidence cumulative probabilities: the ratio of  the 
proportion of  exposed individuals with the event of  interest out of  the total exposed 
divided by the proportion of  unexposed individuals with the event out of  the total 
number of  unexposed subjects (see Chapter 3, Table 3-2, Equation 3 .1) . Consider the 
following notation:

Diseased Nondiseased Total

Exposed a b a 1 b

Unexposed c d c 1 d

Total a 1 c b 1 d T

The relative risk (RR) (from Equation 3 .1) is

RR =
q+

q-

=

a
a + b

c
c + d

Standard Error
Because the relative risk is a multiplicative measure and thus asymmetrically distributed, 
its standard error (SE) needs to be calculated in a logarithmic scale . Thus, the standard 
error of  the logarithm of  the relative risk is8

SE (log RR) = A b
a(a + b)

+
d

c(c + d  )



436 APPEnDIX A | Standard Errors, Confidence Intervals, and Hypothesis Testing

95% Confidence Interval
The	95%	confidence	interval	should	also	be	calculated	in	the	logarithmic	scale:

 95% CI (log RR) = log RR { 1 .96 * SE (log RR)

 = log RR { a1 .96 * A b
a(a + b)

+
d

c(c + d)
b

The	 confidence	 interval	 for	 the	 relative	 risk	 can	 be	 obtained	 taking	 the	 antilog	
(exponentiation) of  these numbers:

95% CI (RR) = exp c a log RR { 1 .96 * A b
a(a + b)

+
d

c(c + d)
b d

Note: A shortcut for this calculation is as follows:

Lower Limit 95% CI(RR) 5 RR 3 e–[1 .96 3 SE(log RR)]

Upper Limit 95% CI(RR) 5 RR 3 e[1 .96 3 SE(log RR)]

Hypothesis Testing
The null hypothesis is

H0 : RR 5 1

Use usual chi-square or Fisher’s exact test for two-by-two contingency tables .

Example
From the data in Chapter 3, Table 3-3, the relative risk of  myocardial infarction is 
estimated as

RR =
0 .018
0 .003

= 6 .0

The standard error of  the log of  this estimate is

SE(log RR) = A 9820
180(10,000)

+
9970

30(10,000)
 =  0 .197

Thus,	the	95%	confidence	interval	can	be	obtained	as	follows:

95% CI(RR) 5 exp [log (6 .0) 6 (1 .96 3 0 .197)] 5 exp [1 .792 6 0 .386]

Lower Limit 5 exp [1 .406] 5 4 .08

Upper Limit 5 exp [2 .178] 5 8 .83

Note: The alternative shortcut is

Lower Limit 95% CI(RR) 5 6 .0 3 e–[1 .96 3 0 .197] 5 4 .08

Upper Limit 95% CI(RR) 5 6 .0 3 e[1 .96 3 0 .197] 5 8 .83
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Rate Ratio (Ratio of Incidence Densities)
Approximate	procedures	to	calculate	the	confidence	interval	of 	a	rate	ratio	have	been	
proposed by Ederer and Mantel .9	Definitions	for	the	notations	that	will	be	used	are

O1 5 observed events in group 1

O2 5 observed events in group 2

L1 5 person-time observed in group 1

L2 5 person-time observed in group 2

R1 5 O1/L1 5 event rate in group 1

R2 5 O2/L2 5 event rate in group 2

RR 5 R1/R2

95% Confidence Interval
Perform the following two steps:

 1 . Set limits on the ratio of  observed events in one group (e .g ., group 1) to the total 
number of  observed events:

^
P =

O1

O1 + O2

  Using the general formula for the standard error of  a binomial proportion, the 
lower (PL) and upper (PU)	limits	of 	the	95%	confidence	interval	for	this	ratio	are

PL = P^ - c1 .96 * A p̂(1 - p̂)
O1 + O2

d ;  PU =
^P + c1 .96 * A p̂(1 - p̂)

O1 + O2
d

 2 . Convert to limits on rate ratio:

RRL = c PL

1 - PL
d *

L2

L1
 ;  RRU = c PU

1 - PU
d *

L2

L1

Hypothesis Testing
For testing H0 : RR 5 1, an approximate chi-square test with 1 degree of  freedom can be 
used:

x1
2 =

(O1 - E1)2

E1
+

(O2 - E2)2

E2

where 

E1 = (O1 + O2) *
L1

L1 + L2

E2 = (O1 + O2) *
L2

L1 + L2
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Example
O1 5 60, L1 5 35,000, R1 5 0 .00171

 O2 5 45, L2 5 30,000, R2 5 0 .0015

 RR 5 0 .00171/0 .0015 5 1 .14

 
^
P =

60
105

The	95%	confidence	limits	are

 PL =
60

105
- a1 .96 * A 60

105
*

45
105

*
1

105
b = 0 .4768

 PU =
60

105
+ a1 .96 * A 60

105
*

45
105

*
1

105
b = 0 .6661

 RRL =
0 .4768
0 .5232

*
30,000
35,000

= 0 .78

 RRU =
0 .6661
0 .3339

*
30,000
35,000

= 1 .71

Hypothesis testing is performed as follows:

 E1 = (60 + 45) *
35,000
65,000

= 56 .54

 E2 = (60 + 45) *
30,000
65,000

= 48 .46

 1
2 =

(60 - 56 .54)2

56 .54
+

(45 - 48 .46)2

48 .46
= 0 .46; p  >  0 .5

A.4  oDDS RATIo (UnMATCHED AnD MATCHED)

Unmatched Case-Control Study
Based on the notation from Chapter 3, Table 3-6 (or from the table in Section A .3, 
assuming a case-control sampling scheme), in which the controls (cells b and d) are a 
sample of  noncases, the odds ratio can be calculated as the cross-product ratio:

OR =
a * d
b * c

Standard Error
As with the relative risk (see Section A .3), because of  its multiplicative nature, the 
standard error for the odds ratio is calculated in a logarithmic scale, as described by 
Woolf:10

SE (log OR) = A1
a

+
1
b

+
1
c

+
1
d
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95% Confidence Interval
The	95%	confidence	interval	is	also	calculated	in	the	logarithmic	scale:

 95% CI (log OR) = log OR { [1 .96 * SE (log OR)]

 = log OR { a1 .96 * A1
a

+
1
b

+
1
c

+
1
d
b

The	 limits	of 	 the	confidence	 interval	 for	 the	odds	 ratio	can	be	obtained	 taking	 the	
antilog of  (exponentiating) these numbers:

95% CI (OR) = exp c log OR { a1 .96 * A1
a

+
1
b

+
1
c

+
1
d
b d

Note: a shortcut for these calculations is as follows:

Lower	Limit	95%	Confidence	interval	5 OR 3 e–[1 .96 3 SE(log OR)]

Upper	Limit	95%	Confidence	interval	5 OR 3 e[1 .96 3 SE(log OR)]

Hypothesis Testing
For testing H0 : OR 5 1, the usual chi-square or Fisher’s exact test for two-by-two contin-
gency tables can be used .

Example
From the data in Chapter 3, Table 3-6:

OR =
180 * 997
982 * 30

= 6 .09

The standard error of  the logarithm of  this estimate is

SE (log OR) = A 1
180

+
1

982
+

1
30

+
1

997
= 0 .202

The	95%	confidence	interval	can	be	obtained	as	follows:

95% CI(OR) 5 exp [log 6 .09 6 (1 .96 3 0 .202)] 5 exp [1 .807 6 0 .396]

Lower Limit 5 exp [1 .411] 5 4 .10

Upper Limit 5 exp [2 .203] 5 9 .05

Note: The alternative shortcut is

Lower Limit 95% CI(RR) 5 6 .09 3 e–[1 .96 3 0 .202] 5 4 .10

Upper Limit 95% CI(RR) 5 6 .09 3 e[1 .96 3 0 .202] 5 9 .05

Matched Case-Control Study
In a case-control study in which cases and controls are individually matched (paired), 
the odds ratio is estimated as the number of  pairs in which the case is exposed and the 
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control is not exposed, divided by the number of  pairs in which the case is unexposed 
and the control is exposed . Thus, based on the notation in Chapter 7, Table 7-12:

OR =
b
c

Standard Error
The standard error for the logarithm of  the paired odds ratio is

SE (log OR) = A1
b

+
1
c

95% Confidence Interval
The	95%	confidence	interval	is	also	calculated	in	the	logarithmic	scale:	

 95%  CI(log OR) = log OR { [1 .96 * SE (log OR)]

 = log OR { a1 .96 * A1
b

+
1
c
b

The	confidence	limits	for	the	OR	can	be	obtained,	taking	the	antilog	of 	(exponenti-
ating) these numbers:

95%  CI(OR) = exp c log OR { a1 .96 * A1
b

+
1
c
b d

The same shortcut as for the unmatched OR can be used .

Hypothesis Testing
For testing H0: OR 5 1, use McNemar’s chi-square test (corrected for continuity), with 
1 degree of  freedom:

x1
2 =

(|b - c| - 1)2

b + c

Example
From the data in Chapter 7, Table 7-12:

OR =
65
42

= 1 .55

The standard error of  the logarithm of  estimate is

SE (log OR) = A 1
65

+
1

42
= 0 .198

The	95%	confidence	interval	is	obtained	as	follows:

95% CI(OR) 5 exp [log 1 .55 6 (1 .96 3 0 .198)] 5 exp [0 .438 6 0 .388]

Lower Limit 5 exp [0 .050] 5 1 .05

Upper Limit 5 exp [0 .826] 5 2 .28
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Note: The alternative shortcut is

Lower Limit 95% CI(OR) 5 1 .55 3 e–[1 .96 3 0 .198] 5 1 .05

Upper Limit 95% CI(OR) 5 1 .55 3 e[1 .96 3 0 .198] 5 2 .28

Hypothesis testing is performed as follows:

1
2 =

(|65 - 42| - 1)2

65 + 42
= 4 .52, p < 0 .05

A.5  ATTRIBUTABLE RISK

Attributable Risk in the Exposed
For the simple excess attributable fraction—that is, the difference in incidence 
between exposed and unexposed individuals (Chapter 3, Equation 3 .4)—the variance 
can be estimated as the sum of  the variances of  each of  the incidence estimates . For 
example, if  the incidence estimates are based on cumulative survival, the variance 
of  the attributable risk will be the sum of  the individual variances obtained using 
Greenwood’s formula (see Section A .1) . The standard error is then the square root 
of 	the	variance,	from	which	95%	confidence	limits	can	be	estimated	and	hypothesis	
testing can be carried out using the general approach outlined in the introduction to 
this appendix .

Percent Attributable Risk in the Exposed (% ARexp )
Because the %ARexp (Chapter 3, Equation 3 .5) reduces to the following equation 
(Equation 3 .6):

%ARexp =
q+ - q-

q+

* 100 =
RR - 1

RR
* 100

this measure is a function of  only one parameter (the relative risk, RR) . Thus, an estimate 
of 	the	confidence	interval	for	%ARexp	can	be	based	on	the	confidence	interval	of 	the	RR	
(see Section A .3) .

Percent Population Attributable Risk (%Pop AR)
Levin’s formula for the calculation of  the %Pop AR, based on data from a cohort study 
(Chapter 3, Equation 3 .10), is

%Pop AR =
pe (RR - 1)

pe (RR - 1) + 1
* 100

where RR is the estimated relative risk and pe is the proportion of  individuals exposed in 
the population [i .e ., based on the notation in the table in Section A .3, pe 5 (a 1 b)/T] . In a 
case-control study, assuming that the disease is rare and that the controls are reasonably 
representative of  the total reference population, the relative risk in Levin’s formula can 
be replaced by the odds ratio (see Chapter 3, Section 3 .2 .2), and pe can be estimated from 
the prevalence of  exposure in controls .
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Standard Error
The following formulas, proposed by Walter,11 are based on the notation in the table in 
Section A .3 . For %Pop AR calculated from cohort data:

SE (%Pop AR) = BcT [ad (T - c) + bc2]

(a + c)3 (c + d)3 * 100

For %Pop AR calculated from case-control data:

SE (%Pop AR) = Ba c(b + d)
d(a + c)

b
2

   a a
c(a + c)

+
b

d(b + d)
b * 100

95% Confidence Interval
The	95%	confidence	interval	can	be	calculated	using	the	point	estimate	and	the	above	
standard errors:

95% CI(%Pop AR) 5 %Pop AR 6 1 .96 3 SE(%Pop AR)

Hypothesis Testing
For testing H0: %Pop AR 5 0, the z-score is obtained:

%Pop AR
SE(%Pop AR)

� z-score

Example
According to the hypothetical cohort study data in Chapter 3, Table 3-3, the relative risk 
of  myocardial infarction is 6 .0, comparing severe hypertensives to nonhypertensives; 
the prevalence of  exposure (severe systolic hypertension) is 50% . Thus, the population 
attributable risk is

%Pop AR =
0 .5(6 .0 - 1)

0 .5(6 .0 - 1) + 1
* 100 = 71 .4%

The standard error of  this estimate is

 SE (%Pop AR) = B30 * 20,000 * [180 * 9970 * 19,970 + 9820 * 302]

2103 * 10,0003 * 100

 = 4 .82%

The	95%	confidence	interval	is	obtained	as	follows:

95% CI(%Pop AR) 5 71 .4 6 (1 .96 3 4 .82) 5 71 .4 6 9 .4

Lower Limit 5 62 .0%

Upper Limit 5 80 .8%

Hypothesis testing is performed as follows:

71 .4
4 .82

= 14 .8,  p < 0 .001



A
Standard Errors, 

Confidence Intervals, 
and Hypothesis Testing

 A.6  Difference Between Two Adjusted Rates or Probabilities (Direct Method) 443

A.6  DIFFEREnCE BETWEEn TWo ADJUSTED 
RATES oR PRoBABILITIES (DIRECT METHoD)

Define	 d = IA
* - IB

*—that is, the difference between two adjusted probabilities (see 
Chapter 7, Section 7 .3 .1, Table 7-3) .

Standard Error
An approximate standard error for d [d being an estimated adjusted difference (e .g ., 
excess incidence) based on i 5 1  .  .  . k strata] is obtained using the formula:12

SE (d) =
Ba

k

i = 1
 wi

2 pi (1 - pi)a 1
nAi

+
1

nBi
b

a
k

i = 1
 wi

where pi are	the	overall	stratum-specific	rates	(both	study	groups	combined):

pi =
xAi + xBi

nAi + nBi

and wi are the standard population weights used to adjust the study group rates . If  the 
minimum variance method is used (i .e ., if  these weights are calculated as follows; see 
Chapter 7, Section 7 .3 .1),

wi =
nAi * nBi

nAi + nBi

the above formula is substantially simpler:

SE (dmin variance) =
Ba

k

i = 1
 wi pi (1 - pi)

a
k

i = 1
 wi

95% Confidence Interval
The	95%	confidence	interval	can	be	obtained	using	the	general	approach	outlined	in	the	
introduction to this appendix:

d 6 [1 .96 3 SE(d )]

Hypothesis Testing
Hypothesis testing also uses the general approach (see above):

d
SE(d )

� z-score
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Example
The data for this example come from the study by Pandey et al .13 on the comparison of  
mortality according to dietary vitamin intake in the Western Electric Company Study 
cohort . These data were used as an example for the techniques to evaluate confounding 
in Chapter 5 (Tables 5-2 through 5-6) . For the purpose of  the current example, the 
category “moderate” is ignored, and the purpose is to calculate the smoke-adjusted 
difference in mortality rates between the high and low vitamin intake categories, as 
well	 as	 the	 corresponding	 confidence	 interval	 for	 such	 adjusted	 difference.	 Based	 on	
the numbers presented in the tables mentioned above, the following working table for 
the calculation of  the adjusted difference (using direct adjustment with the minimum 
variance method) and its standard error was constructed:

Thus, the adjusted rates are:

•	 For the low vitamin intake group: 99 .0118/5499 .117 5 0 .0180
•	 For the high vitamin intake group: 80 .4482/5499 .117 5 0 .0146

The adjusted difference between the high and the low vitamin intake groups is 
therefore: d 5 0 .0146 – 0 .018 5 20 .0034, or –3 .4 per 1000 .

The standard error of  this estimate can be calculated as:

SE (dmin variance) =
!87 .9488
5499 .117

= 0 .0017

The	95%	confidence	interval	is	as	follows:

–0 .0034 6 1 .96 3 0 .0017

Lower Limit 5 –0 .0034 – 0 .0033 5 – 0 .0067

Upper Limit 5 –0 .0034 1 0 .0033 5 – 0 .0001

A.7  STAnDARDIZED MoRTALITY RATIo

The standardized mortality ratio (SMR) and related measures such as the standardized 
incidence	ratio	(SIR)	are	defined	as	the	number	of 	observed	events	(e.g.,	deaths,	incident	
cases) in a given population (O) divided by the expected number of  events (E) if  the 
study population had the same rates as those in a reference population (see Chapter 7, 
Section 7 .3 .2):

Low vitamin 
intake*

High vitamin 
intake* Total

Minimum variance 
standard

Smoking N Rate N Rate N
Rate 
( pi) N (wi)

†

Expected 
no. of  
deaths 
(low)†

Expected 
no. of  
deaths 
(high)†

wi pi 
(12 pi )

†

No 4260  .0134 5143  .0103     9403  .0117 2330 .020 31 .1763 24 .0115 26 .9386

Yes 6447  .0214 6233  .0178 12,680  .0196 3169 .097 67 .8355 56 .4367 61 .0102

Sum 5499 .117 99 .0118 80 .4482 87 .9488

*See Table 5-5, Chapter 5 .
†The expected numbers shown in the table are exact and may differ slightly from those obtained using the rates shown for 
low and high because the latter have been rounded .
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SMR =
O
E

95% Confidence Interval
Assuming that the number of  expected events is not subject to random variability, an 
easy	way	 to	obtain	 the	95%	confidence	 interval	 for	an	SMR	 is	 to	 calculate	 the	 lower	
and upper limits for the observed number of  events, O (see Section A .2), and then to 
substitute in the SMR formula . (For alternative methods, see Breslow and Day .7)

Example
Based on the hypothetical data in Chapter 7, Table 7-8, 70 deaths were observed in study 
group B . The number of  expected events obtained by applying the rates of  an external 
reference population is 110 . Thus, the estimated SMR for study group B is 70/110 5 
0 .64 . According to the table in Section A .2, the lower and upper limit factors for a rate 
based on 70 observed events (O)	are,	respectively,	0.785	and	1.27.	Thus,	the	95%	confi-
dence interval limits for O are OL 5 70 3 0 .785 5 54 .95, and OU 5 70 3 1 .27 5 88 .9 . 
The	resulting	limits	for	the	95%	confidence	interval	for	the	SMR	are	thus

 SMRL =
54 .95
110

= 0 .50

 SMRU =
88 .9
110

= 0 .81

A.8  MAnTEL-HAEnSZEL oDDS RATIo (AnD RATE RATIo)

Standard Error
For	two-by-two	contingency	tables	stratified	in	k strata (i 5 1,  .  .  . k), an approximate 
formula for the standard error (SE) of  the Mantel-Haenszel estimate of  the adjusted log 
odds ratio (OR), based on the notation in Chapter 7, Table 7-9, has been given by Robins 
et al .:14

SE (log ORMH) = a a
k

i = 1
 (PiRi)

2a a
k

i = 1
 Rib

2 +

a
k

i = 1
 (Pi wi + Qi Ri)

2a a
k

i = 1
 Rib a a

k

i = 1
 wib

+

a
k

i = 1
 (Qi wi)

2a a
k

i = 1
 wib

2 

where

 Pi =
ai + di

Ni

 Qi =
bi + ci

Ni

 Ri =
ai * di

Ni

 wi =
bi * ci

Ni
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(Note: Greenland and Robins15 have derived an analogous equation for the calcu-
lation	of 	the	SE	of 	the	Mantel-Haenszel	estimate	of 	the	adjusted	rate	ratio	for	stratified	
cohort data—see Chapter 7, Section 7 .3 .3 .)

95% Confidence Interval
The same approach described for the unadjusted OR in Section A .4 should be used: that 
is,	the	calculation	of 	the	confidence	limits	in	a	log	scale	and	the	exponentiation	of 	the	
results	to	obtain	the	confidence	interval	for	the	ORMH .

Hypothesis Testing
Again, following the notation in Chapter 7, Table 7-9, an approximate chi-square test 
with 1 degree of  freedom (regardless of  the number of  strata involved) can be calculated 
as follows:16

1
2 =

a 2 ak

i = 1
ai - a

k

i = 1
Ei 2 - 0 .5b

2

a
k

i = 1
 an1i n2i m1i m2i

Ni
2 (Ni - 1)

b

where Ei is the expected value in the “a” cell in each stratum, calculated from the values 
in the margins as in any chi-square test (e .g ., ni1 3 mi1/Ni) .

Example
From	the	stratified	results	in	Chapter	7,	Table	7-1,	the	estimate	of 	the	ORMH was 1 .01 . 
The following working table was set to apply the SE formula:

Sex Case Cont N OR P Q R w PR Pw1QR Qw 

Stratum 1 

M 53 15 81 1 .06 0 .691 0 .309 1 .963 1 .852 1 .357 1 .886 0 .572 

F 10 3 

Stratum 2 

M 35 53 219 1 .00 0 .521 0 .479 12 .626 12 .584 6 .572 12 .604 6 .034 

F 52 79 

Sum 5 14 .589 14 .436 7 .929 14 .490 6 .606 

Thus:

 SE (log ORMH) = A 7 .929
2 * 14 .5892 +

14 .490
2 * 14 .589 * 14 .436

+
6 .605

2 * 14 .4362

 = 0 .262

The	95%	confidence	interval	can	be	obtained	as	follows:

95% CI(OR) 5 exp [log 1 .01 6 (1 .96 3 0 .262)]

Lower Limit 5 exp [–0 .504] 5 0 .60

Upper Limit 5 exp [0 .525] 5 1 .69
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(Note:	The	same	shortcut	for	the	direct	calculation	of 	the	confidence	limits	of 	the	OR	as	
that shown for the crude OR—Section A .4—can be used .)

Hypothesis testing is performed as follows:

1
2 =

a 2 (53 + 35) - a63 * 68
81

+
87 * 88

219
b 2 - 0 .5b

2

63 * 18 * 68 * 13
812 (81 - 1)

+
87 * 132 * 88 * 131

2192 (219 - 1)

= 0 .008

Thus, in this example, the ORMH	is	not	statistically	significant.

A.9  REGRESSIon CoEFFICIEnT

In Chapter 7, Section 7 .4, several regression models for multivariate analysis of  epide-
miologic data (linear, logistic, Cox, Poisson) are described . These regression analyses are 
typically conducted with the help of  computers and statistical packages, which provide 
the	 estimates	 of 	 the	 regression	 coefficients	 (b) and of  their standard errors (SE(b)) . 
On the basis of  these estimates, and following the general approach described in the 
introduction	to	this	appendix,	it	is	possible	to	obtain	confidence	intervals	and	carry	out	
hypothesis testing .

95% Confidence Interval
The	95%	confidence	interval	for	a	regression	coefficient	estimate	can	be	obtained	with	
the  following formula:

b 6 [1 .96 3 SE(b)]

The standard errors are scaled to the same units as to those used to calculate the 
regression	coefficient.	Thus,	in	order	to	calculate	the	confidence	interval	for	a	different	
unit	size,	both	terms	need	to	be	recalibrated.	E.g.,	to	calculate	the	95%	confidence	limits	
corresponding to a 10-unit increment in the independent variable:

(b 3 10) 6 [1 .96 3 SE(b) 3 10]

Likewise,	 to	 calculate	 the	 95%	 confidence	 limits	 of 	 an	 increase	 in	 one	 tenth	 of 	 the	
b-value:

(b 3 0 .1) 6 [1 .96 3 SE(b) 3 0 .1]

(See examples below .)

Hypothesis Testing
The null hypothesis is formulated as follows:

H0 : b 5 0

where b denotes the true value of  the parameter in the reference population .
The test statistic in this context is known as the Wald statistic:

b
SE(b)

� z-score
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Examples
Linear Regression
From	the	value	of 	the	regression	coefficient	and	standard	error	for	systolic	blood	pressure	
(10	mm	Hg	 increase)	 in	Chapter	7,	Table	7-17,	 the	95%	confidence	 intervals	 can	be	
calculated as

0 .040 6 (1 .96 3 0 .011)

That	is,	the	estimated	95%	confidence	interval	for	the	increase	in	leucocyte	count	per	
10 mm Hg increase in systolic blood pressure is 0 .018 to 0 .062 thousand per mm3 . As 
described	above,	the	95%	confidence	interval	for	an	increase	in	5	mm	Hg	(instead	of 	10)	
would be estimated as:

(0 .040 3 0 .5) 6 (1 .96 3 0 .011 3 0 .5)

Or 0 .020 6 0 .01078 5 0 .009 to 0 .031 .

The Wald statistic, which approximates the z-score, is calculated as

z �
0 .040
0 .011

= 3 .64

This value is associated with p < 0 .001, which allows rejecting the null hypothesis 
with a probability of  type-I error lower than 1/1000 .

Logistic Regression
As with the above linear regression example, in order to calculate the OR corresponding 
to a different unit of  the independent variable, the rescaling of  units for both the logistic 
regression	coefficient	and its standard error need to be done before the exponentiation 
step . For example, according to the results of  the logistic regression analysis shown 
in	Chapter	7,	Table	7-18	and	assuming	a	standard	error	for	the	coefficient	of 	0.0045	
(not	shown	in	Table	7-18),	the	95%	confidence	interval	for	the	OR	corresponding	to	an	
increase in one mm Hg of  systolic blood pressure (OR 5 e0 .016751 .017) will be: 

Lower Limit 5 exp [0 .0167 – (1 .96 3 0 .0045)] 5 1 .008

Upper Limit 5 exp [0 .0167 1 (1 .96 3 0 .0045)] 5 1 .026

And	the	95%	confidence	limits	for	the	OR	associated	with	an	increase	in	10	mm	Hg:

Lower Limit 5 exp [0 .0167 3 10 – (1 .96 3 0 .0045 3 10)] 5 1 .082

Upper Limit 5 exp [0 .0167 3 10 1 (1 .96 3 0 .0045 3 10)] 5 1 .291

As an additional example for the case of  a categorical variable, in the example in 
Table	7-19,	the	estimated	logistic	regression	coefficient	associated	with	hypertension	is	
0 .5103, which translates into an estimated odds ratio of  coronary disease of  e0 .5103 5  
1 .67, comparing hypertensives with nonhypertensives (adjusted for all the other 
variables displayed in Table 7-19) . The standard error corresponding to the estimated 
regression	coefficient	is	0.1844	(not	shown	in	Table	7-19).	Thus,	the	95%	confidence	
interval	for	the	regression	coefficient	is	calculated	as	follows:

0 .5103 6 (1 .96 3 0 .1844)
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or	0.1489	(lower	limit)	and	0.8717	(upper	limit).	The	corresponding	confidence	interval	
(CI)	of 	the	odds	ratio	(OR)	estimate	can	be	obtained	by	exponentiating	these	confidence	
limits . This can also be done in just one step, as follows:

Lower Limit 5 exp [0 .5103 – (1 .96 3 0 .1844)] 5 1 .16

Upper Limit 5 exp [0 .5103 1 (1 .96 3 0 .1844)] 5 2 .39

The	corresponding	Wald	statistic	for	the	regression	coefficient	estimate	is

z �
0 .5103
0 .1844

= 2 .767

The associated p value for this z-score is 0 .006 . Note that this statistic tests the null 
hypothesis (H0: b 5 0, or the equivalent H0: OR 5 1) .
The	same	approach	can	be	used	to	obtain	confidence	limits	and	conduct	hypothesis	

testing	 for	 regression	 coefficients	 and	 derived	measures	 of 	 association	 from	 Cox	 and	
Poisson regression models .

Wald Statistic for Interaction
If  the model contains an interaction term (e .g ., the product of  two x variables; see 
Chapter	7,	Section	7.4.2,	Equation	7.4),	the	statistical	significance	of 	the	corresponding	
regression	coefficient	estimate	(Wald	statistic)	is	a	formal	test	for	the	interaction	between	
the two variables . In the example in Equation 7 .4, which is a variation of  model 2 in 
Table 7-16, allowing for an interaction between age and systolic blood pressure, the 
estimated b3 is 0 .0000503, with a standard error of  0 .0000570, which corresponds to 
a	Wald	statistic	of 	0.882	(not	statistically	significant).	Thus,	these	data	do	not	support	
the hypothesis that there is an interaction between age and systolic blood pressure in 
relation to carotid intimal-medial thickness .

A.10  SEnSITIVITY, SPECIFICITY, AnD PERCEnT AGREEMEnT

Statistical inference procedures for these three measures are the same as those for any 
other simple proportion .

Standard Error, 95% Confidence Interval
The standard formulation to calculate the standard error of  a proportion (p) calculated 
in a sample of  N individuals can be used:

SE (p) = Ap(1 - p)
N

Once	the	standard	error	is	calculated,	the	general	approach	for	obtaining	confidence	
limits outlined in the introduction to this appendix can be used .

Examples
The following examples are all based on the data from a validation study of  self-reported 
“difficulty	in	standing	up	from	a	chair”17 (Chapter 8, Table 8-13) .



450 APPEnDIX A | Standard Errors, Confidence Intervals, and Hypothesis Testing

Sensitivity
The estimated sensitivity is 71/(71 1 42) 5 0 .628 . To calculate the standard error, use 
as N the total number of  true positives (N 5 113, the denominator for sensitivity):

SE (sensitivity) = A0 .628(1 - 0 .628)
113

= 0 .0455

Thus,	the	95%	confidence	interval	is

Lower Limit 5 0 .628 – (1 .96 3 0 .0455) 5 0 .539

Upper Limit 5 0 .628 1 (1 .96 3 0 .0455) 5 0 .717

Specificity
The	estimated	specificity	is	455/(455	1 41) 5 0 .917 . To calculate the standard error, 
use as N the total number of  true negatives (N 5	496,	the	denominator	for	specificity):

SE (specificity) = A0 .917(1 - 0 .917)
496

= 0 .0124

Thus,	the	95%	confidence	interval	is

Lower Limit 5 0 .917 – (1 .96 3 0 .0124) 5 0 .893

Upper Limit 5 0 .917 1 (1 .96 3 0 .0124) 5 0 .941

Percent Agreement
The estimated percent agreement is (71 1 455)/609 5 0 .864 . To calculate the standard 
error, use as N the total number in the table (N 5 609):

SE (% Agreement) = A0 .864(1 - 0 .864)
609

= 0 .0139

Thus,	the	95%	confidence	interval	(using	percentage	values)	is

Lower Limit 5 86 .4 – (1 .96 3 1 .39) 5 83 .7%

Upper Limit 5 86 .4 1 (1 .96 3 1 .39) 5 89 .1%

A.11  YoUDEn’S J STATISTIC

Standard Error, Confidence Interval
Youden’s J	statistic	is	based	on	the	sum	of 	two	proportions	(sensitivity	and	specificity)	
(see Chapter 8, Section 8 .4 .1) . Assuming that these are independent, the standard error 
(SE) can be calculated as

SE ( J ) = ASens(1 - Sens)
Ntrue +

+
Spec(1 - Spec)

Ntrue -

Once	the	standard	error	is	calculated,	the	general	approach	for	obtaining	confidence	
limits outlined in the introduction to this appendix can be used .
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Examples
The following example is based on the data from Chapter 8, Table 8-5 . The estimated 
Youden’s J statistic is (18/19) 1 (11/30) – 1 5 0 .314 . Using the above formula, the 
standard error is as follows:

SE ( J ) = H 18
19

*
1

19
19

+

11
30

*
19
30

30
= 0 .102

Thus,	the	95%	confidence	interval	is

Lower Limit 5 0 .314 – (1 .96 3 0 .102) 5 0 .114

Upper Limit 5 0 .314 1 (1 .96 3 0 .102) 5 0 .514

A.12  KAPPA

The kappa statistic is a useful measure of  reliability of  categorical variables (see Chapter 
8,	Section	8.4.1).	Formulas	for	the	calculation	of 	the	standard	error	and	95%	confidence	
interval for the unweighted kappa are provided as follows .

Standard Error and 95% Confidence Interval
Formulas for the calculation of  the standard error of  kappa have been published .18 
Consider a situation in which two replicate readings (e .g ., readings by two raters, A and B) 
of  a given set of  test values have been done . The outcome of  the test has k possible values, 
the	number	of 	agreement	cells.	The	following	table	defines	the	notation	for	the	observed	
proportions (p) in each cell and marginal totals of  the resulting contingency table of  both 
sets of  readings .

Rater B

R
at

er
 A

1 2 … k Total

1 p11 p12 … p1k p1

2 p21 p22 … p2k p2

… … … … … …

k pk1 pk2 … pkk pk

Total p1 p2
… pk

1

Based on the preceding notation, the SE of  the estimated kappa (k) can be obtained 
as follows:

SE (kn ) =
1

(1 - pe) * 4n
* Bpe + pe

2 - c a
k

i = 1
 p

i
 . * p .

i
* (p

i
 . + p .

i
) d

where pe is the total expected chance agreement, which is calculated from the product of  
the symmetrical marginal proportions (see Chapter 8, Section 8 .4 .1):

pe = a
k

i = 1
 p

i
 . * p .

i
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Note: Formulas for the standard error of  weighted kappa have also been derived; see, 
e .g ., Fleiss .18

Example
The	following	example	is	based	on	the	data	from	a	study	of 	self-reported	“difficulty	in	
standing up from a chair”17 (Chapter 8, Table 8-13) (see also Section A .10): 

Observed difficulty

Reported difficulty Yes No Total

Yes 71 41 112

No 42 455 497

Total 113 496 609

Source: Data from M Ferrer et al ., Comparison of  Performance-Based and Self-Rated Functional Capacity in Spanish 
Elderly . American Journal of  Epidemiology, Vol 149, pp . 228–235 .

Dividing numbers in the table by the total (N 5 609), the following table shows the 
proportions as in the notation table shown previously .

Observed difficulty

Reported difficulty Yes No Total

Yes 0 .1166 0 .1839 

No 0 .7471 0 .8161 

Total 0 .1856 0 .8144 1 

Note: The proportions in the discordant cells are not shown because they are not used in the calculations that follow . 
Source: Data from M Ferrer et al ., Comparison of  Performance-Based and Self-Rated Functional Capacity in Spanish Elderly, . 
American Journal of  Epidemiology, Vol 149, pp . 228–235, © 1999 .

The observed agreement is

p
0

= a
k

i = 1
 pii = 0 .1166 + 0 .7471 = 0 .8637

The expected (chance) agreement is 

pe = a
k

i = 1
 p

i
 . * p .

i
= (0 .1865 * 0 .1839) + (0 .8144 * 0 .8161) = 0 .6989

Thus, the estimated kappa for these data is

k =
p0 - pe

1 - pe
=

0 .8637 - 0 .6989
1 - 0 .6989

= 0 .547

Using the above formula, the standard error is as follows:

1

(1 - 0 .6989)4609
* A0 .6989 + 0 .69892 - a 0 .1839 * 0 .1856 * (0 .1839 + 0 .1856)

+ 0 .8161 * 0 .8144 * (0 .8161 + 0 .8144)
b = 0 .041
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Thus,	the	95%	confidence	interval	is

Lower Limit 5 0 .547 – (1 .96 3 0 .041) 5 0 .467

Upper Limit 5 0 .547 1 (1 .96 3 0 .041) 5 0 .627
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B
APPENDIXTest for Trend 

(Dose Response)

When exposure is categorized into multiple ordinal categories, it may be of  interest 
to assess whether the observed relation between increasing (or decreasing) levels of  
exposure and the risk (or odds) of  disease follows a linear dose-response pattern. One 
example was provided in Chapter 3 at the end of  Section 3.4.1, Table 3-12, in which the 
odds ratios of  craniosynostosis seemed to increase in relation to increasing maternal 
age in a dose-response fashion.1 A statistical test to assess whether the observed trend 
is statistically significant (i.e., whether the null hypothesis that there is no linear trend 
can be rejected) was developed by Mantel.2 The formulation below is based on the 
following notation:

Stratum (i) Score (xi) No. of  cases (ai) No. of  controls (bi) Total (ni)

1 x1 a1 b1 n1

2 x2 a2 b2 n2

. . . . .

. . . . .

k xk ak bk nk

Total A B N

The following statistic has a chi-square distribution with 1 degree of  freedom:

1
2 =

c a
k

i = 1
 aai xi -

ni xi A
N

b d
2

£A * B * c aN * a
k

i = 1
 ni xi

2b - a a
k

i = 1
 ni xib

2

d
N2 (N - 1)

≥
where the scores (xi) are values that represent the level of  exposure in each subsequent 
ordinal category (see below).
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EXAMPLE

To illustrate the application of  Mantel’s trend test, the data from the example in 
Chapter 3, Table 3-11, are used. For the purpose of  making the calculations easier, these 
data are rearranged in the following work table:

Thus, applying the above formula:

xi
2 =

[35.262]2

a173 * 759 * [(932 * 7752) - 25362 ]

9322 (932 - 1)
b

= 9.65

corresponding to a p value of  0.0019.

NOTES

The null hypothesis corresponding to this trend test is that there is no linear association, 
or, in other words, that the slope of  the association with increasing levels of  exposure is 
zero (flat). Thus, a significant p value from this test means that the data do not support 
the hypothesis of  a zero slope. Such a result should not replace the examination of  the 
actual odds ratio estimates in order to judge whether a linear trend is indeed present. 
As for any other statistical test, the p value depends strongly on the sample size; thus, 
if  the sample size is large, a J-type or a threshold-type association may result in a signif-
icant trend test, even though the association is not linear. For example, suppose that 
the estimated odds ratios for five increasing ordinal categories of  a given exposure (e.g., 
quintiles of  a continuous variable) are 1.0 (reference), 0.9, 1.1, 1.0, and 3.0. If  the 
sample size is sufficiently large, the trend test may yield a highly significant result, which 
simply indicates that the null hypothesis (“slope” = 0) can be rejected with a certain level 
of  confidence, notwithstanding the fact that, in this example, the pattern of  the associ-
ation is practically flat, except for the high odds ratio in the top quintile that is an increase 
in odds limited to the individuals in the top fifth of  the distribution. This phenomenon 
is analogous to the issues discussed in Chapter 7 on the use of  linear models to analyze 
nonlinear patterns (Section 7.4.7). 
The above trend test is analogous to the Wald test for a linear regression coefficient (see 

Section 7.4.8), except that it is based on a small number of  data points (four in the above 
example), which are weighted according to the number of  subjects in the corresponding 

Age (yr) i xi ai bi ni cai xi -
ni xi A

N
d nixi ni xi

2

 20 1 1 12 89 101 26.748 101 101

20–24 2 2 47 242 289 213.290 578 1156

25–29 3 3 56 255 311 25.186 933 2799

 29 4 4 58 173 231 60.485 924 3696

Total 173 759 932 35.262 2536 7752

Source: Data from BW Alderman et al., An Epidemiologic Study of  Craniosynostosis: Risk Indicators for the Occurrence of  
Craniosynostosis in Colorado. American Journal of  Epidemiology, Vol 128, pp. 431–438, © 1988.
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category. Thus, as when using any linear regression model, caution should be exercised 
when interpreting the results of  a trend test. 

Alternative formulations of  the trend test described have been proposed, based on 
assessing the linear trends in proportions (see, for example, Cochran3). Given the arith-
metical equivalence between proportions and odds, all these alternative tests lead to 
similar results; for additional references and discussion, see Fleiss4 or Schlesselman.5

In the example below, the scores were arbitrarily set as 1, 2, 3, and 4. Note that the 
exact same chi-square value will be obtained using the scores –1, 0, 1, and 2, while the 
calculations (if  done by hand) will be considerably easier. In the case of  ordinal categoriza-
tions based on a continuous variable (such as age in the example above), instead of  these 
completely arbitrary scores, it may be more appropriate to choose as scores the midpoints 
for the variables that define each category. For example, assuming that the ranges for the 
top and bottom open-ended categories above were 10 to 19 years and 30 to 39 years, 
respectively, the scores would be 15, 22.5, 27.5, and 35, with the following result:

In this example, the resulting chi-square is 10.08, p 5 0.0015. (Alternatively, the score 
for each category could be the mean or median value for the variable in question for all 
the individuals included in each respective category.) 

MULTIVARIATE TREND TEST

As stated previously, the statistical test for trend is the analogue to the Wald test assessing 
the  statistical  significance  of   a  linear  regression  coefficient  (see  Chapter  7,  Section 
7.4.8 and Appendix A.9). In fact, a regression approach can be used to test the statis-
tical significance of  a linear dose-response trend (using odds ratios or another measure 
of  association, depending on the statistical model at hand; see Chapter 7, Table 7-14) 
corresponding to an ordinal variable while adjusting for additional covariates included in 
the model. For example, it may be of  interest to assess whether the risk of  craniosyn-
ostosis increases linearly with age (categorized as above) while adjusting for additional 
covariates (e.g., socioeconomic status, family history). In that situation, to carry out the 
multivariate analogue of  the above trend test in the example, a logistic regression model 
can be used entering the variable AGEGROUP as a single ordinal term (with values 1, 
2, 3, and 4, or any other meaningful alternative, as discussed above), along with any 
other variables in the model that need to be controlled for. The Wald statistic for the 
regression coefficient corresponding to  this variable can be  interpreted as a statistical 
test for linear dose response for adjusted data. As for the trend test for unadjusted data, 

Age (yr) i xi ai bi ni cai xi -
ni xi A

N
d nixi ni xi

2

 20 1  15 12    89 101 2101.22 1515    22,725

20–24 2 22.5 47 242 289 2149.51 6502.5 146,306.3

25–29 3 27.5 56 255 311 247.535 8552.5 235,193.8

 29 4  35 58 173 231 529.244 8085 282,975

Total 173 759 932 230.982 24,655 687,200

Source: Data from BW Alderman et al., An Epidemiologic Study of  Craniosynostosis: Risk Indicators for the Occurrence of  
Craniosynostosis in Colorado. American  Journal of  Epidemiology, Vol 128, pp. 431–438, © 1988.
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it is important to examine whether there is an actual dose response trend by inspection 
of  stratum-specific estimates (e.g., by examining the estimates based on a model using 
dummy variables) before interpreting this statistical trend test on the basis of  regression 
(see Chapter 7, Section 7.4.7).
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APPENDIXTest of Homogeneity of Stratified 

Estimates (Test for Interaction)

As discussed in Chapter 6, interaction or effect modification is present when the associ-
ation between a given exposure and an outcome is modified by the presence or level of  a 
third variable (the effect modifier). The different aspects that need to be considered when 
judging whether an observed heterogeneity of  the association is truly interaction or is 
due to random variability of  the stratum-specific estimates were discussed in Chapter 6 
(Sections 6.9 and 6.10.1). In this appendix, a general procedure to assess the hypothesis 
of  homogeneity (i.e., lack of  interaction) is described. As with any hypothesis test, the p 
value resulting from this homogeneity testing is strongly dependent on sample size. This 
problem is especially important when stratified data are evaluated. Epidemiologic studies 
are typically designed to optimize the statistical power to detect associations based on 
pooled data from the total study sample. However, the power to detect interaction is often 
limited by insufficient stratum-specific sample sizes.1

Consider a situation in which a given measure of  association r between exposure 
and outcome is estimated across k strata of  a suspected effect modifier. The general form 
of  a statistical test of  the homogeneity hypothesis (i.e., H0: the strength of  association 
is homogeneous across all strata) is analogous to a familiar type of  statistical test to 
compare stratified survival data (log rank test) and adopts the following general form:1

k - 1
2 = a

k

i = 1
 
(Ri - R̂)2

Vi

where Ri is the stratum-specific measure of  association (for i 5 1 to k strata), Vi is 
the corresponding variance, and R̂ is the estimated “common” underlying value of  
the measure of  association under the null hypothesis. The latter is usually estimated 
using one of  the approaches to obtain weighted averages of  stratum-specific estimates 
of  association described in Section 7.3 of  Chapter 7 (e.g., direct adjustment, indirect 
adjustment, Mantel-Haenszel). This test statistic has a chi-square distribution with as 
many degrees of  freedom as the number of  strata minus 1.

One important consideration is that for multiplicative (relative) measures of  associ-
ation (e.g., relative risk, odds ratio, rate ratio), the logarithm of  the ratio (not the ratio 
itself) is used in the preceding equation for Ri and R̂ ; consequently, the corresponding 
variance, Vi, is the variance of  the log (ratio).

EXAMPLE: TEST OF HOMOGENEITY OF STRATIFIED ODDS RATIOS

This test uses the following formula:

k - 1
2

= a
k

i = 1
 
(log ORi - log ÔR)2

var(log ORi)
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The following example of  the application of  this test uses data from Table 7-2, which 
displayed the association between oral contraceptive use and myocardial infarction 
stratified by age.2 The Mantel-Haenszel estimate of  the overall odds ratio for these data 
is ORMH 5 3.97 (Section 7.3.3). The following table is organized to facilitate the calcula-
tions of  the homogeneity test statistic:

Thus, applying the above formula:

 4
2 =

[1.978 - log (3.97)]2

0.771
+

[2.182 - log (3.97)]2

0.227
 +  c +  

[1.357 - log (3.97)]2

0.381

 = 0.4655 + 2.8382 + 2.7925 + 0.0151 + 0.0013

 = 6.113

This chi-square value with 4 degrees of  freedom is associated with a P  0.10 and thus 
is nonsignificant at conventional levels.
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Stratum no. 
(age, yr) OC

No. of  
cases 

(a)  
(c)

No. of   
controls  

(b)  
(d)

OR  
(a * d)

(b * c) Log OR

Var (Log OR) 

a1
a

+
1
b

+
1
c

+
1
d
b
*

1 (25–29) Yes 4 62 7.226 1.978 0.771

No 2 224

2 (30–34) Yes 9 33 8.864 2.182 0.227

No 12 390

3 (35–39) Yes 4 26 1.538 0.431 0.322

No 33 330

4 (40–44) Yes 6 9 3.713 1.312 0.296

No 65 362

5 (45–49) Yes 6 5 3.884 1.357 0.381

No 93 301

Note: OC, oral contraceptive use. 
*See Appendix A, Section A.4. 
Source: Data from S Shapiro et al., Oral-Contraceptive Use in Relation to Myocardial Infarction. Lancet, 
Vol 1, pp. 743–747, © 1979.
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Appendix

Quality Assurance and Quality Control 
Procedures Manual for Blood Pressure 
Measurement and Blood/Urine 
Collection in the ARIC Study

The following is a verbatim transcription of  two sections of  the Atherosclerosis Risk in 
Communities (ARIC) Study Quality Assurance/Quality Control Manual of  operations. 
These are included as examples for some of  the procedures discussed in Chapter 8. For 
more detail on the ARIC Study design and protocol (including the entire Quality Control 
Manual and other manuals cited in the following text), see the ARIC Study Web page 
(http://www.cscc.unc.edu/aric).

SITTING BLOOD PRESSURE

1.  Brief Description of Sitting Blood Pressure Procedures and 
Related Quality Assurance and Quality Control Measures

The following equipment is used for measuring sitting blood pressure: a standard Littman 
stethoscope with bell; standardized Hawksley random-zero instrument; standard 
Baum manometer for determining peak inflation level; four standardized cuffs (from 
Baum). After the technician explains the procedure to the participant, measures the 
arm circumference and wraps the arm with the correct cuff, the participant sits quietly 
for 5 minutes, and then the technician makes two readings, with at least 30 seconds 
between reading one measure and beginning the next. The average of  the two readings 
is reported to the participant.

From the detailed protocol for sitting blood pressure in ARIC Manual 11, the various 
data transfer points and other possible sources of  error have been considered, and needed 
quality assurance and control measures have been derived. Important elements in 
quality assurance are training and certification programs, observation of  data collection 
by supervisors, biannually simultaneous blood pressure measurements using Y-tubes 
by two technicians, and standard equipment maintenance procedures performed and 
entered into logs.

2. Maintenance of Equipment
 a. Availability of  all sizes cuffs: The field center blood pressure supervisor makes 

certain that the field center always has the full range of  blood pressure cuffs 
available at each blood pressure station. Field center staff  report immediately to 
the blood pressure supervisor if  they cannot find all cuff  sizes at the station.

 b. Sphygmomanometers: Regular inspections of  random-zero and standard sphygmo-
manometers are described in ARIC Manual 11, Section 1.13.1 and Appendices 
I, II, and V. A log sheet is kept by the field center blood pressure supervisor, who 
records the performance of  these checks and comments on any problems found 
(see copy of  log sheet in Manual 11, Appendix IV). By the end of  each January 
and July, the summary form for the checklists should be filled and mailed to the 
Coordinating Center.
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 c. Measuring tape: Each week the blood pressure supervisor checks the condition 
of  the measuring tape used to measure arm circumference at the blood pressure 
station(s), and replaces any that have become worn. The results of  this check are 
recorded on the anthropometry weekly log. (See the anthropometry section for 
details.)

3. Field Center Monitoring of Technician Performance
 a. Double stethoscoping: To help assess the accuracy and precision of  blood pressure 

measurements, once each January and July each blood pressure technician takes 
part in measuring blood pressure simultaneously with another technician, using 
a Y-tube. This procedure should be carried out using volunteers or other field center staff  
members, not ARIC study participants. The two technicians also perform independent 
measurements of  arm circumference, which they record on the forms. If  the two 
technician measurements lead to a disagreement on which blood pressure cuff  to 
use, then both remeasure the arm together and use the cuff  size determined by 
that measurement. Each records this disagreement on the Sitting Blood Pressure 
form. Each technician separately records all blood pressure measurements on 
paper on a standard Sitting Blood Pressure form. The two paper forms are given to 
the field center blood pressure supervisor, who compares the results. 

The field center blood pressure supervisor reviews the results of  these duplicate 
examinations, calculating the disagreement between technicians on the blood pressure 
measurements and recording it on the form. The two technicians should agree on each 
of  the two measurements of  diastolic and systolic blood pressure within 4 mm Hg, and 
their average should agree within 3 mm Hg, as is required by the standards for certi-
fication. If  they do not, further duplicate readings are taken to determine if  either or 
both technicians require recertification. These further measurements should again be 
recorded as described in the previous paragraph.

The IDs of  each set of  technicians paired for simultaneous measurement of  blood 
pressure are recorded in the Report on Use of  Observation and Equipment Checklist, 
which is mailed to the Coordinating Center at the end of  each January and July.

 b. Biannual observation: Once every January and July, the field center’s blood 
pressure supervisor observes each blood pressure technician performing the 
entire measurement procedure with a study participant. The field center super-
visor notes any problems with technique and discusses them with the technician 
after the examination has been completed. Also, another technician observes the 
field center blood pressure supervisor perform the entire measurement process. 
After the examination, the two of  them discuss any questions that come up in the 
course of  this observation. In performing these observations, the supervisor and 
technicians use the checklist given in Appendix III of  ARIC Manual 11. For each 
technician, the date that the technician was observed and the observer’s ID number 
are recorded in the Report on Use of  Observation and Equipment Checklist.

4. Recording of Participant ID Data
In filling out the Sitting Blood Pressure screen, the technician verifies that the name and 
ID number on the DES screen which accompanies the participant match the partici-
pant’s to avoid ID errors. If  the PC is down and a paper form is used, the technician 
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verifies the name on the folder accompanying the participant before using the ID labels 
in the folder on the forms.

5. Measurement of Arm Circumference and Choice of Blood Pressure Cuff
As described above, once every 6 months duplicate measurements of  blood pressure 
are performed on a volunteer or field center staff  member (not an ARIC participant). 
During the course of  this procedure, both technicians measure arm circumference and 
record their results. The field center blood pressure supervisor compares these results, 
and if  they differ by more than 1 cm, the measurement technique is reviewed with both 
technicians.

Both the arm measurement and the cuff  size chosen are recorded on the SBP form. 
The data entry system checks for the consistency of  cuff  size and arm circumference.

6. Participant Posture and Rest Before Blood Pressure Measurement
The field center blood pressure supervisor monitors that the station(s) used for blood 
pressure measurement continue to meet the conditions specified in the protocol, for 
example, that blood pressure measurements are done in a quiet room away from other 
field center activities. Coordinating Center staff  on monitoring visits also take note 
whether this condition is being maintained.

The field center blood pressure supervisor is responsible for seeing that the protocol is 
followed by timing blood pressure measurements early in the visit, before blood drawing 
or other stressful activities. Each month the field center supervisor reviews a sample of  
participant itinerary forms for the previous month to confirm that this is done.

To assist in judging that a full 5-minute rest is allowed before taking the first blood 
pressure measurement, the blood pressure technician uses a handheld timer or other 
means of  accurately timing the rest period. Biannually, the field center blood pressure 
supervisor observes each technician performing the full blood pressure procedure and 
notes whether the correct rest period is being allowed.

7. Coordinating Center Quality Control Analyses
The Coordinating Center analyzes data from each technician for digit preference in 
reading systolic or diastolic blood pressure. This check is performed annually, unless 
problems detected call for more or less intensive monitoring. The Coordinating Center 
reports these results to the field center, and the field center blood pressure supervisor 
reviews these results with each technician.

The Coordinating Center checks that correct data entry procedures are used for 
recording missing data. The Coordinating Center communicates with the field centers 
when problems are identified.

BLOOD AND URINE COLLECTION AND PROCESSING

1.  Brief Description of Blood Collection and Processing and 
Related Quality Assurance and Quality Control Measures

At the time of  the telephone contact participants are requested to fast for 12 hours before 
field center visit, unless they are diabetics taking insulin or have other medical reasons that 
make fasting inadvisable. A detailed protocol, set out in ARIC Manual 7 (Blood Collection 
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and Processing) has been developed, which describes the preparation of  blood tubes, the 
anticoagulants to be used for samples for each laboratory, and the specific steps to be taken 
in blood drawing and processing. After the blood is drawn, the sample tubes go through 
further processing at the field center. Blood samples used for lipid and hemostasis analyses 
are frozen at –70°C for weekly shipment to the ARIC central laboratories. Samples for 
hematology analyses are sent to local laboratories. All shipments to Central Laboratories 
are by overnight delivery services. All of  these steps are performed by technicians trained 
in the ARIC protocol and certified to have adequately mastered its details.

The first step in quality assurance for blood drawing consists in this training and certi-
fication process. Other steps include maintaining logs of  equipment checks; observation 
of  technicians (by other technicians and by monitors on visits) as they go through the 
sequence of  steps in blood drawing and processing; review of  the condition of  samples 
received at central laboratories for problems in shipment; and periodic analysis of  the 
study data for participant compliance with fasting and for signs of  problems in drawing 
or processing, such as hemolysis or delays in completing processing.

2. Maintenance of Equipment
Each field center performs daily temperature checks on refrigerators, freezers, the refrig-
erated centrifuge, and the heating block (see ARIC Manual 7). The actual speed of  the 
centrifuge is checked and recorded monthly with a tachometer. The results of  these 
checks are recorded on a log sheet kept at the blood processing station and are summa-
rized onto the Report on the Use of  Observation and Equipment Checklist at the end of  
each January and July. A copy of  the report is sent to the Coordinating Center at that time.

3. Participant Compliance with Protocol
In contrast to previous visits, venipuncture is performed on all cohort members, regardless 
of  their fasting status (Manual 2, Section 3.9.2), and includes three plasma samples for 
the Lipid and Hemostasis labs; two serum samples for the Hemostasis and Dental labs; 
and an optional sample for a local Hematology lab. In addition, a second venipuncture is 
performed on OGTT eligible participants. The post glucola blood draw must occur within 
2 hours (plus or minus 10 minutes) of  administration of  the glucola drink. Failure to 
meet criteria can affect the values of  various measurements (e.g., lipids, glucose) and 
compromise their value to the study. ARIC participants should also abstain from smoking 
and vigorous physical effort before the visit to the field center, since smoking may affect 
electrocardiograms or blood pressure and vigorous activity may activate fibrinolysis and 
alter blood levels of  tPA and FPB8. Interviewers are trained to explain the importance of  
compliance with these restrictions. When field centers contact participants before their 
appointment to remind them about the scheduled visit, they repeat these instructions.

The Coordinating Center analyzes study data for information on length of  time fasting 
and time since smoking and hard exercise, broken down by field center, to obtain the 
number and percent of  participants at each field center each month who do not comply 
with these restrictions.

4. Maintaining Proficiency
To maintain their proficiency, technicians are urged to perform blood drawing and 
processing at least once each week (or eight times each 2 months). The Coordinating 
Center analyzes the study data to report on the number of  times that technicians collect 
and process blood in the field centers.
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5. Periodic Observation
Periodically (each month in the beginning) each field center technician performing blood 
drawing and processing is observed performing the entire procedure by either another 
trained technician or a supervisor, using a detailed checklist to verify that the technician 
is continuing to follow all parts of  the ARIC protocol. Carrying out this observation also 
 provides a review of  the protocol for the person doing the observation (see ARIC Manual 
7 for further details and for a copy of  the ARIC Venipuncture and Processing Procedure 
Certification Checklist). This checklist is also used for observations by monitors from 
the Coordinating Center performing monitoring. The IDs of  observer and observed are 
recorded in the ARIC Venipuncture and Processing Procedure Certification Checklist. 
They are also recorded on the Report on the Use of  Observation and Equipment Checklist, 
which is mailed to the Coordinating Center by the end of  each January and July.

6. The Laboratory Form
To avoid ID errors in which information regarding a given participant’s samples is written 
down on the wrong form, the technician should begin filling out each Laboratory Form 
(LABB) as the blood is drawn, verifying the ID from the folder that accompanies the 
 participant.

7. Quality Control Replicate Data
The system of  drawing extra tubes of  blood for QC replicate analysis is fully explained in 
ARIC Manual 7. In this system specified extra tubes of  blood are drawn from a number 
of  participants and matched to one “phantom participant” per week. The post-glucola 
blood sample is designated as Tube 6 on the Phantom Participant and Non-Participant 
ID form. See also Chapter 2 of  Manual 12 for an explanation of  the QC phantom system.

Persons who are nonfasting and indicate that they would like to be rescheduled for 
another blood draw should never be used as a QC blood phantom.

The field center blood drawing station maintains a schedule of  which tubes should 
be drawn for phantoms each day (see ARIC Manual 7) to help fit the QC phantom sets 
into the work flow and make it easy to keep track of  what is required. The Coordinating 
Center reviews each month, broken down by field center, the number of  QC phantom 
forms for which blood drawing is indicated. If  field centers fail to provide sufficient sets 
of  QC phantom blood, the Coordinating Center contacts the field centers to discuss 
the problem. To reduce the risk of  labeling a QC phantom blood tube with the wrong 
ID or of  recording the wrong match between phantom and participant IDs on the QC 
Phantom Participant Forms, QC blood is drawn from no more than one member of  each 
pair of  participants whose blood is processed together. To help make certain that the 
correct match is recorded between real participant ID and QC phantom ID, as soon as 
blood-drawing has been completed an ID label for the real participant ID is added to the 
appropriate space on the QC Phantom Participant and Non-Participant ID Form in the 
QC phantom folder. 

8. Analysis of Venipuncture and Processing Data for Quality Control
The Coordinating Center analyzes the study data annually to determine the frequencies 
of  filling time, number of  stick attempts and reported presence of  hemolysis, and selected 
markers of  lack of  adherence to protocol during phlebotomy and/or processing of  
specimens at the field center laboratory. These analyses include field center tabulations 
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by the ID of  the technician performing the blood drawing or processing. (Standards for 
time needed for various processing steps are given in ARIC Manual 7.) Adherence to 
the 2-hour post-glucola blood draw window is assessed quarterly and reported to field 
centers.

9. Packing Samples for Shipment to Laboratories
All vials of  blood samples as well as the plastic bags in which the samples for a given 
participant are packed for shipment to the several laboratories are labeled with the partic-
ipant’s ID. A shipping list is enclosed with each shipment to the Central Laboratories 
giving the IDs for all sets of  samples that are enclosed. The person unpacking these 
samples at the Central Laboratories verifies that the IDs on the vials match the IDs on the 
plastic bag and checks both against the shipping list. If  any discrepancies are detected, 
the Central Laboratory contacts the field center to resolve the problem.

Blood vials shipped to the Central Laboratories must be packed securely to avoid both 
breakage and warming. Full instructions for packing samples are specified in ARIC 
Manual 7, Sections 5.1–5.3. The laboratories monitor the arrival condition of  the 
samples sent from each field center. If  problems are encountered, the laboratories notify 
the field centers involved. If  a pattern of  sample damage becomes apparent that suggests 
a need to modify the materials used to ship samples (e.g., excessive leakage of  a certain 
type of  vial) or how samples are packed, the Laboratory Subcommittee takes appropriate 
action.

ARIC blood samples are mailed promptly to the Central Laboratories at the start of  
the week after they are drawn. The laboratories monitor the dates of  blood drawing on 
samples which they receive and notify the field center and the Coordinating Center if  
they receive samples that were shipped at a later date than that called for under this 
schedule. (Note: quality control phantom blood tubes are held over one week before 
shipping, but the date of  drawing on these samples that is reported to the laboratory 
is altered to conceal their identity as QC.) The field centers should phone the central 
laboratories to notify them if  they are shipping on a day other than Monday.

To avoid delays in transit to the laboratories that might cause samples to be warmed 
or thawed in shipping, all samples are shipped by an overnight delivery service. To avoid 
delays over weekends or holidays in delivering samples or in moving them to the Central 
Laboratory freezer once they are delivered to the receiving area, all samples are shipped 
out at the beginning of  the working week, on Monday or Tuesday. The laboratories notify 
the Coordinating Center and the field center if  a shipment is received that was shipped 
out on a later day in the week, and the field center reports to the Coordinating Center on 
the reasons for this deviation from protocol. The laboratories notify the Field Centers if  
sets of  samples are received late. If  a pattern of  delays is encountered with the delivery 
service a field center is using, the field center will change to an alternate delivery service.

10.  Description of Urine Collection and Processing and Related 
Measures for Quality Assurance and Quality Control

After a participant is greeted at the clinic, he or she is asked to provide a urine specimen 
at the participant’s convenience (e.g., when the participant expresses the need to void). 
When the participant is ready to void, a specimen cup (labeled with the participant’s ID 
and TIME VOIDED) is provided, and the participant is instructed to fill the cup if  possible. 
If  the sample is insufficient for processing, the participant is requested to void again in 
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a clean container prior to leaving the field center. Prior to processing, the technician 
records on the participant’s Laboratory Form whether a urine sample was obtained, the 
collection time of  the initial (if  more than one) urine sample, and adequacy of  volume.

11. QC Sample Preparation
The following instructions describe specific additions to urine collection and processing 
protocols in order to meet QC requirements. These instructions assume that the normal 
procedures for collecting, processing, and shipping creatinine and albumin samples (see 
Manual 7, Section 6.0–6.3) are being followed.

12. Urine QC Schedule
The Visit 4 schedule for urine QC sampling parallels the blood QC sampling protocol: a 
minimum of  one sample is required each week. QC specimens should be taken from the 
first participant either Tuesday or Thursday who provides sufficient urine. If  no partic-
ipant on Tuesday (or Thursday) provides a sufficient amount, the first participant to do 
so on Wednesday (or Friday) should be selected.

Urine QC sample collection should be added to the weekly checklist maintained by 
the field center venipuncture technicians. As with blood QC samples, each urine sample 
should be checked off  as it is prepared. On Wednesday or Friday mornings, the checklist 
is consulted to see if  an additional urine sample is still needed.

13. QC Sample Requirements
Each participant’s urine specimen is divided into three separate sample tubes and 
frozen at the field centers until shipping. Aliquots for creatinine and albumin on each 
participant (3.5 ml each) are shipped to the Minneapolis ARIC Field Center. The 50–ml 
conical tube (one per participant) for the hemostatic metabolites is shipped to the ARIC 
Hemostasis Laboratory; this tube must contain a minimum of  40 ml. When the schedule 
calls for collection of  a QC sample (phantom) for creatinine and albumin, the partici-
pant’s specimen cup must contain at least 54 ml (14 ml for a total of  four 3.5-ml vials 
and one 40-ml hemostasis sample). For a hemostasis laboratory phantom, 87 ml (7 ml 
for two 3.5-ml vials and two 40-ml hemostasis samples) are needed.

14. Laboratory and Phantom Forms
To ensure that the correct match is recorded between the real participant ID and the QC 
phantom ID, as soon as it can be ascertained that sufficient urine for a QC sample has 
been provided, an ID label for the real participant ID is added to the appropriate space on 
the QC Phantom Participant and Nonparticipant ID Form.

To avoid ID errors in which information regarding a given participant’s urine sample 
is entered on the wrong form, the technician should begin filling out a URINE SAMPLE 
section of  the Laboratory Form for the phantom ID at the same time the participant’s 
URINE SAMPLE section of  this form is completed.

15. Sample Preparation
When creatinine and albumin phantom urine specimens are to be prepared, a total of  
four 3.5-ml aliquoting vials are required. Two vials are labeled with the participant ID 
and the remaining two with the phantom ID.
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The two CREATININE and two ALBUMIN specimen vials are distinguished by cap 
inserts: YELLOW for CREATININE, and BLUE for ALBUMIN. The creatinine participant 
and phantom cryovials are filled first by the lab technician. Then the procedure for pH 
balancing of  the albumin sample is executed (Manual 7, Section 6.1.2), and the pH 
balanced specimen is pipetted into the participant and phantom cryovials.

The phantom hemostasis urine specimen is prepared at the same time and manner as 
the participant hemostasis urine sample.

16. Procedure for Small Samples
For QC purposes, the pairs of  participant and phantom creatinine, albumin, and 
hemostasis urine samples must come from the same batch. If  a single batch is inadequate 
for both the participant and phantom samples, then the specimens should be combined 
prior to drawing the samples.

17. Storage Instructions
Storage instructions (Manual 7, Section 6.2) stipulate that samples be packed in the 
order of  the date drawn, putting a single participant’s two specimens (CREATINE and 
ALBUMIN) side by side in the row. Since the phantom and participant specimens are 
drawn on the same date, they will likely be on the same row, possibly next to each other.

Record the box and position numbers on the participant’s Laboratory Form, and be 
sure to do the same for the phantom.

Finally, record the IDs of  all participants and phantoms in each box on a Box Log 
Form.

18. Quality Assurance and Quality Control
In addition to annual recertification authorized by the Hemostasis Laboratory, protocol 
adherence in the performance of  each procedure is reviewed at least biannually by the 
lead technician, and annually by Coordinating Center field center monitors. Deviation 
from protocol and possible remedial actions are discussed with study coordinators and 
staff  at that time. Major deviations are brought to the attention of  the Cohort Operation 
Committee.

The CC will produce reports based on replicate data from the labs. Results of  these 
reports will be examined by the QC Committee, and recommended corrective actions 
will be implemented. The Coordinating Center will provide to the QC Committee and field 
centers a report based on the procedural data recorded on the Laboratory Form. This 
report will evaluate data for consistency, and for missing or out of  range values.
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The intraclass correlation coefficient (ICC) is the proportion of  the total variability in the 
measured factor that is due to the variability between individuals (see Chapter 8, Section 
8.4.2). In this appendix, two approaches for the calculation of  the ICC are described: 
one is based on analysis of  variance (ANOVA) results1 and the other on a shortcut 
formula described by Deyo et al.2 Both techniques are illustrated using as an example the 
between-scorer reliability data from the Sleep Heart Health Study quality control study 
(see Chapter 8, Table 8-20).

ANALYSIS OF VARIANCE

To carry out an ANOVA on a set of  replicate observations (e.g., the between-scorer apnea-
hypopnea index (AHI) reliability data from Table 8-20), the data need to be arranged so 
that all AHI values (from both sets of  replicate observations) are contained in a single 
variable. Additional indicator variables denote the identifier for both the study number 
(1 through 30) and the scorer (A or B). Thus, in this example, the data can be arranged 
for a total of  60 observations, as follows:

Study no. Scorer AHI

1 A 1.25

1 B 1.38

2 A 1.61

2 B 2.05

3 A 5.64

3 B 5.50

. . .

. . .

. . .

29 A 2.09

29 B 2.35

30 A 11.09

30 B 9.25

A similar approach is used to arrange the arousal index (AI) data, also shown in  
Table 8-20.



470 APPENDIX E | Calculation of the Intraclass Correlation Coefficient

An ANOVA of  these data can be conducted using any standard statistical package. 
From the output of  the analysis conducted using SAS (SAS Institute, Cary, NC), the 
following tables are obtained:

For AHI:

Source of  
variation Sum of  squares (SS)

Degrees of  freedom 
(DF)* 

Mean square

SS/DF Label

Observer         2.023 1 2.023 MSO

Study 2477.991 29 85.448 MSS

Error         7.169 29 0.247 MSE

*Degrees of  freedom: for observer, k 2 1, where k is the number of  times each observation is made; for study, n 2 1, 
where n is the number of  observations; for error, (k 2 1) 3 (n 2 1).

For AI:

Source of  
variation Sum of  squares (SS)

Degrees of  freedom 
(DF)* 

Mean square

SS/DF Label

Observer    166.010 1 166.010 MSO

Study 4436.759 29 152.992 MSS

Error 1087.749 29 37.509 MSE

*Degrees of  freedom: for observer, k 2 1, where k is the number of  times each observation is made; for study, n 2 1, 
where n is the number of  observations; for error, (k 2 1) 3 (n 2 1).

In these tables, “observer” relates to the variability due to the scorer in this example 
(or to the specific set of  repeat readings in a within-observer reliability study), and 
“study” refers to the variability related to the participant, study, or specimen that is being 
repeatedly studied, read, or determined.

The formula for the calculation of  the ICC is1

ICC =
MSS - MSE

MSS + MSE (k - 1) + k (MSO - MSE)/n

where k is the number of  repeat readings (e.g., 2 in the above example) and n is the 
number of  individual studies or specimens being studied (e.g., 30 in the above example).

Applying this formula to the above data, the following results are obtained:

For AHI:

ICCAHI =
85.448 - 0.247

85.448 + 0.247(2 - 1) + 2(2.023 - 0.247) / 30
= 0.993

For AI:

ICCAI =
152.992 - 37.509

152.992 + 37.509(2 - 1) + 2(166.01 - 37.509) / 30
= 0.580
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Calculation of the Intraclass 
Correlation Coefficient

DEYO’S METHOD

An equivalent formula described by Deyo et al.2 can easily be applied using a pocket 
calculator or a standard computer spreadsheet. The layout for this calculation requires 
obtaining the difference between the values (e.g., scores) for each pair of  repeated obser-
vations, as shown in the following table for both the AHI and AI data from Table 8-20.

AHI AI

Study no. Scorer A Scorer B Difference Scorer A Scorer B Difference

1 1.25 1.38 20.13 7.08 8.56 21.48

2 1.61 2.05 20.44 18.60 19.91 21.31

3 5.64 5.50 0.14 20.39 25.17 24.78

. . . . . . .

. . . . . . .

. . . . . . .

29 2.09 2.35 20.26 18.66 18.02 0.64

30 11.09 9.25 1.84 12.50 23.25 210.74

Mean 5.748 5.381 0.367 17.306 20.632 23.327

s 6.702 6.386 0.703 7.682 11.467 8.661

s2 44.918 40.777 0.494 59.017 131.483 75.017

s: standard deviation.

Deyo’s formula uses the numbers shown in bold in the table, namely the mean 
difference (xdiff), the variances (standard deviations squared) for the measurements by 
each scorer (sA

2  and sB
2), and the variance of  the differences (sdiff

2 ):

ICC =
sA

2
+ sB

2
- sdiff

2

sA
2

+ sB
2 + x2

diff - sdiff
2  / n

where n is the total number of  studies (paired observations).
For the above data:

 ICCAHI =
44.918 + 40.777 - 0.494

44.918 + 40.777 + 0.3672 - 0.494/30
= 0.993

 ICCAI =
59.017 + 131.483 - 75.017

59.017 + 131.483 + 3.3272 - 75.017/30
= 0.580

These results are identical to the values obtained from the ANOVA, shown above.
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ChAptEr 1

 1a. No. In order to examine incidence trends as a given birth cohort ages, one needs 
to look along the diagonals. It is clear that the incidence rates increase with 
age within each birth cohort. See the example below, shown in shaded cells for 
the cohort born around 1933—that is, those who were, on average, 22 years 
in 1955. 

   As rates within each age group have consistently increased from birth cohort to 
birth cohort, in each cross-sectional set of  incidence rates the older ages seem to 
have unusually low rates, as they originate from the older cohorts, which had 
lower rates.

  

Calendar Year

Age 1950 1955 1960 1965 1970 1975 1980 1985

20–24 10 15 22 30 33 37 41 44

25–29 8 17 20 24 29 38 40 43

30–34 5 12 22 25 28 35 42 45

35–44 3 12 15 26 30 32 39 42

45–49 2 10 17 19 28 32 39 42

50–54 2 12 15 18 21 33 40 42

55–59 2 10 16 20 25 32 42 44

60–64 2 15 17 19 22 27 43 44

 1b. Birth cohort: allows the examination of  how rates in the population change over 
time in individuals born at approximately the same time, and thus how these 
rates change with age in a longitudinal fashion, regardless of  calendar time.

   Cross-sectional: allows assessment of  the patterns of  disease (or condition) 
burden according to age or any other characteristic at a given point in time. 
Cross-sectional rates provide a ‘snapshot’ of  a given point in time, which may be 
useful for various reasons (e.g., policy, budget, outreach), but can be misleading if  
extrapolated beyond that snapshot (e.g., trying to establish a pattern with aging, 
or causality).

 2a. Not for age, because the age ranges are very broad. For calendar time, the 5-year 
intervals are fairly narrow and, thus, use of  the midpoint is reasonable. When 
intervals are broad, information on trends is lost, as it is assumed that the changes 
within each interval are uniform.
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 2b. Using the midpoint for age, individuals dying at age 10 years in 1973 belong to 
the 1963 birth cohort. However, as 0–19 years is a fairly broad category, it would 
be more accurate to say that individuals aged 0–19 who died in 1973 belong 
to cohorts born from 1954 through 1973 (that is, from [1973 – 19] years old 
through [1973 – less than 1 year old]).

 2c. Birth cohorts are examined by looking at the same age grouping over calendar 
years. For ages 20–69 years, mortality does not seem to have changed much 
across birth cohorts (as the curve is pretty flat). However, for ages 0–19 years, it 
looks like the birth cohort mortality rates decreased a bit across cohorts, starting 
in 1986–1990 (a slight increase is seen in more recent cohorts). The broad age 
groupings, however, render this analysis fairly crude.

 2d. Yes. The rates are higher for those aged 20–69 years than for those aged 0–19 
years in all cohorts. The age differences seem to have become more pronounced 
with time.

 3a. Yes. Within each birth cohort and across the birth cohorts, the incidence increases 
with age.

 3b. No. The separate lines for each birth cohort seem to overlap. For example, in the 
dementia plot, for age ~78 years, there are two data points (for two different birth 
cohorts, 1900 and 1905), indicating that the rate at age 78 years is similar in 
the two cohorts. The same phenomenon is largely seen for many other ages and 
birth cohorts.

 3c. Yes. When there is no cohort effect, the age pattern within each cohort and that 
observed in a cross-sectional analysis tend to be the same.

 4a. A case-cohort design would be ideal, as the same control group, represented by 
a sample of  the total cohort at baseline, could be used as a comparison group 
to multiple case groups. If  a nested case-control study design were chosen, a 
different control group would have to be selected for each case group, which 
would not be cost-effective.

 4b. In a cohort study, cross-sectional associations can be sought at baseline between 
exposures and prevalent outcomes. Its advantages are that they allow identifi-
cation of  associations that can later be confirmed in longitudinal analyses (that 
is, they allow generation of  hypotheses). The disadvantage is that point preva-
lence ratios may not be good estimates of  the relative risks, as prevalence is a 
reflection of  both incidence and duration of  the disease after diagnosis (see also 
Chapter 4). Although cross-sectional results may also inform decisions about 
what measures to add or drop from follow-up exams, epidemiologists should be 
mindful of  the prevalence-incidence bias.

 5a. By matching on ethnic background, the investigators will also match on variables 
related to ethnic background, which may include residence area. As a result, 
cases and controls may be “overmatched,” that is, they may be matched on the 
exposure of  interest.

 5b. Probably not. Little additional efficiency (statistical power) is achieved when the 
ratio of  controls to cases is greater than 4:1 or 5:1.
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ChAptEr 2

 1a. Survival analysis of  20 participants of  a hypothetical prospective study:

  

Follow-up 

time 

(months) Event

Probability of  

death at exact 

time when death 

occurred

Probability of  

survival beyond 

point when death 

occurred

Cumulative proba-

bility of  survival 

beyond time when 

death occurred

   2 Death 1/20 5 0.050 0.950 0.950

   4 Censored – – –

   7 Censored – – –

   8 Death 1/17 5 0.059 0.941 0.894

12 Censored – – –

15 Death 1/15 5 0.067 0.933 0.834

17 Death 1/14 5 0.071 0.929 0.775

19 Death 1/13 5 0.077 0.923 0.715

20 Censored – – –

23 Death 1/115 0.091 0.909 0.650

 1b. Cumulative survival probability 5 0.65
 1c. See graph:
  

Survival curves for 20 participants of a hypothetical propective study.
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 1d. Of  the 20 alive at the beginning of  the study, 14 are alive at the end of  the 
follow-up period; thus, the proportion surviving is 14 4 20 5 0.70 5 70%.

 1e. The survival analysis adjusts for varying lengths of  follow-up, i.e., it takes into 
account that not all individuals are observed for the entire follow-up period. In 
other words, the simple proportion does not take into consideration the censored 
observations, whereas the survival analysis does.

 1f. 10 individuals who were neither censored nor died contributed with 24 person-
months of  follow-up. Thus, the total number of  person-months for these 
individuals was 24 3 10 5 240, or 240 4 12 5 20 person-years of  follow-up. 
Those who either died or were censored contributed to the following person-
months of  follow-up:

  
Person Event Total follow-up (months)

1 Death 2

2 Censored 4

3 Censored 7

4 Death 8

5 Censored 12

6 Death 15

7 Death 17

8 Death 19

9 Censored 20

10 Death 23

Total 127

  Person-time: 2 1 4 1 7 1 8 1 12 1 15 1 17 1 19 1 20 1 23 5 127 person-
months, or 127 4 12 5 10.6 person-years

   Thus, the total number of  person-years of  observation (including those who 
were followed up for the 2-year total period) 5 20 1 10.6 5 30.6

Death rate per 100 person-years 5 6 4 30.6 5 19.6

 1g. No. of  person-years in the first year = (15 3 12) 1 2 1 4 17 1 8 1 12 5 213 
person-months 5 17.75 person-years

Rate in first year 5 2 4 17.75 5 0.113 5 11.3/100 person-years

  No. of  person-years in the second year 5 (10 3 12) 1 3 1 5 1 7 1 8 1 11 5 154 
person-months 5 12.83 person-years

Rate in second year 5 4 4 12.83 5 0.312 5 31.2/100 person-years

 1h. No. The rates do not appear to be homogenous within the 2-year period (the rate 
in the second year is almost 3 times that in the first year). Thus, it is not appro-
priate to calculate the rate per person-year for the total two-year period; rates 
should be reported separately for the first and for the second year of  follow-up.

 1i. Participants lost to follow-up (censored observations) have the same probability 
of  survival as those who are not lost to follow-up. In other words, there is indepen-
dence between censoring and survival.
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 1j.  Proportion dying 5 6 4 20 5 0.30 5 30%

Odds of  dying 5 6:145 0.43:15 43:100 (43%)

  Note that the odds are usually reported as a percent (in the example, 43%). 
However, as the absolute odds is a ratio of  events to nonevents, in this example it 
may make more sense to report it as 43:100, that is, for every 43 deaths, there are 
100 people who survived.

 1k. As death is fairly frequent in this group of  people, the odds of  death is much 
higher than the proportion dying.

 2a. 

Number of  
individuals

Number 
with 

probable AD
Person-

years

Incidence 
density of  

AD per 100 
person-years

Average 
duration of  

follow-up 
(years)

All subjects 3,099 263 18933 1.389 6.11

, 80 years 2,343 157 15529 1.011 6.63

 80 years 756 106 3404 3.114 4.50

APOE  ́4(1) 702 94 4200 2.238 5.98

APOE  ́4(2) 2,053 137 12894 1.063 6.28

 2b. Age and perhaps APOE e4 status are also risk factors for death from other 
causes, thus, decreasing duration of  follow-up for those older than 80 years, and 
individuals with APOE ́4(1). If  the older persons and those with APOE ́4(1) 
(“exposed”) are more likely to be lost to follow-up (compared to their counter-
parts), incidence of  AD will be underestimated, more so in the exposed group 
than in the unexposed group. Duration of  follow-up is particularly important for 
the age-AD association, as older individuals have a shorter mean survival time 
(shorter duration of  follow-up).

 2c. No. Because the incidence of  AD increases with age, the risk of  AD will increase 
over the follow-up period. The incidence should be reported over relatively short 
time intervals, within which the risk tends to be homogenous.

 3a. Using absolute numbers, odds of  hypertension history: cases 5 70/248 5 0.28; 
controls 5 30/363 5 0.08

 3b. Using percentages, odds of  hypertension history: cases 5 22:78 5 0.28; controls 
5 7.6/92.4 5 0.08

 3c. Odds can be calculated using either the absolute numbers of  exposed and 
unexposed, or their relative frequencies.

 3d. Because the proportion (prevalence) of  a history of  hypertension is much lower 
in controls (7.6%) than in cases (22.0%). The odds tends to approximate the 
proportion when the proportion is low.

 4. The relationship of  prevalence to duration and incidence is expressed by the 
formula,

Point Prevalence
1 - Point Prevalence

= Incidence * Duration
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  Thus, average duration can be estimated as,

Duration =
Point Prevalence

1 - Point Prevalence
*

1
Incidence

  Thus,

Duration =
0.56

1 - 0.56
*

1
0.05

= 25.45 years

ChAptEr 3

 1a. 

Radiation 
dose (REm)

Total 
population

Cancer 
cases

Cumulative* 
incidence

Relative 
risk

Odds ratio 
(comparing 

cases to 
noncases)

Odds ratio 
(comparing 

cases to total 
population)

0–0.99 3642 390 0.107 1.0 1.0 1.0

1–4.99 1504 181 0.120 1.12 1.14 1.12

5 1320 222 0.168 1.57 1.69 1.57

*Assumes no losses to follow-up.

  For the “case vs noncase” analysis, the number of  noncases needs to be 
calculated:

Radiation dose (REm) Cases Noncases*

0–0.99 390 3252

1–4.99 181 1323

5 222 1098

*Example: For 0–099 5 3642 2 390 5 3252

  Using noncases as controls:

OR1 - 4.99 =
181/1323
390/3252

= 1.14

OR
Ú5 =

222/1098
390/3252

= 1.69

  Using total population as controls:

OR1 - 4.99 =
181/1504
390/3642

= 1.12

OR
Ú5 =

222/1320
390/3642

= 1.57
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 1b. The odds ratio based on noncases as controls is slightly farther away from 1.0 
than the RR. When using the total population as the control group, the odds ratio 
of  exposure yields the relative risk. For example, for the category 5, the relative 
risk calculated in a “prospective” mode is identical to the exposure odds ratio 
when the odds of  exposure in cases is divided by the odds of  exposure in the total 
population, as follows:

Relative Risk =
222/1320
390/3642

=
222/390

1320/3642
= 1.57

 1c. #4 (the OR is always farther away from 1 than the RR), as the “built-in” bias is 
always  1 when RR  1 and , 1 when RR , 1. (When the OR is 1.0, the RR is 
also 1.0)

 1d. Dose-response (See also Chapter 10, Section 10.2.4)

 2a. A case-cohort study, that is, a case-control study within a defined cohort in which 
the control group is a random sample of  the total cohort at baseline.

 2b. Yes, the same control group (cohort sample) could be used; for every type of  case, 
the exposure odds ratio would yield the relative risk.

 2c. Prevalence of  exposure (IL-6 values in the highest quintile) 5 0.20

Relative risk 5 1.9

  Percent population attributable risk using Levin’s formula:

Percent Population AR =
0.20(1.9 - 1.0)

0.20(1.9 - 1.0) + 1.0
* 100 =

0.18
1.18

* 100 = 15.2%

 3a. Case-based case-control study using hospital patients as cases and their matched 
controls.

 3b. For age group 55, OR 5 [184(163218)] / [64(23126)] 5 4.66
  For age group 55, OR 5 [524(237252)] / [164(165216)] 5 2.62
 3c. The odds of  developing B-NHL is 2.62 times greater for individuals who are 

positive for HCV than for those without HCV. (Even in a case-control study, the 
interpretation of  the odds ratio is always “prospective”).

 3d. HCV was tested after B-NHL in cases and the diseases in controls had started. 
Thus, temporality cannot be determined in this study (see also Chapter 10).

 4a. Incidence 

BMI
,18.5:      285/(285 1 1,451) 1 0.164

BMI18.5 2 24.9:  304/(304 1 1,684) 5 0.153

BMI
25:       21/(21 1 231) 5 0.083

  Odds 

BMI
,18.5:        285/14515 0.196

BMI18.5 – 24.9:     304/1684 5 0.180

BMI
25:        21/2315 0.091
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  Odds ratios

BMI
,18.5:       2.2

BMI18.5 2 24.9:  2.0 
  Relative Risks

BMI
,18.5:      2.0

BMI18.5 2 24.9:  1.8

 4b. The assumption is fairly robust. Even with incidence values as high as near 20% 
in the BMI categories, , 18.5 and 18.5 2 24.9, the odds ratios are fairly similar 
to the relative risks.

ChAptEr 4

 1a. Observed OR = (162 ÷ 268) / (133 ÷ 418) = 1.9
 1b. Total number of  cases 5 162 1 268 5 430: 
  Sensitivity of  self-report in cases = 0.90. Thus, truly obese = 162/0.90 = 180 

and truly nonobese 5 4302180 5 250

Total number of  controls 5133 1 418 5 551

  Sensitivity of  self-report in controls 5 0.95. Thus, truly obese 5 133/0.95 5 140 
and truly nonobese 5 5512140 5 411

“Corrected” OR 5 (180 4 250) / (140 4 411) 5 2.1

 1c. There is differential misclassification of  obesity status, resulting from the fact that 
the sensitivity of  self-reported obesity is different between cases and controls. 
(When there is differential misclassification, the OR can be biased in any direction 
depending on what the patterns of  misclassification in cases and controls are; 
e.g., closer to 1.0, as in this example).

 1d. Individuals in the validation study are not representative of  the entire study 
population (e.g., validation study participants included more females, higher 
educated, and perhaps they are also different with regard to other variables 
related to the self-report validity). Thus, it may be inappropriate to generalize the 
validation results to the entire study population. 

   Another limitation is that validation results are based on a small sample, and are 
thus subject to large sample variability.

 2. Individuals who undergo vasectomy may have better access to health care, and 
thus had their subclinical disease more often diagnosed.

   In case-control studies, recall bias may occur, whereby cases are more likely to 
recall past vasectomy than controls (although, given the fact that this exposure is 
“objective,” this is not likely).

   Publication bias, whereby only “positive” results are reported in peer-reviewed 
journals.

   (Not discussed in this chapter, there may be differences between vasectomized 
and nonvasectomized men that are relevant to the observed findings, such as 
level of  sexual activity. This would be an example of  confounding, and is discussed 
in detail in Chapter 5.)
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 3. Mortality is not subjected to lead time bias. When survival is estimated, lead time 
bias needs to be known and taken into account.

 4a. No. Women with certain characteristics known to be related to breast cancer 
are more likely to participate in the program—for example those with a family 
history of  breast cancer, those with benign breast disease, and those with a higher 
socioeconomic status (and thus better educational level and health awareness). 
Incidence in those taking advantage of  the program is therefore expected to be 
higher than in the total population of  women aged 50–59 years.

 4b. Cases detected at the first exam are point prevalent cases. Given the low point 
prevalence, the simplified formula expressing the relation between point preva-
lence and incidence can be used: Prevalence ≈ Incidence 3 Duration; thus,

Duration ≈ Point Prevalence 4 Incidence. 

  Using the incidence and point prevalence values above,

Duration ≈ 200/100,000 4 100/100,000 5 2 years

  Using the more precise, correct formula, Point prevalence 5 Incidence 3 Duration 
3 (1 2 Point prevalence) and thus,

Duration 5 (Point prevalence) 4 [Incidence 3 (1 2 Point prevalence)] 

  In this example, Duration 5 0.002 4 [0.001 3 (1 2 0.0020] 5 2.004 years
  (Note the use of  three decimal places for the duration of  the detectable clinical 

phase of  breast cancer when using the correct formula aimed at highlighting the 
fact that, when the prevalence is very low, the duration values using either the 
correct or the simplified formula are virtually identical.)

 4c. Lead time is the time between early diagnosis using a screening test (followed by 
a confirmatory diagnostic test) and the time when the disease would have been 
diagnosed by usual clinical practice (that is, if  screening had not been done).

 4d. Survival time appears to be longer in those who undergo the screening procedure 
(above and beyond any possible true benefits brought about by the screening.) This 
longer survival reflects the fact that diagnosis was advanced by the application of  
the screening test (vis-à-vis when it would have occurred without screening).

 4e. The average lead time for point prevalent cases is about one-half  of  the duration 
of  the detectable preclinical phase, i.e., 2 years 4 2 5 1 year. This estimation 
is based on the assumption that the sensitivity of  the test is homogeneous 
throughout the duration of  the detectable preclinical phase.

 4f. The average lead time for incident cases will increasingly approximate the 
duration of  the detectable preclinical phase when screenings are done more and 
more frequently. This is because cases are more likely to be detected earlier in the 
detectable preclinical phase.

ChAptEr 5

 1a. The variable needs to be associated with the exposure.
  The variable needs to be associated with the outcome.
  The variable must not be in the causal pathway between exposure and outcome.
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 1b. The easiest way to assess confounding is to stratify cases and controls by  
the potential confounding factor, and then examine the association between 
case-control status and the potential risk factor in each stratum, as follows:

  

Smokers Nonsmokers

Lung cancer 
cases Controls

Lung cancer 
cases Controls

Alcohol 
drinkers

Alcohol 
drinkers

Nondrinkers Nondrinkers

OR 5 OR 5

  When this table is used, absence of  confounding is suggested by the fact that the 
odds ratios for alcohol stratified by smoking are similar to the pooled (crude) odds 
ratio (an exception is noncollapsibility–see Chapter 5, section 5.4.2).

   Alternatively, the dual relationship between smoking and both exposure 
(alcohol) and outcome can be assessed:

  

Alcohol 
drinkers Nondrinkers

Lung cancer 
cases Controls

Smokers Smokers

Nonsmokers Nonsmokers

OR 5 OR 5

   Note that, if  there is no interaction between smoking and drinking, the odds 
ratios reflecting the relationship of  smoking to drinking should be similar in 
cases and controls. It is, however, customary to assess the relationship between 
the potential confounder and the potential risk factor of  interest in controls, 
which (theoretically at least) represent a sample of  the cases study base, that is, 
the population from which cases developed.

   (Note, in addition, that the suspected confounding variable cannot be in the 
causal pathway between the potential risk factor of  interest and the outcome, 
that is, it cannot be a mediator. In this example, it does not make sense to consider 
smoking as a mediator for the relation of  alcohol to lung cancer.)

 2a. Triglyceride level is a positive confounder of  the association between serum 
dioxin and diabetes but, as the odds ratio remains  1.0 upon adjustment, 
the association cannot be entirely explained by the confounding effect of  
triglycerides.

 2b. Serum triglycerides explain part of  the association between serum dioxin  
and diabetes, but other variables may be in the causal pathway of  the  
dioxin → diabetes association, explaining the fact that the association did not 
disappear after adjustment for triglycerides. There could also be a direct effect of  
dioxin on diabetes by means of, for example, pancreatic damage (that is, without 
any effects of  mediating factors).
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 3. By Situation No.: 
  #1 – Positive confounding
  #2 – Negative confounding
  #3 – Negative confounding
  #4 – Positive confounding

 4a. The sentence lengths were longer at the later period. The fact that the suicide 
rate was attenuated after adjusting for sentence length represents positive 
confounding, which occurs when the exposure-confounder and the outcome-
confounder associations are in the same direction. We know from the footnote 
to the table that increased sentence length is associated with increased suicide 
rate, so the confounder-calendar time (exposure) association must be in the same 
direction, i.e., later time period associated with longer sentences. 

 4b. Temporal changes in other variables, i.e., characteristics of  the population of  
prisoners that could also be related to suicide risk should also be considered 
(e.g., whether there are other confounders or selection biases that changed over 
time). In other words, as with all attempts to infer causal associations, one must 
consider residual confounding, other potential biases, and other potential causes 
for the temporal change in suicide rates.

 5. Statistical significance is not a good criterion to establish the presence of  a 
confounding effect. Because smoking is very strongly related to the disease, even a 
small difference between cases and controls may explain an association between 
X and Y. In this example, it would be important to adjust for smoking in order to 
see whether the adjusted odds ratio differs from the unadjusted odds ratio.

ChAptEr 6

 1a. Alcohol 
drinking Anti-HCV

# of   
persons

Incidence rates 
(per 100,000)

Relative  
risk

Attributable risk 
(per 100,000)

absent negative 8968 78.7 Reference Reference

absent positive 2352 127.1 1.61 48.4

present negative 461 309.7 3.94 231.0

present positive 90 384.9 4.89 306.2

 1b. Expected joint relative risk 5 1.61 3 3.94 5 6.34
  Expected joint attributable risk 5 48.4 1 231.0 5 279.4 per 100,000
 1c. The expected joint relative risk (6.34) is greater than the observed joint relative 

risk (4.89), thus, denoting negative multiplicative interaction. On the other hand, 
the expected joint attributable risk in the exposed (279.4/100,000) is lower than 
the observed joint attributable risk (306.2/100,000), denoting a positive additive 
interaction.

 1d. Using alcohol as the effect modifier, the relative risks and attributable risks for 
those exposed to HCV are:

  Relative Risks for anti-HCV

Alcohol drinking absent: 127.1 4 78.7 5 1.61

Alcohol drinking present: 384.9 4 309.7 5 1.24
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  Attributable Risks in Individuals Exposed to HCV

Alcohol drinking absent: 127.1 2 78.7 5 48.4/100,000

Alcohol drinking present: 384.9 2 309.7 5 75.2/100,000

   Thus, the homogeneity strategy confirmed the findings obtained from the 
comparison between expected and observed joint effects: the relative risk for 
anti-HCV exposure is lower for the alcohol present than for the alcohol absent 
stratum (negative multiplicative interaction), but the anti-HCV attributable risk 
is higher for the alcohol present than for the alcohol absent stratum (positive 
additive interaction).

   Note that the same inference pertaining to heterogeneity is made when using 
anti-HCV as the effect modifier. The relative risks and attributable risks in those 
exposed to alcohol drinking are:

  Relative Risks

Anti-HCV negative: 309.7 4 78.7 5 3.93

Anti-HCV positive: 384.9 4 127.1 5 3.02

  Attributable Risks

Anti-HCV negative: 309.7 2 78.7 5 231/100,000

Anti-HCV positive: 384.9 2 127.1 5 257.8/100,000

   The relative risk for alcohol drinking is greater in those negative than in those 
positive for anti-HCV (negative multiplicative interaction), but the attributable 
risk in those exposed to alcohol drinking shows the inverse pattern (positive 
additive interaction). These findings confirm the fact that interaction is a recip-
rocal phenomenon, that is, if  alcohol modifies the association of  HCV with 
hepatocellular carcinoma, then, by definition, HCV will modify the association of  
alcohol with hepatocellular carcinoma.

 2a. There is a negative multiplicative interaction and a positive additive interaction 
between diabetes and a previous MI. The relative risk is smaller in the stratum 
of  diabetes present (negative multiplicative interaction) and the attributable risk 
in those exposed to a previous MI is greater in the stratum of  diabetes present 
(positive additive interaction).

 2b. No. The adjusted relative risk and attributable risk would be averages, which 
ignore the heterogeneity by presence of  diabetes.

 2c. When incidence proportions/rates/risks are high in the reference category 
(individuals without a prior MI), there is a tendency for the relative risk to 
approach 1.0. Note that the incidence is much higher in those without a previous 
MI in the stratum with diabetes (20.2%) than in the stratum without diabetes 
(3.5%). As (theoretically) the maximum incidence in any strata is 100%, the 
maximum relative risk associated with a prior MI for those with diabetes would 
be 100% 4 20.2% 5 4.9, whereas in those without diabetes, it could reach 100% 
4 3.5% 5 28.6.

 3a. It is the odds ratio of  heavy smokers in those unexposed to asbestos, i.e., 45.4.
 3b. It is the odds ratio of  asbestos exposure ≥ 2.5 fiber-years in never smokers, 

i.e., 10.2.
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 3c. Joint expected odds ratio:

Additive model: 10.2 + 45.4 – 1.0 = 54.6

Multiplicative model: 10.2 × 45.4 = 463.1

 3d. For the additive model, the joint expected odds ratio is lower than the joint 
observed odds ratio; thus, there is positive additive interaction.

   For the multiplicative model, the joint expected odds ratio is larger than the 
joint observed odds ratio; thus, there is negative multiplicative interaction.

 4a. Because the interaction is qualitative, it is present in both scales.
 4b. For smokers only, there was negative confounding by the set of  variables 

adjusted for.

Chapter 7

 1a.  1st criteria: Yes, this criterion is met: the odds of  engaging in gardening are lower 
for older than for younger persons.

  
Gardening No gardening

Age , 65 years 70 1 299 5 369 20 1 198 5 218

Age  65 years 55 1 15 5 70 40 1 25 5 65

ORolder vs younger 5 70/65 4 369/218 5 0.64

  Note: comparison of  proportions (instead of  odds) will work as well.
  2nd criteria: Yes, the criterion is met.
  

Low back pain No low back pain

Age , 65 years 70 1 20 5 90 299 1 198 5 497

Age  65 years 55 1 40 5 95 15 1 25 5 40

ORolder vs younger 5 95/40 4 90/4975 13.1

  Note: Comparison of  proportions will work as well.

  3rd criterion: Age is not in the causal pathway and, thus, this criterion is also met 
here (for age to be in the causal pathway, gardening would have to “cause” age; 
i.e., gardening → increased age → back pain). 

 1b.  
Low back pain No low back pain

Gardening 70 1 55 5 125 299 1 15 5 134

No gardening 20 1 40 5 60 198 1 25 5 233

OR 5 125/314 4 60/223 5 1.48

 1c.  ORMH 5 (70 3 198/587 1 55 3 25/135) / (20 3 299/587 1 40 3 15/135) 5 
2.31
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 1d.  Yes. Conducting this adjustment is appropriate because the stratified OR’s above 
are 2.32 (for the younger) and 2.29 (for the older), thus approximately equal.

 1e. Age is a negative confounder of  the association between gardening and low back 
pain. Thus, the adjusted OR is further away from the null than the crude OR.

  Alternative answer: Older age is inversely associated with exposure and positively 
associated with the outcome.

   Note that, because of  the homogeneity of  stratum specific ORs (about 2.3 in 
both strata), there is no evidence of  age being an effect modifier.

 2a.  For the highest level of  alcohol drinking, there seems to be positive confounding 
(as the OR becomes closer to 1.0 after multiple adjustment.)

   For the category ,6 days/week, the adjusted OR is the same as the crude OR, 
indicating that the set of  variables included in the adjusted model did not 
confound the association.

 2b.  No, as the shape of  the function seems to be an inverted U, rather than linear.

 3a. 
Expected number of  cases

Smoking
Standard  

population Women men

Current 5000 0.0053 3 5000 5 26.5 0.0115 3 5000 5 57.5

Never 2000 0.0013 3 2000 5 2.6 0.0047 3 2000 5 9.4

Total 7000 29.1 66.9

Smoking  
adjusted rate

29.1/7000 5 4.2/1000 66.9/7000 5 9.5/1000

Rate ratio Reference 2.3

Absolute  
difference in rates

Reference 5.3/1000

 3b.  Rate ratios

Current smokers: 0.0115/0.0053 5 2.2

Never smokers: 0.0047/0.0013 5 3.6

  Absolute differences in rates

Current smokers: 11.5 2 5.356.2/1000 person-years

Never smokers: 4.7 2 1.353.4/1000 person-years

 3c.  There is a negative multiplicative interaction (rate ratio for gender is lower in 
current than in never smokers) and a positive additive interaction (absolute 
difference in rates is higher for current than for never smokers).
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 3d. Expected number of  cases

Smoking
Standard  

population Women men

Current 500 0.0053 3 500 5 2.7 0.0115 3 500 5 5.8

Never 10,000 0.0013 3 10,000 5 13.0 47.0

Total 10,500 15.7 52.8

Smoking  
adjusted rate

15.7/10,400 5 1.5/1000 5.1/1000

Rate ratio Reference 3.4

Absolute  
difference in rates

Reference 3.6/1000

 3e.  Because the standard population sample size for never smokers is much larger 
than that for smokers, both the relative risk and the attributable risk approximate 
those of  never smokers.

 3f.   When the confounder is also an effect modifier, association measures may not 
be similar across populations with different distributions of  the confounder, and 
will tend to approximate the value of  the measure obtained in the category of  the 
standard population with the larger sample size. In other words, if  the rate ratios 
are not homogeneous across strata of  the confounder, the adjusted rate ratio will 
vary according to the composition of  the standard population.

 4a.  

Observed 
numbers of  

incident cases

Expected 
numbers of  

incident cases

 
Age

 
Pop A

 
Pop B

Incidence 
rates

 
Pop A

 
Pop B

“Standard” 
rates

 
Pop A

 
Pop B

45–54 2000 400 0.01 20 4 0.005 10 2

55–64 800 600 0.015 12 9 0.007 5.6 4.2

65–74 400 2500 0.025 10 62.5 0.02 8 50

Total population 3200 3500 – – – 12/1000 – –

Total number  
of  cases

– – – 42 75.5 – 23.6 56.2

Standardized 
incidence ratio

– – – – – – 1.78 1.34

 4b.  A standardized incidence ratio (SIR) estimates whether the rate (or risk) is the same 
(SIR 5 1.0), greater (SIR  1.0) or lower (SIR , 1.0) in each study population 
than in the population that was used as a source of  the “standard” rates.

 4c.  The standardized incidence (or mortality) ratio expresses only the comparison 
between each population and the population that served as the source of  standard 
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rates. Note that the age distributions of  populations A and B in this exercise are 
very different, which renders the comparison between the two standardized 
incidence ratios inappropriate. In other words, these values are not standardized 
to the same (standard) population.

 5a.  Yes. Sunburn score has very different distributions in the groups, and it is also 
associated with mean number of  new nevi on follow-up. Thus, it can be concluded 
that it is a confounding variable.

 5b. 
Sunscreen Control “Standard”

Sunburn 
score N

(a)  
Mean  

new nevi N

(b)  
Mean  

new nevi
(c)*  

Total N (d) 5 (a) 3 (c) (e) 5 (b) 3 (c)

Low 50 20 180 50 230 4600.00 11,500.00

High 172 60 56 90 228 13,680.00 20,520.00

Total – – – – 458 18,280.00 32,020.00

*Standard population

  Sunburn score-adjusted mean number of  new nevi in sunscreen group 5 
18,280/458 5 39.91

  Sunburn score-adjusted mean number of  new nevi in control group 5 
32,020/458 5 69.91

  Sunburn score-adjusted mean [control – sunscreen] difference 5 
69.91239.915 30 

 5c.  Yes. The differences are homogeneous across strata (in this example, mean 
[control2sunscreen] difference 5 30 for both strata of  sunscreen score. 
Thus, any standard set of  weights (standard population) would yield the same 
estimates. When using mean differences of  continuous variables, additive inter-
action is evaluated. In this example, homogeneity of  the differences between the 
control and intervention groups indicates that there is no additive interaction. 
When there is no additive interaction, any standard population would yield the 
same adjusted mean differences (or rates/risks).

 5d.  If  only the facial freckle-adjusted mean difference in development of  new nevi 
had been reported, the heterogeneity seen in the table would have been missed. 
This information is useful for determining which children would be likely to 
benefit from sunscreen. In this example, and assuming that the results are valid 
and precise, children with 10% of  the face covered by freckles would not benefit 
from sunscreen use with regard to development of  new nevi.
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 6. 
Type of  

matched  
set Exposed? Case Cont Total

No. of  
matched 

sets Num Den

A Yes 1 0 4 40 3/4 0

No 0 3 – – – –

B Yes 1 1 4 60 2/4 0

No 0 2 – – – –

C Yes 1 2 4 12 1/4 0

No 0 1 – – – –

D Yes 1 3 4 10 0 0

No 0 0 – – – –

E Yes 0 0 4 30 0 0

No 1 3 – – – –

F Yes 0 1 4 5 0 1/4

No 1 2 – – – –

G Yes 0 2 4 7 0 2/4

No 1 1 – – – –

H Yes 0 3 4 20 0 3/4

No 1 0 – – – –

  There are 8 types of  matched sets, according to the combination of  presence or 
absence of  exposure in cases and controls. Each matched set (one case and three 
matched controls) should be considered as a separate stratum. For example, for 
type set A, there is one exposed case and three unexposed controls. Thus, using 
the Mantel-Haenszel approach, the numerator pertaining to each of  this type of  
matched set is (1 3 3) 4 4 5 0.75. As there are 40 sets of  this type, this number 
should be multiplied by 40. The same approach is used for each type of  set in the 
numerator and in the denominator. Using set F as another example, the denomi-
nator is (1 3 1) 4 4 5 0.25. As there are 5 matched sets of  this type, this number 
should be multiplied by 5. And so on.

  Numerator 5 (40 3 .75) 1 (60 3 .5) 1 (12 3 .25) 1 0 1 0 1 0 1 0 1 0 5 63
  Denominator 5 0 1 0 1 0 1 0 1 0 1 (5 3 .25) 1 (7 3 .5) 1 (20 3 .75) 5 19.75
  OR (M-H) 5 63/19.75 5 3.19

 7a.  The log odds of  impaired glucose tolerance increases by 3.625 per unit increase 
in waist/hip ratio, after simultaneous control for body mass index, diabetogenic 
drugs, and regular exercise.

   The log odds ratio of  impaired glucose tolerance is 1.664 higher in those who 
don’t exercise regularly compared with those who exercise regularly, after simul-
taneous control for BMI, waist/hip ratio, and use of  diabetogenic drugs.
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 7b.  OR 5 exp (regression coefficient)

  95% CI lower limit 5 exp (regression coefficient 2 (1.96 3 se))

  95% CI upper limit 5 exp (regression coefficient 1 (1.96 3 se))
  

Regression  
coefficient SE OR

95% CI  
lower limit

95% CI 
upper limit

BMI (per 1) 0.077 0.032 1.08 1.01 1.15

WHR (per 1) 3.625  1.67 37.52 1.42 990.49

Drugs (yes 5 1) 0.599 0.302 1.82 1.01 3.29

Exercise (no 5 1) 1.664  0.74 5.28 1.24 22.52

 7c.  Waist/hip ratio: e3.625 5 37.52→ The odds of  impaired glucose tolerance is 37.5 
greater per unit difference in waist/hip ratio, after simultaneous control for 
BMI, regular exercise, and use of  diabetogenic drugs. Note that the extraordi-
narily high magnitude of  this OR is a consequence of  the extraordinarily large 
unit that defines it: a difference in one unit in the W/H ratio would correspond 
to the comparison of  two persons with extreme (almost biologically implausible) 
W/H ratios (e.g., W/H ratio 5 1.5—or waist circumference 50% larger than hip 
circumference—vs a W/H ratio 5 0.5—or waist circumference half  of  the hip 
circumference). In this particular case, a more reasonable (more realistic and 
more informative) unit for reporting this association might be, for example, a 
0.1 unit difference; i.e:

OR0.1 W/H ratio 5 e3.62530.1 5 1.43

  Regular exercise: e1.664 5 5.28 → The odds of  impaired glucose tolerance is 
5.28 greater in those who do not exercise regularly than in those who exercise 
regularly, after simultaneous control for BMI, waist/hip ratio, and use of  diabeto-
genic drugs.

 7d.   No. In general, it is not a good idea to compare association strengths based on the 
values of  the coefficients or odds ratios. Not only variables differ in their biological 
mechanisms, but in addition the magnitude of  the coefficients (or derived odds 
ratios) depend on the units, which are arbitrarily defined.

 7e.   e0.01 3 3.625 5 1.037  1.04

95% CI 5 e{0.01 3 3.625  1.96 3 0.1 3 1.670} 5 (1.004, 1.071)   (1.00, 1.07)

 8a.  b1 5 An increase in age of  one year corresponds to an average increase in plasma 
fibrinogen concentration of  0.018 mg/dL, after simultaneously controlling for 
sex, race, cigarette smoking, and body mass index (BMI).

  b4 5 Those who smoke 1–19 cigarettes per day have an average concentration 
of  plasma fibrinogen that is 12.2 mg/dL higher than that of  nonsmokers, after 
simultaneously controlling for age, sex, race, and BMI.

 8b.  [√] Body mass index but not cigarette smoking is a positive confounder of  the 
association between race and plasma fibrinogen levels.
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Chapter 8

 1a.  Sensitivity 5 18/19 5 0.95
  Specificity 5 11/30 5 0.37
  Positive predictive value 5 18/37 5 0.49
  Negative predictive value 5 11/12 5 0.92
 1b.  The test should not be recommended because the test’s validity, particularly its 

specificity, is poor. The poor validity would result in substantial misclassification. 
Because of  the poor specificity, many people classified as having a cholesterol 
 200 mg/dL would in reality have a lower cholesterol concentration (i.e., the 
test has a low positive predictive value).

 1c.  Yes. As stated above, there is a graded (“dose-response”) relationship of  choles-
terol with coronary heart disease. Thus, the investigators should have examined 
cholesterol as a continuous variable, and calculated the intraclass correlation 
between the results obtained by the finger-stick test and those obtained in the 
standard laboratory.

 2a.  Quality assurance: procedures that aim at preventing bias and imprecision, 
which are conducted prior to data collection activities.

   Quality control: procedures that aim at correcting bias and imprecision, which 
are conducted after the onset of  data collection.

  
 

Activity
Quality 

assurance
Quality  
control

Preparation of  manuals of  operation √

Over-the-shoulder observation of  interviews during the 
study’s data collection phase

√

Determination of  interobserver reliability during the study’s 
data collection phase

√

Certification of  interviewers √

Recertification of  interviewers √

Examination of  intralaboratory reliability using phantoms 
based on collection of  blood samples from the study 
participants

√

Assessment of  the validity of  two data collection instruments 
to decide which instrument should be used in the study

√

Duplicate readings (with adjudication by a third reader) 
of  X-rays for confirmation of  an outcome in an ongoing 
cohort study

√

Training of  interviewers √

Pretest of  a questionnaire √
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 3a.  Unweighted kappa

  Observed agreement: (10 1 12 1 5) 4 30 5 0.90

  Expected agreement: [(10 3 10) 1 (13 3 14) 1 (7 3 6)] 4 302 5 0.36

   Unweighted Kappa =
(Observed agreement) - (Expected agreement)

1.0 - (Expected agreement)

   =
0.90 - 0.36
1.0 - 0.36

= 0.84

  Weighted kappa

  Observed agreement: [1.0 (10 1 12 1 5) 1 0.7(1 1 2)] 4 30 5 0.97

  Expected agreement: {1.0 [(10 3 10) 1 (13 3 14) 1 (7 3 6)} 1 0.7 [(13 3 6) 1 
(7 3 14)]} 4 302 5 [1.0 (100 1 182 1 42) 1 0.7 (78 1 98)] 4 900 5 (324 1 
123.2) 4 900 5 0.50

    Weighted Kappa =
(Observed agreement) - (Expected agreement)

1.0 - (Expected agreement)

    =
0.97 - 0.50
1.0 - 0.50

= 0.94

 3b.   The excellent agreement (as expressed by a high kappa value) is encouraging. 
However, it would be important to know more about specific reasons why there 
was some disagreement. Were the procedures used by the observers exactly the 
same? Did the measurements of  height and weight pose difficulties?

 3c.  When there is a clearly discernible ranking with regard to the different levels of  
disagreement in a multi-categorical variable, and tolerance for certain levels of  
disagreement vis-à-vis the purposes of  the study.

   The use of  a weight of  0.7 for a one category disagreement in this example was 
somewhat arbitrary, although based on the investigators’ perception of  the need 
to give some “credit” to this level of  disagreement; it seemed reasonable to tolerate 
the fact that, for 3 participants, classification was discrepant by one category.

 4a.  For each pair of  measurements, the variance is,

Vi = a
2

j = 1
(Xij - Xi)

2

  and, thus, the standard deviation is

SD = 2Vi

  The coefficient of  variability is, for each pair of  measurements (where X is the 
mean of  the two estimates),

CVi =
SDi

X
* 100

  The coefficient of  variability is calculated for each pair or measurements and 
averaged (i.e., divided by 10) to estimate the overall coefficient of  variability. The 
table shows the detailed calculation for the first pair of  observations.
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Participant no.
Technician 

A
Technician 

B Coefficient of  variability (%)

1 122 125 V15 (122 2 123.5)2 1  
(125 2 123.5)2 5 4.5;  
SD 5 2.12; Vx

_5 123.5 
CV 5 2.12/123.5 3 100 5 1.72%

2 130 129 0.55

3 118 116 1.21

4 136 135 0.52

5 114 108 3.82

6 116 118 1.21

7 124 120 2.32

8 110 111 0.64

9 140 130 5.24

10 146 141 2.46

Total 1.97

 4b.  (1)  There does not seem to be a systematic difference between technicians, 
particularly in view of  the small number of  observations: In four pairs of  
observations, technician B records higher levels than technician A, who 
records higher levels for the six remaining pairs.

  (2)  Technician A has a strong digit preference: he/she only records final even 
digits. The values recorded by technician B are evenly distributed with regard 
to the final digit (odd or even).

  (3)  The overall coefficient of  variability is fairly small, but for a few pairs of  obser-
vations, the differences vis-à-vis means are reasonably large (participants No. 
5 and 9, and perhaps 7 and 10 as well). These differences should be investi-
gated and highlight the importance of  examining “real” values, rather than 
just a summary measure (coefficient of  variability).

Chapter 9

 1. (1)  Title is sketchy: information on calendar time, characteristics of  the cohort 
(gender, age, place or source, study period; etc.) is missing.

  (2)  It is not clear whether the category “yes” includes drinking irrespective of  
amount, current or past, ever, etc.

  (3)  The relative risk is based on dividing the incidence proportions during the 
follow-up without adjustment for follow-up time; i.e., there is no indication 
of  whether authors considered time to event. (Alcohol is associated with 
smoking, which increases the likelihood of  death, and thus of  a difference in 
the duration of  follow-up between drinkers and non-drinkers.)

  (4) It is not stated whether the relative risks are adjusted for confounding factors. 
  (5) The 95% confidence interval, or “p” value should have been provided.
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 2. Alcohol use was associated with respiratory cancer in unadjusted analyses, but 
not when controlling for the number of  cigarettes smoked (20 words)

 3a. 

Average number of  new nevi 
on follow-up

Freckles % Sunscreen Control Difference in average 
number of  new nevi 

(sunscreen minus 
control)

Difference in average 
number of  new nevi 

(sunscreen minus 
control) as a percentage 
of  the number of  new 

nevi in controls

10 24 24 0 0

20 20 28 28 228.6

30 20 30 210 233.3

40 16 30 214 246.7

 3b. 

Number of new nevi over a 3-year follow-up in white children in grades 1 and 4, randomly 
assigned to high-sun protection factor sunscreen or control group, by percentage of face covered 
by freckles, Vancouver, British Columbia, Canada, 1993–1996.
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 3c.  “The effectiveness* of  the high-sun protection factor sunscreen increased as the 
percentage of  the face covered with freckles increased. It was zero for 10% of  the 

*Effectiveness, rather than efficacy, was likely estimated, as controls were not given a placebo and were not 
advised about use of  a sunscreen. It is, in addition, possible that some children assigned to the control group 
may have used sunscreen.
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face covered by freckles, and almost 50% when the children had 40% of  their 
face covered by freckles. Thus, there seemed to be an additive interaction between 
freckling and sunscreen use, in terms of  reduction of  average number of  new nevi.”

  Alternative statement: “The effectiveness of  the high-sun protection factor 
sunscreen in preventing the development of  new nevi was modified by the 
percentage of  the face covered by freckling. Because the outcome—development 
of  new nevi—is a continous variable, it can be stated that there was an additive 
interaction between sunscreen and percent of  the face covered by freckles.”

  
 4a.  See graph. There are two ways to plot these data: (1) using a log scale in the 

ordinate, or (2) taking the log of  the odds ratio values and plotting these in an 
arithmetic scale.

Odds ratio of mortality according to presence of chronic bronchitis and leisure activity status 
[active (reference), moderate, inactive], the Whitehall Study
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 4b.   Although confidence intervals largely overlap the null odds ratio (1.0), it is inter-
esting that the point estimates suggest that leisure activity may be beneficial 
in those with chronic bronchitis—which warrants the “cliché” statement that 
further studies are necessary.

 5a.  (1)  The order in which variables are described does not follow the order of  
variables shown in the table. 
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  (2)  The authors confuse “no association” with “no statistically significant 
association.” In this table, the strength of  the point estimate for current 
smoking (with a “positive association equivalent” of  1/0.69 5 1.45, which 
is described as “no association”) is virtually identical to that for family history 
(1.46, which is described as “significant”); thus, current smoking may be 
related to colorectal cancer. Judging from the 95% CI for this association, the 
p value for current smoking may well be of  borderline significance.

  (3)  There is no need to repeat in the text all results shown in the table; otherwise, 
why bother with presenting the table?

Chapter 10

 1. Nausea is a confounder for the relation between caffeine intake and spontaneous 
abortion. However, even if  it is confounded by nausea, caffeine intake defines a 
high risk group for spontaneous abortion.

 2. This study’s results emphasize the relevance of  additive interaction for prevention. 
Although the relative risk for a prior history of  MI is higher in nondiabetics than 
in diabetics, the excess absolute risk attributable to a prior MI shows the opposite 
pattern. Assuming the distributions of  diabetes and prior MI to be homoge-
neous in the population, and (as stated in the question) further assuming limited 
resources, the presence of  a positive (synergistic) additive interaction strongly 
suggests favoring diabetic patients with history of  a prior MI as the group in 
which prevention of  CHD should be especially emphasized—notwithstanding 
the observation of  a negative (antagonistic) multiplicative interaction.

 3a. 

Population Cases

Risk  
factor X 

level

 
 

N

 
 

Proportion

 
Relative  

risk

 
 

Risk

 
 

Number

Number 
expected at 

5% risk

 
 

Excess

1 30,000 0.043 Reference 0.05 1500 1500 Reference

2 100,000 0.143 1.5 0.075 7500 5000 2500

3 150,000 0.214 1.75 0.0875 13,125 7500 5625

4 160,000 0.229 2 0.1 16,000 8000 8000

5 130,000 0.186 2.5 0.125 16,250 6500 9750

6 80,000 0.114 3 0.15 12,000 4000 8000

7 40,000 0.057 4 0.2 8000 2000 6000

8 10,000 0.014 5 0.25 2500 500 2000

Total 700,000 1 76,875 41,875

 3b.  2500/76,875 5 3.25%
 3c.   Calculation: All 10,000 individuals in category 8 are moved to category 7, 

which now has 50,000 individuals. The number of  cases in category 7 is now 
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10,000 (50,000 3 0.05 3 4.0) (cases no longer occur in category 8). Thus 
the total number of  cases in the population is 76,375 (compared with the total 
76,875 before the high risk strategy was implemented). The total number of  
cases prevented is, thus, 500.

   As seen in the revised table below, the new number of  cases would be 76,375, or 
only 500 cases prevented.

Population Cases

Risk  
factor  
X level

 
 

N

 
 

Proportion

 
Relative  

risk

 
 

Risk

 
 

Number

Number 
expected at  

5% risk

 
 

Excess

1 30,000 0.043 Reference 0.05 1500 1500 Reference

2 100,000 0.143 1.5 0.075 7500 5000 2500

3 150,000 0.214 1.75 0.0875 13,125 7500 5625

4 160,000 0.229 2 0.1 16,000 8000 8000

5 130,000 0.186 2.5 0.125 16,250 6500 9750

6 80,000 0.114 3 0.15 12,000 4000 8000

7 50,000 0.057 4 0.2 10,000 2500 7500

8 0 0.014 5 0.25 0 0 0

Total 700,000 1 76,375 41,375

 3d. Prevented cases 5 2118 (rounded down)
  Calculation:
  

Risk factor  
level

Original 
population

Population 
after 15% down 

shift
New number of  

cases

Difference between 
cases before and 

after shift

1 30,000 45,000 2250 2750

2 100,000 107,500 8062.5 2562.5

3 150,000 151,500 13,256.25 2131.25

4 160,000 155,500 15,550 450

5 130,000 122,500 15,312.5 937.5

6 80,000 74,000 11,100 900

7 40,000 35,500 7100 900

8 10,000 8500 2125 375

Total 700,000 700,000 74,756.25 2118.75

  Example of  calculation: 1500 persons are shifted from level 8 to level 7, and 
6000 persons are shifted from level 7 to level 6; thus, there remain 35,500 in risk 
factor level 7 (i.e., 40,000 1 1500 2 6000). The new number of  cases in level 7, 
thus, becomes 35,500 3 0.05 3 4.0 5 7100. As previously the number of  cases 
was 8000, the shift resulted in 900 fewer cases.
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 4. There is a multiplicative interaction between smoking and sex, with rate ratios for 
current smoking higher in women than in men. There is also heterogeneity in the 
attributable risks in those exposed to smoking, but in the opposite direction. Also, 
for both women and men, as the rate in former smokers approximates the rate in 
those who never smoked, it can be inferred that smoking cessation is effective. (It 
is never late to stop smoking!)

 5a. Yes. Relative risk point estimates do not differ substantially (all are below 1.75 
and above 1.0).

 5b. Yes, all summary relative risks have approximately the same value.
 5c.  When results from different studies are relatively homogeneous, fixed and 

random effects models should yield the same or very similar summary associ-
ation measures.

 5d.  (1)  The same biases or residual (positive) confounding can be present in all 
studies, moving the relative risk away from the null value of  1.0.

  (2) Publication bias.
 5e. Funnel plots are used to evaluate whether publication bias is present.
 5f.  This funnel plot shows asymmetry around the pooled risk ratio, indicating that 

publication bias is present. As expected, as precision decreases—as expressed by the 
increase in standard errors of  the risk ratios—the risk ratios get further away from 
the average risk ratio. (Note that the SE increases as its values move down in the 
abscissa scale.) The bottom left of  the plot is conspicuously bare, although we would 
expect to see some smaller, less precise studies having reported estimates less than 
the average risk ratio; this finding suggests that smaller studies are only published if  
a positive association is found. In other words, there seems to be publication bias.

 6a. 

Mortality (0.10)

Mortality (0.20)

Mortality (0.40)

Mortality (0.60)

Mortality (0.05)

Mortality (0.10)

Mortality (0.40)

Mortality (0.60)

High (0.20)

Low (0.80)

Low (0.90)

High (0.10)

Low (0.80)

High (0.20)

Low (0.90)

High (0.10)

Yes
(0.95)

Yes
(0.50)

No
(0.05)

No
(0.50)

SES

SES

SES

SES

Decision node

Interventio
n A

Intervention B

Compliance 
with

 intervention

Compliance 
with

 intervention
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 6b.  One decision node: assignment to intervention A or B; and two chance nodes: 
compliance and social class.

 6c. Intervention A Intervention B

Compliance

Socio-
economic 

status
Joint proba-

bility of  death Compliance

Socio-
economic 

status
Joint proba-

bility of  death

Yes High 0.95 3 0.20 3  
0.10 5 0.019

Yes High 0.50 3 0.20 3  
0.05 5 0.005

Low 0.95 3 0.80 3  
0.20 5 0.152

Low 0.50 3 0.80 3  
0.10 5 0.040

No High 0.05 3 0.10 3  
0.40 5 0.002

No High 0.50 3 0.10 3  
0.40 5 0.02

Low 0.05 3 0.90 3  
0.60 5 0.027

Low 0.50 3 0.90 3  
0.60 5 0.027

Total mortality 0.200 or 20% Total mortality 0.335 or 33.5%

 6d. Mortality:
  Intervention A: 0.200
  Intervention B: 0.335
  Effectiveness of  A = [(0.335 2 0.200)/0.335] 3 100 5 40.3%

 7. Sensitivity analysis: assume that tolerance to the intervention in Intervention A 
is increased to 50%

Intervention A: Less efficacious but better 
drug tolerance (70%)

Tolerance Joint probability of  death

Yes 0.70 3 0.10 3 0.10 5 0.007

0.70 3 0.90 3 0.20 5 0.126

No 0.30 3 0.10 3 0.50 5 0.015

0.30 3 0.90 3 0.50 5 0.135

0.00710.12610.01510.135

5 0.283 (or 28.30%)

Intervention B: More efficacious but less 
drug tolerance (50%)

Tolerance Joint probability of  death

Yes 0.50 3 0.10 3 0.05 5 0.0025

0.50 3 0.90 3 0.10 5 0.045

No 0.50 3 0.10 3 0.50 5 0.025

0.50 3 0.90 3 0.50 5 0.225

0.002510.04510.02510.225

5 0.2975 (or 29.75%)

(Before: 37.85%)

  Effectiveness of  A (vis-à-vis B) 5 {[29.75% 2 28.30%] 1 29.75%} 3 100 5 4.9%
  Intervention A is still a bit more effective than Intervention B, but if  the cost of  B 

is lower, it might be cost-effective to implement the latter.
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272–273t
Adjustment methods, 229–311. See also 
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direct. See Direct adjustment
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indirect, 239–242, 241t, 242f
limitations of, 246–248
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243–247t
odds ratio, 167, 242–243
over-adjustment, 173, 295–296
rate ratio, 244
selection of, 299–300, 299t
statistical models for, 229, 233–234

stratification-based, 234–248
Administrative losses, 56–57
Age effects

cohorts and, 5–9, 6–7f, 8t, 9f
cross-sectional studies and, 4f, 4–5t, 4–6, 6f
defined, 8 exh.
incidence rates and, 10–11, 12f
mortality data and, 9–10, 10f
prevalence and, 4–5t, 4–6, 4f, 6f

Agent–host–environment paradigm, 3
Aggregate data, 58–59
Aggregate measures, 14
Aggregation bias, 16, 16f
AHI. See Apnea-Hypopnea Index
AI. See Arousal index
Alternative modeling techniques for nonlinear 

relationships, 279–281, 280–281f
Ambidirectional studies, 27
American Cancer Society cohort studies, 20
American Thoracic Society questionnaire to assess 

respiratory symptoms, 316
Americans’ Changing Lives survey, 161
Analogies, 408
Analytical epidemiology

defined, 3
differences in strategy, 404
measures of  association used in, 79, 79t

ANOVA (analysis of  variance) tables, 355, 
469–470

Antagonistic (negative) interactions, 185
Apnea-Hypopnea Index (AHI), 349t, 350, 469, 

470, 471
AR. See Attributable risk
ARIC Study. See Atherosclerosis Risk in 

Communities Study
Arithmetic scale, 383, 384, 384–385f
Arousal index (AI), 349t, 350, 469, 470, 471
Arrogance, scientific, 373
Associations, 79–106

across variables, 376–378
assessing strength of, 101–103
in case-control studies, 90–101
causality and, 375
in cohort studies, 79–90
in cross-sectional studies, 90

Exhibits, figures, notes, and tables are indicated by exh., f, n, and t following page numbers.
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observed joint, 191, 193

percent in exposed individuals, 85–87, 441
population, 87–90, 88–89f, 441–442
standard error calculation for, 441, 442
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B
“Backdoor path,” 162
Berksonian bias, 111
Between-observer variability, 325
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aggregation bias, 16, 16f
Berksonian bias, 111
built-in bias, 83
combined selection/information bias, 133–139
compensating bias, 114–115
confounding and, 177–179, 178f
control of, 110
cross-sectional bias, 134–139
defined, 109
detection bias, 133–134
differential bias over time, 321, 321f
duration ratio bias, 135
exposure identification bias, 117–120
heterogeneity due to, 215–217,  

216–217t, 218f
incidence-prevalence bias, 134–137, 137f, 

139–141
information bias, 111, 111f, 116–133, 116 exh.
interviewer bias, 119–120
language bias, 417
lead time bias, 141–145, 142–144f
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medical surveillance bias, 110, 133–134
observer bias, 119, 120–121
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over-diagnosis bias, 145–146, 146t
overview, 109–111, 109f
point prevalence complement ratio bias, 

135–136
prevention of, 110
publication, 369, 416–420
recall bias, 26, 111, 117–119, 118t
regression dilution, 325
respondent bias, 121
in screening interventions, 139–146
surveillance bias, 110, 133–134
survival bias, 26, 26f, 135, 139
temporal bias, 137–139, 321, 321f, 400

Binary linear regression model, 259
Biologic plausibility, 403
Biostatistics, 234n
Birth cohorts, defined, 5, 5n. See also Cohort 

effects; Cohort studies
Bland-Altman plots, 357–358, 357f
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163f, 371
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experimental epidemiologic studies, 154 exh.
framing of, 162–164
general rule of, 156–157f, 156–162
heterogeneity due to, 214–215, 215–216t
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indirect relationships and, 179
interactions and, 211–212, 213t
matching and, 33, 35–36, 37–38, 38f
negative, 174–175, 175t, 176, 176f, 177t
nonexperimental epidemiologic studies, 154 exh.
odds ratio and, 167, 167 exh.
overview, 153–155
population attributable risk and, 89–90
positive, 174–175, 175t, 176, 176f, 177t
qualitative, 175–176, 176f, 177t
from random associations, 159
relative risk and, 174–175, 175t, 176f
by severity, 155
statistical significance and, 176–177
stratification and, 166–167, 171, 230–234
types of, 174–176

Confounding variables
association with outcome and exposure,  

157–158f, 157–162, 160f, 165–171, 
169–170t

correlation with exposure of  interest, 172–173, 
172–173f

defined, 33, 153
improper definitions of, 293
inclusion of, 294
misclassification of, 131, 294–295, 295t
reporting on selection of, 371
as surrogate markers, 159
time and, 64

Consistency of  results, 403–404
Construct validity, 15, 15n, 174
Continuous variables

categorizing, 371
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multiple linear regression and, 254
multiple regression methods and, 262
regression to the mean and, 358
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Control selection

sampling frame for, 98–99, 100t
types of, 114

Correlation coefficients
intraclass, 354–355, 469–472
Pearson’s linear, 250, 350–353, 352–353f
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