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Preface

Each day on Earth is pervaded by natural disasters or extreme events which can
threaten any location on the globe but which take place inhomogeneously in space
and time. The scale of economic damage and loss of life has increased during recent
decades, and yet adequate risk management methods are not yet in place. Due to
the interdisciplinary nature of these problems satisfactorily answers from different
fields of expertise are needed. Consequently, this book represents a summarizing
overview on original work performed at the interface between science and practice.
It provides a more unifying overview than would be possible for certain disciplines
alone. Cooperation and mutual learning are key elements in the still emerging field
of transdisciplinarity.

In this book, extreme events, trends, and correlations are the major fields of inter-
est. Why is this so important? Humankind increasingly tends to initiate/unfold activ-
ities in risk-prone areas and has itself become a key player in environmental change.
Both things in combination affect the quality of life and the viability of social as
well as natural systems. To prevent and manage related risks novel approaches
that deepen the understanding of extreme situations are required. Therefore, this
book focuses on catastrophes, which are understood as extreme events. Incidents of
this kind occur irregularly with differing severity and frequency. Typical examples
include river and sea floods, cyclones, droughts, heat or cold spells, and related
events such as storms, tornados, or landslides. Due to the tremendous damage such
events can cause there is a particular interest in minimizing the risks. This calls for
identification and application of appropriate measures based on accurate descrip-
tion and deeper understanding of the respective processes. One approach in this
context focuses on the use and features of empirical data and in particular extreme
values statistics, which has a long tradition in disciplines like hydrology or climate
sciences.

From a mathematical point of view, extreme value theory has led to some remark-
able achievements, in particular the generalized extreme value distribution. How-
ever, the application of most methods is restricted since they require identically
and independently distributed data. Thus, normally, stationarity is needed, i.e., data
have to have the same average and variance at any time, in order to apply standard
extreme value statistics. These criteria are generally not fulfilled when we focus on
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real-life problems. There are many sources of non-stationarities, for example, global
warming, or other slow changes of environmental conditions, like surface sealing,
which imply modifications of river run-off in a catchment. The second limitation for
many methods regards the absence of temporal correlations, i.e., mutual indepen-
dence of the values. Regrettably, persistence is abundant in climate and hydrology.
Originally described for hydrological records, a notable type of memory comprising
an infinite correlation length - long-term persistance - has recently also been anal-
ysed in many other types of data, most importantly in temperature records, long-
term persistence, has recently also been analysed in many other data, paramountly
in temperature records. Against the background of climate change, the assessment
of long-term phenomena has gained further importance. Typical questions of inter-
est address whether the recent warming is compatible with natural fluctuations or
whether it is a systemic change caused by anthropogenic influences – or a mixture of
both. Therefore, appropriate techniques are needed which can distinguish between
persistence and trends. Another common issue is how these two features affect the
statistics of extreme events such as in the case for river runoff records, which not
rarely comprise both long-term correlations and non-stationarities. Similar problems
have been tackled and most of them have been advanced to a satisfying extent.
Finally, empirical data series often have limited length and contain gaps.

Accordingly, there is a need to employ more sophisticated approaches and meth-
ods that can overcome these two statistical limitations. In order to evaluate extent
to which these methods are appropriate in addressing the problems described above
one must assess the following questions:

• Are these techniques suitable to open new ways in risk assessment?
• Which are adequate modeling strategies to cope with complexity and uncer-

tainty?
• Are new concepts able to supply knowledge in practical applications?

These questions were one major motivation for the preparation of this book
which hopefully can function at least as a precursor for the remaining work. This
book represents the termination of the project “Scaling Analysis of Hydrometeo-
rological Times Series,” which was generously supported by the German Federal
Ministry of Education and Research. The aim was to fructify novel statistical meth-
ods, which partly already have successfully been employed in modern physics, and
in particular for relevant questions and problems of water management. The main
goal was to extract an optimum of information relevant for decision making from
extensive empirical databases available through the water management administra-
tion. The separation of random fluctuations and deterministic temporal structures
has extensive consequences for the appraisement of the usual hydrological mea-
sures, in particular for those which describe the relevant long-term phenomena such
as extreme discharges. In particular, this applies to problems that are related to
climate change. After this short introduction, let us now briefly discuss how this
book is organized. Structured in three parts, the book presents a broad spectrum of
interdisciplinarity and describes advances of methods under different foci.
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Extremes, Uncertainty, Reconstruction

In the first part the main issues are extremes, the involved uncertainties, and the
reconstruction of extreme events from the theoretical as well as applied point of
view. The lack of knowledge about quantities and the difficulty in qualifying epis-
temic uncertainty is common to many aspects of global environmental change. In
situations of deep uncertainty it is often impossible to fulfill the rather demand-
ing informational requirements for assessing probabilities. The outcome might be
controversial policy advice if it is based on incomplete or poor data. Consequently,
J.F. Eichner et al. investigate in Chap. 1 the statistics of return intervals as well
of maxima under the influence of long-term correlations. In the second and third
contributions in this part, bootstrap techniques are elaborated in order to achieve
additional data, thus allowing assessment of uncertainties. In Chap. 2, for example,
M. Mudelsee presents a non-parametric kernel estimation method and bootstrap is
used to assess occurrence rates and associated confidence bands. H.W. Rust et al.
elaborate in Chap. 3 bootstrap strategies for the generalized extreme value distri-
bution in order to estimate confidence intervals assuming long-range dependence.
Different approaches are thus combined, i.e., ensemble techniques, stochastic model
techniques and the iterative amplitude-adjusted Fourier transform method in order to
achieve sufficient data for confidence estimations. In Chap. 4, P. Dostal and his co-
workers follow a different approach. They use regression analysis, kriging methods,
and a run-off model to reconstruct historical events. A particular situation for devel-
oping countries is introduced by R. Kumar and C. Chatterjee (Chap. 5) who apply
L-moments to estimate regional flood frequency analyses for gauged and ungauged
basins.

Extremes, Trends, and Changes

The second part of the book is more application-oriented, because it provides
case studies and discusses certain problems and fallacies in extreme value statis-
tics, in particular with regard to trends. In Chap. 6, Z.W. Kundzewicz provides
an overview on how intense precipitation, intense river flow, and climate change
are interrelated and which methodological efforts are implied. This is extended by
M. Radziejewski (Chap. 7) who analyses and discusses trend detection in river
floods. For this purpose he applied certain trend tests in order to estimate the signifi-
cance of trends. Finally, M. Kallache et al. (Chap. 8) apply an assessment framework
considering auto-correlations in data and non-stationarity in extremes. The subse-
quent Chap. 9, by S. Trömel and C.-D. Schönwiese, assesses extreme values and
trend analysis based on statistical modeling for precipitation time series. For this
aim they apply a generalized time series decomposition technique. The last chapter
(Chap. 10) of this part, by D. Rybski and J. Neumann, reviews the well-known Pettitt
test. They show that this test - which is often used to assess break points - is sensitive
to correlations.
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Long-Term Phenomena and Nonlinear Properties

The last part of the book is devoted to long-term phenomena and nonlinear proper-
ties in data series. In Chap. 11 D. Rybski and his co-workers analyse auto-correlation
and temporal multifractal behavior of daily river discharge time series. They found
that daily run-off series can be characterized via a power-law decay of the autocor-
relation function and established a cross-over time that usually is several weeks. The
following chapter, Chap. 12, tries to extract long-term structures from data via linear
and nonlinear dimensionality reduction techniques. Similar techniques as in the first
chapter of this part were applied by V.N. Livina et al. (Chap. 13), whereas season-
ality effects on nonlinear properties are emphasized. The outcome highlighted that
their approach allows one to filter out more properties from data than by previously
used techniques. Finally R. Donner (Chap. 14) focuses on spatial correlations in a
river catchment.

Although each chapter tackles a different main focus, they share a common
nexus, namely extremes, trends, and correlations in hydrology and climate. The
specific problems are approached from various directions and therefore provide dif-
ferent emphases, giving either theoretical or practical, methodological or applied,
and temporal or spatial perspective.

We wish to thank first and foremost the authors for their cooperation, and many
of our colleagues in particular Carsten Walther and Diego Rybski. We also wish
to thank Dr. Claus Ascheron and Adelheid Duhm from Springer-Verlag for their
continuous help during the preparation of this book. The methodological approaches
described in this book can be useful in the design and management of environmen-
tal systems, for policy development, environmental risk reduction, and prevention
strategies. We hope that this book can also be used as a textbook for graduate stu-
dents, for teachers at universities preparing courses or seminars, and for researchers
in a variety of disciplines who are about to encounter the phenomena described here
in their own work.

Potsdam, Germany Jürgen P. Kropp
August 2010 Hans Joachim Schellnhuber
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Part I
Extremes, Uncertainty, and Reconstruction



Extreme flooding at the river Danube in the town Riedlingen in Baden-Württemberg in February
1990. Photo courtesy of Gewässerdirektion Riedlingen, Germany



Chapter 1
The Statistics of Return Intervals, Maxima,
and Centennial Events Under the Influence
of Long-Term Correlations

Jan F. Eichner, Jan W. Kantelhardt, Armin Bunde, and Shlomo Havlin

We review our studies of the statistics of return intervals and extreme events (block
maxima) in long-term correlated data sets, characterized by a power-law decaying
autocorrelation function with correlation exponent γ between 0 and 1, for different
distributions (Gaussian, exponential, power-law, and log-normal). For the return
intervals, the long-term memory leads (i) to a stretched exponential distribution
(Weibull distribution), with an exponent equal to γ , (ii) to long-term correlations
among the return intervals themselves, yielding clustering of both small and large
return intervals, and (iii) to an anomalous behavior of the mean residual time to
the next event that depends on the history and increases with the elapsed time in
a counterintuitive way. We present an analytical scaling approach and demonstrate
that all these features can be seen in long climate records. For the extreme events we
studied how the long-term correlations in data sets with Gaussian and exponential
distribution densities affect the extreme value statistics, i.e., the statistics of maxima
values within time segments of fixed duration R. We found numerically that (i) the
integrated distribution function of the maxima converges to a Gumbel distribution
for large R similar to uncorrelated signals, (ii) the deviations for finite R depend
on both the initial distribution of the records and on their correlation properties,
(iii) the maxima series exhibit long-term correlations similar to those of the original
data, and most notably (iv) the maxima distribution as well as the mean maxima sig-
nificantly depend on the history, in particular on the previous maximum. Finally we
evaluate the effect of long-term correlations on the estimation of centennial events,
which is an important task in hydrological risk estimation. We show that most of the
effects revealed in artificial data can also be found in real hydro- and climatological
data series.

J.F. Eichner (B)
Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
e-mail: jan.f.eichner@physik.uni-giessen.de

J.P. Kropp, H.-J. Schellnhuber (eds.), In Extremis,
DOI 10.1007/978-3-642-14863-7_1, C© Springer-Verlag Berlin Heidelberg 2011
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1.1 Introduction

In recent years there is growing evidence that many natural records exhibit long-
term persistence [1.1, 1.2]. Prominent examples include hydrological data [1.3–1.6],
meteorological and climatological records [1.7–1.11], turbulence data [1.12, 1.13],
as well as physiological records [1.14–1.16], and DNA sequences [1.17, 1.18].
Long-term correlations have also been found in the volatility of economic records
[1.19, 1.20] and the Internet traffic [1.21].

In long-term persistent records (xi ), i = 1, . . . , N with mean x̄ and standard
deviation σx the autocorrelation function Cx (s) decays as a power law,

Cx (s)= 1

σ 2
x
〈(xi − x̄)(xi+s − x̄)〉≡ 1

σ 2
x (N − s)

N−s∑

i=1

(xi − x̄)(xi+s − x̄)∼s−γ, (1.1)

where γ denotes the correlation exponent, 0 < γ < 1. Such correlations are
named “long term” since the mean correlation time T = ∫∞

0 Cx (s) ds – diverges
for infinitely long series (in the limit N → ∞). Power law long-term correlations
according to Eq. (1.1) correspond to a power spectrum S(ω) ∼ ω−β with β = 1−γ

according to the Wiener–Khinchin theorem.
Five example records are shown in Fig. 1.1, together with their histograms of the

data values. These records are (a) the reconstructed river runoff of the Sacramento
river (USA) [1.22], (b) the reconstructed temperature record of Baffin Island (CAN)
[1.23], (c) the reconstructed precipitation in New Mexico (USA) [1.24], (d) the his-
torical water level minima of the Nile River (EGY) [1.25], and (e) the reconstructed
northern hemisphere temperature after Mann [1.26]. The data and more information
about the data can be retrieved in the Internet [1.27]. The correlations properties
of these records are shown in Fig. 1.2. The figure shows the detrended fluctuation
analysis (DFA) (for detailed information on DFA techniques, please see Chap. 11 in
this book or references [1.11, 1.15, 1.28]) of the data sets. The measured γ values
are (a) 0.8, (b) 0.55, (c) 0.4, (d) 0.3, and (e) 0.1. The observed phenomena should
also occur in heartbeat records, Internet traffic, and stock market volatility and have
to be taken into account for an efficient risk evaluation.

In our work we focussed on long-term correlated signals with different distribu-
tions of the values (Gaussian, exponential, power law, and log-normal distributions)
[1.30]. In the numerical procedures, we generated sequences of random numbers
(xi ) of length N = 221 with either Gaussian, exponential, power-law, or log-normal
distribution. The corresponding distribution densities P(x) are given by

PGauss(x) = 1√
2πσ

exp (−x2/2σ), (1.2)

Pexp(x) = 1

x0
exp(−x/x0), (1.3)

Ppower(x) = (δ − 1)x−δ, (1.4)

Plog-norm(x) = 1√
2πx

exp [−(ln x + μ)2/2]. (1.5)
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Fig. 1.1 Five annual data series x(t) and their histograms H(x); (a) reconstructed river run off of
the Sacramento River (USA) [1.22], (b) reconstructed temperature record of Baffin Island (CAN)
[1.23], (c) reconstructed precipitation in New Mexico (USA) [1.24], (d) historical water level min-
ima of the Nile River (EGY) [1.25], and (e) the reconstructed northern hemisphere temperature
after Mann [1.26]. The data can be retrieved in the Internet [1.27]

We chose, without loss of generality, σ = 1, x0 = 1, and μ = 0.763 in (1.2), (1.3),
and (1.5) and select δ = 5.5 in (1.4). The long-term correlations were introduced by
the Fourier-filtering technique [1.31, 1.32]. To preserve the shape of the distribution
after retransforming the data from Fourier space we applied an iterative method
[1.30, 1.33, 1.34]. For each distribution density P(x), we generated 150 data sets
using 1 000 iterations, restoring the desired power spectrum by Fourier filtering and
restoring the desired distribution by rank-ordered replacement of the values in each
iteration until convergence is achieved. A full explanation of this iterative proce-
dure is given in the appendix. For the Gaussian data one iteration is sufficient since
Fourier filtering preserves the Gaussian distribution. We tested the quality of the
long-term correlations of the data with detrended fluctuation analysis (DFA) and
autocorrelation function analysis.
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Fig. 1.2 DFA2-Analysis of the data sets introduced in Fig. 1.1. For explanation of the DFA-
method, see [1.11, 1.15, 1.28]. The slopes α are related to the correlation exponents γ via
α = 1 − γ /2. The γ values are (from top to bottom) 0.8 for Sacramento river (diamonds), 0.55 for
Baffin Island temperature (triangle up), 0.4 for New Mexico precipitation (triangle down), 0.3 for
Nile river (square), and 0.1 for Mann temperature series (circles). Figure after [1.29]

In the following chapters we describe how the presence of such correlations
affects the statistics of the return intervals r between events above a certain threshold
value q and the statistics of block maxima m, i.e., maxima values taken from time
segments of fixed duration R, as well as the estimation of centennial events Q100.

1.2 Statistics of Return Intervals

The statistics of return intervals between well-defined extremal events is a power-
ful tool to characterize the temporal scaling properties of observed time series and
to derive quantities for the estimation of the risk for hazardous events like floods,
very high temperatures, or earthquakes. For Gaussian-distributed data it has been
shown recently that the long-term correlations [1.1, 1.2], inherent, e.g. in river flows
and temperature records, represent a natural mechanism for the clustering of the
hazardous events [1.29]. The distribution density of the return intervals strongly
depends on the history and can be well approximated by a stretched exponential
[1.29, 1.35–1.37]. In addition, the mean residual time to the next extreme event
increases with the elapsed time and depends strongly on the previous return intervals
[1.29].

1.2.1 Mean Return Interval and Standard Deviation

For describing the recurrence of rare events exceeding a certain threshold q, defined
in units of the standard deviations of the original distribution P(x), we investigated
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Fig. 1.3 Return intervals: (a) Return intervals r between events xi above given thresholds q.
(b) Sequence of return intervals r of long-term correlated data xi with γ = 0.4 for a fixed threshold
q so that the average r value Rq = 100 (q = 2.327). (c) Sequence of return intervals for uncor-
related data (shuffled xi of (b)). In (b) more epochs with r values of small and large size appear
compared to (c)

the statistics of the return intervals r between these events as illustrated in Fig. 1.3a.
Figure 1.3b shows a section of the sequence of the return intervals for Gaussian
long-term correlated data for a threshold q (quantile) chosen such that the mean
return interval (“return period”) Rq is approximately 100. Figure 1.3c shows the
same section, but the original data were shuffled before destroying the correlations.
One can see that there are more large r values and many more short r values in
Fig. 1.3b compared to the uncorrelated case in Fig. 1.3c, although the mean return
interval Rq is the same. The long and short return intervals in Fig. 1.3b appear in
clusters [1.29], creating epochs of cumulated extreme events caused by the short r
values, and also long epochs of few extreme events caused by the long r values.
In the following we show, how Rq , the standard deviation σr , and the distribution
density Pq(r) of the return intervals are affected by the presence of long-term cor-
relations as well as by different distribution densities P(x) of the data.

First we considered the mean return interval Rq . For a given threshold q,
there exist Nq return intervals r j , j = 1, 2, . . . , Nq , which satisfy the sum rule
∑Nq

j=1 r j = N for periodic boundary conditions. When the data are shuffled, the
long-term correlations are destroyed, but the sum rule still applies with the same
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Fig. 1.4 Standard deviation of r values divided by Rq as a function of Rq for (a) Gaussian and (b)
exponential uncorrelated data (circles) and long-term correlated data (squares γ = 0.7, triangles
γ = 0.4, and diamonds γ = 0.2). The σr (Rq ) dependences are representative also for data with
other distribution densities P(x). Figure after [1.30]

value of Nq . Accordingly, for both long-term correlated and uncorrelated records,

Rq ≡ (1/Nq)
∑Nq

j=1 r j is simply Rq = N/Nq , i.e., the return period (the mean
return interval) is not affected by the long-term correlations. This statement can also
be considered as the time series analogous of Kac’s Lemma [1.37, 1.38]. Hence, Rq

can be obtained directly from the tail of the (normalized) distribution density P(x)
of the values xi via

1

Rq
= Nq

N
∼=
∫ ∞

q
P(x) dx . (1.6)

The larger the q is, the larger the return period Rq will be. Accordingly, there is a
one-by-one correspondence between q and Rq , which depends only on the distribu-
tion density P(x) but not on the correlations.

However, there is no one-by-one correspondence between q and the variance

σ 2
r ≡ (1/Nq)

∑Nq
j=1[r j − Rq ]2 of the return intervals. Figure 1.4 shows (in units of

Rq ) the standard deviation σr for uncorrelated data and long-term correlated data
with three correlation exponents. Due to the appearance of larger return intervals
with increasing correlations (i.e., decreasing correlation exponent γ ), the standard
deviation also increases. The decrease of σr for small and large Rq is due to dis-
cretization effects and finite-size effects, respectively, which will be discussed in
the following sections.

1.2.2 Stretched Exponential and Finite-Size Effects for Large
Return Intervals

It is known that for uncorrelated records (“white noise”), the return intervals are
also uncorrelated and (according to the Poisson statistics) exponentially distributed
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with Pq(r) = 1
Rq

exp(−r/Rq), where Rq is the mean return interval for the given
threshold q (see, e.g., [1.39]). When introducing long-term correlations in Gaussian
data the shape of Pq(r) for large values of r , r > Rq , is changed to a stretched
exponential [1.29, 1.30, 1.35–1.37] (see also [1.40])

Pq(r) ∼= aγ
Rq

exp[−bγ (r/Rq)
γ ], (1.7)

where the exponent γ is the correlation exponent, and the parameters aγ and bγ
are independent of q. Their dependence upon γ can be determined from the two
normalization conditions that must hold for the (discrete) distribution density Pq(r):

∞∑

r=1

Pq(r) = 1,
∞∑

r=1

r Pq(r) = Rq . (1.8)

If we replace the sums for the discrete values of the return intervals r by integrals
and disregard the deviations from (1.7) for small values of r , we can solve these two
equations for aγ and bγ , obtaining

aγ = γ	(2/γ )

	2(1/γ )
and bγ = 	(2/γ )

	(1/γ )
, (1.9)

where 	(x) is the gamma function. Hence, aγ and bγ are not free parameters but
rather determined only by the correlation exponent γ (see also [1.37]). Hence, if γ
is determined independently by correlation analysis, we can obtain a data collapse
of all curves for different values of q by plotting Rq Pq(r) versus r/Rq according to
(1.7) [1.29], since the dependence of Rq on q is given by (1.6). However, we have
to note that (1.7) does not hold for small values of r , causing some deviations in the
values of parameters aγ and bγ and the data collapse.

Figure 1.5a displays the distribution densities Pq(r) of the return intervals for
long-term correlated Gaussian data for three different quantiles q (q = 1.5, 2.0, and
2.5), corresponding to three different return periods Rq (Rq 
 15, 44, and 161).
When scaling the axis with Rq the three curves collapse to a single stretched expo-
nential curve, shown in Fig. 1.5b. When shuffling the data first, i.e., destroying the
correlations, the distribution density follows an exponential. In the correlated case
many more small and large return intervals appear than in the uncorrelated case.
Figure 1.5c indicates the stretched exponential shape. The fitted slopes of the lines
are identical to the correlation exponents γ .

Figure 1.6 shows the rescaled distribution density function of the return intervals
for the four different types of distributions of the original data [Gaussian, exponen-
tial, power-law, and log-normal according to (1.2), (1.3), (1.4), and (1.5)] with cor-
relation exponents γ = 0.2 and 0.4 in a double logarithmic scale. The shapes of the
corresponding stretched exponentials (1.7) are also plotted. The agreement is best
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15, circles), 2.0 (44, square), and 2.5 (161, triangle) for long-term correlated data (γ = 0.4). (b)
When plotting Pq (r) multiplied with Rq versus r/Rq , the three curves collapse to a single stretched
exponential curve (black curve). When shuffling the data (i.e., destroying the correlations) the
distribution density follows the Poisson statistics, i.e., an exponential curve (straight black line).
(c) Double logarithmic plot of − ln(Pq (r)/Pq (1)) as a function of r/Rq for γ = 0.1, 0.4, 0.7 as
well as for the shuffled data (from bottom to top). The symbols correspond to the quantiles q from
(a) and (c). The straight lines are shown for comparison and have the slope γ for the long-term
correlated data and one for the uncorrelated shuffled data
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follow quite well-stretched exponential curves (solid lines) over several decades. For small r/Rq
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exponential behavior are due to finite-size effects. Figure after [1.30]
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for the Gaussian data, but also for the other distributions the stretched exponential
fit is a good approximation over several decades.

The deviations from the stretched exponential at the right tail of the curves in
Fig. 1.6 (i.e., for r � Rq ) are due to finite-size effects. Figure 1.7a, b shows that
finite-size effects seem to cause a decrease of Pq(r) for r � Rq compared with the
stretched exponential (1.7), unless we consider very long series. The series analyzed
here have the lengths N = 213 (triangles), 217 (squares), and 221 (circles). The
plots suggest a convergence in the asymptotic regime (large r ) toward the stretched
exponential curve (solid line). For small values of Rq the deviations are weaker
since the number of return intervals, Nq = N/Rq , is much larger and the statistics
is better.

Figure 1.8 compares Pq(r) for simulated Gaussian-distributed data and three
different correlation exponents with the five historical and reconstructed data sets
introduced in Figs. 1.1 and 1.2. The solid lines, representing the theoretical curves
with the measured γ values, match with Pq(r) of the data (filled symbols). The
dotted lines and the open symbols show the results for the shuffled data, when all
correlations are destroyed. The shape of Pq(r) becomes a simple exponential.

1.2.3 Power-Law Regime and Discretization Effects for Small
Return Intervals

The curves in Fig. 1.6 exhibit significant deviations from the stretched exponential
form for small values of r , r < Rq , which we have studied in detail. Figure 1.9
shows the left parts of Pq(r) for three return periods Rq and again the four distribu-
tion densities P(x). It reveals the occurrence of an additional intermediate scaling
regime for 0.01 < r/Rq < 1 for Gaussian and exponentially distributed data, see
(a) and (b), and for 0.1 < r/Rq < 1 for power-law and log-normally distributed
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Fig. 1.8 (a) Distributions Pq (r) of the return intervals r for the thresholds q = 1.5 (Rq ≈ 15,
squares), 2.0 (Rq ≈ 44, circles), and 2.5 (Rq ≈ 161, triangles) for simulated long-term correlated
records with γ = 0.5 (top), 0.3 (middle), and 0.1 (bottom) (filled symbols) and for the correspond-
ing shuffled data (open symbols). For the simulations, we used 1 000 records of length N = 2×106

for each value of γ . (b) Distributions Pq (r) of the return intervals r for the five climate records
considered in Fig. 1.1 with same symbols, for both original data (filled symbols) and shuffled data
(open symbols). The data have been averaged over all quantiles q with Rq > 3y and more than 50
return intervals. The lines are the theoretical curves following Eq. (1.7). Figure taken from [1.29]
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Fig. 1.9 Power-law regime of Pq (r) for r < Rq for Rq = 150 (circles), 250 (squares), and 500
(triangles) for (a) Gaussian, (b) exponentially, (c) power-law, and (d) log-normally distributed
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avoid overlapping curves). The dashed line is the stretched exponential (1.7), the solid line is a
power law with slope γ − 1 as a guide to the eye. The power-law effect in (a) and (b) appears in
the scale range 0.01 < r/Rq < 1 and in (c) and (d) in 0.1 < r/Rq < 1. For even smaller r/Rq
values (r = 1, 2, 3, . . .) all four figures show an upward trend which is due to the discreteness of
the r values. Figure after [1.30]



1 The Statistics of Return Intervals, Maxima, and Centennial Events 13

data, see (c) and (d). The scaling behavior with Rq still holds in this new regime,
such that data for different values of q collapse onto each other as long as r � 1.
The scaling behavior in this regime might be characterized by a power law, giving
rise to the two-branched ansatz [1.30]

Rq Pq(r) ∼
{
(r/Rq)

γ ′−1 for 1 � r ≤ Rq ,

exp[−bγ (
r

Rq
)γ ] for Rq < r � N ,

(1.10)

replacing (1.7). For all distribution densities P(x), γ ′ ≈ γ seems to be consis-
tent with the data. However, we cannot fully exclude that γ ′ might depend slightly
on the quantile q, in particular for power-law and log-normal distribution densities
P(x). The normalization factors and the parameter b cannot be calculated exactly
for Eq. (1.10), which is a drawback of the two-branched distribution density.

Figures 1.6 and 1.7 show that the behavior of Pq(r) as described by (1.10)
becomes visible only for very long data sets. If short and, e.g., exponentially dis-
tributed data are studied, the stretched exponential regime shrinks and an asymp-
totic pure exponential decay of Pq(r) can be observed. In this case, Pq(r) displays
a combination of (i) discretization effects for very small r values, (ii) power-law
behavior for intermediate r values, and (iii) an exponential decay for large r values,
resembling the return interval distribution obtained for seismic activity [1.41–1.43].
We cannot exclude the possibility that also seismic data are described by (1.10), i.e.,
the integrated probability density is described by a Weibull distribution.

For very small r values (close to 1) the continuous distribution density (1.10)
has to be replaced by a discrete distribution. Figure 1.9 clearly shows the deviations
from the power-law regime because of the discreteness of the r values. The first few
points move upward (r = 1 and 2, maybe up to r = 5), because they accumulate
probability from (impossible) smaller non-integer intervals. Hence, the data points
for r close to 1 do not obey the scaling of the distribution density with Rq , and
no data collapse can be achieved for them. For the power-law distributed data and
the log-normal distributed data, Fig. 1.9c, d, the discretization effects even seem to
suppress the full development of the power-law scaling regime.

Return intervals r = 1 are of particular relevance when answering the question
if two consecutive events xi and xi+1 will surpass the threshold q. Figures 1.10a, b
show the distribution of the r = 1 values for Gaussian and exponentially distributed
data as a function of the return period Rq (i.e., of the threshold q). In uncorrelated
data the probability to have another extreme event directly after any extreme event
must be 1/Rq (stars in Fig. 1.10), because each data point xi is an extreme event
with probability 1/Rq and there are no correlations. In long-term correlated data
the probability to find another extreme event directly after an extreme event will
be higher due to the persistence of the data. The figure shows, how this probability
changes with increasing correlations (i.e., decreasing γ ). Except for small values of
γ the shape of the curves seems to be a power law of the form Pq(r) ≈ R−γ

q , in
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show the same for return intervals of size r = 2. Figure after [1.30]

agreement with (1.10) and the assumption γ ′ = γ .1 The larger the Rq is chosen,
the larger the difference between Pq(1) in correlated and uncorrelated data. The
distribution Pq(2) of the r = 2 values (Fig. 1.10c, d) shows a similar power law for
large values of Rq , but deviates for small Rq and large γ .

1.2.4 Long-Term Correlations of the Return Intervals

The form of the distribution density Pq(r) of return intervals r between extreme
events in long-term correlated data indicates that very short and very long return
intervals are more frequent than for uncorrelated data. However, Pq(r) does not
quantify, if the return intervals themselves are arranged in a correlated fashion and if
clustering of rare events may be induced by long-term correlations. In our previous
work [1.29, 1.36] we reported that (i) long-term correlations in a Gaussian time

1 The methods applied to create long-term correlated data [1.31, 1.33] become unprecise for very
small values of γ and create data with an effective γeff slightly larger than γ .
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series induce long-term correlations in the sequence of return intervals and (ii) that
both correlation functions are characterized by the same correlation exponent γ . We
showed that this leads to a clustering of extreme events, an effect that also can be
seen in long climate records. We presented further support for our result (ii) showing
that it is independent of the distribution density D(x) of the data [1.30].

In order to determine the autocorrelation behavior of the return interval series
(r j ), j = 1, 2, . . . , Nq , for a given quantile q we calculate the autocorrelation
function Cr (s) of the return intervals

Cr (s) = 1

σ 2
r (Nq − s)

Nq−s∑

j=1

(r j − Rq)(r j+s − Rq). (1.11)

Figure 1.11 shows Cr (s) and Cx (s) for data characterized by the four distribution
densities D(x) and four mean return periods Rq . One can see that for each distribu-
tion, the data approximately collapse to a single line, exhibiting the same slope as
the original data. This scaling behavior shows that the return intervals are also long-
term correlated, with the same value of γ as the original data. There is, however,
one important difference in the correlation behavior: For the return intervals, the
autocorrelation function Cr (s) is significantly below the autocorrelation function
Cx (s) of the original data (also shown in Fig. 1.11) by a factor between 2 and 3,
depending on the distribution. Accordingly, there is additional white noise in the
return interval sequences that only weakly depends on the return period Rq .
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Fig. 1.11 Autocorrelation functions Cx (s) of the original data (×) and Cr (s) of the return interval
series for (a) Gaussian, (b) exponentially, (c) power-law, and (d) log-normally distributed data with
γ = 0.4 for Rq = 10 (circles), 20 (squares), 50 (triangles), and 100 (diamonds). All curves show
a power-law behavior indicating long-term correlations in the sequence of return intervals with the
same correlation exponent γ (straight lines). Curves for large Rq show weaker correlations at large
scales s due to finite-size effects. All results were averaged over 150 configurations of original data
with length N = 221. Figure after [1.30]
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We believe that this uncorrelated component is a consequence of the way the
return intervals are constructed. Tiny changes in the threshold q can lead to large
changes of several return intervals in the records. Thus, small white noise in the
original data leads to larger noise in the return intervals, and this causes the signifi-
cant additional random component. There is no crossover in the scaling behavior of
the autocorrelation function except for finite-size effects.

1.2.5 Conditional Return Interval Distributions

In order to study the history effects on the distribution density Pq(r) of the return
intervals r we first consider the conditional distribution density Pq(r |r0), defined
as the distribution density of all those return intervals that directly follow a given
r0 value in the sequence of return intervals. An explanation of conditional return
intervals is given in Fig. 1.12. For uncorrelated data Pq(r |r0) = Pq(r). Figure 1.13
displays the ratio of the conditional distribution density Pq(r |r0) and the uncondi-
tional Pq(r) for Gaussian and exponentially distributed data with six Rq values (20,
50, 100, 150, 250, and 500), for r0/Rq 
 1/4, 1, and 4, as a function of r/Rq .
For fixed r0/Rq all data points collapse onto single curves, independent of q and
independent of the distribution of the original data. We thus find scaling behavior of
the conditional distribution density function

Pq(r |r0) = 1

Rq
fr0/Rq (r/Rq) (1.12)

like in (1.10). The long-term correlations in the sequence of r values cause a culmi-
nation of small r values for small r0 and large r values for large r0. The conditions
r0 = Rq/4 and r0 = Rq yield maxima for similar r values, r ≈ 0.2Rq and r ≈ 2Rq ,
respectively, see Fig. 1.13a,b,d,e. The effect is weaker for small r/Rq but still impor-
tant, because the r = 1 values are relevant for the clustering of extreme events. For
r0 = 4Rq a strong enhancement of large return intervals r ≈ 10Rq is observed,
see Fig. 1.13(c,f). The divergent behavior for large r0/Rq indicates that the next
extreme event is moving more and more to the future if the last return interval was
huge. When the series of r values is shuffled, i.e., all correlations are destroyed,

r0 r r0 r

sequence of return intervals

Fig. 1.12 Conditional return intervals are those r values that follow in the sequence of the return
intervals directly after a r value of a distinct size r0. For data with poor statistics, e.g. real data, it
is convenient to use r0 as a boundary value, i.e., considering all those r values that follow directly
after a r value smaller or larger than, e.g., the median of all return intervals
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Fig. 1.13 Conditional distribution density Pq (r |r0) divided by Pq (r) for three different conditions.
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500 (triangle up). (d)–(f) the same for exponentially distributed original data. The collapse seems
noisier because the curves are averaged over 150 runs. For uncorrelated data, Pq (r |r0) = Pq (r)
exactly, as indicated by the straight line at the ratio 1. Figure after [1.30]

Pq(r |r0) and Pq(r) are identical, but still show the stretched exponential shape.
For uncorrelated original data Pq(r) and Pq(r |r0) both follow a simple exponential
decay.

The conditional distribution densities for the five historical and reconstructed
records and for artificial data with the same correlation exponents and similar set
lengths are shown in Fig. 1.14 for just two conditions, r0 smaller (−) or larger (+)

the median r value. The splitting of the curves P+
q (r) and P−

q (r) for large r/Rq is
a consequence of the long-term correlations.

1.2.6 Conditional Return Periods

In contrast to the mean return interval Rq , the conditional mean return inter-
val Rq(r0) = ∑∞

r=1 r Pq(r |r0), i.e., the average return interval of those r val-
ues that follow directly an interval of size r0, clearly exhibits correlation effects.
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Fig. 1.14 Conditional distribution densities Rq P+
q (r) (open symbols) and Rq P−

q (r) (full symbols)
averaged over all r0 above and below the median return interval, respectively, versus r/Rq for
(a) artificial records and (b) the five climatological records from Fig. 1.1 with the symbols from
Fig. 1.2. The artificial data in (b) have the same γ values and mean record lengths as the climate
records; we studied 1000 records of size N = 1250. Figure after [1.29]

Figure 1.15(a)–(d) shows Rq(r0) in units of Rq as a function of r0/Rq for four
values of Rq (5, 10, 50, and 250), γ = 0.4, and the four distribution densities P(x)
listed in (1.2), (1.3), (1.4), and (1.5). The correlation effect becomes apparent: after
small r0/Rq the next expected return interval Rq(r0) is smaller than Rq , and after
large r0/Rq it is much larger than Rq . Although the shapes of the (more or less)
collapsing curves differ depending on the original distribution and on the chosen
quantile q (i.e., on Rq ), the tendency is the same for all four original distribution
densities. We like to note again that finite-size effects, violating the scaling behavior,
are most pronounced for the exponential distribution.

Figure 1.15e,f shows the conditional return periods Rq(r0) for two data sets, the
observed annual temperatures of Prague [1.9] and the reconstructed annual tem-
peratures of the northern hemisphere after Jones [1.44], and for the corresponding
shuffled sets (open symbols). The original records exhibit long-term correlations
with γ ≈ 0.7 (a) and 0.4 (b). The correlation effect is shown by increasing Rq(r0)

with increasing r0 (filled symbols). The results for the shuffled data (open symbols)
do not show a particular dependence on r0.

Due to the tight conditions regarding r0, the conditional mean return interval
Rq(r0) requires very large statistics and is thus not suitable for studies of real record-
ings. The quantity can be improved by integrating over two ranges of r0 values, e.g.
r0 larger or smaller than the return period Rq , resulting in only two conditions.
Therefore, we define R+

q and R−
q as the average return intervals that follow r0 val-

ues either larger (+) or smaller (−) than Rq . Figure 1.16 shows R+
q and R−

q (filled
symbols) in units of Rq as a function of different correlation exponents γ for all four
distributions. For uncorrelated data (results shown at γ = 1), R+

q and R−
q coincide

with Rq . The smaller the γ , the stronger the correlations, and the more pronounced
is the difference between R+

q and R−
q .

Figure 1.16 also shows the average conditional return intervals R++
q and R−−

q
of those r -values that directly follow two return intervals, r0 and r−1, both larger
(++) or smaller (−−) than Rq . As expected, the correlation effect is even stronger
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Fig. 1.15 Conditional return periods Rq (r0) in units of Rq versus the condition r0/Rq for Rq =
5 (circle), 10 (square), 50 (triangle), and 250 (diamond) for all four original distributions with
γ = 0.4. While Gaussian (a) and exponential (b) data show a data collapse with nearly no Rq
dependence (except for stronger finite-size effects for exponential data at large r0/Rq ), Power-
law (c) and log-normal (d) data show a slight Rq dependence resulting in different slopes for
different Rq . All figures clearly display the memory effect in form of increasing Rq (r0) with
increasing r0, caused by the long-term correlations in the original data. In uncorrelated data
Rq (r0) = Rq , as indicated by the horizontal lines at ratio 1. Conditional return periods Rq (r0)

for (a) the annual temperature of Prague (CZ, 1775–1992) [1.9] and (b) the reconstructed annual
temperature data of the northern hemisphere (1000–1850) after Jones [1.44]. The original records
exhibit long-term correlations with γ ≈ 0.7 (a) and 0.4 (b). The full circles represent the observed
data sets, while the open triangles represent data sets that are obtained by randomly shuffling the
observed original records. Since Rq (r0)/Rq depends only on r0/Rq , we averaged Rq (r0)/Rq over
several q values in order to improve the statistics. For the reconstructed temperature record we
limited ourselves to data up to 1850 AD in order to exclude possible clustering of rare events due
to global warming

in R++
q and R−−

q but the quantities require more statistics than R+
q and R−

q . All
curves in Fig. 1.16 look very similar and suggest that an effect of the shape of the
distribution of the original data is minor, when the data are long-term correlated.

By definition, Rq(r0) is the expected waiting time to the next event, when the
two events before were separated by r0. The more general quantity is the expected
conditional residual waiting time τq(t |r0) to the next event, when the time t has
been elapsed (see Fig. 1.17). For t = 0, τq(0|r0) is identical to Rq(r0). In general,
τq(t |r0) is related to Pq(r |r0) by
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Fig. 1.16 Conditional return periods for long-term correlated data with five values of γ and
fixed Rq = 50. (a) the single-conditional and the double-conditional return periods (R+/−

q and

R++/−−
q ) in units of Rq for Gaussian data. R+

q (filled symbols, upper curve) and R−
q (filled sym-

bols, lower curve) are the single-conditional return periods, where the predecessor r0 is larger or
smaller than Rq . R++

q (open symbols, upper curve) and R−−
q (open symbols, lower curve) are the

double-conditional return periods where the preceding and the pre-preceding return intervals are
both larger or both smaller than Rq (R++

q = Rq (r |r0 > Rq |r−1 > Rq ), R−−
q = Rq (r |r0 <

Rq |r−1 < Rq )). The splitting of the curves is a consequence of the long-term correlations in the
sequence of r values. In the uncorrelated case shown at γ ≥ 1 all four conditional return periods
degenerate to Rq . (b) The same for exponentially distributed data, (c) for power-law distributed
data, and (d) for log-normally distributed data. All points were averaged over 20 runs with roughly
40000 r values. Figure after [1.30]

r0 t

today futurepast

τ(t|r0)

Fig. 1.17 The conditional residual waiting time τq (t |r0) is defined as the average remaining time
between today and the next extreme event, when the time between today and the last extreme event
is of size t and the return interval between the two last extreme events is of the size r0

τq(t |r0) =
∫ ∞

t
(r − t)Pq(r |r0)dr/

∫ ∞

t
Pq(r |r0)dr. (1.13)

For uncorrelated records, τq(t |r0)/Rq = 1 (except for discretization effects that
lead to τq(t |r0)/Rq > 1 for t > 0, see [1.45]). Due to the scaling of Pq(r |r0),
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Fig. 1.18 (a) Mean conditional residual time to the next event τq (t |r0) (in units of Rq ) versus
r0/Rq for four q values (q = 1.0, 1.25, 1.5, and 1.75, different symbols) and four values of the
elapsed time t since the last event (t/Rq = 0, 0.25, 1 and 4, from bottom to top). (b) Mean condi-
tional residual time τq (t |r0) as a function of t/Rq for r0/Rq = 1/8 (lower curve) and r0/Rq = 8
(upper curve). The middle curve represents the mean conditional residual time averaged over all r0.
(c,d) Mean conditional residual times τ−

q (t) (full line) and τ+
q (t) (dashed line)) averaged over all

r0 below and above the median return interval, respectively, for (c) t = 0 and (d) t = Rq/4. The
symbols are for the five climatological records from Fig. 1.2, for both original data (filled symbols)
and shuffled data (open symbols). For obtaining the curves in (a, b) we used the same statistics as
in Fig. 1.8(a), and for the theoretical curves in (c, d) and the error bars we used the same statistics
as in Fig. 1.14 (a). Figure taken from [1.29]

we expect that also τq(t |r0)/Rq scales with r0/Rq and t/Rq . Figure 1.18a shows
that this is indeed the case. The data collapse for each value of t/Rq confirms the
scaling property. The figure clearly displays the effect of the long-term memory:
Small and large return intervals are more likely to be followed by small and large
ones, respectively, and hence τq(0|r0)/Rq ≡ Rq(r0)/Rq is well below (above) 1
for r0/Rq well below (above) 1. With increasing t , the expected residual time to
the next event increases, as is also shown in Fig. 1.18b, for two values of r0 (top
and bottom curves). Note that only for an infinite long-term correlated record, the
value of τq(t |r0) will increase indefinitely with t and r0. For real (finite) records,
there exists a maximum return interval which limits the values of t , r0, and τq(t |r0).
The middle curve shows the expected residual time averaged over all r0, i.e., the
unconditional residual time. In this case, the interval between the last two events
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is not taken explicitly into account, and the slower than Poisson decrease of the
unconditional distribution function Pq(r) leads to the anomalous increase of the
mean residual time with the elapsed time [1.45]. Very recently, this approach (aver-
age over r0) has been applied successfully to worldwide earthquake records [1.41].
For the case of long-term correlated records, however, like the hydroclimate records
discussed here, the large differences between the three curves in Fig. 1.18b suggest
that for an efficient risk estimation, also the previous return interval has to be taken
into account and not only the distribution of the return intervals.

To reveal this intriguing behavior in the relatively short observed and recon-
structed records, we improved the statistics (similar to Fig. 1.12) by studying the
mean expected conditional residual waiting times τ−

q (t) and τ+
q (t) for r0 below

and above the median r∗
q , respectively. For uncorrelated data, both quantities are

identical and coincide with Rq .
Figure 1.18c shows τ+

q (0)/Rq and τ−
q (0)/Rq versus γ for simulated records

(lines) and the five representative climatological records (symbols). The difference
between τ+

q and τ−
q becomes more pronounced with decreasing value of γ , i.e.,

increasing long-term memory. The results for the climate records are in good agree-
ment with the theoretical curves. The same comparison for t/Rq = 1/4 instead
of t = 0 is shown in Fig. 1.18d. The behavior is qualitatively different: while
τ−

q (0)/Rq increases with increasing γ , τ−
q (Rq/4)/Rq is rather constant. Again,

the agreement between simulated and real records is quite satisfactory, revealing
the strong effect of memory in the hydroclimate records that also results in the
clustering of the extreme events. To show the significance of the results, we also
analyzed the corresponding shuffled data. We obtained τ+

q (0)/Rq ≈ τ−
q (0)/Rq ≈ 1

and τ+
q (Rq/4)/Rq ≈ τ−

q (Rq/4)/Rq ≈ 1.1. In the second case, the shuffled data
(following the Poisson distribution) show a slight increase of the residual time (1.1
instead of 1). This is a finite-size effect that already has been noticed in [1.45].

1.3 Statistics of Maxima

Extreme events are rare occurrences of extraordinary nature, such as floods, very
high temperatures, or earthquakes. In studying the extreme value statistics of the
corresponding time series one wants to learn about the distribution of the extreme
events, i.e., the maximum values of the signal within time segments of fixed duration
R, and the statistical properties of their sequences. In hydrological engineering, for
example, extreme value statistics are commonly applied to decide what building
projects are required to protect riverside areas against typical floods that occur once
in 100 years. Many exact and empirical results on extreme value statistics have been
obtained in the past years, for reviews, see e.g., [1.46–1.50]. Most of these results,
however, hold only in the limit R → ∞ and are based on statistically indepen-
dent values of the time series. Both assumptions are not strictly valid in practice.
Since observational data are always finite, predictions for finite time intervals R are
required, and – most importantly – correlations cannot be disregarded.
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Fig. 1.19 Definition of maxima: A time series (xi ), i = 1, . . . , N , of, e.g., daily data is separated
into segments of length R = 365 days. The maximum values m j (◦) in each segment, e.g., annual
maxima, define another time series (m j ), j = 1, . . . , N/R. Figure taken from [1.60]

Figure 1.19 illustrates the definition of the series of maxima (m j ),

j = 1, . . . , N/R of original data (xi ), i = 1, . . . , N , within segments of size R
for R = 365, i.e., for annual maxima if (xi ) represents daily data. According to
traditional extreme value statistics the integrated distribution density of the maxima
m j converges to a Gumbel distribution for independently and identically distributed
(i.i.d.) data (xi ) with Gaussian or exponential distribution density [1.46, 1.47, 1.49].

In long-term correlated records, the central assumption in the traditional extreme
value statistics [1.46] is not fulfilled: extreme events cannot be viewed a priori as
uncorrelated even when there is a long time span between them. Recently, there
have been some approaches to include correlations in the study of extreme value
statistics. For the special case of Gaussian 1/ f correlations in voltage fluctuations
in GaAs films extreme value statistics have been demonstrated to follow a Gum-
bel distribution [1.51]. A somewhat different asymptotic behavior was observed in
experiments on turbulence and in the two-dimensional XY model [1.52, 1.53], see
also [1.54]. Extreme value statistics have also been employed in studies of hierar-
chically correlated random variables representing the energies of directed polymers
[1.55] and in studies of maximal heights of growing self-affine surfaces [1.56].
In the Edwards–Wilkinson model and the Kardar–Parisi–Zhang model for fluctu-
ating, strongly correlated interfaces an Airy distribution function has been obtained
as exact solution for the distribution of maximal heights very recently [1.57]. On
the other hand, the statistics of extreme height fluctuations for Edwards–Wilkinson
relaxation on small-world substrates are rather described by the classical Fisher–
Tippet–Gumbel distribution [1.58]. Besides these recent results there is a theorem
by S. M. Berman [1.59] (see also [1.47, 1.49]) stating that the maxima statistics of
stationary Gaussian sequences with correlations converges to a Gumbel distribution
asymptotically for R → ∞ provided that Cx (s) log(s) → 0 for s → ∞, which
holds for long-term correlations.

In our recent work [1.60] we focussed on long-term correlated signals and
showed numerically that (i) the asymptotic convergence of the integrated maxima
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distribution to the Gumbel formula occurs also for long-term correlated Gaussian
or exponentially distributed signals (xi ), (ii) for finite R, the deviation of the inte-
grated maxima distribution from the asymptotics depends significantly on the ini-
tial distribution of the data (xi ) and their long-term correlation properties, (iii) the
maxima series (m j ) exhibit long-term correlations similar to those of the data (xi ),
and – most notably – (iv) the distribution density of the maxima, the integrated
maxima distribution, and the mean maxima significantly depend on the history, i.e.,
the previous maximum m0. The last item implies that conditional mean maxima
and conditional maxima distributions (with m0 as condition) should be considered
for improved extreme event prediction. We also showed that the conditional mean
maxima for observational data [1.25, 1.61] have similar dependence on m0 as for
artificial long-term correlated data.

1.3.1 Extreme Value Statistics for i.i.d. Data

In classical extreme value statistics one assumes that records (xi ) consist of i.i.d.
data, described by density distributions P(x), which can be, e.g., a Gaussian or an
exponential distribution. One is interested in the distribution density function PR(m)

of the maxima (m j ) determined in segments of length R in the original series (xi )

(see Fig. 1.19). Note that all maxima are also elements of the original data. The
corresponding integrated maxima distribution G R(m) is defined as

G R(m) = 1 − ER(m) =
∫ m

−∞
PR(m

′) − dm′. (1.14)

Since G R(m) is the probability of finding a maximum smaller than m, ER(m)

denotes the probability of finding a maximum that exceeds m. One of the main
results of traditional extreme value statistics states that for independently and
identically distributed (i.i.d.) data (xi ) with Gaussian or exponential distribution
density function P(x) the integrated distribution G R(m) converges to a dou-
ble exponential (Fisher–Tippet–Gumbel) distribution (often labeled as Type I)
[1.46, 1.47, 1.49, 1.62], i.e.,

G R(m) → G

(
m − u

α

)
= exp

[
−e(−

m−u
α )
]

(1.15)

for R → ∞, where α is the scale parameter and u the location parameter. By the

method of moments those parameters are given by α =
√

6
π
σR and u = m R − neα

with the Euler constant ne = 0.577216 [1.47, 1.63–1.65]. Here m R and σR denote
the (R-dependent) mean maximum and the standard deviation, respectively. Note
that different asymptotics will be reached for broader distributions of data (xi )

that belong to other domains of attraction [1.47]. For example, for data following
a power-law distribution (or Pareto distribution), P(x) = (x/x0)

−k , G R(m) con-
verges to a Fréchet distribution, often labeled as Type II. For data following a distri-
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bution with finite upper endpoint, for example, the uniform distribution P(x) = 1
for 0 ≤ x ≤ 1 , G R(m) converges to a Weibull distribution, often labeled as Type III.
These are the other two types of asymptotics, which, however, we do not consider
here.

1.3.2 Effect of Long-Term Persistence on the Distribution
of the Maxima

We began by studying how the convergence of the integrated maxima distribution
G R(m) toward the Gumbel distribution (1.15) is affected by long-term correlations
in the signal (xi ). Regarding the distribution density P(x) of the signal, we compare
results for a Gaussian distribution, P(x) = 1/(

√
2π) exp(−x2/2) (−∞ < x < ∞)

and an exponential distribution P(x) = exp(−x) (0 < x < ∞). Artificial long-term
correlated signals following these distributions can be generated by the Fourier-
filtering method (see, e. g., [1.31]) and by the Schreiber–Schmitz iteration procedure
[1.33, 1.34], respectively (see Appendix). In the Schreiber–Schmitz procedure we
employed 1000 iterations for each record of length N = 221 ≈ 2 × 106. We found
that our results do not depend on the number of iterations if more than 100 iterations
are used. We studied 150 configurations for most plots.

Figures 1.20 and 1.21 compare the maxima statistics for uncorrelated and long-
term correlated data (γ = 0.4, see (1.1)), respectively. The results for Gaussian-
distributed data are shown on the left and for exponential distributed data on the
right. In panels (a,b) the unscaled distribution densities PR(m) of the maxima within
segments of size R are shown for several values of R. Since (1.14) and (1.15) yield
that for R → ∞

PR(m) → 1

α
exp

[
−e(−

m−u
α ) − m − u

α

]
, (1.16)

the distribution densities PR(m) can be scaled upon each other if αPR(m) is plotted
versus (m −u)/α, see Figs. 1.20c,d and 1.21c,d. In Figs. 1.20e and 1.21e it is shown
that the convergence toward (1.16) (continuous line) is rather slow in the case of a
Gaussian distribution of the original data. In contrast, for an exponential distribution
P(x) the limiting Gumbel distribution is observed for both uncorrelated and long-
term correlated data already for quite small segment sizes R. In Fig. 1.21d deviations
occur only at very small R values (R < 10) where scaling breaks down due to the
sharp cutoff of the exponential density distribution P(x) at x = 0. In the long-
term correlated case, where the correlation time T diverges, the fast convergence is
particularly surprising, since the segment duration R can never exceed T . From a
theoretical point of view, we expect a convergence toward the Gumbel limit only for
very large R values. The reason for this fast convergence may be a rapid weakening
of the correlations among the maxima with increasing values of R, as we will see in
the next section (Fig. 1.23).
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Fig. 1.20 Distributions of maxima in segments of length R for uncorrelated data with (a, c, e)
Gaussian and (b, d, f) exponential distribution density P(x). Panels (a, b) show the distribu-
tion density function PR(m) of the maximum values for four segment sizes R = 6 (circles),
30 (squares), 365 (diamonds), and 1500 (triangles). Panels (c, d) show that a collapse of all four
curves to a single curve is achieved in both cases, when the m axis is replaced by (m − u)/α and
PR(m) is multiplied by the scale parameter α. The solid line is the Gumbel distribution density,
(1.16). Panels (e,f) show the corresponding integrated distribution G R(m) together with the Gum-
bel function (1.15). Note that exponential records converge to Gumbel much faster than Gaussian
records. Figure taken from [1.60]

We concluded that the distribution P(x) of the original data has a much stronger
effect upon the convergence toward the Gumbel distribution than the long-term cor-
relations in the data. Long-term correlations just slightly delay the convergence of
G R(m) toward the Gumbel distribution (1.15). This can be observed very clearly in
the plot of the integrated and scaled distribution G R(m) on logarithmic scale in the
bottom panels of the Figs. 1.20 and 1.21.

Figure 1.22 shows a direct comparison of the distribution densities PR(m)

for uncorrelated and correlated Gaussian and exponentially distributed data for
R = 365 (corresponding to annual maxima). The distributions for the long-term
correlated data exhibit a slight shift to the left and in particular a significant broad-
ening of the left tail. The reason for this is that correlations cause some periods with
many large values xi and other periods with only relatively small values xi . When
picking the annual maxima from the correlated data the periods where small xi

values dominate will yield rather small annual maxima compared with uncorrelated
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Fig. 1.21 Distributions of maxima in segments of length R for long-term correlated data with
γ = 0.4; for explanations of the plots and the symbols see Fig. 1.20. The curves in (a,b) appear
broader than in Fig. 1.20, because in correlated data more small m values are considered in PR(m)

than in uncorrelated data. In (d) the curve for R = 6 (circles) differs most from the theoretical
curve for uncorrelated data, an effect caused by the correlations together with a rather small R
value: the left tail of PR(m) is strongly affected by the abrupt left end of the exponential. For larger
R values this effect disappears and the Gumbel distribution is well approached. For the Gaussian
data in (c,e) the Gumbel law (solid line) is again not well approached. Figure taken from [1.60]

data; this leads to the broadening of the left tail of PR(m). The largest events are
still identified as annual maxima, and hence the right tail of the distribution density
is hardly affected by correlations. Figure 1.22 clearly illustrates that the probability
of a maxima exceeding an arbitrary but sufficiently large value m∗, ER(m∗) (see
(1.14)), is not significantly different for correlated and uncorrelated data, both for
P(x) Gaussian and exponential.

1.3.3 Effect of Long-Term Persistence on the Correlations
of the Maxima

The distributions of maxima considered in the previous section do not quantify,
however, if the maxima values are arranged in a correlated or in an uncorrelated
fashion and if clustering of maxima may be induced by long-term correlations in
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the data. To study this question, we have evaluated the correlation properties of
the series of maxima (m j ), j = 1, . . . , N/R, of long-term correlated data with
Gaussian and exponential distribution. Figure 1.23 shows representative results for
the maxima autocorrelation function

Cm(s) = 〈(m j − m R)(m j+s − m R)〉
〈(m j − m R)2〉 , (1.17)
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where m R denotes the mean maximum value in the series and 〈. . .〉 is the average
over j similar to (1.1). The comparison with the scaling behavior of the autocorre-
lation function Cx (s) of the original data (xi ) (see (1.1)) that follows a power-law
decay, Cx (s) ∼ s−γ with γ = 0.4, reveals the presence of long-term correlations
with a correlation exponent γ ′ ≈ γ in the maxima series. Hence, large maxima
m are more likely to be followed by large maxima and small maxima are rather
followed by small maxima, leading to clusters of large and small maxima. We note
that similar behavior has been observed for the series of return intervals between
extreme events (see Sect. 1.2.4).

Figure 1.23 also shows that the series of maxima for the same R values appear
less correlated for exponentially distributed data than for Gaussian-distributed data.
Due to a wider distribution of the maxima in the exponential case (see Fig. 1.22) the
autocorrelation function Cm(s) is lower for maxima of exponential data compared
to maxima of Gaussian data.

Figure 1.24 shows that the deviations of the autocorrelation function Cm(s) from
a power-law fit with slope γ = 0.4 for large values of R and s are presumably
caused by finite-size effects. They become significantly smaller as the length N of
the series is increased. In the case of uncorrelated data, the series of maxima is also
uncorrelated, Cm(s) = 0 for s > 0 (not shown).

1.3.4 Conditional Mean Maxima

As a consequence of the long-term correlations in the series of maxima (m j ), the
probability of finding a certain value m j depends on the history, and in particular
on the value of the immediately preceeding maximum m j−1, which we will denote
by m0 in the following. This effect has to be taken into account in predictions and
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risk estimations. For a quantitative analysis we considered conditional maxima as
illustrated in Fig. 1.25, where all maxima following an m0 ≈ 6 (within the gray
band), i.e., the subset of maxima which fulfill the condition of having a preceeding
maximum close to m0, are indicated by circles. The width �m0 sketched by the gray
band around m0 in Fig. 1.25 is set such that a sufficient number of approximately
700 conditional maxima is obtained for each record. The corresponding conditional
mean maximum value m R(m0) is defined as the average of all these conditional
maxima. Note that m R(m0) will be independent of m0 for uncorrelated data.

Figure 1.26 shows the conditional mean maxima m R(m0) versus m0 for long-
term correlated Gaussian and exponentially distributed data for four values of R. Of
course, the mean maxima are larger for larger segment sizes R. This dependence
is also observed for the unconditional mean maxima indicated by horizontal lines
in Fig. 1.26. In addition to this trivial dependence, the conditional mean maxima
significantly depend upon the condition, i.e., the previous maximum m0, showing a
clear memory effect. Evidently, this dependence is most pronounced for the small
segment durations R = 6 and 30. However, it is still observable for the large
R = 365 (most common for observational daily data) and even R ≈ 1500 (beyond
common observational limits). Note that the results for Gaussian and exponentially
distributed data agree only qualitatively: while the m0 dependence of m R(m0) is
quite close to linear for Gaussian data, there seems to be significant curvature for
the exponentially distributed data, which is a remnant of the asymmetry of the expo-
nential distribution.

Next we tested our predictions on real records which are known to exhibit long-
term correlations. We have studied two data sets (i) the annual data of the Nile
river water level minima [1.3, 1.25] and (ii) the reconstructed northern hemisphere
annual temperatures by Moberg [1.61]. The Nile series is composed of 663 minimal
water levels of the Nile river for the years 622–1284 AD (we use the last 660 data
points), measured at Roda gauge near Cairo. Since the Nile data consist of annual
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minima, we studied extreme minima instead of maxima. The northern hemisphere
temperature reconstruction in degree Celsius after Moberg covers the period from
1 to 1979 AD (we use the last 1968 data points) and was last updated in February
2005. The correlation properties of both records have been shown elsewhere [1.3,
1.29, 1.66] to be characterized by Cx (s) ∼ s−γ with γ ≈ 0.3 (see (1.1)).

In order to get sufficient statistics for the conditional means m R(m0), we have
considered six m0 intervals for each value of R and have set the width �m0 of the
band around m0 such that there are no gaps between the bands. Figure 1.27 shows
the results for three values of R, R = 1y, 6y, and 12y. In all cases, the effect of
the long-term correlations on the conditional mean minima and maxima m R(m0)

is clearly visible for both records: the conditional means are smaller for smaller
condition value m0 and larger for larger condition value.

To prove that the dependence upon m0 is indeed due to the long-term persis-
tence in the records, we have also studied randomly shuffled surrogate data, where
all correlations are removed. As shown by the open symbols in Fig. 1.27 the m0
dependence completely disappears, indicating that the dependence was due to the
correlations in the data.

1.3.5 Conditional Maxima Distributions

The quantity m R(m0) is the first moment of the conditional distribution density
PR(m|m0), which is defined as the distribution density of all maxima m j that fol-
low a given maximum value m0 (m j−1 ≈ m0, see Fig. 1.25). Figure 1.28 shows
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PR(m|m0) for two values of m0 and again for Gaussian as well as for exponentially
distributed long-term correlated data sets with γ = 0.4. When compared with the
unconditional distribution density PR(m), the long-term correlations lead to a shift
of PR(m|m0) to smaller m values for small m0 and to larger m values for large m0,
respectively. The conditional exceedance probability

ER(m|m0) =
∫ ∞

m
PR(m

′|m0) − dm′. (1.18)

defines the probability of finding a maximum larger than m provided that the previ-
ous value was close to m0. We found a strong dependence of ER(m|m0) upon the
condition m0. Consequently, the difference between the unconditional probabilities
ER(m) (see Fig. 1.22) and the corresponding conditional probabilities ER(m|m0)

depends strongly on m0 in the presence of long-term correlations.
Next we quantified the effect of long-term correlations upon ER(m|m0) for dif-

ferent conditions m0 and different m values. Figure 1.29 shows the conditional
exceedance probability ER(m|m0) for six m values versus m0. The m values
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were chosen such that the corresponding unconditional probabilities are ER(m) =
0.9, 0.5, 0.3, 0.1, 0.05, and 0.01, respectively. For the Gaussian data and m corre-
sponding to ER(m) = 0.5 the curve ER(m|m0) varies by factor of 2 depending
on m0, while the variation does not exceed a factor of 1.5 for the exponential
data.

In general, the memory effect caused by the long-term correlations seems to be
strongest for intermediate m values. For ER(m) ≤ 0.5, the larger the m value (i.e.,
the lower the curve in Fig. 1.29) the smaller is the apparent effect of the correlations
on the difference between the conditional probabilities ER(m|m0) (symbols) and
the unconditional probabilities ER(m) (straight lines). Hence, Fig. 1.29 may sug-
gest that the memory effect will disappear for very large m values. This, however,
is not true. Figure 1.30 shows the ratios of the conditional exceedance probabili-
ties ER(m|m0) and the unconditional exceedance probabilities ER(m). The figure
clearly shows an increase of the memory effect for larger m values, i.e., for more
extreme events. This increase seems weaker for exponentially distributed data than
for Gaussian-distributed data due to the less correlated maximum series of expo-
nential data; however, the tendency is the same. As Fig. 1.30 shows ER(m|m0) can
differ up to a factor of 2 from ER(m) when considering the history m0 in the pres-
ence of long-term correlations (with γ = 0.4). This effect has to be taken into
account in predictions and risk estimations of large events.

m
1 2 3 4 5

m

P
R
(m

|m
0)

P
R
(m

|m
0)

1 2 3 4 5
0

0.3

0.6

0.9

1.2

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

ER(m*|m0) ER(m*|m0)

(γ = 0.4)

a) GAUSS b) EXP

m*m*

Fig. 1.28 (a) Conditional distribution density PR(m|m0) of maximum values taken from correlated
Gaussian data (γ = 0.4) with R = 365 and m0 = 2.06 (circles) as well as m0 = 3.55 (squares).
(b) the same as (a) for exponentially distributed data with m0 = 4.10 (circles) and m0 = 8.65
(squares). The width �m0 around m0 is set such that a sufficient number of approximately 700
conditional maxima is obtained for each of the 150 data sets considered here. The conditional
exceedance probability ER(m∗|m0), i.e., the probability to find a m value larger than an arbitrarily
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1.4 Centennial Events

In this section we discuss how the size of typical centennial events, i.e., typical
maxima that occur once in 100 years, can be determined in practice. Such values are
commonly used, e.g., in hydrological risk estimation for centennial floodings. If all
distributions P(x) and PR(m) of the considered time series were known exactly, i.e.,
for infinitely long records, two alternative definitions of typical centennial events
would be possible as illustrated in Fig. 1.31a, b.

The first definition of a typical centennial event (see Fig. 1.31a) considers the
distribution density P(x) (here: a Gaussian distribution of xi , representing daily
data) and determines the quantile q36 500 (dashed line) that is exceeded by only
1/36 500 of all values of the distribution, i.e., on average xi > q36 500 occurs once
in 100 years = 36 500 days. For this definition the distribution P(x) must be known
for very rare events. Moreover, since q36 500 is based only on the distribution of
the values xi , it is unaffected by possible correlations and clustering of centennial
events (see [1.29, 1.36]). This definition takes into account all events that exceed the
quantile, regardless of whether they occur within the same 100-year period or not.
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The second definition of a typical centennial event (see Fig. 1.31b) considers
the distribution density P36 500(m) of centennial maxima m within periods of 100
years (histogram in the figure) and determines the mean centennial maximum value
m36 500 as the first moment of this distribution (dashed line). Clearly, this definition
includes the effects of correlations, but multiple exceedances of the threshold within
one period of 100 years are not regarded in m36 500 by definition. Still, many cen-
tennial events must have occurred in the record (xi ) to allow the determination of
P36 500(m).

In real data, however, the number of values obtained from records with typical
durations of 30, 50, or 100 years is not sufficient to study the distribution densi-
ties P(x) or PR(m) in order to determine directly the size of centennial events by
calculation of q36 500 or m36 500. It is usually not known a priori if even one cen-
tennial event occurred within the observational period. This makes it very difficult
to estimate the size of a typical centennial event. Therefore, a practical definition
is needed. This third definition assumes that P(x) is (most likely) in the domain
of attraction of the Gumbel distribution. Then one applies the Gumbel fit formula
(1.16) to the distribution density PR(m) of maxima m within (smaller) segments of
size R = 365 days and approximates the typical centennial event from this Gum-
bel fit. This procedure is illustrated in Fig. 1.31c, where the histogram P365(m) of
annual maxima and a fitted Gumbel curve (solid line) are shown. It is common prac-
tice in hydrology to estimate the size of a typical centennial event by calculating the
threshold Q100 (dashed line in Fig. 1.31c), which is exceeded by only 1/100 of the
fitted Gumbel distribution of annual maxima [1.63, 1.65]. In terms of the integrated
Gumbel distribution G365(m) (see (1.14) and (1.15)) this definition corresponds to
G365(Q100) = 0.99, which yields Q100 = u − α ln(− ln 0.99), i.e.,

Q100 = m365 − [ ln(− ln 0.99) + ne
]
√

6

π
σ365 (1.19)

or Q100 ≈ m365 + 3.14σ365 [1.63, 1.65]. Here, m365 and σ365 denote the annual
average and its standard deviation, respectively, which are easily accessible also
in short records. The three definitions for centennial maxima, q36 500, m36 500, and
Q100 (most regarded in hydrology), are similar, but differ slightly depending on the
underlying correlation structure of the data, as we will show now.

Figure 1.32 compares the quantile q36 500, the distribution density P36 500(m) of
centennial maxima, and the distribution of Q100 values for correlated and uncor-
related Gaussian-distributed data. To obtain a similar statistical basis for both,
P36 500(m) and the distribution of Q100, segments of length 36 500 days (100 years)
should be considered for each of the Q100 values. This was done for the data shown
by filled circles in Fig. 1.32. However, since real observational records are often
shorter, Fig. 1.32 also shows the distribution of the Q100 values based on segments
of 10 950 days (30 years, squares). One can see that P36 500(m) and also the corre-
sponding (actual) mean centennial maximum m36 500 are less affected by the con-
sidered long-term correlations than the estimated centennial events Q100 based on
Gumbel fits, while the quantile q36 500 is independent of correlations. Note also that
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Figure taken from [1.60]

the shift of the Q100 histogram due to the correlations is larger in contrast to the
small shift of the P36 500(m) histogram. For P36 500(m) we observe mainly a broad-
ening caused by the correlations (see Fig. 1.22). The shift of the Q100 histogram to
the right is probably caused by the influence of the scale parameter in the fit formula,
i.e., by the standard deviation σ365 that appears in Eq. (1.19). In addition, for the
quantity Q100 a broadening of the histogram is observed for the correlated data,
leading to a less accurate estimation of the typical centennial event. However, the
distribution of the Q100 values still remains significantly narrower than P36 500(m),
which indicates that – for single records comprising just about 100 years – typical
centennial events can be approximated somewhat more reliably using Q100 instead
of the single maximum m picked from the record. The estimations of centennial
events via Q100 based on just 30 years (Figs. 1.32c,d) are similarly reliable as those
via the maximum picked from a 100-year series.

In order to compare the dependence of the actual and estimated sizes of cen-
tennial events and the accuracy of their estimation in long-term correlated records
quantitatively, we have studied histograms like those in Fig. 1.32 for artificial data
characterized by different correlation exponents γ . Figure 1.33 shows, as a func-
tion of γ , the constant value q36 500 (as defined in Fig. 1.31a), the (actual) mean
centennial maximum m36 500 (diamonds) with the corresponding standard deviation
σ36 500 and the mean estimated centennial maximum 〈Q100〉 with its standard devi-
ation. Again, each single value Q100 is calculated for a segment of length 10 950
days (30 years) in (a, squares) and 36 500 days (100 years) in (b, circles). The
quantity q36 500 is (trivially) independent of the long-term correlations, because it
is based only on the distribution density P(x) and can hardly be calculated in prac-
tice, because P(x) required for the calculation is usually not known. In contrast to
q36 500, m36 500 and even more 〈Q100〉 are significantly affected by strong long-term
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correlations (γ < 0.3). Both values decrease with increasing correlations (decreas-
ing γ ). Due to the strong long-term correlations large maxima tend to cluster, i.e.,
there are epochs where considerably more large maximum values occur than in
weakly correlated and uncorrelated data [1.29]. As a consequence, there exist also
epochs, where the maximum values are considerably lower than those in weakly
or uncorrelated records. With increasing correlations (γ < 0.3) these periods of
small maxima become more pronounced and more frequent, forcing the average
centennial maximum m36 500 and also 〈Q100〉 (which is based on annual maxima)
to drop below the quantile q36 500. The corresponding standard deviations (dashed
lines and solid lines), which characterize the widths of the histograms of P36 500(m)

and P(Q100) and thus carry the information regarding the accuracy of the estima-
tions for short data, increase with decreasing γ . For γ > 0.4 the mean centennial
maximum m36 500 and 〈Q100〉 are roughly constant.

The mean estimated centennial maximum 〈Q100〉 tends to overestimate the size
of the centennial events for γ ≤ 0.6. However, the systematic deviation from m36 500
is even smaller for 〈Q100〉 based on just 30 years of data (Fig. 1.33a) than for 100
years of data (Fig. 1.33b). In addition, for weakly correlated data, the corresponding
standard deviations are lower than σ36 500, indicating more reliable estimations of
centennial maxima with Q100 for short records. In conclusion, we found that the
quantity HQ100 most regarded in hydrology is a very reliable predictor of typical
centennial events in short records, but the values tend to be systematically larger
than the m36 500 values for data with strong long-term correlations. However, in real
hydrology data such as river runoff data the correlations are hardly stronger than
γ = 0.3 [1.6, 1.67]. So the Q100 value is still a good estimator for centennial floods.

Finally, we studied the effect of long-term memory on Q100. While there is
hardly any memory to be expected in m36 500 because of the very large R value
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Fig. 1.34 Conditional average Q100 (filled circles) and conditional m36 500 (squares) for Gaussian
long-term correlated (γ = 0.4) data. The 〈Q100(Q

(0)
100)〉 values show a correlation-based memory

effect indicated by the upward trend, while the m36500 values seem to have no memory due to the
large R value. The horizontal lines correspond to the unconditional average values 4.23 and 4.12
for 〈Q100〉 and m36 500, respectively. The Q100 values were calculated from segments of length
36 500 days. Figure taken from [1.60]

(see Figs. 1.23 and 1.26), Q100 should still show some dependence on the history,
because it is based on m365 and σ365. Figure 1.34 shows, for long-term correlated
Gaussian-distributed data, the conditional average 〈Q100(Q

(0)
100)〉 and the conditional

m36 500(m0), i.e. the average Q100 value following a Q100 of size Q(0)
100 and analo-

gous for m36 500(m0). While the conditional average Q100 (filled circles) depends
on the history, the conditional m36 500 (squares) fluctuate around the unconditional
mean (solid line). Although the conditional effect on Q100 is relatively small, it
remains measurable and can help to improve predictions of extreme events within
given periods of time.

1.5 Conclusion

In summary we have studied the effect of long-term correlations in time series upon
extreme value statistics and the return intervals between extreme events.

For the return intervals in long-term persistent data with Gaussian, exponential,
power-law, and log-normal distribution densities, we have shown that mainly the
correlations rather than the distributions affect the return interval statistics, in par-
ticular, the return interval distribution density, the conditional return interval distri-
bution density, the conditional mean return intervals, and the correlation properties
of the return interval series. The stretched exponential decay of the return inter-
val distribution density for long return intervals is complemented by a power-law
decay for small return intervals, which will dominate the observable behavior in
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most (rather short) observational data. Still, the scaling behavior with the mean
return interval holds in both regimes. Besides, discreteness corrections as well as
finite-size corrections have to be taken into account for very short and long return
intervals. We have shown that the long-term persistence inherent in hydroclimate
records represents a natural mechanism for the clustering of the hazardous events.
As a consequence of the long-term memory, the mean residual time to the next event
increases with the elapsed time and depends strongly on the previous return interval.
We have demonstrated that this counterintuitive phenomenon can be seen in long
climate records. We also showed that the calculation of double-conditional return
periods might yield an improved risk estimation for the occurrence of hazardous
events in practical applications.

Considering series of maxima within segments of size R of the original data,
we have shown numerically that the maxima distribution functions still converge to
the same type of Gumbel distributions as for uncorrelated data for increasing R.
For finite values of R, however, some deviations occur especially for originally
Gaussian-distributed data. Our extensive numerical simulations suggested that con-
trary to the common assumption in extreme value statistics, the maxima time series
turn out to be not independently, identically distributed numbers. The series of max-
ima rather exhibit long-term correlations similar to those in the original data. Most
notably we have found that the maxima distribution as well as the mean maxima sig-
nificantly depend on the history, in particular on the value of the previous maximum.
In addition, we have shown that long-term memory can lead to a slight systematic
overestimation of centennial events if the approximation Q100 is considered. In gen-
eral, Q100 is a surprisingly reliable approximation for centennial events, especially
in short records.

Nevertheless, further work is needed to test if our findings are similar in other
(non-Gaussian) initial distributions. In addition, we suggest that memory via the
conditional mean maxima and conditional maxima distributions as well as condi-
tional Q100 values should be considered for an improved risk estimation in long-
term correlated data. It is also plausible that multiscaling, which occurs, e.g., in
many hydrological time series, might have an even more significant impact on risk
estimation and the prediction of extreme events like floods. Further work is defi-
nitely required to study the effects of multiscaling in time series upon extreme value
statistics.

Acknowledgments This work has been supported by the Bundesministerium für Bildung und
Forschung (under grant no. 0330271) and the Israel Science Foundation.

Appendix: Data Generation

The long-term correlations in the random numbers were introduced by the Fourier-
filtering technique, see, e.g. [1.31]. However, for the non-Gaussian distributions,
(1.3), (1.4), and (1.5), the shape of D(x) in not preserved by Fourier filtering.



1 The Statistics of Return Intervals, Maxima, and Centennial Events 41

In these cases we applied an iterative algorithm introduced by Schreiber and
Schmitz [1.33, 1.34]. The algorithm consists of the following steps: First one cre-
ates a Gaussian-distributed long-term correlated data set with the desired correla-
tion exponent γ by standard Fourier filtering [1.31]. The power spectrum SG(ω) =
FG(ω)F∗

G(ω) of this data set is considered as reference spectrum (where ω denotes
the frequency in Fourier space and the FG(ω) are the complex Fourier coefficients).
Next one creates an uncorrelated sequence of random numbers (x ref

i ), following
a desired distribution, e.g., exponential distribution (1.3). The (complex) Fourier
transform F(ω) of the (x ref

i ) is now divided by its absolute value and multiplied by
the square root of the reference spectrum

Fnew(ω) = F(ω)
√

SG(ω)

|F(ω)| . (1.20)

After the Fourier back-transformation of Fnew(ω), the new sequence (xnew
i ) has

the desired correlations (i.e., the desired γ ), but the shape of the distribution has
changed toward a (more or less) Gaussian distribution. In order to enforce the
desired distribution, we exchange the (xnew

i ) by the (x ref
i ), such that the largest

value of the new set is replaced by the largest value of the reference set, the sec-
ond largest of the new set by the second largest of the reference set, and so on.
After this the new sequence has the desired distribution and is clearly correlated.
However, due to the exchange algorithm the perfect long-term correlations of the
new data sequence were slightly altered again. So the procedure is repeated: the
new sequence is Fourier transformed followed by spectrum adjustment, and the
exchange algorithm is applied to the Fourier back-transformed data set. These steps
are repeated several times, until the desired quality (or the best possible quality) of
the spectrum of the new data series is achieved.
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Karl Friedrich Hieronymus Baron von Münchhausen, born 11 May 1720 at Bodenwerder
(Germany), died 22 February 1797 at the same place. In one of his stories, he claims to have
escaped once from sinking into a swamp by pulling himself up by his own bootstraps. . . . In
applied sciences, the bootstrap resampling approach helps the statistician to obtain meaningful
results when the data distribution is unknown, namely by using the data as realizations of their
own distribution (Painting by G. Bruckner, Rinteln (Germany), 1752. Reproduced with permission
by Bibliographisches Institut & F. A. Brockhaus AG, Mannheim (Germany))



Chapter 2
The Bootstrap in Climate Risk Analysis

Manfred Mudelsee

Climate risk is the probability of adverse effects from extreme values of variables
in the climate system. Because climate changes, so can the various types of climate
risk (floods, storms, etc.) change. This field is of strong socioeconomic relevance.
Estimates of climate risk variations come from instrumental, proxy and documen-
tary records of past climate extremes and projections of future extremes. Kernel
estimation is a powerful statistical technique for quantifying trends in climate risk. It
is not parametrically restricted and allows realistic, non-monotonic trends. The boot-
strap is a computing-intensive statistical resampling method used here to provide a
confidence band around the estimated risk curve. Confidence bands, like error bars,
are essential for a reliable assessment whether changes and trends are significant or
came by chance into the data. This methodology is presented using reconstructed
flood records of the central European rivers Elbe, Oder and Werra over the past five
centuries. Trends in flood risk differ among rivers and also between hydrological
seasons. The scientific conclusion is that flood risk analysis has to take into account
the high spatial variability from orographic rainfall, as well as different hydrological
regimes in winter and summer. In an ideal co-operation between experts, quantita-
tive knowledge with uncertainty ranges (like the estimated trends in climate risk)
should form the deliverable from scientists to policy makers and decision takers.

2.1 Introduction

Climate in its original definition refers to the mean state and variability of the
atmosphere. Today a wider definition, including the hydrosphere, cryosphere and
biosphere, is viewed as more appropriate to recognize the interdependences within
that complex system. Climate changes affect many variables and many timescales;
an upper limit is set by the age of the Earth (∼4.6 Ga). Humans play a significant role
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in the climate system by their ability to infer with the carbon cycle (CO2 and CH4
emissions). This may have been the case since the Industrial Revolution (via CO2,
see [2.21]) at around, say, AD 1800 or even earlier, since what might be termed the
agricultural revolution (via CH4, see [2.32]) at around the beginning of the Holocene
climate stage (∼10 ka ago).

Risk is in statistical science defined as “adverse probability” [2.15]. Climate
risk may therefore be defined from an anthropocentric viewpoint as the probability
that a climate variable takes values that lead to loss of human lives or damages to
economies. Normally, such values are in the tails of the probability density function
(PDF) of a variable, which means climate risk comes from extreme values. Exam-
ples are storms (extremely high wind speed), droughts (extremely low precipitation
and available water resources) or river floods (extremely large runoff values).

Because climate changes [2.21], so can the various types of climate risk change
(Fig. 2.1). It is of immediate socioeconomic value to analyse changes in climate
risk. As regards past changes, these can be analysed from documented records of

Fig. 2.1 Climate risk changes. This hypothetical example shows changes in the (right-skewed,
non-Gaussian) PDF of maximum annual runoff, Q, at the station Dresden of the river Elbe. Climate
risk is given by the integrated PDF. For example, in the hypothetical past the risk that within a year
Q exceeds 3 110 m3s−1 (the peak value of the March 1940 flood [2.26]) was 2%, it rose to 4%
(present) and might rise to 11% (future). The question marks emphasize that knowing the past as
well as the future situation is not certain but relies on imperfect data, coarse climate models and the
validity of made assumptions (e.g. regarding the statistical method). In principle, one could assign
a question mark also to the present situation
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climate extremes. Such records come from more or less direct observations within
the instrumental period (back to, say, AD 1850). Going further back in time, indirect
measurements can be used, yielding so-called proxy records [2.1]. Examples are
width of tree rings as indicator of summer temperature during the past centuries
[2.4] and measured oxygen isotopic composition in a stalagmite from the Arabian
peninsula as indicator of the strength of Indian Ocean monsoon rainfall during the
Holocene [2.12]. Also written documents can be used to extend the time span from
the beginning of the instrumental period back several centuries [2.2, 2.3, 2.26, 2.31].
Inevitably, records of past climate changes may contain measurement errors, proxy
errors, textual interpretation errors or dating errors. As regards future changes, these
can be inferred from mathematical models of the climate system. Although some
of the most powerful computers are currently employed to do this task, owing to
the limited computing power and the imperfect knowledge of the relevant processes
acting in the climate system, also climate model projections are susceptible to uncer-
tainties. One can try to improve the data situation by using better climate archives,
measurement devices, model formulations and computers. In principle, however,
our knowledge shall always be incomplete.

This means that estimated past or future climate risk changes have also errors.
This is precisely the task of statistical analysis in climate risk research: to quantify
the uncertainties, to give error bars or confidence intervals of our estimates and
projections.

This chapter illustrates the bootstrap approach to quantify uncertainties in esti-
mated climate risk changes. The bootstrap is a relatively new, computing-intensive,
statistical resampling technique [2.10, 2.11]. Its advantage is that it is less restricted
by parametric assumptions than more traditional approaches. For example, the
assumption that proxy or measurement errors in climatology follow nicely a Gaus-
sian distribution has been used for decades although it is generally appreciated that
this assumption is often wrong (Fig. 2.1). The reason for making this simplistic
assumption was to obtain analytically tractable statistical problems. With today’s
computing power, however, one need not rely on unrealistic assumptions and can
instead use the bootstrap. The bootstrap approach is applied in this work to records
of floods of European rivers from the past five centuries.

The major result is that changes in flood risk differ among the rivers Elbe, Oder
and Werra. This reflects the spatial variability of rainfall [2.24], which in turn is
partly owing to variations in orographic properties. The conclusion is that flood risk
analysis has to take into account the high spatial variability and also the different
hydrological regimes in winter and summer. It is useless when applied on a too
large spatial scale. Rivers have to be analysed separately to obtain reliable results.

2.2 Method

Regression methods fail to detect changes in climate risk because they model the
mean value and not the extremes. We [2.27] gave an example where the prescribed
trend in climate risk is upward and a weak downward trend is superimposed as
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background, plus some noise. The regression line is downward, reflecting the ten-
dency of the majority of data points and not the extremes. Taking the regression line
as indicative for risk changes would thus give the wrong, opposite result.

The situation may be less severe when instead of the original data (background
plus noise) some upper quantile data are available; this method is then called quan-
tile regression [2.23]. Related is the case when, for example, the monthly runoff
maxima instead of their means are taken. However, this still bears the possibility of
two large events within a single month, of which one would not find entry into the
flood risk analysis.

The alternative approach to regression, namely peak over threshold (POT), is
preferred by us. For example, in runoff records one can find the POT data (flood
dates) by applying a threshold (e.g. 50-year runoff level) and taking the data above
that threshold. In documentary flood records as analysed here, the reported dates of
floods are themselves already the POT data (time domain).

The simplest POT analysis technique compares two time intervals with respect to
properties of the statistical distribution that describe the extreme values found inside.
Typically chosen is the return period, which is the expected time for an extreme
event to occur. That means the return period estimated from data of the first time
interval is compared with the return period for the second interval. The problem with
the interval comparison technique is that the time information is seriously degraded.
For example, comparing Elbe floods between 1500 and 1750 with those between
1750 and 2000 would merely provide two estimates and miss the variability within
each interval.

Frei and Schär [2.14] introduced the logistic model as a parametric description of
the risk curve into climatology. (The term “risk curve” refers to the time-dependent
occurrence rate defined in the following section. The logistic model is a parametric
formulation of that time dependence.) This has the advantage of not degrading the
time information. On the other hand, the logistic model is strictly monotonically
increasing or decreasing. This means that it is not suited for analysing longer records
(above a span of, say, 100 a) because on such timescales one cannot assume mono-
tonic trends in climate risk but rather highs and lows, which might be related to the
general climatic situation.

A powerful method to quantify time-dependent climate risk could be fitting a
generalized extreme value (GEV) distribution to climate records, whereby the GEV
parameters are allowed to vary with time [2.6, 2.22, 2.29]. Additional parameters
are required for describing the time dependence. A challenge for this approach is
adjusting the total number of parameters: allowing “enough” time variability while
keeping the number of fit parameters low (Occam’s razor). Because this nonsta-
tionary approach requires flood data measured with a reasonable accuracy and a
sufficient size, it is hardly applicable to analysing flood risk in the pre-instrumental
period.

The nonparametric kernel technique is therefore our method of choice. It analy-
ses the extremes (POT advantage), does not degrade the time information and allows
non-monotonic trends in climate risk. The kernel technique can be further combined
with the bootstrap approach to yield confidence bands around the estimated risk
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curves. This helps the climate risk analyst to assess whether or not a high in flood
risk is statistically significant or whether we can expect a significant increase in
flood risk coming with global climate changes. We explain the kernel technique
with bootstrap confidence band construction in the following section. A detailed
description of the kernel technique with bootstrap confidence band construction is
given elsewhere [2.27].

2.2.1 Kernel Risk Estimation

As indicated above and said previously [2.28], the simplest method to quantify flood
risk over time is to form intervals (say, decades) and count the number of floods that
occurred within each interval. The problem hereby is that only few estimation points
would be produced. An improvement is to use quasi-continuously shifted intervals
(as in running mean smoothing). The method is then called kernel smoothing, and
the kernel function used is a uniform function [2.34], because all floods within an
interval have same weight. Uniform kernel functions for flood risk estimation have
been used in previous papers (e.g. [2.18]). The method can be further enhanced
by adopting a smooth kernel function (that means, weighting) and using a mathe-
matical method to solve the smoothing problem (choice of interval width). Finally,
a confidence band around the estimated flood risk curve can be constructed using
bootstrap simulations. See our previous paper [2.27] and the original work [2.8] for
a detailed explanation of the method.

The kernel technique [2.9] estimates the occurrence rate as

λ̂(t) = h−1
n∑

i=1

K ([t − T (i)] /h) , (2.1)

where λ(t) is the time-dependent occurrence rate (probability of an extreme event
per time unit), t is time, T (i) are the flood dates, n is the total number of floods,
K is the kernel function and h is the bandwidth. The “hat” denotes the estimate,
reflecting that the true function λ(t) is not known but has to be estimated from
the data. A high time resolution is obtained by letting t run quasi-continuously
within the observation interval of the data, [t1, t2]. Using a smooth kernel function
yields a more realistic smooth estimate of the occurrence rate. A Gaussian kernel,
K (y) = exp

(−y2/2
)
/(2π)1/2, is a convenient choice because it yields a smooth

estimated occurrence rate and allows to calculate λ̂(t) efficiently in Fourier space
[2.33], leading to considerable computational acceleration.

Boundary effects (underestimation of λ̂(t) near (i.e. within ∼3h distance) t1 and
t2) can be reduced by generating pseudodata outside of [t1, t2] before occurrence
rate estimation [2.7]. Since pseudodata generation is equivalent to an extrapolation
of the empirical distribution function, results at the boundaries should be judged cau-
tiously. It is also advisable to slightly undersmooth, that is, to take a slightly smaller
bandwidth than indicated by cross-validation (see next paragraph) to keep boundary
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effects small. Regarding boundary effects and confidence interval accuracy, see the
original papers on the kernel occurrence rate estimation method [2.7, 2.8].

Bandwidth (h) selection determines bias and variance properties of the occur-
rence rate estimation and is therefore a crucial step. Small h leads to only few
data points effectively contributing to the kernel estimation (2.1) and therefore a
large variance of the estimate. But small h keeps bias low because data far away
from the time point, t , have less influence on the estimate (2.1). On the other hand,
large h leads to smaller estimation variance and higher estimation bias. The opti-
mum bandwidth choice lies therefore somewhere in the middle, as the best compro-
mise between statistical and systematic estimation uncertainties. One mathematical
method for finding the solution to this smoothing problem is cross-validation [2.5].
Thereby, a cost function, determined by two terms describing variance and bias, is
minimized. Cross-validated h depends, among other factors, also on the data size,
n (see [2.27] for more details). In addition to cross-validation, bandwidth selection
may be guided by the objective to reduce boundary effects. Another guide is to look
at the confidence bands (next section) around the estimated occurrence rates and
evaluate whether changes in risk are significant. A user-interactive analysis process
is therefore most suited. Select a bandwidth; look at the risk curves and the signifi-
cance of the highs and lows; if many, insignificant changes are found, then increase
h; if one or no significant changes are found, then reduce h; etc.

2.2.2 Bootstrap Confidence Band Construction

A confidence band around λ̂(t) is essential for interpreting results. For example, it
might be asked if a low in λ̂(t) is real or came instead by chance into the data. A
confidence band can be obtained using bootstrap simulations [2.8] as follows:

1. From the set of data (augmented by pseudodata) draw one by one, with replace-
ment, a simulated set of flood dates of same data size. This is the bootstrap
resampling step.

2. Calculate λ̂∗(t) after (2.1) using simulated data and same h.
3. Repeat the procedure simulation–estimation until 2 000 versions of λ̂∗(t) are

available.
4. A simple, percentile-based confidence interval (of level α) at time t is given by

the central α values of ordered λ̂∗(t). For example, for α = 90%, it is given by
the interval between the 100th and 1 900th largest values.

5. The confidence band is given by the confidence intervals over time t ∈ [t1, t2].
6. Cowling and co-workers [2.8] describe construction of a percentile-t type con-

fidence band (denoted as “Type 1” and used by us), which has higher accuracy
than the percentile-based band.

Note that the confidence band is “pointwise”, it reflects the variability of the point
estimate, λ̂(t). The cited work [2.8] gives further bootstrap schemes and confidence
band types, which have similar properties as the method shown here. This pioneer-
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ing work also analyses the performance of kernel risk estimation by employing
Monte Carlo simulations, that is, numerical experiments where the artificial data
are generated from prescribed λ(t) curves.

The method of kernel occurrence rate estimation with bootstrap confidence bands
has been applied by us in the following studies: floods of the rivers Elbe and Oder
[2.26, 2.27] and Werra [2.28] over the past 500–1 000 years, occurrence of wildfire
events in the Canadian Boreal Shield since the end of the 18th century [2.16] and
in climate model projections for the same region and the 21st century [2.17], North
Sea storms since AD 1500 [2.30] and soil erosion events in Kenya over the past 300
years [2.13]. The methodology is currently being implemented into a user-friendly
Windows version of the software.

2.3 Data

Table 2.1 shows the database of analysed river floods. The Elbe, Oder and Werra are
rivers in central Europe. Their catchment areas (middle Elbe, 95 000 km2; middle
Oder, 54 000 km2; middle and upper Werra, 5 505 km2) are under low-mountainous
climate. Floods in hydrological summer (May–October) are caused by heavy and/or
prolonged rainfall and in the winter (November–April) also by thawing snow. Break-
ing river ice may function as water barrier and enhance a flood severely [2.19].

Documentary records of floods (Fig. 2.2) were consulted and analysed to con-
struct the old parts of the flood database (Elbe, before 1850; Oder, before 1920;
Werra, before 1900). Measured records of water stage and inferred runoff were used
to complete the database to the present (Elbe, 1850–2002; Oder, 1854–2002; Werra,
1880–2003). Occasionally, the documentary entries contained information on the
maximum flood water stage. Owing to overlapping documentary and instrumental
periods, it was possible to quantify the size of a flood for number of events and to
ensure data homogeneity across the boundary between documentary and instrumen-
tal periods [2.26]. The size of most of the flood events in the documentary periods
could only roughly be quantified by means of information such as the duration of an
event, the number of casualties, the economic damages caused. Following standard
practice in documentary climatology [2.2, 2.26], the flood records were allowed to
take only three values: 1 (minor flood event), 2 (strong flood event) and 3 (excep-
tionally strong flood event). In the present chapter, we focus on heavy floods (classes
2–3).

Table 2.1 Database (see also Fig. 2.3)

River Interval

Number of floods

ReferenceTotal Winter Summer Unknown

Elbe 1021–2002 328 208 117 3 [2.26]
Oder 1269–2002 218 108 106 4 [2.26]
Werra 1500–2003 143 111 32 0 [2.28]
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Fig. 2.2 Pamphlet on the “Thuringian Flood”. This catastrophe happened on 29 May 1613 (Julian
calendar). This rendering (printed 1613 in Schmalkalden) is likely not realistic; Hellmann’s work
[2.20] contains a reproduction (p. 40) and further bibliographic details

The most severe problem when dealing with documentary data of climate
extremes is to reduce the effects of data inhomogeneities in the form of document
loss. In the earlier half of the last millennium, before the invention of printing in
Europe, likely fewer documents (handwritings) survived, compared with the latter
half, until they found entrance into permanent, secondary sources. Ignoring this type
of data deficit could then lead to unjustified claims of increased flood risk in the
second compared with the first half. In the case of Elbe and Oder floods (Table 2.1),
the start of the observation intervals (1021 and 1269, respectively) likely is not the
start of the interval in which homogeneous data can be assumed, which we set [2.26]
to AD 1500. In the case of Werra floods (1500–2003), we tried by employing criti-
cal source interpretation and consultation of many documentary archives to achieve
more or less complete information about floods within the relatively small area of
the middle and upper Werra [2.28]. Despite this, the results (Sect. 2.4) suggest that
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Fig. 2.3 Winter (W) and summer (S) floods of rivers Elbe, Oder and Werra since AD 1500. Floods
with unknown season are few (Table 2.1); they are plotted here together with the winter floods. In
the case of Elbe and Oder floods, only the heavy events (classes 2 and 3, see [2.26]) are shown

minor document loss could have occurred for data before the beginning of the 18th
century.

See the data references [2.26–2.28] for more details on the rivers, river engi-
neering work, orography, runoff–stage relations, critical source interpretation and
comparisons of different sources.

2.4 Results

The results (Fig. 2.4) show that flood risk over the past five centuries varied sig-
nificantly. There is further variation between winter and summer trends and also
among the various rivers. These trends have been discussed in detail in the original
publications [2.26–2.28]. Here we make some general comments and investigate
selected points.

Werra flood risk (winter and summer) shows small, long-term increases in the
early part (∼1500–1700). It may be asked whether this reflects what really occurred
in nature or instead results from a trend towards reduced document loss. Arguing
from a historical–critical perspective, we believe that document loss played only a
minor role in case of the Werra because historical information from that region is
quite abundant and well preserved.
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Fig. 2.4 Results: flood occurrence rates (heavy lines) for rivers Elbe, Oder and Werra in winter (W)
and summer (S) with 90% confidence bands (shaded). In case of Elbe and Oder floods, only the
heavy events (classes 2 and 3, see [2.26]) are analysed. Floods with unknown season are assumed to
have occurred in winter. Owing to the small number of such events (Table 2.1), this has negligible
effect on the estimated flood occurrence rates. Note that y-axes scaling differs between winter and
summer flood risk. Statistical parameters used: Gaussian kernel function, K ; pseudodata generation
rule “reflection” (see [2.27]); bandwidth h = 35 a (Elbe, W; Oder, W; Elbe, S; Oder, S; Werra, S)
and 20 a (Werra, W). Using h = 20 a for summer floods of the Werra produced additional, insignif-
icant “wiggles” [2.28]

The high in Elbe winter flood risk in the latter half of the 16th century (Fig. 2.4)
corresponds to increased risk levels in rivers in central and southwest Europe during
that time, which were related to higher precipitation [2.2]. A low in Elbe flood risk
at around 1700 could have been the effect of the cold and dry climate in Late Maun-
der Minimum [2.25], a period of nearly absent sunspots and reduced solar activity.
However, the Oder does not exhibit such significant changes in the early period.

Length reductions of the middle Elbe (1740–1870) and middle Oder (1745–
1850) did not leave a consistent imprint on winter and summer flood risk (Fig. 2.4)
and were therefore only of minor influence.
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The 18th and 19th centuries experienced strong, significant changes in flood
occurrence rates (Fig. 2.4). The Elbe had a high in winter flood risk in 1800–1850,
followed by a long-term decrease. Oder flood risk (winter and summer) increased,
but this should be interpreted cautiously because the Oder flood record in the inter-
val 1850–1920 is of reduced quality [2.26]. Werra winter flood risk peaked high
at ∼1760, then low at ∼1810, then high again at ∼1860 [2.28]. This pseudo-
periodicity of 100 a is not the result of bandwidth selection because h = 20 a is
clearly smaller. These Werra winter flood changes contrast markedly with the find-
ings for the Elbe. Werra summer flood risk decreased gradually since ∼1760 to the
present.

In general, winter floods seem to have been more likely than summer floods over
the past centuries, as is expressed most clearly by the Werra [2.28], the Elbe and, to
a lesser degree, the Oder (Fig. 2.4).

The flood records for the past decades can be completely determined from instru-
mental observations. They have therefore an excellent degree of data homogeneity.
Within the instrumental period, Elbe and Oder winter flood risk decreased signif-
icantly [2.26]. This is likely a climate signal from regional warming, which had
reduced the probability of strong river freezing and, hence, the risk of “ice floods”
[2.26, 2.27]. In this regard, the significant upward trend of Werra winter flood risk
(Fig. 2.4) is interesting. We speculate that “ice flood” risk was reduced earlier
(mid-19th century) for the Werra than for the other two rivers (mid-20th century
[2.26, 2.27]). Contrarily, summer flood risk shows no trends (Elbe, Oder and Werra)
over the past decades.

2.5 Conclusion

Producing large amounts of rainfall in the affected catchment areas requires a com-
bination of several factors [2.27, 2.28]:

1. north-westerly to southerly, cyclonic airflow;
2. high atmospheric water vapour content;
3. low convective lability, preventing cell formation;
4. prolonged (at least half a day) flow against the orography (Fig. 2.5).

It would be naïve to assume that with climate changes only factor 2 would change
(via the Clausius–Clapeyron equation). In particular, the role of factor 4, flow
against orography, should be analysed in the case of flood risk changes in central
European regions under low-mountainous climate. This is because of the differ-
ences among Werra, Elbe and Oder flood risk curves (Fig. 2.4), which indicate that
the orographic differences among the catchment areas introduce a strong nonlinear
component into the complex climate–hydrosphere system.

It is in our view required to carry out a large body of detailed scientific work to
learn about flood risk and climate changes:
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Fig. 2.5 Rivers Elbe, Oder and Werra in central Europe. Grey squares denote the places used
[2.26, 2.28] to define the analysed river sections (middle Elbe, middle Oder and middle to upper
Werra). Also shown are the mountain ranges relevant for orographically induced rainfall in the
catchment areas of the river sections. T, Thüringer Wald; E, Erzgebirge; S, Sudeten; B, Beskids

1. Produce records of past floods in a hydrologically more or less homogeneous
area, at monthly or at least seasonal resolution over the past centuries.

2. Combine documentary with instrumental evidence to achieve data homogeneity.
3. Use quantitative flood risk estimation methods with error band.
4. Use the results obtained from the analysis of past floods to train coupled cli-

mate models (global–regional–hydrological) that are used to make projections of
future flood risk; trends from observed, past floods serve as targets for successful
models.

As said in the introduction, estimated past or future climate risk changes have errors.
It is the task of climate scientists to give error bars or confidence intervals of the esti-
mates and projections. It is then the duty of policy makers to make, in this uncertain
situation, decisions of sometimes strong impact. Luckily, politicians are trained to
doing exactly that: making decisions in uncertain situations. This is a plea for a
rational approach in this challenging socioeconomic situation: let the scientists do
the science and the politicians make the decisions.
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The Elbe flood 2002 which was classified as a 100-year event. Only four years later, in 2006, the
Elbe discharge exceeded this event at several locations. The concept of a 100-year event was put
into question by the media (Picture by Enrico Bär)



Chapter 3
Confidence Intervals for Flood Return Level
Estimates Assuming Long-Range Dependence

Henning W. Rust, Malaak Kallache, Hans Joachim Schellnhuber, and
Jürgen P. Kropp

Standard flood return level estimation is based on extreme value analysis assuming
independent extremes, i.e. fitting a model to excesses over a threshold or to annual
maximum discharge. The assumption of independence might not be justifiable in
many practical applications. The dependence of the daily run-off observations might
in some cases be carried forward to the annual maximum discharge. Unfortunately,
using the autocorrelation function, this effect is hard to detect in a short maxima
series. One consequence of dependent annual maxima is an increasing uncertainty of
the return level estimates. This is illustrated using a simulation study. The confidence
intervals obtained from the asymptotic distribution of the maximum likelihood esti-
mator (MLE) for the generalized extreme value distribution (GEV) turned out to
be too small to capture the resulting variability. In order to obtain more reliable
confidence intervals, we compare four bootstrap strategies, out of which one yields
promising results. The performance of this semi-parametric bootstrap strategy is
studied in more detail. We exemplify this approach with a case study: a confidence
limit for a 100-year return level estimate from a run-off series in southern Germany
was calculated and compared to the result obtained using the asymptotic distribution
of the MLE.

3.1 Introduction

Many achievements regarding extreme value statistics and the assessment of poten-
tial climate change impacts on frequency and intensity of extreme events have
been made in the past years, summarized for instance in [3.34], [3.49] or [3.45].
The IPCC stated that it is very likely for the frequency of intense precipitation
to increase [3.32] with increasing global mean temperature. This implies changes
in precipitation patterns, a major factor – among some others – for the intensity
and frequency of floods, which ultimately can cause tremendous consequences for
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nature and societies in a catchment area. This has been already observed in many
regions of the world [3.37].

A pressing question is thus whether heavy rain or severe floods become more
frequent or intense. Some concepts make use of non-stationary models, e.g. Chap. 9,
[3.16, 3.33], or try to identify flood-producing circulation patterns [3.2]. A variety
of approaches assess changes by comparing windows covering different time spans
[3.3]. This procedure is especially useful for getting an impression of possible fur-
ther developments by comparing GCM control and scenario runs [3.38, 3.58]. A
useful indicator for changes in flood frequency and magnitude is the comparison of
return level estimates. For this purpose a reliable quantification of the uncertainty of
return level estimates is crucial.

Alerted by a seemingly increasing flood risk, decision makers demand for quan-
titative and explicit findings for readjusting risk assessment and management strate-
gies. Regional vulnerability assessments can be one strategy to deal with the threat
of extremes, such as floods or heat waves (e.g. [3.36]). Other approaches try to
anticipate extreme scenarios using GCM runs. The development of risk assessment
concepts, however, has still a long way to go, since forecasting of extreme precipita-
tion or floods is highly uncertain (cf. for instance [3.42]). Another potential problem
in the risk assessment framework is the quantification of uncertainty in extreme
value statistics. In situations where common statistical approaches might not be
applicable as usual, e.g. dependent records, specification of uncertainty bounds for
a return level estimate cannot be made on the basis of the mathematically founded
asymptotic theory. The simplified assumption of independent observations usually
implies an underestimation of this uncertainty [3.4, 3.13, 3.35, 3.51]. The estima-
tion of return levels and their uncertainty plays an important role in hydrological
engineering and decision making. It forms the basis of setting design values for
flood protection buildings like dikes. Since those constructions protect facilities of
substantial value or are by themselves costly objects, it is certainly of considerable
importance to have appropriate concepts of estimation and uncertainty assessment
at hand. Otherwise severe damages, misallocation of public funds, or large claims
against insurance companies might be possible. Thus, the approach presented in this
contribution focuses on an improvement of common statistical methods used for the
estimation of return levels with non-asymptotic bootstrap method.

In the present chapter, we focus on the block maxima approach and investigate
the maximum likelihood estimator for return levels of autocorrelated run-off records
and its uncertainty. In a simulation study, the increase in uncertainty of a return level
estimate due to dependence is illustrated. As a result of comparing four strategies
based on the bootstrap, we present a concept which explicitly takes autocorrelation
into account. It improves the estimation of confidence intervals considerably rela-
tive to those provided by the asymptotic theory. This strategy is based on a semi-
parametric bootstrap approach involving a model for the autocorrelation function
(ACF) and a resampling strategy from the maxima series of the observations. The
approach is validated using a simulation study with an autocorrelated process. Its
applicability is exemplified in a case study: we estimate a 100-year return level and
a related 95% upper confidence limit under the different assumptions of independent
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and dependent observations. The empirical run-off series was measured at the gauge
Vilsbiburg at the river Große Vils in the Danube catchment.

The chapter is organized as follows: Sect. 3.2 describes the basic theory of the
block maxima approach of extreme value statistics and the associated parameter
estimation. Section 3.3 illustrates the effect of dependence on the variability of the
return level estimator. In Sect. 3.4 the bootstrap strategies are presented including
the methodological concepts they require. The performance of the most promising
approach is evaluated in Sect. 3.5, followed by a case study in Sect. 3.6. A discussion
and conclusions in Sects. 3.7 and 3.8, respectively, complete the chapter. Details
regarding specific methods used are deferred to the Appendix 3.

3.2 Basic Theory

3.2.1 The Generalized Extreme Value Distribution

The pivotal element in extreme value statistics is the three types theorem, dis-
covered by Fisher and Tippett [3.22] and later formulated in full generality by
Gnedenko [3.23]. It motivates a family of probability distributions, namely the
general extreme value distributions (GEV), as models for block maxima from an
observed record, e.g. annual maximum discharge. We denote the maxima out of
blocks of size n as Mn . According to the three types theorem, for n large enough the
maxima distribution can be approximated by

Pr{Mn ≤ z} ≈ G(z), (3.1)

where G(z) is a member of the GEV family (cf. Appendix).
The quality of the approximation in Eq. (3.1) depends in the first place on the

block size n, which in hydrologic applications is usually chosen as 1 year. Further
influencing factors are the marginal distribution of the observed series and – a fre-
quently disregarded characteristic – its autocorrelation. Fortunately, the three types
theorem holds also for correlated records under certain assumptions (cf. Appendix).
The quality of approximation, however, is affected by the correlation as demon-
strated in the following.

We compare records of white noise and a simple correlated process (AR[1],
cf. Sect. 3.4.3) with the same (Gaussian) marginal distribution. For different block
sizes n, we extract 2 000 block maxima from a sufficiently long record. Subse-
quently, the maxima are modelled with a Gumbel distribution being the appropriate
limiting distribution in the Gaussian case [3.21]. We measure the quality of approxi-
mation for different n using the negative log-likelihood l (cf. Sect. 3.2.2). Figure 3.1
shows a decreasing negative log-likelihood with increasing block sizes n for the
uncorrelated and the correlated record. This implies that the approximation in gen-
eral ameliorates with block size n. However, for all n the approximation is better
for the uncorrelated series than for the AR[1] series. This finding is consistent with
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Fig. 3.1 Quality of approximation of a Gumbel fit to 2 000 maxima of realizations of a white noise
and an AR[1] process for different block sizes n. The lines connect the means of 1 000 realizations,
the shadows mark the mean ±1 SD. The vertical line marks a block size of n = 365

dependency reducing the effective number of data points [3.63], which in this case
translates into a reduction of effective block size. The difference in approximation
between the correlated and the uncorrelated case vanishes with increasing n [3.51].

3.2.2 GEV Parameter Estimation

To fully specify the model for the extremes, we estimate the GEV parameters
from the data. Estimates can be obtained in several ways: probability weighted
moments [3.30, 3.31], maximum likelihood (ML) [3.12, 3.54], or Bayesian meth-
ods [3.12, 3.14, 3.55]. These different approaches have advantages and drawbacks
which are discussed in, e.g. [3.13, 3.31] and [3.56]. In the following we focus on
ML estimation as the most general method. Within this framework models can be
easily extended, for example, to non-stationary distributions [3.34].

Let θ̂ = (μ̂, σ̂ , ξ̂ ) be the maximum likelihood estimate (cf. Appendix) for the
location (μ), scale (σ ), and form (ξ ) parameter of the GEV. For large block sizes n
approximate (1 − α)100% confidence intervals for these estimates can be obtained
from the Fisher information matrix IE as θ̂ j ± z α

2

√
β j, j , with β j,k denoting the

elements of the inverse of IE and z α
2

the (1 − α
2 )-quantile of the standard normal

distribution (cf. Appendix).
The m-year return level can be calculated straightforwardly once the location,

scale, and shape parameter are estimated. In case of the Gumbel distribution the
equation reads

r̂m = μ̂ − σ̂ log(y), (3.2)

with y = − log(1− 1
m ). An approximated confidence interval for r̂m can be obtained

using the delta method described in the Appendix [3.12].
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For maximum likelihood estimation of the GEV parameters, we use the package
evd [3.57] for the open source statistical language environment R [3.50].1

3.3 Effects of Dependence on Confidence Intervals

Annual maxima from river run-off frequently appear uncorrelated from an investi-
gation of the empirical ACF. The left panel in Fig. 3.2 shows the ACF of the annual
maxima series from the gauge Vilsbiburg (solid) and of a simulated record (dotted).
Both records contain 62 values and their ACF estimates basically do not exceed the
95% significance level for white noise. If a longer series was available, as is the
case for the simulated record, significant autocorrelations of the annual maxima are
revealed by the ACF, Fig. 3.2 (right). This implies that considering annual maxima
from run-off records a priori as uncorrelated can be misleading.

The ML estimator relies on the assumption of independent observations and
is thus, strictly speaking, not correct for dependent observations. The main effect
is that standard errors are underestimated if obtained from the Fisher information
matrix [3.15]. In the following we illustrate this effect by a Monte Carlo (MC)
simulation study using realizations of a long-range2 dependent process (FAR[1, d],
cf. Sect. 3.4.3) with Hurst exponent H = 0.75 (or, equivalently, fractional differ-
encing parameter d = H − 0.5 = 0.25). To ameliorate resemblance to a daily
run-off series, we transform the Gaussian series Xt with an exponential function.
The resulting record Zt = exp(Xt ) is then log-normally distributed.

Considering Zt as 100 years of daily run-off (N = 36 500), we perform an
extreme value analysis, i.e. we model the annual maxima series by means of a
GEV. Since the marginal distribution is by construction log-normal, we restrict
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Fig. 3.2 Autocorrelation of the empirical maxima series and a section of same length cut out of
the simulated series (left). The right panel shows the ACF of the full simulated maxima series
(length = 6 200). The 95% significance levels are marked as dashed lines

1 Both are freely available from http://cran.r-project.org
2 A process is long-range dependent if its autocorrelation function is not summable, cf. Sect. 3.4.3.
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Fig. 3.3 Histogram (grey) of the estimated 100-year return levels from the MC ensemble of 10 000
realization of the FAR[1, d] process with fractional difference parameter d = 0.25 (or equivalently
H = 0.75) and AR parameter φ1 = 0.9 (left). The right panel shows the result for a white noise
process. The realizations contain N = 36 500 data points. The solid line shows a Gaussian density
function representing the limiting distribution of the 100-year return level estimator derived from
the Fisher information matrix for one ensemble member

the extreme value analysis to a Gumbel distribution which is the proper limiting
distribution in this case. Exemplarily, a 100-year return level is estimated using the
MLE (cf. Sect. 3.2.2). Repeating this for 10 000 realizations of Zt yields a fre-
quency distribution representing the variability of the return level estimator for the
FAR[1, d] process, shown as histogram in Fig. 3.3 (left panel). An analogous simu-
lation experiment has been carried out for an uncorrelated series with a log-normal
distribution (Fig. 3.3, right panel). Both histograms (grey) are compared with the
limiting distribution (solid line) of the MLE (Eq. (3.19)) evaluated for an ensemble
member with return level estimate close to the ensemble mean. For the uncorrelated
series the limiting distribution provides a reasonable approximation in the sense that
it roughly recovers the variability of the estimator. In the presence of correlation,
the estimator variability is underestimated. This indicates that confidence intervals
derived from the MLE’s limiting distribution are not appropriate here.

Alternatively, confidence intervals can be obtained using the profile likelihood
which is frequently more accurate [3.12]. Table 3.1 compares the upper limits of
two-sided confidence intervals for three α-levels obtained using profile likelihood to
the limiting distribution and the Monte Carlo simulation. The limits from the profile
likelihood are indeed for the correlated and the uncorrelated process closer to the
limits of the Monte Carlo ensemble. For the correlated process this improvement is
not satisfying, since the difference to the Monte Carlo limit is still about 20% of the
estimated return level.

Table 3.1 Upper limits of two-sided confidence intervals for various confidence levels obtained
from the asymptotic distribution (Asympt.), the profile likelihood approach (Profile), and the Monte
Carlo ensemble (MC)

Uncorrelated series Correlated series

Level Asympt. Profile MC Level Asympt. Profile MC

0.68 45.97 46.10 46.69 0.68 52.72 53.00 56.91
0.95 48.33 48.90 50.42 0.95 56.21 57.19 67.26
0.99 49.84 50.87 53.10 0.99 58.43 60.12 75.34
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To facilitate the presentation in the following, we compare the results from the
bootstrap approaches to the confidence intervals obtained using the asymptotic dis-
tribution.

3.4 Bootstrapping the Estimators Variance

We discuss non-asymptotic strategies to more reliably assess the variability of the
return level estimator. These strategies are based on the bootstrap, i.e. the generation
of an ensemble of artificial maxima series. These series are simulated using a model
which has been motivated by the data [3.17]. In the given setting we estimate the
return levels for each ensemble member and study the resulting frequency distribu-
tion.

There are various strategies to generate ensembles. Four of them will be briefly
introduced and, as far as necessary, described in the following.

bootstrapcl. The first approach is a classical bootstrap resampling of the maxima
[3.17, 3.19], denoted in the following as bootstrapcl: one ensemble member is gener-
ated by sampling with replacement from the annual maxima series. Autocorrelation
is not taken into account here.

iaaftd. We denote the second strategy as iaaftd, which makes use of daily observa-
tions. Ensemble members are obtained using the iterative amplitude adjusted Fourier
transform (IAAFT) – a surrogate method described in Sect. 3.4.4. The IAAFT gen-
erates artificial series (so-called surrogates) preserving the distribution and the cor-
relation structure of the observed daily record. Subsequently, we extract the maxima
series to obtain an ensemble member. Linear correlation is thus accounted for in this
case.

bootstrapfp. The third strategy is a full-parametric bootstrap approach denoted as
bootstrapfp. It is based on parametric models for the distribution and the autocorre-
lation function of the yearly maxima. This approach operates on the annual maxima
in order to exploit the Fisher–Tippett theorem motivating a parametric model for the
maxima distribution.

bootstrapsp. The fourth strategy is a semi-parametric approach, which we call
bootstrapsp. It similarly uses a parametric model for the ACF of the maxima series,
but instead of the GEV we choose a nonparametric model for the distribution.

While the first two strategies are common tools in time series analysis and
are well described elsewhere [3.17, 3.53], we focus on describing only the full-
parametric and semi-parametric bootstrap strategy.

3.4.1 Motivation of the Central Idea

A return level estimate is derived from an empirical maxima series which can be
regarded as a realization of a stochastic process. The uncertainty of a return level
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estimate depends on the variability among different realizations of this process. As
a measure of this variability, we consider the deviation of a realization’s empirical
distribution function from the true distribution function. If this variability is low, it is
more likely to have obtained a good representative for the true maxima distribution
from one sample. For a high variability instead, it is harder to get a representative
picture of the underlying distribution from one sample. We illustrate this effect using
long realizations (N = 10 000) from the correlated and the uncorrelated process
introduced in Sect. 3.3. We compare the difference between the distributions F̂s(x)
of a short section (N = 100) of a realization and the entire realization’s distribu-
tion F̂0(x) by means of the Kolmogorov–Smirnov distance D = maxx |F̂s(x) −
F̂0(x)| [3.18]. Smaller distances D indicate a larger similarity between F̂s and F̂0.
Figure 3.4 shows the cumulative distribution function F̂(D) of these distances D
for an uncorrelated (circles) and a correlated process (triangles). For the correlated
process, we find a distribution of distances D located at larger values. This implies
that the sections are more diverse in their distribution. Thus for correlated processes
the variability in short realization’s maxima distribution is larger than for the uncor-
related process. Realizations of correlated processes are therefore not as likely to
yield as representative results for the underlying distribution as a comparable sample
of an uncorrelated process.

Since the variability of the return level estimator is a result of the variability of
realization’s maxima distribution, we employ this illustrative example and study the
estimator’s variability among sections of a long record. Ideally, the properties of
this long record should be close to the underlying properties of the process under
consideration. This requires a satisfying model for the maxima series’ distribution
and the autocorrelation function. In the approach pursued here, we initially provide
two separate models for the two characteristics. Realizations of these two models
are then combined to obtain one realization satisfying both the desired distribution
and the ACF.
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Fig. 3.4 Empirical cumulative distribution function F̂(D) of the Kolmogorov–Smirnov distances
D between sections of a 100-year annual maxima series and the entire 10 000-year annual maxima
series. For the uncorrelated record (©) distances D are located at smaller values than for the
correlated record (�)
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3.4.2 Modelling the Distribution

The aim of modelling the distribution is to provide means for generating realizations
used in a later step of the bootstrap procedure.

For the semi-parametric approach, the distribution of the maxima is modelled by
the empirical cumulative distribution function from the observed series. This means
realizations from this model can be obtained simply by sampling with replacement
from the observed maxima series [3.17].

The full-parametric approach exploits the Fisher–Tippett theorem for extreme
values (Sect. 3.2.1). It uses the parametric GEV family as a model for the maxima
distribution. Realizations are then obtained directly by sampling from the parametric
model fitted to the empirical maxima series.

3.4.3 Modelling the ACF

At this point, we are mainly interested in an adequate representation of the empir-
ical ACF. Such a representation can be achieved by modelling the series under
investigation with a flexible class of linear time series models. We do not claim
that these models are universally suitable for river run-off series. However, together
with a static nonlinear transformation function and a deterministic description of
the seasonal cycle, they capture the most dominant features regarding the stochas-
tic variability. Especially, an adequate representation of the ACF can be achieved,
which is the objective of this undertaking. These models are obviously not adequate
for studying, e.g. the effect of changing precipitation patterns on run-off or other
external influences. This is, however, not the focus of this chapter.

3.4.3.1 ARMA Processes

A simple and prevailing correlated stochastic process is the autoregressive first-order
(AR[1]) process (or red noise) frequently used in various geophysical contexts, e.g.
[3.26, 3.41, 3.64]. For a random variable Xt , it is a simple and intuitive way to
describe a correlation with a predecessor in time by

Xt = φ1 Xt−1 + σηηt , (3.3)

with ηt being a Gaussian white noise process (ηt ∼ WN (0, 1)) and φ1 the lag-
one autocorrelation coefficient. This approach can be extended straightforwardly to
include regressors Xt−k with lags 1 ≤ k ≤ p leading to AR[p] processes allow-
ing for more complex correlation structures, including oscillations. Likewise lagged
instances of the white noise process ψlηt−l (moving average component) with lags
1 ≤ l ≤ q can be added leading to ARMA[p,q] processes, a flexible family of
models for the ACF [3.9, 3.10]. There are numerous applications of ARMA models,
also in the context of river run-off, e.g. [3.7, 3.27, 3.60].
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3.4.3.2 FARIMA Processes

Since ARMA processes are short-range dependent, i.e. have a summable ACF
[3.4], long-range dependence, which is frequently postulated for river run-off
[3.40, 3.43, 3.47], cannot be accounted for. It is thus desirable to use a class
of processes able to model this phenomenon. Granger [3.24] and Hosking [3.29]
introduced fractional differencing to the concept of linear stochastic models and
therewith extended the ARMA family to fractional autoregressive integrated mov-
ing average (FARIMA) processes. A convenient formulation of such a long-range-
dependent FARIMA process Xt is given by

Φ(B)(1 − B)d Xt = Ψ (B)ηt , (3.4)

with B denoting the back-shift operator (B Xt = Xt−1), ηt ∼ WN (0, ση) a white
noise process, and d ∈ R the fractional difference parameter. The latter is related
to the Hurst exponent, frequently used in hydrology, $H = d + 0.5$ [3.4]. The
autoregressive and moving average components are described by polynomials of
order p and q

Φ(z) = 1 −
p∑

i=1

φi z
i , Ψ (z) = 1 +

q∑

j=1

ψ j z
j , (3.5)

respectively. In practice, the fractional difference operator (1 − B)d has to be
expanded in a power series, cf. [3.24]. A FARIMA[p, d, q] process is stationary
if d < 0.5 and all solutions of Φ(z) = 0 in the complex plane lie outside the
unit circle. It exhibits long range dependence or long-memory for 0 < d < 0.5.
Processes with d < 0 are said to possess intermediate memory; in practice this
case is rarely encountered, it is rather a result of “over-differencing” [3.4]. Recently,
the FARIMA model class has been used as a stochastic model for river run-off,
e.g. [3.4, 3.33, 3.40, 3.43, 3.44]. Also self-similar processes are sometimes used
in this context. The latter provide a simple model class, but are not as flexible as
FARIMA processes and are thus appropriate only in some specific cases. FARIMA
models, however, can be used to model a larger class of natural processes including
self-similar processes. (For a comprehensive overview of long-range dependence
and FARIMA processes refer to [3.4, 3.46] and references therein.)

3.4.3.3 Parameter Estimation

The model parameters (φ1, . . . , φp, d, ψ1, . . . , ψq) are estimated using Whittle’s
approximation to the ML estimator [3.4]. It operates in Fourier space – with the
spectrum being an equivalent representation of the autocorrelation function [3.48] –
and is computationally very efficient due to the use of the fast Fourier transform.
Therefore, the Whittle estimator is especially useful for long records where exact
MLE is not feasible due to computational limits.
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The model orders p and q are a priori unknown and can be determined using
the Hannan–Quinn information criterion (HIC) which is advocated for FARIMA
processes:

HIC = N log σ̂ 2
η + 2c log log N (p + q + 1), (3.6)

with c > 1, σ̂ 2
η the ML estimate of the variance of the driving noise ηt , and p+q +1

being the number of parameters [3.5, 3.6, 3.25]. We choose the model order p and
q such that the HIC takes a minimum.

3.4.3.4 Indirect Modelling of the Maxima Series’ ACF

Modelling the ACF of a run-off maxima series is usually hampered by the shortness
of the records. For a short time series it is often difficult to reject the hypothesis of
independence, cf. Sect. 3.3. To circumvent this problem, we model the daily series
and assume that the resulting process adequately represents the daily series’ ACF. It
is used to generate long records whose extracted maxima series are again modelled
with a FARIMA[p, d, q] process. These models are then considered as adequate
representatives of the empirical maxima series (ACF). This indirect approach of
modelling the maxima series’ ACF relies on the strong assumption that the model
for the daily series and also its extrapolation to larger time scales is adequate.

3.4.3.5 Modelling a Seasonal Cycle

The seasonal cycle found in a daily river run-off series has a fixed periodicity of 1
year. It can be modelled as a deterministic cycle C(t) which is periodic with period
T (1 year): C(t + T ) = C(t). Combined with the stochastic model X (t) this yields
the following description:

Y (t) = C(t) + X (t). (3.7)

In the investigated case studies C(t) is estimated by the average yearly cycle
obtained by averaging the run-off Q(t) of a specific day over all M years, i.e.
Ĉ(t) = 1/M

∑
j Q(t + jT ), t ∈ [1, T ], cf. [3.28].

3.4.3.6 Including a Static Nonlinear Transformation Function

River run-off is a strictly positive quantity and the marginal distribution is in general
positively skewed. This suggests to include an appropriate static nonlinear transfor-
mation function in the model. Let Z = T (Y ) denote the Box–Cox transformation
(cf. Sect. 3.10.3, [3.8]) of the random variable Y (Eq. (3.7)). Then Z is a positively
skewed and strictly positive variable, suitable to model river run-off. One can think
of this static transformation function as a change of the scale of measurement. This
transformation has been suggested for the modelling of river run-off by Hipel and
McLeod [3.28].
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The full model for the ACF can be written as

Φ(B)(1 − B)d Xt = Ψ (B)ηt , (3.8)

Y (t) = C(t) + X (t), (3.9)

Z(t) = T (Y ). (3.10)

3.4.3.7 Simulation of FARIMA Processes

Several algorithms are known to simulate data from a FARIMA process (for an
overview refer to [3.1]). Here, we use a method based on the inverse Fourier trans-
form described in [3.61]. It was originally proposed for simulating self-similar pro-
cesses but can be straightforwardly extended to FARIMA processes.3

3.4.4 Combining Distribution and Autocorrelation

Having a model for the distribution and for the ACF we can generate realizations,
i.e. a sample {Wi }i=1,...,N , from the distribution model and a series {Zi }i=1,...,N from
the FARIMA model including the BOX–COX transformation and, if appropriate,
the seasonal cycle. To obtain a time series {Qi }i=1,...,N with distribution equal to
the one of {Wi }i=1,...,N and ACF comparable to that of {Zi }i=1,...,N , we employ the
iterative amplitude adjusted Fourier transform (IAAFT).

The IAAFT was developed by Schreiber and Schmitz [3.52] to generate surrogate
time series used in tests for nonlinearity [3.59]. The surrogates are generated such
that they retain the linear part of the dynamics of the original time series including
a possible nonlinear static transfer function. This implies that the power spectrum
(or ACF, equivalently) and the frequency distribution of values are conserved. The
algorithm basically changes the order of the elements of a record in a way that the
periodogram stays close to a desired one [3.53].

Besides using the IAAFT on the daily series to generate an ensemble of
surrogates (denoted as iaaftd), we employ this algorithm also to create records
{Qi }i=1,...,N with a periodogram prescribed by a series {Zi }i=1,...,N and a frequency
distribution coming from {Wi }i=1,...,N .

3.4.5 Generating Bootstrap Ensembles

With the described methods we are now able to build a model for the distribution
and ACF of empirical maxima series and combine them to obtain long records. This

3 An R package with the algorithms for the FARIMA parameter estimation (based on the code
from Beran [3.4]), the model selection (HIC), and the simulation algorithm can be obtained from
the author.
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provides the basis of the full-parametric bootstrap ensemble bootstrapfp and the
semi-parametric ensemble bootstrapsp.

In detail, the strategies to obtain the ensembles bootstrapfp and bootstrapsp can
be outlined as follows:

1. Model the correlation structure of the maxima

(a) If necessary, transform the daily run-off data to follow approximately a
Gaussian distribution using a log or BOX–COX transform [3.8, 3.28], cf.
Sect. 10.3.

(b) Remove periodic cycles (e.g. annual, weekly).
(c) Model the correlation structure using a FARIMA[p, d, q] process, select the

model orders p and q with HIC (Sect. 3.4.3).
(d) Generate a long series from this model (Nlong � 100Ndata).
(e) Add the periodic cycles from 1(a). The result is a long series sharing the

spectral characteristics, especially the seasonality, with the empirical record.
(f) Extract the annual maxima series.
(g) Model the correlation structure of the simulated maxima series using a

FARIMA[pmax, d, qmax] process, with orders pmax and qmax selected with
HIC.

2. Model the distribution of the maxima according to the approach used:

bootstrapfp: Estimate the parameters of a GEV model from the empirical max-
ima series using MLE (Sect. 3.2.2).

bootstrapsp: Use the empirical maxima distribution as model.

3. Generate an ensemble of size Nensemble of maxima series with length Nmax with
correlation structure and value distribution from the models built in 1 and 2:

(a) Generate a series {Zi } with the FARIMA[pmax, d, qmax] model from step
1(f) of length Nensemble Nmax back-transform according to 1(a).4

(b) Generate a sample {Wi } with length Nensemble Nmax

bootstrapfp from the GEV model specified in step 2(a).
bootstrapsp from sampling with replacement from the empirical maxima

series.

(c) By means of IAAFT {Wi } is reordered such that its correlation struc-
ture is similar to that of {Zi }. This yields the run-off surrogates
{Qi }i=1,...,Nensemble Nmax .

(d) Splitting {Qi }i=1,...,Nensemble Nmax into blocks of size Nmax yields the desired
ensemble.

Estimating the desired return level from each ensemble member as described in
Sect. 3.2.2 yields a frequency distribution of return level estimates which can be
used to assess the variability of this estimator.

4 Instead of back-transforming here, one can BOX–COX transform the outcome of step 3(b), com-
bine the results with IAAFT as in step 3(c), and back-transform afterwards. This procedure turned
out to be numerically more stable.
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3.5 Comparison of the Bootstrap Approaches

A comparison of the four different bootstrap approaches bootstrapcl, iaaftd,
bootstrapfp, and bootstrapsp is carried out on the basis of a simulation study. We
start with a realization of a known process, chosen such that its correlation structure
and its value distribution are plausible in the context of river run-off. Here, this is
a FARIMA process similar to those used in [3.43] with a subsequent exponential
transformation to obtain a log-normal distribution. This process is used to generate
a Monte Carlo ensemble of simulated daily series. For each realization we extract
the maxima series and estimate a 100-year return level. We obtain a distribution of
100-year return level estimates which represent the estimators’ variability for this
process. In the following, this distribution is used as a reference to measure the
performance of the bootstrap approaches. A useful strategy should reproduce the
distribution of the return level estimator reasonably well.

We now take a representative realization out of this ensemble and consider it
as a record, we possibly could have observed. From this record, we generate the
four bootstrap ensembles according to the approaches presented in Sect. 3.4.5. The
resulting four frequency distributions of the 100-year return level estimates are then
compared to the distribution of the reference ensemble and to the asymptotic distri-
bution of the ML estimator.

3.5.1 Monte Carlo Reference Ensemble

We simulate the series for the reference ensemble with a FARIMA[1, d, 0] process
with parameters d = 0.25 (or H = 0.75), φ1 = 0.9, variance σ 2 ≈ 1.35, Gaussian
driving noise η, and length N = 36 500 (100 years of daily observations). The
skewness typically found for river run-off is achieved by subsequently transforming
the records to a log-normal distribution. To resemble the procedure of estimating
a 100-year return level we extract the annual maxima and estimate a 0.99 quantile
using a Gumbel distribution as parametric model. From an ensemble of 100 000
runs, we obtain a distribution of 100-year return levels (0.99 quantiles) serving as a
reference for the bootstrap procedures.

3.5.2 The Bootstrap Ensembles

Taking the “observed” series, we generate the four bootstrap ensembles according
to Sect. 3.4.5. Since iaaftd and bootstrapcl are well described in the literature, we
focus on the semi-parametric and full-parametric approach.

Following the outline in Sect. 3.4.5, we start modelling the correlation structure
of the “observed” series using a FARIMA process as described in Sect. 3.4.3. As
a transformation, we choose a log-transform as a special case of the BOX–COX.
We treat the process underlying the sample as unknown and fit FARIMA[p, d, q]
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Fig. 3.5 Comparison of the HIC of different FARIMA[p, d, q] models. Smaller values indicate a
better model. On the abscissa different model orders [p, q] are plotted (0 ≤ q ≤ 3, 0 ≤ p ≤ 4, and
q ≤ p). The model orders are discrete, the lines connecting the discrete orders [p, q] are drawn to
enhance clarity

models with 0 ≤ q < p ≤ 4. Figure 3.5 shows the result of the model selection
criterion (HIC) (Eq. (3.6)) for these fits. The FARIMA[1, d, 0] with parameters and
asymptotic standard deviation d = 0.250±0.008, φ = 0.900±0.005, σ 2

η = 0.0462
yields the smallest HIC and is chosen to model the record. Thus, the proper model
structure is recovered and step 1(b) is completed.

With this model we generate an artificial series longer than the original one
(Nlong = 100Ndata) according to step 1(c). The extracted annual maxima series
contains Nmax = 10 000 data points. Since we do not expect the ACF of this max-
ima series to require a more complex model (in terms of the number of parameters)
than the daily data, we use orders p ≤ 1 and q = 0, leaving only two models.
The FARIMA[0, d, 0] has a slightly smaller HIC value (HIC[0,d,0]=21 792.06) than
FARIMA[1, d, 0] (HIC[1,d,0]=21 792.40) and will thus be chosen in the following,
step 1(f). The resulting parameters are d = 0.205 ± 0.008 and σ 2

η = 0.535.
Having modelled the correlation structure we now need a representation for the

distribution. For the full-parametric bootstrap ensemble bootstrapfp, we get back
to the “observed” series and model the annual maxima with a parametric Gumbel
distribution, step 2(a). This results in ML estimates for the location and scale param-
eters: μ = 10.86, σ = 8.35. Since the semi-parametric approach bootstrapsp does
not need a model but uses a classical bootstrap resampling from the empirical annual
maxima series, we now can generate the desired bootstrap ensembles bootstrapfp
and bootstrapsp both with 1 000 members according to step 3.

Figure 3.6 compares the frequency distributions of estimated return levels from
the four bootstrap ensembles to the reference distribution (grey filled) and to the
asymptotic distribution of the ML estimator (dotted). The left plot shows the result
of the bootstrapcl (solid) and the iaaftd (dashed) ensembles. While bootstrapcl
accounts for more variability than the asymptotic distribution, iaaftd exhibits less
variability, although it takes autocorrelation of the daily data into account. This
might be due to the fact that the records in the iaaftd ensemble consist of exactly
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Fig. 3.6 Comparison of the result for different bootstrap ensembles to the MC reference ensemble
(grey area) and the asymptotic distribution of the ML estimator (dotted). The bootstrap ensembles
consist each of 1 000 members. The left plot shows the results of the nonparametric bootstrap
resampling and the daily IAAFT surrogates. The full-parametric and semi-parametric bootstrap
strategies are shown in the right plot

the same daily run-off values arranged in a different order. While this allows for
some variability on the daily scale, an annual maxima series extracted from such a
record is limited to a much smaller set of possible values. Since the temporal order
of the maxima series does not influence the return level estimation, the variability
of the estimates is reduced.

The right panel in Fig. 3.6 shows the result from the bootstrapsp (solid) and the
bootstrapfp (dashed) ensembles. The latter strategy is better than the bootstrapcl
but still yields a too narrow distribution. In contrast, the result from the bootstrapsp
ensemble gets very close to the reference ensemble. Thus, this approach is a promis-
ing strategy to improve the uncertainty analysis of return level estimates and is
studied in more detail in the following section.

3.5.3 Ensemble Variability and Dependence on Ensemble Size

We investigate the potential of the semi-parametric bootstrap approach by studying
its inter-ensemble variability and the dependence on ensemble size. This can be
achieved by performing an extensive simulation study, i.e. generating different sets
of bootstrapsp ensembles, each set containing 100 ensembles of a fixed size. We are
interested in the variability of the ensemble runs within one set of fixed size as well
as in the effect of the ensemble size. The ensemble size varies between Nensemble =
50 and Nensemble = 6 000. To facilitate the representation of the result, we do not
consider the entire distribution of the return level estimates for each ensemble, but
rather five selected quantiles with relative frequencies of 5, 25, 50, 75, and 95%.
Figure 3.7 shows these quantiles estimated from the ensembles of different ensemble
sizes as grey dots. Due to the large number of grey dots, they cannot be perceived
as individual dots but rather as grey clouds.
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Fig. 3.7 The quantiles of the semi-parametric bootstrap ensembles of different size. One hundred
ensembles of the same size are grouped in a set. The 5, 25, 50, 75, and 95% quantiles of each
ensemble in a set is marked with a grey dot. This results in grey areas representing the variability
within a set. The solid lines connect the sets’ mean values for each quantile. The quantiles from
the reference ensemble are represented as a dotted line

The variability of the quantile estimates decreases with increasing ensemble size
indicated by the convergence of the grey clouds for each of the five quantiles. Con-
sequently, the ensemble size should be chosen according to the accuracy needed.
For small sizes, the means of the selected quantiles are close to the values from the
reference ensemble, especially for the three upper quantiles. With an increasing size,
difference to the reference ensemble increases for the extreme quantiles until they
stagnate for ensembles with more than about 2 000 members. For the 5 and 95%
quantiles, the difference between the bootstrap and the Monte Carlo is less than 6%
of the return level estimates.

3.6 Case Study

To demonstrate the applicability of the suggested semi-parametric bootstrap
approach (bootstrapsp), we exemplify the strategy with a case study. We consider
the run-off record from the gauge Vilsbiburg at the river Große Vils in the Danube
River catchment. Vilsbiburg is located in the south-east of Germany about 80 km
north-east of Munich. The total catchment area of this gauge extends to 320 km2.
The mean daily run-off has been recorded from 01 Nov 1939 to 07 Jan 2002 and
thus comprises Nyears = 62 full years or N = 22 714 days. The run-off averaged
over the whole observation period is about 2.67 m3/s.
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3.6.1 Extreme Value Analysis

First, we perform an extreme value analysis as described in Sect. 3.2.2, i.e. extract-
ing the annual maxima and determining the parameters of a GEV distribution by
means of ML estimation. In order to test whether the estimated shape parameter
ξ̂ = 0.04 is significantly different from zero, we compare the result to a Gum-
bel fit using the likelihood-ratio test [3.12]. With a p-value of p = 0.74 we
cannot reject Gumbel distribution as a suitable model on any reasonable level.
The resulting location and scale parameters with asymptotic standard deviation are
μ = (28.5±2.0)m3/s and σ = (15.0±1.5)m3/s. The associated quantile and return
level plots are shown in Fig. 3.8 together with their 95% asymptotic confidence
limits.

According to Eq. (3.2) we calculate a 100-year return level (m = 100) and use the
delta method (Eq. (3.21)) to approximate a standard deviation under the hypothesis
of independent observations: r100 = 97.7 ± 7.9.
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Fig. 3.8 Result of the ML estimation of the Gumbel parameters for the Vilsbiburg yearly maxima
series compared to the empirical maxima series in a quantile plot (left panel) and return level plot
(right panel)

3.6.2 Modelling the ACF of the Daily Series

In the second step, we model the correlation structure which requires preprocessing
of the run-off series: To get closer to a Gaussian distribution, a BOX–COX trans-
formation (Sect. 3.8) is applied to the daily run-off. The parameter λ = −0.588 is
chosen such that the unconditional Gaussian likelihood is maximized. Subsequent
to this static transformation, we calculate the average annual cycle in the mean and
the variance, cf. Sect. 3.4.3. The cycle in the mean is subtracted from the respective
days and the result is accordingly divided by the square root of the variance cycle.
As we find also indication for a weekly component in the periodogram, we subtract
this component analogously. The BOX–COX transformation and the seasonal fil-
ters have been suggested by Hipel and McLeod [3.28] for hydrological time series.
Although the proposed estimates of the periodic components in mean and variance
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are consistent, especially the estimates of the annual cycle exhibit a large variance.
Several techniques such as STL [3.11] are advocated to obtain smoother estimates.
Studying those periodic components is, however, not the focus of this chapter.

Figure 3.9 shows a comparison of the transformed and mean-adjusted daily run-
off record to a Gaussian distribution in the form of a density plot (left panel) and
a plot of empirical versus theoretical quantiles (right panel). The transformed dis-
tribution is much less skewed than the original one. Differences to a Gaussian are
mainly found in the tails.

We now fit FARIMA[p, d, q] models of various orders with 0 ≤ q ≤ 5,
0 ≤ p ≤ 6, and q ≤ p and compare the HIC of the different models in Fig. 3.10
(left). The smallest value for the HIC is obtained for the FARIMA[3, d, 0] process,
which is thus chosen to model the autocorrelation of the daily run-off. The param-
eters estimated for this process with their asymptotic standard deviation are d =
0.439±0.016, φ1 = 0.415±0.017, φ2 = −0.043±0.007, φ3 = 0.028±0.008, and
σ 2
η = 0.2205. Using the goodness-of-fit test proposed by Beran [3.4], we obtain a

p-value of p = 0.015. The model thus cannot be rejected on a 1% level of signifi-
cance. The result of this fit is shown in the spectral domain in Fig. 3.10 (right).

3.6.3 Modelling the ACF of the Maxima Series

Using this model, a long series is generated with Nlong = 100Ndata. This simulated
series is partially back-transformed: the overall mean and the seasonal cycles in
mean and variance are added. Note that the BOX–COX transform is not inverted in
this step. From the resulting record, we extract the annual maxima series. Figure 3.2
(left panel) shows the ACF of the original maxima series (solid) and compares it to
the ACF of a section of the same length cut out of the maxima series gained from the
simulated run (dotted). The original series has been BOX–COX transformed as well
to achieve a comparable situation. The autocorrelation basically fluctuates within
the 95% significance level (dashed) for a white noise. However, the full maxima
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Fig. 3.10 Model selection for the BOX–COX transformed and deseasonalized daily run-off with
mean removed. The spectral density of the model with smallest HIC is shown in double logarithmic
representation together with the periodogram (grey) of the empirical series (right panel)

series from the simulated run of 6 200 data points exhibits prominent autocorrelation
(Fig. 3.2, right panel). This indicates that, although an existing autocorrelation struc-
ture is not necessarily visible in a short sample of a process, it might still be present.
Accounting for this dependence improves the estimation of confidence limits.

In the next step, we model the correlation structure of the maxima series with
a FARIMA process. Again, we do not expect this series to be more adequately
modelled by a more complex process than the daily data. We use HIC to choose
a model among orders pmax ≤ p = 3, qmax ≤ q = 1. The smallest values for
the HIC is attained for a FARIMA[0, d, 0] model with d = 0.398 ± 0.010. The
goodness of fit yields a p-value of p = 0.319 indicating a suitable model.

3.6.4 Combining Distribution and ACF

Having the model for the ACF of the maxima series, we are now able to generate a
bootstrap ensemble of artificial data sets according to the semi-parametric strategy
bootstrapsp as described in Sect. 3.4.5. We use IAAFT to combine the results of the
FARIMA simulation with the BOX–COX transformed resampled empirical maxima
series. In the last step the ensemble is restored to the original scale of measurement
by inverting the BOX–COX transform we started with.

3.6.5 Calculating the Confidence Limit

Subsequently, the 100-year return level r̂∗ (or 0.99 quantile) is estimated for each
ensemble member yielding the desired distribution for the 100-year return level
estimator shown in Fig. 3.11. From this distribution we obtain an estimate for a
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(1−α)% one-sided upper confidence limit rα using order statistics. rα is calculated
from order statistics as rα = r̂100 − (r̂∗

(N+1)α − r̂100) [3.17], where the r̂∗
i are sorted

in ascending order. With an ensemble size Nensemble = 9 999 we ensure (N + 1)α
being an integer for common choices of α.

To facilitate the comparison of the 95% confidence limits obtained from the
bootstrap ensemble (r0.95

boot ≈ 148 m3/s) and the asymptotic distribution (r0.95
asymp ≈

110 m3/s) they are marked as vertical lines in Fig. 3.11. The bootstrap 95% confi-
dence level r0.95

boot clearly exceeds the quantile expected from the asymptotic distribu-
tion confirming the substantial increase in uncertainty due to dependence. Further-
more, the tails of the bootstrap ensemble decay slower than the tails of the asymp-
totic distribution. The interpretation of such a confidence level is the following: In
95% of 100-year return level estimates the expected (“true”) 100-year return level
will not exceed the 95% confidence limit.
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3.7 Discussion

The approach is presented in the framework of GEV modelling of annual maxima
using maximum likelihood. The concept can also be applied in the context of other
models for the maxima distribution (e.g. log-normal) or also different parameter
estimation strategies (e.g. probability weighted moments). Furthermore, it is con-
ceivable to extend the class of models describing the dependence to FARIMA mod-
els with dependent driving noise (FARIMA-GARCH [3.20]) or seasonal models
[3.40, 3.44].

The modelling approach using FARIMA[p,d,q] models and a subsequent adjust-
ment of the values has been investigated in more detail by [3.62]. Using simula-
tion studies, it was demonstrated that the combination of FARIMA models and the
IAAFT is able to reproduce also other characteristics of time series than the distri-
bution and power spectrum. Also the increment distribution and structure functions
for river run-off are reasonably well recovered.

In the approach described, we obtain a model for the ACF of the maxima series
only with the help of a model of the daily series. The longer this daily series is the
more reliable the model will be. Regarding the uncertainty of return level estimates,
we might consider this approach with the assumption of long-range dependence
as complementary to the assumption of independent maxima. The latter assump-
tion yields the smallest uncertainty while the assumption of long-range dependence
yields larger confidence intervals which can be considered as an upper limit of
uncertainty. The actual detection of long-range dependence for a given time series
is by no means a trivial problem [3.41] but it is not the focus of this chapter.

It is also possible to include available annual maxima in the procedure for periods
where daily series have not been recorded. This enhances the knowledge of the
maxima distribution but cannot be used for the modelling of the ACF.

3.8 Conclusion

We consider the estimation of return levels from annual maxima series using the
GEV as a parametric model and maximum likelihood (ML) parameter estimation.
Within this framework, we explicitly account for autocorrelation in the records
which reveals a substantial increase in uncertainty of the flood return level estimates.
In the standard uncertainty assessment, i.e. the asymptotic confidence intervals
based on the Fisher information matrix or the profile likelihood, autocorrelations are
not accounted for. For long-range-dependent processes, this results in uncertainty
limits being too small to reflect the actual variability of the estimator. On the way
to fill this gap, we study and compare four bootstrap strategies for the estimation of
confidence intervals in the case of correlated data. This semi-parametric bootstrap
strategy outperforms the three other approaches. It showed promising results in the
validation study using an exponentially transformed FARIMA[1,d,0] process. The
main idea involves a resampling approach for the annual maxima and a paramet-
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ric model (FARIMA) for their autocorrelation function. The combination of the
resampling and the FARIMA model is realized with the iterative amplitude adjusted
Fourier transform, a resampling method used in nonlinearity testing. The results
of the semi-parametric bootstrap approach are substantially better than those based
on the standard asymptotic approximation for MLE using the Fisher information
matrix. Thus this approach might be of considerable value for flood risk assessment
of water management authorities to avoid floods or misallocation of public funds.
Furthermore, we expect the approach to be applicable also in other sectors where an
extreme value analysis with dependent extremes has to be carried out.

The practicability is illustrated for the gauge Vilsbiburg at the river Vils in the
Danube catchment in southern Germany. We derived a 95% confidence limit for
the 100-year flood return level. This limit is about 38% larger than the one derived
from the asymptotic distribution, a dimension worth being considered for planning
options. To investigate to what extent this increase in uncertainty depends on catch-
ment characteristics, we plan to systematically study other gauges. Furthermore, a
refined model selection strategy and the accounting for instationarities due to cli-
mate change is the subject of further work.
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Appendix

General Extreme Value Distribution

Consider the maximum

Mn = max{X1, . . . , Xn} (3.11)

of a sequence of n independent and identically distributed (iid) variables X1, . . . , Xn

with common distribution function F . This can be, for example, daily measured
run-off at a gauge; Mn then represents the maximum over n daily measurements,
e.g. the annual maximum for n = 365. The three types theorem states that

Pr{(Mn − bn)/an ≤ z} → G(z), as n → ∞, (3.12)

with {an} and {bn} being series of normalization constants and G(z) a non-
degenerate distribution function known as the general extreme value distribution
(GEV)
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G(z) = exp

{
−
[

1 + ξ

(
z − μ

σ

)]−1/ξ
}
. (3.13)

z is defined on {z|1+ξ(z−μ)/σ > 0}. The model has a location parameterμ, a scale
parameter σ, and a form parameter ξ . The latter decides whether the distribution is
of type II (Fréchet, ξ > 0) or of type III (Weibull, ξ < 0). The type I or Gumbel
family

G(z) = exp

[
− exp

{
−
(

z − μ

σ

)}]
, {z| − ∞ < z < ∞} (3.14)

is obtained in the limit ξ → 0 [3.12].
It is convenient to transform Eq. (3.12) into

Pr{Mn ≤ z} ≈ G((z − bn)/an) = G∗(z). (3.15)

The resulting distribution G∗(z) is also a member of the GEV family and allows the
normalization constants and the location, scale, and shape parameter to be estimated
simultaneously.

We consider an autocorrelated stationary series {X1, X2, . . .} and define a condi-
tion of near-independence: For all i1 < · · · < i p < j1 < · · · < jq with j1 − i p > l,

|Pr{Xi1 ≤ un, . . . , Xi p ≤ un, X j1 ≤ un, . . . , X jq ≤ un} − (3.16)

Pr{Xi1 ≤ un, . . . , Xi p ≤ un}Pr{X j1 ≤ un, . . . , X jq ≤ un}| ≤ α(n, l), (3.17)

where α(n, ln) → 0 for some sequence ln , with ln/n → 0 as n → ∞. It can be
shown that the three types theorem holds also for correlated processes satisfying this
condition of near-independence [3.12, 3.39]. This remarkable result implies that the
limiting distribution of the maxima of uncorrelated and (a wide class) of correlated
series belongs to the GEV family.

Maximum Likelihood Parameter Estimation of the GEV

Let {Mn,1, Mn,2, . . . , Mn,m} be a series of independent block maxima observations,
where n denotes the block size and m the number of blocks available for estimation.
We denote Mn,i as zi . The likelihood function now reads

L(μ, σ, ξ) =
m∏

i=1

g(zi ;μ, σ, ξ), (3.18)

where g(z) = dG(z)/dz is the probability density function of the GEV. In
the following, we consider the negative log-likelihood function l(μ, σ, ξ |zi ) =
− log L(μ, σ, ξ |zi ).
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Minimizing the negative log-likelihood with respect to θ = (μ, σ, ξ) leads to
the ML estimate θ̂ = (μ̂, σ̂ , ξ̂ ) for the GEV. Under suitable regularity conditions –
among them independent observations zi – and in the limit of large block sizes
(n → ∞) θ̂ is multivariate normally distributed:

θ̂ ∼ MVNd(θ0, IE (θ0)
−1), (3.19)

with IE (θ) being the expected information matrix (or Fisher information matrix)
measuring the curvature of the log-likelihood. Denoting the elements of the inverse
of IE evaluated at θ̂ as β j,k we can approximate an (1−α)100% confidence interval
for each component j of θ̂ by

θ̂ j ± z α
2

√
β j, j , (3.20)

with z α
2

being the (1 − α/2) quantile of the standard normal distribution [3.12].
The m-year return level can be easily calculated as specified in Eq. (3.2). An

approximated confidence interval for r̂m can be obtained under the hypothesis of a
normally distributed estimator r̂m and making use of the standard deviation σr̂m . The
latter can be calculated from the information matrix using the delta method [3.12].
For the Gumbel distribution we obtain

σ 2
r̂m

= β11 − (β22 +β21) log

(
− log

(
1 − 1

m

))
+β22

(
log

(
− log

(
1 − 1

m

)))2

.

(3.21)

BOX–COX Transform

The BOX–COX transformation can be used to transform a record {xi } such that its
distribution is closer to a Gaussian. For records {xi } with xi > 0 for all i , it is defined
as[3.8]

y =
{

(xλ−1)
λ

, λ �= 0
log(x), λ = 0

.

We choose the parameter λ such that the unconditional Gaussian likelihood is max-
imized. Hipel also advocates the use of this transformation for river run-off [3.28].
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Big picture: Historical painting from the destroyed Neckar bridge in Heidelberg after the flood
of October 1824. Small picture left: Reconstructed atmospheric circulation pattern for the 30th
of October 1824. Small picture middle: Meteorological measurements from the scientist Bohnen-
berger in Tübingen for October 1824. Small picture right: Reconstructed area precipitation for the
end of October 1824 that induced the extreme flood in the Neckar catchment



Chapter 4
Regional Determination of Historical Heavy
Rain for Reconstruction of Extreme Flood
Events

Paul Dostal, Florian Imbery, Katrin Bürger, and Jochen Seidel

The reconstruction of historical extreme hydrometeorological events contributes to
a validation of extreme value statistics. This can mitigate several uncertainties in the
flood risk analysis, e.g. in calculating possible discharges with extreme value statis-
tics which are based on short reference data series [4.5]. The presented case study of
the extreme flood of 1824 in the Neckar catchment and their triggering precipitation
patterns can take place in a recent flood risk management and can be used to validate
the results in trend and extreme value analysis of hydrometeorological time series.

4.1 Introduction

Climate variability, floods and their impacts in central Europe have received increas-
ing attention in Germany in recent years [4.7]. In particular, the Elbe flood in 2002
showed that changes in the frequency and characteristics of floods may reflect cli-
matic transitions. This led to an initiative by the German Federal Ministry of Edu-
cation and Research (BMBF) for a “Risk Management of Extreme Flood Events” to
avoid or limit the adverse impact of floods in Germany. The research group Xfloods
from the Department of Physical Geography and the Meteorological Institute of
the University of Freiburg is part of this initiative with a special focus on past
extreme floods in the Federal State of Baden-Württemberg, southwest Germany. The
research project integrates the information of historical data to identify and quantify
extreme flood events of the past 500 years as a basis for flood risk management as
well as for the calculation of record regional precipitation. The data will be extracted
from historical records such as local annuals and chronicles from 1500 to 1900
and supplemented by instrumental observations available since the middle of the
18th century. The project can contribute to a safer handling of extreme floods in the
future. This applies in particular to the analysis and modelling of millenarian flood
events, which have been little considered previously. In such a way, the knowledge
of the past can be integrated in the flood protection for tomorrow.
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4.2 Methodological Concept and Data Overview

Extreme flood events in the context of the climate change discussion have received
increasing attention in Germany in recent years. The research project integrates the
information of historical data to identify and quantify extreme flood events of the
past 500 years as a basis for flood risk management as well as for the calculation of
maximum regional precipitation. Different data were extracted to gain area precipi-
tation of the Neckar catchment for the 1824 flood from historical records as well as
local annuals and chronicles from 1500 to 1900 and supplemented by instrumental
observations available since the middle of the 18th century. This applies in particular
to the analysis and modelling of millenarian flood events, which have been little
considered previously. For the reconstruction of the historical strong precipitation
event of 1824 a model with various regression tools and geostatistical methods were
developed. An overview of the Neckar catchment is shown in Fig. 4.1.

Fig. 4.1 Neckar catchment with its main tributaries Nagold, Enz, Kocher and Jagst
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4.2.1 Meteorological Data from October 1824

For the calculation of the historical area precipitation (AP1824), sets of histori-
cal meteorological data, like precipitation (N ), air temperature (T ) sea level pres-
sure (SLP), wind speed (u) and wind direction (dd), were used. With a European
wide data set of historical meteorological data [4.2] synoptic weather charts were
developed for October 1824. With the synoptic weather charts it was possible to
find similar weather situations in the reference data set with the modern analogue
method [4.1]. Weather charts help to understand the superior weather situation for
this hydrometeorological extreme event and improves the results of the kriging cal-
culation for the spatial rainfall [4.8, 4.9]. Table 4.1 shows the data for the event
of 1824 which were used for the synoptic weather reconstruction and the area pre-
cipitation calculation. To calculate the spatial precipitation, reference data from the
German Weather Service (DWD) were used. The reference data are meteorological
data from 1900 to 2006 provided from the DWD. As a reference basis the whole
meteorological data amount of south Germany (Rheinland-Pfalz, Hessen, Saarland,
Bavaria and Baden-Württemberg) were used with a total of more than 1 000 mete-
orological stations. The meteorological data were available in several resolutions,
e.g. 10 min mean and from the climate stations with the daily standard periods of 7,
14 and 21 h.

Table 4.1 Meteorological stations since the 18th century as data basis for the 1824 flood analysis

Location Measured time series Country

Freiburg 1780–2006 Germany
Karlsruhe 1799–2006 Germany
Stuttgart 1800–2006 Germany
Freudenstadt 1824–2006 Germany
Rottweil 1818–1827 Germany
Ellwangen 1818–1825 Germany
Giengen 1820–2006 Germany
Genkingen 1820–1826 Germany
Augsburg 1812–2006 Germany
Basel 1755–2006 Switzerland
Bern 1824–2006 Switzerland
Stras̈sburg 1800–2006 France
Paris 1824–2006 France
Armagh 1795–1880 Ireland
Edinburgh 1785–2006 Scotland
Barcelona 1780–2006 Spain
Càdiz 1786–2006 Spain
Madrid 1786–2006 Spain
Milano 1763–2006 Italy
Padova 1766–2006 Italy
Palermo 1790–2006 Italy
Prague 1781–2006 Czech Rep.
Reykjavik 1816–2006 Iceland
Stockholm 1756–2006 Sweden
Uppsala 1722–2006 Sweden
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Fig. 4.2 Flow chart for the reconstruction of historical floods and their integration into a contem-
porary flood risk management

With a European-wide data set of historical meteorological data synoptic weather
charts were developed for October 1824. With the synoptic weather charts it is
possible to find similar weather situations in the reference data set. The weather
charts help to understand the superior weather situation for this hydrometeorologi-
cal extreme event and improve the results of the kriging calculation for the spatial
rainfall [4.8, 4.9] (Fig. 4.2).

Table 4.1 shows the data for the event of 1824 which were used for the synoptic
weather charts and the area precipitation calculation.

4.2.2 Methods

4.2.2.1 Synoptic Situation

On the basis of historical measurements of air pressure (see Table 4.1) the synoptic
situation for middle Europe and parts of the northern Atlantic was reconstructed for
October 26th until November 1st. These weather maps were compared with recent
weather data from the DWD, based on the monthly weather bulletins of the DWD
and the heavy precipitation statistics for southwest Germany [4.3] with the aim to
find a contemporary similar weather condition, for which a sufficient database is
available. The best agreement could be determined for the period 26–28 October
1998. The weather situation from October 1998 also caused strong precipitation
and floods in the Neckar catchment.
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4.2.2.2 Regression 1998–1824

Assuming that the regional distribution of precipitation in October 1824 and 1998
has a high similarity, the regional precipitation pattern in the Neckar catchment for
the flood event of 1824 was developed as a function of the 1998 precipitation and the
orographic circumstances of the investigation area [4.10]. A simple linear regression
between historical precipitation measurements and precipitation data from 1998
could not give a sufficient result. Hence, a linear-logarithmic regression model in
the form

N1824 =
(

1.5 + 4

ln
(
DEM)4

)
· N1998, (4.1)

with N for the rainfall amount for each event and DEM as the altitude (m a.s.l.)
of the measuring point, derived from a digital elevation model, was used. With
this function, a good correlation could be gained between measured and modelled
precipitation values (r 2 = 0.88). Assuming a high distribution of the historical mea-
suring points in the Neckar catchment, the total rainfall amount of 220 points in the
Neckar catchment was calculated on the basis of this equation.

4.2.2.3 Kriging

The spatial variation of short-term precipitation is highly variable in space. For the
spatial interpolation of the precipitation event of October 1824 in the Neckar catch-
ment a kriging ruler was used. Ordinary kriging calculates a weighted sum of known
observed precipitation amounts to estimate an unknown value using the equation

ẑ0 =
n∑

i=1

ωi zi . (4.2)

The observated values are selected from the sample data set within a user-specified
neighbourhood. Covariances are derived for observations within the neighbourhood
using the model variogram. The kriging process calculates a weight for each sam-
ple datum in the neighbourhood based on its statistical distance, as opposed to
Euclidean distance, to each and every datum in the neighbourhood as well as to
the estimate location. Then it employs a weighted linear combination of the data in
the neighbourhood to estimate the new value.

The ordinary kriging system combines a set of matrices as a system of n+1
linear equations that must be solved so that for each neighbourhood of n values, the
condition of unbiasedness holds. It is enforced by requiring the weights derived for
each sample in the neighbourhood to sum to 1:

n∑

i=1

ωi = 1. (4.3)
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As summarized by Isaaks and Srivastava [4.9], for each estimated location, weights
are derived for every sample in the neighbourhood in the following manner:

ω = C−1 · D, (4.4)

where C is the covariance between sample data and D is the covariance between
sample data and estimated location.

The covariances are stored in matrices that, when multiplied together, produce
a system of equations. In actuality, another equation is added to the set using a
technique known as the Lagrange parameter, because the weights are constrained
to sum to 1. The estimated value and its error variance become a function of n + 1
variables, n weights and the Lagrange multiplier – a dummy variable that forces the
sum of weights to equal 1. The solution of n +1 equations produces a set of weights
that minimizes the modelled error variance under the constraint that the weights
must sum to 1. C and D are determined for every estimation location.

The C matrix takes into account the effects of clustering and redundancy in data
samples. If two or more points are close together in the inverse distance method, the
number of points in the cluster adversely affects the weighting. If the covariances
between these clustered samples are large, the effect of the clustering in D is less-
ened by the inverse of the covariances in C . Kriging, therefore, takes into account
distance, clustering or redundancy, and spatial dependency of samples when esti-
mating each new location. Ordinary kriging tries to create a mean residual or error
that is equal to zero and as well, minimizes the variance of the errors. In fact, the
mean error and the true variance of the errors for the estimates are always unknown,
though it is possible to work with an average error and minimize the variance of the
modelled error. The error variance is derived using the variances calculated during
the weighted linear combination. The minimized error variance for an estimated
location is related by

var
2 = C

2 − ω · D. (4.5)

The mean-squared error is a prediction error. It is probabilistic in nature based on
the relationship of the variogram model and its parameters modelled from samples
of the stationary random process [4.1]. Prediction variance, or kriging variance, is
generated simultaneously for each kriged location. Both the kriged and variance
surfaces can be visualized side by side. The kriging variance is likely to be lower
when the sampling density is higher, although highly variable covariances in clus-
tered areas do occur. Such a surface provides invaluable information about the fit
of the model to the sample data. It also provides information on the effects of the
distribution of the sampling scheme relative to the applied model (see Fig. 4.3).

4.2.2.4 Runoff simulation

LARSIM (large area runoff simulation model, [4.4]) is a river basin model which
was developed for the systematic modelling of runoff generation and flood routing.
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Fig. 4.3 Flow chart of spatial modelling of heavy rainfall at the Neckar catchment in October 1824

LARSIM can be applied both as a water balance model for continuous simulation
and as an event-based flood forecast model. It uses proven and comparatively sim-
ple model components which are satisfying for practical purposes. For example,
LARSIM is used for the flood prediction at the Neckar catchment.

For validation, the modelled spatial precipitation pattern for the flood event of
October 1824 was used for the input in LARSIM for comparing modelled to histori-
cal runoff data.

4.3 Results

To analyse the flood triggering weather situation of October 1824 and therefore the
AP1824, a similar weather situation had to be found in the reference data. Exami-
nating the reference data, the best correspondence was the weather situation of 27th
and 28th October 1998.

This was a weather situation which brought nearly in the total Neckar catch-
ment a great amount of rain with devastating consequences at the Neckar and the
Upper Rhine tributaries due to heavy runoffs. In comparison to the historical flood
event of 1824 the flood of 1998 was not so severe because of different weather
and environmental conditions (e.g. minor precipitation totals) in the run up of this
extreme event.

4.3.1 The Extreme Weather Situation of October 1824

The weather situation of October 1824 can be described as follows:
At the beginning of October 1824, the weather was predominantly cloudy.

Around 20th October warmer air temperatures brought fair weather. Starting on
26th October, a dramatic change in the weather was signalled when thunderstorms
arose. The weather process causing the flood is described in the historical sources
as follows: The evening of 26th October thunderstorms, accompanied by rain, broke
out in several regions of southwest Germany, but no unusual rise of the water levels
in the rivers could be noticed. On the 27th October, there was some rainfall in the
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Fig. 4.4 Atmospheric circulation pattern on 29th of October 1824: CW (cyclonic westerly)

upper Neckar valley. In the evening of 28th October unusually strong rain weather
began, which lasted 36 h with few interruptions up to the early morning hours of
30th October and caused this exceptional inundation. The rain quantity was very
high in the Black Forest. The regions of the river Enz and the lower Neckar were
especially affected by this inundation. In many places, the rainy weather with excep-
tion of smaller interruptions continued till 2nd November [4.11].

The reconstructed weather charts start at the 24th of October 1824 and shows
the development of the weather situation until the end of this hydrometeorological
extreme event (see Fig. 4.4).

4.3.2 Calculation of the 1824 Precipitation

In the Neckar catchment and its vicinity are 220 rainfall stations located. The pre-
cipitation of October 1824 was modelled referring to all these rainfall stations. The
modelling was done with a linear regression. The r2 = 0.88 shows a very good
comparability to the historical measured data. In combination with the reference
data of the flood event of 1998 and the data of the maximum precipitation [4.3] for
the Neckar catchment, the precipitation sums are shown in Table 4.2.
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Table 4.2 Precipitation sums for the year 1824 and modelled precipitation data

Location 1824 measured 1824 modelled

Freudenstadt 197 194
Wangen/Neckar 121 149
Hohenheim 128 127
Stuttgart 111 124
Genkingen 92 92
Tübingen 103 89
Giengen 92 89

4.3.3 Modelling the Area Precipitation of 1824

Aim of the presented project was to calculate the area precipitation for a 1 km2

grid, to fit the modelled data in the water balance model LARSIM which is also
based on a 1 km2 grid. As seen in Fig. 4.5, the highest rainfall amounts with values
up to 230 mm in 36 h occurred in the northern parts of the Black Forest. Secondary
maxima were located in the northern and eastern parts of the Neckar catchment. This
spatial rainfall distribution can be explained by the atmospheric circulation pattern
and local orographic features. The location of the high- and low-pressure cells in
the large-scale synoptic reconstruction implicates southwesterly warm and humid
air mass flow to central Europe as a causal mechanism. Southwesterly large-scale

Fig. 4.5 Modelled precipitation pattern for the flood event at the end of October 1824 (with iso-
hyetal lines showing the rainfall amount in millimetres)
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air flows are typically modified by the mountain ranges of the Vosges mountains
and the Black Forest. Particularly the northern parts of the Black Forest frequently
receive high rainfall amounts during such weather conditions due to the orographic
features on the western site of the Upper Rhine Valley (see Fig. 4.5).

4.3.4 Modelled Neckar Discharges for the Flood Event
of October 1824

Table 4.3 and Fig. 4.6 show the modelled discharges of the river Neckar and its
tributaries derived from the calculated precipitation data that were integrated in the
waterbalance model LARSIM. The discharges show values which are significantly
higher than Qextreme discharges for the Neckar [4.12, 4.13]. In all probability the
flood event of October 1824 was one of the most extreme flood events during the
last 300–500 years.

Table 4.3 Discharges for several locations at the Neckar in October 1824 modelled with LARSIM

Location River Q1824 (m3/s) Q100 (m3/s) Qextreme (m3/s)

Rottweil Neckar 137 260 390
Oberndorf Neckar 223 522 522
Horb Neckar 416 800 800
Plochingen Fils 1400 1145 1600
Pforzheim Enz 580 670
Besigheim Enz 612 586 821
Lauffen Neckar 2398 1877 2550
Gaildorf Kocher 411 350 490
Stein Kocher 1002 709 993
Elpershofen Jagst 461 387 582
Untergriesheim Jagst 984 525 771
Rockenau Neckar 4185 2665 3600
Heidelberg Neckar 4320 2806 3700
Mannheim Neckar 4264 2833 3750

4.4 Conclusion

The application of data from historical sources, like in the actual flood risk man-
agement, increases the protection of potential inundation areas. This chapter shows
the possibilities and the methods to reconstruct hydrometeorological extreme events
which lay far in the past. These results show the potential of historical flood analysis
for flood risk management. Better understanding of extreme flood events and better
protection of endangered areas, goods and humans are the tangible outcomes. The
importance of analysing historical floods is the possibility to demonstrate the con-
sequences of such extreme events in a selected river catchment, such as the Neckar.
This knowledge can be incorporated into flood risk management. By combining
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Fig. 4.6 Modelled discharge of 1824 flood compared with reference discharges, e.g. Qextreme, of
the Neckar

the historical precipitation and flood data with contemporary river channel mor-
phology, current hazards and impacts can be predicted. This will lead to a better
understanding of flood processes, as well as their characteristics. Improvements in
the analysis of historical extreme events should be extended to other river catch-
ments in order to mitigate the consequences of catastrophes such as the Elbe flood
in 2002.
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Chapter 5
Development of Regional Flood Frequency
Relationships for Gauged and Ungauged
Catchments Using L-Moments

Rakesh Kumar and Chandranath Chatterjee

For planning, development, and sustainable management of water resources, appli-
cations of new and advanced methodologies are essential for design flood estima-
tion. The L-moments are a recent development within statistics and offer signifi-
cant advantages over ordinary product moments. Regional flood frequency relation-
ships are developed based on the L-moment approach. The annual maximum peak
floods data are screened using the discordancy measure (Di ), and homogeneity of
the region is tested employing the L-moment-based heterogeneity measure (H ).
For computing heterogeneity measure H , 500 simulations are performed using the
κ-distribution. Twelve frequency distributions namely extreme value (EV1), gen-
eralized extreme value (GEV), logistic (LOS), generalized logistic (GLO), normal
(NOR), generalized normal (GNO), uniform (UNF), Pearson type-III (PE3), expo-
nential (EXP), generalized Pareto (GPA), κ- (KAP), and five-parameter Wakeby
(WAK) are employed. Based on the L-moment ratio diagram and |Zdist

i |-statistic
criteria, GNO is identified as the robust frequency distribution for the study area. For
estimation of floods of various return periods for gauged catchments of the study
area, the regional flood frequency relationship is developed using the L-moment-
based GNO distribution. Also, for estimation of floods of various return periods
for ungauged catchments, the regional flood frequency relationships developed for
gauged catchments is coupled with the regional relationship between mean annual
maximum peak flood and catchment area.

5.1 Introduction

Information on flood magnitudes and their frequencies is needed for design of var-
ious types of water resources projects/hydraulic structures such as dams, spillways,
road and railway bridges, culverts, urban drainage systems as well as for taking up
various non-structural measures such as flood plain zoning, economic evaluation
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of flood protection projects. Since scientific hydrology began in the seventeenth
century, one of the most difficult problems facing engineers and hydrologists is how
to predict flow in basins with no records. Whenever rainfall or river flow records are
not available at or near the site of interest, it is difficult for hydrologists or engineers
to derive reliable design flood estimates directly. In such a situation, regional flood
frequency relationships developed for the region are one of the alternative methods
for prediction of design floods, especially for small-to medium-size catchments.

The approaches for design flood estimation may be broadly categorized as fol-
lows: (i) deterministic approach using design storm and (ii) probabilistic approach
involving flood frequency analysis. The deterministic and probabilistic methods,
which have been used for design flood estimation, are empirical methods, rational
method, flood frequency analysis methods, unit hydrograph techniques, and water-
shed models. Pilgrim and Cordery (1992) [5.16] mention that estimation of peak
flows on small- to medium-sized rural drainage basins is probably the most com-
mon application of flood estimation as well as being of greatest overall economic
importance. In almost all cases, no observed data are available at the design site, and
little time can be spent on the estimate, precluding use of other data in the region.
The authors further state that hundreds of different methods have been used for
estimating floods on small drainage basins, most involving arbitrary formulas. The
three most widely used types of methods are the rational method, the US Soil Con-
servation Service method, and regional flood frequency methods. Regional flood
frequency analysis resolves the problem of short data records or unavailability of
data by “trading space for time”; as the data from several sites are used in estimating
flood frequencies at any site. The choice of method primarily depends on design
criteria applicable to the structure and availability of data.

Considering the importance of prediction in ungauged catchments, the Inter-
national Association of Hydrological Sciences (IAHS) launched “Prediction of
Ungauged Basins (PUBs)” as one of its initiatives and declared the current decade
as “Decade of PUBs.” As per the Bureau of Indian Standards (BIS) hydrologic
design criteria, frequency-based floods find their applications in estimation of design
floods for almost all the types of hydraulic structures, viz., small-size dams, bar-
rages, weirs, road and railway bridges, cross-drainage structures, flood control
structures, excluding large- and intermediate-size dams. For design of large- and
intermediate-size dams probable maximum flood and standard project flood are
adopted, respectively. Most of the small-size catchments are ungauged or sparsely
gauged. To overcome the problems of prediction of floods of various return periods
for ungauged and sparsely gauged catchments, a robust procedure of regional flood
frequency estimation is required to be developed.

In this study, regional flood frequency relationships are developed based on the
L-moment approach for the gauged and ungauged catchments of Mahanadi subzone
3(d) in India. For this purpose, various frequency distributions were employed.
Regional flood frequency relationship is developed for gauged catchments based
on the most robust identified frequency distribution. This relationship is coupled
with the regional relationship between mean annual peak flood and catchment area,
and a simple regional flood frequency relationship is also developed for ungauged
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catchments of the study area. The study presents regional flood frequency relation-
ships for gauged catchments and in particular very simple and robust regional flood
frequency relationships for ungauged catchments of the study area.

5.2 Regional Flood Frequency Analysis

Cunnane [5.5] mentions 12 different regional flood frequency analysis (RFFA)
methods. Out of these methods, some of the commonly used methods are the fol-
lowing: (i) Dalrymple’s index flood method, (ii) Natural Environmental Research
Council (NERC) method, (iii) United States Water Resources Council (USWRC)
method, (iv) Bayesian method, and (v) regional regression-based methods.

Based on data availability and record length of the data the following three types
of approaches may be adopted for developing the flood frequency relationships: (a)
at-site flood frequency analysis, (b) at-site and regional flood frequency analysis,
and (c) regional flood frequency analysis. The steps involved in carrying out flood
frequency analysis based on the above approaches are mentioned below.

5.2.1 At-Site Flood Frequency Analysis

(i) Fit various frequency distributions to the annual maximum peak flood data of
a stream flow gauging site.

(ii) Select the best fit distribution based on the goodness-of-fit criteria.
(iii) Use the best fit distribution for estimation of T -year flood.

5.2.2 At-Site and Regional Flood Frequency Analysis

(i) Identify a hydrometeorologically homogeneous region.
(ii) Screen the observed annual maximum peak flood data of the stream flow gaug-

ing sites of the homogeneous region and test the regional homogeneity.
(iii) Develop flood frequency relationships for the region considering various fre-

quency distributions.
(iv) Select the best fit distribution based on the goodness-of-fit criteria.
(v) Estimate the at-site mean annual peak flood.

(vi) Use the best fit regional flood frequency relationship for estimation of T -year
flood.

5.2.3 Regional Flood Frequency Analysis

Steps (i)–(iv) mentioned under Sect. 5.2.2 remain unchanged here. Subsequently,
the following steps are followed:
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(i) Develop a regional relationship between mean annual peak flood and catch-
ment and physiographic characteristics for the region.

(ii) Estimate the mean annual peak flood using the developed relationship.
(iii) Use the best fit regional flood frequency relationship for estimation of T -year

flood.

Among some of the recent regional flood frequency analysis studies, Iacobellis and
Fiorentino [5.11] presented a new rationale, which incorporates the climatic control
for deriving the probability distribution of floods which is based on the assumption
that the peak direct streamflow is a product of two random variates, namely the
average runoff per unit area and the peak contributing area. The probability density
function of peak direct streamflow can thus be found as the integral over total basin
area, of that peak contributing area times the density function of average runoff per
unit area. The model was applied to the annual flood series of eight gauged basins
in Basilicata (southern Italy) with catchment area ranging from 40 to 1 600 km2.
The results showed that the parameter tended to assume values in good agreement
with geomorphologic knowledge and suggest a new key to understand the climatic
control of the probability distribution of floods.

Jingyl and Hall [5.12] applied the geographical approach (residual method),
Ward’s cluster method, the Fuzzy c-means method, and a Kohonen neural network
[5.13] to 86 sites in the Gan-Ming river basin of China to delineate homogeneous
regions based on site characteristics. The authors state that since the Kohonen neural
network can be employed to identify the number of sub-regions as well as the allo-
cation of the sites to sub-regions, this method is preferred over Ward’s method and
the Fuzzy c-means approach. The regional L-moment algorithm has been used both
to take advantage of identifying an appropriate underlying frequency distribution
and to construct sub-regional growth curves.

Chokmani and Quarda [5.3] proposed a physiographical space-based kriging
method for regional flood frequency estimation. The methodology relies on the
construction of a continuous physiographical space using physiographical and mete-
orological characteristics of gauging stations and the use of multivariate analy-
sis techniques. Two multivariate analysis methods were tested: canonical correla-
tion analysis (CCA) and principal component analysis (PCA). Ordinary kriging,
a geostatistical technique, was then used to interpolate flow quantiles through the
physiographical space. Data from 151 gauging stations across the southern part of
the province of Quebec, Canada, were used to illustrate this approach. Results of
the proposed method were compared to those produced by a traditional regional
estimation method using the canonical correlation analysis. The proposed method
estimated the 10-year return period specific flow with a coefficient of determination
of 0.78. However, this performance decreases with the increase in quantile return
period. It is also observed that the proposed method works better when the physio-
graphical space is defined using canonical correlation analysis.

Merz and Blöschl [5.15] examined the predictive performance of various region-
alization methods for the ungauged catchment case, based on a jack-knifing com-
parison of locally estimated and regionalized flood quantiles of 575 Austrian
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catchments. It is observed that spatial proximity is a significantly better predictor
of regional flood frequencies than are catchment attributes. A method that combines
spatial proximity and catchment attributes yields the best predictive performance.
The authors have presented this novel method which is based on kriging and takes
differences in the length of the flood records into account. It is shown that short
flood records contain valuable information which can be exploited by the method
proposed by the authors. A method that used only spatial proximity performs second
best. The methods that only use catchment attributes perform significantly poorer
than those based on spatial proximity. These are a variant of the region of influ-
ence (ROI) approach, applied in an automatic model and multiple regressions. The
authors suggest that better predictive variables and similarity measures need to be
found to make these methods more useful.

Kumar and Chatterjee [5.14] carried out regional flood frequency analysis for
North Brahmaputra region of India. In the study, data of 13 streamflow gauging
sites were screened using the discordancy measure (Di ) and homogeneity of the
region is then tested employing the L-moment-based heterogeneity measure (H ).
Based on this test, it was observed that the data of 10 out of 13 gauging sites
constituted a homogeneous region. Comparative regional flood frequency analysis
studies were conducted employing the L-moment-based commonly used frequency
distributions. Based on the L-moment ratio diagram and |Zdist

i |-statistic criteria,
generalized extreme value (GEV) distribution was identified as the robust distribu-
tion for the study area. Regional flood frequency relationships were developed for
estimation of floods of various return periods for gauged and ungauged catchments
using the L-moment-based GEV distribution and a regional relationship between
mean annual peak flood and catchment area. Flood frequency estimates of gauged
and ungauged catchments were compared; when, without satisfying the criteria of
regional homogeneity, data of all the 13 gauging sites were used instead of data of
only 10 gauging sites constituting the homogeneous region.

Cunderlik and Burn [5.4] mention that because of sampling variability, catch-
ment similarity in flood seasonality can significantly deviate from the true similar-
ity. Therefore, sampling variability should be directly incorporated in the pooling
algorithm to decrease the level of pooling uncertainty. The authors developed a new
pooling approach that takes into consideration the sampling variability of flood sea-
sonality measures used as pooling variables. A nonparametric resampling technique
is used to estimate the sampling variability for the target site, as well as for every site
that is a potential member of the pooling group for the target site. The variability is
quantified by Mahalanobis distance ellipses. The similarity between the target site
and the potential site is then assessed by finding the minimum confidence interval at
which their Mahalanobis ellipses intersect. The confidence intervals can be related
to regional homogeneity, which allows the target degree of regional homogeneity to
be set in advance. The approach is applied to a large set of catchments from Great
Britain, and its performance is compared with the performance of a previously used
pooling technique based on Euclidean distance. The results demonstrated that the
proposed approach outperforms the previously used approach in terms of the overall
homogeneity of delineated pooling groups in the study area.
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Zhang and Singh [5.21] mention that using the Gumbel–Hougaard copula,
trivariate distributions of flood peak, volume, and duration were derived, and then
conditional return periods were obtained. The derived distributions were tested
using flood data from the Amite River Basin in Louisiana. The authors state that
a major advantage of the copula method is that marginal distributions of individ-
ual variables can be of any form and the variables can be correlated. Griffis and
Stedinger [5.7] presented evolution of flood frequency analysis with Bulletin 17.
The current methodology recommended for flood frequency analyses by US Fed-
eral Agencies is presented in Bulletin 17B. Bulletin 17 was first published in 1976,
minor corrections were made in 1977 resulting in Bulletin 17A, which was later
succeeded by Bulletin 17B published in 1982. The authors mention that the fields
of hydrology and flood frequency analysis have substantially evolved since Bulletin
17 was first published. New techniques are now available which should become
part of these standard procedures. A comparison is provided which demonstrates
how the standard and weighted Bulletin 17B quantile estimators perform relative
to alternative LP3 quantile estimators that also make use of regional information.
Chebana and Quarda [5.2] presented a multivariate L-moment homogeneity test
with the aim to extend the statistical homogeneity test of Hosking and Wallis [5.9]
to the multivariate case. The usefulness of the methodology is illustrated on flood
events. Monte Carlo simulations are also performed for a bivariate Gumbel logis-
tic model with Gumbel marginal distributions. Results illustrate the power of the
proposed multivariate L-moment homogeneity test to detect heterogeneity on the
whole structure of the model and on the marginal distributions. In a bivariate flood
setting, a comparison is carried out with the classical homogeneity test of Hosking
and Wallis based on several types of regions. In this study, regional flood frequency
relationships have been developed based on the L-moment approach for estima-
tion of floods of various return periods for gauged and ungauged catchments of the
Mahanadi subzone 3(d) of India.

5.3 L-Moment Approach

Some of the commonly used parameter estimation methods for most of the fre-
quency distributions include the following: (i) method of least squares, (ii) method
of moments, (iii) method of maximum likelihoods, (iv) method of probability
weighted moments, (v) method based on principle of maximum entropy, and (vi)
method based on L-moments. L-moments are a recent development within statis-
tics [5.8]. In a wide range of hydrologic applications, L-moments provide simple
and reasonably efficient estimators of characteristics of hydrologic data and of a
distribution’s parameters [5.18]. Like the ordinary product moments, L-moments
summarize the characteristics or shapes of theoretical probability distributions and
observed samples. Both moment types offer measures of distributional location
(mean), scale (variance), skewness (shape), and kurtosis (peakedness).

Recently a number of regional flood frequency analysis studies have been carried
out based on the L-moment approach. The L-moment methods are demonstrably
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superior to those that have been used previously and are now being adopted by
many organizations worldwide [5.10]. The L-moments offer significant advantages
over ordinary product moments, especially for environmental data sets, because of
the following [5.20].

1. L-moment ratio estimators of location, scale, and shape are nearly unbiased,
regardless of the probability distribution from which the observations arise [5.8].

2. L-moment ratio estimators such as L-coefficient of variation, L-skewness, and
L-kurtosis can exhibit lower bias than conventional product moment ratios, espe-
cially for highly skewed samples.

3. The L-moment ratio estimators of L-coefficient of variation and L-skewness do
not have bounds which depend on sample size as do the ordinary product moment
ratio estimators of coefficient of variation and skewness.

4. L-moment estimators are linear combinations of the observations and thus are
less sensitive to the largest observations in a sample than product moment esti-
mators, which square or cube the observations.

5. L-moment ratio diagrams are particularly good at identifying the distributional
properties of highly skewed data, whereas ordinary product moment diagrams
are almost useless for this task [5.19].

5.3.1 Probability Weighted Moments and L-Moments

The L-moments are an alternative system of describing the shapes of probability
distributions [5.10]. They arose as modifications of probability weighted moments
(PWMs) of Greenwood et al. [5.6]. Probability weighted moments is defined as

Mp,r,s = E
(
x p {F}r {1 − F}s) =

1∫

0

{x (F)}p Fr {1 − F}s dF, (5.1)

where F = F(x) is the cumulative distribution function (CDF) for x, x(F) is the
inverse CDF of x evaluated at the probability F , and p, r , and s are real numbers.
If p is a nonnegative integer, Mp,0,0 represents the conventional moment of order p
about the origin. If p = 1 and s = 0,

M1,r,0 = βr =
1∫

0

x (F) Fr dF . (5.2)

For an ordered sample x1 ≤ x2, . . . .,≤ xN , N > r , the unbiased sample PWMs are
given by

β̂r = 1

N

∑N
i=1

(i−1
r

)
xi(N−1

r

) . (5.3)
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For any distribution the r th L-moment λr is related to the r th PWM [5.8], through

λr+1 =
r∑

k=0

βk(−1)r−k
(

r

k

)(
r + k

k

)
. (5.4)

These L-moments are linear functions of PWMs. For example, the first four L-
moments are related to the PWMs using

λ1 = β0,

λ2 = 2β1 − β0,

λ3 = 6β2 − 6β1 + β0, (5.5)

λ4 = 20β3 − 30β2 + 12β1 − β0.

The L-moments are analogous to their conventional counterparts as they can be
directly interpreted as measures of scale and shape of probability distributions
and hence are more convenient than the PWMs. Hosking (1990) [5.8] defined
L-moment ratios which are analogous to conventional moment ratios as

L-coefficient of variation: L-CV(τ2) = λ2/λ1,

L-coefficient of skewness: L-skew(τ3) = λ3/λ2, (5.6)

L-coefficient of kurtosis: L-kurtosis(τ4) = λ4/λ2.

Analogous to the conventional moment ratios, λ1 is a measure of location, τ2 is a
measure of scale and dispersion, τ3 is a measure of skewness, and τ4 is a measure
of kurtosis. Hosking [5.8] showed that for x ≥ 0, the value of τ2 lies between 0 and
1, while the absolute values of τ3 and τ4 lie between 0 and 1. This restriction in the
values of the L-coefficients works out to be an advantage in their interpretation as
opposed to the conventional moments which do not have any bounds [5.17].

5.3.2 Screening of Data Using Discordancy Measure Test

The objective of screening of data is to check that the data are appropriate for
performing the regional flood frequency analysis. In this study, screening of the
data was performed using the L-moment-based discordancy measure (Di ). Dis-
cordancy is measured in terms of the L-moments of the sites’ data, and the aim
is to identify those sites that are grossly discordant with the group as a whole.
The sample L-moment ratios (t2, t3, and t4) of a site are considered as a point in
a three-dimensional space. A group of sites form a cluster of such points in the
three-dimensional space. A site is considered discordant if it is far from the center
of the cluster. Hosking and Wallis [5.10] defined the discordancy measure (Di ) for a
site i in a group of N sites. Let ui = [t (i)2 t (i)3 t (i)4 ]T be a vector containing the sample
L-moment ratios t2, t3, and t4 values for site i , analogous to their regional values
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termed as τ2, τ3, and τ4, expressed in Eq. (5.6). T denotes transposition of a vector
or matrix. Let

u = N−1
N∑

i=1

ui (5.7)

be the (unweighted) group average. The sample covariance matrix is defined as

Am =
N∑

i=1

(ui − u)(ui − u)T . (5.8)

The discordancy measure for site i is defined as

Di = 1

3
N (ui − u)T A−1

m (ui − u). (5.9)

The site i is declared to be discordant, if Di is greater than the critical value of the
discordancy statistic Di , given in a tabular form by Hosking and Wallis [5.10].

5.3.3 Test of Regional Homogeneity

For testing regional homogeneity, a test statistic H , termed as heterogeneity mea-
sure, was proposed by Hosking and Wallis [5.9]. It compares the “inter-site varia-
tions in sample L-moments for the group of sites” with “what would be expected of a
homogeneous region.” The inter-site variations in sample L-moments are evaluated
based on any of the three measures of variability V1 (based on L-CV), V2 (based on
L-CV and L-skew), and V3 (based on L-skew and L-kurtosis). These measures of
variability are computed as follows:

1. V1 is the weighted standard deviation of at-site L-CV’s (t (i)2 ):

V1 =
[∑N

i=1 ni (t
(i)
2 − t R

2 )
2

∑N
i=1 ni

]1/2

, (5.10)

where ni is the record length at each site and t R
2 is the regional average L-CV

weighted proportionally to the sites’ record length as given below:

t R
2 =

∑N
i=1 ni t (i)2∑N

i=1 ni
. (5.11)

2. V2 is the weighted average distance from the site to the group weighted mean on
a graph of t2 versus t3:
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V2 =
∑N

i=1 ni {(t (i)2 − t R
2 )

2 + (t (i)3 − t R
3 )

2}1/2

∑N
i=1 ni

, (5.12)

where t R
3 is the regional average L-skew weighted proportionally to the sites’

record length.
3. V3 is the weighted average distance from the site to the group weighted mean on

a graph of t3 versus t4:

V3 =
∑N

i=1 ni {(t (i)3 − t R
3 )

2 + (t (i)4 − t R
4 )

2}1/2

∑N
i=1 ni

, (5.13)

where t R
4 is the regional average L-kurtosis weighted proportionally to the sites’

record length. To establish what would be expected of a homogeneous region, first
simulations are used to generate homogeneous regions with sites having same record
lengths as those of the observed data. In order to generate the simulated data, a
four-parameter κ-distribution is used. The four-parameter κ-distribution is chosen
so as not to commit to a particular two or three-parameter distribution. Further,
the four-parameter κ-distribution includes as special cases the generalized logistic,
generalized extreme value, and generalized Pareto distributions and hence acts as
a good representation of many of the probability distributions occurring in envi-
ronmental sciences. The parameters of the κ-distribution are obtained using the
regional average L-moment ratios t R

2 , t R
3 , t R

4 , and mean = 1. A large number of
data regions are generated (say Nsim = 500) based on this κ-distribution. The sim-
ulated regions are homogeneous and have no cross-correlation or serial correlation.
Further, the sites have the same record lengths as the observed data. For each gen-
erated region, Vj (i.e., any of V1, V2, or V3) is computed using Eqs. (5.10), (5.11),
(5.12), and (5.13). Subsequently, their mean (μv) and standard deviation (σv) are
computed.

The heterogeneity measure H( j) (i.e., H(1), H(2), or H(3)) is computed as

H( j) = Vj − μv

σv
. (5.14)

If the heterogeneity measure is sufficiently large, the region is declared to be hetero-
geneous. Hosking and Wallis [5.10] suggested the following criteria for assessing
heterogeneity of a region: if H( j) < 1, the region is acceptably homogeneous; if
1 ≤ H( j) < 2, the region is possibly heterogeneous; and if H( j) ≥ 2, the region
is definitely heterogeneous. These boundary values of H( j) being 1 and 2 were
determined by Hosking and Wallis [5.10] by performing a series of Monte Carlo
experiments in which the accuracy of quantile estimates corresponding to different
values of H( j) was computed. The authors further observed that for both real-world
data and artificially simulated regions, H(1) has much better power to discriminate
between homogeneous and heterogeneous regions as compared to H(2) and H(3).
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5.3.4 Identification of Robust Regional Frequency Distribution

The best fit frequency distribution for a homogeneous region is determined by how
well the L-skewness and L-kurtosis of the fitted distribution match the regional aver-
age L-skewness and L-kurtosis of the observed data [5.10]. The procedure adopted
is briefly stated below. Initially, several three-parameter distributions are fitted to
the regional average L-moments t R

2 , t R
3 , and mean =1. Let τDist

4 be the L-kurtosis
of the fitted distribution which may be GEV, GLO, GNO, PE3, etc. Using the Nsim
number of simulated regions of the κ-distribution (as obtained for the heterogeneity
measure described in Sect. 5.3.3), the regional average L-kurtosis, tm

4 , is computed
for the mth simulated region. The bias of t R

4 is computed as

B4 = N−1
sim

Nsim∑

m=1

(
tm
4 − t R

4

)
. (5.15)

The standard deviation of t R
4 is computed as

σ4 =
⎡

⎣(Nsim − 1)−1

⎧
⎨

⎩

Nsim∑

m=1

(
tm
4 − t R

4

)2 − Nsim B2
4

⎫
⎬

⎭

⎤

⎦
1/2

. (5.16)

The goodness-of-fit measure for each distribution is computed as [5.10]

Zdist =
(
τ dist

4 − t R
4 + B4

)
/σ4. (5.17)

The fit is considered to be adequate if |Zdist|-statistic is sufficiently close to 0, a
reasonable criterion being |Zdist|-statistic less than 1.64. Hosking and Wallis [5.10]
state that the |Zdist|-statistic has the form of a normal distribution under suitable
assumptions. Thus the criterion |Zdist|-statistic less than 1.64 corresponds to accep-
tance of the hypothesized distribution at a confidence level of 90%.

5.4 Study Area and Data Availability

Mahanadi subzone 3(d) in India comprises Mahanadi, Brahmani, and Baitarani
basins. It is located between longitudes of 80◦ 25′ to 87◦ east and latitudes 19◦
15′ to 23◦ 35′ north (Fig. 5.1). Its total drainage area is about 195 256 km2. About
50% of the area of this subzone is hilly varying from 300 to 1 350 m. Rest of the
area lies in the elevation range of 0–300 m. The normal annual rainfall over the
region varies from 1 200 to 1 600 mm. The subzone receives about 75–80% of the
annual rainfall from Southwest monsoon during the monsoon season from June to
September. The red and yellow soils cover major part of the subzone. The red sandy,
submontane, and coastal alluvial soils cover the remaining part of the subzone. The
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Mahanadi
Subzone 3(d)

INDIA

Fig. 5.1 Index map showing location of Mahanadi subzone 3(d) in India

subzone has an extensive area under forest. Paddy is the main crop grown on the
cultivable land. Annual maximum peak flood data of 23 bridge sites lying in the
hydrometeorologically homogeneous region [5.1] of Mahanadi subzone 3(d) as well
as the catchment areas of the bridge sites were available for the study. These data
were observed during the period 1957–1990 with record lengths varying from 11 to
30 years.

5.5 Analysis and Discussion of Results

Regional flood frequency analysis was performed using the various frequency dis-
tributions, viz., extreme value (EV1), generalized extreme value (GEV), logistic
(LOS), generalized logistic (GLO), normal (NOR), generalized normal (GNO), uni-
form (UNF), Pearson type-III (PE3), exponential (EXP), generalized Pareto (GPA),
κ-(KAP), and five-parameter Wakeby (WAK). Screening of the data, testing of
regional homogeneity, identification of the regional distribution, and development
of regional flood frequency relationships are described below.
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5.5.1 Screening of Data Using Discordancy Measure Test

Values of discordancy statistic have been computed in terms of the L-moments for
all the 23 gauging sites of the study area. It is observed that the Di values for all the
23 sites vary from 0.04 to 3.06. As 3.06 is greater than the critical value of Di , i.e.,
3.00 for a region defined by 15 or more sites [5.10], the site having Di value of 3.06
is discarded from the analysis. The Di values for 22 sites vary from 0.04 to 2.32, and
the data of 22 sites may be considered suitable for regional flood frequency analysis.

5.5.2 Test of Regional Homogeneity

The values of the heterogeneity measures H(1), H(2), and H(3) were computed
utilizing the data of 22 gauging sites by generating 500 regions using the fitted κ-
distribution. Using the data of 22 sites, H(1), H(2), and H(3) values are computed
as 4.21, 1.79, and 0.16, respectively. As H(1) is greater than 2.0 and H(2) is greater
than 1.0, the region defined by the 22 gauging sites is considered as heterogeneous.
Thus, based on the statistical properties of the data of the gauging sites, one by one
seven sites of the region are excluded till H(1) value between 1.0 and 2.0; and both
H(2) and H(3) values less than 1.0 are obtained. Further efforts to reduce the value
of H(1) led to significant loss of data, and hence, this was not attempted. The data
sample comprising of 15 gauging sites and yielding H(1), H(2), and H(3) values
as 1.68, −0.71, and −1.98, respectively, is considered as reasonably homogeneous.
The details of catchment data and statistical parameters including the discordancy
measure for the 15 gauging sites are given in Table 5.1. The values of heterogeneity
measures computed by carrying out 500 simulations using the κ-distribution based
on the data of 15 sites are given in Table 5.2.

Table 5.1 Catchment area, sample statistics, sample size, and discordancy measure for 15 gauging
sites of Mahanadi subzone 3(d)

Stream
gauging
site

Catchment
area (km2)

Mean annual
peak flood
(m3/s)

Sample
size
(years)

L-CV
(τ2)

L-skew
(τ3)

L-kurtosis
(τ4)

Discordancy
measure (Di )

48 109 103.90 30 0.4020 0.2950 0.1658 0.46
93 K 74 153.07 28 0.2740 0.1235 0.1974 1.44
59 KGP 30 72.89 29 0.4079 0.2770 0.1780 0.74
308 19 41.22 27 0.3461 0.2339 0.0882 0.87
332 NGP 225 188.59 22 0.2899 0.2117 0.2020 1.23
59 BSP 136 196.23 22 0.4068 0.3471 0.2283 1.48
698 113 247.00 25 0.4240 0.3210 0.1356 1.09
121 1 150 1 003.86 21 0.2690 0.1622 0.0787 1.19
332 KGP 175 71.83 24 0.3102 0.1569 0.1647 0.51
40 K 115 260.67 21 0.3469 0.2328 0.1784 0.14
42 49 53.50 20 0.2260 0.0488 0.0530 1.92
69 173 238.89 19 0.3457 0.2392 0.1455 0.08
90 190 130.73 11 0.3570 0.1566 0.1335 2.11
195 615 963.77 13 0.2394 0.1305 0.1614 1.10
235 312 176.14 14 0.3128 0.2205 0.1130 0.63
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Table 5.2 Heterogeneity measures for 15 gauging sites of Mahanadi subzone 3(d)

# Heterogeneity measure Value

1.

Heterogeneity measure H(1)
(a) Observed standard deviation of group L-CV 0.0615
(b) Simulated mean of standard deviation of group L-CV 0.0472
(c) Simulated standard deviation of group L-CV 0.0085
(d) Standardized test value H(1) 1.68

2.

Heterogeneity measure H(2)
(a) Observed average of L-CV/L-skewness distance 0.0861
(b) Simulated mean of average L-CV/L-skewness distance 0.0980
(c) Simulated standard deviation of average L-CV/L-skewness distance 0.0167
(d) Standardized test value H(2) −0.71

3.

Heterogeneity measure H(3)
(a) Observed average of L-skewness/L-kurtosis distance 0.0821
(b) Simulated mean of average L-skewness/L-kurtosis distance 0.1198
(c) Simulated standard deviation of average L-skewness/L-kurtosis distance 0.0191
(d) Standardized test value H(3) −1.98

5.5.3 Identification of Robust Regional Frequency Distribution

The L-moment ratio diagram and |Zdist
i |-statistic are used as the best fit criteria for

identifying the robust distribution for the study area. The regional average values
of L-skewness, i.e., τ3 = 0.2180 and L-kurtosis, i.e., τ4 = 0.1510 are obtained.
Figure 5.2 shows the L-moment ratio diagram for the study area. The Zdist

i -statistic

Fig. 5.2 L-moment ratio diagram for Mahanadi subzone 3(d) for various distributions
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Table 5.3 Zdist
i -statistic for various distributions for Mahanadi subzone 3(d)

S. No. Distribution Zdist
i -statistic

1 Generalized logistic (GLO) 2.08
2 Generalized extreme value (GEV) 0.66
3 Generalized normal (GNO) 0.22
4 Pearson type-III (PE3) −0.62
5 Generalized Pareto (GPD) −2.68

Table 5.4 Regional parameters for various distributions for Mahanadi subzone 3(d)

Distribution Parameters of the distribution

GNO ξ = 0.870 α = 0.548 k = −0.451
PE3 μ = 1.000 σ = 0.629 γ = 1.316
GEV ξ = 0.704 α = 0.452 K = −0.073
WAK ξ = 0.100 α = 1.985 β = 6.486 γ = 0.684 δ = −0.078

for various three-parameter distributions is given in Table 5.3. It is observed that
the |Zdist

i |-statistic values are lower than 1.64 for the three distributions, viz., GEV,
GNO, and PE3. Further, the |Zdist

i |-statistic is found to be the lowest for GNO dis-
tribution, i.e., 0.22. Thus, based on the L-moment ratio diagram and |Zdist

i |-statistic
criteria, the GNO distribution is identified as the robust distribution for the study
area. The values of regional parameters for the various distributions which have
Zdist-statistic value less than 1.64 (i.e., distributions accepted at the 90% confidence
level) as well as the five-parameter Wakeby distribution are given in Table 5.4. The
regional parameters of the Wakeby distribution have been included in Table 5.4
because the Wakeby distribution has five parameters, more than most of the common
distributions, and it can attain a wider range of distributional shapes than can the
common distributions. This makes the Wakeby distribution particularly useful for
simulating artificial data for use in studying the robustness, under changes in distri-
butional form of methods of data analysis. It is preferred to use Wakeby distribution
for heterogeneous regions.

5.5.4 Regional Flood Frequency Relationship for Gauged
Catchments

For estimation of floods of various return periods for gauged catchments regional
flood frequency relationship has been developed based on the robust identified GNO
distribution. The cumulative density function of the three-parameter GNO distribu-
tion as parameterized by Hosking and Wallis [5.10] is given below:

F(x) = φ
[
−k−1 log {1 − k(x − ξ)/α}

]
k �= 0, (5.18)

= φ
[
(x − ξ)/α

]
k = 0, (5.19)
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where ξ, α, and k are its location, scale, and shape parameters, respectively. When
k = 0, it becomes normal distribution (NOR) with parameters ξ and α. This dis-
tribution has no explicit analytical inverse form. φ is the cumulative distribution
function of the standard normal distribution given by

φ(x) =
x∫

−∞
(2π)−1/2 exp

(
−1

2
x2
)

dx . (5.20)

The quantile functions or the inverse form of the frequency distributions used in this
study are given in Appendix.

Floods of various return periods may be computed by multiplying mean annual
peak flood of a catchment by the corresponding values of growth factors of GNO
distribution given in Table 5.5. The growth factor or site-specific scale factor
(QT /Q) is computed by dividing flood quantile (QT ) by the annual mean peak
flood of a gauging site (Q). Monte Carlo simulation is used to estimate the accuracy
of the quantiles of the GNO distribution. The region used in the simulation proce-
dure contains 15 sites with record lengths same as that for Mahanadi subzone 3(d)
data, the sites having GNO distributions with L-CV varying linearly from 0.2260
at site 1 to 0.4240 at site 15 and L-skewness 0.2180. The inter-site dependence is
quantified in terms of an average correlation of about 0.32. Ten thousand regions
were generated and a GNO distribution was fitted to each generated region. The
regional average relative RMSE of the estimated growth curve was computed from
the simulations. The 90% error bounds for the growth curves are also computed and
are presented in Table 5.6.

Table 5.5 Values of growth factors (QT /Q) for Mahanadi subzone 3(d)

Distribution

Return period (years)

2 10 25 50 100 200 1 000

Growth factors

GNO 0.870 1.821 2.331 2.723 3.125 3.538 4.552
PE3 0.866 1.842 2.329 2.683 3.028 3.366 4.134
GEV 0.872 1.809 2.332 2.745 3.175 3.627 4.767
WAK 0.865 1.848 2.353 2.712 3.052 3.374 4.058

Table 5.6 Accuracy measures for growth factors of GNO distribution for Mahanadi subzone 3(d)

Return period
(years)

Growth
factors RMSE

90% Error bounds

Lower Upper

2 0.870 0.035 0.829 0.889
10 1.821 0.076 1.789 1.905
25 2.331 0.101 2.248 2.517
50 2.723 0.116 2.587 3.008
100 3.125 0.128 2.924 3.526
200 3.538 0.140 3.267 4.075
1000 4.552 0.163 4.075 5.479
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5.5.5 Regional Flood Frequency Relationship for Ungauged
Catchments

For ungauged catchments the at-site mean cannot be computed in the absence of
the observed flow data. Hence, a relationship between the mean annual peak flood
of gauged catchments in the region and their pertinent physiographic and climatic
characteristics is needed for estimation of the mean annual peak flood. Figure 5.3
shows a plot of the mean annual peak flood versus catchment area for the 15 gauging
sites of Mahanadi subzone 3(d). The regional relationship in the form of a power law
(Y = aXb) is developed for the region using Levenberg–Marquardt iteration on the
data of 15 gauging sites and is given below:

Q = 2.519 (A)0.863 , (5.21)

where A is the catchment area in km2, and Q is the mean annual peak flood in m3/s.
The best fit power equation is shown in Fig. 5.3 together with the error values of the
parameter estimates. For Eq. 5.21, the coefficient of determination is r2 = 0.834
and the standard error of estimates is 127.7.

For development of regional flood frequency relationship for ungauged catch-
ments, the regional flood frequency relationship developed for gauged catchments
is coupled with regional relationship between mean annual peak flood and catch-
ment area, given in Eq. 5.21, and the following regional frequency relationship is
developed:
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Fig. 5.3 Variation of mean annual peak flood with catchment area for various gauging sites of
Mahanadi subzone 3(d)
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QT = CT × A0.863, (5.22)

where QT is the flood estimate in m3/s for T -year return period, A is the catchment
area in km2, and CT is a regional coefficient. Values of CT for some of the com-
monly used return periods are given in Table 5.7. The above regional flood formula
(Eq. 5.22), its tabular form (Table 5.8), or graphical representation (Fig. 5.4) may
be used for estimation of floods of desired return periods for ungauged catchments
of the Mahanadi subzone 3(d). The conventional empirical flood formulae do not
provide floods of various return periods for the ungauged catchments. However, the
regional flood formula developed in this study (Eq. 5.22) is capable of providing
flood estimates for desired return periods.
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Fig. 5.4 Variation of floods of various return periods with catchment area for Mahanadi subzone
3(d)
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Table 5.7 Values of regional coefficient CT for Mahanadi subzone 3(d)

Distribution

Return period (years)

2 10 25 50 100 200 1 000

Growth factors

GNO 2.192 4.587 5.872 6.859 7.872 8.912 11.466

Table 5.8 Floods of various return periods for different catchment areas of Mahanadi subzone 3(d)

Catchment area
(km2)

Return period (years)

2 10 25 50 100 200 1000

Floods of various return periods (m3/s)

10 16 33 43 50 57 65 84
20 29 61 78 91 104 118 152
30 41 86 111 129 148 168 216
40 53 111 142 166 190 215 277
50 64 134 172 201 230 261 335
60 75 157 201 235 270 305 393
70 86 179 230 268 308 349 448
80 96 201 258 301 346 391 503
90 107 223 285 333 382 433 557

100 117 244 312 365 419 474 610
150 166 346 443 518 594 673 866
200 212 444 568 664 762 863 1 110
250 257 538 689 805 924 1 046 1 345
300 301 630 806 942 1 081 1 224 1 575
350 344 720 921 1 076 1 235 1 398 1 799
400 386 807 1 034 1 207 1 386 1 569 2 018
450 427 894 1 144 1 337 1 534 1 737 2 234
500 468 979 1 253 1 464 1 680 1 902 2 447
600 548 1 146 1 467 1 713 1 966 2 226 2 864
700 625 1 309 1 675 1 957 2 246 2 543 3 271
800 702 1 469 1 880 2 196 2 520 2 853 3 671
900 777 1 626 2 081 2 431 2 790 3 159 4 064

1 000 851 1 780 2 279 2 662 3 056 3 459 4 451
1 100 924 1 933 2 475 2 891 3 317 3 756 4 832
1 200 996 2 084 2 668 3 116 3 576 4 049 5 209
1 300 1 067 2 233 2 858 3 339 3 832 4 338 5 581
1 400 1 137 2 380 3 047 3 559 4 085 4 625 5 950
1 500 1 207 2 526 3 234 3 778 4 336 4 908 6 315

5.6 Conclusion

Screening of the data conducted using the annual maximum peak flood data of the
Mahanadi subzone 3(d) employing the discordancy measure (Di ) test reveals that
22 out of the 23 gauging sites are suitable for regional flood frequency analysis.
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However, based on the heterogeneity measures, H( j), the annual maximum peak
flood data of 15 stream flow gauging sites are considered to constitute a homo-
geneous region and the same are used for regional flood frequency analysis. Vari-
ous distributions, viz., EV1, GEV, LOS, GLO, UNF, PE3, NOR, GNO, EXP, GPA,
KAP, and WAK have been employed. Based on the L-moments ratio diagram and
|Zdist

i |-statistic criteria, the GNO distribution has been identified as the robust dis-
tribution for the study area.

The developed regional flood frequency relationships may be used for the esti-
mation of floods of desired return periods for gauged and ungauged catchments of
the study area. As the regional flood frequency relationships have been developed
using the data of catchments varying from 19 to 1150 km2 in area; hence, these
relationships are expected to provide estimates of floods of various return periods for
catchments lying nearly in the same range of the areal extent. Further, the relation-
ship between mean annual peak flood and catchment area is able to explain 83.4%
of initial variance (r2 = 0.834). Hence, in case of ungauged catchments the results
of the study are subject to these limitations. However, the regional flood frequency
relationships may be refined for obtaining more accurate flood frequency estimates;
when the data for some more gauging sites become available and physiographic
characteristics other than catchment area as well as some of the pertinent climatic
characteristics are also used for development of the regional flood frequency rela-
tionships.

Appendix

The following commonly adopted frequency distributions have been used in this
study. The details about these distributions and relationships among parameters of
these distributions and L-moments are available in literature [5.10].

Generalized Extreme Value Distribution (GEV)

The generalized extreme value distribution (GEV) is a generalized three-parameter
extreme value distribution. The quantile function or the inverse form of the distribu-
tion is expressed as

x(F) = u + α{1 − (− ln F)k}/k k �= 0, (5.23)

= u − α ln(− ln F) k = 0 , (5.24)

where u, α, and k are location, scale, and shape parameters of GEV distribution,
respectively. EV1 distribution is the special case of the GEV distribution when
k = 0.
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Generalized Logistic Distribution (GLO)

The inverse form of the generalized logistic distribution (GLO) is expressed as

x(F) = u + [α[1 − {(1 − F)/F}k]/k k �= 0, (5.25)

= u − α ln {(1 − F)/F} k = 0, (5.26)

where u, α, and k are location, scale, and shape parameters, respectively. The logis-
tic distribution (LOS) is a special case of the generalized logistic distribution when
k = 0.

Generalized Pareto Distribution (GPA)

The inverse form of the generalized Pareto distribution (GPA) is expressed as

x(F) = u + α{1 − (1 − F)k}/k k �= 0, (5.27)

= u − α ln(1 − F) k = 0, (5.28)

where u, α, and k are location, scale, and shape parameters, respectively. The expo-
nential distribution (EXP) is special case of generalized Pareto distribution when
k = 0.

Pearson Type-III Distribution (PT-III)

The inverse form of the Pearson type-III distribution is not explicitly defined.
Hosking and Wallis [5.10] mention that the Pearson type-III distribution combines
Γ -distributions (which have positive skewness), reflected Γ -distributions (which
have negative skewness), and the normal distribution (which has zero skewness).
The authors parameterize the Pearson type-III distribution by its first three conven-
tional moments, viz., mean μ, the standard deviation σ , and the skewness γ . The
relationship between these parameters and those of the Γ -distribution is as follows.

Let X be a random variable with a Pearson type-III distribution with parameters
μ, σ , and γ . If γ > 0, then X − μ + 2σ/γ has a Γ -distribution with parameters
α = 4/γ 2, β = σγ/2. If γ = 0, then X has a normal distribution with mean μ

and standard deviation σ . If γ < 0, then −X +μ− 2σ/γ has a Γ -distribution with
parameters α = 4/γ 2, β = |σγ/2|.

If γ �= 0, let α = 4/γ 2, β = (1/2)σ/γ , and ξ = μ − 2σ/γ and Γ (.) is Γ -
function. If γ > 0, then the range of x is ξ ≤ x <∝ and the cumulative distribution
function is

F(x) = G

(
α,

x − ξ

β

)
�Γ (α). (5.29)
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If γ < 0, then the range of x is − ∝< x ≤ ξ and the cumulative distribution
function is

F(x) = 1 − G

(
α,

ξ − x

β

)
�Γ (α). (5.30)

Here, G(α, x) is the incomplete gamma function expressed as

G(α, x) =
x∫

0

tα−1e−t dt. (5.31)

κ-Distribution (KAP)

The κ-distribution is a four-parameter distribution that includes as special cases
the generalized logistic (GLO), generalized extreme value (GEV), and generalized
Pareto distribution (GPA):

x(F) = ξ + α

[
1 −

{
(1 − F)h/h

}k
]
/k, (5.32)

where, ξ is the location parameter and α is the scale parameter.
When h = −1, it becomes generalized logistic (GLO) distribution; h = 0 is the

generalized extreme value (GEV) distribution; and h = 0 is the generalized Pareto
(GPA) distribution. It is useful as a general distribution with which to compare the
fit of two- and three-parameter distributions and for use in simulating artificial data
in order to assess the accuracy of statistical methods [5.10].

Wakeby Distribution (WAK)

Inverse form of the five-parameter Wakeby (WAK) distribution is expressed as.

x(F) = ξ + α

β
{ 1 − (1 − F)β} − γ

δ
{1 − (1 − F)−δ}, (5.33)

where ξ , α, β, γ , and δ are the parameters of the Wakeby distribution.
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Part II
Extremes, Trends, and Changes



Benign spring flooding of the Rver Biebrza (Poland) near to the Szostaki village. Courtesy of:
http://mocar.obiezyswiat.org



Chapter 6
Intense Precipitation and High Floods –
Observations and Projections

Zbigniew W. Kundzewicz

According to physical laws, the water-holding capacity of the atmosphere and hence
the potential for intense precipitation increases with warming. Since a robust warm-
ing signal and a number of large rain-caused floods have been observed recently,
it is of paramount importance to examine whether there has been an increasing
trend in intense precipitation and flood flow. However, even if widespread increases
in observed intense precipitation have been reported in many areas, the analysis
of annual maximum river flow records does not detect an ubiquitous and coherent
increasing trend. This is in disagreement with some projections for the future, where
increasing intense precipitation and flood hazard are expected. One can conclude
that flood process is complex, influenced by several non-climatic factors, and can
be caused by several generating mechanisms, which are affected in different ways
by climate change. Hence, issuing a flat-rate statement on change in flood hazard is
not justified.

6.1 Introduction

Flooding has been a major concern in many regions of the world. There is a per-
ception that flooding is increasing worldwide and part of this perception may result
from increasing media coverage of flood events. However, in addition to the media
attention, it is also clear that flood risk, understood as the probability of extreme
event multiplied by a measure of its adverse consequences, has been on the rise.
Among the factors contributing to the growth of flood risk are changes in socio-
economic systems (population increase and accumulation of wealth in vulnerable
areas), terrestrial systems, and climate [6.16].

In several recent flood events the material losses have exceeded US $10 billion
(up to US $30 billion material damage during the summer 1998 floods in China).
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The death toll has remained high; in some events in less developed countries the
number of flood fatalities has been greater than 1 000. In an average year, floods
cause material damage of the order of tens of billions of dollars globally, in both
developed and less developed countries, and more than 10 000 fatalities mostly in
less developed countries. It is estimated that the costs of extreme weather events
have exhibited a rapid upward trend. Yearly economic losses from weather extremes
increased 10-fold (in inflation-adjusted dollars) between the 1950s and the 1990s,
and flood material damages have changed in a similar way. The insured portion of
these losses has grown even stronger.

Most destructive floods, in terms of human losses, occur outside of Europe (in
particular in Asia: China, India, and Bangladesh), but in the last decades, floods
have severely hit large parts of the European continent. There have been a number
of large floods in Europe since the 1990s. For example, Poland suffered dramatic
summer flood in 1997 (this event in the Odra basin also caused considerable damage
in the Czech Republic and Germany), 1998, 2001, and 2010. The year 2002 was
particularly abundant in large floods in Europe. It is estimated that the material
flood damage recorded in the European continent in 2002 has been higher than in
any single year before and exceeded 21 billion euros. The material flood damage
in Central Europe (Czech Republic, Germany, Austria) in August 2002 alone on
the rivers Danube, Labe/Elbe, and their tributaries, exceeded 15 billion euros. Not
long after, in September 2002, during severe storms and floods in southern France
(Rhone valley), people were killed and the total material losses exceeded 1 billion
euros. Also in 2005, 2006, and 2007, a number of further destructive floods have
been recorded in several countries of Europe.

Episodes of intense and/or long-lasting precipitation, which have occurred in
Europe in recent years leading to high-impact floods, raise considerable concern.
Based on climate change scenarios one may anticipate more severe problems of hav-
ing destructive abundance of water in the future. Projections for the future indicate
a potential for more intense precipitation in a warmer climate, further augmenting
flood risk (cf. [6.15, 6.17]).

6.2 Observations of Intense Precipitation

Groisman et al. [6.9] observed widespread increase in heavy precipitation during
the past 50–100 years in middle latitudes, even if, unfortunately, reliable estimates
of very heavy and extreme precipitation are available only for regions with dense
observation networks. The robust finding was disproportionate increase in precipi-
tation extremes. Groisman et al. [6.9] detected changes in intense precipitation for
more than half of the land area of the globe. They report increase in heavy precip-
itation in some areas (South Africa, Siberia, Central Mexico, Northeastern USA,
Northern Japan), where the total precipitation and frequency of wet days did not
change or decreased. As stated by Groisman et al. [6.9], “the empirical evidence
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from the period of instrumental observations [. . .] indicate an increasing probability
of intense precipitation events for many extra-tropical regions, including the USA”.
This can be interpreted as effect of warming, accompanied by increase in water
vapour, which leads to increased intensity but reduced duration of precipitation.

There are a number of studies, in which increase of intense precipitation in
observed records from Europe is documented. In a comprehensive study, Klein Tank
and Koennen [6.11] found that Europe average indices of wet extremes increase,
although the spatial coherence of the trends is low. The spatial inhomogeneity of
the trend patterns is largely influenced by the orography and subgrid-scale pro-
cesses. Groisman et al. [6.9] observed that a clear majority of stations in Europe
show increasing trends in the number of wet (75%) and very wet (95% quantile)
days during the second half of the twentieth century. There have been a number
of national studies reporting changes in extreme precipitation in Europe. Fowler
and Kilsby [6.6] found that 10-day precipitation totals with 50-year return period in
Northern England and Scotland increased by a factor of 2–5 by the 1990s. The low-
frequency variability of heavy precipitation was investigated by Schmidli and Frei
[6.29] for a dense data set (104 stations) of time series in Switzerland covering the
period 1901–2000. The analysis of a wide range of daily and multi-day precipitation
statistics encompassing basic characteristics, measures of heavy precipitation, and
indices of typical and extreme wet spells led to the detection of a clear trend signal
for winter and autumn. The centennial increase was found between 10 and 30% for
the high quantiles and the seasonal 1- to 10-day extremes. These results corroborate
the finding of a significant increase of frequency of intense precipitation event in
winter and autumn for many stations for Alpine region of Switzerland in the time
period 1901–1994 [6.7]. Increase in extreme rainfall in Italy and Spain (1951–1995)
was reported by Alpert et al. [6.1]. Sometimes the reported change is more complex.
For instance, for the 1961–2000 data in the UK, daily precipitation was found to be
more intense in winter and less intense in summer [6.25]. However, several studies
in Europe do not report detection of an increasing trend. No significant trend in
the extreme rainfall intensity was found, e.g. in Italy [6.4], Cyprus [6.1], and Uccle
(Belgium), where Vaes et al. [6.31] examined a 100-year daily record.

Longer series of observation records make it possible to place recent events in
a broader context. Indeed, some recent rainfall events in Europe have exceeded all-
time records. According to Czech sources, several records in the category of 1-,
2-, and 3-day precipitation observed in July 1997 and August 2002 at a number
of gauges entered the lists of the 10 highest observations ever made in the Czech
territory. In Zinnwald-Georgenfeld (Saxony, Germany), 312 mm of 1-day precipi-
tation was also recorded from 12 August 2002, 6 a.m. to 13 August 2002, 6 a.m.
(usual time interval for measuring one-day precipitation), matching the observa-
tion at a nearby Czech station in Cinovec and beating the all-time German national
record. The maximum 24-h precipitation recorded in Zinnwald-Georgenfeld from
12 August 2002, 3 a.m. to 13 August 2002, 3 a.m. was even higher and reached
352.7 mm. The list of all-time extreme precipitation totals, in several rainfall dura-
tion classes, observed in Germany contains several entries from the last 10 years.
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From the viewpoint of areal extent of precipitation, its intensity and duration (a
wave of two wet spells), the August 2002 event was exceptional in the instrumental
data.

6.3 Observations of River Flow

There have been a number of recent flood events when river flow or stage records
have been broken. For instance, the 2002 flood peak level of the Vltava in Prague
(Czech Republic) exceeded all the events recorded in the last 175 years. This was the
only time when the flow rate of 5 000 m3/s was exceeded, while between 1941 and
2001 Vltava flow never reached 2 500 m3/s. The water level of the Elbe in the profile
Dresden on 17 August 2002, i.e. 940 cm, has considerably (by 63 cm) exceeded the
former historical record. In the past, stages in excess of 800 cm were observed in
Dresden five times during less than a century – from 1785 to 1879 (four out of
five times – in February or March), but this level was never reached in 1880–2001.
However, such a long period of lower annual maxima has not been uncommon in
the historical data. For instance, between 1502 and 1783, i.e. 281 years, the level of
800 cm was exceeded only once. Apart from the record set in Dresden, the all-times
historical flood records on the river Mulde in Döbeln (1897) and Grimma (1573)
were exceeded in August 2002 by 126 cm and 136 cm, respectively.

In view of recent dramatic floods, search for trends in long time series of flood
data is of scientific interest and practical importance. It is essential for planning of
future water resources and flood protection systems, where system design is tra-
ditionally based on the assumption of stationarity in hydrological processes such
as river stage or discharge. Most studies (except [6.23]) have only analysed a few
rivers, or at most a region or a single country.

A study on change detection in worldwide hydrological time series of annual
maximum river flow was carried out by Kundzewicz et al. (2005a) [6.14]. The
annual maximum flow was used as a surrogate for floods, recognizing that it does
not always represent an out-of-bank flow. There are advantages to this approach: it
is a straightforward and well-established concept. However, time series of annual
maximum flow conveys information on some extremes only. In years with more
than one high-flow episode only one flood event per year is selected, while in years
with no large flows at all, a non-flood (medium or even low) flow, in absolute terms,
is extracted as the annual maximum. An alternative is a peak-over-threshold (POT)
approach, where all independent floods above a certain threshold (i.e. possibly sev-
eral events in one year and none in another year) are considered. Results of a com-
plementary study of POT are reported in Svensson et al. [6.30] or with regard to a
combination of POT and point processes in Chap. 8.

The study by Kundzewicz et al. [6.14] is limited to a subset of discharge time
series held at the Global Runoff Data Centre (GRDC) in Koblenz, Germany. Out of
more than a 1000 long time series made available by GRDC, a data set consisting
of 195 long series of daily mean flow records was selected.



6 Intense Precipitation and High Floods 135

The choice of stations used was based on the following criteria:

• A record length of at least 40 years (with exceptions in regions with scarce data).
The longest series, from the River Main at Würzburg, spans 178 years from 1824
to 2001)

• Currency of records, preferably extending through at least the late 1990s, with
only a few exceptions, in regions having scarce data

• No gaps in the records that could misrepresent the annual maxima series. Missing
values and gaps in data are always complicating factors. Whether or not to fill
them, and if so, in what way, is a complex issue. In the reported study no gaps
were filled. If gaps exist, the data are only conditionally useful for studies of
annual maxima, e.g. where flooding is clearly seasonal and gaps occur in a non-
flood season (e.g. gaps in autumn in a catchment subject to snowmelt flooding),
they were ignored

• Representative geographic coverage and avoiding the use of many neighbouring
(and possibly correlated) stations

• Catchment size, with priority given to smaller catchments which are more likely
to have less strong anthropogenic influence, especially in developed countries

Selection of stations to use in a study is very important (cf. [6.16]). River flow is the
integrated result of both natural factors, such as precipitation, catchment storage,
and evaporation loss, and management practices that alter the river basin and the
river conveyance system over time. This complicates the problem of detecting a
climate change signature in river flow data.

Hence, particular care is needed in selecting data and sites for use in studying
change. In order to assess climatically forced hydrological changes, data should
be taken from pristine drainage basins; that is, those minimally affected by such
human activities as deforestation, urbanization, reservoirs, drainage systems, water
abstraction, river engineering, etc. Catchments featuring significant land-use and
land-cover changes or river regulation are not appropriate. The data should be of
high quality and extend over a long period. Detailed suggestions on how to select a
network of stations for climate change detection are given in Pilon [6.27].

However, there are no metadata available for the flow series used in the study by
Kundzewicz et al. [6.14], which means that any observed trends may be the result
of both climatic and non-climatic influences. The GRDC metadata only include
basic characteristics of the gauging stations, which severely constrained selection
of optimal streamgauge records. A metadata needed to adequately screen and select
appropriate streamgauge records should include changes in the catchment (land-use
change); data collection methods; data from nearby sites; related variables, etc. The
data used in the analysis have been subject to quality control both at the GRDC and
within this study. Unfortunately, the coverage is not globally uniform with many
stations in three regions (North America, Australia and the Pacific, and Europe) and
only a few stations in Africa, Asia, and South America.

Whether it is appropriate to use the classical test procedure for trend detection
depends on the assumptions that can be made about the data (cf. [6.16]). In the study
by Kundzewicz et al. [6.14], the series of annual maxima was subject to two tests for
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independence. Both tests indicated non-randomness in very few of the annual max-
ima series. Given that the number of non-random series was small, it was decided
to omit them.

Since the data analysed in the present study [6.14] are non-normal, but are
independent and non-seasonal, hence, any of the basic distribution-free tests are
suitable. The seasonal variation inflow is removed by the use of annual maxima
rather than a continuous daily series. Extremes, such as series of annual maxima,
generally have a positively skewed distribution. Due to the global coverage of the
study, calendar years were used, since hydrological years start in different months
in different regions.

Kundzewicz et al. [6.17] used the Mann–Kendall test, a non-parametric
distribution-free method which is frequently used to detect trends (cf. [6.16]). This
approach allows the investigator to make minimal assumptions (constancy of distri-
bution and independence) about the data. It makes it possible to avoid assumptions
about the form of the distribution that the data derive from, e.g. there is no need to
assume that data are normally distributed. However, observations must be indepen-
dent for the computed significance levels to be correct (cf. [6.13, 6.16]).

The analysis of annual maximum flows reported by Kundzewicz et al. [6.17] does
not support the hypothesis of ubiquitous growth of high flows worldwide. Although
27 cases of strong, statistically significant increase were identified by the Mann–
Kendall test, there are 31 decreases as well, and most (137) time series do not show
any significant changes. Caution is advised in interpreting these results as flooding
is a complex phenomenon, caused by a number of factors that can be associated
with local, regional, and hemispheric climatic processes. Moreover, river flow has
strong natural variability and exhibits long-term persistence which can confound the
results of trend and significance tests.

In several cases, the highest flow was observed after 1990. In some series (from
Chao Phraya in Thailand, and three rivers in Norway), generally decreasing trend
was observed over decades, but the highest flows occurred in 1990s.

In a number of cases, the highest value in a long time series of annual maximum
flow was more than twice as high as the second highest record. This can be due to
special, and really extreme, conditions related to the absolute maximum. For exam-
ple, the highest annual maximum flow in Chena River, Fairbanks (US) of the ampli-
tude 1 809 m3/s occurred in 1967, while the second highest annual maximum flow
was 456 m3/s (in 1960). In Salcha River, near Salchaket (US), the highest annual
maximum flow was 2 635 m3/s in 1967, while the second highest annual maximum
flow was 879 m3/s (in 1986).

Since all European series considered in the study started no later than in 1961,
one can take the year 1961 as the starting point for a 40-year common period and
then divide this common period into two 20-year subperiods. It was found [6.17] that
the overall 1961–2000 maxima occurred considerably more frequently (46 times) in
the later subperiod, 1981–2000 than in the earlier subperiod, 1961–1980 (24 times).
This was despite the fact that not all-time series lasted until the year 2000 (series at
15 stations end in 1999 and at 6 end in 1998). Hence, it may well be that even more
maxima fall into the subperiod 1981–2000.



6 Intense Precipitation and High Floods 137

A closer look into particularities of individual stations concerned would be
needed to discriminate the driving factors. Since this information is not available in
the GRDC holdings, there is a need to augment the collected data by accommodating
more detailed metadata with more information about a station, including history
of river development for navigation and energy generation. It would be useful to
attempt to describe deterministically the reasons for atypical behaviour of some
series (as compared to their spatial neighbourhood). Here, influence of a local event
(e.g. flood resulting from a very high-intensity local storm), reservoirs, polders,
flood control could play an important role.

Analysis should also differentiate the flood generation mechanisms (snowmelt
vs. rainfall). In the present study, all floods (summer, winter, spring) were treated as
one category. In a seasonal analysis, Mudelsee et al. [6.24] demonstrated a signifi-
cant decrease in winter floods at the Elbe and the Odra.

A regional change in timing of floods has been observed in many areas, with
increasing late autumn and winter floods, cf. McCarthy et al. [6.21]. Mudelsee et al.
[6.24] and Bronstert [6.3] present evidence for decreasing ice-jam floods on rivers
in central Europe.

Apart from the inherent complexity involved in detecting a greenhouse (climate
change) signal in flow records, there are serious problems with the data (gaps, errors)
and with the methodology to detect changes as well. Even if the data are perfect,
however, it is worthwhile to re-state a tautology: extreme (hence rare) events are
rare [6.16]. They do not happen frequently, so even with a very long time series of
instrumental records, there is a small sample of truly extreme and destructive floods.

As stated by Radziejewski and Kundzewicz [6.28]

• failure to detect a significant trend should not be considered as a proof of the
absence of change (while a detection of a trend is not a proof of presence of
change);

• examination of detectability of artificially introduced, hence fully controlled,
trends in time series leads to the following common sense results:

If a change is weak and lasts for a short time, it is not likely to be detected.
If a change is stronger and lasts longer, the likelihood of detection grows.

6.4 Projections of Intense Precipitation and High River Flow

Changes in precipitation extremes are projected by climate model simulations in
many areas of the globe. The extremes in precipitation are likely to be impacted
more than the means in the future. As the water holding capacity of the atmosphere,
and thus its absolute potential water content, increases with temperature, the possi-
bility of intense precipitation also increases.

Recent works on changes in precipitation extremes in Europe (e.g. [6.8]) project
that the intensity of daily precipitation events will predominantly increase. The num-
ber of wet days is projected to decrease [6.8], which leads to longer dry periods
except in the winter of West and Central Europe.
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Palmer and Räisänen [6.26] analysed the modelled differences between the con-
trol run and an ensemble with transient increase in CO2 and calculated around the
time of CO2 doubling. A considerable increase of the risk of a very wet winter in
Europe and a very wet monsoon season in Asian monsoon region was found. This
would have consequences to flood hazard. The modelling results indicate that the
probability of total boreal winter precipitation exceeding two standard deviations
above normal will considerably increase over large areas of Europe. For example,
an over fivefold increase is projected over parts of British isles and much of the
Baltic Sea basin and even over sevenfold increase for parts of Russia.

The “Modelling the Impact of Climate Extremes” (MICE) Project within the
5th Framework Programme of the European Union aimed to demonstrate how the
occurrence of extremes over Europe may be expected to change due to anthro-
pogenic warming. Among other things, the project examined changes in intense
precipitation.

The data used in the MICE project are results of simulations from the Hadley
Centre Regional Climate Model (HadRM3-P) for the whole European region, with
the spatial resolution 0.44◦ × 0.44◦. In the MICE project, the daily precipitation
totals data from the Hadley Centre HadRM3-P regional model simulations over the
European continent, were compared for two 30-year periods (1961–1990 and 2070–
2099). Analyses of extremes were carried out both on the continental European scale
and on a local scale.

Results obtained in the MICE project for the European region show that even
if, according to climate model results (HadRM3-P), the mean summer precipitation
over much of Europe is likely to decrease from the control period, 1961–1990, to the
period of interest in the twenty-first century, 2070–2099, the behaviour of precipita-
tion extremes is considerably different. The highest quantiles of daily precipitation
amounts and annual maximum daily precipitation increase over many areas, also
where decrease in means is projected. This result is in agreement with the findings
of Christensen and Christensen [6.5], who examined another climate model. The
results of comparison of the number of days with intense precipitation, exceeding
an arbitrarily selected threshold (10 mm), simulated by HadRM3-P for the periods
1961–1990 and 2070–2099 show increase of the number of days with intense pre-
cipitation over most of Europe [6.17]. A larger increase in the frequency than in the
magnitude of precipitation extremes was found.

As stated by Arnell and Liu Chunzhen [6.2], changes in future flood frequency
in Europe are complex, depending on the generating mechanism, e.g. increasing
flood magnitudes where floods result from heavy rainfall and decreasing magnitudes
where spring floods are generated by snowmelt. Climate change is likely to cause
an increase of the risk of riverine flooding across much of Europe.

In many parts of Europe, significant changes in flood risk are expected under
IPCC IS92a scenario (similar to SRES A1) for the 2020s and the 2070s [6.18].
The regions most prone to a rise in flood frequencies are northern to north-eastern
Europe, for climate change projected by both the ECHAM4 and the HadCM3
model.
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Milly et al. [6.22] demonstrated that for 15 out of 16 large basins (over
200 000 km2) they analysed worldwide, the control 100-year flood (in monthly time-
scale) is projected to be exceeded more frequently as a result of CO2 quadrupling. In
some areas, what is given as a 100-year flood now (in the control run) is projected to
occur much more frequently, even every 2–5 years. A particularly strong increases
in frequency are projected in Northern Asia, albeit a large uncertainty in these pro-
jections is recognized.

Impacts of extremes on human welfare are likely to occur disproportionately in
countries with low adaptation capacity [6.20]. Up to 20% of the world population
live in river basins that are likely to be affected by increased flood hazard in the
course of global warming [6.12].

Summarizing, it can be stated that increase in intense precipitation leads to
increase of flood hazard in areas, where inundations are typically triggered by
intense summer rain (cf. [6.17]). Also, during wetter and warmer winters, with
increasingly more frequent rain and less frequent snow in many areas, flood haz-
ard may increase. On the other hand, ice-jam floods are likely to become less fre-
quent and less severe over much of the warming Europe (robust, temperature-related
statement). Since snowmelt is earlier and less abundant, the risk of spring floods
decreases, yet such floods happened in spring of 2006 in Central Europe.

There is still a great deal of uncertainty in findings about climate change impacts
on water resources. Part of it is due to the differences between estimates of pre-
cipitation in different climate models and for different emission scenarios. Only in
some, but not all, areas, the direction of projected change of hydrological processes
is consistent across different models and scenarios. The scale mismatch between
coarse-resolution climate models and the hydrological (catchment) scale is another
source of uncertainty. The uncertainty level is particularly strong for extremes.

6.5 Conclusion

The weight of observational evidence indicates an ongoing intensification of the
water cycle [6.10]. Hence, the question of detection and attribution of changes in
various flood-related indices attracts considerable interest. Among the mechanisms
that can impact flood risk are changes in socio-economic systems, which influence
terrestrial systems, and changes in the climatic system. The atmosphere’s water-
holding capacity (and hence potential for intense precipitation) increases with tem-
perature and more intense precipitation has been documented in many areas in the
warming world. In contrast, globally, no ubiquitous, general, and coherent increase
in high river flows has been detected worldwide [6.14]. However, in presence of
multiple contributing (and partly compensating) factors, and a weak but persistent
trend, a series must be sufficiently long in order for the change to be detected.

Based on the results of the climate models, it is projected that the water cycle will
further intensify [6.32], with possible consequences to extremes. Some model-based
projections for the future (e.g. [6.22]) show a clear increase in rain-caused flood
hazard.
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However, there is a discontinuity between some observations made so far, where
increase in flood maxima is not evident (e.g. [6.19, 6.24]) and the increasing flood
hazard in future projections.

Flood hazard tends to increase over many areas, due to a range of climatic and
non-climatic impacts, whose relative importance is site specific. Apart from changes
in climatic system discussed above, changes of relevance to flood hazard have also
occurred in economic and social systems and in terrestrial systems (hydrological
systems and ecosystems). Land-use changes, which induce land-cover changes,
control the rainfall–runoff relations. Deforestation, urbanization, and reduction of
wetlands diminish the available water storage capacity and increase the runoff coef-
ficient, leading to growth in the flow amplitude and reduction of the time to peak
of a flood triggered by a “typical” intense precipitation. However, the nature of a
“typical” intense precipitation event has also been changing due to climatic reasons,
becoming more intense in the warmer climate.

Furthermore, humans have been encroaching into unsafe areas thereby increasing
the damage potential. Societies become more exposed, developing flood-prone areas
(maladaptation). However, even an over-dimensioned and perfectly maintained dike
does not guarantee complete protection, as it may not withstand an extreme flood
(much higher than the design flood). When a dike is overtopped or when it breaks,
the damage in the inundated areas is likely to be higher than it would have been in a
levee-free case.

Climate-related changes in flood frequency are complex and dependent on the
flood-generating mechanism (e.g. heavy rainfall vs. spring snowmelt), affected in
different ways by climate change. Changes in future flood frequency in Europe
depend on the generating mechanism. Increase in intense precipitation in the warm-
ing Europe is plausible, as shown in projections in this chapter, and is likely to
lead to a rise of flood hazard. On the other hand, snowmelt and ice-jam floods are
decreasing in many areas with growing temperature, so in the regions where floods
can be caused by several possible mechanisms, the net effect of climate change on
flood risk is not immediately clear. Flood risk is controlled by a number of non-
climatic factors such as population growth, increase in wealth per capita, increasing
vulnerability of property, risk ignoring behaviour, and compensation culture. It is
clear that flat-rate statements on the direction of change in flood risk cannot be
formulated in a general and ubiquitously valid way.

The inherent uncertainty in analysis of any set of extreme flood flows stems from
the fact that accuracy of measurements of high floods is problematic. Rating curves
are not available for the extreme flow range, hence extrapolation has to be made.
Gauges are destroyed by the flood wave, observers evacuated, yet – indirect deter-
mination of the highest stage is often possible. Since, as stated in McCarthy et al.
[6.21], the analysis of observations of extreme events is underdeveloped, there is
a considerable merit in continuing change detection studies in order to identify a
change sufficiently early and to react adequately.
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Warta river, near Wronki. Photo by Robson at obiezyswiat.org (haveseen.org)



Chapter 7
About Trend Detection in River Floods

Maciej Radziejewski

This chapter reviews some methods for studying changes in the occurrence of
extreme river flows. Some general background information on change detection
is given. Changes in various characteristics of high flows are investigated using
a variety of approaches. Although many cases of statistically significant changes
are found, they go in different directions and are of different character in different
regions. There does not seem to be a clear, uniform signal of change, except for,
possibly, the occurrence of most extreme flows that seems to be increasing in the
recent decades.

7.1 Introduction

Reliable detection of changes in natural processes is important because major
changes often threaten our further survival or quality of life, and because major
anthropogenic changes bear the moral aspect of human responsibility even if one
is not directly affected by them. Changes in extremes are the most important ones
because of their potential consequences. They are also the most difficult ones to
detect, because extreme events are rare by definition.

Flood risk and flood management are among the major concerns related to river
flow. While it is usually possible to quantify flood risk based on historical records,
the risk may change, e.g., in response to climate change. Large temperature rise has
already been observed worldwide [7.7, p. 5]. Increase in the frequency of heavy pre-
cipitation events, projected over many areas in the 21st century [7.7, p. 8], may con-
tribute to more frequent flood events [7.8, p. 11]. However, no global and uniform
increasing trend in flood occurrence has been found so far [7.12, 7.16, 7.20, 7.27].
The common impression of floods becoming more frequent is attributed to increased
media coverage whereas the increase in flood losses is partly explained by economic

M. Radziejewski (B)
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 61-614 Poznań,
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growth, population growth, and human encroachment into flood plains [7.12]. Tem-
perature change influences river flows indirectly and in a complex way. Increasing
precipitation and increasing evapotranspiration have opposite effects on the flow
process. The net results may differ between regions and they need not be visible, or
detectable, until sufficiently long records of data are collected [7.12, 7.25]. Warming
leads to less severe spring snowmelt and ice-jam floods contributing to downward
trends for floods in the winter season [7.1, 7.11, 7.20].

7.2 Methods

7.2.1 Testing of Significance

The question whether or not an observed natural process exhibits changes presents
some theoretical difficulties. The concept of change in such a process builds upon
the assumption that some kind of constantness or repeatability is possible in the
phenomenon that we study. Change is a negation of such constantness. The usual
assumption is that in the absence of changes the natural process in question may be
described as a (possibly complex) stochastic process that admits some randomness,
but some of its properties do not change over time. This is already a simplification,
although it is generally accepted without question. The main problems considered in
change detection are as follows: what kind of stochastic process matches the natural
process studied and whether or not observations of the natural process support the
conclusion that the “underlying” stochastic process is subject to changes.

Most natural processes that evolve in time exhibit some changes in observed sta-
tistical properties estimated from samples. Such changes, inherent from the internal
structure of a system, are termed natural variability. In change detection one is inter-
ested in changes in the process, as opposed to natural variability. This distinction can
never be sharp, because for a stochastic process with enough randomness apparent
changes of arbitrary magnitude are possible, only very unlikely, under natural vari-
ability alone.

The method of significance testing (cf. [7.15] and also [7.13, 7.14]) offers
an unsharp distinction between “real changes” and natural variability. Instead of
answering the question of the presence of changes one states how unlikely a change
this large would be under natural variability alone. Thus one considers the null
hypothesis of no change (only natural variability) and an alternative hypothesis
of a specific kind of change. The null hypothesis, denoted H0, should reflect the
properties of the process in question, i.e., the statistical description of the process
adopted by the researcher. Mathematically it defines a family of random processes.
The alternative hypothesis, H1, also defined as a family of processes, should be plau-
sible and supported by initial exploratory analysis of the available data. The strength
and possibly the direction of changes in a data set D are quantitatively measured by
a test statistic S(D). In a two-sided (two-tailed) test large values of S(D) usually
indicate an increase, and low ones a decrease of whatever S(D) measures. In a
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one-sided (one-tailed) test only large (say) values of S(D) indicate changes and low
values lack of changes.

For a one-sided test with large values indicating change we say that the null
hypothesis is rejected, and the alternative hypothesis supported, on a significance
level α, where 0 < α < 1, if the probability of this large or larger change occurring
for any process defined by the null hypothesis is smaller than α. It means that the
null hypothesis is rejected if

P(S(D′) ≥ S(D)) ≤ α, (7.1)

for all random processes in H0, where D′ denotes a random realization of the pro-
cess. For a two-sided test one would like to detect the presence of not only changes
but also their direction, i.e., the alternative hypothesis is split into two. One of the
possible approaches is to reject the null hypothesis in favor of that of increase if

P(S(D′) ≥ S(D)) ≤ α

2
(7.2)

for all processes in H0, with D′ as before. Accordingly, the null hypothesis is
rejected in favor of that of decrease if

P(S(D′) ≤ S(D)) ≤ α

2
(7.3)

for all processes in H0, with D′ as before. A result of S(D) leading to the rejection
of H0 is called significant. The significance level is selected arbitrarily (usually 5
or 1%) and guarantees that the probability of rejecting H0 when it is true (type I
error) is at most α. In other words, the probability of obtaining a false positive in the
test is at most α, provided that the null hypothesis is stated correctly. One can also
consider an observed significance, or p-value, i.e., the smallest significance level on
which the result is significant (equal to 1 if the result is not significant at any level).
A statistical test consists of a defined null hypothesis, alternative hypothesis, a test
statistic, and a specified significance level.

The choice of the class of stochastic processes adopted by the researcher may
lead to underestimation or overestimation of the likely magnitude of natural vari-
ability, and consequently to overdetection or underdetection of changes (cf., e.g.,
[7.5] for a discussion of this issue). In most cases one does not have a perfect math-
ematical model to completely describe the process in question, including all possible
states of the system of which the process is part (e.g., the climatic system). Hence
there is not enough a priori knowledge to formulate perfect null and alternative
hypotheses (H0 and H1). It is possible to construct an adequate H0 based on the
analysis of data in question, although it leads to a paradox: detecting changes means
precisely that the data violates H0, so, logically, it cannot completely support it at
the same time. In practice it is up to the researcher to judge which of the known
properties of the data to use for constructing H0 or how to select a subset of data
unaffected by changes.
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Estimation of the probability of type II error (accepting H0 when it is false)
and the complementary probability of correctly rejecting H0 (called the power of
the test) are possible if the alternative hypothesis defines a parametric family of
stochastic processes. The power is a function of the parameter(s) of H1 and it is
defined for given H0, H1, and test statistic. In practice one often cannot give an
exact description of how the process might change, so H1 cannot be stated explicitly.
Instead one simply looks for changes of several types using appropriate test statis-
tics and indices or other transformations of data. Without knowing all possibilities
of how the process might evolve one also cannot claim that a detected trend will
continue in the future. Detecting the direction of changes opens a possibility for a
third type of error: detecting increase in a decreasing process or vice versa. Intu-
itively, consistency between the notions of change measured by S(D) and reflected
in H1 should ensure that the probability of such an error never exceeds α

2 and this is
implicitly assumed.

The result of a test may be conveniently expressed by the “trend index (TI)” (cf.
[7.12] and also [7.25]) that encompasses the p-value and (in case of two-sided tests)
the apparent direction of changes. For one-sided tests the trend index is simply

TI = 1 − p, (7.4)

where p is the p-value. For two-sided tests the sign of TI corresponds to the direc-
tion of change (positive indicates an increase and negative a decrease) and the abso-
lute value is as above:

|TI| = 1 − p. (7.5)

If the distribution of S(D′) is the same for every random process in H0 then this
definition simplifies to TI = P(S(D′) < S(D)) for one-sided tests. For two-sided
tests in that case one has TI = 2P(S(D′) < S(D)) + P(S(D′) = S(D)) − 1, with
possible correction toward 0 by at most P(S(D′) = S(D)) if the latter probability
is non-zero due to a discrete nature of S(D′). For two-sided tests the value of TI is
always between −100 and +100%, with negative values indicating a decrease and
positive values an increase. For one-sided tests TI is in the range from 0 to +100%.
This measure puts results of different tests on a common scale. The p-value always
equals 1 − |TI|, so one can readily see if the result is significant on any desired
level. For example, for a two-sided test, a negative trend is significant at the 5%
level precisely if TI < −95%. A value of TI = +99.14% implies a strong increase,
significant on the 1% level.

7.2.2 Resampling

Resampling means generating random data from given data. It is a flexible method
of assessing the significance of changes and computing the trend index. Given a
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statistic S0(D) that quantitatively measures change, and a resampling method, the
procedure for computing the p-value and TI is straightforward: reference data D′ are
generated randomly from given data D, using the selected method, a large number
of times, e.g., 10 000 times. Then TI is estimated using the formulas

TI = P(S0(D
′) < S0(D)) (7.6)

or

TI = 2P(S0(D
′) < S0(D)) + P(S0(D

′) = S0(D)) − 1, (7.7)

respectively, for one-sided and two-sided S0.
This procedure fits quite well into the general testing framework outlined at the

beginning. The choice of the resampling method directly corresponds to the choice
of H0, namely, each process in H0 must be invariant upon resampling. TI estimated
above will play the role of the test statistic S(D) and, since it is approximately uni-
formly distributed for each process in H0, it will indeed be equal to the trend index
in the resampling test. For example, the simplest resampling methods for use with
time series are permutation testing and bootstrapping (sampling with replacement),
cf. [7.6, 7.14]. They correspond (roughly) to the null hypothesis of series values
being independent and identically distributed. The “block” versions of these meth-
ods involve permuting or resampling the data in blocks to account for seasonality
and correlations within the block size.

In [7.23] an alternative method was developed, based on randomization of phases
in the Fourier transform of the series. It can be applied to long time series of
river flows of annual, monthly, and even daily resolution. It involves the following
steps:

1. Standardization:

(a) Normal (or probit) scores are computed for the entire time series, i.e., for
each term in the time series its percentile rank is computed and the term
is replaced with a corresponding quantile of the standard normal distribu-
tion. This way the relative ranks of the data are preserved and the sample
distribution becomes normal.

(b) Deseasonalization of the series is performed by subtracting the seasonal
mean and dividing by seasonal standard deviations. This step is omitted in
case of annual series.

2. Phase randomization:

(a) Fourier transform of the time series is computed.
(b) The phase spectrum is replaced by independent random phases. The power

spectrum is kept unchanged.
(c) Inverse Fourier transform is computed.
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3. Reversing standardization:

(a) Data are multiplied by original seasonal standard deviations (from 1b) and
then the original seasonal means (again, from 1b) are added to it. This step
is omitted in case of annual series.

(b) For each term in the randomized time series its percentile rank is computed
and the term is replaced with a corresponding value from the original series
having the same percentile rank.

As a result we obtain a time series with the same sample distribution as the origi-
nal, almost the same seasonal means (regime) and seasonal standard deviations and
almost the same autocorrelation function. However, any systematic trend in the data
will dissipate, because introducing random phases makes the probabilistic random
series obtained in step 2 invariant under circular shifts (dividing the series into two
parts and swapping them) and reversing direction. The choice and order of standard-
ization procedures was worked out in a case study reported in [7.21]. In particular
the standardization step 1a is necessary, because phase randomization tends to make
the distribution normal, so it should be applied to a normally distributed series. Some
studies [7.9, 7.17] (cf. also Chap. 13) also note that other information is lost in phase
randomization without step 1a (and 1.3b). It is unknown to the author if this problem
affects the procedure described above, but in any case it does not seem to be directly
related to trend detection.

Phase randomization is a convenient alternative to methods like block permu-
tation and block bootstrapping, as it requires no additional parameters (like block
size); it uses all the available information in the time series; and it can deal with
very strong and very long-term autocorrelation. It is particularly useful with daily
time series of river flow, as these time series may possess strong autocorrelation. If
a trend or step change is present in the data, it will cause increase of low-frequency
components in the power spectrum; hence, the probability of obtaining a large
increase/decrease in the randomized series will be higher than it would have been
without a trend. In other words the presence of a trend may cause overestimation
of natural variability and underestimation of TI. In contrast, the use of methods
like permutation or bootstrapping, and their block versions with small block size, is
likely to result in greater power (smaller probability of type II error), but underesti-
mated probability of type I error.

7.2.3 Tests for Changes

Tests may be divided into parametric, where H0 and H1 are parametric families with
finite-dimensional parameter spaces (e.g., with finitely many numeric parameters),
and non-parametric, where this is not the case. A large family of parametric tests for
changes in time series includes the null hypothesis of series values being indepen-
dent and identically distributed, with a specific form of distribution, whose param-
eters need not be known. The alternative hypothesis then assumes that the series is
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affected by a specific type of trend, whose parameters (strength, time of occurrence,
some shape parameters, etc.), again, need not be known. As long as the hypothe-
ses are adequate for the problem the test may be performed and, in addition, trend
parameters may be estimated if a trend is detected. In many cases a specific form
of distribution cannot be assumed. The easiest solution is to define the test statis-
tic based on ranks, normal scores, or the standardized series (see Sect. 7.2.2) and
thus make it independent of the underlying distribution. This gives rise to another,
non-parametric, family of tests. A test is called distribution dependent or distribu-
tion free, depending on whether or not it relies on distributional assumptions. The
notions of parametric and distribution-dependent tests (respectively, non-parametric
and distribution-free tests) are often considered equivalent, precisely because of the
above-mentioned two families of tests.

Resampling (see Sect. 7.2.2) is another method of relaxing test assumptions.
Given a statistic it allows for the construction of a test, which is, for most resampling
methods, non-parametric and distribution free. The use of resampling alleviates the
need for normalizing factors that, in case of parametric tests, are needed to make
the statistic independent of distribution parameters. Computation of probabilities
in resampling plays essentially the same role. This makes it easier to develop new
kinds of tests suited to the kind of change one expects. This is also the reason why
different statistics may turn out equivalent when resampling is used. Resampling
was used in all the studies presented here. The statistics are based on well-known
tests or least-squares fitting of a trend:

1. Linear regression: The statistic is the correlation coefficient (also called Pear-
son’s r ) of the time variable and the observations, cf. [7.14].

2. Normal scores linear regression or standard scores linear regression: Linear
regression is applied to the series of normal scores or, in case of daily data, to the
standardized series, cf. [7.14].

3. Spearman’s rank correlation: Linear regression is applied to the series of ranks,
cf. [7.14].

4. Mann–Kendall’s test: This is a robust non-parametric test based on the “tau”
statistic introduced by Kendall and later adapted by Mann to time series analysis
[7.10]. The test statistic is Kendall’s sum:

S =
∑

1≤i< j≤n

sgn(a j − ai ), (7.8)

where n is the length of the time series and a1, a2, . . . , an denote the time series
values.

5. Jump fitting by the least-squares method: A step-shaped change (abrupt change
in mean) is fitted to the time series using the least-squares method. The statistic
used is the difference in means between the two periods. This statistic is related
to Worsley’s likelihood ratio [7.2, 7.4], except it includes the information on the
direction of changes.
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6. Jump fitting to normal or standard scores: Jump fitting is applied to the series of
normal scores or, in case of daily data, to the standardized series.

7. Jump fitting to ranks: Jump fitting is applied to the series of ranks.

The statistics listed here measure a change in the mean, but by applying them
to a series of appropriate indices, or to a weighted series, or to other kinds of
derived series, one obtains a new statistic that measures changes of different kinds
or changes occurring in a specific season. Both gradual changes (linear or other
trend) and step-shaped changes in time series may be detected by any of these tests;
however, the test nos. 1–4 are better suited (in terms of power) to detect a gradual
change, while test nos. 5–7 are more sensitive to step-shaped changes [7.24, 7.25].
Therefore, the test nos. 1–4 may be called “trend tests,” and test nos. 5–7 “step
change tests.”

There are numerous statistical tests for changes developed, and there is no clear
“winner” among them, as every test is sensitive to a slightly different kind of
changes. While it is not feasible, nor desirable, to run all known tests, it is good
practice to use several tests when one does not know exactly what kind of change
to expect. In the studies described here, when several related tests were applied to a
number of data sets, the number of significant trends is summarized in the following
way:

1. Changes detected by a minority of tests (e.g., by one of three), not confirmed by
other tests even on a weaker significance level, are discarded altogether.

2. Number of significant trends is counted for each test.
3. The range of numbers of significant trends are reported.

For example, 10–12 significant trends detected by 3 tests on significance level 5%
may mean that 9 trends were detected by all 3 tests, 1 trend detected by 1 test (with
2 others showing changes in the same direction on a greater significance level), and
2 more were detected by 2 other tests. Such an approach provides a good summary
of trends found excluding unconfirmed results.

7.3 Trends in Time Series of River Flows

In this section some results regarding trends in time series of river flows without
regard to seasons are presented. Svensson et al. [7.27] studied changes in numerous
annual indices and peaks over threshold (POT) series. They used numerous daily
flow series (not standardized) from GRDC data holdings [7.3]. They have found
no evidence of overall increase in floods/dry spells and attributed the lack of such
evidence possibly due to the increasing number of operational reservoirs, as “low
flows are augmented and flood flows are mitigated downstream of the reservoir,”
cf. [7.28]. They also note that there were more significant trends found in annual
maxima series than in POT series.

Kundzewicz et al. [7.12] studied 195 long time series of worldwide annual maxi-
mum flows stemming from GRDC data holdings [7.3]. The time series were selected
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based on data quality (no missing values in critical periods), sufficient record length,
coverage of the recent decades, catchment area (including small catchments), and
geographic distribution. Trends were found (significant on the 10% level) in 58
time series. In the European time series (70) trends were found in 20 and in North
American (70) trends were found in 26. The number of significant results is much
larger than what could be expected, but the trends are more-or-less symmetrically
divided into increasing and decreasing (Fig. 7.1). In an earlier study of flows of

(a)

(b)

Fig. 7.1 Changes in annual maximum flows over Europe (a) and North America (b) according
to Mann–Kendall test. Circle sizes correspond to the trend index. Black circles indicate increase,
gray – decrease. Large circles denote changes significant at 10% level. Reproduced from [7.12]
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the river Warta at Poznań gauge [7.24] high flow events (POT) in the standard-
ized series of daily flows were considered. One of the objects of the study was the
structure of sets of days with high flows. The “box-counting” fractal dimension,
or packing dimension [7.18], when applied to subsets of the real line (e.g., time)
measures clustering of points on all scales. Although not directly applicable to the
discrete set of days, the concept may be used to describe fractal-like clustering of
events on a certain range of scales. The study has shown that the sets of days with
value over a given high threshold in the standardized series of Warta flows exhibit
fractal-like clustering in time scales from 10–15 days to 2–4 years, depending on
the threshold. The fractal dimension corresponding to such scaling depends on the
selected high flow threshold and, generally, the higher the threshold the lower the
dimension. An attempt to analyze nonstationarity of this characteristic of POT was
made by computing POT dimensions for a number of thresholds for different 30-
year windows along the standardized time series. In addition, the Hurst coefficient
was computed for each window based on the rescaled adjusted range [7.19]. It was
found that changes in the dimension correspond to changes in the Hurst coefficient,
as shown in Fig. 7.2. However, these changes look rather like oscillations, with no
clear trend or change point. In [7.23] 202 daily flow time series of US rivers from the
HCDN database [7.26] were tested for changes in the mean. The data were chosen
based on the criteria of quality and length of continuous daily record (minimum 60
years). Changes in daily flow were studied using phase randomization and the seven
tests described in the previous section. Tests based on non-parametric tests (test
nos. 1–3 and 5–7) were applied to standardized data (obtained by computation of
normal scores and deseasonalization). Tests based on parametric tests were applied
to original data. Significant increases on the 5% level were found in 12–14 time
series (depending on the test) in the continental United States using three tests:
Mann–Kendall’s test, normal scores linear regression, and Spearman’s rank correla-
tion; see Fig. 7.3. There were also three significant decreases detected by these tests,

Fig. 7.2 Nonstationarity of clustering of high flows of the river Warta at Poznań gauge and the
Hurst coefficient. Thin lines: Fractal dimensions corresponding to different thresholds. Thick line:
Hurst coefficient. The x-axis denotes the center of a 30-year window. Reproduced from [7.24]
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Fig. 7.3 Significant changes in US streamflow, detected by at least one of three tests: Mann–
Kendall’s test, normal scores linear regression, and Spearman’s rank correlation. Circle size (from
smallest to largest) corresponds to TI ≥ +90,+95,+98,+99%

in the flows of rivers located in Hawaii, cf. also Table 3 in the paper cited for the
complete account of these results. In comparison to two parametric tests (applied
to original data) the non-parametric ones uniformly show a greater than expected
number of increases while the two parametric tests give a less than expected number
of significant results. This can be readily seen on Fig. 7.4 that shows the distribution

Fig. 7.4 Quantiles of test results (TI) of 7 tests applied to 202 flow series selected from HCDN. The
TI was computed using phase randomization. Dotted/dashed lines were used where the statistics
were taken from parametric tests, for easy distinction. Reproduced from [7.23]
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of the results of each test applied to the 202 time series considered. Both the appar-
ent abundance of significant trends detected by non-parametric tests and lack of
significant trends detected by parametric tests are interesting. The conjunction of
these two results suggests that whatever changes occur in the distribution of river
flows in question the mean flows remain more or less unchanged, so parametric tests
for change in mean cannot detect it. Non-parametric tests are applied to data that
have been non-linearly transformed in the course of standardization. Therefore, the
changes in the mean detected by these tests may be explained by changes of a dif-
ferent kind in the distribution of flows, e.g., flows may be becoming more extreme,
or less extreme, or changes may be season dependent. Such changes would not be
visible in the time series of annual means, but they might prevail in other annual
indices, e.g., the indices of extremes.

7.4 Trends in Seasonal Maxima

It has been observed [7.5, 7.12] that regional change in timing of floods occurs
in many areas. For example, there are increasing late autumn and winter floods
worldwide, and less ice-jam-related floods in Europe. The results described in this
section and in the following section were also reported on in [7.22]. In this section
an attempt is made to separate different types of floods by considering high flows in
different 3-month seasons:

OND (Oct–Nov–Dec), corresponding to floods caused by rain in autumn/winter,
DJF (Dec–Jan–Feb), corresponding to ice-jam floods,
FMA (Feb–Mar–Apr), corresponding to snowmelt floods, and
JJA (Jun–Jul–Aug), corresponding to rain-caused floods.

Such selection of periods is suitable for studying floods specifically in the European
continent.

Time series of daily flows were tested for trends or changes in seasonal maxima.
The study was based on the set of 70 European stations used in [7.12]. Only the data
in the period 1961–2000 were considered. The seasonal maxima were computed
from original (not standardized) daily records. Three different tests for changes were
used: Mann–Kendall’s test, Spearman’s rank correlation, and linear regression. The
significance of changes was computed using permutation testing (2 500 permuta-
tions). All the test results are quoted using the trend index.

Derived time series of seasonal maxima of daily flow (OND, DJF, FMA, resp.,
JJA) were studied for each time series selected, i.e., 4 records of 40 values for each
series. Out of 17 time series from Germany, increasing trends in DJF maxima were
found in 6 time series. Table 7.1 lists the test results and characteristics of these
six time series. There was also a fair number of increases in maximum DJF and
FMA flows in Norway: trends were found in 6 time series (of the 15 selected) by all
tests (in 7 by at least some tests). All the results for DJF and FMA flow in Norway
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Table 7.1 Significant changes in DJF maxima, Germany. Seasonal maxima (Dec–Jan–Feb) were
computed from daily data and tested for change in mean. Test results are given as the values of
trend index, between −1 (strong decrease) and 1 (strong increase)

Station
Catchment
area (km2)

Mann–
Kendall’s
test

Spearman’s
rank
correlation

Linear
regression

Danube, Hofkirchen 47 496 0.990 0.991 0.993
Danube, Ingolstadt 20 001 0.996 0.997 0.998
Diemel, Helminghausen 103 0.986 0.978 0.893
Kinzig, Schwaibach 954 0.957 0.951 0.950
Rhine, Kaub 103 488 0.991 0.990 0.993
Rhine, Worms 68 827 0.998 0.998 0.998

Fig. 7.5 Trends in seasonal maxima: (a) Germany, dark circles – increase, white – no increase; (b)
Norway, black circles – increase in DJF and FMA, stars – no significant changes in DJF or FMA,
gray circles – increase in DJF, white circles – decrease in DJF and increase (according to linear
regression) in FMA

are given in Table 7.2. The geographical distribution of stations referenced in both
tables is shown in Fig. 7.5.

Decreases in maximum FMA flows were found in three (out of five) time
series from Slovenia. The number of series from other countries where trends were
detected is within the margin of error, although it must be noted that some of the
trend indices were quite large. To conclude, the number of trends found is greater
than expected to occur by chance, and the number of trends is particularly large
in Germany and Norway. However, again, there is no clear and uniform pattern. It
must be noted that the records used in the study lack detailed metadata, so it was
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not possible to discriminate between the effects of changes in land use, effects of
reservoirs operation, and impacts of climate change on the results.

7.5 Seasonal Peaks Over Threshold

Seasonal occurrence of extreme flows was analyzed for the same time series and the
same seasons as in the previous section using the POT approach. For each of the
time series included in the study (daily series, without standardization) peaks over
threshold were found in the following way:

• Independent peaks were identified as flows larger than any other flows within a
given time horizon, based on catchment area, as in [7.27].

• A threshold was chosen in order to obtain a required average number of indepen-
dent peaks per year. Four classes of “severity” were used: three peaks per year,
one per year, one per 3 years, one per 9 years.

As a result, for each time series and threshold a sequence of “peaks” was constructed
that included dates and values of the selected peaks. In order to visualize seasonal
occurrence of extreme flows the time of year of each peak was plotted against the
year of occurrence. Taking several time series from a given region together it is
possible to observe a shift in seasonal occurrence of floods over the decades. All
the series shown on such a plot had to cover the same period of time, otherwise a
change in the number of floods might be falsely perceived. The graph obtained for
Germany (Fig. 7.6a) does seem to have some structure, but no obvious changes in
the occurrence of floods are visible. It may be possible to notice the increase in DJF
floods, but it is unclear. The graph for Norway (Fig. 7.6b) clearly shows two “wet
seasons” in May–June and September–November. However, the largest peaks do not
seem at all confined to these seasons. It may also be noticed that over the last decade
the wet seasons are not as clearly marked and the frequency of middle-severity peaks
outside of the wet seasons (in particular December–April) seems to be greater than
before. This is another manifestation of increasing DJF and FMA flows in Norway.

For each of the time series included in the study derived series of seasonal peaks
over threshold (one series for each original time series, season, and threshold) were
constructed by including only the peaks within a given season. Frequency and size
of seasonal peaks were subject to trend analysis with the methods described in the
previous section. Frequency was studied by counting the peaks in each season and
size by computing the height of the largest peak in a season (missing value was
taken if there were no peaks in a season). It must be noted that the usual practice
is to consider peaks of frequency “three per year” or sometimes “one per year.”
More severe peaks are rare by definition and it is almost impossible to obtain strong
results based on them. Nevertheless, it seems essential to pay special attention to
the “most extreme extremes” in a flood hazard analysis and to study them in concert
with larger sets of extremes. It may be necessary to develop dedicated methods,
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Fig. 7.6 Years and seasons of occurrence of extreme flows: (a) Germany; (b) Norway; y-axis
values correspond to the month and day of month, i.e., the interval 0–1 is January, 1–2 February,
etc. Sizes of circles depend on the relative size of the peak, i.e., whether it is included in one per
9-year peaks, 1/3 years, 1/year, or 3/year peaks

more powerful than those presented here, to afford the study of this kind of extreme
events.

Similar to [7.27], the number of significant results obtained for POT series was
considerably smaller than for seasonal maxima. There were several increases (3–4,
1, 3–4, 3) in the number of OND peaks of different severity classes (resp., three per
year, one per year, one per 3 years, one per 9 years) in Great Britain. There were
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also four (resp. three) increases in the number of three-per-year (resp. one-per-year)
FMA peaks in Norway. Other results are scarce and scattered and do not seem to
form any pattern. In general the results (not all quoted here) suggest that trends in
maxima are to some extent reflected in the frequency of peaks, but not always. An
interesting example is Danube river at Hofkirchen gauge. It shows a strong increas-
ing trend in DJF maxima (see Table 7.1 and Fig. 7.7a) but no significant trends in
the number or frequency of DJF peaks of any severity (Fig. 7.7b shows the peaks).
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Fig. 7.7 Danube river, Hofkirchen, 47 496 km2: (a) DJF maxima, (b) the daily series and DJF
peaks. Sizes of circles depend on the relative size of the peak, i.e., whether it is included in one per
9-year peaks, 1/3 years, 1/year, or 3/year peaks
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Fig. 7.8 Taw river, Umberleigh, UK, 826 km2, annual maximum size of OND peaks. Only one test
(linear regression) gave a significant result, for 3/year peaks. Other results are up to 0.91. Sizes of
circles depend on the relative size of the peak, i.e., whether it is included in 1/9-year peaks, 1/3
years, 1/year, or 3/year peaks

Very few significant results were obtained of trends in peak size. The method
used for this purpose is complementary to studying the changes in frequency and
almost ignores changes in peak frequency, so it is not very powerful. Still, the
example of Taw river, Umberleigh, UK (Fig. 7.8), shows that a visible trend in peaks
size may escape statistical testing, as the issues of data scarcity and short duration
of change come into play. It should be noted that one has to be very careful about
interpreting any statistical results for a small number of values, as in the case of
one-per-3-year and one-per-9-year peaks. Even three-per-year peaks may be very
scarce in the seasonal approach, where the threshold is chosen based on the entire
series, not adjusted for different seasons.

7.6 Most Extreme Flows

Kundzewicz [7.12] noted that out of the 70 daily flow series of European rivers,
described in the previous sections, the global maximum over 1961–2000 occurs:

• in the period 1961–1980 for no more than 24 series and
• in the period 1981–2000 for at least 46 series.

The exact number could not be given there because only the data until 1998 were
available for five of the series. A question arises: striking as it may be, is this result
statistically significant? The simplest choice for the test statistic S(D) here is the
difference in the number of absolute maxima between the second period and the first
period. The data set D to be resampled consists of 70 time series of 40 years each.



7 Trend Detection in River Floods 163

The data may be resampled 10 000 times according to a selected null hypothesis.
Comparisons of the test statistic for the original and resampled data let one compute
the trend index. The only remaining step is to choose the null hypothesis and the
resampling method. As noted in Sect. 7.2, the choice of the null hypothesis plays
the key role in determining the significance of changes and the TI, and this is also
demonstrated here.

For the first case the null hypothesis of no spatial and no inter-annual dependence
is considered. Then resampling may involve random permutations of each series
independently, with block size of 1 year. For a random resampled data set D′ the
probability of having exactly n maxima in the second half of the 40-year period in
D′ (hence m = 70 − n maxima in the first half) is, by elementary combinatorics

pn = 70!
m!n!270

. (7.9)

Therefore the accumulated probability corresponds to the binomial distribution and
equals

P = P(S(D′) < S(D)) + 1
2 P(S(D′) = S(D))

= p0 + p1 + · · · + p45 + 1
2 p46

= 0.9957.

Accordingly we have

TI = 2P − 1 = +99.14%. (7.10)

Hence the result would be significant on the 1% level.
Another approach would be to assume a very high degree of spatial dependence,

but still no inter-annual dependence. Then resampling would involve permuting
each time series in blocks of 1 year, but the same permutation would have to be used
for each time series in the resampled data set D′. It is easy to see that this approach is
equivalent to a slightly simpler procedure. First, the absolute maxima in the original
data set D are counted year by year, in order to obtain an annual time series C whose
each value corresponds to the number of 40-year maxima that occurred in a given
year among the 70 original time series. Now S(D) equals the difference of the sums
of values of time series C in the second half and in the first half. Resampling D to
obtain D′ is equivalent to permuting the time series C . The results of permutation
testing using 10 000 permutations turn out to be not significant on the 5% level, with
TI = +92%.

It may be argued that the first approach underestimated the spatial and possibly
temporal dependences in the data and overestimated the trend index. The second
approach certainly overestimated the spatial correlations and probably underesti-
mated the trend index. An adequate resampling method that preserves spatial cor-
relations in a similar way that phase randomization preserves temporal correlations
would be desirable in this case.



164 M. Radziejewski

7.7 Conclusion

Changes in various characteristics of river flow are visible in many time series of
flow throughout the world. Changes in frequency, size, seasonal occurrence, and
clustering of high flows may be investigated using a variety of approaches. There
does not seem to be a clear signal of an overall global trend in the occurrence
of floods in any of the characteristics studied. In many cases the number of sig-
nificant results is greater than expected; however, it is problematic to assess the
overall significance to be attributed to a multi-site study, because of possible depen-
dence between different time series. Seasonal timing of high flows has changed
most notably in Germany (increase in DJF maximum flows) and Norway (increase
in DJF and FMA maximum flows). The changes affect only some series in a
region. Changes are much better visible in the series of seasonal maxima than in
POT series. Possibly the methods applied to POT could be improved. Changes are
clearly visible in the very rare, most extreme events, and these require dedicated
methods.
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River discharge. Already Heraclitus stated that “you cannot step twice into the same river” to
allegorise change, so can you? (Source: www.cambridge2000.com)



Chapter 8
Extreme Value Analysis Considering Trends:
Application to Discharge Data of the Danube
River Basin

Malaak Kallache, Henning W. Rust, Holger Lange, and Jürgen P. Kropp

This chapter proposes and applies an extreme value assessment framework, which
allows for auto-correlation and non-stationarity in the extremes. This is, e.g., use-
ful to assess the anticipated intensification of the hydrological cycle due to climate
change. The costs related to more frequent or more severe floods are enormous.
Therefore, an adequate estimation of these hazards and the related uncertainties
is of major concern. Exceedances over a threshold are assumed to be distributed
according to a generalised Pareto distribution and we use a point process to approx-
imate the data. In order to eliminate auto-correlation, the data are thinned out. Con-
trary to ordinary extreme value statistics, potential non-stationarity is included by
allowing the model parameters to vary with time. By this, changes in frequency and
magnitude of the extremes can be tracked. The model which best suits the data is
selected out of a set of models which comprises the stationary model and models
with a variety of polynomial and exponential trend assumptions. Analysing winter
discharge data of about 50 gauges within the Danube River basin, we find trends
in the extremes in about one-third of the gauges examined. The spatial pattern of
the trends is not immediately interpretable. We observe neighbouring gauges often
to display distinct behaviour, possibly due to non-climatic factors such as changes
in land use or soil conditions. Importantly, assuming stationary models for non-
stationary extremes results in biased assessment measures. The magnitude of the
bias depends on the trend strength and we find up to 100% increase for the 100-year
return level. The results obtained are a basis for process-oriented, physical interpre-
tation of the trends. Moreover, common practice of water management authorities
can be improved by applying the proposed methods, and costs for flood protection
buildings can be calculated with higher accuracy.
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8.1 Introduction

In Europe floods have been a known natural hazard for centuries (cf. [8.4, 8.11,
8.31]). Recently occurred extreme river floods have had severe effects in central
Europe. The Elbe flood in August 2002, for example, caused 36 deaths and over
15 billion USD damages and the Oder flood in July 1997 caused 114 deaths and
around 5 billion USD damages [8.27]. An appropriate assessment of extreme events
is an important tool for water management authorities to develop mitigation and
adaptation strategies for severe effects of floods on society.

The occurrence of extreme flood events seems to have grown considerably over
recent decades. References [8.19, 8.24], for example, show a higher occurrence of
flood events worldwide in the time span of 1990–1998 than in the nearly four times
longer period of 1950–1985. River discharge data may exhibit trends because of a
variety of reasons, thereby climate change is an anticipated factor. This is because
the capacity of the atmosphere to hold water grows with increasing temperature.
In this way the potential for intense precipitation and thus floods also increases.
Moreover, climate change is likely to change atmospheric circulation patterns. The
coupling between atmospheric circulation and the water cycle takes place on many
levels [8.17] and flood-producing atmospheric circulation patterns have already
been identified [8.1].

Here river discharge records of the Danube River basin in Southern Germany are
examined to track the question whether there are trends in river discharge extremes
observable. To do so we set up an extreme value assessment framework which
allows for non-stationary extremes. Standard extreme value theory assumes inde-
pendent and identically distributed extremes, which is often not fulfiled by hydro-
logical data. Discharge is influenced by complex dynamical processes such as pre-
cipitation, topography, land use changes, or climate change; therefore, a univariate
distribution with two or three parameters is not necessarily a good approximation
of its multi-faced nature [8.14]. An unjustified assumption of stationarity may lead
to considerable underestimation of the probability of a disastrous extreme event
(cf. [8.7]). The framework presented assesses trends in extremes, despite of the
scarcity of available data. There exist approaches to conclude from changing prop-
erties of mean values of a series to the change in the extremes. However, this goes
along with a specification of the relationship of mean values and extremes. In gen-
eral, the function between a trend in the extremes and a trend in the mean values is
non-linear and does not show an obvious relation [8.29]. The frequency of extreme
events might change dramatically as a result of even a small change in the mean of
the sample [8.37].

We look at about 50 gauges in the Danube River basin, all of them cover the time
period between 1940 and 2003. The precipitation pattern in this area has undergone
some significant changes. Heavy winter precipitation events become more frequent
in Bavaria and Baden-Württemberg [8.12] and are anticipated to become even more
frequent in the future [8.35]. Local water management authorities expect an increase
in heavy floods due to climate change. As a consequence, a climate change factor
of 1.15 was introduced in Bavaria in 2006. Due to this factor, every design value for
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river discharge is expanded about 15% [8.3]. This chapter illustrates an alternative
calculation of design values by incorporating the assumption of a trend already in the
extreme value assessment. By doing so, a trend can be tested for and the strength
of the trend is provided for each gauge separately. Universal trend patterns have
yet not been found for whole river basins [8.5, 8.23]. Therefore, design values are
calculated more adequately by proceeding gauge by gauge which might reduce costs
of mitigation or costs of severe effects. Moreover the uncertainty of the assessment
measures is provided by using the methodology proposed in this chapter. We pro-
ceed as follows: in Sect. 8.2 the preparation of the data and details of extreme value
analysis using point processes are provided. The methodology proposed is applied
to the Danube River basin in southern Germany, which is outlined in Sect. 8.3.
Finally, in Sect. 8.4 a discussion of the results and a conclusion are given.

8.2 Method

Here point processes (PP) are used to represent extreme events. In this way it is
possible to model the frequency of occurrence in time as well as the magnitude
of the extremes. The PP approach is based on the Fisher–Tippett theorem [8.16,
8.18], which determines the limiting distribution of block maxima of a sequence
of independent and identically distributed (i.i.d.) random variables {Xi } with i =
1, . . . , n. This theorem holds for a wide range of the common distribution function
F(·) of the {Xi }; therefore, our approach is widely applicable.

8.2.1 Choice of the Extreme Values

To extract the set of extreme values some preparations are necessary. Hydrologi-
cal data underly the annual cycle. This periodic non-stationarity has either to be
modelled or eliminated by classifying the data [8.6]. We chose the latter option and
examined the different seasons. The winter season is of special interest because
of the observed and predicted precipitation changes (cf. Sect. 8.1). We found the
intra-seasonal variability of this season (December to February) to be sufficiently
low and therefore regard it as negligible in the following.

To be able to use a point process model we specify the set of extreme values as
excesses above a threshold u. Thus an appropriate threshold u has to be found. On
the one hand, a high threshold is preferred, such that it is reliable to assume a lim-
iting distribution for the excesses. For threshold excesses, this limiting distribution
is the generalised Pareto distribution (GPD) ([8.13]). On the other hand, a suffi-
cient number of excesses must be available to estimate the model with a reasonable
amount of uncertainty. Therefore, a tradeoff between bias and variance has to be
found. To operationalise this choice, we apply the non-parametric mean residual
life (MRL) plot and a parametric approach, i.e. the comparison of a PP fit over a
range of thresholds [8.6]. The MRL plot depicts the sample mean of the threshold
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excesses for different u. In case the extreme values are distributed according to the
limiting distribution, the sample mean is an estimator for the expected value of the
extremes. This expected value changes linearly with u. Thus we select the lowest u0
such that the MRL plot changes linearly for u > u0. In the parametric approach a
GPD distribution is fitted to the extreme values for a range of thresholds. In case the
asymptotics is reached, we expect the parameters of the GPD distribution to stay
stable when the threshold is varied. Therefore the lowest u0 is selected, such that
parameter estimates for u > u0 stay approximately constant. For each individual
river gauge we compare the results of both methods to cross-check and to derive
reliable results.

Subsequently, we take care of the auto-correlation structure in the data. The
Fisher–Tippett theorem holds for iid or dependent but stationary data [8.13]. Thus,
to introduce non-stationarity we remove the auto-correlation structure. To do so the
threshold excesses are grouped into clusters and only the maxima of these clusters
are kept. For the empirical data of the Danube River basin a cluster size of 6–12
days has shown to be sufficient. The extreme value theory applied holds also for the
thinned-out series [8.15].

The choice of u and the cluster size are verified by examining the GPD model
which suits best to the resulting set of extreme values. The probability and quantile
plots are examined and the goodness of fit of the model is tested by applying a
Kolmogorov–Smirnov test (see [8.20]). We find the GPD to be a suitable model for
all but three of the stations examined; therefore, these three records are excluded
from the further analysis. Moreover the set of threshold excesses is compared to the
set of block maxima which are drawn from intervals of the length of 1 year. Block
maxima are an alternative representation of the extreme events. For all stations the
set of declustered threshold excesses contains the more extreme events in the series.
This effect is due to the auto-correlation being present in discharge data. We there-
fore regard the threshold approach as more suitable for the empirical data analysed
here.

8.2.2 Point Processes

We approximate threshold excesses by a point process, which may be seen as a
stochastic rule on a set A for the occurrence of extreme events. Regions of A have
the form A := (t1, t2) × [u,∞) with [t1, t2] being the observation period which is
mapped to [0, 1]. The point process can be represented as two independent Poisson
processes Poi(�1([t1, t2]))× Poi�2([x,∞)), with intensities

�1([t1, t2]) = (t2 − t1) (8.1)

and

�2([x,∞)) =
[
1 + ξ

( x − μ

σ

)]−1/ξ
, (8.2)
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where the parameters μ and σ control the location and scale of the distribution and
ξ controls its shape. In this way Poi(�1([t1, t2])) is a homogenous Poisson process
with constant intensity λ and gives the random times at which Xi > u. Their sizes
Yi = Xi − u are represented by Poi(�2([x,∞])). Conditional on the number of
exceedances N = nu over u, Y1 = X1 − u, . . . ,Ynu = Xnu − u are a random
sample of the GPD and we get

P{(Xi − bn)/an > x |(Xi − bn)/an > u} =
[
1 + ξ

( x − u

ψ

)]−1/ξ
, (8.3)

with ψ being the scale parameter and ξ being the shape parameter of the GPD and
an and bn being normalizing constants. Here inferences for λ, ψ and ξ are based on
the point process likelihood.

8.2.2.1 Relation of Moments to Point Process Parameters

The parameters � = (λ, ψ, ξ) of the point process are related to the moments of the
distribution of the extremes (see, e.g. [8.26]). Let Yi be excesses over a threshold u
which are distributed as GPD(y) = 1 − exp(−y/ψ) for y > 0, i.e. ξ = 0. Then we
get for γ = 0.57722 being Euler’s constant

E(Y ) = u + ψγ,

var(Y ) = ψ2π
2

6
≈ 1.645ψ2. (8.4)

For {Yi } having a GPD distribution with shape parameter ξ > 0 or ξ < 0 we derive

E(Y ) = u + ψ

ξ
[1 − λξ	(1 + ξ)]

and for ξ > −0.5

var(Y ) =
(
λξψ

ξ

)2

{	(1 + 2ξ) − [	(1 + ξ)]2}, (8.5)

with Γ (·) being the gamma function.

8.2.3 Test for Trend

Non-stationarity is incorporated in the extreme value assessment framework by
allowing the model parameters to vary with time, thereby we proceed fully paramet-
ric and assume a predetermined trend shape for each of the parameters. By doing so,
standard methods like the delta method can be provided to obtain uncertainty bands
for the parameter estimates and the trend can be extrapolated in the future.
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For the rate parameter λi we assume a constant λi ≡ λ = c0 and exponential
trend shapes

λi = exp

{ k∑

i=0

ci t
i
}
, k = 1, . . . , 4, (8.6)

with ci being constants. These shapes assure a slowly varying λi . Furthermore, the
exponential relation is regarded as the “most natural” simple relationship for rates
of occurrence (cf. [8.9]). It is chosen by various authors (see [8.25, 8.27]).

With respect to the scale parameter we consider the following shapes:

(i) ψi =
k∑

i=0

di t
i , k = 0, . . . , 4,

(ii) ψi = exp

{ k∑

i=0

di t
i
}
, k = 1, . . . , 4, (8.7)

with di being constants. Polynomials are capable to represent a variety of trend
shapes which might occur empirically. Tests with simulated data showed that even
maxima with an S-curve-shaped trend are well approximated by using models with
polynomial-shaped trend guesses. Furthermore, we utilise the exponential trend
guesses described in (8.7) (ii). This trend form does not allow for a shape parameter
ψi < 0. This is a necessary condition, because the scale parameter is related to the
variance of the extreme values.

The framework presented here is capable to allow for the non-stationarity of the
shape parameter ξ . However, the variation of ξ around 0 lacks a theoretical inter-
pretation. According to the Fisher–Tippett theorem, different marginal distributions
of the random variables X1, . . . , Xn have different domains of attraction of the lim-
iting extreme value distribution and they are separated by (ξ < 0), (lim ξ → 0) or
(ξ > 0). In case the best suiting point process model includes a ξi which changes
sign, this may just indicate that the model class we assume is not appropriate to
represent the set of extreme values. Therefore we chose to only use models with a
constant ξ (see also [8.6, 8.8, 8.30]). Small time variations of the shape parameter
can be emulated by time variation of the other parameters [8.21, 8.38]. Thus, even if
the assumption of a constant ξ actually is not fulfilled for a specific empirical time
series, non-stationary models with a fixed ξ might still be adequate. The goodness-
of-fit tests applied confirm the feasibility of our reduction.

To test for a trend, we create a class of extreme value models by using all possible
combinations of (8.6) and (8.7) and the stationary PP model. Then the deviance
statistic (see [8.10, 8.28]), i.e. the likelihood ratio test, is applied to choose the best
suiting model. This test weights the complexity of the model against the degree
of explanation of the variance of the empirical time series. The best suiting model
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might be a non-stationary one, thus the trend test is transferred to a model selection
problem. Further details are provided in [8.20].

The deviance statistic is based on the maximum likelihood. To derive the likeli-
hood of a non-stationary point process let X1, . . . , Xn be iid random variables and
let δi be an indicator for Xi lying above some given threshold u. λ is the rate of
threshold exceedances and we get P(X > u) = λ/n for n being the length of the
time series. The likelihood contribution for an Xi falling below u is thus 1 − λ/n,
and for an Xi above u it is λ/n times the GPD approximation with parameters
(ψ, ξ). This is because we actually model excesses, i.e. the conditional probabilities
P(X > y + u|X > u).

The density GPD(·) of GPD(y) is given by

dGPD(y)

dy
= ψ−1

i

[
1 + ξi

(
xi − u

ψi

)]− 1
ξi

−1

. (8.8)

So the likelihood function for sufficiently large u and n is, apart from a scaling
factor,

L(λ, ψ, ξ ; x1, . . . , xn) = {P(Xi < u)}1−δi {P(Xi > u)P(Xi = x |Xi > u)}δi

∝
n∏

i=1

[{
1 − λi

n

}1−δi
{λi

n
ψ−1

i

[
1 + ξi

( xi − u

ψi

)]− 1
ξi

−1}δi
]
.

(8.9)

The log likelihood then can be written as

l(λ, ψ, ξ) = lN (λ) + lY (ψ, ξ), (8.10)

where lN and lY are the log-density of the number of exceedances N and the log-
conditional density of Y1, . . . ,Ynu given that N = nu . Thus inferences on λ can be
separated from those on the other two parameters.

8.2.3.1 Power of the Trend Test

For n → ∞ the deviance statistic is asymptotically χ2 distributed. We study the
power of the trend test (based on the deviance statistic) by means of a simulation
study. Thereby the length of the time series and the magnitude of trends resemble the
situation given in our empirical analyses: The parameters are taken from a stationary
PP fit to the Danube River at Beuron, i.e. u = 65 m3/s, ψ0 = 43.9 and ξ = 0.076.
We generate time series with 5 415 (18 050) data points, which equals 60 (200) years
of daily measurements evaluated at a season of 3 months. The occurrence rates λ0
of 0.01 and 0.04 are chosen; they cover the range found in the empirical series. Thus
60–800 extrema are provided.
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A trend in the occurrence rate is tested for by generating artificial data from
a Poisson process with a linear trend in the exponential function of λt . We get
λt = exp(log(λ0) + s · t) for t = 1, . . . , n where s is a constant slope, which
is varied between 0 and 0.0005. Then two models, namely a stationary Poisson
process and one assuming an exponential trend in λ (the “right” model), are fitted to
the artificial Poisson process data and the better suiting model is chosen according
to the deviance statistic with a significance level of 5%. For each value of the slope s
this study is repeated 1 000 times. In case no trend is present in the artificial data, we
therefore expect to falsely detect a trend in 50 of the cases. Furthermore we would
like the test to detect even weak trends in the data. If the test detects a trend in all
cases it has a power of 1. A trend in the scale parameter ψ of the GPD distribution
is tested for by simulating artificial data from a GPD model with ψt = d0 + s · t
with the slope s ranging from 0 to 0.05 and we proceed as described for the Poisson
process.

For every simulation setting we obtain as result that a trend is not falsely detected
too often in case no trend is present in the data. In case a trend is present in the data
we detect it as given in Table 8.1. The smallest change of the frequency of occur-
rence which is detected with a sufficient power is from once a year to 2.7 times a
year when looking at series with a length of 60 years (winter season only) and about
60 extrema at hand. In case 200 winter seasons and about 800 extrema are available
much weaker trends are detected, namely a change from once a year to 1.6 times a
year within 200 years or equivalently from once a year to 1.2 times a year within 60
years. This reveals quite good trend detection qualities of the methodology regarding
the frequency of occurrence. Changes in theψ parameter are detected with sufficient
power up from a change of 20% of the mean within 60 years and 60 extrema at
hand and up from a change of 2% of the mean for 800 extrema being available. The
power of the deviance statistic to discriminate between types of trends, i.e. linear and
quadratic trends, is also assessed and comparable results are obtained. We therefore
do not regard it as necessary to split up the trend detection into two steps, i.e. first
detecting a possible trend and then determining its type. We rather choose out of the
complete class of models using the deviance statistic. Further details are given in
[8.20].

Table 8.1 Power of the trend test based on the deviance statistic. Smallest changes which are
detected by the trend test with sufficient power (i.e. percentage of the cases) for given simulation
settings. The settings differ by length of the time series (60 years winter season and 200 years
winter season) and the initial rate of occurrence (λ = 0.01 and 0.04)

60 years (winter season) 200 years (winter season)
λ = 0.01 λ = 0.04
→ 60 extrema available → 800 extrema available

Trend in λ 1 per year → 2.7 per year 1 per year → 1.6 per year
is detected in 95% of the cases is detected in 98% of the cases

Trend in ψ �E(Y ) = 20% �E(Y ) = 2%
is detected in 80% of the cases is detected in 100% of the cases
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8.2.4 Return-Level Estimation

Return levels are quantiles of the distribution of the extreme values. They are of
crucial importance in water management since they are the basis for design flood
probability calculations. Let p be the probability that the return level z p is exceeded
once in a year. Then the return period is given by 1/p. p depends on the occurrence
of an extreme event which is determined by λ, i.e.

p = P

{
(Xi − bn)

an
> x

∣∣∣
(Xi − bn)

an
> u

}
P

{
(Xi − bn)

an
> u

}
. (8.11)

By using (8.3) and setting x = z p we get

z p =
{

u + ψ
ξ
[(λ/p)ξ − 1] for ξ �= 0

u + ψ log(λ/p) for ξ = 0
. (8.12)

In the non-stationary case all three parameters of � = (λ, ψ, ξ) may be time depen-
dent. Therefore we have to determine a fixed time point t0.1 The return level is then
calculated such that it is valid from t0, i.e. �(t0) is inserted in (8.12). By doing so
an estimated trend in the extreme values is considered but not extrapolated into the
future. We proceed in this manner (see also [8.2]).

By using the fully parametric approach presented here it is possible to extrapo-
late the estimated trend into the future. In this case we have to define a prediction
period. Then all return levels (zt0

p , . . . , ztk
p ) within this prediction period [t0, tk] can

be calculated, according to a specified return period 1/p. Then, e.g. the highest
return level out of this range of return levels can be chosen to get an estimate for the
return level within this prediction period, which is crossed with probability p once
in a year. This choice follows the precautionary principle.

8.2.4.1 Uncertainty

Confidence intervals for the estimates can be obtained by using the asymptotic
normality property of maximum likelihood estimators. These consistency and effi-
ciency properties of maximum likelihood parameter estimates of the skewed GPD
distribution are given for ξ̂ > −0.5 [8.36]. By using the delta method we then can
approximate confidence intervals for the return-level estimates (see (8.12)). This
method expands the function ẑ p in a neighbourhood of the maximum likelihood
estimates �̂ by using a one-step Taylor approximation and then takes the variance
(cf. [8.6]).

1 Any time point t0 may be chosen as reference point. The occurrence of extreme events may vary
from time series to time series when using threshold excesses, but the non-stationary parameters
of the extreme value distribution are at hand for each i in 1, . . . , n through interpolation of the
assumed trend shape with its estimated parameter values.
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The delta method therefore gives

var(ẑ p) ≈ �zT
p� � z p, (8.13)

where � is the variance–covariance matrix of (λ̂, ψ̂, ξ̂ ). cov(λ̂,ψ̂) and cov(λ̂,ξ̂ ) are
zero. For ξ �= 0 we get

� zT
p =

[
∂z p

∂λ
,
∂z p

∂ψ
,
∂z p

∂ξ

]

=
[
ψ

pξ
λξ−1, ξ−1

{(
λ

p

)ξ
− 1

}
,
ψ

ξ

(
λ

p

)ξ
ln

(
λ

p

)
− ψ

ξ2

{(
λ

p

)ξ
− 1

}]
,

(8.14)

whereas for ξ = 0, z p depends only on ψ and λ and

� zT
p =

[
∂z p

∂λ
,
∂z p

∂ψ

]
=
[
ψ

λ
, ln

(
λ

p

)]
(8.15)

is obtained. In the non-stationary case,�i = (λi , ψi , ξ) itself is time dependent. The
functional form of this dependence is given; therefore, derivatives of z p in direction
of λ, ψ and ξ can be calculated by using the chain rule.

This standard methodology assumes independence of the extreme values. Auto-
correlation in the data causes a loss of information. To avoid an underestimation of
the uncertainty we therefore either have to consider the auto-correlation structure
in the data as presented in Sect. 8.2.1 or uncertainty measures can be provided by
using the bootstrap (cf. [8.34]).

8.3 Results

Daily discharge observations of 50 gauges in the Danube River basin in southern
Germany are investigated. The examined time period is restricted to a jointly cov-
ered period of 60 years, i.e. from 1 January 1941 to 31 December 2000. We inves-
tigate data of the winter season (December to February). For each time series, a
threshold u is chosen and the data are declustered as described in Sect. 8.2.1. About
5 000 data points are available for analysis purposes, which results in approximately
30–120 extrema per time series.

To assess the extreme values a stationary and a range of non-stationary point
processes are fitted to them. From this class of models the best one is chosen using
the deviance statistic and assessment measures, such as the return level, are derived
from this model. We use the results only in case more than 30 extreme values are left
after declustering and in case the best model passes all goodness-of-fit tests, which
is the case for 47 of the 50 stations.
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Fig. 8.1 Trend in frequency of occurrence of extreme events. Trend tendency of the possibly non-
stationary rate λ of the best point process model fitted to extremes of discharge data at 47 gauges
of the Danube River catchment. A model with a constant rate λ is marked in blue, whereas red
indicates an increasing frequency

The change in the frequency of occurrence of extreme events can be measured
by examining the possibly non-stationary rate λ of the point process. In Fig. 8.1
the trend tendency of the rate λ is depicted. In most of the cases a model with a
constant λ represents the data best (blue circles). In eight cases the frequency of
occurrence increases. These gauges are the Geltnach River at Hörmannshofen, the
Vils River at Rottersdorf, the Große Vils River at Vilsbiburg, the Ramsauer Ache
River at Ilsank, the Inn River at Oberaudorf and Rosenheim, the Leitzach River
at Stauden and the Ilz River at Kalteneck. A possible cause may be the observed
increase in frequency of heavy winter precipitation events in Bavaria and Baden-
Württemberg (cf. [8.12, 8.22]). These events are anticipated to become even more
frequent in the future [8.35].

In Fig. 8.2 the trend tendencies of the estimated mean and variance of the
excesses are depicted. They are calculated using the parameter estimates of the best
point process model. As apparent in (8.4) and (8.5), the rate λ is needed for the
calculation which results in trends at the same sites where a non-stationary rate λ

is indicated in Fig. 8.1. Furthermore, in Fig. 8.2 the influence of a non-stationary
GPD model, i.e. a time-varying scale parameter ψ , becomes visible. In our study
the discharge extremes never require an inhomogeneous Poisson process and a non-
stationary GPD at the same time. Throughout, the best suiting model possesses at
most one non-stationary component. In most of the cases the extreme events are
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stationary (blue circles in Fig. 8.2). However, for about one-third of the gauges a
non-stationary model is necessary, which results in time-dependent mean and vari-
ance of the extremes. The tendency of their trend is determined by evaluating the
sign of the slope of a straight line, which is fitted to the mean estimate and the vari-
ance estimate. In some cases mean and variance have the same trend tendencies (an
increasing tendency is marked in red and a decreasing one in green), then we always
observe a decreasing trend tendency. In the cases where both trends are of opposite
direction, we mostly observe an increasing variance and a decreasing mean. An
explanation for this phenomenon may be an increase in the frequency of occurrence
of extreme events, but not in magnitude. Then not only more outliers occur, but also
much more extreme events near the threshold. This causes the estimate of the mean
to be lower.

Precipitation is the main influencing factor for floods. The observed frequency of
heavy precipitation in winter is increasing for the whole Danube River basin [8.22].
However, the heterogeneous spatial pattern of the trends in extremes in Fig. 8.2 is not
directly interpretable. We observe all three sorts of trend tendencies and no spatial
accumulation becomes apparent. Maximum daily water levels during winter show
spatial patterns related to topography [8.32]. However, the elevation model which
is depicted at the back of Fig. 8.2 does not suffice to interpret the trend tendencies.
Further influencing factors might be land use changes, river regulation measures or
changes of the hydraulic conditions within the river system. Land use change, for

Fig. 8.2 Trend in mean and variance of extreme events. A point process model is fitted to excesses
of discharge data of 47 gauges in the Danube River basin. Mean (small circles) and variance (big
circles) are calculated from the parameter estimates. Stationary mean and variance are depicted in
blue, whereas green indicates a decreasing trend tendency and red an increasing trend tendency
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example, has a strong impact on changes of the rainfall–runoff relationship and land
use has undergone significant changes over the last few centuries in all European
countries (cf. [8.32]).

To assess the impact of incorporating non-stationary models in the extreme value
analysis, we examine the influence on the return-level estimation. For this purpose
the 100-year return level, which is crossed once a year with probability p = 0.01, is
calculated for each station using a stationary point process model. Then we calculate
the probability of exceedance p∗ of the corresponding return level z p for the best
suiting, possibly non-stationary, model. In Fig. 8.3 the difference between p and p∗
is depicted for stations in the Danube River basin. White circles indicate no change
implying that the stationary model suits best. A larger probability of exceedance is
marked with red circles and p∗ < p is indicated by green circles. In this context
a change of 100% denotes p∗ = 0.02, that is z p is expected to be exceeded twice
every 100 years when using the best suiting model. As outlined in Sect. 8.2.4, a
return level has to be calculated for a certain time point t0 in case parameter esti-
mates of a non-stationary model are used. We here choose t0 = 01.01.1996.

Fig. 8.3 Change of probability of exceeding a 100-year return level. The 100-year return level is
calculated according to a stationary point process model which is fitted to the extremes. Then we
calculate p∗, the probability of exceeding this 100-year return level, using the parameter estimates
of the best fitting, possibly non-stationary point process model at time point t0 = 01.01.1996. The
corresponding changes of probability are depicted. White indicates no change, i.e. the best fitting
model is a stationary one. A decreasing probability is marked in green and an increasing one in red
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As shown in Fig. 8.3, we observe severe changes in the probability of exceedance
in case non-stationarity in the extremes is considered. The occurrence of non-
stationary river discharge extremes in the Danube River basin and the corresponding
change of flood risk is already recognised by water management authorities [8.22],
but up to now the common methodological canon does not incorporate the sys-
tematic evaluation of this kind of change. Our results show that the probability of
exceedance gets lower for some stations; most of them are located in the southeast-
ern part of the Danube River basin. The stations with a decreasing probability of
exceedance are the Iller River at Kempten and Wiblingen, the Lech River at Lands-
berg, the Schwarzer Regen River at Teisnach and the Ammer River at Oberammer-
gau. For 9 of the 47 assessed stations the probability of exceedance gets higher, in
some cases more than 50%. Those gauges are the Geltnach River at Hörmannshofen,
the Naab River at Heitzenhofen, the Vils River at Rottersdorf, the Große Vils River
at Vilsbiburg, the Ramsauer Ache River at Ilsank, the Inn River at Oberaudorf and
Rosenheim, the Leitzach River at Stauden and the Ilz River at Kalteneck.

The adaptation costs which correspond to an increase in flood risk do not change
linearly with an increase in flood risk (cf. [8.22]). In an exemplary study for Baden-
Württemberg cost calculations suggest, for example, additional adaptation costs of
55% for flood control walls or dykes in case the 100-year return level rises 20%. An
increase of 30% of would imply additional adaptation costs of 157%. In case the
rise of the return level is already considered in the planning phase, those additional
costs would reduce to 10 and 13%, respectively.

8.4 Conclusion

A methodological framework to assess extremes of hydro-meteorological data is
presented, which accounts for non-stationarity and auto-correlation. Its adequacy
and power to detect trends are assessed by simulation studies. We find that the
empirical data used with 30–120 extrema at hand is the minimum size to get reliable
results. Very good results are obtained for estimating the frequency of occurrence
of extreme events and testing for a trend in the rate of occurrence. We also reliably
detect the strong trends in the magnitude of the extremes. However, to be able to
detect even weak trends in the magnitude as well, there should be rather 200 extrema
at hand. We therefore assume that we did not find every weak trend being present in
the Danube River basin. We analysed extremes of daily discharge measurements of
about 50 stations within the Danube River basin. We found auto-correlations being
present in the set of extremes of all discharge records of the Danube River basin and
had to decluster them. One-third of the stations exhibit also non-stationary extremes.
Importantly, the estimates of the extreme value distribution parameters may be
biased in case a stationary model is used to represent non-stationary extremes. The
magnitude of this bias depends on the trend strength. To demonstrate the relevance
of the changes which arise when allowing for non-stationary extreme value models,
we exemplarily assess return levels. They are an important assessment measure for
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water management authorities. We identified changes up to 100% for the probability
of exceedance of the 100-year return level. This implies a potential doubling of the
damage costs.

Regarding the trend tendencies, the frequency of occurrence of extreme events
always increases when it is detected to be non-stationary. In case a change in the
magnitude of the extreme events is found, we observe decreasing and increasing
tendencies. The spatial pattern of the trend in extremes is not immediately inter-
pretable. Our results suggest that we have to proceed gauge by gauge. We found
specific, site-related structures for all statistical characteristics assessed and often
neighbouring gauges to behave distinctively. These results show that the impact of
climate change is not directly detectable in river discharge yet, but is blurred by
other factors. Evidence for trends in precipitation, for example, is globally stronger
than for changes in flooding [8.23, 8.33]. Possible factors, which are not necessarily
in tune with gross climate-related drivers, may be land use, soil conditions, weather
regimes, elevation, moisture or catchment size.

Our methodology provides uncertainty intervals along with each parameter esti-
mate and assessment measure. The resulting confidence intervals show that the
examination of uncertainty is a crucial prerequisite for the evaluation and interpre-
tation of the results of extreme value analysis.

We conclude that the application of an extended extreme value analysis frame-
work, as presented here, is necessary to adequately assess non-stationary extreme
values. Trends in frequency and magnitude of extremes of river discharge are antic-
ipated because of climate change and we already find a noteworthy fraction of the
empirical records analysed exhibiting non-stationary extremes. The incorporation
of non-stationarity in extreme value analysis leads to different results of important
assessment measures, such as the return level. The trend shape determines whether
its influence lowers or augments the return level. The results obtained may serve as
a basis for a physical interpretation of the trends. Besides, these statistical charac-
teristics of river discharge may be used to validate the output of, e.g. hydrological
models. Furthermore, common practice of water management authorities can be
improved and costs for flood protection buildings can be calculated with higher
accuracy. Thus, e.g. construction costs are reduced in case return-level estimates are
overestimated and possible future damage costs are dampened in case it is shown
that those estimates are too low.
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Application of the generalized time series decomposition technique on modelled time series of the
coupled global model ECHAM4/OPYC3 [9.12], 1990–2100, under SRES A2 scenario shows in
January in the northern part of Europe strong increases in the probability for exceeding the 95th
percentile (top) and less pronounced decreases in the probability for falling under the 5th percentile
(bottom). In central Europe an area with increases in both kinds of extremes can be seen



Chapter 9
Extreme Value and Trend Analysis Based
on Statistical Modelling of Precipitation
Time Series

Silke Trömel and Christian-D. Schönwiese

Application of a generalized time series decomposition technique shows that
observed German monthly precipitation time series can be interpreted as a realiza-
tion of a Gumbel-distributed random variable with time-dependent location param-
eter and time-dependent scale parameter. The achieved complete analytical descrip-
tion of the series, that is, the probability density function (PDF) for every time step
of the observation period, allows probability assessments of extreme values for any
threshold at any time. So, we found in the western part of Germany that climate
is getting more extreme in winter. Both the probability for exceeding the 95th per-
centile and the probability for falling under the 5th percentile are increasing. Con-
trary results are found in summer. The spread of the distribution is shrinking. But in
the south, relatively high precipitation sums become more likely and relatively low
precipitation sums become more unlikely in turn of the twentieth century.

Furthermore, the decomposition technique provides the mean value of the
Gumbel-distributed random variable for every time step, too. So, an alternative
approach for estimating trends in observational precipitation time series is achieved.
On that way, the non-Gaussian characteristics can be taken into account and robust
estimates can be provided. In contrast, application of the least-squares estimator to
non-Gaussian climate time series often leads to everestimated trends in the expected
value.

9.1 Introduction

The analysis of climate variability as reflected in observational records is an impor-
tant challenge in statistical climatology. In particular, it is important to estimate
reliable trends in the mean value as well as changes in the probability of extreme
values. In case of monthly or annual temperature data, often Gaussian distributions
are adequate for their description. If any linear or non-linear trend of the time
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series average occurs, this may be described by a shift of a Gaussian probability
density function (PDF). Additionally, some other time series components like the
annual cycle, for example, may also vary and cause a shift to higher and lower
values again during the observation period as discussed below[9.2]. Grieser et al.
(2002)[9.2] consider temperature time series as a superposition of trends, annual
cycle, episodic components, extreme events and noise. Thereby, Gaussian assump-
tions are used, which implies that residuals cannot be distinguished from a real-
ization of a Gaussian-distributed random variable. However, this simple model of
a shifting Gaussian distribution with constant variance over the observation period
is not suitable to describe the variability of precipitation time series. We observe
a skewed distribution as well as seasonal and sometimes long-term changes in the
shape of the distribution. Moreover, changes in the spread of the distribution have
to be considered, too. In summary, in addition to the expectation, also the variance
and/or further moments may vary with time.

Evidently, wrong assumptions concerning the PDF lead also to biased estimators
of trends or probabilities of extreme values. In consequence, we present a gener-
alized time series decomposition technique which allows any PDF and any related
parameter change in time, that is, changes in the location, the scale and the shape
parameter of a PDF are allowed. In case of Gaussian distributions, for example, the
location parameter is realized by the average and the scale parameter is realized by
the variance.

Here, we apply this technique on precipitation time series from a German station
network focussed on extreme value and trend analysis. The detection of structured
time series components like trends, called signals, is based on several parameters
of a Gumbel or Weibull distribution, respectively, as described in the following.
Sect. 9.2 provides the definition of the components for the analysis of monthly cli-
mate time series and Sect. 9.3 presents a brief overview of the detection of the ana-
lytical functions reflecting the time dependence of the different distribution param-
eters. For all details, see [9.10, 9.11].

9.2 Components

The equation

S j,k(t) = d j,k tk cos

(
2π

j

12
t

)
+ e j,k tk sin

(
2π

j

12
t

)
(9.1)

with wave number j = 1, . . . , 6 per year and k = 0, 1, 2 gives the basis functions to
describe the seasonal component. Evidently, the maximum wave number 6 is tuned
to the analysis of climate data with a monthly sampling rate. Besides fixed annual
cycles, changes in amplitude and phase are allowed. For the amplitude linear and
quadratic time dependence is considered. Superposition of two or three harmonics
of the annual cycle with the same wave number j but different time dependence k
in one time series yields
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S j (t) = A j (t) cos

(
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j

12

(
t − t j

))
, (9.2)

with amplitude

A j (t) =
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(
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j,k + e2
j,k
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t2k (9.3)

and phase

t j (t) = 12

2π
arctan

(∑2
k=0 d j,k tk

∑2
k=0 e j,k tk

)
. (9.4)

In this way, the detection of linear, progressive and degressive shaped changes in
phase and amplitude of the annual cycle is possible.

In addition, trends up to the order 5 are considered:

Ti (t) = gi + hi t
i , with i = 1, . . . , 5. (9.5)

To detect all significant structures but neglecting, on the other hand, all unsignificant
structures, in a first step the detection of the seasonal component and the trend com-
ponent of the parameters is performed simultaneously within the modified stepwise
regression procedure (see Sect. 9.3 and [9.9]).

In a second step we observe sometimes relatively low-frequency variations super-
posed on the components mentioned above. So we offer also polynomial equations
up to the order 5:

Vl(t) = co +
l∑

i=1

ci t
i . (9.6)

In a third step a search for extreme events, which are independent from changes in
the parameters of the distribution, is performed. According to Grieser et al. [9.2],
we define extreme events as a relatively small number of extreme values which are
unexpected within the scope of the fitted statistical model. In contrast to extreme
events, extreme values are relatively high or low values which occur by chance. A
positive trend in the mean value, for example, increases the probability of occur-
rence of relatively high extreme values.

Within the strategy introduced detected extreme events are extracted and replaced
by a random value distributed conform with the PDF and the two parameters at the
given time (see [9.2] for further details). The iterative procedure for the detection of
trends, seasonal component and low-frequency variations is applied until no further
extreme events are found. In the application of Gaussian assumptions and the least-
squares method, the quadratic function which has to be minimized in order to fit any
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analytical functions is called distance function of the Gaussian distribution. Gener-
ally speaking, it depends on the robustness [9.3] of the applied distance function
whether structured components are more or less influenced by extreme events.

Using an iterative procedure to find within these functions the best model equa-
tions of two parameters of a PDF leads to a very extensive procedure. Note that the
model equation of one parameter influences the equation for the second parameter
and vice versa. To reduce this effort, an additional restriction is introduced. For one
of the parameters all functions mentioned above are offered:

Pg(t) =
∑

S j,k(t) +
∑

Ti (t) + Vl(t). (9.7)

The second parameter is assumed to be of minor relevance to describe the time
series. Only the one cycle per year harmonic and one trend function can be chosen:

Pr (t) = S1,0 + Ti . (9.8)

At the end of the time series decomposition procedure, a priori assumed residual
distribution is tested. In case of a chosen Gumbel distribution, residuals should
follow a Gumbel distribution G(0, 1) with a location parameter equals 0 and a
location parameter equals 1 after elimination of detected structured components in
the parameters Pg(t) and Pr (t). Additional stationarity of the distribution points to
a complete description of the time series within the PDF and its time-dependent
parameters.

It depends on the characteristics of the time series under consideration, which
PDF has to be chosen and which PDF parameter implies a larger number of degrees
of freedom in comparison to others. Not before the end of the procedure, including
the analysis of the statistical properties of the residuals, it can be decided whether
the chosen model provides an adequate description of the time series.

9.3 The Distance Function and the Model Selection Criterion

The basis of any time series decomposition technique is the distance function and a
model selection criterion. The least-squares estimator broadly used in trend analyses
is the maximum likelihood estimator under the assumption of Gaussian-distributed
residuals with constant variance. This quadratic function which has to be minimized
is called distance function of the Gaussian distribution. So, consistently with the
maximum likelihood principle another distance function, defined as the negative
logarithm of the PDF, replaces the function of squared errors to be minimized, if
we choose another distribution as basis of the decomposition procedure, for exam-
ple, the Gumbel or the Weibull distribution. Then time dependence for different
distribution parameters can be allowed. With the exchange of the distance function,
fitted basis functions describe changes in the location, scale or shape parameter of an
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appropriate PDF. As an example, the corresponding distance function of the Gumbel
distribution is

ρ(x, t) = ln(b(t)) + exp

(
− x − a(t)

b(t)

)
+ x − a(t)

b(t)
. (9.9)

Under the assumption of statistically independent random variables the coefficients
in the model equations for estimating a(t) and b(t) are chosen by minimizing

∑

t

ρ (x, t) = min ., (9.10)

equivalent to the maximum of the loglikelihood function. In this work, Pow-
ells method [9.6], p. 406, is used to minimize ρ in the multidimensional space.
Figure 9.1 shows the PDF of the Gaussian distribution and on the right-hand side its
distance function, the quadratic function. The more deviant the points, the greater
the weight. The influence increases very fast because the probability of occurrence
of relatively high or relatively low values is very small in the Gaussian case. For
comparison the Gumbel distribution for two different location and scale parame-
ters and the associated distance functions are shown in Fig. 9.2. The tails are more
prominent and consequently, if we take a look at the distance functions, the influence
increases less rapidly, and one value in a given distance from the location estimator
has more weight the smaller the scale parameter. So, structured components can be
detected in different parameters and estimators of different parameters compete with
each other. Finally, Fig. 9.3 shows the Weibull distribution with two different scale
and shape parameters. And on the right-hand side the distance functions clearly
show the dependence on the shape of the distribution. One important point is that
the PDF chosen and the basis functions used to describe the signals are comple-
mentary. The other point is that the basis used to describe one parameter of the
PDF influences the basis necessary to describe the second parameter. That is why
a dynamic procedure is necessary to estimate the coefficients of the basis functions

− − − − − − − −

Fig. 9.1 The PDF (left) of the Gaussian distribution and its distance function (right) under the
assumption of constant variance
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Fig. 9.2 The PDF (left) of the Gumbel distribution with two different location and scale parameters
and the associated distance functions (right)

Fig. 9.3 The PDF (left) of the Weibull distribution with two different scale and shape parameters
and the associated distance functions (right)

of the different components of both parameters simultaneously. A flexible model
selection criterion often used is the stepwise regression. Stepwise regression [9.9,
p. 166], represents a dynamic model selection criterion in order to find the optimal
regression equation. Within the generalized time series decomposition a modifica-
tion to handle two distribution parameters is required.

The common iterative application of forward selection and backward elimination
is used to determine the model equation of a first distribution parameter as, for
example, the scale parameter b(t). But the distance function used now, also depends
on the selected model equation describing the second distribution parameter (see
(9.9)). Between these alternate parts redefinition of the second parameter (a(t)) is
inserted, now taking into account the selected model of the first parameter (b(t)). In
the modified version, the flexible strategy of stepwise regression is used twice. Now
the parameters of the model equations influence themselves mutually. A regressor
of the first parameter selected at an earlier stage can be superfluous because of a
new entry candidate in the model equation of the first parameter or because of the
actualization of the second parameter and vice versa.

The common F-test statistic broadly used in regression analysis to decide
whether a specific regressor contributes significantly to explained variance is
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sensitive to departures from the Gaussian distribution and, therefore, has to be
replaced. A test statistic based on a likelihood ratio test seems to be more applicable,
because likelihood values are computed anyhow minimizing the distance function
(9.10). Define D(p) as the minimum value of (9.10) subject to the model containing
p regressors and D(q) as the minimum value of (9.10) subject to the model contain-
ing q regressors, with p > q, a direct generalization of the common F-test may be
based upon the statistic

FM = (D(p) − D(q)) /(p − q) (9.11)

[9.8] with p − q and N − p degrees of freedom. Here N represents the number of
data. If the density function of the residuals has not the form exp(−ρ), the model
assumptions are not fulfilled and a correction term is necessary. For small sample
sizes Schrader and Hettmansperger propose to compare FM with a critical value
from a central F distribution.

The modified stepwise regression including a modified F-statistic (9.11) repre-
sents the basis of a generalized time series decomposition technique. Inserting the
corresponding distance function it can be used for time series analysis based on any
data distribution and any statistical model. Thereby, the initial choice of the prob-
ability density function and the corresponding distance function should depend on
the characteristics of the climate variable under consideration. The Gumbel distri-
bution, the lognormal distribution as well as the Gamma distribution are promising
distributions already by reason of the skewness. However, the Weibull distribution
seems to be a promising choice when changes in the shape of the distribution occur.
Not until the final residual analysis at the end of the decomposition tests whether
a priori assumed statistical model can be confirmed. If so, a complete analytical
description of the time series is achieved.

Actually, the generalized time series decomposition technique in a deterministic
and a statistical part is applied to four different models: Observed time series can be
interpreted as

• a realization of a Gaussian-distributed random variable with time-dependent loca-
tion (mean value) and additional time-dependent scale parameter (standard devi-
ation);

• a realization of a Gumbel-distributed random variable with time-dependent loca-
tion and scale parameter, it depends on the choice to offer the location or the scale
parameter the greater pool of regressors if we talk about

– the Gumbel model with special emphasize on location or
– the Gumbel model with special emphasize on scale;

• a realization of a Weibull-distributed random variable with time-dependent scale
and shape parameter.



192 S. Trömel and C.-D. Schönwiese

9.4 Application to a German Station Network

9.4.1 General Remarks

The generalized time series decomposition technique is applied now to monthly pre-
cipitation sums from a German station network of 132 time series covering 1901–
2000. At least for the most part of the sample the decomposition technique shows
that observed time series can be interpreted as a realization of a Gumbel-distributed
random variable with time-dependent location parameter a(t) and time-dependent
scale parameter b(t). So the decomposition is based on the probability density func-
tion (PDF) of the Gumbel distribution

f (x, t) = 1

b(t)

{
exp

(
− x − a(t)

b(t)

)
exp

[
−e−(x−a(t))/b(t)

]}
. (9.12)

Since the Gumbel model with emphasis on scale leads to a better description of the
time series, we define the location parameter a(t) = Pr (t) and the scale param-
eter b(t) = Pg(t) (see (9.7) and (9.8)). However, 7 out of 158 400 (132 × 1200)
monthly precipitation sums are extracted as extreme events which are unexpected
within the scope of the fitted Gumbel model. As aforementioned the analysis of the
remaining residuals represents an important part of the analysis procedure. After
elimination of the detected structures in the location and in the scale parameter,
residuals should fulfill the condition of the a priori assumed statistical model. Con-
cerning the German station network of 132 monthly precipitation sums, the residuals
should be undistinguishable from the realization of a Gumbel-distributed random
variable G(0, 1) with the location parameter 0 and the scale parameter 1. In fact the
Kolmogorov–Smirnov test [9.6] rejects in 7 out of 132 cases this hypothesis with a
probability larger than 90%. This is less (<10%) than may be expected by chance.
Furthermore, again a Kolmogorov–Smirnov test statistic is used in order to check
the stationarity of the residuals. Now in 6 out of 132 cases stationarity is rejected
with a probability larger than 90%. Consequently, the residuals confirm the model
applied and a complete description of the observed time series on the basis of the
Gumbel model with emphasis on the scale could be achieved.

The provided PDF for every time step of the observation period allows prob-
ability assessments of extreme values, i.e. the probability for exceeding a given
precipitation sum (threshold) at any time. In this context it should be reemphasized
that in contrast to analyses dealing with the familiar generalized extreme value dis-
tribution [9.1, 9.4], the generalized time series decomposition technique presented
in this issue requests the analytical description of the whole times series instead of
addressing exclusively the maxima of the observations. Furthermore, with the PDF
the mean value of the Gumbel-distributed random variable can be given for every
time step, too.

In Sect. 9.4.2 the time series decomposition of an exemplary time series is
discussed in more detail for a better understanding of the method introduced.
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Subsequently, results concerning changes in the probability of extreme values and
the expected value of the entire station network are presented in Sects. 9.4.3 and
9.4.4.

9.4.2 Example: Eisenbach–Bubenbach

In case of the Gumbel model with emphasis on scale the greater pool of regressors
is offered to the scale parameter b(t) of the Gumbel distribution and the smaller one
to the location parameter a(t). Table 9.1 shows the significant functions detected in
the location parameter a(t) and the scale parameter b(t) of the Gumbel distribution
to describe the time series observed in Eisenbach–Bubenbach (47.97◦N, 8.3◦E).
Phase angles are defined with reference to December 15. Consequently, we observe
a superposition of two harmonics with wave number one per year. The function
S1,0 has a constant amplitude with maximum in September but S1,1 reveals linear
time dependence in the amplitude and has its maximum in January. So, the winter
becomes more variable and the summer becomes less variable during the observa-
tion period. The seasonal component in the scale parameters shows a phase shift
of 109 days from September to January. The resulting effects can also be seen in
Figs. 9.4 and 9.5. The former figure illustrates the decrease in the scale parameter in

Table 9.1 Significant functions in the location parameter a(t) and scale parameter b(t) for the
description of the monthly precipitation time series observed in Eisenbach–Bubenbach

Parameter Function Amplitude (mm) Phase (days)

b(t) S1,0 7.04 × tk −82.73
S1,1 0.148 × 10−1 × tk 44.87
T1 5.78 –

a(t) S1,0 −8.89 × tk 24.21

Fig. 9.4 On the basis of the entire time series estimated PDFs for two time steps: August 1901 (left)
and August 2000 (right). Areas below the 5th percentile are marked in light grey, the areas above
the 95th percentile in dark grey and the vertical line marks the expected value m. The respective
value m, the probability P1 for exceeding the 95th percentile and the probability P2 for falling
under the 5th percentile are given in the upper right corner, respectively
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Fig. 9.5 Estimated probabilities for exceeding the 95th percentile between 1901 and 2000 in
January, March, July, August and November at the station Eisenbach–Bubenbach

August. The functions given in Table 9.1 define the scale and the location parameter
of the Gumbel distribution for every time step. No low-frequency variations (Vl(t))
and no unexpected values defined as extreme events (see Sect. 9.2) within the time
series decomposition technique can be detected in the time series. However, prob-
ability assessments of extreme values can be based on the analytical description
provided. Figure 9.4 shows the estimated PDFs for the first and the last August in
the observation period. The probability P1 for exceeding the 95th percentile, in
this case 204 mm, and the probability P2 for falling under the 5th percentile, in
the present case 27 mm, are also given for the two time steps. The corresponding
areas within the PDF are marked in dark grey and light grey, respectively. First of
all, we see is a decrease in the scale parameter, going along with a decrease in the
probability of exceeding the 95th percentile from 6.8 to 2.9% and we see a smaller
decrease in the probability of falling under the 5th percentile from 3.2 to 0.6%. The
probability of both kinds of extremes has decreased and in contrast to the Gaussian
model the expected value is also affected. The expected value decreases from 109
to 102 mm in the observation period. It is worth to mention that the least-squares
estimator is not able to describe those decreases or increases in variability and not
the influence on the expected value either. In Fig. 9.5 integration over the dark grey
area for every time step and different months has been done. Contrary tendencies in
the probability of exceeding the 95th percentile can be seen. At the beginning the
relatively high precipitation sums occured with higher probability in summer but
at the end of the observation period the probability for exceeding the threshold is
highest in January. Both the phase shift in the seasonal component and the positive
linear trend detected in the scale parameter describe an increasing variability in
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winter. The distribution is widening. The tendencies in summer are contrary. Both
kinds of extremes become more unlikely between 1901 and 2000.

9.4.3 Probability Assessment of Extreme Values

If the time series decomposition in a statistical and a deterministic part succeeded,
the time-dependent PDF f (x, Pg(t), Pr (t)) as a complete analytical description is
provided (see again Fig. 9.4).

In this model

pG(x ≥ xs, t) = 1 −
xs∫

−∞

1

Pg(t)

{
exp

(
− x − Pr (t)

Pg(t)

)
exp

[
−e−(x−Pr (t))/Pg(t)

]}
dx

= 1 − exp

{
− exp

(
− xs − Pr (t)

Pg(t)

)}
(9.13)

gives the probability for exceeding the threshold xs at time t . Significant structured
components in the location and the scale parameter cause changes in the probability
of occurrence of these high precipitation sums. The probability for falling under xs

is given by

pG(x ≤ xs, t) =
xs∫

−∞

1

Pg(t)

{
exp

(
− x − Pr (t)

Pg(t)

)
exp

[
−e−(x−Pr (t))/Pg(t)

]}
dx

= exp

{
− exp

(
− xs − Pr (t)

Pg(t)

)}
. (9.14)

In Fig. 9.6 tendencies in the probability of a monthly precipitation total greater than
the 95% percentile (left map) and tendencies in the probability of a monthly precip-
itation total smaller than the 5% percentile (right map) are shown, that is, for every
single time series the threshold is selected so that 95% (5%) of all monthly rainfall
totals of the series are smaller than the respective threshold. The result is in January,
an increase in the probability of exceedance in the overwhelming majority of sta-
tions. In the right map the tendencies in the probability of a monthly precipitation
total less than the 5th percentile are seen. In January we see in the northern part
of Germany increases in the probability of occurrence for these small precipitation
totals, too. So relatively high and relatively small precipitation totals become more
likely during the twentieth century. The distribution is widening. However, in the
south the distribution is shifting to higher values.

Figure 9.7 shows the respective results in August. In the northern part of Ger-
many decreases in the probability of relatively high precipitation sums are detected
during the twentieth century. But in the south we see several increases in August as
well as in January. In the right map it can be seen that decreases in the probability of
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Fig. 9.6 Changes in the probability of occurrence of a monthly precipitation sum greater than the
95th percentile (left) and in the probability of occurrence of a monthly precipitation sum smaller
than the 5th percentile (right). Results are given for January in the observation period 1901–2000.
Red dots indicate an increase and blue dots indicate a decrease in the probability of occurrence.
The size of the dots is proportional to the magnitude in probability change
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Fig. 9.7 Analogous maps to Fig. 9.6 with results for August
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occurrence of relatively small precipitation totals are detected in the overwhelming
majority of stations. Combined with the tendencies in the probability of exceedance
of the 95th percentile we come to the conclusion that in summer in the northern part
of Germany the extreme high and extreme low precipitation totals are getting more
unlikely. In the south we observe again at several stations a shift of the distribution
to higher values but results are not as uniform in that region in summer.

9.4.4 Changes in the Expected Value

As could already be seen in Fig. 9.4 the statistical modelling provides the expected
value for every time step of the observation period. Consequently, the method intro-
duced represents an alternative approach to estimate trends. The difference in the
expected value between January 2000 and January 1901 is defined as the trend in
the expected value at every station in that month. With the use of an appropriate
distance function relatively high precipitation sums do not get more weight than
can be justified from a statistical point of view. Additionally, changes in different
parameters of the distribution can be taken into account, because the expected value
of a Gumbel-distributed random variable is defined as

μ(t) = aG(t) + bG(t)γ ≈ aG(t) + 0.57722 · bG(t) (9.15)

with the location parameter aG(t), the scale parameter bG(t), and Euler’s constant γ .
Because of the skewness of the distribution a change in the scale parameter causes
changes in the expected value, too. And the expected value of a Weibull-distributed
random variable depends on the location parameter aW, the scale parameter bW and
the shape parameter cW:

μ(t) = aW(t) + bW(t)	

(
1 + 1

cW

)
. (9.16)

The gamma function 	 is defined as

	(z) =
∞∫

0

t z−1e−t dt. (9.17)

A familiar nonparametric trend test would be the Mann–Kendall trend test [9.5].
Even though this test contains information about a increase or decrease in the time
series considered, no information about the temporal evolution nor the amplitude of
the trend is provided. In most cases, changes in the expected values of non-Gaussian
climate time series, e.g. ordinary trend maps, are estimated using the least-squares
method, too. Comparison of the trend map on the basis of the least-squares method
with the trend map estimated on the basis of the method introduced (Fig. 9.8) shows
in January similar spatial structures. We observe increases in the western and south-
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January January

Fig. 9.8 Observed trends 1901–2000 in January estimated with the least-squares method (left) and
on the basis of the statistical modelling of the time series using the distance function of the Gumbel
distribution (right)

ern part of Germany, but decreases in the eastern part. However, the amplitudes are
smaller using the distance function of the Gumbel distribution.

Another advantage of the method introduced is that trends of a particular month
are estimated on the basis of the whole sample size. In order to demonstrate the large
effect of the sample size on trend analysis results, Monte Carlo simulations have
been performed. A total of 100 time series with a length of 100 or 1 000 time steps,
respectively, of Gumbel-distributed variables with trends �μ have been generated.
Subsequently, we applied the least-squares estimator and tried to find the prescribed
trend. In Table 9.2 the mean least-squares estimator �μK Q , its standard deviation
σ�μ, as well as the smallest and the greatest estimator, �μ−

K Q and �μ+
K Q , are

shown for eight different experiments using the longer generated time series (1 000

Table 9.2 Trends of 100 generated Gumbel-distributed time series with 1 000 time steps and dif-
ferent linear changes in the location parameter (�a) and constant or additional changing scale
parameter (b). The resulting changes in the expected value �μ (see again (9.15)) are compared
to mean least-squares estimator of the 100 time series �μK Q , the standard deviation σ�μ of the
estimator as well as the greatest and the smallest trend estimator (�μ+

K Q or �μ−
K Q )

�a = 15 �a = 15 �a = 8 �a = 0 �a = 8 �a = −15 �a = −8 �a = 0
b = 50 b = 20 b = 40 b = 40 b = 40 + �8 b = 50 b = 40 − �8 b = 40 + �10

�μ 15 15 8 0 12.6 −15 −12.6 5.77
�μK Q 15.49 15.20 8.39 0.39 13.05 −14.51 −12.27 6.22
σ�μ 6.97 2.79 5.57 5.57 6.16 6.70 5.02 6.31
�μ−

K Q 0.78 9.31 −3.38 −11.38 0.08 −29.22 −22.83 −7.06

�μ+
K Q 33.44 22.38 22.75 14.75 28.23 3.44 1.27 21.81
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Table 9.3 Analogous to Table 9.2, but considering Gumbel-distributed time series with 100 time
steps

�a = 15 �a = 15 �a = 8 �a = 0 �a = 8 �a = −15 �a = −8 �a = 0
b = 50 b = 20 b = 40 b = 40 b = 40 + �8 b = 50 b = 40 − �8 b = 40 + �10

�μ 15 15 8 0 12.6 −15 −12.6 5.77
�μK Q 12.85 14.14 6.28 −1.72 10.78 −17.15 −14.21 3.90
σ�μ 23.82 9.53 19.06 19.06 20.91 23.82 17.31 21.39
�μ−

K Q −43.84 −8.54 −39.07 −47.07 −38.96 −73.84 −55.18 −49.93

�μ+
K Q 59.52 32.81 43.62 35.62 51.44 29.52 22.13 46.37

time steps). A positive bias can be observed. Table 9.3 shows the analogous results
for the smaller sample size (100 time steps). The absolute value of the bias has
clearly increased but the trend estimator shows a negative bias now. The estimators’
variance σ�μ has increased remarkably. It may be higher than the trend magni-
tude. Consequently, the greater sample size of precipitation totals taken into account
within the statistical modelling approach (1 200 values instead of 100 in the present
case) implies a smaller mean squared error of the maximum likelihood estimator
given by the sum of the quadratic bias and the variance of the estimator.

9.5 Conclusions

A generalized consistent decomposition procedure of precipitation time series into
a statistical and a deterministic part is introduced. The basis functions allowed to
describe the deterministic components only contain trends, annual cycle, episodic
component and extreme events in order to restrict to physically explainable func-
tions. Under the additional assumption that climate change is not restricted to the
mean value the signal detection technique is applied to two instead of one parameter
of a PDF, which can be chosen without any further restriction.

In particular, we show that a time series decomposition technique based on
a Gumbel distribution, with flexible location and scale parameters, succeeds to
describe monthly precipitation total time series from German stations completely.
The model provides a full analytical description of the time series. On this basis,
probabilities of exceeding defined thresholds can be estimated reliably for every
time step of the observation period. But the provided complete analytical description
can be used to calculate the expected value for every time step, too. So, statistical
modelling represents an alternative approach for estimating broadly used trends in
observational precipitation time series. In this way non-Gaussian characteristics can
be taken into account. Additionally, changes in different parameters can be consid-
ered and the mean squared error of the trend estimator is smaller using the statistical
modelling.

Application of the method to a German station network of 132 time series cover-
ing 1901–2000 shows in winter and summer at several stations in the southern part
of Germany an increase in the probability of exceeding the 95th percentile and a
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decrease in the probability of falling under the 5th percentile. In the western part,
we observe the same phenomenon in the summer months, but these changes go
along with smaller magnitudes. However, climate is getting more extreme in that
region in winter: Probability for both exceeding the 95th percentile and for falling
under the 5th percentile is increasing. In the eastern part of Germany, increases in
the probability of occurrence of relatively low precipitation in winter as well as
decreases in both probabilities (>95th percentile, <5th percentile) in summer and
autumn prevail.

Exemplary, the trend map on the basis of the familiar least-squares method is
compared to the trend map calculated on the basis of the Gumbel model. Both maps
show positive trends in the western and southern part of Germany and negative
trends in the eastern part. However, the robust method provides smaller amplitudes.
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Weir in the river Lahn (Giessen, Germany, 26.6.2005). Constructions and modifications of the
river bed can lead to change points in river runoff



Chapter 10
A Review on the Pettitt Test

Diego Rybski and Jörg Neumann

Applying the Pettitt test we study long river runoff records from gauges in southern
Germany and find significant change points. Theoretically, a change point represents
a sudden change in the statistics of a record. Using detrended fluctuation analysis,
we also find – in agreement with previous studies – pronounced long-term temporal
autocorrelations in the considered records. The results of both approaches indicate
a relation between the occurrence of change points and the strength of long-term
correlations. In order to clarify a possible connection, we further analyse with both
methods artificial long-term correlated records and find for weak long-term cor-
relations already highly significant change points. The significance dramatically
increases with the strength of the long-term correlations.

10.1 Introduction

In time series analysis the concept of change points, indicating a change in the sta-
tistical behaviour, is of basic interest. In geoscience the cause of such events can
be anthropogenic interventions to the riverbed in the case of hydrologic records,
modifications of instrumentation, or climate change [10.25]. Thus, it is a quest to
identify whether such a point of change exists and if so, to locate it in time. At first,
the usage of the term “change point” does not clarify what it really is, e.g. an abrupt
change of the mean, the beginning of a linear trend, or the change of piecewise
(linear) trends.

Recent studies reveal that many different records in nature exhibit not only short-
term, but also long-term correlations, see, e.g. [10.15, 10.19] and references therein,
which are characterised by a diverging correlation time. Since the Pettitt test is a
common tool for the detection of change points [10.1, 10.7, 10.18, 10.27, 10.28],
we want to give a review on the method and discuss the influence of long-term
correlations.

D. Rybski (B)
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We examine the approach to the change point problem introduced by Pettitt in
1979 [10.22] by applying it to several hydrological records. Further we determine
the long-term correlations of these series in the asymptotic regime and compare the
strength with the significance of the change points. We find very significant change
points and notice that the significance slightly increases with the strength of the
long-term correlations. In order to clarify the influence of long-term correlations, we
perform the Pettitt test on artificial long-term correlated sequences. We find that in
many configurations, already for weak long-term correlations, a high significance of
finding a change point is given by the Pettitt test. This result makes its applicability
questionable.

In Sect. 10.2 we give a brief description of the analysed hydrological data.
The Pettitt test itself and the detrended fluctuation analysis (DFA) are described
in Sect. 10.3. The results for real and simulated data are given in Sect. 10.4. Finally,
in Sect. 10.5 we give our conclusion.

10.2 Data

We select 23 river discharge records with monthly resolution of gauges located in
southern Germany (Bavaria and Baden-Wuerttemberg). The records are prepared
by subtracting the long-term seasonal mean, in order to obtain the anomalies. To
normalise the fluctuations we further divide by the seasonal standard deviation (see
Chap. 11). In Table 10.1 we give detailed information of the records and the loca-
tions of the gauges are shown in Fig. 10.1.

10.3 Methods

The Pettitt test [10.22] considers a sequence of random variables X1, X2, . . . , XT ,
which is said to have a change point at τ if Xt for t = 1, . . . , τ have a common
distribution function F1(x) and Xt for t = τ+1, . . . , T have a common distribution
function F2(x), and F1(x) �= F2(x). Pettitt does not make any assumptions about
the functional forms of F1 and F2 except that they are continuous; see also [10.7].
The Pettitt test is based on the sign function, sgn(y) = 1 if y > 0, 0 if y = 0, −1
if y < 0, where the sign of the difference of each pair of value of the sequence is
given by

Di j = sgn(Xi − X j ) . (10.1)

Next, parts of this matrix are summed up and define the quantity

Ut,T =
t∑

i=1

T∑

j=t+1

Di j . (10.2)
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Table 10.1 Details of considered gauges. Listed are the name of the gauge, its main river basin,
its number, its basin area, the time range, and the length of the records. The gauges are mapped in
Fig. 10.1

Basin
Gauge area

ID Gauge Main river basin number (km2) Begin End Months

1 Oberammergau Ammer 16610709 114 1921 2001 972
2 Inkofen Amper 16607001 3 043 1926 2002 924
3 Beuron Donau 168 1 320 1926 2003 936
4 Hofkirchen Donau 10088003 47 497 1901 2003 1 236
5 Ebnet Dreisam 292 256 1941 2003 756
6 Bad Aibling Glonn 18263005 144 1928 2000 876
7 Kempten Iller 11402001 955 1901 2002 1 224
8 Wiblingen Iller with channel 61405001 2 115 1921 2000 960
9 Oberaudorf Inn 18000403 9 712 1901 2002 1 224

10 Mittenwald Isar 16000708 404 1926 2003 936
11 Untergriesheim Jagst 3470 1 826 1925 2003 948
12 Schwaibach Kinzig 390 957 1914 2003 1 080
13 Gaildorf Kocher 337 724 1885 1997 1 356
14 Garmisch Loisach 16402009 392 1926 2002 924
15 Schweinfurt Main 24022003 12 715 1901 2001 1 212
16 Heitzenhofen Naab 14008006 5 426 1921 2002 984
17 Plochingen Neckar 313 3 995 1919 2003 1 020
18 Regenstauf Regen 15208500 2 660 1901 2001 1 212
19 Hof Sächsische Saale 56001502 521 1921 2002 984
20 Stein at Altenmarkt Traun 18483500 378 1926 2001 912
21 Pfronten-Ried Vils 12183005 113 1911 2002 1 104
22 Biessenhofen Wertach 12405005 450 1921 2002 984
23 Oberlauchringen Wutach 357 617 1912 2003 1 104

The statistic Ut,T is then considered for values of t with 1 ≤ t < T . In [10.7] an
iterative formula is suggested

Ut,T = Ut−1,T +
T∑

j=1

Dt j , (10.3)

which uses Di j = −D ji and Dii = 0. Figure 10.2 is a sketch for the calculation
of Ut,T . The square represents the matrix Di j and the hatched area represents the
entries whose sum is denoted Ut,T . The dotted line confines either the summation
from top to bottom (1 ≤ j < T ) after (10.2) or iteratively after (10.3), where the
triangles cancel each other.

The maximum of the absolute sums |Ut,T | gives the position of a possible change
point 1 ≤ τ < T . The statistic is

KT = max
1≤t<T

|Ut,T | . (10.4)
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Fig. 10.1 Map of southern Germany (Baden-Wuerttemberg and Bavaria, dark and light grey). The
circles represent gauges, which carry the IDs used in Table 10.1
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Fig. 10.2 Schematic illustration of the Pettitt test. The matrix Di j (10.1) consists of the sign of
the difference of any pair of values of the considered sequence Xi . The quantity Ut,T , dotted line
(10.2), (10.3), corresponds to the sum over the entries of sub-matrices, see hatched area. The
absolute value |Ut,T | achieves its maximum at the change point, dashed line t = τ
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A “downward shift” in the level from the beginning of the series is indicated
by a large K +

T = max1≤t<T Ut,T and an “upward shift” by a large K −
T =

− min1≤t<T Ut,T . The significance probability associated with the value KT is
approximately given by

p 
 2 e
−6K 2

T
T 3+T 2 , (10.5)

where the approximation holds good, accurate to two decimal places, for p ≤ 0.5
[10.22]. Note that large KT (probable change point) lead to small p. However,
Busuioc and von Storch [10.7] give p = exp(−3K 2

T /T 3 + T 2) as expression for
the probability. We use the software package “HyStat” [10.18, 10.29]. Although
Busuioc and von Storch [10.7] already emphasise the two assumptions of stationar-
ity and the lack of serial correlation, in hydrology the test is used for the detection
of change points.

We also analyse long-term correlations using the well-established detrended fluc-
tuation analysis (DFA) [10.21] and concentrate on large time scales. In the presence
of long-term correlations, the autocorrelation function decays with a power law
(X normalised to zero mean and unit variance):

C(s) = 1

T − s

T −s∑

i=1

Xi Xi+s ∼ s−γ , 0 < γ ≤ 1 . (10.6)

The direct determination of C(s) and γ is hindered by non-stationarities such
as trends. On large time scales C(s) tends to fluctuate around zero level, thus it
becomes impossible to determine the correlation exponent γ . The DFA method
overcomes these problems, because it systematically removes trends on all time
scales. For a detailed description of the method we refer to [10.5, 10.8, 10.11,
10.14, 10.19, 10.21], Chap. 11 in this book, and references therein. The fluctuation
exponent α, provided by the DFA method, can have the following values:

α < 0.5 anti-correlated
α 
 0.5 uncorrelated

0.5 < α < 1.0 long-term correlated
1.0 ≤ α long-term correlated, non-stationary.

It is related to γ via [10.9, 10.14, 10.21]

γ = 2 − 2α , 0 < γ ≤ 1. (10.7)

The exponent α is similar to the Hurst exponent H >∼ α, introduced by Hurst
with his R/S-analysis [10.9, 10.13, 10.15]. An alternative method for the analysis
of autocorrelations is among others the power spectral analysis, where a decaying
power law with exponent β = 2α − 1 can be observed [10.14, 10.23].
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10.4 Results

10.4.1 River Runoff Records

The 23 monthly discharge records specified in Sect. 10.2 are studied for two main
properties. First we apply the Pettitt test described in the previous section and obtain
the position of a possible change point and its significance. The results are given in
Table 10.2. In two cases (9%) of the here considered records, the significance for a
change point is smaller than 0.8, in 18 (78%) it is bigger than 0.9, in 16 (70%) bigger
than 0.95 and even 13 records (57%) have a change point with significance of 1.00.
The position of the change points varies strongly, but we focus on the significance
provided by the statistics.

As mentioned before, DFA systematically removes non-stationarities on all time
scales. This enables the reliable characterisation of long-term correlations. The
records discussed in this section show the reported long-term correlations, but
they may also incorporate non-stationarities. DFA was tested for a variety of non-
stationarities [10.8, 10.11, 10.14]. Our DFA results are also given in Table 10.2.
We do not show examples of fluctuation functions, since these can be found in
Chap. 11. Long-term correlations in hydrological records are a well-known and

Table 10.2 Results of the Pettitt-test and DFA for the monthly river discharge records presented in
Table 10.1. We list the position τ of a change point and its significance 1 − p after Eq. (10.5). Fur-
ther the determined fluctuation exponent α and the with Eq. (10.7) resulting correlation exponent
γ , Eq. (10.6), are given. The errors for α lay typically between 0.03 and 0.05

ID Gauge τ 1 − p αDFA2 γ

1 Oberammergau 10/1946 0.61 0.77 0.45
2 Inkofen 01/1977 1.00 0.86 0.29
3 Beuron 10/1964 1.00 0.65 0.7
4 Hofkirchen 02/1965 0.99 0.83 0.34
5 Ebnet 02/1965 0.99 0.67 0.67
6 Bad Aibling 04/1947 1.00 0.73 0.53
7 Kempten 08/1964 0.42 0.63 0.75
8 Wiblingen 02/1965 1.00 0.73 0.53
9 Oberaudorf 09/1964 1.00 0.63 0.73

10 Mittenwald 10/1964 1.00 0.83 0.34
11 Untergriesheim 02/1978 1.00 0.84 0.32
12 Schwaibach 10/1977 0.98 0.66 0.68
13 Gaildorf 12/1921 0.88 0.72 0.55
14 Garmisch 08/1964 0.90 0.79 0.42
15 Schweinfurt 02/1978 1.00 0.87 0.26
16 Heitzenhofen 02/1978 1.00 0.9 0.21
17 Plochingen 12/1964 1.00 0.82 0.35
18 Regenstauf 02/1965 1.00 0.82 0.35
19 Hof 07/1946 0.93 0.82 0.35
20 Stein at Altenmarkt 03/1946 1.00 0.67 0.67
21 Pfronten-Ried 07/1946 0.89 0.61 0.78
22 Biessenhofen 11/1941 0.92 0.61 0.78
23 Oberlauchringen 06/1941 1.00 0.76 0.49
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studied phenomenon [10.9, 10.13], Chap. 11 and references therein. Our DFA
results agree with previous studies described in Chap. 11. Weakest long-term corre-
lations were found for the record of Biessenhofen with α = 0.61 and Heitzenhofen
exhibits strongest long-term correlations with α = 0.90. For the 23 records we
obtain a mean value α = 0.75 ± 0.09.

We find that the records exhibit on the one hand significant change points
(according to the Pettitt test) and on the other hand pronounced long-term corre-
lations. This fact arises the question whether these two properties observed in the
runoff records are related. In order to work out the pure influence of long-term
correlations on the Pettitt test, in the absence of non-stationarities, we perform sim-
ulations with artificial data in the next section.

We would like to remark that we have also performed the analogue study based
on the test of Bernier [10.2, 10.29] and found very similar results showing a strong
dependence of the significance on the strength of long-term correlations.

10.4.2 Simulations

The Pettitt test was developed under the assumptions of stationarity and a lack of
serial correlation [10.7, 10.22], although it is a common tool for the detection of
change points in natural records, e.g. in hydrology. In [10.7] already the influence
of short-term correlations on the Pettitt test is reported, using an AR(1) process.
We extend this work by the application to long-term correlated sequences. This was
done by creating long-term correlated data using Fourier filtering method [10.20]
with given fluctuation exponent α = 1

2 (β+ 1) and length T = 10 000. By construc-
tion, these sequences are stationary and do not exhibit change points. For each value
of α we use 100 configurations (only 10 for α > 0.7) and determine the probability
for the change point found by the method. Histograms of the occurring probabilities
are given in Fig. 10.3 and show how the outcome is affected by the strength of long-
term correlations. For uncorrelated records (α = 0.5), the significance is more or
less equally distributed. Already for weak long-term correlations (α = 0.55), higher
probability occurs more frequently. At α = 0.65 almost always p = 1.00 is found.

In Fig. 10.4 we plot the mean probability against the specified fluctuation expo-
nent α. The probability increases with the strength of long-term correlations and
achieves quickly the value 1. Further the results of the analysed river runoff records
are plotted, which follow more or less the simulated results. We therefore conclude
that the Pettitt test is strongly affected by autocorrelations, especially by long-term
correlations.

10.4.3 Reasoning

In Fig. 10.5 we show three numerical examples as an illustration of the Pettitt
test. If the sequence Xi is uncorrelated, then Di j is homogeneous and |Ut,T | does
not achieve large values. A change point in the form of a sudden offset causes
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Fig. 10.3 Frequencies of probabilities for change points found in artificial stationary long-term
correlated sequences. For each value of α = 0.5, 0.55, 0.6, 0.65 100 configurations were analysed

concentrations of ±1 since the difference in a certain direction becomes more often
positive or negative. In the case of correlated noise, natural clustering occurs and
|Ut,T | reaches large values, even in the stationary case and in the absence of a change
point.

Let us assume Xk being the maximum value of the complete record. Then the
sum in (10.3) is equal to T − 1. Accordingly, for the second largest value the sum
is equal to T − 3, and so on. Then Ut,T is the cumulative sum over the sequence
of these integer values in the corresponding order. The cumulative sum, also called
profile, represents a random walk [10.3, 10.4]. It is known that the mean square
displacement of such a random walk strongly depends on the serial correlations of
the initial record. In addition, this property is used in fluctuation analysis [10.6,
10.19]. Thus, it is clear why the significance for finding change points with the
Pettitt test is drastically increased for long-term correlated records. The fact that
the results for real records do not follow exactly those of the simulated records in
Fig. 10.4, we attribute to additional properties such as multifractality; see [10.15,
10.16] and Chap. 11.

In addition a series can be separated at a once found change point and the method
can be applied to each of both pieces. As long as change points are found this
procedure can be repeated stepwise. Segmentation procedures are described, e.g.
in [10.12] or [10.10]. In 1974 Klemeš [10.17] proposed a model for long-term
correlations, where a series consists of independent constant offsets with a certain
distribution of lengths and overlaid white noise. So we see a strong relation between
the occurrence of look alike change points and long-term correlations.
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Fig. 10.4 Dependence of the probability of change point after Pettitt-test on the strength of long-
term correlations. The square-symbol represents values of artificial sequences of 100 configura-
tions (10 for α > 0.7) of length T = 10 000 and specified fluctuation exponent α, compare
Fig. 10.3. The results for real data, discussed in the previous Sect. 10.4, are shown with the sym-
bol ×. The two outlying gauges have the ID 1 and 7, see Table 10.2

Fig. 10.5 The matrix Di j (10.1) for three examples of Gaussian noise with length T = 512 and
normalised variance (σ 2

Xi
=1). Black and white correspond to Di j = ±1, zero is grey (diagonal).

Left: uncorrelated series Xi lead to homogeneous Di j . Central: uncorrelated series with change
point at τ = 300 in form of an offset of strength 1. Darker or brighter areas indicate that dif-
ferences in one direction occur more frequently. The statistic Ut,T (10.2), (10.3) evaluates this by
summation. Right: correlated noise with α = 0.85 causes a natural patchiness

10.5 Conclusion

In this work we have studied the influence of long-term correlations on the Pettitt
test. For this purpose we have analysed 23 runoff records from gauges in southern
Germany with (a) the Pettitt test and (b) DFA. The analysis provides for (a) in most
of the cases significant change points and for (b) typical long-term correlations.
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The significance of the change points seems to increase with the strength of the
long-term correlations. This outcome is supported by the same analysis for artificial
long-term correlated records, which proves a clear dependence between long-term
correlations and a change point after [10.22].

We find that the application of the Pettitt test leads to enormous uncertainties
and is not suitable for records which exhibit long-term correlations. Our results
therefore confirm [10.7] who discussed similar effects for short-term correlated data.
We would like to remark that the fact, that the detected change points are found at
similar years for different records, is not an indicator for the correctness of those
results, but rather due to the cross-correlations between the records [10.24, 10.26].

Basically, the mechanism behind the Pettitt test is plausible as depicted in
Fig. 10.5. In order to overcome the influence of autocorrelations, we suggest to
modify the expression for the significance p, (10.5), by taking into account long-
and short-term correlations.
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Creek in Ein Advat (Ramon Nature Reserve near Mize Ramon, Israel, 16.2.2010, Courtesy of
L. Costa). Rivers being dry in summer or frozen in winter exhibit much weaker persistence than
other rivers



Chapter 11
Detrended Fluctuation Studies of Long-Term
Persistence and Multifractality of Precipitation
and River Runoff Records

Diego Rybski, Armin Bunde, Shlomo Havlin, Jan W. Kantelhardt, and
Eva Koscielny-Bunde

We studied and compared the autocorrelation behaviour and the temporal multifrac-
tal properties of long daily river discharge and precipitation records from 42 hydro-
logical stations and 99 meteorological stations around the globe. To determine the
scaling behaviour in the presence of trends, we applied detrended fluctuation anal-
ysis (DFA) and multifractal DFA. We found that the daily runoffs are characterised
by a power-law decay of the autocorrelation function above some crossover time
that usually is several weeks. The corresponding correlation exponent varies from
river to river in a wide range. Below the crossovers pronounced short-term corre-
lations occur. In contrast, most of the precipitation series show scaling behaviour
corresponding to a rapid decay of the autocorrelation function. For the multifrac-
tal characterisation of the data we determined the generalised Hurst exponents and
applied three operational models. We found that the universal multifractal model
fits well the scaling behaviour of the positive moments in nearly all runoff and pre-
cipitation records, while positive as well as negative moments are consistent with
two-parameter fits from an extended version of the multiplicative cascade model
for all runoff records and most of the precipitation records. Some weakly multi-
fractal precipitation records, however, are better characterised by a simple bifractal
model.

11.1 Introduction

The analysis of the persistence in river flows and precipitation has been initiated by
H. E. Hurst who found about half a century ago that runoff records from various
rivers exhibit long-range statistical dependencies [11.27]. Later, similar long-term

D. Rybski (B)
Institut für Theoretische Physik Justus-Liebig-, Universität Giessen, 35392 Giessen, Germany
e-mail: ca-dr@rybski.de

J.P. Kropp, H.-J. Schellnhuber (eds.), In Extremis,
DOI 10.1007/978-3-642-14863-7_11, C© Springer-Verlag Berlin Heidelberg 2011

217



218 D. Rybski et al.

correlated fluctuation behaviour was reported in many other geophysical records
including temperature and precipitation data [11.28, 11.34, 11.44, 11.47, 11.49],
see also [11.16]. For a critical discussion of the ‘Hurst phenomenon’ and alternative
explanations we refer to [11.5, 11.6, 11.17, 11.33, 11.39, 11.50, 11.59, 11.63] and
references therein.

In stationary time series the scaling of the fluctuations with time is reflected by
the scaling of the power spectrum E( f ) with frequency f , E( f ) ∼ f −β . The expo-
nent β is related to the decay of the corresponding autocorrelation function C(s).
For β between 0 and 1, C(s) decays by a power law, C(s) ∼ s−γ , with γ = 1 − β.
In this case, the mean correlation time diverges, and the system is regarded as long-
term correlated. For β = 0, the runoff or precipitation data are uncorrelated (‘white
noise’). The exponents β and γ can also be determined from a fluctuation analysis,
where the departures from the mean daily runoffs or precipitation are considered as
increments of a random walk process. If the record is uncorrelated, the fluctuation
function F2(s), which is equivalent to the root-mean-square displacement of the
random walk, increases as the square root of the time scale s, F2(s) ∼ √

s. For
long-term correlated data, the random walk becomes anomalous, and F2(s) ∼ sh(2).
The fluctuation exponent h(2) is nearly identical to the Hurst exponent (as deter-
mined by Hurst’s original rescaled range analysis) and related to the exponents β
and γ via β = 1 − γ = 2 h(2) − 1. Many early studies exclusively focused on
either the absolute values or the variances of the full distribution of the fluctuations,
which can be regarded as the first moment F1(s) and the second moment F2(s) of
the fluctuations, respectively, in given time segments of length s.

The conventional methods, however, may fail when trends are present in the sys-
tem. Trends are systematic deviations from the average runoff or precipitation that
are caused by external processes, e.g. the construction of a water regulation device,
the seasonal cycle, or a changing climate (e.g. global warming). Monotonous trends
may lead to an overestimation of the fluctuation exponent and thus to an underes-
timation of γ . It is even possible that uncorrelated data, under the influence of a
trend, look like long-term correlated ones when using the above analysis methods
[11.5]. In addition, long-term correlated data cannot simply be detrended by com-
mon regression or the technique of moving averages, since these methods destroy
the correlations on long time scales (above the window size used). Furthermore,
it is difficult to distinguish trends from long-term correlations, because stationary
long-term correlated time series exhibit persistent behaviour and a tendency to stay
close to the momentary value. This causes positive or negative deviations from the
average value for long periods that might look like a trend. For a discussion of these
problems, see [11.8, 11.29, 11.36, 11.37, 11.62]. Further we would like to remark
that the pronounced mountain–valley structure of long-term correlated records leads
to a clustering of extreme events; see Chap. 1.

In the last years, several methods such as wavelet techniques (WT) and detrended
fluctuation analysis (DFA) have been developed that are able to determine long-term
correlations in the presence of trends. For details and applications of the methods to
a large number of meteorological, climatological and biological records we refer to
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[11.3, 11.7, 11.9, 11.29, 11.56, 11.69]; for early DFA applications in hydrology, see
[11.31, 11.49, 11.52]. These methods, described in Sect. 11.3, consider fluctuations
in the cumulated runoff or precipitation records (often called the ‘profile’ or ‘land-
scape’ of the record). They differ in the way the fluctuations are determined and in
the type of polynomial trend that is eliminated in each time window of size s.

Using the detrending methods, we have studied 42 long daily runoff records and
99 long daily precipitation records from all over the world [11.30, 11.31, 11.35].
We found that F2(s) scales as sh(2) for large time lags s. For the precipitation
data, h(2) is close to 0.5, indicating rapidly decaying autocorrelations. We like
to note, however, that this result is not synonymous with white noise behaviour,
since the precipitation data exhibit weak short-term correlations and pronounced
multifractal behaviour (see below). Our study has also been motivated by the fact
that the results for precipitation data have been discussed controversially in liter-
ature. Based on power spectra analysis [11.18] observed white noise behaviour at
intermediate scales and long-term correlations on time scales above 3 years, Ref-
erences [11.44, 11.49, 11.57, 11.58] reported fractal scaling and long-term correla-
tions on time scales below three years. For more recent works on the crossovers in
the scaling behaviour of rainfall we refer to [11.14, 11.48].

For the runoff data, in contrast, the fluctuations show a pronounced crossover
at intermediate scales (typically several weeks) [11.30, 11.31, 11.35]. Below the
crossover, for small time windows s, h(2) is close to 1.5, characterising a highly cor-
related regime similar to Brownian noise in agreement with the findings of [11.49].
Well above the crossover, at large times, the scaling exponent h(2) varies from river
to river between 0.55 and 0.95 in a non-universal manner always remaining in the
stationary regime (h(2) < 1). Our findings are not consistent with the hypothesis
that the scaling is universal with an exponent close to 0.75 [11.16, 11.28] for both
small and large time scales.

In the last decade it has been realized that a multifractal description is required
for both precipitation and runoff records [11.14, 11.45, 11.55, 11.71, 11.72], and all
moments Fq(s) need to be studied for a full characterisation of the fluctuations in
these records. For each precipitation or runoff record, this multifractal description
can be regarded as a ‘fingerprint’, which, among other things, can serve as an effi-
cient non-trivial test bed for the performance of state-of-the-art precipitation–runoff
models. We have applied the recently developed multifractal detrended fluctuation
analysis [11.32] that can systematically distinguish between long-term correlations
and trends. We determined the multifractal spectrum and compared the long-term
scaling behaviour of both daily runoff and daily precipitation records on the same
time scales [11.30, 11.31, 11.35].

Our approach differs from the multifractal approach introduced into hydrology
by Schertzer et al. [11.10, 11.11, 11.42, 11.55, 11.64, 11.65, 11.71, 11.72] that was
based on the concept of scale invariance in turbulence [11.19], and trace moment
techniques, see also [11.60]. We performed the multifractal analysis by studying
how all moments of the fluctuations Fq(s) ∼ sh(q) scale with time s in the asymp-
totic regime [11.30–11.32, 11.35]. Our approach includes also negative q values
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and is not based on any specific model assumptions. To describe the numerical out-
come of the analysis for h(q) of both runoff and precipitation records, we employed
three fitting formulas derived from operational models: (i) the universal multifractal
model in [11.65], which is constrained to q > 0; (ii) an extended multiplicative cas-
cade model [11.31]; and (iii) a bifractal model [11.30]. We found that the universal
multifractal model (three fitting parameters) can be used to describe well the scal-
ing behaviour for the positive moments q of runoff and precipitation records. Both
positive and negative moments, however, follow rather closely the formula from the
extended multiplicative cascade model (two fitting parameters) for all runoff records
and 55% of the analysed precipitation records. Some of the precipitation records
exhibit rather weak multifractality and 27% of them can be better characterised by
the bifractal description.

This chapter is organized as follows: In Sect. 11.2 we describe the runoff and pre-
cipitation records we studied. Sections 11.3 and 11.4 are devoted to our methods for
autocorrelation analysis and multifractal time series analysis, respectively; we relate
to other multifractal formalisms in Sect. 11.4.2. Sections 11.5 and 11.6 summarize
our results for runoff data and precipitation data and include the discussion. Finally,
the main results are summarized in Sect. 11.7 and additional model considerations
are discussed in the Appendix.

11.2 Data

We have analysed long daily runoff records {Wi } from 42 hydrological stations and
long daily precipitation records {Pi } from 99 meteorological stations [11.30, 11.35].
The stations are representative for different rivers and different climate zones. The
99 precipitation records we analysed were measured at sites in Europe (40), Asia
(34), North-America (15), Australia (5), and South-America (5). The latitude of the
locations varies between 52.6S (Campbell Island, New Zealand) and 71.3N (Bar-
row Post, USA). The sites are concentrated on the northern hemisphere, thus the
average latitude is 41N. Further, the sites are located at elevations from sea level up
to 3 650 m (Lhasa, China) with an average of about 400 m. Concerning the climate
[11.41], 33 sites are located in maritime regions, 56 in continental climate, and 10 in
high-continental climate. In other categories, the stations are sited in tropical (12),
sub-tropical (24), warm (44), cold (13), and polar (6) climate. In terms of humidity,
the climate is really arid at only one considered site (Kizil Arvat, Turkmenistan),
but semi-arid at 20 sites, semi-humid at 59 sites, and humid at 19 sites. The duration
of the records ranges from 34 to 189 years (average 86 years), yielding approx.
12 000–69 000 data points each.

Of the 42 daily runoff records (see Table 11.1 for a full list), 18 are from the
southern part of Germany and 24 are from North and South America, Africa,
Australia, Asia, and Europe. The duration of the records ranges from 39 to 111
years (average 77 years) for the records from the southern part of Germany and
from 51 to 171 years (average 92 years) for the international records, yielding
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Table 11.1 Table of investigated international river basins [11.21] and investigated south German
river basins. We list the river and station name, the duration of the investigated daily record, the size
of the basin area, and the results of our analysis, H ≡ h(2), as well as the multifractal quantities
a, b, and �α

River name Gauge name

Period of
observation
(years)

Basin area
(km2) h(2) a b �α

Zaire Kinshasa, Zaire 81 3 475 000 0.95 0.52 0.52 0.00
Mississipi St. Louis, USA 59 1 805 000 0.91 0.44 0.61 0.48
Orinoco Puente Angostura, 65 836 000 0.73 0.50 0.69 0.46

Venezuela
Columbia River The Dallas, USA 114 613 830 0.59 0.54 0.76 0.50
Danube Orsova, Romania 151 576 232 0.85 0.50 0.60 0.26
Dvina UST-Pinega, Russia 89 348 000 0.56 0.53 0.79 0.58
Fraser River Hope, USA 84 217 000 0.69 0.53 0.70 0.38
Rhine Rees, Germany 143 159 680 0.76 0.52 0.65 0.32
Niger Koulikoro, Mali 79 120 000 0.60 0.51 0.78 0.62
Susquehanna Marietta, USA 61 67 310 0.60 0.53 0.79 0.57
Susquehanna Harrisburg, USA 96 62 419 0.58 0.55 0.77 0.48
Elbe Dresden, Germany 151 53 096 0.80 0.48 0.65 0.42
Labe Decin, Czechia 102 51 104 0.80 0.45 0.68 0.61
Maas Borgharen, Netherland 80 21 300 0.76 0.49 0.68 0.48
Weser Vlotho, Germany 171 17 618 0.76 0.50 0.68 0.43
Tana Polmak, Norway 51 14 005 0.56 0.50 0.81 0.69
Thames Kingston, England 113 9 948 0.80 0.47 0.67 0.51
Grand River Gallatin, USA 72 5 830 0.72 0.42 0.76 0.87
Mary River Miva, Australia 76 4 830 0.60 0.52 0.78 0.57
Severn Bewdley, England 71 4 330 0.63 0.54 0.73 0.43
Gaula Haga Bru, Norway 90 3 080 0.55 0.57 0.77 0.43
Barron River Myola, Australia 79 1 940 0.60 0.50 0.79 0.65
Mitta Mitta River Hinnomunije, Australia 67 1 530 0.75 0.47 0.68 0.53
Johnston River Upstream Central 74 390 0.58 0.52 0.78 0.58

Mill, Australia
Southern Germany
Danube Achleiten 97 76 653 0.82 0.49 0.63 0.35
Danube Kehlheim 97 22 950 0.85 0.48 0.63 0.39
Danube Donauwörth 74 15 037 0.81 0.49 0.63 0.37
Neckar Plochingen 79 3 995 0.80 0.49 0.65 0.39
Kocher Stein 111 1 929 0.75 0.53 0.64 0.26
Jagst Untergriesheim 73 1 826 0.76 0.45 0.69 0.61
Isar Bad Tölz 39 1 554 0.68 0.53 0.71 0.41
Vils Grafenmühle 58 1 436 0.61 0.50 0.78 0.62
Danube Beuron 70 1 309 0.65 0.53 0.72 0.45
Amper Fürstenfeldbruck 77 1 235 0.81 0.47 0.65 0.47
Wutach Oberlauchringen 85 1 129 0.75 0.52 0.67 0.37
Neckar Horb 65 1 118 0.68 0.44 0.75 0.78
Tauber Bad Mergentheim 66 1 018 0.80 0.44 0.70 0.68
Kinzig Schwaibach 82 921 0.67 0.52 0.72 0.47
Loisach Kochel 87 684 0.82 0.48 0.65 0.44
Murg Rotenfels 77 469 0.70 0.53 0.70 0.41
Wertach Biessenhofen 77 450 0.66 0.56 0.70 0.31
Würm Leutstetten 77 413 0.90 0.39 0.66 0.77
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approx. 14 000–62 000 data points each. The basin area sizes vary between 390 and
3 475 000 km2; the averages are 7 400 and 350 000 km2 for the rivers in southern
Germany and the international rivers, respectively.

11.3 Correlation Analysis

11.3.1 General

We consider a record of daily water runoff values Wi or precipitation Pi measured
at a certain gauge. The index i counts the days in the record, i = 1,2,. . . ,N . To
eliminate the periodic seasonal trends, we concentrate on the departures

φ
(W)
i = Wi − Wi and φ

(P)
i = Pi − Pi (11.1)

from the mean daily runoff Wi or precipitation Pi . Wi or Pi are calculated for each
calendar date i (e.g. 1st April) by averaging over all years in the record. In addition,
one may also eliminate seasonal trends in the variance and analyse

φ̃
(W)
i = (Wi −Wi )/(W 2

i −Wi
2
)1/2 and φ̃

(P)
i = (Pi − Pi )/(P2

i − Pi
2
)1/2 (11.2)

instead of φi . In order to avoid repetitions we will skip the indices (P) and (W)

in all equations that apply to both φ
(P)
i and φ

(W)
i from now on. We also checked

whether the results are modified if the seasonal trend Wi is smoothed by a continu-
ous approximation based on polynomial fits.

The autocorrelation function C(s) describes, how the persistence decays in time.
If the φi are uncorrelated, C(s) is zero for all s > 0. If correlations exist only up
to a certain number of days s×, the correlation function will vanish above s×. For
long-term correlations, C(s) decays by a power law

C(s) = 〈φiφi+s〉
〈φ2〉 ∼ s−γ , 0 < γ < 1, (11.3)

where the average 〈· · · 〉 is over all pairs with the same time lag s.1 For large values
of s, a direct calculation of C(s) is hindered by the level of noise present in the finite
records and by non-stationarities in the data. There are several alternative methods
for calculating the correlation function in the presence of long-term correlations,
which we describe in the following sections.

1 In this chapter we are only interested in the asymptotical scaling behaviour and do not consider
parametric models for the river runoffs like the FARIMA model (see, e.g. [11.20, 11.51, 11.52]),
which by definition cannot account for multifractality. Accordingly we do not need to employ
approximate maximum likelihood estimators [11.26, 11.76].
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11.3.2 Standard Fluctuation Analysis (FA)

In the standard fluctuation analysis (FA), we consider the ‘profile’

Y (i) ≡
i∑

k=1

φk , i = 1, 2, . . . , N (11.4)

and study how the fluctuations of the profile, in a given time window of size s,
increase with s. We can consider the profile Y (i) as the position of a random walker
on a linear chain after i steps. The random walker starts at the origin and performs,
in the kth step, a jump of length φk to the right, if φk is positive, and to the left, if
φk is negative.

To find how the square fluctuations of the profile scale with s, we first divide each
record of N elements into Ns = int(N/s) non-overlapping segments of size s start-
ing from the beginning and Ns non-overlapping segments of size s starting from the
end of the considered record. Then we determine the fluctuations in each segment ν.

In the FA, we obtain the fluctuations just from the values of the profile at both
endpoints of each segment ν,

F2(ν, s) = [Y (νs) − Y ((ν − 1)s)]2 , (11.5)

and average F2(ν, s) over all subsequences to obtain the mean fluctuation F2(s),

F2(s) ≡
⎡

⎣ 1

2Ns

2Ns∑

ν=1

F2(ν, s)

⎤

⎦
1/2

. (11.6)

By definition, F2(s) can be viewed as the root-mean-square displacement of the
random walker on the chain, after s steps. For uncorrelated φi values, we obtain
Fick’s diffusion law F2(s) ∼ s1/2. For the relevant case of long-term correlations,
where C(s) follows the power-law behaviour of (11.3), F2(s) increases by a power
law (see, e.g. [11.9]),

F2(s) ∼ sh(2) , (11.7)

where the fluctuation exponent h(2) is related to the correlation exponent γ and the
power spectrum exponent β by

h(2) = 1 − γ /2 = (1 + β)/2 , (11.8)

see, e.g. [11.29]. For power-law correlations decaying faster than 1/s, we have
h(2) = 1/2 like for uncorrelated data.
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11.3.3 The Detrended Fluctuation Analysis (DFA)

As described in the Introduction, the results of FA are unreliable if trends occur in
the data. To overcome this problem, the detrended fluctuation analysis (DFA) was
developed [11.56]. There are different orders of DFA that are distinguished by the
way the trends in the data are eliminated.

In lowest order (DFA1) we determine, for each segment ν, the best linear fit of
the profile and identify the fluctuations by the variance F2(ν, s) of the profile from
this straight line. This way, we eliminate the influence of possible linear trends on
scales larger than the segment. Note that linear trends in the profile correspond to
stair-like trends in the original record. DFA1 has been proposed originally by Peng
et al. [11.56] when analysing correlations in DNA. It can be generalised straightfor-
wardly to eliminate higher order trends [11.7, 11.29].

In second-order DFA (DFA2) one calculates the variances F2(ν, s) of the profile
from best quadratic fits of the profile (Fig. 11.1), this way eliminating the influence
of possible linear and parabolic trends on scales larger than the segment considered.
In general, in nth-order DFA, we calculate the variances of the profile from the
best nth-order polynomial fit, this way eliminating the influence of possible (n − 1)
th-order trends on scales larger than the segment size, since the profile represents
the integrated record.

Explicitly, we calculate the best polynomial fit pν(i) of the profile in each of the
2Ns segments ν and determine the variance

F2(ν, s) ≡ 1

s

s∑

i=1

[
Y ((ν − 1)s + i) − pν(i)

]2
. (11.9)

Then we employ (11.6) to determine the mean fluctuation F2(s).
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Fig. 11.1 Illustration of the detrending procedure in the second order detrended fluctuation analy-
sis (DFA2). The profile Y (i) (dashed lines, blue) calculated by summation of the time series is split
into non-overlapping segments of equal duration s (time scale). This step is illustrated for s = 100
days in (a) and for s = 200 days in (b). Least square quadratic fits (continuous lines, red) to the
profile are calculated in each segment. The squares of the differences between the profile and the
fits are used to calculate the fluctuation function F2(s) of the DFA procedure. After [11.15]
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Since FA and the various stages of the DFA have different detrending capabili-
ties, a comparison of the fluctuation functions obtained by FA and DFAn can yield
insight into both long-term correlations and types of trends [11.29, 11.61]. This
cannot be achieved by the conventional methods, like the spectral analysis. We like
to note that DFA1 is somewhat similar to rescaled range analysis introduced by
Hurst (for a review see, e.g. [11.16]). For monofractal data, h(2) is identical to the
Hurst exponent.

11.3.4 Wavelet Transform (WT)

The wavelet methods we employ here are based on the determination of the mean
values Y ν(s) of the profile in each segment ν (of length s) and the calculation of
the fluctuations between neighbouring segments. The different order techniques we
have used in analysing data fluctuations differ in the way the fluctuations between
the average profiles are treated and possible non-stationarities are eliminated. The
first-, second-, and third-order wavelet methods are described below:

(i) In the first-order wavelet method (WT1), one simply determines the fluctu-
ations from the first-order difference F2(ν, s) = [Y ν(s) − Y ν+1(s)]2 to be
inserted in (11.6). WT1 corresponds to FA where constant trends in the profile
are eliminated, while linear trends are not eliminated.

(ii) In the second-order wavelet method (WT2), one determines the fluctuations
from the second-order difference F2(ν, s) = [Y ν(s)− 2Y ν+1(s)+ Y ν+2(s)]2.
So, if the profile consists of a trend term linear in s and a fluctuating term,
the trend term is eliminated. Regarding trend elimination, WT2 corresponds to
DFA1.

(iii) In the third-order wavelet method (WT3), one determines the fluctuations
from the third-order difference F2(ν, s) = [Y ν(s) − 3Y ν+1(s) + 3Y ν+2(s) −
Y ν+3(s)]2. By definition, WT3 eliminates linear and parabolic trend terms in
the profile. In general, in WTn we determine the fluctuations from the nth-
order difference, this way eliminating trends described by (n − 1)-order poly-
nomials in the profile.

Methods (i–iii) are called wavelet methods, since they can be interpreted as trans-
forming the profile by discrete wavelets representing first-, second-, and third-order
cumulative derivatives of the profile. The first-order wavelets are known in the lit-
erature as Haar wavelets. One can also use different shapes of the wavelets (e.g.
Gaussian wavelets with width s), which have been used by Arneodo et al. [11.3]
to study, for example, long-range correlations in DNA. Since the various stages of
the wavelet methods WT1, WT2, WT3, etc. have different detrending capabilities,
a comparison of their fluctuation functions can yield insight into both long-term
correlations and types of trends.
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At the end of this section, before describing the results of the FA, DFA, and WT
analysis, we note that for very large s values, s > N/4 for DFA and s > N/10
for FA and WT, the fluctuation functions become inaccurate due to statistical errors.
The difference in the statistics is due to the fact that the number of independent
segments of length s is larger in DFA than in WT, and the fluctuations in FA are
larger than in DFA. Hence, in the analysis we will concentrate on s values lower
than smax = N/4 for DFA and smax = N/10 for FA and WT. We manually chose an
appropriate (shorter) fitting range of typically two orders of magnitude and assign
a scaling exponent h(2) to the curve when, in this fitting rage, the curve can be
reasonably well approximated by a straight line.

11.4 Multifractal Analysis

11.4.1 Multifractal DFA (MF-DFA)

For multifractal time series, a single scaling exponent like h(2) or γ does not
completely characterise the record, since many subsets of the series have differ-
ent scaling behaviour, e.g. large fluctuations are less correlated than small fluctua-
tions. In order to study these multifractal scaling properties, the DFA procedure can
be generalised to higher moments [11.32]. This generalisation (multifractal DFA,
MF-DFA) is equivalent to the wavelet transform modulus maxima (WTMM)
method [11.3, 11.53], but the MF-DFA is much easier to implement on the com-
puter; see [11.31] for a comparison of the two methods (for wavelet methods see
also [11.38]). In this procedure, the variance F2(ν, s) in (11.6) is replaced by its
q/2nd power and the square root is replaced by the 1/qth power, where q �= 0 is a
real parameter,

Fq(s) ≡
⎡

⎣ 1

2Ns

2Ns∑

ν=1

[
F2(ν, s)

]q/2

⎤

⎦
1/q

. (11.10)

Analogous to (11.7) one defines then the generalised fluctuation exponent h(q) by

Fq(s) ∼ sh(q) , (11.11)

We note that h(1) corresponds to the classical Hurst exponent H determined by
rescaled range analysis (since first moments are considered in both cases) and that
multifractal DFA is identical to standard DFA if q = 2 (hence the notation h(2) in
(11.7)).

For monofractal time series, h(q) is independent of q, since the scaling behaviour
of the variances F2(ν, s) is identical for all segments ν. If, on the other hand, small
and large fluctuations scale differently, there will be a significant dependence of h(q)
on q: If we consider positive values of q, the segments ν with large variance F2(ν, s)
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(i.e. large deviations from the corresponding fit) will dominate the average Fq(s).
Thus, for positive values of q, h(q) describes the scaling behaviour of the segments
with large fluctuations. Usually large fluctuations are characterised by a smaller
scaling exponent h(q). On the contrary, for negative values of q, the segments ν with
small variance F2(ν, s) will dominate the average Fq(s). Hence, for negative values
of q, h(q) describes the scaling behaviour of the segments with small fluctuations,
which are usually characterised by a larger scaling exponent.

11.4.2 Comparison with Related Multifractal Formalisms

The multifractal fluctuation exponents h(q) defined in (11.11) are directly related to
the classical Renyi exponents τ(q) (see, e.g. [11.16, 11.60]) via [11.32]

h(q) = [τ(q) + 1]/q . (11.12)

In the geophysics literature also other multifractal quantities have been used that
h(q) can easily be related to the following:

(1) The ‘generalised variogram’ Cq(s) (see, e.g. (3.82–3.84) in [11.60] and refer-
ences therein) is defined as

Cq(s) ≡ 〈|Y (i + s) − Y (i)|q〉 ∼ sK (q) , (11.13)

where the average is taken over all values of i . Comparing (11.10), (11.11),
and (11.13) one can easily verify that h(q) and K (q) are related by

K (q) = qh(q) . (11.14)

(2) In several geophysics and turbulence papers (see, e.g. [11.10, 11.11, 11.42,
11.55, 11.64, 11.65, 11.71, 11.72]), the structure function

Sq(s) ≡ 〈|φi+s − φi |q〉 ∼ sζ(q) = sq H(q) (11.15)

has been analysed directly without employing the profile Y (i) as done in
(11.13). It is easy to see that H(q) is related to h(q) by

H(q) = ζ(q)/q = h(q) − 1 . (11.16)

Accordingly, the multifractal exponents H(q) defined by Davis et al. [11.10] and
the exponents h(q) defined here in (11.11) differ only by 1. This difference is due
to the fact that here we analyse the cumulative sum of φi , while Davis et al. as well
as the Lovejoy–Schertzer group analyse the φi directly.

For modelling the multifractal behaviour, one can employ, for example, a par-
ticular multifractal process where H(q) (or h(q) = H(q) + 1) is known and
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adjust the parameters (see, e.g. Appendix). However, in most multifractal processes
H(1) = 0 is fixed. Hence, one has to use a fractional integration and shift the
whole function H(q) to adjust the value for q = 1. When doing this, Lovejoy and
Schertzer obtained an interesting formula for ζ(q) = q H(q) for positive q-values
(Schertzer, D., private communication),

ζ(q) = q H ′ − C1

α′ − 1
(qα

′ − q), q ≥ 0. (11.17)

The great advantage of the MF-DFA method used here is that it includes also
negative q values, such that the basic Renyi exponents τ(q) can be calculated for
both negative and positive q values. This allows a further characterisation of the
multifractal series by the singularity spectrum f (α), which is related to τ(q) via a
Legendre transform (see, e.g. [11.16, 11.60]),

α = dτ(q)

dq
and f (α) = qα − τ(q). (11.18)

Here, α is the singularity strength or Hölder exponent, while f (α) denotes the
dimension of the subset of the series that is characterised by α. Using (11.12), we
can directly relate α and f (α) to h(q),

α = h(q) + q
dh(q)

dq
and f (α) = q[α − h(q)] + 1. (11.19)

The strength of the multifractality of a time series can be characterised by the
difference between the maximum and minimum singularity strength α, �α =
αmax − αmin, which fulfil f (α) → 0 for α → αmax and α → αmin.

11.5 Results of the Correlation Behaviour

After the description of the methods we turn to our results for the autocorrelation
behaviour in this section and our results of the multifractal analysis in the next sec-
tion. We begin with the results regarding runoff data.

11.5.1 River Runoff

In our study we analysed 42 runoff records, 18 of them are from the southern part of
Germany, and the rest is from North and South America, Africa, Australia, Asia, and
Europe (see Table 11.1). We begin the analysis with the runoff record for the river
Weser in the northern part of Germany, which has the longest record (171 years) in
this study. Figure 11.2(a) shows the fluctuation functions F2(s) obtained from FA
and DFA1–DFA3. In the log–log plot, the curves are approximately straight lines
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Fig. 11.2 (a) The fluctuation functions F2(s) versus time scale s obtained from FA and DFA1–
DFA3 in double logarithmic plots for daily runoff departures φi = Wi − Wi from the mean daily
runoff Wi for the river Weser, measured from 1823 till 1993 by the hydrological station Vlotho
in Germany. (b) The analogue curves to (a) when the φi are randomly shuffled. The straight lines
have slopes h(2) = 0.76 and 0.5 in (a) and (b), respectively

for s above 30 days, with a slope h(2) ≈ 0.75. The error bar is of the order of 0.03
[11.32]. This result for the Weser suggests that there exists long-term persistence
expressed by the power-law decay of the correlation function, with an exponent
γ ≈ 0.5 (see (11.8)).

To show that the slope h(2) ≈ 0.75 is due to long-term correlations and not due
to a broad probability distribution (Joseph versus Noah phenomenon, see [11.46]),
we have eliminated the correlations by randomly shuffling the φi . This shuffling has
no effect on the probability distribution function of φi . Figure 11.2b shows F2(s)
for the shuffled data. We obtain h(2) = 1/2, showing that the exponent h(2) ≈ 0.75
is due to long-term correlations.

To show that the slope h(2) ≈ 0.75 is not an artefact of the seasonal depen-
dence of the variance and skew, we also considered records where φi was divided
by the variance of each calendary day and applied further detrending techniques
that take into account the skew [11.43]. In addition, we smoothed the seasonal trend
Wi using polynomial fits. In all cases, we found just insignificant changes in the
scaling behaviour for large times. This can be understood easily, since these kinds
of seasonal trends cannot effect the fluctuation behaviour on time scales well above
1 year. It is likely, however, that the seasonal dependencies of the variance and
possibly also of the skew contribute to the behaviour at small times, where the slope
h(2) is much larger than 0.75 in most cases.

Figure 11.3 and Table 11.2 summarize our results for the DFA2 scaling exponents
h(2) on large time scales for all rivers we studied; the mean value is h(2) = 0.72.
Based on some of the data we estimate that the error bars are of the order of
0.03 [11.32]. One can see clearly that the fluctuation exponents vary strongly from
river to river reflecting the fact that there exist different mechanisms for floods
where each may induce different scaling. For example, rain-induced floods and
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Fig. 11.3 Long-term fluctuation exponents h(2) for all international runoff records (violet symbols,
[11.21]) and all runoff records from southern Germany (orange symbols) that were analysed, as a
function of the basin area A. Each symbol represents the result for one hydrological station. After
[11.35]

Table 11.2 Details of the records analysed in Figs. 11.8 and 11.9 and average values for all records
we studied. The recording period and the fitting parameters obtained within the extended multi-
plicative cascade model, (11.21), and the Lovejoy–Schertzer model, (11.20), are reported. Further,
our two main parameters, the fluctuation exponents h(2) = 1 − γ /2 = (β + 1)/2 and the resulting
multifractality strength �α, are given. In the case of Jena, (11.24) has been used instead of (11.21)
and the corresponding parameters are α1 = 0.57, α2 = 0.45, and q× = 3.3. The values for all
analysed runoff records are detailed in Table 11.1

Period h(2) �α a b H ′ C1 α′

Precipitation
Spokane 1881–1994 0.51 0.30 0.63 0.77 −0.48 0.008 1.9
Edinburgh 1896–1997 0.52 0.34 0.61 0.77 −0.47 0.012 1.8
Jena 1827–2000 0.56 0.11 – – −0.43 0.006 2.3
Average (99 records) 86 years 0.53 0.29 – – −0.45 0.012 2.0
Std. deviation 33 years 0.04 0.14 – – 0.06 0.010 0.4
Runoff
Weser 1823–1993 0.76 0.43 0.50 0.68 −0.24 0.023 1.7
Fraser 1913–1996 0.69 0.38 0.53 0.70 −0.29 0.017 1.7
Susquehanna 1891–1986 0.58 0.48 0.55 0.77 −0.40 0.018 1.7
Average (42 records) 86 years 0.72 0.49 – – −0.25 0.039 1.4
Std. deviation 27 years 0.11 0.16 – – 0.10 0.028 0.5

snow-induced floods may introduce different spatial scaling behaviour [11.23],
which might also result in different temporal scaling behaviour (see below). The
h(2) values spread from 0.55 to 0.95. Since the correlation exponent γ is related to
h(2) by γ = 2 − 2h(2), the exponent γ spreads from almost 0 to almost 1, covering
the whole range from very weak to very strong long-term correlations. Accordingly,
there is no universal scaling behaviour. This is in contrast to temperature records,
where universal long-term persistence at land stations, i.e. rather identical values of
h(2) = 0.66 ± 0.06 were observed [11.15, 11.34, 11.68, 11.75].
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Figure 11.3 shows that the exponents do not depend systematically on the basin
area A. This is in line with the conclusions of [11.24] for the flood peaks, where
a systematic dependence on A could also not be found. In addition, here is also
no pronounced regional dependence: the rivers within a local area (such as south-
ern Germany) tend to have nearly the same range of exponents as the international
rivers.

Figure 11.4 shows the fluctuation functions F2(s) of three more rivers, from
Africa, Australia, and Europe. The panels on the left-hand side show the FA and
DFA1–DFA3 curves, while the panels on the right-hand side show the results from
the analogous wavelet analysis WT1–WT4. Evidently, the results are equivalent for
both methods. On large time scales, the fluctuation functions (from DFA1–DFA3
and WT2–WT4) show power-law behaviour, with exponents h(2) 
 0.95 for the
Zaire, h(2) 
 0.60 for the Mary river, and h(2) 
 0.55 for the Gaula river. The
Mary river in Australia is rather dry in the summer. The Gaula river in Norway is
frozen in the winter, and a constant runoff value has been assumed in the data during
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freezing time [11.21]. For the Mary river, the long-term exponent h(2) 
 0.60 is
well below the average value, while for the Gaula river, the long-term correlations
are not pronounced (h(2) = 0.55) and even hard to distinguish from the uncor-
related case h(2) = 0.5. We obtained similar results for the other two ‘frozen’
rivers (Tana from Norway and Dvina from Russia) that we analysed. For interpreting
this distinguished behaviour of the frozen rivers we like to note that on permafrost
ground the lateral inflow (and hence the indirect contribution of the water storage
in the catchment basin) contributes to the runoffs in a different way than on normal
ground, see also [11.23]. Our results (based on three rivers only) seem to suggest
that the contribution of snow melting leads to less correlated runoffs than the con-
tribution of rainfall, but more comprehensive studies will be needed to confirm this
result.

Most curves in Fig. 11.4 show a crossover at time scales of several weeks.
A similar crossover has been reported by Tessier et al. [11.71] for small French
rivers without artificial dams or reservoirs. We note that the crossover time scale
is similar to the period of planetary waves, which are oscillations of very pre-
dominantly tropospheric origin with typical periods of about 2–30 days (see, e.g.
[11.40]). Below the crossover we find an effective scaling exponent h(2) ≈ 1.5,
indicating strong short-term correlations on small time scales. Approximately, the
short-term correlations can be modelled by an ARMA process, where the correlation
time is represented by the typical decay time of floods. This yields h(2) = 1.5 on
short time scales in agreement with our observation. Note, however, that long-term
correlations (and multifractality on large time scales) require an additional and dif-
ferent modelling approach.

11.5.2 Precipitation

Now we turn to the precipitation data, where we studied the records of 99 mete-
orological stations. Figure 11.5 compares the fluctuation functions F2(s) obtained
from DFA1, DFA2, and DFA3 for two representative daily precipitation records
(a–b) with two representative runoff records (c–d). In the log–log plot, the curves
are approximately straight lines on large scales s. For the precipitation records there
is – contrary to the runoff records – only a very weak crossover in F2(s), and the
h(2) values are rather close to 0.5, indicating rapidly decaying autocorrelations.
Specifically, we find h(2) 
 0.55 for Hamburg and h(2) 
 0.50 for Vienna, corre-
sponding to a correlation exponent γ ≈ 0.9 for Hamburg and γ ≥ 1 for Vienna. For
the precipitation data, the higher slopes at very small scales are partly a methodical
artefact (see [11.29]).

Figure 11.6 shows the distributions of the h(2) values obtained with DFA2 on
large time scales for all 99 precipitation records using (11.1) for seasonal detrending.
Based on some of the data we estimate that the error bars are of the order of 0.03
[11.32]. One can clearly see that most precipitation records exhibit no long-term
correlations (h(2) ≈ 0.5) or only very weak long-term correlations (h(2) ≈ 0.55);



11 Detrended Fluctuation Studies of Precipitation and River Runoff Records 233

s [days]

10
–1

F
2(

s)
  [

ar
b.

 u
ni

ts
]

10
–1

10
0

10
0

10
1

10
2

10
2

10
1 10

2
10

3
10

1

10
3

10
2

10
3

10
3

precipitation

Hgrubma
1891−1998

Vienna
1873−1997

s [days]

river runoff

Eebl
1852−2002

(c)(a)

(b) (d) Danube
1840−1990

Fig. 11.5 The fluctuation functions F2(s) versus time scale s obtained from DFA1 to DFA3 (from
the top to the bottom) in double logarithmic plots for representative precipitation and runoff records
(shifted vertically for clarity). Precipitation records: (a) Hamburg, Germany (h(2) = 0.55) and (b)
Vienna, Austria (h(2) = 0.50); runoff records: (c) Elbe river in Dresden, Germany (h(2) = 0.80)
(d) Danube river in Orsova, Romania (h(2) = 0.85). The straight lines through the data have the
reported slopes, and lines with slope h(2) = 0.5 are shown below the data for comparison with the
uncorrelated case

100 101 102 103 104

elevation [m]

0.5

0.6

0.7

0.8

0.9

Fig. 11.6 Long-term fluctuation exponents h(2) for all international precipitation records that we
analysed, as a function of the elevation. Each symbol represents the result for one meteorological
station



234 D. Rybski et al.

the mean value is h(2) = 0.53 ± 0.04. The figure also shows that the exponents
h(2) do not depend systematically on the elevation of the meteorological station.
Further we find no systematic dependence of the h(2) values on climate zone or
geographical region. In order to confirm the absence of long-term autocorrelations
in the precipitation series, we have also calculated the autocorrelation function C(s)
(see (11.3)). We found that after a very small number of days all correlations vanish
(not shown). Note, however, that this result is obtained for the second moment,
and thus it refers only to two-point correlations; higher order correlations are not
excluded by our result.

Figure 11.7 gives further examples of DFA studies of precipitation records. The
data from the summit Zugspitze is an example with relatively strong long-term cor-
relations with α 
 0.6. The large slope of FA indicates a trend in the records.
A similar effect is found for the record of Irkutsk.

Our results for h(2) for precipitation data are not in agreement with [11.49],
where, using DFA1 and seasonal detrending based on procedures similar to (11.1)
for nine precipitation records with 15 min resolution, h(2) ≈ 1.0 (α = h(2) in the
notation used there) was found on time scales below 10 days and h(2) = 0.6 . . . 0.8
on time scales from 10 days to 16 months. We cannot exactly pinpoint the reason for
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the disagreement, in particular since the binned spectral analysis by Matsoukas et al.
[11.49] agrees with our results. However, the DFA1 discrepancy might be caused
by the shorter time series considered by Matsoukas et al. [11.49]. Our h(2) values
are also not in agreement with [11.57, 11.58], where records of length 6 months
were considered and an exponent h(1) ≈ 0.76 (H = h(1) � h(2)) was found
using rescaled range analysis. We believe that the reason for this disagreement is
that the seasonal trend cannot be eliminated in these short records and acts like a
long-term correlation. Thus it seems that the larger exponent obtained by Peters et
al. is due to the seasonal trend but not to long-term correlations. For intermediate
time scales up to 3 years, our finding is in agreement with [11.18], who, however,
report long-term correlations on even larger time scales in disagreement with our
conclusion. This observation of correlations on large time scales might also have
been caused by non-stationarities in the data. Finally, we like to note that our results
do not change significantly, when also the seasonal trend in the variance of the data
was eliminated by using (11.2) instead of (11.1). Although h(2) changes by about
±0.03 for individual records, the average h(2) remains constant.

Since the autocorrelations of rainfall data decay rapidly in time, their temporal
correlations can neither account for the long-term correlations nor for the broad
distribution of the correlation exponents of the runoff data. These results seem to
indicate that the persistence of the runoffs is rather caused by storage effects than
by long-term memory of the precipitation; the integration of rainfall in time–space
might produce long-term memory in river flows. If this interpretation is correct, i.e.
runoff persistence is caused by catchment storage, we would expect it to be less
emphasized in arid regions. Indeed, for the Mary river in Australia, the only river
with arid catchment in our study, we find a quite low fluctuation exponent, h(2) ≈
0.6, corresponding to weak persistence (see Fig. 11.4). Further studies are needed to
confirm our interpretation. Note that the integration hypothesis cannot explain the
differences in the multifractality of runoff and rainfall that we discuss now.

11.6 Results of the Multifractal Behaviour

Next we compare the multifractal behaviour of the 42 daily river runoff records
and of the 99 daily precipitation records. For all records, we found that MF-DFA2,
MF-DFA3, and MF-DFA4 (corresponding to second-, third-, and fourth-order poly-
nomials in the detrending procedure, respectively, see Sects. 11.3.3 and 11.4.1) yield
similar results for the fluctuation function Fq(s). Therefore we present only the
results for MF-DFA2. Again we begin with the seasonal detrending according to
(11.1).

Figure 11.8 shows two representative examples for the MF-DFA2 fluctuation
functions Fq(s), for (a) the precipitation record at Spokane, USA, and (b) the
runoff record of the Weser river. The standard fluctuation function F2(s) is plot-
ted with crosses. The crossover in F2(s) for the runoff data that were discussed
in the previous section can also be seen in the other moments, and additionally a
similar crossover can be seen in the negative moments for the precipitation data.
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The position of the crossover increases monotonically with decreasing q and the
crossover becomes more pronounced. While most of the recent literature focussed
on short-term multifractality and the crossovers occurring on time scales below
1 year [11.12–11.14, 11.25, 11.45, 11.54, 11.55, 11.71], here we are mainly inter-
ested in the asymptotic behaviour of Fq(s) at large times s. One can see clearly that
above the crossover, the Fq(s) functions are straight lines in the double logarith-
mic plot, and the slopes increase slightly when going from high positive moments
towards high negative moments (from the bottom to the top). For the precipitation
at Spokane (Fig. 11.8(a)), for example, the slope changes from 0.42 for q = 8 to
0.57 for q = −8. The monotonous increase of the slopes, h(q), is the signature
of multifractality. We obtain similar increases for the runoff records, although all
h(q) are larger on the average; for the Weser river the results are h(8) = 0.63 and
h(−8) = 0.84 (see Fig. 11.8b).

When the data are shuffled (see Fig. 11.8c,d), all functions Fq(s) show asymp-
totic scaling of approximately Fq(s) ∼ s1/2. This indicates that the multifractality
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symbols, shifted upwards by 0.1) together with fits using the Lovejoy–Schertzer model, (11.20).
The straight dotted lines indicate uncorrelated behaviour h = 0.5 and q = 2, respectively

vanishes under shuffling. Accordingly the observed multifractality originates in the
long-term correlations of the record and is not caused by singularities in the distri-
bution of the daily records (see also [11.46]). A reshuffling-resistant multifractality
would indicate a so-called ‘statistical’ type of non-linearity as discussed in [11.67].
We obtain similar patterns for all runoff and precipitation records.

From the asymptotic slopes of the curves in Fig. 11.8 (see linear fits in the
plots), we obtained the generalised Hurst exponents h(q), which are plotted ver-
sus the moment q in Fig. 11.9 for three representative precipitation records and
three representative runoff records; see Table 11.2 for details. Our results for
h(q) = [τ(q) + 1]/q may be compared with several functional forms used in the
literature to describe multifractality.

11.6.1 Fits by the Universal Multifractal Model

First we consider the formula (see (11.16) and (11.17))

h(q) = H ′ + 1 − C1

α′ − 1
(qα

′−1 − 1) , q ≥ 0, (11.20)
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with the three parameters H ′, C1, and α′, that has been successfully used by
Lovejoy, Schertzer, and coworkers [11.42, 11.55, 11.64, 11.65, 11.71, 11.72] (see
also [11.14]) to describe the multifractal behaviour of rainfall and runoff records
at smaller time scales. Of course, the functional form (11.20) does apply only to
positive moments q. The lines in the upper right parts of Fig. 11.9 indicate the
corresponding fits, and the values of the three parameters are listed in Table 11.2
together with their means for all precipitation and runoff records.

Figure 11.10 summarizes our results for H ′, C1, and α′, for both precipitation and
runoff records. For the precipitation data, we obtained H ′ = −0.45 ± 0.06, C1 =
0.01 ± 0.01, and α′ = 2.0 ± 0.4, while the runoff data yielded H ′ = −0.25 ± 0.10,
C1 = 0.04 ± 0.03, and α′ = 1.4 ± 0.5.

Our values for H ′ are in marginal agreement with earlier studies by Tessier
et al. [11.71] who obtained H ′ = −0.35 ± 0.2 for precipitation records and
H ′ = −0.05 ± 0.2 for runoff records. The same conclusion holds for [11.55] who
reported H ′ = −0.03 ± 0.14 for runoff records. The agreement is surprising, since
in these earlier studies a seasonal detrending (our Eqs. (11.1) or (11.2)) has not been
performed. The multifractality is characterised by the parameters C1 and α′. Here,
Tessier et al. [11.71] report α′ = 1.6 ± 0.2 and C1 = 0.10 ± 0.05 for precipitation
and α′ = 1.45 ± 0.2 and C1 = 0.2 ± 0.1 for river flows, while Pandey et al.
[11.55] obtained α′ = 1.7 ± 0.11 and C1 = 0.12 ± 0.03 for river flows. In a more
recent study, Tchiguirinskaia et al. [11.70] analysed several runoff records in Russia,
finding α′ ≈ 1.7 and C1 ≈ 0.03. Our results for the exponent α′ are, within the
error bars, in agreement with these earlier studies. The result for C1 is in agreement
with [11.70], but disagrees with [11.55, 11.71], who did not explicitly focus on the
asymptotic regime and therefore obtained larger exponents C1 (as in [11.70] for the
short-term regime).

Tessier et al. [11.71] concluded that the H ′ values for precipitation and for runoff
differ by �H ′ = �h ≈ 0.3, while the α′ and C1 values are compatible. We find
a similar difference in the Hurst exponents, �h ≈ 0.2. Our α′ and C1 values for
precipitation and runoff seem to be marginally compatible, since the corresponding
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histograms in Fig. 11.10 are shifted to the left and to the right, respectively, for the
runoff data. The average of C1 is more than three times larger for runoff. Thus,
we conclude that the runoff fluctuations cannot be generated by a simple fractional
(time) integration of rainfall series. We believe that storage effects and the highly
intermittent spatial behaviour of rainfall as well as the highly non-linear interaction
between rainfall and runoff have to be taken into account here.

11.6.2 Fits by the Extended Multiplicative Cascade Model

Next we consider the functional form

τ(q) = − ln(aq + bq)

ln 2
or h(q) = 1

q
− ln(aq + bq)

q ln 2
, (11.21)

which can be derived from a modification of the multiplicative cascade model
[11.31]; see Appendix. The advantage of this formula is that it extends also to
negative q-values, and thus can be used for obtaining the multifractal spectrum
f (α). By (11.21), the infinite number of exponents h(q) can be described by only
two independent parameters, a and b; the width of the corresponding singularity
spectrum (see (11.19)) is given by �α = | ln a − ln b|/ ln 2. Our fitting results for
the examples shown in Fig. 11.9 are listed in Table 11.2, except for the Jena record,
where (11.21) does not provide a reasonable fit. The two parameters a and b can
then be regarded as multifractal fingerprint for a considered runoff or precipitation
record. This is particularly important for evaluating precipitation–runoff models, for
example, artificial rainfall data (input for the models) can be generated with these
two parameters and then the runoff (output of the models) can be checked based on
them.

It is important to emphasize that the parameters a and b have been obtained
from the asymptotic part of the generalised fluctuation function and are therefore
not affected by seasonal dependencies, which cannot be fully eliminated from the
data. We would like to note that different multifractal models for high-resolution
precipitation time series, which include the crossover on short time scales, have been
suggested [11.12, 11.13, 11.66, 11.73, 11.74]. For a model based on self-organized
criticality we refer to [11.2].

However, for the precipitation records, there are several cases where (11.21)
cannot be used to fit h(q) for all q values. In some of these cases (like the Jena
precipitation record), a simple bifractal model fits much better to the h(q) data.

11.6.3 Fits by the Bifractal Model

For bifractal records the Renyi exponents τ(q) are characterised by two distinct
slopes α1 and α2,
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τ(q) =
{

qα1 − 1 q ≤ q×
qα2 + q×(α1 − α2) − 1 q > q×

(11.22)

or

τ(q) =
{

qα1 + q×(α2 − α1) − 1 q ≤ q×
qα2 − 1 q > q×

. (11.23)

If this behaviour is translated into the h(q) picture using (11.12), we obtain that
h(q) exhibits a plateau from q = −∞ up to a certain q× and decays hyperbolically
for q > q×,

h(q) =
{
α1 q ≤ q×
q×(α1 − α2)

1
q + α2 q > q×

, (11.24)

or vice versa,

h(q) =
{

q×(α2 − α1)
1
q + α1 q ≤ q×

α2 q > q×
. (11.25)

Both versions of this bifractal model require three parameters. The multifractal
spectrum is degenerated to two single points, thus its width can be defined as
�α = α1 − α2. One example of a bifractal fit is shown in Fig. 11.9(e).

11.6.4 Results

We have fitted the h(q) spectra in the range −10 ≤ q ≤ 10 for all 99 precipitation
records and all 42 runoff records by (11.21) and (11.24) (or (11.25)) for some precip-
itation records. For all runoff records, the extended multiplicative cascade model fits
best. For the precipitation records, (11.21) fits best in just 54 cases. Either (11.24)
or (11.25) could be used to fit the results of 27 precipitation records. However, 18
of the precipitation records could fit neither by the extended multiplicative cascade
model nor by the bifractal approach.

We have determined the multifractality strength �α for the 81 precipitation
records where either the extended multiplicative cascade model or the bifractal
description could be used and for all 42 runoff records. The corresponding his-
tograms are shown in Fig. 11.11. We find that there is no systematic dependence
of the �α values on the geographic region or on the climate zone. Again, the
rivers in southern Germany also show a broad distribution. However, �α seems
to show a slightly decreasing tendency with increasing basin area (not shown). The
average multifractality strength is significantly smaller for the precipitation records
(�α = 0.29 ± 0.14) than for the runoff records (�α = 0.49 ± 0.16). Note that
for 18 precipitation records �α could not be determined, since neither the extended
multiplicative cascade model nor the simple bifractal approach fit.
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Fig. 11.11 Histograms of the multifractality strength �α for (a) 81 of 99 daily precipitation
records and (b) all 42 daily runoff records, 18 from southern Germany (brown) and 24 from inter-
national hydrological stations (orange). The values have been determined by applying non-linear
fits to the generalised Hurst exponents h(q). Each box represents the result for one meteorological
or hydrological station. For all boxes, (11.21) was used, except for the blue boxes in (a) where the
bifractal models, (11.24) or (11.25), have been used since they fitted better

Finally, we like to note that h(q) for the precipitation records remains practically
unchanged, when the seasonal detrending according to (11.2) instead of (11.1) is
employed. This does not hold for rivers with strong seasonal trends like those that
nearly dry up in summer or freeze in winter. In this case, h(q) is shifted towards
higher values by a constant, which ranges between 0.1 and 0.25, but such that
the strength �α of the multifractality remains unchanged. We are not convinced,
however, that (11.2) is the better way of removing seasonal periodicities in case
of a multifractal analysis. In the multifractal description, h(q) for negative q char-
acterises the scaling behaviour of the small fluctuations, while h(q) for positive q
characterises the scaling behaviour of the large fluctuations. Thus, the multifractal
analysis can distinguish the scaling of small and large fluctuations. Now, if we divide
by the seasonal trend in the standard deviation, following (11.2), some small fluctu-
ations are rendered large and some large fluctuations are rendered small. Hence, we
believe that some of the information provided by a multifractal analysis is obscured
this way. The problem of seasonality effects is addressed in Chap. 13.

11.7 Conclusion

In summary, we have analysed long precipitation records and long river discharge
records using detrended fluctuation analysis (DFA) and its multifractal extension
(MF-DFA). We find that the precipitation records are mainly characterised by
asymptotic scaling with fluctuation exponents h(2) ≈ 1/2, indicating a fast decay
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of the autocorrelation function, while the runoff records are long-term correlated
above a crossover time scale of several weeks with h(2) varying in a broad range.
This result is rather surprising, since the fluctuations of rainfall are often claimed
to play an important role in the long-term correlated (persistent) fluctuations of the
runoff. Our study seems to indicate that the persistence of the runoff is not so much
related with persistence in precipitation, but is rather caused by storage processes
occurring in the soil and the highly intermittent spatial behaviour of the rainfall.
Furthermore, extensive studies are needed to prove this conclusion.

In addition we studied the multifractal properties of the time series using the
multifractal generalisation of the DFA method that was crosschecked with the
WTMM technique. We found that the multifractal spectra of all 42 runoff records
and 54 of the 99 precipitation records can be described by a ‘universal’ function
τ(q) = − ln(aq + bq)/ ln 2, which can be obtained from a generalisation of the
multiplicative cascade model and has solely two parameters a and b or, equivalently,
the fluctuation exponent h(2) = 1

2 − ln(a2 +b2)/ ln 4 and the width �α = ln a
b / ln 2

of the singularity spectrum. Since our function for τ(q) applies also for negative q
values, we could derive the singularity spectra f (α) from the fits. In contrast to the
runoff records, 45 of the precipitation records seem to require a different descrip-
tion, and a simple bifractal fit can be used in 27 cases. For positive moments, the
three-parameter Lovejoy–Schertzer approach always yields a good fit to both runoff
and precipitation data.

We found that there are no significant differences between the distributions of
the fluctuation exponent h(2) and the width �α of the singularity spectrum for
rivers in southern Germany and for international rivers. We also found that there
is no significant dependence of these parameters on the size of the basin area. Thus,
the multifractality occurring in all runoff records supports the idea of a ‘universal’
multifractal behaviour of river runoffs suggested by Lovejoy and Schertzer in a dif-
ferent context. However, there is a slight decrease of the multifractal width �α with
increasing basin area. We suggest that the values of h(2) and �α can be regarded
as ‘fingerprints’ for each station or river, which can serve as an efficient non-trivial
test bed for the state-of-the-art precipitation–runoff models.

Apart from the practical use of (11.21) with the parameters a and b, we presently
are lacking a physical model for this behaviour. It will be interesting to see if phys-
ically based models, e.g. the random tree-structure model presented in [11.22], can
be related to the multiplicative cascade model presented here. If so, this would give
a physical explanation for how the multiplicative cascade model is able to simulate
river flows.

We have also investigated the origin of the multifractal scaling behaviour by
comparison with the corresponding shuffled data. We found that the multifractality
is removed by shuffling that destroys the time correlations in the series while the
distribution of the values is not altered. After shuffling, we obtain h(q) ≈ 1/2 for
all values of q, indicating monofractal behaviour. Hence, our results suggest that the
multifractality is not due to the existence of a broad, asymmetric (singular) proba-
bility density distribution [11.1], but due to a specific dynamical arrangement of the
values in the time series, i.e. a self-similar ‘clustering’ of time patterns of values
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on different time scales. We believe that our results will be useful also to improve
the understanding of extreme values (singularities) in the presence of multifractal
long-term correlations and trends.
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Appendix

Extended Multiplicative Cascade Model

In the following, we like to motivate the two-parameter formula (11.21) and
show how it can be obtained from the well-known multifractal cascade model
[11.4, 11.16, 11.32]. In the model, a record φk of length N = 2nmax is constructed
recursively as follows: In generation n = 0, the record elements are constant, i.e.
φk = 1 for all k = 1, . . . , N . In the first step of the cascade (generation n = 1),
the first half of the series is multiplied by a factor a and the second half of the
series is multiplied by a factor b. This yields φk = a for k = 1, . . . , N/2 and
φk = b for k = N/2 + 1, . . . , N . The parameters a and b are between 0 and 1,
0 < a < b < 1. Note that we do not restrict the model to b = 1 − a as is often done
in the literature [11.16]. In the second step (generation n = 2), we apply the process
of step 1 to the two subseries, yielding φk = a2 for k = 1, . . . , N/4, φk = ab for
k = N/4 + 1, . . . , N/2, φk = ba = ab for k = N/2 + 1, . . . , 3N/4, and φk = b2

for k = 3N/4 + 1, . . . , N . In general, in step n + 1, each subseries of step n is
divided into two subseries of equal length, and the first half of the φk is multiplied
by a while the second half is multiplied by b. For example, in generation n = 3
the values in the eight subseries are a3, a2b, a2b, ab2, a2b, ab2, ab2, b3.
After nmax steps, the final generation has been reached, where all subseries have
length 1 and no more splitting is possible. We note that the final record can be
written as φk = anmax−n(k−1)bn(k−1), where n(k) is the number of digits 1 in the
binary representation of the index k, e.g. n(13) = 3, since 13 corresponds to binary
1101.

For this multiplicative cascade model, the formula for τ(q) has been derived ear-
lier [11.4, 11.16, 11.32]. The result is τ(q) = [− ln(aq + bq) + q ln(a + b)]/ ln 2 or

h(q) = 1

q
− ln(aq + bq)

q ln 2
+ ln(a + b)

ln 2
. (11.26)

Since for a + b = 1 the last term vanishes; in this special case it is often missing
in literature. It is easy to see that h(1) = 1 for all values of a and b. Thus, in this
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form the model is limited to cases where h(1), which is the exponent Hurst defined
originally in the R/S method, is equal to 1. In order to generalise this multifractal
cascade process such that any value of h(1) is possible, we have subtracted the offset
�h = ln(a + b)/ ln(2) from h(q), compare with (11.21). The constant offset �h
corresponds to additional long-term correlations incorporated in the multiplicative
cascade model. For generating records without this offset, we rescale the power
spectrum. First, we fast Fourier transform (FFT) the simple multiplicative cascade
data into the frequency domain. Then, we multiply all Fourier coefficients by f −�h ,
where f is the frequency. This way, the slope β of the power spectra E( f ) ∼ f −β

(the squares of the Fourier coefficients) is decreased from β = 2 h(2)−1 = [2 ln(a+
b)− ln(a2 + b2)]/ ln 2 into β ′ = 2[h(2)−�h] − 1 = − ln(a2 + b2)/ ln 2, which is
consistent with (11.21). Finally, backward FFT is employed to transform the signal
back into the time domain. A similar Fourier filtering technique has been used by
Tessier et al. [11.71] when generating surrogate runoff data.

Comparison with Model Data

In order to see how well the extended multiplicative cascade model fits to the real
data (for a given river), we generate the model data as follows [11.35]: (i) we
determine a and b for the given river (by best fit of (11.21)); (ii) we generate the
simple multiplicative cascade model with the obtained a and b values; and (iii) we
implement the proper second moment long-term correlations as described above.

Figure 11.12a shows the MF-DFA of the model data with parameters a and
b determined for the river Weser. By comparing with Fig. 11.8b we see that the
extended model gives the correct scaling of the multifractal fluctuation functions
Fq(s) on time scales above the crossover. Below the crossover, however, the model
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 (s
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Fig. 11.12 The fluctuation functions Fq (s) obtained from the multifractal DFA for surrogate series
generated by the extended multiplicative cascade model with parameters a = 0.50 and b = 0.68
that correspond to the values we obtained for the river Weser. The fluctuation function Fq (s) for (a)
the original φi series and (b) modified values of the parameters a and b (a = 0.26, b = 0.59) have
been used on scales s ≤ 256 to simulate the apparent stronger multifractality on smaller scales
observed for most rivers. For the figure, results from 10 surrogate series of length 140 years were
averaged
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does not yield the observed Fq(s) in the original data. In order to obtain the
proper behaviour below the crossover, a different type of multifractality below the
crossover, represented by different values of a and b, can be introduced, as was done
for Fig. 11.12b.
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Overview of the geographical location of the 118 river runoff gauges used in this study. The map
contains only the main rivers so that the gauges corresponding to tributaries are shown without
rivers. A subset of hydrologically independent gauges are marked by black circles around the red
spots



Chapter 12
Long-Term Structures in Southern German
Runoff Data

Miguel D. Mahecha, Holger Lange, and Gunnar Lischeid

Hydrological discharge time series are known to depict low-frequency oscillations,
long-range statistical dependencies, and pronounced nonlinearities. A better under-
standing of this runoff behaviour on regional scales is crucial for a variety of water
management purposes and flood risk assessments. We aimed at extracting long-
term components which influence simultaneously a set of southern German runoff
records.

The methodological approach was to perform a “double dimensionality reduc-
tion.” First, we prefiltered the multidimensional time series by a nonlinear dimen-
sionality reduction method (isometric feature mapping; Isomap) and its special
linear case (classical multidimensional scaling; CMDS). This analysis led to the
extraction of univariate but highly representative time series. Second, we analysed
the generated time series by “singular system analysis” (SSA), a “dimensionality
reduction method in the time domain” to identify the subsignals contained in the
original series.

With the combined approach Isomap-SSA (and CMDS-SSA) it was possible
to identify significant long-term components, influencing the overall discharge
behaviour. It turned out that increasing nonlinearity in the Isomap projection stabi-
lized the SSA performance. The overall findings indicated that the southern German
runoff records were influenced by periods of ∼4, ∼5, ∼7, ∼9 and ∼10 years.

We conclude that the application of new, nonlinear methods of dimensionality
reduction contributes to a better extraction of low-frequency modes from high-
dimensional time series. The recovered long-term modes should be considered in
future hydrological assessments, since they contribute significantly to the overall
runoff behaviour.
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12.1 Introduction

A well-known phenomenon in river discharge records is the presence of low-
frequency oscillations (e.g. [12.26]) as well as long-range statistical dependencies in
the time domain (e.g. [12.18]). A better understanding of these runoff characteristics
at long time scales impacts a variety of management tasks: it could improve the
quality of flood risk assessments, lay foundations for investigating runoff behaviour
under climate change, or help clarifying the connection between atmospheric cycles,
precipitation patterns and freshwater availability. In this context, a bunch of tech-
niques has been developed in succession to the pioneering work by Hurst [12.16].
For instance, detrended fluctuation analysis (DFA) has been used as an effective
tool for the characterization of memory effects in runoff time series [12.18] and
the separation of trends from long-range correlations. Quantities like the rescaled
range Hurst exponent [12.23] or the DFA exponents describe the statistical proper-
ties (in particular long-range correlations) of (single) time series. They are, however,
not suitable to extract periodic components. For the latter task, powerful methods
like singular system analysis (SSA) [12.4] can be applied. SSA is not limited to
the extraction of sinusoidal oscillations [12.15], the technique also identifies trends
[12.13] and performs a signal-to-noise distinction [12.12].

Our goal in this study was to identify long-term components that are present
simultaneously in a large set of discharge series of southern Germany. It was
attempted to extract components with periods >3 years directly from the multidi-
mensional discharge series, rather than from single gauges. This is meaningful since
individual river flows exhibit synchronizations among these components on regional
scales [12.20], and a common origin of these patterns is plausible. In this study, 118
gauges from southern Germany were investigated, where each time series contained
gapless daily mean discharge values for 51 years (1951–2001). A previous study
[12.20] focussed on a subset of these gauges.

For a set of L gauges and for each given moment in time, individual measure-
ments are combined into a vector with dimension L . Hence, the multivariate series
is represented as a trajectory embedded in a high-dimensional ambient space R

L .
However, given that rivers form networks, discharges from tributaries and a main
river (as well as, obviously, discharges from different gauges of the same river) may
safely be assumed as dependent, and common driving forces such as climate patterns
render them correlated as well. Thus, the discharge behaviour may be represented
by fewer than L variables. This (generally unknown) number of effectively inde-
pendent variables is called the intrinsic dimensionality of the data [12.17]. In other
words, the data sample an M-dimensional manifold, which is a subspace of R

L ,
where M < L; a very compact description of the data is achieved if M << L
[12.5]. Dimensionality reduction aims at estimating this intrinsic dimension and
characterizes topological properties of the data manifold, ideally without loss of
relevant information, i.e. preserving overall time series characteristics. Peculiarities
of individual gauges, however, may be lost in this effective representation.

This chapter presents a combination of dimensionality reduction in the space of
gauges and SSA, which is an example for dimensionality reduction in time. In a
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first step, a linear and a nonlinear method were applied to identify representative
low-dimensional modes. The second step consisted in analysing these modes by
(univariate) SSA. Proceeding in this manner, we gain quantitative information on
the common long-term properties of the whole set of river discharges.

This chapter is organized as follows. In Sect. 12.2, the linear dimensionality
reduction technique “classical multidimensional scaling” (CMDS) and a recently
developed nonlinear CMDS variant, the “isometric feature mapping” (Isomap), are
explained. Then, the basics of SSA, which may be considered as a principal com-
ponent analysis (PCA) in the time domain, are shortly described. The subsequent
section shows the results of this “double dimensionality reduction”, focussing on
the extraction of common long-term components. The discussion is devoted to the
advantages and limitations of the combined method as well as to possible implica-
tions for hydrological practitioners.

12.2 Methods

12.2.1 Data Sets and Preparation

We denote our set of time series as xtl : t = 1, . . . , T ; l = 1, . . . , L , where T is
the length of the series and L is the number of gauges. We will work with methods
requiring considerable computational resources. To meet this constraint, all data
were aggregated to 7 days. To obtain scale homogeneity within a data vector, it is
customary to perform first a z-transformation (every single time series obtains zero
mean and unit standard deviation). Downstream gauges sample part of the same
runoff behaviour as upstream gauges in the same basin and cannot be regarded as
independent signals. Thus, gauges were selected which were “hydrologically inde-
pendent” to the degree possible, i.e. from the same river, only the gauge with the
largest basin was chosen, leaving L = 53 gauges in the total set of 118. All subse-
quent analyses were performed on both data sets, to see whether the elimination of
redundant discharge signals gives a different picture of the runoff behaviour.

12.2.2 Dimensionality Reduction in Space

12.2.2.1 Classical Multidimensional Scaling (CMDS)

Any real-valued L-dimensional time series xt , where t denotes time and the com-
ponents of the vector span the set of measurements (gauges), can be conceptualized
as a trajectory in the space R

L . However, in the presence of correlations between
the individual series and autocorrelations within a single series, ensembles of tra-
jectories tend to form a lower dimensional manifold Ω ⊂ R. To uncover properties
of Ω , in particular its dimension and topological attributes such as connectedness
and inter-point distances, is the aim of dimensionality reduction based on projection
methods.
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Classical (linear) multidimensional scaling (CMDS), known also as principal
coordinate analysis [12.6], is a non-iterative method which tries to preserve the
linear inter-point distances in a low-dimensional Euclidean space by appropriate
projection. It starts with the matrix D(X) of Euclidean distances di j = ‖xi − x j‖
in R

L . Then, a double-centred (rows as well as columns sum up to zero) matrix
of inner products, τ (D), is calculated. For z-transformed time series, its elements
are the scalar products of columns of D(X), appropriately centred, and τ is positive
definite. Diagonalization of τ by singular value decomposition then leads to a set
of eigenvectors (principal coordinates). Choosing M of these with the largest eigen-
values, which explain a certain fraction of the total variance, leads to a subspace Y .
The calculation of τ is repeated in Y , and the procedure minimizes the cost function

η = ‖τ
(

D(X)
)

− τ
(

D(Y )
)

‖. (12.1)

In this equation, ‖Q‖ denotes the L2 matrix norm defined as
√∑

i j q2
i j . For a

more detailed description, see [12.3, 12.6].
CMDS is successful if M << L . Then, CMDS has achieved a low-dimensional

representation of the data space with similar topology.

12.2.2.2 Nonlinear CMDS: Isometric Feature Mapping (Isomap)

CMDS tries to preserve the linear inter-point distances in the low-dimensional rep-
resentation space, spanned by the extracted principal coordinate vectors Y1, . . . ,YM

with M << L . The natural extension of this idea is to find an embedding
method which preserves the distance structure as measured on nonlinear spaces.
This approach was introduced to a wide scientific community by Tenenbaum et al.
[12.32] and makes use of the shortest inter-point distances on curved surfaces or
geodesic distances. The metric of these distances is defined as

gi j =
L∑

l=1

∂Xl

∂�i

∂Xl

∂� j
. (12.2)

In (12.2), Xl are local Euclidean coordinates, and �i refers to a global curved
coordinate system for the manifold �. In the case of a Euclidean space, the met-
ric is trivially the identity matrix. The geodesic metric in (12.2) is not calculable,
since the assumed nonlinear manifold � is unknown for measured data. Isomap
circumvents this calculation by a locally linear approach, approximating the global
non-Euclidean properties of �. For this, a threshold expressed either by a number
k of nearest neighbours (k-NN) or a radius ε in the R

L is defined. The connection
of each pair of points within the k-NN or ε-radius leads to a connectivity graph G.
Applying e.g. Dijkstra’s algorithm [12.9], it is then possible to find the shortest
inter-point distances d(G)

i j on the graph. These distances then approximate gi j .
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The distance matrix D(G) obtained in this manner is used as input to MDS instead
of D(X). The cost function (12.1) is modified to [12.32]

η = ‖τ
(

D(G)
)

− τ
(

D(Y )
)

‖. (12.3)

For a well-chosen parameter (k or ε), the derived principal coordinates are good
approximations for the vectors {θ1, . . . , θM } ≈ {Y1, . . . , YM } which span the man-
ifold [12.2]. The choice of the threshold parameter is difficult and must be based
on heuristics, where the analyst must find a compromise between a low value max-
imizing the nonlinearity and a sufficiently large value to warrant the overall graph
connection [12.28]. In most cases, the manifold is not homogeneously sampled and
clusters of data points occur. Then, a small threshold parameter connects points
within the clusters, but not between clusters. On the other hand, too large thresh-
old values could lead to shortcuts on the approximated manifold [12.29]. CMDS
is the special case of Isomap where the threshold is maximal, i.e. k ≥ T − 1 or
ε ≥ max(di j ), respectively [12.31].

12.2.3 Dimensionality Reduction in Time

The presence of common temporal structures, such as periodic components, in a
multivariate data set leads to the idea of a compact description of its dynamics
using (far) less than all measurements in time. This is the central task of singular
system analysis (SSA), a technique derived from dynamical system analysis [12.4].
Working with embedding techniques, SSA seeks to decompose a time series into
“simple” (e.g. oscillatory) modes, quantifying the amount of variance explained by
each mode. Similar to PCA, SSA is successful when few modes suffice to represent
a substantial part of the total series.

Time series analysis requires tests on the significance of extracted signals (as
opposed to noise), investigation of signal separability and the analysis of different
temporal scales [12.13]. We present procedures for each of these tasks in this sec-
tion.

12.2.3.1 Description of Singular System Analysis

SSA can be interpreted as extension of the PCA framework to the time domain. The
idea is that a time series is a (linear) combination of multiple signals of different
period lengths. The goal is to identify the individual signals and to relate them to
corresponding temporal scales via a subsequent Fourier analysis. A crucial param-
eter of SSA is the embedding dimension P , which has to be chosen with care. It
is a compromise between two conflicting goals: The first is to maximize the infor-
mation content of the analysis which requires a maximum window length P . The
second is to maximize the statistical confidence, achieved through a high number
of overlapping windows, Ñ = T − P + 1. Empirical findings in literature suggest
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an optimal choice of T/P ranging from T/P = 11 [12.12] to T/P = 2.5 [12.20].
From the centred values of the time series, a lag covariance matrix C is set up which
is estimated as [12.12]

ci j = 1

T − | i − j |
T −|i− j |∑

t=1

xt xt+|i− j |. (12.4)

The entries of the matrix depend on the lag | i − j |, and its dimensions are
P × P . C is then diagonalized by SVD [12.10]

C = E�ET. (12.5)

From the resulting eigenvectors (empirical orthogonal functions) eκ , the principal
components U κ are obtained through projection

U κ
t =

P∑

j=1

xt+ j−1eκj (12.6)

and represent the extracted signals. Each PC is itself a time series of length Ñ . The
PCs are often easily interpretable visually or through their periodograms, which
usually contain just one or two peaks each. It is also possible to reconstruct the part
of the original series which is represented by a collection of U κ ’s:

RCK
t = 1

Mt

∑

κ∈K

Ut∑

j=Lt

U κ
i− j+1eκj . (12.7)

In this equation, K is any index set describing the combination of PCs chosen.
Mt is a normalization factor and Lt and Ut are boundaries which depend on the
position within the time series [12.12].

The amount of variance contained in the reconstructed component RC is given
by the sum of the corresponding eigenvalues of the PCs contained. In this study, the
reconstruction step was carried out selecting for each RC a single component only.

An extension of SSA to the decomposition of multivariate time series is straight-
forward [12.12], where the PCs are then space–time matrices. This multichannel or
M-SSA is, however, computationally highly demanding when the number of chan-
nels is not small and was not feasible in our study.

12.2.3.2 Test of Significance

To investigate whether the PCs or the reconstructed components of an SSA are sig-
nificant or not, one needs an appropriate null hypothesis. This is done by testing
the power spectrum of the RCs versus a noise assumption. It has been demonstrated
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in previous studies (see, e.g. [12.1, 12.30]) that red noise, or the theoretical spec-
trum of an AR[1] process, is a well-suitable noise model for geoscientific records.
Hydro-meteorological records often exhibit high spectral power at low frequencies
and low power at high frequencies, which resemble the 1/ f 2 behaviour of red noise.
The null hypothesis of the test is that the original time series is compatible with a
red noise process [12.20]. In our application of SSA, the reconstructed components
were considered significant when they were outside the 95% confidence range of a
corresponding AR[1] process.

12.2.3.3 Weak Signal Separability

The eigenvectors of the SSA decomposition form an orthogonal system. This is
not necessarily the case for the reconstructed components. The significance test
described also does not provide information on the separability of the extracted
signals. Thus, a qualitative criterion of signal separability has to be introduced.
Golyandina et al. [12.13] proposed the term “weak separability” for non-orthogonal
systems. Different signals should only be regarded as part of essentially different
underlying processes when they are not interrelated. The criterion to test this is the
so-called w-orthogonality (12.8), where two series (reconstructed components) RCi

and RC j are said to be w-orthogonal if

(RCi ,RC j )w
def=

T∑

t=1

wt RCi,t RC j,t (12.8)

is compatible with zero.
The weights wt are shaped like a trapezoid to assure that the effect of the SSA

embedding dimension P is taken into account. Defining P∗ = min(P, Ñ ) and
Ñ∗ = max(P, Ñ ), the weights are given by

wt =
⎧
⎨

⎩

t + 1 for 0 ≤ t ≤ P∗ − 1,
P∗ for P∗ ≤ t < Ñ∗,
T − t for Ñ∗ ≤ t ≤ T − 1.

(12.9)

The weighting of the terms in the correlation sum is especially important for
large values of P [12.13].

The deviation from the w-orthogonality is quantified by

 i j = |(RCi ,RC j )w|
‖RCi‖w‖RC j‖w (12.10)

and has a range between 0 and 1.
No rigorous significance thresholds have been developed for  i j so far.
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12.3 Results

12.3.1 Dimensionality Reduction

The dimensionality reduction of the hydrological time series was highly effective in
terms of explained variance. Both the CMDS and the Isomap approach required just
two dimensions (out of 118 and 53, resp.) to represent ∼95% of the data variance.
For Isomap, the k-nearest neighbour method was chosen rather than ε, because the
radius threshold produced unconnected subgraphs from the time series data, indi-
cating strong clustering. The search for an optimal value of k was difficult in this
case since the results were robust for a large range of k values.

The linear CMDS was superior to the nonlinear Isomap concerning the explana-
tory power of only the first principal coordinate, recovering 84% of the variance
(see Fig. 12.1). The first Isomap dimension did only recover 71% of the variance.
One may conclude that the subsequent SSA of the leading mode is best performed
on base of the first CMDS coordinate. However, one could also argue that both
methods recovered approximately equal amounts of variance in the first two modes
and inclusion of nonlinearity just led to a different partitioning of the variance on
the required two modes. Figure 12.1 compares the performance of an Isomap variant
(k=17) with CMDS.

Gámez et al. [12.11] indicated that visual interpretation of the Isomap coordinates
might elucidate interesting patterns of a spatially reduced time series such as the
identification of well-known climate patterns in sea surface temperature (SST) data
in their case. However, the temporal visualization of the runoff Isomap modes did

Fig. 12.1 Cumulative explained variances of the first 10 CMDS (dashed line) and Isomap (solid
line) dimensions for the hydrologically independent series
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Fig. 12.2 The eight leading reconstructed components from the 118 gauges, based on the first
Isomap (k = 17) coordinate (lower panel). RC1 and RC2 contain the annual cycle not discussed
further, RC3–8 are long-term components

not give immediate substantial insights (Fig. 12.2), which is another motivation for
a subsequent SSA.

Another important aspect of the Isomap and CMDS projection is whether the
dominant modes preserve long-range statistical properties of the time series. As an
estimator of the strength of a possible long-term memory, the Hurst coefficient H
[12.16] has been determined. We chose the standard rescaled range or R

S analysis
[12.23] for its estimation. There are more sophisticated alternatives (cf. [12.25] for
a hydrological application) but it has been shown that R

S is a suitable algorithm
for long time series and in the absence of trends [12.18]. Our intention is only a
comparison of H values from the original time series and from the first mode of
the reduction procedure, and not its absolute values. The average Hurst coefficient
for all individual time series was estimated to be H = 0.66 with a standard devi-
ation of 0.06. The first CMDS mode showed a value of H = 0.7, while Isomap
found precisely H = 0.66 which means that both methods preserve the long-term
characteristics of the series already in the first principal coordinate.

12.3.2 Dimensionality Reduction in the Time Domain

Since the spatial reduction of the multidimensional runoff series from southern
Germany was successful in terms of explained variance, only the leading dimension
was used as input to a univariate SSA. An embedding dimension P corresponding
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Fig. 12.3 Testing the reconstructed components versus the red noise assumptions. The left plot
shows the results for the RCs derived from an SSA analysis of CMDS mode 1. The right plot
shows the red noise test based on the RCs derived from SSA on Isomap (k = 17)

to N
P = 2–2.5 provided stable results in terms of signal separability and sensitivity

to the parameters used to generate the input series (i.e. choice of k in Isomap).
First, we combined a CMDS reduction with SSA. This approach was also sug-

gested by Ghil et al. [12.12]. By applying SSA to the first PC, seven long-term
components could be identified which were not compatible with the red noise
assumption. The periods of these components correspond to (in descending order of
eigenvalues) 4, 4.3, 12.7, 8.9, 4.2, 9.1 and 6.3 years. However, the signal separability
as estimated by the weak separability correlation (12.10) was unsatisfying for these
components. Combining Isomap with SSA did not have that problem. In this case,
we found significant long-term components with the periods 4.1, 4.2, 13.4, 9.8, 10,
5 and 7 years (see Fig. 12.3). A typical feature of SSA is the extraction of two com-
ponents of almost identical period, which is an effect of the linear decomposition of
the trajectory matrix: to represent oscillating modes SSA requires at least two linear
modes with opposite parity [12.15].

The significant long-term components did not show any harmonics (integer mul-
tiple overtones). They would be clearly correlated, but in fact the w-correlations
indicate that the SSA led to well-separable signals (see Fig. 12.4), at least better
than the CMDS-prefiltered data.

To test for the effect of hydrological dependence, we repeated the signal extrac-
tion for a subset of the 53 “independent” gauges. The results are not distinguishable
from those for the full data set. We found equal periods and a comparable signal
separability. The only interesting feature was that even more long-term components
were extracted. However, their amplitude was close to the 95% significance interval
and thus debatable. The redundancy contained in the full data set thus did not spoil
the performance of the reduction techniques.

Another general observation was that it was not possible to identify significant
trends. It is possible that periods of half the time series length or more are in
fact trends, since there is no chance to distinguish between these oscillations and
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Fig. 12.4 The w-correlation matrix of the first 50 reconstructed components from the SSA analysis
of the first Isomap (k = 17) mode

trends [12.13]. These periods seem to be present (Fig. 12.3); they are, however,
non-significant.

12.3.3 Regional Patterns and Hydrological Dependencies

Are the long-term components found for the whole data set present everywhere? In
addition to the common periods found for the whole region, we investigated spatial
patterns of these components. We divided the investigated geographical area in non-
overlapping stripes from north (A) to south (G) of 50 km width each. The gauges
within each strip were investigated again by the combined approach of Isomap and
SSA. In this case, the data were aggregated to monthly means, but a sensitivity
analysis indicated that the aggregation level is not critical for the identification of
long-term components.

The results led to a complicated picture (see Table 12.1). Although the main pat-
terns found by the analysis of the whole data set are confirmed, the significance of
individual periods varies in space. Some additional periods appear to affect geo-
graphical subareas only. It is known [12.24] that precipitation patterns in Germany
show differences in dominating periods along a southwest to northeast gradient,
attributable to opposite correlations with the North Atlantic oscillation. Further
investigations could clarify whether there are similar phenomena for the runoff data
as well.
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Table 12.1 Significant long-term periods found by the combined approach of Isomap and SSA in
different geographical north–south stripes of southern Germany (A, north to G, south) for monthly
means. The periods are sorted by their respective eigenvalues

A B C D E F G

11.2 11.3 5.0 4.9 15.7 3.9 4.7
5.5 7.9 7.0 4.6 13.0 4.7 4.2
3.8 4.0 4.3 6.4 5.1 14.6 8.6
6.9 7.2 4.2 6.0 7.0 4.0 10.4
5.4 4.0 6.8 7.2 4.9 7.3 5.2
3.8 3.5 5.6 4.3 16.6 8.0
3.5 4.9 19.0 24.4 3.1 4.6

12.4 Discussion

The results indicate that both CMDS and Isomap allow for a significant reduc-
tion of dimensionality for discharge time series. However, the principal coordinates
obtained lacked obvious patterns with an easy interpretation apart from the annual
cycle. This indicates that dimensionality reduction alone is not very useful for the
identification of long-term runoff behaviour. In addition, success in dimensionality
reduction necessarily implies that plenty of structure is moved into just the first
component, rendering a subsequent decomposition technique almost a necessity if
interest is in interpretation of individual modes. Fortunately, the reduction main-
tained the persistence of the input series quantitatively as measured by the Hurst
parameter. Thus, the subsequent analysis with SSA was both mandatory and justi-
fied.

One crucial result was that CMDS explained more variance in the first mode than
Isomap when the local geometry was emphasized by selecting a small threshold
parameter. This effect was reduced by increasing k and did not extend to the second
dimension. This finding confirms the suggestion of Ghil et al. [12.12], who assumed
that PCA is a suitable way to reduce the dimensionality of multidimensional series.
A variety of reasons could attribute to these findings. One possibility for recovering
less of the data variance by Isomap could be attributed to the constraints of the
methods. For example, de Silva and Tenenbaum [12.7] claim that Isomap is superior
only in special nonlinear manifolds. It may also be that the underlying manifold is
simply linear and thus the CMDS method outperforms the Isomap variants for small
threshold parameters. The latter is forced to find geodesics between far away points
which might be connected by a linear neighbourhood relation. This could lead to an
overestimation of the inter-point distances in cases where the manifold is unevenly
sampled. Unfortunately, it is neither possible to decide whether the underlying man-
ifold is nonlinear, nor whether it is sufficiently sampled, nor whether the topological
constraints of Isomap limit its application in the present case.

The combined approach of Isomap and SSA found a variety of long-term modes.
The respective periods were more or less also obtained by combining CMDS and
SSA. However, the separability of the extracted signals was much better when a
small Isomap threshold parameter was applied. This could be a hint that nonlinear



12 Long-Term Structures in Southern German Runoff Data 263

decomposition is more suitable to single out independent components (and thus
processes). Time series prefiltering with Isomap is already a first signal-selective
process.

12.4.1 Methodological Outlook

This study has shown that the new methods of nonlinear dimensionality reduction
are suitable to improve traditional methods. In particular, Isomap should replace
conventional PCA to generate low-dimensional modes for a subsequent SSA anal-
ysis. In the context of this study, we also tested the potential of other nonlinear
dimensionality reduction techniques [12.21]. For example, we prefiltered the time
series via nonlinear principal component analysis [12.14, 12.19] and locally linear
embedding [12.27], but both were unsuitable for finding long-term components by
the subsequent application of SSA. However, the field of nonlinear dimensionality
reduction provides much more interesting methods, which could not be explored
sufficiently.

Another interesting feature arises from the interpretation that SSA is simply a
variant of PCA [12.12]. If the traditional PCA can be replaced by other methods
of nonlinear dimensionality reduction, the SSA decomposition step could also be
replaced by Isomap or other methods. The subsequent PCs can equally be obtained
from the EOFs as from the Isomap coordinates. In fact some experiments on this
question have been carried out, indicating that for this task it is very difficult to find
an adequate threshold parameter. But once a good parameter was found (where ε

proved to be much better than k), the signal separability was much better than the
one identified by standard SSA. This shows the potential of the presented method-
ological framework which has to be studied in more detail.

Although there is room for improvement, we already have provided a pow-
erful tool for handling multidimensional time series. High-dimensional data sets
will be increasingly used by hydrological practitioners. Regionalized runoff data as
obtained by coupling runoff time series, remote sensing, land use models and other
available data [12.8] can be used for obtaining better spatially resoluted flood risk
estimates. The output time series are of much higher dimensionality than available
through gauged sites. Thus, powerful methods to extract the main patterns of the
data are required and the combination of Isomap and SSA presents an example.

12.5 Conclusion

We investigated the long-term behaviour of river runoff from 118 gauges in southern
Germany. As a multichannel SSA for the full data set was computationally excluded
and a high degree of redundancies could be expected, a combined approach of non-
linear dimensionality reduction and SSA was developed. This combination proved
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to be a computationally effective, methodological flexible tool for the analysis of
high-dimensional time series.

The reduction efficiency was very high, pointing towards synchronous dynamics
on a range of time scales. Independent of spatial or temporal resolution as well as
unaffected by hydrological dependencies, it was possible to find significant long-
term components unambiguously with characteristic periods of ∼4, ∼6, and ∼11
years. The extracted modes are consistently reappearing in the series; however, we
also observed regional differences indicating that the long-term behaviour of river
discharges is varying in space. The reduction techniques preserved the persistence
of the original series.

The approach allows future extensions and applications, and thus provides a new
perspective for large-scale assessments, e.g. in the context of regionalized discharge
data.
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Johnstone river flux with seasonal cycles of mean and standard deviation



Chapter 13
Seasonality Effects on Nonlinear Properties
of Hydrometeorological Records

Valerie N. Livina, Yosef Ashkenazy, Armin Bunde, and Shlomo Havlin

Climatic time series, in general, and hydrological time series, in particular, exhibit
pronounced annual periodicity. This periodicity and its corresponding harmonics
affect the nonlinear properties of the relevant time series (i.e. the long-term volatil-
ity correlations and the width of the multifractal spectrum) and thus have to be
filtered out before studying fractal and volatility properties. We compare several
filtering techniques and find that in order to eliminate the periodicity effects on
the nonlinear properties of the hydrological time series, it is necessary to filter out
the seasonal standard deviation in addition to the filtering of the seasonal mean,
with conservation of linear two-point correlations. We name the proposed filtering
technique “phase substitution”, because it employs the Fourier phases of the series.
The obtained results still indicate nonlinearity of the river data, its strength being
weaker than under previously used techniques.

13.1 Introduction

To better understand the climate dynamics, the analysis of the observed climate time
series is essential. Their statistical properties provide, e.g. with the average state of
the climate system, the order of the natural fluctuations around this state and the
climate trends [13.27].

One basic way to quantify the statistical properties of a time series is through
the probability distribution function (pdf) of the data. The pdf, however, is invari-
ant under shuffling of the time series and does not reflect the temporal statistical
properties (those related to the time ordering of the time series). For instance,
under shuffling of the time series, the probability distribution remains unchanged,
while the autocorrelation function is affected. Still, estimation of the forms of the
pdf may help, for example, to quantify the relative occurrence of extreme climate
events [13.4].
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Time ordering of a climatic record may teach us about the dynamical properties
of the climate system [13.11]. Pronounced periodicities, like the annual periodici-
ties of temperature and river flow, can easily be tracked using the Fourier frequency
spectrum. The harmonics of the annual periodicities may provide useful information
regarding the “morphology” of the annual cycle and usually are indicators of the
nonlinear underlying process (or of the nonlinearity of the time series). The peri-
odicities are usually linked to the Fourier amplitudes; however, as is demonstrated
in this chapter, some nonlinear properties (such as the periodicity in the moving
variance of the time series) may be associated with the Fourier phases.1

In earlier works, the hydrological time series were studied either in ‘raw’ for-
mat (no filtering of periodicities) or after removing seasonal cycle of mean and/or
standard deviation. Here, we present a comparison of the scaling properties of river
records after applying various types of filtering; we also propose a new filtering
technique and discuss its effects.

Figure 13.1 shows a representative hydrological record (river flux of the John-
stone river) with pronounced annual periodicity in mean and standard deviation.
For this river, we show in Fig. 13.1 that after subtracting from each daily value
its corresponding multi-year daily average (deseasonalising), the obtained volatility
time series still has periodicities. This residual effect is due to the fact that in some
seasons (e.g. summer and autumn) the river flow fluctuations are small, while in
the other seasons they are very pronounced. This remaining periodicity drastically
influences the measurement of the nonlinear scaling properties of river flux time
series; therefore, the goal of this chapter is to compare several techniques that might
cope with such periodicities. We show that it is necessary to remove the periodici-
ties which are associated with Fourier phases, as well as those associated with the
Fourier amplitudes.

The complex discrete Fourier transform of a series x!, ! = 1, . . . , N ,

Xω =
N∑

!=1

x!e
−i(2πω/N )!, ω = 1, 2, . . . , N , (13.1)

allows us to study amplitudes |Xω| and phases φω of the series

Xω = |Xω|eiφω . (13.2)

Fourier amplitudes and phases may be associated with linear and nonlinear prop-
erties of the series, respectively. By linear we refer to a process that appears only
in the power spectrum and in the probability distribution but is independent of the
Fourier phases; otherwise the process is defined as nonlinear. In other words, if
the statistical properties, including those of large moments, remain unchanged after
randomising the Fourier phases, the process is linear, while in the case where the

1 We use the term “linear/nonlinear time series” as a synonym for the linear/nonlinear underlying
process that generated the time series.
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Fig. 13.1 Increments, volatilities, power spectra of increments and power spectra of volatilities for
Johnstone river: raw, deseasonalised, seasonally adjusted and phase-substituted data (see detailed
explanation of the filtering techniques in Sect. 13.2). The conventional deseasonalising procedure
eliminates the periodicity in the power spectrum of increments – much the same as the phase
substitution does – but fails to eliminate the periodicity in the power spectrum of volatilities of
increments. The new phase substitution filtering method does eliminate the periodicity peak in the
power spectrum of volatilities: compare the panels in the last column

statistical properties of large moments are modified after randomising the Fourier
phases, the process is defined as nonlinear. By using Schreiber’s test for nonlinear-
ity [13.26], one ensures that a linear time series that was transformed by a mono-
tonic and static nonlinear function will still be regarded as linear; for more details
see [13.26]. Accordingly, Schreiber’s test verifies whether the null hypothesis for
linearity is rejected or not. To ensure stationarity, we concentrate mainly on the
increment series and not on the original series.

Temporal correlations of climate records have been studied extensively. In
the 1950s, Hurst [13.9] reported long-term correlations in river flow records,
which was confirmed in further studies [13.17, 13.23]; long-term temporal corre-
lations were also found in other climatological time series, such as temperature
records [13.15, 13.16]. The surprising finding is that even time-distant events are
statistically correlated, and that these long-term correlations may be quantified by a
single scaling exponent H in the corresponding fluctuation function.

This scaling exponent, sometimes called Hurst exponent, is related to the power
spectrum scaling exponent β by H = (1 + β)/2 and, following Schreiber’s defi-
nition of linearity, quantifies the linearity of the time series. It was found that even
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the higher moments temporal correlation functions of hydrological time series also
obey scaling laws [13.22, 13.28], where these scaling laws reflect the nonlinear-
ity of the processes generating the time series. In the case of a linear process, all
different moments may be characterised by a single exponent, and the series is
monofractal, while a nonlinear time series has a spectrum of exponents called the
multifractal spectrum – the stronger the nonlinearity, the broader the multifractal
spectrum.

To measure the scaling exponents of the fluctuations of a climate record, the
periodicities should be filtered out first; otherwise, the verification and estimation
of the scaling exponents may be affected by these periodicities. When dealing with
two-point correlation functions (the second moment), it is sufficient to filter out
the periodicities from the power spectrum. However, when dealing with nonlin-
earities, or general moment scaling exponents, it is also necessary to filter out the
periodicities associated with these moments. In Fig. 13.1, we show that even after
eliminating the annual periodicity and its harmonics, the series still has periodicities
which are not captured by the power spectrum but rather lie in the Fourier phases.
Our point is that an inadequate filtering procedure does not eliminate these effects of
periodicities and thus may lead to the observation of an artificial nonlinearity in the
data. We show that by removing these higher moment periodicities, the nonlinearity
of the time series weakens and the scaling range is extended.

Here we compare five approaches in studying hydrological time series:

Approach 1: ‘Raw’ time series, no filtering applied.
Approach 2: The seasonal cycle of mean values is filtered out from the original

time series.
Approach 3: The seasonal cycles of mean and standard deviation are filtered

out from the original time series.
Approach 4: The new technique (described below) – ‘phase substitution’ – is

applied to the original time series.
Approach 5: The new technique – ‘phase substitution’ – is applied to the incre-

ments of the original time series.

Taking increments x!+1 − x! in Approach 5 aims at the nonstationarities of the
hydrological time series (scaling exponent H > 1) and is discussed in detail in
Sect. 13.4.

The chapter is organised as follows. First, we review briefly the earlier filtering
techniques and discuss the problems with some of them. We then propose a tech-
nique that filters out the periodicity from both the power spectrum and the volatility
series (given a time series x!, the volatility series is defined as |x!+1 −x!|). Next, we
demonstrate the use of this technique on hydrological time series and show that the
nonlinearity weakens (or the multifractal spectrum width becomes narrower) when
using the proposed technique, as well as when using some of the other procedures
that can filter out the periodicity in the standard deviation. We then summarise the
results and draw some conclusions.
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13.2 Methodology

13.2.1 Detrended Fluctuation Analysis and Multifractal Detrended
Fluctuation Analysis

Long-range correlated time series may be characterised by scaling laws with specific
scaling exponents. It is possible to show that the power spectrum S(ω) ≡ |Xω|2
of long-range correlated time series scales with the frequency ω as S(ω) ∼ ω−β .
However, trends that exist in climate records may cause inaccuracies in measur-
ing this exponent, in particular, at low frequencies, and thus more advanced tech-
niques that systematically exclude trends from the data have been developed. These
techniques include wavelets [13.1, 13.16] and the detrended fluctuation analysis
(DFA) [13.12, 13.24].

In recent years, the DFA method has become a widely used tool for measur-
ing scaling exponents of natural time series. It was applied, e.g. to DNA [13.3]
and heart-rate sequences [13.2, 13.5, 13.25], financial time series [13.19, 13.21]
and climate records [13.8, 13.16]. In this method, one considers fluctuations of the
cumulative sum (“profile”) Ym =∑m

!=1 x! of the original series x!, ! = 1, . . . , N .
We divide the time axis into nonoverlapping windows of size s. Next, within each
window, we calculate the best polynomial fit and determine the variance

F2(ν, s) = 1/s
s∑

!=1

[
Y ((ν − 1)s + !) − yν(!)

]2
, (13.3)

where yν(!) is the least-square polynomial fit of order k in segment ν of size s.
Finally, we average F2(ν, s) over all windows ν with fixed size s to obtain the
fluctuation function F(s).

When a series obeys scaling, the fluctuation function F(s) follows a power law:

F(s) ∼ sα, (13.4)

where α is the DFA fluctuation exponent (equivalent to the Hurst exponent H ). We
calculate F(s) for time scales between s = 5 and N/4, where N is the length of the
series. We are mainly interested in the long-term persistence, i.e. in scales beyond 1
year (denoted by vertical dashed lines in Fig. 13.2.

For uncorrelated records α = 0.5, while for long-term correlated (persistent)
records, where the autocorrelation function decays with time lags as C(s) ∼
s−γ , 0 < γ < 1, the exponents are related as α = 1 − γ /2. In DFAk, trends
of order k − 1 are eliminated (kth order trends from the profile). The fluctuation
exponent α is also related to the power spectrum scaling exponent S( f ) ∼ 1/ f β by
β = 2α − 1 = 1 − γ .

To study the multifractal properties of the hydrological time series, we use the
multifractal DFA (MF-DFA) method [13.14], which is a generalisation of the DFA
method. In the MF-DFA procedure, similar to the conventional DFA, we calculate
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Fig. 13.2 DFA3 results for Johnstone river. Left panel: curves for raw (circles), deseasonalised
(triangles) and phase-substituted (stars) data. Right panel: the same for volatilities. Note that
conventional deseasonalising eliminates the periodicity hump in the initial data (like the phase
substitution procedure), but fails to eliminate the periodicity hump in the DFA curve of the volatil-
ity series, where the phase substitution works well

the generalised fluctuation function for arbitrary moments q (for the conventional
DFA, q = 2):

Fq(s) =
{

1

Ns

Ns∑

ν=1

[F2(ν, s)]q/2

}1/q

, Fq(s) ∼ sh(q), (13.5)

where h(q) is the generalised Hurst exponent. For monofractal time series, h(q)
does not depend on q and is constant. For positive values of q, h(q) characterises the
scaling behaviour of segments with large fluctuations; for negative values of q, h(q)
is associated with the scaling behaviour of the segments with small fluctuations.
For our analysis, we use MF-DFA with third-order polynomials (MF-DFA3), thus
eliminating quadratic trends in the original data.

Exponents h(q) can be related to the standard scaling exponent τ(q) [13.7] by

τ(q) = qh(q) − 1. (13.6)

One often characterises the multifractality by the singularity spectrum f (α), which
is related to τ(q) via the first-order Legendre transform [13.7]:

α = τ ′(q), f (α) = qα − τ(q). (13.7)

The width of the spectrum f (α) characterises the strength of multifractal effects in
the data. For monofractal data, the spectrum f (α) collapses into a single point, and
both functions τ(q), h(q) are linear.
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13.2.2 Volatility Correlations and Surrogate Test for Nonlinearity

We define the volatility series as |Δx!| = |x!+1 − x!|, ! = 1, 2, . . . , N − 1
[13.2, 13.10]. Correlations in the volatilities reflect the way the magnitudes of fluc-
tuations are arranged; when the fluctuations are clustered into patches of large and
small fluctuations, the volatility series is correlated. When the fluctuations are more
homogeneous, the volatility series is less correlated.

Since the information regarding the nonlinearity of the time series is stored in
the Fourier phases, it is possible to generate linearized surrogate time series by
randomising the Fourier phases. However, when randomising the Fourier phases,
the histogram of the original time series may be affected. A method to preserve both
the histogram and the power spectrum of the original time series was introduced by
Schreiber and Schmitz [13.26].

In a surrogate data test, the NULL hypothesis is that the series under consider-
ation is linear. The surrogate data have the same pdf and almost the same power
spectrum as the original series, but with random Fourier phases. If a statistical
measure obtained for the original series is significantly different from that of the
surrogate data, the NULL hypothesis is rejected and the series is considered to be
nonlinear. Applying the surrogate test, we compare periodic volatility and volatility
correlations of initial data and surrogates to measure the nonlinearity.

We apply DFA3 to study correlations in the volatility series. In our previous
work on river records [13.18], we showed that in the time range between 1 week
and 1 year, the volatility fluctuation exponent α ∼ 0.75 and for time scales larger
than 1 year α ∼ 0.65. When applying the surrogate data test for nonlinearity, the
volatility exponent decreases to α ∼ 0.55 for time scales above 1 week. The results
of surrogate data test, i.e. the decrease in the volatility exponent from large value
to ∼0.5, indicate the existence of nonlinearity in the original river flow time series
(see figures in [13.18]).

Since the surrogate test should be applied to stationary time series (i.e. with DFA
exponent smaller than 1), we will apply the surrogate data test on the increment
series, Δx! = x!+1 − x!, when considering hydrological time series that are non-
stationary with α > 1 for time scales smaller than 1 year.

13.3 The Way Periodicities Affect the Estimation of
Nonlinearities: Conventional Seasonal Detrending

By the conventional deseasonalising (seasonal detrending) we refer to elimination of
the general climatic periodicity, i.e. subtracting the average annual cycle: x!−〈x〉day,
where 〈x〉day indicates the average of the particular day (or month in the case of
monthly data) over the years.

More advanced conventional method of seasonal detrending is “seasonal adjust-
ment”, in which not only seasonal cycle of mean values is subtracted but also new
series is divided by the seasonal cycle of standard deviation (see, e.g. [13.6]):
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x! − 〈x〉day√
〈x2〉day − 〈x〉2

day

. (13.8)

In Fig. 13.2, the DFA3 curves for raw (circles) and conventionally deseasonalised
data (triangles) are compared, left panel for the initial time series and right panel for
the volatility series. One can see that though the conventional deseasonalising copes
well with the periodicity hump in the initial data (left panel), in the curves for volatil-
ities (right panel) the deseasonalising is not enough, and the periodicity crossover is
still present and certainly influences the estimation of the scaling exponent.

It can be shown that the seasonal adjustment (13.8) alters the scaling exponent of
the filtered data. Therefore, the fragile two-point correlations should be monitored
in the course of processing the data. For more extended nonlinear analysis, such
as the multifractal and volatility analyses, both conventional filtering techniques,
deseasonalising and seasonal adjustment, are insufficient.

13.4 A New Method for Filtering Out Periodicities

In a recent study [13.17], it was shown that the river data are nonstationary at short
time scales (fluctuation exponent above 1 in time scale up to several months) and are
long-term correlated with α ∼ 0.75 in the asymptotic time scale. Therefore, to elim-
inate the nonstationarities, we consider the increment series Δx! = x!+1 − x!, ! =
1, . . . , N − 1. By this, the fluctuation exponent is reduced by 1. This linear trans-
formation (discrete differentiation) is harmless in the sense of correlations: once the
series has been integrated back, the original fluctuation exponent is restored. The
obtained increment series is stationary (fluctuation exponent is less than 1), and one
can use it for further analysis (for instance, apply conventional deseasonalising) and
then integrate the series back. This would provide the series with removed period-
icity from the second moment curve (two-point correlations) and improve the result
of the linear correlation analysis.

If the conventional deseasonalising is to be applied, we can consider either the
initial series or the integrated increments. The importance of incrementing the data
becomes more pronounced in the case of the seasonal adjustment which is essential
for multifractal and volatility analyses. In Fig. 13.3, where the volatility analysis is
performed on deseasonalised and phase substitution filtered data (the latter filter-
ing described below), one can see that applying the new filtering onto data without
taking increments still provides some retained periodicities, whereas the volatility
curve for the phase substitution filtering applied to the increment series with further
integration provides a flatter region in the seasonal scale of the curve.

To account for the above considerations, we process the data as follows:

(I) Possible nonstationarities in the series are eliminated by taking the increments
Δx! = x!+1 − x!, ! = 1, . . . , N .

(II) We filter the time series by subtracting the daily (or monthly) climatological
average (periodic seasonal average).
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Fig. 13.3 Motivation for analysing the increments of the data: DFA3 results for volatilities of the
Johnstone river. Applying phase substitution on the initial data as compared to the increments with
back-integration shows that there is some periodicity which still cannot be eliminated due to the
nonstationarities of the record

(III) To further eliminate the volatile periodicity of fluctuations, we divide the
obtained series by the annual cycle of the climatological standard deviation;
see (13.8). Combining steps II and III is seasonal adjustment.
When applying seasonal adjustment, which is a nonlinear operation, we have
observed that the correlations in the increment series may weaken (possible
procedure artefacts). In order to preserve both two-point correlations and non-
linear correlations (that are stored in the Fourier phases), we perform one more
step.

(IV) Since the linear properties are linked to the power spectrum and the nonlin-
ear properties are linked to the Fourier phases, we now combine the Fourier
amplitudes obtained from the series in step II with the Fourier phases obtained
in step III. We denote the Fourier transform of the deseasonalised data from

step II as X (1)
ω = |X (1)

ω |eiφ(1)ω , and the Fourier transform of the seasonally

adjusted data from step III as X (2)
ω = |X (2)

ω |eiφ(2)ω . The new Fourier trans-

form is formed as Wω = |X (1)
ω |eiφ(2)ω and transforms back (inverse Fourier

transform):

z! = 1/N
N∑

ω=1

Wωe2π i!ω/N , (13.9)

thus providing the final filtered series z!. After that, we integrate the data back
to restore the fluctuation exponent which was reduced by 1 when considering
the increment series in step I. In this way, both linear and nonlinear scaling
properties are preserved, and the periodicities are eliminated.

The obtained “phase-substituted” data are further studied in the next section.
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13.5 Results

13.5.1 Tests of Artificial Data

To perform an extended test of the technique on simulated time series with known
properties, we have generated four ensembles of artificial data, using

(i) monofractal long-term correlated data (LTC) and
(ii) multifractal long-term correlated data (MF).

The prescribed fluctuation exponent was α = 0.9 in both cases. To each record, we
added two types of asymmetric seasonal trends:

(i) with only the cycle of seasonal mean and
(ii) with the additional cycle of standard deviation. The asymmetric annual cycle

used for these seasonal trends is defined as

C! = Ck+nT =
{

1 + cos(2π f k), 0 ≤ k < 2
3 T,

1 − cos(4π f k), 2
3 T ≤ k < T,

(13.10)

where n is number of year cycles of period T = 365 days, f = 0.75T, ! =
1, . . . , N − 1. Thus, C! increases 1/3 of the time period and decreases for 2/3 of
T . One seasonal cycle of the function is illustrated in Fig. 13.4.

Using the asymmetric function C!, we generate four ensembles for testing the
filtering techniques as follows:

Data 1. Monofractal long-term correlated process with asymmetric annual
cycle of mean

D1
! = C! + A1 · [LTC]!
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index ["days"]
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Fig. 13.4 Asymmetric seasonal function C!, 1 “year” is shown. The function increases 1/3 of the
time period (T = 365) and decreases for the rest 2/3 of T
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Data 2. Monofractal long-term correlated process with asymmetric annual
cycles of mean and standard deviation

D2
! = C! + A2 · C! · [LTC]! + B2 · [LTC]!

Data 3. Multifractal long-term correlated process with asymmetric annual cycle
of mean

D3
! = C! + A3 · [MF]!

Data 4. Multifractal long-term correlated process with asymmetric annual
cycles of mean and standard deviation

D4
! = C! + A4 · C! · [MF]! + B4 · [MF]!,

where Ai , Bi are rescaling constants.

Each set contained 20 samples of length 65,536 data points. The algorithm for
generating monofractal long-term correlated data is described in [13.20] and for
multifractal long-term correlated data in [13.10]. The results are shown in Figs. 13.5
and 13.6.

In the first column of Fig. 13.5, we present samples of four processes (3-“year”
data), DFA curves for raw (green curves), deseasonalised (black curves) and phase-
substituted (red curves) data in second column, and DFA curves for volatilities (third
column). One can see that DFA curves of deseasonalised and phase-substituted data
practically coincide (second column), which means that the seasonal cycle heavily
affecting the DFA curve of the raw data (green curves) is successfully removed
(in both black and red curves). The DFA curves of volatilities demonstrate a pro-
nounced difference in the cases of Data 2, 4 (where both cycles of seasonal mean
and standard deviation are imposed). One can see that the phase substitution filters
out this complicated periodicity better than the conventional deseasonalising.

A difference between two methods can also be observed in Fig. 13.6, where the
multifractal exponents and averaged multifractal spectra are compared (deseason-
alised data – black curves, phase-substituted data – red curves). By construction,
only data 3, 4 are multifractal, whereas data 1, 2 are monofractal. If the conven-
tional deseasonalising applied, the artifical multifractality is falsely detected (black
spectra), whereas the spectra for phase-substituted data (red curves) are corrupted
and narrower in both panels, correctly indicating monofractality. In the case of
intrinsically multifractal data 3, 4, the spectra of the phase-substituted data (red
curves) are smooth and wide, which means detection of multifractality – yet they
are more narrow than those of deseasonalised data (black curves), where not all
seasonal periodicity artefacts are properly removed.

13.5.2 Results of Volatility Analysis of Observed River Data

Having performed the test with artificial data, we apply the developed technique
to the observed river flux records. The effect of the proposed phase substitution
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filtering technique on the volatility analysis can be demonstrated by comparing
second moment curves (Fig. 13.2, right panel), where the DFA3 curve of phase-
substituted data has no periodicity hump, whereas the curve for the conventionally
deseasonalised data does have it.
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In Fig. 13.7, we summarise the results of the volatility analysis for 30 world
rivers with data preprocessed using the filtering techniques described in Sect. 13.1
(Approaches 1–5). We compare initial time series and their volatilities. For the two-
point correlation analysis, the plain raw data show an exponent lower than it should
be due to the seasonal periodicity. On the other hand, for the volatility series the
filtering techniques that filter out the seasonal standard deviation (Approaches 3–5)
show comparable results. This suggests that in order to estimate the long-term non-
linear properties of the hydrological time series, one has to filter out the periodicities
associated with the standard deviation.

In our earlier paper [13.18], we obtained an averaged power spectrum exponent
of volatilities β ∼ 0.27 for the time scales above 1 year. Since the DFA fluctuation
exponent α is related to the power spectrum exponent β by α = (1 + β)/2, the
power spectrum results correspond to α ∼ 0.63, which is close to the present results
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Fig. 13.7 Results of fluctuation analysis for 30 rivers using five filtering approaches. Top panel:
exponents in the data, lower panel: exponents in the volatilities; estimated in the asymptotic regime

obtained by direct calculation of α in the time scale above 1 year. Therefore, the ear-
lier suggested method of scaling analysis of volatilities by means of logarithmically
binned power spectrum has been proven to be efficient and supports our present
results.

13.5.3 Results of Multifractal Analysis of Observed River Data

In Fig. 13.8, we show MF-DFA partition functions of two river records processed
with two filtering techniques. The curves represent discrete values of moments q
from −10 to 10, from top to bottom. Crossovers in the higher moment curves deviate
the results of multifractal analysis (deseasonalised data, left panels). The curves
of negative moments are more affected by the periodicities than those of positive
moments.

In the right-hand side panels, the curves with filled symbols correspond to DFA3
second moment, and one can see that they are identical to those in the left pan-
els; therefore, the filtered data preserve two-point correlations of the deseasonalised
data. At the same time, the higher moments’ curves have been essentially smoothed
(no periodicity humps in curves of negative moments).

Earlier works studied multifractal properties of hydrological time series using the
conventional deseasonalising [13.13, 13.17]. To avoid the effect of crossovers in the
higher moments’ scaling curves (seen in Fig. 13.8, left panel), they calculated the
scaling exponents for asymptotic time scales above the “bump” range. In [13.28],
the authors applied no preliminary filtering to the data and studied the short-term
scaling behaviour. Their results are thus expected to be influenced by the periodicity
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artefacts, although their general conclusion that river flux fluctuations are multifrac-
tal is most probably valid. The method proposed here may enable extending the
region of scaling that includes the annual time scale (the “bump” region), because
the crossovers discussed above do not exist after applying our filtering procedure.

In Fig. 13.9, we compare multifractal spectra (left panel) and volatilities (right
panel) of phase-substituted and phase-randomised data for the Johnstone river. One
can see that the phase-substituted data are nonlinear and that the nonlinearities
are diminished by the surrogate test. This effect supports our filtering technique,
because it indicates that the phase substitution preserves the essential nonlinear fea-
tures of the record.

In Fig. 13.10, we compare multifractal spectra of conventionally deseasonalised
and phase-substituted data of six rivers. Results for the phase-substituted data
demonstrate weakened nonlinearity: the spectra become narrower.
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Fig. 13.9 Multifractal spectra (left panel) and DFA3 curves for volatilities (right panel) of phase-
substituted (circles) and surrogate (triangles) series. The phase substitution preserves nonlinear
properties of the data which can be eliminated by randomizing the phases
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the Murg river – Germany, 77 years; the Tauber river – Germany, 66 years). The spectra of phase-
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Having performed the multifractal analysis of the phase-substituted data at time
scales above 1 year, we have obtained the multifractal spectra of width 0.34 ± 0.26.
For the conventionally deseasonalised data, in the time scale above 1 year we
obtained spectra of width 0.49 ± 0.28. Since the error bars are quite wide, we
can conclude that both methods provide close results in the asymptotic scale. We
hypothesise that if one would consider a scaling range that includes the crossover,
the difference between the two filtering techniques would have become more sig-
nificant. For that, we measure spectra width in a longer time scale range, above
100 days, where the scaling curves for conventionally deseasonalised data have
the periodicity crossovers. For the phase-substituted data, in time scales above 100
days the spectra width for the 30 rivers is 0.46 ± 0.13, as compared to the results
using the conventionally deseasonalised approach, 0.68 ± 0.20. We note that even
though the periodicities were filtered out, the wider MF spectrum we obtain for win-
dows scales above 100 days may still be attributed to the crossovers in the scaling
curves.

13.6 Conclusion

Periodicities in climate records might influence the estimation of the two-point scal-
ing exponent, as well as nonlinear properties of hydrological time series, such as
volatility correlations and multifractal spectrum width. We compared (i) raw data,
(ii) data where the seasonal average was subtracted, (iii) data where seasonal average
was subtracted and the series was then divided by the seasonal standard deviation,
(iv) phase-substituted data without taking increment, and (v) phase-substituted data
after taking the increments. We found that in order to accurately estimate two-point
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correlations, it is necessary to apply at least approach (ii), while in order to accu-
rately estimate the long-range nonlinear properties (the multifractal spectrum and
volatility correlations), approaches (iii)–(v) may be applied. These approaches basi-
cally filter out the periodicity in the standard deviation.

The proposed filtering technique is merely empirical and was developed for
studying hydrological time series with specific scaling properties. However, the
technique may also be useful for estimation of nonlinear properties in other climatic
time series with similar statistical characteristics.
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Chapter 14
Spatial Correlations of River Runoffs
in a Catchment

Reik Donner

Hydrological processes are characterised by spatio-temporal patterns with certain
correlations in both time and space. Thus, time series of related quantities recorded
at different locations show relevant correlations if these locations are influenced by
the same patterns. The actual strength and temporal as well as spatial extension
of these correlations depend crucially on the considered observable (temperature,
runoff, precipitation, etc.). We analyse whether the corresponding interrelationships
change significantly in the presence of changing environmental conditions. For this
purpose, we systematically study a variety of measures which quantify the statistical
dependence between the components of bi- and multivariate hydrological records.
As a particular example, we consider runoff time series from an ensemble of gauges
in the Upper Main catchment area in southern Germany. The qualitative behaviour
of spatial correlations and their changes during extreme weather events are inten-
sively discussed.

14.1 Introduction

The Earth’s climate is a high-dimensional complex system which is subjected to dif-
ferent global and local forcings and nonlinear internal feedback mechanisms which
act on very different temporal as well as spatial scales. Therefore, its behaviour
is highly chaotic and characterised by an extreme sensitivity with respect to rela-
tively small changes of certain environmental parameters. Such changes are known
to be able to lead to sudden transitions in the dynamics of the entire system, with
the North Atlantic thermo-haline circulation as the probably most studied example
[14.1, 14.2]. Time series recording the variability of climatological observables are
therefore typically highly irregular and have rather high noise levels. This holds
in particular for the case of hydrological and meteorological data obtained from
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direct measurements since the start of the instrumental period or reconstructions
of earlier time intervals. Moreover, the variability of meteorological quantities in
both, observations and climate models, is often characterised by properties like
non-Gaussian probability distribution functions or long-term persistence which have
been subjected to a long-lasting debate [14.3–14.33].

Atmospheric patterns are characterised by scales in both time and space on which
meteorological observables like temperature, air pressure, or humidity vary only
weakly. Measuring the temporal evolution of such quantities at different locations
influenced by the same pattern, it is therefore likely that the corresponding time
series are more or less strongly correlated, with a maximum correlation occuring at
a time lag that is determined by the spatial distance between the sites and the typical
drift velocity of the pattern. Due to the dynamic evolution of the observed patterns
during their spatial motion, the correlations between hydro-meteorological records
decay with an increasing distance between the considered locations. This statement
holds in general for very different spatial and temporal scales.

On a global scale, the interrelationships between 500 hPa pressure levels obtained
from reanalysis data have been utilised to derive a network-like structure [14.34].
Similar features are likely to be found in simulations of climate models as well,
however, the behaviour of such models is known to differ from reanalysis data not
only in terms of absolute variabilities and correlations, but also with respect to their
nonlinear features like the local predictability [14.35]. Recently, efforts have been
reported to transfer the idea of climatological networks to other scales and observ-
ables, in particular, by considering correlation and phase synchronisation [14.36]
properties of temperature and precipitation records from different German stations
[14.37].

On continental scales (i.e. several hundreds to thousands of kilometers), simple
linear cross-correlation functions may (depending on the particular geographic sit-
uation) not necessarily be an optimal measure for describing the interrelationships
and exactly detecting the delay corresponding to the maximum dependence between
meteorological time series. For temperature and precipitation records [14.38], it has
been suggested that the concept of phase synchronisation may be better suited for
this purpose. Recent findings indicate, however, that this result cannot be gener-
alised [14.39]. Instead, for long-term daily temperature time series from two distinct
Western and Central European observatories, clear evidence for strong linear and
nonlinear correlations has been reported, whereas no significant long-term phase
synchronisation could be found. This finding does not exclude the existence of time
intervals of phase coherence as have been recently reported for the All-Indian Rain-
fall (AIR) and NINO3 indices [14.40] which manifest the known interrelationships
between variations of the Indian monsoon system and the El Niño phenomenon
[14.41–14.44].

Concerning regional correlations of hydro-meteorological records, there are
numerous studies analysing the behaviour of, in particular, precipitation observa-
tions in different areas of local to regional scale, e.g. [14.45–14.53]. Recent stud-
ies with a very high resolution in time [14.54] and space [14.55] have shown that
the performance of linear correlation analysis may also be resolution dependent.
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In addition, efforts have been reported to apply nonlinear concepts like mutual
information [14.56], correlation dimension, and nonlinear prediction error [14.57];
however, these analyses have yet been restricted to a separate consideration of the
records from different stations.

The presented study focusses on the spatial pattern of regional runoff corre-
lations in a river catchment. Instead of considering linear and nonlinear inter-
relationships between only two distinguished locations, we address the general
question of ensemble correlations between a number of records on a more fun-
damental quantitative level. The consideration of a larger set of stations avoids
possible artificial results due to an eventually problematic choice of locations.
Recently, this idea has motivated the development of the concept of regional flood
probabilities [14.58]. In this contribution, we investigate whether the amplitude of
spatial correlations depends on the actual state of the system. For example, dur-
ing extraordinary climatic events, the amplitude and spatial distribution of correla-
tions between hydro-meteorological observables at different locations in the same
region may change significantly. In this case, the strength of correlations can be
used as an order parameter for the characterisation of the respective environmental
conditions.

The general advantage of our approach is that multivariate data sets, formed by
simultaneous observations from a larger ensemble of stations located in the same
region, contain more detailed information about the spatio-temporal variability of
the environmental conditions than single records from only one or two stations. As
a particular example, we analyse river runoff records from different gauges in the
Upper Main catchment area in southern Germany (see Sect. 14.2). River runoffs
are strongly influenced by the precipitation in the corresponding catchment area;
however, this dependence is neither linear nor bi-directional as the entire catchment
serves as a complicated nonlinear filter transferring the inflow (mainly precipita-
tion) into the outflow (river runoff) [14.59, 14.60]. The parameters of this filter
do strongly depend on the particular geography of the considered area, involving
parameters like elevation, soil conditions, land use, and vegetation. In addition,
time-delayed effects like the accumulation of moisture in soils have to be taken into
account here.

We start our analysis with an investigation of the mutual linear and nonlinear
correlations between the different records. To appropriately quantify ensemble cor-
relations between the respective records, we characterise the complexity of inter-
relationships in terms of the relative number of relevant (e.g. orthogonal) patterns
obtained after a suitable statistical decomposition of the data set. As the state of
the atmosphere is often determined by only some basic modes which are clearly
distinguishable from noise [14.61, 14.62], this basic idea can be found in numerous
applications to both climate models and observations. However, the approach of
quantifying this state during a given time interval by a single statistical parameter is
rather novel and has up to now only been used to study multivariate palaeoclimatic
proxy data [14.63–14.65]. After a detailed description of the corresponding method,
we discuss its potential to describe the behaviour of spatial correlations around an
extreme event.
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14.2 Description of the Data

We study river runoff records from the Upper Main catchment area in Northern
Bavaria, Germany, which have been collected by the Bayrisches Landesamt für
Umwelt. The area under investigation has a total size of about 4 440 km2 and ranges
from the inflow of the Regnitz near Bamberg in the south-western part of the catch-
ment up to the hills of the Fichtelgebirge forming the north-eastern watershed. The
corresponding maximum extension is about 90 km in east-west and 70 km in north-
south direction.

The river runoff data used in this study have been obtained at 13 gauges displayed
in Fig. 14.1 and additionally listed in Table 14.1. The corresponding locations are
distributed along the Upper Main river and its inflows up to the gauge of Kemmern
near Bamberg.1 Time series with a daily resolution have been made available for

Fig. 14.1 Location of the 13 gauges in the Upper Main catchment area from which records have
been available. Numbers indicate the stations as described in the text. The underlying map of the
river network has been adapted from Hochwassernachrichtendienst Bayern (Bayrisches Landesamt
für Umwelt, http://www.hnd.bayern.de)

1 The Bavarian Landesamt für Umwelt holds data on currently 47 gauges from the catchment
(see http://www.hnd.bayern.de), however, we have no continuous records from the remaining 34
stations.
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Table 14.1 Gauges from the Upper Main catchment area used in our study. The first num-
bers correspond to the stations in Fig. 14.1. For the gauge at Steinberg, data are missing
between October 31, 1967 and October 31, 1968. The catchment areas have been taken from
http://www.hnd.bayern.de

No. Gauge River Catchment (km2)

1 Kemmern Main 4 223.84
2 Leucherhof Baunach 380.52
3 Heinersdorf Rodach 376.38
4 Coburg Itz 346.34
5 Schwürbitz Main 2 418.68
6 Horb Steinach 256.63
7 Unterlangenstadt Rodach 713.87
8 Neukenroth Haßlach 140.96
9 Steinberg Kronach 94.30

10 Wallenfels Wilde (Wild) Rodach 96.45
11 Untersteinach Untere (Lower) Steinach 126.60
12 Ködnitz Weißer (White) Main 313.42
13 Bayreuth Roter (Red) Main 340.28

the time interval from January 1961 to December 1990 without significant gaps,
with the exception of the runoff time series from one particular gauge where one
complete year is missing. Instead of using the original data, we normalised all time
series with respect to the sizes of the catchment areas of the corresponding gauges.
In addition to the daily records, we also consider a subset of 11 gauges where time
series with a temporal resolution of 1 h are available for the time interval from Jan-
uary 1989 to December 1998. This second runoff data set contains the same gauges
like the first one, with the exception of the stations at Schwürbitz (gauge no. 5) and
Steinberg (gauge no. 9).

The precipitation in the considered region shows a highly diversified pattern
which is strongly correlated with the local orography. Its annual mean values range
from about 700 mm per year in the north-western part (with typical heights of 200–
500 m) up to 1 500 mm per year and more in the source regions of White Main
and Steinach in the Fichtelgebirge (up to 1 040 m high) in the eastern part of the
catchment [14.66, 14.67]. The main river of the region is the Upper Main with a
total length of 71 km from the connection point between Red and White Main to the
Regnitz inflow. According to the Hochwassernachrichtendienst Bayern, the typical
time of a non-deformed flood wave to cover this distance is between 13 and 26 h. An
additional time of 6–10 h has to be taken into consideration to cover the distances
from the gauges closest to the main source regions, Untersteinach (gauge no. 11 in
Fig. 14.1) and Bayreuth (gauge no. 13), to the connection point of Red and White
Main, which are roughly about 15 and 33 km, respectively.

The probably most frequently considered hydrological station in the Upper Main
area is the gauge at Kemmern near the Regnitz inflow, which is the last station
along the upper part of the river and thus yields aggregated information about the
hydrological conditions in the whole catchment. The extreme events recorded at this
gauge are thus of particular importance. Concerning the data analysed in this study,
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the corresponding time interval includes the largest runoff value ever recorded dur-
ing the instrumental period, with a daily average of 855 m3/s and a peak discharge
of 1 000 m3/s (or 17.83 mm/day after normalisation with respect to the catchment
area) observed on 25 December 1967. (For comparison: the minimum daily average
runoff recorded was only 3.7 m3/s, the mean value between 1961 and 1999 was
about 45 m3/s [14.66].) These few numbers illustrate the large variability of precip-
itation and river runoff in the area on very different time scales.

14.3 Correlation Functions and Related Quantities

To appropriately quantify the interdependences between the respective observations,
one may consider different linear as well as nonlinear measures. Some particular
examples are discussed in the following:

14.3.1 Pearson’s Linear Correlation

The simplest measure for correlations is Pearson’s correlation coefficient [14.68]
defined for two time series X (t) and Y (t) with zero mean values as

r = 〈X (t)Y (t)〉√〈
X2(t)

〉√〈
Y 2(t)

〉 , (14.1)

where 〈·〉 denotes the averages taken over the entire record, t = 1, . . . , T , which are
an estimate of the expectation values of the corresponding stochastically fluctuating
quantities. This coefficient can be easily generalised to the linear cross-correlation
function by considering a fixed time lag τ between the compared time series as

CXY (τ ) = 〈X (t)Y (t + τ)〉√〈
X2(t)

〉√〈
Y 2(t)

〉 (CXY (0) = r). (14.2)

In the case of records with a finite length T , Pearson’s linear cross-correlation is
a bias-free estimate if both time series are normally distributed. In the asymptotic
case of very long records (T → ∞), this prerequisite is practically negligible as
the values of the linear correlation function converge to those given by rank-order
correlations [14.69, 14.70] described next.

14.3.2 Non-parametric (Rank-Order) Correlations

Non-parametric correlation functions do not depend on the particular values of the
considered observables, but only on their ranks. Consequently, the original distribu-
tion function of the data does not influence the values of such functions, which is an
important advantage compared to Pearson’s linear correlation function.
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The most prominent rank-order correlation coefficient is Spearman’s rho [14.71]
which may be computed as

ρS = 1 − 6
∑T

t=1 (Xr (t) − Yr (t))2

T (T 2 − 1)
, (14.3)

where Xr (t) and Yr (t) give the ranks of the values X (t) and Y (t) in the respective
time series.

As an alternative, one may consider the concordance between two rank-ordered
time series as a non-parametric correlation coefficient. For this purpose, one com-
pares all pairs of observations at two different times t and t ′. A pair is called concor-
dant (discordant) if (Yr (t ′) − Yr (t))/(Xr (t ′) − Xr (t)) > 0 (< 0). Pairs with either
Xr (t) = Xr (t ′) (extra-y pair) or Yr (t) = Yr (t ′) (extra-x pair) have to be considered
separately, whereas those with both Xr (t) = Xr (t ′) and Yr (t) = Yr (t ′) are not taken
into account.2 As a measure of concordance, Kendall’s tau [14.72] is defined as

τK = Nc − Nd√
Nc + Nd + Nx

√
Nc + Nd + Ny

, (14.4)

where Nc, Nd , Nx , and Ny are the number of concordant, discordant, extra-x, and
extra-y pairs, respectively. The computation of Kendall’s tau requires relatively large
computational efforts due to the calculation time of O(n2); however, during the
last years, fast algorithms have been developed for which the calculation time is
dramatically reduced up to O(n log n) [14.73].

Lagging both time series X and Y with respect to each other by a variable num-
ber τ of time steps, ρS and τK can be used to define appropriate non-parametric
correlation functions RXY (τ ) and TXY (τ ), respectively.

14.3.3 (Cross-) Mutual Information

Mutual information [14.74] is a measure of statistical dependence that can be con-
sidered as a nonlinear generalisation of the linear covariance function. To compute
this quantity, one has to consider an appropriate discretisation of the time series X
and Y into symbols {xi } and {y j }, respectively. The probabilities of these symbols,
pi and p j , as well as the joint probabilities pi j (τ ) that xi and y j occur simultane-
ously if the time series Y is lagged by τ time steps are empirically approximated by
their frequencies of occurrence in the observational records. With these probabili-
ties, the (cross-) mutual information is defined as

IXY (τ ) =
∑

i j

pi j (τ ) log
pi j (τ )

pi p j
. (14.5)

2 As the rank ordering conserves all order relationships between different observations in the orig-
inal time series, it is appropriate to directly use X and Y instead of Xr and Yr .
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IXY (τ ) is by definition restricted to non-negative values. To standardise the cross-
mutual information to values in the unit interval, different approaches have been
suggested (for an overview, see [14.75]). We prefer to normalise IXY (τ ) in a similar
way as the linear covariance function, i.e.,

I ∗
XY (τ ) = IXY (τ )√

IX (0)
√

IY (0)
. (14.6)

Here IX and IY are the univariate mutual information of the time series X and Y ,
respectively. The concept of mutual information may be further generalised in both
the univariate and the bivariate case by replacing the Shannon entropy terms in
(14.5) by a generalised (Rényi) entropy of an appropriate order [14.76]. However,
the resulting generalised (cross-) mutual information functions may be more diffi-
cult to interpret and have a smaller variance [14.39].

One has to mention the conceptual difference between the (parametric or non-
parametric) correlation functions on the one hand and mutual information on the
other hand: Measures belonging to the first group are able to detect correlations
as well as anti-correlations, which are both certain kinds of statistical dependence.
Consequently, their range is usually normalised to [−1, 1]. In contrast to this, the
mutual information detects only whether there is any kind of statistical dependence,
which means that in its normalised version, values range between 0 (no dependence)
and 1 (identical time series).

14.3.4 Recurrence Quantification Analysis (RQA)

A complementary approach to access nonlinear characteristics from given observa-
tional data is based on recurrence plots [14.77]. Originally, the concept of recurrence
plots has been designed as a tool to visualise the correlation pattern within a single
time series by comparing the observed values at any observation time t with those
at any other time t ′ (t, t ′ = 1, . . . , T ). A simple graphical representation is obtained
by comparing the difference to a prescribed threshold value ε and encoding this
difference in dependence on both times t and t ′ according to the order relation with
respect to ε. Hence, recurrence plots preserve the essential topological information
contained in the considered time series [14.78].

Mathematically, the corresponding recurrence matrix of a time series X is for-
mulated using the Heavyside function as

RX (t, t ′) = �(ε − ||X (t) − X (t ′)||). (14.7)

(note that this matrix depends on ε which has to be chosen appropriately, i.e. in
a way that for a total number of T observations, the normalised recurrence rate
R R = 1

T 2

∑T
t,t ′=1 RX (t, t ′) is sufficiently different from both 0 and 1).
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Recurrence plots may be used to compute several nonlinear characteristics which
are based on statistics of either the diagonal or the horizontal structures. This
approach includes measures for the laminarity, determinism, and predictability of
the observed data and is called recurrence quantification analysis (RQA) [14.79–
14.81]. In addition, the consideration of recurrence plots allows to estimate several
dynamic invariants [14.82], including the second-order Renyi entropy K2 and the
mutual information already discussed above.

To define a measure for nonlinear correlations within univariate time series, one
may consider the recurrence rate for a fixed time lag τ = t ′ − t and define the
τ -recurrence rate (or generalised (auto-) correlation function [14.39]) as

PX (τ ) =
{

1
T −τ

∑T −τ
t=1 RX (t, t + τ) for τ ≥ 0

1
T +τ

∑T
t=τ RX (t + τ, t) for τ < 0

, (14.8)

i.e. the τ -recurrence rate is the probability of two observations lagged by a time τ
to be less separated than a prescribed threshold value ε.

For comparing two time series X and Y which represent the same physical
quantity (for example, two runoff time series) and have the same basic statistical
properties (in particular, the same length T and the same means and variances), one
defines the cross-recurrence matrix [14.83]

C RXY (t, t ′) = �(ε − ||X (t) − Y (t ′)||). (14.9)

and the cross- τ -recurrence rate (or generalised cross-correlation function)
C PXY (τ ) by replacing the univariate recurrence matrix RX (t, t ′) by the cross-
recurrence matrix C RXY (t, t ′) in (14.8). Note that this approach should not be
applied if X and Y represent different physical quantities [14.84].

(Cross-) τ -recurrence rates are more directly related to the standard (cross-) cor-
relation functions than, for example, mutual information. However, C PXY (τ ) and
related measures are not able to detect anti-correlations, but are restricted to the
range between 0 (no correlation) and 1 (perfect correlation). One possible way to
overcome this conceptual difficulty would be to additionally compute the cross-
recurrence matrix between the time series X and −Y and use it to define a symmetric
(cross-) recurrence function by setting

C P∗
XY (τ ) = C PXY (τ ) − C PX,−Y (τ ), (14.10)

i.e. computing the difference between the generalised correlation function C PXY (τ )

and the generalised anticorrelation function C PX,−Y (τ ).
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14.4 Mutual Correlations Between Different Stations

In the following, we investigate the spatial structure of mutual interdependencies
between the runoffs obtained at different gauges in the Upper Main catchment. As
we consider time intervals of only 20–30 years, long-term trends associated with
global climate change are likely to have only minor importance (i.e. are sufficiently
small compared to the natural variability) and influence all records in the same way
such that we assume that the necessary stationarity conditions are approximately
fulfilled. To approach comparable time series, all observational records are stan-
dardised by removing the annual mean value of the respective observable for any
calendar day (obtained from the entire record) and transforming the residual to zero
mean and unit variance.

At first, we consider the daily records observed at all 13 gauges. Due to the
missing data at the gauge at Steinberg in 1967 and 1968, we focus on the time
interval between 1 January, 1969 and 31 December, 1988, where the data set is
homogeneous and has no gaps. This restriction allows a better comparability of the
different time series, in particular, with respect to effects of the finite number of
observations (in the considered case, T = 7 305 days).

In Fig. 14.2, the different correlation coefficients (Pearson’s r , Spearman’s rho
ρS, and Kendall’s tau τK) described in the previous section are compared. Whereas
the latter two are non-parametric and depend only on the rank-order of the data,
the standard Pearson correlation is unbiased only for Gaussian data. In contrast to
this, runoff time series typically show a clearly skewed distribution, which is often
approximated by log-normal, gamma, or other suitable model functions. To test the
actual relevance of the probability distribution function for the resulting Pearson
correlation with T = 7 305 observations, we have additionally logarithmised all
runoff time series to approach more symmetric distribution functions and calculated
r again for the transformed data.

Comparing the correlation, mutual information, and cross-recurrence coeffi-
cients, one observes that although there are shifts in the absolute values between
the respective measures, the general correlation pattern is conserved. In particular,
all correlations are clearly significant. As the four considered correlation coefficients
show the same behaviour, the actual distribution function of the data is only of minor
importance with respect to the entire time series. However, it may become relevant
if only short time intervals are considered separately, which will be discussed later.

In order to evaluate whether the above results depend qualitatively on the tempo-
ral resolution of the data, we have computed all correlation coefficients and related
measures for the second runoff data set, which covers the time interval between 1989
and 1998 with a temporal resolution of 1 h. Except for the gauges at Schwürbitz
(5) and Steinberg (9) where data are missing, the time series directly continue the
daily records studied above. According to the results shown in Fig. 14.3, the general
pattern of spatial correlations is equivalent to that of the daily data covering the
preceding 20 years. This indicates that there are no significant changes of the runoff
dynamics (for example, due to changing climatic conditions or anthropogenic mod-
ifications in the catchment). Hence, the temporal resolution of the runoff time series
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Fig. 14.2 Correlation coefficients and related measures between all daily runoff time series com-
puted for the time interval 1969–1988. First row: Pearson’s linear correlation coefficient r for the
original (left) and log-transformed (right) data. Second row: Non-parametric correlation coeffi-
cients Spearman’s rho ρS (left) and Kendall’s Tau τK (right). Third row: Cross-mutual information
I ∗

XY (0) (left) and cross-recurrence coefficient C PXY (0) (computed with ε = 0.25). Axis labels
correspond to the station numbers listed above
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Fig. 14.3 Correlation coefficients and related measures as in Fig. 14.2 for all runoff time series
with a temporal resolution of 1 h (1989–1998). The missing records from the gauges no. 5 and 9
are represented by white boxes along horizontal and vertical lines

is of minor importance for the qualitative detection of spatial runoff correlations on
longer time scales.

Comparing the different measures systematically, some features are found which
call for further discussion: First, one observes that although the total number of
observations (T = 87 648) is significantly higher than in the case of the daily data,
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the correlation coefficients r between the original time series on the one hand and
their values for the log-transformed data as well as Spearman’s rho ρS and Kendall’s
tau τK on the other hand still show remarkable deviations. This observation indicates
that although all time series are rather long, the distribution of the data still influ-
ences the linear correlation analysis. In particular, the distribution of the original
runoffs shows large algebraic tails, which are significantly reduced in the logarith-
mised time series.

Second, cross-mutual information and cross-recurrence coefficients show fea-
tures which slightly differ from those of the correlation functions. In the case of
the cross-mutual information, this is related to the fact that correlations and statis-
tical dependences are two clearly different concepts. In addition, for the computed
values of the mutual information, the choice of the partitions may influence the
results. While we have restricted ourselves to partitions into equally sized classes,
a data-adaptive partitioning is favourable [14.74]. Considering the cross-recurrence
coefficient, we have chosen the same value of ε for all computations, whereas a
fixation of the recurrence rate RR introduced in Sect. 14.3 instead would allow a
better comparability of all records.

Power-law tails of runoff time series are accompanied by an omnipresent long-
term memory. From this point of view, one possible explanation for the different
behaviour of the considered correlation functions (in particular, the larger sensitivity
of the Pearson correlation with respect to the distribution of the data compared to the
daily records) is that the auto-correlations within hydrological records usually decay
on a scale of several days. This scale is more often contained in the 20-year daily
record than in the better resolved hourly record which covers only 10 years. The
importance of long-term auto-correlations is also a possible reason for the strong
similarity of the results obtained for daily and hourly time series. To further inves-
tigate their importance for the spatial dependencies, we have analysed whether the
interrelationships between different records depend on the considered time scale. As
complex signals from natural sources can be decomposed into components with dif-
ferent frequencies, the amplitudes of which may change with time, wavelet analysis
[14.85] is an appropriate tool for this purpose. We have explicitly studied the varia-
tions on scales of 20 days, which roughly corresponds to the (theoretical) prediction
limit of atmospheric processes [14.86–14.88], and 10 days, which is an upper bound
for the prediction limit of current weather-forecasting algorithms.

The resulting time series (which can be considered as being smoothed over the
respective temporal scale) show correlations which are qualitatively identical to
those of the original time series. However, there are indeed small differences in
dependence on the considered time scale. For example, Fig. 14.4 shows that the
rather low correlations between the gauge at Bayreuth (13) and the other records
mainly manifest on smaller time scales, whereas they become somewhat stronger
when considering the 20-days variability. This finding indicates that not the distri-
bution is mainly responsible for the corresponding pattern, but rather the long-term
memory of the respective record which may depend on the particular location.

According to the rather slow evolution of hydrological processes, we have further
examined whether there is a significant delay between the dynamics recorded at the
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Fig. 14.4 Spearman correlations between the daily (left panels) and hourly (right panels) runoff
records from the Upper Main catchment filtered on a scale of 10 (upper row) and 20 days
(lower row), respectively. The corresponding Pearson correlations give completely equivalent
patterns

different gauges in the catchment. As a reference for the investigation of spatial
correlations, we have chosen the gauge at Kemmern (1) which is the final gauge
downstream in the Upper Main catchment area and integrates the input recorded
at all other gauges used in this study. If the spatial distance is larger than the flow
velocity divided by the sampling interval of the time series, maximum correlations
are recorded at appropriate time lags τ . Whereas in the case of daily records, a
constant time lag of 1 day is found for the maximum correlations of different gauges
with the Kemmern record, the hourly data resolve different time lags between rougly
1 and 2 days (see Fig. 14.5). These delays show a close, intuitive relationship to the
distance between the considered gauges. To evaluate whether these correlations are
stable in time, we have computed the Pearson and Spearman correlations, r and ρS ,
as well as the linear cross-correlation function CXY (τ ) for sliding windows of 100
days. One particular example is shown in Fig. 14.6. One clearly observes that the
correlations are not stationary. However, there is no significant relationship between
the average runoff and the temporal extension of cross-correlations. We will come
back to this result later.
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Fig. 14.5 Iso-lines of the linear cross-correlation function between the daily (left) and hourly
(right) river runoff records from the gauges 2–13 and the corresponding record obtained from the
gauge at Kemmern (1). The dashed lines indicate the delays for which the highest correlations have
been found. In addition, the distance of the respective locations (in river kilometers) to Kemmern
is displayed in the upper panels

Fig. 14.6 Left figure: Runoff, integrated over 100 days (upper panel) and cross-correlation function
for the daily records from Kemmern (1) and Bayreuth (13) associated with the corresponding time
intervals. Right figure: Pearson and Spearman correlation coefficients for the corresponding data
subsets as a function of time

14.5 Ensemble Correlations

Due to the complex interrelationships between precipitation and runoff in a catch-
ment, there is no direct way to translate meteorological information into a prediction
of hydrological conditions, which is a necessary task for flood forecasting [14.89].
As a possible alternative, one may exclusively consider the runoff dynamics from
different gauges. This idea is closely related to the question of how to quantify
ensemble correlations, i.e., the general state of all gauges in a small-scale catchment.
In this section, we describe a potential framework for solving this task and discuss
its eventual predictive skills.
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The characterisation of ensemble correlations by a single statistical parameter
requires an appropriate statistical decomposition of the corresponding multivariate
time series. In principle, this decomposition can be performed by a variety of dif-
ferent approaches, including purely linear methods like Karhunen–Loéve decom-
position (KLD) (which is often referred to as principal component analysis (PCA)
[14.90]), multi-dimensional scaling (MDS) [14.91], or, referring to a separate con-
sideration of patterns in the frequency domain, multi-channel singular spectrum (or
system) analysis (MSSA) [14.92], a combination of the “standard” singular spec-
trum analysis (SSA) [14.93] with PCA. All these methods have the common con-
cept that some matrix, which is suitably constructed from the observational data,
is subjected to a singular value decomposition (SVD), i.e. it is decomposed into
its eigenvalues and the corresponding eigenvectors. In the case of KLD, one makes
use of the correlation (or scatter) matrix S = AT A of the observed data set A (the
component time series of which have to be transformed to zero means). For MDS,
a transformed matrix of the squared linear inter-point distances is used, whereas
MSSA is based on a Toeplitz-type lag-covariance matrix obtained from every uni-
variate components time series.

Whereas the SVD step of all these methods may be easily and computationally
efficiently performed, there are also different nonlinear generalisations. One pos-
sible way to obtain such generalisations is replacing the Euclidean metric by one
defined by the local neighbourhood, for example, in terms of isometric feature map-
ping (ISOMAP) [14.94] or locally linear embedding (LLE) [14.95]. An alternative
is realising the decomposition in terms of neural networks, including methods like
nonlinear principal component analysis (NLPCA) [14.96] or independent compo-
nent analysis (ICA) [14.97]. However, these nonlinear variants require a much larger
amount of data for computation, while the linear methods can be applied to rather
short time series as well. In addition, the methods based on neural networks do not
lead to well-defined component variances such that the approach described in the
following is not applicable in such cases.

14.5.1 KLD-Based Dimension Estimates

For a temporally localised characterisation of the components of multivariate data
sets, we propose to focus on the linear methods only. For simplicity, we consider
here KLD as a particular example, as the components derived by this method have
probably the most intuitive interpretation. Again, we standardise all time series
to zero means and unit variances, which has the advantage that different records
become better comparable. Moreover, the entries of the symmetric equal-time cor-
relation matrix S are in this case given by the normalised Pearson correlation coeffi-
cients r . In the following, we consider the non-negative eigenvalues σ 2

i of S, which
are rather easily computed. Without loss of generalisation, we assume that these
eigenvalues are decreasingly ordered and normalised as

∑N
i=1 σ

2
i = 1 (where N is

the total number of component time series), i.e. the total variance of the multivariate
data set is rescaled to 1. For the characterisation of spatio-temporal chaos, Zoldi
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and Greenside have introduced the concept of KLD dimension [14.98].3 Following
a recently proposed redefinition [14.63], we consider this measure as the minimum
number of eigenvalues required to capture some predefined fraction f of the total
variance, i.e.

DKLD( f ) = min

{
p ∈ {0, . . . , N }

∣∣∣∣∣

p∑

i=1

σ 2
i ≥ f

}
. (14.11)

As for spatio-temporal data obtained from certain model systems, DKLD has been
found to increase linearly with increasing N , it is appropriate to study a normalised
measure, the KLD dimension density

δKLD = DKLD/N , (14.12)

instead of DKLD itself. The KLD dimension has mainly been used to characterise the
dynamics of spatially extended model systems in extensive [14.98] and spiral-defect
chaos [14.99] as well as that of reaction–diffusion systems [14.100]. Recently, an
application to spatio-temporal observations from electrochemical turbulence was
reported [14.101].

In applications to general multivariate data sets, the concept of KLD dimension
has some serious disadvantages. In particular, its range is restricted to only N values,
which makes it hard to consider δKLD for detecting small changes in the correlation
structure of the data. In addition, for a finite length T of the considered time series
and, in general, due to its dependence on the variance fraction f , the value of δKLD
may deviate from the actual dimension density of a given system, which has been
demonstrated for reasonable model systems [14.64, 14.65]. Thus, a strictly quantita-
tive interpretation of δKLD is problematic, and we propose to consider this measure
only as a qualitative dimension estimate.

To overcome the discrete nature of the KLD dimension density, we consider
the scaling of the residual variances Vr (p/N ) = 1 −∑p

i=1 σ
2
i with p. For rather

different kinds of model systems as well as geoscientific observational data (see
Fig. 14.5), this scaling is dominated by an exponential decay [14.63, 14.65]4

Vr (p/N ) ∼ 10
p
N

/
δLVD . (14.13)

In the case of a small number of component time series N , it may be problematic
to fit a corresponding model to the remaining variances defined for only N different

3 Here, the term dimension is not used in the context of fractal theory, but rather topologically as
the dimension of a linear subspace containing the required fraction of dynamical “information”.
4 Instead of using powers of e, we define the exponential scaling law with respect to powers of
10. This convention has the advantage that 90% of variance are typically considered as a reference
point for fixing the number of significant linear independent components, see [14.102] or [14.98].
In our formalism, this corresponds to a remaining variance of Vr (p/N ) = 0.1, which is approached
for p/N = δLVD.
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Fig. 14.7 KLD dimension density δKLD( f ) (left panel) and LVD dimension density δLVD( f ) (right
panel) as a function of the cutoff variance fraction f for the daily (solid lines) and hourly runoff
(dashed lines) data. In the left panel, the logarithm of the residual variances Vr (p/N ) is addition-
ally shown as a function of the maximum component order p (daily data: �, hourly data: �). For
the daily time series, all values have been computed for the time interval from 1 January, 1969 to 31
December, 1988. The hourly records cover the period between 1 January, 1989, and 31 December,
1998. Note that the number of values of both data sets must not be compared directly, as the number
of records N differs between both data sets which influences the computed values

values of the maximum component order p < N . Therefore, it is more appropriate
to consider δKLD which has (as a function of f ) a scaling which is closely related to
that of the residual variances [14.64] (see Fig. 14.7), i.e.

δKLD(φ) = −δLVD( f ) log(1 − φ) for φ ∈ [0, f ]. (14.14)

The coefficient δLVD( f ), which is referred to as the linear variance decay (LVD)
dimension density, thus describes the exponential decay scale of the residual vari-
ance fraction with the number of components and is continuously defined for all f ∈
]0, 1[. Its efficient computation is described in some more detail in [14.64, 14.65].
For palaeoclimatic multi-proxy data, it has been demonstrated that δLVD allows to
detect even small changes in the correlation structure of short multivariate time
series. However, δLVD can again only be considered as a qualitative indicator as
its value depends on the particular choice of f and the length of the considered time
intervals, M , in a system-dependent way [14.63–14.65].

14.5.2 Case Study I: The Christmas 1967 Flood

As an illustrative example for the potential application of KLD-based dimension
density estimates in hydrology, we have calculated both δKLD and δLVD for short
time intervals before, during, and after the major Main flood on christmas 1967. As
for this time interval, no data from the gauge at Steinberg (9) are available, only 12
gauges are considered.

Figure 14.8 shows the results for both dimension estimates calculated for time
intervals of M = 14 days. On the one hand, this window length has been chosen
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Fig. 14.8 KLD (left panel) and LVD dimension density (right panel) for time intervals of M = 14
days around the Main flood at 25 December, 1967. Different line types correspond to different
cutoff levels f = 0.9 (solid), 0.99 (dashed), and 0.999 (dotted). The vertical lines indicate the
time intervals where data from 25 December, 1967 are explicitly taken into account

such that it is not much larger than the typical duration of a flood event and of the
order of the typical time scale of long-term auto-correlations. On the other hand,
the corresponding time intervals must not include too few observations in order to
give statistically significant results. Note that, due to the consideration of several
simultaneous records, the typical number of observation points in time which is
necessary for computing meaningful values is smaller than in the case of bivariate
correlations and related measures.

Considering Fig. 14.8 in some detail, one observes that the values of δLVD are
much more stable if the considered fraction of explained variance, f , is varied. In
addition, it is found that for the runoff records, both dimension estimates show a
significant decay if data from 25 December, 1967 are explicitly considered. This
fact is easily understood: at this day, the recorded runoffs have been extraordinarily
high at all gauges compared to the usual values such that all time series show a very
similar behaviour, which increases the correlations between the different records.
As a consequence, the number of components necessary for explaining a given frac-
tion f of total variance decreases, which is recorded by the considered dimension
estimates.

We have already briefly addressed the issue of statistical significance. As
Fig. 14.8 illustrates, the qualitative features of the variability of δKLD and δLVD
around the considered flood event do not depend on the particular choice of f ,
which gives a first indication of the robustness of our approach. As a second argu-
ment, Fig. 14.9 shows that the results discussed above do not change qualitatively
when the width M of the considered time window is changed over a reasonable
range. However, the figure also illustrates that the considered data window must not
be chosen too large, as otherwise the contrast between the values of δLVD during
normal and exceptional conditions decreases strongly.

To further prove the significance of the temporal variation of δLVD, the uncer-
tainty of this measure may be explicitly estimated. For this purpose, δLVD was com-
puted for ensembles of slightly perturbed data constructed from the original data set
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Fig. 14.9 LVD dimension density δLVD of the daily river runoff records for the period including
the Main flood at 25 December, 1967. Left panel: Value of δLVD for different numbers of data
considered for computation: M = 10 (solid), 14 (dashed), and 20 (dotted). The vertical lines
indicate the start of the respective windows where data from December 25 contribute. Right panel:
95% confidence levels for δLVD with respect to a window width of M = 14 days. All computations
have been carried out with f = 0.99

by substituting the data of a single, but randomly chosen time slice by a Gaussian
random vector. To study the influence of such distortions on δLVD systematically,
a suitably large ensemble of 1 000 of these perturbed data has been considered. In
Fig. 14.9, the corresponding results are shown for windows containing M = 14
daily observations. While the expectation of δLVD is shifted towards higher val-
ues with respect to the original data (i.e. the surrogate data are “more stochastic”
by construction), the qualitative behaviour remains unchanged. The corresponding
confidence levels indicate clearly that the variations in the dimension are signifi-
cant even for such small numbers of data points, which demonstrates the qualitative
robustness of the considered approach.

14.5.3 Non-parametric Ensemble Correlations

As it can be inferred from Fig. 14.8, the dimension estimates of the runoff time
series show remarkable minima in the case of an extreme flood. However, not every
pronounced minimum corresponds to a dangerous flood event as well. Considering
the strength of the decay of δKLD and δLVD (i.e. the absolute values, the difference
before and after the occurrence of the “event” and its duration), there is no signif-
icant difference found compared to other situations in which minimal values occur
without a severe flood. As in addition, the decay starts rather shortly before the
actual flood occurs, the predictive skills of the considered dimension estimates with
respect to flood forecasting are limited. However, their behaviour gives complemen-
tary information about the evolution of the hydrological state of the catchment.

To evaluate the possibility of an improvement of our method, we recall that the
Pearson correlations (forming the considered correlation matrix S) depend on the
distribution of observed values. In particular, in the case of short time series with
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strongly non-Gaussian values (as in the present analysis of ensemble correlations
during a flood), the corresponding values may be unreliable. However, the use of
Spearman instead of Pearson correlations offers a potential way to overcome this
conceptual problem as Spearman’s rho ρS does not depend on the particular distribu-
tion of the observed data. In the following, we consider NS with NSi j = ρS(Xi , X j )

to be the symmetric matrix of Spearman correlations. Following the KLD dimension
approach, we define non-parametric KLD and LVD dimension densities δNKLD and
δNLVD by replacing S by NS and proceed further as described above.

Figure 14.10 shows that for daily runoff time series, the application of the non-
parametric dimension estimates gives a signature which is comparable to that of the
standard approach, but with a better statistical foundation. In particular, the decay of
δNLVD during the considered flood event is of a similar significance as that of δLVD.
Hence, if for a suitably chosen set of runoff records the value of δNLVD falls below
a certain level (which depends on the particular choice of f ), this may serve as an
additional indicator for floods. The reason for this is that in advance of a flood, the
river discharges increase rather continuously at all relevant gauges, which means
that the corresponding rank time series become very similar for all stations. In this
case, the rank-order correlation matrix NS has only entries which are close to 1,
which leads to a highly dominating first eigenvalue and a corresponding very low
value of the dimension densities. As a limiting case corresponding to rather extreme
environmental conditions, the covariance matrix degenerates, i.e. all elements of
NS become 1, which means that there is only one non-zero eigenvalue, and the
corresponding dimension density thus approaches zero.

Similar to the mutual correlations, we would like to briefly address the issue of
long-term stability of the ensemble correlations. Figure 14.11 shows the results for
the daily records, covering a time interval of 20 years. As one can recognise, there
are time intervals with low dimensions, i.e. large ensemble correlations. However,
a comparison with Fig. 14.6 shows that these intervals do not directly correlate

Fig. 14.10 Non-parametric KLD (left panel) and LVD dimension density (right panel) for time
intervals of 14 days around the Main flood at 25 December, 1967. Different line types correspond
to different cutoff levels f = 0.9 (solid), 0.99 (dashed), and 0.999 (dotted). The vertical lines
indicate the time intervals where data from 25 December, 1967 are explicitly taken into account
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Fig. 14.11 Non-parametric KLD (left) and LVD (right) dimension densities for the daily runoff
records computed for windows of M = 100 days. In the right panel, white areas correspond to
regions where δLVD and δNLVD could not be computed or gave values > 1. The standard dimension
estimates δKLD and δLVD gave qualitatively equivalent results

with periods of long-term cross-correlations between particularly chosen records
or with intervals including extreme low or high runoffs. This observation does not
contradict the existence of corresponding interdependencies on short time scales as
it is influenced by the choice of the window width M which is largely compared
to the typical duration of hydrological “events”. The results remain qualitatively
unchanged if the wavelet coefficients on a scale of 10 or 20 days are considered
instead of the original record, i.e. do not depend on the resolution of the considered
data. In general, one has to conclude that the general temporal pattern of ensemble
correlations does not change very much over the considered time interval of 20
years.

14.5.4 Case Study II: The January 1995 Flood

In order to improve the performance and potential predictive skills of the multivari-
ate dimension estimates, it is recommended to study time series with a significantly
higher temporal resolution. As a possible modification, one may additionally con-
sider an adjustment of the time scale of all records according to their respective
delays (see Sect. 14.4). The latter transformation assures that the signatures of events
which simultaneously affect a larger scale (for example, spatially extended strong
precipitation) are transferred to the time at which they act cooperatively at the final
gauge of the catchment or another especially exposed location.

As an example, we have computed δNLVD for 1-day (M = 24 h) sliding time
windows of hourly records around another severe flood at 27 January, 1995, for
which a maximum runoff of 568 m3/s has been recorded at Kemmern. The results
shown in Fig. 14.12 demonstrate that a consideration of the non-adjusted time series
has the advantage that the fast decay of the dimension estimates occurs with a certain
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Fig. 14.12 Upper figures: Hourly runoff for the gauge at Kemmern (1) and non-parametric LVD
dimension density δNLVD for windows of M = 24 h. Lower figures: Leading eigenvalue σ 2

1 and
corresponding eigenvector of the rank-order correlation matrix NS. All values have been computed
without (left panels) and with (right panels) adjusting the records according to the optimum delay
to the observations at Kemmern

warning time for the behaviour at locations influenced later by the flood. The cor-
responding critical level of δNLVD is reached relatively fast, because it is computed
on the basis of the current-time runoffs which are simultaneously recorded at all
gauges. In contrast to this, for the adjusted records, the critical values of the dimen-
sion estimates are reached slower and at a later time, however, there is a stronger
and direct temporal relationship between the changes in δNLVD and the runoff at
the reference station. For prediction purposes, it might be useful to use a combined
analysis of non-adjusted and adjusted time series to estimate the severity of a flood
in advance.

To illustrate the meaning of low-dimension densities, Fig. 14.12 additionally
shows the temporal evolution of the major eigenvalue σ 2

1 of the Spearman corre-
lation matrix NS as well as that of the associated eigenvector. Around the strongest
phases of the flood, the non-parametric LVD dimension density reaches a pro-
nounced minimum, which is accompanied by major eigenvalues of only slightly
below 1 indicating a completely synchronous evolution of the runoffs at all gauges.
The corresponding eigenvectors change very fast and show in the most extreme
cases a pattern where all records contribute equally. In general, an analysis of
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the eigenvalues and eigenvectors gives additional, in particular, spatial information
about the state of the system, whereas dimension estimates have the advantage of
being only one integrated parameter characterising the present conditions.

It has to be mentioned that the KLD-based dimension estimates detect only a
common increase or decrease of runoffs, without any information about the corre-
sponding amplitudes or the speed of these changes. Hence, they should be consid-
ered only as additional parameters for prediction purposes. However, if the number
of considered gauges could be increased substantially, it is likely that the influence
of geographical conditions is so large that a common behaviour of all records occurs
only under very extreme conditions, i.e. is a potential indicator for an extreme event.
In general, the meaning of the dimension estimates should be supported by other
hydro-meteorological indicators, like strong or long-lasting precipitation or a strong
increase of air temperatures in the presence of a significant snow volume.

14.6 Conclusion

We have used different approaches to quantify spatial correlations of hydro-
meteorological observables in a river catchment. Mutual correlations may be quan-
tified by a variety of linear as well as nonlinear approaches. Our results for runoff
records from the Upper Main catchment area in southern Germany support ear-
lier findings about the decay of correlations with an increasing distance between
the considered locations. This holds for linear as well as nonlinear correlation
measures.

For the considered time series, we have shown that correlation analysis yields
significant time delays of the variability at different gauges if the spatial distance is
larger than the scale defined by the typical flow velocity and the sampling interval of
the data. Similar results have been found for temperature time series from stations
which are separated on larger (continental) scales (see, e.g., [14.38, 14.39]).

As hydro-meteorological time series may strongly differ on rather small spatial
scales due to the topography of the considered area, we have found that an analysis
of ensemble correlations between the records from a whole set of nearby stations
leads to more robust results. We have demonstrated that dimension estimates based
on Karhunen–Loève decomposition (KLD) are well suited for quantifying such
ensemble correlations. In particular, the linear variance decay (LVD) dimension
density allows to detect successive changes of the strength of linear interrelation-
ships between the components of a multivariate data set. An improvement of this
approach is achieved by replacing the matrix of linear correlation coefficients with
that of rank-order correlations in the KLD.

As an example, we have studied the behaviour of our measures during two
severe floods in the considered area. We have demonstrated that our dimension
estimates may be applied to very short data subsets. In particular, the presence of
long-term auto-correlations in the runoff records is favourable for statistically sig-
nificant results, as otherwise, a daily resolution of the data might cause our method
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to become insufficient to detect signatures of processes like floods which emerge on
a time scale of only a few days.

KLD-based dimension estimates record changes of the hydrological conditions
in a catchment during floods by an abrupt decay to rather small values, which
is explained by a common behaviour of the discharges at all considered gauges.
The significance and predictive skill of the corresponding results may be increased
by improving the temporal resolution of the records and additionally considering
temporally adjusted records which explicitly compensate delays in the underlying
spatial correlation pattern. However, severe floods are no necessary condition for
a common behaviour of all records; hence, the values and differences between the
dimension estimates for different time intervals can hardly be used as a unique indi-
cator for this kind of extreme events and should therefore be accompanied by other
parameters.
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