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Preface 

This selection of articles has emerged from different works presented at the 
conference "THE ART OF SEMIPARAMETRICS" held in 2003 in Berhn. 
The idea was to bring together junior and senior researchers but also prac­
titioners working on semiparametric statistics in rather different fields. The 
meeting succeeded in welcoming a group that presented a broad range of areas 
where research on, respectively with semiparametric methods is going on. It 
contains mathematical statistics, applied economics, finance, business statis­
tics, etc. and thus combines theoretical contributions with applied statistics 
and finally empirical studies. Although each article represents an original 
contribution to its own field, they all are written in a self-contained way to 
be read also by non-experts of the particular topic. This volume therefore 
offers a collection of individual works that together show the actual large 
spectrum of semiparametric statistics. We hope very much you will enjoy 
reading this special collection of selected articles. 

Madrid, February 2006 Stefan Sperhch 

Wolfgang Hardle 

Gokhan Aydmli 
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1 Asymptotic Theory for M-Estimators 
of Boundaries 

Keith Knight^ 

Department of Statistics, University of Toronto, ON, Canada 

Summary 

We consider some asymptotic distribution theory for M-estimators of the 
parameters of a Unear model whose errors are non-negative; these estimators 
are the solutions of constrained optimization problems and their asymptotic 
theory is non-standard. Under weak conditions on the distribution of the 
errors and on the design, we show that a large class of estimators have 
the same asymptotic distributions in the case of i.i.d. errors; however, this 
invariance does not hold under non-i.i.d. errors. 

Keywords: Constrained optimization, epi-convergence, linear program­
ming estimator, M-estimator, point processes. 

1.1 Introduction 

Consider the linear regression model 

Yi=Kjp + Wi (i = l , - - - , n ) (1.1.1) 

where x^ is a vector of covariates (of length p) whose first component is always 
1, /3 is a vector of parameters and Wi, • • • , Wn are independent, identically 
distributed (i.i.d.) non-negative random variables whose essential infimum is 
0. Thus x ^ ^ can be interpreted as the conditional minimum of the response 
Y given covariate values x. (The assumption that the model (1.1.1) has an 
intercept is not always necessary in the sequel but will be assumed throughout 
as its inclusion reflects common practice.) 

Suppose that the VF̂ 's have common density 

f{w) = exp[—p{w)] ioi w > 0 

^Research supported by a grant from the Natural Sciences and Engineering Research 
Council of Canada. 



where p{w) —» -j-oo as ti; —> oo. If p is assumed known and is lower semicon-
tinuous (note that a lower semicontinuous version of p typically exists) then 
the maximum likelihood estimator of /3, /3^, minimizes 

n 

2_2 PO^i ~ xfv^) subject to Yi > xf (̂  for i = 1, • • • , n. (1.1.2) 

This type of estimator seems to have first been considered by Aigner & Chu 
(1968) for estimating the so-called "efficient frontier"; they considered p{w) = 
w^ and p{w) = w. In a recent paper, Florens & Simar (2002) comment on 
the lack of development of statistical properties of these estimators. An 
estimator minimizing (1.1.2) seems to be sensible estimator of j3 generally 
for non-negative Wj's. 

In fact, the asymptotics of /3^ appear to have only been considered in the 
case where p{w) = w\ in this case, (3^ minimizes 

n 

— 2_\ xf V? subject to Yi > x[(f for i = 1, • • • , n, (1.1.3) 
i=i 

which is a linear program. This estimator can also be viewed as a minimum 
regression quantile estimator as defined by KB78 (1978). Limit theory for 
the estimator minimizing (1.1.3) can be derived under weak assumptions on 
the behaviour of the distribution of the Wj's near 0 and the behaviour of the 
empirical distribution of the x^'s; see, for example, Smith (1994), Portnoy & 
Jureckova (1999) and Knight (2001). A similar estimation method has been 
studied by (among others) Andel (1989), An & Huang (1993) and Feigen & 
Resnick (1994) in the context of estimation in stationary autoregressive mod­
els with non-negative innovations; Feigen & Resnick (1994) derive limiting 
distributions of the estimators using an approach that relies heavily on point 
process arguments. For the general first order autoregressive model, Nielsen 
& Shephard (2003) derive the exact distribution of this estimator when the 
innovations have an exponential distribution. 

In this paper, we will study the dependence of estimators minimizing (1.1.2) 
on the loss function p. Figure 1.1 shows the yearly best men's 1500m times 
from 1957 to 2002 with lower boundaries (which might be interpreted as the 
best possible time for a given year) estimated using p{w) = w and p{w) = w'^; 
in both cases, we use a b-spline basis with four knots, which means that the 
parameter vector /3 has five elements (including an intercept). For these data, 
the two estimates are quite close although not identical; it is natural to ask 
whether this phenomenon occurs more generally. Note that the estimate for 
p{w) = w is not strictly decreasing; depending on our interpretation of the 
lower boundary, it may be more natural to constrain the estimation so the 
estimate of the lower boundary is strictly decreasing. 



Figure 1.1: Yearly best men's outdoor 1500m times (in seconds) from 
1957 to 2002 with estimated boundary lines using p{w) = w (dotted) 
and p{w) = lip' (solid). 

In the i.i.d. setting (where Yi — Q -\r W^), the analysis is straightforward 
to do. If p{w) is increasing for i(j > 0 then the estimator is simply Q^ = 
min(Yi, • • • ,Fn)- More generally, suppose that p{w) is convex and differen-
tiable though not necessarily increasing for z/; > 0. Then the estimator is 
again min(yi, • • • , Yr^ unless there exists Q^ < min(yi, • • • , Yn) such that 

n 

^p\Yi-On) = 0. 
i=l 

Suppose that min(yi, • • • , y^) - ^ 6* and set Wi = Yi - 6. If E[p'{Wi)] > 0 
then by convexity of p, it follows that E[p'{Wi + )̂] > 0 for t > 0 and so 

)ds 

^ ^ / E[p\Wi + s)]ds > 0. 

Prom this we can conclude that 9n is eventually equal to min(yi, • • • , y„) if 
E[p\Wi)] > 0. 



The purpose of this paper is to extend the equivalence in an asymptotic 
sense to the regression case under general conditions on the x^'s and the 
distribution of the Wi^S] in particular, we will not assume any relationship 
between the density of the VFj's and the loss function p. We will also show 
that the asymptotic equivalence does not necessarily hold for non-i.i.d. errors. 

1.2 Asymptotics 

As in Knight (2001), the key tools used in deriving the Umiting distribution 
of P^ minimizing (2) are epi-convergence in distribution (Pflug 1994, Pflug 
1995, Geyer 1994, Geyer 1996, Knight 1999) and point process convergence 
for extreme values (Kallenberg 1983, Leadbetter et ai 1983). Point processes 
defined on an appropriate space can be characterized by random measures 
that count the (random) number of points lying in subsets of that space; 
point process convergence is characterized by the weak convergence of inte­
grals of bounded continuous functions with compact support with respect to 
the random measures (Kallenberg 1983). Under appropriate regularity condi­
tions (described below), the configuration of points {{xi^Yi)} generated from 
(1.1.1) lying in a neighbourhood of the plane x-^/3 can be approximated (in 
a distributional sense) by a Poisson process when n is large and the asymp­
totic behaviour of /3„ (perhaps not surprisingly) turns out to depend on this 
Poisson process. 

Epi-convergence in distribution gives us an elegant way of proving conver­
gence in distribution of "argmin" (and "argmax") estimators, and is par­
ticularly useful for constrained estimation procedures. A sequence of ran­
dom lower semicontinuous functions {Zn} epi-converges in distribution to 

Z {Zn —> Z) if for any closed rectangles Ri^-- ^Rk with open interiors 
i?i, • • • ,Rl and any real numbers ai, • • • , a/c, 

P < inf Z{u) > ai, • • • , inf Z{u) > a^ > 
l^uGi^i ueRk J 

< liminfP< inf Zn{u) > ai,-- - ^ inf Zn{u) > ak> 
n-^oo l^uGi?! ueRk ) 

l imsupP< inf Zniu) > ai,-- - . inf Zniu) > ak\ 
n-.oo {neRl n£Rl J 

< inf Zlu) > ai, • • • , inf Z(u) > a/c > . 
{ueRi ueRl J 

< 

< P 



For an extended real-valued lower-semicontinuous function g^ define 

argmin(c^) = |wo : (̂XXQ) = inf ^ ( u ) ! 

e - argmin(p) = \UQ : ^(UQ) < inf ^(ti) + ej . 

e—d 

Suppose that Un G argmin(Zn) where Z^ —> Z and Un = Op(l); then 
Un —> U = argmin(Z) provided that argmin(Z) is (with probability 1) 
a singleton. (The condition that Un E argmin(Zn) can be weakened to 
Un ^ Cn — argmin(Zn) where en -^ 0.) If the Z^'s are convex (as will be 
the case here) then epi-convergence is quite simple to prove; finite dimen­
sional convergence in distribution of Zn to Z {Zn —> Z) is suflicient for 
epi-convergence in distribution provided that Z is finite on an open set. (In 
fact, it is sufl[icient to prove this finite dimensional convergence on a countable 
dense subset.) Moreover in the case of convexity, if argmin(Z) is a singleton 

e—d 

then Un = Op{l) is implied by Zn —^ Z. 
In order to consider the asymptotics of estimators minimizing (1.1.2), we 
need to make some mild assumptions. We will assume that p in (1.1.2) is a 
convex function with 

p{w) - / i;{t)dt (1.2.1) 

for some non-decreasing function ip satisfying 

\il;{w + t) - i){w)\ < M{w)\t\^ (1.2.2) 

for zi; > 0 and |^| < e where J > 0. In addition, we will make the following 
assumptions about the design and the distributions of the WiS\ 

(AO) For ^ defined in (4), E[^lj{Wi)] > 0 and E[i;^{Wi)] < cx). 

(Al) For some sequence a^ —> oo, we have 

\nP{anWi<t)-r\<Tnt'' 

where a > 0 and r^ —̂  0. 

(A2) There exists a sequence of matrices {Cn} and a probability measure /i 
on RP such that for each set B with fJ^{dB) = 0, 

lim -J2liCn'^ieB) = fi{B). 
n—»oo Tl 



(A3) / ||x|| ^(dx) < 00 with 

lim - V C~^Xi = / x/i(dx) = 7, 

(A4) M(-D^) =̂  0 where 

D^ = {x : x^c = 0 for some c 7̂  0 with 7^c = O} 

where 7 is defined in (A3). 

(A5) The (closed) set 

has an open interior and for each u G int(i^), 

lim i ^ ( n ^ C 7 - i x i ) ^ = / ( u ^ x ) ^ ^(rfx) 
n—^oo Ti ^ J 

Hm - max (u^C~^Xi)Z = 0 

where x+ = max(x, 0) denotes the positive part of x. 

(A6) E[M{Wi)] < 00 and 

Um ; ^ max HC-^x.f+^ .= 0 
n—»-oo a^ l < i < n 

where M(») and 6 are defined as in (1.2.2). 

It is worth commenting at this point on the raison d'etre of these conditions. 
The first part of condition (AO) is essentially necessary for consistency; if 
E[ip{Wi)] < 0 then /3^ will not converge to /3. Condition (Al) generalizes 
the condition on the density of the W ĵ's assumed in Smith (1994) and im­
plies that the W '̂s are in the domain of attraction of a type III extreme 
value distribution. Condition (A2) is effectively a weak convergence condi­
tion for the empirical distribution of the x^'s; if the x^'s are a random sample 
from some distribution then we would have Cn = I and /i equal to the un­
derlying probability measure of the x^'s. Even for fixed designs, (A2) is a 



reasonable condition although Cn need not equal / (although it is typically 
a diagonal matrix). For example, if x^ = (l,i ,z^)^ for z = 1, • • • ,n then the 
diagonal elements of Cn are (1, n, n^) and /i is the probability measure of the 
random vector (1,[/, C/̂ ) where U is uniformly distributed on [0,1]. More 
importantly, (A2) implies similar weak convergence results about the empir­
ical distribution of u^C~^:x.i (z = 1, • • • , n) for a given u (or finite number of 
w's). Moreover, if C~^Xi is bounded then condition (Al) can be replaced by 

nP{anWi <t)-^t'' 

for each t > 0. Conditions (A3)-(A5) are used to facilitate the proof of 
epi-convergence in distribution of an appropriate sequence of objective func­
tions; for example, (A4) will imply that the limiting objective function has a 
unique minimizer (with probability 1) while (A5) will imply that the limiting 
objective function is finite on a open set and so finite dimensional weak con­
vergence will imply epi-convergence in distribution. (In fact, condition (A5) 
is not necessary and is included only to simpUfy the proof.) Condition (A6) 
together with condition (A3) allows us to approximate the finite part of the 
objective function by a linear function. 

Note that conditions (A3), (A5), and (A6) are essentially moment conditions 
on the x^'s (or, more precisely, on the C~^Xj's); depending on the value of a, 
one of these conditions may imply all or part of the others. The conditions 
as stated are certainly far from minimal and can be weakened or modified. 

T H E O R E M 1.1 Assume the model (1.1.1) and suppose that (5^ minimizes 
(1.1.2) where p is convex and satisfies (1.2.1) and (1.2.2). If conditions 
(A0)-(A6) hold then 

anCn0n-P)-^U 

where U is the solution of the linear programming problem: 

maximize u^j subject to Ti > u^Xi for z = 1,2,3, • • • 

where 

(i) Ti = {Ei-h- • • + £:i)i/^ for unit mean i.i.d. exponential random variables 

(a) Xi , X2, • • • are i.i.d. with distribution P{Xi e A) = fi{A); 

(Hi) the Xi '5 are independent of the Ei ^s (and hence of the Ti ^s). 



Proof. The proof follows much along the lines of the proof of Theorem 1 of 
Knight (2001). First of all, note that Un = anCniPn "~ 0) î  ^^^ solution to 
the linear programming problem: 

minimize — ^ [p{Wi - vFC^ ^Xi/a^) - p{Wi)\ 

subject to anWi > u^C~^:sii for i = 1, • • • ,n. 

Defining (/?n(î ) to be 0 when the constraints above are all satisfied and +oo 
otherwise, Un minimizes 

n 

^niy-) = ^ E [P(^i - U^C-'^i/an) - p{Wi)] + <pn{u). (1.2.3) 

i=l 

Zn is a convex function for each n and so to prove that Un —> C/, it suffices 

to show that Zn ^—^ some Z where U = argmin(Z); we will show that 

Z{u) = -E[jlj{Wi)]u^-f + (p(n) (1.2.4) 

where (p{u) = 0 if Fj > u^Xi for all i and ^{u) = +00 otherwise. 

Using the integral representation (1.2.1) for p and condition (1.2.2), we obtain 

^ • 1 1 = 1 

= --J2^{Wi)u^C-'^i-^0p{l) 
^ • 1 

using condition (A3) to establish the weak law of large numbers and condition 
e — d 

(A6) to establish the asymptotic linearity. From the convexity of Zn, Zn —> 
Z follows from Zn —> Z provided that Z is finite on an open set with 
probability 1; the latter follows since F̂  ~ i^^^ (with probability 1) as z -^ 00 
and so by the first Borel-Cantelli lemma P{u^Xi > F̂  infinitely often) = 0 
for any u ̂  K (since E[{u^Xi)°^] < 00 on iC); for tt ^ K, we also have 
P{u^Xi > Fj infinitely often) = 1 (since E[{u'^Xi)^] = 00) by the second 
Borel-Cantelli lemma. Thus for a given u G K, at most a finite number 
of constraints are violated, the rest being trivially satisfied. Since u e K 
implies that tu G i^ for ^ > 0, taking t sufficiently small guarantees that all 
the constraints are satisfied. Since mt{K) is open (by condition (A5)), it is 
possible (with probability 1) to find a finite number of points in K such that 
all the constraints are satisfied and the convex hull of these points contains 



an open set. Since Z is finite at these points, it is necessarily finite on the 
convex hull (since Z is convex). 

To show the finite dimensional weak convergence of ^ri^ we first define the 
following point process (random measure) on BF^"^-. 

n 

Nn{A X B) - X ^ 7 ( a n m e A^C'^^i G B). 
i=l 

It is easy to verify that Â ^ tends in distribution with respect to the vague 
topology (Kallenberg 1983) to a Poisson process (random measure) Âo whose 
mean measure is 

E[No{A X B)] - ji{B) I ax"^-^ dx. 

We can represent the points of this Poisson process by {(Ti^ Xi) : i > i} where 
the r^'s and Xj's are as defined above. Thus it suffices to show that 

P [^n{Ul) = 0, • • • , (Pn{Uk) =0]^ P [(p{ui) = 0, • • • , (p{Uk) = 0] 

where (p{u) = 0 if Fj > u^Xj for all i and oo otherwise. Exploiting the 
convergence in distribution of N^ to the Poisson random measure NQ, we 
have 

P [^n{ui) = 0, • • • , (Pn{Uk) = 0] 

= ^ E^ 0 < anWi < max {uJC^ ^^i)-^ 
i<j<fc' ^ 

= 0 

[- / max ( n j x ) > ( . x ) 

= P[(/p(ui) = 0 , . . . ,(^(wfc) = 0]. 

Hence for Zn given in (1.2.3), we have Zn —> Z where Z is defined in 
(1.2.4). Finally, to show that Z has a unique minimizer (with probability 
1), we note that if U minimizes Z then for some indices zi < Z2 < • • • < ip, 
we have U^Xi^ = F̂ ^ with F̂  > U^Xj for j ^ {^1,̂ 2, • * * )^p}- If Ĉ  and 
[/* both minimize Z then U* = U -\- tc for some vector c with c-^7 = 0 
and so tc^Xij^ = 0 for k = I ,--- ,p. However, condition (A4) says that 
P{c^Xi = 0) = 0 (when c^^ = 0) and so 2̂  is a unique minimizer (with 
probability 1). D 

As mentioned above, the conclusion of Theorem 1.1 holds even if the set 
K defined in condition (A5) does not have an open interior. In this case. 
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the limiting objective function Z will not be finite on an open set and so 

Z^i -—> Z will not follow immediately from Zn —> Z. However, the epi-
convergence in distribution will still hold; we need to establish that the se­
quence of functions {^n} (which describe the constraints) are stochastically 
equi-lower-semicontinuous (Knight 1999). For this, we need to show that for 
any bounded set B and ^ > 0, there exist points t/i, • • • , Um in B and open 
neighbourhoods V{ui)^ • • • , V{Um) of these points such that 

B C U V{ui) 

(that is, B is covered by the neighbourhoods) and 

lim sup ^ s M 
<i=l 

inf (fniv) = 0, (fniui) = oo 
uev(ui) <s. 

This turns out to be reasonably straightforward to show since 

^ U inf (pn{u) = 0, (pn{ui) = cx) 
uev{ui) 

i=l 

inf ipn{u) = 0 
uev{ui) 

-P\[j[^n{ui) = 0] 
<i=l 

The right hand side above can be made arbitrarily small by making the 
neighbourhoods uniformly small. 

In the case where p{w) = w, Smith (1994) as well as Portnoy & Jureckova 
(1999) determine the limiting distribution by finding the limiting density of 
Un = argmin(Zn); however, they need to assume a specific form for the 
density of the W^'s, from which the density of Un can be approximated. 
The conclusion of Theorem 1.1 holds under a weak assumption (condition 
(Al)) about the distribution of the VFj's, which in particular does not imply 
the existence of a density function. Chernozhukov (2000) also uses an epi-
convergence approach to study the asymptotic behaviour of "near extreme" 
regression quantile estimators. Other estimation problems in which the Hmit-
ing objective function is related to a Poisson process are considered by Pflug 
(1994). 

In the case where the set K defined in (A5) satisfies K = cl(int(K)), we can 
determine the limiting joint density, that is, the density oi U = argmin(Z). 
Using the Poisson process representation of Z, it follows that the density of 
Z7is 

g{u) = K{U; a,p, l^) J ' " J \D{^ir '' ,^p)\ f[ {{u^^i)l~^ f^{d^i)} (1-2.5) 
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Figure 1.2: Contours of the joint density of U in Example 1 for c,/, — 0; 
the interval between adjacent contours is 0.01. 

where 
a^ K(tx;a,p,/x) = —-exp I - / K X ) ^ M ( ' ^ X ) 

and D(xi, • • • ,Xp) is the determinant of the matrix with columns xi , • • • , Xp 
if 7 lies in the convex hull of xi , • • • ,Xp and -D(xi, • • • ,Xp) == 0 otherwise. 
(If there is no intercept in the model (1.1.1) then -D(xi,- • • ,Xp) is the de­
terminant if 7 = X^^^i tjXj for non-negative t^'s with D(xi ,--- ,Xp) = 0 
otherwise.) The density g{u) is not easy to evaluate in closed-form (except 
in special cases) but can be approximated quite easily using Monte Carlo 
techniques to sample from the probability measure /x. However, it seems 
that this density does not provide as much insight into the limiting distribu­
tion as does the representation of U as the solution of a linear programming 
problem. 

Theorem 1.1 implies that we obtain the same limiting distribution for any 
convex p satisfying some mild regularity conditions so that all such estimators 
differ by Op{a~^C~^). However, an examination of the proof of Theorem 
1.1 suggests that this asymptotic equivalence is a consequence of the i.i.d. 
assumption on the Wj's. 

Suppose instead that we assume the W '̂s in (1.1.1) are independent with the 
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Figure 1.3: Contours of the joint density of U in Example 1 for c.0 
0.25; the interval between adjacent contours is 0.01. 

distribution of Wi depending on x^ such that 

\nP{anWi < t\^i) - A(xi)t^| < Tn(xi)t" 

where 
max |rn(xi)| -^ 0. 

l < i < n 

Under condition (A2) on the x^'s, it then follows that the point process 
n 

Nn{A X B) = J2HcinWi e A,C-^^i G B) 
i=l 

converges in distribution to a point process Âo whose mean measure is given 
by 

E[No{AxB)]= f f aX{^)t''-'^ fj.{d^)dt. 
JAJB 

The points of Âo can be represented by {(r^/A(JQ), Xi) : i = 1, 2, • • • } where 
the ViS and Xj's are defined as in Theorem 1.1. Assuming that 

^ n . 

^ . - 1 J i = l 
T 
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intercept 

Figure 1.4: Contours of the joint density of U in Example 1 for c,/; 
0.5; the interval between adjacent contours is 0.01. 

it will follow (under appropriate modifications of the regularity conditions) 
that 

where U maximizes u^j^ subject to F̂  > \{Xi)u^Xi for all i. Note that 
U = t/(7^,A^o) where the point process NQ does not depend on the loss 
function p (nor its "derivative" ij)). 

We can extend (1.2.5) to obtain the density of U in this case: 

g{u) - Kx{u;a,p,fx) / • • • / | D A ( X I , - " ,Xp)| J J {[A(xi)n^Xi]J"V(c^Xi)} 

(1.2.6) 

- AA(x)w^x]^/x(dx) 

where 

AvA(u;a,p,/i) = —rexp 
p\ 

and D A ( X I , - - - ,Xp) is the determinant of the matrix whose columns are 
A(xi)xi,--- , A(xp)xp if 

p 

3 = 1 
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Figure 1.5: Contours of the joint density of U in Example 1 for c^ 
0.75; the interval between adjacent contours is 0.01. 

for some non-negative t i , • • • , tp and Z)A(XI, • • • , Xp) is 0 otherwise. 

EXAMPLE 1. Consider the simple regression model 

Yi=pQ-{- PiXi -\-Wi (i = 1, • •. , n) 

where Wi, • • • , Wn are independent (but identically distributed) random vari­
ables with the distribution of Wi depending on xi^ and we will assume that 
the Xi s are uniformly distributed on the interval [—1,1], which implies that 
/x is a uniform distribution on [—1,1]. For a given loss function p (with 
"derivative" V )̂, the vector 7^ is simply 

fi, = \J ^ EmW)\x] (^) dx=U EmW)\x] dx\ Q 

where — 1 < c^ < 1; note that ioi p{x) = x, c^ = 0. For simplicity, we will 
take a = 1 and set \{x) = 1 (which is possible even when the TV '̂s are not 
identically distributed). Thus for a given p (and corresponding -0), we have 

n(/3n - ^) u = 



15 

where U maximizes UQ -h c^ui subject to F̂  > UQ -\- UiXi for i > 1 where 
the Fj's are partial sums of i.i.d. unit mean exponential random variables and 
the Xi^s are i.i.d. uniform random variables on [—1,1]. Thus the limiting 
distribution depends only on the constant c^ (which depends on '0 and the 
dependence between the VF̂ 's and the x^'s). Figures 1.2 to 1.5 show contour 
plots of the joint density of U (using (1.2.6)) for c^ = 0,0.25,0.5, 0.75. In all 
cases, the distribution of UQ (intercept) is concentrated on the positive part of 
the real Hue. As c^ increases, more probability mass is shifted to the positive 
part of the distribution of [/i, that is, the bias of the slope estimator becomes 
more positive as c^ increases; likewise, the bias becomes more negative as c^ 
decreases from 0 to —1. 

1.3 Barrier Regularization 

Estimators minimizing (1.1.2) are inherently biased upwards since necessarily 
we have 

n n 

^p(y,-xf3j<X]pm-xf/3) 

and so x-^/3^ tends to be systematically smaller than x^/3 (since p is "on 
average" increasing under condition (AO)). In general, reducing bias is a 
tricky proposition since such a reduction often leads to an increase in vari­
ance. In this problem, the bias typically manifests itself in the estimation of 
the intercept and so one might consider reducing bias simply by adjusting 
(downwards) the intercept estimator. 

An alternative approach to reducing bias is to replace the constraints Yi > 
'x.fcp (i = 1, • • • ,n) in (1.1.2) by a "barrier" function that pushes the esti­
mator away from the boundary of the constraint region. Specifically, we will 
define /3^(e) to minimize 

E p{Yi - xf (̂ ) + e ^ T{Yi - x f <̂ ) subject to Y^ > xjip for all i (1.3.1) 

where e is a positive constant and the barrier function T{W) is a convex 
function on (0,oo) satisfying 

limriw) = +00, 

for example, T{W) — w~'^ for r > 0 or T{W) = —ln{w). It is easy to see 
that, for any e > 0, the minimizer of (1.3.1) will lie in the interior of the set 
{^ ' Yi > :x.J(p for i = 1, • • • ,n} and so if p{w) and T{W) are differentiable 
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for 16; > 0, it follows that /3^(e) satisfies 

n 

J2 [p'iYi - xf 3„(e)) + er'{Y, - x f 3„(e))] x, = 0. 
i=l 

More importantly, ^ y choosing e = Cn appropriately, we may be able to 
reduce the bias of /3^(en) while retaining many of the otherwise attractive 
properties possessed by /3^. 

There is a connection between the estimators minimizing (1.1.2) and (1.3.1). 
If/3^(e) minimizes (1.3.1) and /3^ minimizes (1.1.2) then 

lim3^(6) = 3n-

(This follows since the objective function implied by (1.3.1) epi-converges to 
the objective function implied by (1.1.2) as e i 0 for each fixed n.) This ob­
servation turns out to be useful in the computation of/3^ minimizing (1.1.2). 
For each e > 0, (1.3.1) can be minimized using "standard" optimization 
techniques (for example, Newton and quasi-Newton methods) and so we can 
obtain an arbitrarily good approximation to /3^ minimizing (1.1.2) by com­
puting a sequence of minimizers of (1.3.1), P^i^k) with ek i 0. Such numer­
ical methods for solving constrained optimization problems are commonly 
referred to as barrier or interior point methods; some theory and discussion 
of these methods can be found in Fiacco & McCormick (1990). 

By taking T{W) = w~^ for r sufficiently large, we obtain the following ana­
logue of Theorem 1. 

T H E O R E M 1.2 Assume the model (1.1.1) and suppose that /3^{en) mini­
mizes (1.3.1) (with e = En) where p is convex and satisfies (1.2.1) and (1.2.2). 
If conditions (A0)-(A6) hold and T{W) = w~'^ where r > a and 

lim -^^—en = eo 
n—>-oo n 

then 
ar^Cnidjen) - P) ^ U 

where U minimizes 

oo 

-E[^ ( I^ i ) ]u^7 + eo Y.(^i - u^Xi)- ' -
i= l 

subject to Fi > u^Xi for all i with {Fj} and [Xi] defined as in Theorem 1.1. 
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Proof. The proof follows along the same lines as the proof of Theorem 1.1. 
We redefine Zn in (1.2.3) by 

Z^{u) = ^Y.[p(Wi-u'C-^i^i/an)-p{Wi)] 
i=l 

+ - e n E ( W i - « ^ C - W a „ ) ' 
i=l 

^n V ^ 

n 1 

n 
n 

[p{Wi - u^C-^^ilan) - 9iyVi)\ 

provided that anWi > u'^C~^'Xi for all i with Zn{u) = +00 otherwise. The 

only technical compHcation lies in showing that Zn —> Z^'^^ where 

00 

Z(2)(u) = e o ^ ( r , - « ^ X , ) - ' -

when r̂  > u^Xi for all i with Z^'^\u) = +00 otherwise; this can be done 
by truncating the barrier function T{W) — w~^ to make it bounded with 
compact support and then using Slutsky-type arguments to take care of the 
difference. D 

The assumption that r > a is inconvenient but seems to be necessary in order 
to obtain non-degenerate asymptotic results, at least, with the "right" rate 
of convergence; if r{w) —> 00 too slowly as ic j 0 then typically we will obtain 
a slower convergence rate for the resulting estimators. In particular, it rules 
out the barrier function T{W) = —ln{w)^ which is quite useful for numerical 
computation. 

Figure 1.6 shows the estimated boundaries for the 1500m data discussed in 
section 1 using p{w) = w and r{w) = w~'^ in (1.3.1) with e = 0.05 and 
e = 0.5. The choice of e for a given value of r is an open question; however, 
for these data, the estimates seem somewhat insensitive to the value of e. 

1.4 Final Comments 

Models such as (1.1.1) fit into framework considered by Chernozhukov & 
Hong (2002), Donald & Paarsch (2002), and Hirano & Porter (2003), who 
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Figure 1.6: Estimated boundary lines for the 1500m data using p{w) — 
w and T{W) = 'w~^ for e ~ 0.05 (dotted) and e — 0.5 (dashed). The 
sohd Hue is estimate given in Figure 1.1 and corresponds to the Hmit 
as 6 i 0. 

consider asymptotic theory for estimation in models with parameter-dependent 
support. Unlike classical statistical models (where the support is indepen­
dent of the parameters), maximum hkelihood estimation does not have any 
particular asymptotic optimality. Both Chernozhukov & Hong (2002) and 
Hirano & Porter (2003) consider the asymptotics of Bayes estimators for a 
given loss function and prior distribution on the parameter space. Such esti­
mators have the advantage of being admissible (with respect to loss function) 
and have asymptotic distributions that are independent of the prior distribu­
tion. Of course, these admissibility results are dependent on the model being 
correctly specified although one might expect Bayes estimators to be useful 
more generally. 

It is also possible to extend the results to estimators (/3^,^n) minimizing 

Y^ p{Yi - xf (̂ ; C) subject to Yi > xf y? for i = 1, ,n 

where p{w] C) is a three times differentiable (or otherwise sufficiently smooth) 
function in ^; the support of the response depends on f3 but not on the 
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"nuisance" parameter 6. We assume that for some matrices A{6) and B{0)^ 
we have 

E[Vcp{Wi-,e)] = 0, 

E[Vcp(m;^)Vfp(m;^)] = A{e), 
and E[V^^p{Wi-e)] = B{e) 

where V^ and V̂ ,̂̂  are, respectively, the gradient and Hessian operators with 
respect to C- Then under additional regularity conditions (including, for 
example, appropriate modifications of (A0)-(A6)), we have the same limiting 
behaviour for anCn{l^n ~ P) ^^ given in Theorem 1.1; moreover, 

v̂ (g„ -e)^N (0, B-\e)A{e)B-\e)) 
with the two limiting distributions being independent. 

We can also consider non-parametric estimation of boundaries by fitting para­
metric models (for example, polynomials) locally in the neighbourhood of a 
given point; the asymptotic behaviour of such non-parametric estimators can 
be determined using the theory discussed in Sections 1.2 and 1.3 with ap­
propriate modifications. An alternative non-parametric approach to bound­
ary estimation is given by Bouchard et al. (2003). This approach defines 
the boundary as a linear combination of kernel functions with non-negative 
weights estimated as the solution of a linear programming problem. In the 
context of production frontier estimation, a good survey of non-parametric 
estimation methods can be found in Florens & Simar (2002). 
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2 A Simple Deconvolving Kernel Density 
Estimator when Noise Is Gaussian^ 
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de Lisboa, Portugal 

Summary 

Deconvolving kernel estimators when noise is Gaussian entail heavy calcu­
lations. In order to obtain the density estimates numerical evaluation of a 
specific integral is needed. This work proposes an approximation to the de­
convolving kernel which simplifies considerably calculations by avoiding the 
typical numerical integration. Simulations included indicate that the lost in 
performance relatively to the true deconvolving kernel, is almost negligible 
in finite samples. 

Keywords: Deconvolution, density estimation, errors-in-variables, kernel, 
simulations. 

2.1 Introduction 

The estimation of a density by deconvolution consists in the estimation of 
the density of a random variable that is observed with an added unknown 
random noise. A typical example is the estimation of a density of a variable 
observed with measurement error. Another example is the estimation of 
the mixing distribution in a duration model. In what concerns appUcations, 
Fan and Truong (1993) introduce deconvolution techniques in the context of 
nonparametric regression with errors in variables. Calvet and Comon (2000) 
perform the deconvolution estimation of the joint density of spendig and 
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tastes in presence of measurement error, and Horowitz and Markatou (1996) 
analyze earnings mobility using nonparametric deconvolution estimation of 
a density in the context of a random effects model for panel data. 

To describe the problem, suppose a random variable Y such that Y = X-\-U, 
where X and U are independent random variables. Suppose more that Y is 
observable while X (the target) and U (the noise) are non-observable, and 
the aim here is to estimate the density of X, / (x) , also called the target 
density when g{y), the density of Y is completely unknown. Usually the 
noise density, g(ii), is assumed to belong to a given family, most frequently 
the Normal, with zero mean. Observe that g{y) is equal to the convolution 
of the densities of X and U, verifying, 

/

oo 

f{y-u)q{u)du. (2.1.1) 
-OO 

Then the density f{x) may be obtained by deconvolution. The usual proce­
dure is to obtain first the characteristic function of X, / , using g and q (the 
characteristic functions of Y and U respectively) and then inverse Fourier 
transform leads to f{x) according to 

An estimator of f{x) can be obtained by substituting the unknown quantities 
in (2.1.2) by consistent estimators. However, in practice the corresponding 
calculations can entail problems leading to high fluctuations in the aimed 
estimate. To avoid this a suitable damping factor is incorporated in the 
corresponding integral leading to the following deconvolving kernel density 
estimator introduced by Stefanski and Carroll (1990), 

with k{t) the Fourier transform of a kernel function K{x) (such that A:(0) = 
1), h the bandwidth which tends to 0 (so that the damping factor tends to 
1), and g{t) the empirical characteristic function of Y. Fan (1991) obtains 
convergence rates of this estimator for several noise distributions. 

Stefanski and Carrol (1990) show that in case the function k{t)/q{t/h) is 
integrable then expression (2.1.3) can be rewritten as. 

where 
1 r"^ 

q{t/h) ''•^^'^^rjy"'im^ f--^) 
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Observe that by equation (2.1.4) the deconvolving kernel estimate is just an 
ordinary kernel estimate but with specific kernel function equal to (2.1.5) 
where the shape of this kernel function depends on the bandwidth. For 
certain types of distributions for the noise variable, (2.1.5) has a closed-form 
expression and calculations are as hard as the ordinary kernel estimation. 
Unfortunately this is not the case when the noise is normally distributed as 
it is often assumed namely in econometric applications. When q{u) belongs to 
the normal family the integral (2.1.5) has to be evaluated and calculations are 
much harder. Moreover, the damping kernel K has to be carefully chosen, to 
guarantee that the integral exists. Consequently, deconvolving kernel density 
estimation for Gaussian noise suffers from the drawback of being subject to 
Monte Carlo error and computationally very burdensome. 

In this paper, an approximation of (2.1.5) is proposed to estimate f{x) by 
kernel deconvolution when noise is Gaussian. It avoids the typical numeri­
cal integration making calculations incredibly easier, being as difficult as an 
ordinary kernel density estimator. The next section introduces the simple 
deconvolving Kernel. Section 3 presents a simulation study that analyzes 
the performance of the new estimator compared to the exact one for several 
sample sizes and target distributions. Section 4 concludes. 

2.2 The Simple Deconvolving Kernel Density 
Estimator 

The main idea behind the simple deconvolving kernel estimator is to substi­
tute in (2.1.5) the inverse of the true characteristic function of the normal 
density (which is an exponential function) by an approximation given by the 
first-order term of the respective Taylor series expansion around cr̂  = 0. 
Therefore, considering as damping kernel the standard normal the approxi­
mate deconvolving kernel is equal to, 

^ r (-) = ̂  / ^ e-^*^e-0-^*^ ( l + ^ ) dt (2.2.1) 

with a^ the variance of the noise variable. 

Elementary calculations simpHfy (2.2.1) to the following expression, 

Kr{z) = ^{z)-^^"{z) (2.2.2) 

where ip{z) is the standard normal density function and ^^\z) is its second 
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derivative. Finally, the density estimate is obtained with, 

where ii^^*(») is given in (2.2.2). 

Using the same arguments as Stefanski and Carroll (1990) is easy to show 
that i^^*(») is symmetric and f f^{x)dx ^ 1. 

2.3 Simulation Results 

In this section the performance of the approximated deconvolving kernel in 
finite samples is examined by a detailed simulation study. The main goal is to 
evaluate the deterioration in the accuracy of the deconvolving kernel density 
estimates due to the use of the much simpler approximated deconvolving 
kernel introduced in this paper instead of the exact one of Stefanski and 
Carroll (1990). With this aim the average integrated squared error (AISE) 
calculated for the optimal bandwidth (optimal in the sense that minimizes 
the AISE) is compared for the two procedures. The optimal bandwidth 
was found by grid search (with increment equal to 0.02). Depending on the 
particular design, the grid intervals were chosen wide enough in order to 
assure that they contain within the optimal bandwidth. It is also an aim to 
analyze whether the performance depends on the shape of the target density 
or on the importance of the disturbing noise measured by the reliability ratio 
equal to, 

VariX}__a]^ 
'-VariY)-a%+al- ^^•^•'' 

For the last issue, two situations were considered. One, with a relatively 
small noise with corresponding reliability ratio equal to 0.89 and another 
where r is 0.62 which expresses a severe perturbation of X (these particular 
quantities where chosen in order that afj and aj^ have suitable values). Ob­
serve that in this last situation the exact deconvolving kernel density estimate 
looses accuracy (in the sense that the corresponding AISE has tendency to 
be considerably bigger). 

For r = 0.89 three different designs were chosen in order to illustrate three of 
the most important types of shapes of the densities of the target variable that 
are more frequently found in practice resulting respectively in a symmetric, 
a skewed, and a bimodal densities. The designs are, 

DESIGN 1- X r^ Ar(0,16), U - iV(0,2) and F = X + U. 
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DESIGN 2 - X - x^(8), U ~ N{0,2) and F = X + U. 

DESIGN 3 - X is a mixture of a Ar(V44,20) with a Ar(-V44,20), being 
[ / -Ar(0 ,8) e^ndY = X + U. 

For each design 1000 replications were calculated for samples with size re­
spectively of 100, 250 and 500 observations. The results can be seen in table 
2.1. It is clear that the simpler approximated deconvolving kernel has a good 
performance given that the deterioration in the AISE is almost negligible 
even for small samples and for all designs tried. The worst case refers to an 
increase in the AISE of 7% for sample size of 100 obtained with Design 1. 
There are not remarkable differences among all the different density shapes 
tried. The fact that the rates are slightly less favorable for Design 1 may be 
due to the general better performance (in AISE) of the exact Kernel for this 
type of target densities (relatively to the skewed and bimodal) as is analyzed 
in Wand 1998. 

n 
n 
n 

n 
n 
n 

n 
n 
n 

Av. 

= 100 
= 250 
= 500 

= 100 
- 250 
= 500 

- 100 
= 250 
= 500 

Best AISE x l 0 ^ r -
Exact Approx. 

Normal density 
68.25 73.07 
39.64 42.19 
26.71 28.14 

Chi-square density 
99.18 104.44 
62.01 64.99 
44.40 45.89 
Bimodal density 
32.63 33.92 
20.86 21.93 
15.88 16.65 

- 0.89 
App/Exa 

1.0706 
1.0643 
1.0535 

1.0530 
1.0481 
1.0336 

1.0395 
1.0513 
1.0485 

Table 2.1: Average Best AISE in 1000 simulated samples of 100, 250 
and 500 observations. 

The good performance of the approximated deconvolving kernel can be seen 
also in figures 2.1 to 2.3. These figures represent for each design the true den­
sity together with the exact and approximated deconvolving kernel density 
estimates (calculated each for the respective optimal bandwidth) for one sam­
ple randomly selected with 500 observations. Both estimates are remarkable 
close in all the graphics. 
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true dens, Exact dec Kernel (star) Approx dec Kernel( triangle) 

Figure 2.1: True density, exact deconvolving kernel (star) approxi­
mated deconvolving kernel (triangle). One random sample for design 
1, n-:500. 

Given the heavy computations required by the exact density kernel estimator, 
and the fact that when r = 0.89 the performance of the approximated pro­
cedure for the different designs was very similar, only the symmetric shape 
for target variable was analyzed when r = 0.62, leading to 

DESIGN 4 - X ~ Ar(0,16), U - N{0,10) and F - X + t/. 

The results are included in table 2.2. The performance of the simple de­
convolving kernel is better in approximating the exact deconvolving kernel 
density estimate when the variance of the error is bigger. So that, it seems 
that the deterioration in quality of the exact deconvolving density estimate 
caused by the increase of the importance of the disturbing noise is less sig­
nificant in the simple approximated estimator. 

Table 2.3 shows the ratio in the average computation time for each h between 
the exact deconvolving kernel density estimate and the simple approximated 
one. The gain in computation time of the simple deconvolving kernel over the 
exact can be impressively large. For instance, with data from Design 2 the 
exact calculations take more 296 times the time spent with the approximated. 
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true dens, Exact dec Kernel (star) Approx dec Kernel( triangle) 

Figure 2.2: True density, exact deconvolving kernel (star) approxi­
mated deconvolving kernel (triangle). One random sample for design 
2, n-500. 

Av. Best AISE xlO^ for Normal density 
Exact Approx. App/Exa 

r - 0.62 
n = 100 150.16 157.75 1.0505 
n = 250 108.51 110.79 1.0210 
n :=^ 500 85.70 85.06 0.9925 

Table 2.2: Average Best AISE for normal target density in 1000 simu­
lated samples of 100, 250 and 500 observations. 

while for Design 4 the ratio is 28 which is already considerable, specially if 
one needs to replicate calculations for several bandwidths. 

2.4 Concluding Remarks 

This work introduces a simple deconvolving kernel to estimate a density by 
deconvolution when the noise variable is Normally distributed. It avoids the 
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true dens, Exact dec Kernel (star) Approx dec Kernel( triangle) 

8 12 

Figure 2.3: True density, exact deconvolving kernel (star) approxi­
mated deconvolving kernel (triangle). One random sample for design 
3,n-500. 

Ratio of calculation times 
Exact over Approximated 
Design 1 
Design 2 
Design 3 
Design 4 

150.73 
295.68 
128.55 
27.78 

Table 2.3: Ratio of the average calculation time for each h in one sam­
ple randomly selected. 

typical numerical integration necessary to obtain the ordinary deconvolving 
kernel density estimate in this situation, making calculations noticeably faster 
and less subject to numerical error. It has a simple and direct application 
being as difficult as an ordinary kernel density estimator. 

A simulation study shows that the lost in performance of this simpler esti­
mator in finite samples is reasonable low. Moreover, in situations where the 
accuracy of the exact ordinary deconvolving kernel tends to deteriorate (be­
cause of a more complex shape of the true density or a low reliability ratio) 
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true dens, Exact dec Kernel (star) Approx dec Kernel( triangle) 

Figure 2.4: True density, Exact deconvolving kernel (plus) Approxi­
mated deconvolving kernel (triangle). One random sample for Design 
4,n=500. 

the simpler deconvolving kernel has a relatively better performance. There­
fore, the use of this procedure seems to be beneficial when calculations of 
the deconvolving kernel density estimate have to be replicated several times, 
or numerical integration is a problem. On the other hand, it could be even 
relatively more beneficial in situations where the exact kernel is less accu­
rate because of the shape of the density or an important noise with a low 
reliability ratio. 
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Summary 

We estimate the volatility function of a diffusion process on the real line on 
the basis of low frequency observations. The estimator is based on spectral 
properties of the estimated Markov transition operator of the embedded 
Markov chain. Asymptotic risk estimates for a growing number of obser­
vations are provided without assuming the observation distance to become 
small. 

Keywords: Scalar diffusion, discrete observations, warped wavelets, spec­
tral approximation 

3.1 Introduction 

Diffusion processes are widely used in physical, chemical or economical appli­
cations to model random fluctuations of some quantity over time. Especially 
in mathematical finance it has become very popular to model asset prices by 
diffusion processes because this allows the use of strong tools from stochastic 
analysis for option pricing or risk analysis. Removing seasonal effects and 
long-term growth results in time-homogeneous diffusion processes. A typi­
cal time-homogeneous scalar diffusion (X^, t > 0) solves the Ito stochastic 
differential equation 

dXt = h{Xt) dt + a{Xt) dWu t > 0, (3.1.1) 

with drift coefficient &(•), volatility or diffusion coefficient cr(») and with a 
one-dimensional Brownian motion {Wt^ t > 0). 

Statistical inference for the volatility function has attracted a lot of inter­
est recently, see the discussions in (Kleinow 2002) or (Gobet, Hoffmann, 
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& ReiB 2002) for an overview. Especially, in (Kleinow 2002) it is argued 
on the basis of empirical data that common parametric assumptions on the 
coefficients are highly misspecified in models for financial markets. More­
over, statistical methods developed for high frequency observations, that is 
small observation distances, have been typically applied to daily asset price 
data over periods of several years, which should be qualified rather as low-
frequency observations. Therefore, the work (Kessler & S0rensen 1999) on 
low-frequency statistical methods became a popular alternative, but remains 
restricted to certain parametric models. 

Here, we consider the case of nonparametric inference for the volatility func­
tion a{*) in the case of an unknown drift function 6(») and equidistant ob­
servations {XnA)o<n<N with somc fixed A > 0. In (Gobet, Hoffmann, & 
ReiB 2002) it was shown that for diffusions with reflections on a compact 
interval the nonparametric estimation problems can be solved using ideas in 
(Hansen, Scheinkman, & Touzi 1998), but it involves some ill-posedness such 
that the minimax rate of convergence is N~^^^'^^'^^^ for iV -^ oo and regu­
larity 5 > 1 of cr(»). Moreover, first numerical simulations in the reflected 
setting have shown that the spectral estimator outperforms the traditional 
quadratic variation estimator already for rather small observation distances 
A. We generalize this approach to cope also with diffusions on the entire real 
line. 

The basic idea is that we can only draw inference on the law of the embed­
ded Markov chain {XnA)n>o, that by spectral calculus its transition operator 
determines the inflnitesimal generator of the diffusion process and that this 
generator encodes rather explicitly the two coefficients 6(») and cr(»). More 
specifically, the spectral estimator we propose is based on estimates of the 
invariant density and of one eigenfunction and its eigenvalue of the transition 
operator of {XnA)n>o^ see formula (3.2.3) below. Leaving the case of a com­
pact state space, we face several new problems compared with the situation 
treated in (Gobet, Hoffmann, & Reifi 2002): (1) the observation design is 
degenerate, (2) the invariant densities are not uniformly comparable and (3) 
the eigenfunctions are unbounded. Point (1) is overcome by using warped 
wavelet functions or equivalently a suitable state transformation. To avoid 
problem (2) we work on parameter-dependent function spaces and problem 
(3) is treated by smoothing differently at the boundaries. By this approach 
we obtain that our spectral estimator also attains the rate A "̂~ /̂(2s+3) ^g ^^ 
the simpler case of reflected diffusions, provided the coefficients guarantee 
that the process is well mixing and the first eigenfunction exists and does not 
grow too fast to infinity. 

For the proof we assume the invariant law of the diffusion to be known. 
This is, of course, not realistic, but the estimation of the invariant density is 
standard and contributes less to the overall risk than the spectral estimations. 
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as can also be seen from the lower bound proof in (Gobet, Hoffmann, & 
ReiB 2002). 

Section 3.2 introduces the diffusion model and recalls some theory for dif­
fusions, Section 3.3 presents and discusses the estimator and Section 3.4 
provides the mathematical results. We adopted (hopefully) standard nota­
tion. In particular, C^(R) denotes the space of r-times continuously differen-
tiable functions and C^(M) its subspace such that all derivatives are uniformly 
bounded including the function itself. The relation A '^ B means that A is 
bounded by a multiple of B^ independent of the quantities appearing in the 
expression B. The relation A ^ B stands ior A < B and B < A. A sequence 
of random variables that is bounded in probability will be abbreviated by 
Op(l) . Vectors and matrices are usually set in bold fonts. 

3.2 The Diffusion Model 

In this section fundamental results for one-dimensional diffusions are recalled, 
for more details and proofs see e.g. (Karlin & Taylor 1981) or (Bass 1998). 
We consider diffusion processes (X^, t > 0) solving (3.1.1). The drift 6(») and 
diffusion coefficient or volatility cr(«) are assumed to be Lipschitz continuous 
functions such that a strong solution exists. We shall henceforth assume the 
uniform ellipticity condition 

3cro, (Ji > 0 : ao< a{x) < GX for all x G M (3.2.1) 

and the mixing condition 

lim h{x) = —GO and lim b{x) — +oo. (3.2.2) 
a;—>--hoo rr—» —oo 

These conditions imply the existence of a stationary solution X with invariant 
marginal density 

2C ( r 2b{x) , \ 
a^[x) \JQ a^{x) ) 

where C > 0 is a suitable norming constant. Moreover, the solution process is 
time-reversible and /^-mixing with exponential speed such that for statistical 
purposes the hypothesis of stationary observations is reasonable and will be 
assumed henceforth. 

Diffusions are efficiently described by their Markov transition operators {Pt)t>o 
with 

/
CX) 

-oo 



where Pt{x,^) denotes the transition probabiUty density. The operators 
{Pt)t>o can be extended to the Hilbert space 

L'^{/J.) =z h :R^R\ I f{x)^{x)dx<ooV 

on which they form a strongly continuous, self-adjoint semigroup of contrac­
tion operators with infinitesimal generator 

Lf{x) = la\x)f"{x) + b{x)f'{x), xeR, 

for functions / in the domain (with natural boundary conditions) 

V{L) = {feL\f^)\LfeL'{ti)}. 

L is a closed selfadjoint operator with spectrum on the negative real axis 
and the spectral mapping theorem asserts Pt — exp{tL). In particular, the 
eigenfunctions of Pt and L coincide and the eigenvalues are transformed like 
the operators. The Markov semigroup can be described equivalently by the 
invariant density //(•) and the inverse scale density S~^{») given by 

S{x) = ^a'^{x)fi{x), xeR. 

Then the infinitesimal generator can be written in divergence form 

Lfix)=tx-Hx){Sf'y{x), xeR. 

Any eigenfunction u G L'^il^) of L with eigenvalue u satisfies 

S{x)u\x) ^y j uiOKO di, X G R, 
•̂  —oo 

which yields 

^\x)= -̂7 ^'7^ \ xeR. (3.2.3) 

This identity allows to determine the volatihty cr(») from quantities accessi­
ble from the embedded Markov chain {XnA)n>o^ namely from the invariant 
density and a spectral pair {u, e^^) of the transition operator. This approach 
was first proposed by (Hansen, Scheinkman, & Touzi 1998) and statistically 
analyzed in (Gobet, Hoffmann, & Reifi 2002). 

For this method to work we have to ensure that at least parts of the spectrum 
are discrete, that is proper eigenvalues exist. In the sequel we shall only need 
that the largest nontrivial (i.e., nonzero) spectral value is discrete, but to 
avoid any technicalities we assume cr G C-̂ (M) and 

lim f a ' ( a ; ) - ^ ) ' - o o , (3.2.4) 
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which by Section 4.2 in (Hansen, Scheinkman, & Touzi 1998) ensures that 
the entire spectrum of L is discrete. In view of our previous assumptions this 
is already satisfied if cr'(») is uniformly bounded. 

The mathematical analysis of our proposed estimators relies on some addi­
tional growth restrictions for the first nontrivial eigenfunction lii of L, namely 

ui G LP{^) and u[ G L^(M) (3.2.5) 

for some arbitrary p > 2. For p = 2 this condition is always satisfied because 
ui is in the domain of L and thus also of (—L)^/^: 

\\{-Ly/'u,\\l = {{-L)ui,ui)^ = {Su[,u[) ~ {u\,u\)^. 

Observe the diflFerent norms and scalar products employed, where the index /j, 
always refers to L^(/i) and no index to L^ with respect to the Lebesgue mea­
sure. For the canonical example of a stationary Ornstein-Uhlenbeck process 
all eigenfunctions satisfy condition (3.2.5) even for exponential moments. It 
is plausible that this behaviour remains the same whenever the tails of the in­
variant densities are equally small which is to say that the negative drift —&(•) 
grows linearly. A formal mathematical result in this direction still lacks and 
we can merely provide an example of a sufficient result under nonasymptotic 
conditions on the coefficients. 

PROPOSITION 3.1 Condition (3.2.5) is satisfied for all p < oo if the 
coefficients a^ G C^(R), b G C^(M) of the diffusion satisfy 

For constant volatility this reduces to sup^, b^{x) < 0. 

PROOF: 
By definition 1.2 in (Ledoux 1998) the diffusion process X satisfies the condi­
tion CD{R, oo) for some R> 0 under our assumption, which implies that the 
Markov semigroup is hypercontractive. It is proved in (Bakry 1994) that any 
eigenfunction u oi a. hypercontractive semigroup operator has exponential 
moments, that is satisfies J exp{cu^{x))/ji{x) dx < oo for some c, a > 0. 

By Lemma 1.3 in (Ledoux 1998) the condition CD{R^oo) is equivalent to 

\a{x){Ptfy{x)\ < e-^'Pt{\a{x)f'{x)\), XGR, 

for all sufficiently smooth / . For any eigenfunction u oi L with eigenvalue v 
we thus obtain 

\cj{x)u\x)\e''' < e-^'Pt{\(T{x)u'{x)\), xeR. 
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The hypercontractivity of (Pt) and au' G I/^(A^) therefore imply au' G L^ifJ^) 
for all p < cxD and by ellipticity also u' G L^ifJ^)- • 

3-3 Construction of the Estimators 

We describe the spectral estimation procedure using the projection method 
in detail. The use of projection methods has the advantage of approximating 
the abstract operators by finite-dimensional matrices, for which the spectrum 
is easy to calculate numerically. In addition, mathematical results for spectral 
approximation by kernel-smoothed operators seem to be difficult to obtain. A 
projection approach was already suggested by (Chen, Hansen, & Scheinkman 
1997) and adopted by (Gobet, Hoffmann, & Reifi 2002). More specifically, 
we make use of compactly supported wavelets on the interval [0,1]. For the 
notion of wavelet bases on compact intervals and their properties we refer to 
(Cohen 2000). 

DEFINITION 3.1 Let (X/JX) with multi-indices A = (j, fc) be a compactly 
supported orthonormal wavelet basis o/L'^(0,1) including the scaling function 
V -̂î o = 1- For A = {j,k) we set |A| := j . The approximation spaces (VA) 
are defined as the linear span of the wavelets indexed with A: 

VA '•= span{ipx | A G A}. 

The L"^-orthogonal projection onto VA will be called HA- For a function M : 
R —̂  [0,1] we introduce the warped wavelets ipx^{x) := il)x{M{x)), x G R. 

Note that [i)^) constitutes an orthonormal basis of I/^(/x) with /i(x) = 
M'{x), if M is (weakly) differentiable. 

The first main idea is to use wavelets warped by the empirical stationary 
distribution function of the diffusion process X in order to obtain a regular 
autoregressive design, see (Kerkyacharian & Picard 2003) for a similar ap­
proach in classical regression with random design, but note that our density 
does not define a Muckenhoupt weight. An equivalent viewpoint is that we 
consider the data 

1 ^ 
Yn := M ( X , A ) , where M{x) := j ^ - ^ ^ l(-oo,x.^](^) 

is the empirical stationary distribution function. The transformed observa­
tions {Yn)o<n<N form a permutation of the set {n/{N + l)\l<n<N + l}. 
For such equispaced data Mallat's pyramidal algorithm for computing wavelet 
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coefficients is very efficient and widely available. Since the marginal density 
does not determine the diffusion process if drift and volatility are both un­
known, we use the dependency structure in the data (Vn) in order to draw 
further inference. By the Markov property of diffusion processes, it suffices 
to consider the empirical distribution of the transitions X(^_i)^ i-̂  XnA or 
Yn-i 1-̂  Yn^ respectively. Furthermore, the time reversibility asserts that 
the laws of (X(n-i)A5-^nA) and (^nA?-^(n-i)A) Coincide such that we may 
symmetrize our estimators. 

Under the stationarity assumption, M converges for A/" -^ oo uniformly to 
the true distribution function M{x) \= J_ /x(0 Ĉ? ^ ^ ^- We are thus 
naturally lead to consider the diffusion process Yt = M{Xt), t > 0, with 
values in the open unit interval (0,1), which has natural boundaries and 
satisfies by Ito's formula 

dYt = fiM{Yt){bM{Yt) + limyiyt^MiYt)) dt + fiM{Yt)cT{Yt)dW{t). 

The process Y is equivalently described by the following quantities, where 
we write fuiv) '= f{^~^{y)) for any function / : M —> R: 

invariant measure: f^viy) = l(o,i)(y)) (uniform), 

scale density: Sy^iy) = 2fj.J^{y)a^^{y), 

transition density: Pt^riv^v) = Pt{M~'^{y),M~'^{r]))fiM{v)~^^ 

inf. generator: Lyfiy) = (^cr|^/iir/0'(?/)' 

domain of i y : P(Ly) - {/ G L^{0, l)\Lf e L^{0,1)}. 

Note that quantities without index usually refer to X, whereas those re­
lated to Y carry an index. Prom the formula for the transition operator 
{Pt,YfM){M{x)) — Ptf{x) it follows that any eigenvalue z/y of Ly with eigen-
function uy is also an eigenvalue of L, but with the rescaled eigenfunction 
u = uy ° M and vice versa. 

We have thus separated the estimation problem for the volatility function cr(») 
of the original process X into the two subproblems of estimating the invariant 
density //(•) of X and of drawing inference on the Markov transitions of the 
transformed diffusion process Y. Of course, the latter is the much more 
demanding task, because the invariant density can be estimated classically 
under a suitable mixing hypothesis on X. 

E X A M P L E 3.1 The stationary Ornstein-Uhlenbeck process with parame­
ters a, cr > 0 satisfies the stochastic differential equation 

dXt = -aXtdt + adWt. 
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It is a Gaussian process with normal stationary law A (̂0, | ^ ) . Its generator 
L has discrete spectrum, E(L) = {—an\n > 0} o,nd the eigenfunctions are 
given by Hermite-type polynomials. 

The transformed process Y saiisfies the stochastic differential equoMon 

dYt = -2afXM{Yt)M-\Yt)dt + afiM{Yt)dWt, 

where by normality /XM(2/) -̂̂  up to logarithmic terms of order y for y near 
zero and of order {1 — y) for y close to one. The eigenf unctions of Ly dre 
polynomials in M~^{y) such that they have logarithmic singularities and their 
derivatives of order r have polynomial singularities of order r at the boundary. 

Recall that by formula (3.2.3) we can estimate the volatility function a{») by 
a plug-in from estimates of the invariant density /x(») and the inverse scale 
density 5(») of the process X. Hence, we make use of the transformation of 
this formula 

_ ^^iIoUi,Y{r])dr] 
iy)-r \:.:.r' (3.3.1) 

where ui^y denotes the eigenfunction of Ly corresponding to the largest 
non-trivial eigenvalue vi. By the spectral mapping theorem (e^'^S^i,^) is 
the corresponding spectral pair of the transition operator PA,Y-

Consequently, we are interested in obtaining spectral information about the 
transition operator PA,Y of F . Its expansion in the wavelet basis (ipx) of 
L^(0,1) can be estimated by the symmetrized empirical operator coefficients 

1 ^ 
( P A ) A , V :=—J2{Myn-l)^X'{Yn)+Myn)^X'{Yn-l))^ 

Note that this is equivalent to estimating the transition operator P A of X in 
terms of the empirically warped wavelet basis (V ĵ̂ ): 

(PA)A,V = ^ E(^^(^(n-l)A)V^A'^(^nA) + V^A'̂ (X.A)V ĵ;f ( X ( _ I ) A ) 
n=l 

If we had M = M, this would give an unbiased estimate because of 

IE[V^A(M(X(,_i)A))^A'(M(XnA))]= / / My)^yiv)PA,Y{y.r])drjdy 
Jo Jo 

= (PA,y^l,V^A). 

The eigenfunction Ui G I/^(//) of P A with eigenvalue KI satisfies for any 
multi-index A the coefficient equation 

A' 
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Furthermore, we have m^y — SA(^1' '^A^)M'^A- ^ ^ therefore calculate the 
largest nontrivial eigenvalue ki (i.e. ki < 1) with eigenvector iii of the 
symmetric |A| x |A|-matrix PA,A '-— ipA)\,\'eh ^^d use the estimators 

UI^Y{X) := ^ ( U I ) A V ^ A ( ^ ) , h '= A"^ log(/^i). 
xeA 

Observe that by construction PA,A always has eigenvector UQ — (1,0, . . . , 0) 
corresponding to the constant scaling function V _̂i,o with eigenvalue 1. 

Even though formula (3.3.1) is valid for any nontrivial spectral pair of Ly, 
we prefer taking the first nontrivial eigenfunction ui^y for two reasons: first, 
all other eigenfunctions oscillate such that the denominator vanishes at some 
point and the estimate in its neighbourhood is worthless. Second, the spec­
tral estimation quality depends very much on the separation of the eigen­
value from the remaining spectrum (cf. Proposition 3.5) and the spectrum 
S(PA,y) = {e^^ \i/ e E(Ly)} is such that it becomes rapidly very dense 
for smaller eigenvalues. Nevertheless, it might be reasonable to use the in­
formation about the other spectral pairs, compare also the embeddabihty 
discussion in (Hansen, Scheinkman, & Touzi 1998). 

The usage of warped basis functions simplifies the design and thus the analysis 
of the stochastic error term, but does not overcome the complex structure of 
the deterministic approximation error. As proved later, the eigenfunctions of 
Ly have logarithmic singularities at the boundary of the unit interval and its 
derivatives have even polynomial-type singularities. This is why, theoretically 
and in practice, the finite index set A employed in the construction of PA,A 
has to be chosen carefully. On the one hand, we have the usual bias-variance 
balance that lets us choose the highest resolution level J in accordance with 
the smoothness s of the eigenfunction and the number N of observations. 
On the other hand we have to take into account the singular behaviour such 
that we shall refine more in the neighbourhood of the boundary points. We 
roughly choose a maximal frequency level J{y) for wavelets with support in 
the point y e (0,1) that satisfies 2'^^^^ ~ 2'^ mm{y,l - y)~^~^^ with some 
small £ > 0, see Proposition 3.3 for details. 

It remains to estimate / /M, which we propose to do by the - up to transfor­
mation - classical projection estimate 

1 ^ 

\X\<J n = 0 

Equipped with these estimates we use formula (3.3.1) in order to derive an 
estimate a ^ of a]^ and use the estimated invariant law to transform it to an 
estimator a'^ of cr̂ , which is our proposed spectral estimator. 
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Let us summarize our estimation procedure: 

1. Form the empirical distribution function M and the transformed ob­
servations Yji = M{XJIA), n — 0 , 1 , . . . , A^. 

2. Estimate the transition operator by the matrix PA,A of empirical wavelet 
coefficients. 

3. Calculate the first nontrivial spectral pair (/^i,Ui) of PA,A ^nd build 
the estimate UI^M of the eigenfunction. 

4. Estimate the invariant density /JL by some classical method. 

5. Derive the estimator aj^ by inserting the preceding estimates in formula 
(3.3.1) and transform it back to the real line. 

As already mentioned in the introduction, we provide a proof in the case that 
the invariant law of X is known, that is M and // are available exactly. In 
this case our spectral estimator is given by 

^ W '= . 7 ^ , ^ , : o \ ^ 3.3.2 

derived from formula (3.3.1) by plug-in and transformation. To avoid theo­
retical complications we must keep z>i, ||iii,y||L2 and WfiM^i y|lx,2 uniformly 
bounded, e.g. by applying a cut-off for unreasonably large values. Similarly, 
we guarantee that the a priori knowledge a'^{x) > CTQ is fulfilled by changing 
the denominator if necessary. Then our main result is the following: 

T H E O R E M 3.1 Let us assume that the invariant distribution function M 
and its derivative fi are known. Then for a G C^{R) and b G C^~-^(R) the 
spectral volatility estimator a"^ from (3.3.2) satisfies for any S > 0 

/.M-^(l-<5) 

JM-^(6) 

In particular, we obtain with the asym.ptotically optimal choice 2^ ~ ]S[^/i'^^+^) 
that A/'*/^^ '̂̂ ^ |̂|(j^ — (J'^\\L'2(^K) "̂5 bounded in probability for any compact set 
i ^ c R . 

R E M A R K 3.1 For true minimax results we should have a uniform constant 
for all parameters in some smoothness class. This might be possible, although 
very technical, but requires also uniform estimates on the separation of the 
spectrum which are usually difficult to obtain. It is not clear whether it is 
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possible to get rid of the restriction to hounded intervals. In the case of 
reflected diffusion a lower bound proof shows that estimation at the boundary 
is definitely more difficult, but whether this holds also in our situation with 
a ii-weighted loss function is an open question. Following the approach in 
(Gobet, Hoffmann, & Reifl 2002) we can extend our procedure to estimate 
also the drift coefficient &(•). 

3.4 Mathematical Results 

L E M M A 3.1 Suppose a G C|(R) and b e C'-\R) with b' G C '̂"^(M) 
for some s > 2. Then the inverse of the scale density Sy of Y is s-times 
differentiable and satisfies 

\S^;\y)\<Sy{y) 
bM{y) 
MM(y) 

0 < r < s. 

P R O O F : 
The derivatives S^^\x) for r < s are given by 

S{x) = '^a\xMx) =: a{x)i,{x), 5W(:r) = ^ QaWCa;)^* '- ' '^^;) . 

Applying iteratively the formula fi\x) = 2{—G'{x)-\-b{x))fi{x)/a{x) and using 
that a(^)(.), 0 < r < s, and fe^^HO. 1 

'^ r < 8^ are uniformly bounded, we 
obtain 

\S^''\^)\ < \b{x)rKx). 
If we now use Syiv) = SM{y)l^M{y) and thus Syiv) — {S')M{y)^ we arrive 
at 

l^'"'! % |(5'''^)M(y)M 
-r+1 

M + ( 5 0 M ( 2 / ) ( M ^ ^ - ' ^ ) M M M ^ ^ < ^ M M M ^ ^ ' . 

By the uniform ellipticity condition on cr(«) the assertion follows. D 

P R O P O S I T I O N 3.2 Suppose a G C "̂(M) and b G C^-^R) for some s>2, 
and the eigenfunction u of L satisfies u, u' G L'^ilj) for some p > 2. Then 
the derivatives of the corresponding eigenfunction uy of Ly exist up to order 
s + 1 and satisfy for any 1 < r < s + 1 

r^-l.M) ^M'^^ ity G L^(0,1) with the weight function w{y) := mm{y^ ^ — v)-
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P R O O F : 
The L^(//)-integrability of u and u' translates via uy — UM into tiy, UylJiM ^ 
L^(0,1). We now apply the eigenfunction relation 

5 y < + S'yu'y = {SYU^YY = yuy e LP{0,1). 

From SYI^'M' = {S'IX~^)M = ^M we conclude ||(*S'y)~ /̂XM||oo < oo and 

5 y ( 5 ^ ) - V M < = mu'y - y[S'y)-^iJiMUY G L^(0,1). 

Consequently the estimate |5y(2/)| < \SY{y)^M{y)l^l}{y)\ ^^^^ Lemma 3.1 
shows that l^'j^b'^UY G 1/^(0,1) holds. More generally, we use {SyUy)^^^ = 

"'̂  and ||(5(rV MMIIOO < 00 to obtain inductively over 0 < r < 5 

5 K ( 5 ( : V V M 4 ^ + ' ) G L P ( 0 , 1 ) . 

Hence, Lemma 3.1 yields that l^]^^b]Juy ^ lies in L^(0,1) for 0 < r < s. 
While bMl^^ is obviously bounded on compact subintervals of (0,1), we have 
by L'Hopital's rule 

hM{y)y y b{x)M{x) b\x)M{x) + b{x)fi{x) 
hm cy , . T—- — lim ^, .—;-— = nm izrr\—7~\ • 

y-"^-^ ^M\y)I^M{y) x—ooa^{x)fl{x) a:->-oo 2b[X)ll[X) 

Due to M{x)fi~^{x) -^ 0 and b'{x)/b{x) —> 0 (/x decays faster than exponen­
tially because of \b{x)\ —̂  oo and b' is bounded) we obtain 

bM{y)y ~ (^M{y)i^M{y) ^ i^M{y) for y -^ o. (3.4.1) 

Together with the symmetric argument for y ^ 1 we obtain the assertion. 
D 

PROPOSITION 3.3 The projection U^uy of the eigenfunction uy of Ly 
with 

A : -A(J ,£ ) := {{j,k)\j < J or w{k2-^) e (2-"^/% 2('^-^')/(^-^))} 

satisfies \\{I - LyY^'^{I - nA)x^y||L2(o,i) ^ 2"*^* /^^ ^'^V J ^ ^, provided 
(7 e C'^{R), b' e C'^~^{R) and e e (0, {p- 2)/2ps). 

REMARK 3.2 By construction of K, we only use wavelet coefficients in 
IlAt^y up to the maximal frequency level J/e. 

P R O O F : 
Due to 11(1 - L)i/2/|li2 = | |/ | |i2 + \\S}J^f'\\l2 we can separately bound 
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the norms of (/ — II/^)UY and its derivative. Since the first norm bound 
is a much simpler version of the second, we only present the estimate for 

1 /9 
WSy {(I — IlA)uYy\\L2. For this note that due to inequalities of the type 

\\sl/\'ylio,s]\\L^ < | |4^ '< | |z ,p<^ '^- ' ) / '^ P>2, 

we only need to bound the 1/^(5,1 - J)-norm with ^(p-2)/2p ^ 2~^^, that is 
S ^ 2-2-^^^/(^-2) ^^^ ^Yins S/2-^/' -^ oo. 

We use the compact support and the vanishing moment property of the 
wavelet functions and its derivatives following the classical approximation 
estimates via Taylor expansion. Denoting the supporting interval of ipx by 
(3A5 that is &j^k = [k'2~^, {SQ 4- k)2~^]^ and its length by \&\\, we obtain 

X^A 

,(^+1) 
^A||i,i Sl/\yW,{y)y dy 

< E2 - (s+l) |A| 

m 

iy I • 

Since we only need to consider wavelet coefficients (j, k) ^ A satisfying addi­
tionally w{k2~^) > S with (5/2-^/^ -^ oo, the corresponding support intervals 
&j^k have a distance of at least max((^, 2^'^~^^^^^~^^) — SQ2~^ > 2~^ from the 
boundary. The estimates Syiy) ~ MM(2/) and ^Mijj) ^ y^[y) yield 

infye5,,. *S'y(2/) 

which gives the bound 

< 
52-^ \2 

A ^ A '^^>' 
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We apply the Holder inequality with | and q = -^ > 1 and obtain for j > J 
by Proposition 3.2 

Y: f sy{c)\u^r'\c)\'d<: 

< 

Consequently, \\Sy ((J — nA)iA)'||x,2 is of order 2"*^ ,̂ provided 

y^ 2-2ij-j)s2iJ-j){q-'-2s)/ii-e) ^ y^2-i(25+(^~'-25)/( i -^)) 

is finite, which is ensured for s < {p — 2)/2ps. D 

PROPOSITION 3.4 For any function v e VA, \\V\\L2 = 1, we have 

where we have introduced the operators PA,A •= nAPA,y ctnd 

AGA 

PROOF: 
The bound on | |(PA,A — PA,A)'^||L2 is again easy and therefore omitted. 

We obtain by the mixing properties of F , cf. Lemma 5.2 in (Gobet, HoflFmann, 
& ReiB 2002): 

E [\\si/\{pAA-PAA)vy\\h] 

/ 5(2/) V a r [ ^ ^ E V^A(l^(n-l)A)^(l;^A)^l(2/)] dy 
•^^ AGA n=l 

<N-' f Sy{y)JE\(J2{MyoHyA)i^'x{y)y]dy 

= ^ " ' E ( / SY{y)^l;'^{y)^l;^y{y)dy)jB\Myo)^x'{Yo)v\Y^)] 
A,A'GA 
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Because of (3.4.1) and the logarithmic growth bound on b^ we obtain for 
A, A' e A with f :^ |A'| > |A| =: j and f > J 

Jo I 
< 2'^'^{f - j)22(/-^)(i-A)230'-J^)/2^ 

For j < j ' < J the same term is evidently bounded by 2^^^'^^ ^/^. 

Inserting these estimates and then proceeding similarly for the expectation 
we obtain 

]E [ | | 5y^ (PA.A-PA,A» ' | l i . ] 

j '>maxO',J-fl) 

3<j'<J 

2(-^-/)/(i-^)2-^V22i72 _̂  ^-i Y.j<j'<j 2(^ '̂+^")/2||i;||222- '̂/22j72 

<Ar- i23^(E,<, , , .>o( / )^2^- ' ( i -A)220--^)+E,>o, i '> , - ( / ) '^ 

The next result is essential for the spectral approximation to work. It is stated 
as Proposition 2.9 and Corollary 2.13 in (Gobet, Hoffmann, & Reifi 2002). 

P R O P O S I T I O N 3.5 Suppose a selfadjoint bounded linear operator T on a 
Hubert space has a simple eigenvalue K such that K, has distance p from the 
remaining spectrum. Let T^ be a second linear operator with \\Te—T\\ < \p~^ -
Then the operator T^ has a simple eigenvalue K^ and there are normalized 
eigenvectors u and u^ with Tu = KU, TSU^ — K^U^ satisfying 

\K,-K\ + \\ue-u\\<p\\{T,-T)ul 

P R O O F : 
[Proof of Theorem 3.1.] We apply the preceding proposition to the Hilbert 
space H = V{{I-LYY^'^), the domain of the operator ( / -Ly)^ /^ on L2 (0 , 1), 
and with the operators PA,y and PA,A- The functional calculus shows that 
Ly and PA,y are selfadjoint on H. For any normalized eigenfunction uy 
of PA,y we obtain from Proposition 3.3 using PA,y'^y = f^'^Y and from 
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Proposition 3.4 that 

lo37 IE[||(J - i)l/ '(PA,A - PA,Y)uY\\h] < 2-''^ + N-'2 

The spectral approximation result in Proposition 3.5 thus gives 

IE[(|Ki - «iP + | | ( / - L)'/\u^,y - ui ,y) | | iOlA] < 2- '^^ + N-H^' 

on the random set A — {||PA,A — -PA,y|| < ^P~^}- By the strong law of 
large numbers for mixing sequences and the smoothing property of PA,y it 
follows P(A) -> 1 for AT, J ^ oo. Keeping |/^i| + ||(i'-I/)^/^z/i,y HL^ uniformly 
bounded, we obtain using Sy ~ //|^ 

]E[ |z>i-Z/i |2]+IE[ | | i i i ,y- l / i ,y | | i2]+IE[ | |MMK,y-i i l ,y) | l i2] 
< 2-2Js _^^- l23J 

Note that we have bounded the estimation risk for v\ by that of K\ due to 
the continuity of the transformation involved. From 

|2 

and the fact that u\ y does not vanish inside (0,1) we infer for any fixed 
R^8 > 0 by the usual triangle inequality argument and the exclusion of 
explosions 

r-l-(5 

(2 - 2 J s + N-^2-'-')-'TE 
pi — O 

/ \^liiy)-<^liiy)?dy AR < 1 . 

Hence, transforming back to the real line gives 

pM-\l-5) 

The fact that IE[|X — y | A i?] is a metric for convergence in probability then 
gives the result. D 
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Summary 

This paper addresses a specific case of regression analysis: the predictor is 
a random curve and the response is a scalar. We consider three models: 
the functional linear model, the functional generahzed linear model and 
functional linear regression on quantiles. Spline functions are used to build 
estimators which minimize a penalized criterion. The method is illustrated 
by means of real data examples. Then, we give asymptotics results for these 
estimators. 

Keywords: Functional linear model, generalized functional linear model, 
conditional quantiles, regularization, roughness penalty, spUnes 

4.1 Introduction 

This paper is concerned with statistical modelization for Regression Analysis 
in the case of functional data: more precisely we consider the case where 
the predictor is a curve linked to a scalar response variable. This arises 
in the three situations analyzed below: the first one concerns wheat yield 
estimation, the second one deals with remote sensing whereas the third one 
is an application to ozone prediction. Other examples may be found in the 
literature: in chemometrics (Osborne et a/., 1984), climatology (Ramsay and 
Silverman, 1997) or linguistics (Marx and Eilers, 1996). 

•̂ We would like to thank all the members and participants of the working group on 
functional data STAPH from Toulouse for helpful discussions. 
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In this context we are faced with the problem of estimating the hnk between 
a real random response Y and a square integrable random function X defined 
on some compact set C of R through a sample (X^, F^), i = 1 , . . . ,n drawn 
from {X,Y). Of course, in practice the curves X^'s are discretized (possibly 
not at the same points) and then statistical multivariate methods may be 
applied to these random vectors with special attention to the problems of 
high dimension and multicollinearity inherent to this kind of data. Frank 
and Friedman (1993) summarize the main (chemometrics) regression tools 
i.e. Partial Least Squares (PLS), Principal Components Regression (PCR) 
and Ridge Regression (RR). 

These methods may perform well in several applications as it is for instance 
the case in chemometrics where the predictive curves are quite smooth (typ­
ically sinusoidal signal curves). However, the functional nature of the data is 
not taken into account by these methods and Marx and Filers (1999) show 
that functional methods might work better especially when the curve predic­
tors are not smooth. More generally, a part of literature has been recently 
concerned with functional data in a variety of statistical problems and au­
thors aim at developing ad hoc procedures based on smoothing techniques. 
The monographs from Ramsay and Silverman (1997, 2002) give good insights 
into a variety of models dealing with data taken as curves. 

After giving some notations and definitions in section 2, we present three re­
gression models for the situation described above: the linear regression model 
is defined in section 3 and its extension to the generalized linear model in sec­
tion 4; section 5 deals with the problem of estimating a conditional quantile. 
For each model we define an estimator based on a B-splines basis expansion 
of the functional coefficient to be estimated. Problems linked to the imple­
mentation of these procedures are discussed by means of real data examples. 
Then, in section 6 we give some L^ convergence results for estimators and 
especially we derive an upper bound for the rate of convergence. It shows 
the importance of introducing a regularization (or penalty) in the criterion 
to be minimized. 

4.2 Notations and Definitions for Functional 
Data 

In the following we suppose that the random variable X takes values into 
some real separable Hilbert space H and we consider that this space is the 
space of square integrable functions defined on [0,1]. Let < (p^ip > denote 
the usual inner product of functions (p and ip in H and \\(p\\ the norm of (p. 
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If we suppose that the iif-valued random variable X, assumed to be centered 
{EX{t) — 0, for t a.e.) has a finite second moment (JE^(| |X|P) < OO ), the 
covariance operator F is defined as 

Tx{t) = [ E[X{t)X{s)]x{s)ds, xeH, tG[0 , l ] . 

Note that V is an integral operator whose kernel is the covariance function 
of X and it may be shown that the operator V is nuclear, self-adjoint and 
non-negative (Dauxois and Pousse, 1976, and Dauxois, Pousse and Romain, 
1982). 

In the same way, we define the cross covariance operator A of {X^Y). It is 
the linear functional defined as 

Ax ^ f E[X{t)Y]x{t)dt, xeH. 
Jo 

In the following, we denote by Aj, j = 1,2,... the eigenvalues of F and by 
t'j, j — 1, 2 , . . . a complete orthonormal system of eignefunctions. 

4.3 The Functional Regression Linear Model 

4.3.1 Definition of the Model and Spline Estimators 

The functional regression linear model with scalar response is defined as 

Y = [ a{t)X{t)dt + £, (4.3.1) 

where a is a square integrable function defined on [0,1] and e is a random 
variable such that Ee = 0 and EX{t)e = 0, for t a.e. Model (4.3.1) may be 
written as 

Y = * ( { X ( 0 , t e [ 0 , l ] } ) + s, (4.3.2) 

where ^ is some continuous linear functional. This model traces back to 
Hastie and Mallows (1993) (see also Ramsay and Silverman, 1997). Cardot, 
Ferraty and Sarda (2003) shows that condition 1 below insures existence and 
unicity of a in model (4.3.1) and the unique solution a of the model satisfies 

^ <E{XY),Vi > ,̂  _ , 



Condition 1 The random variables X and Y satisfy 

<E{XY),Vj >^ E X2 < oo. 

Condition 1 is known as the Picard condition in the field of Hnear inverse 
problems (see e.g. Kress, 1989). 

Several procedures have been proposed in the literature to estimate the func­
tional coefficient a (sometimes called the contrast template) and/or the func­
tional ^ from a "functional point of view". Hastie and Mallows (1993) pro­
pose for a an estimator that minimizes a penalized least squares criterion, the 
solution being a cubic spline. This method is studied by Ramsay and Silver­
man (1997) which discuss various computational aspects. A second approach, 
proposed by Hastie and Mallows, is based on a smooth basis expansion of the 
function a. Marx and Eilers (1999) use a smooth B-spUne expansion for a 
and introduce a difference penalty in a log-likelihood criterion in the context 
of smoothed generalized linear regression. Direct estimation of the functional 
^ has been achieved in Cardot et al. (1999) by means of a functional PCR, 
in the setting of a predictor valued in a general real separable Hilbert space. 
A smooth version of this Functional Principal Components Regression has 
been studied in Cardot, Ferraty and Sarda (2003). 

We define below the spline estimators proposed by Cardot, Ferraty, and Sarda 
(2003) which combines ideas from Marx and Eilers (1996) and Hastie and 
Mallows (1993). Suppose that q and k are integers and let Sqk be the space 
of splines defined on [0,1] with degree q and k — 1 equispaced interior knots. 
The space Sqk has dimension q -\- k and one can derive a basis by means 
of normalized B-splines {Bkj^j = 1,...,A: + g} (see de Boor (1978)). In 
the following we denote by B/. the vector of all the B-splines and by B "̂̂ ^ 
the vector of derivatives of order m of all the B-splines for some integer 
m {m < q). 

The penalized B-splines estimator of a is thus defined as 

q-\-k 

aps = Y.^jBk.j = KO. (4.3.4) 
3 = 1 

where ^ is a solution of the minimization problem 

2 

mm 
. n I q+k \ II / | | 2 

-Ylyi-Y.<^^^^^o.^i>\ +P||B^^^|| , (4.3.5) 

with smoothing parameter p > 0. The solution 6 of the minimization problem 
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(4.3.5) is given by 

0 = C ;^b = ( c + pG; , )~ 'b , (4.3.6) 

where C is the {q-\-k) x {q + k) matrix with elements n~^ YH=I ^ ^kj^^i > 
< Bk,hXi >, b is the vector in R^+^ with elements n~^ S lL i *̂  ^kj^^i > 
Yi, and where G ;̂ is the {q-\-k) x {q-{-k) matrix with elements < Bj^.\ Bj^ >. 
In the special case m = 0, the minimization criterion (4.3.5) becomes 

which is a functional generalization of the ridge regression criterion. 

4.3.2 An Application to Wheat Yield Estimation 

During the last decades, crop simulations models became more and more 
accurate to predict development and growth of several species, such as corn 
or wheat. Crop models are now able to help farmers to reach a decision 
about irrigation, sowing time or nitrogen fertilization. These models are 
highly complex dynamic models generally involving more than fifty variables 
such as soil characteristics, climatic variations, ..., with daily time step, that 
simulate the behaviour of the soil-crop system within one year. The crop 
model considered here is Decible (Meynard, 1997) and deals with winter 
wheat crop management. 

We have a sample of size n = 198 of yield measures resulting from Decible 
model. We aim at giving a simple statistical model which can summarize the 
most important effects of the climate, simulated by a generator, on the wheat 
yield. For that purpose we have, for each crop, the daily cumulative temper­
atures (denoted by T) and the daily cumulative precipitations (denoted by 
P) measured between the first day of September and the end of August of 
the following year. Let us notice that the sowing time is a random variable 
and the harvest depends on climatic variations and thus are different from 
one sample to one another. These variables are measured between the first 
day of October which is the beginning of the sowing phase and the first week 
of August which is the last date for the harvest. Thus, the considered period 
in our statistical model begins in October, ends in August and lasts 309 days. 
We have also defined the real variable Li which is the duration of cultivation 
for sample z, that is to say the difference between harvest and sowing date. 
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The following model was considered in order to explain yield as a linear 
function of the duration of the crop and climatic variations : 

Yi - aLi^ ai{t)Ti{t) dt + a2{t)Pi{t) dt + a, i = 1 , . . . , 198. 

The parameters of this model are a G R associated to the crop duration effect 
and functions ai and 0̂ 2, supposed to be twice continuously differentiables, 
for the climatic effects. It is a kind of hybrid functional linear model which 
incorporates parametric and nonparametric effects simultaneously. The pa­
rameters of this model are estimated by minimizing the following criterion 

mm 
a,ai,Q:2 71 

l^^(yi- aLi - f ai{t)Ti{t) dt - f a2{t)Pi{t) dtj 

+p,\\a<^^f+p,\\a^^^f, (4.3.7) 

where ai G Sqk and 0̂2 ^ ^qk with q = 4 and k = 25. 

Cross validation was used to choose these smoothing parameters and leaded 
us to select pi = P2 = 0.001. The cross validation error is mapped in figure 
4.1. With these smoothing parameters values, the explained variance of y, 
that is to say the squared correlation coefficient, is 0.56. This result can be 
considered to be rather good taking into account the sample size n = 198, 
the smoothing parameters which act as regularization parameters and the 
small number of explanatory variables compared to the number of variables 
involved in the agronomical Decible model. 

Estimated value for a is a = 0.46 with estimated standard deviation a^ = 
0.08. Thus, the longer the duration of the culture is, the higher the wheat 
yield. Estimated functions ai and 0̂ 2 are drawn in fig. 4.2. Let us note that 
period around the 210th day, that is to say around May, is important for 
the winter wheat yield. In fact, high temperatures and/or low precipitations 
during spring and the beginning of summer lead to high yields. On the other 
hand, a rainy winter imphes higher yields whereas temperature effect seems to 
be negligible during this period. From an agronomical point of view, this can 
be interpreted as follows: if the winter is rainy, then soil has sufficient water 
resources to allow wheat to grow rapidly, on the other hand if spring and 
the beginning of summer are too rainy then wheat is likely to rot or to catch 
diseases. Furthermore, during this period wheat needs energy to grow and 
thus higher temperatures lead to higher yields. On the contrary, bad yields 
may be the consequence of drought if during July (around the 285th day) 
and the beginning of August temperatures are too high and precipitations 
are too low. 
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Figure 4.1: Map of cross-validation error for both smoothing parame­
ters p\ and p'2' Tire minimmn is attained for p\ ^ le-03 and p2 ^ le-03. 

4.4 The Functional Generalized Linear Model 

4.4.1 Definition of the Model and Spline Estimators 

In this section, the conditional distribution of Y given X = a; is supposed to 
belong to the exponential family of the form 

exp {bi{r])y + 62(77)} iy{dy), (4.4.1) 

where ẑ  is a nonzero measure on M which is not concentrated at a single 
point and where the function 61 is twice continuously differentiable and b'l is 
strictly positive on M. Then, the function bi is strictly increasing and 62 is 
twice continuously differentiable on M. The mean // of the distribution is 

/̂  = ^3(^) 
b[{vy 
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where 63 is continuously difFerentiable and b'^ is strictly positive on M. The 
function b^^ is called the link function and one has rj = b^ (/x). 

The following functional generalized linear model is suppose to holds, that is 
we assume the existence of a function a e H such that 

E{Y\X = x) = bsi<a,x>), xeH, (4.4.2) 

To insure identifiability of the parameter of the model, we assume that the 
following condition 2 holds (see Cardot and Sarda, 2003, for details). 
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Figure 4.2: (a) Residuals versus fitted wheat yield (smoothing parame­
ter values are those obtained by minimizing the cross-validation error), 
(b) Plots of estimated functions cvi and ^2 {t = 0 is 1 October and 
t = 309 is the beginning of August of the following year). 



Condition 2 There is an interval 5 in R such that P is concentrated on S 
and 

h'l{r,)y + b'i{ri) < 0, V77 € J?, Vy G 5., 

and 
The eigenvalues of T are non zero. 

We refer to Stone (1986) for examples of exponential families, such as Bernouilli 
or gamma distribution, satisfying the first part of condition 2. 

The penaHzed B-splines estimator of a introduced in Cardot and Sarda (2003) 
is defined as 

where ^ is a solution of the following maximization problem 

max i X ^ ( 6 i ( < B ; , ^ , X i > ) y i + 62(<B'fc0,Xi>)) - ]-p BK^ 

with smoothing parameter p > 0. The estimator aps is of the same type 
as the one introduced by Marx and Eilers (1999), with however a different 
roughness penalty. 

4.4.2 A Remote Sensing Application 

On board SPOT 4, a satellite launched in March 1998, the Vegetation sensor 
gives, at a high temporal resolution, daily images of Europe at a coarse spa­
tial resolution, each pixel corresponding to a ground area of 1 km^. The 
information given by this sensor are the reflectances, i.e the proportion 
of reflected radiation, in the four spectral bands Blue (B), Red (R), Near 
Infra-Red (NIR) and Short Wave Infra-Red (SWIR). We also considered two 
vegetation indices, that are frequently used in bioclimatology and remote 
sensing (Tucker, 1979), the NDVI (Normalized Difference Vegetation Index), 
NDVI = {NIR - R)/{NIR + R), and the PVI (Perpendicular Vegetation 
Index), PVI = {NIR - 1.2i?)/(v^l + (1.2)2), ^ y ^ h are functions of the 
reflectances in the Red (R) and NIR channels. This information allows to 
characterize the developpement of vegetation and crops at the scale of a small 
country (Tucker, 1979). Because in Europe, and particularly in France, the 
size of plots is much less than 1 km^, the observed reflectances are a mix­
ture of different informations since they contain different agricultural plots 
(maize, wheat, forest, ...). 

We aim at estimating the land use, i.e. the proportion of each types of cul­
ture or land cover inside each mixed pixel. A multilogit model with functional 



covariates is proposed to achieve that (see Cardot, Faivre and Goulard 2003 
for more details). This is the first step in predicting regional crop produc­
tions. Despite the medium spatial resolution, we take advantage of the high 
temporal resolution of such a sensor to derive estimations of the land use. 
The proportions are assumed to be drawn from a multinomial distribution 
whose parameters depend on the temporal evolution of the reflectance. 

Let us denote by TT̂ J , j = 1 , . . . ,p, the proportion of land use of crop j in pixel 
z of 1 km^. In our apphcation the observed area is about 40km x40km so 
that 2 = 1 , . . . , n = 1554. Ten (p = 10) different classes of crops were present. 
The curves of reflectance for each pixel z, in each channel and index, are 
denoted by Xi = [Xi{ti)^... ,Xi{tK)] where ti < ... < tk < - - - < t^ are 
the instants of measure. The images in which the clouds were too important 
were removed to finally get K = 39 different images from March to August 
1998. We assume that the land use is fixed during the observation period. 

We suppose the proportions TTIJ given the temporal evolution of the re­
flectance {Xi{t)^t e T} can be modelled as resulting from a multinomial 
distribution whose parameters satisfy 

exp (Sj-{- / aj{t)Xi(t) dt\ 

n^ij\Xi) = ^—-^ ^—' (4.4.3) 

^ expU^+ / a^{t)Xi{t)dt 

For identifiability reasons we take a^ = 0 and (5p = 0. Each functional coeffi­
cient aj may have an interpretation by comparison to the reference function 
ap — 0. For instance, if aj is a positive function, then the ratio of the pro­
portion will be higher than the mean value and thus the class j will be more 
important in the pixel z, if the centered reflectance curve is positive. 

We aim at estimating the vector 5 = {5i^... ,(5p_i)^ and the functional co-
eflftcients aj(t), j = 1 , . . . ,p — 1. The estimations are obtained by means of 
the maximum likelihood criterion. 

For computational purposes, we prefered the dimension reduction approach 
based on a functional principal components analysis. The number of covari­
ates (the principal components) still may be large and we decided to select 
the most signiflcative parameters by means of the likelihood ratio test with 
an ascendant procedure. More details may be found in Cardot, Faivre and 
Goulard (2003). 

The initial sample was split into a learning sample composed of 1055 pixels 
and a test sample composed of 499 pixels. 

The estimators for functions aj in the multilogit model are shown in Fig. (4.3). 
The reference curve is taken for the theme "Urban" since we expect that it 
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Figure 4.3: Estimated regression functions for the multilogit model 
with the temporal NDVI index. Theme "urban" taken as reference. 

varies less along time. We recognize a biological cycle for the curves associ­
ated to crops such as "Winter crops" or "Peas" and a rather fiat coefficient 
for themes such as "Forest" or "Permanent crops". 

We defined the following criterion to evaluate, on the test sample, the skill 
of this approach: 

Hi 
1 S^"^ TT ' 

where TTIJ is the predicted proportion of theme j in pixel i. We also considered 
the most simple model, named MQ, as a benchmark to indicate if it is worth 
building sophisticated statistical models. It consists in predicting the land 
use of one crop by its empirical mean in the learning sample. This is a 
particular case of the multilogit model with no covariates. 

We noticed (see Table 4.1) that the functional multilogit model, even if it can 
appear to be less natural since it has no direct physical interpretation, gave 
generally better predictions than other more intuitive methods (see Cardot, 
Faivre and Goulard 2003). 
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Themes 

urban 
water 

rapeseed 
winter crops 
spring crops 

peas 
summer crops 

permanent crops 
forest 

potatoes 

1 NDVI 
0.49 
0.43 
0.48 
0.20 
0.58 
0.50 
0.61 
0.47 
0.34 
0.90 

PVI 

0.36 
0.29 
0.46 
0.21 
0.56 
0.43 
0.68 
0.46 
0.36 
0.93 

Blue 

0.47 
0,78 
0.45 
0.19 
0.60 
0.45 
0.61 
0.52 
0.34 
0.94 

Red 

0.54 
0.62 
0.50 
0.20 
0.61 
0.43 
0.60 
0.49 
0.31 
0.90 

NIR 

0.41 
0.61 
0.47 
0.22 
0.65 
0.48 
0.76 
0.46 
0.45 
1.06 

SWIR 1 
0.51 
0.31 
0.47 
0.19 
0.61 
0.46 
0.53 
0.50 
0.35 
0.85 

1 M^ 
0.86 
1.30 
0.59 
0.30 
0.69 
0.63 
0.88 
0.61 
0.98 
1.31 

Table 4.1: Median value of the criterion error when predicting land 
use in the test sample with the GLM approach. Bold face numbers 
correspond to the best predictions. Model MQ is used as a benchmark. 

The best predictions seem to be obtained when using the PVI index. For 
instance, the errors were reduced of about 60 % compared to the reference 
model MQ. Thus combinations of the original wavelengths may be more ap­
propriate to predict the land use and our future work will deal with finding 
optimal combinations of the available canals. 

4.5 Functional Linear Regression on Quantiles 

4.5.1 Definition of the Model and Spline Estimators 

Let (5 G]0, 1[ and x e H; the conditional quantile gf3{x) of Y given X = x is 
defined as 

PAY < 9p{x)) = A (4.5.1) 

where Px is the conditional distribution of Y given X = x. Alternatively (see 
Koenker and Bassett, 1978), it is defined as solution of 

gp{x) = argmin E{lf3{Yi - a)\Xi = x), 
aeR 

(4.5.2) 

with 
lp{u) = \u\ + {2P- l)u. 

The reader is referred to Poiraud-Casanova and Thomas-Agnan (1998) for a 
review of nonparametric estimators of conditional quantiles. 
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Assuming now that the functional g^ is hnear and continuous, Cardot, Crambes 
and Sarda (2003) get the model 

Y = < a , X > +e, (4.5.3) 

where e is a random variable such that P(e < 0) = 5̂. This variable is 
also supposed to be independent with X. Identifiability of the model is a 
consequence of condition 3 

Condition 3. The distribution of e is supposed to have density /e satisfying 

fM >o. 

Cardot, Crambes and Sarda (2003) propose to estimate a with the following 
spline estimator 

OipS = 2_^ ̂ i^i — ^k,qO^ 

with 6 solution of the minimization problem 

min I - f̂  lf3{Yi- <' B,,,^, X, >) + p 11 (*B,,,^)(-) ee 

This is a I/i type optimization problem and it is not possible to exhibit any 
explicit solution. A numerical approximation is needed to get solutions (see 
Lejeune and Sarda, 1988 and Ruppert and Carroll, 1988). 

4.5.2 Application to Ozone Prediction 

The data come from the ORAMIP, the air quality observatory for the Midi-
Pyrenees area in south west of France. They are collected around the city of 
Toulouse and we have hourly measurements of ozone concentration (O3), NO 
concentration (NO) and NO2 concentration {NO2), wind speed {WS), and 
wind direction (WD), during the summers (15th May - 15th September) of 
the years 1997-2000. We aim at forecasting daily maximum O3 concentrations 
with the help of the functional covariates measured the day before until 5 pm. 

Data consist in a sample of 474 days during the four summers 1997-2000, 22 
days are missing days because of technical reasons. Unfortunately important 
variables such as the temperature or the nebulosity are not available yet. The 
discrete trajectories were approximated with the help of splines functions in 
order to get curves. Even if it was not the case in this study, this allows 
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to deal with time measurements that differ from one day to another. The 
response is defined by 

Yi = max 03,i(t), 
tG[0,24] 

and it corresponds to the maximum of the B-spUne approximation of O3 
concentration during the i^^ day. There are 5 explanatory variables: 

X,(t) = {Xl{t),...,Xf{t)) (4.5.4) 

= {03^i-i{t),NOi-i{t),N02,i-i{t),WSi-i{t),WDi.i{t)) 

The latter vector is precisely the 5-dimensional functional vector of the B-
splines approximations of the covariates 03, i_ i ( t ) , . . . , WDi-i{t), where time 
t E D varies from t = 6 p.m. of day i — 2 to t = 5 p.m. of day i — 1. 

We first consider the general following additive model: 

P{Yi < c + giiXl) + ... + 95{X!)/Xl = xl... ,Xf = x^) = /? (4.5.5) 

where gi^ - - ^gy are continuous linear operator mapping L'^{D) to R. Equiv­
alent ly we have 

Yi=c + [ ai{t)Xl{t) dt + ...+ f a^{t)Xf{t) dt + Ei 
J D J D 

P{ei<0/Xl=xl...,Xf=xl) = a 

where functions a i , . . . , a 5 are supposed to be twice continuously differen-
tiable. We have expanded the estimators into a B-splines basis of order q = 3 
with k = S knots and we considered a penalty proportional to the norm of 
the second derivative, m = 2. A backfitting algorithm is used to estimate it-
eratively each functional component of the model. For identifiability reasons 
we have centred the vectors X^. We noticed that the algorithm converges 
quite rapidly. 

Because of the heterogeneity of the four summers under study we did not take, 
as it is usually done, the last year as a validation year. The data were split 
randomly into a test sample, say / T , composed of UT = 142 observations 
and a learning sample, say 7^, with UL = 332 observations. The training 
sample is used to select and estimate the parameters of the models and the 
test sample is used to compare the predictions of the diff'erent models. 

To evaluate the performance of a model/estimator we considered different 
criterions. Let us denote by Yi the quantile prediction for observation i. The 
first criterion is a LI distance 

-J riT 

Ci = — V | y , - f , I (4.5.6) 
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Covariates 1 

Wo 
NO2 
O3 

WD 

ws 
O3, NO 1 
O3, NO2 
O3, WD 
O3, WS 

O3, NO, NO2 
O3, NO, WD 
O3, NO, WS 
O3, WD, WS 

Os, NO, WD, WS 
O3, NO, NO2, WD 
Os, NO, NO2, WS 
O3, A^02, WD, WS 1 

O3, NO, NO2, WD, WS 

Ci 

16,998 
16,800 
12,332 
16,836 
18,222 

1 12,007 
11,936 
12,109 

1 11,823 
11,935 
12,024 
11,832 
11,976 

11,954 
11,921 
11,712 
11,952 

1 11,978 

C2 
0,911 
0,900 
0,661 
0,902 
0,976 

0,643 
0,640 
0,649 
0,633 

0,639 
0,644 
0,634 
0,642 

0,641 
0,639 
0,628 
0,640 

0,642 

Table 4.2: Values of the criterion Ci and C2 on the pollution data for 
different models. 

and the second one is the ratio 

Co = 

^Y.l^{Y,-q^{XL)) 
(4.5.7) 

1 = 1 

where qfiiYh) is the empirical quantile of order /3 in the learning sample. 
These criterions take small values for "good" prediction whereas values larger 
than one indicate, for criterion C2 that the use of a model deteriorates the 
prediction accuracy compared to qp{YL). 

The results, for models with different numbers of covariates, are gathered in 
Table (4.2) for the prediction of the median {P = 0.5). When considering 
only one functional covariate, it is clear that the best prediction is obtained 
when using the O3 variable of the previous day. The gain, in terms of C2, is 
about 34 % compared to the empirical quantile. Furthermore, the use of the 
four covariates O3, NO, NO2 and WS allows to improve the predictions. 
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4-6 Asymptotic Results 

Asymptotic results for the spline estimators in models (4.3.1), (4.4.2) and 
(4.5.3) have been studied in terms of the asymptotic behavior of the L^ norm 
in H with respect to the distribution of X defined as 

To get existence, unicity and L^ convergence of Sp5, one needs, for all pre­
vious models, the following assumptions 

(H.l) \\X\\ < C i < oo, a.s. 

(H.2) The eigenvalues of F are strictly positive. 

The functional coefficient a is supposed to have p' derivatives for some integer 
p' with a^P ^ satisfying 

(H.3) \a^P'\yi) - a^P'\y2)\ < C^\yi - y2\\ C4 > 0, z. G [0,1]. 

In the following, we note p = p' -\- v and assume that the degree q of splines 
is such that q > p. 

Under assumptions (H.1)-(H.3) and if /o ~ 77,"̂ "̂*̂ °̂ /̂  for some 0 < 0̂ < 1, 
and pk'^^'^~'P^ := o(l), one gets the following result 

A unique solution Sps exists except on an event whose probability goes to 
zero as n -^ 00. 

For models (4.3.1) and (4.5.3) and under additional condition in model (4.3.1) 
that the conditional expectation and the conditional variance are bounded 
for all X e H, ioT k ^ 77,i/(4p+i) ^jid p r^ ^-2p/(4p+i) ^^^ gets, for m < p, 

E{\\aps-a\\l\X^,...,X„) - Op(n-2p/(4p+i)). ^^Q-^^ 

We refer to Cardot, Ferraty and Sarda (2003) and to Cardot, Crambes and 
Sarda (2003) for the proofs and comments of this result for model (4.3.1) and 
(4.5.3) respectively. 

For model (4.4.2), Cardot and Sarda (2003) get for k - n^/^^P+i), p r^ 
7^-(i-<5)/2 Q^^f^ for m < p 

E{\\aps-a\\l\X,,...,Xn) = Op(n-2p/(2p+i)) + o(p). (4.6.2) 
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Summary 

Statistical learning is an essential strategy in the analysis of microarray 
data. A typical task we are discussing here is the classification of biological 
samples into two alternative categories. We prefer a procedure that, based 
on the expression levels measured, allows us to compute the probability 
that a new sample belongs to a certain class. This is in contrast to other 
learning approaches like support vector machines. An approach providing 
us with probability statements and not just a classification rule is binary 
regression. High-dimensionality and at the same time small sample sizes are 
the challenge. Standard logit or probit regression fails because of condition 
problems and poor predictive performance. Binary regression based on 
penahzed log-likelihood is considered here instead. Further the role of cross-
validation for regularization and feature selection is discussed. Finally we 
illustrate penalized logit regression in the context of statistical learning on 
a well-known gene expression data set. 

Keywords: Classification, cross-validation, logit regression, microarray 
analysis, penalization, prediction, probit regression, statistical learning 

5.1 Introduction 

Typical for microarray gene expression analysis (for an introduction see e.g. 
(McLachlan, Do, & Ambroise 2004)) are the following characteristics: (i) 
The number of observations (samples) is smaller than the number of input 
variables (genes). Hence more parameters have to be estimated than esti-

^The author wishes to thank Dennis Kostka and Rainer Spang (Max-Planck-Institute for 
Molecular Genetics, Berlin) for valuable discussions about statistical learning. 
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mation equations are available, resulting in non-unique solutions, (ii) The 
bias-variance dilemma where we have to decide between a model of low com­
plexity with high bias and low variance, and a model of high complexity with 
low bias and high variance. Statistical learning provides a framework for 
handling these problems (see e.g. (Hastie, Tibshirani, & Friedman 2001)). It 
is assumed that the input vector x and the outcome y are generated by sam­
pling from an unknown underlying distribution P. The objective of learning 
is then to find that predictor function / which minimizes the expectation of 
the loss function £(y, / ) . Learning / is based on data and is in the simplest 
case a two-step procedure applying a training set and a validation set. Train­
ing data are used to infer a function /* that is close to the target function 
/ . By the approximation of a minimization problem, /* is chosen as the 
minimizing function of an empirical risk criterion. Since a function /* which 
fits well to the training data can still be distant from the target function / , 
restrictions are required for the set F* of possible solutions /*. Statistical 
learning enforces such restrictions on F* in dependence of the complexity of 
F*. Well-known statistical learning concepts are kernel-based techniques like 
support vector machines (for a comparison with penalized logistic regression 
see (Zhu & Hastie 2004)). 

A typical statistical learning task is the classification of biological samples 
into two alternative categories. Based on registered expression levels the goal 
is to compute the probability that a new sample belongs to a certain class. 
This can be achieved by binary regression. Both logit and probit regression 
are candidates. As pointed out above there are far more parameters (say 
m) than samples (say n). Because of m ;:^ n the necessary reduction in 
dimension can be achieved by penahzation. To avoid overfitting and poor 
prediction we impose a penalty on large fluctuations of the estimated pa­
rameters. Quadratic regularization is know as ridge regression for continuous 
responses. It can also be apphed to binary responses. The n samples are rep­
resented by points in an ?TI-dimensional space. In practice, however, there are 
only n relevant points which all lie in a linear subspace of maximum dimen­
sion n. For the projection onto the subspace singular value decomposition 
has been proposed (e.g. (Filers et al. 2001) for penalized logit regression). 
When penalizing, a ridge parameter needs to be chosen. 

In this paper two relevant binary regression models, logit (logistic) and probit 
regression are described. Both can be characterized by their log-likehhood. 
For gene expression data direct log-likelihood estimation is inadequate. How­
ever we can show that penalization of the log-likelihood is possible in both 
instances. Given a ridge parameter representing an adequate bias-variance 
tradeoff, stable estimates can be obtained. Finally we illustrate our approach 
applying penalized logit regression to a well-known gene expression data set 
from (West et al. 2001). 
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5.2 Binary Regression 

Binary regression is well established in the context of generalized linear 
models (GLM) as described in (McCullagh & Nelder 1989). In biostatis-
tics it is a suitable tool for dose response modelling, going back as far 
as 1973 (Finney 1973). Nowadays it is increasingly becoming an impor­
tant linear classification method (for an overview see (Hastie, Tibshirani, & 
Friedman 2001)). 

In a GLM a binary response can be predicted by a so-called predictor function 
consisting of a transformed (depending on the nature of the response variable) 
linear combination of explanatory variables. As stated in the introduction, 
binary regression would be an appropriate tool to classify biological samples 
belonging to one of two alternative classes. 

The typical situation is that a number of biological samples has been col­
lected, preprocessed and hybridized to microarrays. It is assumed that Ui mi-
croarrays belong to the one and n2 microarrays belong to the other class (e.g. 
to patients having the disease versus not having the disease) and ni +n2 = n. 
The statistical task is to compute the probability that a specific sample be­
longs to one of the two alternatives based on the expression levels recorded. 
The final goal is the classification of new microarray data. 

Why is the application of GLMs not satisfying in this setting? A basic as­
sumption, typical for standard regression and also classification techniques, 
is not fulfilled: m <C n, where m denotes the predictors (i.e. genes in the 
above example). On the contrary, here we always have m^ n. For estima­
tion the consequence is that there are many more unknowns than equations 
and infinitely many solutions exist! Hence we end up with an ill-conditioned 
problem. A naive application of binary regression, whatever the model or 
the algorithm, would result in unstable, non-unique estimates. 

Another problem in the context of classification is the low discrimination 
power due to the high variance of the data fit. 

How can we cope with these detrimental features? Binary regression mod­
els can be characterized by their log-likelihood (see later). A likelihood can 
always be penalized to obey certain conditions. Let us start with the descrip­
tion of binary regression in the GLM context. 

Suppose T/i, i = 1 , . . . ,n, a binary response variable and Xij, j = 1 , . . . ,m, 
continuous predictor variables. To investigate the relationship between the 
predictor variables and the response probability p we assume a linear combi­
nation 

m 
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where the /3j's are unknown coefficients, and PQ is the offset. Let Pi be 
the probabiUty of observing i/i = 1. The connection between rji and pi for 
the Binomial family of the GLMs is the canonical link which is non-linear. 
Unless restrictions are imposed on the /3's we have — oo < 77̂  < oo. Hence 
a transformation, also called link function, g{p) is introduced that maps the 
unit interval onto the whole real line, i.e. g{pi) = rji. Suitable transformations 
for the purpose of gene profiling are the logit (logistic) link function 

g{pi) = log ' 
A-Pi 

and the probit (inverse Normal) link function 

g{pi) = ^-\pi)^ 

where ^(•) is the cumulative distribution function of the standard Normal 
distribution. The transformations ensure that the probabilities of the two 
classes (0/1 response i/i) sum to one and remain in [0,1]. In logit regression 
we have 

exp(y/) 

(logistic curve) and in probit regression (̂77) = ^{rj). Assuming a Binomial 
error distribution in both instances the log-likelihood can be written 

n 

m = Y^{yiiogp{xi-f3) + (1 - yi)iog{i-p{xi;m 

= J2{yiP^^i + log(l + expip^xi))}. (5.2.1) 
i=l 

Here we have assumed (3 = {Po^Pj} for j = 1 , . . . ,m, and that the vector 
of predictor values Xi includes the constant term one to accommodate the 
offset. 

To maximize the log-likelihood, we set its derivatives to zero. The score 
equations are 

dm = '^Xi{yi-p{xi;P)) = 0 . 

Their number is m + 1 and they are non-linear in p. Since the first element 
of Xi is one, the first score equation specifies that 

Yly^ = Y^Pi^i'^f^)' 
i=l i = l 

This is to say that the mean of p has to be equal to the fraction of ones in y. 
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For logit as well as probit regression the score equations can be solved via 
the Newton-Raphson algorithm (iteratively reweighted least squares in the 
GLM framework). Typically the algorithm converges since the log-likelihood 
is concave (for details see (Hastie, Tibshirani, & Friedman 2001), p.98f). 

5.3 Penalized Binary Regression 

As pointed out already, binary regression cannot be immediately applied in 
a situation of m ;::̂  n. A remedy are the so-called shrinkage methods. The 
key idea is that overfitting is avoided by imposing a penalty on large fluc­
tuations of the estimated parameters. In 1970 Hoerl and Kennard (Hoerl & 
Kennard 1970) introduced ridge regression for ill-conditioned ordinary regres­
sion problems. It shrinks the regression coefficients by imposing a penalty on 
their size. A complexity parameter A (A > 0) controls the amount of shrink­
age. The regularization in (Hoerl & Kennard 1970) is quadratic, i.e. based 
on the sum of squares of the regression coefficients. This ridge penalty has 
later been applied to linear discriminant analysis (Friedman 1989), logistic 
regression (le Cessie & van Houwelingen 1992), and neural networks (Girosi, 
Jones, & Poggio 1995). Regularization is closely related to certain spline 
concepts in nonparametric regression (Schimek 1988). In smoothing splines 
we are talking about penalty functions controlled by a smoothing parameter 
similar to the above complexity parameter. 

The general motivation behind penalizing the likelihood is the following: 
Avoid arbitrary coefficient estimates /3 and a classification that appears to 
be perfect in the training set but is poor in the validation set. Penalization 
aims at an improved predictive performance in a new data set by balancing 
the fit to the data and the stability of the estimates. 

Suppose /?* = {Pj} for j = 1 , . . . ,m, the log-likehhood i{f3) can be penalized 
in the following way: 

r ( /?) = £ ( / 3 ) - ^ J ( r ) (5.3.1) 

where 
m 

is a quadratic (ridge) penalty. As can be seen, only the regression coef­
ficients f3j are subject to penalization, not the offset PQ. The complexity 
(ridge) parameter A controls the size of the coefficients (increasing A values 
decrease their size). There are also other penalties known in the literature 
(e.g. (Donoho & Johnstone 1994), (Tibshirani 1995)) we cannot discuss here. 
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To maximize the penalized log-likelihood, we set its derivatives to zero, 

dt{p) 

0, 

0. 

We obtain the penalized likelihood equations 

and 
X^{y-p) = X(3. 

The m-dimensional vector u consists of ones. As in classical binary regres­
sion the equations are non-linear. A first-order Taylor expansion gives (we 
abbreviate pi = p{xi] (5)) 

P^=P^ + ^J^o-M-^E^.(f^J-^j)' dpo'"^ ' fr'.dPj 

Tilde denotes the approximation (e.g. pi for pi). The partial derivatives are 

^P^ n \ 

and 
dPi /-, X 
— =Pi{l-pi)Xij. 

In writing pi{l — pi) = Wi we finally have 

u^Wu/3o + u^WXp = u^{y -p- Wf)) (5.3.2) 

and 
X^WuPo + {X^WX + XI)P = X^{y -p- Wfj), (5.3.3) 

where W is a diagonal matrix consisting of the elements wi. As before, the 
parameter (5Q is determined by the fraction of ones in y. 

The above linearized system can be solved by means of iterative techniques. 
Under the requirements of gene expression analysis the system of equations is 
huge. In the statistical environment R (Hornik et al. 2004) binary regression 
can be fitted by means of singular value decomposition, an expensive but 
reliable numerical approach. In the contributed R package Design there are 
functions for penalized logit regression. 
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5.4 Cross-Validation 

In the previous sections we have seen how to cope with the severe problem 
of far more parameters than samples. Regression approaches are prone to 
overfitting (being to optimistic in the training set) which leads to poor pre­
dictions (in the validation set). Hence the control of the model complexity is 
crucial. 

In binary regression models Cross-Validation (CV) is the standard technique 
both for the choice of the regularization (ridge) parameter A and for feature 
selection aiming at a stable model fit. 

The simplest type of CV is leave-one-out: An observed value is predicted 
from the remaining observations and that parameter is chosen which yields 
the best prediction. Because the computational demand is proportional to 
m(m — 1), it is quite high when applied to all m genes in expression profiling. 
The generalization of leave-one-out CV is leave-k-out CV (computationally 
less demanding). 

Outside statistics (e.g. in chemometrics) often the concept of k-fold CV is 
used. It means that the training set is spht into k parts of approximately 
equal size. In each run one of the k parts is left out and used as an indepen­
dent validation set for optimizing the parameters. 

As far as penalized regression is concerned smaller sets require stronger reg­
ularization. This can lead to sub-optimal model fits. Another problem is 
the large number of possible divisions of the training set into k groups each 
of size g = m/k (i.e. m\/k\{g\)^). Different partitions may yield different 
performance assessments (e.g. in feature selection). These problems have 
been studied in great detail in (Jonathan, Krzanowski, & McCarthy 2000). 
For a thorough discussion of instabilities in feature (model) selection see 
(Breiman 2003). In practice one tries to have balanced groups and decides 
for parameters which work best across the runs. Criteria for the performance 
of CV are either the misclassification rate or the strength of prediction. 

5.5 An Example 

The example is based on the Breast Cancer Data Set of (West et al. 2001). 
The data originate from a gene expression study with patients suffering from 
breast cancer. There are two different response variables, status of the es­
trogen receptor (ER) and lymph nodal status (LN). Here we study the full 
data set with respect to ER. It consists of n := 49 samples, rii = 25 belonging 
to the ER+ (patient samples 1-15, 28-30, 32, 34-35, 45-48) and ns = 24 
ER- (patient samples 16-27, 31, 33, 36-44, 49). We are not splitting the 
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Figure 5.1: Penalized logistic regression regression results for two cross-
validation schemes: predicted probability for each sample belonging to 
ER+ or ER-

data into a learning and a validation set. Instead we resort to pre-validation 
ideas (Tibshirani & Efron 2002) in connection with ten-fold CV appHed to 
all available samples. 

The data comprise the preprocessed expression of 7129 human genes (Affy-
metrix gene chip probes) and can be obtained from the Web location h t t p : / / 
coinpdiag.molgen.mpg.de/ngfn/data/2004/mar/. Further we have a vec­
tor of tumor class labels with elements 0 for ER+ and 1 for ER-. In each 
evaluation step the 100 most informative genes (criterion t-statistic from 
Bioconductor's mul t tes t ; (Gentleman et al. 2004)) were chosen for model 
fitting. Obviously this set of genes can change from step to step. 

The procedure for penalized logit regression was implemented in R, taking 
advantage of functions in the library Design. It is maximum likelihood-based. 

The complexity (ridge) parameter A = 5.29 for the logit model was chosen 
by ten-fold CV (based on balanced groups) with respect to log-likelihood 
prediction. For the evaluation of the regression model outside loop feature 
selection was applied. In each step the most informative 100 hundred genes 
were used out of 7129. 

In Fig.5.1 for each sample the logit class probability is plotted based (i) on 
simple ten-fold CV for the choice of the ridge parameter (crossed circles) 
and (ii) on a two-step (i.e. in two loops) ten-fold CV for additional feature 
selection (black circles) for improved prediction. The vertical line separates 
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the ER+ (left) from the ER- (right) samples according to external evidence. 
It can be clearly seen that the simple approach is overoptimistic. When 
feature selection is adopted we have missclassification for the samples 30, 35, 
47, 16, 17, 31, and 40 and an overall missclassification rate of 14.29%. This 
is a typical value for penalized binary classification procedures in microarray 
data. 

5.6 Conclusions 

Penalized binary regression is a well-motivated statistical concept which has 
proven to be useful in classifying gene expression data. The approach de­
scribed in this paper has, compared with kernel methods such as support 
vector machines from machine learning, the advantage of providing class 
probabilities, thus yielding a quantification of the specific contribution of 
each gene to prediction. 
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Summary 

A relaxed iterative projection (abb. RIP) algorithm for arbitrary linear 
equation systems is described. It has favorable properties with respect to 
many statistical applications. A major advantage is that convergence can 
be established without restrictions on the system matrix. Hence certain 
characteristics of the system matrix such as diagonal dominance are not 
required. As a result RIP fitting can be applied where backfitting tends to 
fail, e.g. when regression predictors are substantially correlated (problem 
of multicollinearity respectively concurvity). Convergence under a suitable 
choice of the relaxation parameter is derived for general n x m system ma­
trices. The RIP solution of typical equation systems is studied with respect 
to the correct (analytical) solution. Empirical findings for the practical 
selection of the relaxation parameter are reported. 

Keywords: Backfitting, concurvity, linear equation systems, nonparamet-
ric regression, relaxed iterative projection fitting, relaxation parameter, 
semiparametric regression, successive over-relaxation, singularity 

6.1 Introduction 

For numerous statistical applications we have to solve large linear equation 
systems of the form Ax = b in x, often arising in the context of paramet­
ric, nonparametric or semiparametric regression. In some instances we can 

•"The financial support of the F^WF Austrian Science Fund in the research project "Kon-
vergenz und Nurnerik des Backfitting-Algorithmus" is greatly acknowledged. 
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assume a square (i.e. n x n) system matrix A and n-dimensional vectors x 
and b. However there are many instances, where the matrix A is rectangu­
lar (i.e. n X m), 77T, < n, X is m- and b is n-dimensional. The number of 
equations is not necessarily equal to the number of regressors. m < n and 
rank{[A | b]) > rank{A) is typical for systems leading to normal equations in 
least squares problems. Such systems are said to be over deter mined. There 
is no X that satisfies such a system, but approximate solutions can be ob­
tained and are useful. A system for which rank{[A | b]) == rank{A) is said 
to be consistent and solutions exist. For an overview of numerical methods 
for least squares problems see Bjorck (1996). 

In this paper we consider overdetermined consistent systems (underdeter-
mined systems are not of interest here). Further we assume a general n x m 
equation system with m < n. The dimension of n is usually much higher 
than that of m (under the assumption that there are substantially more ob­
servations than predictor variables resulting in an overdetermined system). 
In general A is assumed to be a full matrix. In certain cases A may be 
sparse, e.g. in non- and semiparametric regression problems depending on 
the smoothing technique. 

Outside the parametric world in which direct numerical techniques dominate 
(Choleski for square and QR factorization for rectangular systems, see Gentle, 
1998, p.93fr) iterative backfitting is the dominating algorithm (see e.g. Hastie 
and Tishirani (1990), p.90f for generalized additive models, and Green and 
Silverman (1994), p.68 for partial spline models). In this paper we propose a 
new iterative algorithm with improved convergence characteristics compared 
to backfitting, not requiring specific assumptions about the system matrix 
A. It is called relaxed iterative projection (abb. RIP) fitting and can be seen 
in the context of successive over-relaxation (abb. SOR). RIP has a simple 
geometric interpretation, is easier to implement and computationally more 
efficient than SOR. 

6.2 Backfitting 

Backfitting is a basic iterative method of Gauss-Seidel type. Given starting 
values XQ, such methods generate a sequence of Xk converging to the solution 
^ - ^ b of 

A x - b , (6.2.1) 

where Xk-\-i is cheap to compute from Xk- An alternative to Gauss-Seidel 
iterations are Jacobi iterations (see Schimek and Turlach, 2000, p. 288), 
though hardly used in statistical computing. Both methods are equation 
oriented and have been derived for solving square (m = n) non-singular 
linear systems. The main difference between the two iteration types is that 
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at the ith. step of the loop improved values of the first 2 — 1 components of the 
solution are used in Gauss-Seidel which means a faster information update. 

Gauss-Seidel backfitting is defined in the {k + l)th step for z == 1, 2 , . . . , n by 

i—1 n 

with iterative solutions xj^^i and starting values xo,i = 0. 

Statistically speaking the idea is to determine estimates for the regression 
covariates in a successive manner, taking advantage of specific features of A 
(a question of ordering of the grid points we loop through). This allows us to 
be most effective for the choice of certain smoothers (e.g. cubic smoothing 
sphnes or regression splines in non- and semiparametric problems), because 
we can avoid the explicit calculation of all smoother matrices which are as­
sociated with the covariates. 

Convergence depends on the eigenvalues of the iteration matrix. If A is 
strictly row diagonally dominant, then backfitting (holds true for Gauss-
Seidel and Jacobi iterations) always converges. Strictly row diagonal dom­
inance means that each diagonal entry of A is larger than the sum of the 
magnitudes of the other entries in its row. This is usually not satisfied in 
regression problems. A weaker form of diagonal dominance is irreducibility 
which concerns the pattern of non-zero entries of A. For a proof of conver­
gence under this condition see Demmel (1997, p.286f). 

A different variant of backfitting is the so-called modified backfitting algo­
rithm introduced by Buja, Hastie and Tibshirani (1989). The solution is ob­
tained in a subspace of the vector space constituting A. As a result there is a 
gain in efficiency. Because of ?TI < n the Gauss-Seidel iterations are replaced 
by QR decomposition. Modified backfitting can be applied in (generalized) 
additive regression models for specific smoothers allowing for a decomposi­
tion into a projection part and a shrinking part. In S-Plus this is the default 
algorithm because non-decomposable smoothers are not recommended. Yet 
standard backfitting is most general as it can be adopted for any kind of 
linear smoother. 

Our main criticism of backfitting for the solution of linear equations is the 
fact that certain characteristics of the system matrix are required but not 
always met. Features like diagonal dominance or regularity cannot be taken 
for granted in all statistical estimation problems of interest. The algorithm 
has been shown to converge only in special cases of additive regression mod­
els (Opsomer and Ruppert, 1997). When generalized additive models are 
evaluated by means of kernel smoothers or local polynomial smoothers, ill-
posed normal equations cannot be ruled out because of the weighting scheme 
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imposed on the data. In addition, from our experience we can say that a 
correlation larger than |0.3| between two predictors is sufficient to hamper 
convergence of backfitting (for more information on rank deficiency see Wood, 
2004). This problem is known as multicollinearity in parametric models and 
concurvity in nonparametric models (for a detailed discussion see Ramsay, 
Burnett and Krewski, 2003). Despite the fact that generalized additive mod­
els were not designed for time series data, they are often applied to them 
(e.g. Dominici et al., 2002). Apart from (auto)correlation certain features of 
the data such as sparseness can also cause poor convergence. 

The above mentioned disadvantages can be overcome by a non-standard it­
erative method which is column-oriented instead of equation-oriented. Its 
convergence can be established independent of specific features of the system 
matrix. Hence we can deal with many applications in which backfitting shows 
slow or no convergence (breaks down). 

6.3 Relaxed Iterative Projection Fitting 

In contrast to standard iterative techniques for linear systems which are 
equation-oriented, the relaxed iterative projection method is column-oriented. 
This idea has been first brought up by de la Garza (1951). It is only recent 
that projection concepts have become numerically feasible due to modern 
computer power. Schimek (1996) has introduced iterative projection fitting 
for a square system matrix and a relaxation concept to improve the compu­
tational efficiency of the therein proposed algorithm. 

Here we derive the most general case assuming an arbitrary rectangular (m < 
n) matrix A consisting of m nontrivial column vectors of dimension n. Let 
us denote by col{A) the Hnear space generated by a i , a 2 , . . . , a^ and by x a 
solution vector x = (xi, 0:2,...,Xm)^- We assume 

b G col{A). (6.3.1) 

The assumption of nontriviaUty of the columns of A for practical purposes 
means no restriction. For a trivial column â  = 0 the corresponding compo­
nent Xi of each solution vector can be chosen arbitrarily. Likewise we could 
add any number of zero columns to A without influencing the "essential 
part" of the solution vector, i.e. these components of x which correspond to 
nontrivial columns. 

We define two real sequences, the one {/j^j} is 

f b - ^ / / i a i , a j I = 0 , j = l , 2 . . . , 
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where â  = Sii-\-im (resp. RJ = ^j-\-im) with / = 0 , 1 , . . . are the column 
vectors of A as defined above. But we could also consider â  := a^* with 
p = 1 + (i — 1) mod m for i > m. The a i* ,a2* , . . . , a^* are a permutation 
of the ai , a2 , . . . , a ^ . According to Murty (1983, p.457) this can help to 
improve the speed of convergence. 

The other sequence {ski} is 

Ski = ^/J^j, j = k-\-lm, A: = l , 2 , . . . , m , / =̂  0,1, 
j 

In the terminology of Maess (1988, p.llSff) this numerical method produces 
an instationary iteration process which is geometrically motivated. In the j th 
iteration step fij is determined by the orthogonal projection of the previous 
residual component Uj_i onto the dimension a.j and the coefficients fij can 
be calculated by dot (inner) products. Hence 

( a j , a j ) 

where dj is a relaxation parameter with admissible values 0 < CJ < 2 and 

i - i 
Uj-i =h- ^ / i ^ a ^ , 

2 = 1 

which makes the geometric interpretation clear. The parameter LU should 
influence the sequence of orthogonal projections (dot products) in a way that 
less iteration steps are necessary till convergence (Euclidean norm ||uj| | less 
than some e). 

The norm (length) of fi is shrinking for admissible uj values (for the proof see 
later) and convergence can be expected. Because the above Ski tend to the 
Xk for I -^ oo, each element Xk of the solution vector x = (a:i,X2,... ,Xm)'^ 
- assuming / sufficiently large - can be obtained by 

Xk ~yZl^J^ J = k-{-ml, /c = 1,2,... ,m, / = 0,1, 

The necessary condition is that the residual components Uj tend to zero. To 
simphfy notation (e.g. for u below) let us have single prime denoting the 
next step, and double prime denoting the step after the next. Admissible u 
values can be derived from the expression 

l lu 'f = ||u - ^ a f = l luf - (2c. - c ^ ) ^ , (6.3.2) 

requiring 0 < cj < 2 in the case of convergence. 



82 

It is possible to establish convergence for RIP fitting without restrictions on 
the system matrix A. 

Theorem: If (2) and 0 < a; < 2 is fulfilled, then for j sufficiently large 
u, ^ 0. 

Proof: Let M := max\\8ii\\. Let us now study the sequence of the residual 
components. Because of (3) the sequence {||uj||} is monotone decreasing in 
weak sense. We have to show that this sequence tends towards zero to prove 
the theorem. 

If {||uj||} —> C 7̂  0, then we could choose a subsequence 

with ||uo|| = C because of the subset {u : ||u|| < 2C} being compact in R"". 

Consider the space col{A). It not only includes b and all â  but also all u^i^, 
thus UQ too. As a result the set of â  for which (UQ, a^) 7̂  0 holds, cannot be 
empty. Let k be the number of â  with (UQ, a^) = 0 and 

e :-=mm{II(uo,ai)II : (uo,ai) 7̂  0} > 0. 

Let us suppose an arbitrary 6 > 0 and u a fixed residual in the subsequence 
{u^^} with Iju — Uoll < 6. Starting from u we continue the iterative projec­
tions. For those columns a for which (uo,a) = 0 we have 

., / ,. >, co'fu, a') , ,, ,, ,, ,, (u —Uo,a') ,,, . . 
| |u ' -uo | | = ||u ^ ^ a ' - u o l l < llu-uoll+wll^ ^ ^ ^ a ' | | < 6+25 < 45, 

a a 

further 

||u" - Uoll < ||u' - Uoll + a ; | | ^ " ' ~ " ° ' ^ " ^ a " | | < 4<5 + 2,45 < 165, 
a 

and finally 
| |u (^) -Uo | | < 22̂ (5 

unless the procedure has not yet encountered an a with (a, UQ) 7̂  0. The 
next step in analogy to (3) is 

a 

We can assess 
llû '̂̂ lj < \\uo\\+2^^6 = C + 2^^S 

and 

||u('=),a|| = ||(uo,a)+(u('=)-uo,a)|| > | |(uo,a)| |- | |(u('=)-uo,a)| | > e-2^>'5M, 
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together yielding 

||„(fc+i)||2 < (^ ^ 22'=5)2 - (2a; - a;2) ( i Z ^ ^ M l ! . (6.3,3) 

Here the values for LO^ k, e, C and M are fixed. If 6 is chosen sufficiently small, 
the righthand side of equation (4) is always less than C^. This contradiction 
proves the theorem. 

Extending the above considerations one can show that during a full cycle of 
projections ||u|| is reduced at least by a factor / < 1 only depending on A, 

We have seen that for 0 < a; < 2 the residual components Uj tend to zero 
without specific assumptions on A. This is the main advantage over backfit-
ting as described earlier. 

The relaxation parameter uj as defined above operates on the solution in the 
following way: UJ = 1 characterizes the unrelaxed solution; 1 < cj < 2 is the 
interval of values of practical relevance improving the fit and at the same time 
reducing the required number of iterations; and finally 0 < c<; < 1 denoting 
values under which convergence is still obtained yet requiring an increased 
number of iterations compared to cj == 1. Increasing degeneracy needs larger 
UJ values. There is no mathematical argument how to select an optimal value, 
however empirical evidence gives some guidance (see later). 

Further we would like to state the following lemma. 

Lemm,a 1: l{rank{[A \ b]) = rank{A) (consistency) and b G col{A) it follows 
from the theorem that 

Sk,l -^ Xk 

for k = 1,2,... ,m and / -^ CXD, thus x = (xi,a:2,... ,a:^)^ solves equation 
(1) (compare with Schimek, 1996). 

For b e col{A) a unique solution is obtained. In the case of rank{[A \ 
b]) > rank{A) (overdetermination) we do not obtain a unique minimum 
norm solution. However this does not imply any restriction because here 
we are also interested in the solution of overdetermined statistical problems 
of (penalized) least squares type such as (nonparametric smoothing spline) 
regression. 

Lemma 2: If b ^ col{A), i.e. b = bi + b 2 , b i G col{A),h2-icol{A) with b2 ^ 
0, the result of the iteration process tends to a solution of || Ax — b|| -^ min^ 
i.e. Ax. = b i . 

This can be seen by applying the above theorem to Ax — bi . We notice that 
the coefficients /Xj are not influenced by b2, since they are linear functions of 
(b,aj-) = (bi,a^-)-
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In summary, the proposed iterative projection method can be characterized 
as follows: Firstly, it works for square as well as rectangular system matrices. 
This means that it can cover all the situations where backfitting is currently 
applied. Secondly, it always converges because convergence does not depend 
on special features of the system matrix, such as positive definiteness or 
diagonal dominance. There are numerous statistical computations for which 
such assumptions do not hold neither can be checked during execution (e.g. 
in data mining tasks). Thirdly, even for the special case of a singular or near 
singular system a solution can be obtained. This is also an important aspect 
because the condition of the matrix A can deteriorate during execution when 
backfitting or RIP fitting forms the core of a more complicated algorithm 
(e.g. in generalized additive models where local scoring takes place at the 
same time, see Schimek and Turlach, 2000). As already pointed out, there are 
various statistical problems which tend to produce rank-deficient systems. 

Finally it should be noted, that the RIP procedure discussed above is indeed 
a modification of Gauss-Seidel iterations, but is using a different approach 
in the derivation of the equations to solve. So although there are numerical 
equivalencies, the projection-oriented view allows extended insights. 

6-4 RIP Fitting and Successive Overrelaxation 

As already mentioned there is a connection between RIP fitting and succes­
sive overrelaxation (SOR), although evaluated via different algorithms. Its 
superior numerical features (for algorithmic details see next section) are the 
advantage of the RIP procedure. 

Assuming A has full column rank, let us decompose A'^A = L -\- D -{- L- ,̂ 
where D is the diagonal matrix of A'^A and L is the lower triangular part 
of A'^A. Let xi-^i = [/ifm+i, Mim+2,.. •, M(f+i)m]^ for / = 0,1, 2 , . . . and let 
xo = 0. Then one can show that 

{D + UJL)XI^I = ujA^{h - AXQ - Axi - . . . - Axi) (6.4.1) 

for ^ = 0,1, 2, From equation (5) and A'^A = L -\- D + L^ it follows that 

^1 + X2 + . . . + Xi^i == 

{D 4- (^L)-\{1 - uj)D + UJL^){XI + X2 + . . . + X/) + ( P -|- ujL)-^{ujA^h) 

for I = 0 , 1 , 2, Now let x̂ ^̂  = xi + X2 -\- .. • -\- xi^ where in fact x^^^ = 
[sihS2h •'' tSmi]'^• What we obtain is equivalent to the SOR iteration for 
solving the normal equation A^Ax — ^ ^ b , i.e. 

x^^+i) - (D + a;L)-^((l - uj)D + i^L^)x^^^ -f- (Z^ + ujL)-^[i^A^h) 
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for I = 0 ,1 ,2 , . . . and 0 < cj < 2 the SOR relaxation parameter (compare 
with Gentle, 1998, p.lOSf). SOR in combination with conjugate gradient 
methods is very useful for solving large linear sparse systems. 

6.5 An Algorithm for the RIP Procedure 

Let us have the following starting values: u = b^x = 0^ where u and x are 
vectors, mu = 0, fc = 0, where mu and k are scalars. A stopping rule for 
the iteration process is required. The iterations are limited by Maxlter. 
For the RIP procedure without vector permutation the algorithm can be 
characterized as follows: 

while not break 
uTemp = u 
for i = 1 to m 

mu(i) = InnerProd(omepa * uTemp^ a(z))/InnerProd(a(i), a(i)); 
uTemp = uTemp — mu{i) * a{i); 

for j = 1 to m 
^(j) = x{j) -\-mu{j); 

u — uTemp; 
term = EuclidNorin(tA); 
if term fu l f i l l s stopping rule 

breaik; 
k = k + l 
if k > Maxlter 

break; 

The algorithm has a simple recursive structure and is built on inner (dot) 
products. There are highly reliable ways to calculate inner products. The 
operations are carried out in double precision and the dot product itself has 
a very good relative numerical error (see Golub and van Loan 1989, p.65 for 
details). Apart from that the RIP procedure has the valuable feature of self-
correction. This means that numerical errors are automatically taken care 
of in the next iteration cycle, a positive side effect of the projection concept. 
Last but not least the memory requirements are small compared to standard 
procedures like QR decomposition. Hence the algorithm is a reliable tool for 
the solution of linear equation systems of any size, even when rank-deficient. 

In addition we can take advantage of patterns in the system matrix A such as 
structural zeros during the calculation of the inner products. This can save a 
good deal of computer time. This is specially true for bandlimited systems. 
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The smaller the dimension m the less cycles are required. The reason is that 
the solution is found in a subspace smaller than col{A). 

The algorithm has been implemented in S-Plus and MATLAB. 

6.6 Some Illustrative Examples 

We present a few examples. The studied equation systems are different in size 
(square and rectangular) and structural features. Because there is no math­
ematical theory how to choose an optimal parameter cu we were considering 
a range of suitable relaxation parameters including cj = 1 for no relaxation. 
The iterations (cycles) required until convergence were studied for consistent 
and over-determined systems. 

Permutations were not applied to the column vectors â  of A. Performance 
was solely controlled through relaxation. Applying equation (3) we took 
(JU — 1(0.1)1.9. The emphasis was on arbitrary system matrices A which are 
not diagonally dominant to be solved under either Lemma 1 or Lemma 2. 

Double precision arithmetic was used throughout. The iterative solutions 
were calculated up to machine precision on a pentium M platform under 
Microsoft Windows XP. 

Apart from numerical accuracy the number of iterations until convergence 
(computational expense) was an evaluation criterion. The minimum number 
was identified and the associated solution compared to the unrelaxed one. 

We first consider an example with a 4 x 4 regular matrix A which does not 
have diagonal dominance, 

/ 6 
2 
3 

V - 2 

2 
8 
2 

- 1 

4 
1 

- 1 1 
1 

1 \ 
- 1 

1 

7) 

( X, \ 

X2 

xa 
\Xi ) 

/ 15 \ 
- 12 ' 
- 3 3 

V 10/ 
The minimum iteration number was obtained for a) = 1.1. In Table 6.1 the 
exact and the estimated solution for the vector x are displayed. 

The results are not surprising because A is not ill-posed: this means a very 
small number of iterations I. The lack of diagonal dominance is irrelevant 
as pointed out in the theoretical section which can be clearly seen here. As 
expected a slightly larger value of CJ = 1.1 reduces the cycles from 28 in the 
unrelaxed case to 16. The precision of the solution vector x is extremely high 
in both instances. 

In the next example we are going to see that even for a regular 4 x 4 matrix 
the computational burden can sometimes be quite high. Relaxation brings 
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exact X 

1 

-2 

3 

1 

estimated x 

uj = l, I = 28 

0.9999999999999140 

-1.9999999999999600 

2.9999999999999970 

0.9999999999999966 

cj-1.1, / = 16 

1.000000000000126 

-2.000000000000031 

3.000000000000004 

1.000000000000007 

Table 6.1: Results for unrelaxed and relaxed iterative projections. 

about a substantial reduction of cycles while obtaining the same accuracy. 
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Table 6.2 shows the necessary iterations and thus obtained solutions for a) = 1 
and for a; = 1.7, the value associated with the minimum of /. 

exact X 

0.5000 

-4.3125 

8.4375 

-0.6250 

estimated x 

00 = 1, 1 = 939 

0.4999999999997246 

-4.3124999999989320 

8.4374999999985500 

-0.6250000000002203 

00 = 1.7, / = 152 

0.4999999999996168 

-4.3124999999990860 

8.4374999999989090 

-0.6250000000001459 

Table 6.2: Results for unrelaxed and relaxed iterative projections. 

Again we find an excellent approximation to the exact solution vector x. 
Moreover the unrelaxed and the relaxed results are essentially identical. 

The final example concerns a 4 x 3-dimensional overdetermined equation 
system (see Lemma 2) with \\AK — b|| —> m.in, 

( 3 \ 
- 3 
- 2 

V 4 / 

/ I 
1 
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\ 2 
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-1 
-1 
-1 

1\ 
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-1 ) 

/ Xi 
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\ Xs 

Here we have b = bi -f- b2 with 

/ 
b i = 

19 \ 

i | 
6 

b2 = 

V 4 / 

/ i \ 
V 0 / 



where bi G col{A),h2±col{A) with b2 7̂  0 (i.e. A'^h2 = 0). The solution of 
the minimization problem, unique in Ax = b i , is 

II \ / 2,388888888888889 
^ - 2.203703703703704 
51 J \ -1.425925925925926 

In Table 6.3 the obtained results for two selected to values 1 and 1.7 after 63 
respectively 49 cycles are seen. All the solutions are practically identical. 

exact X 

2,388888888888889 
2.203703703703704 
-1.425925925925926 

estimated x 
00 = 1 , 1 = 1 

2,388888888888888 
2.203703703703703 
-1.425925925925926 

to =: 1.9, / = 1 

2,388888888888892 
2.203703703703702 
-1.425925925925926 

Table 6.3: Results for unrelaxed and relaxed iterative projections. 

As can be seen in Table 6.3 the RIP solutions - here given for the smallest 
(i.e. no relaxation) and the largest to value suggested - perfectly match the 
fractions of the analytical solution on which the construction of the equation 
system was based. Apart from computational speed there is no need for 
relaxation in this example. 

6.7 Conclusions 

In summary, also based on other evidence we have from real data of the size 
typical for backfitting applications, we can say that RIP fitting yields reliable 
results. There are certainly faster algorithms to solve systems of normal 
equations of full rank. The advantage of RIP fitting is its ability to cope 
with rank-deficient situations typical for certain non- and semiparametric 
regression problems. However relaxation can help to substantially reduce the 
computational burden. Suitable values for cu usually range between 1.5 and 
1.8. Hence it is sufficient to consider this much smaller interval compared to 
the theoretical result. For near-singularity situations a) values up to 1.9, but 
not larger, are recommended. 

For most regular systems the improvement in convergence speed due to relax­
ation brings about a performance similar to that of basic iterative techniques 
such as Gauss-Seidel backfitting. Moreover RIP fitting is a powerful tool for 
the solution of bandlimited linear equation systems because zero elements do 
not cause any costs (due to the use of inner products). 

A major advantage of RIP fitting is that convergence can be established with­
out restrictions on the system matrix. For that reason diagonal dominance 
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or regularity assumptions as required for basic iterative techniques in least 
squares problems are not relevant here. As pointed out earlier, rank-deficient 
linear equation systems should never be solved with classical techniques as 
regularity of the system matrix is required throughout. For RIP fitting (RIP-
GAM) as an alternative to backfitting in generalized additive models (GAM) 
with substantially correlated predictors (in a medical MRI study) see Schimek 
(2002). 

The proposed RIP algorithm has the potential to bridge the gap between the 
established iteration techniques for regular systems and the need for more 
stable numerical methods when the condition of the system matrix is unclear 
or deteriorating as is typical for black box tasks such as in data mining. 
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Summary 

The discussion about the use of semiparametric analysis in empirical re­
search in economics is as old as the methods are. This article can certainly 
not be more than a small contribution to the question how useful is non- or 
semiparametric statistics for applied econometrics. The goal is twofold: to 
illustrate that also in economics the use of these methods has its justifica­
tion, and to highlight what might be reasons for the lack of its application in 
empirical research. We do not give a survey of available methods and pro­
cedures. Since we discuss the question of the use of non- or semiparametric 
methods (in economics) in general, we believe that it is fair enough to stick 
to kernel smoothing methods. It might be that we will face some deficien­
cies that are more typical in the context of kernel smoothing than they are 
for other methods. However, the different smoothing methods share mainly 
the same advantages and disadvantages we will discuss. Even though many 
points of this discussion hold also true for other research fields, all our ex­
amples are either based on economic data sets or concentrate on models 
that are typically motivated from economic or econometric theory. 

Keywords: Model specification tests, semiparametric econometrics, non-
and semiparametric estimation 
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7.1 Introduction 

When a group of researchers speciaUzed in non- and semiparametric statistics, 
and working since many years mainly in this filed, meet to a workshop "The 
art of semiparametrics" (moreover, with an exphcit section about economet­
rics) , then this seems to be the right forum for a discussion about the follow­
ing questions: What are the reasons for the continuing lack of applications 
of non- and semiparametric methods in the empirical research in economics 
and applied econometrics? Actually, it is not only the lack of application that 
should concern; often one can even find a strong rejection of these methods 
from a significant part of the researchers in economics. It is clear from the 
beginning that it will be impossible to convince those who insist that "these 
recent developments in statistics are of no use for a better understanding of 
economic processes" or that there is no need because "all functional forms 
found by nonparametric methods could have easily been modeled with more 
conventional parametric ones". Sometimes it is just insufficient mathemat­
ical knowledge that causes the dislikes, when e.g. non- and semiparametric 
methods are considered as "too technical" or when people justify their dislike 
with the bias inherent in nonparametrics, the lack of knowledge about the 
degrees of freedom, etc.. In contrast to those "arguments", there are many 
good reasons why in empirical research, especially in economics, non- or semi­
parametric applications are rare and many empirical researcher suspicious of 
these methods. 

In several joint works and discussions with different economists, there usually 
came up the following criticisms: 

• lack of interpretability of the estimates, e.g. causalities remain unclear 
and the lack of possibilities of modeling 

• problems with the choice of smoothing parameters (in future SP), and 
lack of its interpretability 

• economic data sets are usually high dimensional and contain many dis­
crete variables; so they have a structure that is hard to manage for 
nonparametric methods 

• imposing restrictions like monotonicity is rather cumbersome 

• the treatment of endogeneity and simultaneous equation systems is 
rather crucial in economics but neglected in the statistic literature 

• often, neither the optimal fit nor the regression function on its own are 
the target of interest 
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• lack of automatization; the methods are too complex to be managed by 
the empirical researcher without support from a specialist in nonpara-
metrics 

Further, let us recall what Stone (1985) said about the task of statistical 
modeling. He states that the three fundamental aspects of statistical models 
are flexibility, dimensionality and interpretability. "Flexibility is the ability of 
the model to provide accurate fits in a wide variety of situations, inaccuracy 
here leading to bias in estimation. Dimensionality can be thought of in terms 
of the variance in estimation, the curse of dimensionality being that the 
amount of data required to avoid an unacceptable large variance increases 
rapidly with increasing dimensionality. In practice there is an inevitable 
trade-off between flexibility and dimensionality or, as usually put, between 
bias and variance. Interpretability lies in the potential for shedding light on 
the underlying structure". 

Comparing these criteria with the list of criticism from above, we see very 
nicely how they are interconnected and related to each other. Moreover, we 
can say: flexibility is given by the nature of nonparametrics; with respect to 
dimensionality much has been done in the last ten years, but interpretability 
and "automatization" (including the SP selection) seem to remain the main 
obstacles. 

Obviously, we neither can comment in detail on all these criticisms nor of­
fer solutions to them here. It is evident that most of them refer mainly 
to the problem of estimation. Indeed, the use of testing methods is much 
less polemic, except the discussion about optimality and efficiency among 
statisticians and econometricians. 

Due to all this we have decided for the following organization of this paper: 
We concentrate on the perspectives of the existing non- and semiparamet-
ric methods for (research in) economics, discussing briefly some of the open 
problems where existent. Further, we will separate the discussion of testing 
from the one of estimation, giving the main emphasis on the second part. The 
numerous examples provided form the largest part of this article. They are 
certainly not closed empirical research projects but shall help for illustration. 
We always try to consider relatively simple regression models (even in the 
testing part) to highlight our points. So we exclude e.g. transfomration mod­
els, measurement error models, survival functions, etc.. Also, we concentrate 
on cross sectional data. For an overview of semiparametric estimation meth­
ods in econometrics we recommend Horowitz (1998), and Hardle, Mliller, 
Sperlich & Werwatz (2004) for a general introduction into these methods. 

The rest of the paper is organized as follows. In Section 7.2 we discuss testing 
model specification in econometrics, separated in the subsections parametric 
versus nonparametric, (semi-) parametric versus semiparametric, and non- or 



94 

semiparametric versus non- or semiparametric models. Section 7.3 discusses 
semiparametric estimation, separated in the subsections parametrically spec­
ified models with unknown error distribution, structural models with flexible 
functional forms (with some comments on endogeneity), and unstructured 
nonparametric models. Note that this separation is by no means motivated 
by statistical aspects. It moreover tries to reflect the different tools of meth­
ods from the empirical researchers point of view. 

7.2 Testing Model Specification 

7.2.1 Parametric Versus Nonparametric Models 

This was probably the first class of nonparametric tests to verify the specifi­
cation of econometric models. The null hypothesis consists of a parametric 
specification of the regression function whereas the alternative is not specified 
at all to yield an omnibus test. To be more specific: Consider a regression 
problem E[y|X] = m{X) , X G R^ , d > 1, and let m(») be parametrically 
specified by me , i.e. a function that is known up to the unknown parameter 
(vector) 0. Then, the question to test is 

HQ : m = 1710 versus Hi : m ^ me (7.2.1) 

Typical examples are to test the linearity assumption of a simple linear model 
or to test the link function specification of Probit- and Logit- models. 

Even though the following classification is discussable, let us divide the dif­
ferent mathematical approaches for these nonparametric testing problems 
into the following groups: looking at (integrated) conditional moments, em­
pirical process approaches e.g. combined with Kolmogorov-Smirnov type or 
Cramer-von-Mises statistics, minimax approaches, and integrated squared 
differences. 

We will not discuss here the differences, advantages and disadvantages of 
these different approaches but remark one point that could be of interest 
in practical applications: In the case that the test rejects, the empirical 
researcher would like to "see" what is this alternative that is considered 
to be significantly closer to the data generating process (DGP) than its null 
hypothesis. Many tests of the last mentioned group of tests require an expUcit 
estimation of the alternative. This might be one reason why they are more 
popular in econometrics. Actually, this last group can be reduced mainly to 
four different statistics 

E[wx{m{X)-me{X)}^] , E[wx{m{X) - meiX)}ex] (7.2.2) 

E[wxexE[ex\X]] , E [wx{a\X) - a^,{X)}] , (7.2.3) 
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where ex is the residuum under the null hypothesis HQ, and wx a weight 
function. It is interesting to mention that for finite samples non of these tests 
has been found to dominate the others, see Dette, von Lieres und Wilkau & 
Sperlich (2003). Note that almost all tests need resampling methods (usually 
wild bootstrap is applied) to find the critical value in practice, i.e. in finite 
samples. 

A main problem with these tests is the SP selection. To circumvent this, re­
cently there is coming up more and more literature on the so called "adaptive 
testing". The aim is to find a SP that on the one hand holds the wanted first 
error level and on the other hand maximizes the power of the test. 

7.2.2 Semi or Parametric Versus Semiparametric Models 

Since for practical inference the omnibus tests of Section 7.2.1 are much too 
general, apart from the fact that they usually suffer from the curse of dimen­
sionality, there has been developed a class of tests that consider paramet­
ric (or semiparametric) null hypotheses versus semiparametric alternatives. 
This means, only a part of the model is of interest and made more flexible 
in the alternative. A good example might be to consider generalized (ad­
ditive) partial linear models of the form E[Y\X,T] = G{(5^T + //(X)} , 
T^ = (Tf ,^2) eW, q> 1, T2 e E \ where G is a known link function, P 
and T] unknown. A typical question to test would be 

Ho : m{x,t) = G {Plti+l32t2^r]{x)} versus 

Hi : m{x,t) = G{piti+r}2{t2)^v{^)} 

From a statistical point of view one could just apply (maybe with some minor 
modifications) the tests statistics introduced in (7.2.2) on P2h versus 772(̂ 2) 
but this will be very inefficient in many cases. 

Additional problems to the ones discussed in Section 7.2.1 are caused by the 
nonparametric part in the null hypothesis (in our example rj{x)). Not only 
that this aflfects the quality of estimation of both models (null and alternative) 
and thus the power of the test. Moreover, the necessary resampling methods, 
in particular wild bootstrap, can be seriously disturbed if the null hypothesis, 
i.e. the DGP for the bootstrap samples, is poorly estimated. 

Example 1. 

For 1991, one year after the German unification, we want to investigate the 
impact of various possible determinants on the intention of East-Germans to 
migrate to West Germany. The original data set contains 3710 East Germans 
who were surveyed in 1991 in the Socio-Economic Panel of Germany. Here we 
consider the data sets from two East German countries: the most northern 
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country of East Germany, i.e. Mecklenburg-Vorpommern (M-V) with n = 
402, and the most southern one, Sachsen (Sax) with n = 955 observations. 
We use the following variables: family/friend in West, unemployed/job loss 
certain, middle sized city (10000-100000 habitants) and female [dummies (= 1 
if yes, — 0 if no), age (AGE) and household income (HHINCOME) [studentized 
continuous variables]. The response is 1 if the person said he is willing to 
migrate and 0 otherwise. 

All methods we use for our study are introduced in Hardle, Huet, Mammen 
& Sperlich (2004). 

In a first step we do a purely parametric logit regression, in a second step we 
fit a semiparametric generalized additive model for both data sets. Table 7.1 
gives the estimates for the parametric part. For the semiparametric model, 
we give the results for different SPs, {h =- 1.0 and 1.25 for M-V, h = 0.75, 
1.0 for Sax for the directions of interest, l.l»/i for the nuisance directions). 
In Figure 7.1 are plotted the additive components for AGE and HHINCOME. 

family/friends West 
unemployed/... 
middle sized city 
female 
age 
hh. income 
constant 

par. 

.5893 

.7799 

.8216 
-.3884 

-0.9227 
0.2318 
-1.367 

M-V 

semi, a 

.5920 

.7771 

.7156 
-.3309 

-
-1.462 

semi.b 

.5809 

.7992 

.7127 
-.3485 

-
-1.411 

par. 

.7604 

.1354 

.2596 
-.1868 

-0.5051 
0.0936 
-1.092 

Sax 

semi, a 

.7137 

.1469 

.3134 
-.1898 

-
-

-1.105 

semi.b 

.7289 

.1308 

.2774 
-.1871 

-
-1.101 

Table 7.1: Results of purely parametric estimates (par.) and of the 
parametric part of a generalized additive partially linear regression 
model: semi.a (with SP 1.0), semi.b (1.25) for M-V; semi.a (0.75) and 
semi.b (1.0) for Sax. 

The estimates do not depend very much on the chosen bandwidth. Moreover, 
for the linear part of the model the results are similar to the values of the 
parametric model. So the qualitative interpretation of the parametric coeffi­
cients does not change. In the figure the influence of AGE in M-V does not 
differ strongly from the influence of AGE in Sax, except that the curve from 
Sax is more flat in the middle part. In contrast, for HHINCOME the curves 
from both countries have a totally different shape. On first glance one would 
guess that AGE could be modeled Hnearly, at least for M-V. This is less clear 
for HHINCOME. 

In a third step we apply a bootstrap test for linearity to the variables AGE 
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and HHINCOME. We always use 499 bootstrap resamples to determine the 
critical value. The bandwidths are chosen as above. For the input AGE, 
linearity is always rejected for the 1 percent level, for all bandwidths in both 
countries. For the variable HHINCOME, the observed p-values are for M-V 
.16 [h = 1.0], .U[h = 1.25], and for Sax .02 [h = 0.75], .01 [h = 1.0]. So the 
deviations for AGE from linearity are more significant. At a first sight, this 
seems to be surprising because the plots for HHINCOME differ much more 
from linearity. Reasons are presumably that the estimates for HHINCOME 

have large variance and/or the model(s) is (are) misspecified, e.g. the link 
function G(») could be misspecified. 

s-

Age 

" " ^ 
' • " 

Age 

^ ^ ^ ^ ^ ^ 

a„ 

1 ^. 

^ .. 

Hhincorae 

/' 
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Figure 7.1: Estimates and 95% uniform confidence bands for the im­
pact of AGE (left) and HHINCOME (right) in M-V with bandwidth 
1.25 (upper line), in Sax with bandwidth 0.75 (lower line). 

To clarify these two points we construct in a next step uniform confidence 
bands. In Figure 7.1, 95% uniform confidence bands are given for the impact 
functions for M-V. We use SP /i = 1.25, and 0.75 respectively, always l.l/i for 
the nuisance directions, and B = 500 bootstrap replications. All confidence 
bands contain a linear fit. Only for HHINCOME in Sax the linear fit lies 
slightly outside the boundary. 

In a last step we test the specification of the link function. For testing we 
use SP h — 0.75, (1.25/i for nuisance direction) for M-V and /i = 0.6 for 
Sax^. With B = 499 bootstrap replications we get p-values of about 7% for 
all SPs for M-V and p-values that are always larger than 15% for Sax. So we 

^For the test further bandwidths are necessary, see Hardle et al (2004), We tried several 
over a reasonable range and got always very similar results. 
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can conclude that the inconsistency we found in the results for AGE in M-V 
indeed might be caused by a misspecification of the link G{»). D 

7.2.3 Non- or Semiparametric Versus Non- or 
Semiparametric Models 

As you can imagine, this title tries to describe something rather general: the 
check of no parametric specification but of model structures as e.g. additivity, 
separability, or single index structures. This topic, except additivity testing, 
can be considered as being still in its infancy. 

Here, the maybe most crucial problems are 

a) the identification, i.e. the specification of a test statistic that rejects iff 
HQ is wrong. E.g. consider weak separable models of the form 

m{x,t) = G{r]i{xi),...,r]d{xd);0,t} , (7.2.4) 

G specified up to an unknown parameter 0. Then, if we reject this model, 
was it because of the weak separability or because of the specification of G ? 

b) the choice of the different SPs, in particular under the null model. Now, 
often the quality of estimating the null hypothesis has a direct effect on 
the quality of the test in practice. In most cases, if the null model is not 
estimated sufficiently well, the bootstrap fails completely even though it is 
consistent, see Dette, von Lieres und Wilkau & Sperlich (2003). Moreover, 
the SP of the null easily becomes an inherent part of the hypothesis HQ, see 
also Rodriguez-Poo, Sperlich & Vieu (2003). 

7.3 Non- and Semiparametric Estimation 

7.3.1 Parametrlcally Specified Models with Unknown Error 
Distribution 

A most simple example for estimators in these kind of regression problems 
are the orthogonal least-squares estimators. For them no new, sophisticated 
estimation tool is necessary, and they therefore are commonly not mentioned 
in the context of semiparametric models. But, the hypothesis of unknown 
error distribution becomes quite a problem when we consider latent variables 
as response and / or simultaneous equation systems, both rather common 
in econometrics. Whereas a simple latent variable regression is nothing else 
than a generalized linear model with unknown link, called single index model 
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(for that we known a huge amount of estimation Hterature, see Horowitz 
(1998) or Hardle et al (2004)), the second problem is much more complex: 

Consider the selectivity model 

2/ = {/3o + x^Pi •i-u}d , d= l{ge{t) > e} , 

u, e being error terms, t another vector of explanatory variables, and ge a 
function specified up to 0, Then we can write 

y = l3o + Plx + X{ge{t)} -\-u , A : R ^ M smooth 

and we want to estimate Pi (maybe also X{ge{t)} ) semiparametrically. So 
we do not specify A(»), i.e. the joint distribution of {u^e). 

You can apply the so called differencing estimator. For the estimation of /?i, 
function A(») is an infinite dimensional nuisance parameter. To get rid of it 
consider the following difference 

Vi - Vj = {xi - XjYpi + X{ge{ti)] - \{gQ(ij)) i-Ui-Uj , i^ j = l...,n. 

With some weights inverse to \X{gi) — A(§j)|, i.e. to \gi — gj\ you get 

Pij — —L( -^—-—- ] didj , L(») some kernel function. 

Here, Z = Z{T) are some instruments for X (if needed). The final 
estimator is 

_. n—1 n 

Pi = S'^S^y with 'S'̂ o; = ( 2 ) Y. Yl PiJ^^^ ~ ^i)(^^ ~ ^i)^ • 
i=l j=i-\-l 

This idea and procedure has been suggested by Powell (1987) but with­
out providing proofs. For them we refer e.g. to Rodriguez-Poo, Sperlich 
&; Fernandez (2005). Finally, we would like to remark that this approach has 
become very popular also in the so called (semiparametric) propensity score 
analysis. 

As these models are essentially parametric, there meet almost none of the crit­
icisms on non- and semiparametric methods (mentioned in the introduction), 
except the choice of SP and its interpretation. It is clear that the optimal 
SP is the one that minimizes the mean squared error of Pi. However, it is 
not that clear how to find this in practice. 

7.3.2 Structural Models with Flexible Functional Forms 

When we speak of structural models we refer to models that are specified in 
their structure but not (completely) concerning the functional forms. Typical 
examples are 
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a) when the empirical researcher wants to specify his model up to some 
nuisance parameters; e.g. he includes variables in his model to reduce the 
noise or avoid endogeneity but does not want to specify its functional impact 
neither is interested in it. 

b) models with some pre-specified separability, additive interaction models, 
multi index models, etc.. 

The estimation of (generalized) additive models is already well studied, also 
the one of additive interaction models (for an overview see Sperlich (1998)), 
whereas the research on semiparametric estimation of weak and latent sep­
arable models (compare equation (7.2.4) for its definition) is rather recent, 
see Rodriguez-Poo et al (2003) and Mammen & Nielsen (2003). 

The method of Mammen & Nielsen (2003) is based on smoothed backfitting. 
On the one hand the identification problems are solved and asymptotic prop­
erties developed for a wide range of models, on the other hand the implemen­
tation is so far an open problem and it is already clear that the computational 
expenses will be rather high. 

In contrast, Rodriguez-Poo et al (2003) introduce an easy to implement es­
timation procedure for a wide range of rather general models. However, 
they could give complete asymptotic theory only for a family fulfilling rather 
strong (identification) conditions. Their estimation algorithm is based on 
three-step smoothed likelihood estimation. For identification they need to 
assume the conditional density of the response as known. They give exam­
ples with truncated and censored response variables, in particular the Gronau 
(1973) model, but allow for fiexible functional forms for the rŷ , j = 1 , . . . ,(i 
(compare equation (7.2.4)). 

Example 2. 

We estimate a female labor supply model for married woman where labor 
supply is measured in real hours of work. Note that this variable accounts 
for the number of hours per week the women had declared to work. Many 
parametric specifications have been tried to model the hours function in this 
context. A most famous one is the study about the sensitivity against eco­
nomic and statistic assumptions by Mroz (1987). In our study we only have 
to specify the error distribution and how we want to combine the nonpara-
metric components. The hours are assumed to be generated by a Tobit 1 
model with truncated variables, i.e. 

_ J h{xi,ti) + Ui if h{xi,ti) -{-Ui> 0, Ui error term (^ o-w 
^ ' ~ \ 0 otherwise ^^'^'^^ 

We concentrate on a comparison of specifications of possible interactions in 
h as well as of the behavior of married woman in East and West Germany 
three years after unification, i.e. in 1993. Those comparisons became quite 
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popular as, due to completely different political, economic and social systems 
before 1990, the levels of employment of woman where quite different too: in 
1993 in the East still about 65%, in the West only about 54%. Consequently, 
all the studies in the hterature have concentrated on participation at all. 

We use data taken from the Social Economic Panel of Germany, wave 1993, 
cleaned for persons with missing values in the relevant questions and skip­
ping East Germans living in West, West Germans hving in East. We have 
681 observations for West and 611 for East Germany with a job (i.e. hours 
> 0). We choose as explaining variables the number of children (Chl= 
]l{one child}, Ch2= l{more children}), education (Edul= li!L{high school}, 
Edu2=: l.{academic degree}) and unemployment rate of the country the per­
son lives in (Urate) for the linear part {t^j)- Note that in East Germany 
there are only 5 countries. For the nonparamertic part r){x) we have age of 
woman (Age), net wage per real hours (Wage), prestige index of their job 
(PI) and number of years of interruption of professional career (off). For fur­
ther main income and expenditures we include also the net income of partner 
per month (Income), and the expenditures for fiat minus net income from 
letting flats (R & L == rent-let). Most probable is an interaction between the 
determinants of further household income and expenditures apart from the 
women's one. These are the last two mentioned variables (X5, Xe). Therefore 
we study the models of the form 

h^{t, x) = F 7 + rji{xi) + • • • + 775(̂ 5) 4- rj5{xs)r]e{x6){7/3.2) 

hs{t,x) = t^7 + ^i(^i)H + rj5{x5)-^ mM (7.3.3) 

and hm{t,x) = t^7 + ^i(^i)H ^Vbix^^xe). 

To make them comparable we set E[rjj{xj)] — 0, j = 1,2,3,4,6. If by this 
separability assumption the model is well specified, X5, XQ more or less 
independent, we should get out the same estimates for both specifications, 
up to a multiplying constant c — £'[775(0:5)] for rje. 

We apply the procedure of Rodriguez-Poo et al (2003). For West Germany 
we take always SPs hj = 1.2bax., j = 1 , . . . , 6, for East Germany hj == l.b&x • 
as we have less data. Here, axj indicates the estimated standard deviation 
oiXj. 

Let us first consider the comparison of the different specifications and focus 
for presentation on the West German data. In Figure 7.2 and Table 7.2 (left 
side for West Germany) we see the results for the additive case hs- In the table 
are given additionally the results for a pure parametric linear model (first two 
columns), all with standard deviations in brackets. In the parametric model 
we introduced Age**2. This parametric analysis was only done to compare 
with the parameter estimates 9 = (7^, ̂ ) of the semiparametric model. It can 
be seen that, apart from Edu2 for East Germans, the coefficient estimates 
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Chi 
Cli2 

Edul 
Edu2 
Urate 
Age 

Age**2 
Iri(Wage) 

PI 
off 

Income 
R & L 

(7 

Const 

West Germany 

-7.847 
-11.91 ( 
-.1027 
.1403 
.2003 
1.351 

-.0184 
-7.431 
.2673 
-.3485 
-.1206 
.0188 
10.21 
24.06 

1.087) 

1.221) 

1.777) 

2.070) 

'.2254) 

'.4662) 

l.E-6) 

'1.067) 

^.0436) 

^0616) 

'.0245) 

;.0141) 

;.2961) 

,9.317) 

-6.913 
-10.84 
.5738 
2.125 
.0925 

-
-
-
-
-
-
-

6.955 
32.44 

(.7850) 

(.9549) 

(1.383) 

(2.084) 

(.1587) 

(-) 
( - ) 
(-) 
( - ) 
(-) 
( - ) 
( - ) 

(.1145) 

(-) 

-2.702 
-2.313 
1.670 
1.575 
-.5204 
1.460 
-.0186 
-4.126 
.0820 
-.7367 
-.1200 
.1092 
7.828 
30.16 

East Germany 

(1.054) 

(1.178) 

(1.300) 

(1.610) 

(.3242) 

(.4034) 

(l.E-6) 

(.9695) 

(.0300) 

(.1741) 

(.0316) 

(.0469) 

(.2241) 

(9.118) 

-2.152 
-2.040 
1.318 
4.868 
-.4256 

-
-
-
-
-
-
-

6.303 
47.25 

(.9910) 

(1.130) 

(1.180) 

(1.562) 

(.2934) 

(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
(~) 

(.1803) 

(-) 

Table 7.2: Results for parametric linear model (columns 1,2 and 5,6) 
and the semiparametric model (columns 3,4 and 7,8). The standard 
deviations are given in brackets. In the last line, for the semiparametric 
model Const refers to E[rit^{Xr^)] = —• Y^i'^^X'^^'i^)' 

do hardly change. But, the error variance (what is not surprising having 
decreased the degrees of freedom) as well as the variances of the estimates 
(what is a very good sign) have been reduced a lot using semiparametric 
methods. 

Compare now Figures 7.2 and 7.3. In Figure 7.3 are given the results for 
the two last component estimates for h^, Tjb being centered to zero (not for 
the estimation, only for the presentation). On the bottom of all graphs are 
given crosses for each observation to indicate the density of the corresponding 
variable. Up to a multiplying constant c for r/e, they are all the same. For 
this reason the other components for h^ are not shown as they are exactly 
the same as we see them in Figure 7.2. Moreover, c is equal to Const from 
Table 7.2. This could be taken as an indicator that the model might be well 
specified by /I5. The estimation of hm does thus not add any new information. 

Now we look on a comparison between the West and the East Germans. As 
said in the beginning, they come from completely different political, social 
and economic systems, and though in 1993 at least the political and the eco­
nomic systems were the same, there were still differences in the economic 
and political environments. Let us to mention some specials from the East: 
the unemployment rate was much higher in the East, a higher willingness 
and motivation of women to search a job, partly based on the lower salaries 
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net salary / real hours 

off-years 

income husband 

Figure 7.2: West German women. Results for the additive specification 
(7.3.3). Here, r/5 is centered to zero. Crosses stand for the observations 
to indicate the density. 

income husband 

Figure 7.3: West German women. Results for two last components in 
specification (7.3.2). Here, 775 is centered to zero. 

(compared to the West) of their husbands, a much wider provision of kinder 
gardens and other possibilities to leave his children. The results are pro­
vided in Table 7.2, Figure 7.2 (for the West) and 7.4 (for the East), all based 
on model hg. Looking on them, we conclude that behavior for labor sup-
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net salary / real hours 

off-years 

income husband 

lie8»3C^ XX>}< 

Figure 7.4: East German women. Results for additive specification 
(7.3.3). Here, r/5 is centered to zero. Crosses stand for the observations 
to indicate the density. 

ply measured in real hours of work is pretty the same in the East and the 
West, except for education and number of children. The latter outcome was 
expected for aforementioned reasons. Comparing this with results of other 
studies which used the same data base, this is a little bit surprising as they 
found big differences in behavior when looking on participation at all. D 

Here now we have faced several of the problems of nonparametric estimation 
and its solutions (enumerated in the introduction). The lack of the possibility 
of modeling has been reduced by semiparametric modeling; also imposing re­
strictions like monotonicity for the nonparametric part is sometimes possible 
to impose. This improves automatically the interpret ability of the estimates, 
and often enables or facilitates the estimation of parameters or functions of 
particular interest (e.g. elasticies, rates of substitution, etc.). Additionally, 
it can reduce the curse of dimensionality, see Stone (1986), Rodriguez-Poo 
et al (2003). In those models, the choice of the SP should be considered like 
choosing the degrees of freedom, i.e. the empirical researcher allows for more 
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flexibility or imposes more smoothness on its functionals. To my opinion, in 
this context, the "optimality" of the SP has to be defined along the aim of 
the empirical researcher. Therefore, it is impossible to give here a general 
rule how to chose it in practice. 

Finally let us comment on the problem of endogeneity. To my knowledge, 
in the context of semiparametric analysis where the regression of interest 
contains nonparametric functions this problem has been studied first by 
Fernandez, Rodriguez-Poo, and Sperlich [presented 1999 at ESEM, revised in: 
Rodriguez-Poo, Sperlich & Fernandez (2005)] and by Newey, Powell & Vella 
(1999). Newey, Powell & Vella (1999) did a profound study on identifica­
tion. They consider nonparametric (and partially linear) models. Rodriguez-
Poo, Sperlich & Fernandez (2005) allow for separable and generalized models, 
therefore they apply assumptions on the error distribution. The two articles 
coincide in several of the main ideas to circumvent the problem of endogene­
ity, e.g. they use generated regressors and apply two and / or three step 
estimators. 

7.3.3 Unstructured Nonparametric Models 

Although "nonparametric" and "unstructured" is essentially the same, we 
used this title to emphasize the lack of any specification. The only thinkable 
compromise could be to include partial linear models as long as the linear 
part serves only to include the impact of dummy variables. 

Nonparametric models are useful for optimal prediction (except extrapola­
tion) and explorative data analysis. We might even say: "and for nothing 
else". The first point is evident because every imposed structure that is not 
confirmed by the data itself may reduce the quahty of the fit. Usually, this 
approach is interesting whenever we want to predict best whatever the "true 
model" (if exists) is. Well known examples are financial data problems as 
predicting stock or bond prices, risks, interest rates, etc.. For a better under­
standing why and how even totally nonparametric methods can be helpful 
here see Nielsen & SperHch (2003). 

Less obvious might be the use of nonparametric statistics to explore economic 
data if the underlying economic process is of interest. To understand this 
better, let us consider a real data example, taken from Grasshoff, Schwalbach 
& Sperlich (1999). They do an explorative analysis about the relation of 
executive pay and corporate financial performance. 

Example 3. 

Commonly, empirical research concentrates on the pay-performance relation­
ship. Although very diflierent data sets has been adopted the results are 
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always similar showing rather low pay-for-performance elasticities. Almost 
all studies assume linear or semi-log linear pay functions without applying a 
test of the adequate functional form. They do not allow for variations across 
corporations, industries, countries and time. It it assumed that pay func­
tions are homogeneous across corporations, variations are captured by the 
fixed effects in the constants and assumption about the errors. So it would 
be interesting to circumvent these possible misspecifications by adopting an 
explorative data analysis using nonparametric methods. And indeed, the 
results of Grasshoff, Schwalbach, and Sperlich (1998) show clearly that all 
mentioned issues matter, e.g. industry effects are important, assumptions of 
additivity and linearity are crucial leading to underestimations of the elas­
ticities, etc.. In sum, their results should have far reaching implications for 
further empirical studies. They also weaken the concern that strong pay-for-
performance incentives for executives are missing. 

In analyzing executive pay the standard empirical model contains corporate 
size and financial performance as determinants of pay. Corporate size is a 
measure of managerial discretion and financial performance is an indicator 
for managerial incentive compatibility. Both hypotheses are derived from 
agency theory. Typically, the following regression equation is assumed: 

I n C f = aj^t + d'^'Pi^'-^ + 7 '̂* ln5f *- ' + ^ f , (7.3.4) 

where Ca stands for executive pay, Pa reflects measures of financial per­
formance and Sit represents size for firm i at time t. The terms uu are 
the stochastic error terms whereas the parameters ai are mostly modeled as 
firm-specific fixed effects. 

The data base is drawn from varies annual executive pay reports by "Kien-
baum Vergiitungsberatung". The data contain average annual total pay 
(fixed and variable) by the top executives of German stock companies (Vor-
stand of Aktiengesellschaften) and 'companies of limited liabilities' (Geschafts-
fiihrer of the Gesellschaft mit beschrankter Haftung). In total, we use data of 
up to 339 manufacturing firms for the period of 1988 to 1994. Company size 
is measured by the number of employees and corporate financial performance 
by the rate of return on sales (ROS). Companies are grouped into the fol­
lowing four distinct industry groups: (1) Basis industries, (2) Capital goods, 
(3) Consumer goods and (4) Food, drinks and tobacco. For further details see 
Grasshoff et al (1999). 

To get a primary visual impression of the possible functional forms we first 
applied the multidimensional, in our case two dimensional, Nadaraya-Watson 
estimator. The model we estimate is of the form 

InCf* = m '̂* (p/ '*"\ ln5f '*"^) + t^f , m '̂* : M̂  _^ R unknown. (7.3.5) 

We use the quartic kernel with bandwidth h = 2.5ax' Notice that since 
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Figure 7.5: The 2-dimensioiial Nadaraya-Watson estimation for 
1989/90. Plotted are the expected executive pay on size (left axes) 
and ROS (right axes). First row: groupl and 2, Second row: group 3 
and 4. 

our estimator is a local adaptive one, our results are not effected by possible 
outliers in the x-direction. For better presentation we show the 3D-plots over 
trimmed ranges. We have selected the results for two representative years, 
see Figures 7.5 and 7.6. Considering the plots over the years we can realize 
strong functional similarities between the industry groups 1 and 2 while the 
results for the other groups seem not to be homogeneous at all. Regardless 
the outliers we see a strong positive relation for compensation to firm size 
at least for group 1 and 2, and a weaker one to the performance measure 
varying over years and groups. 

Further we can recognize some interaction of the independent variables es­
pecially in group 3 and 4. This can visually be detected as follows. Imagine 
you cut slices parallel to the a;-axes. If these slices indicate different func­
tional forms within one direction separability of the inputs is not justified. 
Regarding this procedure we state additivity for group 1 and 2. 
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Figure 7.6: The 2-diniensional Nadaraya-Watson estimation for 
1990/91. Plotted are the expected executive pay on size (left axes) 
and ROS (right axes). First row: group 1 and 2, Second row: group 3 
and 4. 

Next, a study was done where the regression function was modeled additively 
with backfitting. This study is skipped here as it did not yield much new 
insight. For more details see Grasshoff et al (1999). 

Finally, we estimate the pure marginal effects of the independent variables. 
The model we estimate can be imagined as general as (7.3.5), but we only 
estimate the marginal effects, not the joint regression function m(«) (skip­
ping the indices (j,t) above). If the model is of additive form m{xi,X2) — 
^ i ( ^ i ) + ^2(^2)5 then the marginal effects correspond to mi, m2. We use a 
local linear kernel smoother with quartic kernel and bandwidths h — LSa^fc, 
/u — 1,2, (2.5(7a3̂  for the nuisance directions). We present the estimation re­
sults together with confidence intervals in forms of 2(7(mA;(̂ A;)) -bands, where 
a{7fik{xk)) indicates the estimated standard deviation of additive component 
rhk at point Xk-

As a main result we can postulate that these estimation results are consistent 
with the findings above. First, the nonlinear it ies of the financial performance 
influence are strengthened especially for groups 1 and 2. Second, it seems 
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Figure 7.7: Marginal Integration estimates for 1991/92 with 
2a(m/j;(̂ 'A;))? '̂ = 1,2 bands for industry groups 1-4 (top to bottom). 

that interactions are present, so the assumption of additivity would be wrong 
what renders an economic interpretation rather difficult. D 

Here now meet more ore less all the criticisms against nonparametric methods 
-mentioned in the introduction. Interpretability is hardly given, neither for 
the estimates nor for the SP choice. In general, the SPs should be chosen 
data driven (e.g. by cross validation or plug in) to minimize the estimation 
error or optimize prediction power were prediction is pretended. Certainly, 
interpretability of the estimates is not necessary if one only wants to predict. 
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but it is of interest if one wants to make studies as in our example. Further, 
since the curse of dimensionahty kicks in rapidly, the possibilities of these 
methods are rather limited unless you have really large samples. E.g. in our 
example, a test for additivity would simply not work, see Dette, von Lieres 
und Wilkau & SperUch (2003). 
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Summary 

Functional aspects are more and more frequent and varied in modern Statis­
tics so much so that the designation of Functional Statistics had emerged 
recently. From a practical point of view, this is appearing as soon as one has 
to deal with data which are curves. A symbolical example of this new field 
of Statistics concerns the problem of nonparametric regression estimation in 
presence of functional data. This problem is doubly functional: the nature 
of the observed data (that is, the nature of the curves) is functional and 
the statistical model is also functional (that is, it is nonparametric). The 
only goal of this presentation is to show how recent Nonparametric Func­
tional Regression Methods work in different practical situations. Several 
data sets are chosen to cover different fields of applied statistics (chemio-
metrics, speech recognition, econometrics) as well as different facets of sta­
tistical regression problems. Each example is quickly treated. Complete 
treatments, theoretical supports and extensive bibliographies are referred 
to other works. 

Keywords: Applied statistics; curves discrimination; functional data; func­
tional statistics; functional regression; nonparametric models; time series. 
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8.1 Introduction 

In the few past years, functional aspects had taken an important place in the 
Statistical Science. In a first side, since the beginning of the sixties, a lot of 
attention has been paid to free-distribution statitiscal models and/or meth­
ods. The functional feature of these methods comes from the nature of the 
object to be estimated (such as for instance a density function, a regression 
function, ...) which is not assumed to be parametrizable by a finite number 
of real quantities. In this setting, one is usually speaking of Nonparametric 
Statistics for which there is an abondant literature. For instance, the reader 
will find in Hardle (1990) a previous monography for appHed nonparametric 
regression, while Schimek (2000) and Akritas & Politis (2003) present the 
state of art in these fields. From an other side, there is actually an increasing 
number of situations coming from different fields of applied statistical (en-
vironmetrics, chemometrics, biometrics, medicin, econometrics, ...) in which 
the collected data are curves. In this situation, the functional feature is linked 
with the observations. Since the middle of the nineties, this has motivated 
different statistical developments, that we could quickly name as Statistics 
for Functional Variables (or Data). Most often at this time, for seek of sim­
plicity, these functional models were combined with parametric modelling for 
the object to be estimated, and key references in this respect are those by 
Ramsay & Silverman (1997), Bosq (2000) and Ramsay & Silverman (2002). 

We focus on recent Functional Nonparametric Statistical Methods, that is 
on methods which can capture both the functional {i.e. the nonparametric) 
feature of the statistical target and the functional nature of the statistical 
samples for which curves (or, more generally, functional objects) are directly 
observed. We concentrate exclusively on the applicability of these methods, 
and more precisely on regression type methods. The reader could find the 
mathematical and methodological supports of the proposed methods in the 
companion paper (Ferraty & Vieu 2003b), while an extensive bibliographical 
presentation of the state of art in Functional Nonparametric Regression can 
be found in Ferraty & Vieu (2003c). Note finally, that in addition to these 
english references, Ferraty & Vieu (2001), Ferraty & al. (2001) or Ferraty 
& al. (2002) provides a basic curse on Functional Nonparametric Regression 
in other languages. To complete this quick bibliographical survey, let us 
also mention the monographies by Ferraty (2003) and Goia (2003) in which 
Functional Regression is investigated both through parametric and nonpara­
metric techniques/models, and the one by Niang (2002) which is devoted to 
the related problem of nonparametric estimation of the density of functional 
variables with its direct application to diffusion processes. The reader can 
also look at the activities of the Staph group on Functional and Operatorial 
Statistics to have an overlook on the state of art all the facets of Functional 
Statistics. Most recent activities of this group can be found in Staph (2003). 
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Let us now concentrate ourselves on Nonparametric Regression for Functional 
Data, and more specifically on applied aspects of this problem. We have 
arbitrarily selected three applied statistical problems and/or data sets for 
our purpose. Our selection has been done following a treble goal: 

- covering as much as possible different scientific fields involving appUed 
statistics (chemiometrics, speech recognition, econometrics); 

- covering as much as possible different facets of regression type method­
ological statistical problems (regression, time series, supervised curves 
classification); 

- keeping a reasonable short size contribution ... 

As a consequence of these choices, it was impossible to present full studies 
for each problem. In particular, our point of view avoids both for presenting 
methodological details about the statistical modelizations and for presenting 
all the details of our applied studies. Indeed, for each situation we only 
describe the method and give its result on the corresponding data set, but 
we paid particular attention to give accurate references to be used by the 
reader to go back to theoretical supports, to computational details or to 
bibliographical surveys. 

Our paper is organized as follows. The three functional data sets are pre­
sented in Section 8.2. Before treating these data sets by mean of nonpara­
metric methods for functional data, we quickly discuss in Section 8.3 the 
question of the dimensionality and we will see how the curse of dimension­
ality can be overriden by mean of a semi-metric suitably adapted to each 
problem. Section 8.4 implements a Nonparametric Functional Regression 
method on chemiometrical data. Section 8.5 focuses on a Supervised Curves 
Classification problem for some phoneme recognition data set. Section 8.6 
concerns some electrical consumption prediction problem by mean of Func­
tional Nonparametric Time Series Prediction techniques. To help the reader 
that would be interested in only one among the three applications, we have 
written Sections 8.4, 8.5 and 8.6 independently one of each other. Finally, 
a short concluding Section 8.7 is presented; its main goal is to discuss some 
open problems of particular interest. 

8-2 Presentation of Some Functional Data Sets 

There are several statistical problems from different sources (medicine, bio­
metrics, econometrics, geophysics, ...) in which the data are curves. It is 
clear that the development of informatic tools (as well in terms of higher 
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memory capacity as in terms of speeder computations) allows to register and 
to treat much larger data sets. In the curves setting, even if it is of course 
always impossible to observe the data in a continuous way, it is now possible 
to have finely discretized observations. We describe now three sets of curves, 
selected to cover several different applied statistics fields. For each of these 
data sets, the discretization is quite enough fine, with the result that one 
may consider observations as curves. This Section 8.2 is focusing on these 
data sets, while their treatments by Functional Nonparametric Methods are 
presented in next sections. More precisely, in each of the following examples, 
we present continuous curves (obtained by smoothing the discretized obser­
vations). The reader will find more extensive presentation on functional data 
together with a wider set of possible fields of application in Bosq (2000), 
Ramsay & Silverman (1997) or Ferraty (2003). 

850 900 950 
wavelengths 

1000 1050 

Figure 8.1: The spectrometric curves 

Example 1: Spectrometric Data. Spectrometry is a modern tool for 
analysing the chemical composition of any substance. For instance, here we 
look at a sample of finely chopped meat. Each analysis can be summarized 
by some continuous curve giving the observed absorbance as function of the 
wavelength. Absorbance is the —IOQIQ of the transmittance measured by 
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the spectrometer. As pointed out by Leurgans & al. (1993) we are really 
in presence of functional continuous da ta since "the spectra observed are to 
all intents and purposes functional observations". Our da ta are recorded 
on a Tecator Infractec Food and Feed Analyzer working in the wavelength 
range 850-1050 nm by the near infrared (NIR) transmission principle. More 
precisely, for each meat sample the da ta consists of a 100 channel spectrum 
of absorbances. The da ta are presented in Figure 8.1 below. 

In Section 8.4, we study these data. We will see how these continuous ex­
planatory variables can be used to predict some specific component of the 
meat (precisely the fat percentage) by using Functional Nonparametric Re­
gression Methods. 

E x a m p l e 2: P h o n e t i c D a t a . In speech recognition, the observed data 
are also of functional nature. For instance, look at the following data set, 
previously introduced and studied by Hastie & al. (1995). The da ta are log-
periodograms corresponding to recording speakers of 32 ms duration. Here 
also, even if we have to deal with discretized data, the number of observed 
points is quite large enough to allow for considering the observations to be 
continuous (as they are, indeed). The study concerns (see Figure 8.2) five 
speech frames corresponding to five phonemes transcribed as follows: 

- "sh" as in "she"; 

- "del" as in "dark"; 

- "iy" as in "she"; 

- "aa" as the vowel in "dark"; 

- "ao" as the first vowel in "water". 

Precisely, each speech frame is represented by 400 samples at a 16-kHz sam­
pling rate; only the first 150 frequencies from each subject are retained, and 
the da ta consist of 2000 log-periodograms of length 150, with known class 
phoneme memberships. Indeed, Figure 8.2 only displays 10 log-periodograms 
for each class phoneme. 

In Section 8.5 we attack the natural problem: given a new log-periodogram 
associated with an unknown phoneme, are we able to predict at which class 
it belongs? This is typically a curves discrimination problem and we will see 
how the Nonparametric Supervised Curves Classification Method can provide 
nice answer to this question. 

E x a m p l e 3: Electr ical C o n s u m p t i o n D a t a . Our third example concerns 
t ime series prediction. Let us look for instance at the monthly electricity 
consumption in United States between January 1973 and February 2001. 



117 

frequencies 

aa 

Figure 8.2: A sample of 10 log-periodograms for each of the five 
phoneme classes 

These data, which are presented in Figure 8.3, are obviously exhibiting some 
linear trend, as well as some heterogeneity in the variance structure. 

As usually, in order to avoid for heteroscedasticity or linear trend effects, we 
work with the differencied log-data. These transformed data are presented 
in Figure 8.4. 

One of the main problems in these situations is to predict future consumption, 
and usual statistical models (either parametric or nonparametric) achieve 
that by taking in consideration a finite number of past data. However, one 
could think that it is more reasonable to take into account as explanatory 
variable the continuous time series over some period. For our example, we 
have decided to choose the whole past year as explanatory period. That 
means that the set of explanatory variables to be included in our statistical 
method is composed with 28 functional data which are the 28 yearly contin­
uous time series. These functional data are those presented in Figure 8.5. 
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Figure 8.3: The electricity consumption data. 

Index 

Figure 8.4: Electricity consumption: the differencied log data 
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10 11 12 

Figure 8.5: Electricity consumption: the 28 yearly differencied log 
curves 

In Section 8.6 we will see how the recent Functional Nonparametric Time 
Series Prediction Methods can be used to provide good future consumption 
prediction by mean of these functional explanatory data. 

8.3 About Proximity Between Curves and Curse 
of Dimensionality 

Kernel methods are known to be local estimation procedures, in the sense 
that the data lying in some neighbourhood of a; play a major role in the 
estimation of a function at this point x. When a; G M or a; G R^, the 
notion of neighbourhood is induced by the euclidian metric, but this is of 
small importance because of the equivalence property of all metrics in finite 
dimensional spaces. When x is a curve (that is, an object valued in some 
infinite dimensional space), this equivalence property does not hold anymore. 
In this framework, we have to define a suitable notion of proximity between 
curves. 
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One way to do that could be to introduce some metric, but this can be too 
much restrictive. For instance, it can be the case in practice that some deriva­
tive of a curve is more informative than the curve itself. In particular this is 
the case for the spectrometric data presented in Figure 8.1 for which there 
is a vertical shift in the curves that may hide for some interesting feature. 
So, instead of metric we prefer to introduce some semi-metric. Indeed, most 
of the nonparametric methodologies existing for curves data (see Ferraty & 
Vieu 2003c, for a large set of references) consider the curves like objects lying 
in some semi-metric space. To make ideas clearer, let us note here that in 
some practical cases we can deal with semi-metrics of the form: 

dm{f;9) = (^1 {f^-^Ht) - g^-'Ht))'d?j . (8.3.1) 

For spectrometric data we will see in Section 4 that this choice of semi-metric 
is pertinent. For other data sets (see the examples described in Sections 8.5 
and 8.6) other choices are possible. 

Before to close this section, it is worth to answer to the following natural 
question: "What about the curse of dimensionality?" Since nonparametric 
methods are strongly affected by high dimensional problems, one could ex­
pect these methods not to be suitable for infinite dimensional framework. 
Indeed this question, and its answer, is highly correlated with the proxim­
ity measure between curves, because the curse of dimensionality comes from 
the sparseness of the data in high dimensional spaces. One way to reduce 
this sparseness effect is to construct a semi-metric which insures a good con­
centration of the curves. This intuitive idea is theoretically supported by 
asymptotic studies (see Ferraty & Vieu 2003b). 

For all these reasons, the semi-metric plays a prominent role in each of the 
practical cases that we develop in next sections. 

8-4 Functional Nonparametric Regression in 
Action on Spectrometric Data 

Let us look at the following problem, linked with the chemiometric data 
presented in Example 1 before. The task is to predict the fat content of a 
meat sample on the basis of its NIR absorbance spectrum. More precisely, 
for each meat sample the data is formed by the spectrum of absorbance (see 
Figure 8.1) and by the percentage of fat which is determined by analytic 
chemistry. The question is: "given a new sample of meat, can we predict its 
corresponding percentage of fat just by looking at its absorbance spectrum? 
Clearly, unlike the real case, it is difficult to build a simple plot in order to 
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display the link between fat content and spectrometric curves. In addition, 
there is no available physical knowledge on the form of the relation between 
the percentage of fat Y and the absorbance spectrum X = {X{t)] 850 < t < 
1050}. So we are typically in front of a Regression Problem which needs to 
be attacked from a nonparametric point of view. This regression problem is 
not standard since the explanatory variable is functional {X is a curve). So 
the model is 

Y = R{X) + error, (8.4.1) 

and the data are the following 

- (Xi, i = 1 , . . . 215) are the spectrometric curves presented in Figure 8.1; 

- (y^, i == 1 , . . . 215) are the corresponding observed percentages of fat. 

In order to estimate R we use functional kernel smoothing. For each new 
curve X, define 

Ux) = ± Kr.A^)Y, Where /.„„(.) ^ ^nj^^'^^l^^^.^y (8-4.2) 

In this definition /i is a sequence of positive numbers, JFC is a weight function 
that is, all along our spectrometric application, chosen as: 

3 
K{u) = - (1 - u^), if IX G [0,1], and 0 elsewhere. (8.4.3) 

There is a recent mathematical asymptotic support for using such a functional 
statistical method (Ferraty & Vieu 2003c) but it is not our purpose to describe 
it here. Also, of course, many other applied statistical problems are open to be 
treated by such kind of functional regression methods such as the agronomic 
data presented in Cardot & al. (1999), the environmetric data presented in 
Aneiros & al. (2003), or the pluviometric data treated in Ramsay & Silverman 
(1997), but let us only concentrate ourselves on how this procedure works on 
our chemiometrical example. To show the accuracy of the method to deal 
with such a functional data set, we have splitted arbitrarily the sample into 
two parts: 

- A training sample (of size 165); 

- A testing sample (of size 50). 

The training sample has been used to select the parameters of the estimate 
(that is to select the semi-metric and the bandwidth). Note that the selected 



122 

20 30 

Observed values 

Figure 8.6: Functional nonparametric regression in action on a test 
sample of 50 spectrometric functional data 

semi-metric inside of the family (8.3.1) is the one associated to the second 
derivative of the curves (i.e. m = 2). Once the parameters have been selected, 
we applied the method to the 50 curves of the testing sample. The results 
are presented in Figure 8.6. 

For seek of shortness, it was out of purpose to present here all the details 
concerning the application of the method to these spectrometric data (how to 
choose the bandwidth, how to choose the semi-metric, ...), and the reader who 
is interested will find answers to these questions in Ferraty & Vieu (2002). 

8.5 Nonparametric Curves Classification in 
Action on Phoneme Data 

Let us go now through the supervised classification problem described in our 
phonetic example 2. Our data are the following: 

- {Xi, i = 1 , . . . 2000) are the phoneme curves presented in Figure 8.2; 

- (Zj, z = 1 , . . . 2000) are the corresponding group. 
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Z is a categorical response valued in G = {1 , . . . ,G} = {sh^dd^iy^aa^ao}. 
Now, given a curve x, the purpose is to decide at which group it belongs, and 
for that we look at the following posterior probabilities 

Pg{x) = P{Z = g/{X{t) = x{t), t€T}), geG, 

that are estimated by mean of the following functional version of kernel prob­
ability estimates: 

J2Mz.=g]J< {h-'d{Xi,x)) 
i = l 

Y,K[h-H[Xux)) 
i=l 

This estimate can be rewritten as 

{i/Zi=9} 

with 
n 

Wn4^) = K{h-^d{Xu x))/ Y, K{h-'d{Xux)). 

In all this study, the kernel is choosen to be 

Kiu) = ^il-u')^o,i]iu), 
h is the bandwidth, and d{.].) is a semi-metric which is used to measure 
the proximity between two curves. We do not enter here in the details of 
the important role played by the semi-metric, but it is worth to be noted 
that, as theoretically supported in Ferraty & Vieu (2003b), a good choice 
of the semi-metric insuring high concentration of the curves data may deal 
accurately with the curse of dimensionality. 
Once these probabilities have been estimated, it is natural to assign the new 
curve X to the class with highest estimated probability: 

Z{x) = argmax^g^^ypg^nix). 

Extensive discussion of the related bibliography can be found in Ferraty & 
Vieu (2003c) and theoretical support are in Ferraty & Vieu (2003b). Also, 
many other data sets are open to be treated by this approach such for instance 
the Ph evolution data presented in Abraham & al. (2003), but our aim here 
is just to show how this method can work in practice on functional data 
sets such as the phoneme one described before. To see that, we have split 
arbitrarily our set of 2000 phoneme curves into two parts: 
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- A training sample (of size 750), composed of 150 curves of each group; 

- A testing sample (of size 1250), composed of the remaining curves. 

The training sample has been used to select the parameters of the estimate 
(that is to select the semi-metric and the bandwidth). Note that, in this 
example, the optimal selected semi-metric did not belong to the family (8.3.1) 
but to some special semi-metric constructed by combining PCA and PLS 
ideas. The details concerning the application of the method to these phonetic 
data (how to choose the bandwidth? how to construct precisely the semi-
metric? ...) are given in Ferraty & Vieu (2003a), as well as comparisons of 
the results of the proposed method with classical alternative techniques. 

Phoneme data 

Figure 8.7: Functional nonparametric discrimination in action on 50 
test samples of phoneme curves 

We have repeated 50 times the random splitting into training and test sam­
ples, as described before, and we present the corresponding boxplot for the 
missclassification rates in Figure 8.7. 
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8.6 Nonparametric Functional Time Series in 
Action on Economical Data 

Let us now look at the time series described in Example 3 above. The original 
data (see Figures 8.3 and 8.4) are the differencied logarithms of the monthly 
electrical consumption 

( X i , z - 0 , . . . 3 3 7 ) , 

that can be considered as discrete observations of a continuous time series 
Xt^t e (0, 337). The Functional Nonparametric approach consists in using as 
explanatory variable the whole continuous times series over some fixed period, 
that has been selected here to be a year. That means, that we consider that 
we have at hand the sample of functional data: 

{TjJ = 1 , . . . 28) where T,- - {X,, t G (12j - 11,12j)}, 

which has been presented previously in Figure 8.6. The goal is to predict the 
next value of the time series, by using the previous continuous yearly data. 
In other words, our model is the following 

Xi^i =R{{Xute (z-11,2)}) +error , 

or equivalently 
-^i2j+i — R{Tj) + error, 

and the statistical target is the functional operator R. To estimate this op­
erator, the idea is to use the Functional Nonparametric Prediction technique 
that consists, if the last observed yearly trajectory is denoted by r , to esti­
mate R{T) by 

n 

^ - M = I]^n,i(T)Xi+i, (8.6.1) 
i=l 

where 
K {h-^d{T,;T)) 

EUK{h-^d{T,;T)y 

In this definition h is a. positive number, i^ is a weight function chosen to be: 

3 
K{u) = - ( 1 - ^2), if w G [0,1], and 0 elsewhere. (8.6.2) 

In the estimator Rn, the notion of proximity is controlled by a semi-metric 
(i(.;.). There is a recent mathematical asymptotic support for using such a 
functional statistical method that was given by Ferraty & Vieu (2003c) and 
Ferraty & al. (2003), but it is not our purpose to describe it here. Also, many 
other data sets can be treated by such kind of methods, and this has been 
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o Forecasted data 

o True data 

Figure 8.8: Functional nonparametric time series prediction in action 
on electrical consumption data. 

done successfully for instance for climatic data by Cardot & al. (1999), for 
pollution data by Fernandez de Castro & al. (2003) and for environmental 
data by Damon & Guillas (2002). But, let us concentrate ourselves on how 
this procedure works on our data. To show the accuracy of the method to 
deal with such a functional data set, we have left-out of the data set both last 
periods (that is Xi^i = 314,.. .337), and we have used the estimate (8.6.1) 
(with n = 26) to get the predicted corresponding values 

Xi = Rn{Xi),i = 3U,...337, 

The behaviour of the method is illustrated through Figure 8.8 that presents 
the predicted values Xii = 314,. . . 337 together with the real ones. 

Along this study the bandwidth was selected by cross-validation and the semi-
metric by Functional PCA techniques introduced by Dauxois & al. (1982). 
These details are not presented here but the complete study can be found in 
Ferraty & al. (2003). 
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8.7 Conclusions 

As we have seen along the three examples, the recent functional nonpara-
metric methods can be useful tools in many applied problems for which func­
tional explanatory variables (curves) are involved. Even if for obvious reasons 
the methods and the examples treated here are very quickly presented, the 
reader is encouraged in reporting his attention to the companion works cited 
all along this article and which will allow to have access to methodological 
supports, to complete bibliography, and to computational issues related with 
each data set (including comparisons with alternative techniques). 

Of course, at this stage of the investigations and because of the novelty of 
this field of Statistics, many things remain to do. It seems to us that, for a 
practical point of view, the most appealing opening problems are certainly 
those related with the choice of the parameters of the estimates. In other 
words, interesting open problems can be summarized as: can we think in 
some data-driven bandwidth selection? can we think in some data-driven 
semi-metric choice? Our guesses is that the first point could certainly be 
addressed by suitable modification of the usual bandwidth selection rules 
existing in the un-functional case, but the second point should be much harder 
to automatize completely. 

In any cases, we believe that in the next future this field of Statistics will 
receive particular attention as well because of the large possibilities of appli­
cation as for the deep mathematical joint problems. 
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Summary 

This paper analyzes the relationship between IT-outsourcing and labor pro­
ductivity of 1142 firms from German manufacturing and service industries 
surveyed in 2000. An endogenous switching regression model takes into ac­
count that firms might follow different productivity regimes depending on 
whether or not they source out IT-tasks. Two semiparametric approaches 
are presented and applied to the data. They allow the outsourcing deci­
sion to nonlinearly depend on firm size. The empirical results show that 
firms with IT-outsourcing do not differ significantly from non-outsourcing 
firms with respect to the partial production elasticities of the input fac­
tors labor, IT-investment and non-IT-investment. However, firms without 
IT-outsourcing turn out to produce more than those sourcing out. 

Keywords: Information technology, IT-outsourcing, labor productivity, 
endogenous switching, semiparametric, partial linear 

9.1 Introduction 

During the last decade, information technology (IT) has become a well es­
tablished working tool for many employees. As a consequence, the impact of 
IT on labor productivity is a broadly discussed topic in management sciences 
and economics. Several studies find empirical evidence for positive produc­
tivity effects of IT at the firm-level, for example Brynjolfsson & Hitt (2000, 
1996), Lichtenberg (1995), Greenan & Mairesse (2000), Licht & Moch (1999), 
and Hempell (2005). 
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Due to the increasing IT-intensity, especially in the services industries, more 
and more firms are outsourcing their IT-tasks either completely or at least 
to some extent. The most common reasons for IT-outsourcing are that firms 
prefer to concentrate on their core competencies, that they attempt to reduce 
costs or that they have problems to find qualified personnel for these tasks 
(see for example Henkel & Kaiser (2002) for further details). Heshmati (2003) 
gives a comprehensive overview on the effects of outsourcing. 

The aim of this paper is to analyze the relationship between IT-outsourcing 
and firms' labor productivity using a data set of 1142 German firms from 
the manufacturing industry and from selected service sectors. We take into 
account the potential simultaneity of labor productivity and IT-outsourcing 
by estimating an endogenous switching regression model. IT-outsourcing 
does not only have a unidirectional relationship with productivity, but the 
decision for IT-outsourcing may also depend on the firms' expectations about 
the productivity gains from outsourcing. Moreover, a switching regression 
model allows IT-outsourcing to change the entire set of partial production 
elasticities (see for example Bertschek & Kaiser, 2004, for an application to 
organizational changes). 

The econometric approach that we use in this paper is a switching regres­
sion model that considers two regimes: to source out IT tasks or not. A 
third equation, the selection equation, models the decision for one of the two 
regimes. Our interest in studying the impact of firm size on IT-outsourcing 
does therefore imply to consider a nonparametric component in the selec­
tion equation. A computationally simple approach to implement this is a 
two-step procedure, which first estimates a semiparametric model for the se­
lection equation and uses this to compute correcting factors for the regime 
equations. We will compare this two-step approach with a full information 
semiparametric profile likelihood algorithm. 

The results of the applied parametric and semiparametric methods imply 
that IT-outsourcing does not significantly change the partial output elastic­
ities of the production factors labor, IT-investment and non-IT-investment. 
However, the efficiency parameter measured by the constant term turns out 
to be significantly larger in the regime without IT-outsourcing. A possible in­
terpretation is that outsourcing may be involved with high coordination costs 
between the outsourcing firm and the subcontractor and may thus make busi­
ness processes less efficient. Comparing the two semiparametric approaches, 
we find that the semiparametric profile likelihood method seems to perform 
better than the semiparametric two-step procedure. 

The structure of the paper is as follows: Section 9.2 outlines the theoretical 
considerations of the economic model. The data are described in Section 9.3. 
Section 9.4 introduces the semiparametric modification of the switching re-
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gression model. In Section 9.5 we present and discuss the empirical results. 
Finally, Section 9.6 concludes. 

9.2 Theoretical Considerations 

Based on the model used in Bertschek & Kaiser (2004), we assume that firm i 
produces according to a Cobb-Douglas production technology. Output yi is 
a function of IT-capital /T^, non-IT-capital Ki, and labor input Lf. 

Vi = AilT^' Kp ^ \ (9.2.1) 

The scalar Ai represents a parameter of production efficiency that shifts the 
isoquants of the Cobb-Douglas production function in parallel to the origin. 
The exponents a i , a2 and 0̂ 3 denote the output elasticities with respect to 
IT-capital, non-IT-capital and labor, respectively. Taking logarithms leads 
to 

\n{yi) = \n{Ai) + ai \n{ITi) + ^2 HK,) + a^ ln(L,). (9.2.2) 

Labor productivity, i.e. output per worker, is then given by: 

I n ( l ^ ) - l n ( A , ) + a i ln(/r ,) + a2 ln{Ki) + {as - 1) ln{Li). (9.2.3) 

If a firm sources out IT-tasks, its labor productivity is 

In (1^ ) = HAi^out) + ai^out ln(/T,) (9.2.4) 
V L/j / out 

+a2,out In(ii'i) + (as.out - 1) M^i) 

xj(3, out' 

For firms without IT-outsourcing, labor productivity is 

In ( 1 ^ ) = ln{A,^nout) + ai,nout HICTi) (9.2.5) 
\ L/i / nout 

+<^2,nout I n ( i ^ i ) + {Ois^riout " 1) ln ( I / i ) 

^ i Hnout) 

where the subscripts out and nout denote the two productivity regimes with 
and without IT-outsourcing, respectively. Firms decide to source out IT-
tasks if the productivity gain from outsourcing is larger than the costs per 
worker involved with outsourcing Q . Thus, the latent variable 

\ \^^ / out \^i / nout / 

= ^i Psel 
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represents the difference between the productivity gains and the costs aris­
ing from IT-outsourcing, where a represents the effect of the productivity 
gains from IT-outsourcing on the decision to source out. If a = 0, the out­
sourcing decision is unaffected by the productivity differences. The selection 
mechanism for observing IT-outsourcing then is 

/• ^ I ^ ^^^^> ^ (927) 
^' \ 0 otherwise. ^^'^'-^ 

Since direct cost effects from IT-outsourcing generally cannot be identified in 
a straightforward way, we assume that the following factors are likely to in­
fluence the costs of IT-outsourcing and thus might affect a firm's decision to 
source out IT-tasks: The costs of IT-outsourcing are likely to be lower for ex­
porting firms since these firms are used to adjusting quickly to changes in the 
international market environment. The same argument holds for firms with 
a subsidiary in a foreign country. Firms that belong to a group of companies 
generally have more financial resources than others and thus might have their 
own IT-division. On the other hand, these firms may have the possibility to 
source out IT-tasks within the company group. For older firms, the costs of 
implementing IT and reorganizing the production process is probably more 
expensive than for younger firms that already started with a high level of IT-
intensity. A firm's problems to find appropriate IT-specialists might on the 
one hand indicate that this firm prefers to do IT tasks inhouse. On the other 
hand, an IT skill shortage may force these companies to source out certain 
IT-tasks. Last but not least, the probability of IT-outsourcing is likely to 
differ across industries. 

It is not clear a priori whether small or large firms are more likely to source 
out. Large firms might source out whole departments as did for example the 
Deutsche Bank that sourced out its IT-department to IBM (Lamberti 2003). 
Small firms, in contrast, will probably source out single tasks rather than 
whole departments. In order to capture the potential nonlinear impact of 
firm size, a semiparametric estimation procedure will be applied. 

9.3 The Data 

The data result from a CATI-survey (computer-aided telephone interview) 
based on a stratified random sample of about 11,000 German firms. The 
sample was stratified by sector, size class and region, i.e. West and East Ger­
many. Only firms with at least five employees were included in the survey, 
thereof 50% in the manufacturing industry and 50% in the service sector. 
The source data set originates from Creditreform, the largest German credit 
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rating agency.^ The survey was conducted in the year 2000. About 4400 
enterprises participated in the survey, which corresponds to a response rate 
of approximately 43%. After performing consistency checks and due to item 
non-response concerning the variables that were included in the empirical 
model (see below), a sample of 1351 firms forms the basis for the empirical 
analysis. In order to estimate production functions for the two productivity 
regimes with and without IT-outsourcing, we have to measure labor produc­
tivity, IT-capital and non-IT-capital. Labor productivity is calculated as the 
ratio of total sales to the total number of employees. Since no information 
about the two capital variables is available in our survey data, non-IT-capital 
is measured as investment in physical capital and IT-capital is proxied by IT-
investment. Proxying IT-capital by IT-investment does not appear as a severe 
shortcoming since IT depreciates extremely quickly (Dewan & Min 1997). 
With regard to the empirical proxy for non-IT-capital, it is important to 
note that a capital stock could theoretically be calculated using the perpet­
ual inventory method. However, our analysis is based on a cross-sectional 
data set and thus, we can only observe investment in physical capital for one 
period. 

Table 9.1 displays the descriptive statistics of the variables used in the es­
timation of labor productivity: IT-investment, non-IT-investment (both in 
1,000 DM), total employment and productivity (sales per worker). All quan­
titative numbers refer to the year 1999. The standard deviations of non-IT-
investment and the number of employees are quite large, since small retailers 
as well as the largest German manufacturing companies are both included in 
our sample.^ For the estimations, the quantitative variables L, INV and IT 
are taken in logarithms. 

In the interview, the firms were asked whether or not they source out certain 
IT-tasks, either partially or completely. From this information a dummy is 
constructed taking the value one if a firm completely sources out IT-tasks 
and the value zero otherwise. About 68 percent of the firms in the sample 
have completely sourced out some or all of their IT-tasks. 

In the empirical implementation of our model, the variables that are supposed 
to influence the costs involved with IT-outsourcing are measured as follows: 
the age of a firm is captured by two dummy-variables, the first one taking the 
value one if the firm is three years old or younger, the second variable taking 
the value one if the age is between four and seven years. This categorization 
is plausible since empirical studies for instance by Prantl (2001) show that 
hazard functions of young firms reach a first local maximum approximately 

•̂ As Germany's largest credit rating agency, Creditreform has the most comprehensive 
database of German firms at its disposal. Creditrefbrm provides data on German firms 
to the ZEW (Centre for European Economic Research) for research purposes. 

•^For further details on the data, see Bertschek, Fryges & Kaiser (2004). 
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Table 9.1: Descriptive statistics 

Variable 
PRODt 
L 
INV 
IT 
EXP.VH 
D.OUTV* 

D_KONZ 

D.STAND 
D_AGE1 
D_AGE2 
DJTOS 
D_REG 
D_BR1 

D_BR2 
D_BR3 
D_BR,4 
D_BR5 

D_BR6 
Obs. 

productivity 
number of employees 
non-IT-investment 
IT-investment 
export quota 
IT-tasks completely 
sourced out 
firm belongs to group 
of companies 
foreign subsidiary 
age <4 years 
age 4~7 years 
IT skill shortage 
East Germany 
manufacturing indus­
try w/o ICT 
distributive services 
banking & insurance 
technical services 
other business-related 
services 
IT w/o retail trade 

Mean 
0.497 

580.896 
46,768.77 

1,023.98 
15.052 
0.677 

0.318 

0.175 
0.074 
0.160 
0.161 
0.251 
0.476 

0.193 
0.046 
0.076 
0.057 

0.153 
1351 

Std. Dev. 
1.321 

7,293.496 
1,359,455 
6,554.279 

22.421 
0.468 

0.466 

0.381 
0.262 
0.367 
0.367 
0.434 
0.500 

0.395 
0.209 
0.264 
0.232 

0.360 

Min. 
0.007 

5 
1.000 

1.2 
0 
0 

0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 

Max. 
23.65 

225,000 
49,900,000 

120,001 
100 

1 

1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 

1 

^ Output per employee (total sales per year per employee in 1,000 DM), where sales means 

balance-sheet total for banks and sum insured for insurance companies. 

•I- "D"stands for Dummy. 

three years after formation and a second local maximum after approximately 
seven years. Having survived seven years, the hazard rates stay on a compa­
rably low level such that those firms can be regarded as established or "old" 
firms. A firm's export activity is captured by the share of sales obtained by 
exports (export quota). Further dummy variables are constructed measuring 
whether or not a company has a foreign subsidiary and whether a firm is part 
of a group of companies. 32% of the firms in our sample belong to a larger 
group of companies. A further dummy refiects whether a firm has problems 
to find appropriate IT-specialists which is the case for 16 percent of the firms. 
Industry-specific characteristics are captured by five industry dummies. A 
regional dummy taking the value one if a firm is located in Eastern Germany 
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controls for the fact that East German companies produce with a generally-
lower productivity than West German firms. 

9.4 Switching Regression Model and 
Nonparametric Components 

In what follows we present the model of Section 9.2 in a slightly more formal 
way. Introduce the shortcuts 

^^*=i^(i)o.. '̂̂ ^ ^^*=^K!) nout 

Depending on whether IT-tasks are sourced out or not, one of the following 
two regression models applies: 

y; = xjp,+ei (9.4.1) 

¥2 = 4/^2 + ^2 (9A2) 

These two equations correspond to equations (9.2.4) and (9.2.5) when in our 
specific example we set Pi = Pout^ P2 = Pnout ^^^ a;i = X2 = x. We further 
assume that the decision to source out is explained by a third regression 
equation 

r = a ; J / ? 3 + e 3 , (9.4.3) 

where in our example we have P^, = Psei ^^^ x^ = z. Recall, that we only 
observe whether or not a firm does completely source out IT-tasks: / = 1 
if /* > 0 and / — 0 otherwise. The model to consider is thus a switching 
regression model (Maddala 1983, Sections 8.3 and 9.7) which is defined by 

y={^ { i J : (9.4.4) 

If we assume that the error terms of (9.4.1)-(9.4.3) have a joint normal dis­
tribution, we can write 

CTi P{)(Jl(T2 PlCri<73 

PQGia2 CTI p2(y202> I I . (9.4.5) 
P\G\Gz P2Cr2Cr^ ^ 3 

We remark that, as in a probit model, the variance parameter of £3 can only 
be identified up to a constant, hence we set it to 

0-3 = 1. 

We further assume that pi 7̂  0 and P2 7̂  0 which leads to endogenous switch­
ing. Since we cannot observe Y^ and Y2 ^ simultaneously, the parameter po 
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cannot be estimated (Maddala 1983, Section 9.7). However, po is not needed 
for establishing the hkehhood function. 

Let y^, Xij^ and Ii for i = l , . . . , n and j = 1,2,3 denote the individual 
realizations of the variables Y, Xj and / . We define 

and 

• ' • ) , . = ( " ' • 
^^2 / VP2y 

This allows to define the log-likelihood of the switching regression model as 

n 

^ = ^^iiVii, Vi2, Vi3^ CT, p ) , (9.4.6) 
i=l 

where we use the notation ii to indicate that the individual log-likelihood 
terms do also depend on Yi and Ii. More precisely, the function £{ is given 
by 

HVii: Vi2, Vi3, cr, p) (9.4.7) 

Note that here and in the following we denote by ^ the cumulative distribu­
tion function of the univariate Gaussian distribution. 

In the special case, that the correlations pi and p2 equal zero (exogenous 
switching), the third equation (9.4.3) is independent of equations (9.4.1)-
(9.4.2). A probit fit for the selection equation (9.4.3) and OLS fits for the 
level equations (9.4.1)-(9.4.2) could thus be applied to / and Y. In the 
general case considered here (endogenous switching), we have to take these 
correlations into account and two approaches are possible: 

• A two-step estimation which employs Heckman's (1976) idea of a pro-
bit estimation for estimating Ps and subsequent OLS estimations in 
the subsamples U = I and U = 0. In this case, the vectors of explana­
tory variables need to be supplemented by the respective inverse Mill's 
ratios. 

• A full information maximum-likeUhood (FIML) estimator which max­
imizes the log-likelihood given in (9.4.6). 
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We will present the two concepts for a switching regression model with a 
semiparametric modification of the selection equation (9.4.3). Assume that 
the vector xs of explanatory variables can be split into vectors u and t and 
that the selection condition is explained by the following partial linear model: 

r - u'^-f + m{t) + 63 , (9.4.8) 

where t is a continuous variable or vector of variables and TTZ is a smooth 
function. We remark that the same partial linear assumption could be made 
for Y{ and Y2 . We skip this additional modification since our particular 
interest is to find out whether labor input ln(L) as a measure of firm size is 
nonlinearly related to the decision for IT-outsourcing. Consequently, we will 
consider 

t = ln(L) 

whereas the remaining factors from the selection equation (9.2.6) are con­
tained in vector u. 

9.4.1 Two-Step Estimation 

The construction of the semiparametric two-step estimator is a straightfor­
ward generalization of the parametric two-step approach. The procedure can 
be summarized as follows: 

Semiparametric Two-Step Switching Regression 

• First step: 
Estimate the selection equation using a partial linear probit model 

P{I = 1) = ^{u'^-f-{-m{t)}. 

• Second step: 
Using the results of the first step, compute the Mill's ratios 

^ ^^{u"^7 + m(t)} . X ̂  ^'{-u'^j-m{t)} 
' " ^{u-'j + mit)} ' " ^{-u^^-m{t)} ' 

and estimate the regression equations 

E{Y\I=1) = xj/3i + piaiXi = xjPi + Px.Xi, 

E{Y\I = 0) = xJf32+P2CT2X2=xJP2+Px,X2-

The parameters aj and pj can be estimated through 

l̂ = ; ^ E ( 4 + ̂ «î A.)' P, 
^ i=l 
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where rij are the sizes of the subsamples U — 1 and /^ = 0, e'lj is an 
estimate of the i-th residual of the corresponding regression equation 
and 6ij is the individual estimate of 5j = Aj{Aj + u^^ + m{t)} . 

Using this approach it is not possible to obtain covariance estimates for 
dj and 'pj separately. It is however possible to estimate the covariance 
matrices 

CoviPjA,) = ^UxJXj)-' [Xjil - f^A^)Xj + Qj} {XjXj)-'. 

Here we use Xj to denote the design matrix consisting of the observa­
tions of Xj and Aj, / for the identity matrix, Aj = diag((5ij,... ,Snj)^ 
and 

g,. = pf {XjAj Uj) Cov(7) ([/JA,. X , ) , 

with Uj the design matrices from the observations of u in the subsam­
ples /i == 1 and li = 0. 

The partial linear probit model in the first step is a special case of the gen­
eralized partial linear model (GPLM), see for example Miiller (2001) and 
Severini & Staniswalis (1994) for further details. The GPLM algorithm pro­
vides estimates of 7, Gov(7) and the nonparametric function m. For details 
on the second step we refer to Maddala (1983, Section 8.3), Greene (2000, 
Ghapter 20) and the references therein. 

9.4.2 Profile Likelihood Estimator 

Let us recall the parametric FIML estimator which aims at solving 

f d£ di d£ di di\ ^ 

We want to stress in particular the fact that for j = 1, 2, 3, 

di v ^ 9ii 
-^^ = XJ ^ (^^1' ^^2, to, ^, P)Xij. (9.4.10) 
Ofjj ^ orjij 

This means, the gradient of ^i with respect to ^j is given by the derivative 
of li with respect to its j t h argument multiplied by the vector xij. This is a 
property which also holds for simpler models as logit and probit. We will in 
particular exploit this fact for deriving the semiparametric extension to the 
parametric switching regression. 

Equation (9.4.9) is nonlinear in the parameters 6 = vec(/^i,/52,/?3,cr,p) and 
therefore must be solved by an iterative procedure. A Newton-Raphson algo­
rithm, for example, uses iteration steps of the form 9'^^'^ — O'^^^ — HJ^V^ with 
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7i^ denoting the Hessian oiL Alternatively, one can use a BFGS optimization 
which requires only the gradient P^. 

The semiparametric profile likelihood method considered in Severini & Wong 
(1992), Staniswalis & Thall (2001) is based on the fact, that the conditional 
distribution of Y given u and t is still parametric. Their approach is to first 
keep the parameter d — vec(/3i,/32,7, cr, p) fix and to estimate the nonpara-
metric function values m^{t) in dependence of this fixed i9. The resulting 
estimate m,̂  is then used to construct the profile likelihood for i9. As a 
consequence of the profile likelihood, the estimated parameters are typically 
V^-consistent, asymptotically normal and asymptotically efficient. Moreover 
the estimator m(») == '^^(•) can be used as an estimator for the nonpara-
metric function m (Severini & Staniswalis 1994). 

Due to the nonlinear structure of the log-likelihood function, the algorithm 
to estimate the parameters and the nonparametric function will be iterative. 
Recall the parametric log-likelihood (9.4.6). A localized version of this is 
given by 

?local {m^{t)) ^ "^iiirjii, r]i2, uj-f-\-7n^{t), a, p)Kh{t-ti). (9.4.11) 

This function is maximized to estimate the smooth function m^{t) at the 
point t. The local weights Kh{t — U) are kernel weights with K denoting 
a (multidimensional) kernel function and h a bandwidth vector. Using the 
solution fh^ of (9.4.11) we derive the parametric profile log-likelihood 

n 

^profile^^^ = Y.ii{r}iu Vi2. uJj + m^{U), a,p). (9.4.12) 
i=i 

This profile log-likelihood will then be optimized in order to obtain an esti­
mate for i9. 

For the derivation of the algorithm we follow the presentation of the profile 
likelihood estimator for generahzed partial linear models (such as partial lin­
ear logit and probit models) in Miiller (2001). The maximization of the local 
likehhood (9.4.11) with respect to the nonparametric component requires to 
solve 

Y] ^-iiiVii,Vi2,uj-f + n,a,p)KhiU -t) = 0 (9.4.13) 

with respect to fi for each value of t. In other words, we obtain solutions 
rrij = m^{tj) which fulfill 

Y,j-£i{r]iur]i2,uJj + mj,a,p)Kh{ti-tj) = 0 (9.4.14) 
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for all observations t i , . . . ,^n- Now, using the profile likelihood (9.4.12) , we 
have to deal with 

n 
Yl-^/{Vii^'ni2,uJ-i-Vm^{ti),(T,p) -^m^{ti) = 0, (9.4.15) 

n 
T. S^^{Vii^Vi2,ul^ + m^{ti),a,p) ^ m ^ ( t i ) - 0 , (9.4.16) 

n / s 

E -^i{viuVi2,ufj + m^{ti),a,p) Ui + •^m^iU)] = 0 , (9.4.17) 

n 
E -^^{Vii^Vi2,uJ^ + m^{ti),a,p) •§^m^{ti) = 0, (9.4.18) 

n 

E ^ ^ ( ^ i i . ^ i 2 , ^ f 7 + ^^(^i),^,p) i^rn^iU) = 0 . (9.4.19) 

Taking derivatives of (9.4.13) with respect to the components of i^ shows that 

g E -§^/i{r]ii,r}i2,uJ^ ^ rrij.cj,p) Kh(ti - tj)ui 

^ ^ 4 ^ ^ ) - = - ^ 4 - ^ . (9.4.20) 
E -^ii{Vii^m2^uf-f-}-mj,a,p)Kh{ti-tj) 

d d d d 
and ^ ^ ^ ( ^ ) = - 0 , —m^{t) = 0, —m^(t) = 0, —m^(t) = 0. 

We introduce the shortcuts ^̂  = af~^i' ^f ~ 'ds^^'^' ^^ denote the first 
and second derivatives oi £{{•) with respect to its third argument. (Recall 
that the third argument of ^̂  contains the nonparametric component.) Equa­
tions (9.4.12), (9.4.14), (9.4.17) and (9.4.20) constitute the following iterative 
algorithm. 

Semiparametric Profile Likelihood 

• Calculate the gradient V^ (and the Hessian He) as if there were ex­
planatory variables xn, Xi2 and xis = ui. 

• Compute 

^3 ~ ^3 ~~ Uj = Uj - '-^ , for j = 1, . . . , n. 

E^n<J + rnj)Kn{U-tj) 

• Replace in Vi (and Hi) the terms 77̂3 by uj^ -{- rrii and subsequently 
the remaining terms Xis by Ui. Denote the resulting gradient by De 
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(and the Hessian by H^). The updating step for d = {Pi,(32,^^(7,p) 
is then implemented by an iterative optimization procedure using D^ 
(and He). 

The updating step for rrij is given by 

m - - = mf - ^ , for i = 1, . . . ,n. 

We mention the Hessian in parenthesis as — depending on the chosen opti­
mization for the parametric part — its computation may not be necessary. 
In practice, optimization routines provided with software packages might be 
much more efficient at this point. For the nonparametric part however, we 
use a Newton-Raphson type iteration for reasons of simpUcity. 

Let us mention a further simphfication that we implement in the following. 
The computation of Ui and ?n^^^ requires to evaluate terms of the form 

n 

J2^ijKh{ti-tj). (9.4.21) 
i=l 

Note, that this has to be done at least for all tj {j = l , . . . , n ) since the 
updated values of m at all observation points are required in the updating step 
for -d. Thus, Olri^) operations are necessary for evaluating the kernel weights. 
However, the evaluation of (9.4.21) is a standard method if ipij only depends 
on i (as for example in a Nadaraya-Watson and local polynomial kernel 
regression). The above algorithm requires additionally the computation of 
£[{ufj+mj) and f^{ufj-\-mj) for alH, j = 1 , . . . , n. We avoid this additional 
computational effort by replacing these terms by t^{uf^^mi) and t^{uf^ + 
rrii). Due to the kernel weights Kh{ti — tj) becoming negligible for ti far away 
from tj this simplification will change the results only marginally. 

9.5 Empirical Results 

We apply the semiparametric two-step and profile likelihood methods to the 
data introduced in Section 9.3. Recall that the variable which is included 
nonparametrically into the selection equation is ln{L). Figure 9.1 shows 
how this variable is related to the decision to source out IT tasks. Since 
the decision is binary, these relative frequencies are obtained by grouping the 
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Table 9.2: Descriptive statistics for the restricted data set 

Variable 
PRODt 
L 
INV 
IT 
EXP.VH 
D_OUTV* 

D_KONZ 

D_STAND 
D_AGE1 
D_AGE2 
DJTOS 
D_REG 
D_BR1 

D_BR2 
D_BR3 
D_BR4 
D_BR5 

D.BR6 
Obs. 

productivity 
number of employees 
non-IT-investment 
IT-investment 
export quota 
IT-tasks completely 
sourced out 
firm belongs to group 
of companies 
foreign subsidiary 
age <4 years 
age 4--7 years 
IT skill shortage 
East Germany 
manufacturing indus­
try w/o IT 
distributive services 
banking & insurance 
technical services 
other business-related 
services 
IT w/o retail trade 

Mean 
0.497 

168.601 
4661.223 

505.085 
15.461 
69.002 

32.837 

16.988 
7.268 

14.361 
14.799 
24.694 
50.438 

18.476 
4.291 
6.743 
5.254 

14.799 
1142 

Std. Dev. 
1.381 

243.131 
19098.687 
2332.401 

22.390 
0.463 

0.470 

0.376 
0.260 
0.351 
0.355 
0.431 
0.500 

0.388 
0.203 
0.251 
0.223 

0.355 

Min. 
0.007 

10 
1.000 
1.490 

0 
0 

0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 

Max. 
23.65 
1200 

497000.996 
50001.009 

100 
1 

1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 

1 

^ Output per employee (total sales per year per employee in 1,000 DM), where sales means 

balance-sheet total for banks and sum insured for insurance companies. 

J "J3"stands for Dummy. 

variable ln(L) into equi-spaced intervals. The numbers below the points show 
the number of observations in the corresponding interval. 

We see that observations beyond ln(L) ^ 7 are relatively sparse since our 
data base contains only a small part of large firms. In order to obtain a 
relatively homogenous set of observations with respect to the nonparametric 
function, we restrict the data set now to 

2.3 < ln(L) < 7.1 or 10 < L < 1200, respectively. 

Table 9.2 reports some descriptive statistics for this subset, which covers 1142 
out of the originally 1351 observations. 
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LNL vs. the decision to source out 

170 192 220 228 142 147 105 77 26 

Figure 9.1: ln(L) (grouped into equi-spaced intervals) versus the rel­
ative frequencies of out-sourcing; numbers below the bullets indicate 
the number of observations in the considered ln(Z/)-interval. 

Table 9.3: Wald tests for identity of the coefficients 

in(/r) 
ln{K) 

HL) 
East Germany 
Constant 

parametric 
FIML 

x" 
0.94 
0.60 
0.17 
3.64 

16.77 

p-value 
0.33 
0.44 
0.68 
0.06 
0.00 

semiparametric 
two 

x' ' 
1.10 
2.39 
0.93 
1.74 
0.21 

-step 
p-value 

0.29 
0.12 
0.33 
0.19 
0.64 

semiparametric 
profile Hkelihood 

x' 
1.07 
0.72 
0.18 
3.57 

20.15 

j> value 
0.30 
0.40 
0.67 
0.06 
0.00 

As starting values for the semiparametric estimates we use the results from 
a parametric switching regression. The coefficients of this parametric FIML 
estimation are listed in Table 9.9. The results with respect to the level 
equations show the expected positive and significant partial output elastici­
ties with respect to the capital variables measured by the logarithms of IT 
investment and 'normal' investment. Labor has a significantly negative out-
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Semiparametric two-step 

.\'>^' ^ ^ '-\ 
X" 

h=0.75 
h=1 
h=1.25 
h=1.5 

V. 

v-x 

t=ln(L) 

Semiparametric profile likelihood 

• • • • h = 1 

— h=1.25 
h=1.5 

- - h=2 

.\̂  \ 

-\ / 
// / 

t-

t=ln(L) 

Figure 9.2: Families of nonparametric functions for ln(L) using the 
semij)ararnetric two-step and profile likelihood approaches. 
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Table 9.4: Semiparametric fits in dependence of the bandwidth 

bandwidth log-Hkelihood 

semiparametric two-step 

semiparametric profile likelihood 

0.75 
1.00 
1.25 
1.50 
1.00 
1.25 
1.50 
2.00 

-1959.723 
-1960.422 
-1966.065 
-1970.316 
-1932.775 
-1933.085 
-1933.411 
-1971.728 

Table 9.5: Estimated coefficients (semiparametric profile likelihood) 

Coeff. 
Estimation results for 

CONSTANT 
LNIKT 
LNINV 

LNL 
D_REG 
D_BR1 
D_BR3 
D_BR4 
D.BR5 
D_BR6 

5.308 
0.104 
0.140 

-0.250 
-0.364 
-0.389 

0.918 
-0.813 
-0.464 
-0.882 

Std.Err. t-value p-value 
regime with IT-Outsourcing 

0.117 
0.022 
0.020 
0.030 
0.074 
0.080 
0.107 
0.240 
0.126 
0.133 

45.513 
4.682 
7.077 

-8.312 
-4.905 
-4.842 

8.549 
-3.392 
-3.671 
-6.606 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.000 
0.000 

Estimation results for regime without IT-Outsourcing 
CONSTANT 

LNIKT 
LNINV 

LNL 
D_REG 
D_BR1 
D_BR3 
D_BR4 
D_BR5 
D_BR6 

6.606 
0.143 
0.110 

-0.226 
-0.132 
-0.499 

L423 
-1.142 
-0.603 
-1.113 

0.263 
0.035 
0.031 
0.048 
0.117 
0.146 
0.211 
0.217 
0.207 
0.207 

25.117 
4.032 
3.541 

-4.711 
-1.121 
-3.415 

6.744 
-5.253 
-2.918 
-5.381 

0.000 
0.000 
0.000 
0.000 
0.262 
0.001 
0.000 
0.000 
0.004 
0.000 

put elasticity since the estimated coefficient corresponds to as — 1. Simple 
Wald test statistics (see Table 9.3) indicate that the elasticities do not differ 
significantly across the two productivity regimes, thus IT-outsourcing does 
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Table 9.6: Semiparametric profile likelihood continued 

Selection equation 
LNIKT 
LNINV 

EXP_VH 
DJTOS 

D_KONZ 
D_STAND 

D.AGE1 
D_AGE2 
D_REG 
D_BR1 
D_BR3 
D_BR4 
D_BR5 
D_BR6 

(Tl 

<J2 

Pl 
P2_ 

-0.044 
0.034 

-0.002 
-0.173 
-0.241 
-0.218 

0.243 
-0.031 
-0.060 
-0.328 
-0.032 
-0.662 
-0.279 
-1.005 

0.931 
1.039 
0.845 
0.839 

0.028 
0.019 
0.002 
0.099 
0.071 
0.103 
0.114 
0.085 
0.092 
0.107 
0.159 
0.182 
0.173 
0.143 
0.029 
0.072 
0.027 
0.050 

-1.573 
1.803 

-0.890 
-1.740 
-3.401 
-2.115 

2.131 
-0.372 
-0.649 
-3.061 
-0.204 
-3.637 
-1.614 
-7.024 
32.342 
14.369 
31.083 
16.659 

0.116 
0.071 
0.373 
0.082 
0.001 
0.034 
0.033 
0.710 
0.516 
0.002 
0.839 
0.000 
0.107 
0.000 
0.000 
0.000 
0.000 
0.000 

not seem to be related to higher partial output elasticities of the input fac­
tors. However, the constant term reflecting the firms' production effficiency 
differs significantly across the two regimes implying that firms without IT-
outsourcing produce more efficiently. 

All sector dummies included in the level equations and controlling for different 
measurements of labor productivity across sectors are highly significant. The 
industries of the base category (trade, transport and postal services) are all 
at the end of the value added chain, reaching a high value of total sales per 
employee. The sector of financial intermediation shows a significantly higher 
labor productivity. All other industries that produce at earlier stages of the 
value added chain than the base category show a significantly lower value of 
total sales per employee. 

The dummy variable for East Germany has a negative and significant coeffi­
cient, reflecting the lower labor productivity especially in the East German 
manufacturing sector. Identity of these parameters across the two regimes is 
rejected at the 5-percent level. Thus, the productivity differential for East 
German firms compared to their West German counterparts is even larger in 
the regime with IT-outsourcing. 
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Table 9.7: Estimated coefficients (seraiparametric two-step) 

Coeff. 
Estimation results for 

CONSTANT 
LNIKT 
LNINV 

LNL 
D_REG 
D_BR1 
D_BR3 
D_BR4 
D_BR5 
D_BR6 

5.416 
0.127 
0.135 

-0.236 
-0.337 
-0.357 

1.287 
-0.692 
-0.354 
-0.577 

Std.Err. t-value p-value 
regime with IT-Outsourcing 

0.137 
0.023 
0.021 
0.035 
0.064 
0.077 
0.156 
0.158 
0.138 
0.202 

39.480 
5.632 
6.496 

-6.770 
-5.256 
-4.628 

8.227 
-4.386 
-2.557 
-2.852 

Estimation results for regime without IT-Out 
CONSTANT 

LNIKT 
LNINV 

LNL 
DJIEG 
D_BR1 
D_BR3 
D_BR4 
D_BR5 
D_BR6 

5.118 
0.169 
0.083 

-0.178 
-0,172 
-0.209 

1.148 
-0.585 
-0.437 
-0.327 

0.587 
0.035 
0.028 
0.050 
0.096 
0.156 
0.253 
0.239 
0.237 
0.297 

8.716 
4.862 
2.931 

-3.588 
-1.789 
-1.345 

4.534 
-2.445 
-1.844 
-1.100 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.011 
0.004 

sourcing 
0.000 
0.000 
0.003 
0.000 
0.074 
0.178 
0.000 
0.015 
0.065 
0.272 

The results for the selection equation show that having a subsidiary in a 
foreign country or belonging to a group of companies significantly reduces 
the probability to source out IT-tasks. Maybe, these firms have the possi­
bility to use the resources of the group to do IT-tasks inhouse or within the 
group. The fact that firms face an IT-skill shortage turns out to reduce the 
probability of IT-outsourcing probably since these companies have their own 
IT-departments or IT-specialists. Firms that are three years old or younger 
have a significantly higher probability for IT-outsourcing. There are no sig­
nificant impacts with respect to the input factors, the export quota and the 
dummy indicating whether a firm is between four and seven years old. The 
manufacturing industry without IT, technical services as well as the IT-sector 
have significantly lower probabilities to source out IT-tasks than the indus­
tries for trade, transport and postal services. This result seems plausible 
since these firms either do not use IT intensively or they are able to perform 
IT-tasks by themselves. 

The fact that both correlation coefficients pi and p2 are significantly esti­
mated indicates that it is justified to estimate an endogenous switching re-
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Table 9.8: Semiparametric two-step contimied 

Selection equation 
LNIKT 
LNINV 

EXP_VH 
DJTOS 

D_KONZ 
D.STAND 

D.AGE1 
D_AGE2 

D_REG 
D.BR1 
D_BR3 
D_BR4 
D_BR5 
D_BR6 

(71 

(J2 

Pl 
P2_ 

-0.028 
0.030 
0.002 

-0.340 
-0.105 
-0.056 

0.016 
-0.067 
-0.025 
-0.302 
-0.345 
-0.591 
-0.318 
-1.009 

0.765 
0.755 
0.159 
0.083 

0.032 
0.029 
0.002 
0.120 
0.094 
0.120 
0.157 
0.116 
0.097 
0.121 
0.218 
0.183 
0.202 
0.151 

-0.854 
1.039 
1.240 

-2.843 
-1.118 
-0.470 

0.101 
-0.578 
-0.263 
-2.487 
-1.580 
-3.225 
-1.575 
-6.679 

0.393 
0.299 
0.215 
0.004 
0.264 
0.638 
0.919 
0.563 
0.792 
0.013 
0.114 
0.001 
0.115 
0.000 

gression model. If the estimates of the correlation coefficients were insignif­
icant, the appropriate model would be an exogenous switching regression 
model where the outsourcing decision would be independent on the firms' 
productivity level. 

In the next step, we take into account that the decision whether or not to 
completely source out IT-tasks may depend nonlinearly on the firm size. As 
pointed out in Section 9.1, small firms might rather source out single tasks 
whereas large firms rather source out whole departments. Small and large 
firms thus might have a higher probability for outsourcing than middle sized 
firms. The firm size is measured by the logarithm of the number of employees 
in the firm. As shown in Section 9.4, we apply a semiparametric two-step 
estimator as well as a full information semiparametric profile likelihood es­
timator. The estimated coefficients of these semiparametric regressions are 
presented in Tables 9.7 and 9.5.^ 

The semiparametric profile likelihood results do not differ considerably from 
the results of the parametric estimation, neither with respect to the coeffi­
cients nor with respect to the significance. In particular, also the Wald test 

"̂ For the irnplementation of the parametric and sernipararnetric algorithms we use the 
statistical programming language R (Ihaka & Gentleman 1996). The R package optim 
provides the BFGS optimization procedure used for the parametric iterations. The 
nonparametric estimation steps are implemented using a dynamic link library in C. 
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Table 9.9: Estimated coefFicieiits (parametric FIML) 

Coeff. 
Estimation results for 

CONSTANT 
LNIKT 
LNINV 
LNL 
D_REG 
D_BR.l 
D_BR3 
D_BR4 
D_BR5 
D_BR6 

5.319 
0.104 
0.138 

-0.250 
-0.367 
-0.393 

0.910 
-0.822 
-0.466 
-0.893 

Std.Err. t-value p-value 
regime with IT-Outsourcing 

0.137 
0.023 
0.021 
0.036 
0.075 
0.082 
0.108 
0.240 
0.129 
0.135 

38.935 
4.500 
6.495 

-6.875 
-4,880 
-4.781 

8.395 
-3.430 
-3.620 
-6.637 

Estimation results for regime without IT-Out 
CONSTANT 
LNIKT 
LNINV 
LNL 
D_REG 
D_BR1 
D_BR3 
D_BR4 
D_BR5 
D_BR6 

6.567 
0.141 
0.109 

-0.226 
-0.131 
-0.484 

1.428 
-1.113 
-0.607 
-1.076 

0.302 
0.037 
0.037 
0.056 
0.118 
0.151 
0.220 
0.220 
0.218 
0.215 

21.763 
3.794 
2.988 

-4.039 
-1.110 
-3.198 

6.482 
-5.067 
-2.790 
-5.003 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.000 
0.000 

sourcing 
0.000 
0.000 
0.003 
0.000 
0.267 
0.001 
0.000 
0.000 
0.005 
0.000 

statistics (Table 9.3) lead to the same conclusions on the output elasticities. 
More differences can be found when using the semiparametric two-step esti­
mator. In the level equations, the estimated coefficients differ only quantita­
tively except of the dummy for the ICT sector which turns to be insignificant 
in the regime without outsourcing according to the semiparametric two-step 
estimator. In the selection equation, there are several variables the coeffi­
cients of which turn to be insignificant in the two-step estimation. 

Since there are no common rules for the choice of the smoothing parameter /i, 
we estimate the semiparametric model for a family of bandwidths. Table 9.4 
indicates that the log-likelihood values of the semiparametric profile likeli­
hood estimator seems to be fairly independent of the bandwidth. We observe 
log-likelihoods around —1933 which are slightly better than the parametric 
FIML estimate. The semiparametric two-step estimator is more sensitive 
with respect to the bandwidth with log-likelihood values systematically be­
yond those of the profile likelihood estimator. 

Figure 9.2 shows the estimated nonparametric functions of ln(L) for a series 
of bandwidths. The rug plot on the bottom of the figures indicates the obser-
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Table 9.10: Parametric FIML continued 

CONSTANT 
LNIKT 
LNINV 
LNL 
EXP.VH 
DJTOS 
D_KONZ 
D_STAND 
D_AGE1 
D_AGE2 
D_REG 
D_BR1 
D.BR3 
D_BR4 
D_BR5 
D_BR6 
(Ji 

CT'Z 

Pi 

P'2 

Selection 
1.069 

-0.043 
0.031 

-0.014 
-0.001 
-0.169 
-0.243 
-0.223 

0.222 
-0.025 
-0.057 
-0.310 
-0.033 
-0.666 
-0.260 
-1.003 

0.931 
1.021 
0.844 
0.822 

equation 
0.187 
0.032 
0.029 
0.050 
0.002 
0.102 
0.072 
0.107 
0.115 
0.086 
0.094 
0.119 
0.167 
0.193 
0.188 
0.157 
0.029 
0.074 
0.027 
0.057 

5.731 
-1.335 

1.055 
-0.283 
-0.808 
-1.664 
-3.361 
-2.089 

1.921 
-0.295 
-0.605 
-2.607 
-0.196 
-3.453 
-1.382 
-6.382 
31.925 
13.854 
31.299 
14.512 

0.000 
0.182 
0.291 
0.777 
0.419 
0.096 
0.001 
0.037 
0.055 
0.768 
0.545 
0.009 
0.845 
0.001 
0.167 
0.000 
0.000 
0.000 
0.000 
0.000 

vations of ln(L). The semiparametric two-step estimator reveals an inverse 
U-shape suggesting that the probability to completely source out IT-tasks is 
first increasing with firm size and then decreasing. By contrast, the semi-
parametric profile estimator suggests that IT-outsourcing is increasing with 
firm size for log-labor being larger than 3, then decreasing up to a firm size 
of about 5.5 and finally increasing again for large firms. According to the 
log-likelihood values in Table 9.4 it seems that the profile likelihood esti­
mator captures the relationship between IT-outsourcing and firm size more 
accurately. Moreover, the fact that the results are quite independent of the 
bandwidth choice gives more confidence into the profile likelihood estimates 
than into the estimates of the two-step procedure. However, further analyses 
are needed in order to draw definite conclusions on the rehability of these 
semiparametric estimation procedures. 

9.6 Concluding Remarks 

This paper analyzes the relationship between IT-outsourcing and firms' labor 
productivity. An endogenous switching regression model allows to take into 
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account simultaneity between labor productivity and IT-outsourcing. Firms 
may follow different productivity regimes depending on whether or not they 
completely source out IT-tasks. For this switching regression model a full in­
formation maximum likelihood (FIML) or a two-step estimation approach can 
be applied. We extend these two estimation approaches by a nonparametric 
component in order to take into account that the outsourcing decision might 
depend nonlinearly on firm size. Empirical evidence is based on a data set 
containing 1142 firms of the German manufacturing and the business-related 
services industries. 

The estimation results of the applied methods imply that IT-outsourcing 
does not significantly change the partial output elasticities of the production 
factors labor, capital and IT capital. However, firms without IT-outsourcing 
turn out to produce more efficiently than those with IT-outsourcing. High 
coordination costs between outsourcing firms and their subcontractors may 
make business processes less efficient. 

The estimation of the nonparametric relationship between IT-outsourcing 
and firm size captured by the semiparametric approaches show considerable 
differences. While the semiparametric two-step estimator suggests a rather 
inverse U-shaped relationship, the corresponding curve resulting from the 
semiparametric profile likelihood estimator shows more structure in the sense 
that the probability to source out is first increasing, then decreasing and 
finally increasing again with firm size. 

The advantage of the semiparametric profile hkelihood estimator over the 
semiparametric two-step approach seems to be its robustness with respect 
to the choice of the bandwidth and its better performance with respect to 
maximizing the log-hkehhood. However, further analyses are needed in order 
to be able to draw final conclusions about the performance of the estimators 
applied in this study. 
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Summary 

This paper is concerned with the estimation of nonparametric and semipara­
metric additive models in the presence of discrete variables. The main fea­
ture of our work is to deal with possibly dependent variables. Our method­
ology can be seen as well as an unifying presentation of several different sit­
uations, as extensions to dependence structures of several recent advances 
obtained in the usual i.i.d. case. 
Among the different estimation procedures, the method introduced by Lin­
ton and Nielsen (1995), based in marginal integration, has became quite 
popular because both its computational simplicity and the fact that it al­
lows an asymptotic distribution theory Here, an asymptotic treatment of 
the marginal integration estimator under different mixtures of continuous-
discrete variables is offered, and furthermore, in the semiparametric par­
tially additive setting, an estimator for the parametric part that is consis­
tent and asymptotically efficient is proposed. The estimator is based in 
minimizing the L2 distance between the additive nonparametric component 
and its correspondent linear direction. 

Keywords: Additive models, dimension reduction techniques, semipara­
metric models, strong mixing conditions, marginal integration 
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10.1 Introduction 

This paper addresses an old problem considered here from a rather different-
new perspective. The problem of how to treat discrete variables in nonpara-
metric regression problems is already well known in the statistical literature 
(see among others Hall, 1981; Bierens, 1983; Grund and Hall, 1993; and Ah­
mad and Cerrito, 1994). When the regressors are discrete no smoothing is 
required to obtain root-n consistent estimators. Furthermore, if any amount 
of smoothing is appUed, then, the discrete components do not suffer from the 
curse of dimensionality. 

In the econometrics literature, the same problem has been traditionally ap­
proached by retreating it as a semiparametric problem. That is, the con­
tinuous variables are introduced either in a multivariate or in an additive 
one-dimensional nonparametric regression setting whereas discrete regressors 
appear in the form of linear parametric functions. These are the so called 
partially linear models. In this setting, Delgado and Mora (1995) show that 
root-n consistency of the parametric part is achieved under much weaker 
conditions than in the continuous case (see Robinson, 1988). 

In many cases (see Horowitz, 1998) the partially linear structure does not 
appear to be a reasonable restriction. Racine and Li (2000) analyze the 
case when discrete and continuous variables are mixed within a multivariate 
nonparametric regression function. They provide the statistical properties of 
the estimator and a method to choose the different bandwidths. However, the 
use of multivariate nonparametric regression models presents an important 
problem: When many explanatory variables are available, the rate at which 
nonparametric smoothers converge to their true values is very slow, and the 
the introduction of additive restrictions is recommended (Stone, 1985). In 
Fan, Hardle and Mammen (1998) the impact of discrete regressors in the 
estimation of additive models is analyzed. They also consider as a particular 
case a semiparametric additive partially linear model, and provide root-n 
consistent estimators of the parameters of interest. Their method is based 
on local linear regression smoothers, and they allow for components that 
can be either discrete or continuous. However, their estimation procedure 
presents some drawbacks. First, they only give the statistical properties of the 
nonparametric additive components that depend on absolutely continuous 
regressors, second the resulting estimator for the nonparametric component is 
created by splitting the sample in several cells. The number of cells depends 
on the number of categories of the discrete variables, and therefore, if the 

^This research was financially supported by The Direccion General de Investigacion 
del Ministerio de Educacion y Ciencia under research grant SEJ2005-08269/ECON. 
The authors wish to express their gratitude to the participants of the STAPH 
(http://www.lsp.ups-tlse.fr/Fp/Ferraty/staph.html) group in Functional Statistics in 
Toulouse for their many helpful comments and suggestions. 
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number of cells is high each may not have enough observations to estimate. 
Finally, the whole analysis is performed under the assumption of independent 
and identically distributed observations. This assumption, typically rules out 
regression models that contain lagged endogenous variables as regressors. 

This paper addresses the problem of introducing both discrete and continu­
ous explanatory variables into an additive nonparametric (semiparametric) 
regression setting that accounts for dependent data. In order to estimate the 
additive components marginal integration techniques (Newey, 1994; Tjos-
theim and Auestad, 1994 and Linton and Nielsen, 1995) are used. Here, the 
pilot multivariate nonparametric regression estimator is computed by using 
kernel methods. Discrete covariates enter in the product kernel although no 
smoothing is applied to them. We show that estimators of the additive com­
ponents with discrete covariates exhibit root-n rates and in the mixed case, 
that is, estimators of the additive components that depend both on contin­
uous and discrete covariates, the rate of convergence is the same as in the 
continuous case. 

Further if we assume that the additive components depending on discrete 
regressors fall within the class of linear parametric functions, a two step 
method to estimate the parametric part is proposed. The estimator is based 
in minimizing the L2 distance between the additive nonparametric component 
and its correspondent linear direction. It is root-n consistent and achieves 
the semiparametric efficiency bound. 

An important feature of our work is to consider a strongly dependent model 
that allows for applications in time series situations. Concretely, we will 
deal with the quite general a mixing model. Because this notion will be a 
the center of our paper, we decided to recall its definition right now. This 
structure was previously introduced by Rosenblatt (1956) and is known to 
be one of the less restrictive dependence structure. Moreover, this notion 
turns to be of great interest in nonparametric statistics as can be seen in the 
monographies by Gyorfi et al (1989) or Bosq (1998). Recall that the a-mixing 
coefficient relative to some process {Ui}^^^ is defined, for any 5 G N, by 

a{s) = sup {\P {An B) - P (A) P {B)\ ,A e TIB e T^^, ] 

where Tl and T^^ ^^^ cr-fields generated respectively by {C/i, • • • ^Ur] and 
{Ur-^-s^ •' • }• A process is strongly mixing if 

lim a{s) = 0. 

The remainder of the paper is organized as follows. The statistical model 
and the estimator are introduced in Section 10.2. Its asymptotic behavior 
is also treated in this section. In Section 10.3 we present a two step root-n 
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consistent semiparametric estimator of the partially additive linear model. 
Proofs are deferred to the Appendix. 

10.2 Additive Nonparametric Regression 

Along this section we consider an additive nonparametric regression model 
where a subset of explanatory variables is discrete and the remaining are 
continuous. More precisely, let X^ = {Xi,Xs) be a vector of continuous 
random variables valued in RP1+P2 ^^^ x^ = (X2, X4) be a vector of discrete 
random variables valued in R'?i+'?^ That is, that there exists V G R^^^^^ 
such that 

P(X^ eV) = 1, (10.2.1) 

Vx^ eV, P {X^ = x^) > 0. (10.2.2) 

Let Xi — {Xii, X2i^Xsi,X4i). We consider a nonparametric regression model 
given by 

Yi = m{Xi) + ei - cj + mi(Xu) + m2(X2i) + 77134(̂ 3 ,̂ ^4^) + ê , (10.2.3) 

where {{Xi,Yi)}'^^^ are observations form a stationary a-mixing process, 
E{e\Xi) — 0 and mi(»), vfi^i*) and m34(«,») are of unknown form. For 
identification purposes E \m\{X\i)\ — E [m2{X2i)] = E [m34{Xsi^X4i)] = 0. 

Note that this model nests a broad variety of different specifications. If we set 
777-1 = '^2 = 0 then we consider the same model as in Racine and Li (2000). 
On the other side, if 7712 = 0 then we have the model analyzed in Fan, Hardle 
and Mammen (1998). Of course in both cases all results were obtained for 
the independent case. 

Our interest is to estimate the unknown quantities, that is 77ii(»), m2(«) and 
^34(«5») in the dependent regression model. So far, purely additive mod­
els have been estimated using the backfitting algorithm and the so called 
marginal integration techniques. The first method was proposed in Hastie 
and Tibshirani (1990) and the second was simultaneously developed in Newey 
(1994); Tjostheim and Auestad (1994) and Linton and Nielsen (1995). From 
the computational point of view both approaches appear equally feasible. 
The backfitting has been mostly implemented using splines. Stone, Hansen, 
Kooperberg and Truong (1997) develop estimation theory using polynomial 
spline methods and Wahba (1990) uses smoothing splines. Also local poly­
nomial regression has been used as in Opsomer and Ruppert (1994). For 
the marginal integration techniques, series estimators (Andrews and Whang, 
1990; and Newey, 1995), local constant polynomials (Linton and Nielsen, 
1995) and local linear polynomials (Fan, Hardle and Mammen, 1998) have 
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been applied. Prom the theoretical point of view, although the behavior of the 
marginal integration estimators is known better, however, important devel­
opments have been made in the theory of backfitting (see Mammen, Linton 
and Nielsen, 1999; Opsomer and Ruppert, 1998; and Opsomer, 2000). In 
the context of dependent data, to our knowledge, no results are available for 
the backfitting estimator whereas marginal estimators have been studied in 
deep by Sperlich, Tjostheim and Yang (2002) and Camlong-Viot, Sarda and 
Vieu (2000). On these grounds, we opt to estimate the different unknown 
components by marginal integration techniques. 

At this stage it is worth being fixed some notations. In the following, all 
the integrals related with continuous variables will be taken with respect to 
Lebesgue measure while all the integrals related with discrete variables will 
be taken with respect to the counting measure (the counting measure will be 
denoted by /i). In the following we will also make use of some functions 

q{x) = g(xi,X2,X3,X4) = qi{xi)q2{x2)q3A{x3,X4), 

where gi, g2 and q^ are known density functions respectively defined on 
RP\ W- and RP2+^2_ Moreover, for any f =̂  1, • • • ,4 we will denote by /^ 
the marginal density of Xi (giving the fact that these marginal densities are 
either taken with respect to the Lebesgue measure for continuous X^ or with 
respect to // for discrete ones). Similarly, for any £ = 1, • • • ,4 and for any 
5 > 0 we will denote by f^^s the joint density of (X^j^Xij^s)- Finally, we 
will denote by 

f{xi,X2,X3,X4) = fc{xi,Xs\x2,X4)fD{x2,X4), 

where fc is the conditional density (with respect to the Lebesgue measure) 
of (Xi^Xs) given (^2,^4) and where fz) is the density (with respect to the 
counting measure) of (^25X4). 

This estimation method consists in integrating the regression function m(») 
with respect to a suitable density function. By doing this we obtain 

/ m{x)q2{x2)q34{x3,X4)iJ.{dx2)dxs/j.{dx4) (10.2.4) 

u;-\-mi{xi)+ / m2{x2)q2{x2)lJ'{dx2) 

+ / rn34{x3,X4)q34{x3,X4)dX3fl{dX4). 
/RP2+<32 

On the other hand, integrating m(«) with respect to a density function 



160 

q{xi,X2,xs,X4) = qi{xi)q2{x2) ^34(^:3, X4) defined on R^i+^i+^2+g2 we obtain 

/ m{x)qi{xi)q2{x2)q34{x3,X4)dxiiJ.{dx2)dx3ijL{dx4) 

= Lu-\- mi{xi)qi{xi)dxi + / m2{x2)q2{x2)l^{dx2) 

JRPI JRii 
+ / m34{x3,X4)q34{x3,X4)dX3fl{dX4). (10.2.5) 

Then subtracting equation (10.2.5) from (10.2.4) we obtain an expression for 
the additive component mi{xi), up to an additive constant, 

(xi) = mi{xi)- mi{xi)qi{xi)dxi 

JRPi 

= / m{x)q2{X2)q34{x3,X4)dX3lJ.{dX4)lJi{dX2) -
JRQ1+P2+(12 

RQ1+P2+(12 

/ m{x)qi{xi)q2{x2)q34{x3,X4)dxifi{dx2)dx3fj.{dx4). 
JRP1+Q1+P2+'12 

An estimator for 771 (xi), rii{xi), is obtained by replacing in the equation 
above the unknown quantities by some estimator 

77i(xi) = / mn{x)q2{x2)q34{x3,X4)dx3fj.{dx4)fJ^{dx2) - (10.2.6) 
JRI1+P2+^2 

mn{x)qi{xi)q2{x2)q34{x3,X4)dxii2{dx2)dx3ii{dx4). I 
JRP 
/RPl+Ql+P2 + 'i2 

An estimator for m{x) is 

^ ~ f / ( -^Iz5-^2i5-^3i5^4i) 
i=l 

where I{A) stands for the indicator function (that takes value one if A is 
true, and zero otherwise), where K and L are kernel functions supposed to 
satisfy some moment conditions to be specified before in (HA) , and where 
hi and /is are positive smoothing parameters for which usual restrictions will 
be imposed later on (see condition (H.b) below). This estimator is the so-
called "internal" estimator of Jones, Davies and Park (1994). In smoothing 
problems, the indicator function has been proposed in another contexts by 
Delgado and Mora (1995) and Fan, Hardle and Mammen (1998) to account 
for discrete variables. Further Racine and Li (2000) propose a kernel function 
that depends on a smoothing parameter. Delgado and Mora (1995) did not 
consider the case of a mixture of continuous and discrete variables, Fan, 
Hardle and Mammen (1998) take the indicator function over a broader set 



161 

of values of X^ on its support, and finally Racine and Li (2000) face the 
additional problem of estimating a control parameter with no theoretical 
gains in doing so. 

Following the marginal integration method, the component 

772(̂ 2) == m2{x2)- m2{x2)q2{x2)fJ^{dx2), 

is estimated by 

^2(^2) = / mn{x)qi{xi)q3^{x3,X4^)dxidxsfi{dx4)-
JRP1+P2+Q2 

/ mn{x)qi{xi)q2{x2)q3A{x3,X4)dxifi{dx2)dx3ii{dx4) 
J'RP1+P2 + Q1+Q2 

and the component 

^34(3:̂ 34) = rn34{x34) - / m34{x3,X4)q34{x3,X4)dX3^{dX4) 

is estimated by 

^34(^:3,^4) = / mn{x)qi{xi)q2{x2)dxiii{dx2)-

JRPI+Ql 
/ rrin{x)qi{xi)q2{x2)q34{x3,X4)dxifx{dx2)dx3fi{dx4). 

JRP1+P2+Q1+Q2 

In what follows we give some results about the asymptotic behavior of the 
estimators 7)1, 7)2 and 7734. We give first some definitions and assumptions. 
From now on M and C will denote finite positive generic real constants. 

(H.l) mi{xi) is k-times continuously differentiable with respect to all its 
arguments in the support A'l of Xi. Furthermore, 77134(x3,X4) is k-
times continuously differentiable with respect to X3 G A'3 where A^ is 
the support of X3. 

(H.2a) a{s) — O (s~^), with a > j ^ , and for ^ = 1, • • • ,4 and s > 1 assume 
that we have 

Vx,2/, I/,,, {x,y) - Mx)fs{y)\ < M < 00. 

(H.2b) a{s) = 0 (5 -« ) , with a > ^ ( |^ + 2) for z - 1,3, and for £ = 

1, • • • ,4 and s > 1, assume that we have 

Vx,7/, 1/^,, {x,y) - Mx)fs{y)\ < M < 00. 
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(H.3) qi{xi) is bounded and k-(-l-times continuously differentiable in the 
support A*! of Xi. q2{x2) is bounded with respect to all its arguments 
in the support A'2 of X2. Furthermore, q34{xs,X4) is bounded and k+1-
times continuously differentiable with respect to X3 in A'a. 

(H.4) The kernel functions K{m) and L(») are compactly supported, bounded, 
continuous and they integrate to one. Furthermore""-, V (ii, •' * J^PI) ^ 

(yj.ij <k) -^ J^p^ uY "-Up.^K^Ui,"' ,UpJdui-"dup^ =0 

Vj, J^p^ u^K (i^i, • • • ,UpJdui-" dup^ e R* 

andV( i i , - - - , i p j €N*PS 

(Vj,ij <k) =^ /ĵ p2 ^1 ' •-Up''^^L{uir" ,Up^)dui"-dup^ =0 

^j^ IRP2 ^]L (ixi, • • • , Up^) dui"- dup^ e R* 

(H.5) The bandwidth satisfy hi = cin~2fc+Fr and /13 = cin~2fc+P3. 

(H.6) The functions /(•) and /^, for i = 1,2,3,4 are such that 

3b,B such that 0<b< f{x) < 5 < o o a n d O < 6 < fi{xi) < B < 00, 

Let x_^ = (xi,--- ,a;^_i,a;^_|_i, • • • 5X4). Then the conditional density 
f{x-£\xi) exists and it is bounded away from zero on the support of 

/ ( . ) • 

(H.7) The conditional variance crQ{x) = Var(y|X = x) is continuous. 

(H.8) V i , j , E [ | y i y ^ / / ^ | x ] < M < o o , / 3 > 2 . 

Assumptions (H.l), (H.4), (H.5) and (H.6) are standard in nonparametric 
regression techniques. In fact (H.4) assumes higher order kernels (see Vieu, 
1991). Note that as expected the number of derivatives allowed in (H.l) 
matches the order of the kernels in (H.4). This is needed to control the 
bias in the multivariate estimator. The bandwidth rates in (H.5) are chosen 
according the previous conditions on kernels and densities. (H.6) introduces 
a strong assumption: The densities must be compactly supported. This is 
done without loss of generahty. In fact we could allow for unbounded support 
using trimming techniques (Robinson, 1988), but this would complicate the 
analysis unnecessarily. (H.2a) and (H.2b) are mixing conditions. Note that 
we have considered separately the discrete and the continuous covariates case. 

•̂ In these definitionvS, and further on this paper, we denote by N* (resp. by E*) the set of 
all the positive integers (resp. the set of all real numbers) different from 0. 
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In this condition it is assumed that mixing coefficients decay at a algebraic 
rate. This is the weakest condition it can be imposed for the rate of decay of 
the mixing coefficients (see Bosq, 1998). 

Now with the previous assumptions in hand we provide two results that char­
acterize the asymptotic properties of the different components. The proofs 
are relegated to the Appendix. We start by the estimators of the component 
that depend respectively on continuous explanatory variables, ?7i(xi), and a 
mixture of continuous and discrete regressors, ffs4,{xs^X4). 

Theorem 1 i) Consider assumptions (H.l), (H.2h), (H.3), (H.4), (H.5), 
(H.6), (H.l) and (H.8) hold, then as n —^ oo, we have 

^fiK'{f)i{xi)-rii{xi))^dJ^{h{x^),v''{xi)) (10.2.7) 

3 = 1' 

V^ixi) = K^{u)du / / [al{xi,X2,X3,X4)+m'^{Xi,X2,X3,X4)] 

^[q2{X'2)q34{x3,X4)f 
"^ fix. Xn X. X.) l^(dX2)dx3l^idXi). J{Xi^X2,Xs^X4) 

ii) Furthermore, as n grows up to infinity, we have 

ynhf {fi34{x3,X4) - r]34{x3,X4)) -^d A/" {b{x3,X4),v'^{x3,X4)) (10.2.8) 

with 

b{x3,X4) = ^ iX^ / ^^^M^^ ( - l ) ^ ^ f c - ( ^ 3 , ^ 4 ) 

/ 94 
^34(^3 , ^ 4 ) - ^ 7 ^ (^3, Z4)dZ3lJ,{dZ4) 

^3j 

and 

2 
V (X3,X4) = f4{X4) L^{u)du / [(jQ{xi,X2,X3,X4)-\-m.'^{xi,X2,X3,X4)] 

[qi{xi)q2{x2)] 
' fixi,X2,X3,X4) 

dxifi{dx2)' 

Our result in (10.2.7) is a generalization of the one obtained in Theorem 
1 from Fan, Hardle and Mammen (1998) to dependent observations. Fur­
thermore, the result in (10.2.8) remarks that in the case of mixture between 
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continuous and discrete variables, the asymptotic variance of the marginal 
integration estimator suffers only from the dimensionality of the continuous 
variables. That is, the dimension of the discrete variables does not affect the 
rate of convergence of the estimator. Finally, we provide also an interest­
ing result for the marginal integration estimator with all discrete covariables, 
772 (X2). The statistical properties of this estimator are given in the next 
result: 

Theorem 2 Consider assumptions (H.l), (H.2a), (H.3), (H.4), (H.5), (H.6), 
(H.7) and (H.8) hold, then 

v' {X2) = {f2{x2) - q2{x2)f / / [(Tl{zi,Z2,Zs,Z4)+m^{zi,Z2,Zs,Z4)] 

, [^1(^1)934(^3,2:4)]^ 

f{zi,Z2,Z3,Z4) 

as n tends to infinity. 

-dzidzs/i{dz4) -7/2(^2), 

Note that although the multivariate nonparametric estimator contains some 
smoothing, the bias of 772(̂ :2) is exactly equal to zero. This is because the 
marginal integration estimator of 772(̂ 2) is obtained by integrating out all 
directions that contain some smoothness. 

10.3 A Semiparametric Estimator of an Additive 
Partially Linear Model 

As already indicated in the Introduction, the presence of discrete explana­
tory in nonparametric regression problems can be approached by rewriting 
the model as a semiparametric one. This semiparametric model combines a 
linear parametric part (with discrete covariates) plus a nonparametric term 
that contains the continuous variables. The partially linear model has long 
tradition in the econometrics Hterature and it was fully analyzed in an i.i.d. 
context in Robinson (1988) among others, while recent advances in the de­
pendent setting can be found in Aneiros et al. (2003). Furthermore, if an 
additional restriction of additivity in the nonparametric part is added, then 
we obtain the so called additive partially linear model. Examples of this 
model have been considered in Opsomer (1999) and Li (2000). Although, 
as explained in Section 10.2, many econometric problems of interest do not 
admit the partially additive linear decomposition in this Section we adopt it 
and we obtain a root-n consistent semiparametric estimator of the parametric 
part. This estimator can be compared with other previous in the literature. 
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If in the econometric model introduced in Section 10.2 we impose the addi­
tional restrictions m2{x2) = YllLi'^2i{x2i) and, without loss of generality, 
7^2/(^2/) = ^i +7^^2/5 then (10.2.3) has the following expression 

y. = a; + ^ 6>i + mi ( X H ) + ^ 7^X2^ + nris^iXsi, X^i) + e^ (10.3.1) 
1=1 1=1 

Note that in this context, the identification restriction E [m2{x2)] = 0 implies 
that 9i — -jiE{X2i), for / = I , " - ,gi. If we rewrite (10.3.1) under the 
previous restriction we obtain 

Yi=uj + rm {Xu) + ^ 7i iX2ii - E {X21)) + ^34(^3z, Xu) + ei. (10.3.2) 
1=1 

In this model, it is of interest to estimate the components 71,72, • *' ^Iqi ^^ 
root-n rate. Furthermore, in order to make inference it is interesting to obtain 
its asymptotic distribution. One problem is that the previous identification 
restriction introduces in the estimating equation quantities that are unknown 
for the researcher as the expected values E (X2/),- • • ^E (X2gJ. One way to 
solve this problem is to introduce the following assumption 

(H.9) '̂2(^2) = C in the support of X2. 

Note that other identification strategies are possible. For example, in Fan, 
Hardle and Mammen (1998), p. 952, for the sake of identification they make 
6 = Y1^ ~^ S ^ i i ^i ^^^ ^^^y overestimate the quantities mi(») and m34(», •) 
by an amount of 6. 

Let {X21J}A^I be the set of all possible values that X21 can take such that 
f2i{x2ij) = P {X21 = X2ij) > 0 for j = 1, • • • , J. Then, the easiest way to 
define an estimator seems to us to choose the value of 7̂  that minimizes the 
L2 distance between the model estimated nonparametrically, fj2i{x2i)^ and its 
corresponding linear direction, 7/ (^2/ — ^2^), i. e. 

J 

7/ = a r g m i n ^ {li{x2ij - X21) - r}2i{x2i)) , 

where X21 = j Ylj=i ^^ij- This idea was already explored in another context 
by Cristobal, Faraldo and Gonzalez-Manteiga (1987). Compared to others 
our estimator presents some advantages. First, its asymptotic properties are 
obtained under much weaker conditions. Mainly, lagged endogenous variables 
may appear as regressors. Second, the estimator is unique, and it does not 
depend on cells or predetermined sets of values that can take the discrete 
variable. The following result is shown in the Appendix 
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Theorem 3 Consider assumptions (HA), (H.2h), (H.3),(H.4), (H,5), (H.6), 
(H.7), (H.8) and (H.9) hold, then 

Vn(7/-70-^dAr(0,i;f) 

with 

vf ' j j j [ol{zux,^,,z„z,) 

+m {zi,X2ij,Z3,Z4)\ — —dzidz3fi{dz4) > -ri2[x2), 
f{Zl,X2lj,Z3,Z4) I 

Appendix: Proofs 

The main difficulty that we will meet along our proofs is to deal with possibly 
dependent variables. That means that, in addition to the usual bias and vari­
ance terms appearing in the classical i.i.d. setting, a third terms (which will 
be basically written as a sum of covariance terms) will systematically appear 
at each step of our calculous. For each of these additional covariance compo­
nents we will make use of recent probabilistic tools for alpha mixing random 
variable. For instance, after suitable preliminary calculous, the asymptotic 
normality results will be obtained from a Central Limit Theorem stated by 
Rio (2000) while minor terms in our developments will be treated by mean of 
some covariance inequality for mixing variables such as those stated in Bosq 
(1998). In addition to thesetechnical difficulties coming from the dependence 
between the data, the second difficulty appearing in our proofs comes from 
the large variety of possibilities that we are allowing in our methodology (see 
the model (10.2.3)), since we wish to include all the situations mixing discrete 
and continuous explanatory variables with possible interactions between both 
of them. 

Proof of Theorem l.i. 

We first state some notations. Let 

Oil{xi) = / / / '^(^l^^2,X3,X4)q2{x2)q34{x3,X4)fl{dX2)dX3fl{dX4)] 

0^1(2:1) ^ / / '^n{xi,X2,X3,X4)q2{x2)q34{x3,X4)ll{dX2)dX3/ji{dX4)] 



167 

Cn ^ UJ+ {rn2{z2)+ms4,{zs,Z4))gn{z2,z^,Z4)fi{dz2)dz3ii{dz4)-, 

Cn = 'frin{xi,X2,Xs,X4)qi{xi)q2{x2)q34{x3,X4)dxilJ.{dX2)dX3lJ.{dX4) 

C = mi{xi)qi{xi)dxi', 

gn{z2,Z3,Z4) = l^^'^^^^'^hF^^\~\ -]HX4 = Z4) 

q2{x2)q34{x3,X4)fx{dx2)dxsfi{dx4). 

Remark: By (H.3) we have ^71(^2,2:3,2:4) = ^2(^2:2)^34(^3, 2:4) + o ( l ) . 
We can also write 

1 ^ 1 r^fxi-Xii\ Yni 

with 

^ni — "7717 V v̂^ 77~~^9n (-^2i,-^3i,-^4i) • 
/ V^li, A2i, A3i, A4ij 

Then, we have written ai as a nonparametric estimator of fhn[*) — 

E {Yrii\Xii = • ) , and we have 

mn{xi) = mi(xi) + Cn, 

771(2:1) = m i ( x i ) - C , 

fji{xi) = d i ( x i ) - C „ . 

The proof of the asymptotic normahty of fji — ryi is obtained by the proof of 
the three following points: 

y ^ ( d i ( x i ) - m n ( x i ) ) - > r f A r ( 6 i ( x i ) , ^ ; 2 ( : c i ) ) , (10.3.3) 

E {Cn -Cn-C)= h% + o (/i^) , (10.3.4) 

1 ^^^ f f d^a 
^^^ ]^J2 ^ i ^ ( ^ ) ^ ^ / ^ i ( ^ i ) ^ ^ ( ^ i ) ^ ^ i ' 

and where 61 (xi) = b{xi) — 61. 

where 
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Proof of (10.3.3) 

For the bias part, integrating by substitution and using a Taylor expansion 
of 777-1, we have 

Now we have to compute the variance of di(xi) . 

Var(d i (^0) = - 4 7 V a r ( A , ) + ^ - T ^ E E Cov(A„A,) ihl^ 

where 

A Ty^ I ^1 -^li \ ^ni 

hi J h{Xu) 

[nhiY 

-ElK 

l<:i<j<n 

Xi - Xi 

(10.3.7) 

Y 
hi J h{Xu) 

Integrating by substitution and by (H.3) and (H.4), we have El^i = O {h\^) 
and then 

1 
Um nh\^ 

ihY 
-EA = 0. (10.3.8) 

Integrating by substitution and using (H.3), (H.4) and (H.5), we obtain that 

EAJ=v'{xi)+o(^-^y (10.3.9) 

with 

v'^ixi) = I K'^{u)du I I / [cJo(xi ,a:2,X3,X4) +777,^(xi ,X2,X3,X4)] 

..[^2(3^2)934(^3,^4)]^ 

/(xi,X2,X3,a;4) 
- fl{dX2)dX3fl{dX4). 

Now we will look at the covariance terms. Integrating by substitution and 
using (H.3), (H.4) and (H.5), we have 

Cov(A,,A,) = o ( / i ?^^ ) . (10.3.10) 

P On the other hand, by (H.8), E \Yni\ < M < 00, and then E\Aif < 

M < 00, that allows us to use the covariance inequality for strongly mixing 
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processes (see e.g. Bosq, 1998, Corollary 1.1, p. 21). Then we have 

| C o v ( A , , A , - ) | < M a ^ ( | 2 - j | ) . 

Now we proceed as in Bosq (1998, p. 43) and we introduce a sequence Un of 
integers that allows to write 

J2 Cov(Ai,A,) = Yl Cov(Ai ,A, )+ ^ Cov(Ai,A,) 
l<i<j<n I'f'—Jl'^Un li—jlyun 

Choosing u^ = (^i^ logn)~ gives with (H.2b) 

lim nh^^ ; ^ E E Gov (A., A,) 
l<i<j<n 

= 0. (10.3.11) 

Because of (H.2b) we can now apply a CLT for mixing random variables (see 
e. g. Rio, 2000, Theorem 4.2., p. 64). So, the relations (10.3.6), (10.3.7), 
(10.3.8), (10.3.9), (10.3.10), and (10.3.11) lead directly to (10.3.3). 

Proof of (10.3.4) 

Computing ^771^(^1, ^25^35 ̂ 4) in a standard way, and since the regression 
function m is additive, we arrive at 

Ei^Cn-CnJ = j mi{zi) / j^K {-^-y^j qi{xi)dxidzi. 

A Taylor expansion of gi leads directly to (10.3.4). 

Proof of (10.3.5) 

We have to compute 

Var [Cn) = iVa r (t^i) + ; | E E ^ov (C/„ Uj), 

where 

l < i < j < n 

Ui = 
Yi 

zPn i^li) 9n {^2i, -^3i, -̂ 4z) 

and 

/ ( ^ l i , -^2i5 ^ 3 i 5 ^4i) 

Pn {Xu) = / -p^K I - ^ — — - j qi{xi)dxi. 
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By (H.3), (H.4), (H.5) and integrating by substitution, we can see that 
VsiT{Ui) — (P(l) and E\Ui\ < M < oo. Then, the covariance terms can 
be treated exactly as we did before for getting (10.3.11) by Rio's inequahty 
and by condition (H.2b). This is enough to see that the relation (10.3.5) is 
proved. 

Proof of Theorem l.ii. 

It remains now to prove the second part of Theorem 1, namely the equation 
(10.2.8). The proof follows the same lines as for the estimation of the additive 
component ?ni, because 77134 depends on some continuous random variable. 
So we will just give the main steps. Introduce the notations: 

o^34{x3,X4) = / m{xi,X2,X3,X4)qi{xi)q2{x2)dxifi{dx2)] 

0^34(^3,3:4) = / mn{xi,X2,Xs,X4)qi{xi)q2{x2)dxifi{dx2); 

Dn = UJ+ {mi{zi)+m2{z2))gn{ziyZ2)dzifi{dz2)] 

Dn = rhn{xi,X2,X3,X4)qi{xi)q2{x2) 

X q34{xs^X4)dxiiJ.{dx2)dx3iJ.{dx4); 

D = m34{x3,X4)q34{x3,X4)dX3fl{dX4)] 

9n{zi,Z2) = / I ~f^^ \~^—^-\KX2 = Z2)qi{xi)q2{x2)dxifi{dx2). 

Remark: By (H.3), we have gn{zi,Z2) == qi{zi)q2{z2) + o ( l ) . 

We can also write 

Y • 
1̂ 4 = 2:4; 

_ /4(^4i)/c(-^3i|-^4i) 

with 
V - ^J3(^3i) ry y . 

Then, we have rewritten 0̂ 34 as a nonparametric estimator of mn(»,») 

E lYnil {X3i,X4i) = (•,•)), and we have 

^n(^3,a;4) = rn34{x3,X4) -{- Dn, 

rj34{x3,X4) = m34{x3,X4) - D, 

^734(^3,^4) = a34{x3,X4)- Dn-
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The proof of the asymptotic normahty of 7)34 — 7734 will be obtained from the 
three following points that can be proved exactly as results (10.3.3), (10.3.4) 
and (10.3.5): 

^Jnhl'' (0^34(̂ 3,3^4) -mn(x3,X4)) ->d A/" (634(0:3, X4),i;^(x3,X4)) , (10.3.12) 

E (bn -Dn-D)= h% + o {hi) , (10.3.13) 

with 

(v\k t'^ n dm 
634(^3,2:4) = hl^-^Yl u)L{u)du—^{x2^,x^) -\- o{hl) 

63 = T : J ^ / u)L{u)du I m34{z3,Z4)-^^{x3,X4)dZ3lJ,{dZ4). 
j = l ^ -^ 3j 

Proof of Theorem 2 

To prove the asymptotic normality of 772 — 7)2 we have to show the following 
relationships 

V^{V2{X2) - EUx2)) ^d M {0,v\x2)) (10.3.15) 

Efi2{x2)=V2{x2). (10.3.16) 

Proof of (10.3.15) 

We write 

m 

where 

qi{xi)q34{x3,X4) 

fc{^lii -^3z|-^2i, -^4i) /4(-^42) 

Let us first compute the variance term 

dxidx3fi{dx4). 

Var(d2(x2)) = ^ X ^ V a r ( A i ) + 4 E E Cov{Ai,Aj), (10.3.17) 
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Using (10.3.16) we directly have 

EAi - Efi2{x2) = 772(3:2). (10.3.18) 

Integrating by substitution and using (H.3), we obtain 

EA'^ = if2{x2) - q2{x2)f / / [cro(2:i,X2,2:3,2:4)+777,^(2:1,0:2,^3,^4)] 

[^1(2^1)^34(2:3,2:4)] ' 

/ ( 2 : i , 0^2, 2:3, 2:4) 
dzidzsfi{dz4) 4- 0(1). (10.3.19) 

Now, for the computation of the covariance terms, by using (H.8) we obtain 

that E \Zni\ < M < 00 and then E \Ai[ < M < 00, that allows us to use 

the covariance inequality for strongly mixing processes (see e.g. Bosq, 1998, 

Corollary 1.1, p. 21). Then we have 

| C o v ( A , , A , - ) | < M a ^ ( K - j | ) . 

By a simple computation, and using (H.2a), we obtain 

^E i: Gov (A., A,) 
l<i<j<n 

< Mn i - a ^ (10.3.20) 

Finally, using a Central Limit Theorem for strongly mixing processes (Rio, 
2000, Theorem 4.2., p. 64) with relations (10.3.17), (10.3.18), (10.3.19), 
(10.3.20) and with (H.2a) we get directly (10.3.15). 

Proof of (10.3.16) 

We first compute the expectation of 7n^(xi, a;2, ^3,0:̂ 4): E {77i„(xi, ^2, X3, X4)} 

= 771 (2:1,^2, 2:3, X 4 ) ^ i ^ ( - ^ — — ^ ) Y i ^ L ( -^—- ) ^2:1^2:3, 
hi' V h 

and then, since the regression function is additive we easily obtain that 

E {7)2(3:2)} = 7722(̂ 2) - / rn2{x2)q2{x2)ix{dx2) = 7/2(^2), 

and (10.3.16) is proved. 
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Proof of Theorem 3 

Note that just to simplify notations we have removed the index / form X2I' 
That is, along the proof we will use X2i instead of X2ii and /2 instead of /2Z. 
This is done just for notational convenience and without loss of generality. 
Let us define 

^2 = 7X1^2^, 
3=1 

and 

^L = 7 ^ ( ^ 2 , - X 2 ) ' . 

The estimator 7/ of ji is defined as follows: 

. _ Il'^j=i'n2{x2j) {x2j -X2) 

The bias term is not difficult to compute. Because of Theorem 2, we have 

VX2J, E{f}2{x2j)} = r]2{x2j), 

while, by assumption (H.9), the choice made for 2̂ allows to see that 

m{x2j) = 71 {x2j - X2) . 

Clearly, this implies that we have 

So the only remaining question is to compute the variance term, Var (7/). It 
can be written as 

J J 

dl^ Var {li) = j^^'^Z ^^^ (̂ 2 {X2j) {x2j -X2),fj2 {x2j') {x2f -X2)). 

Let, as in the proof of (10.3.15), introduce the quantity 
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Then, 

Gov (7)2 {X2j) {X2j - X2) ,f}2 {X2j') {X2j' - X2)) 

(I "^ - 1 "" - \ 
C^^ - I ] ^^ (^2,) {X2j -X2),-Y,/^k {X2j') {X2j' - X2) 

\ i=l k=l / 

= — E Gov {Ai {X2j) {X2j - X2) , A, {X2r) {X2j' " X2)) (10.3.21) 
z = l 

+ - ^ E E ^^^ (^^ (^2i) (X2i - X2) , A^ {X2r) {X2j> - X2)) . (10.3.22) 
ii^k 

Let us now look at the computation of (10.3.21). Note first that we have 

1 - ^ - ^ 1 
J2YIYI ~^^^ (^^ (^2j) {X2j - X2) , Ai (X2j0 (X2̂ / - X2)) 

J J 

= --J^Y.J2 [^^i (^2i) {X2j - X2) Ai (x2,-0 {X2j' - X2) 

-EAi {X2j) {X2j - X2) EAi {X2f) {X2j' - X2)] 

Using the calculations of the proof of (10.3.15), we easily obtain 

1 1 
J J 

-12^2^2^^^ (^2i) {X2j - X2) EAi {X2r) {X2j' - X2) nJ^ 

£_1_ 
nip 

J J 

n 

1 

-7/ 

X^ Y^ m2{x2j) {X2j) {X2j - X2) 7712 (^2^0 {x2j' " X2) 

1 ^ - I 
j X ! ^ 2 ( ^ 2 i ) ( ^ 2 i - ^ 2 ) I 

j=l 

— ^.2 4 (10.3.23) 
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On the other hand we have 

^ ^ J J 

-l^JLY^^^i (^2i) {X2j - X2) Ai {X2j') {X2f - X2) 

J J 

= -E 
n 

1 V^ V - (1{X2J = X2i) - q2{X2i)\ ^ ( ^ X 

n 

J J 

7̂  E E 7 2 7 f c (̂ 2,- - X2) {X2r - X2) {KX2J = X2i)l{x2J' 

X2i) - KX2J = X2i)q2{X2i) - I(X2,V = X2i)q2{X2i) + qUX2i)}] 

= -E 
n 

J J 

4 E E 7 2 7 ^ (^2, - X2) {X2y - X2) 

I(a;2j = X2i)l{x2r = X2i)] 

1 1 
n J2 E^ 

i= i 

^"* (X2 j -X2) ' l ( a :2 ,=^2 i ) 
fi{X2i) 

Integrating by substitution and using (H.3), (H.4) and (H.5) give 

1 1 E^ 
J 

^^' {x2j-X2fl{x2j=X2i) 
mx2i) 

^ ~ j2 E{ '^2(^2j ) (^2j -^2) y y y [̂ 0(̂ 1^^2 ,̂2:3,2:4) + 

2 / M [^1(^1)^34(^3,^4)]^ , , (^ \ , (^\\ 

/(^l,^2i,^3,2:4) J 

Finally, 

limn-.oo Var (7/) = 72 E / = I {/2(^2i) (^2j-- ^2) V / / [̂ 0 (^i.^2j, ^3, ^4) 

+mHz,,X2j.zs,z,)] k i g i l ^ I ^ 

It remains just to look at the computation of (10.3.22). Proceeding as in 
(10.3.20), we have 

• ^ E E ^ ^ ^ {^ii^2j){x2j - X 2 ) , Ak{x2j'){x2r - X2)) - O ( - ) . 
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We can write 7̂  as 

where 

1 "" 

n 

-2-Ai{x2j){x2j -X2), 
^ ^ X 2 

and then, applying the central Hmit theorem for strongly mixing processes 
(Rio, 2000, Theorem 4.2., p. 64), our result is proved. 
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